WorldWideScience

Sample records for hamiltonian deformation linear

  1. Squeezed states from a quantum deformed oscillator Hamiltonian

    Energy Technology Data Exchange (ETDEWEB)

    Ramírez, R. [IFLP, CONICET–Department of Mathematics, University of La Plata c.c. 67 1900, La Plata (Argentina); Reboiro, M., E-mail: marta.reboiro@gmail.com [IFLP, CONICET–Department of Physics, University of La Plata c.c. 67 1900, La Plata (Argentina)

    2016-03-11

    The spectrum and the time evolution of a system, which is modeled by a non-hermitian quantum deformed oscillator Hamiltonian, is analyzed. The proposed Hamiltonian is constructed from a non-standard realization of the algebra of Heisenberg. We show that, for certain values of the coupling constants and for a range of values of the deformation parameter, the deformed Hamiltonian is a pseudo-hermitic Hamiltonian. We explore the conditions under which the Hamiltonian is similar to a Swanson Hamiltonian. Also, we show that the lowest eigenstate of the system is a squeezed state. We study the time evolution of the system, for different initial states, by computing the corresponding Wigner functions. - Highlights: • A generalization of the squeezed harmonic oscillator is constructed from a non-standard realization of the Heisenberg algebra. • It is proved that, for certain values of the parameters of the model, the Hamiltonian is a pseudo-hermitian Hamiltonian. • It is shown that the lowest eigenstate of the Hamiltonian is a squeezed state. • The squeezing behavior of the associated Gazeau–Klauder state, as a function of time, is discussed.

  2. Adiabatic Hamiltonian deformation, linear response theory, and nonequilibrium molecular dynamics

    International Nuclear Information System (INIS)

    Hoover, W.G.

    1980-01-01

    Although Hamiltonians of various kinds have previously been used to derive Green-Kubo relations for the transport coefficients, the particular choice described is uniquely related to thermodynamics. This nonequilibrium Hamiltonian formulation of fluid flow provides pedagogically simple routes to nonequilibrium fluxes and distribution functions, to theoretical understanding of long-time effects, and to new numerical methods for simulating systems far from equilibrium. The same methods are now being applied to solid-phase problems. At the relatively high frequencies used in the viscous fluid calculations described, solids typically behave elastically. Lower frequencies lead to the formation of dislocations and other defects, making it possible to study plastic flow. A property of the nonequilibrium equations of motion which might be profitably explored is their effective irreversibility. Because only a few particles are necessary to generate irreversible behavior, simulations using adiabatic deformations of the kind described here could perhaps elucidate the instability in the equations of motion responsible for irreversibility

  3. Relation of deformed nonlinear algebras with linear ones

    International Nuclear Information System (INIS)

    Nowicki, A; Tkachuk, V M

    2014-01-01

    The relation between nonlinear algebras and linear ones is established. For a one-dimensional nonlinear deformed Heisenberg algebra with two operators we find the function of deformation for which this nonlinear algebra can be transformed to a linear one with three operators. We also establish the relation between the Lie algebra of total angular momentum and corresponding nonlinear one. This relation gives a possibility to simplify and to solve the eigenvalue problem for the Hamiltonian in a nonlinear case using the reduction of this problem to the case of linear algebra. It is demonstrated in an example of a harmonic oscillator. (paper)

  4. Hamiltonian structures of some non-linear evolution equations

    International Nuclear Information System (INIS)

    Tu, G.Z.

    1983-06-01

    The Hamiltonian structure of the O(2,1) non-linear sigma model, generalized AKNS equations, are discussed. By reducing the O(2,1) non-linear sigma model to its Hamiltonian form some new conservation laws are derived. A new hierarchy of non-linear evolution equations is proposed and shown to be generalized Hamiltonian equations with an infinite number of conservation laws. (author)

  5. Hamiltonian structure of linearly extended Virasoro algebra

    International Nuclear Information System (INIS)

    Arakelyan, T.A.; Savvidi, G.K.

    1991-01-01

    The Hamiltonian structure of linearly extended Virasoro algebra which admits free bosonic field representation is described. An example of a non-trivial extension is found. The hierarchy of integrable non-linear equations corresponding to this Hamiltonian structure is constructed. This hierarchy admits the Lax representation by matrix Lax operator of second order

  6. Hamiltonian structure of isospectral deformation equation and semi-classical approximation to factorized S-matrices

    International Nuclear Information System (INIS)

    Chudnovsky, D.V.; Chudnovsky, G.V.

    1980-01-01

    We consider semi-classical approximation to factorized S-matrices. We show that this new class of matrices, called s-matrices, defines Hamiltonian structures for isospectral deformation equations. Concrete examples of factorized s-matrices are constructed and they are used to define Hamiltonian structure for general two-dimensional isospectral deformation systems. (orig.)

  7. Periodic solutions of asymptotically linear Hamiltonian systems without twist conditions

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Rong [Coll. of Mathematics and Physics, Nanjing Univ. of Information Science and Tech., Nanjing (China); Dept. of Mathematics, Southeast Univ., Nanjing (China); Zhang Dongfeng [Dept. of Mathematics, Southeast Univ., Nanjing (China)

    2010-05-15

    In dynamical system theory, especially in many fields of applications from mechanics, Hamiltonian systems play an important role, since many related equations in mechanics can be written in an Hamiltonian form. In this paper, we study the existence of periodic solutions for a class of Hamiltonian systems. By applying the Galerkin approximation method together with a result of critical point theory, we establish the existence of periodic solutions of asymptotically linear Hamiltonian systems without twist conditions. Twist conditions play crucial roles in the study of periodic solutions for asymptotically linear Hamiltonian systems. The lack of twist conditions brings some difficulty to the study. To the authors' knowledge, very little is known about the case, where twist conditions do not hold. (orig.)

  8. Modular Hamiltonians for deformed half-spaces and the averaged null energy condition

    Science.gov (United States)

    Faulkner, Thomas; Leigh, Robert G.; Parrikar, Onkar; Wang, Huajia

    2016-09-01

    We study modular Hamiltonians corresponding to the vacuum state for deformed half-spaces in relativistic quantum field theories on {{R}}^{1,d-1} . We show that in addition to the usual boost generator, there is a contribution to the modular Hamiltonian at first order in the shape deformation, proportional to the integral of the null components of the stress tensor along the Rindler horizon. We use this fact along with monotonicity of relative entropy to prove the averaged null energy condition in Minkowski space-time. This subsequently gives a new proof of the Hofman-Maldacena bounds on the parameters appearing in CFT three-point functions. Our main technical advance involves adapting newly developed perturbative methods for calculating entanglement entropy to the problem at hand. These methods were recently used to prove certain results on the shape dependence of entanglement in CFTs and here we generalize these results to excited states and real time dynamics. We also discuss the AdS/CFT counterpart of this result, making connection with the recently proposed gravitational dual for modular Hamiltonians in holographic theories.

  9. A Hamiltonian functional for the linearized Einstein vacuum field equations

    International Nuclear Information System (INIS)

    Rosas-RodrIguez, R

    2005-01-01

    By considering the Einstein vacuum field equations linearized about the Minkowski metric, the evolution equations for the gauge-invariant quantities characterizing the gravitational field are written in a Hamiltonian form by using a conserved functional as Hamiltonian; this Hamiltonian is not the analog of the energy of the field. A Poisson bracket between functionals of the field, compatible with the constraints satisfied by the field variables, is obtained. The generator of spatial translations associated with such bracket is also obtained

  10. Berry phases for Landau Hamiltonians on deformed tori

    Science.gov (United States)

    Lévay, Péter

    1995-06-01

    Parametrized families of Landau Hamiltonians are introduced, where the parameter space is the Teichmüller space (topologically the complex upper half plane) corresponding to deformations of tori. The underlying SO(2,1) symmetry of the families enables an explicit calculation of the Berry phases picked up by the eigenstates when the torus is slowly deformed. It is also shown that apart from these phases that are local in origin, there are global non-Abelian ones too, related to the hidden discrete symmetry group Γϑ (the theta group, which is a subgroup of the modular group) of the families. The induced Riemannian structure on the parameter space is the usual Poincare metric on the upper half plane of constant negative curvature. Due to the discrete symmetry Γϑ the geodesic motion restricted to the fundamental domain of this group is chaotic.

  11. Nonlinearly deformed W∞ algebra and second hamiltonian structure of KP hierarchy

    International Nuclear Information System (INIS)

    Yu Feng; Wu Yongshi

    1992-01-01

    The characteristic nonlinearity of W N algebras, appropriate for their many applications in two-dimensional quantum physics, is lost in the usual large-N limits. In this paper we search for nonlinear extensions of the Virasoro algebra that incorporate all higher-spin currents with spin s≥2. We show that under certain natural homogeneity requirements, the Jacobi identities lead to a unique nonlinear, centerless deformation of classical w ∞ and W ∞ . The latter, which we call dW/dt ∞ , constitutes a universal W-algebra which is very likely to contain all W N algebras by reduction. Also it is closely related to the linear W 1+∞ by a set of interesting recursion relations, which suggests the isomorphism of dW/dt ∞ to the second hamiltonian structure of the KP hierarchy proposed by Dickey. The implications for the symmetries in two-dimensional quantum gravity and noncritical c≤1 strings in the context of the KP approach are discussed. (orig.)

  12. On the existence of star products on quotient spaces of linear Hamiltonian torus actions

    DEFF Research Database (Denmark)

    Herbig, Hans-Christian; Iyengar, Srikanth B.; Pflaum, Markus J.

    2009-01-01

    that the Koszul complex on the moment map of an effective linear Hamiltonian torus action is acyclic. We rephrase the nonpositivity condition of Arms and Gotay (Adv Math 79(1):43–103, 1990) for linear Hamiltonian torus actions. It follows that reduced spaces of such actions admit continuous star products....

  13. Focal points and principal solutions of linear Hamiltonian systems revisited

    Science.gov (United States)

    Šepitka, Peter; Šimon Hilscher, Roman

    2018-05-01

    In this paper we present a novel view on the principal (and antiprincipal) solutions of linear Hamiltonian systems, as well as on the focal points of their conjoined bases. We present a new and unified theory of principal (and antiprincipal) solutions at a finite point and at infinity, and apply it to obtain new representation of the multiplicities of right and left proper focal points of conjoined bases. We show that these multiplicities can be characterized by the abnormality of the system in a neighborhood of the given point and by the rank of the associated T-matrix from the theory of principal (and antiprincipal) solutions. We also derive some additional important results concerning the representation of T-matrices and associated normalized conjoined bases. The results in this paper are new even for completely controllable linear Hamiltonian systems. We also discuss other potential applications of our main results, in particular in the singular Sturmian theory.

  14. A Hamiltonian structure for the linearized Einstein vacuum field equations

    International Nuclear Information System (INIS)

    Torres del Castillo, G.F.

    1991-01-01

    By considering the Einstein vacuum field equations linearized about the Minkowski metric, the evolution equations for the gauge-invariant quantities characterizing the gravitational field are written in a Hamiltonian form. A Poisson bracket between functionals of the field, compatible with the constraints satisfied by the field variables, is obtained (Author)

  15. The group of Hamiltonian automorphisms of a star product

    OpenAIRE

    La Fuente-Gravy, Laurent

    2015-01-01

    We deform the group of Hamiltonian diffeomorphisms into the group of Hamiltonian automorphisms of a formal star product on a symplectic manifold. We study the geometry of that group and deform the Flux morphism in the framework of deformation quantization.

  16. The Group of Hamiltonian Automorphisms of a Star Product

    Energy Technology Data Exchange (ETDEWEB)

    La Fuente-Gravy, Laurent, E-mail: lfuente@ulg.ac.be [Université de Liège, Département de Mathématique (Belgium)

    2016-09-15

    We deform the group of Hamiltonian diffeomorphisms into a group of Hamiltonian automorphisms, Ham(M,∗), of a formal star product ∗ on a symplectic manifold (M,ω). We study the geometry of that group and deform the Flux morphism in the framework of deformation quantization.

  17. The Group of Hamiltonian Automorphisms of a Star Product

    International Nuclear Information System (INIS)

    La Fuente-Gravy, Laurent

    2016-01-01

    We deform the group of Hamiltonian diffeomorphisms into a group of Hamiltonian automorphisms, Ham(M,∗), of a formal star product ∗ on a symplectic manifold (M,ω). We study the geometry of that group and deform the Flux morphism in the framework of deformation quantization.

  18. Linearly scaling and almost Hamiltonian dielectric continuum molecular dynamics simulations through fast multipole expansions

    Energy Technology Data Exchange (ETDEWEB)

    Lorenzen, Konstantin; Mathias, Gerald; Tavan, Paul, E-mail: tavan@physik.uni-muenchen.de [Lehrstuhl für BioMolekulare Optik, Ludig–Maximilians Universität München, Oettingenstr. 67, 80538 München (Germany)

    2015-11-14

    Hamiltonian Dielectric Solvent (HADES) is a recent method [S. Bauer et al., J. Chem. Phys. 140, 104103 (2014)] which enables atomistic Hamiltonian molecular dynamics (MD) simulations of peptides and proteins in dielectric solvent continua. Such simulations become rapidly impractical for large proteins, because the computational effort of HADES scales quadratically with the number N of atoms. If one tries to achieve linear scaling by applying a fast multipole method (FMM) to the computation of the HADES electrostatics, the Hamiltonian character (conservation of total energy, linear, and angular momenta) may get lost. Here, we show that the Hamiltonian character of HADES can be almost completely preserved, if the structure-adapted fast multipole method (SAMM) as recently redesigned by Lorenzen et al. [J. Chem. Theory Comput. 10, 3244-3259 (2014)] is suitably extended and is chosen as the FMM module. By this extension, the HADES/SAMM forces become exact gradients of the HADES/SAMM energy. Their translational and rotational invariance then guarantees (within the limits of numerical accuracy) the exact conservation of the linear and angular momenta. Also, the total energy is essentially conserved—up to residual algorithmic noise, which is caused by the periodically repeated SAMM interaction list updates. These updates entail very small temporal discontinuities of the force description, because the employed SAMM approximations represent deliberately balanced compromises between accuracy and efficiency. The energy-gradient corrected version of SAMM can also be applied, of course, to MD simulations of all-atom solvent-solute systems enclosed by periodic boundary conditions. However, as we demonstrate in passing, this choice does not offer any serious advantages.

  19. Snyder noncommutativity and pseudo-Hermitian Hamiltonians from a Jordanian twist

    International Nuclear Information System (INIS)

    Castro, P.G.; Kullock, R.; Toppan, F.

    2011-01-01

    Nonrelativistic quantum mechanics and conformal quantum mechanics are de- formed through a Jordanian twist. The deformed space coordinates satisfy the Snyder noncommutativity. The resulting deformed Hamiltonians are pseudo-Hermitian Hamiltonians of the type discussed by Mostafazadeh. The quantization scheme makes use of the so-called 'unfolded formalism' discussed in previous works. A Hopf algebra structure, compatible with the physical interpretation of the coproduct, is introduced for the Universal Enveloping Algebra of a suitably chosen dynamical Lie algebra (the Hamiltonian is contained among its generators). The multi-particle sector, uniquely determined by the deformed 2-particle Hamiltonian, is composed of bosonic particles. (author)

  20. Snyder noncommutativity and pseudo-Hermitian Hamiltonians from a Jordanian twist

    Energy Technology Data Exchange (ETDEWEB)

    Castro, P.G., E-mail: pgcastro@cbpf.b [Universidade Federal de Juiz de Fora (DM/ICE/UFJF), Juiz de Fora, MG (Brazil). Inst. de Ciencias Exatas. Dept. de Matematica; Kullock, R.; Toppan, F., E-mail: ricardokl@cbpf.b, E-mail: toppan@cbpf.b [Centro Brasileiro de Pesquisas Fisicas (TEO/CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Fisica Teorica

    2011-07-01

    Nonrelativistic quantum mechanics and conformal quantum mechanics are de- formed through a Jordanian twist. The deformed space coordinates satisfy the Snyder noncommutativity. The resulting deformed Hamiltonians are pseudo-Hermitian Hamiltonians of the type discussed by Mostafazadeh. The quantization scheme makes use of the so-called 'unfolded formalism' discussed in previous works. A Hopf algebra structure, compatible with the physical interpretation of the coproduct, is introduced for the Universal Enveloping Algebra of a suitably chosen dynamical Lie algebra (the Hamiltonian is contained among its generators). The multi-particle sector, uniquely determined by the deformed 2-particle Hamiltonian, is composed of bosonic particles. (author)

  1. Riccati inequality, disconjugacy, and reciprocity principle for linear Hamiltonian dynamic systems

    Czech Academy of Sciences Publication Activity Database

    Hilscher, R.; Řehák, Pavel

    2003-01-01

    Roč. 12, č. 1 (2003), s. 171-189 ISSN 1056-2176 R&D Projects: GA ČR GA201/01/0079; GA ČR GP201/01/P041 Institutional research plan: CEZ:AV0Z1019905; CEZ:AV0Z1019905 Keywords : linear Hamiltonian dynamic systems * disconjugacy * Riccati inequality Subject RIV: BA - General Mathematics Impact factor: 0.256, year: 2002

  2. Hamiltonian PDEs and Frobenius manifolds

    International Nuclear Information System (INIS)

    Dubrovin, Boris A

    2008-01-01

    In the first part of this paper the theory of Frobenius manifolds is applied to the problem of classification of Hamiltonian systems of partial differential equations depending on a small parameter. Also developed is a deformation theory of integrable hierarchies including the subclass of integrable hierarchies of topological type. Many well-known examples of integrable hierarchies, such as the Korteweg-de Vries, non-linear Schroedinger, Toda, Boussinesq equations, and so on, belong to this subclass that also contains new integrable hierarchies. Some of these new integrable hierarchies may be important for applications. Properties of the solutions to these equations are studied in the second part. Consideration is given to the comparative study of the local properties of perturbed and unperturbed solutions near a point of gradient catastrophe. A Universality Conjecture is formulated describing the various types of critical behaviour of solutions to perturbed Hamiltonian systems near the point of gradient catastrophe of the unperturbed solution.

  3. Hamiltonian PDEs and Frobenius manifolds

    Energy Technology Data Exchange (ETDEWEB)

    Dubrovin, Boris A [Steklov Mathematical Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2008-12-31

    In the first part of this paper the theory of Frobenius manifolds is applied to the problem of classification of Hamiltonian systems of partial differential equations depending on a small parameter. Also developed is a deformation theory of integrable hierarchies including the subclass of integrable hierarchies of topological type. Many well-known examples of integrable hierarchies, such as the Korteweg-de Vries, non-linear Schroedinger, Toda, Boussinesq equations, and so on, belong to this subclass that also contains new integrable hierarchies. Some of these new integrable hierarchies may be important for applications. Properties of the solutions to these equations are studied in the second part. Consideration is given to the comparative study of the local properties of perturbed and unperturbed solutions near a point of gradient catastrophe. A Universality Conjecture is formulated describing the various types of critical behaviour of solutions to perturbed Hamiltonian systems near the point of gradient catastrophe of the unperturbed solution.

  4. On deformations of linear differential systems

    NARCIS (Netherlands)

    Gontsov, R.R.; Poberezhnyi, V.A.; Helminck, G.F.

    2011-01-01

    This article concerns deformations of meromorphic linear differential systems. Problems relating to their existence and classification are reviewed, and the global and local behaviour of solutions to deformation equations in a neighbourhood of their singular set is analysed. Certain classical

  5. Relativistic magnetohydrodynamics as a Hamiltonian system

    International Nuclear Information System (INIS)

    Holm, D.D.; Kupershmidt, A.

    1985-01-01

    The equations of ideal relativistic magnetohydrodynamics in the laboratory frame form a noncanonical Hamiltonian system with the same Poisson bracket as for the nonrelativistic system, but with dynamical variables and Hamiltonian obtained via a regular deformation of their nonrelativistic counterparts [fr

  6. Generalized space and linear momentum operators in quantum mechanics

    International Nuclear Information System (INIS)

    Costa, Bruno G. da; Borges, Ernesto P.

    2014-01-01

    We propose a modification of a recently introduced generalized translation operator, by including a q-exponential factor, which implies in the definition of a Hermitian deformed linear momentum operator p ^ q , and its canonically conjugate deformed position operator x ^ q . A canonical transformation leads the Hamiltonian of a position-dependent mass particle to another Hamiltonian of a particle with constant mass in a conservative force field of a deformed phase space. The equation of motion for the classical phase space may be expressed in terms of the generalized dual q-derivative. A position-dependent mass confined in an infinite square potential well is shown as an instance. Uncertainty and correspondence principles are analyzed

  7. Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces

    CERN Document Server

    Jacob, Birgit

    2012-01-01

    This book provides a self-contained introduction to the theory of infinite-dimensional systems theory and its applications to port-Hamiltonian systems. The textbook starts with elementary known results, then progresses smoothly to advanced topics in current research. Many physical systems can be formulated using a Hamiltonian framework, leading to models described by ordinary or partial differential equations. For the purpose of control and for the interconnection of two or more Hamiltonian systems it is essential to take into account this interaction with the environment. This book is the fir

  8. Nonautonomous linear Hamiltonian systems oscillation, spectral theory and control

    CERN Document Server

    Johnson, Russell; Novo, Sylvia; Núñez, Carmen; Fabbri, Roberta

    2016-01-01

    This monograph contains an in-depth analysis of the dynamics given by a linear Hamiltonian system of general dimension with nonautonomous bounded and uniformly continuous coefficients, without other initial assumptions on time-recurrence. Particular attention is given to the oscillation properties of the solutions as well as to a spectral theory appropriate for such systems. The book contains extensions of results which are well known when the coefficients are autonomous or periodic, as well as in the nonautonomous two-dimensional case. However, a substantial part of the theory presented here is new even in those much simpler situations. The authors make systematic use of basic facts concerning Lagrange planes and symplectic matrices, and apply some fundamental methods of topological dynamics and ergodic theory. Among the tools used in the analysis, which include Lyapunov exponents, Weyl matrices, exponential dichotomy, and weak disconjugacy, a fundamental role is played by the rotation number for linear Hami...

  9. Noncanonical Hamiltonian methods in plasma dynamics

    International Nuclear Information System (INIS)

    Kaufman, A.N.

    1981-11-01

    A Hamiltonian approach to plasma dynamics has numerous advantages over equivalent formulations which ignore the underlying Hamiltonian structure. In addition to achieving a deeper understanding of processes, Hamiltonian methods yield concise expressions (such as the Kubo form for linear susceptibility), greatly shorten the length of calculations, expose relationships (such as between the ponderomotive Hamiltonian and the linear susceptibility), determine invariants in terms of symmetry operations, and cover situations of great generality. In addition, they yield the Poincare invariants, in particular Liouville volume and adiabatic actions

  10. Hamiltonian analysis for linearly acceleration-dependent Lagrangians

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, Miguel, E-mail: miguelcruz02@uv.mx, E-mail: roussjgc@gmail.com, E-mail: molgado@fc.uaslp.mx, E-mail: efrojas@uv.mx; Gómez-Cortés, Rosario, E-mail: miguelcruz02@uv.mx, E-mail: roussjgc@gmail.com, E-mail: molgado@fc.uaslp.mx, E-mail: efrojas@uv.mx; Rojas, Efraín, E-mail: miguelcruz02@uv.mx, E-mail: roussjgc@gmail.com, E-mail: molgado@fc.uaslp.mx, E-mail: efrojas@uv.mx [Facultad de Física, Universidad Veracruzana, 91000 Xalapa, Veracruz, México (Mexico); Molgado, Alberto, E-mail: miguelcruz02@uv.mx, E-mail: roussjgc@gmail.com, E-mail: molgado@fc.uaslp.mx, E-mail: efrojas@uv.mx [Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Avenida Salvador Nava S/N Zona Universitaria, CP 78290 San Luis Potosí, SLP, México (Mexico)

    2016-06-15

    We study the constrained Ostrogradski-Hamilton framework for the equations of motion provided by mechanical systems described by second-order derivative actions with a linear dependence in the accelerations. We stress out the peculiar features provided by the surface terms arising for this type of theories and we discuss some important properties for this kind of actions in order to pave the way for the construction of a well defined quantum counterpart by means of canonical methods. In particular, we analyse in detail the constraint structure for these theories and its relation to the inherent conserved quantities where the associated energies together with a Noether charge may be identified. The constraint structure is fully analyzed without the introduction of auxiliary variables, as proposed in recent works involving higher order Lagrangians. Finally, we also provide some examples where our approach is explicitly applied and emphasize the way in which our original arrangement results in propitious for the Hamiltonian formulation of covariant field theories.

  11. Multiphonon K/sup π/+ states in even-even deformed nuclei. II. Calculation of matrix elements of a general Hamiltonian

    International Nuclear Information System (INIS)

    Silvestre-Brac, B.; Piepenbring, R.

    1978-01-01

    Matrix elements of a general Hamiltonian H in a subspace spanned by collective K/sup π/+ deformed phonons are derived with the help of recursion formulas. Various approximations are discussed both in the fermion space and in the boson space. Careful comparisons are made in the framework of a simple solvable model

  12. A position-dependent mass harmonic oscillator and deformed space

    Science.gov (United States)

    da Costa, Bruno G.; Borges, Ernesto P.

    2018-04-01

    We consider canonically conjugated generalized space and linear momentum operators x^ q and p^ q in quantum mechanics, associated with a generalized translation operator which produces infinitesimal deformed displacements controlled by a deformation parameter q. A canonical transformation (x ^ ,p ^ ) →(x^ q,p^ q ) leads the Hamiltonian of a position-dependent mass particle in usual space to another Hamiltonian of a particle with constant mass in a conservative force field of the deformed space. The equation of motion for the classical phase space (x, p) may be expressed in terms of the deformed (dual) q-derivative. We revisit the problem of a q-deformed oscillator in both classical and quantum formalisms. Particularly, this canonical transformation leads a particle with position-dependent mass in a harmonic potential to a particle with constant mass in a Morse potential. The trajectories in phase spaces (x, p) and (xq, pq) are analyzed for different values of the deformation parameter. Finally, we compare the results of the problem in classical and quantum formalisms through the principle of correspondence and the WKB approximation.

  13. A study of the linear free energy model for DNA structures using the generalized Hamiltonian formalism

    Energy Technology Data Exchange (ETDEWEB)

    Yavari, M., E-mail: yavari@iaukashan.ac.ir [Islamic Azad University, Kashan Branch (Iran, Islamic Republic of)

    2016-06-15

    We generalize the results of Nesterenko [13, 14] and Gogilidze and Surovtsev [15] for DNA structures. Using the generalized Hamiltonian formalism, we investigate solutions of the equilibrium shape equations for the linear free energy model.

  14. Quantum dynamics of a vibronically coupled linear chain using a surrogate Hamiltonian approach

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myeong H., E-mail: myeong.lee@warwick.ac.uk; Troisi, Alessandro [Department of Chemistry and Centre for Scientific Computing, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2016-06-07

    Vibronic coupling between the electronic and vibrational degrees of freedom has been reported to play an important role in charge and exciton transport in organic photovoltaic materials, molecular aggregates, and light-harvesting complexes. Explicitly accounting for effective vibrational modes rather than treating them as a thermal environment has been shown to be crucial to describe the effect of vibronic coupling. We present a methodology to study dissipative quantum dynamics of vibronically coupled systems based on a surrogate Hamiltonian approach, which is in principle not limited by Markov approximation or weak system-bath interaction, using a vibronic basis. We apply vibronic surrogate Hamiltonian method to a linear chain system and discuss how different types of relaxation process, intramolecular vibrational relaxation and intermolecular vibronic relaxation, influence population dynamics of dissipative vibronic systems.

  15. Deformed model Sp(4) model for studying pairing correlations in atomic nuclei

    CERN Document Server

    Georgieva, A I; Sviratcheva, K

    2002-01-01

    A fermion representation of the compact symplectic sp(4) algebra introduces a theoretical framework for describing pairing correlations in atomic nuclei. The important non-deformed and deformed subalgebras of sp sub ( sub q sub ) (4) and the corresponding reduction chains are explored for the multiple orbit problem. One realization of the u sub ( sub q sub ) (2) subalgebra is associated with the valence isospin, other reductions describe coupling between identical nucleons or proton-neutron pairs. Microscopic non-deformed and deformed Hamiltonians are expressed in terms of the generators of the sp(4) and sp sub q (4) algebras. In both cases eigenvalues of the isospin breaking Hamiltonian are fit to experimental ground state energies. The theory can be used to investigate the origin of the deformation and predict binding energies of nuclei in proton-rich regions. The q-deformation parameter changes the pairing strength and in so doing introduces a non-linear coupling into the collective degree of freedom

  16. Lennard-Jones triple-point bulk and shear viscosities. Green-Kubo theory, Hamiltonian mechanics, and nonequilibrium molecular dynamics

    International Nuclear Information System (INIS)

    Hoover, W.G.; Evans, D.J.; Hickman, R.B.; Ladd, A.J.C.; Ashurst, W.T.; Moran, B.

    1980-01-01

    A new Hamiltonian method for deformation simulations is related to the Green-Kubo fluctuation theory through perturbation theory and linear-response theory. Numerical results for the bulk and shear viscosity coefficients are compared to corresponding Green-Kubo calculations. Both viscosity coefficients depend similarly on frequency, in a way consistent with enhanced ''long-time tails.''

  17. Two-component feedback loops and deformed mechanics

    International Nuclear Information System (INIS)

    Tourigny, David S.

    2015-01-01

    It is shown that a general two-component feedback loop can be viewed as a deformed Hamiltonian system. Some of the implications of using ideas from theoretical physics to study biological processes are discussed. - Highlights: • Two-component molecular feedback loops are viewed as q-deformed Hamiltonian systems. • Deformations are reversed using Jackson derivatives to take advantage of working in the Hamiltonian limit. • New results are derived for the particular examples considered. • General deformations are suggested to be associated with a broader class of biological processes

  18. Quantum entangling power of adiabatically connected Hamiltonians

    International Nuclear Information System (INIS)

    Hamma, Alioscia; Zanardi, Paolo

    2004-01-01

    The space of quantum Hamiltonians has a natural partition in classes of operators that can be adiabatically deformed into each other. We consider parametric families of Hamiltonians acting on a bipartite quantum state space. When the different Hamiltonians in the family fall in the same adiabatic class, one can manipulate entanglement by moving through energy eigenstates corresponding to different values of the control parameters. We introduce an associated notion of adiabatic entangling power. This novel measure is analyzed for general dxd quantum systems, and specific two-qubit examples are studied

  19. Anyons, deformed oscillator algebras and projectors

    International Nuclear Information System (INIS)

    Engquist, Johan

    2009-01-01

    We initiate an algebraic approach to the many-anyon problem based on deformed oscillator algebras. The formalism utilizes a generalization of the deformed Heisenberg algebras underlying the operator solution of the Calogero problem. We define a many-body Hamiltonian and an angular momentum operator which are relevant for a linearized analysis in the statistical parameter ν. There exists a unique ground state and, in spite of the presence of defect lines, the anyonic weight lattices are completely connected by the application of the oscillators of the algebra. This is achieved by supplementing the oscillator algebra with a certain projector algebra.

  20. Sdg interacting boson hamiltonian in the seniority scheme

    Energy Technology Data Exchange (ETDEWEB)

    Yoshinaga, N.

    1989-03-06

    The sdg interacting boson hamiltonian is derived in the seniority scheme. We use the method of Otsuka, Arima and Iachello in order to derive the boson hamiltonian from the fermion hamiltonian. To examine how good is the boson approximation in the zeroth-order, we carry out the exact shell model calculations in a single j-shell. It is found that almost all low-lying levels are reproduced quite well by diagonalizing the sdg interacting boson hamiltonian in the vibrational case. In the deformed case the introduction of g-bosons improves the reproduction of the spectra and of the binding energies which are obtained by diagnoalizing the exact shell model hamiltonian. In particular the sdg interacting boson model reproduces well-developed rotational bands.

  1. sdg Interacting boson hamiltonian in the seniority scheme

    Science.gov (United States)

    Yoshinaga, N.

    1989-03-01

    The sdg interacting boson hamiltonian is derived in the seniority scheme. We use the method of Otsuka, Arima and Iachello in order to derive the boson hamiltonian from the fermion hamiltonian. To examine how good is the boson approximation in the zeroth-order, we carry out the exact shell model calculations in a single j-shell. It is found that almost all low-lying levels are reproduced quite well by diagonalizing the sdg interacting boson hamiltonian in the vibrational case. In the deformed case the introduction of g-bosons improves the reproduction of the spectra and of the binding energies which are obtained by diagonalizing the exact shell model hamiltonian. In particular the sdg interacting boson model reproduces well-developed rotational bands.

  2. Integrable Hamiltonian systems and spectral theory

    CERN Document Server

    Moser, J

    1981-01-01

    Classical integrable Hamiltonian systems and isospectral deformations ; geodesics on an ellipsoid and the mechanical system of C. Neumann ; the Schrödinger equation for almost periodic potentials ; finite band potentials ; limit cases, Bargmann potentials.

  3. Integrable N dimensional systems on the Hopf algebra and q deformations

    International Nuclear Information System (INIS)

    Lisitsyn, Ya.V.; Shapovalov, A.V.

    2000-01-01

    The class of integrable classic and quantum systems on the Hopf algebra, describing the n of interacting particles, is plotted. The general structure of the integrable Hamiltonian system for the Hopf algebra A(g) of the Lee simple algebra g is obtained, wherefrom it follows, that motion integrals depend on the linear combinations k of the phase space coordinates. The q-deformation standard procedure is carried out and the corresponding integrable system is obtained. The general scheme is illustrated by the examples of the sl(2), sl(3) and o(3, 1) algebras. The exact solution is achieved for the N-dimensional Hamiltonian system quantum analog on the Hopf algebra A (sl(2)) through the method of noncommutative integration of linear differential equations [ru

  4. Single-particle dynamics - Hamiltonian formulation

    International Nuclear Information System (INIS)

    Montague, B.W.

    1977-01-01

    In this paper the Hamiltonian formalism is applied to the linear theory of accelerator dynamics. The reasons for the introduction of this method rather than the more straightforward use of second order differential equations of motion are briefly discussed. An outline of Lagrangian and Hamiltonian formalism is given, some properties of the Hamiltonian are discussed and canonical transformations are illustrated. The methods are demonstrated using elementary examples such as the simple pendulum and the procedures adopted to handle specific problems in accelerator theory are indicated. (B.D.)

  5. Theory of collective Hamiltonian

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Qingying

    1982-02-01

    Starting from the cranking model, we derive the nuclear collective Hamiltonian. We expand the total energy of the collective motion of the ground state of even--even nuclei in powers of the deformation parameter ..beta... In the first approximation, we only take the lowest-order non-vanished terms in the expansion. The collective Hamiltonian thus obtained rather differs from the A. Bohr's Hamiltonian obtained by the irrotational incompressible liquid drop model. If we neglect the coupling term between ..beta..-and ..gamma..-vibration, our Hamiltonian then has the same form as that of A. Bohr. But there is a difference between these collective parameters. Our collective parameters are determined by the state of motion of the nucleous in the nuclei. They are the microscopic expressions. On the contrary, A. Bohr's collective parameters are only the simple functions of the microscopic physical quantities (such as nuclear radius and surface tension, etc.), and independent of the state of motion of the nucleons in the nuclei. Furthermore, there exist the coupling term between ..beta..-and ..gamma..-vibration and the higher-order terms in our expansion. They can be treated as the perturbations. There are no such terms in A. Bohr's Hamiltonian. These perturbation terms will influence the rotational, vibrational spectra and the ..gamma..-transition process, etc.

  6. A one-parameter family of hamiltonian structures for the KP hierarchy and a continuous deformation of the nonlinear WKP algebra

    International Nuclear Information System (INIS)

    Figueroa-O'Farrill, J.M.; Mas, J.; Ramos, E.

    1993-01-01

    The KP hierarchy is hamiltonian relative to a one-parameter family of Poisson structures obtained from a generalized Adler map in the space of formal pseudodifferential symbols with noninteger powers. The resulting W-algebra is a one-parameter deformation of W KP admitting a central extension for generic values of the parameter, reducing naturally to W n for special values of the parameter, and contracting to the centrally extended W 1+∞ , W ∞ and further truncations. In the classical limit, all algebras in the one-parameter family are equivalent and isomorphic to W KP . The reduction induced by setting the spin-one field to zero yields a one-parameter deformation of W ∞ which contracts to a new nonlinear algebra of the W ∞ -type. (orig.)

  7. Symmetries of the nuclear average field hamiltonian and a search for possible exotic equilibrium deformations in superdeformed nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Li Xunjun; Dudek, J.; Romain, P. (Centre de Recherches Nucleaires, IN2P3-CNRS, Univ. Louis Pasteur, 67 - Strasbourg (France))

    1991-11-21

    Symmetry properties of the general average-field hamiltonian-matrix resulting from the geometrical symmetries of the hamiltonian itself are derived and discussed. The corresponding numerical algorithms are constructed. Total energy calculations for superdeformed nuclei are then extended to include the usually neglected deformation modes {alpha}{sub {lambda}=3{mu}{ne}0} in the expansion of the nuclear surface expression R({theta}, {phi}; {l brace}{alpha}{r brace})=c({l brace}{alpha}{r brace})R{sub 0}(1+{Sigma}{sub {lambda}} {Sigma}{sub {mu}=-{lambda}}{sup {lambda}} {alpha}{sub {lambda}{mu}}{sup *}{Upsilon}{sub {lambda}{mu}}({theta}, {phi})). The general trends in the shell-energy dependence on {alpha}{sub {lambda}=3{mu}} and the implied instabilities in the superdeformed configurations of the rare earth nuclei are studied using the Strutinsky formula with the macroscopic part taken in the form of the folded-Yukawa plus exponential interaction. A possibility of new (double superdeformed minimum) structures coexisting in some nuclei and resulting from the proton shell effects is predicted and illustrated. No significant neutron effects are found in the rare earth superdeformed nuclei considered. (orig.).

  8. The bi-Hamiltonian structures of the Manin-Radul super KP hierarchy

    International Nuclear Information System (INIS)

    Panda, S.; Roy, S.

    1992-05-01

    We consider the ''even-time'' flow of the Manin-Radul supersymmetric KP hierarchy and show that it possesses bi-Hamiltonian structures by deriving two distinct Gelfand-Dikii brackets corresponding to two successive Hamiltonians of the system. A recursion relation involving them is also obtained. We observe that the first Hamiltonian structure defines a supersymmetric Lie algebra since it is a linear algebra among the super fields appearing in the Lax operator whereas the second Hamiltonian structure is a non-linear algebra and so it does not define a Lie algebra. (author). 25 refs

  9. Hamiltonian analysis of transverse dynamics in axisymmetric rf photoinjectors

    International Nuclear Information System (INIS)

    Wang, C.-x.

    2006-01-01

    A general Hamiltonian that governs the beam dynamics in an rf photoinjector is derived from first principles. With proper choice of coordinates, the resulting Hamiltonian has a simple and familiar form, while taking into account the rapid acceleration, rf focusing, magnetic focusing, and space-charge forces. From the linear Hamiltonian, beam-envelope evolution is readily obtained, which better illuminates the theory of emittance compensation. Preliminary results on the third-order nonlinear Hamiltonian will be given as well.

  10. Linear deformations of discrete groups and constructions of multivalued groups

    International Nuclear Information System (INIS)

    Yagodovskii, Petr V

    2000-01-01

    We construct deformations of discrete multivalued groups described as special deformations of their group algebras in the class of finite-dimensional associative algebras. We show that the deformations of ordinary groups producing multivalued groups are defined by cocycles with coefficients in the group algebra of the original group and obtain classification theorems on these deformations. We indicate a connection between the linear deformations of discrete groups introduced in this paper and the well-known constructions of multivalued groups. We describe the manifold of three-dimensional associative commutative algebras with identity element, fixed basis, and a constant number of values. The group algebras of n-valued groups of order three (three-dimensional n-group algebras) form a discrete set in this manifold

  11. The linearity of quantum mechanics from the perspective of Hamiltonian cellular automata

    International Nuclear Information System (INIS)

    Enrico Fermi, Università di Pisa, Largo Pontecorvo 3, I-56127 Pisa (Italy))" data-affiliation=" (Dipartimento di Fisica Enrico Fermi, Università di Pisa, Largo Pontecorvo 3, I-56127 Pisa (Italy))" >Elze, Hans-Thomas

    2014-01-01

    We discuss the action principle and resulting Hamiltonian equations of motion for a class of integer-valued cellular automata introduced recently [1]. Employing sampling theory, these deterministic finite-difference equations are mapped reversibly on continuum equations describing a set of bandwidth limited harmonic oscillators. They represent the Schrödinger equation. However, modifications reflecting the bandwidth limit are incorporated, i.e., the presence of a time (or length) scale. When this discreteness scale is taken to zero, the usual results are obtained. Thus, the linearity of quantum mechanics can be traced to the postulated action principle of such cellular automata and its conservation laws to discrete ones. The cellular automaton conservation laws are in one-to-one correspondence with those of the related quantum mechanical model, while admissible symmetries are not.

  12. Finite-dimensional Liouville integrable Hamiltonian systems generated from Lax pairs of a bi-Hamiltonian soliton hierarchy by symmetry constraints

    Science.gov (United States)

    Manukure, Solomon

    2018-04-01

    We construct finite-dimensional Hamiltonian systems by means of symmetry constraints from the Lax pairs and adjoint Lax pairs of a bi-Hamiltonian hierarchy of soliton equations associated with the 3-dimensional special linear Lie algebra, and discuss the Liouville integrability of these systems based on the existence of sufficiently many integrals of motion.

  13. Mechanical design of deformation compensated flexural pivots structured for linear nanopositioning stages

    Science.gov (United States)

    Shu, Deming; Kearney, Steven P.; Preissner, Curt A.

    2015-02-17

    A method and deformation compensated flexural pivots structured for precision linear nanopositioning stages are provided. A deformation-compensated flexural linear guiding mechanism includes a basic parallel mechanism including a U-shaped member and a pair of parallel bars linked to respective pairs of I-link bars and each of the I-bars coupled by a respective pair of flexural pivots. The basic parallel mechanism includes substantially evenly distributed flexural pivots minimizing center shift dynamic errors.

  14. Modelling chaotic Hamiltonian systems as a Markov Chain ...

    African Journals Online (AJOL)

    The behaviour of chaotic Hamiltonian system has been characterised qualitatively in recent times by its appearance on the Poincaré section and quantitatively by the Lyapunov exponent. Studying the dynamics of the two chaotic Hamiltonian systems: the Henon-Heiles system and non-linearly coupled oscillators as their ...

  15. Calculation model of non-linear dynamic deformation of composite multiphase rods

    Directory of Open Access Journals (Sweden)

    Mishchenko Andrey Viktorovich

    2014-05-01

    Full Text Available The method of formulating non-linear physical equations for multiphase rods is suggested in the article. Composite multiphase rods possess various structures, include shear, polar, radial and axial inhomogeneity. The Timoshenko’s hypothesis with the large rotation angles is used. The method is based on the approximation of longitudinal normal stress low by basic functions expansions regarding the linear viscosity low. The shear stresses are calculated with the equilibrium equation using the subsidiary function of the longitudinal shift force. The system of differential equations connecting the internal forces and temperature with abstract deformations are offered by the basic functions. The application of power functions with arbitrary index allows presenting the compact form equations. The functional coefficients in this system are the highest order rigidity characteristics. The whole multiphase cross-section rigidity characteristics are offered the sums of the rigidity characteristics of the same phases individually. The obtained system allows formulating the well-known particular cases. Among them: hard plasticity and linear elastic deformation, different module deformation and quadratic Gerstner’s low elastic deformation. The reform of differential equations system to the quasilinear is suggested. This system contains the secant variable rigidity characteristics depending on abstract deformations. This system includes the sum of the same uniform blocks of different order. The rods phases defined the various set of uniform blocks phase materials. The integration of dynamic, kinematic and physical equations taking into account initial and edge condition defines the full dynamical multiphase rods problem. The quasilinear physical equations allow getting the variable flexibility matrix of multiphase rod and rods system.

  16. Hamiltonian dynamics of extended objects

    Science.gov (United States)

    Capovilla, R.; Guven, J.; Rojas, E.

    2004-12-01

    We consider relativistic extended objects described by a reparametrization-invariant local action that depends on the extrinsic curvature of the worldvolume swept out by the object as it evolves. We provide a Hamiltonian formulation of the dynamics of such higher derivative models which is motivated by the ADM formulation of general relativity. The canonical momenta are identified by looking at boundary behaviour under small deformations of the action; the relationship between the momentum conjugate to the embedding functions and the conserved momentum density is established. The canonical Hamiltonian is constructed explicitly; the constraints on the phase space, both primary and secondary, are identified and the role they play in the theory is described. The multipliers implementing the primary constraints are identified in terms of the ADM lapse and shift variables and Hamilton's equations are shown to be consistent with the Euler Lagrange equations.

  17. Hamiltonian dynamics of extended objects

    International Nuclear Information System (INIS)

    Capovilla, R; Guven, J; Rojas, E

    2004-01-01

    We consider relativistic extended objects described by a reparametrization-invariant local action that depends on the extrinsic curvature of the worldvolume swept out by the object as it evolves. We provide a Hamiltonian formulation of the dynamics of such higher derivative models which is motivated by the ADM formulation of general relativity. The canonical momenta are identified by looking at boundary behaviour under small deformations of the action; the relationship between the momentum conjugate to the embedding functions and the conserved momentum density is established. The canonical Hamiltonian is constructed explicitly; the constraints on the phase space, both primary and secondary, are identified and the role they play in the theory is described. The multipliers implementing the primary constraints are identified in terms of the ADM lapse and shift variables and Hamilton's equations are shown to be consistent with the Euler-Lagrange equations

  18. Deformed fermion realization of the sp(4) algebra and its application

    International Nuclear Information System (INIS)

    Georgieva, A.I.; Sviratcheva, K.D.; Gueorguiev, V.G.; Draayer, J.P.

    2002-01-01

    Conclusions The deformed realization of sp_q(4) is based on the specific q-deformation of a two component Clifford algebra, realized in terms of creation and annihilation fermion operators. The deformed generators of Sp_q(4) close different realizations of the compact u_q(2) subalgebra. Each reduction into compact subalgebras of sp_q(4) provides for a description of a different physical model with different dynamical symmetries. While within a particular deformation scheme the basis states may either be deformed or not, the generators are always deformed as is their action on basis states. With a view towards applications, the additional parameter of the deformation gives in a Hamiltonian theory a dependence of the matrix elements on the q−deformation , which does not simply account for one more higher order of a two-body interaction, but it includes all of them through an exponential expansion in parameter κ, q = e"κ. In this way only one parameter, q, can restore the neglected non-linear terms of the residual interaction.

  19. Derivation of Hamiltonians for accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Symon, K.R.

    1997-09-12

    In this report various forms of the Hamiltonian for particle motion in an accelerator will be derived. Except where noted, the treatment will apply generally to linear and circular accelerators, storage rings, and beamlines. The generic term accelerator will be used to refer to any of these devices. The author will use the usual accelerator coordinate system, which will be introduced first, along with a list of handy formulas. He then starts from the general Hamiltonian for a particle in an electromagnetic field, using the accelerator coordinate system, with time t as independent variable. He switches to a form more convenient for most purposes using the distance s along the reference orbit as independent variable. In section 2, formulas will be derived for the vector potentials that describe the various lattice components. In sections 3, 4, and 5, special forms of the Hamiltonian will be derived for transverse horizontal and vertical motion, for longitudinal motion, and for synchrobetatron coupling of horizontal and longitudinal motions. Hamiltonians will be expanded to fourth order in the variables.

  20. RG-Whitham dynamics and complex Hamiltonian systems

    Directory of Open Access Journals (Sweden)

    A. Gorsky

    2015-06-01

    Full Text Available Inspired by the Seiberg–Witten exact solution, we consider some aspects of the Hamiltonian dynamics with the complexified phase space focusing at the renormalization group (RG-like Whitham behavior. We show that at the Argyres–Douglas (AD point the number of degrees of freedom in Hamiltonian system effectively reduces and argue that anomalous dimensions at AD point coincide with the Berry indexes in classical mechanics. In the framework of Whitham dynamics AD point turns out to be a fixed point. We demonstrate that recently discovered Dunne–Ünsal relation in quantum mechanics relevant for the exact quantization condition exactly coincides with the Whitham equation of motion in the Ω-deformed theory.

  1. Maslov index for Hamiltonian systems

    Directory of Open Access Journals (Sweden)

    Alessandro Portaluri

    2008-01-01

    Full Text Available The aim of this article is to give an explicit formula for computing the Maslov index of the fundamental solutions of linear autonomous Hamiltonian systems in terms of the Conley-Zehnder index and the map time one flow.

  2. A generalized AKNS hierarchy and its bi-Hamiltonian structures

    International Nuclear Information System (INIS)

    Xia Tiecheng; You Fucai; Chen Dengyuan

    2005-01-01

    First we construct a new isospectral problem with 8 potentials in the present paper. And then a new Lax pair is presented. By making use of Tu scheme, a class of new soliton hierarchy of equations is derived, which is integrable in the sense of Liouville and possesses bi-Hamiltonian structures. After making some reductions, the well-known AKNS hierarchy and other hierarchies of evolution equations are obtained. Finally, in order to illustrate that soliton hierarchy obtained in the paper possesses bi-Hamiltonian structures exactly, we prove that the linear combination of two-Hamiltonian operators admitted are also a Hamiltonian operator constantly. We point out that two Hamiltonian operators obtained of the system are directly derived from a recurrence relations, not from a recurrence operator

  3. Hamiltonian dynamics of extended objects

    Energy Technology Data Exchange (ETDEWEB)

    Capovilla, R [Departamento de FIsica, Centro de Investigacion y de Estudios Avanzados del IPN, Apdo Postal 14-740, 07000 Mexico, DF (Mexico); Guven, J [School of Theoretical Physics, Dublin Institute for Advanced Studies, 10 Burlington Road, Dublin 4 (Ireland); Rojas, E [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apdo Postal 70-543, 04510 Mexico, DF (Mexico)

    2004-12-07

    We consider relativistic extended objects described by a reparametrization-invariant local action that depends on the extrinsic curvature of the worldvolume swept out by the object as it evolves. We provide a Hamiltonian formulation of the dynamics of such higher derivative models which is motivated by the ADM formulation of general relativity. The canonical momenta are identified by looking at boundary behaviour under small deformations of the action; the relationship between the momentum conjugate to the embedding functions and the conserved momentum density is established. The canonical Hamiltonian is constructed explicitly; the constraints on the phase space, both primary and secondary, are identified and the role they play in the theory is described. The multipliers implementing the primary constraints are identified in terms of the ADM lapse and shift variables and Hamilton's equations are shown to be consistent with the Euler-Lagrange equations.

  4. Hamiltonian quantum simulation with bounded-strength controls

    International Nuclear Information System (INIS)

    Bookatz, Adam D; Wocjan, Pawel; Viola, Lorenza

    2014-01-01

    We propose dynamical control schemes for Hamiltonian simulation in many-body quantum systems that avoid instantaneous control operations and rely solely on realistic bounded-strength control Hamiltonians. Each simulation protocol consists of periodic repetitions of a basic control block, constructed as a modification of an ‘Eulerian decoupling cycle,’ that would otherwise implement a trivial (zero) target Hamiltonian. For an open quantum system coupled to an uncontrollable environment, our approach may be employed to engineer an effective evolution that simulates a target Hamiltonian on the system while suppressing unwanted decoherence to the leading order, thereby allowing for dynamically corrected simulation. We present illustrative applications to both closed- and open-system simulation settings, with emphasis on simulation of non-local (two-body) Hamiltonians using only local (one-body) controls. In particular, we provide simulation schemes applicable to Heisenberg-coupled spin chains exposed to general linear decoherence, and show how to simulate Kitaev's honeycomb lattice Hamiltonian starting from Ising-coupled qubits, as potentially relevant to the dynamical generation of a topologically protected quantum memory. Additional implications for quantum information processing are discussed. (papers)

  5. arXiv Lightcone Effective Hamiltonians and RG Flows

    CERN Document Server

    Fitzpatrick, A. Liam; Katz, Emanuel; Vitale, Lorenzo G.; Walters, Matthew T.

    We present a prescription for an effective lightcone (LC) Hamiltonian that includes the effects of zero modes, focusing on the case of Conformal Field Theories (CFTs) deformed by relevant operators. We show how the prescription resolves a number of issues with LC quantization, including i) the apparent non-renormalization of the vacuum, ii) discrepancies in critical values of bare parameters in equal-time vs LC quantization, and iii) an inconsistency at large N in CFTs with simple AdS duals. We describe how LC quantization can drastically simplify Hamiltonian truncation methods applied to some large N CFTs, and discuss how the prescription identifies theories where these simplifications occur. We demonstrate and check our prescription in a number of examples.

  6. Quantum Deformations and Superintegrable Motions on Spaces with Variable Curvature

    Directory of Open Access Journals (Sweden)

    Orlando Ragnisco

    2007-02-01

    Full Text Available An infinite family of quasi-maximally superintegrable Hamiltonians with a common set of (2N-3 integrals of the motion is introduced. The integrability properties of all these Hamiltonians are shown to be a consequence of a hidden non-standard quantum sl(2,R Poisson coalgebra symmetry. As a concrete application, one of this Hamiltonians is shown to generate the geodesic motion on certain manifolds with a non-constant curvature that turns out to be a function of the deformation parameter z. Moreover, another Hamiltonian in this family is shown to generate geodesic motions on Riemannian and relativistic spaces all of whose sectional curvatures are constant and equal to the deformation parameter z. This approach can be generalized to arbitrary dimension by making use of coalgebra symmetry.

  7. The Hamiltonian structure of general relativistic perfect fluids

    International Nuclear Information System (INIS)

    Bao, D.; Houston Univ., TX; Marsden, J.; Walton, R.

    1985-01-01

    We show that the evolution equations for a perfect fluid coupled to general relativity in a general lapse and shift, are Hamiltonian relative to a certain Poisson structure. For the fluid variables, a Lie-Poisson structure associated to the dual of a semi-direct product Lie algebra is used, while the bracket for the gravitational variables has the usual canonical symplectic structure. The evolution is governed by a Hamiltonian which is equivalent to that obtained from a canonical analysis. The relationship of our Hamiltonian structure with other approaches in the literature, such as Clebsch potentials, Lagrangian to Eulerian transformations, and its use in clarifying linearization stability, are discussed. (orig.)

  8. Dynamical invariants for variable quadratic Hamiltonians

    International Nuclear Information System (INIS)

    Suslov, Sergei K

    2010-01-01

    We consider linear and quadratic integrals of motion for general variable quadratic Hamiltonians. Fundamental relations between the eigenvalue problem for linear dynamical invariants and solutions of the corresponding Cauchy initial value problem for the time-dependent Schroedinger equation are emphasized. An eigenfunction expansion of the solution of the initial value problem is also found. A nonlinear superposition principle for generalized Ermakov systems is established as a result of decomposition of the general quadratic invariant in terms of the linear ones.

  9. Hamiltonian cycles in polyhedral maps

    Indian Academy of Sciences (India)

    We present a necessary and sufficient condition for existence of a contractible, non-separating and non-contractible separating Hamiltonian cycle in the edge graph of polyhedral maps on surfaces.We also present algorithms to construct such cycles whenever it exists where one of them is linear time and another is ...

  10. Bäcklund transformations and Hamiltonian flows

    International Nuclear Information System (INIS)

    Zullo, Federico

    2013-01-01

    In this work we show that, under certain conditions, parametric Bäcklund transformations for a finite dimensional integrable system can be interpreted as solutions to the equations of motion defined by an associated non-autonomous Hamiltonian. The two systems share the same constants of motion. This observation leads to the identification of the Hamiltonian interpolating the iteration of the discrete map defined by the transformations, which indeed in numerical applications can be considered a linear combination of the integrals appearing in the spectral curve of the Lax matrix. An example with the periodic Toda lattice is given. (paper)

  11. Homoclinic Orbits for a Class of Nonperiodic Hamiltonian Systems with Some Twisted Conditions

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2013-01-01

    Full Text Available By the Maslov index theory, we will study the existence and multiplicity of homoclinic orbits for a class of asymptotically linear nonperiodic Hamiltonian systems with some twisted conditions on the Hamiltonian functions.

  12. A possible method for non-Hermitian and Non-PT-symmetric Hamiltonian systems.

    Directory of Open Access Journals (Sweden)

    Jun-Qing Li

    Full Text Available A possible method to investigate non-Hermitian Hamiltonians is suggested through finding a Hermitian operator η+ and defining the annihilation and creation operators to be η+ -pseudo-Hermitian adjoint to each other. The operator η+ represents the η+ -pseudo-Hermiticity of Hamiltonians. As an example, a non-Hermitian and non-PT-symmetric Hamiltonian with imaginary linear coordinate and linear momentum terms is constructed and analyzed in detail. The operator η+ is found, based on which, a real spectrum and a positive-definite inner product, together with the probability explanation of wave functions, the orthogonality of eigenstates, and the unitarity of time evolution, are obtained for the non-Hermitian and non-PT-symmetric Hamiltonian. Moreover, this Hamiltonian turns out to be coupled when it is extended to the canonical noncommutative space with noncommutative spatial coordinate operators and noncommutative momentum operators as well. Our method is applicable to the coupled Hamiltonian. Then the first and second order noncommutative corrections of energy levels are calculated, and in particular the reality of energy spectra, the positive-definiteness of inner products, and the related properties (the probability explanation of wave functions, the orthogonality of eigenstates, and the unitarity of time evolution are found not to be altered by the noncommutativity.

  13. The Simulation and Correction to the Brain Deformation Based on the Linear Elastic Model in IGS

    Institute of Scientific and Technical Information of China (English)

    MU Xiao-lan; SONG Zhi-jian

    2004-01-01

    @@ The brain deformation is a vital factor affecting the precision of the IGS and it becomes a hotspot to simulate and correct the brain deformation recently.The research organizations, which firstly resolved the brain deformation with the physical models, have the Image Processing and Analysis department of Yale University, Biomedical Modeling Lab of Vanderbilt University and so on. The former uses the linear elastic model; the latter uses the consolidation model.The linear elastic model only needs to drive the model using the surface displacement of exposed brain cortex,which is more convenient to be measured in the clinic.

  14. Global stability and quadratic Hamiltonian structure in Lotka-Volterra and quasi-polynomial systems

    Energy Technology Data Exchange (ETDEWEB)

    Szederkenyi, Gabor; Hangos, Katalin M

    2004-04-26

    We show that the global stability of quasi-polynomial (QP) and Lotka-Volterra (LV) systems with the well-known logarithmic Lyapunov function is equivalent to the existence of a local generalized dissipative Hamiltonian description of the LV system with a diagonal quadratic form as a Hamiltonian function. The Hamiltonian function can be calculated and the quadratic dissipativity neighborhood of the origin can be estimated by solving linear matrix inequalities.

  15. Global stability and quadratic Hamiltonian structure in Lotka-Volterra and quasi-polynomial systems

    Science.gov (United States)

    Szederkényi, Gábor; Hangos, Katalin M.

    2004-04-01

    We show that the global stability of quasi-polynomial (QP) and Lotka-Volterra (LV) systems with the well-known logarithmic Lyapunov function is equivalent to the existence of a local generalized dissipative Hamiltonian description of the LV system with a diagonal quadratic form as a Hamiltonian function. The Hamiltonian function can be calculated and the quadratic dissipativity neighborhood of the origin can be estimated by solving linear matrix inequalities.

  16. Global stability and quadratic Hamiltonian structure in Lotka-Volterra and quasi-polynomial systems

    International Nuclear Information System (INIS)

    Szederkenyi, Gabor; Hangos, Katalin M.

    2004-01-01

    We show that the global stability of quasi-polynomial (QP) and Lotka-Volterra (LV) systems with the well-known logarithmic Lyapunov function is equivalent to the existence of a local generalized dissipative Hamiltonian description of the LV system with a diagonal quadratic form as a Hamiltonian function. The Hamiltonian function can be calculated and the quadratic dissipativity neighborhood of the origin can be estimated by solving linear matrix inequalities

  17. A Linear-Elasticity Solver for Higher-Order Space-Time Mesh Deformation

    Science.gov (United States)

    Diosady, Laslo T.; Murman, Scott M.

    2018-01-01

    A linear-elasticity approach is presented for the generation of meshes appropriate for a higher-order space-time discontinuous finite-element method. The equations of linear-elasticity are discretized using a higher-order, spatially-continuous, finite-element method. Given an initial finite-element mesh, and a specified boundary displacement, we solve for the mesh displacements to obtain a higher-order curvilinear mesh. Alternatively, for moving-domain problems we use the linear-elasticity approach to solve for a temporally discontinuous mesh velocity on each time-slab and recover a continuous mesh deformation by integrating the velocity. The applicability of this methodology is presented for several benchmark test cases.

  18. g Algebra and two-dimensional quasiexactly solvable Hamiltonian ...

    Indian Academy of Sciences (India)

    Keywords. g2 algebra; quasiexactly solvable Hamiltonian; hidden algebra; Poschl–Teller potential. ... space of the polynomials, restricting to a linear transformation on this space, the associ- .... The operators L6 and L7 are the positive root.

  19. Effective Hamiltonians for phosphorene and silicene

    International Nuclear Information System (INIS)

    Lew Yan Voon, L C; Lopez-Bezanilla, A; Wang, J; Zhang, Y; Willatzen, M

    2015-01-01

    We derived the effective Hamiltonians for silicene and phosphorene with strain, electric field and magnetic field using the method of invariants. Our paper extends the work of Geissler et al 2013 (New J. Phys. 15 085030) on silicene, and Li and Appelbaum 2014 (Phys. Rev. B 90, 115439) on phosphorene. Our Hamiltonians are compared to an equivalent one for graphene. For silicene, the expression for band warping is obtained analytically and found to be of different order than for graphene. We prove that a uniaxial strain does not open a gap, resolving contradictory numerical results in the literature. For phosphorene, it is shown that the bands near the Brillouin zone center only have terms in even powers of the wave vector. We predict that the energies change quadratically in the presence of a perpendicular external electric field but linearly in a perpendicular magnetic field, as opposed to those for silicene which vary linearly in both cases. Preliminary ab initio calculations for the intrinsic band structures have been carried out in order to evaluate some of the k⋅p parameters. (paper)

  20. Quantization of non-Hamiltonian physical systems

    International Nuclear Information System (INIS)

    Bolivar, A.O.

    1998-09-01

    We propose a general method of quantization of non-Hamiltonian physical systems. Applying it, for example, to a dissipative system coupled to a thermal reservoir described by the Fokker-Planck equation, we are able to obtain the Caldeira-Leggett master equation, the non-linear Schroedinger-Langevin equation and Caldirola-Kanai equation (with an additional term), as particular cases. (author)

  1. Sine-square deformation of solvable spin chains and conformal field theories

    International Nuclear Information System (INIS)

    Katsura, Hosho

    2012-01-01

    We study solvable spin chains, one-dimensional massless Dirac fermions and conformal field theories (CFTs) with sine-square deformation (SSD), in which the Hamiltonian density is modulated by the function f(x) = sin  2 (πx/ℓ), where x is the position and ℓ is the length of the system. For the XY chain and the transverse field Ising chain at criticality, it is shown that the ground state of an open system with SSD is identical to that of a uniform chain with periodic boundary conditions. The same holds for the massless Dirac fermions with SSD, corresponding to the continuum limit of the gapless XY chain. For general CFTs, we find that the Hamiltonian of a system with SSD has an expression in terms of the generators of the Virasoro algebra. This allows us to show that the vacuum state is an exact eigenstate of the sine-square deformed Hamiltonian. Furthermore, for a restricted class of CFTs associated with affine Lie (Kac–Moody) algebras, including c = 1 Gaussian CFT, we prove that the vacuum is an exact ground state of the deformed Hamiltonian. This explains why the SSD has succeeded in suppressing boundary effects in one-dimensional critical systems, as observed in previous numerical studies. (paper)

  2. Compact invariant sets of the Bianchi VIII and Bianchi IX Hamiltonian systems

    International Nuclear Information System (INIS)

    Starkov, Konstantin E.

    2011-01-01

    In this Letter we prove that all compact invariant sets of the Bianchi VIII Hamiltonian system are contained in the set described by several simple linear equalities and inequalities. Moreover, we describe invariant domains in which the phase flow of this system has no recurrence property and show that there are no periodic orbits and neither homoclinic, nor heteroclinic orbits contained in the zero level set of its Hamiltonian. Similar results are obtained for the Bianchi IX Hamiltonian system. -- Highlights: → Zero level set of Hamiltonian of Bianchi VIII/IX systems contains no periodic orbits. → Similar conditions for homoclinic/heteroclinic orbits are given. → General nonexistence conditions of compact invariant sets are got.

  3. Compact invariant sets of the Bianchi VIII and Bianchi IX Hamiltonian systems

    Energy Technology Data Exchange (ETDEWEB)

    Starkov, Konstantin E., E-mail: konst@citedi.mx [CITEDI-IPN, Av. del Parque 1310, Mesa de Otay, Tijuana, BC (Mexico)

    2011-08-22

    In this Letter we prove that all compact invariant sets of the Bianchi VIII Hamiltonian system are contained in the set described by several simple linear equalities and inequalities. Moreover, we describe invariant domains in which the phase flow of this system has no recurrence property and show that there are no periodic orbits and neither homoclinic, nor heteroclinic orbits contained in the zero level set of its Hamiltonian. Similar results are obtained for the Bianchi IX Hamiltonian system. -- Highlights: → Zero level set of Hamiltonian of Bianchi VIII/IX systems contains no periodic orbits. → Similar conditions for homoclinic/heteroclinic orbits are given. → General nonexistence conditions of compact invariant sets are got.

  4. Chiral symmetry restoration and pion properties in a q-deformed NJL model

    International Nuclear Information System (INIS)

    Timoteo, V.S.; Lima, C.L.

    2006-01-01

    We review the implementation of a q-deformed fermionic algebra in the Nambu-Jona-Lasinio model (NJL). The gap equations obtained from a deformed condensate as well as from the deformation of the NJL Hamiltonian are discussed. The effect of both temperature and deformation in the chiral symmetry restoration process as well as in the pion properties is studied. (author)

  5. Painlevé IV Hamiltonian systems and coherent states

    International Nuclear Information System (INIS)

    Bermudez, D; Contreras-Astorga, A; Fernández C, D J

    2015-01-01

    Schrödinger Hamiltonians with third-order differential ladder operators are linked to the Painlevé IV equation. Some of these appear from applying SUSY QM to the harmonic oscillator. Departing from them, we will build coherent states as eigenstates of the annihilation operator, then as displaced versions of the extremal states, both involving the third-order ladder operators, and finally as displaced extremal states using linearized ladder operators. To each Hamiltonian corresponds two families of coherent states for fixed ladder operators: one in the infinite dimension subspace associated with the oscillator spectrum and another in the finite dimension one generated by the eigenstates created by SUSY QM. (paper)

  6. Covariant description of Hamiltonian form for field dynamics

    International Nuclear Information System (INIS)

    Ozaki, Hiroshi

    2005-01-01

    Hamiltonian form of field dynamics is developed on a space-like hypersurface in space-time. A covariant Poisson bracket on the space-like hypersurface is defined and it plays a key role to describe every algebraic relation into a covariant form. It is shown that the Poisson bracket has the same symplectic structure that was brought in the covariant symplectic approach. An identity invariant under the canonical transformations is obtained. The identity follows a canonical equation in which the interaction Hamiltonian density generates a deformation of the space-like hypersurface. The equation just corresponds to the Yang-Feldman equation in the Heisenberg pictures in quantum field theory. By converting the covariant Poisson bracket on the space-like hypersurface to four-dimensional commutator, we can pass over to quantum field theory in the Heisenberg picture without spoiling the explicit relativistic covariance. As an example the canonical QCD is displayed in a covariant way on a space-like hypersurface

  7. Model Hamiltonian Calculations of the Nonlinear Polarizabilities of Conjugated Molecules.

    Science.gov (United States)

    Risser, Steven Michael

    This dissertation advances the theoretical knowledge of the nonlinear polarizabilities of conjugated molecules. The unifying feature of these molecules is an extended delocalized pi electron structure. The pi electrons dominate the electronic properties of the molecules, allowing prediction of molecular properties based on the treatment of just the pi electrons. Two separate pi electron Hamiltonians are used in the research. The principal Hamiltonian used is the non-interacting single-particle Huckel Hamiltonian, which replaces the Coulomb interaction among the pi electrons with a mean field interaction. The simplification allows for exact solution of the Hamiltonian for large molecules. The second Hamiltonian used for this research is the interacting multi-particle Pariser-Parr-Pople (PPP) Hamiltonian, which retains explicit Coulomb interactions. This limits exact solutions to molecules containing at most eight electrons. The molecular properties being investigated are the linear polarizability, and the second and third order hyperpolarizabilities. The hyperpolarizabilities determine the nonlinear optical response of materials. These molecular parameters are determined by two independent approaches. The results from the Huckel Hamiltonian are obtained through first, second and third order perturbation theory. The results from the PPP Hamiltonian are obtained by including the applied field directly in the Hamiltonian and determining the ground state energy at a series of field strengths. By fitting the energy to a polynomial in field strength, the polarizability and hyperpolarizabilities are determined. The Huckel Hamiltonian is used to calculate the third order hyperpolarizability of polyenes. These calculations were the first to show the average hyperpolarizability of the polyenes to be positive, and also to show the saturation of the hyperpolarizability. Comparison of these Huckel results to those from the PPP Hamiltonian shows the lack of explicit Coulomb

  8. Nuclear Collective Hamiltonian and Deformations; Yadernyj kollektivnyj gamil'tonian i deformatsii

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Krishna [Niels Bohr Institute, University of Copenhagen, Copenhagen (Denmark)

    1968-12-15

    The scope and limitations of a recently developed treatment of collective quadrupole motion of even-even nuclei are reviewed. This method is based on Bohr's collective Hamiltonian and the pairing-plus-quadrupole model. With an exact, numerical treatment of the couplings between the five components of quadrupole motion, the theory is able to explain and predict many trends in the low-lying levels and electromagnetic moments of nuclei in the W-Os-Pt region. The zero-point quantal motion plays an important role in spreading the nuclear wave-function in the {beta}-{gamma} plane so that the nucleus is affected essentially by the behaviour of the collective Hamiltonian away from the equilibrium shape. The {gamma} -dependence of the Hamiltonian, especially the prolate-oblate difference term of the potential function, plays a crucial role in the splitting of the 2'{sup +} and 4{sup +} states and the non-zero quadrupole moments of I {ne} 0 states, which can occur even if the equilibrium shape is spherical or completely asymmetric with {gamma} = 30 Degree-Sign . The anharmonicities of the six inertial functions of Bohr's Hamiltonian cause {beta}-{gamma} band-mixing in the W isotopes, reduce the ground-{beta}-{gamma} band-mixing in the Os isotopes, and counteract the prolate-oblate difference term so that the spectrum of the calculated {sup 196}Pt appears to be vibrational. The calculation for {sup 196}Pt gives a large, oblate quadrupole moment of the first 2{sup +} state as well as a small cross-over transition from the ground state to the second 2{sup +} state. However, the calculated 2+ states of {sup 192-196}Pt are too high by 0.1-0.2 MeV, and the calculated B(E2; 2{yields}2') values for the region are too large by about a factor of two. Some possible ways of improvement are indicated. (author) [Russian] Rassmatrivajutsja vozmozhnosti i ogranichenija nedavno razvitoj traktovki kollektivnogo kvadrupol'nogo dvizhenija v chetno-chetnyh jadrah. Jetot metod osnovan na

  9. Non-linear elastic deformations

    CERN Document Server

    Ogden, R W

    1997-01-01

    Classic in the field covers application of theory of finite elasticity to solution of boundary-value problems, analysis of mechanical properties of solid materials capable of large elastic deformations. Problems. References.

  10. Contact Hamiltonian mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Bravetti, Alessandro, E-mail: alessandro.bravetti@iimas.unam.mx [Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, A. P. 70543, México, DF 04510 (Mexico); Cruz, Hans, E-mail: hans@ciencias.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, A. P. 70543, México, DF 04510 (Mexico); Tapias, Diego, E-mail: diego.tapias@nucleares.unam.mx [Facultad de Ciencias, Universidad Nacional Autónoma de México, A.P. 70543, México, DF 04510 (Mexico)

    2017-01-15

    In this work we introduce contact Hamiltonian mechanics, an extension of symplectic Hamiltonian mechanics, and show that it is a natural candidate for a geometric description of non-dissipative and dissipative systems. For this purpose we review in detail the major features of standard symplectic Hamiltonian dynamics and show that all of them can be generalized to the contact case.

  11. Hamiltonian description of the ideal fluid

    International Nuclear Information System (INIS)

    Morrison, P.J.

    1998-01-01

    The Hamiltonian viewpoint of fluid mechanical systems with few and infinite number of degrees of freedom is described. Rudimentary concepts of finite-degree-of-freedom Hamiltonian dynamics are reviewed, in the context of the passive advection of a scalar or tracer field by a fluid. The notions of integrability, invariant-tori, chaos, overlap criteria, and invariant-tori breakup are described in this context. Preparatory to the introduction of field theories, systems with an infinite number of degrees of freedom, elements of functional calculus and action principles of mechanics are reviewed. The action principle for the ideal compressible fluid is described in terms of Lagrangian or material variables. Hamiltonian systems in terms of noncanonical variables are presented, including several examples of Eulerian or inviscid fluid dynamics. Lie group theory sufficient for the treatment of reduction is reviewed. The reduction from Lagrangian to Eulerian variables is treated along with Clebsch variable decompositions. Stability in the canonical and noncanonical Hamiltonian contexts is described. Sufficient conditions for stability, such as Rayleigh-like criteria, are seen to be only sufficient in the general case because of the existence of negative-energy modes, which are possessed by interesting fluid equilibria. Linearly stable equilibria with negative energy modes are argued to be unstable when nonlinearity or dissipation is added. The energy-Casimir method is discussed and a variant of it that depends upon the notion of dynamical accessibility is described. The energy content of a perturbation about a general fluid equilibrium is calculated using three methods. copyright 1998 The American Physical Society

  12. A partial Hamiltonian approach for current value Hamiltonian systems

    Science.gov (United States)

    Naz, R.; Mahomed, F. M.; Chaudhry, Azam

    2014-10-01

    We develop a partial Hamiltonian framework to obtain reductions and closed-form solutions via first integrals of current value Hamiltonian systems of ordinary differential equations (ODEs). The approach is algorithmic and applies to many state and costate variables of the current value Hamiltonian. However, we apply the method to models with one control, one state and one costate variable to illustrate its effectiveness. The current value Hamiltonian systems arise in economic growth theory and other economic models. We explain our approach with the help of a simple illustrative example and then apply it to two widely used economic growth models: the Ramsey model with a constant relative risk aversion (CRRA) utility function and Cobb Douglas technology and a one-sector AK model of endogenous growth are considered. We show that our newly developed systematic approach can be used to deduce results given in the literature and also to find new solutions.

  13. Deformed Fredkin spin chain with extensive entanglement

    Science.gov (United States)

    Salberger, Olof; Udagawa, Takuma; Zhang, Zhao; Katsura, Hosho; Klich, Israel; Korepin, Vladimir

    2017-06-01

    We introduce a new spin chain which is a deformation of the Fredkin spin chain and has a phase transition between bounded and extensive entanglement entropy scaling. In this chain, spins have a local interaction of three nearest neighbors. The Hamiltonian is frustration-free and its ground state can be described analytically as a weighted superposition of Dyck paths that depends on a deformation parameter t. In the purely spin 1/2 case, whenever t\

  14. Renormalization of Hamiltonians

    International Nuclear Information System (INIS)

    Glazek, S.D.; Wilson, K.G.

    1993-01-01

    This paper presents a new renormalization procedure for Hamiltonians such as those of light-front field theory. The bare Hamiltonian with an arbitrarily large, but finite cutoff, is transformed by a specially chosen similarity transformation. The similarity transformation has two desirable features. First, the transformed Hamiltonian is band diagonal: in particular, all matrix elements vanish which would otherwise have caused transitions with big energy jumps, such as from a state of bounded energy to a state with an energy of the order of the cutoff. At the same time, neither the similarity transformation nor the transformed Hamiltonian, computed in perturbation theory, contain vanishing or near-vanishing energy denominators. Instead, energy differences in denominators can be replaced by energy sums for purposes of order of magnitude estimates needed to determine cutoff dependences. These two properties make it possible to determine relatively easily the list of counterterms needed to obtain finite low energy results (such as for eigenvalues). A simple model Hamiltonian is discussed to illustrate the method

  15. The Hamiltonian structures of the super KP hierarchy associated with an even parity superlax operator

    International Nuclear Information System (INIS)

    Barcelos Neto, J.; Ghosh, S.; Roy, S.

    1993-07-01

    We consider the even parity superLax operator for the supersymmetric KP hierarchy of the form L = D 2 + Σ ∞ i=0 u i-2 D -i+1 and obtain the two Hamiltonian structures following the standard method of Gelfand and Dikii. We observe that the first Hamiltonian structure is local and linear whereas the second Hamiltonian structure is non-local and nonlinear among the superfields appearing in the Lax operator. We discuss briefly on their connections with the super ω ∞ algebra. (author). 23 refs

  16. On The Stress Free Deformation Of Linear FGM Interface Under Constant Temperature

    Directory of Open Access Journals (Sweden)

    Ganczarski Artur

    2015-09-01

    Full Text Available This paper demonstrates the stress free thermo-elastic problem of the FGM thick plate. Existence of such a purely thermal deformation is proved in two ways. First proof is based on application of the Iljushin thermo-elastic potential to displacement type system of equations. This reduces 3D problem to the plane stress state problem. Next it is shown that the unique solution fulfils conditions of simultaneous constant temperature and linear gradation of thermal expansion coefficient. Second proof is based directly on stress type system of equations which straightforwardly reduces to compatibility equations for purely thermal deformation. This occurs if only stress field is homogeneous in domain and at boundary. Finally an example of application to an engineering problem is presented.

  17. Hamiltonian kinetic theory of plasma ponderomotive processes

    International Nuclear Information System (INIS)

    McDonald, S.W.; Kaufman, A.N.

    1981-12-01

    The nonlinear nonresonant interaction of plasma waves and particles is formulated in a Hamiltonian kinetic theory which treats the wave-action and particle distributions on an equal footing, thereby displaying reciprocity relations. In the quasistatic limit, a nonlinear wave-kinetic equation is obtained. The generality of the formalism allows for applications to arbitrary geometry, with the nonlinear effects expressed in terms of the linear susceptibility

  18. Hamiltonian kinetic theory of plasma ponderomotive processes

    International Nuclear Information System (INIS)

    McDonald, S.W.; Kaufman, A.N.

    1982-01-01

    The nonlinear nonresonant interaction of plasma waves and particles is formulated in Hamiltonian kinetic theory which treats the wave-action and particle distributions on an equal footing, thereby displaying reciprocity relations. In the quasistatic limit, a nonlinear wave-kinetic equation is obtained. The generality of the formalism allows for applications to arbitrary geometry, with the nonlinear effects expressed in terms of the linear susceptibility

  19. Hamiltonian Algorithm Sound Synthesis

    OpenAIRE

    大矢, 健一

    2013-01-01

    Hamiltonian Algorithm (HA) is an algorithm for searching solutions is optimization problems. This paper introduces a sound synthesis technique using Hamiltonian Algorithm and shows a simple example. "Hamiltonian Algorithm Sound Synthesis" uses phase transition effect in HA. Because of this transition effect, totally new waveforms are produced.

  20. Identity of the SU(3) model phenomenological hamiltonian and the hamiltonian of nonaxial rotator

    International Nuclear Information System (INIS)

    Filippov, G.F.; Avramenko, V.I.; Sokolov, A.M.

    1984-01-01

    Interpretation of nonspheric atomic nuclei spectra on the basis of phenomenological hamiltonians of SU(3) model showed satisfactory agreement of simulation calculations with experimental data. Meanwhile physical sense of phenomenological hamiltonians was not yet discussed. It is shown that phenomenological hamiltonians of SU(3) model are reduced to hamiltonian of nonaxial rotator but with additional items of the third and fourth powers angular momentum operator of rotator

  1. Minimal deformation of the commutative algebra and the linear group GL(n)

    International Nuclear Information System (INIS)

    Zupnik, B.M.

    1993-01-01

    We consider the relations of generalized commutativity in the algebra of formal series M q (x i ), which conserve a tensor I q -graduation and depend on parameters q(i,k). We choose the I q -invariant version of differential calculus on M q . A new construction of the symmetrized tensor product for M q -type algebras and the corresponding definition of minimally deformed linear group QGL(n) and Lie algebra qgl(n) are proposed. We study the connection of QGL(n) and qgl(n) with the special matrix algebra Mat(n, Q) containing matrices with noncommutative elements. A definition of the deformed determinant in the algebra Mat(n, Q) is given. The exponential parametrization in the algebra Mat(n, Q) is considered on the basis of Campbell-Hausdorf formula

  2. Role of interstitial atoms in the microstructure and non-linear elastic deformation behavior of Ti–Nb alloy

    Energy Technology Data Exchange (ETDEWEB)

    Tahara, Masaki [Division of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Precision and Intelligence Laboratory, Tokyo Institute of Technology, Yokohama 226-8503 (Japan); Kim, Hee Young, E-mail: heeykim@ims.tsukuba.ac.jp [Division of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Inamura, Tomonari; Hosoda, Hideki [Precision and Intelligence Laboratory, Tokyo Institute of Technology, Yokohama 226-8503 (Japan); Miyazaki, Shuichi, E-mail: miyazaki@ims.tsukuba.ac.jp [Division of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); School of Materials Science and Engineering and ERI, Gyeongsang National University, 900 Gazwadong, Jinju, Gyeongnam 660-701 (Korea, Republic of)

    2013-11-15

    Highlights: ► {110}{sub β}〈11{sup ¯}0〉{sub β} transverse type lattice modulation is confirmed in β phase. ► Nanosized modulated region (nanodomain) distributes homogeneously and randomly. ► Nanodomains act as obstacles against the long-ranged martensitic transformation. ► The origin of non-linear elastic deformation behavior is the continuous increase in lattice distortion strain of the favorable nanodomain variant during tensile deformation. -- Abstract: In order to clarify the effect of interstitial atoms on the non-linear elastic deformation behavior of the Ti–Nb alloy, the microstructure of (Ti–26Nb)–1.0O alloy was closely investigated by transmission electron microscope (TEM) and in situ X-ray diffraction (XRD) measurements. The 〈1 1 0〉{sub β}* rel rods and {1 1 1}{sub β}* rel planes were observed in a reciprocal space for the (Ti–26Nb)–1.0O alloy. Their origin was {110}{sub β}〈11{sup ¯}0〉{sub β} transverse type lattice modulation generated by oxygen atoms. Nanosized modulated domain structure (nanodomain) distributed homogeneously and randomly in the β phase and acted as obstacles for the long-ranged martensitic transformation in the (Ti–26Nb)–1.0O alloy. The non-linear elastic strain of the (Ti–26Nb)–1.0O alloy was generated by the continuous increase in lattice distortion strain of the favorable nanodomain variant during tensile deformation.

  3. Role of interstitial atoms in the microstructure and non-linear elastic deformation behavior of Ti–Nb alloy

    International Nuclear Information System (INIS)

    Tahara, Masaki; Kim, Hee Young; Inamura, Tomonari; Hosoda, Hideki; Miyazaki, Shuichi

    2013-01-01

    Highlights: ► {110} β 〈11 ¯ 0〉 β transverse type lattice modulation is confirmed in β phase. ► Nanosized modulated region (nanodomain) distributes homogeneously and randomly. ► Nanodomains act as obstacles against the long-ranged martensitic transformation. ► The origin of non-linear elastic deformation behavior is the continuous increase in lattice distortion strain of the favorable nanodomain variant during tensile deformation. -- Abstract: In order to clarify the effect of interstitial atoms on the non-linear elastic deformation behavior of the Ti–Nb alloy, the microstructure of (Ti–26Nb)–1.0O alloy was closely investigated by transmission electron microscope (TEM) and in situ X-ray diffraction (XRD) measurements. The 〈1 1 0〉 β * rel rods and {1 1 1} β * rel planes were observed in a reciprocal space for the (Ti–26Nb)–1.0O alloy. Their origin was {110} β 〈11 ¯ 0〉 β transverse type lattice modulation generated by oxygen atoms. Nanosized modulated domain structure (nanodomain) distributed homogeneously and randomly in the β phase and acted as obstacles for the long-ranged martensitic transformation in the (Ti–26Nb)–1.0O alloy. The non-linear elastic strain of the (Ti–26Nb)–1.0O alloy was generated by the continuous increase in lattice distortion strain of the favorable nanodomain variant during tensile deformation

  4. Quantum finance Hamiltonian for coupon bond European and barrier options.

    Science.gov (United States)

    Baaquie, Belal E

    2008-03-01

    Coupon bond European and barrier options are financial derivatives that can be analyzed in the Hamiltonian formulation of quantum finance. Forward interest rates are modeled as a two-dimensional quantum field theory and its Hamiltonian and state space is defined. European and barrier options are realized as transition amplitudes of the time integrated Hamiltonian operator. The double barrier option for a financial instrument is "knocked out" (terminated with zero value) if the price of the underlying instrument exceeds or falls below preset limits; the barrier option is realized by imposing boundary conditions on the eigenfunctions of the forward interest rates' Hamiltonian. The price of the European coupon bond option and the zero coupon bond barrier option are calculated. It is shown that, is general, the constraint function for a coupon bond barrier option can -- to a good approximation -- be linearized. A calculation using an overcomplete set of eigenfunctions yields an approximate price for the coupon bond barrier option, which is given in the form of an integral of a factor that results from the barrier condition times another factor that arises from the payoff function.

  5. Interpolation approach to Hamiltonian-varying quantum systems and the adiabatic theorem

    International Nuclear Information System (INIS)

    Pan, Yu; James, Matthew R.; Miao, Zibo; Amini, Nina H.; Ugrinovskii, Valery

    2015-01-01

    Quantum control could be implemented by varying the system Hamiltonian. According to adiabatic theorem, a slowly changing Hamiltonian can approximately keep the system at the ground state during the evolution if the initial state is a ground state. In this paper we consider this process as an interpolation between the initial and final Hamiltonians. We use the mean value of a single operator to measure the distance between the final state and the ideal ground state. This measure resembles the excitation energy or excess work performed in thermodynamics, which can be taken as the error of adiabatic approximation. We prove that under certain conditions, this error can be estimated for an arbitrarily given interpolating function. This error estimation could be used as guideline to induce adiabatic evolution. According to our calculation, the adiabatic approximation error is not linearly proportional to the average speed of the variation of the system Hamiltonian and the inverse of the energy gaps in many cases. In particular, we apply this analysis to an example in which the applicability of the adiabatic theorem is questionable. (orig.)

  6. Existence of infinitely many periodic solutions for second-order nonautonomous Hamiltonian systems

    Directory of Open Access Journals (Sweden)

    Wen Guan

    2015-04-01

    Full Text Available By using minimax methods and critical point theory, we obtain infinitely many periodic solutions for a second-order nonautonomous Hamiltonian systems, when the gradient of potential energy does not exceed linear growth.

  7. An infinite family of superintegrable deformations of the Coulomb potential

    International Nuclear Information System (INIS)

    Post, Sarah; Winternitz, Pavel

    2010-01-01

    We introduce a new family of Hamiltonians with a deformed Kepler-Coulomb potential dependent on an indexing parameter k. We show that this family is superintegrable for all rational k and compute the classical trajectories and quantum wavefunctions. We show that this system is related, via coupling constant metamorphosis, to a family of superintegrable deformations of the harmonic oscillator given by Tremblay, Turbiner and Winternitz. In doing so, we prove that all Hamiltonians with an oscillator term are related by coupling constant metamorphosis to systems with a Kepler-Coulomb term, both on Euclidean space. We also look at the effect of the transformation on the integrals of the motion, the classical trajectories and the wavefunctions, and give the transformed integrals explicitly for the classical system. (fast track communication)

  8. An infinite family of superintegrable deformations of the Coulomb potential

    Energy Technology Data Exchange (ETDEWEB)

    Post, Sarah [Centre de recherches mathematiques, CP 6128 succ. Centre-Ville, Montreal, QC H3C 3J7 (Canada); Winternitz, Pavel, E-mail: post@CRM.UMontreal.C, E-mail: wintern@CRM.UMontreal.C [Centre de recherches mathematiques and Departement de mathematiques et de statistique, CP 6128 succ. Centre-Ville, Montreal, QC H3C 3J7 (Canada)

    2010-06-04

    We introduce a new family of Hamiltonians with a deformed Kepler-Coulomb potential dependent on an indexing parameter k. We show that this family is superintegrable for all rational k and compute the classical trajectories and quantum wavefunctions. We show that this system is related, via coupling constant metamorphosis, to a family of superintegrable deformations of the harmonic oscillator given by Tremblay, Turbiner and Winternitz. In doing so, we prove that all Hamiltonians with an oscillator term are related by coupling constant metamorphosis to systems with a Kepler-Coulomb term, both on Euclidean space. We also look at the effect of the transformation on the integrals of the motion, the classical trajectories and the wavefunctions, and give the transformed integrals explicitly for the classical system. (fast track communication)

  9. Consistent deformations of dual formulations of linearized gravity: A no-go result

    International Nuclear Information System (INIS)

    Bekaert, Xavier; Boulanger, Nicolas; Henneaux, Marc

    2003-01-01

    The consistent, local, smooth deformations of the dual formulation of linearized gravity involving a tensor field in the exotic representation of the Lorentz group with Young symmetry type (D-3,1) (one column of length D-3 and one column of length 1) are systematically investigated. The rigidity of the Abelian gauge algebra is first established. We next prove a no-go theorem for interactions involving at most two derivatives of the fields

  10. Hamiltonian description of the ideal fluid

    International Nuclear Information System (INIS)

    Morrison, P.J.

    1994-01-01

    Fluid mechanics is examined from a Hamiltonian perspective. The Hamiltonian point of view provides a unifying framework; by understanding the Hamiltonian perspective, one knows in advance (within bounds) what answers to expect and what kinds of procedures can be performed. The material is organized into five lectures, on the following topics: rudiments of few-degree-of-freedom Hamiltonian systems illustrated by passive advection in two-dimensional fluids; functional differentiation, two action principles of mechanics, and the action principle and canonical Hamiltonian description of the ideal fluid; noncanonical Hamiltonian dynamics with examples; tutorial on Lie groups and algebras, reduction-realization, and Clebsch variables; and stability and Hamiltonian systems

  11. Relativistic Many-Body Hamiltonian Approach to Mesons

    OpenAIRE

    Llanes-Estrada, Felipe J.; Cotanch, Stephen R.

    2001-01-01

    We represent QCD at the hadronic scale by means of an effective Hamiltonian, $H$, formulated in the Coulomb gauge. As in the Nambu-Jona-Lasinio model, chiral symmetry is explicity broken, however our approach is renormalizable and also includes confinement through a linear potential with slope specified by lattice gauge theory. This interaction generates an infrared integrable singularity and we detail the computationally intensive procedure necessary for numerical solution. We focus upon app...

  12. The Hamiltonian of Einstein affine-metric formulation of general relativity

    International Nuclear Information System (INIS)

    Kiriushcheva, N.; Kuzmin, S.V.

    2010-01-01

    It is shown that the Hamiltonian of the Einstein affine-metric (first-order) formulation of General Relativity (GR) leads to a constraint structure that allows the restoration of its unique gauge invariance, four-diffeomorphism, without the need of any field dependent redefinition of gauge parameters as in the case of the second-order formulation. In the second-order formulation of ADM gravity the need for such a redefinition is the result of the non-canonical change of variables (Xiv:0809.0097). For the first-order formulation, the necessity of such a redefinition ''to correspond to diffeomorphism invariance'' (reported by Ghalati, arXiv:0901.3344) is just an artifact of using the Henneaux-Teitelboim-Zanelli ansatz (Nucl. Phys. B 332:169, 1990), which is sensitive to the choice of linear combination of tertiary constraints. This ansatz cannot be used as an algorithm for finding a gauge invariance, which is a unique property of a physical system, and it should not be affected by different choices of linear combinations of non-primary first class constraints. The algorithm of Castellani (Ann. Phys. 143:357, 1982) is free from such a deficiency and it leads directly to four-diffeomorphism invariance for first, as well as for second-order Hamiltonian formulations of GR. The distinct role of primary first class constraints, the effect of considering different linear combinations of constraints, the canonical transformations of phase-space variables, and their interplay are discussed in some detail for Hamiltonians of the second- and first-order formulations of metric GR. The first-order formulation of Einstein-Cartan theory, which is the classical background of Loop Quantum Gravity, is also discussed. (orig.)

  13. Proton-neutron sdg boson model and spherical-deformed phase transition

    Science.gov (United States)

    Otsuka, Takaharu; Sugita, Michiaki

    1988-12-01

    The spherical-deformed phase transition in nuclei is described in terms of the proton-neutron sdg interacting boson model. The sdg hamiltonian is introduced to model the pairing+quadrupole interaction. The phase transition is reproduced in this framework as a function of the boson number in the Sm isotopes, while all parameters in the hamiltonian are kept constant at values reasonable from the shell-model point of view. The sd IBM is derived from this model through the renormalization of g-boson effects.

  14. Proton-neutron sdg boson model and spherical-deformed phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Otsuka, Takaharu; Sugita, Michiaki

    1988-12-15

    The spherical-deformed phase transition in nuclei is described in terms of the proton-neutron sdg interacting boson model. The sdg hamiltonian is introduced to model the pairing + quadrupole interaction. The phase transition is reproduced in this framework as a function of the boson number in the Sm isotopes, while all parameters in the hamiltonian are kept constant at values reasonable from the shell-model point of view. The sd IBM is derived from this model through the renormalization of g-boson effects.

  15. Multi-Hamiltonian formulations and stability of higher-derivative extensions of 3d Chern-Simons

    Energy Technology Data Exchange (ETDEWEB)

    Abakumova, V.A.; Kaparulin, D.S.; Lyakhovich, S.L. [Tomsk State University, Physics Faculty, Tomsk (Russian Federation)

    2018-02-15

    Most general third-order 3d linear gauge vector field theory is considered. The field equations involve, besides the mass, two dimensionless constant parameters. The theory admits two-parameter series of conserved tensors with the canonical energy-momentum being a particular representative of the series. For a certain range of the model parameters, the series of conserved tensors include bounded quantities. This makes the dynamics classically stable, though the canonical energy is unbounded in all the instances. The free third-order equations are shown to admit constrained multi-Hamiltonian form with the 00-components of conserved tensors playing the roles of corresponding Hamiltonians. The series of Hamiltonians includes the canonical Ostrogradski's one, which is unbounded. The Hamiltonian formulations with different Hamiltonians are not connected by canonical transformations. This means, the theory admits inequivalent quantizations at the free level. Covariant interactions are included with spinor fields such that the higher-derivative dynamics remains stable at interacting level if the bounded conserved quantity exists in the free theory. In the first-order formalism, the interacting theory remains Hamiltonian and therefore it admits quantization, though the vertices are not necessarily Lagrangian in the third-order field equations. (orig.)

  16. Supersymmetric Extension of Non-Hermitian su(2 Hamiltonian and Supercoherent States

    Directory of Open Access Journals (Sweden)

    Omar Cherbal

    2010-12-01

    Full Text Available A new class of non-Hermitian Hamiltonians with real spectrum, which are written as a real linear combination of su(2 generators in the form H=ωJ_3+αJ_−+βJ_+, α≠β, is analyzed. The metrics which allows the transition to the equivalent Hermitian Hamiltonian is established. A pseudo-Hermitian supersymmetic extension of such Hamiltonians is performed. They correspond to the pseudo-Hermitian supersymmetric systems of the boson-phermion oscillators. We extend the supercoherent states formalism to such supersymmetic systems via the pseudo-unitary supersymmetric displacement operator method. The constructed family of these supercoherent states consists of two dual subfamilies that form a bi-overcomplete and bi-normal system in the boson-phermion Fock space. The states of each subfamily are eigenvectors of the boson annihilation operator and of one of the two phermion lowering operators.

  17. Patient-specific non-linear finite element modelling for predicting soft organ deformation in real-time: application to non-rigid neuroimage registration.

    Science.gov (United States)

    Wittek, Adam; Joldes, Grand; Couton, Mathieu; Warfield, Simon K; Miller, Karol

    2010-12-01

    Long computation times of non-linear (i.e. accounting for geometric and material non-linearity) biomechanical models have been regarded as one of the key factors preventing application of such models in predicting organ deformation for image-guided surgery. This contribution presents real-time patient-specific computation of the deformation field within the brain for six cases of brain shift induced by craniotomy (i.e. surgical opening of the skull) using specialised non-linear finite element procedures implemented on a graphics processing unit (GPU). In contrast to commercial finite element codes that rely on an updated Lagrangian formulation and implicit integration in time domain for steady state solutions, our procedures utilise the total Lagrangian formulation with explicit time stepping and dynamic relaxation. We used patient-specific finite element meshes consisting of hexahedral and non-locking tetrahedral elements, together with realistic material properties for the brain tissue and appropriate contact conditions at the boundaries. The loading was defined by prescribing deformations on the brain surface under the craniotomy. Application of the computed deformation fields to register (i.e. align) the preoperative and intraoperative images indicated that the models very accurately predict the intraoperative deformations within the brain. For each case, computing the brain deformation field took less than 4 s using an NVIDIA Tesla C870 GPU, which is two orders of magnitude reduction in computation time in comparison to our previous study in which the brain deformation was predicted using a commercial finite element solver executed on a personal computer. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Hamiltonian theory of vacuum helical torus lines of magnetic force

    International Nuclear Information System (INIS)

    Gnudi, Giovanni; Hatori, Tadatsugu

    1994-01-01

    For making plasma into equilibrium state, the lines of magnetic force must have magnetic surfaces. However in a helical system, space is divided into the region having magnetic surface structure and the region that does not have it. Accordingly, it is an important basic research for the plasma confinement in a helical system to examine where is the boundary of both regions and how is the large area structure of the lines of magnetic force in the boundary region. The lines of magnetic force can be treated as a Hamilton mechanics system, and it has been proved that the Hamiltonian for the lines of magnetic force can be expressed by a set of canonical variables and the function of time. In this research, the Hamiltonian that describes the lines of magnetic force of helical system torus coordination in vacuum was successfully determined concretely. Next, the development of new linear symplectic integration method was carried out. The important supports for the theory of determining Hamiltonian are Lie transformation and paraxial expansion. The procedure is explained. In Appendix, Lie transformation, Hamiltonian for the lines of magnetic force, magnetic potential, Taylor expansion of the potential, cylindrical limit approximation, helical toroidal potential and integrable model are described. (K.I.)

  19. Q-deformed systems and constrained dynamics

    International Nuclear Information System (INIS)

    Shabanov, S.V.

    1993-01-01

    It is shown that quantum theories of the q-deformed harmonic oscillator and one-dimensional free q-particle (a free particle on the 'quantum' line) can be obtained by the canonical quantization of classical Hamiltonian systems with commutative phase-space variables and a non-trivial symplectic structure. In the framework of this approach, classical dynamics of a particle on the q-line coincides with the one of a free particle with friction. It is argued that q-deformed systems can be treated as ordinary mechanical systems with the second-class constraints. In particular, second-class constrained systems corresponding to the q-oscillator and q-particle are given. A possibility of formulating q-deformed systems via gauge theories (first-class constrained systems) is briefly discussed. (orig.)

  20. Proton-neutron sdg boson model and spherical-deformed phase transition

    International Nuclear Information System (INIS)

    Otsuka, Takaharu; Sugita, Michiaki

    1988-01-01

    The spherical-deformed phase transition in nuclei is described in terms of the proton-neutron sdg interacting boson model. The sdg hamiltonian is introduced to model the pairing + quadrupole interaction. The phase transition is reproduced in this framework as a function of the boson number in the Sm isotopes, while all parameters in the hamiltonian are kept constant at values reasonable from the shell-model point of view. The sd IBM is derived from this model through the renormalization of g-boson effects. (orig.)

  1. Nonstandard conserved Hamiltonian structures in dissipative/damped systems: Nonlinear generalizations of damped harmonic oscillator

    International Nuclear Information System (INIS)

    Pradeep, R. Gladwin; Chandrasekar, V. K.; Senthilvelan, M.; Lakshmanan, M.

    2009-01-01

    In this paper we point out the existence of a remarkable nonlocal transformation between the damped harmonic oscillator and a modified Emden-type nonlinear oscillator equation with linear forcing, xe+αxx+βx 3 +γx=0, which preserves the form of the time independent integral, conservative Hamiltonian, and the equation of motion. Generalizing this transformation we prove the existence of nonstandard conservative Hamiltonian structure for a general class of damped nonlinear oscillators including Lienard-type systems. Further, using the above Hamiltonian structure for a specific example, namely, the generalized modified Emden equation xe+αx q x+βx 2q+1 =0, where α, β, and q are arbitrary parameters, the general solution is obtained through appropriate canonical transformations. We also present the conservative Hamiltonian structure of the damped Mathews-Lakshmanan oscillator equation. The associated Lagrangian description for all the above systems is also briefly discussed.

  2. Hamiltonian analysis of a magnetoelectroelastic notch in a mode III singularity

    International Nuclear Information System (INIS)

    Zhou, Z H; Xu, X S; Leung, A Y T

    2013-01-01

    The stress intensity factor (SIF) of a multi-material magnetoelectroelastic wedge in anti-plane deformation is analytically determined by the symplectic method. The Lagrangian equations in configuration variables alone are transformed to Hamiltonian equations in dual variables (configuration and momentum) which allow the use of the method of separation of variables. The solutions of the Hamiltonian equations can be expanded analytically in terms of the symplectic eigenfunctions with coefficients to be determined by the boundary conditions. For the wedge problem, the pairs of anti-plane displacements and shear stresses, electric fields and electric displacements, and magnetic fields and magnetic inductions are proved to be the dual (momentum) variables of the configuration variables. The singularity orders depend directly on the first few eigenvalues whose real parts are less than one but greater than zero. Numerical results for various conditions show the variations of the singularity orders. In particular, special behaviors of the order of the singularity for some special wedge angles are noted. (paper)

  3. The iteration formula of the Maslov-type index theory with applications to nonlinear Hamiltonian systems

    International Nuclear Information System (INIS)

    Di Dong; Yiming Long.

    1994-10-01

    In this paper, the iteration formula of the Maslov-type index theory for linear Hamiltonian systems with continuous periodic and symmetric coefficients is established. This formula yields a new method to determine the minimality of the period for solutions of nonlinear autonomous Hamiltonian systems via their Maslov-type indices. Applications of this formula give new results on the existence of periodic solutions with prescribed minimal period for such systems. (author). 40 refs

  4. Hamiltonian formalism at light front for two-dimensional quantum electrodynamics equivalent to lorentz-covariant approach

    CERN Document Server

    Paston, S A; Prokhvatilov, E V

    2002-01-01

    The Hamiltonian, reproducing the results of the two-dimensional quantum electrodynamics in the Lorentz coordinates, is constructed on the light front. The procedure of bosonization and analysis of the boson perturbation theory in all the orders by the fermions mass are applied for this purpose. Besides the common terms, originating by the naive quantization on the light front, the obtained Hamiltonian contains an additional counterterm. It is proportional to the linear combination of the fermion zero modes (multiplied by a certain factor compensating the charge and fermion number). The coefficient before this counterterm has no ultraviolet divergence, depends on the value of the fermion condensate in the theta-vacuum and by the small fermion mass is linear by it

  5. General technique to produce isochronous Hamiltonians

    International Nuclear Information System (INIS)

    Calogero, F; Leyvraz, F

    2007-01-01

    We introduce a new technique-characterized by an arbitrary positive constant Ω, with which we associate the period T = 2π/Ω-to 'Ω-modify' a Hamiltonian so that the new Hamiltonian thereby obtained is entirely isochronous, namely it yields motions all of which (except possibly for a lower dimensional set of singular motions) are periodic with the same fixed period T in all their degrees of freedom. This technique transforms real autonomous Hamiltonians into Ω-modified Hamiltonians which are also real and autonomous, and it is widely applicable, for instance, to the most general many-body problem characterized by Newtonian equations of motion ('acceleration equal force') provided it is translation invariant. The Ω-modified Hamiltonians are of course not translation invariant, but for Ω = 0 they reduce (up to marginal changes) to the unmodified Hamiltonians they were obtained from. Hence, when this technique is applied to translation-invariant Hamiltonians yielding, in their center-of-mass systems, chaotic motions with a natural time scale much smaller than T, the corresponding Ω-modified Hamiltonians shall display a chaotic behavior for quite some time before the isochronous character of the motions takes over. We moreover show that the quantized versions of these Ω-modified Hamiltonians feature equispaced spectra

  6. Metastable states in parametrically excited multimode Hamiltonian systems

    CERN Document Server

    Kirr, E

    2003-01-01

    Consider a linear autonomous Hamiltonian system with time periodic bound state solutions. In this paper we study their dynamics under time almost periodic perturbations which are small, localized and Hamiltonian. The analysis proceeds through a reduction of the original infinite dimensional dynamical system to the dynamics of two coupled subsystems: a dominant m-dimensional system of ordinary differential equations (normal form), governing the projections onto the bound states and an infinite dimensional dispersive wave equation. The present work generalizes previous work of the authors, where the case of a single bound state is considered. Here, the interaction picture is considerably more complicated and requires deeper analysis, due to a multiplicity of bound states and the very general nature of the perturbation's time dependence. Parametric forcing induces coupling of bound states to continuum radiation modes, bound states directly to bound states, as well as coupling among bound states, which is mediate...

  7. q-Power function over q-commuting variables and deformed XXX, XXZ chains

    International Nuclear Information System (INIS)

    Khoroshkin, S.M.; Stolin, A.A.; Tolstoy, V.N.

    2001-01-01

    Certain functional identifies for the Gauss q-power function of a sum of q-commuting variables are found. Then these identifies are used to obtain two-parameter twists of the quantum affine algebra U q (sl 2 ) and of the Yangian Y(sl 2 ). The corresponding deformed trigonometric and rational quantum R matrices, which then are used in the computation of deformed XXX and XXZ Hamiltonians [ru

  8. Effective Hamiltonians for phosphorene and silicene

    DEFF Research Database (Denmark)

    Voon, L. C. Lew Yan; Lopez-Bezanilla, A.; Wang, J.

    2015-01-01

    We derived the effective Hamiltonians for silicene and phosphorene with strain, electric field andmagnetic field using the method of invariants. Our paper extends the work of Geissler et al 2013 (NewJ. Phys. 15 085030) on silicene, and Li and Appelbaum 2014 (Phys. Rev. B 90, 115439) on phosphorene.......For phosphorene, it is shown that the bands near the Brillouin zone center only have terms ineven powers of the wave vector. We predict that the energies change quadratically in the presence of aperpendicular external electric field but linearly in a perpendicular magnetic field, as opposed to thosefor silicene...

  9. Renormalization of Hamiltonian QCD

    International Nuclear Information System (INIS)

    Andrasi, A.; Taylor, John C.

    2009-01-01

    We study to one-loop order the renormalization of QCD in the Coulomb gauge using the Hamiltonian formalism. Divergences occur which might require counter-terms outside the Hamiltonian formalism, but they can be cancelled by a redefinition of the Yang-Mills electric field.

  10. Geometry of Hamiltonian chaos

    DEFF Research Database (Denmark)

    Horwitz, Lawrence; Zion, Yossi Ben; Lewkowicz, Meir

    2007-01-01

    The characterization of chaotic Hamiltonian systems in terms of the curvature associated with a Riemannian metric tensor in the structure of the Hamiltonian is extended to a wide class of potential models of standard form through definition of a conformal metric. The geodesic equations reproduce ...

  11. Magnetic field line Hamiltonian

    International Nuclear Information System (INIS)

    Boozer, A.H.

    1984-03-01

    The magnetic field line Hamiltonian and the associated canonical form for the magnetic field are important concepts both for understanding toroidal plasma physics and for practical calculations. A number of important properties of the canonical or Hamiltonian representation are derived and their importance is explained

  12. Deformation of the free surface of a conducting fluid in the magnetic field of current-carrying linear conductors

    International Nuclear Information System (INIS)

    Zubarev, N.M.; Zubareva, O.V.

    2017-01-01

    The magnetic shaping problem is studied for the situation where a cylindrical column of a perfectly conducting fluid is deformed by the magnetic field of a system of linear current-carrying conductors. Equilibrium is achieved due to the balance of capillary and magnetic pressures. Two two-parametric families of exact solutions of the problem are obtained with the help of conformal mapping technique. In accordance with them, the column essentially deforms in the cross section up to its disintegration.

  13. Deformation of the free surface of a conducting fluid in the magnetic field of current-carrying linear conductors

    Science.gov (United States)

    Zubarev, N. M.; Zubareva, O. V.

    2017-06-01

    The magnetic shaping problem is studied for the situation where a cylindrical column of a perfectly conducting fluid is deformed by the magnetic field of a system of linear current-carrying conductors. Equilibrium is achieved due to the balance of capillary and magnetic pressures. Two two-parametric families of exact solutions of the problem are obtained with the help of conformal mapping technique. In accordance with them, the column essentially deforms in the cross section up to its disintegration.

  14. Integrable and nonintegrable Hamiltonian systems

    International Nuclear Information System (INIS)

    Percival, I.

    1986-01-01

    Traditionally Hamiltonian systems with a finite number of degrees of freedom have been divided into those with few degrees of freedom which were supposed to exhibit some kind of regular ordered motions and those with large numbers of degrees of freedom for which the methods of statistical mechanics should be used. The last few decades have seen a complete change of view. The change of view affects almost all the practical applications, particularly in mathematical physics, which has been dominated for many decades by linear mathematics, coming from quantum theory. The authors consider how this change of view affects some specific applications of dynamics and also the relation between dynamical theory and applications

  15. Canonical transformations and hamiltonian path integrals

    International Nuclear Information System (INIS)

    Prokhorov, L.V.

    1982-01-01

    Behaviour of the Hamiltonian path integrals under canonical transformations produced by a generator, is investigated. An exact form is determined for the kernel of the unitary operator realizing the corresponding quantum transformation. Equivalence rules are found (the Hamiltonian formalism, one-dimensional case) enabling one to exclude non-standard terms from the action. It is shown that the Hamiltonian path integral changes its form under cononical transformations: in the transformed expression besides the classical Hamiltonian function there appear some non-classical terms

  16. Perspective: Quantum Hamiltonians for optical interactions

    Science.gov (United States)

    Andrews, David L.; Jones, Garth A.; Salam, A.; Woolley, R. Guy

    2018-01-01

    The multipolar Hamiltonian of quantum electrodynamics is extensively employed in chemical and optical physics to treat rigorously the interaction of electromagnetic fields with matter. It is also widely used to evaluate intermolecular interactions. The multipolar version of the Hamiltonian is commonly obtained by carrying out a unitary transformation of the Coulomb gauge Hamiltonian that goes by the name of Power-Zienau-Woolley (PZW). Not only does the formulation provide excellent agreement with experiment, and versatility in its predictive ability, but also superior physical insight. Recently, the foundations and validity of the PZW Hamiltonian have been questioned, raising a concern over issues of gauge transformation and invariance, and whether observable quantities obtained from unitarily equivalent Hamiltonians are identical. Here, an in-depth analysis of theoretical foundations clarifies the issues and enables misconceptions to be identified. Claims of non-physicality are refuted: the PZW transformation and ensuing Hamiltonian are shown to rest on solid physical principles and secure theoretical ground.

  17. Notch filters for port-Hamiltonian systems

    NARCIS (Netherlands)

    Dirksz, D.A.; Scherpen, J.M.A.; van der Schaft, A.J.; Steinbuch, M.

    2012-01-01

    In this paper a standard notch filter is modeled in the port-Hamiltonian framework. By having such a port-Hamiltonian description it is proven that the notch filter is a passive system. The notch filter can then be interconnected with another (nonlinear) port-Hamiltonian system, while preserving the

  18. First-principles lattice-gas Hamiltonian revisited: O-Pd(100)

    OpenAIRE

    Kappus, Wolfgang

    2016-01-01

    The methodology of deriving an adatom lattice-gas Hamiltonian (LGH) from first principles (FP) calculations is revisited. Such LGH cluster expansions compute a large set of lateral pair-, trio-, quarto interactions by solving a set of linear equations modelling regular adatom configurations and their FP energies. The basic assumption of truncating interaction terms beyond fifth nearest neighbors does not hold when adatoms show longer range interactions, e.g. substrate mediated elastic interac...

  19. Collective Hamiltonians for dipole giant resonances

    International Nuclear Information System (INIS)

    Weiss, L.I.

    1991-07-01

    The collective hamiltonian for the Giant Dipole resonance (GDR), in the Goldhaber-Teller-Model, is analytically constructed using the semiclassical and generator coordinates method. Initially a conveniently parametrized set of many body wave functions and a microscopic hamiltonian, the Skyrme hamiltonian - are used. These collective Hamiltonians are applied to the investigation of the GDR, in He 4 , O 16 and Ca 40 nuclei. Also the energies and spectra of the GDR are obtained in these nuclei. The two sets of results are compared, and the zero point energy effects analysed. (author)

  20. On the domain of the Nelson Hamiltonian

    Science.gov (United States)

    Griesemer, M.; Wünsch, A.

    2018-04-01

    The Nelson Hamiltonian is unitarily equivalent to a Hamiltonian defined through a closed, semibounded quadratic form, the unitary transformation being explicitly known and due to Gross. In this paper, we study the mapping properties of the Gross-transform in order to characterize the regularity properties of vectors in the form domain of the Nelson Hamiltonian. Since the operator domain is a subset of the form domain, our results apply to vectors in the domain of the Hamiltonian as well. This work is a continuation of our previous work on the Fröhlich Hamiltonian.

  1. Geometric Hamiltonian structures and perturbation theory

    International Nuclear Information System (INIS)

    Omohundro, S.

    1984-08-01

    We have been engaged in a program of investigating the Hamiltonian structure of the various perturbation theories used in practice. We describe the geometry of a Hamiltonian structure for non-singular perturbation theory applied to Hamiltonian systems on symplectic manifolds and the connection with singular perturbation techniques based on the method of averaging

  2. Extension of the CPT theorem to non-Hermitian Hamiltonians and unstable states

    Energy Technology Data Exchange (ETDEWEB)

    Mannheim, Philip D., E-mail: philip.mannheim@uconn.edu

    2016-02-10

    We extend the CPT theorem to quantum field theories with non-Hermitian Hamiltonians and unstable states. Our derivation is a quite minimal one as it requires only the time-independent evolution of scalar products, invariance under complex Lorentz transformations, and a non-standard but nonetheless perfectly legitimate interpretation of charge conjugation as an antilinear operator. The first of these requirements does not force the Hamiltonian to be Hermitian. Rather, it forces its eigenvalues to either be real or to appear in complex conjugate pairs, forces the eigenvectors of such conjugate pairs to be conjugates of each other, and forces the Hamiltonian to admit of an antilinear symmetry. The latter two requirements then force this antilinear symmetry to be CPT, while forcing the Hamiltonian to be real rather than Hermitian. Our work justifies the use of the CPT theorem in establishing the equality of the lifetimes of unstable particles that are charge conjugates of each other. We show that the Euclidean time path integrals of a CPT-symmetric theory must always be real. In the quantum-mechanical limit the key results of the PT symmetry program of Bender and collaborators are recovered, with the C-operator of the PT symmetry program being identified with the linear component of the charge conjugation operator.

  3. Hamiltonians and variational principles for Alfvén simple waves

    International Nuclear Information System (INIS)

    Webb, G M; Hu, Q; Roux, J A le; Dasgupta, B; Zank, G P

    2012-01-01

    The evolution equations for the magnetic field induction B with the wave phase for Alfvén simple waves are expressed as variational principles and in the Hamiltonian form. The evolution of B with the phase (which is a function of the space and time variables) depends on the generalized Frenet–Serret equations, in which the wave normal n (which is a function of the phase) is taken to be tangent to a curve X, in a 3D Cartesian geometry vector space. The physical variables (the gas density, fluid velocity, gas pressure and magnetic field induction) in the wave depend only on the phase. Three approaches are developed. One approach exploits the fact that the Frenet equations may be written as a 3D Hamiltonian system, which can be described using the Nambu bracket. It is shown that B as a function of the phase satisfies a modified version of the Frenet equations, and hence the magnetic field evolution equations can be expressed in the Hamiltonian form. A second approach develops an Euler–Poincaré variational formulation. A third approach uses the Frenet frame formulation, in which the hodograph of B moves on a sphere of constant radius and uses a stereographic projection transformation due to Darboux. The equations for the projected field components reduce to a complex Riccati equation. By using a Cole–Hopf transformation, the Riccati equation reduces to a linear second order differential equation for the new variable. A Hamiltonian formulation of the second order differential equation then allows the system to be written in the Hamiltonian form. Alignment dynamics equations for Alfvén simple waves give rise to a complex Riccati equation or, equivalently, to a quaternionic Riccati equation, which can be mapped onto the Riccati equation obtained by stereographic projection. (paper)

  4. A real nonlinear integrable couplings of continuous soliton hierarchy and its Hamiltonian structure

    International Nuclear Information System (INIS)

    Yu Fajun

    2011-01-01

    Some integrable coupling systems of existing papers are linear integrable couplings. In the Letter, beginning with Lax pairs from special non-semisimple matrix Lie algebras, we establish a scheme for constructing real nonlinear integrable couplings of continuous soliton hierarchy. A direct application to the AKNS spectral problem leads to a novel nonlinear integrable couplings, then we consider the Hamiltonian structures of nonlinear integrable couplings of AKNS hierarchy with the component-trace identity. - Highlights: → We establish a scheme to construct real nonlinear integrable couplings. → We obtain a novel nonlinear integrable couplings of AKNS hierarchy. → Hamiltonian structure of nonlinear integrable couplings AKNS hierarchy is presented.

  5. Time dependent drift Hamiltonian

    International Nuclear Information System (INIS)

    Boozer, A.H.

    1982-04-01

    The motion of individual charged particles in a given magnetic and an electric fields is discussed. An idea of a guiding center distribution function f is introduced. The guiding center distribution function is connected to the asymptotic Hamiltonian through the drift kinetic equation. The general non-stochastic magnetic field can be written in a contravariant and a covariant forms. The drift Hamiltonian is proposed, and the canonical gyroradius is presented. The proposed drift Hamiltonian agrees with Alfven's drift velocity to lowest non-vanishing order in the gyroradius. The relation between the exact, time dependent equations of motion and the guiding center equation is clarified by a Lagrangian analysis. The deduced Lagrangian represents the drift motion. (Kato, T.)

  6. Generalized Heisenberg algebra and (non linear) pseudo-bosons

    Science.gov (United States)

    Bagarello, F.; Curado, E. M. F.; Gazeau, J. P.

    2018-04-01

    We propose a deformed version of the generalized Heisenberg algebra by using techniques borrowed from the theory of pseudo-bosons. In particular, this analysis is relevant when non self-adjoint Hamiltonians are needed to describe a given physical system. We also discuss relations with nonlinear pseudo-bosons. Several examples are discussed.

  7. Magnetic field line Hamiltonian

    International Nuclear Information System (INIS)

    Boozer, A.H.

    1985-02-01

    The basic properties of the Hamiltonian representation of magnetic fields in canonical form are reviewed. The theory of canonical magnetic perturbation theory is then developed and applied to the time evolution of a magnetic field embedded in a toroidal plasma. Finally, the extension of the energy principle to tearing modes, utilizing the magnetic field line Hamiltonian, is outlined

  8. Hamiltonian closures in fluid models for plasmas

    Science.gov (United States)

    Tassi, Emanuele

    2017-11-01

    This article reviews recent activity on the Hamiltonian formulation of fluid models for plasmas in the non-dissipative limit, with emphasis on the relations between the fluid closures adopted for the different models and the Hamiltonian structures. The review focuses on results obtained during the last decade, but a few classical results are also described, in order to illustrate connections with the most recent developments. With the hope of making the review accessible not only to specialists in the field, an introduction to the mathematical tools applied in the Hamiltonian formalism for continuum models is provided. Subsequently, we review the Hamiltonian formulation of models based on the magnetohydrodynamics description, including those based on the adiabatic and double adiabatic closure. It is shown how Dirac's theory of constrained Hamiltonian systems can be applied to impose the incompressibility closure on a magnetohydrodynamic model and how an extended version of barotropic magnetohydrodynamics, accounting for two-fluid effects, is amenable to a Hamiltonian formulation. Hamiltonian reduced fluid models, valid in the presence of a strong magnetic field, are also reviewed. In particular, reduced magnetohydrodynamics and models assuming cold ions and different closures for the electron fluid are discussed. Hamiltonian models relaxing the cold-ion assumption are then introduced. These include models where finite Larmor radius effects are added by means of the gyromap technique, and gyrofluid models. Numerical simulations of Hamiltonian reduced fluid models investigating the phenomenon of magnetic reconnection are illustrated. The last part of the review concerns recent results based on the derivation of closures preserving a Hamiltonian structure, based on the Hamiltonian structure of parent kinetic models. Identification of such closures for fluid models derived from kinetic systems based on the Vlasov and drift-kinetic equations are presented, and

  9. Construction of exact invariants of time-dependent linear nonholonomic dynamical systems

    International Nuclear Information System (INIS)

    Fu Jingli; Jimenez, Salvador; Tang Yifa; Vazquez, Luis

    2008-01-01

    In this work, we build exact dynamical invariants for time-dependent, linear, nonholonomic Hamiltonian systems in two dimensions. Our aim is to obtain an additional insight into the theoretical understanding of generalized Hamilton canonical equations. In particular, we investigate systems represented by a quadratic Hamiltonian subject to linear nonholonomic constraints. We use a Lie algebraic method on the systems to build the invariants. The role and scope of these invariants is pointed out

  10. Construction of exact invariants of time-dependent linear nonholonomic dynamical systems

    Energy Technology Data Exchange (ETDEWEB)

    Fu Jingli [Institute of Mathematical Physics, Zhejiang Sci-Tech University, Hangzhou 310018 (China)], E-mail: sqfujingli@163.com; Jimenez, Salvador [Departamento de Matematica Aplicada TTII, E.T.S.I. Telecomunicacion, Universidad Politecnica de Madrid, 28040 Madrid (Spain); Tang Yifa [State Key Laboratory of Scientific and Engineering Computing, ICMSEC, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, PO Box 2719, Beijing 100080 (China); Vazquez, Luis [Departamento de Matematica Aplicada Facultad de Informatica, Universidad Complutense de Madrid, 28040 Madrid (Spain); Centro de Astrobiologia (CSIC-INTA), Torrejon de Ardoz, 28850 Madrid (Spain)

    2008-03-03

    In this work, we build exact dynamical invariants for time-dependent, linear, nonholonomic Hamiltonian systems in two dimensions. Our aim is to obtain an additional insight into the theoretical understanding of generalized Hamilton canonical equations. In particular, we investigate systems represented by a quadratic Hamiltonian subject to linear nonholonomic constraints. We use a Lie algebraic method on the systems to build the invariants. The role and scope of these invariants is pointed out.

  11. Weak form of Stokes-Dirac structures and geometric discretization of port-Hamiltonian systems

    Science.gov (United States)

    Kotyczka, Paul; Maschke, Bernhard; Lefèvre, Laurent

    2018-05-01

    We present the mixed Galerkin discretization of distributed parameter port-Hamiltonian systems. On the prototypical example of hyperbolic systems of two conservation laws in arbitrary spatial dimension, we derive the main contributions: (i) A weak formulation of the underlying geometric (Stokes-Dirac) structure with a segmented boundary according to the causality of the boundary ports. (ii) The geometric approximation of the Stokes-Dirac structure by a finite-dimensional Dirac structure is realized using a mixed Galerkin approach and power-preserving linear maps, which define minimal discrete power variables. (iii) With a consistent approximation of the Hamiltonian, we obtain finite-dimensional port-Hamiltonian state space models. By the degrees of freedom in the power-preserving maps, the resulting family of structure-preserving schemes allows for trade-offs between centered approximations and upwinding. We illustrate the method on the example of Whitney finite elements on a 2D simplicial triangulation and compare the eigenvalue approximation in 1D with a related approach.

  12. Effective field theory for triaxially deformed nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Q.B. [Technische Universitaet Muechen, Physik-Department, Garching (Germany); Peking University, State Key Laboratory of Nuclear Physics and Technology, School of Physics, Beijing (China); Kaiser, N. [Technische Universitaet Muechen, Physik-Department, Garching (Germany); Meissner, Ulf G. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Bonn (Germany); Institute for Advanced Simulation, Institut fuer Kernphysik, Juelich Center for Hadron Physics and JARA-HPC, Forschungszentrum Juelich, Juelich (Germany); Meng, J. [Peking University, State Key Laboratory of Nuclear Physics and Technology, School of Physics, Beijing (China); Beihang University, School of Physics and Nuclear Energy Engineering, Beijing (China); University of Stellenbosch, Department of Physics, Stellenbosch (South Africa)

    2017-10-15

    Effective field theory is generalized to investigate the rotational motion of triaxially deformed even-even nuclei. The Hamiltonian for the triaxial rotor is obtained up to next-to-leading order within the effective field theory formalism. Its applicability is examined by comparing with a five-dimensional rotor-vibrator Hamiltonian for the description of the energy spectra of the ground state and γ band in Ru isotopes. It is found that by taking into account the next-to-leading order corrections, the ground state band in the whole spin region and the γ band in the low spin region are well described. The deviations for high-spin states in the γ bands point towards the importance of including vibrational degrees of freedom in the effective field theory formulation. (orig.)

  13. The Hamiltonian of QED. Zero mode

    International Nuclear Information System (INIS)

    Zastavenko, L.G.

    1990-01-01

    We start with the standard QED Lagrangian. New derivation of the spinor QED Hamiltonian is given. We have taken into account the zero mode. Our derivation is faultless from the point of view of gauge invariance. It gives important corrections to the standard QED Hamiltonian. Our derivation of the Hamiltonian can be generalized to the case of QCD. 5 refs

  14. Dissipative systems and Bateman's Hamiltonian

    International Nuclear Information System (INIS)

    Pedrosa, I.A.; Baseia, B.

    1983-01-01

    It is shown, by using canonical transformations, that one can construct Bateman's Hamiltonian from a Hamiltonian for a conservative system and obtain a clear physical interpretation which explains the ambiguities emerging from its application to describe dissipative systems. (Author) [pt

  15. Diagonalization of Hamiltonian; Diagonalization of Hamiltonian

    Energy Technology Data Exchange (ETDEWEB)

    Garrido, L M; Pascual, P

    1960-07-01

    We present a general method to diagonalized the Hamiltonian of particles of arbitrary spin. In particular we study the cases of spin 0,1/2, 1 and see that for spin 1/2 our transformation agrees with Foldy's and obtain the expression for different observables for particles of spin C and 1 in the new representation. (Author) 7 refs.

  16. A study of thermal deformation in the carriage of a permanent magnet direct drive linear motor stage

    International Nuclear Information System (INIS)

    Chow, J.H.; Zhong, Z.W.; Lin, W.; Khoo, L.P.

    2012-01-01

    Carriage deformation due to temperature gradients within the materials of the carriage affects the accuracy of precision machines. This is largely due to the indeterminist temperature distribution in the carriage's material caused by the non-linearity of heat transfer. The joule heat from the motor coil forms the main heat source. When coupled with the heat loss through convection and radiation, the temperature variation in the motor's carriage also increases. In this study, the Finite Element Analysis was used together with a set of boundary conditions, which was obtained empirically, to analyze the distortion of the motor's carriage. The simulated results were compared with those obtained through experiments. The study shows that it is important to know, rather than to assume, the thermal boundary conditions of the motor's carriage of a precision machine in order to accurately estimate the thermal deformation of the carriage in precision machining. - Highlights: ► Deformation occurs in carriages which are mounted with linear motor. ► The convective coefficient, which is assumed to be 10 W mm −2 , is shown to be invalid. ► The perfect contact conductance is shown to be invalid too. ► To have an accurate thermal model, boundary conditions have to be realistic. ► Boundary conditions are the heat source, convective and conductance values.

  17. On the relationship between modifications to the Raychaudhuri equation and the canonical Hamiltonian structures

    International Nuclear Information System (INIS)

    Singh, Parampreet; Soni, S K

    2016-01-01

    The problem of obtaining canonical Hamiltonian structures from the equations of motion, without any knowledge of the action, is studied in the context of the spatially flat Friedmann, ‘Robertson’, and Walker models. Modifications to the Raychaudhuri equation are implemented independently as quadratic and cubic terms of energy density without introducing additional degrees of freedom. Depending on their sign, modifications make gravity repulsive above a curvature scale for matter satisfying strong energy conditions, or more attractive than in the classical theory. The canonical structure of the modified theories is determined by demanding that the total Hamiltonian be a linear combination of gravity and matter Hamiltonians. In the quadratic repulsive case, the modified canonical phase space of gravity is a polymerized phase space with canonical momentum as inverse a trigonometric function of the Hubble rate; the canonical Hamiltonian can be identified with the effective Hamiltonian in loop quantum cosmology. The repulsive cubic modification results in a ‘generalized polymerized’ canonical phase space. Both the repulsive modifications are found to yield singularity avoidance. In contrast, the quadratic and cubic attractive modifications result in a canonical phase space in which canonical momentum is nontrigonometric and singularities persist. Our results hint at connections between the repulsive/attractive nature of modifications to gravity arising from the gravitational sector and polymerized/non polymerized gravitational phase space. (paper)

  18. Quantum Hamiltonian reduction in superspace formalism

    International Nuclear Information System (INIS)

    Madsen, J.O.; Ragoucy, E.

    1994-02-01

    Recently the quantum Hamiltonian reduction was done in the case of general sl(2) embeddings into Lie algebras and superalgebras. The results are extended to the quantum Hamiltonian reduction of N=1 affine Lie superalgebras in the superspace formalism. It is shown that if we choose a gauge for the supersymmetry, and consider only certain equivalence classes of fields, then our quantum Hamiltonian reduction reduces to quantum Hamiltonian reduction of non-supersymmetric Lie superalgebras. The super energy-momentum tensor is constructed explicitly as well as all generators of spin 1 (and 1/2); thus all generators in the superconformal, quasi-superconformal and Z 2 *Z 2 superconformal algebras are constructed. (authors). 21 refs

  19. Discrete Hamiltonian evolution and quantum gravity

    International Nuclear Information System (INIS)

    Husain, Viqar; Winkler, Oliver

    2004-01-01

    We study constrained Hamiltonian systems by utilizing general forms of time discretization. We show that for explicit discretizations, the requirement of preserving the canonical Poisson bracket under discrete evolution imposes strong conditions on both allowable discretizations and Hamiltonians. These conditions permit time discretizations for a limited class of Hamiltonians, which does not include homogeneous cosmological models. We also present two general classes of implicit discretizations which preserve Poisson brackets for any Hamiltonian. Both types of discretizations generically do not preserve first class constraint algebras. Using this observation, we show that time discretization provides a complicated time gauge fixing for quantum gravity models, which may be compared with the alternative procedure of gauge fixing before discretization

  20. Linearized curvatures for auxiliary fields in the de Sitter space

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, M A

    1988-09-19

    New consistent linearized curvatures in the de Sitter space are constructed. The sequence of actions, describing bosonic and fermionic gauge auxiliary fields, is found based on these curvatures. The proposed actions are parametrized by two integer parameters, n greater than or equal to 0 and m greater than or equal to 0. The simplest case n=m=0 corresponds in the flat limit to the auxiliary fields of 'new minimal' supergravity. The hamiltonian formulation is developed for the auxiliary fields suggested; hamiltonians and first- and second-class constraints are constructed. Using these results, it is shown that the systems of fields proposed possess no dynamical degrees of freedom in de Sitter and flat spaces. In addition the hamiltonian formalism is analysed for some free dynamical systems based on linearized higher-spin curvatures introduced previously.

  1. Extension of non-linear beam models with deformable cross sections

    Science.gov (United States)

    Sokolov, I.; Krylov, S.; Harari, I.

    2015-12-01

    Geometrically exact beam theory is extended to allow distortion of the cross section. We present an appropriate set of cross-section basis functions and provide physical insight to the cross-sectional distortion from linear elastostatics. The beam formulation in terms of material (back-rotated) beam internal force resultants and work-conjugate kinematic quantities emerges naturally from the material description of virtual work of constrained finite elasticity. The inclusion of cross-sectional deformation allows straightforward application of three-dimensional constitutive laws in the beam formulation. Beam counterparts of applied loads are expressed in terms of the original three-dimensional data. Special attention is paid to the treatment of the applied stress, keeping in mind applications such as hydrogel actuators under environmental stimuli or devices made of electroactive polymers. Numerical comparisons show the ability of the beam model to reproduce finite elasticity results with good efficiency.

  2. The Motion Of A Deformable Body In - Bounded Fluid

    International Nuclear Information System (INIS)

    Galpert, A.R.; Miloh, T.

    1998-01-01

    The Hamiltonian formalism for the motion of a deformable body in an inviscid irrotational fluid is generalized for the case of the motion in a bounded fluid. We found that the presence of the boundaries in a liquid leads to the chaotization of the body's motion. The ('memory' effect connected with a free surface boundary condition is also accounted for

  3. Generalized oscillator representations for Calogero Hamiltonians

    International Nuclear Information System (INIS)

    Tyutin, I V; Voronov, B L

    2013-01-01

    This paper is a natural continuation of the previous paper (Gitman et al 2011 J. Phys. A: Math. Theor. 44 425204), where oscillator representations for nonnegative Calogero Hamiltonians with coupling constant α ⩾ − 1/4 were constructed. In this paper, we present generalized oscillator representations for all Calogero Hamiltonians with α ⩾ − 1/4. These representations are generally highly nonunique, but there exists an optimum representation for each Hamiltonian. (comment)

  4. Non-singular black holes and the limiting curvature mechanism: a Hamiltonian perspective

    Science.gov (United States)

    Ben Achour, J.; Lamy, F.; Liu, H.; Noui, K.

    2018-05-01

    We revisit the non-singular black hole solution in (extended) mimetic gravity with a limiting curvature from a Hamiltonian point of view. We introduce a parameterization of the phase space which allows us to describe fully the Hamiltonian structure of the theory. We write down the equations of motion that we solve in the regime deep inside the black hole, and we recover that the black hole has no singularity, due to the limiting curvature mechanism. Then, we study the relation between such black holes and effective polymer black holes which have been introduced in the context of loop quantum gravity. As expected, contrary to what happens in the cosmological sector, mimetic gravity with a limiting curvature fails to reproduce the usual effective dynamics of spherically symmetric loop quantum gravity which are generically not covariant. Nonetheless, we exhibit a theory in the class of extended mimetic gravity whose dynamics reproduces the general shape of the effective corrections of spherically symmetric polymer models, but in an undeformed covariant manner. These covariant effective corrections are found to be always metric dependent, i.e. within the bar mu-scheme, underlying the importance of this ingredient for inhomogeneous polymer models. In that respect, extended mimetic gravity can be viewed as an effective covariant theory which naturally implements a covariant notion of point wise holonomy-like corrections. The difference between the mimetic and polymer Hamiltonian formulations provides us with a guide to understand the deformation of covariance in inhomogeneous polymer models.

  5. Constructing Dense Graphs with Unique Hamiltonian Cycles

    Science.gov (United States)

    Lynch, Mark A. M.

    2012-01-01

    It is not difficult to construct dense graphs containing Hamiltonian cycles, but it is difficult to generate dense graphs that are guaranteed to contain a unique Hamiltonian cycle. This article presents an algorithm for generating arbitrarily large simple graphs containing "unique" Hamiltonian cycles. These graphs can be turned into dense graphs…

  6. Integrable time-dependent Hamiltonians, solvable Landau-Zener models and Gaudin magnets

    Science.gov (United States)

    Yuzbashyan, Emil A.

    2018-05-01

    We solve the non-stationary Schrödinger equation for several time-dependent Hamiltonians, such as the BCS Hamiltonian with an interaction strength inversely proportional to time, periodically driven BCS and linearly driven inhomogeneous Dicke models as well as various multi-level Landau-Zener tunneling models. The latter are Demkov-Osherov, bow-tie, and generalized bow-tie models. We show that these Landau-Zener problems and their certain interacting many-body generalizations map to Gaudin magnets in a magnetic field. Moreover, we demonstrate that the time-dependent Schrödinger equation for the above models has a similar structure and is integrable with a similar technique as Knizhnik-Zamolodchikov equations. We also discuss applications of our results to the problem of molecular production in an atomic Fermi gas swept through a Feshbach resonance and to the evaluation of the Landau-Zener transition probabilities.

  7. Deformation Prediction Using Linear Polynomial Functions ...

    African Journals Online (AJOL)

    By Deformation, we mean change of shape of any structure from its original shape and by monitoring over time using Geodetic means, the change in shape, size and the overall structural dynamics behaviors of structure can be detected. Prediction is therefor based on the epochs measurement obtained during monitoring, ...

  8. On the physical applications of hyper-Hamiltonian dynamics

    International Nuclear Information System (INIS)

    Gaeta, Giuseppe; Rodriguez, Miguel A

    2008-01-01

    An extension of Hamiltonian dynamics, defined on hyper-Kahler manifolds ('hyper-Hamiltonian dynamics') and sharing many of the attractive features of standard Hamiltonian dynamics, was introduced in previous work. In this paper, we discuss applications of the theory to physically interesting cases, dealing with the dynamics of particles with spin 1/2 in a magnetic field, i.e. the Pauli and the Dirac equations. While the free Pauli equation corresponds to a hyper-Hamiltonian flow, it turns out that the hyper-Hamiltonian description of the Dirac equation, and of the full Pauli one, is in terms of two commuting hyper-Hamiltonian flows. In this framework one can use a factorization principle discussed here (which is a special case of a general phenomenon studied by Walcher) and provide an explicit description of the resulting flow. On the other hand, by applying the familiar Foldy-Wouthuysen and Cini-Tousheck transformations (and the one recently introduced by Mulligan) which separate-in suitable limits-the Dirac equation into two equations, each of these turn out to be described by a single hyper-Hamiltonian flow. Thus the hyper-Hamiltonian construction is able to describe the fundamental dynamics for particles with spin

  9. Oscillator representations for self-adjoint Calogero Hamiltonians

    Energy Technology Data Exchange (ETDEWEB)

    Gitman, D M [Institute of Physics, University of Sao Paulo (Brazil); Tyutin, I V; Voronov, B L, E-mail: gitman@dfn.if.usp.br, E-mail: tyutin@lpi.ru, E-mail: voronov@lpi.ru [Lebedev Physical Institute, Moscow (Russian Federation)

    2011-10-21

    In Gitman et al (2010 J. Phys. A: Math. Theor. 43 145205), we presented a mathematically rigorous quantum-mechanical treatment of a one-dimensional motion of a particle in the Calogero potential V(x) = {alpha}x{sup -2}. We described all possible self-adjoint (s.a.) operators (s.a. Hamiltonians) associated with the differential operation H=-d{sub x}{sup 2}+{alpha}x{sup -2} for the Calogero Hamiltonian. Here, we discuss a new aspect of the problem, the so-called oscillator representations for the Calogero Hamiltonians. As is known, operators of the form N-hat = a-hat{sup +} a-hat and A-hat = a-hat a-hat{sup +} are called operators of oscillator type. Oscillator-type operators possess a number of useful properties in the case when the elementary operators a-hat are closed. It turns out that some s.a. Calogero Hamiltonians allow oscillator-type representations. We describe such Hamiltonians and find the corresponding mutually adjoint elementary operators a-hat and a-hat{sup +}. An oscillator-type representation for a given Hamiltonian is generally not unique. (paper)

  10. Oscillator representations for self-adjoint Calogero Hamiltonians

    International Nuclear Information System (INIS)

    Gitman, D M; Tyutin, I V; Voronov, B L

    2011-01-01

    In Gitman et al (2010 J. Phys. A: Math. Theor. 43 145205), we presented a mathematically rigorous quantum-mechanical treatment of a one-dimensional motion of a particle in the Calogero potential V(x) = αx -2 . We described all possible self-adjoint (s.a.) operators (s.a. Hamiltonians) associated with the differential operation H=-d x 2 +αx -2 for the Calogero Hamiltonian. Here, we discuss a new aspect of the problem, the so-called oscillator representations for the Calogero Hamiltonians. As is known, operators of the form N-hat = a-hat + a-hat and A-hat = a-hat a-hat + are called operators of oscillator type. Oscillator-type operators possess a number of useful properties in the case when the elementary operators a-hat are closed. It turns out that some s.a. Calogero Hamiltonians allow oscillator-type representations. We describe such Hamiltonians and find the corresponding mutually adjoint elementary operators a-hat and a-hat + . An oscillator-type representation for a given Hamiltonian is generally not unique. (paper)

  11. Some considerations of the energy spectrum of odd-odd deformed nuclei; Quelqes considerations sur le spectre d'energie des noyaux impair-impair deformes

    Energy Technology Data Exchange (ETDEWEB)

    Alceanu-G, Pinho de; Picard, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-07-01

    The odd-odd deformed nuclei are described as a rotator plus two odd nucleons moving in orbitals {omega}{sub p} and {omega}{sub n} of the deformed potential. We investigate the energies and wave functions of the various states of the ({omega}{sub p}, {omega}{sub n}) configurations by calculating and numerically diagonalizing the Hamiltonian matrix (with R.P.C. and residual interactions). The Gallagher-Mosskowski coupling rules ana the abnormal K equals 0 rotational bands are discussed. (authors) [French] Les noyaux impair-impairs deformes sont decrits comme un rotateur plus deux nucleons non apparies dans les orbites {omega}{sub p} et {omega}{sub n} du potentiel deforme. Nous etudions le spectre d'energie et les fonctions d'onde des configurations ({omega}{sub p}, {omega}{sub n}) en tenant compte de l'interaction particule-rotation et de la force residuelle entre les deux nucleons celibataires.

  12. Deformation compensation in dynamic tomography; Compensation de deformations en tomographie dynamique

    Energy Technology Data Exchange (ETDEWEB)

    Desbat, L. [Universite Joseph Fourier, UMR CNRS 5525, 38 - Grenoble (France); Roux, S. [Universite Joseph Fourier, TIMC-IMAG, In3S, Faculte de Medecine, 38 - Grenoble (France)]|[CEA Grenoble, Lab. d' Electronique et de Technologie de l' Informatique (LETI), 38 (France); Grangeat, P. [CEA Grenoble, Lab. d' Electronique et de Technologie de l' Informatique (LETI), 38 (France)

    2005-07-01

    This work is a contribution to the compensation of motion in tomography. New classes of deformation are proposed, that compensates analytically by an algorithm of a F.B.P. type reconstruction. This work makes a generalisation of the known results for affine deformations, in parallel geometry and fan-beam, to deformation classes of infinite dimension able to include strong non linearities. (N.C.)

  13. Gauge fixing and the Hamiltonian for cylindrical spacetimes

    Science.gov (United States)

    Mena Marugán, Guillermo A.

    2001-01-01

    We introduce a complete gauge fixing for cylindrical spacetimes in vacuo that, in principle, do not contain the axis of symmetry. By cylindrically symmetric we understand spacetimes that possess two commuting spacelike Killing vectors, one of them rotational and the other one translational. The result of our gauge fixing is a constraint-free model whose phase space has four field-like degrees of freedom and that depends on three constant parameters. Two of these constants determine the global angular momentum and the linear momentum in the axis direction, while the third parameter is related with the behavior of the metric around the axis. We derive the explicit expression of the metric in terms of the physical degrees of freedom, calculate the reduced equations of motion and obtain the Hamiltonian that generates the reduced dynamics. We also find upper and lower bounds for this reduced Hamiltonian that provides the energy per unit length contained in the system. In addition, we show that the reduced formalism constructed is well defined and consistent at least when the linear momentum in the axis direction vanishes. Furthermore, in that case we prove that there exists an infinite number of solutions in which all physical fields are constant both in the surroundings of the axis and at sufficiently large distances from it. If the global angular momentum is different from zero, the isometry group of these solutions is generally not orthogonally transitive. Such solutions generalize the metric of a spinning cosmic string in the region where no closed timelike curves are present.

  14. EMR-related problems at the interface between the crystal field Hamiltonians and the zero-field splitting Hamiltonians

    Directory of Open Access Journals (Sweden)

    Rudowicz Czesław

    2015-07-01

    Full Text Available The interface between optical spectroscopy, electron magnetic resonance (EMR, and magnetism of transition ions forms the intricate web of interrelated notions. Major notions are the physical Hamiltonians, which include the crystal field (CF (or equivalently ligand field (LF Hamiltonians, and the effective spin Hamiltonians (SH, which include the zero-field splitting (ZFS Hamiltonians as well as to a certain extent also the notion of magnetic anisotropy (MA. Survey of recent literature has revealed that this interface, denoted CF (LF ↔ SH (ZFS, has become dangerously entangled over the years. The same notion is referred to by three names that are not synonymous: CF (LF, SH (ZFS, and MA. In view of the strong need for systematization of nomenclature aimed at bringing order to the multitude of different Hamiltonians and the associated quantities, we have embarked on this systematization. In this article, we do an overview of our efforts aimed at providing a deeper understanding of the major intricacies occurring at the CF (LF ↔ SH (ZFS interface with the focus on the EMR-related problems for transition ions.

  15. From Hamiltonian chaos to complex systems a nonlinear physics approach

    CERN Document Server

    Leonetti, Marc

    2013-01-01

    From Hamiltonian Chaos to Complex Systems: A Nonlinear Physics Approach collects contributions on recent developments in non-linear dynamics and statistical physics with an emphasis on complex systems. This book provides a wide range of state-of-the-art research in these fields. The unifying aspect of this book is a demonstration of how similar tools coming from dynamical systems, nonlinear physics, and statistical dynamics can lead to a large panorama of  research in various fields of physics and beyond, most notably with the perspective of application in complex systems. This book also: Illustrates the broad research influence of tools coming from dynamical systems, nonlinear physics, and statistical dynamics Adopts a pedagogic approach to facilitate understanding by non-specialists and students Presents applications in complex systems Includes 150 illustrations From Hamiltonian Chaos to Complex Systems: A Nonlinear Physics Approach is an ideal book for graduate students and researchers working in applied...

  16. Diffeomorphic Statistical Deformation Models

    DEFF Research Database (Denmark)

    Hansen, Michael Sass; Hansen, Mads/Fogtman; Larsen, Rasmus

    2007-01-01

    In this paper we present a new method for constructing diffeomorphic statistical deformation models in arbitrary dimensional images with a nonlinear generative model and a linear parameter space. Our deformation model is a modified version of the diffeomorphic model introduced by Cootes et al....... The modifications ensure that no boundary restriction has to be enforced on the parameter space to prevent folds or tears in the deformation field. For straightforward statistical analysis, principal component analysis and sparse methods, we assume that the parameters for a class of deformations lie on a linear...... with ground truth in form of manual expert annotations, and compared to Cootes's model. We anticipate applications in unconstrained diffeomorphic synthesis of images, e.g. for tracking, segmentation, registration or classification purposes....

  17. Equivalent Hermitian Hamiltonian for the non-Hermitian -x4 potential

    International Nuclear Information System (INIS)

    Jones, H.F.; Mateo, J.

    2006-01-01

    The potential V(x)=-x 4 , which is unbounded below on the real line, can give rise to a well-posed bound state problem when x is taken on a contour in the lower-half complex plane. It is then PT-symmetric rather than Hermitian. Nonetheless it has been shown numerically to have a real spectrum, and a proof of reality, involving the correspondence between ordinary differential equations and integrable systems, was subsequently constructed for the general class of potentials -(ix) N . For such Hamiltonians the natural PT metric is not positive definite, but a dynamically-defined positive-definite metric can be defined, depending on an operator Q. Further, with the help of this operator an equivalent Hermitian Hamiltonian h can be constructed. This programme has been carried out exactly for a few soluble models, and the first few terms of a perturbative expansion have been found for the potential m 2 x 2 +igx 3 . However, until now, the -x 4 potential has proved intractable. In the present paper we give explicit, closed form expressions for Q and h, which are made possible by a particular parametrization of the contour in the complex plane on which the problem is defined. This constitutes an explicit proof of the reality of the spectrum. The resulting equivalent Hamiltonian has a potential with a positive quartic term together with a linear term

  18. Relativistic non-Hamiltonian mechanics

    International Nuclear Information System (INIS)

    Tarasov, Vasily E.

    2010-01-01

    Relativistic particle subjected to a general four-force is considered as a nonholonomic system. The nonholonomic constraint in four-dimensional space-time represents the relativistic invariance by the equation for four-velocity u μ u μ + c 2 = 0, where c is the speed of light in vacuum. In the general case, four-forces are non-potential, and the relativistic particle is a non-Hamiltonian system in four-dimensional pseudo-Euclidean space-time. We consider non-Hamiltonian and dissipative systems in relativistic mechanics. Covariant forms of the principle of stationary action and the Hamilton's principle for relativistic mechanics of non-Hamiltonian systems are discussed. The equivalence of these principles is considered for relativistic particles subjected to potential and non-potential forces. We note that the equations of motion which follow from the Hamilton's principle are not equivalent to the equations which follow from the variational principle of stationary action. The Hamilton's principle and the principle of stationary action are not compatible in the case of systems with nonholonomic constraint and the potential forces. The principle of stationary action for relativistic particle subjected to non-potential forces can be used if the Helmholtz conditions are satisfied. The Hamilton's principle and the principle of stationary action are equivalent only for a special class of relativistic non-Hamiltonian systems.

  19. Chromatic roots and hamiltonian paths

    DEFF Research Database (Denmark)

    Thomassen, Carsten

    2000-01-01

    We present a new connection between colorings and hamiltonian paths: If the chromatic polynomial of a graph has a noninteger root less than or equal to t(n) = 2/3 + 1/3 (3)root (26 + 6 root (33)) + 1/3 (3)root (26 - 6 root (33)) = 1.29559.... then the graph has no hamiltonian path. This result...

  20. Hamiltonian structure of the Lotka-Volterra equations

    Science.gov (United States)

    Nutku, Y.

    1990-03-01

    The Lotka-Volterra equations governing predator-prey relations are shown to admit Hamiltonian structure with respect to a generalized Poisson bracket. These equations provide an example of a system for which the naive criterion for the existence of Hamiltonian structure fails. We show further that there is a three-component generalization of the Lotka-Volterra equations which is a bi-Hamiltonian system.

  1. Boson mapping and the microscopic collective nuclear Hamiltonian

    International Nuclear Information System (INIS)

    Dobes, J.; Ivanova, S.P.; Dzholos, R.V.; Pedrosa, R.

    1990-01-01

    Starting with the mapping of the quadrupole collective states in the fermion space onto the boson space, the fermion nuclear problem is transformed into the boson one. The boson images of the bifermion operators and of the fermion Hamiltonian are found. Recurrence relations are used to obtain approximately the norm matrix which appears in the boson-fermion mapping. The resulting boson Hamiltonian contains terms which go beyond the ordinary SU(6) symmetry Hamiltonian of the interacting boson model. Calculations, however, suggest that on the phenomenological level the differences between the mapped Hamiltonian and the SU(6) Hamiltonian are not too important. 18 refs.; 2 figs

  2. On integrable Hamiltonians for higher spin XXZ chain

    International Nuclear Information System (INIS)

    Bytsko, Andrei G.

    2003-01-01

    Integrable Hamiltonians for higher spin periodic XXZ chains are constructed in terms of the spin generators; explicit examples for spins up to (3/2) are given. Relations between Hamiltonians for some U q (sl 2 )-symmetric and U(1)-symmetric universal r-matrices are studied; their properties are investigated. A certain modification of the higher spin periodic chain Hamiltonian is shown to be an integrable U q (sl 2 )-symmetric Hamiltonian for an open chain

  3. Hamiltonian ABC

    NARCIS (Netherlands)

    Meeds, E.; Leenders, R.; Welling, M.; Meila, M.; Heskes, T.

    2015-01-01

    Approximate Bayesian computation (ABC) is a powerful and elegant framework for performing inference in simulation-based models. However, due to the difficulty in scaling likelihood estimates, ABC remains useful for relatively lowdimensional problems. We introduce Hamiltonian ABC (HABC), a set of

  4. Effect of plastic deformation on the niobium thermal expansion

    International Nuclear Information System (INIS)

    Savitskij, E.M.; Bychkova, M.I.; Kanikovskij, V.B.

    1978-01-01

    Using dilatometric method the effect of plastic deformation on change of thermal expansion coefficient (TEC) of niobium of different purity was studied. It was shown that deformation affected the TEC in different ways. At first the deformation degree rising causes linear decrease of the TEC and then linear increase. Carbon intensifies the TEC decrease of deformed niobium. The linear correlation was established between the TEC and the value of macroscopic stresses in plastic deformed niobium. The expression indicating the metal TEC change under loading was defined for case of strain hardening

  5. Some considerations of the energy spectrum of odd-odd deformed nuclei; Quelqes considerations sur le spectre d'energie des noyaux impair-impair deformes

    Energy Technology Data Exchange (ETDEWEB)

    Alceanu-G, Pinho de; Picard, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-07-01

    The odd-odd deformed nuclei are described as a rotator plus two odd nucleons moving in orbitals {omega}{sub p} and {omega}{sub n} of the deformed potential. We investigate the energies and wave functions of the various states of the ({omega}{sub p}, {omega}{sub n}) configurations by calculating and numerically diagonalizing the Hamiltonian matrix (with R.P.C. and residual interactions). The Gallagher-Mosskowski coupling rules ana the abnormal K equals 0 rotational bands are discussed. (authors) [French] Les noyaux impair-impairs deformes sont decrits comme un rotateur plus deux nucleons non apparies dans les orbites {omega}{sub p} et {omega}{sub n} du potentiel deforme. Nous etudions le spectre d'energie et les fonctions d'onde des configurations ({omega}{sub p}, {omega}{sub n}) en tenant compte de l'interaction particule-rotation et de la force residuelle entre les deux nucleons celibataires.

  6. Systems of conservation laws with third-order Hamiltonian structures

    Science.gov (United States)

    Ferapontov, Evgeny V.; Pavlov, Maxim V.; Vitolo, Raffaele F.

    2018-02-01

    We investigate n-component systems of conservation laws that possess third-order Hamiltonian structures of differential-geometric type. The classification of such systems is reduced to the projective classification of linear congruences of lines in P^{n+2} satisfying additional geometric constraints. Algebraically, the problem can be reformulated as follows: for a vector space W of dimension n+2 , classify n-tuples of skew-symmetric 2-forms A^{α } \\in Λ ^2(W) such that φ _{β γ }A^{β }\\wedge A^{γ }=0, for some non-degenerate symmetric φ.

  7. Mathematical Modeling of Constrained Hamiltonian Systems

    NARCIS (Netherlands)

    Schaft, A.J. van der; Maschke, B.M.

    1995-01-01

    Network modelling of unconstrained energy conserving physical systems leads to an intrinsic generalized Hamiltonian formulation of the dynamics. Constrained energy conserving physical systems are directly modelled as implicit Hamiltonian systems with regard to a generalized Dirac structure on the

  8. Lagrangian and Hamiltonian dynamics

    CERN Document Server

    Mann, Peter

    2018-01-01

    An introductory textbook exploring the subject of Lagrangian and Hamiltonian dynamics, with a relaxed and self-contained setting. Lagrangian and Hamiltonian dynamics is the continuation of Newton's classical physics into new formalisms, each highlighting novel aspects of mechanics that gradually build in complexity to form the basis for almost all of theoretical physics. Lagrangian and Hamiltonian dynamics also acts as a gateway to more abstract concepts routed in differential geometry and field theories and can be used to introduce these subject areas to newcomers. Journeying in a self-contained manner from the very basics, through the fundamentals and onwards to the cutting edge of the subject, along the way the reader is supported by all the necessary background mathematics, fully worked examples, thoughtful and vibrant illustrations as well as an informal narrative and numerous fresh, modern and inter-disciplinary applications. The book contains some unusual topics for a classical mechanics textbook. Mo...

  9. Noncanonical Hamiltonian mechanics

    International Nuclear Information System (INIS)

    Litteljohn, R.G.

    1986-01-01

    Noncanonical variables in Hamiltonian mechanics were first used by Lagrange in 1808. In spite of this, most work in Hamiltonian mechanics has been carried out in canonical variables, up to this day. One reason for this is that noncanonical coordinates are seldom needed for mechanical problems based on Lagrangians of the form L = T - V, where T is the kinetic energy and V is the potential energy. Of course, such Lagrangians arise naturally in celestial mechanics, and as a result they form the paradigms of nineteenth-century mechanics and have become enshrined in all the mechanics textbooks. Certain features of modern problems, however, lead to the use of noncanonical coordinates. Among these are issues of gauge invariance and singular Lagrange a Poisson structures. In addition, certain problems, like the flow of magnetic-field lines in physical space, are naturally formulated in terms of noncanonical coordinates. None of these features is present in the nineteenth-century paradigms of mechanics, but they do arise in problems involving particle motion in the presence of magnetic fields. For example, the motion of a particle in an electromagnetic wave is an important one in plasma physics, but the usual Hamiltonian formulation is gauge dependent. For this problem, noncanonical approaches based on Lagrangians in phase space lead to powerful computational techniques which are gauge invariant. In the limit of strong magnetic fields, particle motion becomes 'guiding-center motion'. Guiding-center motion is also best understood in terms of noncanonical coordinates. Finally the flow of magnetic-field lines through physical space is a Hamiltonian system which is best understood with noncanonical coordinates. No doubt many more systems will arise in the future for which these noncanonical techniques can be applied. (author)

  10. Variational identities and Hamiltonian structures

    International Nuclear Information System (INIS)

    Ma Wenxiu

    2010-01-01

    This report is concerned with Hamiltonian structures of classical and super soliton hierarchies. In the classical case, basic tools are variational identities associated with continuous and discrete matrix spectral problems, targeted to soliton equations derived from zero curvature equations over general Lie algebras, both semisimple and non-semisimple. In the super case, a supertrace identity is presented for constructing Hamiltonian structures of super soliton equations associated with Lie superalgebras. We illustrate the general theories by the KdV hierarchy, the Volterra lattice hierarchy, the super AKNS hierarchy, and two hierarchies of dark KdV equations and dark Volterra lattices. The resulting Hamiltonian structures show the commutativity of each hierarchy discussed and thus the existence of infinitely many commuting symmetries and conservation laws.

  11. Almost periodic Hamiltonians: an algebraic approach

    International Nuclear Information System (INIS)

    Bellissard, J.

    1981-07-01

    We develop, by analogy with the study of periodic potential, an algebraic theory for almost periodic hamiltonians, leading to a generalized Bloch theorem. This gives rise to results concerning the spectral measures of these operators in terms of those of the corresponding Bloch hamiltonians

  12. Scattering theory for Stark Hamiltonians

    International Nuclear Information System (INIS)

    Jensen, Arne

    1994-01-01

    An introduction to the spectral and scattering theory for Schroedinger operators is given. An abstract short range scattering theory is developed. It is applied to perturbations of the Laplacian. Particular attention is paid to the study of Stark Hamiltonians. The main result is an explanation of the discrepancy between the classical and the quantum scattering theory for one-dimensional Stark Hamiltonians. (author). 47 refs

  13. Indirect quantum tomography of quadratic Hamiltonians

    Energy Technology Data Exchange (ETDEWEB)

    Burgarth, Daniel [Institute for Mathematical Sciences, Imperial College London, London SW7 2PG (United Kingdom); Maruyama, Koji; Nori, Franco, E-mail: daniel@burgarth.de, E-mail: kmaruyama@riken.jp [Advanced Science Institute, RIKEN, Wako-shi, Saitama 351-0198 (Japan)

    2011-01-15

    A number of many-body problems can be formulated using Hamiltonians that are quadratic in the creation and annihilation operators. Here, we show how such quadratic Hamiltonians can be efficiently estimated indirectly, employing very few resources. We found that almost all the properties of the Hamiltonian are determined by its surface and that these properties can be measured even if the system can only be initialized to a mixed state. Therefore, our method can be applied to various physical models, with important examples including coupled nano-mechanical oscillators, hopping fermions in optical lattices and transverse Ising chains.

  14. Hartree-Fock calculations for strongly deformed and highly excited nuclei using the Skyrme force

    International Nuclear Information System (INIS)

    Zint, P.G.

    1975-01-01

    It has been shown that in CHF-calculations the Skyrme-force is usefull to describe strongly deformed nuclei with even proton and neutron number till separation. Thereby the eigenfunctions of the two-centre Hamiltonian form an adequate basis. With this procedure, we obtain the correct deformation of the 32 S-system. Induding the spurious energy of relative motion between the 16 O-fragments, the energy curve is a good approximation for the real potential, extracted form scattering experiments. (orig./WL) [de

  15. Dynamical decoupling of unbounded Hamiltonians

    Science.gov (United States)

    Arenz, Christian; Burgarth, Daniel; Facchi, Paolo; Hillier, Robin

    2018-03-01

    We investigate the possibility to suppress interactions between a finite dimensional system and an infinite dimensional environment through a fast sequence of unitary kicks on the finite dimensional system. This method, called dynamical decoupling, is known to work for bounded interactions, but physical environments such as bosonic heat baths are usually modeled with unbounded interactions; hence, here, we initiate a systematic study of dynamical decoupling for unbounded operators. We develop a sufficient decoupling criterion for arbitrary Hamiltonians and a necessary decoupling criterion for semibounded Hamiltonians. We give examples for unbounded Hamiltonians where decoupling works and the limiting evolution as well as the convergence speed can be explicitly computed. We show that decoupling does not always work for unbounded interactions and we provide both physically and mathematically motivated examples.

  16. Matchings Extend to Hamiltonian Cycles in 5-Cube

    Directory of Open Access Journals (Sweden)

    Wang Fan

    2018-02-01

    Full Text Available Ruskey and Savage asked the following question: Does every matching in a hypercube Qn for n ≥ 2 extend to a Hamiltonian cycle of Qn? Fink confirmed that every perfect matching can be extended to a Hamiltonian cycle of Qn, thus solved Kreweras’ conjecture. Also, Fink pointed out that every matching can be extended to a Hamiltonian cycle of Qn for n ∈ {2, 3, 4}. In this paper, we prove that every matching in Q5 can be extended to a Hamiltonian cycle of Q5.

  17. Hamiltonian indices and rational spectral densities

    Science.gov (United States)

    Byrnes, C. I.; Duncan, T. E.

    1980-01-01

    Several (global) topological properties of various spaces of linear systems, particularly symmetric, lossless, and Hamiltonian systems, and multivariable spectral densities of fixed McMillan degree are announced. The study is motivated by a result asserting that on a connected but not simply connected manifold, it is not possible to find a vector field having a sink as its only critical point. In the scalar case, this is illustrated by showing that only on the space of McMillan degree = /Cauchy index/ = n, scalar transfer functions can one define a globally convergent vector field. This result holds both in discrete-time and for the nonautonomous case. With these motivations in mind, theorems of Bochner and Fogarty are used in showing that spaces of transfer functions defined by symmetry conditions are, in fact, smooth algebraic manifolds.

  18. A Hamiltonian five-field gyrofluid model

    Energy Technology Data Exchange (ETDEWEB)

    Keramidas Charidakos, I.; Waelbroeck, F. L.; Morrison, P. J. [Institute for Fusion Studies and Department of Physics, The University of Texas at Austin, Austin, TX 78712 (United States)

    2015-11-15

    A Lie-Poisson bracket is presented for a five-field gyrofluid model, thereby showing the model to be Hamiltonian. The model includes the effects of magnetic field curvature and describes the evolution of the electron and ion gyro-center densities, the parallel component of the ion and electron velocities, and the ion temperature. The quasineutrality property and Ampère's law determine, respectively, the electrostatic potential and magnetic flux. The Casimir invariants are presented, and shown to be associated with five Lagrangian invariants advected by distinct velocity fields. A linear, local study of the model is conducted both with and without Landau and diamagnetic resonant damping terms. Stability criteria and dispersion relations for the electrostatic and the electromagnetic cases are derived and compared with their analogs for fluid and kinetic models.

  19. Hamiltonian Approach to 2+1 Dimensional Gravity

    Science.gov (United States)

    Cantini, L.; Menotti, P.; Seminara, D.

    2002-12-01

    It is shown that the reduced particle dynamics of 2+1 dimensional gravity in the maximally slicing gauge has hamiltonian form. We give the exact diffeomorphism which transforms the spinning cone metric in the Deser, Jackiw, 't Hooft gauge to the maximally slicing gauge. It is explicitly shown that the boundary term in the action, written in hamiltonian form gives the hamiltonian for the reduced particle dynamics. The quantum mechanical translation of the two particle hamiltonian gives rise to the logarithm of the Laplace-Beltrami operator on a cone whose angular deficit is given by the total energy of the system irrespective of the masses of the particles thus proving at the quantum level a conjecture by 't Hooft on the two particle dynamics.

  20. A Direct Method of Hamiltonian Structure

    International Nuclear Information System (INIS)

    Li Qi; Chen Dengyuan; Su Shuhua

    2011-01-01

    A direct method of constructing the Hamiltonian structure of the soliton hierarchy with self-consistent sources is proposed through computing the functional derivative under some constraints. The Hamiltonian functional is related with the conservation densities of the corresponding hierarchy. Three examples and their two reductions are given. (general)

  1. On Distributed Port-Hamiltonian Process Systems

    NARCIS (Netherlands)

    Lopezlena, Ricardo; Scherpen, Jacquelien M.A.

    2004-01-01

    In this paper we use the term distributed port-Hamiltonian Process Systems (DPHPS) to refer to the result of merging the theory of distributed Port-Hamiltonian systems (DPHS) with the theory of process systems (PS). Such concept is useful for combining the systematic interconnection of PHS with the

  2. A diagrammatic construction of formal E-independent model hamiltonian

    International Nuclear Information System (INIS)

    Kvasnicka, V.

    1977-01-01

    A diagrammatic construction of formal E-independent model interaction (i.e., without second-quantization formalism) is suggested. The construction starts from the quasi-degenerate Brillouin-Wigner perturbation theory, in the framework of which an E-dependent model Hamiltonian is simply constructed. Applying the ''E-removing'' procedure to this E-dependent model Hamiltonian, the E-independent formal model Hamiltonian either Hermitian or non-Hermitian can diagrammatically be easily derived. For the formal E-independent model Hamiltonian the separability theorem is proved, which can be profitably used for a rather ''formalistic ''construction of a many-body E-independent model Hamiltonian

  3. A new class of integrable deformations of CFTs

    International Nuclear Information System (INIS)

    Georgiou, George; Sfetsos, Konstantinos

    2017-01-01

    We construct a new class of integrable σ-models based on current algebra theories for a general semisimple group G by utilizing a left-right asymmetric gauging. Their action can be thought of as the all-loop effective action of two independent WZW models for G both at level k, perturbed by current bilinears mixing the different WZW models. A non-perturbative symmetry in the couplings parametric space is revealed. We perform the Hamiltonian analysis of the action and demonstrate integrability in several cases. We extend our construction to deformations of G/H CFTs and show integrability when G/H is a symmetric space. Our method resembles that used for constructing the λ-deformed integrable σ-models, but the results are distinct and novel.

  4. A new class of integrable deformations of CFTs

    Energy Technology Data Exchange (ETDEWEB)

    Georgiou, George [Institute of Nuclear and Particle Physics, National Center for Scientific Research Demokritos, Ag. Paraskevi, GR-15310 Athens (Greece); Sfetsos, Konstantinos [Department of Nuclear and Particle Physics, Faculty of Physics, National and Kapodistrian University of Athens, Athens 15784 (Greece)

    2017-03-15

    We construct a new class of integrable σ-models based on current algebra theories for a general semisimple group G by utilizing a left-right asymmetric gauging. Their action can be thought of as the all-loop effective action of two independent WZW models for G both at level k, perturbed by current bilinears mixing the different WZW models. A non-perturbative symmetry in the couplings parametric space is revealed. We perform the Hamiltonian analysis of the action and demonstrate integrability in several cases. We extend our construction to deformations of G/H CFTs and show integrability when G/H is a symmetric space. Our method resembles that used for constructing the λ-deformed integrable σ-models, but the results are distinct and novel.

  5. Consistency of the Hamiltonian formulation of the lowest-order effective action of the complete Horava theory

    International Nuclear Information System (INIS)

    Bellorin, Jorge; Restuccia, Alvaro

    2011-01-01

    We perform the Hamiltonian analysis for the lowest-order effective action, up to second order in derivatives, of the complete Horava theory. The model includes the invariant terms that depend on ∂ i lnN proposed by Blas, Pujolas, and Sibiryakov. We show that the algebra of constraints closes. The Hamiltonian constraint is of second-class behavior and it can be regarded as an elliptic partial differential equation for N. The linearized version of this equation is a Poisson equation for N that can be solved consistently. The preservation in time of the Hamiltonian constraint yields an equation that can be consistently solved for a Lagrange multiplier of the theory. The model has six propagating degrees of freedom in the phase space, corresponding to three even physical modes. When compared with the λR model studied by us in a previous paper, it lacks two second-class constraints, which leads to the extra even mode.

  6. A novel hierarchy of differential—integral equations and their generalized bi-Hamiltonian structures

    International Nuclear Information System (INIS)

    Zhai Yun-Yun; Geng Xian-Guo; He Guo-Liang

    2014-01-01

    With the aid of the zero-curvature equation, a novel integrable hierarchy of nonlinear evolution equations associated with a 3 × 3 matrix spectral problem is proposed. By using the trace identity, the bi-Hamiltonian structures of the hierarchy are established with two skew-symmetric operators. Based on two linear spectral problems, we obtain the infinite many conservation laws of the first member in the hierarchy

  7. Port Hamiltonian modeling of Power Networks

    NARCIS (Netherlands)

    van Schaik, F.; van der Schaft, Abraham; Scherpen, Jacquelien M.A.; Zonetti, Daniele; Ortega, R

    2012-01-01

    In this talk a full nonlinear model for the power network in port–Hamiltonian framework is derived to study its stability properties. For this we use the modularity approach i.e., we first derive the models of individual components in power network as port-Hamiltonian systems and then we combine all

  8. Hamiltonian Cycles on Random Eulerian Triangulations

    DEFF Research Database (Denmark)

    Guitter, E.; Kristjansen, C.; Nielsen, Jakob Langgaard

    1998-01-01

    . Considering the case n -> 0, this implies that the system of random Eulerian triangulations equipped with Hamiltonian cycles describes a c=-1 matter field coupled to 2D quantum gravity as opposed to the system of usual random triangulations equipped with Hamiltonian cycles which has c=-2. Hence, in this case...

  9. Incomplete Dirac reduction of constrained Hamiltonian systems

    Energy Technology Data Exchange (ETDEWEB)

    Chandre, C., E-mail: chandre@cpt.univ-mrs.fr

    2015-10-15

    First-class constraints constitute a potential obstacle to the computation of a Poisson bracket in Dirac’s theory of constrained Hamiltonian systems. Using the pseudoinverse instead of the inverse of the matrix defined by the Poisson brackets between the constraints, we show that a Dirac–Poisson bracket can be constructed, even if it corresponds to an incomplete reduction of the original Hamiltonian system. The uniqueness of Dirac brackets is discussed. The relevance of this procedure for infinite dimensional Hamiltonian systems is exemplified.

  10. Spectral and resonance properties of the Smilansky Hamiltonian

    Energy Technology Data Exchange (ETDEWEB)

    Exner, Pavel [Department of Theoretical Physics, Nuclear Physics Institute, Czech Academy of Sciences, 25068 Řež near Prague (Czech Republic); Doppler Institute for Mathematical Physics and Applied Mathematics, Czech Technical University, Břehová 7, 11519 Prague (Czech Republic); Lotoreichik, Vladimir [Department of Theoretical Physics, Nuclear Physics Institute, Czech Academy of Sciences, 25068 Řež near Prague (Czech Republic); Tater, Miloš, E-mail: tater@ujf.cas.cz [Department of Theoretical Physics, Nuclear Physics Institute, Czech Academy of Sciences, 25068 Řež near Prague (Czech Republic)

    2017-02-26

    We analyze the Hamiltonian proposed by Smilansky to describe irreversible dynamics in quantum graphs and studied further by Solomyak and others. We derive a weak-coupling asymptotics of the ground state and add new insights by finding the discrete spectrum numerically in the subcritical case. Furthermore, we show that the model then has a rich resonance structure. - Highlights: • We derive conditions on bound states and on resonances of the Smilansky Hamiltonian. • Using these conditions we find numerically discrete spectrum and resonances of this Hamiltonian. • Our numerical tests confirm known properties of the Hamiltonian and allow us to conjecture new ones.

  11. Optimal adaptive control for quantum metrology with time-dependent Hamiltonians

    Science.gov (United States)

    Pang, Shengshi; Jordan, Andrew N.

    2017-01-01

    Quantum metrology has been studied for a wide range of systems with time-independent Hamiltonians. For systems with time-dependent Hamiltonians, however, due to the complexity of dynamics, little has been known about quantum metrology. Here we investigate quantum metrology with time-dependent Hamiltonians to bridge this gap. We obtain the optimal quantum Fisher information for parameters in time-dependent Hamiltonians, and show proper Hamiltonian control is generally necessary to optimize the Fisher information. We derive the optimal Hamiltonian control, which is generally adaptive, and the measurement scheme to attain the optimal Fisher information. In a minimal example of a qubit in a rotating magnetic field, we find a surprising result that the fundamental limit of T2 time scaling of quantum Fisher information can be broken with time-dependent Hamiltonians, which reaches T4 in estimating the rotation frequency of the field. We conclude by considering level crossings in the derivatives of the Hamiltonians, and point out additional control is necessary for that case. PMID:28276428

  12. Optimal adaptive control for quantum metrology with time-dependent Hamiltonians.

    Science.gov (United States)

    Pang, Shengshi; Jordan, Andrew N

    2017-03-09

    Quantum metrology has been studied for a wide range of systems with time-independent Hamiltonians. For systems with time-dependent Hamiltonians, however, due to the complexity of dynamics, little has been known about quantum metrology. Here we investigate quantum metrology with time-dependent Hamiltonians to bridge this gap. We obtain the optimal quantum Fisher information for parameters in time-dependent Hamiltonians, and show proper Hamiltonian control is generally necessary to optimize the Fisher information. We derive the optimal Hamiltonian control, which is generally adaptive, and the measurement scheme to attain the optimal Fisher information. In a minimal example of a qubit in a rotating magnetic field, we find a surprising result that the fundamental limit of T 2 time scaling of quantum Fisher information can be broken with time-dependent Hamiltonians, which reaches T 4 in estimating the rotation frequency of the field. We conclude by considering level crossings in the derivatives of the Hamiltonians, and point out additional control is necessary for that case.

  13. Hamiltonian representation of divergence-free fields

    International Nuclear Information System (INIS)

    Boozer, A.H.

    1984-11-01

    Globally divergence-free fields, such as the magnetic field and the vorticity, can be described by a two degree of freedom Hamiltonian. The Hamiltonian function provides a complete topological description of the field lines. The formulation also separates the dissipative and inertial time scale evolution of the magnetic and the vorticity fields

  14. Numerical determination of the magnetic field line Hamiltonian

    International Nuclear Information System (INIS)

    Kuo-Petravic, G.; Boozer, A.H.

    1986-03-01

    The structure of a magnetic field is determined by a one-degree of freedom, time-dependent Hamiltonian. This Hamiltonian is evaluated for a given field in a perturbed action-angle form. The location and the size of magnetic islands in the given field are determined from Hamiltonian perturbation theory and from an ordinary Poincare plot of the field line trajectories

  15. Effective hamiltonian calculations using incomplete model spaces

    International Nuclear Information System (INIS)

    Koch, S.; Mukherjee, D.

    1987-01-01

    It appears that the danger of encountering ''intruder states'' is substantially reduced if an effective hamiltonian formalism is developed for incomplete model spaces (IMS). In a Fock-space approach, the proof a ''connected diagram theorem'' is fairly straightforward with exponential-type of ansatze for the wave-operator W, provided the normalization chosen for W is separable. Operationally, one just needs a suitable categorization of the Fock-space operators into ''diagonal'' and ''non-diagonal'' parts that is generalization of the corresponding procedure for the complete model space. The formalism is applied to prototypical 2-electron systems. The calculations have been performed on the Cyber 205 super-computer. The authors paid special attention to an efficient vectorization for the construction and solution of the resulting coupled non-linear equations

  16. Finite element historical deformation analysis in piecewise linear plasticity by mathematical programming

    International Nuclear Information System (INIS)

    De Donato, O.; Parisi, M.A.

    1977-01-01

    When loads increase proportionally beyond the elastic limit in the presence of elastic-plastic piecewise-linear constitutive laws, the problem of finding the whole evolution of the plastic strain and displacements of structures was recently shown to be amenable to a parametric linear complementary problem (PLCP) in which the parameter is represented by the load factor, the matrix is symmetric positive definite or at least semi-definite (for perfect plasticity) and the variables with a direct mechanical meaning are the plastic multipliers. With reference to plane trusses and frames with elastic-plastic linear work-hardening material behaviour numerical solutions were also fairly efficiently obtained using a recent mathematical programming algorithm (due to R.W. Cottle) which is able to provide the whole deformation history of the structure and, at the same time to rule out local unloadings along the given proportional loading process by means of 'a priori' checks carried out before each pivotal step of the procedure. Hence it becomes possible to use the holonomic (reversible, path-independent) constitutive laws in finite terms and to benefit by all the relevant numerical and computational advantages despite the non-holonomic nature of plastic behaviour. In the present paper the method of solution is re-examined in view to overcome an important drawback of the algorithm deriving from the size of PLCP fully populated matrix when structural problems with large number of variables are considered and, consequently, the updating, the storing or, generally, the handling of the current tableau may become prohibitive. (Auth.)

  17. New proposal for non-linear ghost-free massive F(R) gravity: Cosmic acceleration and Hamiltonian analysis

    International Nuclear Information System (INIS)

    Klusoň, Josef; Nojiri, Shin'ichi; Odintsov, Sergei D.

    2013-01-01

    We propose new version of massive F(R) gravity which is natural generalization of convenient massive ghost-free gravity. Its Hamiltonian formulation in scalar-tensor frame is developed. We show that such F(R) theory is ghost-free. The cosmological evolution of such theory is investigated. Despite the strong Bianchi identity constraint the possibility of cosmic acceleration (especially, in the presence of cold dark matter) is established. Ghost-free massive F(R,T) gravity is also proposed

  18. Large poroelastic deformation of a soft material

    Science.gov (United States)

    MacMinn, Christopher W.; Dufresne, Eric R.; Wettlaufer, John S.

    2014-11-01

    Flow through a porous material will drive mechanical deformation when the fluid pressure becomes comparable to the stiffness of the solid skeleton. This has applications ranging from hydraulic fracture for recovery of shale gas, where fluid is injected at high pressure, to the mechanics of biological cells and tissues, where the solid skeleton is very soft. The traditional linear theory of poroelasticity captures this fluid-solid coupling by combining Darcy's law with linear elasticity. However, linear elasticity is only volume-conservative to first order in the strain, which can become problematic when damage, plasticity, or extreme softness lead to large deformations. Here, we compare the predictions of linear poroelasticity with those of a large-deformation framework in the context of two model problems. We show that errors in volume conservation are compounded and amplified by coupling with the fluid flow, and can become important even when the deformation is small. We also illustrate these results with a laboratory experiment.

  19. Frustration-free Hamiltonians supporting Majorana zero edge modes

    International Nuclear Information System (INIS)

    Jevtic, Sania; Barnett, Ryan

    2017-01-01

    A one-dimensional fermionic system, such as a superconducting wire, may host Majorana zero-energy edge modes (MZMs) at its edges when it is in the topological phase. MZMs provide a path to realising fault-tolerant quantum computation, and so are the focus of intense experimental and theoretical studies. However, given a Hamiltonian, determining whether MZMs exist is a daunting task as it relies on knowing the spectral properties of the Hamiltonian in the thermodynamic limit. The Kitaev chain is a paradigmatic non-interacting model that supports MZMs and the Hamiltonian can be fully diagonalised. However, for interacting models, the situation is far more complex. Here we consider a different classification of models, namely, ones with frustration-free Hamiltonians. Within this class of models, interacting and non-interacting systems are treated on an equal footing, and we identify exactly which Hamiltonians can realise MZMs. (paper)

  20. Frustration-free Hamiltonians supporting Majorana zero edge modes

    Science.gov (United States)

    Jevtic, Sania; Barnett, Ryan

    2017-10-01

    A one-dimensional fermionic system, such as a superconducting wire, may host Majorana zero-energy edge modes (MZMs) at its edges when it is in the topological phase. MZMs provide a path to realising fault-tolerant quantum computation, and so are the focus of intense experimental and theoretical studies. However, given a Hamiltonian, determining whether MZMs exist is a daunting task as it relies on knowing the spectral properties of the Hamiltonian in the thermodynamic limit. The Kitaev chain is a paradigmatic non-interacting model that supports MZMs and the Hamiltonian can be fully diagonalised. However, for interacting models, the situation is far more complex. Here we consider a different classification of models, namely, ones with frustration-free Hamiltonians. Within this class of models, interacting and non-interacting systems are treated on an equal footing, and we identify exactly which Hamiltonians can realise MZMs.

  1. A parcel formulation for Hamiltonian layer models

    NARCIS (Netherlands)

    Bokhove, Onno; Oliver, M.

    Starting from the three-dimensional hydrostatic primitive equations, we derive Hamiltonian N-layer models with isentropic tropospheric and isentropic or isothermal stratospheric layers. Our construction employs a new parcel Hamiltonian formulation which describes the fluid as a continuum of

  2. Effective Hamiltonians in quantum physics: resonances and geometric phase

    International Nuclear Information System (INIS)

    Rau, A R P; Uskov, D

    2006-01-01

    Effective Hamiltonians are often used in quantum physics, both in time-dependent and time-independent contexts. Analogies are drawn between the two usages, the discussion framed particularly for the geometric phase of a time-dependent Hamiltonian and for resonances as stationary states of a time-independent Hamiltonian

  3. Propagation of the Stress Wave Through the Filled Joint with Linear Viscoelastic Deformation Behavior Using Time-Domain Recursive Method

    Science.gov (United States)

    Wang, Rui; Hu, Zhiping; Zhang, Dan; Wang, Qiyao

    2017-12-01

    The dynamic behavior of filled joints is mostly controlled by the filled medium. In addition to nonlinear elastic behavior, viscoelastic behavior of filled joints is also of great significance. Here, a theoretical study of stress wave propagation through a filled rock joint with linear viscoelastic deformation behavior has been carried out using a modified time-domain recursive method (TDRM). A displacement discontinuity model was extended to form a displacement and stress discontinuity model, and the differential constitutive relationship of viscoelastic model was adopted to introduce the mass and viscoelastic behavior of filled medium. A standard linear solid model, which can be degenerated into the Kelvin and Maxwell models, was adopted in deriving this method. Transmission and reflection coefficients were adopted to verify this method. Besides, the effects of some parameters on wave propagation across a filled rock joint with linear viscoelastic deformation behavior were discussed. Then, a comparison of the time-history curves calculated by the present method with those by frequency-domain method (FDM) was performed. The results indicated that change tendencies of the transmission and reflection coefficients for these viscoelastic models versus incident angle were the same as each other but not frequency. The mass and viscosity coupling of filled medium did not fundamentally change wave propagation. The modified TDRM was found to be more efficient than the FDM.

  4. Hamiltonian lattice studies of chiral meson field theories

    International Nuclear Information System (INIS)

    Chin, S.A.

    1998-01-01

    The latticization of the non-linear sigma model reduces a chiral meson field theory to an O(4) spin lattice system with quantum fluctuations. The result is an interesting marriage between quantum many-body theory and classical spin systems. By solving the resulting lattice Hamiltonian by Monte Carlo methods, the dynamics and thermodynamics of pions can be determined non-perturbatively. In a variational 16 3 lattice study, the ground state chiral phase transition is shown to be first order. Moreover, as the chiral phase transition is approached, the mass gap of pionic collective modes with quantum number of the ω vector meson drops toward zero. (Copyright (1998) World Scientific Publishing Co. Pte. Ltd)

  5. Gravitational surface Hamiltonian and entropy quantization

    Directory of Open Access Journals (Sweden)

    Ashish Bakshi

    2017-02-01

    Full Text Available The surface Hamiltonian corresponding to the surface part of a gravitational action has xp structure where p is conjugate momentum of x. Moreover, it leads to TS on the horizon of a black hole. Here T and S are temperature and entropy of the horizon. Imposing the hermiticity condition we quantize this Hamiltonian. This leads to an equidistant spectrum of its eigenvalues. Using this we show that the entropy of the horizon is quantized. This analysis holds for any order of Lanczos–Lovelock gravity. For general relativity, the area spectrum is consistent with Bekenstein's observation. This provides a more robust confirmation of this earlier result as the calculation is based on the direct quantization of the Hamiltonian in the sense of usual quantum mechanics.

  6. First principles of Hamiltonian medicine.

    Science.gov (United States)

    Crespi, Bernard; Foster, Kevin; Úbeda, Francisco

    2014-05-19

    We introduce the field of Hamiltonian medicine, which centres on the roles of genetic relatedness in human health and disease. Hamiltonian medicine represents the application of basic social-evolution theory, for interactions involving kinship, to core issues in medicine such as pathogens, cancer, optimal growth and mental illness. It encompasses three domains, which involve conflict and cooperation between: (i) microbes or cancer cells, within humans, (ii) genes expressed in humans, (iii) human individuals. A set of six core principles, based on these domains and their interfaces, serves to conceptually organize the field, and contextualize illustrative examples. The primary usefulness of Hamiltonian medicine is that, like Darwinian medicine more generally, it provides novel insights into what data will be productive to collect, to address important clinical and public health problems. Our synthesis of this nascent field is intended predominantly for evolutionary and behavioural biologists who aspire to address questions directly relevant to human health and disease.

  7. Quantum Statistical Operator and Classically Chaotic Hamiltonian ...

    African Journals Online (AJOL)

    Quantum Statistical Operator and Classically Chaotic Hamiltonian System. ... Journal of the Nigerian Association of Mathematical Physics ... In a Hamiltonian system von Neumann Statistical Operator is used to tease out the quantum consequence of (classical) chaos engendered by the nonlinear coupling of system to its ...

  8. Electrostatics of proteins in dielectric solvent continua. II. Hamiltonian reaction field dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Sebastian; Tavan, Paul; Mathias, Gerald, E-mail: gerald.mathias@physik.uni-muenchen.de [Lehrstuhl für BioMolekulare Optik, Ludig-Maximilians Universität München, Oettingenstr. 67, 80538 München (Germany)

    2014-03-14

    In Paper I of this work [S. Bauer, G. Mathias, and P. Tavan, J. Chem. Phys. 140, 104102 (2014)] we have presented a reaction field (RF) method, which accurately solves the Poisson equation for proteins embedded in dielectric solvent continua at a computational effort comparable to that of polarizable molecular mechanics (MM) force fields. Building upon these results, here we suggest a method for linearly scaling Hamiltonian RF/MM molecular dynamics (MD) simulations, which we call “Hamiltonian dielectric solvent” (HADES). First, we derive analytical expressions for the RF forces acting on the solute atoms. These forces properly account for all those conditions, which have to be self-consistently fulfilled by RF quantities introduced in Paper I. Next we provide details on the implementation, i.e., we show how our RF approach is combined with a fast multipole method and how the self-consistency iterations are accelerated by the use of the so-called direct inversion in the iterative subspace. Finally we demonstrate that the method and its implementation enable Hamiltonian, i.e., energy and momentum conserving HADES-MD, and compare in a sample application on Ac-Ala-NHMe the HADES-MD free energy landscape at 300 K with that obtained in Paper I by scanning of configurations and with one obtained from an explicit solvent simulation.

  9. Generalized Hubbard Hamiltonian: renormalization group approach

    International Nuclear Information System (INIS)

    Cannas, S.A.; Tamarit, F.A.; Tsallis, C.

    1991-01-01

    We study a generalized Hubbard Hamiltonian which is closed within the framework of a Quantum Real Space Renormalization Group, which replaces the d-dimensional hypercubic lattice by a diamond-like lattice. The phase diagram of the generalized Hubbard Hamiltonian is analyzed for the half-filled band case in d = 2 and d = 3. Some evidence for superconductivity is presented. (author). 44 refs., 12 figs., 2 tabs

  10. Local Hamiltonians for maximally multipartite-entangled states

    Science.gov (United States)

    Facchi, P.; Florio, G.; Pascazio, S.; Pepe, F.

    2010-10-01

    We study the conditions for obtaining maximally multipartite-entangled states (MMESs) as nondegenerate eigenstates of Hamiltonians that involve only short-range interactions. We investigate small-size systems (with a number of qubits ranging from 3 to 5) and show some example Hamiltonians with MMESs as eigenstates.

  11. Local Hamiltonians for maximally multipartite-entangled states

    International Nuclear Information System (INIS)

    Facchi, P.; Florio, G.; Pascazio, S.; Pepe, F.

    2010-01-01

    We study the conditions for obtaining maximally multipartite-entangled states (MMESs) as nondegenerate eigenstates of Hamiltonians that involve only short-range interactions. We investigate small-size systems (with a number of qubits ranging from 3 to 5) and show some example Hamiltonians with MMESs as eigenstates.

  12. Greenberger-Horne-Zeilinger States and Few-Body Hamiltonians

    Science.gov (United States)

    Facchi, Paolo; Florio, Giuseppe; Pascazio, Saverio; Pepe, Francesco V.

    2011-12-01

    The generation of Greenberger-Horne-Zeilinger (GHZ) states is a crucial problem in quantum information. We derive general conditions for obtaining GHZ states as eigenstates of a Hamiltonian. We find that a necessary condition for an n-qubit GHZ state to be a nondegenerate eigenstate of a Hamiltonian is the presence of m-qubit couplings with m≥[(n+1)/2]. Moreover, we introduce a Hamiltonian with a GHZ eigenstate and derive sufficient conditions for the removal of the degeneracy.

  13. Greenberger-Horne-Zeilinger states and few-body Hamiltonians.

    Science.gov (United States)

    Facchi, Paolo; Florio, Giuseppe; Pascazio, Saverio; Pepe, Francesco V

    2011-12-23

    The generation of Greenberger-Horne-Zeilinger (GHZ) states is a crucial problem in quantum information. We derive general conditions for obtaining GHZ states as eigenstates of a Hamiltonian. We find that a necessary condition for an n-qubit GHZ state to be a nondegenerate eigenstate of a Hamiltonian is the presence of m-qubit couplings with m≥[(n+1)/2]. Moreover, we introduce a Hamiltonian with a GHZ eigenstate and derive sufficient conditions for the removal of the degeneracy.

  14. Finding Traps in Non-linear Spin Arrays

    OpenAIRE

    Wiesniak, Marcin; Markiewicz, Marcin

    2009-01-01

    Precise knowledge of the Hamiltonian of a system is a key to many of its applications. Tasks such state transfer or quantum computation have been well studied with a linear chain, but hardly with systems, which do not possess a linear structure. While this difference does not disturb the end-to-end dynamics of a single excitation, the evolution is significantly changed in other subspaces. Here we quantify the difference between a linear chain and a pseudo-chain, which have more than one spin ...

  15. Effective Hamiltonian for travelling discrete breathers

    Science.gov (United States)

    MacKay, Robert S.; Sepulchre, Jacques-Alexandre

    2002-05-01

    Hamiltonian chains of oscillators in general probably do not sustain exact travelling discrete breathers. However solutions which look like moving discrete breathers for some time are not difficult to observe in numerics. In this paper we propose an abstract framework for the description of approximate travelling discrete breathers in Hamiltonian chains of oscillators. The method is based on the construction of an effective Hamiltonian enabling one to describe the dynamics of the translation degree of freedom of moving breathers. Error estimate on the approximate dynamics is also studied. The concept of the Peierls-Nabarro barrier can be made clear in this framework. We illustrate the method with two simple examples, namely the Salerno model which interpolates between the Ablowitz-Ladik lattice and the discrete nonlinear Schrödinger system, and the Fermi-Pasta-Ulam chain.

  16. A new hierarchy of generalized derivative nonlinear Schroedinger equations, its bi-Hamiltonian structure and finite-dimensional involutive system

    International Nuclear Information System (INIS)

    Yan, Z.; Zhang, H.

    2001-01-01

    In this paper, an isospectral problem and one associated with a new hierarchy of nonlinear evolution equations are presented. As a reduction, a representative system of new generalized derivative nonlinear Schroedinger equations in the hierarchy is given. It is shown that the hierarchy possesses bi-Hamiltonian structures by using the trace identity method and is Liouville integrable. The spectral problem is non linearized as a finite-dimensional completely integrable Hamiltonian system under a constraint between the potentials and spectral functions. Finally, the involutive solutions of the hierarchy of equations are obtained. In particular, the involutive solutions of the system of new generalized derivative nonlinear Schroedinger equations are developed

  17. Complex Hamiltonian Dynamics

    CERN Document Server

    Bountis, Tassos

    2012-01-01

    This book introduces and explores modern developments in the well established field of Hamiltonian dynamical systems. It focuses on high degree-of-freedom systems and the transitional regimes between regular and chaotic motion. The role of nonlinear normal modes is highlighted and the importance of low-dimensional tori in the resolution of the famous FPU paradox is emphasized. Novel powerful numerical methods are used to study localization phenomena and distinguish order from strongly and weakly chaotic regimes. The emerging hierarchy of complex structures in such regimes gives rise to particularly long-lived patterns and phenomena called quasi-stationary states, which are explored in particular in the concrete setting of one-dimensional Hamiltonian lattices and physical applications in condensed matter systems.  The self-contained and pedagogical approach is blended with a unique balance between mathematical rigor, physics insights and concrete applications. End of chapter exercises and (more demanding) res...

  18. Study of phase transition of even and odd nuclei based on q-deforme SU(1,1) algebraic model

    Science.gov (United States)

    Jafarizadeh, M. A.; Amiri, N.; Fouladi, N.; Ghapanvari, M.; Ranjbar, Z.

    2018-04-01

    The q-deformed Hamiltonian for the SO (6) ↔ U (5) transitional case in s, d interaction boson model (IBM) can be constructed by using affine SUq (1 , 1) Lie algebra in the both IBM-1 and 2 versions and IBFM. In this research paper, we have studied the energy spectra of 120-128Xe isotopes and 123-131Xe isotopes and B(E2) transition probabilities of 120-128Xe isotopes in the shape phase transition region between the spherical and gamma unstable deformed shapes of the theory of quantum deformation. The theoretical results agree with the experimental data fairly well. It is shown that the q-deformed SO (6) ↔ U (5) transitional dynamical symmetry remains after deformation.

  19. Invariant metrics for Hamiltonian systems

    International Nuclear Information System (INIS)

    Rangarajan, G.; Dragt, A.J.; Neri, F.

    1991-05-01

    In this paper, invariant metrics are constructed for Hamiltonian systems. These metrics give rise to norms on the space of homeogeneous polynomials of phase-space variables. For an accelerator lattice described by a Hamiltonian, these norms characterize the nonlinear content of the lattice. Therefore, the performance of the lattice can be improved by minimizing the norm as a function of parameters describing the beam-line elements in the lattice. A four-fold increase in the dynamic aperture of a model FODO cell is obtained using this procedure. 7 refs

  20. Excited collective states of nuclei within Bohr Hamiltonian with Tietz-Hua potential

    Energy Technology Data Exchange (ETDEWEB)

    Chabab, M.; El Batoul, A.; Lahbas, A.; Oulne, M. [Cadi Ayyad University, High Energy Physics and Astrophysics Laboratory, Faculty of Sciences Semlalia, Marrakesh (Morocco); Hamzavi, M. [University of Zanjan, Department of Physics, Zanjan (Iran, Islamic Republic of)

    2017-07-15

    In this paper, we present new analytical solutions of the Bohr Hamiltonian problem that we derived with the Tietz-Hua potential, here used for describing the β-part of the nuclear collective potential plus that of the harmonic oscillator for the γ-part. Also, we proceed to a systematic comparison of the numerical results obtained with this kind of β-potential with others which are widely used in such a framework as well as with the experiment. The calculations are carried out for energy spectra and electromagnetic transition probabilities for γ-unstable and axially symmetric deformed nuclei. In the same frame, we show the effect of the shape flatness of the β-potential beyond its minimum on transition rates calculations. (orig.)

  1. Approximate symmetries of Hamiltonians

    Science.gov (United States)

    Chubb, Christopher T.; Flammia, Steven T.

    2017-08-01

    We explore the relationship between approximate symmetries of a gapped Hamiltonian and the structure of its ground space. We start by considering approximate symmetry operators, defined as unitary operators whose commutators with the Hamiltonian have norms that are sufficiently small. We show that when approximate symmetry operators can be restricted to the ground space while approximately preserving certain mutual commutation relations. We generalize the Stone-von Neumann theorem to matrices that approximately satisfy the canonical (Heisenberg-Weyl-type) commutation relations and use this to show that approximate symmetry operators can certify the degeneracy of the ground space even though they only approximately form a group. Importantly, the notions of "approximate" and "small" are all independent of the dimension of the ambient Hilbert space and depend only on the degeneracy in the ground space. Our analysis additionally holds for any gapped band of sufficiently small width in the excited spectrum of the Hamiltonian, and we discuss applications of these ideas to topological quantum phases of matter and topological quantum error correcting codes. Finally, in our analysis, we also provide an exponential improvement upon bounds concerning the existence of shared approximate eigenvectors of approximately commuting operators under an added normality constraint, which may be of independent interest.

  2. Momentum and hamiltonian in complex action theory

    DEFF Research Database (Denmark)

    Nagao, Keiichi; Nielsen, Holger Frits Bech

    2012-01-01

    $-parametrized wave function, which is a solution to an eigenvalue problem of a momentum operator $\\hat{p}$, in FPI with a starting Lagrangian. Solving the eigenvalue problem, we derive the momentum and Hamiltonian. Oppositely, starting from the Hamiltonian we derive the Lagrangian in FPI, and we are led...

  3. A Few Integrable Dynamical Systems, Recurrence Operators, Expanding Integrable Models and Hamiltonian Structures by the r -Matrix Method

    International Nuclear Information System (INIS)

    Zhang Yu-Feng; Muhammad, Iqbal; Yue Chao

    2017-01-01

    We extend two known dynamical systems obtained by Blaszak, et al. via choosing Casimir functions and utilizing Novikov–Lax equation so that a series of novel dynamical systems including generalized Burgers dynamical system, heat equation, and so on, are followed to be generated. Then we expand some differential operators presented in the paper to deduce two types of expanding dynamical models. By taking the generalized Burgers dynamical system as an example, we deform its expanding model to get a half-expanding system, whose recurrence operator is derived from Lax representation, and its Hamiltonian structure is also obtained by adopting a new way. Finally, we expand the generalized Burgers dynamical system to the (2+1)-dimensional case whose Hamiltonian structure is derived by Poisson tensor and gradient of the Casimir function. Besides, a kind of (2+1)-dimensional expanding dynamical model of the (2+1)-dimensional dynamical system is generated as well. (paper)

  4. Integrable deformations of Lotka-Volterra systems

    International Nuclear Information System (INIS)

    Ballesteros, Angel; Blasco, Alfonso; Musso, Fabio

    2011-01-01

    The Hamiltonian structure of a class of three-dimensional (3D) Lotka-Volterra (LV) equations is revisited from a novel point of view by showing that the quadratic Poisson structure underlying its integrability structure is just a real three-dimensional Poisson-Lie group. As a consequence, the Poisson coalgebra map Δ (2) that is given by the group multiplication provides the keystone for the explicit construction of a new family of 3N-dimensional integrable systems that, under certain constraints, contain N sets of deformed versions of the 3D LV equations. Moreover, by considering the most generic Poisson-Lie structure on this group, a new two-parametric integrable perturbation of the 3D LV system through polynomial and rational perturbation terms is explicitly found. -- Highlights: → A new Poisson-Lie approach to the integrability of Lotka-Volterra system is given. → New integrable deformations of the 3D Lotka-Volterra system are obtained. → Integrable Lotka-Volterra-type equations in 3N dimensions are deduced.

  5. Diffeomorphism invariance in the Hamiltonian formulation of General Relativity

    International Nuclear Information System (INIS)

    Kiriushcheva, N.; Kuzmin, S.V.; Racknor, C.; Valluri, S.R.

    2008-01-01

    It is shown that when the Einstein-Hilbert Lagrangian is considered without any non-covariant modifications or change of variables, its Hamiltonian formulation leads to results consistent with principles of General Relativity. The first-class constraints of such a Hamiltonian formulation, with the metric tensor taken as a canonical variable, allow one to derive the generator of gauge transformations, which directly leads to diffeomorphism invariance. The given Hamiltonian formulation preserves general covariance of the transformations derivable from it. This characteristic should be used as the crucial consistency requirement that must be met by any Hamiltonian formulation of General Relativity

  6. An approach for obtaining integrable Hamiltonians from Poisson-commuting polynomial families

    Science.gov (United States)

    Leyvraz, F.

    2017-07-01

    We discuss a general approach permitting the identification of a broad class of sets of Poisson-commuting Hamiltonians, which are integrable in the sense of Liouville. It is shown that all such Hamiltonians can be solved explicitly by a separation of variables ansatz. The method leads in particular to a proof that the so-called "goldfish" Hamiltonian is maximally superintegrable and leads to an elementary identification of a full set of integrals of motion. The Hamiltonians in involution with the "goldfish" Hamiltonian are also explicitly integrated. New integrable Hamiltonians are identified, among which some have the property of being isochronous, that is, all their orbits have the same period. Finally, a peculiar structure is identified in the Poisson brackets between the elementary symmetric functions and the set of Hamiltonians commuting with the "goldfish" Hamiltonian: these can be expressed as products between elementary symmetric functions and Hamiltonians. The structure displays an invariance property with respect to one element and has both a symmetry and a closure property. The meaning of this structure is not altogether clear to the author, but it turns out to be a powerful tool.

  7. Empirical Hamiltonians

    International Nuclear Information System (INIS)

    Peggs, S.; Talman, R.

    1987-01-01

    As proton accelerators get larger, and include more magnets, the conventional tracking programs which simulate them run slower. The purpose of this paper is to describe a method, still under development, in which element-by-element tracking around one turn is replaced by a single man, which can be processed far faster. It is assumed for this method that a conventional program exists which can perform faithful tracking in the lattice under study for some hundreds of turns, with all lattice parameters held constant. An empirical map is then generated by comparison with the tracking program. A procedure has been outlined for determining an empirical Hamiltonian, which can represent motion through many nonlinear kicks, by taking data from a conventional tracking program. Though derived by an approximate method this Hamiltonian is analytic in form and can be subjected to further analysis of varying degrees of mathematical rigor. Even though the empirical procedure has only been described in one transverse dimension, there is good reason to hope that it can be extended to include two transverse dimensions, so that it can become a more practical tool in realistic cases

  8. Effective hamiltonian within the microscopic unitary nuclear model

    International Nuclear Information System (INIS)

    Avramenko, V.I.; Blokhin, A.L.

    1989-01-01

    Within the microscopic version of the unitary collective model with the horizontal mixing the effective Hamiltonian for 18 O and 18 Ne nuclei is constructed. The algebraic structure of the Hamiltonian is compared to the familiar phenomenological ones with the SU(3)-mixing terms which describe the coupled rotational and vibrational spectra. The Hamiltonian, including central nuclear and Coulomb interaction, is diagonalized on the basis of three SU(3) irreducible representations with two orbital symmetries. 32 refs.; 2 figs.; 4 tabs

  9. Homotopical Dynamics IV: Hopf invariants and hamiltonian flows

    OpenAIRE

    Cornea, Octavian

    2001-01-01

    In a non-compact context the first natural step in the search for periodic orbits of a hamiltonian flow is to detect bounded ones. In this paper we show that, in a non-compact setting, certain algebraic topological constraints imposed to a gradient flow of the hamiltonian function $f$ imply the existence of bounded orbits for the hamiltonian flow of $f$. Once the existence of bounded orbits is established, under favorable circumstances, application of the $C^{1}$-closing lemma leads to period...

  10. Effective magnetic Hamiltonians

    Czech Academy of Sciences Publication Activity Database

    Drchal, Václav; Kudrnovský, Josef; Turek, I.

    2013-01-01

    Roč. 26, č. 5 (2013), s. 1997-2000 ISSN 1557-1939 R&D Projects: GA ČR GA202/09/0775 Institutional support: RVO:68378271 Keywords : effective magnetic Hamiltonian * ab initio * magnetic structure Subject RIV: BE - Theoretical Physics Impact factor: 0.930, year: 2013

  11. q-deformed Minkowski space

    International Nuclear Information System (INIS)

    Ogievetsky, O.; Pillin, M.; Schmidke, W.B.; Wess, J.; Zumino, B.

    1993-01-01

    In this lecture I discuss the algebraic structure of a q-deformed four-vector space. It serves as a good example of quantizing Minkowski space. To give a physical interpretation of such a quantized Minkowski space we construct the Hilbert space representation and find that the relevant time and space operators have a discrete spectrum. Thus the q-deformed Minkowski space has a lattice structure. Nevertheless this lattice structure is compatible with the operation of q-deformed Lorentz transformations. The generators of the q-deformed Lorentz group can be represented as linear operators in the same Hilbert space. (orig.)

  12. A local inverse spectral theorem for Hamiltonian systems

    International Nuclear Information System (INIS)

    Langer, Matthias; Woracek, Harald

    2011-01-01

    We consider (2 × 2)-Hamiltonian systems of the form y'(x) = zJH(x)y(x), x in [s − , s + ). If a system of this form is in the limit point case, an analytic function is associated with it, namely its Titchmarsh–Weyl coefficient q H . The (global) uniqueness theorem due to de Branges says that the Hamiltonian H is (up to reparameterization) uniquely determined by the function q H . In this paper we give a local uniqueness theorem; if the Titchmarsh–Weyl coefficients q H 1 and q H 2 corresponding to two Hamiltonian systems are exponentially close, then the Hamiltonians H 1 and H 2 coincide (up to reparameterization) up to a certain point of their domain, which depends on the quantitative degree of exponential closeness of the Titchmarsh–Weyl coefficients

  13. Latent log-linear models for handwritten digit classification.

    Science.gov (United States)

    Deselaers, Thomas; Gass, Tobias; Heigold, Georg; Ney, Hermann

    2012-06-01

    We present latent log-linear models, an extension of log-linear models incorporating latent variables, and we propose two applications thereof: log-linear mixture models and image deformation-aware log-linear models. The resulting models are fully discriminative, can be trained efficiently, and the model complexity can be controlled. Log-linear mixture models offer additional flexibility within the log-linear modeling framework. Unlike previous approaches, the image deformation-aware model directly considers image deformations and allows for a discriminative training of the deformation parameters. Both are trained using alternating optimization. For certain variants, convergence to a stationary point is guaranteed and, in practice, even variants without this guarantee converge and find models that perform well. We tune the methods on the USPS data set and evaluate on the MNIST data set, demonstrating the generalization capabilities of our proposed models. Our models, although using significantly fewer parameters, are able to obtain competitive results with models proposed in the literature.

  14. Contact symmetries and Hamiltonian thermodynamics

    International Nuclear Information System (INIS)

    Bravetti, A.; Lopez-Monsalvo, C.S.; Nettel, F.

    2015-01-01

    It has been shown that contact geometry is the proper framework underlying classical thermodynamics and that thermodynamic fluctuations are captured by an additional metric structure related to Fisher’s Information Matrix. In this work we analyse several unaddressed aspects about the application of contact and metric geometry to thermodynamics. We consider here the Thermodynamic Phase Space and start by investigating the role of gauge transformations and Legendre symmetries for metric contact manifolds and their significance in thermodynamics. Then we present a novel mathematical characterization of first order phase transitions as equilibrium processes on the Thermodynamic Phase Space for which the Legendre symmetry is broken. Moreover, we use contact Hamiltonian dynamics to represent thermodynamic processes in a way that resembles the classical Hamiltonian formulation of conservative mechanics and we show that the relevant Hamiltonian coincides with the irreversible entropy production along thermodynamic processes. Therefore, we use such property to give a geometric definition of thermodynamically admissible fluctuations according to the Second Law of thermodynamics. Finally, we show that the length of a curve describing a thermodynamic process measures its entropy production

  15. Generic Local Hamiltonians are Gapless

    Science.gov (United States)

    Movassagh, Ramis

    2017-12-01

    We prove that generic quantum local Hamiltonians are gapless. In fact, we prove that there is a continuous density of states above the ground state. The Hamiltonian can be on a lattice in any spatial dimension or on a graph with a bounded maximum vertex degree. The type of interactions allowed for include translational invariance in a disorder (i.e., probabilistic) sense with some assumptions on the local distributions. Examples include many-body localization and random spin models. We calculate the scaling of the gap with the system's size when the local terms are distributed according to a Gaussian β orthogonal random matrix ensemble. As a corollary, there exist finite size partitions with respect to which the ground state is arbitrarily close to a product state. When the local eigenvalue distribution is discrete, in addition to the lack of an energy gap in the limit, we prove that the ground state has finite size degeneracies. The proofs are simple and constructive. This work excludes the important class of truly translationally invariant Hamiltonians where the local terms are all equal.

  16. Hamiltonian formulation for the Martin-Taylor model

    International Nuclear Information System (INIS)

    Vasconcelos, D.B.; Viana, R.L.

    1993-01-01

    Locally stochastic layer and its optimization are studied. In order to accomplish this task, it is employed a Hamiltonian formulation of magnetic field line flow with a subsequent application of Escande-Doveil renormalization method which have been extensively used to obtain accurate estimates of stochasticity thresholds in systems exhibiting Hamiltonian chaos. (author)

  17. Remarks on Hamiltonian structures in G2-geometry

    International Nuclear Information System (INIS)

    Cho, Hyunjoo; Salur, Sema; Todd, A. J.

    2013-01-01

    In this article, we treat G 2 -geometry as a special case of multisymplectic geometry and make a number of remarks regarding Hamiltonian multivector fields and Hamiltonian differential forms on manifolds with an integrable G 2 -structure; in particular, we discuss existence and make a number of identifications of the spaces of Hamiltonian structures associated to the two multisymplectic structures associated to an integrable G 2 -structure. Along the way, we prove some results in multisymplectic geometry that are generalizations of results from symplectic geometry

  18. On Optimal Feedback Control for Stationary Linear Systems

    International Nuclear Information System (INIS)

    Russell, David L.

    2010-01-01

    We study linear-quadratic optimal control problems for finite dimensional stationary linear systems AX+BU=Z with output Y=CX+DU from the viewpoint of linear feedback solution. We interpret solutions in relation to system robustness with respect to disturbances Z and relate them to nonlinear matrix equations of Riccati type and eigenvalue-eigenvector problems for the corresponding Hamiltonian system. Examples are included along with an indication of extensions to continuous, i.e., infinite dimensional, systems, primarily of elliptic type.

  19. QCD string with quarks. 2. Light cone Hamiltonian

    International Nuclear Information System (INIS)

    Dubin, A.Yu.; Kaidalov, A.B.; Simonov, Yu.A.

    1994-01-01

    The light-cone Hamiltonian is derived from the general gauge - and Lorentz - invariant expression for the qq-bar Green function. The resulting Hamiltonian contains in a non-additive way contributions from quark and string degrees of freedom

  20. On the asymptotic form of the recursion method basis vectors for periodic Hamiltonians

    International Nuclear Information System (INIS)

    O'Reilly, E.P.; Weaire, D.

    1984-01-01

    The authors present the first detailed study of the recursion method basis vectors for the case of a periodic Hamiltonian. In the examples chosen, the probability density scales linearly with n as n → infinity, whenever the local density of states is bounded. Whenever it is unbounded and the recursion coefficients diverge, different scaling behaviour is found. These findings are explained and a scaling relationship between the asymptotic forms of the recursion coefficients and basis vectors is proposed. (author)

  1. Loading Deformation Characteristic Simulation Study of Engineering Vehicle Refurbished Tire

    Science.gov (United States)

    Qiang, Wang; Xiaojie, Qi; Zhao, Yang; Yunlong, Wang; Guotian, Wang; Degang, Lv

    2018-05-01

    The paper constructed engineering vehicle refurbished tire computer geometry model, mechanics model, contact model, finite element analysis model, did simulation study on load-deformation property of engineering vehicle refurbished tire by comparing with that of the new and the same type tire, got load-deformation of engineering vehicle refurbished tire under the working condition of static state and ground contact. The analysis result shows that change rules of radial-direction deformation and side-direction deformation of engineering vehicle refurbished tire are close to that of the new tire, radial-direction and side-direction deformation value is a little less than that of the new tire. When air inflation pressure was certain, radial-direction deformation linear rule of engineer vehicle refurbished tire would increase with load adding, however, side-direction deformation showed linear change rule, when air inflation pressure was low; and it would show increase of non-linear change rule, when air inflation pressure was very high.

  2. Static and dynamic deformations of actinide nuclei

    International Nuclear Information System (INIS)

    Rozmej, P.

    1985-09-01

    The zero-point quadrupole-hexadecapole vibrations have been taken into account to calculate dynamical deformations for even-even actinide nuclei. The collective and intrinsic motions are separated according to the Born-Oppenheimer approximation. The collective Hamiltonian is constructed using the macroscopic-microscopic method in the potential energy part and the cranking model in the kinetic energy part. The BCS theory with a modified oscillator potential is applied to describe the intrinsic motion of nucleons. A new set of Nilsson potential parameters, which produces a much better description of the properties of light actinide nuclei, has also been found. (orig.)

  3. Combinatorial quantization of the Hamiltonian Chern-Simons theory

    International Nuclear Information System (INIS)

    Alekseev, A.Yu.; Grosse, H.; Schomerus, V.

    1996-01-01

    This paper further develops the combinatorial approach to quantization of the Hamiltonian Chern Simons theory. Using the theory of quantum Wilson lines, we show how the Verlinde algebra appears within the context of quantum group gauge theory. This allows to discuss flatness of quantum connections so that we can give a mathematically rigorous definition of the algebra of observables A CS of the Chern Simons model. It is a *-algebra of ''functions on the quantum moduli space of flat connections'' and comes equipped with a positive functional ω (''integration''). We prove that this data does not depend on the particular choices which have been made in the construction. The algebra A CS provides a deformation quantization of the algebra of functions on the moduli space along the natural Poisson bracket induced by the Chern Simons action. We evaluate a volume of the quantized moduli space and prove that it coincides with the Verlinde number. This answer is also interpreted as a partition partition function of the lattice Yang-Mills theory corresponding to a quantum gauge group. (orig.). With 1 fig

  4. Local modular Hamiltonians from the quantum null energy condition

    Science.gov (United States)

    Koeller, Jason; Leichenauer, Stefan; Levine, Adam; Shahbazi-Moghaddam, Arvin

    2018-03-01

    The vacuum modular Hamiltonian K of the Rindler wedge in any relativistic quantum field theory is given by the boost generator. Here we investigate the modular Hamiltonian for more general half-spaces which are bounded by an arbitrary smooth cut of a null plane. We derive a formula for the second derivative of the modular Hamiltonian with respect to the coordinates of the cut which schematically reads K''=Tv v . This formula can be integrated twice to obtain a simple expression for the modular Hamiltonian. The result naturally generalizes the standard expression for the Rindler modular Hamiltonian to this larger class of regions. Our primary assumptions are the quantum null energy condition—an inequality between the second derivative of the von Neumann entropy of a region and the stress tensor—and its saturation in the vacuum for these regions. We discuss the validity of these assumptions in free theories and holographic theories to all orders in 1 /N .

  5. On local Hamiltonians and dissipative systems

    Energy Technology Data Exchange (ETDEWEB)

    Castagnino, M. [CONICET-Institutos de Fisica Rosario y de Astronomia y Fisica del Espacio Casilla de Correos 67, Sucursal 28, 1428, Buenos Aires (Argentina); Gadella, M. [Facultad de Ciencias Exactas, Ingenieria y Agrimensura UNR, Rosario (Argentina) and Departamento de Fisica Teorica, Facultad de Ciencias c. Real de Burgos, s.n., 47011 Valladolid (Spain)]. E-mail: manuelgadella@yahoo.com.ar; Lara, L.P. [Facultad de Ciencias Exactas, Ingenieria y Agrimensura UNR, Rosario (Argentina)

    2006-11-15

    We study a type of one-dimensional dynamical systems on the corresponding two-dimensional phase space. By using arguments related to the existence of integrating factors for Pfaff equations, we show that some one-dimensional non-Hamiltonian systems like dissipative systems, admit a Hamiltonian description by sectors on the phase plane. This picture is not uniquely defined and is coordinate dependent. A simple example is exhaustively discussed. The method, is not always applicable to systems with higher dimensions.

  6. Superconformal gravity in Hamiltonian form: another approach to the renormalization of gravitation

    International Nuclear Information System (INIS)

    Kaku, M.

    1983-01-01

    We reexpress superconformal gravity in Hamiltonian form, explicitly displaying all 24 generators of the group as Dirac constraints on the Hilbert space. From this, we can establish a firm foundation for the canonical quantization of superconformal gravity. The purpose of writing down the Hamiltonian form of the theory is to reexamine the question of renormalization and unitarity. Usually, we start with unitary theories of gravity, such as the Einstein-Hilbert action or supergravity, both of which are probably not renormalizable. In this series of papers, we take the opposite approach and start with a theory which is renormalizable but has problems with unitarity. Conformal and superconformal gravity are both plagued with dipole ghosts when we use perturbation theory to quantize the theories. It is difficult to interpret the results of perturbation theory because the asymptotic states have zero norm and the potential between particles grows linearly with the separation distance. The purpose of writing the Hamiltonian form of these theories is to approach the question of unitarity from a different point of view. For example, a strong-coupling approach to these theories may yield a totally different perturbation expansion. We speculate that canonically quantizing the theory by power expanding in the strong-coupling regime may yield a different set of asymptotic states, somewhat similar to the situation in gauge theories. In this series of papers, we wish to reopen the question of the unitarity of conformal theories. We conjecture that ghosts are ''confined.''

  7. Fock-space diagonalization of the state-dependent pairing Hamiltonian with the Woods-Saxon mean field

    International Nuclear Information System (INIS)

    Molique, H.; Dudek, J.

    1997-01-01

    A particle-number conserving approach is presented to solve the nuclear mean-field plus pairing Hamiltonian problem with a realistic deformed Woods-Saxon single-particle potential. The method is designed for the state-dependent monopole pairing Hamiltonian H pair =summation αβ G αβ c α † c bar α † c bar β c β with an arbitrary set of matrix elements G αβ . Symmetries of the Hamiltonians on the many-body level are discussed using the language of P symmetry introduced earlier in the literature and are employed to diagonalize the problem; the only essential approximation used is a many-body (Fock-space) basis cutoff. An optimal basis construction is discussed and the stability of the final result with respect to the basis cutoff is illustrated in details. Extensions of the concept of P symmetry are introduced and their consequences for an optimal many-body basis cutoff construction are exploited. An algorithm is constructed allowing to solve the pairing problems in the many-body spaces corresponding to p∼40 particles on n∼80 levels and for several dozens of lowest lying states with precision ∼(1 endash 2) % within seconds of the CPU time on a CRAY computer. Among applications, the presence of the low-lying seniority s=0 solutions, that are usually poorly described in terms of the standard approximations (BCS, HFB), is discussed and demonstrated to play a role in the interpretation of the spectra of rotating nuclei. copyright 1997 The American Physical Society

  8. Residual gauge invariance of Hamiltonian lattice gauge theories

    International Nuclear Information System (INIS)

    Ryang, S.; Saito, T.; Shigemoto, K.

    1984-01-01

    The time-independent residual gauge invariance of Hamiltonian lattice gauge theories is considered. Eigenvalues and eigenfunctions of the unperturbed Hamiltonian are found in terms of Gegengauer's polynomials. Physical states which satisfy the subsidiary condition corresponding to Gauss' law are constructed systematically. (orig.)

  9. Fast computation of the Maslov index for hyperbolic linear systems with periodic coefficients

    International Nuclear Information System (INIS)

    Chardard, F; Dias, F; Bridges, T J

    2006-01-01

    The Maslov index is a topological property of periodic orbits of finite-dimensional Hamiltonian systems that is widely used in semiclassical quantization, quantum chaology, stability of waves and classical mechanics. The Maslov index is determined from the analysis of a linear Hamiltonian system with periodic coefficients. In this paper, a numerical scheme is devised to compute the Maslov index for hyperbolic linear systems when the phase space has a low dimension. The idea is to compute on the exterior algebra of the ambient vector space, where the Lagrangian subspace representing the unstable subspace is reduced to a line. When the exterior algebra is projectified the Lagrangian subspace always forms a closed loop. The idea is illustrated by application to Hamiltonian systems on a phase space of dimension 4. The theory is used to compute the Maslov index for the spectral problem associated with periodic solutions of the fifth-order Korteweg de Vries equation

  10. Nested Sampling with Constrained Hamiltonian Monte Carlo

    OpenAIRE

    Betancourt, M. J.

    2010-01-01

    Nested sampling is a powerful approach to Bayesian inference ultimately limited by the computationally demanding task of sampling from a heavily constrained probability distribution. An effective algorithm in its own right, Hamiltonian Monte Carlo is readily adapted to efficiently sample from any smooth, constrained distribution. Utilizing this constrained Hamiltonian Monte Carlo, I introduce a general implementation of the nested sampling algorithm.

  11. Intertwined Hamiltonians in two-dimensional curved spaces

    International Nuclear Information System (INIS)

    Aghababaei Samani, Keivan; Zarei, Mina

    2005-01-01

    The problem of intertwined Hamiltonians in two-dimensional curved spaces is investigated. Explicit results are obtained for Euclidean plane, Minkowski plane, Poincare half plane (AdS 2 ), de Sitter plane (dS 2 ), sphere, and torus. It is shown that the intertwining operator is related to the Killing vector fields and the isometry group of corresponding space. It is shown that the intertwined potentials are closely connected to the integral curves of the Killing vector fields. Two problems are considered as applications of the formalism presented in the paper. The first one is the problem of Hamiltonians with equispaced energy levels and the second one is the problem of Hamiltonians whose spectrum is like the spectrum of a free particle

  12. Next generation of the self-consistent and environment-dependent Hamiltonian: Applications to various boron allotropes from zero- to three-dimensional structures

    Energy Technology Data Exchange (ETDEWEB)

    Tandy, P.; Yu, Ming; Leahy, C.; Jayanthi, C. S.; Wu, S. Y. [Department of Physics and Astronomy, University of Louisville, Louisville, Kentucky 40292 (United States)

    2015-03-28

    An upgrade of the previous self-consistent and environment-dependent linear combination of atomic orbitals Hamiltonian (referred as SCED-LCAO) has been developed. This improved version of the semi-empirical SCED-LCAO Hamiltonian, in addition to the inclusion of self-consistent determination of charge redistribution, multi-center interactions, and modeling of electron-electron correlation, has taken into account the effect excited on the orbitals due to the atomic aggregation. This important upgrade has been subjected to a stringent test, the construction of the SCED-LCAO Hamiltonian for boron. It was shown that the Hamiltonian for boron has successfully characterized the electron deficiency of boron and captured the complex chemical bonding in various boron allotropes, including the planar and quasi-planar, the convex, the ring, the icosahedral, and the fullerene-like clusters, the two-dimensional monolayer sheets, and the bulk alpha boron, demonstrating its transferability, robustness, reliability, and predictive power. The molecular dynamics simulation scheme based on the Hamiltonian has been applied to explore the existence and the energetics of ∼230 compact boron clusters B{sub N} with N in the range from ∼100 to 768, including the random, the rhombohedral, and the spherical icosahedral structures. It was found that, energetically, clusters containing whole icosahedral B{sub 12} units are more stable for boron clusters of larger size (N > 200). The ease with which the simulations both at 0 K and finite temperatures were completed is a demonstration of the efficiency of the SCED-LCAO Hamiltonian.

  13. Alternative structures and bi-Hamiltonian systems on a Hilbert space

    International Nuclear Information System (INIS)

    Marmo, G; Scolarici, G; Simoni, A; Ventriglia, F

    2005-01-01

    We discuss transformations generated by dynamical quantum systems which are bi-unitary, i.e. unitary with respect to a pair of Hermitian structures on an infinite-dimensional complex Hilbert space. We introduce the notion of Hermitian structures in generic relative position. We provide a few necessary and sufficient conditions for two Hermitian structures to be in generic relative position to better illustrate the relevance of this notion. The group of bi-unitary transformations is considered in both the generic and the non-generic case. Finally, we generalize the analysis to real Hilbert spaces and extend to infinite dimensions results already available in the framework of finite-dimensional linear bi-Hamiltonian systems

  14. NLO renormalization in the Hamiltonian truncation

    Science.gov (United States)

    Elias-Miró, Joan; Rychkov, Slava; Vitale, Lorenzo G.

    2017-09-01

    Hamiltonian truncation (also known as "truncated spectrum approach") is a numerical technique for solving strongly coupled quantum field theories, in which the full Hilbert space is truncated to a finite-dimensional low-energy subspace. The accuracy of the method is limited only by the available computational resources. The renormalization program improves the accuracy by carefully integrating out the high-energy states, instead of truncating them away. In this paper, we develop the most accurate ever variant of Hamiltonian Truncation, which implements renormalization at the cubic order in the interaction strength. The novel idea is to interpret the renormalization procedure as a result of integrating out exactly a certain class of high-energy "tail states." We demonstrate the power of the method with high-accuracy computations in the strongly coupled two-dimensional quartic scalar theory and benchmark it against other existing approaches. Our work will also be useful for the future goal of extending Hamiltonian truncation to higher spacetime dimensions.

  15. Noncanonical Hamiltonian methods in plasma dynamics

    International Nuclear Information System (INIS)

    Kaufman, A.N.

    1982-01-01

    A Hamiltonian approach to plasma dynamics is described. The Poisson bracket of two observables g 1 and g 2 is given by using an antisymmetric tensor J, and must satisfy the Jacobi condition. The J can be obtained by elementary tensor analysis. The evolution in time of an observable g is given in terms of the Poisson bracket and a Hamiltonian H(Z). The guiding-center description of particle motion was presented by Littlejohn. The ponderomotive drift and force, the wave-induced oscillation-center velocity, and the gyrofrequency shift are obtained. The Lie transform yields the wave-induced increment to the gyromomentum. In the coulomb model for a Vlasov system, the dynamical variable is the Vlasov distribution f(z). The Hamiltonian functional and the Poisson bracket are obtained. The coupling of f(z) to the Maxwell field appears in the Poisson bracket. The evolution equation yields the Vlasov-Maxwell system. (Kato, T.)

  16. Equivalence of Lagrangian and Hamiltonian BRST quantizations

    International Nuclear Information System (INIS)

    Grigoryan, G.V.; Grigoryan, R.P.; Tyutin, I.V.

    1992-01-01

    Two approaches to the quantization of gauge theories using BRST symmetry are widely used nowadays: the Lagrangian quantization, developed in (BV-quantization) and Hamiltonian quantization, formulated in (BFV-quantization). For all known examples of field theory (Yang-Mills theory, gravitation etc.) both schemes give equivalent results. However the equivalence of these approaches in general wasn't proved. The main obstacle in comparing of these formulations consists in the fact, that in Hamiltonian approach the number of ghost fields is equal to the number of all first-class constraints, while in the Lagrangian approach the number of ghosts is equal to the number of independent gauge symmetries, which is equal to the number of primary first-class constraints only. This paper is devoted to the proof of the equivalence of Lagrangian and Hamiltonian quantizations for the systems with first-class constraints only. This is achieved by a choice of special gauge in the Hamiltonian approach. It's shown, that after integration over redundant variables on the functional integral we come to effective action which is constructed according to rules for construction of the effective action in Lagrangian quantization scheme

  17. Hamiltonian evolutions of twisted polygons in RPn

    International Nuclear Information System (INIS)

    Beffa, Gloria Marì; Wang, Jing Ping

    2013-01-01

    In this paper we find a discrete moving frame and their associated invariants along projective polygons in RP n , and we use them to describe invariant evolutions of projective N-gons. We then apply a reduction process to obtain a natural Hamiltonian structure on the space of projective invariants for polygons, establishing a close relationship between the projective N-gon invariant evolutions and the Hamiltonian evolutions on the invariants of the flow. We prove that any Hamiltonian evolution is induced on invariants by an invariant evolution of N-gons—what we call a projective realization—and both evolutions are connected explicitly in a very simple way. Finally, we provide a completely integrable evolution (the Boussinesq lattice related to the lattice W 3 -algebra), its projective realization in RP 2 and its Hamiltonian pencil. We generalize both structures to n-dimensions and we prove that they are Poisson, defining explicitly the n-dimensional generalization of the planar evolution (a discretization of the W n -algebra). We prove that the generalization is completely integrable, and we also give its projective realization, which turns out to be very simple. (paper)

  18. An algorithm for finding a similar subgraph of all Hamiltonian cycles

    Science.gov (United States)

    Wafdan, R.; Ihsan, M.; Suhaimi, D.

    2018-01-01

    This paper discusses an algorithm to find a similar subgraph called findSimSubG algorithm. A similar subgraph is a subgraph with a maximum number of edges, contains no isolated vertex and is contained in every Hamiltonian cycle of a Hamiltonian Graph. The algorithm runs only on Hamiltonian graphs with at least two Hamiltonian cycles. The algorithm works by examining whether the initial subgraph of the first Hamiltonian cycle is a subgraph of comparison graphs. If the initial subgraph is not in comparison graphs, the algorithm will remove edges and vertices of the initial subgraph that are not in comparison graphs. There are two main processes in the algorithm, changing Hamiltonian cycle into a cycle graph and removing edges and vertices of the initial subgraph that are not in comparison graphs. The findSimSubG algorithm can find the similar subgraph without using backtracking method. The similar subgraph cannot be found on certain graphs, such as an n-antiprism graph, complete bipartite graph, complete graph, 2n-crossed prism graph, n-crown graph, n-möbius ladder, prism graph, and wheel graph. The complexity of this algorithm is O(m|V|), where m is the number of Hamiltonian cycles and |V| is the number of vertices of a Hamiltonian graph.

  19. Hamiltonian constraint in polymer parametrized field theory

    International Nuclear Information System (INIS)

    Laddha, Alok; Varadarajan, Madhavan

    2011-01-01

    Recently, a generally covariant reformulation of two-dimensional flat spacetime free scalar field theory known as parametrized field theory was quantized using loop quantum gravity (LQG) type ''polymer'' representations. Physical states were constructed, without intermediate regularization structures, by averaging over the group of gauge transformations generated by the constraints, the constraint algebra being a Lie algebra. We consider classically equivalent combinations of these constraints corresponding to a diffeomorphism and a Hamiltonian constraint, which, as in gravity, define a Dirac algebra. Our treatment of the quantum constraints parallels that of LQG and obtains the following results, expected to be of use in the construction of the quantum dynamics of LQG: (i) the (triangulated) Hamiltonian constraint acts only on vertices, its construction involves some of the same ambiguities as in LQG and its action on diffeomorphism invariant states admits a continuum limit, (ii) if the regulating holonomies are in representations tailored to the edge labels of the state, all previously obtained physical states lie in the kernel of the Hamiltonian constraint, (iii) the commutator of two (density weight 1) Hamiltonian constraints as well as the operator correspondent of their classical Poisson bracket converge to zero in the continuum limit defined by diffeomorphism invariant states, and vanish on the Lewandowski-Marolf habitat, (iv) the rescaled density 2 Hamiltonian constraints and their commutator are ill-defined on the Lewandowski-Marolf habitat despite the well-definedness of the operator correspondent of their classical Poisson bracket there, (v) there is a new habitat which supports a nontrivial representation of the Poisson-Lie algebra of density 2 constraints.

  20. Non-stoquastic Hamiltonians in quantum annealing via geometric phases

    Science.gov (United States)

    Vinci, Walter; Lidar, Daniel A.

    2017-09-01

    We argue that a complete description of quantum annealing implemented with continuous variables must take into account the non-adiabatic Aharonov-Anandan geometric phase that arises when the system Hamiltonian changes during the anneal. We show that this geometric effect leads to the appearance of non-stoquasticity in the effective quantum Ising Hamiltonians that are typically used to describe quantum annealing with flux qubits. We explicitly demonstrate the effect of this geometric non-stoquasticity when quantum annealing is performed with a system of one and two coupled flux qubits. The realization of non-stoquastic Hamiltonians has important implications from a computational complexity perspective, since it is believed that in many cases quantum annealing with stoquastic Hamiltonians can be efficiently simulated via classical algorithms such as Quantum Monte Carlo. It is well known that the direct implementation of non-stoquastic Hamiltonians with flux qubits is particularly challenging. Our results suggest an alternative path for the implementation of non-stoquasticity via geometric phases that can be exploited for computational purposes.

  1. The Artificial Hamiltonian, First Integrals, and Closed-Form Solutions of Dynamical Systems for Epidemics

    Science.gov (United States)

    Naz, Rehana; Naeem, Imran

    2018-03-01

    The non-standard Hamiltonian system, also referred to as a partial Hamiltonian system in the literature, of the form {\\dot q^i} = {partial H}/{partial {p_i}},\\dot p^i = - {partial H}/{partial {q_i}} + {Γ ^i}(t,{q^i},{p_i}) appears widely in economics, physics, mechanics, and other fields. The non-standard (partial) Hamiltonian systems arise from physical Hamiltonian structures as well as from artificial Hamiltonian structures. We introduce the term `artificial Hamiltonian' for the Hamiltonian of a model having no physical structure. We provide here explicitly the notion of an artificial Hamiltonian for dynamical systems of ordinary differential equations (ODEs). Also, we show that every system of second-order ODEs can be expressed as a non-standard (partial) Hamiltonian system of first-order ODEs by introducing an artificial Hamiltonian. This notion of an artificial Hamiltonian gives a new way to solve dynamical systems of first-order ODEs and systems of second-order ODEs that can be expressed as a non-standard (partial) Hamiltonian system by using the known techniques applicable to the non-standard Hamiltonian systems. We employ the proposed notion to solve dynamical systems of first-order ODEs arising in epidemics.

  2. Non-self-adjoint hamiltonians defined by Riesz bases

    Energy Technology Data Exchange (ETDEWEB)

    Bagarello, F., E-mail: fabio.bagarello@unipa.it [Dipartimento di Energia, Ingegneria dell' Informazione e Modelli Matematici, Facoltà di Ingegneria, Università di Palermo, I-90128 Palermo, Italy and INFN, Università di Torino, Torino (Italy); Inoue, A., E-mail: a-inoue@fukuoka-u.ac.jp [Department of Applied Mathematics, Fukuoka University, Fukuoka 814-0180 (Japan); Trapani, C., E-mail: camillo.trapani@unipa.it [Dipartimento di Matematica e Informatica, Università di Palermo, I-90123 Palermo (Italy)

    2014-03-15

    We discuss some features of non-self-adjoint Hamiltonians with real discrete simple spectrum under the assumption that the eigenvectors form a Riesz basis of Hilbert space. Among other things, we give conditions under which these Hamiltonians can be factorized in terms of generalized lowering and raising operators.

  3. Classical and quantum mechanics of complex Hamiltonian systems ...

    Indian Academy of Sciences (India)

    Vol. 73, No. 2. — journal of. August 2009 physics pp. 287–297. Classical and quantum mechanics of complex. Hamiltonian systems: An extended complex phase space ... 1Department of Physics, Ramjas College (University Enclave), University of Delhi,. Delhi 110 ... 1.1 Motivation behind the study of complex Hamiltonians.

  4. The hamiltonian index of a graph and its branch-bonds

    NARCIS (Netherlands)

    Xiong, Liming; Broersma, Haitze J.; Li, Xueliang; Li, Xueliang; Li, MingChu

    2004-01-01

    Let G be an undirected and loopless finite graph that is not a path. The smallest integer m such that the iterated line graph Lm(G) is hamiltonian is called the hamiltonian index of G, denoted by h(G). A reduction method to determine the hamiltonian index of a graph G with h(G) ≤ 2 is given here. We

  5. 15th International Conference on Non-Hermitian Hamiltonians in Quantum Physics

    CERN Document Server

    Passante, Roberto; Trapani, Camillo

    2016-01-01

    This book presents the Proceedings of the 15th International Conference on Non-Hermitian Hamiltonians in Quantum Physics, held in Palermo, Italy, from 18 to 23 May 2015. Non-Hermitian operators, and non-Hermitian Hamiltonians in particular, have recently received considerable attention from both the mathematics and physics communities. There has been a growing interest in non-Hermitian Hamiltonians in quantum physics since the discovery that PT-symmetric Hamiltonians can have a real spectrum and thus a physical relevance. The main subjects considered in this book include: PT-symmetry in quantum physics, PT-optics, Spectral singularities and spectral techniques, Indefinite-metric theories, Open quantum systems, Krein space methods, and Biorthogonal systems and applications. The book also provides a summary of recent advances in pseudo-Hermitian Hamiltonians and PT-symmetric Hamiltonians, as well as their applications in quantum physics and in the theory of open quantum systems.

  6. Hamiltonian reduction and supersymmetric mechanics with Dirac monopole

    International Nuclear Information System (INIS)

    Bellucci, Stefano; Nersessian, Armen; Yeranyan, Armen

    2006-01-01

    We apply the technique of Hamiltonian reduction for the construction of three-dimensional N=4 supersymmetric mechanics specified by the presence of a Dirac monopole. For this purpose we take the conventional N=4 supersymmetric mechanics on the four-dimensional conformally-flat spaces and perform its Hamiltonian reduction to three-dimensional system. We formulate the final system in the canonical coordinates, and present, in these terms, the explicit expressions of the Hamiltonian and supercharges. We show that, besides a magnetic monopole field, the resulting system is specified by the presence of a spin-orbit coupling term. A comparision with previous work is also carried out

  7. New Hamiltonian constraint operator for loop quantum gravity

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jinsong, E-mail: yangksong@gmail.com [Department of Physics, Guizhou university, Guiyang 550025 (China); Institute of Physics, Academia Sinica, Taiwan (China); Ma, Yongge, E-mail: mayg@bnu.edu.cn [Department of Physics, Beijing Normal University, Beijing 100875 (China)

    2015-12-17

    A new symmetric Hamiltonian constraint operator is proposed for loop quantum gravity, which is well defined in the Hilbert space of diffeomorphism invariant states up to non-planar vertices with valence higher than three. It inherits the advantage of the original regularization method to create new vertices to the spin networks. The quantum algebra of this Hamiltonian is anomaly-free on shell, and there is less ambiguity in its construction in comparison with the original method. The regularization procedure for this Hamiltonian constraint operator can also be applied to the symmetric model of loop quantum cosmology, which leads to a new quantum dynamics of the cosmological model.

  8. New Hamiltonian constraint operator for loop quantum gravity

    Directory of Open Access Journals (Sweden)

    Jinsong Yang

    2015-12-01

    Full Text Available A new symmetric Hamiltonian constraint operator is proposed for loop quantum gravity, which is well defined in the Hilbert space of diffeomorphism invariant states up to non-planar vertices with valence higher than three. It inherits the advantage of the original regularization method to create new vertices to the spin networks. The quantum algebra of this Hamiltonian is anomaly-free on shell, and there is less ambiguity in its construction in comparison with the original method. The regularization procedure for this Hamiltonian constraint operator can also be applied to the symmetric model of loop quantum cosmology, which leads to a new quantum dynamics of the cosmological model.

  9. An effective Hamiltonian approach to quantum random walk

    Indian Academy of Sciences (India)

    2017-02-09

    Feb 9, 2017 ... Abstract. In this article we present an effective Hamiltonian approach for discrete time quantum random walk. A form of the Hamiltonian for one-dimensional quantum walk has been prescribed, utilizing the fact that Hamil- tonians are generators of time translations. Then an attempt has been made to ...

  10. Non-isospectrality of the generalized Swanson Hamiltonian and harmonic oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Midya, Bikashkali; Dube, P P; Roychoudhury, Rajkumar, E-mail: bikash.midya@gmail.com, E-mail: ppdube1@gmail.com, E-mail: raj@isical.ac.in [Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata 700108 (India)

    2011-02-11

    The generalized Swanson Hamiltonian H{sub GS}=w(a-tilde a-tilde{sup {dagger}}+1/2)+{alpha}{alpha}-tilde{sup 2}+{beta}a-tilde{sup {dagger}}{sup 2} with a-tilde = A(x) d/dx + B(x) can be transformed into an equivalent Hermitian Hamiltonian with the help of a similarity transformation. It is shown that the equivalent Hermitian Hamiltonian can be further transformed into the harmonic oscillator Hamiltonian so long as [a-ilde,a-tilde{sup {dagger}}]=constant. However, the main objective of this communication is to show that though the commutator of a-tilde and a-tilde{sup {dagger}} is constant, the generalized Swanson Hamiltonian is not necessarily isospectral to the harmonic oscillator. The reason for this anomaly is discussed in the framework of position-dependent mass models by choosing A(x) as the inverse square root of the mass function. (fast track communication)

  11. Hamiltonian-Driven Adaptive Dynamic Programming for Continuous Nonlinear Dynamical Systems.

    Science.gov (United States)

    Yang, Yongliang; Wunsch, Donald; Yin, Yixin

    2017-08-01

    This paper presents a Hamiltonian-driven framework of adaptive dynamic programming (ADP) for continuous time nonlinear systems, which consists of evaluation of an admissible control, comparison between two different admissible policies with respect to the corresponding the performance function, and the performance improvement of an admissible control. It is showed that the Hamiltonian can serve as the temporal difference for continuous-time systems. In the Hamiltonian-driven ADP, the critic network is trained to output the value gradient. Then, the inner product between the critic and the system dynamics produces the value derivative. Under some conditions, the minimization of the Hamiltonian functional is equivalent to the value function approximation. An iterative algorithm starting from an arbitrary admissible control is presented for the optimal control approximation with its convergence proof. The implementation is accomplished by a neural network approximation. Two simulation studies demonstrate the effectiveness of Hamiltonian-driven ADP.

  12. On infinite walls in deformation quantization

    International Nuclear Information System (INIS)

    Kryukov, S.; Walton, M.A.

    2005-01-01

    We examine the deformation quantization of a single particle moving in one dimension (i) in the presence of an infinite potential wall (ii) confined by an infinite square well, and (iii) bound by a delta function potential energy. In deformation quantization, considered as an autonomous formulation of quantum mechanics, the Wigner function of stationary states must be found by solving the so-called *-genvalue ('stargenvalue') equation for the Hamiltonian. For the cases considered here, this pseudo-differential equation is difficult to solve directly, without an ad hoc modification of the potential. Here we treat the infinite wall as the limit of a solvable exponential potential. Before the limit is taken, the corresponding *-genvalue equation involves the Wigner function at momenta translated by imaginary amounts. We show that it can be converted to a partial differential equation, however, with a well-defined limit. We demonstrate that the Wigner functions calculated from the standard Schroedinger wave functions satisfy the resulting new equation. Finally, we show how our results may be adapted to allow for the presence of another, non-singular part in the potential

  13. Introduction to thermodynamics of spin models in the Hamiltonian limit

    Energy Technology Data Exchange (ETDEWEB)

    Berche, Bertrand [Groupe M, Laboratoire de Physique des Materiaux, UMR CNRS No 7556, Universite Henri Poincare, Nancy 1, BP 239, F-54506 Vandoeuvre les Nancy, (France); Lopez, Alexander [Instituto Venezolano de Investigaciones CientIficas, Centro de Fisica, Carr. Panamericana, km 11, Altos de Pipe, Aptdo 21827, 1020-A Caracas, (Venezuela)

    2006-01-01

    A didactic description of the thermodynamic properties of classical spin systems is given in terms of their quantum counterpart in the Hamiltonian limit. Emphasis is on the construction of the relevant Hamiltonian and the calculation of thermal averages is explicitly done in the case of small systems described, in Hamiltonian field theory, by small matrices. The targeted students are those of a graduate statistical physics course.

  14. Hamiltonian dynamics of preferential attachment

    International Nuclear Information System (INIS)

    Zuev, Konstantin; Papadopoulos, Fragkiskos; Krioukov, Dmitri

    2016-01-01

    Prediction and control of network dynamics are grand-challenge problems in network science. The lack of understanding of fundamental laws driving the dynamics of networks is among the reasons why many practical problems of great significance remain unsolved for decades. Here we study the dynamics of networks evolving according to preferential attachment (PA), known to approximate well the large-scale growth dynamics of a variety of real networks. We show that this dynamics is Hamiltonian, thus casting the study of complex networks dynamics to the powerful canonical formalism, in which the time evolution of a dynamical system is described by Hamilton’s equations. We derive the explicit form of the Hamiltonian that governs network growth in PA. This Hamiltonian turns out to be nearly identical to graph energy in the configuration model, which shows that the ensemble of random graphs generated by PA is nearly identical to the ensemble of random graphs with scale-free degree distributions. In other words, PA generates nothing but random graphs with power-law degree distribution. The extension of the developed canonical formalism for network analysis to richer geometric network models with non-degenerate groups of symmetries may eventually lead to a system of equations describing network dynamics at small scales. (paper)

  15. A non-linear elastic constitutive framework for replicating plastic deformation in solids.

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Scott Alan; Schunk, Peter Randall

    2014-02-01

    Ductile metals and other materials typically deform plastically under large applied loads; a behavior most often modeled using plastic deformation constitutive models. However, it is possible to capture some of the key behaviors of plastic deformation using only the framework for nonlinear elastic mechanics. In this paper, we develop a phenomenological, hysteretic, nonlinear elastic constitutive model that captures many of the features expected of a plastic deformation model. This model is based on calculating a secant modulus directly from a materials stress-strain curve. Scalar stress and strain values are obtained in three dimensions by using the von Mises invariants. Hysteresis is incorporated by tracking an additional history variable and assuming an elastic unloading response. This model is demonstrated in both single- and multi-element simulations under varying strain conditions.

  16. Dynamics of a charged particle in a linearly polarized traveling wave. Hamiltonian approach to laser-matter interaction at very high intensities

    International Nuclear Information System (INIS)

    Bourdier, A.; Patin, D.

    2005-01-01

    The basic physical processes in laser-matter interaction, up to 10 17 W/cm 2 (for a neodymium laser) are now well understood, on the other hand, new phenomena evidenced in particle-in-cell code simulations have to be investigated above 10 18 W/cm 2 . Thus, the relativistic motion of a charged particle in a linearly polarized homogeneous electromagnetic wave is studied, here, using the Hamiltonian formalism. First, the motion of a single particle in a linearly polarized traveling wave propagating in a non-magnetized space is explored. The problem is shown to be integrable. The results obtained are compared to those derived considering a cold electron plasma model. When the phase velocity is close to c, it is shown that the two approaches are in good agreement during a finite time. After this short time, when the plasma response is taken into account no chaos take place at least when considering low densities and/or high wave intensities. The case of a charged particle in a traveling wave propagating along a constant homogeneous magnetic field is then considered. The problem is shown to be integrable when the wave propagates in vacuum. The existence of a synchronous solution is shown very simply. In the case when the wave propagates in a low density plasma, using a simplifying Lorentz transformation, it is shown that the system can be reduced to a time-dependent system with two degrees of freedom. The system is shown to be non-integrable, chaos appears when a secondary resonance and a primary resonance overlap. Finally, stochastic instabilities are studied by considering the motion of one particle in a very high intensity wave perturbed by one or two low intensity traveling waves. Resonances are identified and conditions for resonance overlap are studied. (authors)

  17. Hamiltonian formalisms and symmetries of the Pais–Uhlenbeck oscillator

    Directory of Open Access Journals (Sweden)

    Krzysztof Andrzejewski

    2014-12-01

    Full Text Available The study of the symmetry of Pais–Uhlenbeck oscillator initiated in Andrzejewski et al. (2014 [24] is continued with special emphasis put on the Hamiltonian formalism. The symmetry generators within the original Pais and Uhlenbeck Hamiltonian approach as well as the canonical transformation to the Ostrogradski Hamiltonian framework are derived. The resulting algebra of generators appears to be the central extension of the one obtained on the Lagrangian level; in particular, in the case of odd frequencies one obtains the centrally extended l-conformal Newton–Hooke algebra. In this important case the canonical transformation to an alternative Hamiltonian formalism (related to the free higher derivatives theory is constructed. It is shown that all generators can be expressed in terms of the ones for the free theory and the result agrees with that obtained by the orbit method.

  18. Multivector field formulation of Hamiltonian field theories: equations and symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Echeverria-Enriquez, A.; Munoz-Lecanda, M.C.; Roman-Roy, N. [Departamento de Matematica Aplicada y Telematica, Edificio C-3, Campus Norte UPC, Barcelona (Spain)

    1999-12-03

    We state the intrinsic form of the Hamiltonian equations of first-order classical field theories in three equivalent geometrical ways: using multivector fields, jet fields and connections. Thus, these equations are given in a form similar to that in which the Hamiltonian equations of mechanics are usually given. Then, using multivector fields, we study several aspects of these equations, such as the existence and non-uniqueness of solutions, and the integrability problem. In particular, these problems are analysed for the case of Hamiltonian systems defined in a submanifold of the multimomentum bundle. Furthermore, the existence of first integrals of these Hamiltonian equations is considered, and the relation between Cartan-Noether symmetries and general symmetries of the system is discussed. Noether's theorem is also stated in this context, both the 'classical' version and its generalization to include higher-order Cartan-Noether symmetries. Finally, the equivalence between the Lagrangian and Hamiltonian formalisms is also discussed. (author)

  19. Variational derivation of a time-dependent Hartree-Fock Hamiltonian

    International Nuclear Information System (INIS)

    Lichtner, P.C.; Griffin, J.J.; Schultheis, H.; Schultheis, R.; Volkov, A.B.

    1979-01-01

    The variational derivation of the time-dependent Hartree-Fock equation is reviewed. When norm-violating variations are included, a unique time-dependent Hartree-Fock Hamiltonian, which differs from that customarily used in time-dependent Hartree-Fock analyses, is implied. This variationally ''true'' Hartree-Fock Hamiltonian has the same expectation value as the exact Hamiltonian, equal to the average energy of the system. Since this quantity remains constant under time-dependent Hartree-Fock time evolution, we suggest the label ''constant '' for this form of time-dependent Hartree-Fock theory

  20. Toric codes and quantum doubles from two-body Hamiltonians

    Energy Technology Data Exchange (ETDEWEB)

    Brell, Courtney G; Bartlett, Stephen D; Doherty, Andrew C [Centre for Engineered Quantum Systems, School of Physics, University of Sydney, Sydney (Australia); Flammia, Steven T, E-mail: cbrell@physics.usyd.edu.au [Perimeter Institute for Theoretical Physics, Waterloo (Canada)

    2011-05-15

    We present here a procedure to obtain the Hamiltonians of the toric code and Kitaev quantum double models as the low-energy limits of entirely two-body Hamiltonians. Our construction makes use of a new type of perturbation gadget based on error-detecting subsystem codes. The procedure is motivated by a projected entangled pair states (PEPS) description of the target models, and reproduces the target models' behavior using only couplings that are natural in terms of the original Hamiltonians. This allows our construction to capture the symmetries of the target models.

  1. Computing pKa Values with a Mixing Hamiltonian Quantum Mechanical/Molecular Mechanical Approach.

    Science.gov (United States)

    Liu, Yang; Fan, Xiaoli; Jin, Yingdi; Hu, Xiangqian; Hu, Hao

    2013-09-10

    Accurate computation of the pKa value of a compound in solution is important but challenging. Here, a new mixing quantum mechanical/molecular mechanical (QM/MM) Hamiltonian method is developed to simulate the free-energy change associated with the protonation/deprotonation processes in solution. The mixing Hamiltonian method is designed for efficient quantum mechanical free-energy simulations by alchemically varying the nuclear potential, i.e., the nuclear charge of the transforming nucleus. In pKa calculation, the charge on the proton is varied in fraction between 0 and 1, corresponding to the fully deprotonated and protonated states, respectively. Inspired by the mixing potential QM/MM free energy simulation method developed previously [H. Hu and W. T. Yang, J. Chem. Phys. 2005, 123, 041102], this method succeeds many advantages of a large class of λ-coupled free-energy simulation methods and the linear combination of atomic potential approach. Theory and technique details of this method, along with the calculation results of the pKa of methanol and methanethiol molecules in aqueous solution, are reported. The results show satisfactory agreement with the experimental data.

  2. Hamiltonian formalism of two-dimensional Vlasov kinetic equation.

    Science.gov (United States)

    Pavlov, Maxim V

    2014-12-08

    In this paper, the two-dimensional Benney system describing long wave propagation of a finite depth fluid motion and the multi-dimensional Russo-Smereka kinetic equation describing a bubbly flow are considered. The Hamiltonian approach established by J. Gibbons for the one-dimensional Vlasov kinetic equation is extended to a multi-dimensional case. A local Hamiltonian structure associated with the hydrodynamic lattice of moments derived by D. J. Benney is constructed. A relationship between this hydrodynamic lattice of moments and the two-dimensional Vlasov kinetic equation is found. In the two-dimensional case, a Hamiltonian hydrodynamic lattice for the Russo-Smereka kinetic model is constructed. Simple hydrodynamic reductions are presented.

  3. Port-Hamiltonian approaches to motion generation for mechanical systems

    NARCIS (Netherlands)

    Sakai, Satoru; Stramigioli, Stefano

    This paper gives new motion generation methods for mechanical port-Hamiltonian systems. First, we propose a generation method based on an asymptotic stabilization method without damping assignment. This asymptotic stabilization method preserves the Hamiltonian structure in the closed-loop system

  4. Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity

    Science.gov (United States)

    Bridges, Thomas J.; Reich, Sebastian

    2001-06-01

    The symplectic numerical integration of finite-dimensional Hamiltonian systems is a well established subject and has led to a deeper understanding of existing methods as well as to the development of new very efficient and accurate schemes, e.g., for rigid body, constrained, and molecular dynamics. The numerical integration of infinite-dimensional Hamiltonian systems or Hamiltonian PDEs is much less explored. In this Letter, we suggest a new theoretical framework for generalizing symplectic numerical integrators for ODEs to Hamiltonian PDEs in R2: time plus one space dimension. The central idea is that symplecticity for Hamiltonian PDEs is directional: the symplectic structure of the PDE is decomposed into distinct components representing space and time independently. In this setting PDE integrators can be constructed by concatenating uni-directional ODE symplectic integrators. This suggests a natural definition of multi-symplectic integrator as a discretization that conserves a discrete version of the conservation of symplecticity for Hamiltonian PDEs. We show that this approach leads to a general framework for geometric numerical schemes for Hamiltonian PDEs, which have remarkable energy and momentum conservation properties. Generalizations, including development of higher-order methods, application to the Euler equations in fluid mechanics, application to perturbed systems, and extension to more than one space dimension are also discussed.

  5. Hamiltonian dynamics for complex food webs

    Science.gov (United States)

    Kozlov, Vladimir; Vakulenko, Sergey; Wennergren, Uno

    2016-03-01

    We investigate stability and dynamics of large ecological networks by introducing classical methods of dynamical system theory from physics, including Hamiltonian and averaging methods. Our analysis exploits the topological structure of the network, namely the existence of strongly connected nodes (hubs) in the networks. We reveal new relations between topology, interaction structure, and network dynamics. We describe mechanisms of catastrophic phenomena leading to sharp changes of dynamics and hence completely altering the ecosystem. We also show how these phenomena depend on the structure of interaction between species. We can conclude that a Hamiltonian structure of biological interactions leads to stability and large biodiversity.

  6. Dirac-bracket aproach to nearly-geostrophic Hamiltonian balanced models

    NARCIS (Netherlands)

    Vanneste, J.; Bokhove, Onno

    2002-01-01

    Dirac’s theory of constrained Hamiltonian systems is applied to derive the Poisson structure of a class of balanced models describing the slow dynamics of geophysical flows. Working with the Poisson structure, instead of the canonical Hamiltonian structure previously considered in this context,

  7. Hamiltonian reduction of SU(2) Yang-Mills field theory

    International Nuclear Information System (INIS)

    Khvedelidze, A.M.; Pavel, H.-P.

    1998-01-01

    The unconstrained system equivalent to SU (2) Yang-Mills field theory is obtained in the framework of the generalized Hamiltonian formalism using the method of Hamiltonian reduction. The reduced system is expressed in terms of fields with 'nonrelativistic' spin-0 and spin-2

  8. Structure preserving port-Hamiltonian model reduction of electrical circuits

    NARCIS (Netherlands)

    Polyuga, R.; Schaft, van der A.J.; Benner, P.; Hinze, M.; Maten, ter E.J.W.

    2011-01-01

    This paper discusses model reduction of electrical circuits based on a port-Hamiltonian representation. It is shown that by the use of the Kalman decomposition an uncontrollable and/or unobservable port-Hamiltonian system is reduced to a controllable/observable system that inherits the

  9. The quadratic-form identity for constructing the Hamiltonian structure of integrable systems

    International Nuclear Information System (INIS)

    Guo Fukui; Zhang Yufeng

    2005-01-01

    A usual loop algebra, not necessarily the matrix form of the loop algebra A-tilde n-1 , is also made use of for constructing linear isospectral problems, whose compatibility conditions exhibit a zero-curvature equation from which integrable systems are derived. In order to look for the Hamiltonian structure of such integrable systems, a quadratic-form identity is created in the present paper whose special case is just the trace identity; that is, when taking the loop algebra A-tilde 1 , the quadratic-form identity presented in this paper is completely consistent with the trace identity

  10. Hamiltonian boundary term and quasilocal energy flux

    International Nuclear Information System (INIS)

    Chen, C.-M.; Nester, James M.; Tung, R.-S.

    2005-01-01

    The Hamiltonian for a gravitating region includes a boundary term which determines not only the quasilocal values but also, via the boundary variation principle, the boundary conditions. Using our covariant Hamiltonian formalism, we found four particular quasilocal energy-momentum boundary term expressions; each corresponds to a physically distinct and geometrically clear boundary condition. Here, from a consideration of the asymptotics, we show how a fundamental Hamiltonian identity naturally leads to the associated quasilocal energy flux expressions. For electromagnetism one of the four is distinguished: the only one which is gauge invariant; it gives the familiar energy density and Poynting flux. For Einstein's general relativity two different boundary condition choices correspond to quasilocal expressions which asymptotically give the ADM energy, the Trautman-Bondi energy and, moreover, an associated energy flux (both outgoing and incoming). Again there is a distinguished expression: the one which is covariant

  11. Numerical Modeling of Subglacial Sediment Deformation

    DEFF Research Database (Denmark)

    Damsgaard, Anders

    2015-01-01

    may cause mass loss in the near future to exceed current best estimates. Ice flow in larger ice sheets focuses in fast-moving streams due to mechanical non-linearity of ice. These ice streams often move at velocities several magnitudes larger than surrounding ice and consequentially constitute...... glaciers move by deforming their sedimentary beds. Several modern ice streams, in particular, move as plug flows due to basal sediment deformation. An intense and long-winded discussion about the appropriate description for subglacial sediment mechanics followed this discovery, with good reason...... incompatible with commonly accepted till rheology models. Variation in pore-water pressure proves to cause reorganization in the internal stress network and leads to slow creeping deformation. The rate of creep is non-linearly dependent on the applied stresses. Granular creep can explain slow glacial...

  12. Plasma heating by non-linear wave-Plasma interaction | Echi ...

    African Journals Online (AJOL)

    We simulate the non-linear interaction of waves with magnetized tritium plasma with the aim of determining the parameter values that characterize the response of the plasma. The wave-plasma interaction has a non-conservative Hamiltonian description. The resulting system of Hamilton's equations is integrated numerically ...

  13. Un-equivalency theorem between deformed and undeformed Heisenberg-Weyl's algebras

    International Nuclear Information System (INIS)

    Zhang Jianzu

    2006-01-01

    Two fundamental issues about the relation between the deformed Heisenberg-Weyl algebra in noncommutative space and the undeformed one in commutative space are elucidated. First the un-equivalency theorem between two algebras is proved: the deformed algebra related to the undeformed one by a non-orthogonal similarity transformation is explored; furthermore, non-existence of a unitary similarity transformation which transforms the deformed algebra to the undeformed one is demonstrated. Secondly the uniqueness of realizing the deformed phase space variables via the undeformed ones is elucidated: both the deformed Heisenberg-Weyl algebra and the deformed bosonic algebra should be maintained under a linear transformation between two sets of phase space variables which fixes that such a linear transformation is unique. Elucidation of this un-equivalency theorem has basic meaning both in theory and experiment

  14. Generalized internal long wave equations: construction, hamiltonian structure and conservation laws

    International Nuclear Information System (INIS)

    Lebedev, D.R.

    1982-01-01

    Some aspects of the theory of the internal long-wave equations (ILW) are considered. A general class of the ILW type equations is constructed by means of the Zakharov-Shabat ''dressing'' method. Hamiltonian structure and infinite numbers of conservation laws are introduced. The considered equations are shown to be Hamiltonian in the so-called second Hamiltonian structu

  15. Port Hamiltonian Formulation of Infinite Dimensional Systems I. Modeling

    NARCIS (Netherlands)

    Macchelli, Alessandro; Schaft, Arjan J. van der; Melchiorri, Claudio

    2004-01-01

    In this paper, some new results concerning the modeling of distributed parameter systems in port Hamiltonian form are presented. The classical finite dimensional port Hamiltonian formulation of a dynamical system is generalized in order to cope with the distributed parameter and multi-variable case.

  16. Hamiltonian analysis of curvature-squared gravity with or without conformal invariance

    Science.gov (United States)

    KlusoÅ, Josef; Oksanen, Markku; Tureanu, Anca

    2014-03-01

    We analyze gravitational theories with quadratic curvature terms, including the case of conformally invariant Weyl gravity, motivated by the intention to find a renormalizable theory of gravity in the ultraviolet region, yet yielding general relativity at long distances. In the Hamiltonian formulation of Weyl gravity, the number of local constraints is equal to the number of unstable directions in phase space, which in principle could be sufficient for eliminating the unstable degrees of freedom in the full nonlinear theory. All the other theories of quadratic type are unstable—a problem appearing as ghost modes in the linearized theory. We find that the full projection of the Weyl tensor onto a three-dimensional hypersurface contains an additional fully traceless component, given by a quadratic extrinsic curvature tensor. A certain inconsistency in the literature is found and resolved: when the conformal invariance of Weyl gravity is broken by a cosmological constant term, the theory becomes pathological, since a constraint required by the Hamiltonian analysis imposes the determinant of the metric of spacetime to be zero. In order to resolve this problem by restoring the conformal invariance, we introduce a new scalar field that couples to the curvature of spacetime, reminiscent of the introduction of vector fields for ensuring the gauge invariance.

  17. Massless quark wavefunction in the deformed bag

    International Nuclear Information System (INIS)

    Min, D.P.; Park, B.Y.; Koh, Y.S.

    1984-01-01

    The quark wavefunctions inside the deformed bag are obtained using a modified linear boundary condition stemming from the MIT bag Lagrangian with an additional term. We propose an exact method to obtain the quark wavefunction even for a spheroidally deformed bag. (Author)

  18. Alternative Hamiltonian representation for gravity

    International Nuclear Information System (INIS)

    Rosas-RodrIguez, R

    2007-01-01

    By using a Hamiltonian formalism for fields wider than the canonical one, we write the Einstein vacuum field equations in terms of alternative variables. This variables emerge from the Ashtekar's formalism for gravity

  19. Hamiltonian Dynamics and Adiabatic Invariants for Time-Dependent Superconducting Qubit-Oscillators and Resonators in Quantum Computing Systems

    Directory of Open Access Journals (Sweden)

    Jeong Ryeol Choi

    2015-01-01

    Full Text Available An adiabatic invariant, which is a conserved quantity, is useful for studying quantum and classical properties of dynamical systems. Adiabatic invariants for time-dependent superconducting qubit-oscillator systems and resonators are investigated using the Liouville-von Neumann equation. At first, we derive an invariant for a simple superconducting qubit-oscillator through the introduction of its reduced Hamiltonian. Afterwards, an adiabatic invariant for a nanomechanical resonator linearly interfaced with a superconducting circuit, via a coupling with a time-dependent strength, is evaluated using the technique of unitary transformation. The accuracy of conservation for such invariant quantities is represented in detail. Based on the results of our developments in this paper, perturbation theory is applicable to the research of quantum characteristics of more complicated qubit systems that are described by a time-dependent Hamiltonian involving nonlinear terms.

  20. Ostrogradski Hamiltonian approach for geodetic brane gravity

    International Nuclear Information System (INIS)

    Cordero, Ruben; Molgado, Alberto; Rojas, Efrain

    2010-01-01

    We present an alternative Hamiltonian description of a branelike universe immersed in a flat background spacetime. This model is named geodetic brane gravity. We set up the Regge-Teitelboim model to describe our Universe where such field theory is originally thought as a second order derivative theory. We refer to an Ostrogradski Hamiltonian formalism to prepare the system to its quantization. This approach comprize the manage of both first- and second-class constraints and the counting of degrees of freedom follows accordingly.

  1. Model reduction of port-Hamiltonian systems as structured systems

    NARCIS (Netherlands)

    Polyuga, R.V.; Schaft, van der A.J.

    2010-01-01

    The goal of this work is to demonstrate that a specific projection-based model reduction method, which provides an H2 error bound, turns out to be applicable to port-Hamiltonian systems, preserving the port-Hamiltonian structure for the reduced order model, and, as a consequence, passivity.

  2. High resolution, large deformation 3D traction force microscopy.

    Directory of Open Access Journals (Sweden)

    Jennet Toyjanova

    Full Text Available Traction Force Microscopy (TFM is a powerful approach for quantifying cell-material interactions that over the last two decades has contributed significantly to our understanding of cellular mechanosensing and mechanotransduction. In addition, recent advances in three-dimensional (3D imaging and traction force analysis (3D TFM have highlighted the significance of the third dimension in influencing various cellular processes. Yet irrespective of dimensionality, almost all TFM approaches have relied on a linear elastic theory framework to calculate cell surface tractions. Here we present a new high resolution 3D TFM algorithm which utilizes a large deformation formulation to quantify cellular displacement fields with unprecedented resolution. The results feature some of the first experimental evidence that cells are indeed capable of exerting large material deformations, which require the formulation of a new theoretical TFM framework to accurately calculate the traction forces. Based on our previous 3D TFM technique, we reformulate our approach to accurately account for large material deformation and quantitatively contrast and compare both linear and large deformation frameworks as a function of the applied cell deformation. Particular attention is paid in estimating the accuracy penalty associated with utilizing a traditional linear elastic approach in the presence of large deformation gradients.

  3. Hamiltonian dynamics

    CERN Document Server

    Vilasi, Gaetano

    2001-01-01

    This is both a textbook and a monograph. It is partially based on a two-semester course, held by the author for third-year students in physics and mathematics at the University of Salerno, on analytical mechanics, differential geometry, symplectic manifolds and integrable systems. As a textbook, it provides a systematic and self-consistent formulation of Hamiltonian dynamics both in a rigorous coordinate language and in the modern language of differential geometry. It also presents powerful mathematical methods of theoretical physics, especially in gauge theories and general relativity. As a m

  4. Exact smooth classification of Hamiltonian vector fields on symplectic 2-manifolds

    International Nuclear Information System (INIS)

    Krouglikov, B.S.

    1994-10-01

    Complete exact classification of Hamiltonian systems with one degree of freedom and Morse Hamiltonian is carried out. As it is a main part of trajectory classification of integrable Hamiltonian systems with two degrees of freedom, the corresponding generalization is considered. The dual problem of classification of symplectic form together with Morse foliation is carried out as well. (author). 10 refs, 16 figs

  5. New Hamiltonian structure of the fractional C-KdV soliton equation hierarchy

    International Nuclear Information System (INIS)

    Yu Fajun; Zhang Hongqing

    2008-01-01

    A generalized Hamiltonian structure of the fractional soliton equation hierarchy is presented by using of differential forms and exterior derivatives of fractional orders. Example of the fractional Hamiltonian system of the C-KdV soliton equation hierarchy is constructed, which is a new Hamiltonian structure

  6. Hamiltonian formalism for perfect fluids in general relativity

    International Nuclear Information System (INIS)

    Demaret, J.; Moncrief, V.

    1980-01-01

    Schutz's Hamiltonian theory of a relativistic perfect fluid, based on the velocity-potential version of classical perfect fluid hydrodynamics as formulated by Seliger and Whitham, is used to derive, in the framework of the Arnowitt, Deser, and Misner (ADM) method, a general partially reduced Hamiltonian for relativistic systems filled with a perfect fluid. The time coordinate is chosen, as in Lund's treatment of collapsing balls of dust, as minus the only velocity potential different from zero in the case of an irrotational and isentropic fluid. A ''semi-Dirac'' method can be applied to quantize astrophysical and cosmological models in the framework of this partially reduced formalism. If one chooses Taub's adapted comoving coordinate system, it is possible to derive a fully reduced ADM Hamiltonian, which is equal to minus the total baryon number of the fluid, generalizing a result previously obtained by Moncrief in the more particular framework of Taub's variational principle, valid for self-gravitating barotropic relativistic perfect fluids. An unconstrained Hamiltonian density is then explicitly derived for a fluid obeying the equation of state p=(gamma-1)rho (1 < or = γ < or = 2), which can adequately describe the phases of very high density attained in a catastrophic collapse or during the early stages of the Universe. This Hamiltonian density, shown to be equivalent to Moncrief's in the particular case of an isentropic fluid, can be simplified for fluid-filled class-A diagonal Bianchi-type cosmological models and appears as a suitable starting point for the study of the canonical quantization of these models

  7. The detectability lemma and its applications to quantum Hamiltonian complexity

    International Nuclear Information System (INIS)

    Aharonov, Dorit; Arad, Itai; Vazirani, Umesh; Landau, Zeph

    2011-01-01

    Quantum Hamiltonian complexity, an emerging area at the intersection of condensed matter physics and quantum complexity theory, studies the properties of local Hamiltonians and their ground states. In this paper we focus on a seemingly specialized technical tool, the detectability lemma (DL), introduced in the context of the quantum PCP challenge (Aharonov et al 2009 arXiv:0811.3412), which is a major open question in quantum Hamiltonian complexity. We show that a reformulated version of the lemma is a versatile tool that can be used in place of the celebrated Lieb-Robinson (LR) bound to prove several important results in quantum Hamiltonian complexity. The resulting proofs are much simpler, more combinatorial and provide a plausible path toward tackling some fundamental open questions in Hamiltonian complexity. We provide an alternative simpler proof of the DL that removes a key restriction in the original statement (Aharonov et al 2009 arXiv:0811.3412), making it more suitable for the broader context of quantum Hamiltonian complexity. Specifically, we first use the DL to provide a one-page proof of Hastings' result that the correlations in the ground states of gapped Hamiltonians decay exponentially with distance (Hastings 2004 Phys. Rev. B 69 104431). We then apply the DL to derive a simpler and more intuitive proof of Hastings' seminal one-dimensional (1D) area law (Hastings 2007 J. Stat. Mech. (2007) P8024) (both these proofs are restricted to frustration-free systems). Proving the area law for two and higher dimensions is one of the most important open questions in the field of Hamiltonian complexity, and the combinatorial nature of the DL-based proof holds out hope for a possible generalization. Indeed, soon after the first publication of the methods presented here, they were applied to derive exponential improvements to Hastings' result (Arad et al 2011, Aharonov et al 2011) in the case of frustration-free 1D systems. Finally, we also provide a more general

  8. Effective Hamiltonian within the microscopic unitary nuclear model

    International Nuclear Information System (INIS)

    Filippov, G.F.; Blokhin, A.L.

    1989-01-01

    A technique of projecting the microscopic nuclear Hamiltonian on the SU(3)-group enveloping algebra is developed. The approach proposed is based on the effective Hamiltonian restored from the matrix elements between the coherent states of the SU(3) irreducible representations. The technique is displayed for almost magic nuclei within the mixed representation basis, and for arbitrary nuclei within the single representation. 40 refs

  9. Hamilton-Jacobi theorems for regular reducible Hamiltonian systems on a cotangent bundle

    Science.gov (United States)

    Wang, Hong

    2017-09-01

    In this paper, some of formulations of Hamilton-Jacobi equations for Hamiltonian system and regular reduced Hamiltonian systems are given. At first, an important lemma is proved, and it is a modification for the corresponding result of Abraham and Marsden (1978), such that we can prove two types of geometric Hamilton-Jacobi theorem for a Hamiltonian system on the cotangent bundle of a configuration manifold, by using the symplectic form and dynamical vector field. Then these results are generalized to the regular reducible Hamiltonian system with symmetry and momentum map, by using the reduced symplectic form and the reduced dynamical vector field. The Hamilton-Jacobi theorems are proved and two types of Hamilton-Jacobi equations, for the regular point reduced Hamiltonian system and the regular orbit reduced Hamiltonian system, are obtained. As an application of the theoretical results, the regular point reducible Hamiltonian system on a Lie group is considered, and two types of Lie-Poisson Hamilton-Jacobi equation for the regular point reduced system are given. In particular, the Type I and Type II of Lie-Poisson Hamilton-Jacobi equations for the regular point reduced rigid body and heavy top systems are shown, respectively.

  10. Hamiltonian theory of the ion cyclotron minority heating dynamics in tokamak plasmas

    International Nuclear Information System (INIS)

    Becoulet, A.; Gambier, D.J.; Samain, A.

    1990-03-01

    The question of heating a tokamak plasma by means of electromagnetic waves in the Ion Cyclotron Range of Frequency (ICRF) is considered in the perspective of large RF powers and in the low collisionality regime. In such case the Quasi Linear Theory (QLT) is validated by the Hamiltonian dynamics of the wave particle interaction which exceeds the threshold of the intrinsic stochasticity. The Hamiltonian dynamics is represented by the evolution of a set of three canonical action angle variables well adapted to the tokamak magnetic configuration. This approach allows to derive the RF diffusion coefficient with very few assumptions. The distribution function of the resonant ions is written as a Fokker Planck equation but the emphasis is put on the QL diffusion instead of on the usual diffusion induced by collisions. Then the Fokker Planck equation is given a variational from which a solution is derived in the form of a semi analytical trial function of three parameters: the percentage of resonant particle contained in the tail; an isotropic width ΔT and an anisotropic one ΔP. This solution is successfully tested against real experimental observations. Practically it is shown that in the case of JET the distribution function is influenced by adiabatic barriers which in turn limit the Hamiltonian stochasticity domain within energy values typically in the MeV range. Consequently and for a given ICRF power, the tail energy excursion is lower and its concentration higher than that of a bounce averaged prediction. This may actually be an advantage for machines like JET considering the energy range required to simulate the α-particle behaviour in a relevant fusion reactor

  11. Alternative Hamiltonian representation for gravity

    Energy Technology Data Exchange (ETDEWEB)

    Rosas-RodrIguez, R [Instituto de Fisica, Universidad Autonoma de Puebla, Apdo. Postal J-48, 72570, Puebla, Pue. (Mexico)

    2007-11-15

    By using a Hamiltonian formalism for fields wider than the canonical one, we write the Einstein vacuum field equations in terms of alternative variables. This variables emerge from the Ashtekar's formalism for gravity.

  12. Modified Dirac Hamiltonian for efficient quantum mechanical simulations of micron sized devices

    International Nuclear Information System (INIS)

    Habib, K. M. Masum; Ghosh, Avik W.; Sajjad, Redwan N.

    2016-01-01

    Representing massless Dirac fermions on a spatial lattice poses a potential challenge known as the Fermion Doubling problem. Addition of a quadratic term to the Dirac Hamiltonian provides a possible way to circumvent this problem. We show that the modified Hamiltonian with the additional term results in a very small Hamiltonian matrix when discretized on a real space square lattice. The resulting Hamiltonian matrix is considerably more efficient for numerical simulations without sacrificing on accuracy and is several orders of magnitude faster than the atomistic tight binding model. Using this Hamiltonian and the non-equilibrium Green's function formalism, we show several transport phenomena in graphene, such as magnetic focusing, chiral tunneling in the ballistic limit, and conductivity in the diffusive limit in micron sized graphene devices. The modified Hamiltonian can be used for any system with massless Dirac fermions such as Topological Insulators, opening up a simulation domain that is not readily accessible otherwise.

  13. Modified Dirac Hamiltonian for efficient quantum mechanical simulations of micron sized devices

    Energy Technology Data Exchange (ETDEWEB)

    Habib, K. M. Masum, E-mail: masum.habib@virginia.edu; Ghosh, Avik W. [Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States); Sajjad, Redwan N. [Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2016-03-14

    Representing massless Dirac fermions on a spatial lattice poses a potential challenge known as the Fermion Doubling problem. Addition of a quadratic term to the Dirac Hamiltonian provides a possible way to circumvent this problem. We show that the modified Hamiltonian with the additional term results in a very small Hamiltonian matrix when discretized on a real space square lattice. The resulting Hamiltonian matrix is considerably more efficient for numerical simulations without sacrificing on accuracy and is several orders of magnitude faster than the atomistic tight binding model. Using this Hamiltonian and the non-equilibrium Green's function formalism, we show several transport phenomena in graphene, such as magnetic focusing, chiral tunneling in the ballistic limit, and conductivity in the diffusive limit in micron sized graphene devices. The modified Hamiltonian can be used for any system with massless Dirac fermions such as Topological Insulators, opening up a simulation domain that is not readily accessible otherwise.

  14. Topological color codes and two-body quantum lattice Hamiltonians

    Science.gov (United States)

    Kargarian, M.; Bombin, H.; Martin-Delgado, M. A.

    2010-02-01

    Topological color codes are among the stabilizer codes with remarkable properties from the quantum information perspective. In this paper, we construct a lattice, the so-called ruby lattice, with coordination number 4 governed by a two-body Hamiltonian. In a particular regime of coupling constants, in a strong coupling limit, degenerate perturbation theory implies that the low-energy spectrum of the model can be described by a many-body effective Hamiltonian, which encodes the color code as its ground state subspace. Ground state subspace corresponds to a vortex-free sector. The gauge symmetry Z2×Z2 of the color code could already be realized by identifying three distinct plaquette operators on the ruby lattice. All plaquette operators commute with each other and with the Hamiltonian being integrals of motion. Plaquettes are extended to closed strings or string-net structures. Non-contractible closed strings winding the space commute with Hamiltonian but not always with each other. This gives rise to exact topological degeneracy of the model. A connection to 2-colexes can be established via the coloring of the strings. We discuss it at the non-perturbative level. The particular structure of the two-body Hamiltonian provides a fruitful interpretation in terms of mapping onto bosons coupled to effective spins. We show that high-energy excitations of the model have fermionic statistics. They form three families of high-energy excitations each of one color. Furthermore, we show that they belong to a particular family of topological charges. The emergence of invisible charges is related to the string-net structure of the model. The emerging fermions are coupled to nontrivial gauge fields. We show that for particular 2-colexes, the fermions can see the background fluxes in the ground state. Also, we use the Jordan-Wigner transformation in order to test the integrability of the model via introducing Majorana fermions. The four-valent structure of the lattice prevents the

  15. New classes of nonlinear vector coherent states of generalized spin-orbit Hamiltonians

    International Nuclear Information System (INIS)

    Geloun, Joseph Ben; Norbert Hounkonnou, Mahouton

    2009-01-01

    This paper deals with an extension of our previous work (Ben Geloun and Hounkonnou 2007 J. Phys. A: Math. Theor. 40 F817) by considering an alternative construction of canonical and deformed vector coherent states (VCSs) of the Gazeau-Klauder type associated with generalized spin-orbit Hamiltonians. We define an annihilation operator which takes into account the finite-dimensional space of states induced by the k-photon transition processes of the two-level atom interacting with the single-mode radiation field. The class of nonlinear VCSs (NVCSs) corresponding to the action of the annihilation operator is deduced and expressed in terms of generalized displacement operators. Various NVCSs including their 'dual' counterparts are also discussed. Also, by using the Hilbert space structure, a new family of NVCSs parametrized by unit vectors of the S 3 sphere has been identified without making use of the annihilation operator.

  16. An infinite-order two-component relativistic Hamiltonian by a simple one-step transformation.

    Science.gov (United States)

    Ilias, Miroslav; Saue, Trond

    2007-02-14

    The authors report the implementation of a simple one-step method for obtaining an infinite-order two-component (IOTC) relativistic Hamiltonian using matrix algebra. They apply the IOTC Hamiltonian to calculations of excitation and ionization energies as well as electric and magnetic properties of the radon atom. The results are compared to corresponding calculations using identical basis sets and based on the four-component Dirac-Coulomb Hamiltonian as well as Douglas-Kroll-Hess and zeroth-order regular approximation Hamiltonians, all implemented in the DIRAC program package, thus allowing a comprehensive comparison of relativistic Hamiltonians within the finite basis approximation.

  17. A hierarchy of Liouville integrable discrete Hamiltonian equations

    Energy Technology Data Exchange (ETDEWEB)

    Xu Xixiang [College of Science, Shandong University of Science and Technology, Qingdao 266510 (China)], E-mail: xixiang_xu@yahoo.com.cn

    2008-05-12

    Based on a discrete four-by-four matrix spectral problem, a hierarchy of Lax integrable lattice equations with two potentials is derived. Two Hamiltonian forms are constructed for each lattice equation in the resulting hierarchy by means of the discrete variational identity. A strong symmetry operator of the resulting hierarchy is given. Finally, it is shown that the resulting lattice equations are all Liouville integrable discrete Hamiltonian systems.

  18. Families of superintegrable Hamiltonians constructed from exceptional polynomials

    International Nuclear Information System (INIS)

    Post, Sarah; Tsujimoto, Satoshi; Vinet, Luc

    2012-01-01

    We introduce a family of exactly-solvable two-dimensional Hamiltonians whose wave functions are given in terms of Laguerre and exceptional Jacobi polynomials. The Hamiltonians contain purely quantum terms which vanish in the classical limit leaving only a previously known family of superintegrable systems. Additional, higher-order integrals of motion are constructed from ladder operators for the considered orthogonal polynomials proving the quantum system to be superintegrable. (paper)

  19. SOLVING THE HAMILTONIAN CYCLE PROBLEM USING SYMBOLIC DETERMINANTS

    OpenAIRE

    Ejov, V.; Filar, J. A.; Lucas, S. K.; Nelson, J. L.

    2006-01-01

    In this note we show how the Hamiltonian Cycle problem can be reduced to solving a system of polynomial equations related to the adjacency matrix of a graph. This system of equations can be solved using the method of Gröbner bases, but we also show how a symbolic determinant related to the adjacency matrix can be used to directly decide whether a graph has a Hamiltonian cycle.

  20. Deformations of Geometric Structures in Topological Sigma Models

    International Nuclear Information System (INIS)

    Bytsenko, A. A.

    2010-01-01

    We study a Lie algebra of formal vector fields W n with it application to the perturbative deformed holomorphic symplectic structure in the A-model, and a Calabi-Yau manifold with boundaries in the B-model. We show that equivalent classes of deformations are described by a Hochschild cohomology of the DG-algebra A = (A,Q), Q = ∂-bar+∂ deform, which is defined to be the cohomology of (-1) n Q+d Hoch . Here ∂-bar is the initial non-deformed BRST operator while ∂ deform is the deformed part whose algebra is a Lie algebra of linear vector fields gl n .

  1. Hamiltonian derivation of a gyrofluid model for collisionless magnetic reconnection

    International Nuclear Information System (INIS)

    Tassi, E

    2014-01-01

    We consider a simple electromagnetic gyrokinetic model for collisionless plasmas and show that it possesses a Hamiltonian structure. Subsequently, from this model we derive a two-moment gyrofluid model by means of a procedure which guarantees that the resulting gyrofluid model is also Hamiltonian. The first step in the derivation consists of imposing a generic fluid closure in the Poisson bracket of the gyrokinetic model, after expressing such bracket in terms of the gyrofluid moments. The constraint of the Jacobi identity, which every Poisson bracket has to satisfy, selects then what closures can lead to a Hamiltonian gyrofluid system. For the case at hand, it turns out that the only closures (not involving integro/differential operators or an explicit dependence on the spatial coordinates) that lead to a valid Poisson bracket are those for which the second order parallel moment, independently for each species, is proportional to the zero order moment. In particular, if one chooses an isothermal closure based on the equilibrium temperatures and derives accordingly the Hamiltonian of the system from the Hamiltonian of the parent gyrokinetic model, one recovers a known Hamiltonian gyrofluid model for collisionless reconnection. The proposed procedure, in addition to yield a gyrofluid model which automatically conserves the total energy, provides also, through the resulting Poisson bracket, a way to derive further conservation laws of the gyrofluid model, associated with the so called Casimir invariants. We show that a relation exists between Casimir invariants of the gyrofluid model and those of the gyrokinetic parent model. The application of such Hamiltonian derivation procedure to this two-moment gyrofluid model is a first step toward its application to more realistic, higher-order fluid or gyrofluid models for tokamaks. It also extends to the electromagnetic gyrokinetic case, recent applications of the same procedure to Vlasov and drift- kinetic systems

  2. Canonical structure of evolution equations with non-linear ...

    Indian Academy of Sciences (India)

    The dispersion produced is compensated by non-linear effects resulting in the formation of exponentially localized .... determining the values of Lagrange's multipliers αis. We postulate that a slightly .... c3 «w2x -v. (36). To include the effect of the secondary constraint c3 in the total Hamiltonian H we modify. (33) as. 104.

  3. Weak KAM for commuting Hamiltonians

    International Nuclear Information System (INIS)

    Zavidovique, M

    2010-01-01

    For two commuting Tonelli Hamiltonians, we recover the commutation of the Lax–Oleinik semi-groups, a result of Barles and Tourin (2001 Indiana Univ. Math. J. 50 1523–44), using a direct geometrical method (Stoke's theorem). We also obtain a 'generalization' of a theorem of Maderna (2002 Bull. Soc. Math. France 130 493–506). More precisely, we prove that if the phase space is the cotangent of a compact manifold then the weak KAM solutions (or viscosity solutions of the critical stationary Hamilton–Jacobi equation) for G and for H are the same. As a corollary we obtain the equality of the Aubry sets and of the Peierls barrier. This is also related to works of Sorrentino (2009 On the Integrability of Tonelli Hamiltonians Preprint) and Bernard (2007 Duke Math. J. 136 401–20)

  4. Geometry of quantal adiabatic evolution driven by a non-Hermitian Hamiltonian

    International Nuclear Information System (INIS)

    Wu Zhaoyan; Yu Ting; Zhou Hongwei

    1994-01-01

    It is shown by using a counter example, which is exactly solvable, that the quantal adiabatic theorem does not generally hold for a non-Hermitian driving Hamiltonian, even if it varies extremely slowly. The condition for the quantal adiabatic theorem to hold for non-Hermitian driving Hamiltonians is given. The adiabatic evolutions driven by a non-Hermitian Hamiltonian provide examples of a new geometric structure, that is the vector bundle in which the inner product of two parallelly transported vectors generally changes. A new geometric concept, the attenuation tensor, is naturally introduced to describe the decay or flourish of the open quantum system. It is constructed in terms of the spectral projector of the Hamiltonian. (orig.)

  5. Compact versus noncompact quantum dynamics of time-dependent su(1,1)-valued Hamiltonians

    International Nuclear Information System (INIS)

    Penna, V.

    1996-01-01

    We consider the Schroedinger problem for time-dependent (TD) Hamiltonians represented by a linear combination of the compact generator and the hyperbolic generator of su(1,1). Several types of transitions, characterized by different time initial conditions on the generator coefficients, are analyzed by resorting to the harmonic oscillator model with a frequency vanishing for t→+∞. We provide examples that point out how the TD states of the transitions can be constructed either by the compact eigenvector basis or by the noncompact eigenvector basis depending on the initial conditions characterizing the frequency time behavior. Copyright copyright 1996 Academic Press, Inc

  6. Quadratic hamiltonians and relativistic quantum mechanics

    International Nuclear Information System (INIS)

    Razumov, A.V.; Solov'ev, V.O.; Taranov, A.Yu.

    1981-01-01

    For the case of a charged scalar field described by a quadratic hamiltonian the equivalent relativistic quantum mechanics is constructed in one-particle sector. Complete investigation of a charged relativistic particle motion in the Coulomb field is carried out. Subcritical as well as supercritical cases are considered. In the course of investigation of the charged scalar particle in the Coulomb field the diagonalization of the quadratic hamiltonian describing the charged scalar quantized field interaction with the external Coulomb field has taken place. Mathematically this problem is bound to the construction of self-conjugated expansions of the symmetric operator. The construction of such expansion is necessary at any small external field magnitude [ru

  7. Hamiltonian mechanics and divergence-free fields

    International Nuclear Information System (INIS)

    Boozer, A.H.

    1986-08-01

    The field lines, or integral curves, of a divergence-free field in three dimensions are shown to be topologically equivalent to the trajectories of a Hamiltonian with two degrees of freedom. The consideration of fields that depend on a parameter allow the construction of a canonical perturbation theory which is valid even if the perturbation is large. If the parametric dependence of the magnetic, or the vorticity field is interpreted as time dependence, evolution equations are obtained which give Kelvin's theorem or the flux conservation theorem for ideal fluids and plasmas. The Hamiltonian methods prove especially useful for study of fields in which the field lines must be known throughout a volume of space

  8. Construction of alternative Hamiltonian structures for field equations

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, Mauricio [Departamento de Fisica, Facultad de Ciencias Fisicas y Matematicas, Universidad de Chile, Santiago (Chile); Hojman, Sergio A. [Departamento de Fisica, Facultad de Ciencias, Universidad de Chile, Santiago (Chile); Facultad de Educacion, Universidad Nacional Andres Bello, Santiago (Chile); Centro de Recursos Educativos Avanzados, CREA, Santiago (Chile)

    2001-08-10

    We use symmetry vectors of nonlinear field equations to build alternative Hamiltonian structures. We construct such structures even for equations which are usually believed to be non-Hamiltonian such as heat, Burger and potential Burger equations. We improve on a previous version of the approach using recursion operators to increase the rank of the Poisson bracket matrices. Cole-Hopf and Miura-type transformations allow the mapping of these structures from one equation to another. (author)

  9. Linearization of non-commuting operators in the partition function

    International Nuclear Information System (INIS)

    Ahmed, M.

    1983-06-01

    A generalization of the Stratonovich-Hubbard scheme for evaluating the grand canonical partition function is given. The scheme involves linearization of products of non-commuting operators using the functional integral method. The non-commutivity of the operators leads to an additional term which can be absorbed in the single-particle Hamiltonian. (author)

  10. A coordinate-dependent superspace deformation from string theory

    International Nuclear Information System (INIS)

    Aldrovandi, Leon G.; Schaposnik, Fidel A.; Silva, Guillermo A.

    2006-01-01

    Starting from a type II superstring model defined on R 2,2 x CY 6 in a linear graviphoton background, we derive a coordinate dependent C-deformed N = 1, d = 2+2 superspace. The chiral fermionic coordinates θ satisfy a Clifford algebra, while the other coordinate algebra remains unchanged. We find a linear relation between the graviphoton field strength and the deformation parameter. The null coordinate dependence of the graviphoton background allows to extend the results to all orders in α'

  11. An extended discrete gradient formula for oscillatory Hamiltonian systems

    International Nuclear Information System (INIS)

    Liu Kai; Shi Wei; Wu Xinyuan

    2013-01-01

    In this paper, incorporating the idea of the discrete gradient method into the extended Runge–Kutta–Nyström integrator, we derive and analyze an extended discrete gradient formula for the oscillatory Hamiltonian system with the Hamiltonian H(p,q)= 1/2 p T p+ 1/2 q T Mq+U(q), where q:R→R d represents generalized positions, p:R→R d represents generalized momenta and M is an element of R dxd is a symmetric and positive semi-definite matrix. The solution of this system is a nonlinear oscillator. Basically, many nonlinear oscillatory mechanical systems with a partitioned Hamiltonian function lend themselves to this approach. The extended discrete gradient formula presented in this paper exactly preserves the energy H(p, q). We derive some properties of the new formula. The convergence is analyzed for the implicit schemes based on the discrete gradient formula, and it turns out that the convergence of the implicit schemes based on the extended discrete gradient formula is independent of ‖M‖, which is a significant property for the oscillatory Hamiltonian system. Thus, it transpires that a larger step size can be chosen for the new energy-preserving schemes than that for the traditional discrete gradient methods when applied to the oscillatory Hamiltonian system. Illustrative examples show the competence and efficiency of the new schemes in comparison with the traditional discrete gradient methods in the scientific literature. (paper)

  12. Hamiltonian formalism of the Skyrme model with ω mesons

    International Nuclear Information System (INIS)

    Adami, C.

    1988-07-01

    We have in this thesis presented the semiclassical quantum theory of the Skyrme model with coupling to an isoscalar gauge field. For the quantization of the classical theory we used the Hamiltonian formalism. Furthermore we have studied the consequences of the canonical treatment, whereby we found the explicite πN vertex of the theory, as well as presented the correct treatment of the spatial contribution of the ω field. Furthermore we indicated that a consistent treatment requires the summation of all tree diagrams of the theory with internal π and ω lines. Such a calculation contains the explicite construction of solutions for the coupled πω field equations. A further result of this thesis concerns the application of the linear πN vertex to the calculation of the Δ decay width via the process Δ→Nπ. (orig./HSI) [de

  13. Classical effective Hamiltonians, Wigner functions, and the sign problem

    International Nuclear Information System (INIS)

    Samson, J.H.

    1995-01-01

    In the functional-integral technique an auxiliary field, coupled to appropriate operators such as spins, linearizes the interaction term in a quantum many-body system. The partition function is then averaged over this time-dependent stochastic field. Quantum Monte Carlo methods evaluate this integral numerically, but suffer from the sign (or phase) problem: the integrand may not be positive definite (or not real). It is shown that, in certain cases that include the many-band Hubbard model and the Heisenberg model, the sign problem is inevitable on fundamental grounds. Here, Monte Carlo simulations generate a distribution of incompatible operators---a Wigner function---from which expectation values and correlation functions are to be calculated; in general no positive-definite distribution of this form exists. The distribution of time-averaged auxiliary fields is the convolution of this operator distribution with a Gaussian of variance proportional to temperature, and is interpreted as a Boltzmann distribution exp(-βV eff ) in classical configuration space. At high temperatures and large degeneracies this classical effective Hamiltonian V eff tends to the static approximation as a classical limit. In the low-temperature limit the field distribution becomes a Wigner function, the sign problem occurs, and V eff is complex. Interpretations of the distributions, and a criterion for their positivity, are discussed. The theory is illustrated by an exact evaluation of the Wigner function for spin s and the effective classical Hamiltonian for the spin-1/2 van der Waals model. The field distribution can be negative here, more noticeably if the number of spins is odd

  14. A generalized Tu formula and Hamiltonian structures of fractional AKNS hierarchy

    International Nuclear Information System (INIS)

    Wu, Guo-cheng; Zhang, Sheng

    2011-01-01

    In this Letter, a generalized Tu formula is firstly presented to construct Hamiltonian structures of fractional soliton equations. The obtained results can be reduced to the classical Hamiltonian hierarchy of AKNS in ordinary calculus. -- Highlights: → A generalized Tu formula is first established based on the fractional variational theory for non-differentiable functions. → Hamiltonian structures of fractional AKNS hierarchy are obtained. → The classical AKNS hierarchy is just a special case of the fractional hierarchy.

  15. A generalized Tu formula and Hamiltonian structures of fractional AKNS hierarchy

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Guo-cheng, E-mail: wuguocheng2002@yahoo.com.cn [Key Laboratory of Numerical Simulation of Sichuan Province, Neijiang, Sichuan 641112 (China); College of Mathematics and Information Science, Neijiang Normal University, Neijiang, Sichuan 641112 (China); Zhang, Sheng, E-mail: zhshaeng@yahoo.com.cn [School of Mathematical Sciences, Dalian University of Technology, Dalian 116024 (China)

    2011-10-03

    In this Letter, a generalized Tu formula is firstly presented to construct Hamiltonian structures of fractional soliton equations. The obtained results can be reduced to the classical Hamiltonian hierarchy of AKNS in ordinary calculus. -- Highlights: → A generalized Tu formula is first established based on the fractional variational theory for non-differentiable functions. → Hamiltonian structures of fractional AKNS hierarchy are obtained. → The classical AKNS hierarchy is just a special case of the fractional hierarchy.

  16. Formulation of Hamiltonian mechanics with even and odd Poisson brackets

    International Nuclear Information System (INIS)

    Khudaverdyan, O.M.; Nersesyan, A.P.

    1987-01-01

    A possibility is studied as to constrict the odd Poisson bracket and odd Hamiltonian by the given dynamics in phase superspace - the even Poisson bracket and even Hamiltonian so the transition to the new structure does not change the equations of motion. 9 refs

  17. Two pairs of Lie algebras and the integrable couplings as well as the Hamiltonian structure of the Yang hierarchy

    International Nuclear Information System (INIS)

    Zhang Yufeng; Guo Fukui

    2007-01-01

    Two types of Lie algebras, which are the subalgebras of the Lie algebra A 2 , A 3 respectively, are presented. The resulting loop algebras are following. As their applications, two different integrable couplings of the Yang hierarchy are obtained, called them the double integrable couplings. The Hamiltonian structure of one of them is worked out by a proper linear isomorphic transformation and the quadratic-form identity

  18. Dynamics of High-Order Spin-Orbit Couplings about Linear Momenta in Compact Binary Systems*

    International Nuclear Information System (INIS)

    Huang Li; Wu Xin; Huang Guo-Qing; Mei Li-Jie

    2017-01-01

    This paper relates to the post-Newtonian Hamiltonian dynamics of spinning compact binaries, consisting of the Newtonian Kepler problem and the leading, next-to-leading and next-to-next-to-leading order spin-orbit couplings as linear functions of spins and momenta. When this Hamiltonian form is transformed to a Lagrangian form, besides the terms corresponding to the same order terms in the Hamiltonian, several additional terms, third post-Newtonian (3PN), 4PN, 5PN, 6PN and 7PN order spin-spin coupling terms, yield in the Lagrangian. That means that the Hamiltonian is nonequivalent to the Lagrangian at the same PN order but is exactly equivalent to the full Lagrangian without any truncations. The full Lagrangian without the spin-spin couplings truncated is integrable and regular. Whereas it is non-integrable and becomes possibly chaotic when any one of the spin-spin terms is dropped. These results are also supported numerically. (paper)

  19. Orbits and variational principles for conservative Hamiltonian systems

    International Nuclear Information System (INIS)

    Torres del Castillo, G.F.

    1989-01-01

    It is shown that for any Hamiltonian system whose Hamiltonian is time-independent the equations that determine the orbits followed by the system, without making reference to time, have the form of Hamilton's equations in a phase space of dimension two units smaller than that of the original phase space. By considering the cases of classical mechanics and of geometrical optics, it is shown that this result amounts, respectively, to Maupertuis' least action principle and to Fermat's principle. (Author)

  20. Cluster expansion for ground states of local Hamiltonians

    Directory of Open Access Journals (Sweden)

    Alvise Bastianello

    2016-08-01

    Full Text Available A central problem in many-body quantum physics is the determination of the ground state of a thermodynamically large physical system. We construct a cluster expansion for ground states of local Hamiltonians, which naturally incorporates physical requirements inherited by locality as conditions on its cluster amplitudes. Applying a diagrammatic technique we derive the relation of these amplitudes to thermodynamic quantities and local observables. Moreover we derive a set of functional equations that determine the cluster amplitudes for a general Hamiltonian, verify the consistency with perturbation theory and discuss non-perturbative approaches. Lastly we verify the persistence of locality features of the cluster expansion under unitary evolution with a local Hamiltonian and provide applications to out-of-equilibrium problems: a simplified proof of equilibration to the GGE and a cumulant expansion for the statistics of work, for an interacting-to-free quantum quench.

  1. Expressway deformation mapping using high-resolution TerraSAR-X images

    KAUST Repository

    Shi, Xuguo

    2014-01-27

    Monitoring deformation of linear infrastructures such as expressway and railway caused by natural processes or anthropogenic activities is a vital task to ensure the safety of human lives and properties. Interferometric Synthetic Aperture Radar (InSAR) has been widely recognized as an effective technology to carry out large-area surface deformation mapping. However, its application in linear infrastructure deformation monitoring has not been intensively studied till now. In this article, a modified Small BAseline Subset (SBAS) method is proposed to retrieve the deformation patterns of the expressway. In our method, only the point-like targets identified on the expressway were kept in our analysis, and two complementary subsets of interferograms were formed to better separate the signals of height error and deformation from inteferometric phase observations. We successfully applied this method with multitemporal high-resolution TerraSAR-X images to retrieve the spatialoral pattern of surface deformation along the Beian-Heihe expressway that is located in island-permafrost areas and threatened by geohazards. © 2014 Taylor & Francis.

  2. Expressway deformation mapping using high-resolution TerraSAR-X images

    KAUST Repository

    Shi, Xuguo; Liao, Mingsheng; Wang, Teng; Zhang, Lu; Shan, Wei; Wang, Chunjiao

    2014-01-01

    Monitoring deformation of linear infrastructures such as expressway and railway caused by natural processes or anthropogenic activities is a vital task to ensure the safety of human lives and properties. Interferometric Synthetic Aperture Radar (InSAR) has been widely recognized as an effective technology to carry out large-area surface deformation mapping. However, its application in linear infrastructure deformation monitoring has not been intensively studied till now. In this article, a modified Small BAseline Subset (SBAS) method is proposed to retrieve the deformation patterns of the expressway. In our method, only the point-like targets identified on the expressway were kept in our analysis, and two complementary subsets of interferograms were formed to better separate the signals of height error and deformation from inteferometric phase observations. We successfully applied this method with multitemporal high-resolution TerraSAR-X images to retrieve the spatialoral pattern of surface deformation along the Beian-Heihe expressway that is located in island-permafrost areas and threatened by geohazards. © 2014 Taylor & Francis.

  3. Hamiltonian reductions in plasma physics about intrinsic gyrokinetic

    International Nuclear Information System (INIS)

    Guillebon de Resnes, L. de

    2013-01-01

    Gyrokinetic is a key model for plasma micro-turbulence, commonly used for fusion plasmas or small-scale astrophysical turbulence, for instance. The model still suffers from several issues, which could imply to reconsider the equations. This thesis dissertation clarifies three of them. First, one of the coordinates caused questions, both from a physical and from a mathematical point of view; a suitable constrained coordinate is introduced, which removes the issues from the theory and explains the intrinsic structures underlying the questions. Second, the perturbative coordinate transformation for gyrokinetic was computed only at lowest orders; explicit induction relations are obtained to go arbitrary order in the expansion. Third, the introduction of the coupling between the plasma and the electromagnetic field was not completely satisfactory; using the Hamiltonian structure of the dynamics, it is implemented in a more appropriate way, with strong consequences on the gyrokinetic equations, especially about their Hamiltonian structure. In order to address these three main points, several other results are obtained, for instance about the origin of the guiding-center adiabatic invariant, about a very efficient minimal guiding center transformation, or about an intermediate Hamiltonian model between Vlasov-Maxwell and gyrokinetic, where the characteristics include both the slow guiding-center dynamics and the fast gyro-angle dynamics. In addition, various reduction methods are used, introduced or developed, e.g. a Lie-transform of the equations of motion, a lifting method to transfer particle reductions to the corresponding Hamiltonian field dynamics, or a truncation method related both to Dirac's theory of constraints and to a projection onto a Lie-subalgebra. Besides gyrokinetic, this is useful to clarify other Hamiltonian reductions in plasma physics, for instance for incompressible or electrostatic dynamics, for magnetohydrodynamics, or for fluid closures including

  4. Convergence to equilibrium under a random Hamiltonian

    Science.gov (United States)

    Brandão, Fernando G. S. L.; Ćwikliński, Piotr; Horodecki, Michał; Horodecki, Paweł; Korbicz, Jarosław K.; Mozrzymas, Marek

    2012-09-01

    We analyze equilibration times of subsystems of a larger system under a random total Hamiltonian, in which the basis of the Hamiltonian is drawn from the Haar measure. We obtain that the time of equilibration is of the order of the inverse of the arithmetic average of the Bohr frequencies. To compute the average over a random basis, we compute the inverse of a matrix of overlaps of operators which permute four systems. We first obtain results on such a matrix for a representation of an arbitrary finite group and then apply it to the particular representation of the permutation group under consideration.

  5. Continuum-time Hamiltonian for the Baxter's model

    International Nuclear Information System (INIS)

    Libero, V.L.

    1983-01-01

    The associated Hamiltonian for the symmetric eight-vertex model is obtained by taking the time-continuous limit in an equivalent Ashkin-Teller model. The result is a Heisenberg Hamiltonian with coefficients J sub(x), J sub(y) and J sub(z) identical to those found by Sutherland for choices of the parameters a, b, c and d that bring the model close to the transition. The change in the operators is accomplished explicitly, the relation between the crossover operator for the Ashkin-Teller model and the energy operator for the eight-vertex model being obtained in a transparent form. (Author) [pt

  6. Quantum-circuit model of Hamiltonian search algorithms

    International Nuclear Information System (INIS)

    Roland, Jeremie; Cerf, Nicolas J.

    2003-01-01

    We analyze three different quantum search algorithms, namely, the traditional circuit-based Grover's algorithm, its continuous-time analog by Hamiltonian evolution, and the quantum search by local adiabatic evolution. We show that these algorithms are closely related in the sense that they all perform a rotation, at a constant angular velocity, from a uniform superposition of all states to the solution state. This makes it possible to implement the two Hamiltonian-evolution algorithms on a conventional quantum circuit, while keeping the quadratic speedup of Grover's original algorithm. It also clarifies the link between the adiabatic search algorithm and Grover's algorithm

  7. Hamiltonian structure of the integrable coupling of the Jaulent-Miodek hierarchy

    International Nuclear Information System (INIS)

    Zhang, Yufeng; Fan, Engui

    2006-01-01

    A scheme for deducing Hamiltonian structures of the higher-dimensional hierarchies of evolution equations is presented which is devoting to obtaining the Hamiltonian structures of integrable coupling of the Jaulent-Miodek hierarchy

  8. Image-based visual servo control using the port-Hamiltonian Approach

    NARCIS (Netherlands)

    Muñoz Arias, Mauricio; El Hawwary, Mohamed; Scherpen, Jacquelien M.A.

    2015-01-01

    This work is devoted to an image-based visual servo control strategy for standard mechanical systems in the port-Hamiltonian framework. We utilize a change of variables that transforms the port-Hamiltonian system into one with constant mass-inertia matrix, and we use an interaction matrix that

  9. Phase transitions in the Hubbard Hamiltonian

    International Nuclear Information System (INIS)

    Chaves, C.M.; Lederer, P.; Gomes, A.A.

    1977-05-01

    Phase transition in the isotropic non-degenerate Hubbard Hamiltonian within the renormalization group techniques is studied, using the epsilon = 4 - d expansion to first order in epsilon. The functional obtained from the Hubbard Hamiltonian displays full rotation symmetry and describes two coupled fields: a vector spin field, with n components and a non-soft scalar charge field. This coupling is pure imaginary, which has interesting consequences on the critical properties of this coupled field system. The effect of simple constraints imposed on the charge field is considered. The relevance of the coupling between the fields in producing Fisher renormalization of the critical exponents is discussed. The possible singularities introduced in the charge-charge correlation function by the coupling are also discussed

  10. Hamiltonian partial differential equations and applications

    CERN Document Server

    Nicholls, David; Sulem, Catherine

    2015-01-01

    This book is a unique selection of work by world-class experts exploring the latest developments in Hamiltonian partial differential equations and their applications. Topics covered within are representative of the field’s wide scope, including KAM and normal form theories, perturbation and variational methods, integrable systems, stability of nonlinear solutions as well as applications to cosmology, fluid mechanics and water waves. The volume contains both surveys and original research papers and gives a concise overview of the above topics, with results ranging from mathematical modeling to rigorous analysis and numerical simulation. It will be of particular interest to graduate students as well as researchers in mathematics and physics, who wish to learn more about the powerful and elegant analytical techniques for Hamiltonian partial differential equations.

  11. Diffusion Monte Carlo approach versus adiabatic computation for local Hamiltonians

    Science.gov (United States)

    Bringewatt, Jacob; Dorland, William; Jordan, Stephen P.; Mink, Alan

    2018-02-01

    Most research regarding quantum adiabatic optimization has focused on stoquastic Hamiltonians, whose ground states can be expressed with only real non-negative amplitudes and thus for whom destructive interference is not manifest. This raises the question of whether classical Monte Carlo algorithms can efficiently simulate quantum adiabatic optimization with stoquastic Hamiltonians. Recent results have given counterexamples in which path-integral and diffusion Monte Carlo fail to do so. However, most adiabatic optimization algorithms, such as for solving MAX-k -SAT problems, use k -local Hamiltonians, whereas our previous counterexample for diffusion Monte Carlo involved n -body interactions. Here we present a 6-local counterexample which demonstrates that even for these local Hamiltonians there are cases where diffusion Monte Carlo cannot efficiently simulate quantum adiabatic optimization. Furthermore, we perform empirical testing of diffusion Monte Carlo on a standard well-studied class of permutation-symmetric tunneling problems and similarly find large advantages for quantum optimization over diffusion Monte Carlo.

  12. Path-integral isomorphic Hamiltonian for including nuclear quantum effects in non-adiabatic dynamics

    Science.gov (United States)

    Tao, Xuecheng; Shushkov, Philip; Miller, Thomas F.

    2018-03-01

    We describe a path-integral approach for including nuclear quantum effects in non-adiabatic chemical dynamics simulations. For a general physical system with multiple electronic energy levels, a corresponding isomorphic Hamiltonian is introduced such that Boltzmann sampling of the isomorphic Hamiltonian with classical nuclear degrees of freedom yields the exact quantum Boltzmann distribution for the original physical system. In the limit of a single electronic energy level, the isomorphic Hamiltonian reduces to the familiar cases of either ring polymer molecular dynamics (RPMD) or centroid molecular dynamics Hamiltonians, depending on the implementation. An advantage of the isomorphic Hamiltonian is that it can easily be combined with existing mixed quantum-classical dynamics methods, such as surface hopping or Ehrenfest dynamics, to enable the simulation of electronically non-adiabatic processes with nuclear quantum effects. We present numerical applications of the isomorphic Hamiltonian to model two- and three-level systems, with encouraging results that include improvement upon a previously reported combination of RPMD with surface hopping in the deep-tunneling regime.

  13. Resolving the issue of branched Hamiltonian in modified Lanczos-Lovelock gravity

    Science.gov (United States)

    Ruz, Soumendranath; Mandal, Ranajit; Debnath, Subhra; Sanyal, Abhik Kumar

    2016-07-01

    The Hamiltonian constraint H_c = N{H} = 0, defines a diffeomorphic structure on spatial manifolds by the lapse function N in general theory of relativity. However, it is not manifest in Lanczos-Lovelock gravity, since the expression for velocity in terms of the momentum is multivalued. Thus the Hamiltonian is a branch function of momentum. Here we propose an extended theory of Lanczos-Lovelock gravity to construct a unique Hamiltonian in its minisuperspace version, which results in manifest diffeomorphic invariance and canonical quantization.

  14. A q-deformed Lorentz algebra

    International Nuclear Information System (INIS)

    Schmidke, W.B.; Wess, J.; Muenchen Univ.; Zumino, B.; Lawrence Berkeley Lab., CA

    1991-01-01

    We derive a q-deformed version of the Lorentz algebra by deformating the algebra SL(2, C). The method is based on linear representations of the algebra on the complex quantum spinor space. We find that the generators usually identified with SL q (2, C) generate SU q (2) only. Four additional generators are added which generate Lorentz boosts. The full algebra of all seven generators and their coproduct is presented. We show that in the limit q→1 the generators are those of the classical Lorentz algebra plus an additional U(1). Thus we have a deformation of SL(2, C)xU(1). (orig.)

  15. M theory on deformed superspace

    Science.gov (United States)

    Faizal, Mir

    2011-11-01

    In this paper we will analyze a noncommutative deformation of the Aharony-Bergman-Jafferis-Maldacena (ABJM) theory in N=1 superspace formalism. We will then analyze the Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST symmetries for this deformed ABJM theory, and its linear as well as nonlinear gauges. We will show that the sum of the gauge fixing term and the ghost term for this deformed ABJM theory can be expressed as a combination of the total BRST and the total anti-BRST variation, in Landau and nonlinear gauges. We will show that in Landau and Curci-Ferrari gauges deformed ABJM theory is invariant under an additional set of symmetry transformations. We will also discuss the effect that the addition of a bare mass term has on this theory.

  16. Time and a physical Hamiltonian for quantum gravity.

    Science.gov (United States)

    Husain, Viqar; Pawłowski, Tomasz

    2012-04-06

    We present a nonperturbative quantization of general relativity coupled to dust and other matter fields. The dust provides a natural time variable, leading to a physical Hamiltonian with spatial diffeomorphism symmetry. The surprising feature is that the Hamiltonian is not a square root. This property, together with the kinematical structure of loop quantum gravity, provides a complete theory of quantum gravity, and puts applications to cosmology, quantum gravitational collapse, and Hawking radiation within technical reach. © 2012 American Physical Society

  17. A gauge model describing N relativistic particles bound by linear forces

    International Nuclear Information System (INIS)

    Filippov, A.T.

    1988-01-01

    A relativistic model of N particles bound by linear forces is obtained by applying the gauging procedure to the linear canonical symmteries of a simple (rudimentary) nonrelativistic N-particle Lagrangian extended to relativistic phase space. The new (gauged) Lagrangian is formally Poincare invariant, the Hamiltonian is a linear combination of first-class constraints which are closed with respect to Pisson brackets and generate the localized canonical symmteries. The gauge potentials appear as the Lagrange multipliers of the constraints. Gauge fixing and quantization of the model are also briefly discussed. 11 refs

  18. Dielectric energy versus plasma energy, and Hamiltonian action-angle variables for the Vlasov equation

    International Nuclear Information System (INIS)

    Morrison, P.J.

    1992-04-01

    Expressions for the energy content of one-dimensional electrostatic perturbations about homogeneous equilibria are revisited. The well-known dielectric energy, var-epsilon D , is compared with the exact plasma free energy expression, δ 2 F, that is conserved by the Vlasov-Poisson system. The former is an expression in terms of the perturbed electric field amplitude, while the latter is determined by a generating function, which describes perturbations of the distribution function that respect the important constraint of dynamical accessibility of the system. Thus the comparison requires solving the Vlasov equation for such a perturbations of the distribution function in terms of the electric field. This is done for neutral modes of oscillation that occur for equilibria with stationary inflection points, and it is seen that for these special modes δ 2 F = var-epsilon D . In the case of unstable and corresponding damped modes it is seen that δ 2 F ≠ var-epsilon D ; in fact δ 2 F ≡ 0. This failure of the dielectric energy expression persists even for arbitrarily small growth and damping rates since var-epsilon D is nonzero in this limit, whereas δ 2 F remains zero. The connection between the new exact energy expression and the at-best approximate var-epsilon D is described. The new expression motivates natural definitions of Hamiltonian action variables and signature. A general linear integral transform is introduced that maps the linear version of the noncanonical Hamiltonian structure, which describes the Vlasov equation, to action-angle (diagonal) form

  19. On the topological entropy of an optical Hamiltonian flow

    OpenAIRE

    Niche, Cesar J.

    2000-01-01

    In this article we prove two formulas for the topological entropy of an F-optical Hamiltonian flow induced by a C^{\\infty} Hamiltonian, where F is a Lagrangian distribution. In these formulas, we calculate the topological entropy as the exponential growth rate of the average of the determinant of the differential of the flow, restricted to the Lagrangian distribution or to a proper modification.

  20. Massive graviton propagation of the deformed Horava-Lifshitz gravity without projectability condition

    International Nuclear Information System (INIS)

    Myung, Yun Soo

    2010-01-01

    We study graviton propagations of scalar, vector, and tensor modes in the deformed Horava-Lifshitz gravity (λR-model) without projectability condition. The quadratic Lagrangian is invariant under diffeomorphism only for λ=1 case, which contradicts to the fact that λ is irrelevant to a consistent Hamiltonian approach to the λR-model. In this case, as far as scalar propagations are concerned, there is no essential difference between deformed Horava-Lifshitz gravity (λR-model) and general relativity. This implies that there are two degrees of freedom for a massless graviton without Horava scalar, and five degrees of freedom appear for a massive graviton when introducing Lorentz-violating and Fierz-Pauli mass terms. Finally, it is shown that for λ=1, the vDVZ discontinuity is absent in the massless limit of Lorentz-violating mass terms by considering external source terms.

  1. Effective Hamiltonian for protected edge states in graphene

    International Nuclear Information System (INIS)

    Winkler, R.; Deshpande, H.

    2017-01-01

    Edge states in topological insulators (TIs) disperse symmetrically about one of the time-reversal invariant momenta Λ in the Brillouin zone (BZ) with protected degeneracies at Λ. Commonly TIs are distinguished from trivial insulators by the values of one or multiple topological invariants that require an analysis of the bulk band structure across the BZ. We propose an effective two-band Hamiltonian for the electronic states in graphene based on a Taylor expansion of the tight-binding Hamiltonian about the time-reversal invariant M point at the edge of the BZ. This Hamiltonian provides a faithful description of the protected edge states for both zigzag and armchair ribbons, though the concept of a BZ is not part of such an effective model. In conclusion, we show that the edge states are determined by a band inversion in both reciprocal and real space, which allows one to select Λ for the edge states without affecting the bulk spectrum.

  2. Lagrangian-Hamiltonian unified formalism for autonomous higher order dynamical systems

    International Nuclear Information System (INIS)

    Prieto-Martinez, Pedro Daniel; Roman-Roy, Narciso

    2011-01-01

    The Lagrangian-Hamiltonian unified formalism of Skinner and Rusk was originally stated for autonomous dynamical systems in classical mechanics. It has been generalized for non-autonomous first-order mechanical systems, as well as for first-order and higher order field theories. However, a complete generalization to higher order mechanical systems is yet to be described. In this work, after reviewing the natural geometrical setting and the Lagrangian and Hamiltonian formalisms for higher order autonomous mechanical systems, we develop a complete generalization of the Lagrangian-Hamiltonian unified formalism for these kinds of systems, and we use it to analyze some physical models from this new point of view. (paper)

  3. Effective Hamiltonian theory: recent formal results and non-nuclear applications

    International Nuclear Information System (INIS)

    Brandow, B.H.

    1981-01-01

    Effective Hamiltonian theory is discussed from the points of view of the unitary transformation method and degenerate perturbation theory. It is shown that the two approaches are identical term by term. The main features of a formulation of the coupled-cluster method for open-shell systems are outlined. Finally, recent applications of the many-body linked-cluster form of degenerate perturbation theory are described: the derivation of effective spin Hamiltonians in magnetic insulator systems, the derivation and calculation ab initio of effective π-electron Hamiltonians for planar conjugated hydrocarbon molecules, and understanding the so-called valence fluctuation phenomenon exhibited by certain rare earth compounds

  4. The q-deformed SU(2) Heisenberg model in 3-dimensions

    International Nuclear Information System (INIS)

    Lu Zhongyi; Yan Hong.

    1991-07-01

    A q-deformed SU(2) Heisenberg (3-dimensional) spin model is set up, and the q-deformed spin-wave solution is obtained through the q-analogous Holstein-Primakoff transformation. The result is given for small γ = ln q, which is the quantity characterizing the nonlinearity of the Hamiltonian. A mean-field treatment is arranged to preserved (at least some of) the nonlinearity, and the ordinary ferromagnet ground state is shown as the exact ground state of the new system. Interesting results are obtained for this nonlinear model: (i) There is an energy gap between the ground state and the first excited one, thus the ground state is stable under small perturbation of the background; (ii) the specific heat per volume is modified by a small term proportional to the 1/2-th power of temperature and the square of γ, which is qualitatively different from the conventional model, and (iii) the magnetization M(T) is modified by a factor that depends on γ. (author). 16 refs

  5. Hamiltonian description of bubble dynamics

    International Nuclear Information System (INIS)

    Maksimov, A. O.

    2008-01-01

    The dynamics of a nonspherical bubble in a liquid is described within the Hamiltonian formalism. Primary attention is focused on the introduction of the canonical variables into the computational algorithm. The expansion of the Dirichlet-Neumann operator in powers of the displacement of a bubble wall from an equilibrium position is obtained in the explicit form. The first three terms (more specifically, the second-, third-, and fourth-order terms) in the expansion of the Hamiltonian in powers of the canonical variables are determined. These terms describe the spectrum and interaction of three essentially different modes, i.e., monopole oscillations (pulsations), dipole oscillations (translational motions), and surface oscillations. The cubic nonlinearity is analyzed for the problem associated with the generation of Faraday ripples on the wall of a bubble in an acoustic field. The possibility of decay processes occurring in the course of interaction of surface oscillations for the first fifteen (experimentally observed) modes is investigated.

  6. A Hamiltonian approach to Thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Baldiotti, M.C., E-mail: baldiotti@uel.br [Departamento de Física, Universidade Estadual de Londrina, 86051-990, Londrina-PR (Brazil); Fresneda, R., E-mail: rodrigo.fresneda@ufabc.edu.br [Universidade Federal do ABC, Av. dos Estados 5001, 09210-580, Santo André-SP (Brazil); Molina, C., E-mail: cmolina@usp.br [Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Av. Arlindo Bettio 1000, CEP 03828-000, São Paulo-SP (Brazil)

    2016-10-15

    In the present work we develop a strictly Hamiltonian approach to Thermodynamics. A thermodynamic description based on symplectic geometry is introduced, where all thermodynamic processes can be described within the framework of Analytic Mechanics. Our proposal is constructed on top of a usual symplectic manifold, where phase space is even dimensional and one has well-defined Poisson brackets. The main idea is the introduction of an extended phase space where thermodynamic equations of state are realized as constraints. We are then able to apply the canonical transformation toolkit to thermodynamic problems. Throughout this development, Dirac’s theory of constrained systems is extensively used. To illustrate the formalism, we consider paradigmatic examples, namely, the ideal, van der Waals and Clausius gases. - Highlights: • A strictly Hamiltonian approach to Thermodynamics is proposed. • Dirac’s theory of constrained systems is extensively used. • Thermodynamic equations of state are realized as constraints. • Thermodynamic potentials are related by canonical transformations.

  7. A Hamiltonian approach to Thermodynamics

    International Nuclear Information System (INIS)

    Baldiotti, M.C.; Fresneda, R.; Molina, C.

    2016-01-01

    In the present work we develop a strictly Hamiltonian approach to Thermodynamics. A thermodynamic description based on symplectic geometry is introduced, where all thermodynamic processes can be described within the framework of Analytic Mechanics. Our proposal is constructed on top of a usual symplectic manifold, where phase space is even dimensional and one has well-defined Poisson brackets. The main idea is the introduction of an extended phase space where thermodynamic equations of state are realized as constraints. We are then able to apply the canonical transformation toolkit to thermodynamic problems. Throughout this development, Dirac’s theory of constrained systems is extensively used. To illustrate the formalism, we consider paradigmatic examples, namely, the ideal, van der Waals and Clausius gases. - Highlights: • A strictly Hamiltonian approach to Thermodynamics is proposed. • Dirac’s theory of constrained systems is extensively used. • Thermodynamic equations of state are realized as constraints. • Thermodynamic potentials are related by canonical transformations.

  8. Coupling of linearized gravity to nonrelativistic test particles: Dynamics in the general laboratory frame

    International Nuclear Information System (INIS)

    Speliotopoulos, A.D.; Chiao, Raymond Y.

    2004-01-01

    The coupling of gravity to matter is explored in the linearized gravity limit. The usual derivation of gravity-matter couplings within the quantum-field-theoretic framework is reviewed. A number of inconsistencies between this derivation of the couplings and the known results of tidal effects on test particles according to classical general relativity are pointed out. As a step towards resolving these inconsistencies, a general laboratory frame fixed on the worldline of an observer is constructed. In this frame, the dynamics of nonrelativistic test particles in the linearized gravity limit is studied, and their Hamiltonian dynamics is derived. It is shown that for stationary metrics this Hamiltonian reduces to the usual Hamiltonian for nonrelativistic particles undergoing geodesic motion. For nonstationary metrics with long-wavelength gravitational waves present (GWs), it reduces to the Hamiltonian for a nonrelativistic particle undergoing geodesic deviation motion. Arbitrary-wavelength GWs couple to the test particle through a vector-potential-like field N a , the net result of the tidal forces that the GW induces in the system, namely, a local velocity field on the system induced by tidal effects, as seen by an observer in the general laboratory frame. Effective electric and magnetic fields, which are related to the electric and magnetic parts of the Weyl tensor, are constructed from N a that obey equations of the same form as Maxwell's equations. A gedankin gravitational Aharonov-Bohm-type experiment using N a to measure the interference of quantum test particles is presented

  9. Numerical study on a canonized Hamiltonian system representing reduced magnetohydrodynamics and its comparison with two-dimensional Euler system

    OpenAIRE

    Kaneko, Yuta; Yoshida, Zensho

    2014-01-01

    Introducing a Clebsch-like parameterization, we have formulated a canonical Hamiltonian system on a symplectic leaf of reduced magnetohydrodynamics. An interesting structure of the equations is in that the Lorentz-force, which is a quadratic nonlinear term in the conventional formulation, appears as a linear term -{\\Delta}Q, just representing the current density (Q is a Clebsch variable, and {\\Delta} is the two-dimensional Laplacian); omitting this term reduces the system into the two-dimensi...

  10. Multidimensional supersymmetric quantum mechanics: spurious states for the tensor sector two Hamiltonian.

    Science.gov (United States)

    Chou, Chia-Chun; Kouri, Donald J

    2013-04-25

    We show that there exist spurious states for the sector two tensor Hamiltonian in multidimensional supersymmetric quantum mechanics. For one-dimensional supersymmetric quantum mechanics on an infinite domain, the sector one and two Hamiltonians have identical spectra with the exception of the ground state of the sector one. For tensorial multidimensional supersymmetric quantum mechanics, there exist normalizable spurious states for the sector two Hamiltonian with energy equal to the ground state energy of the sector one. These spurious states are annihilated by the adjoint charge operator, and hence, they do not correspond to physical states for the original Hamiltonian. The Hermitian property of the sector two Hamiltonian implies the orthogonality between spurious and physical states. In addition, we develop a method for construction of a specific form of the spurious states for any quantum system and also generate several spurious states for a two-dimensional anharmonic oscillator system and for the hydrogen atom.

  11. Scattering theory of infrared divergent Pauli-Fierz Hamiltonians

    CERN Document Server

    Derezinski, J

    2003-01-01

    We consider in this paper the scattering theory of infrared divergent massless Pauli-Fierz Hamiltonians. We show that the CCR representations obtained from the asymptotic field contain so-called {\\em coherent sectors} describing an infinite number of asymptotically free bosons. We formulate some conjectures leading to mathematically well defined notion of {\\em inclusive and non-inclusive scattering cross-sections} for Pauli-Fierz Hamiltonians. Finally we give a general description of the scattering theory of QFT models in the presence of coherent sectors for the asymptotic CCR representations.

  12. Spectral properties of almost-periodic Hamiltonians

    International Nuclear Information System (INIS)

    Lima, R.

    1983-12-01

    We give a description of some spectral properties of almost-periodic hamiltonians. We put the stress on some particular points of the proofs of the existence of absolutely continuous or pure point spectrum [fr

  13. On time-dependent Hamiltonian realizations of planar and nonplanar systems

    Science.gov (United States)

    Esen, Oğul; Guha, Partha

    2018-04-01

    In this paper, we elucidate the key role played by the cosymplectic geometry in the theory of time dependent Hamiltonian systems in 2 D. We generalize the cosymplectic structures to time-dependent Nambu-Poisson Hamiltonian systems and corresponding Jacobi's last multiplier for 3 D systems. We illustrate our constructions with various examples.

  14. Self-adjoint Hamiltonians with a mass jump: General matching conditions

    International Nuclear Information System (INIS)

    Gadella, M.; Kuru, S.; Negro, J.

    2007-01-01

    The simplest position-dependent mass Hamiltonian in one dimension, where the mass has the form of a step function with a jump discontinuity at one point, is considered. The most general matching conditions at the jumping point for the solutions of the Schroedinger equation that provide a self-adjoint Hamiltonian are characterized

  15. Instability in Hamiltonian systems

    Directory of Open Access Journals (Sweden)

    A. Pumarino

    2005-11-01

    Besides proving the existence of Arnold diffusion for a new family of three degrees of freedom Hamiltonian systems, another goal of this book is not only to show how Arnold-like results can be extended to substantially larger sets of parameters, but also how to obtain effective estimates on the splitting of separatrices size when the frequency of the perturbation belongs to open real sets.

  16. Integrable quadratic classical Hamiltonians on so(4) and so(3, 1)

    International Nuclear Information System (INIS)

    Sokolov, Vladimir V; Wolf, Thomas

    2006-01-01

    We investigate a special class of quadratic Hamiltonians on so(4) and so(3, 1) and describe Hamiltonians that have additional polynomial integrals. One of the main results is a new integrable case with an integral of sixth degree

  17. Noncanonical Hamiltonian density formulation of hydrodynamics and ideal MHD

    International Nuclear Information System (INIS)

    Morrison, P.J.; Greene, J.M.

    1980-04-01

    A new Hamiltonian density formulation of a perfect fluid with or without a magnetic field is presented. Contrary to previous work the dynamical variables are the physical variables, rho, v, B, and s, which form a noncanonical set. A Poisson bracket which satisfies the Jacobi identity is defined. This formulation is transformed to a Hamiltonian system where the dynamical variables are the spatial Fourier coefficients of the fluid variables

  18. On an integrable deformed affinsphären equation. A reciprocal gasdynamic connection

    International Nuclear Information System (INIS)

    Rogers, C.; Huang, Yehui

    2012-01-01

    The integrable affinsphären equation originally arose in a geometric context but has an interesting gasdynamic connection. Here, an integrable deformed version of the affinsphären equation is derived in a novel manner via the action of reciprocal transformations on a related anisentropic gasdynamics system. A linear representation for the deformed affinsphären equation is constructed by means of the reciprocal transformations. The latter are then employed to derive a class of exact solutions in parametric form. -- Highlights: ► A deformed affinsphären equation is derived via a reciprocal transformation. ► A linear representation for the deformed affinsphären equation is constructed. ► A class of exact solutions of the deformed affinsphären equation is presented.

  19. Continuous versus discrete structures II -- Discrete Hamiltonian systems and Helmholtz conditions

    OpenAIRE

    Cresson, Jacky; Pierret, Frédéric

    2015-01-01

    We define discrete Hamiltonian systems in the framework of discrete embeddings. An explicit comparison with previous attempts is given. We then solve the discrete Helmholtz's inverse problem for the discrete calculus of variation in the Hamiltonian setting. Several applications are discussed.

  20. Super Hamiltonian structure of the even order SKP hierarchy without reduction

    International Nuclear Information System (INIS)

    Watanabe, Yoshihide

    1987-01-01

    The super Hamiltonian operator which is different from that of Manin and Radul is derived from the even order SKP hierarchy without reduction and in terms of the operator, the equation in the hierarchy is written in a Hamiltonian form. (orig.)

  1. From GCM energy kernels to Weyl-Wigner Hamiltonians: a particular mapping

    International Nuclear Information System (INIS)

    Galetti, D.

    1984-01-01

    A particular mapping is established which directly connects GCM energy kernels to Weyl-Wigner Hamiltonians, under the assumption of gaussian overlap kernel. As an application of this mapping scheme the collective Hamiltonians for some giant resonances are derived. (Author) [pt

  2. A progressive diagonalization scheme for the Rabi Hamiltonian

    International Nuclear Information System (INIS)

    Pan, Feng; Guan, Xin; Wang, Yin; Draayer, J P

    2010-01-01

    A diagonalization scheme for the Rabi Hamiltonian, which describes a qubit interacting with a single-mode radiation field via a dipole interaction, is proposed. It is shown that the Rabi Hamiltonian can be solved almost exactly using a progressive scheme that involves a finite set of one variable polynomial equations. The scheme is especially efficient for the lower part of the spectrum. Some low-lying energy levels of the model with several sets of parameters are calculated and compared to those provided by the recently proposed generalized rotating-wave approximation and a full matrix diagonalization.

  3. Divide and conquer approach to quantum Hamiltonian simulation

    Science.gov (United States)

    Hadfield, Stuart; Papageorgiou, Anargyros

    2018-04-01

    We show a divide and conquer approach for simulating quantum mechanical systems on quantum computers. We can obtain fast simulation algorithms using Hamiltonian structure. Considering a sum of Hamiltonians we split them into groups, simulate each group separately, and combine the partial results. Simulation is customized to take advantage of the properties of each group, and hence yield refined bounds to the overall simulation cost. We illustrate our results using the electronic structure problem of quantum chemistry, where we obtain significantly improved cost estimates under very mild assumptions.

  4. Lie transforms and their use in Hamiltonian perturbation theory

    International Nuclear Information System (INIS)

    Cary, J.R.

    1978-06-01

    A review is presented of the theory of Lie transforms as applied to Hamiltonian systems. We begin by presenting some general background on the Hamiltonian formalism and by introducing the operator notation for canonical transformations. We then derive the general theory of Lie transforms. We derive the formula for the new Hamiltonian when one uses a Lie transform to effect a canonical transformation, and we use Lie transforms to prove a very general version of Noether's theorem, or the symmetry-equals-invariant theorem. Next we use the general Lie transform theory to derive Deprit's perturbation theory. We illustrate this perturbation theory by application to two well-known problems in classical mechanics. Finally we present a chapter on conventions. There are many ways to develop Lie transforms. The last chapter explains the reasons for the choices made here

  5. A current value Hamiltonian Approach for Discrete time Optimal Control Problems arising in Economic Growth

    OpenAIRE

    Naz, Rehana

    2018-01-01

    Pontrygin-type maximum principle is extended for the present value Hamiltonian systems and current value Hamiltonian systems of nonlinear difference equations for uniform time step $h$. A new method termed as a discrete time current value Hamiltonian method is established for the construction of first integrals for current value Hamiltonian systems of ordinary difference equations arising in Economic growth theory.

  6. Simple model for deriving sdg interacting boson model Hamiltonians: 150Nd example

    Science.gov (United States)

    Devi, Y. D.; Kota, V. K. B.

    1993-07-01

    A simple and yet useful model for deriving sdg interacting boson model (IBM) Hamiltonians is to assume that single-boson energies derive from identical particle (pp and nn) interactions and proton, neutron single-particle energies, and that the two-body matrix elements for bosons derive from pn interaction, with an IBM-2 to IBM-1 projection of the resulting p-n sdg IBM Hamiltonian. The applicability of this model in generating sdg IBM Hamiltonians is demonstrated, using a single-j-shell Otsuka-Arima-Iachello mapping of the quadrupole and hexadecupole operators in proton and neutron spaces separately and constructing a quadrupole-quadrupole plus hexadecupole-hexadecupole Hamiltonian in the analysis of the spectra, B(E2)'s, and E4 strength distribution in the example of 150Nd.

  7. Simple model for deriving sdg interacting boson model Hamiltonians: 150Nd example

    International Nuclear Information System (INIS)

    Devi, Y.D.; Kota, V.K.B.

    1993-01-01

    A simple and yet useful model for deriving sdg interacting boson model (IBM) Hamiltonians is to assume that single-boson energies derive from identical particle (pp and nn) interactions and proton, neutron single-particle energies, and that the two-body matrix elements for bosons derive from pn interaction, with an IBM-2 to IBM-1 projection of the resulting p-n sdg IBM Hamiltonian. The applicability of this model in generating sdg IBM Hamiltonians is demonstrated, using a single-j-shell Otsuka-Arima-Iachello mapping of the quadrupole and hexadecupole operators in proton and neutron spaces separately and constructing a quadrupole-quadrupole plus hexadecupole-hexadecupole Hamiltonian in the analysis of the spectra, B(E2)'s, and E4 strength distribution in the example of 150 Nd

  8. Non-supersymmetric deformations of non-critical superstrings

    International Nuclear Information System (INIS)

    Itzhaki, Nissan; Kutasov, David; Seiberg, Nathan

    2005-01-01

    We study certain supersymmetry breaking deformations of linear dilaton backgrounds in different dimensions. In some cases, the deformed theory has bulk closed strings tachyons. In other cases there are no bulk tachyons, but there are localized tachyons. The real time condensation of these localized tachyons is described by an exactly solvable worldsheet CFT. We also find some stable, non-supersymmetric backgrounds

  9. Hamiltonian path integrals

    International Nuclear Information System (INIS)

    Prokhorov, L.V.

    1982-01-01

    Problems related to consideration of operator nonpermutability in Hamiltonian path integral (HPI) are considered in the review. Integrals are investigated using trajectories in configuration space (nonrelativistic quantum mechanics). Problems related to trajectory integrals in HPI phase space are discussed: the problem of operator nonpermutability consideration (extra terms problem) and corresponding equivalence rules; ambiguity of HPI usual recording; transition to curvilinear coordinates. Problem of quantization of dynamical systems with couplings has been studied. As in the case of canonical transformations, quantization of the systems with couplings of the first kind requires the consideration of extra terms

  10. Large-scale stochasticity in Hamiltonian systems

    International Nuclear Information System (INIS)

    Escande, D.F.

    1982-01-01

    Large scale stochasticity (L.S.S.) in Hamiltonian systems is defined on the paradigm Hamiltonian H(v,x,t) =v 2 /2-M cos x-P cos k(x-t) which describes the motion of one particle in two electrostatic waves. A renormalization transformation Tsub(r) is described which acts as a microscope that focusses on a given KAM (Kolmogorov-Arnold-Moser) torus in phase space. Though approximate, Tsub(r) yields the threshold of L.S.S. in H with an error of 5-10%. The universal behaviour of KAM tori is predicted: for instance the scale invariance of KAM tori and the critical exponent of the Lyapunov exponent of Cantori. The Fourier expansion of KAM tori is computed and several conjectures by L. Kadanoff and S. Shenker are proved. Chirikov's standard mapping for stochastic layers is derived in a simpler way and the width of the layers is computed. A simpler renormalization scheme for these layers is defined. A Mathieu equation for describing the stability of a discrete family of cycles is derived. When combined with Tsub(r), it allows to prove the link between KAM tori and nearby cycles, conjectured by J. Greene and, in particular, to compute the mean residue of a torus. The fractal diagrams defined by G. Schmidt are computed. A sketch of a methodology for computing the L.S.S. threshold in any two-degree-of-freedom Hamiltonian system is given. (Auth.)

  11. Redesign of the DFT/MRCI Hamiltonian

    Energy Technology Data Exchange (ETDEWEB)

    Lyskov, Igor; Kleinschmidt, Martin; Marian, Christel M., E-mail: Christel.Marian@hhu.de [Institute of Theoretical and Computational Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf (Germany)

    2016-01-21

    The combined density functional theory and multireference configuration interaction (DFT/MRCI) method of Grimme and Waletzke [J. Chem. Phys. 111, 5645 (1999)] is a well-established semi-empirical quantum chemical method for efficiently computing excited-state properties of organic molecules. As it turns out, the method fails to treat bi-chromophores owing to the strong dependence of the parameters on the excitation class. In this work, we present an alternative form of correcting the matrix elements of a MRCI Hamiltonian which is built from a Kohn-Sham set of orbitals. It is based on the idea of constructing individual energy shifts for each of the state functions of a configuration. The new parameterization is spin-invariant and incorporates less empirism compared to the original formulation. By utilizing damping techniques together with an algorithm of selecting important configurations for treating static electron correlation, the high computational efficiency has been preserved. The robustness of the original and redesigned Hamiltonians has been tested on experimentally known vertical excitation energies of organic molecules yielding similar statistics for the two parameterizations. Besides that, our new formulation is free from artificially low-lying doubly excited states, producing qualitatively correct and consistent results for excimers. The way of modifying matrix elements of the MRCI Hamiltonian presented here shall be considered as default choice when investigating photophysical processes of bi-chromophoric systems such as singlet fission or triplet-triplet upconversion.

  12. The multiphonon method as a dynamical approach to octupole correlations in deformed nuclei

    International Nuclear Information System (INIS)

    Piepenbring, R.

    1986-09-01

    The octupole correlations in nuclei are studied within the framework of the multiphonon method which is mainly the exact diagonalization of the total Hamiltonian in the space spanned by collective phonons. This treatment takes properly into account the Pauli principle. It is a microscopic approach based on a reflection symmetry of the potential. The spectroscopic properties of double even and odd-mass nuclei are nicely reproduced. The multiphonon method appears as a dynamical approach to octupole correlations in nuclei which can be compared to other models based on stable octupole deformation. 66 refs

  13. A Monte Carlo procedure for Hamiltonians with small nonlocal correction terms

    International Nuclear Information System (INIS)

    Mack, G.; Pinn, K.

    1986-03-01

    We consider lattice field theories whose Hamiltonians contain small nonlocal correction terms. We propose to do simulations for an auxiliarly polymer system with field dependent activities. If a nonlocal correction term to the Hamiltonian is small, it need to be evaluated only rarely. (orig.)

  14. Hamiltonian cycle problem and Markov chains

    CERN Document Server

    Borkar, Vivek S; Filar, Jerzy A; Nguyen, Giang T

    2014-01-01

    This book summarizes a line of research that maps certain classical problems of discrete mathematics and operations research - such as the Hamiltonian cycle and the Travelling Salesman problems - into convex domains where continuum analysis can be carried out.

  15. Variable Delay in port-Hamiltonian Telemanipulation

    NARCIS (Netherlands)

    Secchi, C; Stramigioli, Stefano; Fantuzzi, C.

    2006-01-01

    In several applications involving bilateral telemanipulation, master and slave act at different power scales. In this paper a strategy for passively dealing with variable communication delay in scaled port-Hamiltonian based telemanipulation over packet switched networks is proposed.

  16. Symplectic Integrators to Stochastic Hamiltonian Dynamical Systems Derived from Composition Methods

    Directory of Open Access Journals (Sweden)

    Tetsuya Misawa

    2010-01-01

    Full Text Available “Symplectic” schemes for stochastic Hamiltonian dynamical systems are formulated through “composition methods (or operator splitting methods” proposed by Misawa (2001. In the proposed methods, a symplectic map, which is given by the solution of a stochastic Hamiltonian system, is approximated by composition of the stochastic flows derived from simpler Hamiltonian vector fields. The global error orders of the numerical schemes derived from the stochastic composition methods are provided. To examine the superiority of the new schemes, some illustrative numerical simulations on the basis of the proposed schemes are carried out for a stochastic harmonic oscillator system.

  17. Calculation of the linear heat generation rates which violate the thermomechanical limit of plastic deformation of the fuel cladding in function of the burn up of a BWR fuel rod type

    International Nuclear Information System (INIS)

    Lucatero, M.A.; Hernandez L, H.

    2003-01-01

    The linear heat generation rates (LHGR) for a BWR type generic fuel rod, as function of the burnup that violate the thermomechanical limit of circumferential plastic deformation of the can (canning) in nominal operation in stationary state of the fuel rod are calculated. The evaluation of the LHGR in function of the burnt of the fuel, is carried out under the condition that the deformation values of the circumferential plastic deformation of the can exceeds in 0.1 the thermomechanical value operation limit of 1%. The results of the calculations are compared with the generation rates of linear operation heat in function of the burnt for this fuel rod type. The calculations are carried out with the FEMAXI-V and RODBURN codes. The results show that for exhibitions or burnt between 0 and 16,000 M Wd/tU a minimum margin of 160.8 W/cm exists among LHGR (439.6 W/cm) operation peak for the given fuel and maximum LHGR of the fuel (calculated) to reach 1.1% of circumferential plastic deformation of the can, for the peak factor of power of 1.40. For burnt of 20,000 MWd/tU and 60,000 MWd/tU exist a margin of 150.3 and 298.6 W/cm, respectively. (Author)

  18. Quantization of the Linearized Kepler Problem

    OpenAIRE

    Guerrero, Julio; Perez, Jose Miguel

    2003-01-01

    The linearized Kepler problem is considered, as obtained from the Kustaanheimo-Stiefel (K-S)transformation, both for negative and positive energies. The symmetry group for the Kepler problem turns out to be SU(2,2). For negative energies, the Hamiltonian of Kepler problem can be realized as the sum of the energies of four harmonic oscillator with the same frequency, with a certain constrain. For positive energies, it can be realized as the sum of the energies of four repulsive oscillator with...

  19. Symplectic and Hamiltonian structures of nonlinear evolution equations

    International Nuclear Information System (INIS)

    Dorfman, I.Y.

    1993-01-01

    A Hamiltonian structure on a finite-dimensional manifold can be introduced either by endowing it with a (pre)symplectic structure, or by describing the Poisson bracket with the help of a tensor with two upper indices named the Poisson structure. Under the assumption of nondegeneracy, the Poisson structure is nothing else than the inverse of the symplectic structure. Also in the degenerate case the distinction between the two approaches is almost insignificant, because both presymplectic and Poisson structures split into symplectic structures on leaves of appropriately chosen foliations. Hamiltonian structures that arise in the theory of evolution equations demonstrate something new in this respect: trying to operate in local terms, one is induced to develop both approaches independently. Hamiltonian operators, being the infinite-dimensional counterparts of Poisson structures, were the first to become the subject of investigations. A considerable period of time passed before the papers initiated research in the theory of symplectic operators, being the counterparts of presymplectic structures. In what follows, we focus on the main achievements in this field

  20. Multiple Time-Step Dual-Hamiltonian Hybrid Molecular Dynamics - Monte Carlo Canonical Propagation Algorithm.

    Science.gov (United States)

    Chen, Yunjie; Kale, Seyit; Weare, Jonathan; Dinner, Aaron R; Roux, Benoît

    2016-04-12

    A multiple time-step integrator based on a dual Hamiltonian and a hybrid method combining molecular dynamics (MD) and Monte Carlo (MC) is proposed to sample systems in the canonical ensemble. The Dual Hamiltonian Multiple Time-Step (DHMTS) algorithm is based on two similar Hamiltonians: a computationally expensive one that serves as a reference and a computationally inexpensive one to which the workload is shifted. The central assumption is that the difference between the two Hamiltonians is slowly varying. Earlier work has shown that such dual Hamiltonian multiple time-step schemes effectively precondition nonlinear differential equations for dynamics by reformulating them into a recursive root finding problem that can be solved by propagating a correction term through an internal loop, analogous to RESPA. Of special interest in the present context, a hybrid MD-MC version of the DHMTS algorithm is introduced to enforce detailed balance via a Metropolis acceptance criterion and ensure consistency with the Boltzmann distribution. The Metropolis criterion suppresses the discretization errors normally associated with the propagation according to the computationally inexpensive Hamiltonian, treating the discretization error as an external work. Illustrative tests are carried out to demonstrate the effectiveness of the method.

  1. Generalized non-linear Schroedinger hierarchy

    International Nuclear Information System (INIS)

    Aratyn, H.; Gomes, J.F.; Zimerman, A.H.

    1994-01-01

    The importance in studying the completely integrable models have became evident in the last years due to the fact that those models present an algebraic structure extremely rich, providing the natural scenery for solitons description. Those models can be described through non-linear differential equations, pseudo-linear operators (Lax formulation), or a matrix formulation. The integrability implies in the existence of a conservation law associated to each of degree of freedom. Each conserved charge Q i can be associated to a Hamiltonian, defining a time evolution related to to a time t i through the Hamilton equation ∂A/∂t i =[A,Q i ]. Particularly, for a two-dimensions field theory, infinite degree of freedom exist, and consequently infinite conservation laws describing the time evolution in space of infinite times. The Hamilton equation defines a hierarchy of models which present a infinite set of conservation laws. This paper studies the generalized non-linear Schroedinger hierarchy

  2. Classical mechanics Hamiltonian and Lagrangian formalism

    CERN Document Server

    Deriglazov, Alexei

    2016-01-01

    This account of the fundamentals of Hamiltonian mechanics also covers related topics such as integral invariants and the Noether theorem. With just the elementary mathematical methods used for exposition, the book is suitable for novices as well as graduates.

  3. Solving a Hamiltonian Path Problem with a bacterial computer

    Directory of Open Access Journals (Sweden)

    Treece Jessica

    2009-07-01

    Full Text Available Abstract Background The Hamiltonian Path Problem asks whether there is a route in a directed graph from a beginning node to an ending node, visiting each node exactly once. The Hamiltonian Path Problem is NP complete, achieving surprising computational complexity with modest increases in size. This challenge has inspired researchers to broaden the definition of a computer. DNA computers have been developed that solve NP complete problems. Bacterial computers can be programmed by constructing genetic circuits to execute an algorithm that is responsive to the environment and whose result can be observed. Each bacterium can examine a solution to a mathematical problem and billions of them can explore billions of possible solutions. Bacterial computers can be automated, made responsive to selection, and reproduce themselves so that more processing capacity is applied to problems over time. Results We programmed bacteria with a genetic circuit that enables them to evaluate all possible paths in a directed graph in order to find a Hamiltonian path. We encoded a three node directed graph as DNA segments that were autonomously shuffled randomly inside bacteria by a Hin/hixC recombination system we previously adapted from Salmonella typhimurium for use in Escherichia coli. We represented nodes in the graph as linked halves of two different genes encoding red or green fluorescent proteins. Bacterial populations displayed phenotypes that reflected random ordering of edges in the graph. Individual bacterial clones that found a Hamiltonian path reported their success by fluorescing both red and green, resulting in yellow colonies. We used DNA sequencing to verify that the yellow phenotype resulted from genotypes that represented Hamiltonian path solutions, demonstrating that our bacterial computer functioned as expected. Conclusion We successfully designed, constructed, and tested a bacterial computer capable of finding a Hamiltonian path in a three node

  4. Solving a Hamiltonian Path Problem with a bacterial computer

    Science.gov (United States)

    Baumgardner, Jordan; Acker, Karen; Adefuye, Oyinade; Crowley, Samuel Thomas; DeLoache, Will; Dickson, James O; Heard, Lane; Martens, Andrew T; Morton, Nickolaus; Ritter, Michelle; Shoecraft, Amber; Treece, Jessica; Unzicker, Matthew; Valencia, Amanda; Waters, Mike; Campbell, A Malcolm; Heyer, Laurie J; Poet, Jeffrey L; Eckdahl, Todd T

    2009-01-01

    Background The Hamiltonian Path Problem asks whether there is a route in a directed graph from a beginning node to an ending node, visiting each node exactly once. The Hamiltonian Path Problem is NP complete, achieving surprising computational complexity with modest increases in size. This challenge has inspired researchers to broaden the definition of a computer. DNA computers have been developed that solve NP complete problems. Bacterial computers can be programmed by constructing genetic circuits to execute an algorithm that is responsive to the environment and whose result can be observed. Each bacterium can examine a solution to a mathematical problem and billions of them can explore billions of possible solutions. Bacterial computers can be automated, made responsive to selection, and reproduce themselves so that more processing capacity is applied to problems over time. Results We programmed bacteria with a genetic circuit that enables them to evaluate all possible paths in a directed graph in order to find a Hamiltonian path. We encoded a three node directed graph as DNA segments that were autonomously shuffled randomly inside bacteria by a Hin/hixC recombination system we previously adapted from Salmonella typhimurium for use in Escherichia coli. We represented nodes in the graph as linked halves of two different genes encoding red or green fluorescent proteins. Bacterial populations displayed phenotypes that reflected random ordering of edges in the graph. Individual bacterial clones that found a Hamiltonian path reported their success by fluorescing both red and green, resulting in yellow colonies. We used DNA sequencing to verify that the yellow phenotype resulted from genotypes that represented Hamiltonian path solutions, demonstrating that our bacterial computer functioned as expected. Conclusion We successfully designed, constructed, and tested a bacterial computer capable of finding a Hamiltonian path in a three node directed graph. This proof

  5. General formalism of Hamiltonians for realizing a prescribed evolution of a qubit

    International Nuclear Information System (INIS)

    Tong, D.M.; Chen, J.-L.; Lai, C.H.; Oh, C.H.; Kwek, L.C.

    2003-01-01

    We investigate the inverse problem concerning the evolution of a qubit system, specifically we consider how one can establish the Hamiltonians that account for the evolution of a qubit along a prescribed path in the projected Hilbert space. For a given path, there are infinite Hamiltonians which can realize the same evolution. A general form of the Hamiltonians is constructed in which one may select the desired one for implementing a prescribed evolution. This scheme can be generalized to higher dimensional systems

  6. Multi-Hamiltonian structure of Lotka-Volterra and quantum Volterra models

    International Nuclear Information System (INIS)

    Cronstroem, C.; Noga, M.

    1995-01-01

    We consider evolution equations of the Lotka-Volterra type, and elucidate especially their formulation as canonical Hamiltonian systems. The general conditions under which these equations admit several conserved quantities (multi-Hamiltonians) are analysed. A special case, which is related to the Liouville model on a lattice, is considered in detail, both as a classical and as a quantum system. (orig.)

  7. On the time evolution operator for time-dependent quadratic Hamiltonians

    International Nuclear Information System (INIS)

    Fernandez, F.M.

    1989-01-01

    The Schroedinger equation with a time-dependent quadratic Hamiltonian is investigated. The time-evolution operator is written as a product of exponential operators determined by the Heisenberg equations of motion. This product operator is shown to be global in the occupation number representation when the Hamiltonian is Hermitian. The success of some physical applications of the product-form representation is explained

  8. Purely non-local Hamiltonian formalism, Kohno connections and ∨-systems

    International Nuclear Information System (INIS)

    Arsie, Alessandro; Lorenzoni, Paolo

    2014-01-01

    In this paper, we extend purely non-local Hamiltonian formalism to a class of Riemannian F-manifolds, without assumptions on the semisimplicity of the product ○ or on the flatness of the connection ∇. In the flat case, we show that the recurrence relations for the principal hierarchy can be re-interpreted using a local and purely non-local Hamiltonian operators and in this case they split into two Lenard-Magri chains, one involving the even terms, the other involving the odd terms. Furthermore, we give an elementary proof that the Kohno property and the ∨-system condition are equivalent under suitable assumptions and we show how to associate a purely non-local Hamiltonian structure to any ∨-system, including degenerate ones

  9. Spontaneous symmetry breaking and neutral stability in the noncanonical Hamiltonian formalism

    International Nuclear Information System (INIS)

    Morrison, P.J.; Eliezer, S.

    1985-10-01

    The noncanonical Hamiltonian formalism is based upon a generalization of the Poisson bracket, a particular form of which is possessed by continuous media fields. Associated with this generalization are special constants of motion called Casimirs. These are constants that can be viewed as being built into the phase space, for they are invariant for all Hamiltonians. Casimirs are important because when added to the Hamiltonian they yield an effective Hamiltonian that produces equilibrium states upon variation. The stability of these states can be ascertained by a second variation. Goldstone's theorem, in its usual context, determines zero eigenvalues of the mass matrix for a given vacuum state, the equilibrium with minimum energy. Here, since for fluids and plasmas the vacuum state is uninteresting, we examine symmetry breaking for general equilibria. Broken symmetries imply directions of neutral stability. Two examples are presented: the nonlinear Alfven wave of plasma physics and the Korteweg-de Vries soliton. 46 refs

  10. Hamiltonian formulation of the supermembrane

    International Nuclear Information System (INIS)

    Bergshoeff, E.; Sezgin, E.; Tanii, Y.

    1987-06-01

    The Hamiltonian formulation of the supermembrane theory in eleven dimensions is given. The covariant split of the first and second class constraints is exhibited, and their Dirac brackets are computed. Gauge conditions are imposed in such a way that the reparametrizations of the membrane with divergence free 2-vectors are unfixed. (author). 10 refs

  11. Hamiltonian thermodynamics of charged three-dimensional dilatonic black holes

    International Nuclear Information System (INIS)

    Dias, Goncalo A. S.; Lemos, Jose P. S.

    2008-01-01

    The action for a class of three-dimensional dilaton-gravity theories, with an electromagnetic Maxwell field and a cosmological constant, can be recast in a Brans-Dicke-Maxwell type action, with its free ω parameter. For a negative cosmological constant, these theories have static, electrically charged, and spherically symmetric black hole solutions. Those theories with well formulated asymptotics are studied through a Hamiltonian formalism, and their thermodynamical properties are found out. The theories studied are general relativity (ω→±∞), a dimensionally reduced cylindrical four-dimensional general relativity theory (ω=0), and a theory representing a class of theories (ω=-3), all with a Maxwell term. The Hamiltonian formalism is set up in three dimensions through foliations on the right region of the Carter-Penrose diagram, with the bifurcation 1-sphere as the left boundary, and anti-de Sitter infinity as the right boundary. The metric functions on the foliated hypersurfaces and the radial component of the vector potential one-form are the canonical coordinates. The Hamiltonian action is written, the Hamiltonian being a sum of constraints. One finds a new action which yields an unconstrained theory with two pairs of canonical coordinates (M,P M ;Q,P Q ), where M is the mass parameter, which for ω M is the conjugate momenta of M, Q is the charge parameter, and P Q is its conjugate momentum. The resulting Hamiltonian is a sum of boundary terms only. A quantization of the theory is performed. The Schroedinger evolution operator is constructed, the trace is taken, and the partition function of the grand canonical ensemble is obtained, where the chemical potential is the scalar electric field φ. Like the uncharged cases studied previously, the charged black hole entropies differ, in general, from the usual quarter of the horizon area due to the dilaton.

  12. Bohr Hamiltonian with an energy-dependent γ-unstable Coulomb-like potential

    Energy Technology Data Exchange (ETDEWEB)

    Budaca, R. [Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele (Romania)

    2016-10-15

    An exact analytical solution for the Bohr Hamiltonian with an energy-dependent Coulomb-like γ-unstable potential is presented. Due to the linear energy dependence of the potential's coupling constant, the corresponding spectrum in the asymptotic limit of the slope parameter resembles the spectral structure of the spherical vibrator, however with a different state degeneracy. The parameter free energy spectrum as well as the transition rates for this case are given in closed form and duly compared with those of the harmonic U(5) dynamical symmetry. The model wave functions are found to exhibit properties that can be associated to shape coexistence. A possible experimental realization of the model is found in few medium nuclei with a very low second 0{sup +} state known to exhibit competing prolate, oblate and spherical shapes. (orig.)

  13. Hamiltonian formulation of reduced magnetohydrodynamics

    International Nuclear Information System (INIS)

    Morrison, P.J.; Hazeltine, R.D.

    1983-07-01

    Reduced magnetohydrodynamics (RMHD) has become a principal tool for understanding nonlinear processes, including disruptions, in tokamak plasmas. Although analytical studies of RMHD turbulence have been useful, the model's impressive ability to simulate tokamak fluid behavior has been revealed primarily by numerical solution. The present work describes a new analytical approach, not restricted to turbulent regimes, based on Hamiltonian field theory. It is shown that the nonlinear (ideal) RMHD system, in both its high-beta and low-beta versions, can be expressed in Hanmiltonian form. Thus a Poisson bracket, [ , ], is constructed such that each RMHD field quantitity, xi/sub i/, evolves according to xi/sub i/ = [xi/sub i/,H], where H is the total field energy. The new formulation makes RMHD accessible to the methodology of Hamiltonian mechanics; it has lead, in particular, to the recognition of new RMHD invariants and even exact, nonlinear RMHD solutions. A canonical version of the Poisson bracket, which requires the introduction of additional fields, leads to a nonlinear variational principle for time-dependent RMHD

  14. Stability and amplitude ranges of two dimensional non-linear oscillations with periodical Hamiltonian applied to betatron oscillations in circular particle accelerators: Part 1 and Part 2

    Energy Technology Data Exchange (ETDEWEB)

    Hagedorn, R

    1957-03-07

    A mechanical system of two degrees of freedom is considered which can be described by a system of canonical differential equations. The Hamiltonian is assumed to be explicitly time-dependent with period 2. The aim is to bring this system by a sequence of canonical and periodical transformations into a form where the new Hamiltonian is constant and as simple as possible. The general theory is then brought to a stage where it becomes immediately applicable to given particular cases, particularly to circular particle accelerators. More general results are given on exciting strengths of different subresonance lines of equal order, on symmetry relations and on the one-dimensional case. An example is also given where the theory is overstressed and its predictions become wrong.

  15. Quantum shape phase transitions from spherical to deformed for Bose-Fermi systems: the effect of the odd particle around the critical point

    Directory of Open Access Journals (Sweden)

    Böyükata M.

    2014-03-01

    Full Text Available Quantum phase transitions in odd-nuclei are investigated within the framework of the interacting boson-fermion model with a description based on the concept of intrinsic states. We consider the case of a single j=9/2 odd-particle coupled to an even-even boson core that performs a transition from spherical to deformed prolate and to deformed gamma-unstable shapes varying a control parameter in the boson Hamiltonian. The effect of the coupling of the odd particle to this core is discussed along the shape transition and, in particular, at the critical point.

  16. Conservative, unconditionally stable discretization methods for Hamiltonian equations, applied to wave motion in lattice equations modeling protein molecules

    Science.gov (United States)

    LeMesurier, Brenton

    2012-01-01

    A new approach is described for generating exactly energy-momentum conserving time discretizations for a wide class of Hamiltonian systems of DEs with quadratic momenta, including mechanical systems with central forces; it is well-suited in particular to the large systems that arise in both spatial discretizations of nonlinear wave equations and lattice equations such as the Davydov System modeling energetic pulse propagation in protein molecules. The method is unconditionally stable, making it well-suited to equations of broadly “Discrete NLS form”, including many arising in nonlinear optics. Key features of the resulting discretizations are exact conservation of both the Hamiltonian and quadratic conserved quantities related to continuous linear symmetries, preservation of time reversal symmetry, unconditional stability, and respecting the linearity of certain terms. The last feature allows a simple, efficient iterative solution of the resulting nonlinear algebraic systems that retain unconditional stability, avoiding the need for full Newton-type solvers. One distinction from earlier work on conservative discretizations is a new and more straightforward nearly canonical procedure for constructing the discretizations, based on a “discrete gradient calculus with product rule” that mimics the essential properties of partial derivatives. This numerical method is then used to study the Davydov system, revealing that previously conjectured continuum limit approximations by NLS do not hold, but that sech-like pulses related to NLS solitons can nevertheless sometimes arise.

  17. Functional integral and effective Hamiltonian t-J-V model of strongly correlated electron system

    International Nuclear Information System (INIS)

    Belinicher, V.I.; Chertkov, M.V.

    1990-09-01

    The functional integral representation for the generating functional of t-J-V model is obtained. In the case close to half filling this functional integral representation reduces the conventional Hamiltonian of t-J-V model to the Hamiltonian of the system containing holes and spins 1/2 at each lattice size. This effective Hamiltonian coincides with that one obtained one of the authors by different method. This Hamiltonian and its dynamical variables can be used for description of different magnetic phases of t-J-V model. (author). 16 refs

  18. Necessary conditions for super-integrability of Hamiltonian systems

    Energy Technology Data Exchange (ETDEWEB)

    Maciejewski, Andrzej J. [Institute of Astronomy, University of Zielona Gora, Podgorna 50, PL-65-246 Zielona Gora (Poland)], E-mail: maciejka@astro.ia.uz.zgora.pl; Przybylska, Maria [Torun Centre for Astronomy, N. Copernicus University, Gagarina 11, PL-87-100 Torun (Poland)], E-mail: maria.przybylska@astri.uni.torun.pl; Yoshida, Haruo [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, 181-8588 Tokyo (Japan)], E-mail: h.yoshida@nao.ac.jp

    2008-08-18

    We formulate a general theorem which gives a necessary condition for the maximal super-integrability of a Hamiltonian system. This condition is expressed in terms of properties of the differential Galois group of the variational equations along a particular solution of the considered system. An application of this general theorem to natural Hamiltonian systems of n degrees of freedom with a homogeneous potential gives easily computable and effective necessary conditions for the super-integrability. To illustrate an application of the formulated theorems, we investigate: three known families of integrable potentials, and the three body problem on a line.

  19. The intrinsic stochasticity of near-integrable Hamiltonian systems

    Energy Technology Data Exchange (ETDEWEB)

    Krlin, L [Ceskoslovenska Akademie Ved, Prague (Czechoslovakia). Ustav Fyziky Plazmatu

    1989-09-01

    Under certain conditions, the dynamics of near-integrable Hamiltonian systems appears to be stochastic. This stochasticity (intrinsic stochasticity, or deterministic chaos) is closely related to the Kolmogorov-Arnold-Moser (KAM) theorem of the stability of near-integrable multiperiodic Hamiltonian systems. The effect of the intrinsic stochasticity attracts still growing attention both in theory and in various applications in contemporary physics. The paper discusses the relation of the intrinsic stochasticity to the modern ergodic theory and to the KAM theorem, and describes some numerical experiments on related astrophysical and high-temperature plasma problems. Some open questions are mentioned in conclusion. (author).

  20. Hamiltonian formulation of QCD in the Schwinger gauge

    International Nuclear Information System (INIS)

    Schutte, D.

    1989-01-01

    The structure of the Hamiltonian related to a regularized non-Abelian gauge field theory is discussed in the light of different choices for gauge-invariant wave functionals (loop space, Coulomb, axial, Schwinger gauge). Arguments are given for the suggestion that the Schwinger gauge offers a specially suited framework for the computation of bound-state (hadron) properties. The most important reasons are the manifest rotation invariance, the lack of a Gribov horizon (giving standard many-body techniques a better chance), and the fact that a regularization analogous to the lattice regularization is easily implementable. Some details of the Schwinger-gauge Hamiltonian theory are discussed

  1. The importance of non-linearities in modern proton synchrotrons

    International Nuclear Information System (INIS)

    Wilson, E.J.N.

    1977-01-01

    The paper outlines the physics and mathematics of non-linear field errors in the quide fields of accelerators, with particular reference to large accelerators such as the SPS. These non-linearities give rise to closed orbital distortions and non-linear resonances or stopbands. Both of these effects are briefly discussed and the use of resonances for slow beam extraction is also described. Another problem considered is that of chromaticity of the particle beam. The use of sextupoles to correct chromaticity and the Landau damping of beam instabilities using octupoles are also discussed. In the final section the application of Hamiltonian mechanics to non-linearities is demonstrated. The author concludes that the effect of non-linearities on particle dynamics may place a more severe limit on intensity and storage time in large rings than any other effect in transverse phase space. (B.D.)

  2. Static response of deformable microchannels

    Science.gov (United States)

    Christov, Ivan C.; Sidhore, Tanmay C.

    2017-11-01

    Microfluidic channels manufactured from PDMS are a key component of lab-on-a-chip devices. Experimentally, rectangular microchannels are found to deform into a non-rectangular cross-section due to fluid-structure interactions. Deformation affects the flow profile, which results in a nonlinear relationship between the volumetric flow rate and the pressure drop. We develop a framework, within the lubrication approximation (l >> w >> h), to self-consistently derive flow rate-pressure drop relations. Emphasis is placed on handling different types of elastic response: from pure plate-bending, to half-space deformation, to membrane stretching. The ``simplest'' model (Stokes flow in a 3D rectangular channel capped with a linearly elastic Kirchhoff-Love plate) agrees well with recent experiments. We also simulate the static response of such microfluidic channels under laminar flow conditions using ANSYSWorkbench. Simulations are calibrated using experimental flow rate-pressure drop data from the literature. The simulations provide highly resolved deformation profiles, which are difficult to measure experimentally. By comparing simulations, experiments and our theoretical models, we show good agreement in many flow/deformation regimes, without any fitting parameters.

  3. Hamiltonian dynamics on the symplectic extended phase space for autonomous and non-autonomous systems

    International Nuclear Information System (INIS)

    Struckmeier, Juergen

    2005-01-01

    We will present a consistent description of Hamiltonian dynamics on the 'symplectic extended phase space' that is analogous to that of a time-independent Hamiltonian system on the conventional symplectic phase space. The extended Hamiltonian H 1 and the pertaining extended symplectic structure that establish the proper canonical extension of a conventional Hamiltonian H will be derived from a generalized formulation of Hamilton's variational principle. The extended canonical transformation theory then naturally permits transformations that also map the time scales of the original and destination system, while preserving the extended Hamiltonian H 1 , and hence the form of the canonical equations derived from H 1 . The Lorentz transformation, as well as time scaling transformations in celestial mechanics, will be shown to represent particular canonical transformations in the symplectic extended phase space. Furthermore, the generalized canonical transformation approach allows us to directly map explicitly time-dependent Hamiltonians into time-independent ones. An 'extended' generating function that defines transformations of this kind will be presented for the time-dependent damped harmonic oscillator and for a general class of explicitly time-dependent potentials. In the appendix, we will re-establish the proper form of the extended Hamiltonian H 1 by means of a Legendre transformation of the extended Lagrangian L 1

  4. Discrete variable representation for singular Hamiltonians

    DEFF Research Database (Denmark)

    Schneider, B. I.; Nygaard, Nicolai

    2004-01-01

    We discuss the application of the discrete variable representation (DVR) to Schrodinger problems which involve singular Hamiltonians. Unlike recent authors who invoke transformations to rid the eigenvalue equation of singularities at the cost of added complexity, we show that an approach based...

  5. Hamiltonian reduction of Kac-Moody algebras

    International Nuclear Information System (INIS)

    Kimura, Kazuhiro

    1991-01-01

    Feigin-Fucks construction provides us methods to treat rational conformal theories in terms of free fields. This formulation enables us to describe partition functions and correlation functions in the Fock space of free fields. There are several attempt extending to supersymmetric theories. In this report authors present an explicit calculation of the Hamiltonian reduction based on the free field realization. In spite of the results being well-known, the relations can be clearly understood in the language of bosons. Authors perform the hamiltonian reduction by imposing a constraint with appropriate gauge transformations which preserve the constraint. This approaches enables us to gives the geometric interpretation of super Virasoro algebras and relations of the super gravity. In addition, author discuss the properties of quantum groups by using the explicit form of the group element. It is also interesting to extend to super Kac-Moody algebras. (M.N.)

  6. Hamiltonian Dynamics of Doubly-Foliable Space-Times

    Directory of Open Access Journals (Sweden)

    Cecília Gergely

    2018-01-01

    Full Text Available The 2 + 1 + 1 decomposition of space-time is useful in monitoring the temporal evolution of gravitational perturbations/waves in space-times with a spatial direction singled-out by symmetries. Such an approach based on a perpendicular double foliation has been employed in the framework of dark matter and dark energy-motivated scalar-tensor gravitational theories for the discussion of the odd sector perturbations of spherically-symmetric gravity. For the even sector, however, the perpendicularity has to be suppressed in order to allow for suitable gauge freedom, recovering the 10th metric variable. The 2 + 1 + 1 decomposition of the Einstein–Hilbert action leads to the identification of the canonical pairs, the Hamiltonian and momentum constraints. Hamiltonian dynamics is then derived via Poisson brackets.

  7. Effective Hamiltonian for high Tc Cu oxides

    International Nuclear Information System (INIS)

    Fukuyama, H.; Matsukawa, H.

    1989-01-01

    Effective Hamiltonian has been derived for CuO 2 layers in the presence of extra holes doped mainly into O-sites by taking both on-site and intersite Coulomb interaction into account. A special case with a single hole has been examined in detail. It is found that there exist various types of bound states, singlet and triplet with different spatial symmetry, below the hole bank continuum. The spatial extent of the Zhang-Rice singlet state, which is most stabilized, and the effective transfer integral between these singlet states are seen to be very sensitive to the relative magnitude of the direct and the indirect transfer integrals between O-sites. Effective Hamiltonian for the case of electron doping has also been derived

  8. Boundary Hamiltonian Theory for Gapped Topological Orders

    Science.gov (United States)

    Hu, Yuting; Wan, Yidun; Wu, Yong-Shi

    2017-06-01

    We report our systematic construction of the lattice Hamiltonian model of topological orders on open surfaces, with explicit boundary terms. We do this mainly for the Levin-Wen string-net model. The full Hamiltonian in our approach yields a topologically protected, gapped energy spectrum, with the corresponding wave functions robust under topology-preserving transformations of the lattice of the system. We explicitly present the wavefunctions of the ground states and boundary elementary excitations. The creation and hopping operators of boundary quasi-particles are constructed. It is found that given a bulk topological order, the gapped boundary conditions are classified by Frobenius algebras in its input data. Emergent topological properties of the ground states and boundary excitations are characterized by (bi-) modules over Frobenius algebras.

  9. Can model Hamiltonians describe the electron–electron interaction in π-conjugated systems?: PAH and graphene

    International Nuclear Information System (INIS)

    Chiappe, G; Louis, E; San-Fabián, E; Vergés, J A

    2015-01-01

    Model Hamiltonians have been, and still are, a valuable tool for investigating the electronic structure of systems for which mean field theories work poorly. This review will concentrate on the application of Pariser–Parr–Pople (PPP) and Hubbard Hamiltonians to investigate some relevant properties of polycyclic aromatic hydrocarbons (PAH) and graphene. When presenting these two Hamiltonians we will resort to second quantisation which, although not the way chosen in its original proposal of the former, is much clearer. We will not attempt to be comprehensive, but rather our objective will be to try to provide the reader with information on what kinds of problems they will encounter and what tools they will need to solve them. One of the key issues concerning model Hamiltonians that will be treated in detail is the choice of model parameters. Although model Hamiltonians reduce the complexity of the original Hamiltonian, they cannot be solved in most cases exactly. So, we shall first consider the Hartree–Fock approximation, still the only tool for handling large systems, besides density functional theory (DFT) approaches. We proceed by discussing to what extent one may exactly solve model Hamiltonians and the Lanczos approach. We shall describe the configuration interaction (CI) method, a common technology in quantum chemistry but one rarely used to solve model Hamiltonians. In particular, we propose a variant of the Lanczos method, inspired by CI, that has the novelty of using as the seed of the Lanczos process a mean field (Hartree–Fock) determinant (the method will be named LCI). Two questions of interest related to model Hamiltonians will be discussed: (i) when including long-range interactions, how crucial is including in the Hamiltonian the electronic charge that compensates ion charges? (ii) Is it possible to reduce a Hamiltonian incorporating Coulomb interactions (PPP) to an ‘effective’ Hamiltonian including only on-site interactions (Hubbard)? The

  10. Hamiltonian approach to second order gauge invariant cosmological perturbations

    Science.gov (United States)

    Domènech, Guillem; Sasaki, Misao

    2018-01-01

    In view of growing interest in tensor modes and their possible detection, we clarify the definition of tensor modes up to 2nd order in perturbation theory within the Hamiltonian formalism. Like in gauge theory, in cosmology the Hamiltonian is a suitable and consistent approach to reduce the gauge degrees of freedom. In this paper we employ the Faddeev-Jackiw method of Hamiltonian reduction. An appropriate set of gauge invariant variables that describe the dynamical degrees of freedom may be obtained by suitable canonical transformations in the phase space. We derive a set of gauge invariant variables up to 2nd order in perturbation expansion and for the first time we reduce the 3rd order action without adding gauge fixing terms. In particular, we are able to show the relation between the uniform-ϕ and Newtonian slicings, and study the difference in the definition of tensor modes in these two slicings.

  11. Transparency in port-Hamiltonian based telemanipulation

    NARCIS (Netherlands)

    Secchi, C; Stramigioli, Stefano; Fantuzzi, C.

    2005-01-01

    After stability, transparency is the major issue in the design of a telemanipulation system. In this paper we exploit a behavioral approach in order to provide an index for the evaluation of transparency in port-Hamiltonian based teleoperators. Furthermore we provide a transparency analysis of

  12. Transparency in Port-Hamiltonian-Based Telemanipulation

    NARCIS (Netherlands)

    Secchi, Cristian; Stramigioli, Stefano; Fantuzzi, Cesare

    After stability, transparency is the major issue in the design of a telemanipulation system. In this paper, we exploit the behavioral approach in order to provide an index for the evaluation of transparency in port-Hamiltonian-based teleoperators. Furthermore, we provide a transparency analysis of

  13. Discrete variational Hamiltonian mechanics

    International Nuclear Information System (INIS)

    Lall, S; West, M

    2006-01-01

    The main contribution of this paper is to present a canonical choice of a Hamiltonian theory corresponding to the theory of discrete Lagrangian mechanics. We make use of Lagrange duality and follow a path parallel to that used for construction of the Pontryagin principle in optimal control theory. We use duality results regarding sensitivity and separability to show the relationship between generating functions and symplectic integrators. We also discuss connections to optimal control theory and numerical algorithms

  14. A novel scheme for Liouville's equation with a discontinuous Hamiltonian and applications to geometrical optics

    NARCIS (Netherlands)

    Lith, van B.S.; Thije Boonkkamp, ten J.H.M.; IJzerman, W.L.; Tukker, T.W.

    2015-01-01

    We compute numerical solutions of Liouville's equation with a discontinuous Hamiltonian. We assume that the underlying Hamiltonian system has a well-defined behaviour even when the Hamiltonian is discontinuous. In the case of geometrical optics such a discontinuity yields the familiar Snell's law or

  15. A novel scheme for Liouville's equation with a discontinuous Hamiltonian and applications to geometrical optics

    NARCIS (Netherlands)

    van Lith, B.S.; ten Thije Boonkkamp, J.H.M.; IJzerman, W.L.; Tukker, T.W.

    A novel scheme is developed that computes numerical solutions of Liouville’s equation with a discontinuous Hamiltonian. It is assumed that the underlying Hamiltonian system has well-defined behaviour even when the Hamiltonian is discontinuous. In the case of geometrical optics such a discontinuity

  16. Jaynes-Cummings model and the deformed-oscillator algebra

    International Nuclear Information System (INIS)

    Crnugelj, J.; Martinis, M.; Mikuta-Martinis, V.

    1994-01-01

    We study the time evolution of the deformed Jaynes-Cummings model (DJCM). It is shown that the standard JCM and its recent non-linear generalizations involving the intensity-dependent coupling and/or the multiphoton coupling are only particular cases of the DJCM. The time evolution of the mean phonon number and the population inversion are evaluated. A special case of the q-deformed JCM is analyzed explicitly. The long time quasi-periodic revival effects of the q-deformed JCM are observed for q∼1 and an initially large mean photon number. For other values of the deformation parameter q we observe chaotic-like behaviour of the population inversion. Photons are assumed to be initially in the deformed coherent state. ((orig.))

  17. Symmetry-adaptation and selection rules for effective crystal field Hamiltonians

    International Nuclear Information System (INIS)

    Tuszynski, J.A.

    1986-01-01

    The intention of this paper is to systematically derive an effective Hamiltonian in the presence of crystal fields in such a way as to incorporate relativistic effects and higher order perturbation corrections including configuration mixing. This Hamiltonian will then be conveniently represented as a symmetry-adapted series of one- and two-body double tensor operators whose matrix elements will be analyzed for selection rules. 16 references, 4 tables

  18. Variational and penalization methods for studying connecting orbits of Hamiltonian systems

    Directory of Open Access Journals (Sweden)

    Chao-Nien Chen

    2000-08-01

    Full Text Available In this article, we consider a class of second order Hamiltonian systems that possess infinite or finite number of equilibria. Variational arguments will be used to study the existence of connecting orbits joining pairs of equilibria. Applying penalization methods, we obtain various patterns for multibump homoclinics and heteroclinics of Hamiltonian systems.

  19. A geometric Hamiltonian description of composite quantum systems and quantum entanglement

    Science.gov (United States)

    Pastorello, Davide

    2015-05-01

    Finite-dimensional Quantum Mechanics can be geometrically formulated as a proper classical-like Hamiltonian theory in a projective Hilbert space. The description of composite quantum systems within the geometric Hamiltonian framework is discussed in this paper. As summarized in the first part of this work, in the Hamiltonian formulation the phase space of a quantum system is the Kähler manifold given by the complex projective space P(H) of the Hilbert space H of the considered quantum theory. However the phase space of a bipartite system must be P(H1 ⊗ H2) and not simply P(H1) × P(H2) as suggested by the analogy with Classical Mechanics. A part of this paper is devoted to manage this problem. In the second part of the work, a definition of quantum entanglement and a proposal of entanglement measure are given in terms of a geometrical point of view (a rather studied topic in recent literature). Finally two known separability criteria are implemented in the Hamiltonian formalism.

  20. Construction of Vibronic Diabatic Hamiltonian for Excited-State Electron and Energy Transfer Processes.

    Science.gov (United States)

    Xie, Yu; Jiang, Shengshi; Zheng, Jie; Lan, Zhenggang

    2017-12-21

    Photoinduced excited-state electron and energy transfer processes are crucial in biological photoharvesting systems and organic photovoltaic devices. We discuss the construction of a diabatic vibronic Hamiltonian for the proper treatment of these processes involving the projection approach acting on both electronic wave functions and vibrational modes. In the electronic part, the wave function projection approach is used to construct the diabatic Hamiltonian in which both local excited states and charge-transfer states are included on the same footing. For the vibrational degrees of freedom, the vibronic couplings in the diabatic Hamiltonian are obtained in the basis of the pseudonormal modes localized on each monomer site by applying delocalized-to-localized mode projection. This systematic approach allows us to construct the vibronic diabatic Hamiltonian in molecular aggregates.

  1. Phase transition in the non-degenerate Hubbard Hamiltonian

    International Nuclear Information System (INIS)

    Chaves, C.M.; Lederer, P.; Gomes, A.A.

    1976-01-01

    Phase transition in the isotropic non-degenerate Hubbard Hamiltonian within the renormalization group techniques, using the epsilon = 4 - d expansion to first order in epsilon, is studied. The functional obtained from the Hubbard Hamiltonian displays full rotation symmetry and describes two coupled fields: a vector spin field, with n components and a non-soft scalar charge field. The possibility of tricritical behavior then emerges. The effects of simple constraints imposed on the charge field is considered. The relevance of the coupling between the fields in producing Fisher renormalization of the critical exponents is discussed. The possible singularities introduced in the charge-charge correlation function by the coupling are also discussed

  2. Floquet-Green function formalism for harmonically driven Hamiltonians

    International Nuclear Information System (INIS)

    Martinez, D F

    2003-01-01

    A method is proposed for the calculation of the Floquet-Green function of a general Hamiltonian with harmonic time dependence. We use matrix continued fractions to derive an expression for the 'dynamical effective potential' that can be used to calculate the Floquet-Green function of the system. We demonstrate the formalism for the simple case of a space-periodic (in the tight-binding approximation) Hamiltonian with a defect whose on-site energy changes harmonically with time. We study the local density of states for this system and the behaviour of the localized states as a function of the different parameters that characterize the system

  3. Passivation controller design for turbo-generators based on generalised Hamiltonian system theory

    NARCIS (Netherlands)

    Cao, M.; Shen, T.L.; Song, Y.H.

    2002-01-01

    A method of pre-feedback to formulate the generalised forced Hamiltonian system model for speed governor control systems is proposed. Furthermore, passivation controllers are designed based on the scheme of Hamiltonian structure for single machne infinite bus and multimachine power systems. In

  4. Lagrangian and Hamiltonian Formulation of Transmission Line Systems with Boundary Energy Flow

    NARCIS (Netherlands)

    Jeltsema, Dimitri; Schaft, Arjan J. van der

    The classical Lagrangian and Hamiltonian formulation of an electrical transmission line is reviewed and extended to allow for varying boundary conditions, The method is based on the definition of an infinite-dimensional analogue of the affine Lagrangian and Hamiltonian input-output systems

  5. An integrable Hamiltonian hierarchy and its constrained flows with generalized Hamiltonian regular representations, as well as its expanding integrable system

    International Nuclear Information System (INIS)

    Zhang Yufeng

    2003-01-01

    A new subalgebra of loop algebra A-tilde 2 is first constructed. It follows that an isospectral problem is established. Using Tu-pattern gives rise to a new integrable hierarchy, which possesses bi-Hamiltonian structure. As its reduction cases, the well-known standard Schrodinger equation and MKdV equation are presented, respectively. Furthermore, by making use of bi-symmetry constraints, generalized Hamiltonian regular representations for the hierarchy are obtained. At last, we obtain an expanding integrable system of this hierarchy by applying a scalar transformation between two isospectral problems and constructing a five-dimensional loop algebra G-tilde. In particular, the expanding integrable models of Schrodinger equation and MKdV equation are presented, respectively

  6. Hamiltonian structure of gravitational field theory

    International Nuclear Information System (INIS)

    Rayski, J.

    1992-01-01

    Hamiltonian generalizations of Einstein's theory of gravitation introducing a laminar structure of spacetime are discussed. The concepts of general relativity and of quasi-inertial coordinate systems are extended beyond their traditional scope. Not only the metric, but also the coordinate system, if quantized, undergoes quantum fluctuations

  7. Adaptive control of port-Hamiltonian systems

    NARCIS (Netherlands)

    Dirksz, D.A.; Scherpen, J.M.A.; Edelmayer, András

    2010-01-01

    In this paper an adaptive control scheme is presented for general port-Hamiltonian systems. Adaptive control is used to compensate for control errors that are caused by unknown or uncertain parameter values of a system. The adaptive control is also combined with canonical transformation theory for

  8. Port-Hamiltonian Systems on Open Graphs

    NARCIS (Netherlands)

    Schaft, A.J. van der; Maschke, B.M.

    2010-01-01

    In this talk we discuss how to define in an intrinsic manner port-Hamiltonian dynamics on open graphs. Open graphs are graphs where some of the vertices are boundary vertices (terminals), which allow interconnection with other systems. We show that a directed graph carries two natural Dirac

  9. Partial quantization of Lagrangian-Hamiltonian systems

    International Nuclear Information System (INIS)

    Amaral, C.M. do; Soares Filho, P.C.

    1979-05-01

    A classical variational principle is constructed in the Weiss form, for dynamical systems with support spaces of the configuration-phase kind. This extended principle rules the dynamics of classical systems, partially Hamiltonian, in interaction with Lagrangean parameterized subsidiary dynamics. The variational family of equations obtained, consists of an equation of the Hamilton-Jacobi type, coupled to a family of differential equations of the Euler-Lagrange form. The basic dynamical function appearing in the equations is a function of the Routh kind. By means of an ansatz induced by the variationally obtained family, a generalized set of equation, is proposed constituted by a wave equation of Schroedinger type, coupled to a family of equations formaly analog to those Euler-Lagrange equations. A basic operator of Routh type appears in our generalized set of equations. This operator describes the interaction between a quantized Hamiltonian dynamics, with a parameterized classical Lagrangean dynamics in semi-classical closed models. (author) [pt

  10. Non-Linear Rheological Properties and Neutron Scattering Investigation on Dilute Ring-Linear Blends

    DEFF Research Database (Denmark)

    Pyckhout-Hintzen, W.; Bras, A.R.; Wischnewski, A.

    in a filament stretching rheometer, followed by quenching, strong anisotropic scattering patterns were obtained which were described by affinely deformed rings which function as giant, polymeric chemical crosslinks or sliplinks and more or less isotropic topological contributions from the entangling...... with interpenetrating linear chains. At the same time the non-linear rheological and mechanical data fit to a non-affine slip-tube model as for moderately crosslinked networks and to interchain pressure models or a modified non-linear Doi-Edwards description for the observed strain hardening during the extensional...

  11. Linear and non-linear amplification of high-mode perturbations at the ablation front in HiPER targets

    Energy Technology Data Exchange (ETDEWEB)

    Olazabal-Loume, M; Breil, J; Hallo, L; Ribeyre, X [CELIA, UMR 5107 Universite Bordeaux 1-CNRS-CEA, 351 cours de la Liberation, 33405 Talence (France); Sanz, J, E-mail: olazabal@celia.u-bordeaux1.f [ETSI Aeronauticos, Universidad Politecnica de Madrid, Madrid 28040 (Spain)

    2011-01-15

    The linear and non-linear sensitivity of the 180 kJ baseline HiPER target to high-mode perturbations, i.e. surface roughness, is addressed using two-dimensional simulations and a complementary analysis by linear and non-linear ablative Rayleigh-Taylor models. Simulations provide an assessment of an early non-linear stage leading to a significant deformation of the ablation surface for modes of maximum linear growth factor. A design using a picket prepulse evidences an improvement in the target stability inducing a delay of the non-linear behavior. Perturbation evolution and shape, evidenced by simulations of the non-linear stage, are analyzed with existing self-consistent non-linear theory.

  12. Deformations of vector-scalar models

    Science.gov (United States)

    Barnich, Glenn; Boulanger, Nicolas; Henneaux, Marc; Julia, Bernard; Lekeu, Victor; Ranjbar, Arash

    2018-02-01

    Abelian vector fields non-minimally coupled to uncharged scalar fields arise in many contexts. We investigate here through algebraic methods their consistent deformations ("gaugings"), i.e., the deformations that preserve the number (but not necessarily the form or the algebra) of the gauge symmetries. Infinitesimal consistent deformations are given by the BRST cohomology classes at ghost number zero. We parametrize explicitly these classes in terms of various types of global symmetries and corresponding Noether currents through the characteristic cohomology related to antifields and equations of motion. The analysis applies to all ghost numbers and not just ghost number zero. We also provide a systematic discussion of the linear and quadratic constraints on these parameters that follow from higher-order consistency. Our work is relevant to the gaugings of extended supergravities.

  13. Problems with the definition of renormalized Hamiltonians for momentum-space renormalization transformations

    NARCIS (Netherlands)

    Enter, Aernout C.D. van; Fernández, Roberto

    For classical lattice systems with finite (Ising) spins, we show that the implementation of momentum-space renormalization at the level of Hamiltonians runs into the same type of difficulties as found for real-space transformations: Renormalized Hamiltonians are ill-defined in certain regions of the

  14. Blocking Radial Diffusion in a Double-Waved Hamiltonian Model

    International Nuclear Information System (INIS)

    Martins, Caroline G L; De Carvalho, R Egydio; Marcus, F A; Caldas, I L

    2011-01-01

    A non-twist Hamiltonian system perturbed by two waves with particular wave numbers can present Robust Tori, barriers created by the vanishing of the perturbing Hamiltonian at some defined positions. When Robust Tori exist, any trajectory in phase space passing close to them is blocked by emergent invariant curves that prevent the chaotic transport. We analyze the breaking up of the RT as well the transport dependence on the wave numbers and on the wave amplitudes. Moreover, we report the chaotic web formation in the phase space and how this pattern influences the transport.

  15. Some sufficient conditions for Hamiltonian property in terms of ...

    Indian Academy of Sciences (India)

    [1, D], or Wf (G) ≥ f (1). 2 n2 + [f(2) − 3. 2 f(1)]n − 2[f(2) − f(1)] for a monotonically decreasing function f(x) on x ∈ [1, D], then G is Hamiltonian, unless G ∼= K∗ n or K2∨3K1. Proof. Assume that G is not a Hamiltonian graph with degree sequence (d1,d2,...,dn), where d1 ≤ d2 ≤ ··· ≤ dn and n ≥ 3. By Lemma 1, there is a ...

  16. Noether symmetries and integrability in time-dependent Hamiltonian mechanics

    Directory of Open Access Journals (Sweden)

    Jovanović Božidar

    2016-01-01

    Full Text Available We consider Noether symmetries within Hamiltonian setting as transformations that preserve Poincaré-Cartan form, i.e., as symmetries of characteristic line bundles of nondegenerate 1-forms. In the case when the Poincaré-Cartan form is contact, the explicit expression for the symmetries in the inverse Noether theorem is given. As examples, we consider natural mechanical systems, in particular the Kepler problem. Finally, we prove a variant of the theorem on complete (non-commutative integrability in terms of Noether symmetries of time-dependent Hamiltonian systems.

  17. Constraints and Hamiltonian in light-front quantized field theory

    International Nuclear Information System (INIS)

    Srivastava, P.P.

    1993-01-01

    Self-consistent hamiltonian formulation of scalar theory on the null plane is constructed and quantized following the Dirac procedure. The theory contains also constraint equations which would give, if solved, to a nonlocal Hamiltonian. In contrast to the equal-time formulation we obtain a different description of the spontaneous symmetry breaking in the continuum and the symmetry generators are found to annihilate the light-front vacuum. Two examples are given where the procedure cannot be applied self-consistently. The corresponding theories are known to be ill-defined from the equal-time quantization. (author)

  18. The mathematics of a quantum Hamiltonian computing half adder Boolean logic gate

    International Nuclear Information System (INIS)

    Dridi, G; Julien, R; Hliwa, M; Joachim, C

    2015-01-01

    The mathematics behind the quantum Hamiltonian computing (QHC) approach of designing Boolean logic gates with a quantum system are given. Using the quantum eigenvalue repulsion effect, the QHC AND, NAND, OR, NOR, XOR, and NXOR Hamiltonian Boolean matrices are constructed. This is applied to the construction of a QHC half adder Hamiltonian matrix requiring only six quantum states to fullfil a half Boolean logical truth table. The QHC design rules open a nano-architectronic way of constructing Boolean logic gates inside a single molecule or atom by atom at the surface of a passivated semi-conductor. (paper)

  19. The mathematics of a quantum Hamiltonian computing half adder Boolean logic gate.

    Science.gov (United States)

    Dridi, G; Julien, R; Hliwa, M; Joachim, C

    2015-08-28

    The mathematics behind the quantum Hamiltonian computing (QHC) approach of designing Boolean logic gates with a quantum system are given. Using the quantum eigenvalue repulsion effect, the QHC AND, NAND, OR, NOR, XOR, and NXOR Hamiltonian Boolean matrices are constructed. This is applied to the construction of a QHC half adder Hamiltonian matrix requiring only six quantum states to fullfil a half Boolean logical truth table. The QHC design rules open a nano-architectronic way of constructing Boolean logic gates inside a single molecule or atom by atom at the surface of a passivated semi-conductor.

  20. Linear scaling of density functional algorithms

    International Nuclear Information System (INIS)

    Stechel, E.B.; Feibelman, P.J.; Williams, A.R.

    1993-01-01

    An efficient density functional algorithm (DFA) that scales linearly with system size will revolutionize electronic structure calculations. Density functional calculations are reliable and accurate in determining many condensed matter and molecular ground-state properties. However, because current DFA's, including methods related to that of Car and Parrinello, scale with the cube of the system size, density functional studies are not routinely applied to large systems. Linear scaling is achieved by constructing functions that are both localized and fully occupied, thereby eliminating the need to calculate global eigenfunctions. It is, however, widely believed that exponential localization requires the existence of an energy gap between the occupied and unoccupied states. Despite this, the authors demonstrate that linear scaling can still be achieved for metals. Using a linear scaling algorithm, they have explicitly constructed localized, almost fully occupied orbitals for the quintessential metallic system, jellium. The algorithm is readily generalizable to any system geometry and Hamiltonian. They will discuss the conceptual issues involved, convergence properties and scaling for their new algorithm

  1. Construction of Hamiltonians by supervised learning of energy and entanglement spectra

    Science.gov (United States)

    Fujita, Hiroyuki; Nakagawa, Yuya O.; Sugiura, Sho; Oshikawa, Masaki

    2018-02-01

    Correlated many-body problems ubiquitously appear in various fields of physics such as condensed matter, nuclear, and statistical physics. However, due to the interplay of the large number of degrees of freedom, it is generically impossible to treat these problems from first principles. Thus the construction of a proper model, namely, effective Hamiltonian, is essential. Here, we propose a simple supervised learning algorithm for constructing Hamiltonians from given energy or entanglement spectra. We apply the proposed scheme to the Hubbard model at the half-filling, and compare the obtained effective low-energy spin model with several analytic results based on the high-order perturbation theory, which have been inconsistent with each other. We also show that our approach can be used to construct the entanglement Hamiltonian of a quantum many-body state from its entanglement spectrum as well. We exemplify this using the ground states of the S =1 /2 two-leg Heisenberg ladders. We observe a qualitative difference between the entanglement Hamiltonians of the two phases (the Haldane and the rung singlet phase) of the model due to the different origin of the entanglement. In the Haldane phase, we find that the entanglement Hamiltonian is nonlocal by nature, and the locality can be restored by introducing the anisotropy and turning the ground state into the large-D phase. Possible applications to the model construction from experimental data and to various problems of strongly correlated systems are discussed.

  2. Effective Hamiltonians, two level systems, and generalized Maxwell-Bloch equations

    International Nuclear Information System (INIS)

    Sczaniecki, L.

    1981-02-01

    A new method is proposed involving a canonical transformation leading to the non-secular part of time-independent perturbation calculus. The method is used to derive expressions for effective Shen-Walls Hamiltonians which, taken in the two-level approximation and on the inclusion of non-Hamiltonian terms into the dynamics of the system, lead to generalized Maxwell-Bloch equations. The rotating wave approximation is written anew within the framework of our formalism. (author)

  3. Deformation of the three-term recursion relation and generation of new orthogonal polynomials

    International Nuclear Information System (INIS)

    Alhaidari, A D

    2002-01-01

    We find solutions for a linear deformation of the three-term recursion relation. The orthogonal polynomials of the first and second kind associated with the deformed relation are obtained. The new density (weight) function is written in terms of the original one and the deformation parameters

  4. Curci-Ferrari-type condition in Hamiltonian formalism: A free spinning relativistic particle

    Science.gov (United States)

    Shukla, A.; Bhanja, T.; Malik, R. P.

    2013-03-01

    The Curci-Ferrari (CF)-type restriction emerges in the description of a free spinning relativistic particle within the framework of the Becchi-Rouet-Stora-Tyutin (BRST) formalism when the off-shell nilpotent and absolutely anticommuting (anti-)BRST symmetry transformations for this system are derived from the application of the horizontality condition (HC) and its supersymmetric generalization (SUSY-HC) within the framework of the superfield formalism. We show that the above CF condition, which turns out to be the secondary constraint of our present theory, remains time-evolution invariant within the framework of Hamiltonian formalism. This time-evolution invariance i) physically justifies the imposition of the (anti-)BRST invariant CF-type condition on this system, and ii) mathematically implies the linear independence of BRST and anti-BRST symmetries of our present theory.

  5. Quantum mechanical path integrals with Wiener measures for all polynomial Hamiltonians

    International Nuclear Information System (INIS)

    Klauder, J.R.; Daubechies, I.

    We construct arbitrary matrix elements of the quantum evolution operator for a wide class of self-adjoint canonical Hamiltonians, including those which are polynomial in the Heisenberg operators, as the limit of well-defined path integrals involving Wiener measure on phase space, as a diffusion constant diverges. A related construction achieves a similar result for an arbitrary spin Hamiltonian. (orig.)

  6. Hamiltonian Chaos and Fractional Dynamics

    International Nuclear Information System (INIS)

    Combescure, M

    2005-01-01

    This book provides an introduction and discussion of the main issues in the current understanding of classical Hamiltonian chaos, and of its fractional space-time structure. It also develops the most complex and open problems in this context, and provides a set of possible applications of these notions to some fundamental questions of dynamics: complexity and entropy of systems, foundation of classical statistical physics on the basis of chaos theory, and so on. Starting with an introduction of the basic principles of the Hamiltonian theory of chaos, the book covers many topics that can be found elsewhere in the literature, but which are collected here for the readers' convenience. In the last three parts, the author develops topics which are not typically included in the standard textbooks; among them are: - the failure of the traditional description of chaotic dynamics in terms of diffusion equations; - he fractional kinematics, its foundation and renormalization group analysis; - 'pseudo-chaos', i.e. kinetics of systems with weak mixing and zero Lyapunov exponents; - directional complexity and entropy. The purpose of this book is to provide researchers and students in physics, mathematics and engineering with an overview of many aspects of chaos and fractality in Hamiltonian dynamical systems. In my opinion it achieves this aim, at least provided researchers and students (mainly those involved in mathematical physics) can complement this reading with comprehensive material from more specialized sources which are provided as references and 'further reading'. Each section contains introductory pedagogical material, often illustrated by figures coming from several numerical simulations which give the feeling of what's going on, and thus is very useful to the reader who is not very familiar with the topics presented. Some problems are included at the end of most sections to help the reader to go deeper into the subject. My one regret is that the book does not

  7. A modified chaos-based communication scheme using Hamiltonian forms and observer

    International Nuclear Information System (INIS)

    Lopez-Mancilla, D; Cruz-Hernandez, C; Posadas-Castillo, C

    2005-01-01

    In this work, a modified chaos-based communication scheme is presented. In particular, we use the modified scheme proposed by Lopez-Mancilla and Cruz-Hernandez (2005), that improves the basic scheme for chaotic masking using a single transmission channel proposed by Cuomo and coworkers (1993). It is extended for a special class of Generalized Hamiltonian systems. Substantial differences that significantly affect the reception quality of the sent message, with or without considering noise effect in the transmission channel are given. We use two Hamiltonian Lorenz systems unidirectionally coupled, the first like a master/transmitter system and the other like a slave/receiver system in order to illustrate with numerical simulations the effectiveness of the modified scheme, using chaos synchronization with Hamiltonian forms and observer

  8. The Schwinger Model on S 1: Hamiltonian Formulation, Vacuum and Anomaly

    Science.gov (United States)

    Stuart, David

    2014-12-01

    We present a Hamiltonian formulation of the Schwinger model with spatial domain taken to be the circle. It is shown that, in Coulomb gauge, the Hamiltonian is a semi-bounded, self-adjoint operator which is invariant under the group of large gauge transformations. There is a nontrivial action of on fermionic Fock space and its vacuum. This action plays a role analogous to that played by the spectral flow in the infinite Dirac sea formalism. The formulation allows (1) a description of the anomaly and its relation to the group action, and (2) an explicit identification of the vacuum. The anomaly in the chiral conservation law appears as a consequence of insisting upon semi-boundedness and gauge invariance of the quantized Hamiltonian.

  9. A modified chaos-based communication scheme using Hamiltonian forms and observer

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Mancilla, D [Engineering Faculty, Baja California Autonomous University (UABC), Km. 103, Carretera Tijuana-Ensenada, 22860, Ensenada, B.C. (Mexico); Cruz-Hernandez, C [Telematics Direction, Scientific Research and Advanced Studies of Ensenada (CICESE), Km. 107 Carretera Tijuana-Ensenada, 22860 Ensenada, B.C. (Mexico); Posadas-Castillo, C [Engineering Faculty, Baja California Autonomous University (UABC), Km. 103, Carretera Tijuana-Ensenada, 22860, Ensenada, B.C. (Mexico); Faculty of Engineering Mechanic and Electrical (FIME), Nuevo Leon Autonomous University (UANL), Pedro de alba s/n Cd. Universitaria San Nicolas de los Garza N.L. (Mexico)

    2005-01-01

    In this work, a modified chaos-based communication scheme is presented. In particular, we use the modified scheme proposed by Lopez-Mancilla and Cruz-Hernandez (2005), that improves the basic scheme for chaotic masking using a single transmission channel proposed by Cuomo and coworkers (1993). It is extended for a special class of Generalized Hamiltonian systems. Substantial differences that significantly affect the reception quality of the sent message, with or without considering noise effect in the transmission channel are given. We use two Hamiltonian Lorenz systems unidirectionally coupled, the first like a master/transmitter system and the other like a slave/receiver system in order to illustrate with numerical simulations the effectiveness of the modified scheme, using chaos synchronization with Hamiltonian forms and observer.

  10. Symmetry and resonance in Hamiltonian systems

    NARCIS (Netherlands)

    Tuwankotta, J.M.; Verhulst, F.

    2000-01-01

    In this paper we study resonances in two degrees of freedom, autonomous, hamiltonian systems. Due to the presence of a symmetry condition on one of the degrees of freedom, we show that some of the resonances vanish as lower order resonances. After giving a sharp estimate of the resonance domain, we

  11. Symmetry and resonance in Hamiltonian systems

    NARCIS (Netherlands)

    Tuwankotta, J.M.; Verhulst, F.

    1999-01-01

    In this paper we study resonances in two degrees of freedom, autonomous, hamiltonian systems. Due to the presence of a symmetry condition on one of the degrees of freedom, we show that some of the resonances vanish as lower order resonances. After determining the size of the resonance domain, we

  12. Riemannian geometry of Hamiltonian chaos: hints for a general theory.

    Science.gov (United States)

    Cerruti-Sola, Monica; Ciraolo, Guido; Franzosi, Roberto; Pettini, Marco

    2008-10-01

    We aim at assessing the validity limits of some simplifying hypotheses that, within a Riemmannian geometric framework, have provided an explanation of the origin of Hamiltonian chaos and have made it possible to develop a method of analytically computing the largest Lyapunov exponent of Hamiltonian systems with many degrees of freedom. Therefore, a numerical hypotheses testing has been performed for the Fermi-Pasta-Ulam beta model and for a chain of coupled rotators. These models, for which analytic computations of the largest Lyapunov exponents have been carried out in the mentioned Riemannian geometric framework, appear as paradigmatic examples to unveil the reason why the main hypothesis of quasi-isotropy of the mechanical manifolds sometimes breaks down. The breakdown is expected whenever the topology of the mechanical manifolds is nontrivial. This is an important step forward in view of developing a geometric theory of Hamiltonian chaos of general validity.

  13. Jacobi fields of completely integrable Hamiltonian systems

    International Nuclear Information System (INIS)

    Giachetta, G.; Mangiarotti, L.; Sardanashvily, G.

    2003-01-01

    We show that Jacobi fields of a completely integrable Hamiltonian system of m degrees of freedom make up an extended completely integrable system of 2m degrees of freedom, where m additional first integrals characterize a relative motion

  14. Air parcels and air particles: Hamiltonian dynamics

    NARCIS (Netherlands)

    Bokhove, Onno; Lynch, Peter

    We present a simple Hamiltonian formulation of the Euler equations for fluid flow in the Lagrangian framework. In contrast to the conventional formulation, which involves coupled partial differential equations, our "innovative'' mathematical formulation involves only ordinary differential equations

  15. Quadratic time dependent Hamiltonians and separation of variables

    International Nuclear Information System (INIS)

    Anzaldo-Meneses, A.

    2017-01-01

    Time dependent quantum problems defined by quadratic Hamiltonians are solved using canonical transformations. The Green’s function is obtained and a comparison with the classical Hamilton–Jacobi method leads to important geometrical insights like exterior differential systems, Monge cones and time dependent Gaussian metrics. The Wei–Norman approach is applied using unitary transformations defined in terms of generators of the associated Lie groups, here the semi-direct product of the Heisenberg group and the symplectic group. A new explicit relation for the unitary transformations is given in terms of a finite product of elementary transformations. The sequential application of adequate sets of unitary transformations leads naturally to a new separation of variables method for time dependent Hamiltonians, which is shown to be related to the Inönü–Wigner contraction of Lie groups. The new method allows also a better understanding of interacting particles or coupled modes and opens an alternative way to analyze topological phases in driven systems. - Highlights: • Exact unitary transformation reducing time dependent quadratic quantum Hamiltonian to zero. • New separation of variables method and simultaneous uncoupling of modes. • Explicit examples of transformations for one to four dimensional problems. • New general evolution equation for quadratic form in the action, respectively Green’s function.

  16. Universal localizing bounds for compact invariant sets of natural polynomial Hamiltonian systems

    International Nuclear Information System (INIS)

    Starkov, Konstantin E.

    2008-01-01

    In this Letter we study the localization problem of compact invariant sets of natural Hamiltonian systems with a polynomial Hamiltonian. Our results are based on applying the first order extremum conditions. We compute universal localizing bounds for some domain containing all compact invariant sets of a Hamiltonian system by using one quadratic function of a simple form. These bounds depend on the value of the total energy of the system, degree and some coefficients of a potential and, in addition, some positive number got as a result of a solution of one maximization problem. Besides, under some quasihomogeneity condition(s) we generalize our construction of the localization set

  17. Universal localizing bounds for compact invariant sets of natural polynomial Hamiltonian systems

    Energy Technology Data Exchange (ETDEWEB)

    Starkov, Konstantin E. [CITEDI-IPN, Av. del Parque 1310, Mesa de Otay, Tijuana, BC (Mexico)], E-mail: konst@citedi.mx

    2008-10-06

    In this Letter we study the localization problem of compact invariant sets of natural Hamiltonian systems with a polynomial Hamiltonian. Our results are based on applying the first order extremum conditions. We compute universal localizing bounds for some domain containing all compact invariant sets of a Hamiltonian system by using one quadratic function of a simple form. These bounds depend on the value of the total energy of the system, degree and some coefficients of a potential and, in addition, some positive number got as a result of a solution of one maximization problem. Besides, under some quasihomogeneity condition(s) we generalize our construction of the localization set.

  18. Deformed Heisenberg algebra and fractional spin field in 2+1 dimensions

    International Nuclear Information System (INIS)

    Plyushchay, M.S.

    1993-09-01

    With the help of the deformed Heisenberg algebra involving the Klein operator, we construct the minimal set of linear differential equations for the (2+1)-dimensional relativistic field with arbitrary fractional spin, whose value is defined by the deformation parameters. (author). 23 refs

  19. Extended hamiltonian formalism and Lorentz-violating lagrangians

    Directory of Open Access Journals (Sweden)

    Don Colladay

    2017-09-01

    Full Text Available A new perspective on the classical mechanical formulation of particle trajectories in Lorentz-violating theories is presented. Using the extended hamiltonian formalism, a Legendre Transformation between the associated covariant lagrangian and hamiltonian varieties is constructed. This approach enables calculation of trajectories using Hamilton's equations in momentum space and the Euler–Lagrange equations in velocity space away from certain singular points that arise in the theory. Singular points are naturally de-singularized by requiring the trajectories to be smooth functions of both velocity and momentum variables. In addition, it is possible to identify specific sheets of the dispersion relations that correspond to specific solutions for the lagrangian. Examples corresponding to bipartite Finsler functions are computed in detail. A direct connection between the lagrangians and the field-theoretic solutions to the Dirac equation is also established for a special case.

  20. Extended hamiltonian formalism and Lorentz-violating lagrangians

    Science.gov (United States)

    Colladay, Don

    2017-09-01

    A new perspective on the classical mechanical formulation of particle trajectories in Lorentz-violating theories is presented. Using the extended hamiltonian formalism, a Legendre Transformation between the associated covariant lagrangian and hamiltonian varieties is constructed. This approach enables calculation of trajectories using Hamilton's equations in momentum space and the Euler-Lagrange equations in velocity space away from certain singular points that arise in the theory. Singular points are naturally de-singularized by requiring the trajectories to be smooth functions of both velocity and momentum variables. In addition, it is possible to identify specific sheets of the dispersion relations that correspond to specific solutions for the lagrangian. Examples corresponding to bipartite Finsler functions are computed in detail. A direct connection between the lagrangians and the field-theoretic solutions to the Dirac equation is also established for a special case.