Hamiltonian partial differential equations and applications
Nicholls, David; Sulem, Catherine
2015-01-01
This book is a unique selection of work by world-class experts exploring the latest developments in Hamiltonian partial differential equations and their applications. Topics covered within are representative of the field’s wide scope, including KAM and normal form theories, perturbation and variational methods, integrable systems, stability of nonlinear solutions as well as applications to cosmology, fluid mechanics and water waves. The volume contains both surveys and original research papers and gives a concise overview of the above topics, with results ranging from mathematical modeling to rigorous analysis and numerical simulation. It will be of particular interest to graduate students as well as researchers in mathematics and physics, who wish to learn more about the powerful and elegant analytical techniques for Hamiltonian partial differential equations.
On Critical Behaviour in Systems of Hamiltonian Partial Differential Equations
Dubrovin, Boris; Grava, Tamara; Klein, Christian; Moro, Antonio
2015-06-01
We study the critical behaviour of solutions to weakly dispersive Hamiltonian systems considered as perturbations of elliptic and hyperbolic systems of hydrodynamic type with two components. We argue that near the critical point of gradient catastrophe of the dispersionless system, the solutions to a suitable initial value problem for the perturbed equations are approximately described by particular solutions to the Painlevé-I (P) equation or its fourth-order analogue P. As concrete examples, we discuss nonlinear Schrödinger equations in the semiclassical limit. A numerical study of these cases provides strong evidence in support of the conjecture.
Recent advances in the numerical solution of Hamiltonian partial differential equations
Barletti, Luigi; Brugnano, Luigi; Caccia, Gianluca Frasca; Iavernaro, Felice
2016-10-01
In this paper, we study recent results in the numerical solution of Hamiltonian partial differential equations (PDEs), by means of energy-conserving methods in the class of Line Integral Methods, in particular, the Runge-Kutta methods named Hamiltonian Boundary Value Methods (HBVMs). We show that the use of energy-conserving methods, able to conserve a discrete counterpart of the Hamiltonian functional (which derives from a proper space semi-discretization), confers more robustness to the numerical solution of such problems.
The geometric approach to sets of ordinary differential equations and Hamiltonian dynamics
Estabrook, F. B.; Wahlquist, H. D.
1975-01-01
The calculus of differential forms is used to discuss the local integration theory of a general set of autonomous first order ordinary differential equations. Geometrically, such a set is a vector field V in the space of dependent variables. Integration consists of seeking associated geometric structures invariant along V: scalar fields, forms, vectors, and integrals over subspaces. It is shown that to any field V can be associated a Hamiltonian structure of forms if, when dealing with an odd number of dependent variables, an arbitrary equation of constraint is also added. Families of integral invariants are an immediate consequence. Poisson brackets are isomorphic to Lie products of associated CT-generating vector fields. Hamilton's variational principle follows from the fact that the maximal regular integral manifolds of a closed set of forms must include the characteristics of the set.
Albert, Carlo; Ulzega, Simone; Stoop, Ruedi
2016-04-01
Parameter inference is a fundamental problem in data-driven modeling. Given observed data that is believed to be a realization of some parameterized model, the aim is to find parameter values that are able to explain the observed data. In many situations, the dominant sources of uncertainty must be included into the model for making reliable predictions. This naturally leads to stochastic models. Stochastic models render parameter inference much harder, as the aim then is to find a distribution of likely parameter values. In Bayesian statistics, which is a consistent framework for data-driven learning, this so-called posterior distribution can be used to make probabilistic predictions. We propose a novel, exact, and very efficient approach for generating posterior parameter distributions for stochastic differential equation models calibrated to measured time series. The algorithm is inspired by reinterpreting the posterior distribution as a statistical mechanics partition function of an object akin to a polymer, where the measurements are mapped on heavier beads compared to those of the simulated data. To arrive at distribution samples, we employ a Hamiltonian Monte Carlo approach combined with a multiple time-scale integration. A separation of time scales naturally arises if either the number of measurement points or the number of simulation points becomes large. Furthermore, at least for one-dimensional problems, we can decouple the harmonic modes between measurement points and solve the fastest part of their dynamics analytically. Our approach is applicable to a wide range of inference problems and is highly parallelizable.
Barles, Guy; Ley, Olivier; Topp, Erwin
2017-02-01
In this paper, we provide suitable adaptations of the ‘weak version of Bernstein method’ introduced by the first author in 1991, in order to obtain Lipschitz regularity results and Lipschitz estimates for nonlinear integro-differential elliptic and parabolic equations set in the whole space. Our interest is to obtain such Lipschitz results to possibly degenerate equations, or to equations which are indeed ‘uniformly elliptic’ (maybe in the nonlocal sense) but which do not satisfy the usual ‘growth condition’ on the gradient term allowing to use (for example) the Ishii-Lions’ method. We treat the case of a model equation with a superlinear coercivity on the gradient term which has a leading role in the equation. This regularity result together with comparison principle provided for the problem allow to obtain the ergodic large time behavior of the evolution problem in the periodic setting.
Keshtkar, F.; Erjaee, G.; Boutefnouchet, M.
2014-01-01
In this article, a brief stability analysis of equilibrium points in nonlinear fractional order dynamical systems is given. Then, based on the first integral concept, a definition of planar Hamiltonian systems with fractional order introduced. Some interesting properties of these fractional Hamiltonian systems are also presented. Finally, we illustrate two examples to see the differences between fractional Hamiltonian systems with their classical order counterparts. NPRP . Grant Number: NP...
Hamiltonian systems as selfdual equations
2008-01-01
Hamiltonian systems with various time boundary conditions are formulated as absolute minima of newly devised non-negative action func-tionals obtained by a generalization of Bogomolnyi's trick of 'completing squares'. Reminiscent of the selfdual Yang-Mills equations, they are not derived from the fact that they are critical points (i.e., from the correspond- ing Euler-Lagrange equations) but from being zeroes of the corresponding non-negative Lagrangians. A general method for resolving such variational problems is also described and applied to the construction of periodic solutions for Hamiltonian systems, but also to study certain Lagrangian intersections.
On third order integrable vector Hamiltonian equations
Meshkov, A. G.; Sokolov, V. V.
2017-03-01
A complete list of third order vector Hamiltonian equations with the Hamiltonian operator Dx having an infinite series of higher conservation laws is presented. A new vector integrable equation on the sphere is found.
On integrability of some bi-Hamiltonian two field systems of partial differential equations
De Sole, Alberto; Kac, Victor G.; Turhan, Refik
2015-05-01
We continue the study of integrability of bi-Hamiltonian systems with a compatible pair of local Poisson structures (H0, H1), where H0 is a strongly skew-adjoint operator. This is applied to the construction of some new two field integrable systems of PDE by taking the pair (H0, H1) in the family of compatible Poisson structures that arose in the study of cohomology of moduli spaces of curves.
Geometry of differential equations
Khovanskiĭ, A; Vassiliev, V
1998-01-01
This volume contains articles written by V. I. Arnold's colleagues on the occasion of his 60th birthday. The articles are mostly devoted to various aspects of geometry of differential equations and relations to global analysis and Hamiltonian mechanics.
Soliton equations and Hamiltonian systems
Dickey, L A
2002-01-01
The theory of soliton equations and integrable systems has developed rapidly during the last 30 years with numerous applications in mechanics and physics. For a long time, books in this field have not been written but the flood of papers was overwhelming: many hundreds, maybe thousands of them. All this output followed one single work by Gardner, Green, Kruskal, and Mizura on the Korteweg-de Vries equation (KdV), which had seemed to be merely an unassuming equation of mathematical physics describing waves in shallow water. Besides its obvious practical use, this theory is attractive also becau
THE HAMILTONIAN EQUATIONS IN SOME MATHEMATICS AND PHYSICS PROBLEMS
陈勇; 郑宇; 张鸿庆
2003-01-01
Some new Hamiltonian canonical system are discussed for a series of partialdifferential equations in Mathematics and Physics. It includes the Hamiltonian formalism forthe symmetry second-order equation with the variable coefficients, the new nonhomogeneousHamiltonian representation for fourth-order symmetry equation with constant coefficients,the one of MKdV equation and KP equation.
Barbu, Viorel
2016-01-01
This textbook is a comprehensive treatment of ordinary differential equations, concisely presenting basic and essential results in a rigorous manner. Including various examples from physics, mechanics, natural sciences, engineering and automatic theory, Differential Equations is a bridge between the abstract theory of differential equations and applied systems theory. Particular attention is given to the existence and uniqueness of the Cauchy problem, linear differential systems, stability theory and applications to first-order partial differential equations. Upper undergraduate students and researchers in applied mathematics and systems theory with a background in advanced calculus will find this book particularly useful. Supplementary topics are covered in an appendix enabling the book to be completely self-contained.
Sachin Kumar; K Singh; R K Gupta
2012-07-01
In this paper, coupled Higgs field equation are studied using the Lie classical method. Symmetry reductions and exact solutions are reported for Higgs equation and Hamiltonian amplitude equation. We also establish the travelling wave solutions involving parameters of the coupled Higgs equation and Hamiltonian amplitude equation using (′/)-expansion methodc, where = () satisfies a second-order linear ordinary differential equation (ODE). The travelling wave solutions expressed by hyperbolic, trigonometric and the rational functions are obtained.
Tricomi, FG
2013-01-01
Based on his extensive experience as an educator, F. G. Tricomi wrote this practical and concise teaching text to offer a clear idea of the problems and methods of the theory of differential equations. The treatment is geared toward advanced undergraduates and graduate students and addresses only questions that can be resolved with rigor and simplicity.Starting with a consideration of the existence and uniqueness theorem, the text advances to the behavior of the characteristics of a first-order equation, boundary problems for second-order linear equations, asymptotic methods, and diff
Hamiltonians with Riesz Bases of Generalised Eigenvectors and Riccati Equations
Wyss, Christian
2010-01-01
An algebraic Riccati equation for linear operators is studied, which arises in systems theory. For the case that all involved operators are unbounded, the existence of infinitely many selfadjoint solutions is shown. To this end, invariant graph subspaces of the associated Hamiltonian operator matrix are constructed by means of a Riesz basis with parentheses of generalised eigenvectors and two indefinite inner products. Under additional assumptions, the existence and a representation of all bounded solutions is obtained. The theory is applied to Riccati equations of differential operators.
Linear Hamiltonian Behaviors and Bilinear Differential Forms
Rapisarda, P.; Trentelman, H.L.
2004-01-01
We study linear Hamiltonian systems using bilinear and quadratic differential forms. Such a representation-free approach allows us to use the same concepts and techniques to deal with systems isolated from their environment and with systems subject to external influences and allows us to study
Construction of alternative Hamiltonian structures for field equations
Herrera, Mauricio [Departamento de Fisica, Facultad de Ciencias Fisicas y Matematicas, Universidad de Chile, Santiago (Chile); Hojman, Sergio A. [Departamento de Fisica, Facultad de Ciencias, Universidad de Chile, Santiago (Chile); Facultad de Educacion, Universidad Nacional Andres Bello, Santiago (Chile); Centro de Recursos Educativos Avanzados, CREA, Santiago (Chile)
2001-08-10
We use symmetry vectors of nonlinear field equations to build alternative Hamiltonian structures. We construct such structures even for equations which are usually believed to be non-Hamiltonian such as heat, Burger and potential Burger equations. We improve on a previous version of the approach using recursion operators to increase the rank of the Poisson bracket matrices. Cole-Hopf and Miura-type transformations allow the mapping of these structures from one equation to another. (author)
The Hamiltonian Canonical Form for Euler-Lagrange Equations
ZHENG Yu
2002-01-01
Based on the theory of calculus of variation, some suffcient conditions are given for some Euler-Lagrangcequations to be equivalently represented by finite or even infinite many Hamiltonian canonical equations. Meanwhile,some further applications for equations such as the KdV equation, MKdV equation, the general linear Euler Lagrangeequation and the cylindric shell equations are given.
Construction of Lagrangians and Hamiltonians from the Equation of Motion
Yan, C. C.
1978-01-01
Demonstrates that infinitely many Lagrangians and Hamiltonians can be constructed from a given equation of motion. Points out the lack of an established criterion for making a proper selection. (Author/GA)
Hamiltonian Formalism of the Derivative Nonlinear Schrodinger Equation
CAI Hao; LIU Feng-Min; HUANG Nian-Ning
2003-01-01
A particular form of poisson bracket is introduced for the derivative nonlinear Schrodinger (DNLS) equation.And its Hamiltonian formalism is developed by a linear combination method. Action-angle variables are found.
Stochastic partial differential equations
Chow, Pao-Liu
2014-01-01
Preliminaries Introduction Some Examples Brownian Motions and Martingales Stochastic Integrals Stochastic Differential Equations of Itô Type Lévy Processes and Stochastic IntegralsStochastic Differential Equations of Lévy Type Comments Scalar Equations of First Order Introduction Generalized Itô's Formula Linear Stochastic Equations Quasilinear Equations General Remarks Stochastic Parabolic Equations Introduction Preliminaries Solution of Stochastic Heat EquationLinear Equations with Additive Noise Some Regularity Properties Stochastic Reaction-Diffusion Equations Parabolic Equations with Grad
Partial Differential Equations
1988-01-01
The volume contains a selection of papers presented at the 7th Symposium on differential geometry and differential equations (DD7) held at the Nankai Institute of Mathematics, Tianjin, China, in 1986. Most of the contributions are original research papers on topics including elliptic equations, hyperbolic equations, evolution equations, non-linear equations from differential geometry and mechanics, micro-local analysis.
Bi-Hamiltonian structure of an asymmetric heavenly equation
Yaz Latin-Small-Letter-Dotless-I c Latin-Small-Letter-Dotless-I , D, E-mail: yazici@yildiz.edu.tr [Department of Physics, Y Latin-Small-Letter-Dotless-I ld Latin-Small-Letter-Dotless-I z Technical University, 34220 Esenler, Istanbul (Turkey)
2011-12-16
In the paper of Sheftel and Malykh (2009 J. Phys. A: Math. Theor. 42 395202) on the classification of second-order PDEs with four independent variables that possess partner symmetries, an asymmetric heavenly equation appears as one of the canonical equations admitting partner symmetries. Here, for the asymmetric heavenly equation formulated in a two-component form, we present the Lax pair of Olver-Ibragimov-Shabat type and obtain its multi-Hamiltonian structure. Therefore, by Magri's theorem, it is a completely integrable bi-Hamiltonian system in four dimensions. (paper)
Multivector field formulation of Hamiltonian field theories: equations and symmetries
Echeverria-Enriquez, A.; Munoz-Lecanda, M.C.; Roman-Roy, N. [Departamento de Matematica Aplicada y Telematica, Edificio C-3, Campus Norte UPC, Barcelona (Spain)
1999-12-03
We state the intrinsic form of the Hamiltonian equations of first-order classical field theories in three equivalent geometrical ways: using multivector fields, jet fields and connections. Thus, these equations are given in a form similar to that in which the Hamiltonian equations of mechanics are usually given. Then, using multivector fields, we study several aspects of these equations, such as the existence and non-uniqueness of solutions, and the integrability problem. In particular, these problems are analysed for the case of Hamiltonian systems defined in a submanifold of the multimomentum bundle. Furthermore, the existence of first integrals of these Hamiltonian equations is considered, and the relation between Cartan-Noether symmetries and general symmetries of the system is discussed. Noether's theorem is also stated in this context, both the 'classical' version and its generalization to include higher-order Cartan-Noether symmetries. Finally, the equivalence between the Lagrangian and Hamiltonian formalisms is also discussed. (author)
Hamiltonian formalism of two-dimensional Vlasov kinetic equation.
Pavlov, Maxim V
2014-12-08
In this paper, the two-dimensional Benney system describing long wave propagation of a finite depth fluid motion and the multi-dimensional Russo-Smereka kinetic equation describing a bubbly flow are considered. The Hamiltonian approach established by J. Gibbons for the one-dimensional Vlasov kinetic equation is extended to a multi-dimensional case. A local Hamiltonian structure associated with the hydrodynamic lattice of moments derived by D. J. Benney is constructed. A relationship between this hydrodynamic lattice of moments and the two-dimensional Vlasov kinetic equation is found. In the two-dimensional case, a Hamiltonian hydrodynamic lattice for the Russo-Smereka kinetic model is constructed. Simple hydrodynamic reductions are presented.
GONG Lun-Xun; CAO Jian-Li; PAN Jun-Ting; ZHANG Hua; JIAO Wan-Tang
2008-01-01
Based on the second integrable case of known two-dimensional Hamiltonian system with a quartic potential, we propose a 4×4 matrix spectral problem and derive a hierarchy of coupled KdV equations and their Hamiltonian structures. It is shown that solutions of the coupled KdV equations in the hierarchy are reduced to solving two compatible systems of ordinary differential equations. As an application, quite a few explicit solutions of the coupled KdV equations are obtained via using separability for the second integrable case of the two-dimensional Hamiltonian system.
Hamiltonian structure of propagation equations for ultrashort optical pulses
Amiranashvili, Sh.; Demircan, A.
2010-07-01
A Hamiltonian framework is developed for a sequence of ultrashort optical pulses propagating in a nonlinear dispersive medium. To this end a second-order nonlinear wave equation for the electric field is transformed into a first-order propagation equation for a suitably defined complex electric field. The Hamiltonian formulation is then introduced in terms of normal variables, i.e., classical complex fields referring to the quantum creation and annihilation operators. The derived z-propagated Hamiltonian accounts for forward and backward waves, arbitrary medium dispersion, and four-wave mixing processes. As a simple application we obtain integrals of motion for the pulse propagation. The integrals reflect time-averaged fluxes of energy, momentum, and photons transferred by the pulse. Furthermore, pulses in the form of stationary nonlinear waves are considered. They yield extremal values of the momentum flux for a given energy flux. Simplified propagation equations are obtained by reduction of the Hamiltonian. In particular, the complex electric field reduces to an analytic signal for the unidirectional propagation. Solutions of the full bidirectional model are numerically compared to the predictions of the simplified equation for the analytic signal and to the so-called forward Maxwell equation. The numerics is effectively tested by examining the conservation laws.
Flow Equations for the Hénon-Heiles Hamiltonian
Cremers, D; Cremers, Daniel; Mielke, Andreas
1998-01-01
The Henon-Heiles Hamiltonian was introduced in 1964 as a mathematical model to describe the chaotic motion of stars in a galaxy. By canonically transforming the classical Hamiltonian to a Birkhoff-Gustavson normalform Delos and Swimm obtained a discrete quantum mechanical energy spectrum. The aim of the present work is to first quantize the classical Hamiltonian and to then diagonalize it using different variants of flow equations, a method of continuous unitary transformations introduced by Wegner in 1994. The results of the diagonalization via flow equations are comparable to those obtained by the classical transformation. In the case of commensurate frequencies the transformation turns out to be less lengthy. In addition, the dynamics of the quantum mechanical system are analyzed on the basis of the transformed observables.
Hamiltonian formulation of SL(3) Ur-KdV equation
Chung, B K; Nam, S; Nam, Soonkeon
1993-01-01
We give a unified view of the relation between the $SL(2)$ KdV, the mKdV, and the Ur-KdV equations through the Fr\\'{e}chet derivatives and their inverses. For this we introduce a new procedure of obtaining the Ur-KdV equation, where we require that it has no non-local operators. We extend this method to the $SL(3)$ KdV equation, i.e., Boussinesq(Bsq) equation and obtain the hamiltonian structure of Ur-Bsq equationin a simple form. In particular, we explicitly construct the hamiltonian operator of the Ur-Bsq system which defines the poisson structure of the system, through the Fr\\'{e}chet derivative and its inverse.
Singular stochastic differential equations
Cherny, Alexander S
2005-01-01
The authors introduce, in this research monograph on stochastic differential equations, a class of points termed isolated singular points. Stochastic differential equations possessing such points (called singular stochastic differential equations here) arise often in theory and in applications. However, known conditions for the existence and uniqueness of a solution typically fail for such equations. The book concentrates on the study of the existence, the uniqueness, and, what is most important, on the qualitative behaviour of solutions of singular stochastic differential equations. This is done by providing a qualitative classification of isolated singular points, into 48 possible types.
Developmental Partial Differential Equations
Duteil, Nastassia Pouradier; Rossi, Francesco; Boscain, Ugo; Piccoli, Benedetto
2015-01-01
In this paper, we introduce the concept of Developmental Partial Differential Equation (DPDE), which consists of a Partial Differential Equation (PDE) on a time-varying manifold with complete coupling between the PDE and the manifold's evolution. In other words, the manifold's evolution depends on the solution to the PDE, and vice versa the differential operator of the PDE depends on the manifold's geometry. DPDE is used to study a diffusion equation with source on a growing surface whose gro...
Beginning partial differential equations
O'Neil, Peter V
2014-01-01
A broad introduction to PDEs with an emphasis on specialized topics and applications occurring in a variety of fields Featuring a thoroughly revised presentation of topics, Beginning Partial Differential Equations, Third Edition provides a challenging, yet accessible,combination of techniques, applications, and introductory theory on the subjectof partial differential equations. The new edition offers nonstandard coverageon material including Burger's equation, the telegraph equation, damped wavemotion, and the use of characteristics to solve nonhomogeneous problems. The Third Edition is or
Ordinary differential equations
Greenberg, Michael D
2014-01-01
Features a balance between theory, proofs, and examples and provides applications across diverse fields of study Ordinary Differential Equations presents a thorough discussion of first-order differential equations and progresses to equations of higher order. The book transitions smoothly from first-order to higher-order equations, allowing readers to develop a complete understanding of the related theory. Featuring diverse and interesting applications from engineering, bioengineering, ecology, and biology, the book anticipates potential difficulties in understanding the various solution steps
Chen, Yongpin P; Jiang, Li Jun; Meng, Min; Wu, Yu Mao; Chew, Weng Cho
2016-01-01
A novel unified Hamiltonian approach is proposed to solve Maxwell-Schrodinger equation for modeling the interaction between classical electromagnetic (EM) fields and particles. Based on the Hamiltonian of electromagnetics and quantum mechanics, a unified Maxwell-Schrodinger system is derived by the variational principle. The coupled system is well-posed and symplectic, which ensures energy conserving property during the time evolution. However, due to the disparity of wavelengths of EM waves and that of electron waves, a numerical implementation of the finite-difference time-domain (FDTD) method to the multiscale coupled system is extremely challenging. To overcome this difficulty, a reduced eigenmode expansion technique is first applied to represent the wave function of the particle. Then, a set of ordinary differential equations (ODEs) governing the time evolution of the slowly-varying expansion coefficients are derived to replace the original Schrodinger equation. Finally, Maxwell's equations represented b...
Introduction to differential equations
Taylor, Michael E
2011-01-01
The mathematical formulations of problems in physics, economics, biology, and other sciences are usually embodied in differential equations. The analysis of the resulting equations then provides new insight into the original problems. This book describes the tools for performing that analysis. The first chapter treats single differential equations, emphasizing linear and nonlinear first order equations, linear second order equations, and a class of nonlinear second order equations arising from Newton's laws. The first order linear theory starts with a self-contained presentation of the exponen
Differential equations for dummies
Holzner, Steven
2008-01-01
The fun and easy way to understand and solve complex equations Many of the fundamental laws of physics, chemistry, biology, and economics can be formulated as differential equations. This plain-English guide explores the many applications of this mathematical tool and shows how differential equations can help us understand the world around us. Differential Equations For Dummies is the perfect companion for a college differential equations course and is an ideal supplemental resource for other calculus classes as well as science and engineering courses. It offers step-by-step techniques, practical tips, numerous exercises, and clear, concise examples to help readers improve their differential equation-solving skills and boost their test scores.
Ordinary differential equations
Pontryagin, Lev Semenovich
1962-01-01
Ordinary Differential Equations presents the study of the system of ordinary differential equations and its applications to engineering. The book is designed to serve as a first course in differential equations. Importance is given to the linear equation with constant coefficients; stability theory; use of matrices and linear algebra; and the introduction to the Lyapunov theory. Engineering problems such as the Watt regulator for a steam engine and the vacuum-tube circuit are also presented. Engineers, mathematicians, and engineering students will find the book invaluable.
Fractional Differential Equations
Jianping Zhao
2012-01-01
Full Text Available An extended fractional subequation method is proposed for solving fractional differential equations by introducing a new general ansätz and Bäcklund transformation of the fractional Riccati equation with known solutions. Being concise and straightforward, this method is applied to the space-time fractional coupled Burgers’ equations and coupled MKdV equations. As a result, many exact solutions are obtained. It is shown that the considered method provides a very effective, convenient, and powerful mathematical tool for solving fractional differential equations.
Optical waveguide Hamiltonians leading to step-2 difference equations
Rueda-Paz, Juvenal; Wolf, Kurt Bernardo, E-mail: bwolf@fis.unam.mx [Instituto de Ciencias Fisicas, Universidad Nacional Autonoma de Mexico, Av. Universidad s/n, Cuernavaca, Morelos 62251 (Mexico)
2011-03-01
We examine the evolution of an N-point signal produced and sensed at finite arrays of points transverse to a planar waveguide, within the framework of the finite quantization of geometric optics. In contradistinction to the common mechanical Hamiltonians (kinetic plus potential energy terms) the classical waveguide Hamiltonian is the square root of a difference of squares of the refractive index profile minus the optical momentum. The finitely quantized model requires the solution of the square eigenvalue and eigenfunction problem which leads to a step-two difference equation that contains two solutions and two signs of energy. We find the proper linear combinations to fit the Kravchuk functions of the finite oscillator model.
High-order Hamiltonian splitting for Vlasov-Poisson equations
Casas, Fernando; Faou, Erwan; Mehrenberger, Michel
2015-01-01
We consider the Vlasov-Poisson equation in a Hamiltonian framework and derive new time splitting methods based on the decomposition of the Hamiltonian functional between the kinetic and electric energy. Assuming smoothness of the solutions, we study the order conditions of such methods. It appears that these conditions are of Runge-Kutta-Nystr{\\"o}m type. In the one dimensional case, the order conditions can be further simplified, and efficient methods of order 6 with a reduced number of stages can be constructed. In the general case, high-order methods can also be constructed using explicit computations of commutators. Numerical results are performed and show the benefit of using high-order splitting schemes in that context. Complete and self-contained proofs of convergence results and rigorous error estimates are also given.
Optical waveguide Hamiltonians leading to step-2 difference equations
Rueda-Paz, Juvenal; Wolf, Kurt Bernardo
2011-03-01
We examine the evolution of an N-point signal produced and sensed at finite arrays of points transverse to a planar waveguide, within the framework of the finite quantization of geometric optics. In contradistinction to the common mechanical Hamiltonians (kinetic plus potential energy terms) the classical waveguide Hamiltonian is the square root of a difference of squares of the refractive index profile minus the optical momentum. The finitely quantized model requires the solution of the square eigenvalue and eigenfunction problem which leads to a step-two difference equation that contains two solutions and two signs of energy. We find the proper linear combinations to fit the Kravchuk functions of the finite oscillator model.
Renormalizing Partial Differential Equations
Bricmont, J.; Kupiainen, A.
1994-01-01
In this review paper, we explain how to apply Renormalization Group ideas to the analysis of the long-time asymptotics of solutions of partial differential equations. We illustrate the method on several examples of nonlinear parabolic equations. We discuss many applications, including the stability of profiles and fronts in the Ginzburg-Landau equation, anomalous scaling laws in reaction-diffusion equations, and the shape of a solution near a blow-up point.
A Difference Hamiltonian Operator and a Hierarchy of Generalized Toda Lattice Equations
XU Xi-Xiang; YANG Hong-Xiang; DING Hai-Yong
2005-01-01
A difference Ha-miltonian operator with three arbitrary constants is presented. When the arbitrary constants -in the Hamiltonian operator are suitably chosen, a pair of Hamiltonian operators are given. The resulting Hamiltonian pair yields a difference hereditary operator. Using Magri scheme of bi-Hamiltonian formulation, a hierarchy of the generalized Toda lattice equations is constructed. Finally, the discrete zero curvature representation is given for the resulting hierarchy.
A Difference Hamiltonian Operator and a Hierarchy of Generalized Toda Lattice Equations
XUXi-Xiang; YANGHong-Xiang; DINGHai-Yong
2005-01-01
A difference Hamiltonian operator with three arbitrary constants is presented. When the arbitrary constants in the Hamiltonian operator are suitably chosen， a pair of Hamiltonian operators are given. The resulting Hamiltonian pair yields a difference hereditary operator. Using Magri scheme of bi-Hamiltonian formulations a hierarchy of the generalized Toda lattice equations is constructed. Finally, the discrete zero curvature representation is given for the resulting hierarchy.
Partial differential equations
Evans, Lawrence C
2010-01-01
This text gives a comprehensive survey of modern techniques in the theoretical study of partial differential equations (PDEs) with particular emphasis on nonlinear equations. The exposition is divided into three parts: representation formulas for solutions; theory for linear partial differential equations; and theory for nonlinear partial differential equations. Included are complete treatments of the method of characteristics; energy methods within Sobolev spaces; regularity for second-order elliptic, parabolic, and hyperbolic equations; maximum principles; the multidimensional calculus of variations; viscosity solutions of Hamilton-Jacobi equations; shock waves and entropy criteria for conservation laws; and, much more.The author summarizes the relevant mathematics required to understand current research in PDEs, especially nonlinear PDEs. While he has reworked and simplified much of the classical theory (particularly the method of characteristics), he primarily emphasizes the modern interplay between funct...
Differential equations problem solver
Arterburn, David R
2012-01-01
REA's Problem Solvers is a series of useful, practical, and informative study guides. Each title in the series is complete step-by-step solution guide. The Differential Equations Problem Solver enables students to solve difficult problems by showing them step-by-step solutions to Differential Equations problems. The Problem Solvers cover material ranging from the elementary to the advanced and make excellent review books and textbook companions. They're perfect for undergraduate and graduate studies.The Differential Equations Problem Solver is the perfect resource for any class, any exam, and
Ordinary differential equations
Miller, Richard K
1982-01-01
Ordinary Differential Equations is an outgrowth of courses taught for a number of years at Iowa State University in the mathematics and the electrical engineering departments. It is intended as a text for a first graduate course in differential equations for students in mathematics, engineering, and the sciences. Although differential equations is an old, traditional, and well-established subject, the diverse backgrounds and interests of the students in a typical modern-day course cause problems in the selection and method of presentation of material. In order to compensate for this diversity,
Beginning partial differential equations
O'Neil, Peter V
2011-01-01
A rigorous, yet accessible, introduction to partial differential equations-updated in a valuable new edition Beginning Partial Differential Equations, Second Edition provides a comprehensive introduction to partial differential equations (PDEs) with a special focus on the significance of characteristics, solutions by Fourier series, integrals and transforms, properties and physical interpretations of solutions, and a transition to the modern function space approach to PDEs. With its breadth of coverage, this new edition continues to present a broad introduction to the field, while also addres
Hyperbolic partial differential equations
Witten, Matthew
1986-01-01
Hyperbolic Partial Differential Equations III is a refereed journal issue that explores the applications, theory, and/or applied methods related to hyperbolic partial differential equations, or problems arising out of hyperbolic partial differential equations, in any area of research. This journal issue is interested in all types of articles in terms of review, mini-monograph, standard study, or short communication. Some studies presented in this journal include discretization of ideal fluid dynamics in the Eulerian representation; a Riemann problem in gas dynamics with bifurcation; periodic M
Uncertain differential equations
Yao, Kai
2016-01-01
This book introduces readers to the basic concepts of and latest findings in the area of differential equations with uncertain factors. It covers the analytic method and numerical method for solving uncertain differential equations, as well as their applications in the field of finance. Furthermore, the book provides a number of new potential research directions for uncertain differential equation. It will be of interest to researchers, engineers and students in the fields of mathematics, information science, operations research, industrial engineering, computer science, artificial intelligence, automation, economics, and management science.
Problems in differential equations
Brenner, J L
2013-01-01
More than 900 problems and answers explore applications of differential equations to vibrations, electrical engineering, mechanics, and physics. Problem types include both routine and nonroutine, and stars indicate advanced problems. 1963 edition.
Wu-hwan Jong
2013-11-01
Full Text Available We proved a parameterized KAM theorem in Hamiltonian system which has differentiable Hamiltonian without action-angle coordinates. It is a generalization of the result of [20] that deals with real analytic Hamiltonians.
Differential Equation of Equilibrium
user
than the classical method in the solution of the aforementioned differential equation. Keywords: ... present a successful approximation of shell ... displacement function. .... only applicable to cylindrical shell subject to ..... (cos. 4. 4. 4. 3 β. + β. + β. -. = β. - β x x e ex. AL. xA w. Substituting equations (29); (30) and (31) into.
Differential equations I essentials
REA, Editors of
2012-01-01
REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Differential Equations I covers first- and second-order equations, series solutions, higher-order linear equations, and the Laplace transform.
Calculus & ordinary differential equations
Pearson, David
1995-01-01
Professor Pearson's book starts with an introduction to the area and an explanation of the most commonly used functions. It then moves on through differentiation, special functions, derivatives, integrals and onto full differential equations. As with other books in the series the emphasis is on using worked examples and tutorial-based problem solving to gain the confidence of students.
Recursion operators and bi-Hamiltonian structure of the general heavenly equation
Sheftel, M B; Yazıcı, D
2015-01-01
We discover two additional Lax pairs and three nonlocal recursion operators for symmetries of the general heavenly equation introduced by Doubrov and Ferapontov. Converting the equation to a two-component form, we obtain Lagrangian and Hamiltonian structures of the two-component general heavenly system. We study all point symmetries of the two-component system and, using the inverse Noether theorem in the Hamiltonian form, obtain all the integrals of motion corresponding to each variational (Noether) symmetry. We discover that all the recursion operators coincide in the two-component form. Applying the recursion operator to the first Hamiltonian structure we obtain second Hamiltonian structure. We prove the Jacobi identities for the second Hamiltonian operator and compatibility of the two Hamiltonian structures. Thus, we demonstrate that the general heavenly equation in the two-component form is a bi-Hamiltonian system integrable in the sense of Magri. We demonstrate how to obtain nonlocal Hamiltonian flows g...
Theory of differential equations
Gel'fand, I M
1967-01-01
Generalized Functions, Volume 3: Theory of Differential Equations focuses on the application of generalized functions to problems of the theory of partial differential equations.This book discusses the problems of determining uniqueness and correctness classes for solutions of the Cauchy problem for systems with constant coefficients and eigenfunction expansions for self-adjoint differential operators. The topics covered include the bounded operators in spaces of type W, Cauchy problem in a topological vector space, and theorem of the Phragmén-Lindelöf type. The correctness classes for the Cau
Nonlinear eigenvalue approach to differential Riccati equations for contraction analysis
Kawano, Yu; Ohtsuka, Toshiyuki
2017-01-01
In this paper, we extend the eigenvalue method of the algebraic Riccati equation to the differential Riccati equation (DRE) in contraction analysis. One of the main results is showing that solutions to the DRE can be expressed as functions of nonlinear eigenvectors of the differential Hamiltonian ma
One Dimensional Quasi-Exactly Solvable Differential Equations
Fasihi, Mohammad A.
2006-01-01
In this paper by means of similarity transformation we find some one-dimensional quasi-exactly solvable differential equations and their related Hamiltonians which appear in physical problems. We have provided also two examples with application of these differential equations.
Partial differential equations
Friedman, Avner
2008-01-01
This three-part treatment of partial differential equations focuses on elliptic and evolution equations. Largely self-contained, it concludes with a series of independent topics directly related to the methods and results of the preceding sections that helps introduce readers to advanced topics for further study. Geared toward graduate and postgraduate students of mathematics, this volume also constitutes a valuable reference for mathematicians and mathematical theorists.Starting with the theory of elliptic equations and the solution of the Dirichlet problem, the text develops the theory of we
Applied partial differential equations
Logan, J David
2004-01-01
This primer on elementary partial differential equations presents the standard material usually covered in a one-semester, undergraduate course on boundary value problems and PDEs. What makes this book unique is that it is a brief treatment, yet it covers all the major ideas: the wave equation, the diffusion equation, the Laplace equation, and the advection equation on bounded and unbounded domains. Methods include eigenfunction expansions, integral transforms, and characteristics. Mathematical ideas are motivated from physical problems, and the exposition is presented in a concise style accessible to science and engineering students; emphasis is on motivation, concepts, methods, and interpretation, rather than formal theory. This second edition contains new and additional exercises, and it includes a new chapter on the applications of PDEs to biology: age structured models, pattern formation; epidemic wave fronts, and advection-diffusion processes. The student who reads through this book and solves many of t...
Differential Equations as Actions
Ronkko, Mauno; Ravn, Anders P.
1997-01-01
We extend a conventional action system with a primitive action consisting of a differential equation and an evolution invariant. The semantics is given by a predicate transformer. The weakest liberal precondition is chosen, because it is not always desirable that steps corresponding to differential...... actions shall terminate. It is shown that the proposed differential action has a semantics which corresponds to a discrete approximation when the discrete step size goes to zero. The extension gives action systems the power to model real-time clocks and continuous evolutions within hybrid systems....
Modified differential equations
Chartier, Philippe; Hairer, Ernst; Vilmart, Gilles
2007-01-01
Motivated by the theory of modified differential equations (backward error analysis) an approach for the construction of high order numerical integrators that preserve geometric properties of the exact flow is developed. This summarises a talk presented in honour of Michel Crouzeix.
Differential Equations with Linear Algebra
Boelkins, Matthew R; Potter, Merle C
2009-01-01
Linearity plays a critical role in the study of elementary differential equations; linear differential equations, especially systems thereof, demonstrate a fundamental application of linear algebra. In Differential Equations with Linear Algebra, we explore this interplay between linear algebra and differential equations and examine introductory and important ideas in each, usually through the lens of important problems that involve differential equations. Written at a sophomore level, the text is accessible to students who have completed multivariable calculus. With a systems-first approach, t
Stochastic differential equations and applications
Friedman, Avner
2006-01-01
This text develops the theory of systems of stochastic differential equations, and it presents applications in probability, partial differential equations, and stochastic control problems. Originally published in two volumes, it combines a book of basic theory and selected topics with a book of applications.The first part explores Markov processes and Brownian motion; the stochastic integral and stochastic differential equations; elliptic and parabolic partial differential equations and their relations to stochastic differential equations; the Cameron-Martin-Girsanov theorem; and asymptotic es
Zhang Huiqun [College of Mathematical Science, Qingdao University, Qingdao, Shandong 266071 (China)], E-mail: hellozhq@yahoo.com.cn
2009-02-15
By using some exact solutions of an auxiliary ordinary differential equation, a direct algebraic method is described to construct the exact complex solutions for nonlinear partial differential equations. The method is implemented for the NLS equation, a new Hamiltonian amplitude equation, the coupled Schrodinger-KdV equations and the Hirota-Maccari equations. New exact complex solutions are obtained.
Differential equations with Mathematica
Abell, Martha L
2004-01-01
The Third Edition of the Differential Equations with Mathematica integrates new applications from a variety of fields,especially biology, physics, and engineering. The new handbook is also completely compatible with recent versions of Mathematica and is a perfect introduction for Mathematica beginners.* Focuses on the most often used features of Mathematica for the beginning Mathematica user* New applications from a variety of fields, including engineering, biology, and physics* All applications were completed using recent versions of Mathematica
Arithmetic partial differential equations
Buium, Alexandru; Simanca, Santiago R.
2006-01-01
We develop an arithmetic analogue of linear partial differential equations in two independent ``space-time'' variables. The spatial derivative is a Fermat quotient operator, while the time derivative is the usual derivation. This allows us to ``flow'' integers or, more generally, points on algebraic groups with coordinates in rings with arithmetic flavor. In particular, we show that elliptic curves have certain canonical ``flows'' on them that are the arithmetic analogues of the heat and wave...
Introduction to partial differential equations
Greenspan, Donald
2000-01-01
Designed for use in a one-semester course by seniors and beginning graduate students, this rigorous presentation explores practical methods of solving differential equations, plus the unifying theory underlying the mathematical superstructure. Topics include basic concepts, Fourier series, second-order partial differential equations, wave equation, potential equation, heat equation, approximate solution of partial differential equations, and more. Exercises appear at the ends of most chapters. 1961 edition.
The Monge-Ampère equation: Hamiltonian and symplectic structures, recursions, and hierarchies
Kersten, P.H.M.; Krasil'shchik, I.; Verbovetsky, A.V.
2004-01-01
Using methods of geometry and cohomology developed recently, we study the Monge-Ampère equation, arising as the first nontrivial equation in the associativity equations, or WDVV equations. We describe Hamiltonian and symplectic structures as well as recursion operators for this equation in its
Remarks on the Lagrangian representation of bi-Hamiltonian equations
Pavlov, M. V.; Vitolo, R. F.
2017-03-01
The Lagrangian representation of multi-Hamiltonian PDEs has been introduced by Y. Nutku and one of us (MVP). In this paper we focus on systems which are (at least) bi-Hamiltonian by a pair A1, A2, where A1 is a hydrodynamic-type Hamiltonian operator. We prove that finding the Lagrangian representation is equivalent to finding a generalized vector field τ such that A2 =LτA1. We use this result in order to find the Lagrangian representation when A2 is a homogeneous third-order Hamiltonian operator, although the method that we use can be applied to any other homogeneous Hamiltonian operator. As an example we provide the Lagrangian representation of a WDVV hydrodynamic-type system in 3 components.
Partial differential equations
Sloan, D; Süli, E
2001-01-01
/homepage/sac/cam/na2000/index.html7-Volume Set now available at special set price ! Over the second half of the 20th century the subject area loosely referred to as numerical analysis of partial differential equations (PDEs) has undergone unprecedented development. At its practical end, the vigorous growth and steady diversification of the field were stimulated by the demand for accurate and reliable tools for computational modelling in physical sciences and engineering, and by the rapid development of computer hardware and architecture. At the more theoretical end, the analytical insight in
Partial differential equations
Levine, Harold
1997-01-01
The subject matter, partial differential equations (PDEs), has a long history (dating from the 18th century) and an active contemporary phase. An early phase (with a separate focus on taut string vibrations and heat flow through solid bodies) stimulated developments of great importance for mathematical analysis, such as a wider concept of functions and integration and the existence of trigonometric or Fourier series representations. The direct relevance of PDEs to all manner of mathematical, physical and technical problems continues. This book presents a reasonably broad introductory account of the subject, with due regard for analytical detail, applications and historical matters.
Ordinary differential equations
Cox, William
1995-01-01
Building on introductory calculus courses, this text provides a sound foundation in the underlying principles of ordinary differential equations. Important concepts, including uniqueness and existence theorems, are worked through in detail and the student is encouraged to develop much of the routine material themselves, thus helping to ensure a solid understanding of the fundamentals required.The wide use of exercises, problems and self-assessment questions helps to promote a deeper understanding of the material and it is developed in such a way that it lays the groundwork for further
Bi-Hamiltonian Structure of a Third-Order Nonlinear Evolution Equation on Plane Curve Motions
无
2007-01-01
In the present paper, we identify the integrability of the third-order nonlinear evolution equation ut = (1/2)((uxx + u)-2)x in a Hamiltonian viewpoint. We prove that the recursion operator obtained by S. Yu. Sakovich is hereditary, and then deduce a bi-Hamiltonian structure of the equation by using some decomposition of the hereditary operator. A hierarchy associated to the equation is also shown.
Recursion operators and bi-Hamiltonian structure of the general heavenly equation
Sheftel, M. B.; Yazıcı, D.; Malykh, A. A.
2017-06-01
We discover two additional Lax pairs and three nonlocal recursion operators for symmetries of the general heavenly equation introduced by Doubrov and Ferapontov. Converting the equation to a two-component form, we obtain Lagrangian and Hamiltonian structures of the two-component general heavenly system. We study all point symmetries of the two-component system and, using the inverse Noether theorem in the Hamiltonian form, obtain all the integrals of motion corresponding to each variational (Noether) symmetry. We discover that in the two-component form we have only a single nonlocal recursion operator. Composing the recursion operator with the first Hamiltonian operator we obtain second Hamiltonian operator. We check the Jacobi identities for the second Hamiltonian operator and compatibility of the two Hamiltonian structures using P. Olver's theory of functional multi-vectors. Our well-founded conjecture is that P. Olver's method works fine for nonlocal operators. We show that the general heavenly equation in the two-component form is a bi-Hamiltonian system integrable in the sense of Magri. We demonstrate how to obtain nonlocal Hamiltonian flows generated by local Hamiltonians by using formal adjoint recursion operator.
Ordinary differential equations a graduate text
Bhamra, K S
2015-01-01
ORDINARY DIFFERENTIAL EQUATIONS: A Graduate Text presents a systematic and comprehensive introduction to ODEs for graduate and postgraduate students. The systematic organized text on differential inequalities, Gronwall's inequality, Nagumo's theorems, Osgood's criteria and applications of different equations of first order is dealt with in a greater depth. The book discusses qualitative and quantitative aspects of the Strum - Liouville problems, Green's function, integral equations, Laplace transform and is supported by a number of worked-out examples in each lesson to make the concepts clear. A lot of stress on stability theory is laid down, especially on Lyapunov and Poincare stability theory. A numerous figures in various lessons (in particular lessons dealing with stability theory) have been added to clarify the key concepts in DE theory. Nonlinear oscillation in conservative systems and Hamiltonian systems highlights basic nature of the systems considered. Perturbation techniques lesson deals in fairly d...
Bi-Hamiltonian systems and Lotka-Volterra equations: A three dimensional classification
Plank, Manfred
1995-01-01
We study three dimensional bi-Hamiltonian systems in general and use the obtained results to classify all three dimensional Lotka-Volterra equations, which admit a bi-Hamiltonian representation. In der vorliegenden Arbeit studieren wir drei-dimensionale bi-Hamiltonsche Systeme und klassifizieren alle drei-dimensionalen Lotka-Volterra Gleichungen, welche eine bi-Hamiltonsche Darstellung zulassen.
Elements of partial differential equations
Sneddon, Ian N
2006-01-01
Geared toward students of applied rather than pure mathematics, this volume introduces elements of partial differential equations. Its focus is primarily upon finding solutions to particular equations rather than general theory.Topics include ordinary differential equations in more than two variables, partial differential equations of the first and second orders, Laplace's equation, the wave equation, and the diffusion equation. A helpful Appendix offers information on systems of surfaces, and solutions to the odd-numbered problems appear at the end of the book. Readers pursuing independent st
First-order partial differential equations in classical dynamics
Smith, B. R.
2009-12-01
Carathèodory's classic work on the calculus of variations explores in depth the connection between ordinary differential equations and first-order partial differential equations. The n second-order ordinary differential equations of a classical dynamical system reduce to a single first-order differential equation in 2n independent variables. The general solution of first-order partial differential equations touches on many concepts central to graduate-level courses in analytical dynamics including the Hamiltonian, Lagrange and Poisson brackets, and the Hamilton-Jacobi equation. For all but the simplest dynamical systems the solution requires one or more of these techniques. Three elementary dynamical problems (uniform acceleration, harmonic motion, and cyclotron motion) can be solved directly from the appropriate first-order partial differential equation without the use of advanced methods. The process offers an unusual perspective on classical dynamics, which is readily accessible to intermediate students who are not yet fully conversant with advanced approaches.
Scaling of differential equations
Langtangen, Hans Petter
2016-01-01
The book serves both as a reference for various scaled models with corresponding dimensionless numbers, and as a resource for learning the art of scaling. A special feature of the book is the emphasis on how to create software for scaled models, based on existing software for unscaled models. Scaling (or non-dimensionalization) is a mathematical technique that greatly simplifies the setting of input parameters in numerical simulations. Moreover, scaling enhances the understanding of how different physical processes interact in a differential equation model. Compared to the existing literature, where the topic of scaling is frequently encountered, but very often in only a brief and shallow setting, the present book gives much more thorough explanations of how to reason about finding the right scales. This process is highly problem dependent, and therefore the book features a lot of worked examples, from very simple ODEs to systems of PDEs, especially from fluid mechanics. The text is easily accessible and exam...
Exact solutions of a class of fractional Hamiltonian equations involving Caputo derivatives
Baleanu, Dumitru [Department of Mathematics and Computer Sciences, Faculty of Arts and Sciences, Cankaya University, Ankara 06530 (Turkey); Trujillo, Juan J [Departamento de Analisis Matematico, University of La Laguna, 38271 La Laguna, Tenerife (Spain)], E-mail: dumitru@cankaya.edu.tr, E-mail: JTrujill@ullmat.es, E-mail: baleanu@venus.nipne.ro
2009-11-15
The fractional Hamiltonian equations corresponding to the Lagrangians of constrained systems within Caputo derivatives are investigated. The fractional phase space is obtained and the exact solutions of some constrained systems are obtained.
Two-Dimensional Saddle Point Equation of Ginzburg-Landau Hamiltonian for the Diluted Ising Model
WU Xin-Tian
2006-01-01
@@ The saddle point equation of Ginzburg-Landau Hamiltonian for the diluted Ising model is developed. The ground state is solved numerically in two dimensions. The result is partly explained by the coarse-grained approximation.
Singh, Parampreet
2015-01-01
The problem of obtaining canonical Hamiltonian structures from the equations of motion is studied in the context of the spatially flat Friedmann-Robertson-Walker models. Modifications to Raychaudhuri equation are implemented independently as quadratic and cubic terms of energy density without introducing additional degrees of freedom. Depending on its sign, modifications make gravity repulsive above a curvature scale for matter satisfying strong energy condition, or more attractive than in the classical theory. Canonical structure of the modified theories is determined demanding that the total Hamiltonian be a linear combination of gravity and matter Hamiltonians. Both of the repulsive modifications are found to yield singularity avoidance. In the quadratic repulsive case, the modified canonical phase space of gravity is a polymerized phase space with canonical momentum as inverse trigonometric function of Hubble rate; the canonical Hamiltonian can be identified with the effective Hamiltonian in loop quantum ...
Solutions to general forward-backward doubly stochastic differential equations
Qing-feng ZHU; Yu-feng SHI; Xian-jun GONG
2009-01-01
A gcneral type of forward-backward doubly stochastic differential equations (FBDSDEs) is studied. It extends many important equations that have been well stud-led, including stochastic Hamiltonian systems. Under some much weaker monotonicity assumptions, the existence and uniqueness of measurable solutions are established with a method of continuation. Furthermore, the continuity and differentiability of the solutions to FBDSDEs depending on parameters is discussed.
On Degenerate Partial Differential Equations
Chen, Gui-Qiang G.
2010-01-01
Some of recent developments, including recent results, ideas, techniques, and approaches, in the study of degenerate partial differential equations are surveyed and analyzed. Several examples of nonlinear degenerate, even mixed, partial differential equations, are presented, which arise naturally in some longstanding, fundamental problems in fluid mechanics and differential geometry. The solution to these fundamental problems greatly requires a deep understanding of nonlinear degenerate parti...
Differential equations extended to superspace
Torres, J. [Instituto de Fisica, Universidad de Guanajuato, A.P. E-143, Leon, Guanajuato (Mexico); Rosu, H.C. [Instituto Potosino de Investigacion Cientifica y Tecnologica, A.P. 3-74, Tangamanga, San Luis Potosi (Mexico)
2003-07-01
We present a simple SUSY Ns = 2 superspace extension of the differential equations in which the sought solutions are considered to be real superfields but maintaining the common derivative operators and the coefficients of the differential equations unaltered. In this way, we get self consistent systems of coupled differential equations for the components of the superfield. This procedure is applied to the Riccati equation, for which we obtain in addition the system of coupled equations corresponding to the components of the general superfield solution. (Author)
Bargmann Symmetry Constraint for a Family of Liouville Integrable Differential-Difference Equations
徐西祥
2012-01-01
A family of integrable differential-difference equations is derived from a new matrix spectral problem. The Hamiltonian forms of obtained differential-difference equations are constructed. The Liouville integrability for the obtained integrable family is proved. Then, Bargmann symmetry constraint of the obtained integrable family is presented by binary nonliearization method of Lax pairs and adjoint Lax pairs. Under this Bargmann symmetry constraints, an integrable symplectic map and a sequences of completely integrable finite-dimensional Hamiltonian systems in Liouville sense are worked out, and every integrable differential-difference equations in the obtained family is factored by the integrable symplectie map and a completely integrable tinite-dimensionai Hamiltonian system.
Inverse problems in ordinary differential equations and applications
Llibre, Jaume
2016-01-01
This book is dedicated to study the inverse problem of ordinary differential equations, that is it focuses in finding all ordinary differential equations that satisfy a given set of properties. The Nambu bracket is the central tool in developing this approach. The authors start characterizing the ordinary differential equations in R^N which have a given set of partial integrals or first integrals. The results obtained are applied first to planar polynomial differential systems with a given set of such integrals, second to solve the 16th Hilbert problem restricted to generic algebraic limit cycles, third for solving the inverse problem for constrained Lagrangian and Hamiltonian mechanical systems, fourth for studying the integrability of a constrained rigid body. Finally the authors conclude with an analysis on nonholonomic mechanics, a generalization of the Hamiltonian principle, and the statement an solution of the inverse problem in vakonomic mechanics.
(Anti-Hermitian Generalized (Anti-Hamiltonian Solution to a System of Matrix Equations
Juan Yu
2014-01-01
Full Text Available We mainly solve three problems. Firstly, by the decomposition of the (anti-Hermitian generalized (anti-Hamiltonian matrices, the necessary and sufficient conditions for the existence of and the expression for the (anti-Hermitian generalized (anti-Hamiltonian solutions to the system of matrix equations AX=B,XC=D are derived, respectively. Secondly, the optimal approximation solution minX∈K∥X^-X∥ is obtained, where K is the (anti-Hermitian generalized (anti-Hamiltonian solution set of the above system and X^ is the given matrix. Thirdly, the least squares (anti-Hermitian generalized (anti-Hamiltonian solutions are considered. In addition, algorithms about computing the least squares (anti-Hermitian generalized (anti-Hamiltonian solution and the corresponding numerical examples are presented.
(Anti-)Hermitian Generalized (Anti-)Hamiltonian Solution to a System of Matrix Equations
Juan Yu; Qing-Wen Wang; Chang-Zhou Dong
2014-01-01
We mainly solve three problems. Firstly, by the decomposition of the (anti-)Hermitian generalized (anti-)Hamiltonian matrices, the necessary and sufficient conditions for the existence of and the expression for the (anti-)Hermitian generalized (anti-)Hamiltonian solutions to the system of matrix equations AX=B,XC=D are derived, respectively. Secondly, the optimal approximation solution minX∈K∥X^-X∥ is obtained, where K is the (anti-)Hermitian generalized (anti-)Hamiltonian solution set of t...
Hamiltonian reductions of the one-dimensional Vlasov equation using phase-space moments
Chandre, C.; Perin, M.
2016-03-01
We consider Hamiltonian closures of the Vlasov equation using the phase-space moments of the distribution function. We provide some conditions on the closures imposed by the Jacobi identity. We completely solve some families of examples. As a result, we show that imposing that the resulting reduced system preserves the Hamiltonian character of the parent model shapes its phase space by creating a set of Casimir invariants as a direct consequence of the Jacobi identity. We exhibit three main families of Hamiltonian models with two, three, and four degrees of freedom aiming at modeling the complexity of the bunch of particles in the Vlasov dynamics.
van Oers, Alexander M.; Maas, Leo R. M.; Bokhove, Onno
2017-02-01
The linear equations governing internal gravity waves in a stratified ideal fluid possess a Hamiltonian structure. A discontinuous Galerkin finite element method has been developed in which this Hamiltonian structure is discretized, resulting in conservation of discrete analogs of phase space and energy. This required (i) the discretization of the Hamiltonian structure using alternating flux functions and symplectic time integration, (ii) the discretization of a divergence-free velocity field using Dirac's theory of constraints and (iii) the handling of large-scale computational demands due to the 3-dimensional nature of internal gravity waves and, in confined, symmetry-breaking fluid domains, possibly its narrow zones of attraction.
Partial Differential Equations of Physics
Geroch, Robert
1996-01-01
Apparently, all partial differential equations that describe physical phenomena in space-time can be cast into a universal quasilinear, first-order form. In this paper, we do two things. First, we describe some broad features of systems of differential equations so formulated. Examples of such features include hyperbolicity of the equations, constraints and their roles (e.g., in connection with the initial-value formulation), how diffeomorphism freedom is manifest, and how interactions betwee...
The Hamiltonian structure of Dirac's equation in tensor form and its Fermi quantization
Reifler, Frank; Morris, Randall
1992-01-01
Currently, there is some interest in studying the tensor forms of the Dirac equation to elucidate the possibility of the constrained tensor fields admitting Fermi quantization. We demonstrate that the bispinor and tensor Hamiltonian systems have equivalent Fermi quantizations. Although the tensor Hamiltonian system is noncanonical, representing the tensor Poisson brackets as commutators for the Heisenberg operators directly leads to Fermi quantization without the use of bispinors.
Least-Squares Solutions of the Equation AX = B Over Anti-Hermitian Generalized Hamiltonian Matrices
无
2006-01-01
Upon using the denotative theorem of anti-Hermitian generalized Hamiltonian matrices, we solve effectively the least-squares problem min ‖AX - B‖ over anti-Hermitian generalized Hamiltonian matrices. We derive some necessary and sufficient conditions for solvability of the problem and an expression for general solution of the matrix equation AX = B. In addition, we also obtain the expression for the solution of a relevant optimal approximate problem.
Lie symmetries and non-Noether conserved quantities for Hamiltonian canonical equations
Fu Jing-Li; Chen Li-Qun; Xie Feng-Ping
2004-01-01
This paper focuses on studying Lie symmetries and non-Noether conserved quantities of Hamiltonian dynamical systems in phase space. Based on the infinitesimal transformations with respect to the generalized coordinates and generalized momenta, we obtain the determining equations and structure equation of the Lie symmetry for Hamiltonian dynamical systems. This work extends the research of non-Noether conserved quantity for Hamilton canonical equations,and leads directly to a new type of non-Noether conserved quantities of the systems. Finally, an example is given to illustrate these results.
A Hamiltonian Particle-Mesh Method for the Rotating Shallow Water Equations
Frank, J.E.; Gottwald, G.A.; Reich, S.; Griebel, M.; Schweitzer, M.A.
2003-01-01
A new particle-mesh method is proposed for the rotating shallow-water equations. The spatially truncated equations are Hamiltonian and satisfy a Kelvin circulation theorem. The generation of non-smooth components in the layer-depth is avoided by applying a smoothing operator similar to what has rece
Applied partial differential equations
Logan, J David
2015-01-01
This text presents the standard material usually covered in a one-semester, undergraduate course on boundary value problems and PDEs. Emphasis is placed on motivation, concepts, methods, and interpretation, rather than on formal theory. The concise treatment of the subject is maintained in this third edition covering all the major ideas: the wave equation, the diffusion equation, the Laplace equation, and the advection equation on bounded and unbounded domains. Methods include eigenfunction expansions, integral transforms, and characteristics. In this third edition, text remains intimately tied to applications in heat transfer, wave motion, biological systems, and a variety other topics in pure and applied science. The text offers flexibility to instructors who, for example, may wish to insert topics from biology or numerical methods at any time in the course. The exposition is presented in a friendly, easy-to-read, style, with mathematical ideas motivated from physical problems. Many exercises and worked e...
Applied partial differential equations
DuChateau, Paul
2012-01-01
Book focuses mainly on boundary-value and initial-boundary-value problems on spatially bounded and on unbounded domains; integral transforms; uniqueness and continuous dependence on data, first-order equations, and more. Numerous exercises included.
Differential equations methods and applications
Said-Houari, Belkacem
2015-01-01
This book presents a variety of techniques for solving ordinary differential equations analytically and features a wealth of examples. Focusing on the modeling of real-world phenomena, it begins with a basic introduction to differential equations, followed by linear and nonlinear first order equations and a detailed treatment of the second order linear equations. After presenting solution methods for the Laplace transform and power series, it lastly presents systems of equations and offers an introduction to the stability theory. To help readers practice the theory covered, two types of exercises are provided: those that illustrate the general theory, and others designed to expand on the text material. Detailed solutions to all the exercises are included. The book is excellently suited for use as a textbook for an undergraduate class (of all disciplines) in ordinary differential equations. .
The Hamiltonian Structure of the Maxwell-Vlasov Equations.
1981-02-01
principle of Percival [1979). 4. By using an appropriate Darboux theorem, (see Marsden [1981], lecture 1), one can show that Of admits canonically...get the Vlasov-Poisson equation. It would also be of interest to realize both the Vlasov-Maxwell and MHD equations as limiting cases of a grand...de Vries equation, Springer Lecture Notes, #755, 1-15 and Inv. Math. 50, 219-248. J. Arms (1979]. Linearization stability of gravitational and gauge
Hamiltonian particle-in-cell methods for Vlasov-Maxwell equations
He, Yang; Qin, Hong; Liu, Jian
2016-01-01
In this paper, we develop Hamiltonian particle-in-cell methods for Vlasov-Maxwell equations by applying conforming finite element methods in space and splitting methods in time. For the spatial discretisation, the criteria for choosing finite element spaces are presented such that the semi-discrete system possesses a discrete non-canonical Poisson structure. We apply a Hamiltonian splitting method to the semi-discrete system in time, then the resulting algorithm is Poisson preserving and explicit. The conservative properties of the algorithm guarantee the efficient and accurate numerical simulation of the Vlasov-Maxwell equations over long-time.
Stochastic differential equations, backward SDEs, partial differential equations
Pardoux, Etienne
2014-01-01
This research monograph presents results to researchers in stochastic calculus, forward and backward stochastic differential equations, connections between diffusion processes and second order partial differential equations (PDEs), and financial mathematics. It pays special attention to the relations between SDEs/BSDEs and second order PDEs under minimal regularity assumptions, and also extends those results to equations with multivalued coefficients. The authors present in particular the theory of reflected SDEs in the above mentioned framework and include exercises at the end of each chapter. Stochastic calculus and stochastic differential equations (SDEs) were first introduced by K. Itô in the 1940s, in order to construct the path of diffusion processes (which are continuous time Markov processes with continuous trajectories taking their values in a finite dimensional vector space or manifold), which had been studied from a more analytic point of view by Kolmogorov in the 1930s. Since then, this topic has...
Partial Differential Equations An Introduction
Choudary, A. D. R.; Parveen, Saima; Varsan, Constantin
2010-01-01
This book encompasses both traditional and modern methods treating partial differential equation (PDE) of first order and second order. There is a balance in making a selfcontained mathematical text and introducing new subjects. The Lie algebras of vector fields and their algebraic-geometric representations are involved in solving overdetermined of PDE and getting integral representation of stochastic differential equations (SDE). It is addressing to all scientists using PDE in treating mathe...
Symmetries of partial differential equations
Gaussier, Hervé; Merker, Joël
2004-01-01
We establish a link between the study of completely integrable systems of partial differential equations and the study of generic submanifolds in C^n. Using the recent developments of Cauchy-Riemann geometry we provide the set of symmetries of such a system with a Lie group structure. Finally we determine the precise upper bound of the dimension of this Lie group for some specific systems of partial differential equations.
Partial Differential Equations An Introduction
Choudary, A D R; Varsan, Constantin
2010-01-01
This book encompasses both traditional and modern methods treating partial differential equation (PDE) of first order and second order. There is a balance in making a selfcontained mathematical text and introducing new subjects. The Lie algebras of vector fields and their algebraic-geometric representations are involved in solving overdetermined of PDE and getting integral representation of stochastic differential equations (SDE). It is addressing to all scientists using PDE in treating mathematical methods.
Introduction to partial differential equations
Borthwick, David
2016-01-01
This modern take on partial differential equations does not require knowledge beyond vector calculus and linear algebra. The author focuses on the most important classical partial differential equations, including conservation equations and their characteristics, the wave equation, the heat equation, function spaces, and Fourier series, drawing on tools from analysis only as they arise.Within each section the author creates a narrative that answers the five questions: (1) What is the scientific problem we are trying to understand? (2) How do we model that with PDE? (3) What techniques can we use to analyze the PDE? (4) How do those techniques apply to this equation? (5) What information or insight did we obtain by developing and analyzing the PDE? The text stresses the interplay between modeling and mathematical analysis, providing a thorough source of problems and an inspiration for the development of methods.
Differential equations a concise course
Bear, H S
2011-01-01
Concise introduction for undergraduates includes, among other topics, a survey of first order equations, discussions of complex-valued solutions, linear differential operators, inverse operators and variation of parameters method, the Laplace transform, Picard's existence theorem, and an exploration of various interpretations of systems of equations. Numerous clearly stated theorems and proofs, examples, and problems followed by solutions.
Hyperbolic partial differential equations
Lax, Peter D
2006-01-01
The theory of hyperbolic equations is a large subject, and its applications are many: fluid dynamics and aerodynamics, the theory of elasticity, optics, electromagnetic waves, direct and inverse scattering, and the general theory of relativity. This book is an introduction to most facets of the theory and is an ideal text for a second-year graduate course on the subject. The first part deals with the basic theory: the relation of hyperbolicity to the finite propagation of signals, the concept and role of characteristic surfaces and rays, energy, and energy inequalities. The structure of soluti
Boolean differential equations
Steinbach, Bernd
2013-01-01
The Boolean Differential Calculus (BDC) is a very powerful theory that extends the structure of a Boolean Algebra significantly. Based on a small number of definitions, many theorems have been proven. The available operations have been efficiently implemented in several software packages. There is a very wide field of applications. While a Boolean Algebra is focused on values of logic functions, the BDC allows the evaluation of changes of function values. Such changes can be explored for pairs of function values as well as for whole subspaces. Due to the same basic data structures, the BDC can
Introductory course on differential equations
Gorain, Ganesh C
2014-01-01
Introductory Course on DIFFERENTIAL EQUATIONS provides an excellent exposition of the fundamentals of ordinary and partial differential equations and is ideally suited for a first course of undergraduate students of mathematics, physics and engineering. The aim of this book is to present the elementary theories of differential equations in the forms suitable for use of those students whose main interest in the subject are based on simple mathematical ideas. KEY FEATURES: Discusses the subject in a systematic manner without sacrificing mathematical rigour. A variety of exercises drill the students in problem solving in view of the mathematical theories explained in the book. Worked out examples illustrated according to the theories developed in the book with possible alternatives. Exhaustive collection of problems and the simplicity of presentation differentiate this book from several others. Material contained will help teachers as well as aspiring students of different competitive examinations.
Zheng-de Dai
2002-01-01
In the present paper, the existence of global attractor for dissipative Hamiltonian amplitude equation governing the modulated wave instabilities in E0 is considered. By a decomposition of solution operator, it is shown that the global attractor in E0 is actually equal to a global attractor in E1.
The Cauchy Problem for Schrödinger Equations with Time-Dependent Hamiltonian
Massimo Cicognani
2014-12-01
Full Text Available We consider the Cauchy problem for a Schrödinger equation with an Hamiltonian depending also on the time variable and that may vanish at t = 0. We find optimal Levi conditions for well-posedness in Sobolev and Gevrey spaces.
Singh, Parampreet; Soni, S. K.
2016-06-01
The problem of obtaining canonical Hamiltonian structures from the equations of motion, without any knowledge of the action, is studied in the context of the spatially flat Friedmann, ‘Robertson’, and Walker models. Modifications to the Raychaudhuri equation are implemented independently as quadratic and cubic terms of energy density without introducing additional degrees of freedom. Depending on their sign, modifications make gravity repulsive above a curvature scale for matter satisfying strong energy conditions, or more attractive than in the classical theory. The canonical structure of the modified theories is determined by demanding that the total Hamiltonian be a linear combination of gravity and matter Hamiltonians. In the quadratic repulsive case, the modified canonical phase space of gravity is a polymerized phase space with canonical momentum as inverse a trigonometric function of the Hubble rate; the canonical Hamiltonian can be identified with the effective Hamiltonian in loop quantum cosmology. The repulsive cubic modification results in a ‘generalized polymerized’ canonical phase space. Both the repulsive modifications are found to yield singularity avoidance. In contrast, the quadratic and cubic attractive modifications result in a canonical phase space in which canonical momentum is nontrigonometric and singularities persist. Our results hint at connections between the repulsive/attractive nature of modifications to gravity arising from the gravitational sector and polymerized/non polymerized gravitational phase space.
Fractional complex transform for fractional differential equations
Lİ, Zheng Biao; HE, Ji Huan
2010-01-01
Fractional complex transform is proposed to convert fractional differential equations into ordinary differential equations, so that all analytical methods devoted to advanced calculus can be easily...
Stochastic partial differential equations
Lototsky, Sergey V
2017-01-01
Taking readers with a basic knowledge of probability and real analysis to the frontiers of a very active research discipline, this textbook provides all the necessary background from functional analysis and the theory of PDEs. It covers the main types of equations (elliptic, hyperbolic and parabolic) and discusses different types of random forcing. The objective is to give the reader the necessary tools to understand the proofs of existing theorems about SPDEs (from other sources) and perhaps even to formulate and prove a few new ones. Most of the material could be covered in about 40 hours of lectures, as long as not too much time is spent on the general discussion of stochastic analysis in infinite dimensions. As the subject of SPDEs is currently making the transition from the research level to that of a graduate or even undergraduate course, the book attempts to present enough exercise material to fill potential exams and homework assignments. Exercises appear throughout and are usually directly connected ...
XING Guan; WU Guo-Zhen
2001-01-01
A classical coset Hamiltonian is introduced for the system of one electron in multi-sites. By this Hamiltonian, thedynamical behaviour of the electronic motion can be readily simulated. The simulation reproduces the retardation of the electron density decay in a lattice with site energies randomly distributed － an analogy with Anderson localization. This algorithm is also applied to reproduce the Hammett equation which relates the reaction rate with the property of the substitutions in the organic chemical reactions. The advantages and shortcomings ofthis algorithm, as contrasted with traditional quantum methods such as the molecular orbital theory, are also discussed.
Liouvillian propagators, Riccati equation and differential Galois theory
Acosta-Humánez, Primitivo; Suazo, Erwin
2013-11-01
In this paper a Galoisian approach to building propagators through Riccati equations is presented. The main result corresponds to the relationship between the Galois integrability of the linear Schrödinger equation and the virtual solvability of the differential Galois group of its associated characteristic equation. As the main application of this approach we solve Ince’s differential equation through the Hamiltonian algebrization procedure and the Kovacic algorithm to find the propagator for a generalized harmonic oscillator. This propagator has applications which describe the process of degenerate parametric amplification in quantum optics and light propagation in a nonlinear anisotropic waveguide. Toy models of propagators inspired by integrable Riccati equations and integrable characteristic equations are also presented.
Group analysis of differential equations
Ovsiannikov, L V
1982-01-01
Group Analysis of Differential Equations provides a systematic exposition of the theory of Lie groups and Lie algebras and its application to creating algorithms for solving the problems of the group analysis of differential equations.This text is organized into eight chapters. Chapters I to III describe the one-parameter group with its tangential field of vectors. The nonstandard treatment of the Banach Lie groups is reviewed in Chapter IV, including a discussion of the complete theory of Lie group transformations. Chapters V and VI cover the construction of partial solution classes for the g
Basic linear partial differential equations
Treves, Francois
2006-01-01
Focusing on the archetypes of linear partial differential equations, this text for upper-level undergraduates and graduate students features most of the basic classical results. The methods, however, are decidedly nontraditional: in practically every instance, they tend toward a high level of abstraction. This approach recalls classical material to contemporary analysts in a language they can understand, as well as exploiting the field's wealth of examples as an introduction to modern theories.The four-part treatment covers the basic examples of linear partial differential equations and their
Nielsen number and differential equations
Andres Jan
2005-01-01
Full Text Available In reply to a problem of Jean Leray (application of the Nielsen theory to differential equations, two main approaches are presented. The first is via Poincaré's translation operator, while the second one is based on the Hammerstein-type solution operator. The applicability of various Nielsen theories is discussed with respect to several sorts of differential equations and inclusions. Links with the Sharkovskii-like theorems (a finite number of periodic solutions imply infinitely many subharmonics are indicated, jointly with some further consequences like the nontrivial -structure of solutions of initial value problems. Some illustrating examples are supplied and open problems are formulated.
Differential equations and mathematical biology
Jones, DS; Sleeman, BD
2009-01-01
""… Much progress by these authors and others over the past quarter century in modeling biological and other scientific phenomena make this differential equations textbook more valuable and better motivated than ever. … The writing is clear, though the modeling is not oversimplified. Overall, this book should convince math majors how demanding math modeling needs to be and biologists that taking another course in differential equations will be worthwhile. The coauthors deserve congratulations as well as course adoptions.""-SIAM Review, Sept. 2010, Vol. 52, No. 3""… Where this text stands out i
The Symmetry of Singular Hamiltonian Differential Operators and Properties of Deficiency Indices
Jian Gang QI
2006-01-01
The symmetry of singular Hamiltonian differential operators is proved under the standard "definiteness condition", which is strictly weaker than the densely definite condition used by A. M.Krall. Meanwhile, some properties of deficiency indices are given.
Lectures on ordinary differential equations
Hurewicz, Witold
2014-01-01
Hailed by The American Mathematical Monthly as ""a rigorous and lively introduction,"" this text explores a topic of perennial interest in mathematics. The author, a distinguished mathematician and formulator of the Hurewicz theorem, presents a clear and lucid treatment that emphasizes geometric methods. Topics include first-order scalar and vector equations, basic properties of linear vector equations, and two-dimensional nonlinear autonomous systems. Suitable for senior mathematics students, the text begins with an examination of differential equations of the first order in one unknown funct
Loop equations from differential systems
Eynard, Bertrand; Marchal, Olivier
2016-01-01
To any differential system $d\\Psi=\\Phi\\Psi$ where $\\Psi$ belongs to a Lie group (a fiber of a principal bundle) and $\\Phi$ is a Lie algebra $\\mathfrak g$ valued 1-form on a Riemann surface $\\Sigma$, is associated an infinite sequence of "correlators" $W_n$ that are symmetric $n$-forms on $\\Sigma^n$. The goal of this article is to prove that these correlators always satisfy "loop equations", the same equations satisfied by correlation functions in random matrix models, or the same equations as Virasoro or W-algebra constraints in CFT.
Dynamical Hamiltonian-Hopf instabilities of periodic traveling waves in Klein-Gordon equations
Marangell, R.; Miller, P. D.
2015-07-01
We study the unstable spectrum close to the imaginary axis for the linearization of the nonlinear Klein-Gordon equation about a periodic traveling wave in a co-moving frame. We define dynamical Hamiltonian-Hopf instabilities as points in the stable spectrum that are accumulation points for unstable spectrum, and show how they can be determined from the knowledge of the discriminant of Hill's equation for an associated periodic potential. This result allows us to give simple criteria for the existence of dynamical Hamiltonian-Hopf instabilities in terms of instability indices previously shown to be useful in stability analysis of periodic traveling waves. We also discuss how these methods can be applied to more general nonlinear wave equations.
Introduction to Piecewise Differentiable Equations
Scholtes, Stefan
2012-01-01
This brief provides an elementary introduction to the theory of piecewise differentiable functions with an emphasis on differentiable equations. In the first chapter, two sample problems are used to motivate the study of this theory. The presentation is then developed using two basic tools for the analysis of piecewise differentiable functions: the Bouligand derivative as the non smooth analogue of the classical derivative concept and the theory of piecewise affine functions as the combinatorial tool for the study of this approximation function. In the end, the results are combined to develop
Stochastic nonlinear differential equations. I
Heilmann, O.J.; Kampen, N.G. van
1974-01-01
A solution method is developed for nonlinear differential equations having the following two properties. Their coefficients are stochastic through their dependence on a Markov process. The magnitude of the fluctuations, multiplied with their auto-correlation time, is a small quantity. Under these co
Pendulum Motion and Differential Equations
Reid, Thomas F.; King, Stephen C.
2009-01-01
A common example of real-world motion that can be modeled by a differential equation, and one easily understood by the student, is the simple pendulum. Simplifying assumptions are necessary for closed-form solutions to exist, and frequently there is little discussion of the impact if those assumptions are not met. This article presents a…
Pendulum Motion and Differential Equations
Reid, Thomas F.; King, Stephen C.
2009-01-01
A common example of real-world motion that can be modeled by a differential equation, and one easily understood by the student, is the simple pendulum. Simplifying assumptions are necessary for closed-form solutions to exist, and frequently there is little discussion of the impact if those assumptions are not met. This article presents a…
Abstract methods in partial differential equations
Carroll, Robert W
2012-01-01
Detailed, self-contained treatment examines modern abstract methods in partial differential equations, especially abstract evolution equations. Suitable for graduate students with some previous exposure to classical partial differential equations. 1969 edition.
Differential Equations for Morphological Amoebas
Welk, Martin; Breuß, Michael; Vogel, Oliver
This paper is concerned with amoeba median filtering, a structure-adaptive morphological image filter. It has been introduced by Lerallut et al. in a discrete formulation. Experimental evidence shows that iterated amoeba median filtering leads to segmentation-like results that are similar to those obtained by self-snakes, an image filter based on a partial differential equation. We investigate this correspondence by analysing a space-continuous formulation of iterated median filtering. We prove that in the limit of vanishing radius of the structuring elements, iterated amoeba median filtering indeed approximates a partial differential equation related to self-snakes and the well-known (mean) curvature motion equation. We present experiments with discrete iterated amoeba median filtering that confirm qualitative and quantitative predictions of our analysis.
Dynamics of partial differential equations
Wayne, C Eugene
2015-01-01
This book contains two review articles on the dynamics of partial differential equations that deal with closely related topics but can be read independently. Wayne reviews recent results on the global dynamics of the two-dimensional Navier-Stokes equations. This system exhibits stable vortex solutions: the topic of Wayne's contribution is how solutions that start from arbitrary initial conditions evolve towards stable vortices. Weinstein considers the dynamics of localized states in nonlinear Schrodinger and Gross-Pitaevskii equations that describe many optical and quantum systems. In this contribution, Weinstein reviews recent bifurcations results of solitary waves, their linear and nonlinear stability properties, and results about radiation damping where waves lose energy through radiation. The articles, written independently, are combined into one volume to showcase the tools of dynamical systems theory at work in explaining qualitative phenomena associated with two classes of partial differential equ...
Algebrization of Nonautonomous Differential Equations
María Aracelia Alcorta-García
2015-01-01
Full Text Available Given a planar system of nonautonomous ordinary differential equations, dw/dt=F(t,w, conditions are given for the existence of an associative commutative unital algebra A with unit e and a function H:Ω⊂R2×R2→R2 on an open set Ω such that F(t,w=H(te,w and the maps H1(τ=H(τ,ξ and H2(ξ=H(τ,ξ are Lorch differentiable with respect to A for all (τ,ξ∈Ω, where τ and ξ represent variables in A. Under these conditions the solutions ξ(τ of the differential equation dξ/dτ=H(τ,ξ over A define solutions (x(t,y(t=ξ(te of the planar system.
Nevanlinna theory, normal families, and algebraic differential equations
Steinmetz, Norbert
2017-01-01
This book offers a modern introduction to Nevanlinna theory and its intricate relation to the theory of normal families, algebraic functions, asymptotic series, and algebraic differential equations. Following a comprehensive treatment of Nevanlinna’s theory of value distribution, the author presents advances made since Hayman’s work on the value distribution of differential polynomials and illustrates how value- and pair-sharing problems are linked to algebraic curves and Briot–Bouquet differential equations. In addition to discussing classical applications of Nevanlinna theory, the book outlines state-of-the-art research, such as the effect of the Yosida and Zalcman–Pang method of re-scaling to algebraic differential equations, and presents the Painlevé–Yosida theorem, which relates Painlevé transcendents and solutions to selected 2D Hamiltonian systems to certain Yosida classes of meromorphic functions. Aimed at graduate students interested in recent developments in the field and researchers wor...
Partial differential equations an introduction
Colton, David
2004-01-01
Intended for a college senior or first-year graduate-level course in partial differential equations, this text offers students in mathematics, engineering, and the applied sciences a solid foundation for advanced studies in mathematics. Classical topics presented in a modern context include coverage of integral equations and basic scattering theory. This complete and accessible treatment includes a variety of examples of inverse problems arising from improperly posed applications. Exercises at the ends of chapters, many with answers, offer a clear progression in developing an understanding of
Stability theory of differential equations
Bellman, Richard
2008-01-01
Suitable for advanced undergraduates and graduate students, this was the first English-language text to offer detailed coverage of boundedness, stability, and asymptotic behavior of linear and nonlinear differential equations. It remains a classic guide, featuring material from original research papers, including the author's own studies.The linear equation with constant and almost-constant coefficients receives in-depth attention that includes aspects of matrix theory. No previous acquaintance with the theory is necessary, since author Richard Bellman derives the results in matrix theory from
Applied analysis and differential equations
Cârj, Ovidiu
2007-01-01
This volume contains refereed research articles written by experts in the field of applied analysis, differential equations and related topics. Well-known leading mathematicians worldwide and prominent young scientists cover a diverse range of topics, including the most exciting recent developments. A broad range of topics of recent interest are treated: existence, uniqueness, viability, asymptotic stability, viscosity solutions, controllability and numerical analysis for ODE, PDE and stochastic equations. The scope of the book is wide, ranging from pure mathematics to various applied fields such as classical mechanics, biomedicine, and population dynamics.
Feedback control of nonlinear differential algebraic systems using Hamiltonian function method
LIU Yanhong; LI Chunwen; WU Rebing
2006-01-01
The stabilization and H∞ control of nonlinear differential algebraic systems (NDAS) are investigated using the Hamiltonian function method. Firstly, we put forward a novel dissipative Hamiltonian realization (DHR) structure and give the condition to complete the Hamiltonian realization. Then, based on the DHR, we present a criterion for the stability analysis of NDAS and construct a stabilization controller for NDAS in absence of disturbances. Finally, for NDAS in presence of disturbances, the L2 gain is analyzed via generalized Hamilton-Jacobi inequality and an H∞ control strategy is constructed. The proposed stabilization and robust controller can effectively take advantage of the structural characteristics of NDAS and is simple in form.
Nielsen number and differential equations
Jan Andres
2005-06-01
Full Text Available In reply to a problem of Jean Leray (application of the Nielsen theory to differential equations, two main approaches are presented. The first is via PoincarÃƒÂ©'s translation operator, while the second one is based on the Hammerstein-type solution operator. The applicability of various Nielsen theories is discussed with respect to several sorts of differential equations and inclusions. Links with the Sharkovskii-like theorems (a finite number of periodic solutions imply infinitely many subharmonics are indicated, jointly with some further consequences like the nontrivial RÃŽÂ´-structure of solutions of initial value problems. Some illustrating examples are supplied and open problems are formulated.
Interpolation and partial differential equations
MALIGRANDA, Lech; Persson, Lars-Erik; Wyller, John
1994-01-01
One of the main motivations for developing the theory of interpolation was to apply it to the theory of partial differential equations (PDEs). Nowadays interpolation theory has been developed in an almost unbelievable way {see the bibliography of Maligranda [Interpolation of Operators and Applications (1926-1990), 2nd ed. (Luleå University, Luleå, 1993), p. 154]}. In this article some model examples are presented which display how powerful this theory is when dealing with PDEs. One main aim i...
Partial differential equations possessing Frobenius integrable decompositions
Ma, Wen-Xiu [Department of Mathematics, University of South Florida, Tampa, FL 33620-5700 (United States)]. E-mail: mawx@cas.usf.edu; Wu, Hongyou [Department of Mathematical Sciences, Northern Illinois University, DeKalb, IL 60115-2888 (United States)]. E-mail: wu@math.niu.edu; He, Jingsong [Department of Mathematics, University of Science and Technology of China, Hefei, Anhui 230026 (China)]. E-mail: jshe@ustc.edu.cn
2007-04-16
Frobenius integrable decompositions are introduced for partial differential equations. A procedure is provided for determining a class of partial differential equations of polynomial type, which possess specified Frobenius integrable decompositions. Two concrete examples with logarithmic derivative Baecklund transformations are given, and the presented partial differential equations are transformed into Frobenius integrable ordinary differential equations with cubic nonlinearity. The resulting solutions are illustrated to describe the solution phenomena shared with the KdV and potential KdV equations.
Very weak solutions of wave equation for Landau Hamiltonian with irregular electromagnetic field
Ruzhansky, Michael; Tokmagambetov, Niyaz
2017-04-01
In this paper, we study the Cauchy problem for the Landau Hamiltonian wave equation, with time-dependent irregular (distributional) electromagnetic field and similarly irregular velocity. For such equations, we describe the notion of a `very weak solution' adapted to the type of solutions that exist for regular coefficients. The construction is based on considering Friedrichs-type mollifier of the coefficients and corresponding classical solutions, and their quantitative behaviour in the regularising parameter. We show that even for distributional coefficients, the Cauchy problem does have a very weak solution, and that this notion leads to classical or distributional-type solutions under conditions when such solutions also exist.
Liu, Hailiang; Yi, Nianyu
2016-09-01
The invariant preserving property is one of the guiding principles for numerical algorithms in solving wave equations, in order to minimize phase and amplitude errors after long time simulation. In this paper, we design, analyze and numerically validate a Hamiltonian preserving discontinuous Galerkin method for solving the Korteweg-de Vries (KdV) equation. For the generalized KdV equation, the semi-discrete formulation is shown to preserve both the first and the third conserved integrals, and approximately preserve the second conserved integral; for the linearized KdV equation, all the first three conserved integrals are preserved, and optimal error estimates are obtained for polynomials of even degree. The preservation properties are also maintained by the fully discrete DG scheme. Our numerical experiments demonstrate both high accuracy of convergence and preservation of all three conserved integrals for the generalized KdV equation. We also show that the shape of the solution, after long time simulation, is well preserved due to the Hamiltonian preserving property.
Handbook of differential equations stationary partial differential equations
Chipot, Michel
2006-01-01
This handbook is volume III in a series devoted to stationary partial differential quations. Similarly as volumes I and II, it is a collection of self contained state-of-the-art surveys written by well known experts in the field. The topics covered by this handbook include singular and higher order equations, problems near critically, problems with anisotropic nonlinearities, dam problem, T-convergence and Schauder-type estimates. These surveys will be useful for both beginners and experts and speed up the progress of corresponding (rapidly developing and fascinating) areas of mathematics. Ke
Recursion Operators and Tri-Hamiltonian Structure of the First Heavenly Equation of Plebański
Sheftel, Mikhail; Yazıcı, Devrim
2016-09-01
We present first heavenly equation of Plebański in a two-component evolutionary form and obtain Lagrangian and Hamiltonian representations of this system. We study all point symmetries of the two-component system and, using the inverse Noether theorem in the Hamiltonian form, obtain all the integrals of motion corresponding to each variational (Noether) symmetry. We derive two linearly independent recursion operators for symmetries of this system related by a discrete symmetry of both the two-component system and its symmetry condition. Acting by these operators on the first Hamiltonian operator J_0 we obtain second and third Hamiltonian operators. However, we were not able to find Hamiltonian densities corresponding to the latter two operators. Therefore, we construct two recursion operators, which are either even or odd, respectively, under the above-mentioned discrete symmetry. Acting with them on J_0, we generate another two Hamiltonian operators J_+ and J_- and find the corresponding Hamiltonian densities, thus obtaining second and third Hamiltonian representations for the first heavenly equation in a two-component form. Using P. Olver's theory of the functional multi-vectors, we check that the linear combination of J_0, J_+ and J_- with arbitrary constant coefficients satisfies Jacobi identities. Since their skew symmetry is obvious, these three operators are compatible Hamiltonian operators and hence we obtain a tri-Hamiltonian representation of the first heavenly equation. Our well-founded conjecture applied here is that P. Olver's method works fine for nonlocal operators and our proof of the Jacobi identities and bi-Hamiltonian structures crucially depends on the validity of this conjecture.
Improving long time behavior of Poisson bracket mapping equation: a non-Hamiltonian approach.
Kim, Hyun Woo; Rhee, Young Min
2014-05-14
Understanding nonadiabatic dynamics in complex systems is a challenging subject. A series of semiclassical approaches have been proposed to tackle the problem in various settings. The Poisson bracket mapping equation (PBME) utilizes a partial Wigner transform and a mapping representation for its formulation, and has been developed to describe nonadiabatic processes in an efficient manner. Operationally, it is expressed as a set of Hamilton's equations of motion, similar to more conventional classical molecular dynamics. However, this original Hamiltonian PBME sometimes suffers from a large deviation in accuracy especially in the long time limit. Here, we propose a non-Hamiltonian variant of PBME to improve its behavior especially in that limit. As a benchmark, we simulate spin-boson and photosynthetic model systems and find that it consistently outperforms the original PBME and its Ehrenfest style variant. We explain the source of this improvement by decomposing the components of the mapping Hamiltonian and by assessing the energy flow between the system and the bath. We discuss strengths and weaknesses of our scheme with a viewpoint of offering future prospects.
Papas, Brian N; Schuurman, Michael S; Yarkony, David R
2008-09-28
A self-consistent procedure for constructing a quasidiabatic Hamiltonian representing N(state) coupled electronic states in the vicinity of an arbitrary point in nuclear coordinate space is described. The matrix elements of the Hamiltonian are polynomials of arbitrary order. Employing a crude adiabatic basis, the coefficients of the linear terms are determined exactly using analytic gradient techniques. The remaining polynomial coefficients are determined from the normal form of a system of pseudolinear equations, which uses energy gradient and derivative coupling information obtained from reliable multireference configuration interaction wave functions. In a previous implementation energy gradient and derivative coupling information were employed to limit the number of nuclear configurations at which ab initio data were required to determine the unknown coefficients. Conversely, the key aspect of the current approach is the use of ab initio data over an extended range of nuclear configurations. The normal form of the system of pseudolinear equations is introduced here to obtain a least-squares fit to what would have been an (intractable) overcomplete set of data in the previous approach. This method provides a quasidiabatic representation that minimizes the residual derivative coupling in a least-squares sense, a means to extend the domain of accuracy of the diabatic Hamiltonian or refine its accuracy within a given domain, and a way to impose point group symmetry and hermiticity. These attributes are illustrated using the 1 (2)A(1) and 1 (2)E states of the 1-propynyl radical, CH(3)CC.
Algebraic Approaches to Partial Differential Equations
Xu, Xiaoping
2012-01-01
Partial differential equations are fundamental tools in mathematics,sciences and engineering. This book is mainly an exposition of the various algebraic techniques of solving partial differential equations for exact solutions developed by the author in recent years, with emphasis on physical equations such as: the Calogero-Sutherland model of quantum many-body system in one-dimension, the Maxwell equations, the free Dirac equations, the generalized acoustic system, the Kortweg and de Vries (KdV) equation, the Kadomtsev and Petviashvili (KP) equation, the equation of transonic gas flows, the short-wave equation, the Khokhlov and Zabolotskaya equation in nonlinear acoustics, the equation of geopotential forecast, the nonlinear Schrodinger equation and coupled nonlinear Schrodinger equations in optics, the Davey and Stewartson equations of three-dimensional packets of surface waves, the equation of the dynamic convection in a sea, the Boussinesq equations in geophysics, the incompressible Navier-Stokes equations...
PARTIAL DIFFERENTIAL EQUATIONS FOR DENSITIES OF RANDOM PROCESSES,
PARTIAL DIFFERENTIAL EQUATIONS , STOCHASTIC PROCESSES), (*STOCHASTIC PROCESSES, PARTIAL DIFFERENTIAL EQUATIONS ), EQUATIONS, STATISTICAL FUNCTIONS, STATISTICAL PROCESSES, PROBABILITY, NUMERICAL METHODS AND PROCEDURES
Hamiltonian particle-in-cell methods for Vlasov-Maxwell equations
He, Yang; Sun, Yajuan; Qin, Hong; Liu, Jian
2016-09-01
In this paper, we study the Vlasov-Maxwell equations based on the Morrison-Marsden-Weinstein bracket. We develop Hamiltonian particle-in-cell methods for this system by employing finite element methods in space and splitting methods in time. In order to derive the semi-discrete system that possesses a discrete non-canonical Poisson structure, we present a criterion for choosing the appropriate finite element spaces. It is confirmed that some conforming elements, e.g., Nédélec's mixed elements, satisfy this requirement. When the Hamiltonian splitting method is used to discretize this semi-discrete system in time, the resulting algorithm is explicit and preserves the discrete Poisson structure. The structure-preserving nature of the algorithm ensures accuracy and fidelity of the numerical simulations over long time.
Conservation Laws of Differential Equations in Finance
QIN Mao-Chang; MEI Feng-Xiang; SHANG Mei
2005-01-01
Conservation laws of some differential equations in fiance are studied in this paper. This method does not involve the use or existence of a variational principle. As an alternative, linearize the given equation and find adjoint equation of the linearized equation, the conservation laws can be constructed directly from the symmetries and adjoint symmetries of the associated linearized equation and its adjoint equation.
Functional differential equations of third order
Tuncay Candan
2005-04-01
Full Text Available In this paper, we consider the third-order neutral functional differential equation with distributed deviating arguments. We give sufficient conditions for the oscillatory behavior of this functional differential equation.
Introduction to partial differential equations with applications
Zachmanoglou, E C
1988-01-01
This text explores the essentials of partial differential equations as applied to engineering and the physical sciences. Discusses ordinary differential equations, integral curves and surfaces of vector fields, the Cauchy-Kovalevsky theory, more. Problems and answers.
Hamiltonian Structures and Integrability for a Discrete Coupled KdV-Type Equation Hierarchy
ZHAO Hai-Qiong; ZHU Zuo-Nong; ZHANG Jing-Li
2011-01-01
@@ Coupled Korteweg-de Vries(KdV) systems have many important physical applications.By considering a 4 × 4spectral problem,we derive a discrete coupled KdV-type equation hierarchy.Our hierarchy includes the coupled Volterra system proposed by Lou et al.(e-print arXiv:0711.0420) as the first member which is a discrete version of the coupled KdV equation.We also investigate the integrability in the Liouville sense and the multi-Hamiltonian structures for the obtained hierarchy.%Coupled Korteweg-de Vries (KdV) systems have many important physical applications.By considering a 4 × 4 spectral problem, we derive a discrete coupled KdV-type equation hierarchy.Our hierarchy includes the coupled Volterra system proposed by Lou et al.(e-print arXiv: 0711.0420) as the first member which is a discrete version of the coupled KdV equation.We also investigate the integrability in the Liouville sense and the multi-Hamiltonian structures for the obtained hierarchy.
Numerical Solution of Heun Equation Via Linear Stochastic Differential Equation
Hamidreza Rezazadeh
2014-05-01
Full Text Available In this paper, we intend to solve special kind of ordinary differential equations which is called Heun equations, by converting to a corresponding stochastic differential equation(S.D.E.. So, we construct a stochastic linear equation system from this equation which its solution is based on computing fundamental matrix of this system and then, this S.D.E. is solved by numerically methods. Moreover, its asymptotic stability and statistical concepts like expectation and variance of solutions are discussed. Finally, the attained solutions of these S.D.E.s compared with exact solution of corresponding differential equations.
Auxiliary equation method for solving nonlinear partial differential equations
Sirendaoreji,; Jiong, Sun
2003-03-31
By using the solutions of an auxiliary ordinary differential equation, a direct algebraic method is described to construct several kinds of exact travelling wave solutions for some nonlinear partial differential equations. By this method some physically important nonlinear equations are investigated and new exact travelling wave solutions are explicitly obtained with the aid of symbolic computation.
A reformulation of an ordinary differential equation
Barraza, Oscar A.
2013-01-01
The purpose of this note is to present a formulation of a given nonlinear ordinary differential equation into an equivalent system of linear ordinary differential equations. It is evident that the easiness of a such procedure would be able to open a new way in order to calculate or approximate the solution of an ordinary differential equation. Some examples are presented.
Computational partial differential equations using Matlab
Li, Jichun
2008-01-01
Brief Overview of Partial Differential Equations The parabolic equations The wave equations The elliptic equations Differential equations in broader areasA quick review of numerical methods for PDEsFinite Difference Methods for Parabolic Equations Introduction Theoretical issues: stability, consistence, and convergence 1-D parabolic equations2-D and 3-D parabolic equationsNumerical examples with MATLAB codesFinite Difference Methods for Hyperbolic Equations IntroductionSome basic difference schemes Dissipation and dispersion errors Extensions to conservation lawsThe second-order hyperbolic PDE
Sobolev gradients and differential equations
Neuberger, J W
2010-01-01
A Sobolev gradient of a real-valued functional on a Hilbert space is a gradient of that functional taken relative to an underlying Sobolev norm. This book shows how descent methods using such gradients allow a unified treatment of a wide variety of problems in differential equations. For discrete versions of partial differential equations, corresponding Sobolev gradients are seen to be vastly more efficient than ordinary gradients. In fact, descent methods with these gradients generally scale linearly with the number of grid points, in sharp contrast with the use of ordinary gradients. Aside from the first edition of this work, this is the only known account of Sobolev gradients in book form. Most of the applications in this book have emerged since the first edition was published some twelve years ago. What remains of the first edition has been extensively revised. There are a number of plots of results from calculations and a sample MatLab code is included for a simple problem. Those working through a fair p...
N. N. Romanova
1998-01-01
Full Text Available The dynamics of weakly nonlinear wave trains in unstable media is studied. This dynamics is investigated in the framework of a broad class of dynamical systems having a Hamiltonian structure. Two different types of instability are considered. The first one is the instability in a weakly supercritical media. The simplest example of instability of this type is the Kelvin-Helmholtz instability. The second one is the instability due to a weak linear coupling of modes of different nature. The simplest example of a geophysical system where the instability of this and only of this type takes place is the three-layer model of a stratified shear flow with a continuous velocity profile. For both types of instability we obtain nonlinear evolution equations describing the dynamics of wave trains having an unstable spectral interval of wavenumbers. The transformation to appropriate canonical variables turns out to be different for each case, and equations we obtained are different for the two types of instability we considered. Also obtained are evolution equations governing the dynamics of wave trains in weakly subcritical media and in media where modes are coupled in a stable way. Presented results do not depend on a specific physical nature of a medium and refer to a broad class of dynamical systems having the Hamiltonian structure of a special form.
Partial differential equations for scientists and engineers
Farlow, Stanley J
1993-01-01
Most physical phenomena, whether in the domain of fluid dynamics, electricity, magnetism, mechanics, optics, or heat flow, can be described in general by partial differential equations. Indeed, such equations are crucial to mathematical physics. Although simplifications can be made that reduce these equations to ordinary differential equations, nevertheless the complete description of physical systems resides in the general area of partial differential equations.This highly useful text shows the reader how to formulate a partial differential equation from the physical problem (constructing th
Linearized asymptotic stability for fractional differential equations
Nguyen Cong
2016-06-01
Full Text Available We prove the theorem of linearized asymptotic stability for fractional differential equations. More precisely, we show that an equilibrium of a nonlinear Caputo fractional differential equation is asymptotically stable if its linearization at the equilibrium is asymptotically stable. As a consequence we extend Lyapunov's first method to fractional differential equations by proving that if the spectrum of the linearization is contained in the sector $\\{\\lambda \\in \\mathbb{C} : |\\arg \\lambda| > \\frac{\\alpha \\pi}{2}\\}$ where $\\alpha > 0$ denotes the order of the fractional differential equation, then the equilibrium of the nonlinear fractional differential equation is asymptotically stable.
Exact solution of the Schrodinger equation with the spin-boson Hamiltonian
Gardas, Bartlomiej
2011-01-01
We address the problem of obtaining the exact reduced dynamics of the spin-half (qubit) immersed within the bosonic bath (enviroment). An exact solution of the Schrodinger equation with the paradigmatic spin-boson Hamiltonian is obtained. We believe that this result is a major step ahead and may ultimately contribute to the complete resolution of the problem in question. We also construct the constant of motion for the spin-boson system. In contrast to the standard techniques available within the framework of the open quantum systems theory, our analysis is based on the theory of block operator matrices.
Hamiltonian Formalism of mKdV Equation with Non-vanishing Boundary Values
HE Jing-Song; CHEN Shi-Rong
2005-01-01
Hamiltonian formalism of the mKdV equation with non-vanishing boundary valueis re-examined by a revised form of the standard procedure. It is known that the previous papers did not give the final results and involved some questionable points [T.C. Au Yeung and P.C.W. Fung, J. Phys. A 21 (1988) 3575]. In this note, simple results are obtained in terms of an affine parameter and a Galileo transformation is introduced to ensure the results compatible with those derived from the inverse scattering transform.
Ryan, M.
1972-01-01
The study of cosmological models by means of equations of motion in Hamiltonian form is considered. Hamiltonian methods applied to gravity seem to go back to Rosenfeld (1930), who constructed a quantum-mechanical Hamiltonian for linearized general relativity theory. The first to notice that cosmologies provided a simple model in which to demonstrate features of Hamiltonian formulation was DeWitt (1967). Applications of the ADM formalism to homogeneous cosmologies are discussed together with applications of the Hamiltonian formulation, giving attention also to Bianchi-type universes. Problems involving the concept of superspace and techniques of quantization are investigated.
Dirac equation from the Hamiltonian and the case with a gravitational field
Arminjon, M
2006-01-01
Starting from an interpretation of the classical-quantum correspondence, we derive the Dirac equation by factorizing the algebraic relation satisfied by the classical Hamiltonian, before applying the correspondence. This derivation applies in the same form to a free particle, to one in an electromagnetic field, and to one subjected to geodesic motion in a static metric, and leads to the same, usual form of the Dirac equation--in special coordinates. To use the equation in the static-gravitational case, we need to rewrite it in more general coordinates. This can be done only if the usual, spinor transformation of the wave function is replaced by the 4-vector transformation. We show that the latter also makes the flat-space-time Dirac equation Lorentz-covariant, although the Dirac matrices are not invariant. Because the equation itself is left unchanged in the flat case, the 4-vector transformation does not alter the main physical consequences of that equation in that case. However, the equation derived in the ...
Introduction to differential equations with dynamical systems
Campbell, Stephen L
2011-01-01
Many textbooks on differential equations are written to be interesting to the teacher rather than the student. Introduction to Differential Equations with Dynamical Systems is directed toward students. This concise and up-to-date textbook addresses the challenges that undergraduate mathematics, engineering, and science students experience during a first course on differential equations. And, while covering all the standard parts of the subject, the book emphasizes linear constant coefficient equations and applications, including the topics essential to engineering students. Stephen Cam
Partial differential equations of mathematical physics
Sobolev, S L
1964-01-01
Partial Differential Equations of Mathematical Physics emphasizes the study of second-order partial differential equations of mathematical physics, which is deemed as the foundation of investigations into waves, heat conduction, hydrodynamics, and other physical problems. The book discusses in detail a wide spectrum of topics related to partial differential equations, such as the theories of sets and of Lebesgue integration, integral equations, Green's function, and the proof of the Fourier method. Theoretical physicists, experimental physicists, mathematicians engaged in pure and applied math
Stochastic integration and differential equations
Protter, Philip E
2003-01-01
It has been 15 years since the first edition of Stochastic Integration and Differential Equations, A New Approach appeared, and in those years many other texts on the same subject have been published, often with connections to applications, especially mathematical finance. Yet in spite of the apparent simplicity of approach, none of these books has used the functional analytic method of presenting semimartingales and stochastic integration. Thus a 2nd edition seems worthwhile and timely, though it is no longer appropriate to call it "a new approach". The new edition has several significant changes, most prominently the addition of exercises for solution. These are intended to supplement the text, but lemmas needed in a proof are never relegated to the exercises. Many of the exercises have been tested by graduate students at Purdue and Cornell Universities. Chapter 3 has been completely redone, with a new, more intuitive and simultaneously elementary proof of the fundamental Doob-Meyer decomposition theorem, t...
Functional methods in differential equations
Hokkanen, Veli-Matti
2002-01-01
In recent years, functional methods have become central to the study of theoretical and applied mathematical problems. As demonstrated in this Research Note, functional methods can not only provide more generality, but they can also unify results and techniques and lead to better results than those obtained by classical methods. Presenting entirely original results, the authors use functional methods to explore a broad range of elliptic, parabolic, and hyperbolic boundary value problems and various classes of abstract differential and integral equations. They show that while it is crucial to choose an appropriate functional framework, this approach can lead to mathematical models that better describe concrete physical phenomena. In particular, they reach a concordance between the physical sense and the mathematical sense for the solutions of some special models. Beyond its importance as a survey of the primary techniques used in the area, the results illuminated in this volume will prove valuable in a wealth ...
Sobolev gradients and differential equations
Neuberger, John William
1997-01-01
A Sobolev gradient of a real-valued functional is a gradient of that functional taken relative to the underlying Sobolev norm. This book shows how descent methods using such gradients allow a unified treatment of a wide variety of problems in differential equations. Equal emphasis is placed on numerical and theoretical matters. Several concrete applications are made to illustrate the method. These applications include (1) Ginzburg-Landau functionals of superconductivity, (2) problems of transonic flow in which type depends locally on nonlinearities, and (3) minimal surface problems. Sobolev gradient constructions rely on a study of orthogonal projections onto graphs of closed densely defined linear transformations from one Hilbert space to another. These developments use work of Weyl, von Neumann and Beurling.
An introduction to differential equations
Ladde, Anil G
2012-01-01
This is a twenty-first century book designed to meet the challenges of understanding and solving interdisciplinary problems. The book creatively incorporates "cutting-edge" research ideas and techniques at the undergraduate level. The book also is a unique research resource for undergraduate/graduate students and interdisciplinary researchers. It emphasizes and exhibits the importance of conceptual understandings and its symbiotic relationship in the problem solving process. The book is proactive in preparing for the modeling of dynamic processes in various disciplines. It introduces a "break-down-the problem" type of approach in a way that creates "fun" and "excitement". The book presents many learning tools like "step-by-step procedures (critical thinking)", the concept of "math" being a language, applied examples from diverse fields, frequent recaps, flowcharts and exercises. Uniquely, this book introduces an innovative and unified method of solving nonlinear scalar differential equations. This is called ...
The myth about nonlinear differential equations
Radhakrishnan, C.
2002-01-01
Taking the example of Koretweg--de Vries equation, it is shown that soliton solutions need not always be the consequence of the trade-off between the nonlinear terms and the dispersive term in the nonlinear differential equation. Even the ordinary one dimensional linear partial differential equation can produce a soliton.
Differential operator multiplication method for fractional differential equations
Tang, Shaoqiang; Ying, Yuping; Lian, Yanping; Lin, Stephen; Yang, Yibo; Wagner, Gregory J.; Liu, Wing Kam
2016-08-01
Fractional derivatives play a very important role in modeling physical phenomena involving long-range correlation effects. However, they raise challenges of computational cost and memory storage requirements when solved using current well developed numerical methods. In this paper, the differential operator multiplication method is proposed to address the issues by considering a reaction-advection-diffusion equation with a fractional derivative in time. The linear fractional differential equation is transformed into an integer order differential equation by the proposed method, which can fundamentally fix the aforementioned issues for select fractional differential equations. In such a transform, special attention should be paid to the initial conditions for the resulting differential equation of higher integer order. Through numerical experiments, we verify the proposed method for both fractional ordinary differential equations and partial differential equations.
First-order partial differential equations
Rhee, Hyun-Ku; Amundson, Neal R
2001-01-01
This first volume of a highly regarded two-volume text is fully usable on its own. After going over some of the preliminaries, the authors discuss mathematical models that yield first-order partial differential equations; motivations, classifications, and some methods of solution; linear and semilinear equations; chromatographic equations with finite rate expressions; homogeneous and nonhomogeneous quasilinear equations; formation and propagation of shocks; conservation equations, weak solutions, and shock layers; nonlinear equations; and variational problems. Exercises appear at the end of mo
Some recent advances in the numerical solution of differential equations
D'Ambrosio, Raffaele
2016-06-01
The purpose of the talk is the presentation of some recent advances in the numerical solution of differential equations, with special emphasis to reaction-diffusion problems, Hamiltonian problems and ordinary differential equations with discontinuous right-hand side. As a special case, in this short paper we focus on the solution of reaction-diffusion problems by means of special purpose numerical methods particularly adapted to the problem: indeed, following a problem oriented approach, we propose a modified method of lines based on the employ of finite differences shaped on the qualitative behavior of the solutions. Constructive issues and a brief analysis are presented, together with some numerical experiments showing the effectiveness of the approach and a comparison with existing solvers.
Introduction to complex theory of differential equations
Savin, Anton
2017-01-01
This book discusses the complex theory of differential equations or more precisely, the theory of differential equations on complex-analytic manifolds. Although the theory of differential equations on real manifolds is well known – it is described in thousands of papers and its usefulness requires no comments or explanations – to date specialists on differential equations have not focused on the complex theory of partial differential equations. However, as well as being remarkably beautiful, this theory can be used to solve a number of problems in real theory, for instance, the Poincaré balayage problem and the mother body problem in geophysics. The monograph does not require readers to be familiar with advanced notions in complex analysis, differential equations, or topology. With its numerous examples and exercises, it appeals to advanced undergraduate and graduate students, and also to researchers wanting to familiarize themselves with the subject.
Introduction to linear algebra and differential equations
Dettman, John W
1986-01-01
Excellent introductory text focuses on complex numbers, determinants, orthonormal bases, symmetric and hermitian matrices, first order non-linear equations, linear differential equations, Laplace transforms, Bessel functions, more. Includes 48 black-and-white illustrations. Exercises with solutions. Index.
Lectures on partial differential equations
Petrovsky, I G
1992-01-01
Graduate-level exposition by noted Russian mathematician offers rigorous, transparent, highly readable coverage of classification of equations, hyperbolic equations, elliptic equations and parabolic equations. Wealth of commentary and insight invaluable for deepening understanding of problems considered in text. Translated from the Russian by A. Shenitzer.
On a complex differential Riccati equation
Khmelnytskaya, Kira V; Kravchenko, Vladislav V [Department of Mathematics, CINVESTAV del IPN, Unidad Queretaro, Libramiento Norponiente No. 2000, Fracc. Real de Juriquilla, Queretaro, Qro. C.P. 76230 Mexico (Mexico)], E-mail: vkravchenko@qro.cinvestav.mx
2008-02-29
We consider a nonlinear partial differential equation for complex-valued functions which is related to the two-dimensional stationary Schroedinger equation and enjoys many properties similar to those of the ordinary differential Riccati equation such as the famous Euler theorems, the Picard theorem and others. Besides these generalizations of the classical 'one-dimensional' results, we discuss new features of the considered equation including an analogue of the Cauchy integral theorem.
Solutions manual to accompany Ordinary differential equations
Greenberg, Michael D
2014-01-01
Features a balance between theory, proofs, and examples and provides applications across diverse fields of study Ordinary Differential Equations presents a thorough discussion of first-order differential equations and progresses to equations of higher order. The book transitions smoothly from first-order to higher-order equations, allowing readers to develop a complete understanding of the related theory. Featuring diverse and interesting applications from engineering, bioengineering, ecology, and biology, the book anticipates potential difficulties in understanding the various solution steps
Solving systems of fractional differential equations using differential transform method
Erturk, Vedat Suat; Momani, Shaher
2008-05-01
This paper presents approximate analytical solutions for systems of fractional differential equations using the differential transform method. The fractional derivatives are described in the Caputo sense. The application of differential transform method, developed for differential equations of integer order, is extended to derive approximate analytical solutions of systems of fractional differential equations. The solutions of our model equations are calculated in the form of convergent series with easily computable components. Some examples are solved as illustrations, using symbolic computation. The numerical results show that the approach is easy to implement and accurate when applied to systems of fractional differential equations. The method introduces a promising tool for solving many linear and nonlinear fractional differential equations.
Hamiltonian structure for two-dimensional extended Green-Naghdi equations
Matsuno, Yoshimasa
2016-06-01
The two-dimensional Green-Naghdi (GN) shallow-water model for surface gravity waves is extended to incorporate the arbitrary higher-order dispersive effects. This can be achieved by developing a novel asymptotic analysis applied to the basic nonlinear water wave problem. The linear dispersion relation for the extended GN system is then explored in detail. In particular, we use its characteristics to discuss the well-posedness of the linearized problem. As illustrative examples of approximate model equations, we derive a higher-order model that is accurate to the fourth power of the dispersion parameter in the case of a flat bottom topography, and address the related issues such as the linear dispersion relation, conservation laws and the pressure distribution at the fluid bottom on the basis of this model. The original Green-Naghdi (GN) model is then briefly described in the case of an uneven bottom topography. Subsequently, the extended GN system presented here is shown to have the same Hamiltonian structure as that of the original GN system. Last, we demonstrate that Zakharov's Hamiltonian formulation of surface gravity waves is equivalent to that of the extended GN system by rewriting the former system in terms of the momentum density instead of the velocity potential at the free surface.
Nth-order Fuzzy Differential Equations Under Generalized Differentiability
Soheil Salahshour
2011-11-01
Full Text Available In this paper, the multiple solutions of Nth-order fuzzy differential equations by the equivalent integral forms are considered. Also, an Existence and uniqueness theorem of solution of Nth-order fuzzy differential equations is proved under Nth-order generalized differentiability in Banach space.
Mathematical physics with partial differential equations
Kirkwood, James
2011-01-01
Mathematical Physics with Partial Differential Equations is for advanced undergraduate and beginning graduate students taking a course on mathematical physics taught out of math departments. The text presents some of the most important topics and methods of mathematical physics. The premise is to study in detail the three most important partial differential equations in the field - the heat equation, the wave equation, and Laplace's equation. The most common techniques of solving such equations are developed in this book, including Green's functions, the Fourier transform
Lectures on differential equations for Feynman integrals
Henn, Johannes M
2014-01-01
Over the last year significant progress was made in the understanding of the computation of Feynman integrals using differential equations. These lectures give a review of these developments, while not assuming any prior knowledge of the subject. After an introduction to differential equations for Feynman integrals, we point out how they can be simplified using algorithms available in the mathematical literature. We discuss how this is related to a recent conjecture for a canonical form of the equations. We also discuss a complementary approach that allows based on properties of the space-time loop integrands, and explain how the ideas of leading singularities and d-log representations can be used to find an optimal basis for the differential equations. Finally, as an application of the differential equations method we show how single-scale integrals can be bootstrapped using the Drinfeld associator of a differential equation.
Numerical methods for ordinary differential equations
Butcher, John C
2008-01-01
In recent years the study of numerical methods for solving ordinary differential equations has seen many new developments. This second edition of the author''s pioneering text is fully revised and updated to acknowledge many of these developments. It includes a complete treatment of linear multistep methods whilst maintaining its unique and comprehensive emphasis on Runge-Kutta methods and general linear methods. Although the specialist topics are taken to an advanced level, the entry point to the volume as a whole is not especially demanding. Early chapters provide a wide-ranging introduction to differential equations and difference equations together with a survey of numerical differential equation methods, based on the fundamental Euler method with more sophisticated methods presented as generalizations of Euler. Features of the book includeIntroductory work on differential and difference equations.A comprehensive introduction to the theory and practice of solving ordinary differential equations numeri...
On Schroedinger Equation with Time-Dependent Quadratic Hamiltonian in $R^d$
Suazo, Erwin
2009-01-01
We study solutions to the Cauchy problem for the equation i\\frac{\\partial \\psi}{\\partial t}=H(t) \\psi + +h|\\psi|^{p-1}\\psi, with a quadratic Hamiltonian depending on time H(t)\\psi ={1/2}\\Delta \\psi +\\sum_{j=1}^{d}(\\frac{b_{j}(t)}{2}x_{j}^{2}\\psi -f_{j}(t)x_{j}\\psi +ig_{j}(t)\\frac{\\partial \\psi}{\\partial x_{j}}-i\\frac{c_{j}(t)}{2}(2x_{j}\\frac{% \\partial \\psi}{\\partial x_{j}}-\\psi)). For the linear case ($h=0$) the evolution operator $U_{H}(t)$ associated to the Cauchy problem can be expressed as integral operator with an explicit formula for the kernel. Local in time Strichartz estimates are available for $U_{H}(t)$ and conditions are given for global in time Strichartz estimates to hold. We show that for the case $h \
Symposium on Differential Geometry and Differential Equations
Berger, Marcel; Bryant, Robert
1987-01-01
The DD6 Symposium was, like its predecessors DD1 to DD5 both a research symposium and a summer seminar and concentrated on differential geometry. This volume contains a selection of the invited papers and some additional contributions. They cover recent advances and principal trends in current research in differential geometry.
Strict Stability of Impulsive Differential Equations
Yu ZHANG; Ji Tao SUN
2006-01-01
In this paper, we will extend the strict stability to impulsive differential equations. By using Lyapunov functions, we will get some criteria for the strict stability of impulsive differential equations, and we can see that impulses do contribute to the system's strict stability behavior. An example is also given in this paper to illustrate the efficiency of the obtained results.
Selected papers on analysis and differential equations
Society, American Mathematical
2010-01-01
This volume contains translations of papers that originally appeared in the Japanese journal Sūgaku. These papers range over a variety of topics in ordinary and partial differential equations, and in analysis. Many of them are survey papers presenting new results obtained in the last few years. This volume is suitable for graduate students and research mathematicians interested in analysis and differential equations.
Topologies for neutral functional differential equations.
Melvin, W. R.
1973-01-01
Bounded topologies are considered for functional differential equations of the neutral type in which present dynamics of the system are influenced by its past behavior. A special bounded topology is generated on a collection of absolutely continuous functions with essentially bounded derivatives, and an application to a class of nonlinear neutral functional differential equations due to Driver (1965) is presented.
Solution techniques for elementary partial differential equations
Constanda, Christian
2012-01-01
Incorporating a number of enhancements, Solution Techniques for Elementary Partial Differential Equations, Second Edition presents some of the most important and widely used methods for solving partial differential equations (PDEs). The techniques covered include separation of variables, method of characteristics, eigenfunction expansion, Fourier and Laplace transformations, Green’s functions, perturbation methods, and asymptotic analysis.
Lie algebras and linear differential equations.
Brockett, R. W.; Rahimi, A.
1972-01-01
Certain symmetry properties possessed by the solutions of linear differential equations are examined. For this purpose, some basic ideas from the theory of finite dimensional linear systems are used together with the work of Wei and Norman on the use of Lie algebraic methods in differential equation theory.
Solving Differential Equations Using Modified Picard Iteration
Robin, W. A.
2010-01-01
Many classes of differential equations are shown to be open to solution through a method involving a combination of a direct integration approach with suitably modified Picard iterative procedures. The classes of differential equations considered include typical initial value, boundary value and eigenvalue problems arising in physics and…
ON ALGEBRICO-DIFFERENTIAL EQUATIONS-SOLVING
WU Wenjun(Wu Wen-tsun)
2004-01-01
The char-set method of polynomial equations-solving is naturally extended to the differential case which gives rise to an algorithmic method of solving arbitrary systems of algebrico-differential equations. As an illustration of the method, the Devil's Problem of Pommaret is solved in details.
Exponentially Convergent Algorithms for Abstract Differential Equations
Gavrilyuk, Ivan; Vasylyk, Vitalii
2011-01-01
This book presents new accurate and efficient exponentially convergent methods for abstract differential equations with unbounded operator coefficients in Banach space. These methods are highly relevant for the practical scientific computing since the equations under consideration can be seen as the meta-models of systems of ordinary differential equations (ODE) as well as the partial differential equations (PDEs) describing various applied problems. The framework of functional analysis allows one to obtain very general but at the same time transparent algorithms and mathematical results which
Statistical Methods for Stochastic Differential Equations
Kessler, Mathieu; Sorensen, Michael
2012-01-01
The seventh volume in the SemStat series, Statistical Methods for Stochastic Differential Equations presents current research trends and recent developments in statistical methods for stochastic differential equations. Written to be accessible to both new students and seasoned researchers, each self-contained chapter starts with introductions to the topic at hand and builds gradually towards discussing recent research. The book covers Wiener-driven equations as well as stochastic differential equations with jumps, including continuous-time ARMA processes and COGARCH processes. It presents a sp
On implicit abstract neutral nonlinear differential equations
Hernández, Eduardo, E-mail: lalohm@ffclrp.usp.br [Universidade de São Paulo, Departamento de Computação e Matemática, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto (Brazil); O’Regan, Donal, E-mail: donal.oregan@nuigalway.ie [National University of Ireland, School of Mathematics, Statistics and Applied Mathematics (Ireland)
2016-04-15
In this paper we continue our developments in Hernández and O’Regan (J Funct Anal 261:3457–3481, 2011) on the existence of solutions for abstract neutral differential equations. In particular we extend the results in Hernández and O’Regan (J Funct Anal 261:3457–3481, 2011) for the case of implicit nonlinear neutral equations and we focus on applications to partial “nonlinear” neutral differential equations. Some applications involving partial neutral differential equations are presented.
Stochastic differential equation model to Prendiville processes
Granita, E-mail: granitafc@gmail.com [Dept. of Mathematical Science, Universiti Teknologi Malaysia, 81310, Johor Malaysia (Malaysia); Bahar, Arifah [Dept. of Mathematical Science, Universiti Teknologi Malaysia, 81310, Johor Malaysia (Malaysia); UTM Center for Industrial & Applied Mathematics (UTM-CIAM) (Malaysia)
2015-10-22
The Prendiville process is another variation of the logistic model which assumes linearly decreasing population growth rate. It is a continuous time Markov chain (CTMC) taking integer values in the finite interval. The continuous time Markov chain can be approximated by stochastic differential equation (SDE). This paper discusses the stochastic differential equation of Prendiville process. The work started with the forward Kolmogorov equation in continuous time Markov chain of Prendiville process. Then it was formulated in the form of a central-difference approximation. The approximation was then used in Fokker-Planck equation in relation to the stochastic differential equation of the Prendiville process. The explicit solution of the Prendiville process was obtained from the stochastic differential equation. Therefore, the mean and variance function of the Prendiville process could be easily found from the explicit solution.
Stochastic differential equation model to Prendiville processes
Granita, Bahar, Arifah
2015-10-01
The Prendiville process is another variation of the logistic model which assumes linearly decreasing population growth rate. It is a continuous time Markov chain (CTMC) taking integer values in the finite interval. The continuous time Markov chain can be approximated by stochastic differential equation (SDE). This paper discusses the stochastic differential equation of Prendiville process. The work started with the forward Kolmogorov equation in continuous time Markov chain of Prendiville process. Then it was formulated in the form of a central-difference approximation. The approximation was then used in Fokker-Planck equation in relation to the stochastic differential equation of the Prendiville process. The explicit solution of the Prendiville process was obtained from the stochastic differential equation. Therefore, the mean and variance function of the Prendiville process could be easily found from the explicit solution.
Contact Structures of Partial Differential Equations
Eendebak, P.T.
2007-01-01
We study the geometry of contact structures of partial differential equations. The main classes we study are first order systems of two equations in two independent and two dependent variables and the second order scalar equations in two independent variables. The contact distribution in these two c
The Numerical Approximation of Functional Differential Equations
Venturi, Daniele
2016-01-01
The fundamental importance of functional differential equations has been recognized in many areas of mathematical physics, such as fluid dynamics (Hopf characteristic functional equations), quantum field theory (Schwinger-Dyson equations) and statistical physics (equations for generating functionals and effective action methods). However, no effective numerical method has yet been developed to compute their solution. The purpose of this manuscript is to fill this gap, and provide a new perspective on the problem of numerical approximation of nonlinear functionals and functional differential equations. The proposed methods will be described and demonstrated in various examples.
Sparse dynamics for partial differential equations.
Schaeffer, Hayden; Caflisch, Russel; Hauck, Cory D; Osher, Stanley
2013-04-23
We investigate the approximate dynamics of several differential equations when the solutions are restricted to a sparse subset of a given basis. The restriction is enforced at every time step by simply applying soft thresholding to the coefficients of the basis approximation. By reducing or compressing the information needed to represent the solution at every step, only the essential dynamics are represented. In many cases, there are natural bases derived from the differential equations, which promote sparsity. We find that our method successfully reduces the dynamics of convection equations, diffusion equations, weak shocks, and vorticity equations with high-frequency source terms.
From ordinary to partial differential equations
Esposito, Giampiero
2017-01-01
This book is addressed to mathematics and physics students who want to develop an interdisciplinary view of mathematics, from the age of Riemann, Poincaré and Darboux to basic tools of modern mathematics. It enables them to acquire the sensibility necessary for the formulation and solution of difficult problems, with an emphasis on concepts, rigour and creativity. It consists of eight self-contained parts: ordinary differential equations; linear elliptic equations; calculus of variations; linear and non-linear hyperbolic equations; parabolic equations; Fuchsian functions and non-linear equations; the functional equations of number theory; pseudo-differential operators and pseudo-differential equations. The author leads readers through the original papers and introduces new concepts, with a selection of topics and examples that are of high pedagogical value.
Discrete Surface Modelling Using Partial Differential Equations.
Xu, Guoliang; Pan, Qing; Bajaj, Chandrajit L
2006-02-01
We use various nonlinear partial differential equations to efficiently solve several surface modelling problems, including surface blending, N-sided hole filling and free-form surface fitting. The nonlinear equations used include two second order flows, two fourth order flows and two sixth order flows. These nonlinear equations are discretized based on discrete differential geometry operators. The proposed approach is simple, efficient and gives very desirable results, for a range of surface models, possibly having sharp creases and corners.
Differential equations inverse and direct problems
Favini, Angelo
2006-01-01
DEGENERATE FIRST ORDER IDENTIFICATION PROBLEMS IN BANACH SPACES A NONISOTHERMAL DYNAMICAL GINZBURG-LANDAU MODEL OF SUPERCONDUCTIVITY. EXISTENCE AND UNIQUENESS THEOREMSSOME GLOBAL IN TIME RESULTS FOR INTEGRODIFFERENTIAL PARABOLIC INVERSE PROBLEMSFOURTH ORDER ORDINARY DIFFERENTIAL OPERATORS WITH GENERAL WENTZELL BOUNDARY CONDITIONSTUDY OF ELLIPTIC DIFFERENTIAL EQUATIONS IN UMD SPACESDEGENERATE INTEGRODIFFERENTIAL EQUATIONS OF PARABOLIC TYPE EXPONENTIAL ATTRACTORS FOR SEMICONDUCTOR EQUATIONSCONVERGENCE TO STATIONARY STATES OF SOLUTIONS TO THE SEMILINEAR EQUATION OF VISCOELASTICITY ASYMPTOTIC BEHA
The Riccati Differential Equation and a Diffusion-Type Equation
Suazo, Erwin; Vega-Guzman, Jose M
2008-01-01
We construct an explicit solution of the Cauchy initial value problem for certain diffusion-type equation with variable coefficients on the entire real line. The corresponding Green function (heat kernel) is given in terms of elementary functions and certain integrals involving a characteristic function, which should be found as an analytic or numerical solution of the second order linear differential equation with time-dependent coefficients. Some special and limiting cases are outlined. Solution of the corresponding nonhomogeneous equation is also found.
Cruz, Hans, E-mail: hans@ciencias.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, 04510 México DF (Mexico); Schuch, Dieter [Institut für Theoretische Physik, JW Goethe-Universität Frankfurt am Main, Max-von-Laue-Str. 1, D-60438 Frankfurt am Main (Germany); Castaños, Octavio, E-mail: ocasta@nucleares.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, 04510 México DF (Mexico); Rosas-Ortiz, Oscar [Physics Department, Cinvestav, A. P. 14-740, 07000 México D. F. (Mexico)
2015-09-15
The sensitivity of the evolution of quantum uncertainties to the choice of the initial conditions is shown via a complex nonlinear Riccati equation leading to a reformulation of quantum dynamics. This sensitivity is demonstrated for systems with exact analytic solutions with the form of Gaussian wave packets. In particular, one-dimensional conservative systems with at most quadratic Hamiltonians are studied.
Cotter, C.J.; Frank, J.E.; Reich, S.
2004-01-01
We develop a particle-mesh method for two-layer shallow-water equations subject to the rigid-lid approximation. The method is based on the recently proposed Hamiltonian particle-mesh (HPM) method and the interpretation of the rigid-lid approximation as a set of holonomic constraints. The suggested s
Asymptotic integration of differential and difference equations
Bodine, Sigrun
2015-01-01
This book presents the theory of asymptotic integration for both linear differential and difference equations. This type of asymptotic analysis is based on some fundamental principles by Norman Levinson. While he applied them to a special class of differential equations, subsequent work has shown that the same principles lead to asymptotic results for much wider classes of differential and also difference equations. After discussing asymptotic integration in a unified approach, this book studies how the application of these methods provides several new insights and frequent improvements to results found in earlier literature. It then continues with a brief introduction to the relatively new field of asymptotic integration for dynamic equations on time scales. Asymptotic Integration of Differential and Difference Equations is a self-contained and clearly structured presentation of some of the most important results in asymptotic integration and the techniques used in this field. It will appeal to researchers i...
Partial Differential Equations Modeling and Numerical Simulation
Glowinski, Roland
2008-01-01
This book is dedicated to Olivier Pironneau. For more than 250 years partial differential equations have been clearly the most important tool available to mankind in order to understand a large variety of phenomena, natural at first and then those originating from human activity and technological development. Mechanics, physics and their engineering applications were the first to benefit from the impact of partial differential equations on modeling and design, but a little less than a century ago the Schrödinger equation was the key opening the door to the application of partial differential equations to quantum chemistry, for small atomic and molecular systems at first, but then for systems of fast growing complexity. Mathematical modeling methods based on partial differential equations form an important part of contemporary science and are widely used in engineering and scientific applications. In this book several experts in this field present their latest results and discuss trends in the numerical analy...
Numerical Analysis of Partial Differential Equations
Lui, S H
2011-01-01
A balanced guide to the essential techniques for solving elliptic partial differential equations Numerical Analysis of Partial Differential Equations provides a comprehensive, self-contained treatment of the quantitative methods used to solve elliptic partial differential equations (PDEs), with a focus on the efficiency as well as the error of the presented methods. The author utilizes coverage of theoretical PDEs, along with the nu merical solution of linear systems and various examples and exercises, to supply readers with an introduction to the essential concepts in the numerical analysis
Stability analysis of impulsive functional differential equations
Stamova, Ivanka
2009-01-01
This book is devoted to impulsive functional differential equations which are a natural generalization of impulsive ordinary differential equations (without delay) and of functional differential equations (without impulses). At the present time the qualitative theory of such equationsis under rapid development. After a presentation of the fundamental theory of existence, uniqueness and continuability of solutions, a systematic development of stability theory for that class of problems is given which makes the book unique. It addresses to a wide audience such as mathematicians, applied research
Quantum algorithms for solving linear differential equations
Berry, Dominic W
2010-01-01
Linear differential equations are ubiquitous in science and engineering. Quantum computers can simulate quantum systems, which are described by homogeneous linear differential equations that produce only oscillating terms. Here we extend quantum simulation algorithms to general inhomogeneous linear differential equations, which can include exponential terms as well as oscillating terms in their solution. As with other algorithms of this type, the solution is encoded in amplitudes of the quantum state. The algorithm does not give the explicit solution, but it is possible to extract global features of the solution.
Conservation laws, differential identities, and constraints of partial differential equations
Zharinov, V. V.
2015-11-01
We consider specific cohomological properties such as low-dimensional conservation laws and differential identities of systems of partial differential equations (PDEs). We show that such properties are inherent to complex systems such as evolution systems with constraints. The mathematical tools used here are the algebraic analysis of PDEs and cohomologies over differential algebras and modules.
Differential invariants of second-order ordinary differential equations
Rosado Maria, Maria Eugenia
2011-01-01
The notion of a differential invariant for systems of second-order differential equations on a manifold M with respect to the group of vertical automorphisms of the projection is de?ned and the Chern connection attached to a SODE allows one to determine a basis for second-order differential invariants of a SODE.
Discretizing a backward stochastic differential equation
Yinnan Zhang; Weian Zheng
2002-01-01
We show a simple method to discretize Pardoux-Peng's nonlinear backward stochastic differential equation. This discretization scheme also gives a numerical method to solve a class of semi-linear PDEs.
Trends in differential equations and applications
Neble, María; Galván, José
2016-01-01
This work collects the most important results presented at the Congress on Differential Equations and Applications/Congress on Applied Mathematics (CEDYA/CMA) in Cádiz (Spain) in 2015. It supports further research in differential equations, numerical analysis, mechanics, control and optimization. In particular, it helps readers gain an overview of specific problems of interest in the current mathematical research related to different branches of applied mathematics. This includes the analysis of nonlinear partial differential equations, exact solutions techniques for ordinary differential equations, numerical analysis and numerical simulation of some models arising in experimental sciences and engineering, control and optimization, and also trending topics on numerical linear Algebra, dynamical systems, and applied mathematics for Industry. This volume is mainly addressed to any researcher interested in the applications of mathematics, especially in any subject mentioned above. It may be also useful to PhD s...
An introduction to differential equations using MATLAB
Butt, Rizwan
2016-01-01
An Introduction to Differential Equations using MATLAB exploits the symbolic, numerical, and graphical capabilitiesof MATLAB to develop a thorough understanding of differential equations algorithms. This book provides the readerwith numerous applications, m-files, and practical examples to problems. Balancing theoretical concepts withcomputational speed and accuracy, the book includes numerous short programs in MATLAB that can be used to solveproblems involving first-and higher-order differential equations, Laplace transforms, linear systems of differentialequations, numerical solutions of differential equations, computer graphics, and more. The author emphasizes thebasic ideas of analytical and numerical techniques and the uses of modern mathematical software (MATLAB) ratherthan relying only on complex mathematical derivations to engineers, mathematician, computer scientists, andphysicists or for use as a textbook in applied or computational courses.A CD-ROM with all the figures, codes, solutions, appendices...
Fractional complex transforms for fractional differential equations
Ibrahim, Rabha W
2012-01-01
The fractional complex transform is employed to convert fractional differential equations analytically in the sense of the Srivastava-Owa fractional operator and its generalization in the unit disk...
Selected papers on analysis and differential equations
Nomizu, Katsumi
2003-01-01
This volume contains translations of papers that originally appeared in the Japanese journal, Sugaku. The papers range over a variety of topics, including nonlinear partial differential equations, C^*-algebras, and Schrödinger operators.
Monotone Semiflows Generated by Functional Differential Equations,
1986-02-01
These results have been applied to ordinary differential equations in Rn (see e.g. [10,23]) where the well-known Kamke theorem applies and to nonlinear...sufficient condition (H) Whenever 0 - 0 and ,i(0) = i( 0) it follows that fi(0) ( fi(O). For those familiar with the Kamke (quasimonotone) condition for...ordinary differential equations, (H) will seem quite natural, it reduces to the Kamke condition. The order preserving property of a semiflow is not
Extended Trial Equation Method for Nonlinear Partial Differential Equations
Gepreel, Khaled A.; Nofal, Taher A.
2015-04-01
The main objective of this paper is to use the extended trial equation method to construct a series of some new solutions for some nonlinear partial differential equations (PDEs) in mathematical physics. We will construct the solutions in many different functions such as hyperbolic function solutions, trigonometric function solutions, Jacobi elliptic function solutions, and rational functional solutions for the nonlinear PDEs when the balance number is a real number via the Zhiber-Shabat nonlinear differential equation. The balance number of this method is not constant as we shown in other methods, but it is changed by changing the trial equation derivative definition. This method allowed us to construct many new types of solutions. It is shown by using the Maple software package that all obtained solutions satisfy the original PDEs.
Symmetrized solutions for nonlinear stochastic differential equations
G. Adomian
1981-01-01
Full Text Available Solutions of nonlinear stochastic differential equations in series form can be put into convenient symmetrized forms which are easily calculable. This paper investigates such forms for polynomial nonlinearities, i.e., equations of the form Ly+ym=x where x is a stochastic process and L is a linear stochastic operator.
On Fractional Order Hybrid Differential Equations
Mohamed A. E. Herzallah
2014-01-01
Full Text Available We develop the theory of fractional hybrid differential equations with linear and nonlinear perturbations involving the Caputo fractional derivative of order 0<α<1. Using some fixed point theorems we prove the existence of mild solutions for two types of hybrid equations. Examples are given to illustrate the obtained results.
A Unified Introduction to Ordinary Differential Equations
Lutzer, Carl V.
2006-01-01
This article describes how a presentation from the point of view of differential operators can be used to (partially) unify the myriad techniques in an introductory course in ordinary differential equations by providing students with a powerful, flexible paradigm that extends into (or from) linear algebra. (Contains 1 footnote.)
Nonlinear differentiation equation and analytic function spaces
Li, Hao; Li, Songxiao
2015-01-01
In this paper we consider the nonlinear complex differential equation $$(f^{(k)})^{n_{k}}+A_{k-1}(z)(f^{(k-1)})^{n_{k-1}}+\\cdot\\cdot\\cdot+A_{1}(z)(f')^{n_{1}}+A_{0}(z)f^{n_{0}}=0, $$where $ A_{j}(z)$, $ j=0, \\cdots, k-1 $, are analytic in the unit disk $ \\mathbb{D} $, $ n_{j}\\in R^{+} $ for all $ j=0, \\cdots, k $. We investigate this nonlinear differential equation from two aspects. On one hand, we provide some sufficient conditions on coefficients such that all solutions of this equation bel...
Existence theorems for ordinary differential equations
Murray, Francis J
2007-01-01
Theorems stating the existence of an object-such as the solution to a problem or equation-are known as existence theorems. This text examines fundamental and general existence theorems, along with the Picard iterants, and applies them to properties of solutions and linear differential equations.The authors assume a basic knowledge of real function theory, and for certain specialized results, of elementary functions of a complex variable. They do not consider the elementary methods for solving certain special differential equations, nor advanced specialized topics; within these restrictions, th
Crater, Horace; Yang, Dujiu
1991-09-01
A semirelativistic expansion in powers of 1/c2 is canonically matched through order (1/c4) of the two-particle total Hamiltonian of Wheeler-Feynman vector and scalar electrodynamics to a similar expansion of the center of momentum (c.m.) total energy of two interacting particles obtained from covariant generalized mass shell constraints derived with the use of the classical Todorov equation and Dirac's Hamiltonian constraint mechanics. This determines through order 1/c4 the direct interaction used in the covariant Todorov constraint equation. We show that these interactions are momentum independent in spite of the extensive and complicated momentum dependence of the potential energy terms in the Wheeler-Feynman Hamiltonian. The invariant expressions for the relativistic reduced mass and energy of the fictitious particle of relative motion used in the Todorov equation are also dynamically determined through this order by this same procedure. The resultant covariant Todorov equation then not only reproduces the noncovariant Wheeler-Feynman dynamics through order 1/c4 but also implicitly provides a rather simple covariant extrapolation of it to all orders of 1/c2.
Stochastic Differential Equations and Kondratiev Spaces
Vaage, G.
1995-05-01
The purpose of this mathematical thesis was to improve the understanding of physical processes such as fluid flow in porous media. An example is oil flowing in a reservoir. In the first of five included papers, Hilbert space methods for elliptic boundary value problems are used to prove the existence and uniqueness of a large family of elliptic differential equations with additive noise without using the Hermite transform. The ideas are then extended to the multidimensional case and used to prove existence and uniqueness of solution of the Stokes equations with additive noise. The second paper uses functional analytic methods for partial differential equations and presents a general framework for proving existence and uniqueness of solutions to stochastic partial differential equations with multiplicative noise, for a large family of noises. The methods are applied to equations of elliptic, parabolic as well as hyperbolic type. The framework presented can be extended to the multidimensional case. The third paper shows how the ideas from the second paper can be extended to study the moving boundary value problem associated with the stochastic pressure equation. The fourth paper discusses a set of stochastic differential equations. The fifth paper studies the relationship between the two families of Kondratiev spaces used in the thesis. 102 refs.
Particle Systems and Partial Differential Equations I
Gonçalves, Patricia
2014-01-01
This book presents the proceedings of the international conference Particle Systems and Partial Differential Equations I, which took place at the Centre of Mathematics of the University of Minho, Braga, Portugal, from the 5th to the 7th of December, 2012. The purpose of the conference was to bring together world leaders to discuss their topics of expertise and to present some of their latest research developments in those fields. Among the participants were researchers in probability, partial differential equations and kinetics theory. The aim of the meeting was to present to a varied public the subject of interacting particle systems, its motivation from the viewpoint of physics and its relation with partial differential equations or kinetics theory, and to stimulate discussions and possibly new collaborations among researchers with different backgrounds. The book contains lecture notes written by François Golse on the derivation of hydrodynamic equations (compressible and incompressible Euler and Navie...
On new solutions of fuzzy differential equations
Chalco-Cano, Y. [Departamento de Matematica, Universidad de Tarapaca, Casilla 7D, Arica (Chile)], E-mail: ychalco@uta.cl; Roman-Flores, H. [Instituto de Investigacion, Universidad de Tarapaca, Casilla 7D, Arica (Chile)
2008-10-15
We study fuzzy differential equations (FDE) using the concept of generalized H-differentiability. This concept is based in the enlargement of the class of differentiable fuzzy mappings and, for this, we consider the lateral Hukuhara derivatives. We will see that both derivatives are different and they lead us to different solutions from a FDE. Also, some illustrative examples are given and some comparisons with other methods for solving FDE are made.
Modelling conjugation with stochastic differential equations
Philipsen, Kirsten Riber; Christiansen, Lasse Engbo; Hasman, Henrik
2010-01-01
Conjugation is an important mechanism involved in the transfer of resistance between bacteria. In this article a stochastic differential equation based model consisting of a continuous time state equation and a discrete time measurement equation is introduced to model growth and conjugation of two...... using a likelihood-ratio test and Akaike's information criterion. Experiments indicating conjugation on the agar plates selecting for transconjugants motivates the introduction of an extended model, for which conjugation on the agar plate is described in the measurement equation. This model is compared...
Numerical Methods for Partial Differential Equations
Guo, Ben-yu
1987-01-01
These Proceedings of the first Chinese Conference on Numerical Methods for Partial Differential Equations covers topics such as difference methods, finite element methods, spectral methods, splitting methods, parallel algorithm etc., their theoretical foundation and applications to engineering. Numerical methods both for boundary value problems of elliptic equations and for initial-boundary value problems of evolution equations, such as hyperbolic systems and parabolic equations, are involved. The 16 papers of this volume present recent or new unpublished results and provide a good overview of current research being done in this field in China.
Differential geometry techniques for sets of nonlinear partial differential equations
Estabrook, Frank B.
1990-01-01
An attempt is made to show that the Cartan theory of partial differential equations can be a useful technique for applied mathematics. Techniques for finding consistent subfamilies of solutions that are generically rich and well-posed and for introducing potentials or other usefully consistent auxiliary fields are introduced. An extended sample calculation involving the Korteweg-de Vries equation is given.
Fuzzy differential equations in various approaches
Gomes, Luciana Takata; Bede, Barnabas
2015-01-01
This book may be used as reference for graduate students interested in fuzzy differential equations and researchers working in fuzzy sets and systems, dynamical systems, uncertainty analysis, and applications of uncertain dynamical systems. Beginning with a historical overview and introduction to fundamental notions of fuzzy sets, including different possibilities of fuzzy differentiation and metric spaces, this book moves on to an overview of fuzzy calculus thorough exposition and comparison of different approaches. Innovative theories of fuzzy calculus and fuzzy differential equations using fuzzy bunches of functions are introduced and explored. Launching with a brief review of essential theories, this book investigates both well-known and novel approaches in this field; such as the Hukuhara differentiability and its generalizations as well as differential inclusions and Zadeh’s extension. Through a unique analysis, results of all these theories are examined and compared.
Hamiltonian mechanics of stochastic acceleration.
Burby, J W; Zhmoginov, A I; Qin, H
2013-11-08
We show how to find the physical Langevin equation describing the trajectories of particles undergoing collisionless stochastic acceleration. These stochastic differential equations retain not only one-, but two-particle statistics, and inherit the Hamiltonian nature of the underlying microscopic equations. This opens the door to using stochastic variational integrators to perform simulations of stochastic interactions such as Fermi acceleration. We illustrate the theory by applying it to two example problems.
A short course in ordinary differential equations
Kong, Qingkai
2014-01-01
This text is a rigorous treatment of the basic qualitative theory of ordinary differential equations, at the beginning graduate level. Designed as a flexible one-semester course but offering enough material for two semesters, A Short Course covers core topics such as initial value problems, linear differential equations, Lyapunov stability, dynamical systems and the Poincaré—Bendixson theorem, and bifurcation theory, and second-order topics including oscillation theory, boundary value problems, and Sturm—Liouville problems. The presentation is clear and easy-to-understand, with figures and copious examples illustrating the meaning of and motivation behind definitions, hypotheses, and general theorems. A thoughtfully conceived selection of exercises together with answers and hints reinforce the reader's understanding of the material. Prerequisites are limited to advanced calculus and the elementary theory of differential equations and linear algebra, making the text suitable for senior undergraduates as w...
A first course in differential equations
Logan, J David
2015-01-01
The third edition of this concise, popular textbook on elementary differential equations gives instructors an alternative to the many voluminous texts on the market. It presents a thorough treatment of the standard topics in an accessible, easy-to-read, format. The overarching perspective of the text conveys that differential equations are about applications. This book illuminates the mathematical theory in the text with a wide variety of applications that will appeal to students in physics, engineering, the biosciences, economics and mathematics. Instructors are likely to find that the first four or five chapters are suitable for a first course in the subject. This edition contains a healthy increase over earlier editions in the number of worked examples and exercises, particularly those routine in nature. Two appendices include a review with practice problems, and a MATLAB® supplement that gives basic codes and commands for solving differential equations. MATLAB® is not required; students are encouraged t...
Stochastic Differential Equation of Earthquakes Series
Mariani, Maria C.; Tweneboah, Osei K.; Gonzalez-Huizar, Hector; Serpa, Laura
2016-07-01
This work is devoted to modeling earthquake time series. We propose a stochastic differential equation based on the superposition of independent Ornstein-Uhlenbeck processes driven by a Γ (α, β ) process. Superposition of independent Γ (α, β ) Ornstein-Uhlenbeck processes offer analytic flexibility and provides a class of continuous time processes capable of exhibiting long memory behavior. The stochastic differential equation is applied to the study of earthquakes by fitting the superposed Γ (α, β ) Ornstein-Uhlenbeck model to earthquake sequences in South America containing very large events (Mw ≥ 8). We obtained very good fit of the observed magnitudes of the earthquakes with the stochastic differential equations, which supports the use of this methodology for the study of earthquakes sequence.
Transform methods for solving partial differential equations
Duffy, Dean G
2004-01-01
Transform methods provide a bridge between the commonly used method of separation of variables and numerical techniques for solving linear partial differential equations. While in some ways similar to separation of variables, transform methods can be effective for a wider class of problems. Even when the inverse of the transform cannot be found analytically, numeric and asymptotic techniques now exist for their inversion, and because the problem retains some of its analytic aspect, one can gain greater physical insight than typically obtained from a purely numerical approach. Transform Methods for Solving Partial Differential Equations, Second Edition illustrates the use of Laplace, Fourier, and Hankel transforms to solve partial differential equations encountered in science and engineering. The author has expanded the second edition to provide a broader perspective on the applicability and use of transform methods and incorporated a number of significant refinements: New in the Second Edition: ·...
Sensitivity Analysis of Differential-Algebraic Equations and Partial Differential Equations
Petzold, L; Cao, Y; Li, S; Serban, R
2005-08-09
Sensitivity analysis generates essential information for model development, design optimization, parameter estimation, optimal control, model reduction and experimental design. In this paper we describe the forward and adjoint methods for sensitivity analysis, and outline some of our recent work on theory, algorithms and software for sensitivity analysis of differential-algebraic equation (DAE) and time-dependent partial differential equation (PDE) systems.
Feng, Sheng-Ya
2011-01-01
In this paper, we study a class of second order differential operators with quadratic potentials $L$ and its principal part $L_{S}$. Thanks to Hamiltonian formalism and a multiplier technique, we first obtain heat kernel of $L_{S}$, then we, by use of the action function and volume element, solve a matrix Riccati equations and a scalar differential equation which leads us to the heat kernel of $L$ via a probabilistic ansatz. As application, we finally recover and generalise several classical results on celebrated operators.
An introduction to stochastic differential equations
Evans, Lawrence C
2014-01-01
These notes provide a concise introduction to stochastic differential equations and their application to the study of financial markets and as a basis for modeling diverse physical phenomena. They are accessible to non-specialists and make a valuable addition to the collection of texts on the topic. -Srinivasa Varadhan, New York University This is a handy and very useful text for studying stochastic differential equations. There is enough mathematical detail so that the reader can benefit from this introduction with only a basic background in mathematical analysis and probability. -George Papa
Surveys in differential-algebraic equations III
Reis, Timo
2015-01-01
The present volume comprises survey articles on various fields of Differential-Algebraic Equations (DAEs), which have widespread applications in controlled dynamical systems, especially in mechanical and electrical engineering and a strong relation to (ordinary) differential equations. The individual chapters provide reviews, presentations of the current state of research and new concepts in - Flexibility of DAE formulations - Reachability analysis and deterministic global optimization - Numerical linear algebra methods - Boundary value problems The results are presented in an accessible style, making this book suitable not only for active researchers but also for graduate students (with a good knowledge of the basic principles of DAEs) for self-study.
Surveys in differential-algebraic equations II
Reis, Timo
2015-01-01
The present volume comprises survey articles on various fields of Differential-Algebraic Equations (DAEs), which have widespread applications in controlled dynamical systems, especially in mechanical and electrical engineering and a strong relation to (ordinary) differential equations. The individual chapters provide reviews, presentations of the current state of research and new concepts in - Observers for DAEs - DAEs in chemical processes - Optimal control of DAEs - DAEs from a functional-analytic viewpoint - Algebraic methods for DAEs The results are presented in an accessible style, making this book suitable not only for active researchers but also for graduate students (with a good knowledge of the basic principles of DAEs) for self-study.
Asymptotic analysis for functional stochastic differential equations
Bao, Jianhai; Yuan, Chenggui
2016-01-01
This brief treats dynamical systems that involve delays and random disturbances. The study is motivated by a wide variety of systems in real life in which random noise has to be taken into consideration and the effect of delays cannot be ignored. Concentrating on such systems that are described by functional stochastic differential equations, this work focuses on the study of large time behavior, in particular, ergodicity. This brief is written for probabilists, applied mathematicians, engineers, and scientists who need to use delay systems and functional stochastic differential equations in their work. Selected topics from the brief can also be used in a graduate level topics course in probability and stochastic processes.
Surveys in differential-algebraic equations IV
Reis, Timo
2017-01-01
The present volume comprises survey articles on various fields of Differential-Algebraic Equations (DAEs) which have widespread applications in controlled dynamical systems, especially in mechanical and electrical engineering and a strong relation to (ordinary) differential equations. The individual chapters provide reviews, presentations of the current state of research and new concepts in - History of DAEs - DAE aspects of mechanical multibody systems - Model reduction of DAEs - Observability for DAEs - Numerical Analysis for DAEs The results are presented in an accessible style, making this book suitable not only for active researchers but also for graduate students (with a good knowledge of the basic principles of DAEs) for self-study.
A minicourse on stochastic partial differential equations
Rassoul-Agha, Firas
2009-01-01
In May 2006, The University of Utah hosted an NSF-funded minicourse on stochastic partial differential equations. The goal of this minicourse was to introduce graduate students and recent Ph.D.s to various modern topics in stochastic PDEs, and to bring together several experts whose research is centered on the interface between Gaussian analysis, stochastic analysis, and stochastic partial differential equations. This monograph contains an up-to-date compilation of many of those lectures. Particular emphasis is paid to showcasing central ideas and displaying some of the many deep connections between the mentioned disciplines, all the time keeping a realistic pace for the student of the subject.
Stochastic versus deterministic systems of differential equations
Ladde, G S
2003-01-01
This peerless reference/text unfurls a unified and systematic study of the two types of mathematical models of dynamic processes-stochastic and deterministic-as placed in the context of systems of stochastic differential equations. Using the tools of variational comparison, generalized variation of constants, and probability distribution as its methodological backbone, Stochastic Versus Deterministic Systems of Differential Equations addresses questions relating to the need for a stochastic mathematical model and the between-model contrast that arises in the absence of random disturbances/flu
Diffusions, superdiffusions and partial differential equations
Dynkin, E B
2002-01-01
Interactions between the theory of partial differential equations of elliptic and parabolic types and the theory of stochastic processes are beneficial for both probability theory and analysis. At the beginning, mostly analytic results were used by probabilists. More recently, analysts (and physicists) took inspiration from the probabilistic approach. Of course, the development of analysis in general and of the theory of partial differential equations in particular, was motivated to a great extent by problems in physics. A difference between physics and probability is that the latter provides
Generalized solutions of nonlinear partial differential equations
Rosinger, EE
1987-01-01
During the last few years, several fairly systematic nonlinear theories of generalized solutions of rather arbitrary nonlinear partial differential equations have emerged. The aim of this volume is to offer the reader a sufficiently detailed introduction to two of these recent nonlinear theories which have so far contributed most to the study of generalized solutions of nonlinear partial differential equations, bringing the reader to the level of ongoing research.The essence of the two nonlinear theories presented in this volume is the observation that much of the mathematics concernin
Combat modeling with partial differential equations
Protopopescu, V.; Santoro, R.T.; Dockery, J.; Cox, R.L.; Barnes, J.M.
1987-11-01
A new analytic model based on coupled nonlinear partial differential equations is proposed to describe the temporal and spatial evolution of opposing forces in combat. Analytic descriptions of combat have been developed previously using relatively simpler models based on ordinary differential equations (.e.g, Lanchester's equations of combat) that capture only the global temporal variation of the forces, but not their spatial movement (advance, retreat, flanking maneuver, etc.). The rationale for analytic models and, particularly, the motivation for the present model are reviewed. A detailed description of this model in terms of the mathematical equations together with the possible and plausible military interpretation are presented. Numerical solutions of the nonlinear differential equation model for a large variety of parameters (battlefield length, initial force ratios, initial spatial distribution of forces, boundary conditions, type of interaction, etc.) are implemented. The computational methods and computer programs are described and the results are given in tabular and graphic form. Where possible, the results are compared with the predictions given by the traditional Lanchester equations. Finally, a PC program is described that uses data downloaded from the mainframe computer for rapid analysis of the various combat scenarios. 11 refs., 10 figs., 5 tabs.
Laplace transform of fractional order differential equations
Song Liang
2015-05-01
Full Text Available In this article, we show that Laplace transform can be applied to fractional system. To this end, solutions of linear fractional-order equations are first derived by a direct method, without using Laplace transform. Then the solutions of fractional-order differential equations are estimated by employing Gronwall and Holder inequalities. They are showed be to of exponential order, which are necessary to apply the Laplace transform. Based on the estimates of solutions, the fractional-order and the integer-order derivatives of solutions are all estimated to be exponential order. As a result, the Laplace transform is proved to be valid in fractional equations.
Differential equations and applications recent advances
2014-01-01
Differential Equations and Applications : Recent Advances focus on the latest developments in Nonlinear Dynamical Systems, Neural Networks, Fluid Dynamics, Fractional Differential Systems, Mathematical Modelling and Qualitative Theory. Different aspects such as Existence, Stability, Controllability, Viscosity and Numerical Analysis for different systems have been discussed in this book. This book will be of great interest and use to researchers in Applied Mathematics, Engineering and Mathematical Physics.
Counting Coloured Planar Maps: Differential Equations
Bernardi, Olivier; Bousquet-Mélou, Mireille
2017-08-01
We address the enumeration of q-coloured planar maps counted by the number of edges and the number of monochromatic edges. We prove that the associated generating function is differentially algebraic, that is, satisfies a non-trivial polynomial differential equation with respect to the edge variable. We give explicitly a differential system that characterizes this series. We then prove a similar result for planar triangulations, thus generalizing a result of Tutte dealing with their proper q-colourings. In statistical physics terms, we solve the q-state Potts model on random planar lattices. This work follows a first paper by the same authors, where the generating function was proved to be algebraic for certain values of q, including {q=1, 2} and 3. It is known to be transcendental in general. In contrast, our differential system holds for an indeterminate q. For certain special cases of combinatorial interest (four colours; proper q-colourings; maps equipped with a spanning forest), we derive from this system, in the case of triangulations, an explicit differential equation of order 2 defining the generating function. For general planar maps, we also obtain a differential equation of order 3 for the four-colour case and for the self-dual Potts model.
Generating functionals and Lagrangian partial differential equations
Vankerschaver, Joris; Liao, Cuicui; Leok, Melvin [Department of Mathematics, University of California, San Diego, 9500 Gilman Drive, Dept. 0112, La Jolla, California 92093-0112 (United States)
2013-08-15
The main goal of this paper is to derive an alternative characterization of the multisymplectic form formula for classical field theories using the geometry of the space of boundary values. We review the concept of Type-I/II generating functionals defined on the space of boundary data of a Lagrangian field theory. On the Lagrangian side, we define an analogue of Jacobi's solution to the Hamilton–Jacobi equation for field theories, and we show that by taking variational derivatives of this functional, we obtain an isotropic submanifold of the space of Cauchy data, described by the so-called multisymplectic form formula. As an example of the latter, we show that Lorentz's reciprocity principle in electromagnetism is a particular instance of the multisymplectic form formula. We also define a Hamiltonian analogue of Jacobi's solution, and we show that this functional is a Type-II generating functional. We finish the paper by defining a similar framework of generating functions for discrete field theories, and we show that for the linear wave equation, we recover the multisymplectic conservation law of Bridges.
Asymptotic problems for stochastic partial differential equations
Salins, Michael
Stochastic partial differential equations (SPDEs) can be used to model systems in a wide variety of fields including physics, chemistry, and engineering. The main SPDEs of interest in this dissertation are the semilinear stochastic wave equations which model the movement of a material with constant mass density that is exposed to both determinstic and random forcing. Cerrai and Freidlin have shown that on fixed time intervals, as the mass density of the material approaches zero, the solutions of the stochastic wave equation converge uniformly to the solutions of a stochastic heat equation, in probability. This is called the Smoluchowski-Kramers approximation. In Chapter 2, we investigate some of the multi-scale behaviors that these wave equations exhibit. In particular, we show that the Freidlin-Wentzell exit place and exit time asymptotics for the stochastic wave equation in the small noise regime can be approximated by the exit place and exit time asymptotics for the stochastic heat equation. We prove that the exit time and exit place asymptotics are characterized by quantities called quasipotentials and we prove that the quasipotentials converge. We then investigate the special case where the equation has a gradient structure and show that we can explicitly solve for the quasipotentials, and that the quasipotentials for the heat equation and wave equation are equal. In Chapter 3, we study the Smoluchowski-Kramers approximation in the case where the material is electrically charged and exposed to a magnetic field. Interestingly, if the system is frictionless, then the Smoluchowski-Kramers approximation does not hold. We prove that the Smoluchowski-Kramers approximation is valid for systems exposed to both a magnetic field and friction. Notably, we prove that the solutions to the second-order equations converge to the solutions of the first-order equation in an Lp sense. This strengthens previous results where convergence was proved in probability.
Differential-algebraic solutions of the heat equation
Buchstaber, Victor M.; Netay, Elena Yu.
2014-01-01
In this work we introduce the notion of differential-algebraic ansatz for the heat equation and explicitly construct heat equation and Burgers equation solutions given a solution of a homogeneous non-linear ordinary differential equation of a special form. The ansatz for such solutions is called the $n$-ansatz, where $n+1$ is the order of the differential equation.
Difference and differential equations with applications in queueing theory
Haghighi, Aliakbar Montazer
2013-01-01
A Useful Guide to the Interrelated Areas of Differential Equations, Difference Equations, and Queueing Models Difference and Differential Equations with Applications in Queueing Theory presents the unique connections between the methods and applications of differential equations, difference equations, and Markovian queues. Featuring a comprehensive collection of
A first course in differential equations, modeling, and simulation
Smith, Carlos A
2011-01-01
IntroductionAn Introductory ExampleModelingDifferential EquationsForcing FunctionsBook ObjectivesObjects in a Gravitational FieldAn Example Antidifferentiation: Technique for Solving First-Order Ordinary Differential EquationsBack to Section 2-1Another ExampleSeparation of Variables: Technique for Solving First-Order Ordinary Differential Equations Back to Section 2-5Equations, Unknowns, and Degrees of FreedomClassical Solutions of Ordinary Linear Differential EquationsExamples of Differential EquationsDefinition of a Linear Differential EquationIntegrating Factor MethodCharacteristic Equation
International Conference on Differential and Difference Equations with Applications
Došlá, Zuzana; Došlý, Ondrej; Kloeden, Peter
2016-01-01
Aimed at the community of mathematicians working on ordinary and partial differential equations, difference equations, and functional equations, this book contains selected papers based on the presentations at the International Conference on Differential and Difference Equations and Applications (ICDDEA) 2015, dedicated to the memory of Professor Georg Sell. Contributions include new trends in the field of differential and difference equations, applications of differential and difference equations, as well as high-level survey results. The main aim of this recurring conference series is to promote, encourage, cooperate, and bring together researchers in the fields of differential and difference equations. All areas of differential and difference equations are represented, with special emphasis on applications.
Delay differential equations with homogeneous integral conditions
Abdur Raheem
2013-03-01
Full Text Available In this article we prove the existence and uniqueness of a strong solution of a delay differential equation with homogenous integral conditions using the method of semidiscretization in time. As an application, we include an example that illustrates the main result.
Efficient Estimating Functions for Stochastic Differential Equations
Jakobsen, Nina Munkholt
The overall topic of this thesis is approximate martingale estimating function-based estimationfor solutions of stochastic differential equations, sampled at high frequency. Focuslies on the asymptotic properties of the estimators. The first part of the thesis deals with diffusions observed over...
Jensen's Inequality for Backward Stochastic Differential Equations
Long JIANG
2006-01-01
Under the Lipschitz assumption and square integrable assumption on g, the author proves that Jensen's inequality holds for backward stochastic differential equations ith generator g if and only ifg is independent of y, g(t, 0) ≡ 0 and g is super homogeneous with respect to z. This result generalizes the known results on Jensen's inequality for gexpectation in [4, 7-9].
On averaging methods for partial differential equations
Verhulst, F.
2001-01-01
The analysis of weakly nonlinear partial differential equations both qualitatively and quantitatively is emerging as an exciting eld of investigation In this report we consider specic results related to averaging but we do not aim at completeness The sections and contain important material which
Nonstandard finite difference schemes for differential equations
Mohammad Mehdizadeh Khalsaraei
2014-12-01
Full Text Available In this paper, the reorganization of the denominator of the discrete derivative and nonlocal approximation of nonlinear terms are used in the design of nonstandard finite difference schemes (NSFDs. Numerical examples confirming then efficiency of schemes, for some differential equations are provided. In order to illustrate the accuracy of the new NSFDs, the numerical results are compared with standard methods.
The geometry of differential difference equations
Helminck, G.F.; Post, G.F.
1994-01-01
To each maximal commuting subalgebra h of glm(C) is associated a system of differential difference equations, generalizing several known systems. Starting from a Grassmann manifold, solutions are constructed, their properties are discussed and the relation with other systems is given. Finally it is shown how to express these solutions in T-functions.
Neutral Operator and Neutral Differential Equation
Jingli Ren
2011-01-01
Full Text Available In this paper, we discuss the properties of the neutral operator (Ax(t=x(t−cx(t−δ(t, and by applying coincidence degree theory and fixed point index theory, we obtain sufficient conditions for the existence, multiplicity, and nonexistence of (positive periodic solutions to two kinds of second-order differential equations with the prescribed neutral operator.
Strong monotonicity for analytic ordinary differential equations
Sebastian Walcher
2009-09-01
Full Text Available We present a necessary and sufficient criterion for the flow of an analytic ordinary differential equation to be strongly monotone; equivalently, strongly order-preserving. The criterion is given in terms of the reducibility set of the derivative of the right-hand side. Some applications to systems relevant in biology and ecology, including nonlinear compartmental systems, are discussed.
Singular Linear Differential Equations in Two Variables
Braaksma, B.L.J.; Put, M. van der
2008-01-01
The formal and analytic classification of integrable singular linear differential equations has been studied among others by R. Gerard and Y. Sibuya. We provide a simple proof of their main result, namely: For certain irregular systems in two variables there is no Stokes phenomenon, i.e. there is no
Fractional Order Differential Equations Involving Caputo Derivative
Zoubir Dahmani
2014-04-01
Full Text Available In this paper, the Banach contraction principle and Schaefer theorem are applied to establish new results for the existence and uniqueness of solutions for some Caputo fractional differential equations. Some examples are also discussed to illustrate the main results.
Stochastic differential equations used to model conjugation
Philipsen, Kirsten Riber; Christiansen, Lasse Engbo
Stochastic differential equations (SDEs) are used to model horizontal transfer of antibiotic resis- tance by conjugation. The model describes the concentration of donor, recipient, transconjugants and substrate. The strength of the SDE model over the traditional ODE models is that the noise can...
Stochastic partial differential equations an introduction
Liu, Wei
2015-01-01
This book provides an introduction to the theory of stochastic partial differential equations (SPDEs) of evolutionary type. SPDEs are one of the main research directions in probability theory with several wide ranging applications. Many types of dynamics with stochastic influence in nature or man-made complex systems can be modelled by such equations. The theory of SPDEs is based both on the theory of deterministic partial differential equations, as well as on modern stochastic analysis. Whilst this volume mainly follows the ‘variational approach’, it also contains a short account on the ‘semigroup (or mild solution) approach’. In particular, the volume contains a complete presentation of the main existence and uniqueness results in the case of locally monotone coefficients. Various types of generalized coercivity conditions are shown to guarantee non-explosion, but also a systematic approach to treat SPDEs with explosion in finite time is developed. It is, so far, the only book where the latter and t...
Rough differential equations with unbounded drift term
Riedel, S.; Scheutzow, M.
2017-01-01
We study controlled differential equations driven by a rough path (in the sense of T. Lyons) with an additional, possibly unbounded drift term. We show that the equation induces a solution flow if the drift grows at most linearly. Furthermore, we show that the semiflow exists assuming only appropriate one-sided growth conditions. We provide bounds for both the flow and the semiflow. Applied to stochastic analysis, our results imply strong completeness and the existence of a stochastic (semi)flow for a large class of stochastic differential equations. If the driving process is Gaussian, we can further deduce (essentially) sharp tail estimates for the (semi)flow and a Freidlin-Wentzell-type large deviation result.
Numerical methods for nonlinear partial differential equations
Bartels, Sören
2015-01-01
The description of many interesting phenomena in science and engineering leads to infinite-dimensional minimization or evolution problems that define nonlinear partial differential equations. While the development and analysis of numerical methods for linear partial differential equations is nearly complete, only few results are available in the case of nonlinear equations. This monograph devises numerical methods for nonlinear model problems arising in the mathematical description of phase transitions, large bending problems, image processing, and inelastic material behavior. For each of these problems the underlying mathematical model is discussed, the essential analytical properties are explained, and the proposed numerical method is rigorously analyzed. The practicality of the algorithms is illustrated by means of short implementations.
Numerical approximation of partial differential equations
Bartels, Sören
2016-01-01
Finite element methods for approximating partial differential equations have reached a high degree of maturity, and are an indispensible tool in science and technology. This textbook aims at providing a thorough introduction to the construction, analysis, and implementation of finite element methods for model problems arising in continuum mechanics. The first part of the book discusses elementary properties of linear partial differential equations along with their basic numerical approximation, the functional-analytical framework for rigorously establishing existence of solutions, and the construction and analysis of basic finite element methods. The second part is devoted to the optimal adaptive approximation of singularities and the fast iterative solution of linear systems of equations arising from finite element discretizations. In the third part, the mathematical framework for analyzing and discretizing saddle-point problems is formulated, corresponding finte element methods are analyzed, and particular ...
Introduction to numerical methods for time dependent differential equations
Kreiss, Heinz-Otto
2014-01-01
Introduces both the fundamentals of time dependent differential equations and their numerical solutions Introduction to Numerical Methods for Time Dependent Differential Equations delves into the underlying mathematical theory needed to solve time dependent differential equations numerically. Written as a self-contained introduction, the book is divided into two parts to emphasize both ordinary differential equations (ODEs) and partial differential equations (PDEs). Beginning with ODEs and their approximations, the authors provide a crucial presentation of fundamental notions, such as the t
The example of modeling of logistics processes using differential equations
Ryczyński, Jacek
2017-07-01
The article describes the use of differential calculus to determine the form of differential equations family of curves. Form of differential equations obtained by eliminating the parameters of the equations describing the different family of curves. Elimination of the parameters has been performed several times by differentiation starting equations. Received appropriate form of differential equations for the case of family circles, family of curves of the second degree and the families of the logistic function.
A textbook on ordinary differential equations
Ahmad, Shair
2014-01-01
The book is a primer of the theory of Ordinary Differential Equations. Each chapter is completed by a broad set of exercises; the reader will also find a set of solutions of selected exercises. The book contains many interesting examples as well (like the equations for the electric circuits, the pendium equation, the logistic equation, the Lotka-Volterra system, and many other) which introduce the reader to some interesting aspects of the theory and its applications. The work is mainly addressed to students of Mathematics, Physics, Engineering, Statistics, Computer Sciences, with knowledge of Calculus and Linear Algebra, and contains more advanced topics for further developments, such as Laplace transform; Stability theory and existence of solutions to Boundary Value problems. The authors are preparing a complete solutions manual, containing solutions to all the exercises published in the book. The manual will be available Summer 2014. Instructors who wish to adopt the book may request the manual by writing...
Modelling conjugation with stochastic differential equations.
Philipsen, K R; Christiansen, L E; Hasman, H; Madsen, H
2010-03-07
Conjugation is an important mechanism involved in the transfer of resistance between bacteria. In this article a stochastic differential equation based model consisting of a continuous time state equation and a discrete time measurement equation is introduced to model growth and conjugation of two Enterococcus faecium strains in a rich exhaustible media. The model contains a new expression for a substrate dependent conjugation rate. A maximum likelihood based method is used to estimate the model parameters. Different models including different noise structure for the system and observations are compared using a likelihood-ratio test and Akaike's information criterion. Experiments indicating conjugation on the agar plates selecting for transconjugants motivates the introduction of an extended model, for which conjugation on the agar plate is described in the measurement equation. This model is compared to the model without plate conjugation. The modelling approach described in this article can be applied generally when modelling dynamical systems.
Partial differential equations mathematical techniques for engineers
Epstein, Marcelo
2017-01-01
This monograph presents a graduate-level treatment of partial differential equations (PDEs) for engineers. The book begins with a review of the geometrical interpretation of systems of ODEs, the appearance of PDEs in engineering is motivated by the general form of balance laws in continuum physics. Four chapters are devoted to a detailed treatment of the single first-order PDE, including shock waves and genuinely non-linear models, with applications to traffic design and gas dynamics. The rest of the book deals with second-order equations. In the treatment of hyperbolic equations, geometric arguments are used whenever possible and the analogy with discrete vibrating systems is emphasized. The diffusion and potential equations afford the opportunity of dealing with questions of uniqueness and continuous dependence on the data, the Fourier integral, generalized functions (distributions), Duhamel's principle, Green's functions and Dirichlet and Neumann problems. The target audience primarily comprises graduate s...
Schiesser, William E
2014-01-01
Features a solid foundation of mathematical and computational tools to formulate and solve real-world PDE problems across various fields With a step-by-step approach to solving partial differential equations (PDEs), Differential Equation Analysis in Biomedical Science and Engineering: Partial Differential Equation Applications with R successfully applies computational techniques for solving real-world PDE problems that are found in a variety of fields, including chemistry, physics, biology, and physiology. The book provides readers with the necessary knowledge to reproduce and extend the com
Schiesser, William E
2014-01-01
Features a solid foundation of mathematical and computational tools to formulate and solve real-world ODE problems across various fields With a step-by-step approach to solving ordinary differential equations (ODEs), Differential Equation Analysis in Biomedical Science and Engineering: Ordinary Differential Equation Applications with R successfully applies computational techniques for solving real-worldODE problems that are found in a variety of fields, including chemistry, physics, biology,and physiology. The book provides readers with the necessary knowledge to reproduce andextend the comp
New Fractional Complex Transform for Conformable Fractional Partial Differential Equations
Çenesiz Y.
2016-12-01
Full Text Available Conformable fractional complex transform is introduced in this paper for converting fractional partial differential equations to ordinary differential equations. Hence analytical methods in advanced calculus can be used to solve these equations. Conformable fractional complex transform is implemented to fractional partial differential equations such as space fractional advection diffusion equation and space fractional telegraph equation to obtain the exact solutions of these equations.
Two-Component Super AKNS Equations and Their Finite-Dimensional Integrable Super Hamiltonian System
Jing Yu; Jingwei Han
2014-01-01
Starting from a matrix Lie superalgebra, two-component super AKNS system is constructed. By making use of monononlinearization technique of Lax pairs, we find that the obtained two-component super AKNS system is a finite-dimensional integrable super Hamiltonian system. And its Lax representation and $r$ -matrix are also given in this paper.
Two-Component Super AKNS Equations and Their Finite-Dimensional Integrable Super Hamiltonian System
Jing Yu
2014-01-01
Full Text Available Starting from a matrix Lie superalgebra, two-component super AKNS system is constructed. By making use of monononlinearization technique of Lax pairs, we find that the obtained two-component super AKNS system is a finite-dimensional integrable super Hamiltonian system. And its Lax representation and r-matrix are also given in this paper.
Savoye, Philippe
2009-01-01
In recent years, I started covering difference equations and z transform methods in my introductory differential equations course. This allowed my students to extend the "classical" methods for (ordinary differential equation) ODE's to discrete time problems arising in many applications.
Modification of Ordinary Differential Equations MATLAB Solver
E. Cocherova
2003-12-01
Full Text Available Various linear or nonlinear electronic circuits can be described bythe set of ordinary differential equations (ODEs. The ordinarydifferential equations can be solved in the MATLAB environment inanalytical (symbolic toolbox or numerical way. The set of nonlinearODEs with high complexity can be usually solved only by use ofnumerical integrator (solver. The modification of ode23 MATLABnumerical solver has been suggested in this article for the applicationin solution of some special cases of ODEs. The main feature of thismodification is that the solution is found at every prescribed point,in which the special behavior of system is anticipated. Theextrapolation of solution is not allowed in those points.
An introduction to ordinary differential equations
Coddington, Earl A
1989-01-01
""Written in an admirably cleancut and economical style."" - Mathematical Reviews. This concise text offers undergraduates in mathematics and science a thorough and systematic first course in elementary differential equations. Presuming a knowledge of basic calculus, the book first reviews the mathematical essentials required to master the materials to be presented. The next four chapters take up linear equations, those of the first order and those with constant coefficients, variable coefficients, and regular singular points. The last two chapters address the existence and uniqueness of solu
ERC Workshop on Geometric Partial Differential Equations
Novaga, Matteo; Valdinoci, Enrico
2013-01-01
This book is the outcome of a conference held at the Centro De Giorgi of the Scuola Normale of Pisa in September 2012. The aim of the conference was to discuss recent results on nonlinear partial differential equations, and more specifically geometric evolutions and reaction-diffusion equations. Particular attention was paid to self-similar solutions, such as solitons and travelling waves, asymptotic behaviour, formation of singularities and qualitative properties of solutions. These problems arise in many models from Physics, Biology, Image Processing and Applied Mathematics in general, and have attracted a lot of attention in recent years.
Asymptotic stability of singularly perturbed differential equations
Artstein, Zvi
2017-02-01
Asymptotic stability is examined for singularly perturbed ordinary differential equations that may not possess a natural split into fast and slow motions. Rather, the right hand side of the equation is comprised of a singularly perturbed component and a regular one. The limit dynamics consists then of Young measures, with values being invariant measures of the fast contribution, drifted by the slow one. Relations between the asymptotic stability of the perturbed system and the limit dynamics are examined, and a Lyapunov functions criterion, based on averaging, is established.
Linear measure functional differential equations with infinite delay
Monteiro, G.; Slavík, A.
2014-01-01
We use the theory of generalized linear ordinary differential equations in Banach spaces to study linear measure functional differential equations with infinite delay. We obtain new results concerning the existence, uniqueness, and continuous dependence of solutions. Even for equations with a finite delay, our results are stronger than the existing ones. Finally, we present an application to functional differential equations with impulses.
Teaching Modeling with Partial Differential Equations: Several Successful Approaches
Myers, Joseph; Trubatch, David; Winkel, Brian
2008-01-01
We discuss the introduction and teaching of partial differential equations (heat and wave equations) via modeling physical phenomena, using a new approach that encompasses constructing difference equations and implementing these in a spreadsheet, numerically solving the partial differential equations using the numerical differential equation…
A Birkhoff-Noether method of solving differential equations
Shang Mei; Guo Yong-Xin; Mei Feng-Xiang
2007-01-01
In this paper, a Birkhoff-Noether method of solving ordinary differential equations is presented. The differential equations can be expressed in terms of Birkhoff's equations. The first integrals for differential equations can be found by using the Noether theory for Birkhoffian systems. Two examples are given to illustrate the application of the method.
Teaching Modeling with Partial Differential Equations: Several Successful Approaches
Myers, Joseph; Trubatch, David; Winkel, Brian
2008-01-01
We discuss the introduction and teaching of partial differential equations (heat and wave equations) via modeling physical phenomena, using a new approach that encompasses constructing difference equations and implementing these in a spreadsheet, numerically solving the partial differential equations using the numerical differential equation…
Parameter estimation in stochastic differential equations
Bishwal, Jaya P N
2008-01-01
Parameter estimation in stochastic differential equations and stochastic partial differential equations is the science, art and technology of modelling complex phenomena and making beautiful decisions. The subject has attracted researchers from several areas of mathematics and other related fields like economics and finance. This volume presents the estimation of the unknown parameters in the corresponding continuous models based on continuous and discrete observations and examines extensively maximum likelihood, minimum contrast and Bayesian methods. Useful because of the current availability of high frequency data is the study of refined asymptotic properties of several estimators when the observation time length is large and the observation time interval is small. Also space time white noise driven models, useful for spatial data, and more sophisticated non-Markovian and non-semimartingale models like fractional diffusions that model the long memory phenomena are examined in this volume.
Approximating chaotic saddles for delay differential equations
Taylor, S. Richard; Campbell, Sue Ann
2007-04-01
Chaotic saddles are unstable invariant sets in the phase space of dynamical systems that exhibit transient chaos. They play a key role in mediating transport processes involving scattering and chaotic transients. Here we present evidence (long chaotic transients and fractal basins of attraction) of transient chaos in a “logistic” delay differential equation. We adapt an existing method (stagger-and-step) to numerically construct the chaotic saddle for this system. This is the first such analysis of transient chaos in an infinite-dimensional dynamical system, and in delay differential equations in particular. Using Poincaré section techniques we illustrate approaches to visualizing the saddle set, and confirm that the saddle has the Cantor-like fractal structure consistent with a chaotic saddle generated by horseshoe-type dynamics.
Modeling and Prediction Using Stochastic Differential Equations
Juhl, Rune; Møller, Jan Kloppenborg; Jørgensen, John Bagterp
2016-01-01
Pharmacokinetic/pharmakodynamic (PK/PD) modeling for a single subject is most often performed using nonlinear models based on deterministic ordinary differential equations (ODEs), and the variation between subjects in a population of subjects is described using a population (mixed effects) setup...... that describes the variation between subjects. The ODE setup implies that the variation for a single subject is described by a single parameter (or vector), namely the variance (covariance) of the residuals. Furthermore the prediction of the states is given as the solution to the ODEs and hence assumed...... deterministic and can predict the future perfectly. A more realistic approach would be to allow for randomness in the model due to e.g., the model be too simple or errors in input. We describe a modeling and prediction setup which better reflects reality and suggests stochastic differential equations (SDEs...
Stochastic differential equations and a biological system
Wang, Chunyan
1994-01-01
on experimental data is considered. As an example, the growth of bacteria Pseudomonas fluorescens is taken. Due to the specific features of stochastic differential equations, namely that their solutions do not exist in the general sense, two new integrals - the Ito integral and the Stratonovich integral - have......The purpose of this Ph.D. study is to explore the property of a growth process. The study includes solving and simulating of the growth process which is described in terms of stochastic differential equations. The identification of the growth and variability parameters of the process based......, Milstein and Runge-Kutta methods are used. Because of the specific feature of the model for the growth process, that its solution does not exist in the general sense, we combine these numerical integration methods with a transformation technique, and the solutions are derived in the Ito sense...
Ordinary differential equations and mechanical systems
Awrejcewicz, Jan
2014-01-01
This book applies a step-by-step treatment of the current state-of-the-art of ordinary differential equations used in modeling of engineering systems/processes and beyond. It covers systematically ordered problems, beginning with first and second order ODEs, linear and higher-order ODEs of polynomial form, theory and criteria of similarity, modeling approaches, phase plane and phase space concepts, stability optimization, and ending on chaos and synchronization. Presenting both an overview of the theory of the introductory differential equations in the context of applicability and a systematic treatment of modeling of numerous engineering and physical problems through linear and non-linear ODEs, the volume is self-contained, yet serves both scientific and engineering interests. The presentation relies on a general treatment, analytical and numerical methods, concrete examples, and engineering intuition. The scientific background used is well balanced between elementary and advanced level, making it as a uniqu...
Stochastic Functional Differential Equation under Regime Switching
Ling Bai
2012-01-01
Full Text Available We discuss stochastic functional differential equation under regime switching dx(t=f(xt,r(t,tdt+q(r(tx(tdW1(t+σ(r(t|x(t|βx(tdW2(t. We obtain unique global solution of this system without the linear growth condition; furthermore, we prove its asymptotic ultimate boundedness. Using the ergodic property of the Markov chain, we give the sufficient condition of almost surely exponentially stable of this system.
Stationary conditions for stochastic differential equations
Adomian, G.; Walker, W. W.
1972-01-01
This is a preliminary study of possible necessary and sufficient conditions to insure stationarity in the solution process for a stochastic differential equation. It indirectly sheds some light on ergodicity properties and shows that the spectral density is generally inadequate as a statistical measure of the solution. Further work is proceeding on a more general theory which gives necessary and sufficient conditions in a form useful for applications.
Integrability Estimates for Gaussian Rough Differential Equations
Cass, Thomas; Lyons, Terry
2011-01-01
We derive explicit tail-estimates for the Jacobian of the solution flow of stochastic differential equations driven by Gaussian rough paths. In particular, we deduce that the Jacobian has finite moments of all order for a wide class of Gaussian process including fractional Brownian motion with Hurst parameter H>1/4. We remark on the relevance of such estimates to a number of significant open problems.
Stability of the Stochastic Differential Equations
Klimešová, M.
2015-01-01
Stability of stochastic differential equations (SDEs) has become a very popular theme of recent research in mathematics and its applications. The method of Lyapunov functions for the analysis of qualitative behavior of SDEs provide some very powerful instruments in the study of stability properties for concrete stochastic dynamical systems, conditions of existence the stationary solutions of SDEs and related problems. The study of exponential stability of the moments makes natural the conside...
Desingularization of implicit analytic differential equations
Cendra, Hernan [Universidad Nacional del Sur, Av. Alem 1253, 8000 BahIa Blanca and CONICET (Argentina); Etchechoury, MarIa [Laboratorio de Electronica Industrial, Control e Instrumentacion, Facultad de IngenierIa, Universidad Nacional de La Plata, La Plata (Argentina)
2006-09-01
The question of finding solutions to a given implicit differential equation (IDE) is an important one, in part because it appears very naturally in several problems in physics, engineering and many other fields. In this work, we show how to reduce a given analytic IDE to an analytic IDE of locally constant rank. This can be done by using some fundamental results on subanalytic subsets and desingularization of closed subanalytic subsets. An example from nonholonomic mechanics is studied using these methods.
Ordinary differential equations introduction and qualitative theory
Cronin, Jane
2007-01-01
… a classic treatment of many of the topics an instructor would want in such a course, with particular emphasis on those aspects of the qualitative theory that are important for applications to mathematical biology. … A nice feature of this edition is an extended and unified treatment of the perturbation problem for periodic solutions. … a solid graduate-level introduction to ordinary differential equations, especially for applications. …-MAA Reviews, August 2010
Underdetermined systems of partial differential equations
Bender, Carl M. [Department of Physics, Washington University, St. Louis, Missouri 63130 (United States); Dunne, Gerald V. [Department of Physics, University of Connecticut, Storrs, Connecticut 06269 (United States); Mead, Lawrence R. [Department of Physics and Astronomy, University of Southern Mississippi, Hattiesburg, Mississippi 39406-5046 (United States)
2000-09-01
This paper examines underdetermined systems of partial differential equations in which the independent variables may be classical c-numbers or even quantum operators. One can view an underdetermined system as expressing the kinematic constraints on a set of dynamical variables that generate a Lie algebra. The arbitrariness in the general solution reflects the freedom to specify the dynamics of such a system. (c) 2000 American Institute of Physics.
Observability of discretized partial differential equations
Cohn, Stephen E.; Dee, Dick P.
1988-01-01
It is shown that complete observability of the discrete model used to assimilate data from a linear partial differential equation (PDE) system is necessary and sufficient for asymptotic stability of the data assimilation process. The observability theory for discrete systems is reviewed and applied to obtain simple observability tests for discretized constant-coefficient PDEs. Examples are used to show how numerical dispersion can result in discrete dynamics with multiple eigenvalues, thereby detracting from observability.
Adaptive grid methods for partial differential equations
Anderson, D. A.
1983-01-01
A number of techniques for constructing adaptive mesh generators for use in solving partial differential equations are reviewed in this paper. Techniques reviewed include methods based on steady grid generation schemes and those which are explicitly designed to determine grid speeds in a time-dependent or space-marching problem. Results for candidate methods are included and suggestions for areas of future research are suggested.
Ordinary differential equations in affine geometry
Salvador Gigena
1996-05-01
Full Text Available The method of qualitative analysis is used, as applied to a class of fourth order, nonlinear ordinary differential equations, in order to classify, both locally and globally, two classes of hypersurfaces of decomposable type in affine geometry: those with constant unimodular affine mean curvature L , and those with constant Riemannian scalar curvature R. This allows to provide a large number of new examples of hypersurfaces in affine geometry.
Ordinary differential equations in affine geometry
Salvador Gigena
1996-01-01
The method of qualitative analysis is used, as applied to a class of fourth order, nonlinear ordinary differential equations, in order to classify, both locally and globally, two classes of hypersurfaces of decomposable type in affine geometry: those with constant unimodular affine mean curvature L , and those with constant Riemannian scalar curvature R. This allows to provide a large number of new examples of hypersurfaces in affine geometry.
Ambit processes and stochastic partial differential equations
Barndorff-Nielsen, Ole; Benth, Fred Espen; Veraart, Almut
Ambit processes are general stochastic processes based on stochastic integrals with respect to Lévy bases. Due to their flexible structure, they have great potential for providing realistic models for various applications such as in turbulence and finance. This papers studies the connection between...... ambit processes and solutions to stochastic partial differential equations. We investigate this relationship from two angles: from the Walsh theory of martingale measures and from the viewpoint of the Lévy noise analysis....
Partial Differential Equations and Solitary Waves Theory
Wazwaz, Abdul-Majid
2009-01-01
"Partial Differential Equations and Solitary Waves Theory" is a self-contained book divided into two parts: Part I is a coherent survey bringing together newly developed methods for solving PDEs. While some traditional techniques are presented, this part does not require thorough understanding of abstract theories or compact concepts. Well-selected worked examples and exercises shall guide the reader through the text. Part II provides an extensive exposition of the solitary waves theory. This part handles nonlinear evolution equations by methods such as Hirota’s bilinear method or the tanh-coth method. A self-contained treatment is presented to discuss complete integrability of a wide class of nonlinear equations. This part presents in an accessible manner a systematic presentation of solitons, multi-soliton solutions, kinks, peakons, cuspons, and compactons. While the whole book can be used as a text for advanced undergraduate and graduate students in applied mathematics, physics and engineering, Part II w...
Wilsonian renormalization, differential equations and Hopf algebras
Thomas, Krajewski
2008-01-01
In this paper, we present an algebraic formalism inspired by Butcher's B-series in numerical analysis and the Connes-Kreimer approach to perturbative renormalization. We first define power series of non linear operators and propose several applications, among which the perturbative solution of a fixed point equation using the non linear geometric series. Then, following Polchinski, we show how perturbative renormalization works for a non linear perturbation of a linear differential equation that governs the flow of effective actions. Finally, we define a general Hopf algebra of Feynman diagrams adapted to iterations of background field effective action computations. As a simple combinatorial illustration, we show how these techniques can be used to recover the universality of the Tutte polynomial and its relation to the $q$-state Potts model. As a more sophisticated example, we use ordered diagrams with decorations and external structures to solve the Polchinski's exact renormalization group equation. Finally...
Hamiltonian structure of an operator valued extension of Super KdV equations
Restuccia, A
2014-01-01
An extension of the super Korteweg-de Vries integrable system in terms of operator valued functions is obtained. In particular the extension contains the $N=1$ Super KdV and coupled systems with functions valued on a symplectic space. We introduce a Miura transformation for the extended system and obtain its hamiltonian structure. We also obtain an extended Gardner transformation which allows to find an infinite number of conserved quantities of the extended system.
Solving Differential Equations in R: Package deSolve
Soetaert, K.E.R.; Petzoldt, T.; Setzer, R.W.
2010-01-01
In this paper we present the R package deSolve to solve initial value problems (IVP) written as ordinary differential equations (ODE), differential algebraic equations (DAE) of index 0 or 1 and partial differential equations (PDE), the latter solved using the method of lines approach. The differenti
Synchronization with propagation - The functional differential equations
Rǎsvan, Vladimir
2016-06-01
The structure represented by one or several oscillators couple to a one-dimensional transmission environment (e.g. a vibrating string in the mechanical case or a lossless transmission line in the electrical case) turned to be attractive for the research in the field of complex structures and/or complex behavior. This is due to the fact that such a structure represents some generalization of various interconnection modes with lumped parameters for the oscillators. On the other hand the lossless and distortionless propagation along transmission lines has generated several research in electrical, thermal, hydro and control engineering leading to the association of some functional differential equations to the basic initial boundary value problems. The present research is performed at the crossroad of the aforementioned directions. We shall associate to the starting models some functional differential equations - in most cases of neutral type - and make use of the general theorems for existence and stability of forced oscillations for functional differential equations. The challenges introduced by the analyzed problems for the general theory are emphasized, together with the implication of the results for various applications.
A textbook on ordinary differential equations
Ahmad, Shair
2015-01-01
This book offers readers a primer on the theory and applications of Ordinary Differential Equations. The style used is simple, yet thorough and rigorous. Each chapter ends with a broad set of exercises that range from the routine to the more challenging and thought-provoking. Solutions to selected exercises can be found at the end of the book. The book contains many interesting examples on topics such as electric circuits, the pendulum equation, the logistic equation, the Lotka-Volterra system, the Laplace Transform, etc., which introduce students to a number of interesting aspects of the theory and applications. The work is mainly intended for students of Mathematics, Physics, Engineering, Computer Science and other areas of the natural and social sciences that use ordinary differential equations, and who have a firm grasp of Calculus and a minimal understanding of the basic concepts used in Linear Algebra. It also studies a few more advanced topics, such as Stability Theory and Boundary Value Problems, whic...
Solving Partial Differential Equations Using a New Differential Evolution Algorithm
Natee Panagant
2014-01-01
Full Text Available This paper proposes an alternative meshless approach to solve partial differential equations (PDEs. With a global approximate function being defined, a partial differential equation problem is converted into an optimisation problem with equality constraints from PDE boundary conditions. An evolutionary algorithm (EA is employed to search for the optimum solution. For this approach, the most difficult task is the low convergence rate of EA which consequently results in poor PDE solution approximation. However, its attractiveness remains due to the nature of a soft computing technique in EA. The algorithm can be used to tackle almost any kind of optimisation problem with simple evolutionary operation, which means it is mathematically simpler to use. A new efficient differential evolution (DE is presented and used to solve a number of the partial differential equations. The results obtained are illustrated and compared with exact solutions. It is shown that the proposed method has a potential to be a future meshless tool provided that the search performance of EA is greatly enhanced.
DIFFERENCE METHODS FOR A NON-LINEAR ELLIPTIC SYSTEM OF PARTIAL DIFFERENTIAL EQUATIONS,
DIFFERENCE EQUATIONS, ITERATIONS), (*ITERATIONS, DIFFERENCE EQUATIONS), (* PARTIAL DIFFERENTIAL EQUATIONS , BOUNDARY VALUE PROBLEMS), EQUATIONS, FUNCTIONS(MATHEMATICS), SEQUENCES(MATHEMATICS), NONLINEAR DIFFERENTIAL EQUATIONS
Continuous finite element methods for Hamiltonian systems
无
2007-01-01
By applying the continuous finite element methods of ordinary differential equations, the linear element methods are proved having second-order pseudo-symplectic scheme and the quadratic element methods are proved having third-order pseudosymplectic scheme respectively for general Hamiltonian systems, and they both keep energy conservative. The finite element methods are proved to be symplectic as well as energy conservative for linear Hamiltonian systems. The numerical results are in agreement with theory.
Numerical analysis of systems of ordinary and stochastic differential equations
Artemiev, S S
1997-01-01
This text deals with numerical analysis of systems of both ordinary and stochastic differential equations. It covers numerical solution problems of the Cauchy problem for stiff ordinary differential equations (ODE) systems by Rosenbrock-type methods (RTMs).
On oscillatory solutions of third order differential equation with quasiderivatives
Miroslav Bartusek
2000-07-01
Full Text Available This paper gives sufficient conditions under which all oscillatory solutions of a third order nonlinear differential equation with quasiderivatives vanish at infinity. Applications to third order differentials equation with a middle term are also given.
Oscillation of third order functional differential equations with delay
Tuncay Candan
2003-02-01
Full Text Available We consider third order functional differential equations with discrete and continuous delay. We then develop several theorems related to the oscillatory behavior of these differential equations.
Bounded solutions for fuzzy differential and integral equations
Nieto, Juan J. [Departamento de Analisis Matematico Facultad de Matematicas Universidad de Santiago de Compostela, 15782 (Spain)] e-mail: amnieto@usc.es; Rodriguez-Lopez, Rosana [Departamento de Analisis Matematico Facultad de Matematicas Universidad de Santiago de Compostela, 15782 (Spain)] e-mail: amrosana@usc.es
2006-03-01
We find sufficient conditions for the boundness of every solution of first-order fuzzy differential equations as well as certain fuzzy integral equations. Our results are based on several theorems concerning crisp differential and integral inequalities.
Verbovetsky, A.V.; Kersten, P.H.M.; Krasil'shchik, I.
2005-01-01
Using new methods of analysis of integrable systems,based on a general geometric approach to nonlinear PDE,we discuss the Dispersionless Boussinesq Equation, which is equivalent to the Benney-Lax equation,being a system of equations of hydrodynamical type. The results include: a description of local
Partial differential equations in several complex variables
Chen, So-Chin
2001-01-01
This book is intended both as an introductory text and as a reference book for those interested in studying several complex variables in the context of partial differential equations. In the last few decades, significant progress has been made in the fields of Cauchy-Riemann and tangential Cauchy-Riemann operators. This book gives an up-to-date account of the theories for these equations and their applications. The background material in several complex variables is developed in the first three chapters, leading to the Levi problem. The next three chapters are devoted to the solvability and regularity of the Cauchy-Riemann equations using Hilbert space techniques. The authors provide a systematic study of the Cauchy-Riemann equations and the \\bar\\partial-Neumann problem, including L^2 existence theorems on pseudoconvex domains, \\frac 12-subelliptic estimates for the \\bar\\partial-Neumann problems on strongly pseudoconvex domains, global regularity of \\bar\\partial on more general pseudoconvex domains, boundary ...
Singular solutions of a singular differential equation
Naito Manabu
2000-01-01
Full Text Available An attempt is made to study the problem of existence of singular solutions to singular differential equations of the type which have never been touched in the literature. Here and are positive constants and is a positive continuous function on . A solution with initial conditions given at is called singular if it ceases to exist at some finite point . Remarkably enough, it is observed that the equation may admit, in addition to a usual blowing-up singular solution, a completely new type of singular solution with the property that Such a solution is named a black hole solution in view of its specific behavior at . It is shown in particular that there does exist a situation in which all solutions of are black hole solutions.
Differential equations, associators, and recurrences for amplitudes
Georg Puhlfürst
2016-01-01
Full Text Available We provide new methods to straightforwardly obtain compact and analytic expressions for ϵ-expansions of functions appearing in both field and string theory amplitudes. An algebraic method is presented to explicitly solve for recurrence relations connecting different ϵ-orders of a power series solution in ϵ of a differential equation. This strategy generalizes the usual iteration by Picard's method. Our tools are demonstrated for generalized hypergeometric functions. Furthermore, we match the ϵ-expansion of specific generalized hypergeometric functions with the underlying Drinfeld associator with proper Lie algebra and monodromy representations. We also apply our tools for computing ϵ-expansions for solutions to generic first-order Fuchsian equations (Schlesinger system. Finally, we set up our methods to systematically get compact and explicit α′-expansions of tree-level superstring amplitudes to any order in α′.
Differential equations, associators, and recurrences for amplitudes
Puhlfürst, Georg; Stieberger, Stephan
2016-01-01
We provide new methods to straightforwardly obtain compact and analytic expressions for ɛ-expansions of functions appearing in both field and string theory amplitudes. An algebraic method is presented to explicitly solve for recurrence relations connecting different ɛ-orders of a power series solution in ɛ of a differential equation. This strategy generalizes the usual iteration by Picard's method. Our tools are demonstrated for generalized hypergeometric functions. Furthermore, we match the ɛ-expansion of specific generalized hypergeometric functions with the underlying Drinfeld associator with proper Lie algebra and monodromy representations. We also apply our tools for computing ɛ-expansions for solutions to generic first-order Fuchsian equations (Schlesinger system). Finally, we set up our methods to systematically get compact and explicit α‧-expansions of tree-level superstring amplitudes to any order in α‧.
Partial differential equations with numerical methods
Larsson, Stig
2003-01-01
The book is suitable for advanced undergraduate and beginning graduate students of applied mathematics and engineering. The main theme is the integration of the theory of linear PDEs and the numerical solution of such equations. For each type of PDE, elliptic, parabolic, and hyperbolic, the text contains one chapter on the mathematical theory of the differential equation, followed by one chapter on finite difference methods and one on finite element methods. As preparation, the two-point boundary value problem and the initial-value problem for ODEs are discussed in separate chapters. There is also one chapter on the elliptic eigenvalue problem and eigenfunction expansion. The presentation does not presume a deep knowledge of mathematical and functional analysis. Some background on linear functional analysis and Sobolev spaces, and also on numerical linear algebra, is reviewed in two appendices.
Solving Partial Differential Equations on Overlapping Grids
Henshaw, W D
2008-09-22
We discuss the solution of partial differential equations (PDEs) on overlapping grids. This is a powerful technique for efficiently solving problems in complex, possibly moving, geometry. An overlapping grid consists of a set of structured grids that overlap and cover the computational domain. By allowing the grids to overlap, grids for complex geometries can be more easily constructed. The overlapping grid approach can also be used to remove coordinate singularities by, for example, covering a sphere with two or more patches. We describe the application of the overlapping grid approach to a variety of different problems. These include the solution of incompressible fluid flows with moving and deforming geometry, the solution of high-speed compressible reactive flow with rigid bodies using adaptive mesh refinement (AMR), and the solution of the time-domain Maxwell's equations of electromagnetism.
Elliptic differential equations theory and numerical treatment
Hackbusch, Wolfgang
2017-01-01
This book simultaneously presents the theory and the numerical treatment of elliptic boundary value problems, since an understanding of the theory is necessary for the numerical analysis of the discretisation. It first discusses the Laplace equation and its finite difference discretisation before addressing the general linear differential equation of second order. The variational formulation together with the necessary background from functional analysis provides the basis for the Galerkin and finite-element methods, which are explored in detail. A more advanced chapter leads the reader to the theory of regularity. Individual chapters are devoted to singularly perturbed as well as to elliptic eigenvalue problems. The book also presents the Stokes problem and its discretisation as an example of a saddle-point problem taking into account its relevance to applications in fluid dynamics.
Differential Equations, Associators, and Recurrences for Amplitudes
Puhlfuerst, Georg
2015-01-01
We provide new methods to straightforwardly obtain compact and analytic expressions for epsilon-expansions of functions appearing in both field and string theory amplitudes. An algebraic method is presented to explicitly solve for recurrence relations connecting different epsilon-orders of a power series solution in epsilon of a differential equation. This strategy generalizes the usual iteration by Picard's method. Our tools are demonstrated for generalized hypergeometric functions. Furthermore, we match the epsilon-expansion of specific generalized hypergeometric functions with the underlying Drinfeld associator with proper Lie algebra and monodromy representations. We also setup up our tools for computing epsilon-expansions for solutions to generic first-order Fuchsian equations (Schlesinger system). Finally, we apply our methods to systematically get compact and explicit alpha'-expansions of tree-level superstring amplitudes to any order in alpha'.
Algorithm refinement for stochastic partial differential equations.
Alexander, F. J. (Francis J.); Garcia, Alejandro L.,; Tartakovsky, D. M. (Daniel M.)
2001-01-01
A hybrid particle/continuum algorithm is formulated for Fickian diffusion in the fluctuating hydrodynamic limit. The particles are taken as independent random walkers; the fluctuating diffusion equation is solved by finite differences with deterministic and white-noise fluxes. At the interface between the particle and continuum computations the coupling is by flux matching, giving exact mass conservation. This methodology is an extension of Adaptive Mesh and Algorithm Refinement to stochastic partial differential equations. A variety of numerical experiments were performed for both steady and time-dependent scenarios. In all cases the mean and variance of density are captured correctly by the stochastic hybrid algorithm. For a non-stochastic version (i.e., using only deterministic continuum fluxes) the mean density is correct, but the variance is reduced except within the particle region, far from the interface. Extensions of the methodology to fluid mechanics applications are discussed.
Partial differential equation models in macroeconomics.
Achdou, Yves; Buera, Francisco J; Lasry, Jean-Michel; Lions, Pierre-Louis; Moll, Benjamin
2014-11-13
The purpose of this article is to get mathematicians interested in studying a number of partial differential equations (PDEs) that naturally arise in macroeconomics. These PDEs come from models designed to study some of the most important questions in economics. At the same time, they are highly interesting for mathematicians because their structure is often quite difficult. We present a number of examples of such PDEs, discuss what is known about their properties, and list some open questions for future research. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Boundary value problems and partial differential equations
Powers, David L
2005-01-01
Boundary Value Problems is the leading text on boundary value problems and Fourier series. The author, David Powers, (Clarkson) has written a thorough, theoretical overview of solving boundary value problems involving partial differential equations by the methods of separation of variables. Professors and students agree that the author is a master at creating linear problems that adroitly illustrate the techniques of separation of variables used to solve science and engineering.* CD with animations and graphics of solutions, additional exercises and chapter review questions* Nearly 900 exercises ranging in difficulty* Many fully worked examples
Optimizing second-order differential equation systems
Tamas Hajba
2011-03-01
Full Text Available In this article we study some continuous versions of the Fletcher-Reeves iteration for minimization described by a system of second-order differential equations. This problem has been studied in earlier papers [19, 20] under the assumption that the minimizing function is strongly convex. Now instead of the strong convexity, only the convexity of the minimizing function will be required. We will use the Tikhonov regularization [28, 29] to obtain the minimal norm solution as the asymptotically stable limit point of the trajectories.
Stochastic differential equations and diffusion processes
Ikeda, N
1989-01-01
Being a systematic treatment of the modern theory of stochastic integrals and stochastic differential equations, the theory is developed within the martingale framework, which was developed by J.L. Doob and which plays an indispensable role in the modern theory of stochastic analysis.A considerable number of corrections and improvements have been made for the second edition of this classic work. In particular, major and substantial changes are in Chapter III and Chapter V where the sections treating excursions of Brownian Motion and the Malliavin Calculus have been expanded and refined. Sectio
Modern methods in partial differential equations
Schechter, Martin
2013-01-01
Upon its initial 1977 publication, this volume made recent accomplishments in its field available to advanced undergraduates and beginning graduate students of mathematics. Requiring only some familiarity with advanced calculus and rudimentary complex function theory, it covered discoveries of the previous three decades, a particularly fruitful era. Now it remains a permanent, much-cited contribution to the ever-expanding literature on partial differential equations. Author Martin Schechter chose subjects that will motivate students and introduce them to techniques with wide applicability to p
ASYMPTOTIC STABILITIES OF STOCHASTIC FUNCTIONAL DIFFERENTIAL EQUATIONS
SHEN Yi; JIANG Ming-hui; LIAO Xiao-xin
2006-01-01
Asymptotic characteristic of solution of the stochastic functional differential equation was discussed and sufficient condition was established by multiple Lyapunov functions for locating the limit set of t he solution. Moreover, from them many effective criteria on stochastic asymptotic stability, which enable us to construct the Lyapunov functions much more easily in application, were obtained. The results show that the wellknown classical theorem on stochastic asymptotic stability is a special case of our more general results. In the end, application in stochastic Hopfield neural networks is given to verify our results.
Partial Differential Equations and Spectral Theory
Demuth, Michael; Witt, Ingo
2011-01-01
This volume collects six articles on selected topics at the frontier between partial differential equations and spectral theory, written by leading specialists in their respective field. The articles focus on topics that are in the center of attention of current research, with original contributions from the authors. They are written in a clear expository style that makes them accessible to a broader audience. The articles contain a detailed introduction and discuss recent progress, provide additional motivation, and develop the necessary tools. Moreover, the authors share their views on futur
Generalized functions and partial differential equations
Friedman, Avner
2005-01-01
This self-contained treatment develops the theory of generalized functions and the theory of distributions, and it systematically applies them to solving a variety of problems in partial differential equations. A major portion of the text is based on material included in the books of L. Schwartz, who developed the theory of distributions, and in the books of Gelfand and Shilov, who deal with generalized functions of any class and their use in solving the Cauchy problem. In addition, the author provides applications developed through his own research.Geared toward upper-level undergraduates and
Positive periodic solutions for third-order nonlinear differential equations
Jingli Ren
2011-05-01
Full Text Available For several classes of third-order constant coefficient linear differential equations we obtain existence and uniqueness of periodic solutions utilizing explicit Green's functions. We discuss an iteration method for constant coefficient nonlinear differential equations and provide new conditions for the existence of periodic positive solutions for third-order time-varying nonlinear and neutral differential equations.
Probability Measures for Numerical Solutions of Differential Equations
Conrad, Patrick R.; Girolami, Mark; Särkkä, Simo; Stuart, Andrew; Zygalakis, Konstantinos
2015-01-01
In this paper, we present a formal quantification of epistemic uncertainty induced by numerical solutions of ordinary and partial differential equation models. Numerical solutions of differential equations contain inherent uncertainties due to the finite dimensional approximation of an unknown and implicitly defined function. When statistically analysing models based on differential equations describing physical, or other naturally occurring, phenomena, it is therefore important to explicitly...
GLOBAL LINEARIZATION OF DIFFERENTIAL EQUATIONS WITH SPECIAL STRUCTURES
无
2011-01-01
This paper introduces the global linearization of the differential equations with special structures.The function in the differential equation is unbounded.We prove that the differential equation with unbounded function can be topologically linearlized if it has a special structure.
Abstract Operators and Higher-order Linear Partial Differential Equation
BI Guang-qing; BI Yue-kai
2011-01-01
We summarize several relevant principles for the application of abstract operators in partial differential equations,and combine abstract operators with the Laplace transform.Thus we have developed the theory of partial differential equations of abstract operators and obtained the explicit solutions of initial value problems for a class of higher-order linear partial differential equations.
Complex Transforms for Systems of Fractional Differential Equations
Rabha W. Ibrahim
2012-01-01
Full Text Available We provide a complex transform that maps the complex fractional differential equation into a system of fractional differential equations. The homogeneous and nonhomogeneous cases for equivalence equations are discussed and also nonequivalence equations are studied. Moreover, the existence and uniqueness of solutions are established and applications are illustrated.
Qingfeng ZHU; Yufeng SHI
2012-01-01
Backward doubly stochastic differential equations driven by Brownian motions and Poisson process (BDSDEP) with non-Lipschitz coefficients on random time interval are studied.The probabilistic interpretation for the solutions to a class of quasilinear stochastic partial differential-integral equations (SPDIEs) is treated with BDSDEP.Under non-Lipschitz conditions,the existence and uniqueness results for measurable solutions to BDSDEP are established via the smoothing technique.Then,the continuous dependence for solutions to BDSDEP is derived.Finally,the probabilistic interpretation for the solutions to a class of quasilinear SPDIEs is given.
Kurzweil, J
1986-01-01
The author, Professor Kurzweil, is one of the world's top experts in the area of ordinary differential equations - a fact fully reflected in this book. Unlike many classical texts which concentrate primarily on methods of integration of differential equations, this book pursues a modern approach: the topic is discussed in full generality which, at the same time, permits us to gain a deep insight into the theory and to develop a fruitful intuition. The basic framework of the theory is expanded by considering further important topics like stability, dependence of a solution on a parameter, Car
Numerical Methods for Stochastic Partial Differential Equations
Sharp, D.H.; Habib, S.; Mineev, M.B.
1999-07-08
This is the final report of a Laboratory Directed Research and Development (LDRD) project at the Los Alamos National laboratory (LANL). The objectives of this proposal were (1) the development of methods for understanding and control of spacetime discretization errors in nonlinear stochastic partial differential equations, and (2) the development of new and improved practical numerical methods for the solutions of these equations. The authors have succeeded in establishing two methods for error control: the functional Fokker-Planck equation for calculating the time discretization error and the transfer integral method for calculating the spatial discretization error. In addition they have developed a new second-order stochastic algorithm for multiplicative noise applicable to the case of colored noises, and which requires only a single random sequence generation per time step. All of these results have been verified via high-resolution numerical simulations and have been successfully applied to physical test cases. They have also made substantial progress on a longstanding problem in the dynamics of unstable fluid interfaces in porous media. This work has lead to highly accurate quasi-analytic solutions of idealized versions of this problem. These may be of use in benchmarking numerical solutions of the full stochastic PDEs that govern real-world problems.
Exact periodic wave solutions for some nonlinear partial differential equations
El-Wakil, S.A. [Theoretical Physics Research Group, Department of Physics, Faculty of Science, Mansoura University, Mansoura 35516 (Egypt); Elgarayhi, A. [Theoretical Physics Research Group, Department of Physics, Faculty of Science, Mansoura University, Mansoura 35516 (Egypt)]. E-mail: elgarayhi@yahoo.com; Elhanbaly, A. [Theoretical Physics Research Group, Department of Physics, Faculty of Science, Mansoura University, Mansoura 35516 (Egypt)
2006-08-15
The periodic wave solutions for some nonlinear partial differential equations, including generalized Klein-Gordon equation, Kadomtsev-Petviashvili (KP) equation and Boussinesq equations, are obtained by using the solutions of Jacobi elliptic equation. Under limit conditions, exact solitary wave solutions, shock wave solutions and triangular periodic wave solutions have been recovered.
Xin Wen; Shi Jin
2009-01-01
We study the l1-stability of a Hamiltonian-preserving scheme,developed in Jin and Wen,Comm.Math.Sci.,3(2005),285-315],for the Liouville equation with a discontinuous potential in one space dimension.We prove that,for suitable initial data,the scheme is stable in the l1-norm under a hyperbolic CFL condition which is in consistent with the l1-convergence results established in[Wen and Jin,SIAM J.Numer.Anal.,46(2008),2688.2714] for the same scheme.The stability constant is shown to be independent of the computational time.We also provide a counter example to show that for other initial data,in particular,the measure-valued initial data,the numerical solution may become l1-unstable.
Cox, S.G.
2012-01-01
The thesis deals with various aspects of the study of stochastic partial differential equations driven by Gaussian noise. The approach taken is functional analytic rather than probabilistic: the stochastic partial differential equation is interpreted as an ordinary stochastic differential equation i
Tornøe, Christoffer Wenzel; Overgaard, Rune Viig; Agerso, H.;
2005-01-01
Purpose. The objective of the present analysis was to explore the use of stochastic differential equations (SDEs) in population pharmacokinetic/pharmacodynamic (PK/PD) modeling. Methods. The intra-individual variability in nonlinear mixed-effects models based on SDEs is decomposed into two types...
Nonclassical Symmetries for Nonlinear Partial Differential Equations via Compatibility
Mostafa F. El-Sabbagh; Ahmad T. Ali
2011-01-01
The determining equations for the nonclassical symmetry reductions of nonlinear partial differential equations with arbitrary order can be obtained by requiring the compatibility between the original equations and the invariant surface conditions. The （2＋1）-dimensional shallow water wave equation, Boussinesq equation, and the dispersive wave equations in shallow water serve as examples i11ustrating how compatibility leads quickly and easily to the determining equations for their nonclassical symmetries.
Linear Hamiltonian systems - The Riccati group and its invariants
Garzia, M. R.; Martin, C. F.; Loparo, K. A.
1982-01-01
The action of the Riccati group on the Riccati differential equation is associated with the action of a subgroup of the symplectic group on a set of Hamiltonian matrices. Within this framework canonical forms are developed for the matrix coefficients of the Riccati differential equation.
Exact solutions for nonlinear partial fractional differential equations
Khaled A.Gepreel; Saleh Omran
2012-01-01
In this article,we use the fractional complex transformation to convert nonlinear partial fractional differential equations to nonlinear ordinary differential equations.We use the improved (G’/G)-expansion function method to calculate the exact solutions to the time-and space-fractional derivative foam drainage equation and the time-and space-fractional derivative nonlinear KdV equation.This method is efficient and powerful for solving wide classes of nonlinear evolution fractional order equations.
An Implementation Solution for Fractional Partial Differential Equations
Nicolas Bertrand
2013-01-01
Full Text Available The link between fractional differentiation and diffusion equation is used in this paper to propose a solution for the implementation of fractional diffusion equations. These equations permit us to take into account species anomalous diffusion at electrochemical interfaces, thus permitting an accurate modeling of batteries, ultracapacitors, and fuel cells. However, fractional diffusion equations are not addressed in most commercial software dedicated to partial differential equations simulation. The proposed solution is evaluated in an example.
A Hamiltonian Algorithm for Singular Optimal LQ Control Systems
Delgado-Tellez, M
2012-01-01
A Hamiltonian algorithm, both theoretical and numerical, to obtain the reduced equations implementing Pontryagine's Maximum Principle for singular linear-quadratic optimal control problems is presented. This algorithm is inspired on the well-known Rabier-Rheinhboldt constraints algorithm used to solve differential-algebraic equations. Its geometrical content is exploited fully by implementing a Hamiltonian extension of it which is closer to Gotay-Nester presymplectic constraint algorithm used to solve singular Hamiltonian systems. Thus, given an optimal control problem whose optimal feedback is given in implicit form, a consistent set of equations is obtained describing the first order differential conditions of Pontryaguine's Maximum Principle. Such equations are shown to be Hamiltonian and the set of first class constraints corresponding to controls that are not determined, are obtained explicitly. The strength of the algorithm is shown by exhibiting a numerical implementation with partial feedback on the c...
Advances in differential equations and applications
Martínez, Vicente
2014-01-01
The book contains a selection of contributions given at the 23rd Congress on Differential Equations and Applications (CEDYA) / 13th Congress of Applied Mathematics (CMA) that took place at Castellon, Spain, in 2013. CEDYA is renowned as the congress of the Spanish Society of Applied Mathematics (SEMA) and constitutes the main forum and meeting point for applied mathematicians in Spain. The papers included in this book have been selected after a thorough refereeing process and provide a good summary of the recent activity developed by different groups working mainly in Spain on applications of mathematics to several fields of science and technology. The purpose is to provide a useful reference of academic and industrial researchers working in the area of numerical analysis and its applications.
Nonlocal diffusion second order partial differential equations
Benedetti, I.; Loi, N. V.; Malaguti, L.; Taddei, V.
2017-02-01
The paper deals with a second order integro-partial differential equation in Rn with a nonlocal, degenerate diffusion term. Nonlocal conditions, such as the Cauchy multipoint and the weighted mean value problem, are investigated. The existence of periodic solutions is also studied. The dynamic is transformed into an abstract setting and the results come from an approximation solvability method. It combines a Schauder degree argument with an Hartman-type inequality and it involves a Scorza-Dragoni type result. The compact embedding of a suitable Sobolev space in the corresponding Lebesgue space is the unique amount of compactness which is needed in this discussion. The solutions are located in bounded sets and they are limits of functions with values in finitely dimensional spaces.
Ordinary differential equations basics and beyond
Schaeffer, David G
2016-01-01
This book develops the theory of ordinary differential equations (ODEs), starting from an introductory level (with no prior experience in ODEs assumed) through to a graduate-level treatment of the qualitative theory, including bifurcation theory (but not chaos). While proofs are rigorous, the exposition is reader-friendly, aiming for the informality of face-to-face interactions. A unique feature of this book is the integration of rigorous theory with numerous applications of scientific interest. Besides providing motivation, this synthesis clarifies the theory and enhances scientific literacy. Other features include: (i) a wealth of exercises at various levels, along with commentary that explains why they matter; (ii) figures with consistent color conventions to identify nullclines, periodic orbits, stable and unstable manifolds; and (iii) a dedicated website with software templates, problem solutions, and other resources supporting the text. Given its many applications, the book may be used comfortably in sc...
APPROACHED DECISION OF THE DIFFERENTIAL EQUATIONS
Oleksii B. Krasnozhon
2011-02-01
Full Text Available The urgency of the material stated in the article is caused by necessity of development, updating and improvements of methodical operating time on subject matters of issue "Calculus mathematics" which teaching is carried out in conditions of use of information-communication technologies. In the article the program realizations in Mathcad environment of Adams and Runge-Kutt methods of the approached decision of the differential equations are offered; examples on application of the specified methods are brought; the expediency of application of Mathcad environment during mathematical preparation of experts is proved. Perspective directions of the further scientific researches are methodical, mathematical and algorithmic aspects of creation of effective program realizations of numerical methods in Mathcad environment.
Elliptic partial differential equations of second order
Gilbarg, David
2001-01-01
From the reviews: "This is a book of interest to any having to work with differential equations, either as a reference or as a book to learn from. The authors have taken trouble to make the treatment self-contained. It (is) suitable required reading for a PhD student. Although the material has been developed from lectures at Stanford, it has developed into an almost systematic coverage that is much longer than could be covered in a year's lectures". Newsletter, New Zealand Mathematical Society, 1985 "Primarily addressed to graduate students this elegant book is accessible and useful to a broad spectrum of applied mathematicians". Revue Roumaine de Mathématiques Pures et Appliquées,1985.
Stability and Control of Functional Differential Equations
Peet, M M
2006-01-01
This thesis addresses the question of stability of systems defined by differential equations which contain nonlinearity and delay. In particular, we analyze the stability of a well-known delayed nonlinear implementation of a certain Internet congestion control protocol. We also describe a generalized methodology for proving stability of time-delay systems through the use of semidefinite programming. In Chapters 4 and 5, we consider an Internet congestion control protocol based on the decentralized gradient projection algorithm. For a certain class of utility function, this algorithm was shown to be globally convergent for some sufficiently small value of a gain parameter. Later work gave an explicit bound on this gain for a linearized version of the system. This thesis proves that this bound also implies stability of the original system. In Chapter 7, we describe a general methodology for proving stability of linear time-delay systems by computing solutions to an operator-theoretic version of the Lyapunov ine...
Adaptive finite element methods for differential equations
Bangerth, Wolfgang
2003-01-01
These Lecture Notes discuss concepts of `self-adaptivity' in the numerical solution of differential equations, with emphasis on Galerkin finite element methods. The key issues are a posteriori error estimation and it automatic mesh adaptation. Besides the traditional approach of energy-norm error control, a new duality-based technique, the Dual Weighted Residual method for goal-oriented error estimation, is discussed in detail. This method aims at economical computation of arbitrary quantities of physical interest by properly adapting the computational mesh. This is typically required in the design cycles of technical applications. For example, the drag coefficient of a body immersed in a viscous flow is computed, then it is minimized by varying certain control parameters, and finally the stability of the resulting flow is investigated by solving an eigenvalue problem. `Goal-oriented' adaptivity is designed to achieve these tasks with minimal cost. At the end of each chapter some exercises are posed in order ...
Extrapolation methods for dynamic partial differential equations
Turkel, E.
1978-01-01
Several extrapolation procedures are presented for increasing the order of accuracy in time for evolutionary partial differential equations. These formulas are based on finite difference schemes in both the spatial and temporal directions. On practical grounds the methods are restricted to schemes that are fourth order in time and either second, fourth or sixth order in space. For hyperbolic problems the second order in space methods are not useful while the fourth order methods offer no advantage over the Kreiss-Oliger method unless very fine meshes are used. Advantages are first achieved using sixth order methods in space coupled with fourth order accuracy in time. Computational results are presented confirming the analytic discussions.
Differential equations of my young years
Maz'ya, Vladimir
2014-01-01
Vladimir Maz'ya (born 1937) is an outstanding mathematician who systematically made fundamental contributions to a wide array of areas in mathematical analysis and in the theory of partial differential equations. In this fascinating book he describes the first thirty years of his life in Leningrad (now St. Petersburg). He starts with the story of his family, speaks about his childhood, the high school and university years, and recalls his formative years as a mathematician. Behind the author's personal recollections, with his own joys, sorrows and hopes, one sees a vivid picture of those times in the former Sovjet Union. He speaks warmly about his friends, both outside and inside the world of mathematics, about discovering his passion for mathematics and his early achievements, and about a number of mathematicians who influenced his professional life. The book is written in a highly readable and inviting style, spiced with the occasional touch of humor.
Hilbert space methods for partial differential equations
Ralph E. Showalter
1994-09-01
Full Text Available This book is an outgrowth of a course which we have given almost periodically over the last eight years. It is addressed to beginning graduate students of mathematics, engineering, and the physical sciences. Thus, we have attempted to present it while presupposing a minimal background: the reader is assumed to have some prior acquaintance with the concepts of ``linear'' and ``continuous'' and also to believe $L^2$ is complete. An undergraduate mathematics training through Lebesgue integration is an ideal background but we dare not assume it without turning away many of our best students. The formal prerequisite consists of a good advanced calculus course and a motivation to study partial differential equations.
Inverse problems for partial differential equations
Isakov, Victor
2017-01-01
This third edition expands upon the earlier edition by adding nearly 40 pages of new material reflecting the analytical and numerical progress in inverse problems in last 10 years. As in the second edition, the emphasis is on new ideas and methods rather than technical improvements. These new ideas include use of the stationary phase method in the two-dimensional elliptic problems and of multi frequencies\\temporal data to improve stability and numerical resolution. There are also numerous corrections and improvements of the exposition throughout. This book is intended for mathematicians working with partial differential equations and their applications, physicists, geophysicists, and financial, electrical, and mechanical engineers involved with nondestructive evaluation, seismic exploration, remote sensing, and various kinds of tomography. Review of the second edition: "The first edition of this excellent book appeared in 1998 and became a standard reference for everyone interested in analysis and numerics of...
Partial Differential Equations in General Relativity
Choquet-Bruhat, Yvonne
2008-09-07
General relativity is a physical theory basic in the modeling of the universe at the large and small scales. Its mathematical formulation, the Einstein partial differential equations, are geometrically simple, but intricate for the analyst, involving both hyperbolic and elliptic PDE, with local and global problems. Many problems remain open though remarkable progress has been made recently towards their solutions. Alan Rendall's book states, in a down-to-earth form, fundamental results used to solve different types of equations. In each case he gives applications to special models as well as to general properties of Einsteinian spacetimes. A chapter on ODE contains, in particular, a detailed discussion of Bianchi spacetimes. A chapter entitled 'Elliptic systems' treats the Einstein constraints. A chapter entitled 'Hyperbolic systems' is followed by a chapter on the Cauchy problem and a chapter 'Global results' which contains recently proved theorems. A chapter is dedicated to the Einstein-Vlasov system, of which the author is a specialist. On the whole, the book surveys, in a concise though precise way, many essential results of recent interest in mathematical general relativity, and it is very clearly written. Each chapter is followed by an up to date bibliography. In conclusion, this book will be a valuable asset to relativists who wish to learn clearly-stated mathematical results and to mathematicians who want to penetrate into the subtleties of general relativity, as a mathematical and physical theory. (book review)
Introduction to inverse problems for differential equations
Hasanov Hasanoğlu, Alemdar
2017-01-01
This book presents a systematic exposition of the main ideas and methods in treating inverse problems for PDEs arising in basic mathematical models, though it makes no claim to being exhaustive. Mathematical models of most physical phenomena are governed by initial and boundary value problems for PDEs, and inverse problems governed by these equations arise naturally in nearly all branches of science and engineering. The book’s content, especially in the Introduction and Part I, is self-contained and is intended to also be accessible for beginning graduate students, whose mathematical background includes only basic courses in advanced calculus, PDEs and functional analysis. Further, the book can be used as the backbone for a lecture course on inverse and ill-posed problems for partial differential equations. In turn, the second part of the book consists of six nearly-independent chapters. The choice of these chapters was motivated by the fact that the inverse coefficient and source problems considered here a...
Fem Formulation of Coupled Partial Differential Equations for Heat Transfer
Ameer Ahamad, N.; Soudagar, Manzoor Elahi M.; Kamangar, Sarfaraz; Anjum Badruddin, Irfan
2017-08-01
Heat Transfer in any field plays an important role for transfer of energy from one region to another region. The heat transfer in porous medium can be simulated with the help of two partial differential equations. These equations need an alternate and relatively easy method due to complexity of the phenomenon involved. This article is dedicated to discuss the finite element formulation of heat transfer in porous medium in Cartesian coordinates. A triangular element is considered to discretize the governing partial differential equations and matrix equations are developed for 3 nodes of element. Iterative approach is used for the two sets of matrix equations involved representing two partial differential equations.
Bipartite Fuzzy Stochastic Differential Equations with Global Lipschitz Condition
Marek T. Malinowski
2016-01-01
Full Text Available We introduce and analyze a new type of fuzzy stochastic differential equations. We consider equations with drift and diffusion terms occurring at both sides of equations. Therefore we call them the bipartite fuzzy stochastic differential equations. Under the Lipschitz and boundedness conditions imposed on drifts and diffusions coefficients we prove existence of a unique solution. Then, insensitivity of the solution under small changes of data of equation is examined. Finally, we mention that all results can be repeated for solutions to bipartite set-valued stochastic differential equations.
The Painlevé property for partial differential equations
Weiss, John; Tabor, M.; Carnevale, George
1983-03-01
In this paper we define the Painlevé property for partial differential equations and show how it determines, in a remarkably simple manner, the integrability, the Bäcklund transforms, the linearizing transforms, and the Lax pairs of three well-known partial differential equations (Burgers' equation, KdV equation, and the modified KdV equation). This indicates that the Painlevé property may provide a unified description of integrable behavior in dynamical systems (ordinary and partial differential equations), while, at the same time, providing an efficient method for determining the integrability of particular systems.
Stochastic Runge-Kutta Software Package for Stochastic Differential Equations
Gevorkyan, M N; Korolkova, A V; Kulyabov, D S; Sevastyanov, L A
2016-01-01
As a result of the application of a technique of multistep processes stochastic models construction the range of models, implemented as a self-consistent differential equations, was obtained. These are partial differential equations (master equation, the Fokker--Planck equation) and stochastic differential equations (Langevin equation). However, analytical methods do not always allow to research these equations adequately. It is proposed to use the combined analytical and numerical approach studying these equations. For this purpose the numerical part is realized within the framework of symbolic computation. It is recommended to apply stochastic Runge--Kutta methods for numerical study of stochastic differential equations in the form of the Langevin. Under this approach, a program complex on the basis of analytical calculations metasystem Sage is developed. For model verification logarithmic walks and Black--Scholes two-dimensional model are used. To illustrate the stochastic "predator--prey" type model is us...
Relations between Stochastic and Partial Differential Equations in Hilbert Spaces
I. V. Melnikova
2012-01-01
Full Text Available The aim of the paper is to introduce a generalization of the Feynman-Kac theorem in Hilbert spaces. Connection between solutions to the abstract stochastic differential equation and solutions to the deterministic partial differential (with derivatives in Hilbert spaces equation for the probability characteristic is proved. Interpretation of objects in the equations is given.
NUMERICAL HOPF BIFURCATION OF DELAY-DIFFERENTIAL EQUATIONS
无
2006-01-01
In this paper we consider the numerical solution of some delay differential equations undergoing a Hopf bifurcation. We prove that if the delay differential equations have a Hopf bifurcation point atλ=λ*, then the numerical solution of the equation also has a Hopf bifurcation point atλh =λ* + O(h).
Time Reversal of Volterra Processes Driven Stochastic Differential Equations
L. Decreusefond
2013-01-01
Full Text Available We consider stochastic differential equations driven by some Volterra processes. Under time reversal, these equations are transformed into past-dependent stochastic differential equations driven by a standard Brownian motion. We are then in position to derive existence and uniqueness of solutions of the Volterra driven SDE considered at the beginning.
Compatible Spatial Discretizations for Partial Differential Equations
Arnold, Douglas, N, ed.
2004-11-25
From May 11--15, 2004, the Institute for Mathematics and its Applications held a hot topics workshop on Compatible Spatial Discretizations for Partial Differential Equations. The numerical solution of partial differential equations (PDE) is a fundamental task in science and engineering. The goal of the workshop was to bring together a spectrum of scientists at the forefront of the research in the numerical solution of PDEs to discuss compatible spatial discretizations. We define compatible spatial discretizations as those that inherit or mimic fundamental properties of the PDE such as topology, conservation, symmetries, and positivity structures and maximum principles. A wide variety of discretization methods applied across a wide range of scientific and engineering applications have been designed to or found to inherit or mimic intrinsic spatial structure and reproduce fundamental properties of the solution of the continuous PDE model at the finite dimensional level. A profusion of such methods and concepts relevant to understanding them have been developed and explored: mixed finite element methods, mimetic finite differences, support operator methods, control volume methods, discrete differential forms, Whitney forms, conservative differencing, discrete Hodge operators, discrete Helmholtz decomposition, finite integration techniques, staggered grid and dual grid methods, etc. This workshop seeks to foster communication among the diverse groups of researchers designing, applying, and studying such methods as well as researchers involved in practical solution of large scale problems that may benefit from advancements in such discretizations; to help elucidate the relations between the different methods and concepts; and to generally advance our understanding in the area of compatible spatial discretization methods for PDE. Particular points of emphasis included: + Identification of intrinsic properties of PDE models that are critical for the fidelity of numerical
Vilasi, Gaetano
2001-01-01
This is both a textbook and a monograph. It is partially based on a two-semester course, held by the author for third-year students in physics and mathematics at the University of Salerno, on analytical mechanics, differential geometry, symplectic manifolds and integrable systems. As a textbook, it provides a systematic and self-consistent formulation of Hamiltonian dynamics both in a rigorous coordinate language and in the modern language of differential geometry. It also presents powerful mathematical methods of theoretical physics, especially in gauge theories and general relativity. As a m
Exact solutions for some nonlinear partial differential equations
Peng, Yan-Ze
2003-08-11
Exact solutions to some nonlinear partial differential equations, including (2+1)-dimensional breaking soliton equation, sine-Gordon equation and double sine-Gordon equation, are studied by means of the mapping method proposed by the author recently. Many new results are presented. A simple review of the method is finally given.
Lyapunov functionals and stability of stochastic functional differential equations
Shaikhet, Leonid
2013-01-01
Stability conditions for functional differential equations can be obtained using Lyapunov functionals. Lyapunov Functionals and Stability of Stochastic Functional Differential Equations describes the general method of construction of Lyapunov functionals to investigate the stability of differential equations with delays. This work continues and complements the author’s previous book Lyapunov Functionals and Stability of Stochastic Difference Equations, where this method is described for discrete- and continuous-time difference equations. The text begins with a description of the peculiarities of deterministic and stochastic functional differential equations. There follow basic definitions for stability theory of stochastic hereditary systems, and a formal procedure of Lyapunov functionals construction is presented. Stability investigation is conducted for stochastic linear and nonlinear differential equations with constant and distributed delays. The proposed method is used for stability investigation of di...
Structure-preserving algorithms for oscillatory differential equations
Wu, Xinyuan; Wang, Bin
2013-01-01
Structure-Preserving Algorithms for Oscillatory Differential Equations describes a large number of highly effective and efficient structure-preserving algorithms for second-order oscillatory differential equations by using theoretical analysis and numerical validation. Structure-preserving algorithms for differential equations, especially for oscillatory differential equations, play an important role in the accurate simulation of oscillatory problems in applied sciences and engineering. The book discusses novel advances in the ARKN, ERKN, two-step ERKN, Falkner-type and energy-preserving methods, etc. for oscillatory differential equations. The work is intended for scientists, engineers, teachers and students who are interested in structure-preserving algorithms for differential equations. Xinyuan Wu is a professor at Nanjing University; Xiong You is an associate professor at Nanjing Agricultural University; Bin Wang is a joint Ph.D student of Nanjing University and University of Cambridge.
Molecular response properties from a Hermitian eigenvalue equation for a time-periodic Hamiltonian.
Pawłowski, Filip; Olsen, Jeppe; Jørgensen, Poul
2015-03-21
The time-dependent Schrödinger equation for a time-periodic perturbation is recasted into a Hermitian eigenvalue equation, where the quasi-energy is an eigenvalue and the time-periodic regular wave function an eigenstate. From this Hermitian eigenvalue equation, a rigorous and transparent formulation of response function theory is developed where (i) molecular properties are defined as derivatives of the quasi-energy with respect to perturbation strengths, (ii) the quasi-energy can be determined from the time-periodic regular wave function using a variational principle or via projection, and (iii) the parametrization of the unperturbed state can differ from the parametrization of the time evolution of this state. This development brings the definition of molecular properties and their determination on par for static and time-periodic perturbations and removes inaccuracies and inconsistencies of previous response function theory formulations. The development where the parametrization of the unperturbed state and its time evolution may differ also extends the range of the wave function models for which response functions can be determined. The simplicity and universality of the presented formulation is illustrated by applying it to the configuration interaction (CI) and the coupled cluster (CC) wave function models and by introducing a new model-the coupled cluster configuration interaction (CC-CI) model-where a coupled cluster exponential parametrization is used for the unperturbed state and a linear parametrization for its time evolution. For static perturbations, the CC-CI response functions are shown to be the analytical analogues of the static molecular properties obtained from finite field equation-of-motion coupled cluster (EOMCC) energy calculations. The structural similarities and differences between the CI, CC, and CC-CI response functions are also discussed with emphasis on linear versus non-linear parametrizations and the size-extensivity of the obtained
FORWARD-BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS WITH STOPPING TIME
吴臻
2004-01-01
The existence and uniqueness results of fully coupled forward-backward stochastic differential equations with stopping time (unbounded) is obtained. One kind of comparison theorem for this kind of equations is also proved.
Nonparametric Bayesian drift estimation for multidimensional stochastic differential equations
Gugushvili, S.; Spreij, P.
2014-01-01
We consider nonparametric Bayesian estimation of the drift coefficient of a multidimensional stochastic differential equation from discrete-time observations on the solution of this equation. Under suitable regularity conditions, we establish posterior consistency in this context.
An introduction to differential equations and their applications
Farlow, Stanley J
2006-01-01
This introductory text explores 1st- and 2nd-order differential equations, series solutions, the Laplace transform, difference equations, much more. Numerous figures, problems with solutions, notes. 1994 edition. Includes 268 figures and 23 tables.
Limit theorems for solutions of stochastic differential equation problems
J. Vom Scheidt
1980-01-01
Full Text Available In this paper linear differential equations with random processes as coefficients and as inhomogeneous term are regarded. Limit theorems are proved for the solutions of these equations if the random processes are weakly correlated processes.
STRICT STABILITY OF IMPULSIVE SET VALUED DIFFERENTIAL EQUATIONS
无
2011-01-01
In this paper, we develop strict stability concepts of ODE to impulsive hybrid set valued differential equations. By Lyapunov’s original method, we get some basic strict stability criteria of impulsive hybrid set valued equations.
Polynomial normal forms of constrained differential equations with three parameters
Jardon-Kojakhmetov, H.; Broer, Henk W.
2014-01-01
We study generic constrained differential equations (CDEs) with three parameters, thereby extending Takens's classification of singularities of such equations. In this approach, the singularities analyzed are the Swallowtail, the Hyperbolic, and the Elliptic Umbilics. We provide polynomial local
Hamiltonian constants for several new entire solutions
2008-01-01
Using the Hamiltonian identities and the corresponding Hamilto- nian constants for entire solutions of elliptic partial differential equations, we investigate several new entire solutions whose existence were shown recently, and show interesting properties of the solutions such as formulas for contact angles at infinity of concentration curves.
Introduction to computation and modeling for differential equations
Edsberg, Lennart
2008-01-01
An introduction to scientific computing for differential equationsIntroduction to Computation and Modeling for Differential Equations provides a unified and integrated view of numerical analysis, mathematical modeling in applications, and programming to solve differential equations, which is essential in problem-solving across many disciplines, such as engineering, physics, and economics. This book successfully introduces readers to the subject through a unique ""Five-M"" approach: Modeling, Mathematics, Methods, MATLAB, and Multiphysics. This approach facilitates a thorough understanding of h
RAZUMIKHIN-TYPE THEOREMS OF NEUTRAL STOCHASTIC FUNCTIONAL DIFFERENTIAL EQUATIONS
Zhou Shaobo; Hu Shigeng
2009-01-01
The stability of stochastic functional differential equation with Markovian switching was studied by several authors, but there was almost no work on the stability of the neutral stochastic functional differential equations with Markovian switching. The aim of this article is to close this gap. The authors establish Razumikhin-type theorem of the neutral stochastic functional differential equations with Markovian switching, and those without Markovian switching.
Partial differential equations theory and completely solved problems
Hillen, Thomas; van Roessel, Henry
2014-01-01
Uniquely provides fully solved problems for linear partial differential equations and boundary value problems Partial Differential Equations: Theory and Completely Solved Problems utilizes real-world physical models alongside essential theoretical concepts. With extensive examples, the book guides readers through the use of Partial Differential Equations (PDEs) for successfully solving and modeling phenomena in engineering, biology, and the applied sciences. The book focuses exclusively on linear PDEs and how they can be solved using the separation of variables technique. The authors begin
Techniques in Linear and Nonlinear Partial Differential Equations
1991-10-21
nonlinear partial differential equations , elliptic 15. NUMBER OF PAGES hyperbolic and parabolic. Variational methods. Vibration problems. Ordinary Five...NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS FINAL TECHNICAL REPORT PROFESSOR LOUIS NIRENBERG OCTOBER 21, 1991 NT)S CRA&I D FIC ,- U.S. ARMY RESEARCH OFFICE...Analysis and partial differential equations . ed. C. Sadowsky. Marcel Dekker (1990) 567-619. [7] Lin, Fanghua, Asymptotic behavior of area-minimizing
Hamilton Jacobi method for solving ordinary differential equations
Mei, Feng-Xiang; Wu, Hui-Bin; Zhang, Yong-Fa
2006-08-01
The Hamilton-Jacobi method for solving ordinary differential equations is presented in this paper. A system of ordinary differential equations of first order or second order can be expressed as a Hamilton system under certain conditions. Then the Hamilton-Jacobi method is used in the integration of the Hamilton system and the solution of the original ordinary differential equations can be found. Finally, an example is given to illustrate the application of the result.
Horwitz, Lawrence; Zion, Yossi Ben; Lewkowicz, Meir;
2007-01-01
The characterization of chaotic Hamiltonian systems in terms of the curvature associated with a Riemannian metric tensor in the structure of the Hamiltonian is extended to a wide class of potential models of standard form through definition of a conformal metric. The geodesic equations reproduce ...... results in (energy dependent) criteria for unstable behavior different from the usual Lyapunov criteria. We discuss some examples of unstable Hamiltonian systems in two dimensions....
On Volatility Induced Stationarity for Stochastic Differential Equations
Albin, J.M.P.; Astrup Jensen, Bjarne; Muszta, Anders;
2006-01-01
This article deals with stochastic differential equations with volatility induced stationarity. We study of theoretical properties of such equations, as well as numerical aspects, together with a detailed study of three examples.......This article deals with stochastic differential equations with volatility induced stationarity. We study of theoretical properties of such equations, as well as numerical aspects, together with a detailed study of three examples....
Local behavior of autonomous neutral functional differential equations.
Hale, J. K.
1972-01-01
Basic problems for a special class of neutral functional differential equations (NFDE) are formulated, and some contributions to a general qualitative theory in the neighborhood of an equilibrium point are indicated. The properties of a NFDE (G,f) are examined to determine in what sense these properties are insensitive to small changes in (G,f) in the topology G x F. The special class of equations that is introduced includes retarded functional differential equations and difference equations.
The canonical form of the Rabi hamiltonian
Szopa, M; Ceulemans, A; Szopa, Marek; Mys, Geert; Ceulemans, Arnout
1996-01-01
The Rabi Hamiltonian, describing the coupling of a two-level system to a single quantized boson mode, is studied in the Bargmann-Fock representation. The corresponding system of differential equations is transformed into a canonical form in which all regular singularities between zero and infinity have been removed. The canonical or Birkhoff-transformed equations give rise to a two-dimensional eigenvalue problem, involving the energy and a transformational parameter which affects the coupling strength. The known isolated exact solutions of the Rabi Hamiltonian are found to correspond to the uncoupled form of the canonical system.
Exact Solutions for Nonlinear Differential Difference Equations in Mathematical Physics
Khaled A. Gepreel
2013-01-01
Full Text Available We modified the truncated expansion method to construct the exact solutions for some nonlinear differential difference equations in mathematical physics via the general lattice equation, the discrete nonlinear Schrodinger with a saturable nonlinearity, the quintic discrete nonlinear Schrodinger equation, and the relativistic Toda lattice system. Also, we put a rational solitary wave function method to find the rational solitary wave solutions for some nonlinear differential difference equations. The proposed methods are more effective and powerful to obtain the exact solutions for nonlinear difference differential equations.
Covariant Hamiltonian field theory
Giachetta, G; Sardanashvily, G
1999-01-01
We study the relationship between the equations of first order Lagrangian field theory on fiber bundles and the covariant Hamilton equations on the finite-dimensional polysymplectic phase space of covariant Hamiltonian field theory. The main peculiarity of these Hamilton equations lies in the fact that, for degenerate systems, they contain additional gauge fixing conditions. We develop the BRST extension of the covariant Hamiltonian formalism, characterized by a Lie superalgebra of BRST and anti-BRST symmetries.
Bifurcation and stability for a nonlinear parabolic partial differential equation
Chafee, N.
1973-01-01
Theorems are developed to support bifurcation and stability of nonlinear parabolic partial differential equations in the solution of the asymptotic behavior of functions with certain specified properties.
Electrocardiogram classification using delay differential equations
Lainscsek, Claudia; Sejnowski, Terrence J.
2013-06-01
Time series analysis with nonlinear delay differential equations (DDEs) reveals nonlinear as well as spectral properties of the underlying dynamical system. Here, global DDE models were used to analyze 5 min data segments of electrocardiographic (ECG) recordings in order to capture distinguishing features for different heart conditions such as normal heart beat, congestive heart failure, and atrial fibrillation. The number of terms and delays in the model as well as the order of nonlinearity of the model have to be selected that are the most discriminative. The DDE model form that best separates the three classes of data was chosen by exhaustive search up to third order polynomials. Such an approach can provide deep insight into the nature of the data since linear terms of a DDE correspond to the main time-scales in the signal and the nonlinear terms in the DDE are related to nonlinear couplings between the harmonic signal parts. The DDEs were able to detect atrial fibrillation with an accuracy of 72%, congestive heart failure with an accuracy of 88%, and normal heart beat with an accuracy of 97% from 5 min of ECG, a much shorter time interval than required to achieve comparable performance with other methods.
Regularized Semiparametric Estimation for Ordinary Differential Equations.
Li, Yun; Zhu, Ji; Wang, Naisyin
2015-07-01
Ordinary differential equations (ODEs) are widely used in modeling dynamic systems and have ample applications in the fields of physics, engineering, economics and biological sciences. The ODE parameters often possess physiological meanings and can help scientists gain better understanding of the system. One key interest is thus to well estimate these parameters. Ideally, constant parameters are preferred due to their easy interpretation. In reality, however, constant parameters can be too restrictive such that even after incorporating error terms, there could still be unknown sources of disturbance that lead to poor agreement between observed data and the estimated ODE system. In this paper, we address this issue and accommodate short-term interferences by allowing parameters to vary with time. We propose a new regularized estimation procedure on the time-varying parameters of an ODE system so that these parameters could change with time during transitions but remain constants within stable stages. We found, through simulation studies, that the proposed method performs well and tends to have less variation in comparison to the non-regularized approach. On the theoretical front, we derive finite-sample estimation error bounds for the proposed method. Applications of the proposed method to modeling the hare-lynx relationship and the measles incidence dynamic in Ontario, Canada lead to satisfactory and meaningful results.
Homogenizing atomic dynamics by fractional differential equations
Tang, Shaoqiang; Ying, Yuping
2017-10-01
In this paper, we propose two ways to construct fractional differential equations (FDE) for approximating atomic chain dynamics. Taking harmonic chain as an example, we add a power function of fractional order to Taylor expansion of the dispersion relation, and determine the parameters by matching two selected wave numbers. This approximate function leads to an FDE after considering both directions for wave propagation. As an alternative, we consider the symbol of the force term, and approximate it by a similar function. It also induces an FDE. Both approaches produce excellent agreement with the harmonic chain dynamics. The accuracy may be improved by optimizing the selected wave numbers, or starting with higher order Taylor expansions. When resolved in the lattice constant, the resulting FDE's faithfully reproduce the lattice dynamics. When resolved in a coarse grid instead, they systematically generate homogenized algorithms. Numerical tests are performed to verify the proposed approaches. Moreover, FDE's are also constructed for diatomic chain and anharmonic lattice, to illustrate the generality of the proposed approaches.
Ondřej Došlý
2012-01-01
Full Text Available We investigate transformations of the modified Riccati differential equation and the obtained results we apply in the investigation of oscillatory properties of perturbed half-linear Euler differential equation. A perturbation is also allowed in the differential term.
A complex Noether approach for variational partial differential equations
Naz, R.; Mahomed, F. M.
2015-10-01
Scalar complex partial differential equations which admit variational formulations are studied. Such a complex partial differential equation, via a complex dependent variable, splits into a system of two real partial differential equations. The decomposition of the Lagrangian of the complex partial differential equation in the real domain is shown to yield two real Lagrangians for the split system. The complex Maxwellian distribution, transonic gas flow, Maxwellian tails, dissipative wave and Klein-Gordon equations are considered. The Noether symmetries and gauge terms of the split system that correspond to both the Lagrangians are constructed by the Noether approach. In the case of coupled split systems, the same Noether symmetries are obtained. The Noether symmetries for the uncoupled split systems are different. The conserved vectors of the split system which correspond to both the Lagrangians are compared to the split conserved vectors of the complex partial differential equation for the examples. The split conserved vectors of the complex partial differential equation are the same as the conserved vectors of the split system of real partial differential equations in the case of coupled systems. Moreover a Noether-like theorem for the split system is proved which provides the Noether-like conserved quantities of the split system from knowledge of the Noether-like operators. An interesting result on the split characteristics and the conservation laws is shown as well. The Noether symmetries and gauge terms of the Lagrangian of the split system with the split Noether-like operators and gauge terms of the Lagrangian of the given complex partial differential equation are compared. Folklore suggests that the split Noether-like operators of a Lagrangian of a complex Euler-Lagrange partial differential equation are symmetries of the Lagrangian of the split system of real partial differential equations. This is not the case. They are proved to be the same if the
Castaños, Octavio; Schuch, Dieter; Rosas-Ortiz, Oscar
2013-02-01
Based on the Gaussian wave packet solution for the harmonic oscillator and the corresponding creation and annihilation operators, a generalization is presented that also applies for wave packets with time-dependent width as they occur for systems with different initial conditions, time-dependent frequency or in contact with a dissipative environment. In all these cases, the corresponding coherent states, position and momentum uncertainties and quantum mechanical energy contributions can be obtained in the same form if the creation and annihilation operators are expressed in terms of a complex variable that fulfils a nonlinear Riccati equation which determines the time-evolution of the wave packet width. The solutions of this Riccati equation depend on the physical system under consideration and on the (complex) initial conditions and have close formal similarities with general superpotentials leading to isospectral potentials in supersymmetric quantum mechanics. The definition of the generalized creation and annihilation operator is also in agreement with a factorization of the operator corresponding to the Ermakov invariant that exists in all cases considered.
Simple equation method for nonlinear partial differential equations and its applications
Taher A. Nofal
2016-04-01
Full Text Available In this article, we focus on the exact solution of the some nonlinear partial differential equations (NLPDEs such as, Kodomtsev–Petviashvili (KP equation, the (2 + 1-dimensional breaking soliton equation and the modified generalized Vakhnenko equation by using the simple equation method. In the simple equation method the trial condition is the Bernoulli equation or the Riccati equation. It has been shown that the method provides a powerful mathematical tool for solving nonlinear wave equations in mathematical physics and engineering problems.
A fifth order differential equation for charged perfect fluids
Kweyama, M C; Maharaj, S D
2013-01-01
We investigate the master nonlinear partial differential equation that governs the evolution of shear-free spherically symmetric charged fluids. We use an approach which has not been considered previously for the underlying equation in shear-free spherically symmetric spacetimes. We derive a fifth order purely differential equation that must be satisfied for the underlying equation to admit a Lie point symmetry. We then perform a comprehensive analysis of this equation utilising the Lie symmetry analysis and direct integration. This enables us to reduce the fifth order equation to quadratures. Earlier results are shown to be contained in our general treatment.
Stochastic partial differential equations in turbulence related problems
Chow, P.-L.
1978-01-01
The theory of stochastic partial differential equations (PDEs) and problems relating to turbulence are discussed by employing the theories of Brownian motion and diffusion in infinite dimensions, functional differential equations, and functional integration. Relevant results in probablistic analysis, especially Gaussian measures in function spaces and the theory of stochastic PDEs of Ito type, are taken into account. Linear stochastic PDEs are analyzed through linearized Navier-Stokes equations with a random forcing. Stochastic equations for waves in random media as well as model equations in turbulent transport theory are considered. Markovian models in fully developed turbulence are discussed from a stochastic equation viewpoint.
A Method for Image Decontamination Based on Partial Differential Equation
Hou Junping
2015-01-01
Full Text Available This paper will introduce the method to apply partial differential equations for the decontamination processing of images. It will establish continuous partial differential mathematical models for image information and use specific solving methods to conduct decontamination processing to images during the process of solving partial differential equations, such as image noise reduction, image denoising and image segmentation. This paper will study the uniqueness of solution for the partial differential equations and the monotonicity that functional constrain has on multipliers by making analysis of the ROF model in the partial differential mathematical model.
Adel Daouas
2013-01-01
Full Text Available We study the second-order differential system $$ ddot u + Adot{u}- L(tu+ abla V(t,u=0, $$ where A is an antisymmetric constant matrix and $L in C(mathbb{R}, mathbb{R}^{N^2}$. We establish the existence of infinitely many homoclinic solutions if W is of subquadratic growth as $|x| o +infty$ and L does not satisfy the global positive definiteness assumption. In the particular case where A=0, earlier results in the literature are generalized.
Calculation of similarity solutions of partial differential equations
Dresner, L.
1980-08-01
When a partial differential equation in two independent variables is invariant to a group G of stretching transformations, it has similarity solutions that can be found by solving an ordinary differential equation. Under broad conditions, this ordinary differential equation is also invariant to another stretching group G', related to G. The invariance of the ordinary differential equation to G' can be used to simplify its solution, particularly if it is of second order. Then a method of Lie's can be used to reduce it to a first-order equation, the study of which is greatly facilitated by analysis of its direction field. The method developed here is applied to three examples: Blasius's equation for boundary layer flow over a flat plate and two nonlinear diffusion equations, cc/sub t/ = c/sub zz/ and c/sub t/ = (cc/sub z/)/sub z/.
Entropy and Entanglement in Master Equation of Effective Hamiltonian for Jaynes-Cummings Model
H.A. Hessian; F.A. Mohammed; A.-B.A. Mohamed
2009-01-01
In this paper, we analytically solve the master equation for Jaynes-Cummings model in the dispersive regime including phase damping and the field is assumed to be initially in a superposition of coherent states.Using an established entanglement measure based on the negativity of the eigenvalues of the partially transposed density matrix we find a very strong sensitivity of the maximally generated entanglement to the amount of phase damping.Qualitatively this behavior is also reflected in alternative entanglement measures, but the quantitative agreement between different measures depends on the chosen noise model.The phase decoherenee for this model results in monotonic increase in the total entropy while the atomic sub-entropy keeps its periodic behaviour without any effect.
A Geometric Treatment of Implicit Differential-Algebraic Equations
Rabier, P. J.; Rheinboldt, W. C.
A differential-geometric approach for proving the existence and uniqueness of implicit differential-algebraic equations is presented. It provides for a significant improvement of an earlier theory developed by the authors as well as for a completely intrinsic definition of the index of such problems. The differential-algebraic equation is transformed into an explicit ordinary differential equation by a reduction process that can be abstractly defined for specific submanifolds of tangent bundles here called reducible π-submanifolds. Local existence and uniqueness results for differential-algebraic equations then follow directly from the final stage of this reduction by means of an application of the standard theory of ordinary differential equations.
Discretization of Fractional Differential Equations by a Piecewise Constant Approximation
Angstmann, Christopher N; McGann, Anna V
2016-01-01
There has recently been considerable interest in using a nonstandard piecewise approximation to formulate fractional order differential equations as difference equations that describe the same dynamical behaviour and are more amenable to a dynamical systems analysis. Unfortunately, due to mistakes in the fundamental papers, the difference equations formulated through this process do not capture the dynamics of the fractional order equations. We show that the correct application of this nonstandard piecewise approximation leads to a one parameter family of fractional order differential equations that converges to the original equation as the parameter tends to zero. A closed formed solution exists for each member of this family and leads to the formulation of a difference equation that is of increasing order as time steps are taken. Whilst this does not lead to a simplified dynamical analysis it does lead to a numerical method for solving the fractional order differential equation. The method is shown to be eq...
Differential and difference equations a comparison of methods of solution
Maximon, Leonard C
2016-01-01
This book, intended for researchers and graduate students in physics, applied mathematics and engineering, presents a detailed comparison of the important methods of solution for linear differential and difference equations - variation of constants, reduction of order, Laplace transforms and generating functions - bringing out the similarities as well as the significant differences in the respective analyses. Equations of arbitrary order are studied, followed by a detailed analysis for equations of first and second order. Equations with polynomial coefficients are considered and explicit solutions for equations with linear coefficients are given, showing significant differences in the functional form of solutions of differential equations from those of difference equations. An alternative method of solution involving transformation of both the dependent and independent variables is given for both differential and difference equations. A comprehensive, detailed treatment of Green’s functions and the associat...
A note on the auxiliary equation method for solving nonlinear partial differential equations
Liu, Chunping [Institute of Mathematics, Yangzhou University, Yangzhou 225002 (China)]. E-mail: yzslcp@pub.yz.jsinfo.net; Liu, Xiaoping [Gaoyou Branch, Yangzhou Education College, Gaoyou 225600 (China)
2006-01-02
First, we pick up some solutions of an auxiliary ordinary differential equation, which were neglected by Sirendaoreji and Sun Jiong in the auxiliary equation method. Then, we give the classification of the solutions for the auxiliary ordinary differential equation depending on its three parameters. Finally, we consider the (2+1)-dimensional dispersive long wave equations and get its more exact solitary wave solutions and reveal the relation of the exact solitary wave solutions obtained by Sirendaoreji and Sun Jiong in their paper.
Parameter Estimation of Partial Differential Equation Models
Xun, Xiaolei
2013-09-01
Partial differential equation (PDE) models are commonly used to model complex dynamic systems in applied sciences such as biology and finance. The forms of these PDE models are usually proposed by experts based on their prior knowledge and understanding of the dynamic system. Parameters in PDE models often have interesting scientific interpretations, but their values are often unknown and need to be estimated from the measurements of the dynamic system in the presence of measurement errors. Most PDEs used in practice have no analytic solutions, and can only be solved with numerical methods. Currently, methods for estimating PDE parameters require repeatedly solving PDEs numerically under thousands of candidate parameter values, and thus the computational load is high. In this article, we propose two methods to estimate parameters in PDE models: a parameter cascading method and a Bayesian approach. In both methods, the underlying dynamic process modeled with the PDE model is represented via basis function expansion. For the parameter cascading method, we develop two nested levels of optimization to estimate the PDE parameters. For the Bayesian method, we develop a joint model for data and the PDE and develop a novel hierarchical model allowing us to employ Markov chain Monte Carlo (MCMC) techniques to make posterior inference. Simulation studies show that the Bayesian method and parameter cascading method are comparable, and both outperform other available methods in terms of estimation accuracy. The two methods are demonstrated by estimating parameters in a PDE model from long-range infrared light detection and ranging data. Supplementary materials for this article are available online. © 2013 American Statistical Association.
Hossein Jafari
2016-04-01
Full Text Available The non-differentiable solution of the linear and non-linear partial differential equations on Cantor sets is implemented in this article. The reduced differential transform method is considered in the local fractional operator sense. The four illustrative examples are given to show the efficiency and accuracy features of the presented technique to solve local fractional partial differential equations.
Stochastic fuzzy differential equations of a nonincreasing type
Malinowski, Marek T.
2016-04-01
Stochastic fuzzy differential equations constitute an apparatus in modeling dynamic systems operating in fuzzy environment and governed by stochastic noises. In this paper we introduce a new kind of such the equations. Namely, the stochastic fuzzy differential of nonincreasing type are considered. The fuzzy stochastic processes which are solutions to these equations have trajectories with nonincreasing fuzziness in their values. In our previous papers, as a first natural extension of crisp stochastic differential equations, stochastic fuzzy differential equations of nondecreasing type were studied. In this paper we show that under suitable conditions each of the equations has a unique solution which possesses property of continuous dependence on data of the equation. To prove existence of the solutions we use sequences of successive approximate solutions. An estimation of an error of the approximate solution is established as well. Some examples of equations are solved and their solutions are simulated to illustrate the theory of stochastic fuzzy differential equations. All the achieved results apply to stochastic set-valued differential equations.
Sourcing for Parameter Estimation and Study of Logistic Differential Equation
Winkel, Brian J.
2012-01-01
This article offers modelling opportunities in which the phenomena of the spread of disease, perception of changing mass, growth of technology, and dissemination of information can be described by one differential equation--the logistic differential equation. It presents two simulation activities for students to generate real data, as well as…
The Differential Equation Algorithm for General Deformed Swept Volumes
汪国平; 华宣积; 孙家广
2000-01-01
The differential equation approach for characterizing swept volume boundaries is extended to include objects experiencing deformation. For deformed swept volume, it is found that the structure and algorithm of sweep-envelope differential equation (SEDE) are similar between the deformed and the rigid swept volumes. The efficiency of SEDE approach for deformed swept volume is proved with an example.
Topics in numerical partial differential equations and scientific computing
2016-01-01
Numerical partial differential equations (PDEs) are an important part of numerical simulation, the third component of the modern methodology for science and engineering, besides the traditional theory and experiment. This volume contains papers that originated with the collaborative research of the teams that participated in the IMA Workshop for Women in Applied Mathematics: Numerical Partial Differential Equations and Scientific Computing in August 2014.
On the $psi$-dichotomy for homogeneous linear differential equations
Pham Ngoc Boi
2006-03-01
Full Text Available In this article we present some conditions for the $psi$-dichotomy of the homogeneous linear differential equation $x'=A(tx$. Under our condition every $psi$-integrally bounded function $f$ the nonhomogeneous linear differential equation $x'=A(tx +f(t$ has at least one $psi$-bounded solution on $(0,+infty$.
Analysis of Caputo Impulsive Fractional Order Differential Equations with Applications
Lakshman Mahto
2013-01-01
Full Text Available We use Sadovskii's fixed point method to investigate the existence and uniqueness of solutions of Caputo impulsive fractional differential equations of order with one example of impulsive logistic model and few other examples as well. We also discuss Caputo impulsive fractional differential equations with finite delay. The results proven are new and compliment the existing one.
Nonlinear partial differential equations: Integrability, geometry and related topics
Krasil'shchik, Joseph; Rubtsov, Volodya
2017-03-01
Geometry and Differential Equations became inextricably entwined during the last one hundred fifty years after S. Lie and F. Klein's fundamental insights. The two subjects go hand in hand and they mutually enrich each other, especially after the "Soliton Revolution" and the glorious streak of Symplectic and Poisson Geometry methods in the context of Integrability and Solvability problems for Non-linear Differential Equations.
Sourcing for Parameter Estimation and Study of Logistic Differential Equation
Winkel, Brian J.
2012-01-01
This article offers modelling opportunities in which the phenomena of the spread of disease, perception of changing mass, growth of technology, and dissemination of information can be described by one differential equation--the logistic differential equation. It presents two simulation activities for students to generate real data, as well as…
Differential equations and folding of $n$-mani-folds
I. Mousa
2005-09-01
Full Text Available In this paper we will describe some topological and geometric characters of $n$-manifold by using the properties of differential equations. The folding and unfolding of $n$-manifold into itself will be deduced from viewpoint of the differential equations.
On Exact Controllability of First-Order Impulsive Differential Equations
Juan J. Nieto
2010-01-01
Full Text Available Many dynamical systems have an impulsive dynamical behavior due to abrupt changes at certain instants during the evolution process. The mathematical description of these phenomena leads to impulsive differential equations. In this work, we present some new results concerning the exact controllability of a nonlinear ordinary differential equation with impulses.
Undergraduate Students' Mental Operations in Systems of Differential Equations
Whitehead, Karen; Rasmussen, Chris
2003-01-01
This paper reports on research conducted to understand undergraduate students' ways of reasoning about systems of differential equations (SDEs). As part of a semester long classroom teaching experiment in a first course in differential equations, we conducted task-based interviews with six students after their study of first order differential…
Exact solutions for some nonlinear systems of partial differential equations
Darwish, A.A. [Department of Mathematics, Faculty of Science, Helwan University (Egypt)], E-mail: profdarwish@yahoo.com; Ramady, A. [Department of Mathematics, Faculty of Science, Beni-Suef University (Egypt)], E-mail: aramady@yahoo.com
2009-04-30
A direct and unified algebraic method for constructing multiple travelling wave solutions of nonlinear systems of partial differential equations (PDEs) is used and implemented in a computer algebraic system. New solutions for some nonlinear partial differential equations (NLPDEs) are obtained. Graphs of the solutions are displayed.
Lagrangian vector field and Lagrangian formulation of partial differential equations
M.Chen
2005-01-01
Full Text Available In this paper we consider the Lagrangian formulation of a system of second order quasilinear partial differential equations. Specifically we construct a Lagrangian vector field such that the flows of the vector field satisfy the original system of partial differential equations.
Solving Fractional Partial Differential Equations with Corrected Fourier Series Method
Nor Hafizah Zainal
2014-01-01
Full Text Available The corrected Fourier series (CFS is proposed for solving partial differential equations (PDEs with fractional time derivative on a finite domain. In the previous work, we have been solving partial differential equations by using corrected Fourier series. The fractional derivatives are described in Riemann sense. Some numerical examples are presented to show the solutions.
Reduced minimax filtering by means of differential-algebraic equations
Mallet, V.; Zhuk, S.
2011-01-01
A reduced minimax state estimation approach is proposed for high-dimensional models. It is based on the reduction of the ordinary differential equation with high state space dimension to the low-dimensional Differential-Algebraic Equation (DAE) and on the subsequent application of the minimax state
Analysis of Caputo impulsive fractional order differential equations with applications
Mahto, Lakshman; Favini, Angelo
2012-01-01
We use Sadavoskii's fixed point method to investigate the existence and uniqueness of solutions of Caputo impulsive fractional differential equations of order \\alpha between 0 and 1 with one example of impulsive logistic model and few other examples as well. We also discuss Caputo impulsive fractional differential equations with finite delay. The results proven are new and complement the existing one.
Using StarLogo To Introduce Differential Equations.
Anderson, Philip; Seaquist, Carl R.
Massively parallel programming languages, like StarLogo, provide a rich environment for introducing differential equations to students with an unsophisticated mathematical background. This paper describes the basic software for stimulating and monitoring various population dynamics. Simple differential equations that describe the observed dynamics…
Charles François Sturm and Differential Equations
Lützen, Jesper; Mingarelli, Angelo
2008-01-01
An analysis of Sturm's works on differential equations, in particular Sturm-Liouville theory. The historical connection to Sturm's theorem about real roots of polynomials is established......An analysis of Sturm's works on differential equations, in particular Sturm-Liouville theory. The historical connection to Sturm's theorem about real roots of polynomials is established...
Numbers of Subnormal Solutions for Higher Order Periodic Differential Equations
Zong Xuan CHEN; Kwang Ho SHON
2011-01-01
In this paper,we estimate the number of subnormal solutions for higher order linear periodic differential equations,and estimate the growth of subnormal solutions and all other solutions.We also give a representation of subnormal solutions of a class of higher order linear periodic differential equations.
Operator splitting for partial differential equations with Burgers nonlinearity
Holden, Helge; Risebro, Nils Henrik
2011-01-01
We provide a new analytical approach to operator splitting for equations of the type $u_t=Au+u u_x$ where $A$ is a linear differential operator such that the equation is well-posed. Particular examples include the viscous Burgers' equation, the Korteweg-de Vries (KdV) equation, the Benney-Lin equation, and the Kawahara equation. We show that the Strang splitting method converges with the expected rate if the initial data are sufficiently regular. In particular, for the KdV equation we obtain second-order convergence in $H^r$ for initial data in $H^{r+5}$ with arbitrary $r\\ge 1$.
A practical course in differential equations and mathematical modeling
Ibragimov , Nail H
2009-01-01
A Practical Course in Differential Equations and Mathematical Modelling is a unique blend of the traditional methods of ordinary and partial differential equations with Lie group analysis enriched by the author's own theoretical developments. The book which aims to present new mathematical curricula based on symmetry and invariance principles is tailored to develop analytic skills and working knowledge in both classical and Lie's methods for solving linear and nonlinear equations. This approach helps to make courses in differential equations, mathematical modelling, distributions and fundame
On the hierarchy of partially invariant submodels of differential equations
Golovin, Sergey V
2007-01-01
It is noticed, that partially invariant solution (PIS) of differential equations in many cases can be represented as an invariant reduction of some PIS of the higher rank. This introduce a hierarchic structure in the set of all PISs of a given system of differential equations. By using this structure one can significantly decrease an amount of calculations required in enumeration of all PISs for a given system of partially differential equations. An equivalence of the two-step and the direct ways of construction of PISs is proved. In this framework the complete classification of regular partially invariant solutions of ideal MHD equations is given.
On the hierarchy of partially invariant submodels of differential equations
Golovin, Sergey V [Lavrentyev Institute of Hydrodynamics SB RAS, Novosibirsk 630090 (Russian Federation)], E-mail: sergey@hydro.nsc.ru
2008-07-04
It is noted that the partially invariant solution (PIS) of differential equations in many cases can be represented as an invariant reduction of some PISs of the higher rank. This introduces a hierarchic structure in the set of all PISs of a given system of differential equations. An equivalence of the two-step and the direct ways of construction of PISs is proved. The hierarchy simplifies the process of enumeration and analysis of partially invariant submodels to the given system of differential equations. In this framework, the complete classification of regular partially invariant solutions of ideal MHD equations is given.
The Radially Symmetric Euler Equations as an Exterior Differential System
Baty, Roy; Ramsey, Scott; Schmidt, Joseph
2016-11-01
This work develops the Euler equations as an exterior differential system in radially symmetric coordinates. The Euler equations are studied for unsteady, compressible, inviscid fluids in one-dimensional, converging flow fields with a general equation of state. The basic geometrical constructions (for example, the differential forms, tangent planes, jet space, and differential ideal) used to define and analyze differential equations as systems of exterior forms are reviewed and discussed for converging flows. Application of the Frobenius theorem to the question of the existence of solutions to radially symmetric converging flows is also reviewed and discussed. The exterior differential system is further applied to derive and analyze the general family of characteristic vector fields associated with the one-dimensional inviscid flow equations.
Partial differential equations & boundary value problems with Maple
Articolo, George A
2009-01-01
Partial Differential Equations and Boundary Value Problems with Maple presents all of the material normally covered in a standard course on partial differential equations, while focusing on the natural union between this material and the powerful computational software, Maple. The Maple commands are so intuitive and easy to learn, students can learn what they need to know about the software in a matter of hours- an investment that provides substantial returns. Maple''s animation capabilities allow students and practitioners to see real-time displays of the solutions of partial differential equations. Maple files can be found on the books website. Ancillary list: Maple files- http://www.elsevierdirect.com/companion.jsp?ISBN=9780123747327 Provides a quick overview of the software w/simple commands needed to get startedIncludes review material on linear algebra and Ordinary Differential equations, and their contribution in solving partial differential equationsIncorporates an early introduction to Sturm-L...
Field Method for Integrating the First Order Differential Equation
JIA Li-qun; ZHENG Shi-wang; ZHANG Yao-yu
2007-01-01
An important modern method in analytical mechanics for finding the integral, which is called the field-method, is used to research the solution of a differential equation of the first order. First, by introducing an intermediate variable, a more complicated differential equation of the first order can be expressed by two simple differential equations of the first order, then the field-method in analytical mechanics is introduced for solving the two differential equations of the first order. The conclusion shows that the field-method in analytical mechanics can be fully used to find the solutions of a differential equation of the first order, thus a new method for finding the solutions of the first order is provided.
Backward stochastic differential equations from linear to fully nonlinear theory
Zhang, Jianfeng
2017-01-01
This book provides a systematic and accessible approach to stochastic differential equations, backward stochastic differential equations, and their connection with partial differential equations, as well as the recent development of the fully nonlinear theory, including nonlinear expectation, second order backward stochastic differential equations, and path dependent partial differential equations. Their main applications and numerical algorithms, as well as many exercises, are included. The book focuses on ideas and clarity, with most results having been solved from scratch and most theories being motivated from applications. It can be considered a starting point for junior researchers in the field, and can serve as a textbook for a two-semester graduate course in probability theory and stochastic analysis. It is also accessible for graduate students majoring in financial engineering.
Partial differential equations of parabolic type
Friedman, Avner
2008-01-01
This accessible and self-contained treatment provides even readers previously unacquainted with parabolic and elliptic equations with sufficient background to understand research literature. Author Avner Friedman - Director of the Mathematical Biosciences Institute at The Ohio State University - offers a systematic and thorough approach that begins with the main facts of the general theory of second order linear parabolic equations. Subsequent chapters explore asymptotic behavior of solutions, semi-linear equations and free boundary problems, and the extension of results concerning fundamenta
REDUCTION OF NONLINEAR PARTIAL DIFFERENTIAL EQUATION AND EXACT SOLUTIONS
YeCaier; PanZuliang
2003-01-01
Nonlinear partial differetial equation(NLPDE)is converted into ordinary differential equation(ODE)via a new ansatz.Using undetermined function method,the ODE obtained above is replaced by a set of algebraic equations which are solved out with the aid of Mathematica.The exact solutions and solitary solutions of NLPDE are obtained.
Hyperbolic function method for solving nonlinear differential-different equations
Zhu Jia-Min
2005-01-01
An algorithm is devised to obtained exact travelling wave solutions of differential-different equations by means of hyperbolic function. For illustration, we apply the method to solve the discrete nonlinear (2+1)-dimensional Toda lattice equation and the discretized nonlinear mKdV lattice equation, and successfully constructed some explicit and exact travelling wave solutions.
Intuitive Understanding of Solutions of Partially Differential Equations
Kobayashi, Y.
2008-01-01
This article uses diagrams that help the observer see how solutions of the wave equation and heat conduction equation are obtained. The analytical approach cannot necessarily show the mechanisms of the key to the solution without transforming the differential equation into a more convenient form by separation of variables. The visual clues based…
A Survey on Oscillation of Impulsive Ordinary Differential Equations
Fatma Karakoç
2010-01-01
Full Text Available This paper summarizes a series of results on the oscillation of impulsive ordinary differential equations. We consider linear, half-linear, super-half-linear, and nonlinear equations. Several oscillation criteria are given. The Sturmian comparison theory for linear and half linear equations is also included.
Intuitive Understanding of Solutions of Partially Differential Equations
Kobayashi, Y.
2008-01-01
This article uses diagrams that help the observer see how solutions of the wave equation and heat conduction equation are obtained. The analytical approach cannot necessarily show the mechanisms of the key to the solution without transforming the differential equation into a more convenient form by separation of variables. The visual clues based…
Modified Chebyshev Collocation Method for Solving Differential Equations
M Ziaul Arif
2015-05-01
Full Text Available This paper presents derivation of alternative numerical scheme for solving differential equations, which is modified Chebyshev (Vieta-Lucas Polynomial collocation differentiation matrices. The Scheme of modified Chebyshev (Vieta-Lucas Polynomial collocation method is applied to both Ordinary Differential Equations (ODEs and Partial Differential Equations (PDEs cases. Finally, the performance of the proposed method is compared with finite difference method and the exact solution of the example. It is shown that modified Chebyshev collocation method more effective and accurate than FDM for some example given.
Stochastic nonlinear differential equation generating 1/f noise.
Kaulakys, B; Ruseckas, J
2004-08-01
Starting from the simple point process model of 1/f noise, we derive a stochastic nonlinear differential equation for the signal exhibiting 1/f noise, in any desirably wide range of frequency. A stochastic differential equation (the general Langevin equation with a multiplicative noise) that gives 1/f noise is derived. The solution of the equation exhibits the power-law distribution. The process with 1/f noise is demonstrated by the numerical solution of the derived equation with the appropriate restriction of the diffusion of the signal in some finite interval.
BOUNDARY VALUE PROBLEMS, PARTIAL DIFFERENTIAL EQUATIONS ), (* PARTIAL DIFFERENTIAL EQUATIONS , BOUNDARY VALUE PROBLEMS), (*NUMERICAL ANALYSIS, BOUNDARY VALUE PROBLEMS), FUNCTIONS(MATHEMATICS), DIFFERENCE EQUATIONS
Density Tracking by Quadrature for Stochastic Differential Equations
Bhat, Harish S.; Madushani, R. W. M. A.
2016-01-01
We develop and analyze a method, density tracking by quadrature (DTQ), to compute the probability density function of the solution of a stochastic differential equation. The derivation of the method begins with the discretization in time of the stochastic differential equation, resulting in a discrete-time Markov chain with continuous state space. At each time step, the DTQ method applies quadrature to solve the Chapman-Kolmogorov equation for this Markov chain. In this paper, we focus on a p...
Impacts of noise on a class of partial differential equations
Lv, Guangying; Duan, Jinqiao
2015-03-01
This paper is concerned with effects of noise on the solutions of partial differential equations. We first provide a sufficient condition to ensure the existence of a unique positive solution for a class of stochastic partial differential equations. Then, we prove that noise could induce singularities (finite time blow up of solutions). Finally, we show that a stochastic Allen-Cahn equation does not have finite time singularities and the unique solution exists globally.
Algebraic and geometric structures of analytic partial differential equations
Kaptsov, O. V.
2016-11-01
We study the problem of the compatibility of nonlinear partial differential equations. We introduce the algebra of convergent power series, the module of derivations of this algebra, and the module of Pfaffian forms. Systems of differential equations are given by power series in the space of infinite jets. We develop a technique for studying the compatibility of differential systems analogous to the Gröbner bases. Using certain assumptions, we prove that compatible systems generate infinite manifolds.
Goldston, J. W.
This unit introduces analytic solutions of ordinary differential equations. The objective is to enable the student to decide whether a given function solves a given differential equation. Examples of problems from biology and chemistry are covered. Problem sets, quizzes, and a model exam are included, and answers to all items are provided. The…
Effective action for stochastic partial differential equations
Hochberg, David [Laboratorio de Astrofisica Espacial y Fisica Fundamental, Apartado 50727, 28080 Madrid, (Spain); Centro de Astrobiologia, INTA, Carratera Ajalvir, Km. 4, 28850 Torrejon, Madrid, (Spain); Molina-Paris, Carmen [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Perez-Mercader, Juan [Laboratorio de Astrofisica Espacial y Fisica Fundamental, Apartado 50727, 28080 Madrid, (Spain); Visser, Matt [Physics Department, Washington University, Saint Louis, Missouri 63130-4899 (United States)
1999-12-01
Stochastic partial differential equations (SPDEs) are the basic tool for modeling systems where noise is important. SPDEs are used for models of turbulence, pattern formation, and the structural development of the universe itself. It is reasonably well known that certain SPDEs can be manipulated to be equivalent to (nonquantum) field theories that nevertheless exhibit deep and important relationships with quantum field theory. In this paper we systematically extend these ideas: We set up a functional integral formalism and demonstrate how to extract all the one-loop physics for an arbitrary SPDE subject to arbitrary Gaussian noise. It is extremely important to realize that Gaussian noise does not imply that the field variables undergo Gaussian fluctuations, and that these nonquantum field theories are fully interacting. The limitation to one loop is not as serious as might be supposed: Experience with quantum field theories (QFTs) has taught us that one-loop physics is often quite adequate to give a good description of the salient issues. The limitation to one loop does, however, offer marked technical advantages: Because at one loop almost any field theory can be rendered finite using zeta function technology, we can sidestep the complications inherent in the Martin-Siggia-Rose formalism (the SPDE analog of the Becchi-Rouet-Stora-Tyutin formalism used in QFT) and instead focus attention on a minimalist approach that uses only the physical fields (this ''direct approach'' is the SPDE analog of canonical quantization using physical fields). After setting up the general formalism for the characteristic functional (partition function), we show how to define the effective action to all loops, and then focus on the one-loop effective action and its specialization to constant fields: the effective potential. The physical interpretation of the effective action and effective potential for SPDEs is addressed and we show that key features carry over from
Effective action for stochastic partial differential equations.
Hochberg, D; Molina-París, C; Pérez-Mercader, J; Visser, M
1999-12-01
Stochastic partial differential equations (SPDEs) are the basic tool for modeling systems where noise is important. SPDEs are used for models of turbulence, pattern formation, and the structural development of the universe itself. It is reasonably well known that certain SPDEs can be manipulated to be equivalent to (nonquantum) field theories that nevertheless exhibit deep and important relationships with quantum field theory. In this paper we systematically extend these ideas: We set up a functional integral formalism and demonstrate how to extract all the one-loop physics for an arbitrary SPDE subject to arbitrary Gaussian noise. It is extremely important to realize that Gaussian noise does not imply that the field variables undergo Gaussian fluctuations, and that these nonquantum field theories are fully interacting. The limitation to one loop is not as serious as might be supposed: Experience with quantum field theories (QFTs) has taught us that one-loop physics is often quite adequate to give a good description of the salient issues. The limitation to one loop does, however, offer marked technical advantages: Because at one loop almost any field theory can be rendered finite using zeta function technology, we can sidestep the complications inherent in the Martin-Siggia-Rose formalism (the SPDE analog of the Becchi-Rouet-Stora-Tyutin formalism used in QFT) and instead focus attention on a minimalist approach that uses only the physical fields (this "direct approach" is the SPDE analog of canonical quantization using physical fields). After setting up the general formalism for the characteristic functional (partition function), we show how to define the effective action to all loops, and then focus on the one-loop effective action and its specialization to constant fields: the effective potential. The physical interpretation of the effective action and effective potential for SPDEs is addressed and we show that key features carry over from QFT to the case of
Bubble interaction dynamics in Lagrangian and Hamiltonian mechanics.
Ilinskii, Yurii A; Hamilton, Mark F; Zabolotskaya, Evgenia A
2007-02-01
Two models of interacting bubble dynamics are presented, a coupled system of second-order differential equations based on Lagrangian mechanics, and a first-order system based on Hamiltonian mechanics. Both account for pulsation and translation of an arbitrary number of spherical bubbles. For large numbers of interacting bubbles, numerical solution of the Hamiltonian equations provides greater stability. The presence of external acoustic sources is taken into account explicitly in the derivation of both sets of equations. In addition to the acoustic pressure and its gradient, it is found that the particle velocity associated with external sources appears in the dynamical equations.
FEEDBACK REALIZATION OF HAMILTONIAN SYSTEMS
CHENG Daizhan; XI Zairong
2002-01-01
This paper investigates the relationship between state feedback and Hamiltonian realizatiou. First, it is proved that a completely controllable linear system always has a state feedback state equation Hamiltonian realization. Necessary and sufficient conditions are obtained for it to have a Hamiltonian realization with natural outpnt. Then some conditions for an affine nonlinear system to have a Hamiltonian realization arc given.For generalized outputs, the conditions of the feedback, keeping Hamiltonian, are discussed. Finally, the admissible feedback controls for generalized Hamiltonian systems are considered.
FEEDBACK REALIZATION OF HAMILTONIAN SYSTEMS
CHENGDaizhan; XIZairong
2002-01-01
This paper investigates the relationship between state feedback and Hamiltonican realization.Firest,it is proved that a completely controllable linear system always has a state feedback state equation Hamiltonian realization.Necessary and sufficient conditions are obtained for it to have a Hamiltonian realization with natural output.Then some conditions for an affine nonlinear system to have a Hamiltonian realization are given.some conditions for an affine nonlinear system to have a Hamiltonian realization are given.For generalized outputs,the conditions of the feedback,keeping Hamiltonian,are discussed.Finally,the admissible feedback controls for generalized Hamiltonian systems are considered.
Painlevé analysis for nonlinear partial differential equations
Musette, M
1998-01-01
The Painlevé analysis introduced by Weiss, Tabor and Carnevale (WTC) in 1983 for nonlinear partial differential equations (PDE's) is an extension of the method initiated by Painlevé and Gambier at the beginning of this century for the classification of algebraic nonlinear differential equations (ODE's) without movable critical points. In these lectures we explain the WTC method in its invariant version introduced by Conte in 1989 and its application to solitonic equations in order to find algorithmically their associated so-called ``integrable'' equations but they are generically no more valid for equations modelising physical phenomema. Belonging to this second class, some equations called ``partially integrable'' sometimes keep remnants of integrability. In that case, the singularity analysis may also be useful for building closed form analytic solutions, which necessarily % Conte agree with the singularity structure of the equations. We display the privileged role played by the Riccati equation and syste...
In-out intermittency in partial differential equation and ordinary differential equation models.
Covas, Eurico; Tavakol, Reza; Ashwin, Peter; Tworkowski, Andrew; Brooke, John M.
2001-06-01
We find concrete evidence for a recently discovered form of intermittency, referred to as in-out intermittency, in both partial differential equation (PDE) and ordinary differential equation (ODE) models of mean field dynamos. This type of intermittency [introduced in P. Ashwin, E. Covas, and R. Tavakol, Nonlinearity 9, 563 (1999)] occurs in systems with invariant submanifolds and, as opposed to on-off intermittency which can also occur in skew product systems, it requires an absence of skew product structure. By this we mean that the dynamics on the attractor intermittent to the invariant manifold cannot be expressed simply as the dynamics on the invariant subspace forcing the transverse dynamics; the transverse dynamics will alter that tangential to the invariant subspace when one is far enough away from the invariant manifold. Since general systems with invariant submanifolds are not likely to have skew product structure, this type of behavior may be of physical relevance in a variety of dynamical settings. The models employed here to demonstrate in-out intermittency are axisymmetric mean-field dynamo models which are often used to study the observed large-scale magnetic variability in the Sun and solar-type stars. The occurrence of this type of intermittency in such models may be of interest in understanding some aspects of such variabilities. (c) 2001 American Institute of Physics.
Yan, Jinliang; Zhang, Zhiyue
2016-04-01
Two energy-preserving schemes are proposed for the "good" Boussinesq (GBq) equation using the Hamiltonian Boundary Value and Fourier pseudospectral methods. The equation is discretized in space by Fourier pseudospectral method and in time by Hamiltonian Boundary Value methods (HBVMs). The outstanding advantages of the proposed schemes are that they can precisely conserve the global mass and energy, and provide highly accurate results. The single solitary wave, the interaction of two solitary waves and the birth of solitary waves are presented to validate the accuracy and conservation properties of the proposed schemes. In addition, we also compare our numerical results with other known studied methods in terms of numerical accuracy and conservation properties.
New exact solutions to some difference differential equations
Wang Zhen; Zhang Hong-Qing
2006-01-01
In this paper, we use our method to solve the extended Lotka-Volterra equation and discrete KdV equation. With the help of Maple, we obtain a number of exact solutions to the two equations including soliton solutions presented by hyperbolic functions of sinh and cosh, periodic solutions presented by trigonometric functions of sin and cos, and rational solutions. This method can be used to solve some other nonlinear difference-differential equations.
Partial differential equations of mathematical physics and integral equations
Guenther, Ronald B
1996-01-01
This book was written to help mathematics students and those in the physical sciences learn modern mathematical techniques for setting up and analyzing problems. The mathematics used is rigorous, but not overwhelming, while the authors carefully model physical situations, emphasizing feedback among a beginning model, physical experiments, mathematical predictions, and the subsequent refinement and reevaluation of the physical model itself. Chapter 1 begins with a discussion of various physical problems and equations that play a central role in applications. The following chapters take up the t
STOCHASTIC OPTIMAL CONTROL FOR THE RESPONSE OF QUASI NON-INTEGRABLE HAMILTONIAN SYSTEMS~
DengMaolin; HongMingchao; ZhuWeiqiu
2003-01-01
A strategy is proposed based on the stochastic averaging method for quasi nonintegrable Hamiltonian systems and the stochastic dynamical programming principle. The proposed strategy can be used to design nonlinear stochastic optimal control to minimize the response of quasi non-integrable Hamiltonian systems subject to Gaussian white noise excitation. By using the stochastic averaging method for quasi non-integrable Hamiltonian systems the equations of motion of a controlled quasi non-integrable Hamiltonian system is reduced to a one-dimensional averaged Ito stochastic differential equation. By using the stochastic dynamical programming principle the dynamical programming equation for minimizing the response of the system is formulated.The optimal control law is derived from the dynamical programming equation and the bounded control constraints. The response of optimally controlled systems is predicted through solving the FPK equation associated with It5 stochastic differential equation. An example is worked out in detail to illustrate the application of the control strategy proposed.
On the relation between elementary partial difference equations and partial differential equations
van den Berg, I.P.
1998-01-01
The nonstandard stroboscopy method links discrete-time ordinary difference equations of first-order and continuous-time, ordinary differential equations of first order. We extend this method to the second order, and also to an elementary, yet general class of partial difference/differential
An introduction to partial differential equations with Matlab
Coleman, Matthew P
2013-01-01
Introduction What are Partial Differential Equations? PDEs We Can Already Solve Initial and Boundary Conditions Linear PDEs-Definitions Linear PDEs-The Principle of Superposition Separation of Variables for Linear, Homogeneous PDEs Eigenvalue Problems The Big Three PDEsSecond-Order, Linear, Homogeneous PDEs with Constant CoefficientsThe Heat Equation and Diffusion The Wave Equation and the Vibrating String Initial and Boundary Conditions for the Heat and Wave EquationsLaplace's Equation-The Potential Equation Using Separation of Variables to Solve the Big Three PDEs Fourier Series Introduction
Hilbert space methods in partial differential equations
Showalter, Ralph E
1994-01-01
This graduate-level text opens with an elementary presentation of Hilbert space theory sufficient for understanding the rest of the book. Additional topics include boundary value problems, evolution equations, optimization, and approximation.1979 edition.
Fan sub-equation method for Wick-type stochastic partial differential equations
Zhang Sheng, E-mail: zhshaeng@yahoo.com.c [Department of Mathematics, Bohai University, Jinzhou 121013 (China); School of Mathematical Sciences, Dalian University of Technology, Dalian 116024 (China); Zhang Hongqing [School of Mathematical Sciences, Dalian University of Technology, Dalian 116024 (China)
2010-09-13
An improved algorithm is devised for using Fan sub-equation method to solve Wick-type stochastic partial differential equations. Applying the improved algorithm to the Wick-type generalized stochastic KdV equation, we obtain more general Jacobi and Weierstrass elliptic function solutions, hyperbolic and trigonometric function solutions, exponential function solutions and rational solutions.
Restuccia, A. [Departamento de Física, Universidad de Antofagasta, Antofagasta, Chile and Departamento de Física, Universidad Simón Bolívar, Caracas (Venezuela, Bolivarian Republic of); Sotomayor, A. [Departamento de Matemáticas, Universidad de Antofagasta, Antofagasta (Chile)
2013-11-15
A supersymmetric breaking procedure for N= 1 super Korteweg-de Vries (KdV), using a Clifford algebra, is implemented. Dirac's method for the determination of constraints is used to obtain the Hamiltonian structure, via a Lagrangian, for the resulting solitonic system of coupled KdV type system. It is shown that the Hamiltonian obtained by this procedure is bounded from below and in that sense represents a model which is physically admissible.
Restuccia, A
2013-01-01
A supersymmetric breaking procedure for $N=1$ Super KdV, using a Clifford algebra, is implemented. Dirac's method for the determination of constraints is used to obtain the Hamiltonian structure, via a Lagrangian, for the resulting solitonic system of coupled Korteweg-de Vries type system. It is shown that the Hamiltonian obtained by this procedure is bounded from below and in that sense represents a model which is physically admissible.
An Efficient Series Solution for Nonlinear Multiterm Fractional Differential Equations
Moh’d Khier Al-Srihin
2017-01-01
Full Text Available In this paper, we introduce an efficient series solution for a class of nonlinear multiterm fractional differential equations of Caputo type. The approach is a generalization to our recent work for single fractional differential equations. We extend the idea of the Taylor series expansion method to multiterm fractional differential equations, where we overcome the difficulty of computing iterated fractional derivatives, which are difficult to be computed in general. The terms of the series are obtained sequentially using a closed formula, where only integer derivatives have to be computed. Several examples are presented to illustrate the efficiency of the new approach and comparison with the Adomian decomposition method is performed.
A neuro approach to solve fuzzy Riccati differential equations
Shahrir, Mohammad Shazri; Kumaresan, N.; Kamali, M. Z. M.; Ratnavelu, Kurunathan
2015-10-01
There are many applications of optimal control theory especially in the area of control systems in engineering. In this paper, fuzzy quadratic Riccati differential equation is estimated using neural networks (NN). Previous works have shown reliable results using Runge-Kutta 4th order (RK4). The solution can be achieved by solving the 1st Order Non-linear Differential Equation (ODE) that is found commonly in Riccati differential equation. Research has shown improved results relatively to the RK4 method. It can be said that NN approach shows promising results with the advantage of continuous estimation and improved accuracy that can be produced over RK4.
Parameter Estimation in Stochastic Differential Equations; An Overview
Nielsen, Jan Nygaard; Madsen, Henrik; Young, P. C.
2000-01-01
This paper presents an overview of the progress of research on parameter estimation methods for stochastic differential equations (mostly in the sense of Ito calculus) over the period 1981-1999. These are considered both without measurement noise and with measurement noise, where the discretely...... observed stochastic differential equations are embedded in a continuous-discrete time state space model. Every attempts has been made to include results from other scientific disciplines. Maximum likelihood estimation of parameters in nonlinear stochastic differential equations is in general not possible...
A neuro approach to solve fuzzy Riccati differential equations
Shahrir, Mohammad Shazri, E-mail: mshazri@gmail.com [InstitutSainsMatematik, Universiti Malaya 50603 Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur (Malaysia); Telekom Malaysia, R& D TM Innovation Centre, LingkaranTeknokrat Timur, 63000 Cyberjaya, Selangor (Malaysia); Kumaresan, N., E-mail: drnk2008@gmail.com; Kamali, M. Z. M.; Ratnavelu, Kurunathan [InstitutSainsMatematik, Universiti Malaya 50603 Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur (Malaysia)
2015-10-22
There are many applications of optimal control theory especially in the area of control systems in engineering. In this paper, fuzzy quadratic Riccati differential equation is estimated using neural networks (NN). Previous works have shown reliable results using Runge-Kutta 4th order (RK4). The solution can be achieved by solving the 1st Order Non-linear Differential Equation (ODE) that is found commonly in Riccati differential equation. Research has shown improved results relatively to the RK4 method. It can be said that NN approach shows promising results with the advantage of continuous estimation and improved accuracy that can be produced over RK4.
Darboux transformations and linear parabolic partial differential equations
Arrigo, Daniel J.; Hickling, Fred [Department of Mathematics, University of Central Arkansas, Conway, AR (United States)
2002-07-19
Solutions for a class of linear parabolic partial differential equation are provided. These solutions are obtained by first solving a system of (n+1) nonlinear partial differential equations. This system arises as the coefficients of a Darboux transformation and is equivalent to a matrix Burgers' equation. This matrix equation is solved using a generalized Hopf-Cole transformation. The solutions for the original equation are given in terms of solutions of the heat equation. These results are applied to the (1+1)-dimensional Schroedinger equation where all bound state solutions are obtained for a 2n-parameter family of potentials. As a special case, the solutions for integral members of the regular and modified Poeschl-Teller potentials are recovered. (author). Letter-to-the-editor.
Lipschitz Regularity of Solutions for Mixed Integro-Differential Equations
Barles, Guy; Ciomaga, Adina; Imbert, Cyril
2011-01-01
We establish new Hoelder and Lipschitz estimates for viscosity solutions of a large class of elliptic and parabolic nonlinear integro-differential equations, by the classical Ishii-Lions's method. We thus extend the Hoelder regularity results recently obtained by Barles, Chasseigne and Imbert (2011). In addition, we deal with a new class of nonlocal equations that we term mixed integro-differential equations. These equations are particularly interesting, as they are degenerate both in the local and nonlocal term, but their overall behavior is driven by the local-nonlocal interaction, e.g. the fractional diffusion may give the ellipticity in one direction and the classical diffusion in the complementary one.
A New Approach for Solving Fractional Partial Differential Equations
Fanwei Meng
2013-01-01
Full Text Available We propose a new approach for solving fractional partial differential equations based on a nonlinear fractional complex transformation and the general Riccati equation and apply it to solve the nonlinear time fractional biological population model and the (4+1-dimensional space-time fractional Fokas equation. As a result, some new exact solutions for them are obtained. This approach can be suitable for solving fractional partial differential equations with more general forms than the method proposed by S. Zhang and H.-Q. Zhang (2011.
Discretization of partial differential equations preserving their physical symmetries
Valiquette, F; Winternitz, P [Centre de Recherches Mathematiques, Universite de Montreal, C.P. 6128, succ. Centre-ville, Montreal, QC, H3C 3J7 (Canada)
2005-11-11
A procedure for obtaining a 'minimal' discretization of a partial differential equation, preserving all of its Lie point symmetries, is presented. 'Minimal' in this case means that the differential equation is replaced by a partial difference scheme involving N difference equations, where N is the number of independent and dependent variables. We restrict ourselves to one scalar function of two independent variables. As examples, invariant discretizations of the heat, Burgers and Korteweg-de Vries equations are presented. Some exact solutions of the discrete schemes are obtained.
Differential geometric formulation of the Cauchy Navier equations
Schadt, Frank
2011-01-01
The paper presents a reformulation of some of the most basic entities and equations of linear elasticity - the stress and strain tensor, the Cauchy Navier equilibrium equations, material equations for linear isotropic bodies - in a modern differential geometric language using differential forms and lie derivatives. Similar steps have been done successfully in general relativity, quantum physics and electrodynamics and are of great use in those fields. In Elasticity Theory, however, such a modern differential geometric approach is much less common. Furthermore, existing reformulations demand a vast knowledge of differential geometry, including nonstandard entities such as vector valued differential forms and the like. This paper presents a less general but more easily accessible approach to using modern differential geometry in elasticity theory than those published up to now.
Tornøe, Christoffer Wenzel; Overgaard, Rune Viig; Agerso, H.
2005-01-01
Purpose. The objective of the present analysis was to explore the use of stochastic differential equations (SDEs) in population pharmacokinetic/pharmacodynamic (PK/PD) modeling. Methods. The intra-individual variability in nonlinear mixed-effects models based on SDEs is decomposed into two types...... are illustrated through a systematic model development example using clinical PK data of the gonadotropin releasing hormone (GnRH) antagonist degarelix. The dynamic noise estimates were used to track variations in model parameters and systematically build an absorption model for subcutaneously administered...... of noise: a measurement and a system noise term. The measurement noise represents uncorrelated error due to, for example, assay error while the system noise accounts for structural misspecifications, approximations of the dynamical model, and true random physiological fluctuations. Since the system noise...
The Pullback Equation for Differential Forms
Csató, Gyula
2012-01-01
An important question in geometry and analysis is to know when two k-forms f and g are equivalent through a change of variables. The problem is therefore to find a map I so that it satisfies the pullback equation: I *(g) = f. In more physical terms, the question under consideration can be seen as a problem of mass transportation. The problem has received considerable attention in the cases k = 2 and k = n, but much less when 3 ae k ae n-1. The present monograph provides the first comprehensive study of the equation. The work begins by recounting various properties of exterior forms and differe
First-order partial differential equations
Rhee, Hyun-Ku; Amundson, Neal R
2001-01-01
Second volume of a highly regarded two-volume set, fully usable on its own, examines physical systems that can usefully be modeled by equations of the first order. Examples are drawn from a wide range of scientific and engineering disciplines. The book begins with a consideration of pairs of quasilinear hyperbolic equations of the first order and goes on to explore multicomponent chromatography, complications of counter-current moving-bed adsorbers, the adiabatic adsorption column, and chemical reaction in countercurrent reactors. Exercises appear at the end of most sections. Accessible to any
Zhang, Sheng [Department of Mathematics, Bohai University, Jinzhou 121000 (China)]. E-mail: zhshaeng@yahoo.com.cn; Xia, Tiecheng [Department of Mathematics, Bohai University, Jinzhou 121000 (China); Department of Mathematics, Shanghai University, Shanghai 200444 (China)
2007-04-09
In this Letter, a generalized new auxiliary equation method is proposed for constructing more general exact solutions of nonlinear partial differential equations. With the aid of symbolic computation, we choose the combined KdV-mKdV equation and the (2+1)-dimensional asymmetric Nizhnik-Novikov-Vesselov equations to illustrate the validity and advantages of the method. As a result, many new and more general exact solutions are obtained.