WorldWideScience

Sample records for hamiltonian circle actions

  1. Givental action and trivialisation of circle action

    NARCIS (Netherlands)

    Dotsenko, V.; Shadrin, S.; Vallette, B.

    2015-01-01

    In this paper, we show that the Givental group action on genus zero cohomological field theories, also known as formal Frobenius manifolds or hypercommutative algebras, naturally arises in the deformation theory of Batalin-Vilkovisky algebras. We prove that the Givental action is equal to an action

  2. Momentum and hamiltonian in complex action theory

    DEFF Research Database (Denmark)

    Nagao, Keiichi; Nielsen, Holger Frits Bech

    2012-01-01

    $-parametrized wave function, which is a solution to an eigenvalue problem of a momentum operator $\\hat{p}$, in FPI with a starting Lagrangian. Solving the eigenvalue problem, we derive the momentum and Hamiltonian. Oppositely, starting from the Hamiltonian we derive the Lagrangian in FPI, and we are led...

  3. Action-minimizing methods in Hamiltonian dynamics

    CERN Document Server

    Sorrentino, Alfonso

    2015-01-01

    John Mather's seminal works in Hamiltonian dynamics represent some of the most important contributions to our understanding of the complex balance between stable and unstable motions in classical mechanics. His novel approach-known as Aubry-Mather theory-singles out the existence of special orbits and invariant measures of the system, which possess a very rich dynamical and geometric structure. In particular, the associated invariant sets play a leading role in determining the global dynamics of the system. This book provides a comprehensive introduction to Mather's theory, and can serve as a

  4. On the existence of star products on quotient spaces of linear Hamiltonian torus actions

    DEFF Research Database (Denmark)

    Herbig, Hans-Christian; Iyengar, Srikanth B.; Pflaum, Markus J.

    2009-01-01

    that the Koszul complex on the moment map of an effective linear Hamiltonian torus action is acyclic. We rephrase the nonpositivity condition of Arms and Gotay (Adv Math 79(1):43–103, 1990) for linear Hamiltonian torus actions. It follows that reduced spaces of such actions admit continuous star products....

  5. A solvable Hamiltonian system: Integrability and action-angle variables

    International Nuclear Information System (INIS)

    Karimipour, V.

    1997-01-01

    We prove that the dynamical system characterized by the Hamiltonian H=λN summation j N p j +μ summation j,k N (p j p k ) 1/2 {cos[ν(q j -q k )]} proposed and studied by Calogero [J. Math. Phys. 36, 9 (1994)] and Calogero and van Diejen [Phys. Lett. A 205, 143 (1995)] is equivalent to a system of noninteracting harmonic oscillators both classically and quantum mechanically. We find the explicit form of the conserved currents that are in involution. We also find the action-angle variables and solve the initial value problem in a very simple form.copyright 1997 American Institute of Physics

  6. Bi-Hamiltonian systems on the dual of the Lie algebra of vector fields of the circle and periodic shallow water equations

    OpenAIRE

    Kolev, Boris

    2006-01-01

    23 pages; International audience; This paper is a survey article on bi-Hamiltonian systems on the dual of the Lie algebra of vector fields on the circle. We investigate the special case where one of the structures is the canonical Lie-Poisson structure and the second one is constant. These structures called affine or modified Lie-Poisson structures are involved in the integrability of certain Euler equations that arise as models of shallow water waves.

  7. Hamiltonian action of spinning particle with gravimagnetic moment

    International Nuclear Information System (INIS)

    Deriglazov, Alexei A; Ramírez, W Guzmán

    2016-01-01

    We develop Hamiltonian variational problem for spinning particle non-minimally interacting with gravity through the gravimagnetic moment κ. For κ = 0 our model yields Mathisson-Papapetrou-Tulczyjew-Dixon (MPTD) equations, the latter show unsatisfactory behavior of MPTD-particle in ultra-relativistic regime: its longitudinal acceleration increases with velocity. κ = 1 yields a modification of MPTD-equations with the reasonable behavior: in the homogeneous fields, both longitudinal acceleration and (covariant) precession of spin-tensor vanish as v→c. (paper)

  8. Dielectric energy versus plasma energy, and Hamiltonian action-angle variables for the Vlasov equation

    International Nuclear Information System (INIS)

    Morrison, P.J.

    1992-04-01

    Expressions for the energy content of one-dimensional electrostatic perturbations about homogeneous equilibria are revisited. The well-known dielectric energy, var-epsilon D , is compared with the exact plasma free energy expression, δ 2 F, that is conserved by the Vlasov-Poisson system. The former is an expression in terms of the perturbed electric field amplitude, while the latter is determined by a generating function, which describes perturbations of the distribution function that respect the important constraint of dynamical accessibility of the system. Thus the comparison requires solving the Vlasov equation for such a perturbations of the distribution function in terms of the electric field. This is done for neutral modes of oscillation that occur for equilibria with stationary inflection points, and it is seen that for these special modes δ 2 F = var-epsilon D . In the case of unstable and corresponding damped modes it is seen that δ 2 F ≠ var-epsilon D ; in fact δ 2 F ≡ 0. This failure of the dielectric energy expression persists even for arbitrarily small growth and damping rates since var-epsilon D is nonzero in this limit, whereas δ 2 F remains zero. The connection between the new exact energy expression and the at-best approximate var-epsilon D is described. The new expression motivates natural definitions of Hamiltonian action variables and signature. A general linear integral transform is introduced that maps the linear version of the noncanonical Hamiltonian structure, which describes the Vlasov equation, to action-angle (diagonal) form

  9. Consistency of the Hamiltonian formulation of the lowest-order effective action of the complete Horava theory

    International Nuclear Information System (INIS)

    Bellorin, Jorge; Restuccia, Alvaro

    2011-01-01

    We perform the Hamiltonian analysis for the lowest-order effective action, up to second order in derivatives, of the complete Horava theory. The model includes the invariant terms that depend on ∂ i lnN proposed by Blas, Pujolas, and Sibiryakov. We show that the algebra of constraints closes. The Hamiltonian constraint is of second-class behavior and it can be regarded as an elliptic partial differential equation for N. The linearized version of this equation is a Poisson equation for N that can be solved consistently. The preservation in time of the Hamiltonian constraint yields an equation that can be consistently solved for a Lagrange multiplier of the theory. The model has six propagating degrees of freedom in the phase space, corresponding to three even physical modes. When compared with the λR model studied by us in a previous paper, it lacks two second-class constraints, which leads to the extra even mode.

  10. Vicious Circles in Organizations.

    Science.gov (United States)

    Masuch, Michael

    1985-01-01

    After examining some elementary notions of action theory and cybernetics, this article analyzes the dynamics, clustering, and survival chances of vicious circles. It argues that the action perspective implies that many structural suboptimalities of organizations are caused by vicious circles. Eleven figures and 105 references are provided. (DCS)

  11. Action Researchers' Perspectives about the Distinguishing Characteristics of Action Research: A Delphi and Learning Circles Mixed-Methods Study

    Science.gov (United States)

    Rowell, Lonnie L.; Polush, Elena Yu; Riel, Margaret; Bruewer, Aaron

    2015-01-01

    The purpose of this study was to identify distinguishing characteristics of action research within the Action Research Special Interest Group of the American Educational Research Association. The authors sought to delineate the foundational framework endorsed by this community. The study was conducted during January-April 2012 and employed an…

  12. The cohomology of orbit spaces of certain free circle group actions

    Indian Academy of Sciences (India)

    Abstract. Suppose that G = S1 acts freely on a finitistic space X whose (mod p) cohomology ring is isomorphic to that of a lens space L2m−1(p;q1,...,qm) or S1 ×. CPm−1. The mod p index of the action is defined to be the largest integer n such that αn = 0, where α ϵ H2(X/G; Zp) is the nonzero characteristic class of the S1-.

  13. Hamiltonian description of the ideal fluid

    International Nuclear Information System (INIS)

    Morrison, P.J.

    1994-01-01

    Fluid mechanics is examined from a Hamiltonian perspective. The Hamiltonian point of view provides a unifying framework; by understanding the Hamiltonian perspective, one knows in advance (within bounds) what answers to expect and what kinds of procedures can be performed. The material is organized into five lectures, on the following topics: rudiments of few-degree-of-freedom Hamiltonian systems illustrated by passive advection in two-dimensional fluids; functional differentiation, two action principles of mechanics, and the action principle and canonical Hamiltonian description of the ideal fluid; noncanonical Hamiltonian dynamics with examples; tutorial on Lie groups and algebras, reduction-realization, and Clebsch variables; and stability and Hamiltonian systems

  14. On the structure of the two-stream instability–complex G-Hamiltonian structure and Krein collisions between positive- and negative-action modes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ruili; Liu, Jian; Xiao, Jianyuan [Department of Modern Physics and School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026 (China); Key Laboratory of Geospace Environment, CAS, Hefei, Anhui 230026 (China); Qin, Hong, E-mail: hongqin@princeton.edu [Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States); Department of Modern Physics and School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026 (China); Davidson, Ronald C. [Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States)

    2016-07-15

    The two-stream instability is probably the most important elementary example of collective instabilities in plasma physics and beam-plasma systems. For a warm plasma with two charged particle species, the instability diagram of the two-stream instability based on a 1D warm-fluid model exhibits an interesting band structure that has not been explained. We show that the band structure for this instability is the consequence of the Hamiltonian nature of the warm two-fluid system. Interestingly, the Hamiltonian nature manifests as a complex G-Hamiltonian structure in wave-number space, which directly determines the instability diagram. Specifically, it is shown that the boundaries between the stable and unstable regions are locations for Krein collisions between eigenmodes with different Krein signatures. In terms of physics, this rigorously implies that the system is destabilized when a positive-action mode resonates with a negative-action mode, and that this is the only mechanism by which the system can be destabilized. It is anticipated that this physical mechanism of destabilization is valid for other collective instabilities in conservative systems in plasma physics, accelerator physics, and fluid dynamics systems, which admit infinite-dimensional Hamiltonian structures.

  15. The Schwinger Model on S 1: Hamiltonian Formulation, Vacuum and Anomaly

    Science.gov (United States)

    Stuart, David

    2014-12-01

    We present a Hamiltonian formulation of the Schwinger model with spatial domain taken to be the circle. It is shown that, in Coulomb gauge, the Hamiltonian is a semi-bounded, self-adjoint operator which is invariant under the group of large gauge transformations. There is a nontrivial action of on fermionic Fock space and its vacuum. This action plays a role analogous to that played by the spectral flow in the infinite Dirac sea formalism. The formulation allows (1) a description of the anomaly and its relation to the group action, and (2) an explicit identification of the vacuum. The anomaly in the chiral conservation law appears as a consequence of insisting upon semi-boundedness and gauge invariance of the quantized Hamiltonian.

  16. Hamiltonian ABC

    NARCIS (Netherlands)

    Meeds, E.; Leenders, R.; Welling, M.; Meila, M.; Heskes, T.

    2015-01-01

    Approximate Bayesian computation (ABC) is a powerful and elegant framework for performing inference in simulation-based models. However, due to the difficulty in scaling likelihood estimates, ABC remains useful for relatively lowdimensional problems. We introduce Hamiltonian ABC (HABC), a set of

  17. Research circles

    DEFF Research Database (Denmark)

    Nordentoft, Helle Merete; Thomsen, Rie; Möller, Jonas

    lifelong guidance policies. This paper presents `research circles´ as a way to develop guidance practices through long-term research relationships between practice and research. Research circles support a bottom up approach to policy development just like ELGPN considers to be necessary and required...... of their habitual pedagogical role and enables them to observe and analyze their own practice. In conclusion, this methodological approach to the development of guidance practices introduces a combination between theory and practice that meets current needs of practice, policy and research....

  18. Hamiltonian dynamics

    CERN Document Server

    Vilasi, Gaetano

    2001-01-01

    This is both a textbook and a monograph. It is partially based on a two-semester course, held by the author for third-year students in physics and mathematics at the University of Salerno, on analytical mechanics, differential geometry, symplectic manifolds and integrable systems. As a textbook, it provides a systematic and self-consistent formulation of Hamiltonian dynamics both in a rigorous coordinate language and in the modern language of differential geometry. It also presents powerful mathematical methods of theoretical physics, especially in gauge theories and general relativity. As a m

  19. Empirical Hamiltonians

    International Nuclear Information System (INIS)

    Peggs, S.; Talman, R.

    1987-01-01

    As proton accelerators get larger, and include more magnets, the conventional tracking programs which simulate them run slower. The purpose of this paper is to describe a method, still under development, in which element-by-element tracking around one turn is replaced by a single man, which can be processed far faster. It is assumed for this method that a conventional program exists which can perform faithful tracking in the lattice under study for some hundreds of turns, with all lattice parameters held constant. An empirical map is then generated by comparison with the tracking program. A procedure has been outlined for determining an empirical Hamiltonian, which can represent motion through many nonlinear kicks, by taking data from a conventional tracking program. Though derived by an approximate method this Hamiltonian is analytic in form and can be subjected to further analysis of varying degrees of mathematical rigor. Even though the empirical procedure has only been described in one transverse dimension, there is good reason to hope that it can be extended to include two transverse dimensions, so that it can become a more practical tool in realistic cases

  20. Action-Oriented Study Circles Facilitate Efforts in Nursing Homes to “Go from Feeding to Serving”: Conceptual Perspectives on Knowledge Translation and Workplace Learning

    Directory of Open Access Journals (Sweden)

    Albert Westergren

    2012-01-01

    Full Text Available Background. Action-oriented study circles (AOSC have been found to improve nutrition in 24 nursing homes in Sweden. Little, however, is known about the conceptual use of knowledge (changes in staffs’ knowledge and behaviours. Methods. Qualitative and quantitative methods, structured questionnaires for evaluating participants’ (working in nursing homes experiences from study circles (n=592, 71 AOSC and for comparisons between AOSC participants (n=74 and nonparticipants (n=115. Finally, a focus group interview was conducted with AOSC participants (in total n=12. Statistical, conventional, and directed content analyses were used. Results. Participants experienced a statistically significant increase in their knowledge about eating and nutrition, when retrospectively comparing before participating and after, as well as in comparison to non-participants, and they felt that the management was engaged in and took care of ideas regarding food and mealtimes to a significantly greater extent than non-participants. The use of AOSC was successful judging from how staff members had changed their attitudes and behaviours toward feeding residents. Conclusions. AOSC facilitates professional development, better system performance, and, as shown in previous studies, better patient outcome. Based on a collaborative learning perspective, AOSC manages to integrate evidence, context, and facilitation in the efforts to achieve knowledge translation in a learning organisation. This study has implications also for other care settings implementing AOSC.

  1. Ghost circles in lattice Aubry-Mather theory

    Science.gov (United States)

    Mramor, Blaz; Rink, Bob

    Monotone lattice recurrence relations such as the Frenkel-Kontorova lattice, arise in Hamiltonian lattice mechanics, as models for ferromagnetism and as discretization of elliptic PDEs. Mathematically, they are a multi-dimensional counterpart of monotone twist maps. Such recurrence relations often admit a variational structure, so that the solutions x:Z→R are the stationary points of a formal action function W(x). Given any rotation vector ω∈R, classical Aubry-Mather theory establishes the existence of a large collection of solutions of ∇W(x)=0 of rotation vector ω. For irrational ω, this is the well-known Aubry-Mather set. It consists of global minimizers and it may have gaps. In this paper, we study the parabolic gradient flow {dx}/{dt}=-∇W(x) and we will prove that every Aubry-Mather set can be interpolated by a continuous gradient-flow invariant family, the so-called 'ghost circle'. The existence of these ghost circles is known in dimension d=1, for rational rotation vectors and Morse action functions. The main technical result of this paper is therefore a compactness theorem for lattice ghost circles, based on a parabolic Harnack inequality for the gradient flow. This implies the existence of lattice ghost circles of arbitrary rotation vectors and for arbitrary actions. As a consequence, we can give a simple proof of the fact that when an Aubry-Mather set has a gap, then this gap must be filled with minimizers, or contain a non-minimizing solution.

  2. Small circles

    DEFF Research Database (Denmark)

    Ling, Richard; Bjelland, Johannes; Sundsøy, Pål

    2014-01-01

    and spatial movement is highly predictable and that the majority of calls and text messages are sent to only four to six different persons. This article extends this research by examining both tie strength and the distance between the interlocutors in urban and rural settings. The findings show that even......This article examines how we use mobile telephony to maintain our physically and socially closest social circle. The analysis is based on traffic data gathered from Norway using approximately 24 million calls and texts made by private individuals. Previous research has shown that our temporal...... as information and communication technologies (ICTs) potentially put the world at our fingertips, the mobile phone is an instrument of a more limited geographical and social sphere. Approximately two-thirds of our calls/texts go to strong ties that are within a 25-km radius....

  3. Relativistic non-Hamiltonian mechanics

    International Nuclear Information System (INIS)

    Tarasov, Vasily E.

    2010-01-01

    Relativistic particle subjected to a general four-force is considered as a nonholonomic system. The nonholonomic constraint in four-dimensional space-time represents the relativistic invariance by the equation for four-velocity u μ u μ + c 2 = 0, where c is the speed of light in vacuum. In the general case, four-forces are non-potential, and the relativistic particle is a non-Hamiltonian system in four-dimensional pseudo-Euclidean space-time. We consider non-Hamiltonian and dissipative systems in relativistic mechanics. Covariant forms of the principle of stationary action and the Hamilton's principle for relativistic mechanics of non-Hamiltonian systems are discussed. The equivalence of these principles is considered for relativistic particles subjected to potential and non-potential forces. We note that the equations of motion which follow from the Hamilton's principle are not equivalent to the equations which follow from the variational principle of stationary action. The Hamilton's principle and the principle of stationary action are not compatible in the case of systems with nonholonomic constraint and the potential forces. The principle of stationary action for relativistic particle subjected to non-potential forces can be used if the Helmholtz conditions are satisfied. The Hamilton's principle and the principle of stationary action are equivalent only for a special class of relativistic non-Hamiltonian systems.

  4. Canonical transformations and hamiltonian path integrals

    International Nuclear Information System (INIS)

    Prokhorov, L.V.

    1982-01-01

    Behaviour of the Hamiltonian path integrals under canonical transformations produced by a generator, is investigated. An exact form is determined for the kernel of the unitary operator realizing the corresponding quantum transformation. Equivalence rules are found (the Hamiltonian formalism, one-dimensional case) enabling one to exclude non-standard terms from the action. It is shown that the Hamiltonian path integral changes its form under cononical transformations: in the transformed expression besides the classical Hamiltonian function there appear some non-classical terms

  5. Noncanonical Hamiltonian methods in plasma dynamics

    International Nuclear Information System (INIS)

    Kaufman, A.N.

    1981-11-01

    A Hamiltonian approach to plasma dynamics has numerous advantages over equivalent formulations which ignore the underlying Hamiltonian structure. In addition to achieving a deeper understanding of processes, Hamiltonian methods yield concise expressions (such as the Kubo form for linear susceptibility), greatly shorten the length of calculations, expose relationships (such as between the ponderomotive Hamiltonian and the linear susceptibility), determine invariants in terms of symmetry operations, and cover situations of great generality. In addition, they yield the Poincare invariants, in particular Liouville volume and adiabatic actions

  6. Tri-sector partnerships in social entrepreneurship: discourse and practice of the actors from the circles of action and reflection

    Directory of Open Access Journals (Sweden)

    Carla Bronzo

    2012-09-01

    Full Text Available This article discusses the construction of tri-sector partnerships in three projects conducted in Brazil in different fields of intervention of public policy (access to water, basic education and performance of boards of rights of children and adolescents. Collaborative articulations involving the players from three sectors (the State, civil society and the market are practices that are little studied in the Brazilian and even in the international context, as tri-sector partnerships are rare, despite the proliferation of lines of discourse in support of alliances between governments and civil society or between companies and NGOs in the management of public policy. As a research strategy, this study resorted to cooperative inquiry, a method that involves breaking down the boundaries between the subjects and the objects of the analysis. Besides working toward a better understanding of the challenges of building tri-sector partnerships in the Brazilian context, the article also tries to show the relevance to public policy studies of investigative methods based on the subjects studied, as a means of developing an understanding of the practices, lines of discourse and dilemmas linked to social action in social programs.

  7. Numerical determination of the magnetic field line Hamiltonian

    International Nuclear Information System (INIS)

    Kuo-Petravic, G.; Boozer, A.H.

    1986-03-01

    The structure of a magnetic field is determined by a one-degree of freedom, time-dependent Hamiltonian. This Hamiltonian is evaluated for a given field in a perturbed action-angle form. The location and the size of magnetic islands in the given field are determined from Hamiltonian perturbation theory and from an ordinary Poincare plot of the field line trajectories

  8. Information flow through the disaster circle

    DEFF Research Database (Denmark)

    Egedorf, Maren Marie; Villanueva Holm-Nielsen, Pablo

    The traditional view of the disaster circle is phase based. Disaster and development professionals recognize that the actions carried out in the various phases of the disaster management cycle are overlapping and build upon each other, having resilience as the overall goal. However information does...... not necessarily flow across the phases of the circle in an effective manner. This is particularly true for the information that crosses the disaster point of the circle. Organisations carry out assessments, surveys and baselines for various purposes, at various points of time in the disaster circle. Output...

  9. Hamiltonian Algorithm Sound Synthesis

    OpenAIRE

    大矢, 健一

    2013-01-01

    Hamiltonian Algorithm (HA) is an algorithm for searching solutions is optimization problems. This paper introduces a sound synthesis technique using Hamiltonian Algorithm and shows a simple example. "Hamiltonian Algorithm Sound Synthesis" uses phase transition effect in HA. Because of this transition effect, totally new waveforms are produced.

  10. Contact Hamiltonian mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Bravetti, Alessandro, E-mail: alessandro.bravetti@iimas.unam.mx [Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, A. P. 70543, México, DF 04510 (Mexico); Cruz, Hans, E-mail: hans@ciencias.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, A. P. 70543, México, DF 04510 (Mexico); Tapias, Diego, E-mail: diego.tapias@nucleares.unam.mx [Facultad de Ciencias, Universidad Nacional Autónoma de México, A.P. 70543, México, DF 04510 (Mexico)

    2017-01-15

    In this work we introduce contact Hamiltonian mechanics, an extension of symplectic Hamiltonian mechanics, and show that it is a natural candidate for a geometric description of non-dissipative and dissipative systems. For this purpose we review in detail the major features of standard symplectic Hamiltonian dynamics and show that all of them can be generalized to the contact case.

  11. Circle diffeomorphisms forced by expanding circle maps

    NARCIS (Netherlands)

    Homburg, A.J.

    2012-01-01

    We discuss the dynamics of skew product maps defined by circle diffeomorphisms forced by expanding circle maps. We construct an open class of such systems that are robustly topologically mixing and for which almost all points in the same fiber converge under iteration. This property follows from the

  12. Mimicking the action of folding chaperones by Hamiltonian replica-exchange molecular dynamics simulations : Application in the refinement of de novo models

    NARCIS (Netherlands)

    Fan, Hao; Periole, Xavier; Mark, Alan E.

    The efficiency of using a variant of Hamiltonian replica-exchange molecular dynamics (Chaperone H-replica-exchange molecular dynamics [CH-REMD]) for the refinement of protein structural models generated de novo is investigated. In CH-REMD, the interaction between the protein and its environment,

  13. Hamiltonian dynamics of extended objects

    Science.gov (United States)

    Capovilla, R.; Guven, J.; Rojas, E.

    2004-12-01

    We consider relativistic extended objects described by a reparametrization-invariant local action that depends on the extrinsic curvature of the worldvolume swept out by the object as it evolves. We provide a Hamiltonian formulation of the dynamics of such higher derivative models which is motivated by the ADM formulation of general relativity. The canonical momenta are identified by looking at boundary behaviour under small deformations of the action; the relationship between the momentum conjugate to the embedding functions and the conserved momentum density is established. The canonical Hamiltonian is constructed explicitly; the constraints on the phase space, both primary and secondary, are identified and the role they play in the theory is described. The multipliers implementing the primary constraints are identified in terms of the ADM lapse and shift variables and Hamilton's equations are shown to be consistent with the Euler Lagrange equations.

  14. Hamiltonian dynamics of extended objects

    International Nuclear Information System (INIS)

    Capovilla, R; Guven, J; Rojas, E

    2004-01-01

    We consider relativistic extended objects described by a reparametrization-invariant local action that depends on the extrinsic curvature of the worldvolume swept out by the object as it evolves. We provide a Hamiltonian formulation of the dynamics of such higher derivative models which is motivated by the ADM formulation of general relativity. The canonical momenta are identified by looking at boundary behaviour under small deformations of the action; the relationship between the momentum conjugate to the embedding functions and the conserved momentum density is established. The canonical Hamiltonian is constructed explicitly; the constraints on the phase space, both primary and secondary, are identified and the role they play in the theory is described. The multipliers implementing the primary constraints are identified in terms of the ADM lapse and shift variables and Hamilton's equations are shown to be consistent with the Euler-Lagrange equations

  15. Hamiltonian dynamics of extended objects

    Energy Technology Data Exchange (ETDEWEB)

    Capovilla, R [Departamento de FIsica, Centro de Investigacion y de Estudios Avanzados del IPN, Apdo Postal 14-740, 07000 Mexico, DF (Mexico); Guven, J [School of Theoretical Physics, Dublin Institute for Advanced Studies, 10 Burlington Road, Dublin 4 (Ireland); Rojas, E [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apdo Postal 70-543, 04510 Mexico, DF (Mexico)

    2004-12-07

    We consider relativistic extended objects described by a reparametrization-invariant local action that depends on the extrinsic curvature of the worldvolume swept out by the object as it evolves. We provide a Hamiltonian formulation of the dynamics of such higher derivative models which is motivated by the ADM formulation of general relativity. The canonical momenta are identified by looking at boundary behaviour under small deformations of the action; the relationship between the momentum conjugate to the embedding functions and the conserved momentum density is established. The canonical Hamiltonian is constructed explicitly; the constraints on the phase space, both primary and secondary, are identified and the role they play in the theory is described. The multipliers implementing the primary constraints are identified in terms of the ADM lapse and shift variables and Hamilton's equations are shown to be consistent with the Euler-Lagrange equations.

  16. Envisioning New Technologies in Teacher Practice: Moving Forward, Circling Back Using a Teacher Action Research Approach. New Literacies and Digital Epistemologies. Volume 47

    Science.gov (United States)

    Strong-Wilson, Teresa, Ed.

    2012-01-01

    How do classroom teachers envision new technologies within their practice? In the conversation on incorporating new technologies into classrooms, teachers are often sidelined. "Envisioning New Technologies in Teacher Practice" looks at the complex ways in which teachers move forward to embrace change as well as how they circle back, continually…

  17. Renormalization of Hamiltonian QCD

    International Nuclear Information System (INIS)

    Andrasi, A.; Taylor, John C.

    2009-01-01

    We study to one-loop order the renormalization of QCD in the Coulomb gauge using the Hamiltonian formalism. Divergences occur which might require counter-terms outside the Hamiltonian formalism, but they can be cancelled by a redefinition of the Yang-Mills electric field.

  18. Magnetic field line Hamiltonian

    International Nuclear Information System (INIS)

    Boozer, A.H.

    1984-03-01

    The magnetic field line Hamiltonian and the associated canonical form for the magnetic field are important concepts both for understanding toroidal plasma physics and for practical calculations. A number of important properties of the canonical or Hamiltonian representation are derived and their importance is explained

  19. Geometry of Hamiltonian chaos

    DEFF Research Database (Denmark)

    Horwitz, Lawrence; Zion, Yossi Ben; Lewkowicz, Meir

    2007-01-01

    The characterization of chaotic Hamiltonian systems in terms of the curvature associated with a Riemannian metric tensor in the structure of the Hamiltonian is extended to a wide class of potential models of standard form through definition of a conformal metric. The geodesic equations reproduce ...

  20. Magnetic field line Hamiltonian

    International Nuclear Information System (INIS)

    Boozer, A.H.

    1985-02-01

    The basic properties of the Hamiltonian representation of magnetic fields in canonical form are reviewed. The theory of canonical magnetic perturbation theory is then developed and applied to the time evolution of a magnetic field embedded in a toroidal plasma. Finally, the extension of the energy principle to tearing modes, utilizing the magnetic field line Hamiltonian, is outlined

  1. Diagonalization of Hamiltonian; Diagonalization of Hamiltonian

    Energy Technology Data Exchange (ETDEWEB)

    Garrido, L M; Pascual, P

    1960-07-01

    We present a general method to diagonalized the Hamiltonian of particles of arbitrary spin. In particular we study the cases of spin 0,1/2, 1 and see that for spin 1/2 our transformation agrees with Foldy's and obtain the expression for different observables for particles of spin C and 1 in the new representation. (Author) 7 refs.

  2. General minisum circle location

    DEFF Research Database (Denmark)

    Körner, Mark; Brimberg, Jack; Juel, Henrik

    2009-01-01

    In our paper we approximate a set of given points by a general circle. More precisely, we consider the problem of locating and scaling the unit ball of some given norm k1 with respect to xed points on the plane such that the sum of weighted distances between the circle and the xed points is minim......In our paper we approximate a set of given points by a general circle. More precisely, we consider the problem of locating and scaling the unit ball of some given norm k1 with respect to xed points on the plane such that the sum of weighted distances between the circle and the xed points...

  3. Polygons and Their Circles

    Science.gov (United States)

    Stephenson, Paul

    2009-01-01

    In order to find its circumference, Archimedes famously boxed the circle between two polygons. Ending the first of a series of articles (MT179) with an aside, Francis Lopez-Real reverses the situation to ask: Which polygons can be boxed between two circles? (The official term for such polygons is "bicentric".) The sides of these polygons are…

  4. The three circle method

    International Nuclear Information System (INIS)

    Garncarek, Z.

    1989-01-01

    The three circle method in its general form is presented. The method is especially useful for investigation of shapes of agglomerations of objects. An example of its applications to investigation of galaxies distribution is given. 17 refs. (author)

  5. Renormalization of Hamiltonians

    International Nuclear Information System (INIS)

    Glazek, S.D.; Wilson, K.G.

    1993-01-01

    This paper presents a new renormalization procedure for Hamiltonians such as those of light-front field theory. The bare Hamiltonian with an arbitrarily large, but finite cutoff, is transformed by a specially chosen similarity transformation. The similarity transformation has two desirable features. First, the transformed Hamiltonian is band diagonal: in particular, all matrix elements vanish which would otherwise have caused transitions with big energy jumps, such as from a state of bounded energy to a state with an energy of the order of the cutoff. At the same time, neither the similarity transformation nor the transformed Hamiltonian, computed in perturbation theory, contain vanishing or near-vanishing energy denominators. Instead, energy differences in denominators can be replaced by energy sums for purposes of order of magnitude estimates needed to determine cutoff dependences. These two properties make it possible to determine relatively easily the list of counterterms needed to obtain finite low energy results (such as for eigenvalues). A simple model Hamiltonian is discussed to illustrate the method

  6. Theory of collective Hamiltonian

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Qingying

    1982-02-01

    Starting from the cranking model, we derive the nuclear collective Hamiltonian. We expand the total energy of the collective motion of the ground state of even--even nuclei in powers of the deformation parameter ..beta... In the first approximation, we only take the lowest-order non-vanished terms in the expansion. The collective Hamiltonian thus obtained rather differs from the A. Bohr's Hamiltonian obtained by the irrotational incompressible liquid drop model. If we neglect the coupling term between ..beta..-and ..gamma..-vibration, our Hamiltonian then has the same form as that of A. Bohr. But there is a difference between these collective parameters. Our collective parameters are determined by the state of motion of the nucleous in the nuclei. They are the microscopic expressions. On the contrary, A. Bohr's collective parameters are only the simple functions of the microscopic physical quantities (such as nuclear radius and surface tension, etc.), and independent of the state of motion of the nucleons in the nuclei. Furthermore, there exist the coupling term between ..beta..-and ..gamma..-vibration and the higher-order terms in our expansion. They can be treated as the perturbations. There are no such terms in A. Bohr's Hamiltonian. These perturbation terms will influence the rotational, vibrational spectra and the ..gamma..-transition process, etc.

  7. Time dependent drift Hamiltonian

    International Nuclear Information System (INIS)

    Boozer, A.H.

    1982-04-01

    The motion of individual charged particles in a given magnetic and an electric fields is discussed. An idea of a guiding center distribution function f is introduced. The guiding center distribution function is connected to the asymptotic Hamiltonian through the drift kinetic equation. The general non-stochastic magnetic field can be written in a contravariant and a covariant forms. The drift Hamiltonian is proposed, and the canonical gyroradius is presented. The proposed drift Hamiltonian agrees with Alfven's drift velocity to lowest non-vanishing order in the gyroradius. The relation between the exact, time dependent equations of motion and the guiding center equation is clarified by a Lagrangian analysis. The deduced Lagrangian represents the drift motion. (Kato, T.)

  8. Lagrangian and Hamiltonian dynamics

    CERN Document Server

    Mann, Peter

    2018-01-01

    An introductory textbook exploring the subject of Lagrangian and Hamiltonian dynamics, with a relaxed and self-contained setting. Lagrangian and Hamiltonian dynamics is the continuation of Newton's classical physics into new formalisms, each highlighting novel aspects of mechanics that gradually build in complexity to form the basis for almost all of theoretical physics. Lagrangian and Hamiltonian dynamics also acts as a gateway to more abstract concepts routed in differential geometry and field theories and can be used to introduce these subject areas to newcomers. Journeying in a self-contained manner from the very basics, through the fundamentals and onwards to the cutting edge of the subject, along the way the reader is supported by all the necessary background mathematics, fully worked examples, thoughtful and vibrant illustrations as well as an informal narrative and numerous fresh, modern and inter-disciplinary applications. The book contains some unusual topics for a classical mechanics textbook. Mo...

  9. Gravitational surface Hamiltonian and entropy quantization

    Directory of Open Access Journals (Sweden)

    Ashish Bakshi

    2017-02-01

    Full Text Available The surface Hamiltonian corresponding to the surface part of a gravitational action has xp structure where p is conjugate momentum of x. Moreover, it leads to TS on the horizon of a black hole. Here T and S are temperature and entropy of the horizon. Imposing the hermiticity condition we quantize this Hamiltonian. This leads to an equidistant spectrum of its eigenvalues. Using this we show that the entropy of the horizon is quantized. This analysis holds for any order of Lanczos–Lovelock gravity. For general relativity, the area spectrum is consistent with Bekenstein's observation. This provides a more robust confirmation of this earlier result as the calculation is based on the direct quantization of the Hamiltonian in the sense of usual quantum mechanics.

  10. Effective magnetic Hamiltonians

    Czech Academy of Sciences Publication Activity Database

    Drchal, Václav; Kudrnovský, Josef; Turek, I.

    2013-01-01

    Roč. 26, č. 5 (2013), s. 1997-2000 ISSN 1557-1939 R&D Projects: GA ČR GA202/09/0775 Institutional support: RVO:68378271 Keywords : effective magnetic Hamiltonian * ab initio * magnetic structure Subject RIV: BE - Theoretical Physics Impact factor: 0.930, year: 2013

  11. Adler endash Kostant endash Symes construction, bi-Hamiltonian manifolds, and KdV equations

    International Nuclear Information System (INIS)

    Guha, P.

    1997-01-01

    This paper focuses a relation between Adler endash Kostant endash Symes (AKS) theory applied to Fordy endash Kulish scheme and bi-Hamiltonian manifolds. The spirit of this paper is closely related to Casati endash Magri endash Pedroni work on Hamiltonian formulation of the KP equation. Here the KdV equation is deduced via the superposition of the Fordy endash Kulish scheme and AKS construction on the underlying current algebra C ∞ (S 1 ,g circle-times C[[λ

  12. Dissipative systems and Bateman's Hamiltonian

    International Nuclear Information System (INIS)

    Pedrosa, I.A.; Baseia, B.

    1983-01-01

    It is shown, by using canonical transformations, that one can construct Bateman's Hamiltonian from a Hamiltonian for a conservative system and obtain a clear physical interpretation which explains the ambiguities emerging from its application to describe dissipative systems. (Author) [pt

  13. Equivalence of Lagrangian and Hamiltonian BRST quantizations

    International Nuclear Information System (INIS)

    Grigoryan, G.V.; Grigoryan, R.P.; Tyutin, I.V.

    1992-01-01

    Two approaches to the quantization of gauge theories using BRST symmetry are widely used nowadays: the Lagrangian quantization, developed in (BV-quantization) and Hamiltonian quantization, formulated in (BFV-quantization). For all known examples of field theory (Yang-Mills theory, gravitation etc.) both schemes give equivalent results. However the equivalence of these approaches in general wasn't proved. The main obstacle in comparing of these formulations consists in the fact, that in Hamiltonian approach the number of ghost fields is equal to the number of all first-class constraints, while in the Lagrangian approach the number of ghosts is equal to the number of independent gauge symmetries, which is equal to the number of primary first-class constraints only. This paper is devoted to the proof of the equivalence of Lagrangian and Hamiltonian quantizations for the systems with first-class constraints only. This is achieved by a choice of special gauge in the Hamiltonian approach. It's shown, that after integration over redundant variables on the functional integral we come to effective action which is constructed according to rules for construction of the effective action in Lagrangian quantization scheme

  14. The Inner Circle Revisited

    DEFF Research Database (Denmark)

    Grau Larsen, Anton; Ellersgaard, Christoph

    2018-01-01

    in social networks, we identify a cohesive core group of 171 individuals within a corporate elite of 6154 board members of the top 1037 Danish corporations. A high degree of social homogeneity in gender, social background, education and career position underlines the cohesion of the inner circle. By mapping...

  15. Inside Larry's Circle

    Science.gov (United States)

    Arnold, Alice

    2009-01-01

    Last spring, students from several North Carolina middle schools were invited to participate in the annual Celebrate the Arts festival in Columbus Country. Larry Hewett, a local art teacher, had been selected to instruct the middle-school students. Larry's River Rock Circles project was made as the starting point for the Celebrate the Arts…

  16. Dynamics on the Circle

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 8; Issue 11. Dynamics on the Circle - Interval Dynamics and Rotation Number. Siddhartha Gadgil. General Article Volume 8 Issue 11 November 2003 pp 25-36. Fulltext. Click here to view fulltext PDF. Permanent link:

  17. Circles, Materiality and Movement

    Science.gov (United States)

    Chorney, Sean

    2017-01-01

    This paper approaches the concept of the circle through the framework of mathematics-as-becoming. This paper focuses specifically on how a concept can be thought of as a process, and on the implications that this might have for mathematics learning. Contrary to long-standing assumptions about mathematical concepts as ideal, inert, Platonic forms,…

  18. Complex Hamiltonian Dynamics

    CERN Document Server

    Bountis, Tassos

    2012-01-01

    This book introduces and explores modern developments in the well established field of Hamiltonian dynamical systems. It focuses on high degree-of-freedom systems and the transitional regimes between regular and chaotic motion. The role of nonlinear normal modes is highlighted and the importance of low-dimensional tori in the resolution of the famous FPU paradox is emphasized. Novel powerful numerical methods are used to study localization phenomena and distinguish order from strongly and weakly chaotic regimes. The emerging hierarchy of complex structures in such regimes gives rise to particularly long-lived patterns and phenomena called quasi-stationary states, which are explored in particular in the concrete setting of one-dimensional Hamiltonian lattices and physical applications in condensed matter systems.  The self-contained and pedagogical approach is blended with a unique balance between mathematical rigor, physics insights and concrete applications. End of chapter exercises and (more demanding) res...

  19. Noncanonical Hamiltonian mechanics

    International Nuclear Information System (INIS)

    Litteljohn, R.G.

    1986-01-01

    Noncanonical variables in Hamiltonian mechanics were first used by Lagrange in 1808. In spite of this, most work in Hamiltonian mechanics has been carried out in canonical variables, up to this day. One reason for this is that noncanonical coordinates are seldom needed for mechanical problems based on Lagrangians of the form L = T - V, where T is the kinetic energy and V is the potential energy. Of course, such Lagrangians arise naturally in celestial mechanics, and as a result they form the paradigms of nineteenth-century mechanics and have become enshrined in all the mechanics textbooks. Certain features of modern problems, however, lead to the use of noncanonical coordinates. Among these are issues of gauge invariance and singular Lagrange a Poisson structures. In addition, certain problems, like the flow of magnetic-field lines in physical space, are naturally formulated in terms of noncanonical coordinates. None of these features is present in the nineteenth-century paradigms of mechanics, but they do arise in problems involving particle motion in the presence of magnetic fields. For example, the motion of a particle in an electromagnetic wave is an important one in plasma physics, but the usual Hamiltonian formulation is gauge dependent. For this problem, noncanonical approaches based on Lagrangians in phase space lead to powerful computational techniques which are gauge invariant. In the limit of strong magnetic fields, particle motion becomes 'guiding-center motion'. Guiding-center motion is also best understood in terms of noncanonical coordinates. Finally the flow of magnetic-field lines through physical space is a Hamiltonian system which is best understood with noncanonical coordinates. No doubt many more systems will arise in the future for which these noncanonical techniques can be applied. (author)

  20. Instability in Hamiltonian systems

    Directory of Open Access Journals (Sweden)

    A. Pumarino

    2005-11-01

    Besides proving the existence of Arnold diffusion for a new family of three degrees of freedom Hamiltonian systems, another goal of this book is not only to show how Arnold-like results can be extended to substantially larger sets of parameters, but also how to obtain effective estimates on the splitting of separatrices size when the frequency of the perturbation belongs to open real sets.

  1. Discrete variational Hamiltonian mechanics

    International Nuclear Information System (INIS)

    Lall, S; West, M

    2006-01-01

    The main contribution of this paper is to present a canonical choice of a Hamiltonian theory corresponding to the theory of discrete Lagrangian mechanics. We make use of Lagrange duality and follow a path parallel to that used for construction of the Pontryagin principle in optimal control theory. We use duality results regarding sensitivity and separability to show the relationship between generating functions and symplectic integrators. We also discuss connections to optimal control theory and numerical algorithms

  2. Approximate symmetries of Hamiltonians

    Science.gov (United States)

    Chubb, Christopher T.; Flammia, Steven T.

    2017-08-01

    We explore the relationship between approximate symmetries of a gapped Hamiltonian and the structure of its ground space. We start by considering approximate symmetry operators, defined as unitary operators whose commutators with the Hamiltonian have norms that are sufficiently small. We show that when approximate symmetry operators can be restricted to the ground space while approximately preserving certain mutual commutation relations. We generalize the Stone-von Neumann theorem to matrices that approximately satisfy the canonical (Heisenberg-Weyl-type) commutation relations and use this to show that approximate symmetry operators can certify the degeneracy of the ground space even though they only approximately form a group. Importantly, the notions of "approximate" and "small" are all independent of the dimension of the ambient Hilbert space and depend only on the degeneracy in the ground space. Our analysis additionally holds for any gapped band of sufficiently small width in the excited spectrum of the Hamiltonian, and we discuss applications of these ideas to topological quantum phases of matter and topological quantum error correcting codes. Finally, in our analysis, we also provide an exponential improvement upon bounds concerning the existence of shared approximate eigenvectors of approximately commuting operators under an added normality constraint, which may be of independent interest.

  3. A game magically circling

    DEFF Research Database (Denmark)

    Ejsing-Duun, Stine

    2011-01-01

    This chapter analyses the relationship between players, the game world, and the ordinary world in alternative reality games (ARGs) and location-based games (LBGs). These games use technology to create a game world in the everyday scene. The topic of this chapter is the concept of the 'magic circle......', which defines the relationship between play and the ordinary world, and how this concept relates to a new kind of game....

  4. Hamiltonian kinetic theory of plasma ponderomotive processes

    International Nuclear Information System (INIS)

    McDonald, S.W.; Kaufman, A.N.

    1982-01-01

    The nonlinear nonresonant interaction of plasma waves and particles is formulated in Hamiltonian kinetic theory which treats the wave-action and particle distributions on an equal footing, thereby displaying reciprocity relations. In the quasistatic limit, a nonlinear wave-kinetic equation is obtained. The generality of the formalism allows for applications to arbitrary geometry, with the nonlinear effects expressed in terms of the linear susceptibility

  5. Hamiltonian kinetic theory of plasma ponderomotive processes

    International Nuclear Information System (INIS)

    McDonald, S.W.; Kaufman, A.N.

    1981-12-01

    The nonlinear nonresonant interaction of plasma waves and particles is formulated in a Hamiltonian kinetic theory which treats the wave-action and particle distributions on an equal footing, thereby displaying reciprocity relations. In the quasistatic limit, a nonlinear wave-kinetic equation is obtained. The generality of the formalism allows for applications to arbitrary geometry, with the nonlinear effects expressed in terms of the linear susceptibility

  6. Hamiltonian path integrals

    International Nuclear Information System (INIS)

    Prokhorov, L.V.

    1982-01-01

    Problems related to consideration of operator nonpermutability in Hamiltonian path integral (HPI) are considered in the review. Integrals are investigated using trajectories in configuration space (nonrelativistic quantum mechanics). Problems related to trajectory integrals in HPI phase space are discussed: the problem of operator nonpermutability consideration (extra terms problem) and corresponding equivalence rules; ambiguity of HPI usual recording; transition to curvilinear coordinates. Problem of quantization of dynamical systems with couplings has been studied. As in the case of canonical transformations, quantization of the systems with couplings of the first kind requires the consideration of extra terms

  7. Orbits and variational principles for conservative Hamiltonian systems

    International Nuclear Information System (INIS)

    Torres del Castillo, G.F.

    1989-01-01

    It is shown that for any Hamiltonian system whose Hamiltonian is time-independent the equations that determine the orbits followed by the system, without making reference to time, have the form of Hamilton's equations in a phase space of dimension two units smaller than that of the original phase space. By considering the cases of classical mechanics and of geometrical optics, it is shown that this result amounts, respectively, to Maupertuis' least action principle and to Fermat's principle. (Author)

  8. Hamiltonian constraint in polymer parametrized field theory

    International Nuclear Information System (INIS)

    Laddha, Alok; Varadarajan, Madhavan

    2011-01-01

    Recently, a generally covariant reformulation of two-dimensional flat spacetime free scalar field theory known as parametrized field theory was quantized using loop quantum gravity (LQG) type ''polymer'' representations. Physical states were constructed, without intermediate regularization structures, by averaging over the group of gauge transformations generated by the constraints, the constraint algebra being a Lie algebra. We consider classically equivalent combinations of these constraints corresponding to a diffeomorphism and a Hamiltonian constraint, which, as in gravity, define a Dirac algebra. Our treatment of the quantum constraints parallels that of LQG and obtains the following results, expected to be of use in the construction of the quantum dynamics of LQG: (i) the (triangulated) Hamiltonian constraint acts only on vertices, its construction involves some of the same ambiguities as in LQG and its action on diffeomorphism invariant states admits a continuum limit, (ii) if the regulating holonomies are in representations tailored to the edge labels of the state, all previously obtained physical states lie in the kernel of the Hamiltonian constraint, (iii) the commutator of two (density weight 1) Hamiltonian constraints as well as the operator correspondent of their classical Poisson bracket converge to zero in the continuum limit defined by diffeomorphism invariant states, and vanish on the Lewandowski-Marolf habitat, (iv) the rescaled density 2 Hamiltonian constraints and their commutator are ill-defined on the Lewandowski-Marolf habitat despite the well-definedness of the operator correspondent of their classical Poisson bracket there, (v) there is a new habitat which supports a nontrivial representation of the Poisson-Lie algebra of density 2 constraints.

  9. Robust online Hamiltonian learning

    International Nuclear Information System (INIS)

    Granade, Christopher E; Ferrie, Christopher; Wiebe, Nathan; Cory, D G

    2012-01-01

    In this work we combine two distinct machine learning methodologies, sequential Monte Carlo and Bayesian experimental design, and apply them to the problem of inferring the dynamical parameters of a quantum system. We design the algorithm with practicality in mind by including parameters that control trade-offs between the requirements on computational and experimental resources. The algorithm can be implemented online (during experimental data collection), avoiding the need for storage and post-processing. Most importantly, our algorithm is capable of learning Hamiltonian parameters even when the parameters change from experiment-to-experiment, and also when additional noise processes are present and unknown. The algorithm also numerically estimates the Cramer–Rao lower bound, certifying its own performance. (paper)

  10. Convexity properties of Hamiltonian group actions

    CERN Document Server

    Guillemin, Victor

    2005-01-01

    This is a monograph on convexity properties of moment mappings in symplectic geometry. The fundamental result in this subject is the Kirwan convexity theorem, which describes the image of a moment map in terms of linear inequalities. This theorem bears a close relationship to perplexing old puzzles from linear algebra, such as the Horn problem on sums of Hermitian matrices, on which considerable progress has been made in recent years following a breakthrough by Klyachko. The book presents a simple local model for the moment polytope, valid in the "generic&rdquo case, and an elementary Morse-theoretic argument deriving the Klyachko inequalities and some of their generalizations. It reviews various infinite-dimensional manifestations of moment convexity, such as the Kostant type theorems for orbits of a loop group (due to Atiyah and Pressley) or a symplectomorphism group (due to Bloch, Flaschka and Ratiu). Finally, it gives an account of a new convexity theorem for moment map images of orbits of a Borel sub...

  11. Recumbent Stone Circles

    Science.gov (United States)

    Ruggles, Clive L. N.

    During the 1970s and early 1980s, British archaeoastronomers were striving to bridge the interpretative gulf between the "megalithic observatories" of Alexander Thom and an archaeological mainstream that, generally speaking, was hostile to any mention of astronomy in relation to the megalithic monuments of Neolithic and Early Bronze Age Britain. The Scottish recumbent stone circles (RSCs) came to represent an example where sounder methodology could overcome many of the data selection issues that had beset earlier studies and, with due restraint, produce credible interpretations. Systematic studies of their orientations consistently concluded that the RSCs had a strong lunar connection, and it was widely envisaged that they were the setting for ceremonies associated with the appearance of the moon over the recumbent stone. Other evidence such as the presence of white quartz and the spatial distribution of cupmarks appeared to back up this conclusion. New archaeological investigations since 1999 have challenged and modified these conclusions, confirming in particular that the circles were built to enclose cairns rather than to demarcate open spaces. Yet the restricted pattern of orientations of these structures could only have been achieved by reference to the basic diurnal motions of the skies, and orientation in relation to simple observations of the midsummer moon remains the most likely reading of the alignment evidence taken as a whole. On the other hand, a consideration of the broader context, which includes the nearby Clava cairns, highlights instead the symbolic importance of the sun.

  12. Chromatic roots and hamiltonian paths

    DEFF Research Database (Denmark)

    Thomassen, Carsten

    2000-01-01

    We present a new connection between colorings and hamiltonian paths: If the chromatic polynomial of a graph has a noninteger root less than or equal to t(n) = 2/3 + 1/3 (3)root (26 + 6 root (33)) + 1/3 (3)root (26 - 6 root (33)) = 1.29559.... then the graph has no hamiltonian path. This result...

  13. On squaring the primary constraints in a generalized Hamiltonian dynamics

    International Nuclear Information System (INIS)

    Nesterenko, V.V.

    1993-01-01

    Consideration of the model of the relativistic particle with curvature and torsion in the three-dimensional space-time shows that the squaring of the primary constraints entails a wrong result. The complete set of the Hamiltonian constraints arising here corresponds to another model with an action similar but not identical with the initial action. 16 refs

  14. Hamiltonian description of the ideal fluid

    International Nuclear Information System (INIS)

    Morrison, P.J.

    1998-01-01

    The Hamiltonian viewpoint of fluid mechanical systems with few and infinite number of degrees of freedom is described. Rudimentary concepts of finite-degree-of-freedom Hamiltonian dynamics are reviewed, in the context of the passive advection of a scalar or tracer field by a fluid. The notions of integrability, invariant-tori, chaos, overlap criteria, and invariant-tori breakup are described in this context. Preparatory to the introduction of field theories, systems with an infinite number of degrees of freedom, elements of functional calculus and action principles of mechanics are reviewed. The action principle for the ideal compressible fluid is described in terms of Lagrangian or material variables. Hamiltonian systems in terms of noncanonical variables are presented, including several examples of Eulerian or inviscid fluid dynamics. Lie group theory sufficient for the treatment of reduction is reviewed. The reduction from Lagrangian to Eulerian variables is treated along with Clebsch variable decompositions. Stability in the canonical and noncanonical Hamiltonian contexts is described. Sufficient conditions for stability, such as Rayleigh-like criteria, are seen to be only sufficient in the general case because of the existence of negative-energy modes, which are possessed by interesting fluid equilibria. Linearly stable equilibria with negative energy modes are argued to be unstable when nonlinearity or dissipation is added. The energy-Casimir method is discussed and a variant of it that depends upon the notion of dynamical accessibility is described. The energy content of a perturbation about a general fluid equilibrium is calculated using three methods. copyright 1998 The American Physical Society

  15. Hamiltonian Approach to 2+1 Dimensional Gravity

    Science.gov (United States)

    Cantini, L.; Menotti, P.; Seminara, D.

    2002-12-01

    It is shown that the reduced particle dynamics of 2+1 dimensional gravity in the maximally slicing gauge has hamiltonian form. We give the exact diffeomorphism which transforms the spinning cone metric in the Deser, Jackiw, 't Hooft gauge to the maximally slicing gauge. It is explicitly shown that the boundary term in the action, written in hamiltonian form gives the hamiltonian for the reduced particle dynamics. The quantum mechanical translation of the two particle hamiltonian gives rise to the logarithm of the Laplace-Beltrami operator on a cone whose angular deficit is given by the total energy of the system irrespective of the masses of the particles thus proving at the quantum level a conjecture by 't Hooft on the two particle dynamics.

  16. A partial Hamiltonian approach for current value Hamiltonian systems

    Science.gov (United States)

    Naz, R.; Mahomed, F. M.; Chaudhry, Azam

    2014-10-01

    We develop a partial Hamiltonian framework to obtain reductions and closed-form solutions via first integrals of current value Hamiltonian systems of ordinary differential equations (ODEs). The approach is algorithmic and applies to many state and costate variables of the current value Hamiltonian. However, we apply the method to models with one control, one state and one costate variable to illustrate its effectiveness. The current value Hamiltonian systems arise in economic growth theory and other economic models. We explain our approach with the help of a simple illustrative example and then apply it to two widely used economic growth models: the Ramsey model with a constant relative risk aversion (CRRA) utility function and Cobb Douglas technology and a one-sector AK model of endogenous growth are considered. We show that our newly developed systematic approach can be used to deduce results given in the literature and also to find new solutions.

  17. Domain Discretization and Circle Packings

    DEFF Research Database (Denmark)

    Dias, Kealey

    A circle packing is a configuration of circles which are tangent with one another in a prescribed pattern determined by a combinatorial triangulation, where the configuration fills a planar domain or a two-dimensional surface. The vertices in the triangulation correspond to centers of circles...... to domain discretization problems such as triangulation and unstructured mesh generation techniques. We wish to ask ourselves the question: given a cloud of points in the plane (we restrict ourselves to planar domains), is it possible to construct a circle packing preserving the positions of the vertices...... and constrained meshes having predefined vertices as constraints. A standard method of two-dimensional mesh generation involves conformal mapping of the surface or domain to standardized shapes, such as a disk. Since circle packing is a new technique for constructing discrete conformal mappings, it is possible...

  18. Alternative Hamiltonian representation for gravity

    Energy Technology Data Exchange (ETDEWEB)

    Rosas-RodrIguez, R [Instituto de Fisica, Universidad Autonoma de Puebla, Apdo. Postal J-48, 72570, Puebla, Pue. (Mexico)

    2007-11-15

    By using a Hamiltonian formalism for fields wider than the canonical one, we write the Einstein vacuum field equations in terms of alternative variables. This variables emerge from the Ashtekar's formalism for gravity.

  19. Alternative Hamiltonian representation for gravity

    International Nuclear Information System (INIS)

    Rosas-RodrIguez, R

    2007-01-01

    By using a Hamiltonian formalism for fields wider than the canonical one, we write the Einstein vacuum field equations in terms of alternative variables. This variables emerge from the Ashtekar's formalism for gravity

  20. Scattering theory for Stark Hamiltonians

    International Nuclear Information System (INIS)

    Jensen, Arne

    1994-01-01

    An introduction to the spectral and scattering theory for Schroedinger operators is given. An abstract short range scattering theory is developed. It is applied to perturbations of the Laplacian. Particular attention is paid to the study of Stark Hamiltonians. The main result is an explanation of the discrepancy between the classical and the quantum scattering theory for one-dimensional Stark Hamiltonians. (author). 47 refs

  1. Resonant driving of a nonlinear Hamiltonian system

    International Nuclear Information System (INIS)

    Palmisano, Carlo; Gervino, Gianpiero; Balma, Massimo; Devona, Dorina; Wimberger, Sandro

    2013-01-01

    As a proof of principle, we show how a classical nonlinear Hamiltonian system can be driven resonantly over reasonably long times by appropriately shaped pulses. To keep the parameter space reasonably small, we limit ourselves to a driving force which consists of periodic pulses additionally modulated by a sinusoidal function. The main observables are the average increase of kinetic energy and of the action variable (of the non-driven system) with time. Applications of our scheme aim for driving high frequencies of a nonlinear system with a fixed modulation signal.

  2. CIRCLE Enhancement After Myopic SMILE.

    Science.gov (United States)

    Siedlecki, Jakob; Luft, Nikolaus; Mayer, Wolfgang J; Siedlecki, Martin; Kook, Daniel; Meyer, Bertram; Bechmann, Martin; Wiltfang, Rainer; Priglinger, Siegfried G; Dirisamer, Martin

    2018-05-01

    To report the outcomes of enhancement after small incision lenticule extraction (SMILE) using the VisuMax CIRCLE option (Carl Zeiss Meditec AG, Jena, Germany), which converts the SMILE cap into a femtosecond LASIK flap for secondary excimer laser application. Of 2,065 SMILE procedures, 22 eyes (1.1%) re-treated with CIRCLE with a follow-up of 3 months were included in the analysis. SMILE was performed in the usual manner. For re-treatment, the CIRCLE procedure was performed with pattern D flap creation on the VisuMax system and subsequent excimer laser ablation with a Zeiss MEL 90 laser (Carl Zeiss Meditec) with plano target in all cases. Spherical equivalent was -5.56 ± 2.22 diopters (D) before SMILE and -0.51 ± 1.08 D before CIRCLE. CIRCLE enhancement was performed after a mean of 10.0 ± 7.9 months, allowed for safe flap lifting in all eyes, and resulted in a final manifest refraction spherical equivalent of 0.18 ± 0.31 D at 3 months (P line of UDVA. Corrected distance visual acuity (CDVA) remained unchanged at all time points (before vs after CIRCLE, P = .40). Two eyes (9.1 %) lost one line of CDVA; no eye lost two or more lines. The safety and efficacy indices were 1.03 and 0.97 at 3 months. The CIRCLE procedure represents an effective re-treatment option after SMILE. Compared to surface ablation re-treatment after SMILE, CIRCLE seems to offer advantages in respect to speed of visual recovery, safety, and predictability, but at the price of flap creation. [J Refract Surg. 2018;34(5):304-309.]. Copyright 2018, SLACK Incorporated.

  3. First principles of Hamiltonian medicine.

    Science.gov (United States)

    Crespi, Bernard; Foster, Kevin; Úbeda, Francisco

    2014-05-19

    We introduce the field of Hamiltonian medicine, which centres on the roles of genetic relatedness in human health and disease. Hamiltonian medicine represents the application of basic social-evolution theory, for interactions involving kinship, to core issues in medicine such as pathogens, cancer, optimal growth and mental illness. It encompasses three domains, which involve conflict and cooperation between: (i) microbes or cancer cells, within humans, (ii) genes expressed in humans, (iii) human individuals. A set of six core principles, based on these domains and their interfaces, serves to conceptually organize the field, and contextualize illustrative examples. The primary usefulness of Hamiltonian medicine is that, like Darwinian medicine more generally, it provides novel insights into what data will be productive to collect, to address important clinical and public health problems. Our synthesis of this nascent field is intended predominantly for evolutionary and behavioural biologists who aspire to address questions directly relevant to human health and disease.

  4. Variational identities and Hamiltonian structures

    International Nuclear Information System (INIS)

    Ma Wenxiu

    2010-01-01

    This report is concerned with Hamiltonian structures of classical and super soliton hierarchies. In the classical case, basic tools are variational identities associated with continuous and discrete matrix spectral problems, targeted to soliton equations derived from zero curvature equations over general Lie algebras, both semisimple and non-semisimple. In the super case, a supertrace identity is presented for constructing Hamiltonian structures of super soliton equations associated with Lie superalgebras. We illustrate the general theories by the KdV hierarchy, the Volterra lattice hierarchy, the super AKNS hierarchy, and two hierarchies of dark KdV equations and dark Volterra lattices. The resulting Hamiltonian structures show the commutativity of each hierarchy discussed and thus the existence of infinitely many commuting symmetries and conservation laws.

  5. Dynamical decoupling of unbounded Hamiltonians

    Science.gov (United States)

    Arenz, Christian; Burgarth, Daniel; Facchi, Paolo; Hillier, Robin

    2018-03-01

    We investigate the possibility to suppress interactions between a finite dimensional system and an infinite dimensional environment through a fast sequence of unitary kicks on the finite dimensional system. This method, called dynamical decoupling, is known to work for bounded interactions, but physical environments such as bosonic heat baths are usually modeled with unbounded interactions; hence, here, we initiate a systematic study of dynamical decoupling for unbounded operators. We develop a sufficient decoupling criterion for arbitrary Hamiltonians and a necessary decoupling criterion for semibounded Hamiltonians. We give examples for unbounded Hamiltonians where decoupling works and the limiting evolution as well as the convergence speed can be explicitly computed. We show that decoupling does not always work for unbounded interactions and we provide both physically and mathematically motivated examples.

  6. Invariant metrics for Hamiltonian systems

    International Nuclear Information System (INIS)

    Rangarajan, G.; Dragt, A.J.; Neri, F.

    1991-05-01

    In this paper, invariant metrics are constructed for Hamiltonian systems. These metrics give rise to norms on the space of homeogeneous polynomials of phase-space variables. For an accelerator lattice described by a Hamiltonian, these norms characterize the nonlinear content of the lattice. Therefore, the performance of the lattice can be improved by minimizing the norm as a function of parameters describing the beam-line elements in the lattice. A four-fold increase in the dynamic aperture of a model FODO cell is obtained using this procedure. 7 refs

  7. Hamiltonian approach to second order gauge invariant cosmological perturbations

    Science.gov (United States)

    Domènech, Guillem; Sasaki, Misao

    2018-01-01

    In view of growing interest in tensor modes and their possible detection, we clarify the definition of tensor modes up to 2nd order in perturbation theory within the Hamiltonian formalism. Like in gauge theory, in cosmology the Hamiltonian is a suitable and consistent approach to reduce the gauge degrees of freedom. In this paper we employ the Faddeev-Jackiw method of Hamiltonian reduction. An appropriate set of gauge invariant variables that describe the dynamical degrees of freedom may be obtained by suitable canonical transformations in the phase space. We derive a set of gauge invariant variables up to 2nd order in perturbation expansion and for the first time we reduce the 3rd order action without adding gauge fixing terms. In particular, we are able to show the relation between the uniform-ϕ and Newtonian slicings, and study the difference in the definition of tensor modes in these two slicings.

  8. NATO Advanced Study Institute on Hamiltonian Dynamical Systems and Applications

    CERN Document Server

    2008-01-01

    Physical laws are for the most part expressed in terms of differential equations, and natural classes of these are in the form of conservation laws or of problems of the calculus of variations for an action functional. These problems can generally be posed as Hamiltonian systems, whether dynamical systems on finite dimensional phase space as in classical mechanics, or partial differential equations (PDE) which are naturally of infinitely many degrees of freedom. This volume is the collected and extended notes from the lectures on Hamiltonian dynamical systems and their applications that were given at the NATO Advanced Study Institute in Montreal in 2007. Many aspects of the modern theory of the subject were covered at this event, including low dimensional problems as well as the theory of Hamiltonian systems in infinite dimensional phase space; these are described in depth in this volume. Applications are also presented to several important areas of research, including problems in classical mechanics, continu...

  9. Derivation of Hamiltonians for accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Symon, K.R.

    1997-09-12

    In this report various forms of the Hamiltonian for particle motion in an accelerator will be derived. Except where noted, the treatment will apply generally to linear and circular accelerators, storage rings, and beamlines. The generic term accelerator will be used to refer to any of these devices. The author will use the usual accelerator coordinate system, which will be introduced first, along with a list of handy formulas. He then starts from the general Hamiltonian for a particle in an electromagnetic field, using the accelerator coordinate system, with time t as independent variable. He switches to a form more convenient for most purposes using the distance s along the reference orbit as independent variable. In section 2, formulas will be derived for the vector potentials that describe the various lattice components. In sections 3, 4, and 5, special forms of the Hamiltonian will be derived for transverse horizontal and vertical motion, for longitudinal motion, and for synchrobetatron coupling of horizontal and longitudinal motions. Hamiltonians will be expanded to fourth order in the variables.

  10. Hamiltonian cycles in polyhedral maps

    Indian Academy of Sciences (India)

    We present a necessary and sufficient condition for existence of a contractible, non-separating and non-contractible separating Hamiltonian cycle in the edge graph of polyhedral maps on surfaces.We also present algorithms to construct such cycles whenever it exists where one of them is linear time and another is ...

  11. Maslov index for Hamiltonian systems

    Directory of Open Access Journals (Sweden)

    Alessandro Portaluri

    2008-01-01

    Full Text Available The aim of this article is to give an explicit formula for computing the Maslov index of the fundamental solutions of linear autonomous Hamiltonian systems in terms of the Conley-Zehnder index and the map time one flow.

  12. Hamiltonian formulation of the supermembrane

    International Nuclear Information System (INIS)

    Bergshoeff, E.; Sezgin, E.; Tanii, Y.

    1987-06-01

    The Hamiltonian formulation of the supermembrane theory in eleven dimensions is given. The covariant split of the first and second class constraints is exhibited, and their Dirac brackets are computed. Gauge conditions are imposed in such a way that the reparametrizations of the membrane with divergence free 2-vectors are unfixed. (author). 10 refs

  13. Quality Circles and nuclear energy

    International Nuclear Information System (INIS)

    Wiesendanger, J.; Raveleau, G.

    1983-01-01

    A Circle of Quality is a small group of workers or employees made up of from five to ten volunteers from a given shop, office, or factory team, or sharing identical concerns. For every problem that is taken under advisement, these groups draft a solution, test its validity and propose its application, eventually monitoring its implementation and assessing the results achieved. The problems dealt with and the improvements introduced frequently concern details of the personnel's work routines, product quality, tool reliability. But these improvements become so numerous that, eventually, it is the efficiency of an entire office, shop, department or plant, and hence that of the company itself, that is enhanced thereby. Some of the features of a circle of quality are given. A Circle of quality is a contribution to the reliability of the individual, as also to innovation [fr

  14. Hamiltonian thermodynamics of charged three-dimensional dilatonic black holes

    International Nuclear Information System (INIS)

    Dias, Goncalo A. S.; Lemos, Jose P. S.

    2008-01-01

    The action for a class of three-dimensional dilaton-gravity theories, with an electromagnetic Maxwell field and a cosmological constant, can be recast in a Brans-Dicke-Maxwell type action, with its free ω parameter. For a negative cosmological constant, these theories have static, electrically charged, and spherically symmetric black hole solutions. Those theories with well formulated asymptotics are studied through a Hamiltonian formalism, and their thermodynamical properties are found out. The theories studied are general relativity (ω→±∞), a dimensionally reduced cylindrical four-dimensional general relativity theory (ω=0), and a theory representing a class of theories (ω=-3), all with a Maxwell term. The Hamiltonian formalism is set up in three dimensions through foliations on the right region of the Carter-Penrose diagram, with the bifurcation 1-sphere as the left boundary, and anti-de Sitter infinity as the right boundary. The metric functions on the foliated hypersurfaces and the radial component of the vector potential one-form are the canonical coordinates. The Hamiltonian action is written, the Hamiltonian being a sum of constraints. One finds a new action which yields an unconstrained theory with two pairs of canonical coordinates (M,P M ;Q,P Q ), where M is the mass parameter, which for ω M is the conjugate momenta of M, Q is the charge parameter, and P Q is its conjugate momentum. The resulting Hamiltonian is a sum of boundary terms only. A quantization of the theory is performed. The Schroedinger evolution operator is constructed, the trace is taken, and the partition function of the grand canonical ensemble is obtained, where the chemical potential is the scalar electric field φ. Like the uncharged cases studied previously, the charged black hole entropies differ, in general, from the usual quarter of the horizon area due to the dilaton.

  15. Mathematical Modeling of Constrained Hamiltonian Systems

    NARCIS (Netherlands)

    Schaft, A.J. van der; Maschke, B.M.

    1995-01-01

    Network modelling of unconstrained energy conserving physical systems leads to an intrinsic generalized Hamiltonian formulation of the dynamics. Constrained energy conserving physical systems are directly modelled as implicit Hamiltonian systems with regard to a generalized Dirac structure on the

  16. Switzerland's circle squaring

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    On September 23 last year, in a national referendum, environmentalists won the right to a new Energy Article in the Swiss Constitution, and anti-nuclear forces triumphed again by imposing a 10-year moratorium on new nuclear power stations. The dilemma now facing the energy minister how to ensure Swiss prosperity while working within the new conditions restricting energy use. A Swiss Action Programme ''Energy 2000'' has been drawn up. The Programme closely corresponds to one drawn up by the four parties of the national coalition government. Its objectives seem modest: stabilisation at 1990 levels of the total fossil energy consumption and CO 2 emissions by 2000, with reduction thereafter; slowing the growth of electricity consumption in an attempt to stabilise demand by 2000; a ''significant increase'' in the contribution of renewable energy and hydropower; and refurbishment and life extension of nuclear plant. (author)

  17. Geometric Hamiltonian structures and perturbation theory

    International Nuclear Information System (INIS)

    Omohundro, S.

    1984-08-01

    We have been engaged in a program of investigating the Hamiltonian structure of the various perturbation theories used in practice. We describe the geometry of a Hamiltonian structure for non-singular perturbation theory applied to Hamiltonian systems on symplectic manifolds and the connection with singular perturbation techniques based on the method of averaging

  18. Notch filters for port-Hamiltonian systems

    NARCIS (Netherlands)

    Dirksz, D.A.; Scherpen, J.M.A.; van der Schaft, A.J.; Steinbuch, M.

    2012-01-01

    In this paper a standard notch filter is modeled in the port-Hamiltonian framework. By having such a port-Hamiltonian description it is proven that the notch filter is a passive system. The notch filter can then be interconnected with another (nonlinear) port-Hamiltonian system, while preserving the

  19. Constructing Dense Graphs with Unique Hamiltonian Cycles

    Science.gov (United States)

    Lynch, Mark A. M.

    2012-01-01

    It is not difficult to construct dense graphs containing Hamiltonian cycles, but it is difficult to generate dense graphs that are guaranteed to contain a unique Hamiltonian cycle. This article presents an algorithm for generating arbitrarily large simple graphs containing "unique" Hamiltonian cycles. These graphs can be turned into dense graphs…

  20. The Hamiltonian of QED. Zero mode

    International Nuclear Information System (INIS)

    Zastavenko, L.G.

    1990-01-01

    We start with the standard QED Lagrangian. New derivation of the spinor QED Hamiltonian is given. We have taken into account the zero mode. Our derivation is faultless from the point of view of gauge invariance. It gives important corrections to the standard QED Hamiltonian. Our derivation of the Hamiltonian can be generalized to the case of QCD. 5 refs

  1. 2. A Circle of ideas

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 2. Geometry A Circle of Ideas. Kapil H Paranjape. Series Article Volume 1 Issue 2 February 1996 pp 26-31. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/001/02/0026-0031. Author Affiliations.

  2. On a Family of Circles

    Science.gov (United States)

    Feeman, Timothy G.

    2011-01-01

    We generalize a standard example from precalculus and calculus texts to give a simple description in polar coordinates of any circle that passes through the origin. We discuss an occurrence of this formula in the context of medical imaging. (Contains 1 figure.)

  3. Queuing systems on a circle

    NARCIS (Netherlands)

    Kroese, Dirk; Schmidt, Volker

    1993-01-01

    Consider a ring on which customers arrive according to a Poisson process. Arriving customers drop somewhere on the circle and wait there for a server who travels on the ring. Whenever this server encounters a customer, he stops and serves the customer according to an arbitrary service time

  4. Hamiltonian PDEs and Frobenius manifolds

    International Nuclear Information System (INIS)

    Dubrovin, Boris A

    2008-01-01

    In the first part of this paper the theory of Frobenius manifolds is applied to the problem of classification of Hamiltonian systems of partial differential equations depending on a small parameter. Also developed is a deformation theory of integrable hierarchies including the subclass of integrable hierarchies of topological type. Many well-known examples of integrable hierarchies, such as the Korteweg-de Vries, non-linear Schroedinger, Toda, Boussinesq equations, and so on, belong to this subclass that also contains new integrable hierarchies. Some of these new integrable hierarchies may be important for applications. Properties of the solutions to these equations are studied in the second part. Consideration is given to the comparative study of the local properties of perturbed and unperturbed solutions near a point of gradient catastrophe. A Universality Conjecture is formulated describing the various types of critical behaviour of solutions to perturbed Hamiltonian systems near the point of gradient catastrophe of the unperturbed solution.

  5. Hamiltonian PDEs and Frobenius manifolds

    Energy Technology Data Exchange (ETDEWEB)

    Dubrovin, Boris A [Steklov Mathematical Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2008-12-31

    In the first part of this paper the theory of Frobenius manifolds is applied to the problem of classification of Hamiltonian systems of partial differential equations depending on a small parameter. Also developed is a deformation theory of integrable hierarchies including the subclass of integrable hierarchies of topological type. Many well-known examples of integrable hierarchies, such as the Korteweg-de Vries, non-linear Schroedinger, Toda, Boussinesq equations, and so on, belong to this subclass that also contains new integrable hierarchies. Some of these new integrable hierarchies may be important for applications. Properties of the solutions to these equations are studied in the second part. Consideration is given to the comparative study of the local properties of perturbed and unperturbed solutions near a point of gradient catastrophe. A Universality Conjecture is formulated describing the various types of critical behaviour of solutions to perturbed Hamiltonian systems near the point of gradient catastrophe of the unperturbed solution.

  6. Weak KAM for commuting Hamiltonians

    International Nuclear Information System (INIS)

    Zavidovique, M

    2010-01-01

    For two commuting Tonelli Hamiltonians, we recover the commutation of the Lax–Oleinik semi-groups, a result of Barles and Tourin (2001 Indiana Univ. Math. J. 50 1523–44), using a direct geometrical method (Stoke's theorem). We also obtain a 'generalization' of a theorem of Maderna (2002 Bull. Soc. Math. France 130 493–506). More precisely, we prove that if the phase space is the cotangent of a compact manifold then the weak KAM solutions (or viscosity solutions of the critical stationary Hamilton–Jacobi equation) for G and for H are the same. As a corollary we obtain the equality of the Aubry sets and of the Peierls barrier. This is also related to works of Sorrentino (2009 On the Integrability of Tonelli Hamiltonians Preprint) and Bernard (2007 Duke Math. J. 136 401–20)

  7. A Hamiltonian approach to Thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Baldiotti, M.C., E-mail: baldiotti@uel.br [Departamento de Física, Universidade Estadual de Londrina, 86051-990, Londrina-PR (Brazil); Fresneda, R., E-mail: rodrigo.fresneda@ufabc.edu.br [Universidade Federal do ABC, Av. dos Estados 5001, 09210-580, Santo André-SP (Brazil); Molina, C., E-mail: cmolina@usp.br [Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Av. Arlindo Bettio 1000, CEP 03828-000, São Paulo-SP (Brazil)

    2016-10-15

    In the present work we develop a strictly Hamiltonian approach to Thermodynamics. A thermodynamic description based on symplectic geometry is introduced, where all thermodynamic processes can be described within the framework of Analytic Mechanics. Our proposal is constructed on top of a usual symplectic manifold, where phase space is even dimensional and one has well-defined Poisson brackets. The main idea is the introduction of an extended phase space where thermodynamic equations of state are realized as constraints. We are then able to apply the canonical transformation toolkit to thermodynamic problems. Throughout this development, Dirac’s theory of constrained systems is extensively used. To illustrate the formalism, we consider paradigmatic examples, namely, the ideal, van der Waals and Clausius gases. - Highlights: • A strictly Hamiltonian approach to Thermodynamics is proposed. • Dirac’s theory of constrained systems is extensively used. • Thermodynamic equations of state are realized as constraints. • Thermodynamic potentials are related by canonical transformations.

  8. Hamiltonian description of bubble dynamics

    International Nuclear Information System (INIS)

    Maksimov, A. O.

    2008-01-01

    The dynamics of a nonspherical bubble in a liquid is described within the Hamiltonian formalism. Primary attention is focused on the introduction of the canonical variables into the computational algorithm. The expansion of the Dirichlet-Neumann operator in powers of the displacement of a bubble wall from an equilibrium position is obtained in the explicit form. The first three terms (more specifically, the second-, third-, and fourth-order terms) in the expansion of the Hamiltonian in powers of the canonical variables are determined. These terms describe the spectrum and interaction of three essentially different modes, i.e., monopole oscillations (pulsations), dipole oscillations (translational motions), and surface oscillations. The cubic nonlinearity is analyzed for the problem associated with the generation of Faraday ripples on the wall of a bubble in an acoustic field. The possibility of decay processes occurring in the course of interaction of surface oscillations for the first fifteen (experimentally observed) modes is investigated.

  9. A Hamiltonian approach to Thermodynamics

    International Nuclear Information System (INIS)

    Baldiotti, M.C.; Fresneda, R.; Molina, C.

    2016-01-01

    In the present work we develop a strictly Hamiltonian approach to Thermodynamics. A thermodynamic description based on symplectic geometry is introduced, where all thermodynamic processes can be described within the framework of Analytic Mechanics. Our proposal is constructed on top of a usual symplectic manifold, where phase space is even dimensional and one has well-defined Poisson brackets. The main idea is the introduction of an extended phase space where thermodynamic equations of state are realized as constraints. We are then able to apply the canonical transformation toolkit to thermodynamic problems. Throughout this development, Dirac’s theory of constrained systems is extensively used. To illustrate the formalism, we consider paradigmatic examples, namely, the ideal, van der Waals and Clausius gases. - Highlights: • A strictly Hamiltonian approach to Thermodynamics is proposed. • Dirac’s theory of constrained systems is extensively used. • Thermodynamic equations of state are realized as constraints. • Thermodynamic potentials are related by canonical transformations.

  10. On the domain of the Nelson Hamiltonian

    Science.gov (United States)

    Griesemer, M.; Wünsch, A.

    2018-04-01

    The Nelson Hamiltonian is unitarily equivalent to a Hamiltonian defined through a closed, semibounded quadratic form, the unitary transformation being explicitly known and due to Gross. In this paper, we study the mapping properties of the Gross-transform in order to characterize the regularity properties of vectors in the form domain of the Nelson Hamiltonian. Since the operator domain is a subset of the form domain, our results apply to vectors in the domain of the Hamiltonian as well. This work is a continuation of our previous work on the Fröhlich Hamiltonian.

  11. In the vicious circle of fear

    International Nuclear Information System (INIS)

    Zischka, A.

    1980-01-01

    Fear is the great driving force, the basic effect, without which there would be no adaption to new living conditions, and no provision for the future. But fear has a positive influence only as long as it does not gain the upper hand, for then it makes human beings blind and stifles activity. What is important, and will remain so, is the equilibrium between fear and courage, caution and the desire for action, optimism und pessimism. This equilibrium has now been disturbed in the western countries - and only here. Our present fears give rise to hardly any positive measures, but prevent provision for the future. We are threatened with failure due to the manipulated conversion of fear from the maintenance of life to an effect which destroys life. In this way we got into a vicious circle of fear: we must try to weaken the imagined dangers by emphasising the true conditions. The author discusses how the viscious circle can be broken. (orig.) 891 UA/orig. 892 MKO [de

  12. Hamiltonian systems in accelerator physics

    International Nuclear Information System (INIS)

    Laslett, L.J.

    1985-06-01

    General features of the design of annular particle accelerators or storage rings are outlined and the Hamiltonian character of individual-ion motion is indicated. Examples of phase plots are presented, for the motion in one spatial degree of freedom, of an ion subject to a periodic nonlinear focusing force. A canonical transformation describing coupled nonlinear motion also is given, and alternative types of graphical display are suggested for the investigation of long-term stability in such cases. 7 figs

  13. Contact symmetries and Hamiltonian thermodynamics

    International Nuclear Information System (INIS)

    Bravetti, A.; Lopez-Monsalvo, C.S.; Nettel, F.

    2015-01-01

    It has been shown that contact geometry is the proper framework underlying classical thermodynamics and that thermodynamic fluctuations are captured by an additional metric structure related to Fisher’s Information Matrix. In this work we analyse several unaddressed aspects about the application of contact and metric geometry to thermodynamics. We consider here the Thermodynamic Phase Space and start by investigating the role of gauge transformations and Legendre symmetries for metric contact manifolds and their significance in thermodynamics. Then we present a novel mathematical characterization of first order phase transitions as equilibrium processes on the Thermodynamic Phase Space for which the Legendre symmetry is broken. Moreover, we use contact Hamiltonian dynamics to represent thermodynamic processes in a way that resembles the classical Hamiltonian formulation of conservative mechanics and we show that the relevant Hamiltonian coincides with the irreversible entropy production along thermodynamic processes. Therefore, we use such property to give a geometric definition of thermodynamically admissible fluctuations according to the Second Law of thermodynamics. Finally, we show that the length of a curve describing a thermodynamic process measures its entropy production

  14. Generic Local Hamiltonians are Gapless

    Science.gov (United States)

    Movassagh, Ramis

    2017-12-01

    We prove that generic quantum local Hamiltonians are gapless. In fact, we prove that there is a continuous density of states above the ground state. The Hamiltonian can be on a lattice in any spatial dimension or on a graph with a bounded maximum vertex degree. The type of interactions allowed for include translational invariance in a disorder (i.e., probabilistic) sense with some assumptions on the local distributions. Examples include many-body localization and random spin models. We calculate the scaling of the gap with the system's size when the local terms are distributed according to a Gaussian β orthogonal random matrix ensemble. As a corollary, there exist finite size partitions with respect to which the ground state is arbitrarily close to a product state. When the local eigenvalue distribution is discrete, in addition to the lack of an energy gap in the limit, we prove that the ground state has finite size degeneracies. The proofs are simple and constructive. This work excludes the important class of truly translationally invariant Hamiltonians where the local terms are all equal.

  15. Hamiltonian dynamics of preferential attachment

    International Nuclear Information System (INIS)

    Zuev, Konstantin; Papadopoulos, Fragkiskos; Krioukov, Dmitri

    2016-01-01

    Prediction and control of network dynamics are grand-challenge problems in network science. The lack of understanding of fundamental laws driving the dynamics of networks is among the reasons why many practical problems of great significance remain unsolved for decades. Here we study the dynamics of networks evolving according to preferential attachment (PA), known to approximate well the large-scale growth dynamics of a variety of real networks. We show that this dynamics is Hamiltonian, thus casting the study of complex networks dynamics to the powerful canonical formalism, in which the time evolution of a dynamical system is described by Hamilton’s equations. We derive the explicit form of the Hamiltonian that governs network growth in PA. This Hamiltonian turns out to be nearly identical to graph energy in the configuration model, which shows that the ensemble of random graphs generated by PA is nearly identical to the ensemble of random graphs with scale-free degree distributions. In other words, PA generates nothing but random graphs with power-law degree distribution. The extension of the developed canonical formalism for network analysis to richer geometric network models with non-degenerate groups of symmetries may eventually lead to a system of equations describing network dynamics at small scales. (paper)

  16. Locating a circle on a sphere

    DEFF Research Database (Denmark)

    Brimberg, Jack; Juel, Henrik; Schöbel, Anita

    2003-01-01

    We consider the problem of locating a spherical circle with respect to existing facilities on a sphere, such that the sum of weighted distances between the circle and the facilities is minimized, or such that the maximum weighted distance is minimized. The problem properties are analyzed, and we...... give solution procedures. When the circle to be located is restricted to be a great circle, some simplifications are possible....

  17. Locating a minisum circle in the plane

    DEFF Research Database (Denmark)

    Brimberg, Jack; Juel, Henrik; Schöbel, Anita

    2009-01-01

    We consider the problem of locating a circle with respect to existing facilities in the plane such that the sum of weighted distances between the circle and the facilities is minimized, i.e., we approximate a set of given points by a circle regarding the sum of weighted distances. If the radius...

  18. Quantum localisation on the circle

    Science.gov (United States)

    Fresneda, Rodrigo; Gazeau, Jean Pierre; Noguera, Diego

    2018-05-01

    Covariant integral quantisation using coherent states for semi-direct product groups is implemented for the motion of a particle on the circle. In this case, the phase space is the cylinder, which is viewed as a left coset of the Euclidean group E(2). Coherent states issued from fiducial vectors are labeled by points in the cylinder and depend also on extra parameters. We carry out the corresponding quantisations of the basic classical observables, particularly the angular momentum and the 2π-periodic discontinuous angle function. We compute their corresponding lower symbols. The quantum localisation on the circle is examined through the properties of the angle operator yielded by our procedure, its spectrum and lower symbol, its commutator with the quantum angular momentum, and the resulting Heisenberg inequality. Comparison with other approaches to the long-standing question of the quantum angle is discussed.

  19. Josephson junctions and circle maps

    Energy Technology Data Exchange (ETDEWEB)

    Bak, P; Bohr, T; Jensen, M H; Christiansen, P V

    1984-01-01

    The return map of a differential equation for the current driven Josephson junction, or the damped driven pendulum, is shown numerically to be a circle map. Phase locking, noise and hysteresis, can thus be understood in a simple and coherent way. The transition to chaos is related to the development of a cubic inflection point. Recent theoretical results on universal behavior at the transition to chaos can readily be checked experimentally by studying I-V characteristics. 17 references, 1 figure.

  20. Locally Hamiltonian systems with symmetry and a generalized Noether's theorem

    International Nuclear Information System (INIS)

    Carinena, J.F.; Ibort, L.A.

    1985-01-01

    An analysis of global aspects of the theory of symmetry groups G of locally Hamiltonian dynamical systems is carried out for particular cases either of the symmetry group, or the differentiable manifold M supporting the symplectic structure, or the action of G on M. In every case it is obtained a generalization of Noether's theorem. It has been looked at the classical Noether's theorem for Lagrangian systems from a modern perspective

  1. Circle activity of quality assurance in construction

    International Nuclear Information System (INIS)

    1982-05-01

    This book explains purpose, introduction 10 things to keep in mind, management and role of QC activity, TQC and QC circle activity in construction, introduction of the case of QC circle activity in a company like QC circle activity as TQC activity and QC circle for the bright future, case of experience of QC circle activity such as decreasing concrete loss, improvement of sleeve sticking on the ps wooden floor, overcoming handicap in field where one person works and point of QC 7 tools and order of improvement and management.

  2. Hamiltonian Chaos and Fractional Dynamics

    International Nuclear Information System (INIS)

    Combescure, M

    2005-01-01

    This book provides an introduction and discussion of the main issues in the current understanding of classical Hamiltonian chaos, and of its fractional space-time structure. It also develops the most complex and open problems in this context, and provides a set of possible applications of these notions to some fundamental questions of dynamics: complexity and entropy of systems, foundation of classical statistical physics on the basis of chaos theory, and so on. Starting with an introduction of the basic principles of the Hamiltonian theory of chaos, the book covers many topics that can be found elsewhere in the literature, but which are collected here for the readers' convenience. In the last three parts, the author develops topics which are not typically included in the standard textbooks; among them are: - the failure of the traditional description of chaotic dynamics in terms of diffusion equations; - he fractional kinematics, its foundation and renormalization group analysis; - 'pseudo-chaos', i.e. kinetics of systems with weak mixing and zero Lyapunov exponents; - directional complexity and entropy. The purpose of this book is to provide researchers and students in physics, mathematics and engineering with an overview of many aspects of chaos and fractality in Hamiltonian dynamical systems. In my opinion it achieves this aim, at least provided researchers and students (mainly those involved in mathematical physics) can complement this reading with comprehensive material from more specialized sources which are provided as references and 'further reading'. Each section contains introductory pedagogical material, often illustrated by figures coming from several numerical simulations which give the feeling of what's going on, and thus is very useful to the reader who is not very familiar with the topics presented. Some problems are included at the end of most sections to help the reader to go deeper into the subject. My one regret is that the book does not

  3. Violence in the eye of adolescents: education intervention with Culture Circles.

    Science.gov (United States)

    Brandão Neto, Waldemar; Silva, Marta Angélica Iossi; de Aquino, Jael Maria; de Lima, Luciane Soares; Monteiro, Estela Maria Leite Meirelles

    2015-01-01

    to apply the methodology of Culture Circles on adolescents as a strategy for health education of nurses in the construction of the collective knowledge of the thematic violence. action research type and qualitative study. Participants were 11 adolescents from a public school in Recife, PE, Brazil. Data production in Culture Circles included the participant observation with field diary, photographic recording and filming, as well as the photovoice technique. The analysis was performed by triangulating data in dialogue with the literature. it was shown that the problematizing action provided by the Culture Circle made possible to create situations in which adolescents felt invited to critically refl ect on the phenomenon of violence in all its complexity. the health education intervention, performed by Culture Circles, added learning and mutual growth subsidizing nursing care actions that excel at leadership and autonomy of adolescents.

  4. Coherent states for quadratic Hamiltonians

    International Nuclear Information System (INIS)

    Contreras-Astorga, Alonso; Fernandez C, David J; Velazquez, Mercedes

    2011-01-01

    The coherent states for a set of quadratic Hamiltonians in the trap regime are constructed. A matrix technique which allows us to directly identify the creation and annihilation operators will be presented. Then, the coherent states as simultaneous eigenstates of the annihilation operators will be derived, and will be compared with those attained through the displacement operator method. The corresponding wavefunction will be found, and a general procedure for obtaining several mean values involving the canonical operators in these states will be described. The results will be illustrated through the asymmetric Penning trap.

  5. Perturbation theory of effective Hamiltonians

    International Nuclear Information System (INIS)

    Brandow, B.H.

    1975-01-01

    This paper constitutes a review of the many papers which have used perturbation theory to derive ''effective'' or ''model'' Hamiltonians. It begins with a brief review of nondegenerate and non-many-body perturbation theory, and then considers the degenerate but non-many-body problem in some detail. It turns out that the degenerate perturbation problem is not uniquely defined, but there are some practical criteria for choosing among the various possibilities. Finally, the literature dealing with the linked-cluster aspects of open-shell many-body systems is reviewed. (U.S.)

  6. Integrable and nonintegrable Hamiltonian systems

    International Nuclear Information System (INIS)

    Percival, I.

    1986-01-01

    Traditionally Hamiltonian systems with a finite number of degrees of freedom have been divided into those with few degrees of freedom which were supposed to exhibit some kind of regular ordered motions and those with large numbers of degrees of freedom for which the methods of statistical mechanics should be used. The last few decades have seen a complete change of view. The change of view affects almost all the practical applications, particularly in mathematical physics, which has been dominated for many decades by linear mathematics, coming from quantum theory. The authors consider how this change of view affects some specific applications of dynamics and also the relation between dynamical theory and applications

  7. Perspective: Quantum Hamiltonians for optical interactions

    Science.gov (United States)

    Andrews, David L.; Jones, Garth A.; Salam, A.; Woolley, R. Guy

    2018-01-01

    The multipolar Hamiltonian of quantum electrodynamics is extensively employed in chemical and optical physics to treat rigorously the interaction of electromagnetic fields with matter. It is also widely used to evaluate intermolecular interactions. The multipolar version of the Hamiltonian is commonly obtained by carrying out a unitary transformation of the Coulomb gauge Hamiltonian that goes by the name of Power-Zienau-Woolley (PZW). Not only does the formulation provide excellent agreement with experiment, and versatility in its predictive ability, but also superior physical insight. Recently, the foundations and validity of the PZW Hamiltonian have been questioned, raising a concern over issues of gauge transformation and invariance, and whether observable quantities obtained from unitarily equivalent Hamiltonians are identical. Here, an in-depth analysis of theoretical foundations clarifies the issues and enables misconceptions to be identified. Claims of non-physicality are refuted: the PZW transformation and ensuing Hamiltonian are shown to rest on solid physical principles and secure theoretical ground.

  8. Generalized oscillator representations for Calogero Hamiltonians

    International Nuclear Information System (INIS)

    Tyutin, I V; Voronov, B L

    2013-01-01

    This paper is a natural continuation of the previous paper (Gitman et al 2011 J. Phys. A: Math. Theor. 44 425204), where oscillator representations for nonnegative Calogero Hamiltonians with coupling constant α ⩾ − 1/4 were constructed. In this paper, we present generalized oscillator representations for all Calogero Hamiltonians with α ⩾ − 1/4. These representations are generally highly nonunique, but there exists an optimum representation for each Hamiltonian. (comment)

  9. Hamiltonian formulation of reduced magnetohydrodynamics

    International Nuclear Information System (INIS)

    Morrison, P.J.; Hazeltine, R.D.

    1983-07-01

    Reduced magnetohydrodynamics (RMHD) has become a principal tool for understanding nonlinear processes, including disruptions, in tokamak plasmas. Although analytical studies of RMHD turbulence have been useful, the model's impressive ability to simulate tokamak fluid behavior has been revealed primarily by numerical solution. The present work describes a new analytical approach, not restricted to turbulent regimes, based on Hamiltonian field theory. It is shown that the nonlinear (ideal) RMHD system, in both its high-beta and low-beta versions, can be expressed in Hanmiltonian form. Thus a Poisson bracket, [ , ], is constructed such that each RMHD field quantitity, xi/sub i/, evolves according to xi/sub i/ = [xi/sub i/,H], where H is the total field energy. The new formulation makes RMHD accessible to the methodology of Hamiltonian mechanics; it has lead, in particular, to the recognition of new RMHD invariants and even exact, nonlinear RMHD solutions. A canonical version of the Poisson bracket, which requires the introduction of additional fields, leads to a nonlinear variational principle for time-dependent RMHD

  10. General technique to produce isochronous Hamiltonians

    International Nuclear Information System (INIS)

    Calogero, F; Leyvraz, F

    2007-01-01

    We introduce a new technique-characterized by an arbitrary positive constant Ω, with which we associate the period T = 2π/Ω-to 'Ω-modify' a Hamiltonian so that the new Hamiltonian thereby obtained is entirely isochronous, namely it yields motions all of which (except possibly for a lower dimensional set of singular motions) are periodic with the same fixed period T in all their degrees of freedom. This technique transforms real autonomous Hamiltonians into Ω-modified Hamiltonians which are also real and autonomous, and it is widely applicable, for instance, to the most general many-body problem characterized by Newtonian equations of motion ('acceleration equal force') provided it is translation invariant. The Ω-modified Hamiltonians are of course not translation invariant, but for Ω = 0 they reduce (up to marginal changes) to the unmodified Hamiltonians they were obtained from. Hence, when this technique is applied to translation-invariant Hamiltonians yielding, in their center-of-mass systems, chaotic motions with a natural time scale much smaller than T, the corresponding Ω-modified Hamiltonians shall display a chaotic behavior for quite some time before the isochronous character of the motions takes over. We moreover show that the quantized versions of these Ω-modified Hamiltonians feature equispaced spectra

  11. Collective Hamiltonians for dipole giant resonances

    International Nuclear Information System (INIS)

    Weiss, L.I.

    1991-07-01

    The collective hamiltonian for the Giant Dipole resonance (GDR), in the Goldhaber-Teller-Model, is analytically constructed using the semiclassical and generator coordinates method. Initially a conveniently parametrized set of many body wave functions and a microscopic hamiltonian, the Skyrme hamiltonian - are used. These collective Hamiltonians are applied to the investigation of the GDR, in He 4 , O 16 and Ca 40 nuclei. Also the energies and spectra of the GDR are obtained in these nuclei. The two sets of results are compared, and the zero point energy effects analysed. (author)

  12. Identity of the SU(3) model phenomenological hamiltonian and the hamiltonian of nonaxial rotator

    International Nuclear Information System (INIS)

    Filippov, G.F.; Avramenko, V.I.; Sokolov, A.M.

    1984-01-01

    Interpretation of nonspheric atomic nuclei spectra on the basis of phenomenological hamiltonians of SU(3) model showed satisfactory agreement of simulation calculations with experimental data. Meanwhile physical sense of phenomenological hamiltonians was not yet discussed. It is shown that phenomenological hamiltonians of SU(3) model are reduced to hamiltonian of nonaxial rotator but with additional items of the third and fourth powers angular momentum operator of rotator

  13. On a conjecture concerning helly circle graphs

    Directory of Open Access Journals (Sweden)

    Durán Guillermo

    2003-01-01

    Full Text Available We say that G is an e-circle graph if there is a bijection between its vertices and straight lines on the cartesian plane such that two vertices are adjacent in G if and only if the corresponding lines intersect inside the circle of radius one. This definition suggests a method for deciding whether a given graph G is an e-circle graph, by constructing a convenient system S of equations and inequations which represents the structure of G, in such a way that G is an e-circle graph if and only if S has a solution. In fact, e-circle graphs are exactly the circle graphs (intersection graphs of chords in a circle, and thus this method provides an analytic way for recognizing circle graphs. A graph G is a Helly circle graph if G is a circle graph and there exists a model of G by chords such that every three pairwise intersecting chords intersect at the same point. A conjecture by Durán (2000 states that G is a Helly circle graph if and only if G is a circle graph and contains no induced diamonds (a diamond is a graph formed by four vertices and five edges. Many unsuccessful efforts - mainly based on combinatorial and geometrical approaches - have been done in order to validate this conjecture. In this work, we utilize the ideas behind the definition of e-circle graphs and restate this conjecture in terms of an equivalence between two systems of equations and inequations, providing a new, analytic tool to deal with it.

  14. Squaring the circle of healthcare supplies.

    Science.gov (United States)

    Böhme, Tillmann; Williams, Sharon; Childerhouse, Paul; Deakins, Eric; Towill, Denis

    2014-01-01

    The purpose of this paper is to use a systems lens to assess the comparative performance of healthcare supply chains and provide guidance for their improvement. A well-established and rigorous multi-method audit methodology, based on the uncertainty circle model, yields an objective assessment of value stream performance in eight Australasian public sector hospitals. Cause-effect analysis identifies the major barriers to achieving smooth, seamless flows. Potentially high-leverage remedial actions identified using systems thinking are examined with the aid of an exemplar case. The majority of the healthcare value streams studied are underperforming compared with those in the European automotive industry. Every public hospital appears to be caught in the grip of vicious circles of system uncertainty, in large part being caused by problems of their own making. The single exception is making good progress towards seamless functional integration, which has been achieved by elevating supply chain management to a core competence; having a clearly articulated supply chain vision; adopting a systems approach; and, managing supplies with accurate information. The small number of cases limits the generalisability of the findings at this time. Hospital supply chain managers endeavouring to achieve smooth and seamless supply flows should attempt to elevate the status of supplies management within their organisation to that of a core competence, and should use accurate information to manage their value streams holistically as a set of interwoven processes. A four-level prism model is proposed as a useful framework for thus improving healthcare supply delivery systems. Material flow concepts originally developed to provide objective assessments of value stream performance in commercial settings are adapted for use in a healthcare setting. The ability to identify exemplar organisations via a context-free uncertainty measure, and to use systems thinking to identify high

  15. Hamiltonian closures in fluid models for plasmas

    Science.gov (United States)

    Tassi, Emanuele

    2017-11-01

    This article reviews recent activity on the Hamiltonian formulation of fluid models for plasmas in the non-dissipative limit, with emphasis on the relations between the fluid closures adopted for the different models and the Hamiltonian structures. The review focuses on results obtained during the last decade, but a few classical results are also described, in order to illustrate connections with the most recent developments. With the hope of making the review accessible not only to specialists in the field, an introduction to the mathematical tools applied in the Hamiltonian formalism for continuum models is provided. Subsequently, we review the Hamiltonian formulation of models based on the magnetohydrodynamics description, including those based on the adiabatic and double adiabatic closure. It is shown how Dirac's theory of constrained Hamiltonian systems can be applied to impose the incompressibility closure on a magnetohydrodynamic model and how an extended version of barotropic magnetohydrodynamics, accounting for two-fluid effects, is amenable to a Hamiltonian formulation. Hamiltonian reduced fluid models, valid in the presence of a strong magnetic field, are also reviewed. In particular, reduced magnetohydrodynamics and models assuming cold ions and different closures for the electron fluid are discussed. Hamiltonian models relaxing the cold-ion assumption are then introduced. These include models where finite Larmor radius effects are added by means of the gyromap technique, and gyrofluid models. Numerical simulations of Hamiltonian reduced fluid models investigating the phenomenon of magnetic reconnection are illustrated. The last part of the review concerns recent results based on the derivation of closures preserving a Hamiltonian structure, based on the Hamiltonian structure of parent kinetic models. Identification of such closures for fluid models derived from kinetic systems based on the Vlasov and drift-kinetic equations are presented, and

  16. Hamiltonian analysis of Plebanski theory

    International Nuclear Information System (INIS)

    Buffenoir, E; Henneaux, M; Noui, K; Roche, Ph

    2004-01-01

    We study the Hamiltonian formulation of Plebanski theory in both the Euclidean and Lorentzian cases. A careful analysis of the constraints shows that the system is non-regular, i.e., the rank of the Dirac matrix is non-constant on the non-reduced phase space. We identify the gravitational and topological sectors which are regular subspaces of the non-reduced phase space. The theory can be restricted to the regular subspace which contains the gravitational sector. We explicitly identify first- and second-class constraints in this case. We compute the determinant of the Dirac matrix and the natural measure for the path integral of the Plebanski theory (restricted to the gravitational sector). This measure is the analogue of the Leutwyler-Fradkin-Vilkovisky measure of quantum gravity

  17. Hamiltonian Dynamics of Doubly-Foliable Space-Times

    Directory of Open Access Journals (Sweden)

    Cecília Gergely

    2018-01-01

    Full Text Available The 2 + 1 + 1 decomposition of space-time is useful in monitoring the temporal evolution of gravitational perturbations/waves in space-times with a spatial direction singled-out by symmetries. Such an approach based on a perpendicular double foliation has been employed in the framework of dark matter and dark energy-motivated scalar-tensor gravitational theories for the discussion of the odd sector perturbations of spherically-symmetric gravity. For the even sector, however, the perpendicularity has to be suppressed in order to allow for suitable gauge freedom, recovering the 10th metric variable. The 2 + 1 + 1 decomposition of the Einstein–Hilbert action leads to the identification of the canonical pairs, the Hamiltonian and momentum constraints. Hamiltonian dynamics is then derived via Poisson brackets.

  18. Quantum Statistical Operator and Classically Chaotic Hamiltonian ...

    African Journals Online (AJOL)

    Quantum Statistical Operator and Classically Chaotic Hamiltonian System. ... Journal of the Nigerian Association of Mathematical Physics ... In a Hamiltonian system von Neumann Statistical Operator is used to tease out the quantum consequence of (classical) chaos engendered by the nonlinear coupling of system to its ...

  19. A Direct Method of Hamiltonian Structure

    International Nuclear Information System (INIS)

    Li Qi; Chen Dengyuan; Su Shuhua

    2011-01-01

    A direct method of constructing the Hamiltonian structure of the soliton hierarchy with self-consistent sources is proposed through computing the functional derivative under some constraints. The Hamiltonian functional is related with the conservation densities of the corresponding hierarchy. Three examples and their two reductions are given. (general)

  20. Port Hamiltonian modeling of Power Networks

    NARCIS (Netherlands)

    van Schaik, F.; van der Schaft, Abraham; Scherpen, Jacquelien M.A.; Zonetti, Daniele; Ortega, R

    2012-01-01

    In this talk a full nonlinear model for the power network in port–Hamiltonian framework is derived to study its stability properties. For this we use the modularity approach i.e., we first derive the models of individual components in power network as port-Hamiltonian systems and then we combine all

  1. Hamiltonian representation of divergence-free fields

    International Nuclear Information System (INIS)

    Boozer, A.H.

    1984-11-01

    Globally divergence-free fields, such as the magnetic field and the vorticity, can be described by a two degree of freedom Hamiltonian. The Hamiltonian function provides a complete topological description of the field lines. The formulation also separates the dissipative and inertial time scale evolution of the magnetic and the vorticity fields

  2. Hamiltonian structure of linearly extended Virasoro algebra

    International Nuclear Information System (INIS)

    Arakelyan, T.A.; Savvidi, G.K.

    1991-01-01

    The Hamiltonian structure of linearly extended Virasoro algebra which admits free bosonic field representation is described. An example of a non-trivial extension is found. The hierarchy of integrable non-linear equations corresponding to this Hamiltonian structure is constructed. This hierarchy admits the Lax representation by matrix Lax operator of second order

  3. A parcel formulation for Hamiltonian layer models

    NARCIS (Netherlands)

    Bokhove, Onno; Oliver, M.

    Starting from the three-dimensional hydrostatic primitive equations, we derive Hamiltonian N-layer models with isentropic tropospheric and isentropic or isothermal stratospheric layers. Our construction employs a new parcel Hamiltonian formulation which describes the fluid as a continuum of

  4. On Distributed Port-Hamiltonian Process Systems

    NARCIS (Netherlands)

    Lopezlena, Ricardo; Scherpen, Jacquelien M.A.

    2004-01-01

    In this paper we use the term distributed port-Hamiltonian Process Systems (DPHPS) to refer to the result of merging the theory of distributed Port-Hamiltonian systems (DPHS) with the theory of process systems (PS). Such concept is useful for combining the systematic interconnection of PHS with the

  5. Relativistic magnetohydrodynamics as a Hamiltonian system

    International Nuclear Information System (INIS)

    Holm, D.D.; Kupershmidt, A.

    1985-01-01

    The equations of ideal relativistic magnetohydrodynamics in the laboratory frame form a noncanonical Hamiltonian system with the same Poisson bracket as for the nonrelativistic system, but with dynamical variables and Hamiltonian obtained via a regular deformation of their nonrelativistic counterparts [fr

  6. Hamiltonian Cycles on Random Eulerian Triangulations

    DEFF Research Database (Denmark)

    Guitter, E.; Kristjansen, C.; Nielsen, Jakob Langgaard

    1998-01-01

    . Considering the case n -> 0, this implies that the system of random Eulerian triangulations equipped with Hamiltonian cycles describes a c=-1 matter field coupled to 2D quantum gravity as opposed to the system of usual random triangulations equipped with Hamiltonian cycles which has c=-2. Hence, in this case...

  7. Almost periodic Hamiltonians: an algebraic approach

    International Nuclear Information System (INIS)

    Bellissard, J.

    1981-07-01

    We develop, by analogy with the study of periodic potential, an algebraic theory for almost periodic hamiltonians, leading to a generalized Bloch theorem. This gives rise to results concerning the spectral measures of these operators in terms of those of the corresponding Bloch hamiltonians

  8. Nested Sampling with Constrained Hamiltonian Monte Carlo

    OpenAIRE

    Betancourt, M. J.

    2010-01-01

    Nested sampling is a powerful approach to Bayesian inference ultimately limited by the computationally demanding task of sampling from a heavily constrained probability distribution. An effective algorithm in its own right, Hamiltonian Monte Carlo is readily adapted to efficiently sample from any smooth, constrained distribution. Utilizing this constrained Hamiltonian Monte Carlo, I introduce a general implementation of the nested sampling algorithm.

  9. "Take Me to the Mathematical Circle!"

    OpenAIRE

    Veilande, Ingrida

    2012-01-01

    Preparing the students for various mathematical contests are the key goals of mathematical circles in Latvian schools. The reason why mathematical circles for students of primary schools are organised rather seldom is that problem sets of Olympiads are mainly created for students of 5th to 12th grades. The young participants of circles have to be introduced with the basic principles of Olimpiads mathematics too.

  10. Fairy circle landscapes under the sea

    KAUST Repository

    Ruiz-Reynés, Daniel

    2017-08-03

    Short-scale interactions yield large-scale vegetation patterns that, in turn, shape ecosystem function across landscapes. Fairy circles, which are circular patches bare of vegetation within otherwise continuous landscapes, are characteristic features of semiarid grasslands. We report the occurrence of submarine fairy circle seascapes in seagrass meadows and propose a simple model that reproduces the diversity of seascapes observed in these ecosystems as emerging from plant interactions within the meadow. These seascapes include two extreme cases, a continuous meadow and a bare landscape, along with intermediate states that range from the occurrence of persistent but isolated fairy circles, or solitons, to seascapes with multiple fairy circles, banded vegetation, and

  11. Locating a circle on a sphere

    DEFF Research Database (Denmark)

    Brimberg, Jack; Juel, Henrik; Schöbel, Anita

    2007-01-01

    We consider the problem of locating a spherical circle with respect to existing facilities on a sphere, such that the sum of distances between the circle and the facilities is minimized or such that the maximum distance is minimized. The problem properties are analyzed, and we give solution...... procedures. When the circle to be located is restricted to be a great circle, some simplifications are possible. The models may be used in preliminary studies on the location of large linear facilities on the earth's surface, such as superhighways, pipelines, and transmission lines, or in totally different...

  12. Fairy circle landscapes under the sea

    KAUST Repository

    Ruiz-Reyné s, Daniel; Gomila, Damià ; Sintes, Tomà s; Herná ndez-Garcí a, Emilio; Marbà , Nú ria; Duarte, Carlos M.

    2017-01-01

    Short-scale interactions yield large-scale vegetation patterns that, in turn, shape ecosystem function across landscapes. Fairy circles, which are circular patches bare of vegetation within otherwise continuous landscapes, are characteristic features of semiarid grasslands. We report the occurrence of submarine fairy circle seascapes in seagrass meadows and propose a simple model that reproduces the diversity of seascapes observed in these ecosystems as emerging from plant interactions within the meadow. These seascapes include two extreme cases, a continuous meadow and a bare landscape, along with intermediate states that range from the occurrence of persistent but isolated fairy circles, or solitons, to seascapes with multiple fairy circles, banded vegetation, and

  13. Activity know-how and doctrine of QC circle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-09-15

    This books introduces activity know-how of QC circle giving descriptions of basic of QC circle activities, introduction operation and development and mind of QC circle activities, method for beginning of QC circle activity like, way order, motivation of introduction of QC circle activity, propel method of QC circle activities, such as leadership, brain storming, and rule of QC circle activity, management and propel method for improvement, development of QC circle activities. It also deals with doctrine of basic of QC circle, purpose, self improvement and group activity.

  14. Activity know-how and doctrine of QC circle

    International Nuclear Information System (INIS)

    1976-09-01

    This books introduces activity know-how of QC circle giving descriptions of basic of QC circle activities, introduction operation and development and mind of QC circle activities, method for beginning of QC circle activity like, way order, motivation of introduction of QC circle activity, propel method of QC circle activities, such as leadership, brain storming, and rule of QC circle activity, management and propel method for improvement, development of QC circle activities. It also deals with doctrine of basic of QC circle, purpose, self improvement and group activity.

  15. Darboux cyclides and webs from circles

    KAUST Repository

    Pottmann, Helmut; Shi, Ling; Skopenkov, Mikhail

    2012-01-01

    to these surfaces based on the spherical model of 3D Möbius geometry, we provide computational tools for the identification of circle families on a given cyclide and for the direct design of those. In particular, we show that certain triples of circle families may

  16. The circle equation over finite fields

    DEFF Research Database (Denmark)

    Aabrandt, Andreas; Hansen, Vagn Lundsgaard

    2017-01-01

    Interesting patterns in the geometry of a plane algebraic curve C can be observed when the defining polynomial equation is solved over the family of finite fields. In this paper, we examine the case of C the classical unit circle defined by the circle equation x2 + y2 = 1. As a main result, we es...

  17. Beyond Quality Circles: Self-Managing Teams.

    Science.gov (United States)

    Sims, Henry P., Jr.; Dean, James W., Jr.

    1985-01-01

    This article reviews the quality circle concept, shows why its characteristics appeal to American executives, and examines some of its limitations. It looks at self-managing teams and discusses the reasons that adoptions have been relatively few. It then shows what organizational conditions are necessary for quality circles to evolve into teams.…

  18. Exploring Factors That Influence Quality Literature Circles

    Science.gov (United States)

    Young, Chase; Mohr, Kathleen A. J.

    2018-01-01

    Research indicates that literature circles are an authentic means for literacy development that students typically enjoy. To better understand the potential value and to add to the research base regarding literature circles, this study, involving 17 fourth graders, explores factors that may influence the quality of literature discussions,…

  19. Developing Soft Skills Using "Literature Circles"

    Science.gov (United States)

    Azmi, Mohd Nazri Bin Latiff

    2013-01-01

    This study investigates the impact of the implementation of "Literature Circles" in an Active Learning classroom in relations to developing soft skills among university students. The use of Literature Circles is a well-known strategy in teaching the students to be more creative, independent, and think out of the box. A group of…

  20. Indirect quantum tomography of quadratic Hamiltonians

    Energy Technology Data Exchange (ETDEWEB)

    Burgarth, Daniel [Institute for Mathematical Sciences, Imperial College London, London SW7 2PG (United Kingdom); Maruyama, Koji; Nori, Franco, E-mail: daniel@burgarth.de, E-mail: kmaruyama@riken.jp [Advanced Science Institute, RIKEN, Wako-shi, Saitama 351-0198 (Japan)

    2011-01-15

    A number of many-body problems can be formulated using Hamiltonians that are quadratic in the creation and annihilation operators. Here, we show how such quadratic Hamiltonians can be efficiently estimated indirectly, employing very few resources. We found that almost all the properties of the Hamiltonian are determined by its surface and that these properties can be measured even if the system can only be initialized to a mixed state. Therefore, our method can be applied to various physical models, with important examples including coupled nano-mechanical oscillators, hopping fermions in optical lattices and transverse Ising chains.

  1. Single-particle dynamics - Hamiltonian formulation

    International Nuclear Information System (INIS)

    Montague, B.W.

    1977-01-01

    In this paper the Hamiltonian formalism is applied to the linear theory of accelerator dynamics. The reasons for the introduction of this method rather than the more straightforward use of second order differential equations of motion are briefly discussed. An outline of Lagrangian and Hamiltonian formalism is given, some properties of the Hamiltonian are discussed and canonical transformations are illustrated. The methods are demonstrated using elementary examples such as the simple pendulum and the procedures adopted to handle specific problems in accelerator theory are indicated. (B.D.)

  2. Incomplete Dirac reduction of constrained Hamiltonian systems

    Energy Technology Data Exchange (ETDEWEB)

    Chandre, C., E-mail: chandre@cpt.univ-mrs.fr

    2015-10-15

    First-class constraints constitute a potential obstacle to the computation of a Poisson bracket in Dirac’s theory of constrained Hamiltonian systems. Using the pseudoinverse instead of the inverse of the matrix defined by the Poisson brackets between the constraints, we show that a Dirac–Poisson bracket can be constructed, even if it corresponds to an incomplete reduction of the original Hamiltonian system. The uniqueness of Dirac brackets is discussed. The relevance of this procedure for infinite dimensional Hamiltonian systems is exemplified.

  3. Quantum entangling power of adiabatically connected Hamiltonians

    International Nuclear Information System (INIS)

    Hamma, Alioscia; Zanardi, Paolo

    2004-01-01

    The space of quantum Hamiltonians has a natural partition in classes of operators that can be adiabatically deformed into each other. We consider parametric families of Hamiltonians acting on a bipartite quantum state space. When the different Hamiltonians in the family fall in the same adiabatic class, one can manipulate entanglement by moving through energy eigenstates corresponding to different values of the control parameters. We introduce an associated notion of adiabatic entangling power. This novel measure is analyzed for general dxd quantum systems, and specific two-qubit examples are studied

  4. Quantum Hamiltonian Physics with Supercomputers

    International Nuclear Information System (INIS)

    Vary, James P.

    2014-01-01

    The vision of solving the nuclear many-body problem in a Hamiltonian framework with fundamental interactions tied to QCD via Chiral Perturbation Theory is gaining support. The goals are to preserve the predictive power of the underlying theory, to test fundamental symmetries with the nucleus as laboratory and to develop new understandings of the full range of complex quantum phenomena. Advances in theoretical frameworks (renormalization and many-body methods) as well as in computational resources (new algorithms and leadership-class parallel computers) signal a new generation of theory and simulations that will yield profound insights into the origins of nuclear shell structure, collective phenomena and complex reaction dynamics. Fundamental discovery opportunities also exist in such areas as physics beyond the Standard Model of Elementary Particles, the transition between hadronic and quark–gluon dominated dynamics in nuclei and signals that characterize dark matter. I will review some recent achievements and present ambitious consensus plans along with their challenges for a coming decade of research that will build new links between theory, simulations and experiment. Opportunities for graduate students to embark upon careers in the fast developing field of supercomputer simulations is also discussed

  5. Quantum Hamiltonian Physics with Supercomputers

    Energy Technology Data Exchange (ETDEWEB)

    Vary, James P.

    2014-06-15

    The vision of solving the nuclear many-body problem in a Hamiltonian framework with fundamental interactions tied to QCD via Chiral Perturbation Theory is gaining support. The goals are to preserve the predictive power of the underlying theory, to test fundamental symmetries with the nucleus as laboratory and to develop new understandings of the full range of complex quantum phenomena. Advances in theoretical frameworks (renormalization and many-body methods) as well as in computational resources (new algorithms and leadership-class parallel computers) signal a new generation of theory and simulations that will yield profound insights into the origins of nuclear shell structure, collective phenomena and complex reaction dynamics. Fundamental discovery opportunities also exist in such areas as physics beyond the Standard Model of Elementary Particles, the transition between hadronic and quark–gluon dominated dynamics in nuclei and signals that characterize dark matter. I will review some recent achievements and present ambitious consensus plans along with their challenges for a coming decade of research that will build new links between theory, simulations and experiment. Opportunities for graduate students to embark upon careers in the fast developing field of supercomputer simulations is also discussed.

  6. Quadratic time dependent Hamiltonians and separation of variables

    International Nuclear Information System (INIS)

    Anzaldo-Meneses, A.

    2017-01-01

    Time dependent quantum problems defined by quadratic Hamiltonians are solved using canonical transformations. The Green’s function is obtained and a comparison with the classical Hamilton–Jacobi method leads to important geometrical insights like exterior differential systems, Monge cones and time dependent Gaussian metrics. The Wei–Norman approach is applied using unitary transformations defined in terms of generators of the associated Lie groups, here the semi-direct product of the Heisenberg group and the symplectic group. A new explicit relation for the unitary transformations is given in terms of a finite product of elementary transformations. The sequential application of adequate sets of unitary transformations leads naturally to a new separation of variables method for time dependent Hamiltonians, which is shown to be related to the Inönü–Wigner contraction of Lie groups. The new method allows also a better understanding of interacting particles or coupled modes and opens an alternative way to analyze topological phases in driven systems. - Highlights: • Exact unitary transformation reducing time dependent quadratic quantum Hamiltonian to zero. • New separation of variables method and simultaneous uncoupling of modes. • Explicit examples of transformations for one to four dimensional problems. • New general evolution equation for quadratic form in the action, respectively Green’s function.

  7. Practical evaluation of action-angle variables

    International Nuclear Information System (INIS)

    Boozer, A.H.

    1984-02-01

    A practical method is described for establishing action-angle variables for a Hamiltonian system. That is, a given nearly integrable Hamiltonian is divided into an exactly integrable system plus a perturbation in action-angle form. The transformation of variables, which is carried out using a few short trajectory integrations, permits a rapid determination of trajectory properties throughout a phase space volume

  8. Jacobi fields of completely integrable Hamiltonian systems

    International Nuclear Information System (INIS)

    Giachetta, G.; Mangiarotti, L.; Sardanashvily, G.

    2003-01-01

    We show that Jacobi fields of a completely integrable Hamiltonian system of m degrees of freedom make up an extended completely integrable system of 2m degrees of freedom, where m additional first integrals characterize a relative motion

  9. Quantum Hamiltonian reduction in superspace formalism

    International Nuclear Information System (INIS)

    Madsen, J.O.; Ragoucy, E.

    1994-02-01

    Recently the quantum Hamiltonian reduction was done in the case of general sl(2) embeddings into Lie algebras and superalgebras. The results are extended to the quantum Hamiltonian reduction of N=1 affine Lie superalgebras in the superspace formalism. It is shown that if we choose a gauge for the supersymmetry, and consider only certain equivalence classes of fields, then our quantum Hamiltonian reduction reduces to quantum Hamiltonian reduction of non-supersymmetric Lie superalgebras. The super energy-momentum tensor is constructed explicitly as well as all generators of spin 1 (and 1/2); thus all generators in the superconformal, quasi-superconformal and Z 2 *Z 2 superconformal algebras are constructed. (authors). 21 refs

  10. Integrable Hamiltonian systems and spectral theory

    CERN Document Server

    Moser, J

    1981-01-01

    Classical integrable Hamiltonian systems and isospectral deformations ; geodesics on an ellipsoid and the mechanical system of C. Neumann ; the Schrödinger equation for almost periodic potentials ; finite band potentials ; limit cases, Bargmann potentials.

  11. Spectral properties of almost-periodic Hamiltonians

    International Nuclear Information System (INIS)

    Lima, R.

    1983-12-01

    We give a description of some spectral properties of almost-periodic hamiltonians. We put the stress on some particular points of the proofs of the existence of absolutely continuous or pure point spectrum [fr

  12. Air parcels and air particles: Hamiltonian dynamics

    NARCIS (Netherlands)

    Bokhove, Onno; Lynch, Peter

    We present a simple Hamiltonian formulation of the Euler equations for fluid flow in the Lagrangian framework. In contrast to the conventional formulation, which involves coupled partial differential equations, our "innovative'' mathematical formulation involves only ordinary differential equations

  13. Discrete Hamiltonian evolution and quantum gravity

    International Nuclear Information System (INIS)

    Husain, Viqar; Winkler, Oliver

    2004-01-01

    We study constrained Hamiltonian systems by utilizing general forms of time discretization. We show that for explicit discretizations, the requirement of preserving the canonical Poisson bracket under discrete evolution imposes strong conditions on both allowable discretizations and Hamiltonians. These conditions permit time discretizations for a limited class of Hamiltonians, which does not include homogeneous cosmological models. We also present two general classes of implicit discretizations which preserve Poisson brackets for any Hamiltonian. Both types of discretizations generically do not preserve first class constraint algebras. Using this observation, we show that time discretization provides a complicated time gauge fixing for quantum gravity models, which may be compared with the alternative procedure of gauge fixing before discretization

  14. Classical mechanics Hamiltonian and Lagrangian formalism

    CERN Document Server

    Deriglazov, Alexei

    2016-01-01

    This account of the fundamentals of Hamiltonian mechanics also covers related topics such as integral invariants and the Noether theorem. With just the elementary mathematical methods used for exposition, the book is suitable for novices as well as graduates.

  15. Hamiltonian cycle problem and Markov chains

    CERN Document Server

    Borkar, Vivek S; Filar, Jerzy A; Nguyen, Giang T

    2014-01-01

    This book summarizes a line of research that maps certain classical problems of discrete mathematics and operations research - such as the Hamiltonian cycle and the Travelling Salesman problems - into convex domains where continuum analysis can be carried out.

  16. Variable Delay in port-Hamiltonian Telemanipulation

    NARCIS (Netherlands)

    Secchi, C; Stramigioli, Stefano; Fantuzzi, C.

    2006-01-01

    In several applications involving bilateral telemanipulation, master and slave act at different power scales. In this paper a strategy for passively dealing with variable communication delay in scaled port-Hamiltonian based telemanipulation over packet switched networks is proposed.

  17. On local Hamiltonians and dissipative systems

    Energy Technology Data Exchange (ETDEWEB)

    Castagnino, M. [CONICET-Institutos de Fisica Rosario y de Astronomia y Fisica del Espacio Casilla de Correos 67, Sucursal 28, 1428, Buenos Aires (Argentina); Gadella, M. [Facultad de Ciencias Exactas, Ingenieria y Agrimensura UNR, Rosario (Argentina) and Departamento de Fisica Teorica, Facultad de Ciencias c. Real de Burgos, s.n., 47011 Valladolid (Spain)]. E-mail: manuelgadella@yahoo.com.ar; Lara, L.P. [Facultad de Ciencias Exactas, Ingenieria y Agrimensura UNR, Rosario (Argentina)

    2006-11-15

    We study a type of one-dimensional dynamical systems on the corresponding two-dimensional phase space. By using arguments related to the existence of integrating factors for Pfaff equations, we show that some one-dimensional non-Hamiltonian systems like dissipative systems, admit a Hamiltonian description by sectors on the phase plane. This picture is not uniquely defined and is coordinate dependent. A simple example is exhaustively discussed. The method, is not always applicable to systems with higher dimensions.

  18. Generalized Hubbard Hamiltonian: renormalization group approach

    International Nuclear Information System (INIS)

    Cannas, S.A.; Tamarit, F.A.; Tsallis, C.

    1991-01-01

    We study a generalized Hubbard Hamiltonian which is closed within the framework of a Quantum Real Space Renormalization Group, which replaces the d-dimensional hypercubic lattice by a diamond-like lattice. The phase diagram of the generalized Hubbard Hamiltonian is analyzed for the half-filled band case in d = 2 and d = 3. Some evidence for superconductivity is presented. (author). 44 refs., 12 figs., 2 tabs

  19. Circles of quality in radiological safety

    International Nuclear Information System (INIS)

    Gonzalez F, J.A.

    1991-01-01

    The concept of Circles of quality arose in Japan like an option to capitalize the enormous potential that the workers had developed as a result of its training in the statistical tools of quality. There are presented a series of steps that could be given with the purpose of implementing a program of ALARA circles. The radiological safety is in it finishes instance responsibility of each hard-working one and there won't be a protection program that can work among apathetic people, it is in this sense where the ALARA circles can provide its maximum contribution creating a conscience of responsibility and participation

  20. Robust Circle Detection Using Harmony Search

    Directory of Open Access Journals (Sweden)

    Jaco Fourie

    2017-01-01

    Full Text Available Automatic circle detection is an important element of many image processing algorithms. Traditionally the Hough transform has been used to find circular objects in images but more modern approaches that make use of heuristic optimisation techniques have been developed. These are often used in large complex images where the presence of noise or limited computational resources make the Hough transform impractical. Previous research on the use of the Harmony Search (HS in circle detection showed that HS is an attractive alternative to many of the modern circle detectors based on heuristic optimisers like genetic algorithms and simulated annealing. We propose improvements to this work that enables our algorithm to robustly find multiple circles in larger data sets and still work on realistic images that are heavily corrupted by noisy edges.

  1. Area of Common Overlap of Three Circles

    National Research Council Canada - National Science Library

    Fewell, M. P

    2006-01-01

    .... The results presented here have general significance in the corpus of menstruation formulae, and could be of specific use in any quantitative application of the three-circle Venn diagram such as for...

  2. Darboux cyclides and webs from circles

    KAUST Repository

    Pottmann, Helmut

    2012-01-01

    Motivated by potential applications in architecture, we study Darboux cyclides. These algebraic surfaces of order ≤4 are a superset of Dupin cyclides and quadrics, and they carry up to six real families of circles. Revisiting the classical approach to these surfaces based on the spherical model of 3D Möbius geometry, we provide computational tools for the identification of circle families on a given cyclide and for the direct design of those. In particular, we show that certain triples of circle families may be arranged as so-called hexagonal webs, and we provide a complete classification of all possible hexagonal webs of circles on Darboux cyclides. © 2011 Elsevier B.V. All rights reserved.

  3. The magic circle and the puzzle piece

    OpenAIRE

    Juul, Jesper

    2008-01-01

    In a common description, to play a game is to step inside a concrete or metaphorical magic circle where special rules apply. In video game studies, this description has received an inordinate amount of criticism which the paper argues has two primary sources: 1. a misreading of the basic concept of the magic circle and 2. a somewhat rushed application of traditional theoretical concerns onto games. The paper argues that games studies must move beyond conventional criticisms of binary distinct...

  4. The Function of Love in Solzhenitsyn's The First Circle

    Directory of Open Access Journals (Sweden)

    John Schillinger

    1977-01-01

    Full Text Available Aleksander Solzhenitsyn, like Boris Pasternak before him, insists upon the primacy of life over any socio-political system. To lead truly meaningful lives, his characters must comprehend that they are responsible for their own actions; that they are engaged in an existential struggle which pits individual freedom against the will of authority. In The First Circle , this struggle is clearly reflected in the theme of love which, when analyzed in terms of the suppression or triumph of its four basic elements ( sex, eros, philia, and agape , offers a convincing allegory of man's existential self-definition by free choice.

  5. Effective Hamiltonian for travelling discrete breathers

    Science.gov (United States)

    MacKay, Robert S.; Sepulchre, Jacques-Alexandre

    2002-05-01

    Hamiltonian chains of oscillators in general probably do not sustain exact travelling discrete breathers. However solutions which look like moving discrete breathers for some time are not difficult to observe in numerics. In this paper we propose an abstract framework for the description of approximate travelling discrete breathers in Hamiltonian chains of oscillators. The method is based on the construction of an effective Hamiltonian enabling one to describe the dynamics of the translation degree of freedom of moving breathers. Error estimate on the approximate dynamics is also studied. The concept of the Peierls-Nabarro barrier can be made clear in this framework. We illustrate the method with two simple examples, namely the Salerno model which interpolates between the Ablowitz-Ladik lattice and the discrete nonlinear Schrödinger system, and the Fermi-Pasta-Ulam chain.

  6. Noncanonical Hamiltonian methods in plasma dynamics

    International Nuclear Information System (INIS)

    Kaufman, A.N.

    1982-01-01

    A Hamiltonian approach to plasma dynamics is described. The Poisson bracket of two observables g 1 and g 2 is given by using an antisymmetric tensor J, and must satisfy the Jacobi condition. The J can be obtained by elementary tensor analysis. The evolution in time of an observable g is given in terms of the Poisson bracket and a Hamiltonian H(Z). The guiding-center description of particle motion was presented by Littlejohn. The ponderomotive drift and force, the wave-induced oscillation-center velocity, and the gyrofrequency shift are obtained. The Lie transform yields the wave-induced increment to the gyromomentum. In the coulomb model for a Vlasov system, the dynamical variable is the Vlasov distribution f(z). The Hamiltonian functional and the Poisson bracket are obtained. The coupling of f(z) to the Maxwell field appears in the Poisson bracket. The evolution equation yields the Vlasov-Maxwell system. (Kato, T.)

  7. Hamiltonian boundary term and quasilocal energy flux

    International Nuclear Information System (INIS)

    Chen, C.-M.; Nester, James M.; Tung, R.-S.

    2005-01-01

    The Hamiltonian for a gravitating region includes a boundary term which determines not only the quasilocal values but also, via the boundary variation principle, the boundary conditions. Using our covariant Hamiltonian formalism, we found four particular quasilocal energy-momentum boundary term expressions; each corresponds to a physically distinct and geometrically clear boundary condition. Here, from a consideration of the asymptotics, we show how a fundamental Hamiltonian identity naturally leads to the associated quasilocal energy flux expressions. For electromagnetism one of the four is distinguished: the only one which is gauge invariant; it gives the familiar energy density and Poynting flux. For Einstein's general relativity two different boundary condition choices correspond to quasilocal expressions which asymptotically give the ADM energy, the Trautman-Bondi energy and, moreover, an associated energy flux (both outgoing and incoming). Again there is a distinguished expression: the one which is covariant

  8. Hamiltonian approach to QCD in Coulomb gauge: From the vacuum to finite temperatures

    Directory of Open Access Journals (Sweden)

    Reinhardt H.

    2016-01-01

    Full Text Available The variational Hamiltonian approach to QCD in Coulomb gauge is reviewedand the essential results obtained in recent years are summarized. First the results for thevacuum sector are discussed, with a special emphasis on the mechansim of confinementand chiral symmetry breaking. Then the deconfinement phase transition is described byintroducing temperature in the Hamiltonian approach via compactification of one spatialdimension. The effective action for the Polyakov loop is calculated and the order of thephase transition as well as the critical temperatures are obtained for the color group SU(2 and SU(3. In both cases, our predictions are in good agreement with lattice calculations.

  9. Bäcklund transformations and Hamiltonian flows

    International Nuclear Information System (INIS)

    Zullo, Federico

    2013-01-01

    In this work we show that, under certain conditions, parametric Bäcklund transformations for a finite dimensional integrable system can be interpreted as solutions to the equations of motion defined by an associated non-autonomous Hamiltonian. The two systems share the same constants of motion. This observation leads to the identification of the Hamiltonian interpolating the iteration of the discrete map defined by the transformations, which indeed in numerical applications can be considered a linear combination of the integrals appearing in the spectral curve of the Lax matrix. An example with the periodic Toda lattice is given. (paper)

  10. Hamiltonian dynamics for complex food webs

    Science.gov (United States)

    Kozlov, Vladimir; Vakulenko, Sergey; Wennergren, Uno

    2016-03-01

    We investigate stability and dynamics of large ecological networks by introducing classical methods of dynamical system theory from physics, including Hamiltonian and averaging methods. Our analysis exploits the topological structure of the network, namely the existence of strongly connected nodes (hubs) in the networks. We reveal new relations between topology, interaction structure, and network dynamics. We describe mechanisms of catastrophic phenomena leading to sharp changes of dynamics and hence completely altering the ecosystem. We also show how these phenomena depend on the structure of interaction between species. We can conclude that a Hamiltonian structure of biological interactions leads to stability and large biodiversity.

  11. Convergence to equilibrium under a random Hamiltonian

    Science.gov (United States)

    Brandão, Fernando G. S. L.; Ćwikliński, Piotr; Horodecki, Michał; Horodecki, Paweł; Korbicz, Jarosław K.; Mozrzymas, Marek

    2012-09-01

    We analyze equilibration times of subsystems of a larger system under a random total Hamiltonian, in which the basis of the Hamiltonian is drawn from the Haar measure. We obtain that the time of equilibration is of the order of the inverse of the arithmetic average of the Bohr frequencies. To compute the average over a random basis, we compute the inverse of a matrix of overlaps of operators which permute four systems. We first obtain results on such a matrix for a representation of an arbitrary finite group and then apply it to the particular representation of the permutation group under consideration.

  12. Ostrogradski Hamiltonian approach for geodetic brane gravity

    International Nuclear Information System (INIS)

    Cordero, Ruben; Molgado, Alberto; Rojas, Efrain

    2010-01-01

    We present an alternative Hamiltonian description of a branelike universe immersed in a flat background spacetime. This model is named geodetic brane gravity. We set up the Regge-Teitelboim model to describe our Universe where such field theory is originally thought as a second order derivative theory. We refer to an Ostrogradski Hamiltonian formalism to prepare the system to its quantization. This approach comprize the manage of both first- and second-class constraints and the counting of degrees of freedom follows accordingly.

  13. 77 FR 39651 - Proposed Establishment of Class E Airspace; Circle Town, MT

    Science.gov (United States)

    2012-07-05

    ... origin. Issued in Seattle, Washington, on June 25, 2012. John Warner, Manager, Operations Support Group... action to enhance the safety and management of Instrument Flight Rules (IFR) operations at Circle Town County Airport. DATES: Comments must be received on or before August 20, 2012. ADDRESSES: Send comments...

  14. On the relationship between modifications to the Raychaudhuri equation and the canonical Hamiltonian structures

    International Nuclear Information System (INIS)

    Singh, Parampreet; Soni, S K

    2016-01-01

    The problem of obtaining canonical Hamiltonian structures from the equations of motion, without any knowledge of the action, is studied in the context of the spatially flat Friedmann, ‘Robertson’, and Walker models. Modifications to the Raychaudhuri equation are implemented independently as quadratic and cubic terms of energy density without introducing additional degrees of freedom. Depending on their sign, modifications make gravity repulsive above a curvature scale for matter satisfying strong energy conditions, or more attractive than in the classical theory. The canonical structure of the modified theories is determined by demanding that the total Hamiltonian be a linear combination of gravity and matter Hamiltonians. In the quadratic repulsive case, the modified canonical phase space of gravity is a polymerized phase space with canonical momentum as inverse a trigonometric function of the Hubble rate; the canonical Hamiltonian can be identified with the effective Hamiltonian in loop quantum cosmology. The repulsive cubic modification results in a ‘generalized polymerized’ canonical phase space. Both the repulsive modifications are found to yield singularity avoidance. In contrast, the quadratic and cubic attractive modifications result in a canonical phase space in which canonical momentum is nontrigonometric and singularities persist. Our results hint at connections between the repulsive/attractive nature of modifications to gravity arising from the gravitational sector and polymerized/non polymerized gravitational phase space. (paper)

  15. Adaptive control of port-Hamiltonian systems

    NARCIS (Netherlands)

    Dirksz, D.A.; Scherpen, J.M.A.; Edelmayer, András

    2010-01-01

    In this paper an adaptive control scheme is presented for general port-Hamiltonian systems. Adaptive control is used to compensate for control errors that are caused by unknown or uncertain parameter values of a system. The adaptive control is also combined with canonical transformation theory for

  16. Iterated Hamiltonian type systems and applications

    Science.gov (United States)

    Tiba, Dan

    2018-04-01

    We discuss, in arbitrary dimension, certain Hamiltonian type systems and prove existence, uniqueness and regularity properties, under the independence condition. We also investigate the critical case, define a class of generalized solutions and prove existence and basic properties. Relevant examples and counterexamples are also indicated. The applications concern representations of implicitly defined manifolds and their perturbations, motivated by differential systems involving unknown geometries.

  17. Symmetry and resonance in Hamiltonian systems

    NARCIS (Netherlands)

    Tuwankotta, J.M.; Verhulst, F.

    2000-01-01

    In this paper we study resonances in two degrees of freedom, autonomous, hamiltonian systems. Due to the presence of a symmetry condition on one of the degrees of freedom, we show that some of the resonances vanish as lower order resonances. After giving a sharp estimate of the resonance domain, we

  18. Symmetry and resonance in Hamiltonian systems

    NARCIS (Netherlands)

    Tuwankotta, J.M.; Verhulst, F.

    1999-01-01

    In this paper we study resonances in two degrees of freedom, autonomous, hamiltonian systems. Due to the presence of a symmetry condition on one of the degrees of freedom, we show that some of the resonances vanish as lower order resonances. After determining the size of the resonance domain, we

  19. Hamiltonian evolutions of twisted polygons in RPn

    International Nuclear Information System (INIS)

    Beffa, Gloria Marì; Wang, Jing Ping

    2013-01-01

    In this paper we find a discrete moving frame and their associated invariants along projective polygons in RP n , and we use them to describe invariant evolutions of projective N-gons. We then apply a reduction process to obtain a natural Hamiltonian structure on the space of projective invariants for polygons, establishing a close relationship between the projective N-gon invariant evolutions and the Hamiltonian evolutions on the invariants of the flow. We prove that any Hamiltonian evolution is induced on invariants by an invariant evolution of N-gons—what we call a projective realization—and both evolutions are connected explicitly in a very simple way. Finally, we provide a completely integrable evolution (the Boussinesq lattice related to the lattice W 3 -algebra), its projective realization in RP 2 and its Hamiltonian pencil. We generalize both structures to n-dimensions and we prove that they are Poisson, defining explicitly the n-dimensional generalization of the planar evolution (a discretization of the W n -algebra). We prove that the generalization is completely integrable, and we also give its projective realization, which turns out to be very simple. (paper)

  20. Discrete variable representation for singular Hamiltonians

    DEFF Research Database (Denmark)

    Schneider, B. I.; Nygaard, Nicolai

    2004-01-01

    We discuss the application of the discrete variable representation (DVR) to Schrodinger problems which involve singular Hamiltonians. Unlike recent authors who invoke transformations to rid the eigenvalue equation of singularities at the cost of added complexity, we show that an approach based...

  1. The hamiltonian structures of the KP hierarchy

    International Nuclear Information System (INIS)

    Das, A.; Panda, S.; Huang Wenjui

    1991-01-01

    We obtain the two hamiltonian structures of the KP hierarchy following the method of Drinfeld and Sokolov. We point out how the second structure of Drinfeld and Sokolov needs to be modified in the present case. We briefly comment on the connection between these structures and the W 1+∞ algebra. (orig.)

  2. Hamiltonian structure for rescaled integrable Lorenz systems

    International Nuclear Information System (INIS)

    Haas, F.; Goedert, J.

    1993-01-01

    It is shown that three among the known invariants for the Lorenz system recast the original equations into a Hamiltonian form. This is made possible by an appropriate time-dependent rescaling and the use of a generalized formalism with non-trivial structure functions. (author)

  3. Singularities of Poisson structures and Hamiltonian bifurcations

    NARCIS (Netherlands)

    Meer, van der J.C.

    2010-01-01

    Consider a Poisson structure on C8(R3,R) with bracket {, } and suppose that C is a Casimir function. Then {f, g} =<¿C, (¿g x ¿f) > is a possible Poisson structure. This confirms earlier observations concerning the Poisson structure for Hamiltonian systems that are reduced to a one degree of freedom

  4. Transparency in port-Hamiltonian based telemanipulation

    NARCIS (Netherlands)

    Secchi, C; Stramigioli, Stefano; Fantuzzi, C.

    2005-01-01

    After stability, transparency is the major issue in the design of a telemanipulation system. In this paper we exploit a behavioral approach in order to provide an index for the evaluation of transparency in port-Hamiltonian based teleoperators. Furthermore we provide a transparency analysis of

  5. Transparency in Port-Hamiltonian-Based Telemanipulation

    NARCIS (Netherlands)

    Secchi, Cristian; Stramigioli, Stefano; Fantuzzi, Cesare

    After stability, transparency is the major issue in the design of a telemanipulation system. In this paper, we exploit the behavioral approach in order to provide an index for the evaluation of transparency in port-Hamiltonian-based teleoperators. Furthermore, we provide a transparency analysis of

  6. Hamiltonian formulation of anomaly free chiral bosons

    International Nuclear Information System (INIS)

    Abdalla, E.; Abdalla, M.C.B.; Devecchi, F.P.; Zadra, A.

    1988-01-01

    Starting out of an anomaly free Lagrangian formulation for chiral scalars, which a Wess-Zumino Term (to cancel the anomaly), we formulate the corresponding hamiltonian problem. Ther we use the (quantum) Siegel invariance to choose a particular, which turns out coincide with the obtained by Floreanini and Jackiw. (author) [pt

  7. Hamiltonian structure of gravitational field theory

    International Nuclear Information System (INIS)

    Rayski, J.

    1992-01-01

    Hamiltonian generalizations of Einstein's theory of gravitation introducing a laminar structure of spacetime are discussed. The concepts of general relativity and of quasi-inertial coordinate systems are extended beyond their traditional scope. Not only the metric, but also the coordinate system, if quantized, undergoes quantum fluctuations

  8. Port-Hamiltonian Systems on Open Graphs

    NARCIS (Netherlands)

    Schaft, A.J. van der; Maschke, B.M.

    2010-01-01

    In this talk we discuss how to define in an intrinsic manner port-Hamiltonian dynamics on open graphs. Open graphs are graphs where some of the vertices are boundary vertices (terminals), which allow interconnection with other systems. We show that a directed graph carries two natural Dirac

  9. Gauge theories of infinite dimensional Hamiltonian superalgebras

    International Nuclear Information System (INIS)

    Sezgin, E.

    1989-05-01

    Symplectic diffeomorphisms of a class of supermanifolds and the associated infinite dimensional Hamiltonian superalgebras, H(2M,N) are discussed. Applications to strings, membranes and higher spin field theories are considered: The embedding of the Ramond superconformal algebra in H(2,1) is obtained. The Chern-Simons gauge theory of symplectic super-diffeomorphisms is constructed. (author). 29 refs

  10. The Hamiltonian structures of the KP hierarchy

    International Nuclear Information System (INIS)

    Das, A.; Panda, S.; Huang Wenjui

    1991-08-01

    We obtain the two Hamiltonian structures of the KP hierarchy following the method of Drinfeld and Sokolov. We point out how the second structure of Drinfeld and Sokolov needs to be modified in the present case. We briefly comment on the connection between these structures and the W 1+∞ algebra. (author). 18 refs

  11. Quasi exact solution of the Rabi Hamiltonian

    CERN Document Server

    Koç, R; Tuetuencueler, H

    2002-01-01

    A method is suggested to obtain the quasi exact solution of the Rabi Hamiltonian. It is conceptually simple and can be easily extended to other systems. The analytical expressions are obtained for eigenstates and eigenvalues in terms of orthogonal polynomials. It is also demonstrated that the Rabi system, in a particular case, coincides with the quasi exactly solvable Poeschl-Teller potential.

  12. Edge-disjoint Hamiltonian cycles in hypertournaments

    DEFF Research Database (Denmark)

    Thomassen, Carsten

    2006-01-01

    We introduce a method for reducing k-tournament problems, for k >= 3, to ordinary tournaments, that is, 2-tournaments. It is applied to show that a k-tournament on n >= k + 1 + 24d vertices (when k >= 4) or on n >= 30d + 2 vertices (when k = 3) has d edge-disjoint Hamiltonian cycles if and only...

  13. Packing circles and spheres on surfaces

    KAUST Repository

    Schiftner, Alexander; Hö binger, Mathias; Wallner, Johannes; Pottmann, Helmut

    2009-01-01

    Inspired by freeform designs in architecture which involve circles and spheres, we introduce a new kind of triangle mesh whose faces' incircles form a packing. As it turns out, such meshes have a rich geometry and allow us to cover surfaces with circle patterns, sphere packings, approximate circle packings, hexagonal meshes which carry a torsion-free support structure, hybrid tri-hex meshes, and others. We show how triangle meshes can be optimized so as to have the incircle packing property. We explain their relation to conformal geometry and implications on solvability of optimization. The examples we give confirm that this kind of meshes is a rich source of geometric structures relevant to architectural geometry. © 2009 ACM.

  14. Shock circle model for ejector performance evaluation

    International Nuclear Information System (INIS)

    Zhu, Yinhai; Cai, Wenjian; Wen, Changyun; Li, Yanzhong

    2007-01-01

    In this paper, a novel shock circle model for the prediction of ejector performance at the critical mode operation is proposed. By introducing the 'shock circle' at the entrance of the constant area chamber, a 2D exponential expression for velocity distribution is adopted to approximate the viscosity flow near the ejector inner wall. The advantage of the 'shock circle' analysis is that the calculation of ejector performance is independent of the flows in the constant area chamber and diffuser. Consequently, the calculation is even simpler than many 1D modeling methods and can predict the performance of critical mode operation ejectors much more accurately. The effectiveness of the method is validated by two experimental results reported earlier. The proposed modeling method using two coefficients is shown to produce entrainment ratio, efficiency and coefficient of performance (COP) accurately and much closer to experimental results than those of 1D analysis methods

  15. ENTREPRENEURSHIP EDUCATION AND THE ECONOMY VICIOUS CIRCLES

    Directory of Open Access Journals (Sweden)

    MEDAR LUCIAN ION

    2015-06-01

    Full Text Available Education for sustainable development, involves training honest, active, social and creative persons for ensuring the link between environment, society, economy and politics. Trained entrepreneurs in sustainable development, are the engine system which can bring an economic prosperity. Lack of entrepreneurial education in the last 25 years has led accentuated conditions to avoiding economic development in all reference fields where added value can be achieved. Running away from excessive taxation led to the establishment of vicious circles in the economy. Vicious circles of the economy can be found in saving, tax policy, productive investment and the informal economy. Through this study will present the importance of entrepreneurship education in the real economy and some specifications to exit entrepreneurs from vicious circles of the economy.

  16. Packing circles and spheres on surfaces

    KAUST Repository

    Schiftner, Alexander

    2009-12-01

    Inspired by freeform designs in architecture which involve circles and spheres, we introduce a new kind of triangle mesh whose faces\\' incircles form a packing. As it turns out, such meshes have a rich geometry and allow us to cover surfaces with circle patterns, sphere packings, approximate circle packings, hexagonal meshes which carry a torsion-free support structure, hybrid tri-hex meshes, and others. We show how triangle meshes can be optimized so as to have the incircle packing property. We explain their relation to conformal geometry and implications on solvability of optimization. The examples we give confirm that this kind of meshes is a rich source of geometric structures relevant to architectural geometry.

  17. Packing circles and spheres on surfaces

    KAUST Repository

    Schiftner, Alexander

    2009-01-01

    Inspired by freeform designs in architecture which involve circles and spheres, we introduce a new kind of triangle mesh whose faces\\' incircles form a packing. As it turns out, such meshes have a rich geometry and allow us to cover surfaces with circle patterns, sphere packings, approximate circle packings, hexagonal meshes which carry a torsion-free support structure, hybrid tri-hex meshes, and others. We show how triangle meshes can be optimized so as to have the incircle packing property. We explain their relation to conformal geometry and implications on solvability of optimization. The examples we give confirm that this kind of meshes is a rich source of geometric structures relevant to architectural geometry. © 2009 ACM.

  18. Students’ Scientific Circle of Obstetrics and Gynaecology

    Directory of Open Access Journals (Sweden)

    Ivan Polishchuk

    2017-06-01

    Full Text Available The students’ scientific circle is the kind of teaching obstetrics and gynaecology in a higher medical institution. The circle is an elective form of learning that allows the students to get deeper knowledge of a subject and to perfect themselves in the issues of diagnostics in obstetrics and gynaecology as well as to acquaint themselves with basic medical techniques. It helps identify students who are capable of scientific research and allows the students to improve their ability to analytical perception of professional information, the ability to present it to the audience, ask and answer the questions publicly. The article presents the results of practical and research activities of obstetric and gynaecologic section of the students’ scientific circle of Ivano-Frankivsk National Medical University.

  19. Packing circles and spheres on surfaces

    KAUST Repository

    Schiftner, Alexander; Hö binger, Mathias; Wallner, Johannes; Pottmann, Helmut

    2009-01-01

    Inspired by freeform designs in architecture which involve circles and spheres, we introduce a new kind of triangle mesh whose faces' incircles form a packing. As it turns out, such meshes have a rich geometry and allow us to cover surfaces with circle patterns, sphere packings, approximate circle packings, hexagonal meshes which carry a torsion-free support structure, hybrid tri-hex meshes, and others. We show how triangle meshes can be optimized so as to have the incircle packing property. We explain their relation to conformal geometry and implications on solvability of optimization. The examples we give confirm that this kind of meshes is a rich source of geometric structures relevant to architectural geometry.

  20. The group of Hamiltonian automorphisms of a star product

    OpenAIRE

    La Fuente-Gravy, Laurent

    2015-01-01

    We deform the group of Hamiltonian diffeomorphisms into the group of Hamiltonian automorphisms of a formal star product on a symplectic manifold. We study the geometry of that group and deform the Flux morphism in the framework of deformation quantization.

  1. QCD string with quarks. 2. Light cone Hamiltonian

    International Nuclear Information System (INIS)

    Dubin, A.Yu.; Kaidalov, A.B.; Simonov, Yu.A.

    1994-01-01

    The light-cone Hamiltonian is derived from the general gauge - and Lorentz - invariant expression for the qq-bar Green function. The resulting Hamiltonian contains in a non-additive way contributions from quark and string degrees of freedom

  2. Hamiltonian analysis of transverse dynamics in axisymmetric rf photoinjectors

    International Nuclear Information System (INIS)

    Wang, C.-x.

    2006-01-01

    A general Hamiltonian that governs the beam dynamics in an rf photoinjector is derived from first principles. With proper choice of coordinates, the resulting Hamiltonian has a simple and familiar form, while taking into account the rapid acceleration, rf focusing, magnetic focusing, and space-charge forces. From the linear Hamiltonian, beam-envelope evolution is readily obtained, which better illuminates the theory of emittance compensation. Preliminary results on the third-order nonlinear Hamiltonian will be given as well.

  3. On integrable Hamiltonians for higher spin XXZ chain

    International Nuclear Information System (INIS)

    Bytsko, Andrei G.

    2003-01-01

    Integrable Hamiltonians for higher spin periodic XXZ chains are constructed in terms of the spin generators; explicit examples for spins up to (3/2) are given. Relations between Hamiltonians for some U q (sl 2 )-symmetric and U(1)-symmetric universal r-matrices are studied; their properties are investigated. A certain modification of the higher spin periodic chain Hamiltonian is shown to be an integrable U q (sl 2 )-symmetric Hamiltonian for an open chain

  4. Effective Hamiltonians in quantum physics: resonances and geometric phase

    International Nuclear Information System (INIS)

    Rau, A R P; Uskov, D

    2006-01-01

    Effective Hamiltonians are often used in quantum physics, both in time-dependent and time-independent contexts. Analogies are drawn between the two usages, the discussion framed particularly for the geometric phase of a time-dependent Hamiltonian and for resonances as stationary states of a time-independent Hamiltonian

  5. Quality circles: the nurse executive as mentor.

    Science.gov (United States)

    Flarey, D L

    1991-12-01

    Changes within and around the health care environment are forcing health care executives to reexamine their managerial and leadership styles to confront the resulting turbulence. The nurse executive is charged with the profound responsibility of directing the delivery of nursing care throughout the organization. Care delivered today must be of high quality. Declining financial resources as well as personnel shortages cause the executive to be an effective innovator in meeting the increasing demands. Quality circles offer the nurse executive an avenue of recourse. Circles have been effectively implemented in the health care setting, as has been consistently documented over time. By way of a participative management approach, quality circles may lead to increased employee morale and productivity, cost savings, and decreased employee turnover rates, as well as realization of socialization and self-actualization needs. A most effective approach to their introduction would be implementation at the first-line manager level. This promotes an acceptance of the concept at the management level as well as a training course for managers to implement the process at the unit level. The nurse executive facilitates the process at the first-line manager level. This facilitation will cause a positive outcome to diffuse throughout the entire organization. Quality circles offer the nurse executive the opportunity to challenge the existing environmental turmoil and effect a positive and lasting change.

  6. Waring's Problem and the Circle Method

    Indian Academy of Sciences (India)

    other interests include classical music and mountaineering. the problems they worked on. Their proof of a slightly. Keywords weaker form of Ramanujan's original formula was pub-. Waring's problem, circle method, ... arc is fairly simple while it is the minor arc estimation that accounts for the 'major' amount of work involved!

  7. Everything within a Circle Is One Thing

    Centers for Disease Control (CDC) Podcasts

    2017-12-19

    Byron Breedlove, EID managing editor, discuses and reads his December 2017 cover essay, Everything within a Circle is One Thing.  Created: 12/19/2017 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 12/19/2017.

  8. The Prague Linguistic Circle and Dialectics

    Czech Academy of Sciences Publication Activity Database

    Sládek, Ondřej

    -, č. 19 (2017), s. 352-357 E-ISSN 2037-2426 Institutional support: RVO:68378068 Keywords : The Prague Linguistic Circle * Jan Mukařovský * Structuralism * Structural Poetics * Dialectics Subject RIV: AJ - Letters, Mass-media, Audiovision OBOR OECD: Specific literatures

  9. Dynamics and bifurcations of random circle diffeomorphisms

    NARCIS (Netherlands)

    Zmarrou, H.; Homburg, A.J.

    2008-01-01

    We discuss iterates of random circle diffeomorphisms with identically distributed noise, where the noise is bounded and absolutely continuous. Using arguments of B. Deroin, V.A. Kleptsyn and A. Navas, we provide precise conditions under which random attracting fixed points or random attracting

  10. On circle map coupled map lattice

    CERN Document Server

    Ahmed, E

    2002-01-01

    Circle map in one and two dimensions is studied. Both its stability, synchronization using bounded control and persistence is discussed. This work is expected to be applicable in ecology where spatial effects are known to be important. Also it will be relevant to systems where delay effects are not negligible.

  11. Twisted spin Sutherland models from quantum Hamiltonian reduction

    International Nuclear Information System (INIS)

    Feher, L; Pusztai, B G

    2008-01-01

    Recent general results on Hamiltonian reductions under polar group actions are applied to study some reductions of the free particle governed by the Laplace-Beltrami operator of a compact, connected, simple Lie group. The reduced systems associated with arbitrary finite-dimensional irreducible representations of the group by using the symmetry induced by twisted conjugations are described in detail. These systems generically yield integrable Sutherland-type many-body models with spin, which are called twisted spin Sutherland models if the underlying twisted conjugations are built on non-trivial Dynkin diagram automorphisms. The spectra of these models can be calculated, in principle, by solving certain Clebsch-Gordan problems, and the result is presented for the models associated with the symmetric tensorial powers of the defining representation of SU(N)

  12. Coherent states of systems with quadratic Hamiltonians

    Energy Technology Data Exchange (ETDEWEB)

    Bagrov, V.G., E-mail: bagrov@phys.tsu.ru [Department of Physics, Tomsk State University, Tomsk (Russian Federation); Gitman, D.M., E-mail: gitman@if.usp.br [Tomsk State University, Tomsk (Russian Federation); Pereira, A.S., E-mail: albertoufcg@hotmail.com [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Instituto de Fisica

    2015-06-15

    Different families of generalized coherent states (CS) for one-dimensional systems with general time-dependent quadratic Hamiltonian are constructed. In principle, all known CS of systems with quadratic Hamiltonian are members of these families. Some of the constructed generalized CS are close enough to the well-known due to Schroedinger and Glauber CS of a harmonic oscillator; we call them simply CS. However, even among these CS, there exist different families of complete sets of CS. These families differ by values of standard deviations at the initial time instant. According to the values of these initial standard deviations, one can identify some of the families with semiclassical CS. We discuss properties of the constructed CS, in particular, completeness relations, minimization of uncertainty relations and so on. As a unknown application of the general construction, we consider different CS of an oscillator with a time dependent frequency. (author)

  13. Coherent states of systems with quadratic Hamiltonians

    International Nuclear Information System (INIS)

    Bagrov, V.G.; Gitman, D.M.; Pereira, A.S.

    2015-01-01

    Different families of generalized coherent states (CS) for one-dimensional systems with general time-dependent quadratic Hamiltonian are constructed. In principle, all known CS of systems with quadratic Hamiltonian are members of these families. Some of the constructed generalized CS are close enough to the well-known due to Schroedinger and Glauber CS of a harmonic oscillator; we call them simply CS. However, even among these CS, there exist different families of complete sets of CS. These families differ by values of standard deviations at the initial time instant. According to the values of these initial standard deviations, one can identify some of the families with semiclassical CS. We discuss properties of the constructed CS, in particular, completeness relations, minimization of uncertainty relations and so on. As a unknown application of the general construction, we consider different CS of an oscillator with a time dependent frequency. (author)

  14. Effective Hamiltonian for high Tc Cu oxides

    International Nuclear Information System (INIS)

    Fukuyama, H.; Matsukawa, H.

    1989-01-01

    Effective Hamiltonian has been derived for CuO 2 layers in the presence of extra holes doped mainly into O-sites by taking both on-site and intersite Coulomb interaction into account. A special case with a single hole has been examined in detail. It is found that there exist various types of bound states, singlet and triplet with different spatial symmetry, below the hole bank continuum. The spatial extent of the Zhang-Rice singlet state, which is most stabilized, and the effective transfer integral between these singlet states are seen to be very sensitive to the relative magnitude of the direct and the indirect transfer integrals between O-sites. Effective Hamiltonian for the case of electron doping has also been derived

  15. Partial quantization of Lagrangian-Hamiltonian systems

    International Nuclear Information System (INIS)

    Amaral, C.M. do; Soares Filho, P.C.

    1979-05-01

    A classical variational principle is constructed in the Weiss form, for dynamical systems with support spaces of the configuration-phase kind. This extended principle rules the dynamics of classical systems, partially Hamiltonian, in interaction with Lagrangean parameterized subsidiary dynamics. The variational family of equations obtained, consists of an equation of the Hamilton-Jacobi type, coupled to a family of differential equations of the Euler-Lagrange form. The basic dynamical function appearing in the equations is a function of the Routh kind. By means of an ansatz induced by the variationally obtained family, a generalized set of equation, is proposed constituted by a wave equation of Schroedinger type, coupled to a family of equations formaly analog to those Euler-Lagrange equations. A basic operator of Routh type appears in our generalized set of equations. This operator describes the interaction between a quantized Hamiltonian dynamics, with a parameterized classical Lagrangean dynamics in semi-classical closed models. (author) [pt

  16. Quadratic hamiltonians and relativistic quantum mechanics

    International Nuclear Information System (INIS)

    Razumov, A.V.; Solov'ev, V.O.; Taranov, A.Yu.

    1981-01-01

    For the case of a charged scalar field described by a quadratic hamiltonian the equivalent relativistic quantum mechanics is constructed in one-particle sector. Complete investigation of a charged relativistic particle motion in the Coulomb field is carried out. Subcritical as well as supercritical cases are considered. In the course of investigation of the charged scalar particle in the Coulomb field the diagonalization of the quadratic hamiltonian describing the charged scalar quantized field interaction with the external Coulomb field has taken place. Mathematically this problem is bound to the construction of self-conjugated expansions of the symmetric operator. The construction of such expansion is necessary at any small external field magnitude [ru

  17. Hamiltonian mechanics and divergence-free fields

    International Nuclear Information System (INIS)

    Boozer, A.H.

    1986-08-01

    The field lines, or integral curves, of a divergence-free field in three dimensions are shown to be topologically equivalent to the trajectories of a Hamiltonian with two degrees of freedom. The consideration of fields that depend on a parameter allow the construction of a canonical perturbation theory which is valid even if the perturbation is large. If the parametric dependence of the magnetic, or the vorticity field is interpreted as time dependence, evolution equations are obtained which give Kelvin's theorem or the flux conservation theorem for ideal fluids and plasmas. The Hamiltonian methods prove especially useful for study of fields in which the field lines must be known throughout a volume of space

  18. Quantum mechanical Hamiltonian models of discrete processes

    International Nuclear Information System (INIS)

    Benioff, P.

    1981-01-01

    Here the results of other work on quantum mechanical Hamiltonian models of Turing machines are extended to include any discrete process T on a countably infinite set A. The models are constructed here by use of scattering phase shifts from successive scatterers to turn on successive step interactions. Also a locality requirement is imposed. The construction is done by first associating with each process T a model quantum system M with associated Hilbert space H/sub M/ and step operator U/sub T/. Since U/sub T/ is not unitary in general, M, H/sub M/, and U/sub T/ are extended into a (continuous time) Hamiltonian model on a larger space which satisfies the locality requirement. The construction is compared with the minimal unitary dilation of U/sub T/. It is seen that the model constructed here is larger than the minimal one. However, the minimal one does not satisfy the locality requirement

  19. Boundary Hamiltonian Theory for Gapped Topological Orders

    Science.gov (United States)

    Hu, Yuting; Wan, Yidun; Wu, Yong-Shi

    2017-06-01

    We report our systematic construction of the lattice Hamiltonian model of topological orders on open surfaces, with explicit boundary terms. We do this mainly for the Levin-Wen string-net model. The full Hamiltonian in our approach yields a topologically protected, gapped energy spectrum, with the corresponding wave functions robust under topology-preserving transformations of the lattice of the system. We explicitly present the wavefunctions of the ground states and boundary elementary excitations. The creation and hopping operators of boundary quasi-particles are constructed. It is found that given a bulk topological order, the gapped boundary conditions are classified by Frobenius algebras in its input data. Emergent topological properties of the ground states and boundary excitations are characterized by (bi-) modules over Frobenius algebras.

  20. Hamiltonian reduction of Kac-Moody algebras

    International Nuclear Information System (INIS)

    Kimura, Kazuhiro

    1991-01-01

    Feigin-Fucks construction provides us methods to treat rational conformal theories in terms of free fields. This formulation enables us to describe partition functions and correlation functions in the Fock space of free fields. There are several attempt extending to supersymmetric theories. In this report authors present an explicit calculation of the Hamiltonian reduction based on the free field realization. In spite of the results being well-known, the relations can be clearly understood in the language of bosons. Authors perform the hamiltonian reduction by imposing a constraint with appropriate gauge transformations which preserve the constraint. This approaches enables us to gives the geometric interpretation of super Virasoro algebras and relations of the super gravity. In addition, author discuss the properties of quantum groups by using the explicit form of the group element. It is also interesting to extend to super Kac-Moody algebras. (M.N.)

  1. Phase transitions in the Hubbard Hamiltonian

    International Nuclear Information System (INIS)

    Chaves, C.M.; Lederer, P.; Gomes, A.A.

    1977-05-01

    Phase transition in the isotropic non-degenerate Hubbard Hamiltonian within the renormalization group techniques is studied, using the epsilon = 4 - d expansion to first order in epsilon. The functional obtained from the Hubbard Hamiltonian displays full rotation symmetry and describes two coupled fields: a vector spin field, with n components and a non-soft scalar charge field. This coupling is pure imaginary, which has interesting consequences on the critical properties of this coupled field system. The effect of simple constraints imposed on the charge field is considered. The relevance of the coupling between the fields in producing Fisher renormalization of the critical exponents is discussed. The possible singularities introduced in the charge-charge correlation function by the coupling are also discussed

  2. Hamiltonian partial differential equations and applications

    CERN Document Server

    Nicholls, David; Sulem, Catherine

    2015-01-01

    This book is a unique selection of work by world-class experts exploring the latest developments in Hamiltonian partial differential equations and their applications. Topics covered within are representative of the field’s wide scope, including KAM and normal form theories, perturbation and variational methods, integrable systems, stability of nonlinear solutions as well as applications to cosmology, fluid mechanics and water waves. The volume contains both surveys and original research papers and gives a concise overview of the above topics, with results ranging from mathematical modeling to rigorous analysis and numerical simulation. It will be of particular interest to graduate students as well as researchers in mathematics and physics, who wish to learn more about the powerful and elegant analytical techniques for Hamiltonian partial differential equations.

  3. A diagrammatic construction of formal E-independent model hamiltonian

    International Nuclear Information System (INIS)

    Kvasnicka, V.

    1977-01-01

    A diagrammatic construction of formal E-independent model interaction (i.e., without second-quantization formalism) is suggested. The construction starts from the quasi-degenerate Brillouin-Wigner perturbation theory, in the framework of which an E-dependent model Hamiltonian is simply constructed. Applying the ''E-removing'' procedure to this E-dependent model Hamiltonian, the E-independent formal model Hamiltonian either Hermitian or non-Hermitian can diagrammatically be easily derived. For the formal E-independent model Hamiltonian the separability theorem is proved, which can be profitably used for a rather ''formalistic ''construction of a many-body E-independent model Hamiltonian

  4. Boson mapping and the microscopic collective nuclear Hamiltonian

    International Nuclear Information System (INIS)

    Dobes, J.; Ivanova, S.P.; Dzholos, R.V.; Pedrosa, R.

    1990-01-01

    Starting with the mapping of the quadrupole collective states in the fermion space onto the boson space, the fermion nuclear problem is transformed into the boson one. The boson images of the bifermion operators and of the fermion Hamiltonian are found. Recurrence relations are used to obtain approximately the norm matrix which appears in the boson-fermion mapping. The resulting boson Hamiltonian contains terms which go beyond the ordinary SU(6) symmetry Hamiltonian of the interacting boson model. Calculations, however, suggest that on the phenomenological level the differences between the mapped Hamiltonian and the SU(6) Hamiltonian are not too important. 18 refs.; 2 figs

  5. Recursive tridiagonalization of infinite dimensional Hamiltonians

    International Nuclear Information System (INIS)

    Haydock, R.; Oregon Univ., Eugene, OR

    1989-01-01

    Infinite dimensional, computable, sparse Hamiltonians can be numerically tridiagonalized to finite precision using a three term recursion. Only the finite number of components whose relative magnitude is greater than the desired precision are stored at any stage in the computation. Thus the particular components stored change as the calculation progresses. This technique avoids errors due to truncation of the orbital set, and makes terminators unnecessary in the recursion method. (orig.)

  6. Hamiltonian theory of guiding-center motion

    International Nuclear Information System (INIS)

    Littlejohn, R.G.

    1980-05-01

    A Hamiltonian treatment of the guiding center problem is given which employs noncanonical coordinates in phase space. Separation of the unperturbed system from the perturbation is achieved by using a coordinate transformation suggested by a theorem of Darboux. As a model to illustrate the method, motion in the magnetic field B=B(x,y)z is studied. Lie transforms are used to carry out the perturbation expansion

  7. Symplectic Geometric Algorithms for Hamiltonian Systems

    CERN Document Server

    Feng, Kang

    2010-01-01

    "Symplectic Geometry Algorithms for Hamiltonian Systems" will be useful not only for numerical analysts, but also for those in theoretical physics, computational chemistry, celestial mechanics, etc. The book generalizes and develops the generating function and Hamilton-Jacobi equation theory from the perspective of the symplectic geometry and symplectic algebra. It will be a useful resource for engineers and scientists in the fields of quantum theory, astrophysics, atomic and molecular dynamics, climate prediction, oil exploration, etc. Therefore a systematic research and development

  8. Dynamical invariants for variable quadratic Hamiltonians

    International Nuclear Information System (INIS)

    Suslov, Sergei K

    2010-01-01

    We consider linear and quadratic integrals of motion for general variable quadratic Hamiltonians. Fundamental relations between the eigenvalue problem for linear dynamical invariants and solutions of the corresponding Cauchy initial value problem for the time-dependent Schroedinger equation are emphasized. An eigenfunction expansion of the solution of the initial value problem is also found. A nonlinear superposition principle for generalized Ermakov systems is established as a result of decomposition of the general quadratic invariant in terms of the linear ones.

  9. The Effective Hamiltonian in the Scalar Electrodynamics

    CERN Document Server

    Dineykhan, M D; Zhaugasheva, S A; Sakhyev, S K

    2002-01-01

    On the basis of an investigation of the asymptotic behaviour of the polarization loop for the scalar particles in the external electromagnetic field the relativistic corrections to the Hamiltonian are determined. The constituent mass of the particles in the bound state is analytically derived. It is shown that the constituent mass of the particles differs from the mass of the particles in the free state. The corrections connected with the Thomas precession have been calculated.

  10. Quantization of non-Hamiltonian physical systems

    International Nuclear Information System (INIS)

    Bolivar, A.O.

    1998-09-01

    We propose a general method of quantization of non-Hamiltonian physical systems. Applying it, for example, to a dissipative system coupled to a thermal reservoir described by the Fokker-Planck equation, we are able to obtain the Caldeira-Leggett master equation, the non-linear Schroedinger-Langevin equation and Caldirola-Kanai equation (with an additional term), as particular cases. (author)

  11. Symplectic topology of integrable Hamiltonian systems

    International Nuclear Information System (INIS)

    Nguyen Tien Zung.

    1993-08-01

    We study the topology of integrable Hamiltonian systems, giving the main attention to the affine structure of their orbit spaces. In particular, we develop some aspects of Fomenko's theory about topological classification of integrable non-degenerate systems, and consider some relations between such systems and ''pure'' contact and symplectic geometry. We give a notion of integrable surgery and use it to obtain some interesting symplectic structures. (author). Refs, 10 figs

  12. Hamiltonian description and quantization of dissipative systems

    Science.gov (United States)

    Enz, Charles P.

    1994-09-01

    Dissipative systems are described by a Hamiltonian, combined with a “dynamical matrix” which generalizes the simplectic form of the equations of motion. Criteria for dissipation are given and the examples of a particle with friction and of the Lotka-Volterra model are presented. Quantization is first introduced by translating generalized Poisson brackets into commutators and anticommutators. Then a generalized Schrödinger equation expressed by a dynamical matrix is constructed and discussed.

  13. Hamiltonian theory of guiding-center motion

    Energy Technology Data Exchange (ETDEWEB)

    Littlejohn, R.G.

    1980-05-01

    A Hamiltonian treatment of the guiding center problem is given which employs noncanonical coordinates in phase space. Separation of the unperturbed system from the perturbation is achieved by using a coordinate transformation suggested by a theorem of Darboux. As a model to illustrate the method, motion in the magnetic field B=B(x,y)z is studied. Lie transforms are used to carry out the perturbation expansion.

  14. The newest miracle drug: quality circles in hospitals.

    Science.gov (United States)

    McKinney, M M

    1984-01-01

    In recent years, a number of hospitals throughout the United States have been exploring the use of Japanese-style quality circles to reduce their operating expenses, improve productivity, and enhance the quality of work life for hospital employees. This article examines the organizational climate necessary for quality circles, methods used to implement quality circles, and management's role in guiding and responding to circle activities. Ideas for building and maintaining staff support are presented along with a cost/benefit analysis of quality circle programs. The author concludes that quality circles are most successful in hospitals where they are part of a larger organizational development effort. When administrators believe in their employees' ability to contribute to the institution and are willing to invest necessary time and resources in employee education and the measurement of quality circle achievements, quality circles can produce creative solutions to perplexing institutional problems.

  15. Large-scale stochasticity in Hamiltonian systems

    International Nuclear Information System (INIS)

    Escande, D.F.

    1982-01-01

    Large scale stochasticity (L.S.S.) in Hamiltonian systems is defined on the paradigm Hamiltonian H(v,x,t) =v 2 /2-M cos x-P cos k(x-t) which describes the motion of one particle in two electrostatic waves. A renormalization transformation Tsub(r) is described which acts as a microscope that focusses on a given KAM (Kolmogorov-Arnold-Moser) torus in phase space. Though approximate, Tsub(r) yields the threshold of L.S.S. in H with an error of 5-10%. The universal behaviour of KAM tori is predicted: for instance the scale invariance of KAM tori and the critical exponent of the Lyapunov exponent of Cantori. The Fourier expansion of KAM tori is computed and several conjectures by L. Kadanoff and S. Shenker are proved. Chirikov's standard mapping for stochastic layers is derived in a simpler way and the width of the layers is computed. A simpler renormalization scheme for these layers is defined. A Mathieu equation for describing the stability of a discrete family of cycles is derived. When combined with Tsub(r), it allows to prove the link between KAM tori and nearby cycles, conjectured by J. Greene and, in particular, to compute the mean residue of a torus. The fractal diagrams defined by G. Schmidt are computed. A sketch of a methodology for computing the L.S.S. threshold in any two-degree-of-freedom Hamiltonian system is given. (Auth.)

  16. NLO renormalization in the Hamiltonian truncation

    Science.gov (United States)

    Elias-Miró, Joan; Rychkov, Slava; Vitale, Lorenzo G.

    2017-09-01

    Hamiltonian truncation (also known as "truncated spectrum approach") is a numerical technique for solving strongly coupled quantum field theories, in which the full Hilbert space is truncated to a finite-dimensional low-energy subspace. The accuracy of the method is limited only by the available computational resources. The renormalization program improves the accuracy by carefully integrating out the high-energy states, instead of truncating them away. In this paper, we develop the most accurate ever variant of Hamiltonian Truncation, which implements renormalization at the cubic order in the interaction strength. The novel idea is to interpret the renormalization procedure as a result of integrating out exactly a certain class of high-energy "tail states." We demonstrate the power of the method with high-accuracy computations in the strongly coupled two-dimensional quartic scalar theory and benchmark it against other existing approaches. Our work will also be useful for the future goal of extending Hamiltonian truncation to higher spacetime dimensions.

  17. Redesign of the DFT/MRCI Hamiltonian

    Energy Technology Data Exchange (ETDEWEB)

    Lyskov, Igor; Kleinschmidt, Martin; Marian, Christel M., E-mail: Christel.Marian@hhu.de [Institute of Theoretical and Computational Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf (Germany)

    2016-01-21

    The combined density functional theory and multireference configuration interaction (DFT/MRCI) method of Grimme and Waletzke [J. Chem. Phys. 111, 5645 (1999)] is a well-established semi-empirical quantum chemical method for efficiently computing excited-state properties of organic molecules. As it turns out, the method fails to treat bi-chromophores owing to the strong dependence of the parameters on the excitation class. In this work, we present an alternative form of correcting the matrix elements of a MRCI Hamiltonian which is built from a Kohn-Sham set of orbitals. It is based on the idea of constructing individual energy shifts for each of the state functions of a configuration. The new parameterization is spin-invariant and incorporates less empirism compared to the original formulation. By utilizing damping techniques together with an algorithm of selecting important configurations for treating static electron correlation, the high computational efficiency has been preserved. The robustness of the original and redesigned Hamiltonians has been tested on experimentally known vertical excitation energies of organic molecules yielding similar statistics for the two parameterizations. Besides that, our new formulation is free from artificially low-lying doubly excited states, producing qualitatively correct and consistent results for excimers. The way of modifying matrix elements of the MRCI Hamiltonian presented here shall be considered as default choice when investigating photophysical processes of bi-chromophoric systems such as singlet fission or triplet-triplet upconversion.

  18. Locating a circle on the plane using the minimax criterion

    DEFF Research Database (Denmark)

    Brimberg, Jack; Juel, Henrik; Schoebel, Anita

    2006-01-01

    We consider the problem of locating a circle with respect to existing facilities on the plane, such that the largest weighted distance between the circle and the facilities is minimized. The problem properties are analyzed, and a solution procedure proposed.......We consider the problem of locating a circle with respect to existing facilities on the plane, such that the largest weighted distance between the circle and the facilities is minimized. The problem properties are analyzed, and a solution procedure proposed....

  19. Non-Abelian sigma models from Yang-Mills theory compactified on a circle

    Science.gov (United States)

    Ivanova, Tatiana A.; Lechtenfeld, Olaf; Popov, Alexander D.

    2018-06-01

    We consider SU(N) Yang-Mills theory on R 2 , 1 ×S1, where S1 is a spatial circle. In the infrared limit of a small-circle radius the Yang-Mills action reduces to the action of a sigma model on R 2 , 1 whose target space is a 2 (N - 1)-dimensional torus modulo the Weyl-group action. We argue that there is freedom in the choice of the framing of the gauge bundles, which leads to more general options. In particular, we show that this low-energy limit can give rise to a target space SU (N) ×SU (N) /ZN. The latter is the direct product of SU(N) and its Langlands dual SU (N) /ZN, and it contains the above-mentioned torus as its maximal Abelian subgroup. An analogous result is obtained for any non-Abelian gauge group.

  20. Yoctomole electrochemical genosensing of Ebola virus cDNA by rolling circle and circle to circle amplification.

    Science.gov (United States)

    Carinelli, S; Kühnemund, M; Nilsson, M; Pividori, M I

    2017-07-15

    This work addresses the design of an Ebola diagnostic test involving a simple, rapid, specific and highly sensitive procedure based on isothermal amplification on magnetic particles with electrochemical readout. Ebola padlock probes were designed to detect a specific L-gene sequence present in the five most common Ebola species. Ebola cDNA was amplified by rolling circle amplification (RCA) on magnetic particles. Further re-amplification was performed by circle-to-circle amplification (C2CA) and the products were detected in a double-tagging approach using a biotinylated capture probe for immobilization on magnetic particles and a readout probe for electrochemical detection by square-wave voltammetry on commercial screen-printed electrodes. The electrochemical genosensor was able to detect as low as 200 ymol, corresponding to 120 cDNA molecules of L-gene Ebola virus with a limit of detection of 33 cDNA molecules. The isothermal double-amplification procedure by C2CA combined with the electrochemical readout and the magnetic actuation enables the high sensitivity, resulting in a rapid, inexpensive, robust and user-friendly sensing strategy that offers a promising approach for the primary care in low resource settings, especially in less developed countries. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. The Acoustic Reality of the Kachruvian Circles: A Rhythmic Perspective

    Science.gov (United States)

    Low, Ee Ling

    2010-01-01

    This paper investigates whether the rhythmic properties of varieties of English found in each of the concentric circles of Kachru's model can, in any way, be elucidated by the "Three Circles" model. A measurement and comparison of the rhythm of three varieties of English: British English (from the Inner Circle), Singapore English (from…

  2. Circles of Support and Personalization: Exploring the Economic Case

    Science.gov (United States)

    Wistow, Gerald; Perkins, Margaret; Knapp, Martin; Bauer, Annette; Bonin, Eva-Maria

    2016-01-01

    Circles of Support aim to enable people with learning disabilities (and others) to live full lives as part of their communities. As part of a wider study of the economic case for community capacity building conducted from 2012 to 2014, we conducted a mixed methods study of five Circles in North West England. Members of these Circles were…

  3. The "Us" in Discuss: Grouping in Literature Circles

    Science.gov (United States)

    Batchelor, Katherine

    2012-01-01

    This article describes one middle school teacher's use of literature circles using heterogeneous grouping. It begins with a brief rationale for using literature circles in the language arts classroom. Next, it describes techniques to form literature circles. Then, it shares how to build and establish a supportive environment within each group. It…

  4. Forming Circle Formations of Anonymous Mobile Agents With Order Preservation

    NARCIS (Netherlands)

    Wang, Chen; Xie, Guangming; Cao, Ming

    2013-01-01

    We propose distributed control laws for a group of anonymous mobile agents to form desired circle formations when the agents move in the one-dimensional space of a circle. The agents are modeled by kinematic points. They share the common knowledge of the orientation of the circle, but are oblivious

  5. CHARACTERISTICS OF HYDROCARBON EXPLOITATION IN ARCTIC CIRCLE

    Directory of Open Access Journals (Sweden)

    Vanja Lež

    2013-12-01

    Full Text Available The existence of large quantities of hydrocarbons is supposed within the Arctic Circle. Assumed quantities are 25% of the total undiscovered hydrocarbon reserves on Earth, mostly natural gas. Over 500 major and minor gas accumulations within the Arctic Circle were discovered so far, but apart from Snøhvit gas field, there is no commercial exploitation of natural gas from these fields. Arctic gas projects are complicated, technically hard to accomplish, and pose a great threat to the return of investment, safety of people and equipment and for the ecosystem. Russia is a country that is closest to the realization of the Arctic gas projects that are based on the giant gas fields. The most extreme weather conditions in the seas around Greenland are the reason why this Arctic region is the least explored and furthest from the realization of any gas project (the paper is published in Croatian .

  6. A vicious circle in chronic lymphoedema pathophysiology?

    DEFF Research Database (Denmark)

    Cucchi, F; Rossmeislova, L; Simonsen, L

    2017-01-01

    Chronic lymphoedema is a disease caused by a congenital or acquired damage to the lymphatic system and characterized by complex chains of pathophysiologic events such as lymphatic fluid stasis, chronic inflammation, lymphatic vessels impairment, adipose tissue deposition and fibrosis. These event....... Together, these observations indicate strong reciprocal relationship between lymphatics and adipose tissue and suggest a possible key role of the adipocyte in the pathophysiology of chronic lymphoedema's vicious circle....

  7. Rolling circle amplification of metazoan mitochondrialgenomes

    Energy Technology Data Exchange (ETDEWEB)

    Simison, W. Brian; Lindberg, D.R.; Boore, J.L.

    2005-07-31

    Here we report the successful use of rolling circle amplification (RCA) for the amplification of complete metazoan mt genomes to make a product that is amenable to high-throughput genome sequencing techniques. The benefits of RCA over PCR are many and with further development and refinement of RCA, the sequencing of organellar genomics will require far less time and effort than current long PCR approaches.

  8. Stone circles: form and soil kinematics.

    Science.gov (United States)

    Hallet, Bernard

    2013-01-01

    Distinct surface patterns are ubiquitous and diverse in soils of polar and alpine regions, where the ground temperature oscillates about 0°C. They constitute some of the most striking examples of clearly visible, abiotic self-organization in nature. This paper outlines the interplay of frost-related physical processes that produce these patterns spontaneously and presents unique data documenting subsurface soil rotational motion and surface displacement spanning 20 years in well-developed circles of soil outlined by gravel ridges. These sorted circles are particularly attractive research targets for a number of reasons that provide focus for this paper: (i) their exceptional geometric regularity captures the attention of any observer; (ii) they are currently forming and evolving, hence the underlying processes can be monitored readily, especially because they are localized near the ground surface on a scale of metres, which facilitates comprehensive characterization; and (iii) a recent, highly successful numerical model of sorted circle development helps to draw attention to particular field observations that can be used to assess the model, its assumptions and parameter choices, and to the considerable potential for synergetic field and modelling studies.

  9. Quantum Hamiltonian reduction and conformal field theories

    International Nuclear Information System (INIS)

    Bershadsky, M.

    1991-01-01

    It is proved that irreducible representation of the Virasoro algebra can be extracted from an irreducible representation space of the SL (2, R) current algebra by putting a constraint on the latter using the BRST formalism. Thus there is a SL(2, R) symmetry in the Virasoro algebra which is gauged and hidden. This construction of the Virasoro algebra is the quantum analog of the Hamiltonian reduction. The author then naturally leads to consider an SL(2, R) Wess-Zumino-Witten model. This system is related to the quantum field theory of the coadjoint orbit of the Virasoro group. Based on this result he presents the canonical derivation of the SL(2, R) current algebra in Polyakov's theory of two dimensional gravity; it is manifestation of the SL(2, R) symmetry in the conformal field theory hidden by the quantum Hamiltonian reduction. He discusses the quantum Hamiltonian reduction of the SL(n, R) current algebra for the general type of constraints labeled by index 1 ≤ l ≤ (n - 1) and claim that it leads to the new extended conformal algebras W n l . For l = 1 he recovers the well known W n algebra introduced by A. Zamolodchikov. For SL(3, R) Wess-Zumino-Witten model there are two different possibilities of constraining it. The first possibility gives the W 3 algebra, while the second leads to the new chiral algebra W 3 2 generated by the stress-energy tensor, two bosonic supercurrents with spins 3/2 and the U(1) current. He conjectures a Kac formula that describes the highly reducible representation for this algebra. He also makes some speculations concerning the structure of W gravity

  10. Hamiltonian study of improved U(1) lattice gauge theory in three dimensions

    International Nuclear Information System (INIS)

    Loan, Mushtaq; Hamer, Chris

    2004-01-01

    A comprehensive analysis of the Symanzik improved anisotropic three-dimensional U(1) lattice gauge theory in the Hamiltonian limit is made. Monte Carlo techniques are used to obtain numerical results for the static potential, ratio of the renormalized and bare anisotropies, the string tension, lowest glueball masses and the mass ratio. Evidence that rotational symmetry is established more accurately for the Symanzik improved anisotropic action is presented. The discretization errors in the static potential and the renormalization of the bare anisotropy are found to be only a few percent compared to errors of about 20-25 % for the unimproved gauge action. Evidence of scaling in the string tension, antisymmetric mass gap and the mass ratio is observed in the weak coupling region and the behavior is tested against analytic and numerical results obtained in various other Hamiltonian studies of the theory. We find that more accurate determination of the scaling coefficients of the string tension and the antisymmetric mass gap has been achieved, and the agreement with various other Hamiltonian studies of the theory is excellent. The improved action is found to give faster convergence to the continuum limit. Very clear evidence is obtained that in the continuum limit the glueball ratio M S /M A approaches exactly 2, as expected in a theory of free, massive bosons

  11. Circles-in-the-sky searches and observable cosmic topology in a flat universe

    International Nuclear Information System (INIS)

    Mota, B.; Reboucas, M. J.; Tavakol, R.

    2010-01-01

    In a universe with a detectable nontrivial spatial topology, the last scattering surface contains pairs of matching circles with the same distribution of temperature fluctuations--the so-called circles-in-the-sky. Searches for nearly antipodal circles-in-the-sky in maps of cosmic microwave background radiation have so far been unsuccessful. This negative outcome, along with recent theoretical results concerning the detectability of nearly flat compact topologies, is sufficient to exclude a detectable nontrivial topology for most observers in very nearly flat positively and negatively curved universes, whose total matter-energy density satisfies 0 tot -1| -5 . Here, we investigate the consequences of these searches for observable nontrivial topologies if the Universe turns out to be exactly flat (Ω tot =1). We demonstrate that in this case, the conclusions deduced from such searches can be radically different. We show that, although there is no characteristic topological scale in the flat manifolds, for all multiply-connected orientable flat manifolds, it is possible to directly study the action of the holonomies in order to obtain a general upper bound on the angle that characterizes the deviation from antipodicity of pairs of matching circles associated with the shortest closed geodesic. This bound is valid for all observers and all possible values of the compactification length parameters. We also show that in a flat universe, there are observers for whom the circles-in-the-sky searches already undertaken are insufficient to exclude the possibility of a detectable nontrivial spatial topology. It is remarkable how such small variations in the spatial curvature of the Universe, which are effectively indistinguishable geometrically, can have such a drastic effect on the detectability of cosmic topology. Another important outcome of our results is that they offer a framework with which to make statistical inferences from future circles-in-the-sky searches on whether

  12. Re-gauging groupoid, symmetries and degeneracies for graph Hamiltonians and applications to the Gyroid wire network

    Energy Technology Data Exchange (ETDEWEB)

    Kaufmann, Ralph M.; Khlebnikov, Sergei; Wehefritz-Kaufmann, Birgit

    2012-08-15

    Motivated by Harper Hamiltonians on skeletal graphs and their C{sup *}-geometry, we study a certain class of graph Hamiltonians. These Hamiltonians can be thought of as a finite groupoid representation in separable Hilbert spaces. Here the groupoid is the path groupoid of a finite graph. Given such a setup, we consider the possible matrix versions of the Hamiltonian, which are indexed by the choice of a rooted spanning tree and an order of the vertices. The first result is that all the matrix representations are linked to each other via the conjugation action of a re-gauging groupoid. We furthermore show that the symmetries of the underlying graph give rise to an action on the Hamiltonians of a group of extended symmetries. The new concept for the extension is to allow phase transformations on the vertices. In the commutative case, we prove that the extended symmetries act via a projective representation giving rise to isotypical decompositions and super-selection rules. We then apply these results to the PDG and honeycomb graphs using representation theory for projective groups and show that all the degeneracies in the spectra are consequences of these enhanced symmetries. This includes the Dirac points of the Gyroid and the honeycomb.

  13. Integrable Time-Dependent Quantum Hamiltonians

    Science.gov (United States)

    Sinitsyn, Nikolai A.; Yuzbashyan, Emil A.; Chernyak, Vladimir Y.; Patra, Aniket; Sun, Chen

    2018-05-01

    We formulate a set of conditions under which the nonstationary Schrödinger equation with a time-dependent Hamiltonian is exactly solvable analytically. The main requirement is the existence of a non-Abelian gauge field with zero curvature in the space of system parameters. Known solvable multistate Landau-Zener models satisfy these conditions. Our method provides a strategy to incorporate time dependence into various quantum integrable models while maintaining their integrability. We also validate some prior conjectures, including the solution of the driven generalized Tavis-Cummings model.

  14. Discrete variable representation for singular Hamiltonians

    DEFF Research Database (Denmark)

    Schneider, B. I.; Nygaard, Nicolai

    2004-01-01

    We discuss the application of the discrete variable representation (DVR) to Schrodinger problems which involve singular Hamiltonians. Unlike recent authors who invoke transformations to rid the eigenvalue equation of singularities at the cost of added complexity, we show that an approach based...... solely on an orthogonal polynomial basis is adequate, provided the Gauss-Lobatto or Gauss-Radau quadrature rule is used. This ensures that the mesh contains the singular points and by simply discarding the DVR functions corresponding to those points, all matrix elements become well behaved. the boundary...

  15. Nonabelian N=2 superstrings: Hamiltonian structure

    International Nuclear Information System (INIS)

    Isaev, A.P.; Ivanov, E.A.

    1991-04-01

    We examine the Hamiltonian structure of nonabelian N=2 superstring models which are the supergroup manifold extensions of N=2 Green-Schwarz superstring. We find the Kac-Moody and Virasoro type superalgebras of the relevant constraints and present elements of the corresponding quantum theory. A comparison with the type IIA Green-Schwarz superstring moving in a general curved 10-d supergravity background is also given. We find that nonabelian superstrings (for d=10) present a particular case of this general system corresponding to a special choice of the background. (author). 22 refs

  16. Effective Hamiltonians for phosphorene and silicene

    DEFF Research Database (Denmark)

    Voon, L. C. Lew Yan; Lopez-Bezanilla, A.; Wang, J.

    2015-01-01

    We derived the effective Hamiltonians for silicene and phosphorene with strain, electric field andmagnetic field using the method of invariants. Our paper extends the work of Geissler et al 2013 (NewJ. Phys. 15 085030) on silicene, and Li and Appelbaum 2014 (Phys. Rev. B 90, 115439) on phosphorene.......For phosphorene, it is shown that the bands near the Brillouin zone center only have terms ineven powers of the wave vector. We predict that the energies change quadratically in the presence of aperpendicular external electric field but linearly in a perpendicular magnetic field, as opposed to thosefor silicene...

  17. Hamiltonian Description of Convective-cell Generation

    International Nuclear Information System (INIS)

    Krommes, J.A.; Kolesnikov, R.A.

    2004-01-01

    The nonlinear statistical growth rate eq for convective cells driven by drift-wave (DW) interactions is studied with the aid of a covariant Hamiltonian formalism for the gyrofluid nonlinearities. A statistical energy theorem is proven that relates eq to a second functional tensor derivative of the DW energy. This generalizes to a wide class of systems of coupled partial differential equations a previous result for scalar dynamics. Applications to (i) electrostatic ion-temperature-gradient-driven modes at small ion temperature, and (ii) weakly electromagnetic collisional DW's are noted

  18. Eigenfunctions of quadratic hamiltonians in Wigner representation

    International Nuclear Information System (INIS)

    Akhundova, Eh.A.; Dodonov, V.V.; Man'ko, V.I.

    1984-01-01

    Exact solutions of the Schroedinger equation in Wigner representation are obtained for an arbitrary non-stationary N-dimensional quadratic Hamiltonian. It is shown that the complete system of the solutions can always be chosen in the form of the products of Laguerre polynomials, the arguments of which are the quadratic integrals of motion of the corresponding classical problem. The generating function is found for the transition probabilities between Fock states which represent a many-dimensional generatization of a well-known Husimi formula for the oscillator of variable frequency. As an example, the motion of a charged particle in an uniform alternate electromagnetic field is considered in detail

  19. A new perturbative treatment of pentadiagonal Hamiltonians

    International Nuclear Information System (INIS)

    Znojil, M.

    1987-01-01

    A new formulation of the Rayleich - Schroedinger perturbation theory is proposed. It is inspired by a recurent construction of propagators, and its main idea lies in a replacement of the auxiliary matrix elements (generalized continued fractions) by their non-numerical approximants. In a test of convergence (the anharmonic oscillator), the asymptotic fixed-point approximation scheme is used. The results indicate a good applicability of this fixed-point version of our formalism to systems with a band-matrix structure of the Hamiltonian

  20. Effective hamiltonian within the microscopic unitary nuclear model

    International Nuclear Information System (INIS)

    Avramenko, V.I.; Blokhin, A.L.

    1989-01-01

    Within the microscopic version of the unitary collective model with the horizontal mixing the effective Hamiltonian for 18 O and 18 Ne nuclei is constructed. The algebraic structure of the Hamiltonian is compared to the familiar phenomenological ones with the SU(3)-mixing terms which describe the coupled rotational and vibrational spectra. The Hamiltonian, including central nuclear and Coulomb interaction, is diagonalized on the basis of three SU(3) irreducible representations with two orbital symmetries. 32 refs.; 2 figs.; 4 tabs

  1. A Hamiltonian functional for the linearized Einstein vacuum field equations

    International Nuclear Information System (INIS)

    Rosas-RodrIguez, R

    2005-01-01

    By considering the Einstein vacuum field equations linearized about the Minkowski metric, the evolution equations for the gauge-invariant quantities characterizing the gravitational field are written in a Hamiltonian form by using a conserved functional as Hamiltonian; this Hamiltonian is not the analog of the energy of the field. A Poisson bracket between functionals of the field, compatible with the constraints satisfied by the field variables, is obtained. The generator of spatial translations associated with such bracket is also obtained

  2. Introduction to thermodynamics of spin models in the Hamiltonian limit

    Energy Technology Data Exchange (ETDEWEB)

    Berche, Bertrand [Groupe M, Laboratoire de Physique des Materiaux, UMR CNRS No 7556, Universite Henri Poincare, Nancy 1, BP 239, F-54506 Vandoeuvre les Nancy, (France); Lopez, Alexander [Instituto Venezolano de Investigaciones CientIficas, Centro de Fisica, Carr. Panamericana, km 11, Altos de Pipe, Aptdo 21827, 1020-A Caracas, (Venezuela)

    2006-01-01

    A didactic description of the thermodynamic properties of classical spin systems is given in terms of their quantum counterpart in the Hamiltonian limit. Emphasis is on the construction of the relevant Hamiltonian and the calculation of thermal averages is explicitly done in the case of small systems described, in Hamiltonian field theory, by small matrices. The targeted students are those of a graduate statistical physics course.

  3. Hamiltonian structure of the Lotka-Volterra equations

    Science.gov (United States)

    Nutku, Y.

    1990-03-01

    The Lotka-Volterra equations governing predator-prey relations are shown to admit Hamiltonian structure with respect to a generalized Poisson bracket. These equations provide an example of a system for which the naive criterion for the existence of Hamiltonian structure fails. We show further that there is a three-component generalization of the Lotka-Volterra equations which is a bi-Hamiltonian system.

  4. Hamiltonian structures of some non-linear evolution equations

    International Nuclear Information System (INIS)

    Tu, G.Z.

    1983-06-01

    The Hamiltonian structure of the O(2,1) non-linear sigma model, generalized AKNS equations, are discussed. By reducing the O(2,1) non-linear sigma model to its Hamiltonian form some new conservation laws are derived. A new hierarchy of non-linear evolution equations is proposed and shown to be generalized Hamiltonian equations with an infinite number of conservation laws. (author)

  5. Geometry and Hamiltonian mechanics on discrete spaces

    International Nuclear Information System (INIS)

    Talasila, V; Clemente-Gallardo, J; Schaft, A J van der

    2004-01-01

    Numerical simulation is often crucial for analysing the behaviour of many complex systems which do not admit analytic solutions. To this end, one either converts a 'smooth' model into a discrete (in space and time) model, or models systems directly at a discrete level. The goal of this paper is to provide a discrete analogue of differential geometry, and to define on these discrete models a formal discrete Hamiltonian structure-in doing so we try to bring together various fundamental concepts from numerical analysis, differential geometry, algebraic geometry, simplicial homology and classical Hamiltonian mechanics. For example, the concept of a twisted derivation is borrowed from algebraic geometry for developing a discrete calculus. The theory is applied to a nonlinear pendulum and we compare the dynamics obtained through a discrete modelling approach with the dynamics obtained via the usual discretization procedures. Also an example of an energy-conserving algorithm on a simple harmonic oscillator is presented, and its effect on the Poisson structure is discussed

  6. Thermalization Time Bounds for Pauli Stabilizer Hamiltonians

    Science.gov (United States)

    Temme, Kristan

    2017-03-01

    We prove a general lower bound to the spectral gap of the Davies generator for Hamiltonians that can be written as the sum of commuting Pauli operators. These Hamiltonians, defined on the Hilbert space of N-qubits, serve as one of the most frequently considered candidates for a self-correcting quantum memory. A spectral gap bound on the Davies generator establishes an upper limit on the life time of such a quantum memory and can be used to estimate the time until the system relaxes to thermal equilibrium when brought into contact with a thermal heat bath. The bound can be shown to behave as {λ ≥ O(N^{-1} exp(-2β overline{ɛ}))}, where {overline{ɛ}} is a generalization of the well known energy barrier for logical operators. Particularly in the low temperature regime we expect this bound to provide the correct asymptotic scaling of the gap with the system size up to a factor of N -1. Furthermore, we discuss conditions and provide scenarios where this factor can be removed and a constant lower bound can be proven.

  7. Normal form for mirror machine Hamiltonians

    International Nuclear Information System (INIS)

    Dragt, A.J.; Finn, J.M.

    1979-01-01

    A systematic algorithm is developed for performing canonical transformations on Hamiltonians which govern particle motion in magnetic mirror machines. These transformations are performed in such a way that the new Hamiltonian has a particularly simple normal form. From this form it is possible to compute analytic expressions for gyro and bounce frequencies. In addition, it is possible to obtain arbitrarily high order terms in the adiabatic magnetic moment expansion. The algorithm makes use of Lie series, is an extension of Birkhoff's normal form method, and has been explicitly implemented by a digital computer programmed to perform the required algebraic manipulations. Application is made to particle motion in a magnetic dipole field and to a simple mirror system. Bounce frequencies and locations of periodic orbits are obtained and compared with numerical computations. Both mirror systems are shown to be insoluble, i.e., trajectories are not confined to analytic hypersurfaces, there is no analytic third integral of motion, and the adiabatic magnetic moment expansion is divergent. It is expected also that the normal form procedure will prove useful in the study of island structure and separatrices associated with periodic orbits, and should facilitate studies of breakdown of adiabaticity and the onset of ''stochastic'' behavior

  8. Nonextensive formalism and continuous Hamiltonian systems

    International Nuclear Information System (INIS)

    Boon, Jean Pierre; Lutsko, James F.

    2011-01-01

    A recurring question in nonequilibrium statistical mechanics is what deviation from standard statistical mechanics gives rise to non-Boltzmann behavior and to nonlinear response, which amounts to identifying the emergence of 'statistics from dynamics' in systems out of equilibrium. Among several possible analytical developments which have been proposed, the idea of nonextensive statistics introduced by Tsallis about 20 years ago was to develop a statistical mechanical theory for systems out of equilibrium where the Boltzmann distribution no longer holds, and to generalize the Boltzmann entropy by a more general function S q while maintaining the formalism of thermodynamics. From a phenomenological viewpoint, nonextensive statistics appeared to be of interest because maximization of the generalized entropy S q yields the q-exponential distribution which has been successfully used to describe distributions observed in a large class of phenomena, in particular power law distributions for q>1. Here we re-examine the validity of the nonextensive formalism for continuous Hamiltonian systems. In particular we consider the q-ideal gas, a model system of quasi-particles where the effect of the interactions are included in the particle properties. On the basis of exact results for the q-ideal gas, we find that the theory is restricted to the range q<1, which raises the question of its formal validity range for continuous Hamiltonian systems.

  9. Hamiltonian Anomalies from Extended Field Theories

    Science.gov (United States)

    Monnier, Samuel

    2015-09-01

    We develop a proposal by Freed to see anomalous field theories as relative field theories, namely field theories taking value in a field theory in one dimension higher, the anomaly field theory. We show that when the anomaly field theory is extended down to codimension 2, familiar facts about Hamiltonian anomalies can be naturally recovered, such as the fact that the anomalous symmetry group admits only a projective representation on the Hilbert space, or that the latter is really an abelian bundle gerbe over the moduli space. We include in the discussion the case of non-invertible anomaly field theories, which is relevant to six-dimensional (2, 0) superconformal theories. In this case, we show that the Hamiltonian anomaly is characterized by a degree 2 non-abelian group cohomology class, associated to the non-abelian gerbe playing the role of the state space of the anomalous theory. We construct Dai-Freed theories, governing the anomalies of chiral fermionic theories, and Wess-Zumino theories, governing the anomalies of Wess-Zumino terms and self-dual field theories, as extended field theories down to codimension 2.

  10. Effective Hamiltonians for phosphorene and silicene

    International Nuclear Information System (INIS)

    Lew Yan Voon, L C; Lopez-Bezanilla, A; Wang, J; Zhang, Y; Willatzen, M

    2015-01-01

    We derived the effective Hamiltonians for silicene and phosphorene with strain, electric field and magnetic field using the method of invariants. Our paper extends the work of Geissler et al 2013 (New J. Phys. 15 085030) on silicene, and Li and Appelbaum 2014 (Phys. Rev. B 90, 115439) on phosphorene. Our Hamiltonians are compared to an equivalent one for graphene. For silicene, the expression for band warping is obtained analytically and found to be of different order than for graphene. We prove that a uniaxial strain does not open a gap, resolving contradictory numerical results in the literature. For phosphorene, it is shown that the bands near the Brillouin zone center only have terms in even powers of the wave vector. We predict that the energies change quadratically in the presence of a perpendicular external electric field but linearly in a perpendicular magnetic field, as opposed to those for silicene which vary linearly in both cases. Preliminary ab initio calculations for the intrinsic band structures have been carried out in order to evaluate some of the k⋅p parameters. (paper)

  11. Phase space eigenfunctions of multidimensional quadratic Hamiltonians

    International Nuclear Information System (INIS)

    Dodonov, V.V.; Man'ko, V.I.

    1986-01-01

    We obtain the explicit expressions for phace space eigenfunctions (PSE),i.e. Weyl's symbols of dyadic operators like vertical stroken> ,vertical strokem>, being the solution of the Schroedinger equation with the Hamiltonian which is a quite arbitrary multidimensional quadratic form of the operators of Cartesian coordinates and conjugated to them momenta with time-dependent coefficients. It is shown that for an arbitrary quadratic Hamiltonian one can always construct the set of completely factorized PSE which are products of N factors, each factor being dependent only on two arguments for nnot=m and on a single argument for n=m. These arguments are nothing but constants of motion of the correspondent classical system. PSE are expressed in terms of the associated Laguerre polynomials in the case of a discrete spectrum and in terms of the Airy functions in the continuous spectrum case. Three examples are considered: a harmonic oscillator with a time-dependent frequency, a charged particle in a nonstationary uniform magnetic field, and a particle in a time-dependent uniform potential field. (orig.)

  12. Hamiltonian dynamics of spatially-homogeneous Vlasov-Einstein systems

    International Nuclear Information System (INIS)

    Okabe, Takahide; Morrison, P. J.; Friedrichsen, J. E. III; Shepley, L. C.

    2011-01-01

    We introduce a new matter action principle, with a wide range of applicability, for the Vlasov equation in terms of a conjugate pair of functions. Here we apply this action principle to the study of matter in Bianchi cosmological models in general relativity. The Bianchi models are spatially-homogeneous solutions to the Einstein field equations, classified by the three-dimensional Lie algebra that describes the symmetry group of the model. The Einstein equations for these models reduce to a set of coupled ordinary differential equations. The class A Bianchi models admit a Hamiltonian formulation in which the components of the metric tensor and their time derivatives yield the canonical coordinates. The evolution of anisotropy in the vacuum Bianchi models is determined by a potential due to the curvature of the model, according to its symmetry. For illustrative purposes, we examine the evolution of anisotropy in models with Vlasov matter. The Vlasov content is further simplified by the assumption of cold, counter-streaming matter, a kind of matter that is far from thermal equilibrium and is not describable by an ordinary fluid model nor other more simplistic matter models. Qualitative differences and similarities are found in the dynamics of certain vacuum class A Bianchi models and Bianchi type I models with cold, counter-streaming Vlasov-matter potentials analogous to the curvature potentials of corresponding vacuum models.

  13. Hamiltonian analysis for linearly acceleration-dependent Lagrangians

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, Miguel, E-mail: miguelcruz02@uv.mx, E-mail: roussjgc@gmail.com, E-mail: molgado@fc.uaslp.mx, E-mail: efrojas@uv.mx; Gómez-Cortés, Rosario, E-mail: miguelcruz02@uv.mx, E-mail: roussjgc@gmail.com, E-mail: molgado@fc.uaslp.mx, E-mail: efrojas@uv.mx; Rojas, Efraín, E-mail: miguelcruz02@uv.mx, E-mail: roussjgc@gmail.com, E-mail: molgado@fc.uaslp.mx, E-mail: efrojas@uv.mx [Facultad de Física, Universidad Veracruzana, 91000 Xalapa, Veracruz, México (Mexico); Molgado, Alberto, E-mail: miguelcruz02@uv.mx, E-mail: roussjgc@gmail.com, E-mail: molgado@fc.uaslp.mx, E-mail: efrojas@uv.mx [Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Avenida Salvador Nava S/N Zona Universitaria, CP 78290 San Luis Potosí, SLP, México (Mexico)

    2016-06-15

    We study the constrained Ostrogradski-Hamilton framework for the equations of motion provided by mechanical systems described by second-order derivative actions with a linear dependence in the accelerations. We stress out the peculiar features provided by the surface terms arising for this type of theories and we discuss some important properties for this kind of actions in order to pave the way for the construction of a well defined quantum counterpart by means of canonical methods. In particular, we analyse in detail the constraint structure for these theories and its relation to the inherent conserved quantities where the associated energies together with a Noether charge may be identified. The constraint structure is fully analyzed without the introduction of auxiliary variables, as proposed in recent works involving higher order Lagrangians. Finally, we also provide some examples where our approach is explicitly applied and emphasize the way in which our original arrangement results in propitious for the Hamiltonian formulation of covariant field theories.

  14. Diffeomorphism invariance in the Hamiltonian formulation of General Relativity

    International Nuclear Information System (INIS)

    Kiriushcheva, N.; Kuzmin, S.V.; Racknor, C.; Valluri, S.R.

    2008-01-01

    It is shown that when the Einstein-Hilbert Lagrangian is considered without any non-covariant modifications or change of variables, its Hamiltonian formulation leads to results consistent with principles of General Relativity. The first-class constraints of such a Hamiltonian formulation, with the metric tensor taken as a canonical variable, allow one to derive the generator of gauge transformations, which directly leads to diffeomorphism invariance. The given Hamiltonian formulation preserves general covariance of the transformations derivable from it. This characteristic should be used as the crucial consistency requirement that must be met by any Hamiltonian formulation of General Relativity

  15. Matchings Extend to Hamiltonian Cycles in 5-Cube

    Directory of Open Access Journals (Sweden)

    Wang Fan

    2018-02-01

    Full Text Available Ruskey and Savage asked the following question: Does every matching in a hypercube Qn for n ≥ 2 extend to a Hamiltonian cycle of Qn? Fink confirmed that every perfect matching can be extended to a Hamiltonian cycle of Qn, thus solved Kreweras’ conjecture. Also, Fink pointed out that every matching can be extended to a Hamiltonian cycle of Qn for n ∈ {2, 3, 4}. In this paper, we prove that every matching in Q5 can be extended to a Hamiltonian cycle of Q5.

  16. Squeezed states from a quantum deformed oscillator Hamiltonian

    Energy Technology Data Exchange (ETDEWEB)

    Ramírez, R. [IFLP, CONICET–Department of Mathematics, University of La Plata c.c. 67 1900, La Plata (Argentina); Reboiro, M., E-mail: marta.reboiro@gmail.com [IFLP, CONICET–Department of Physics, University of La Plata c.c. 67 1900, La Plata (Argentina)

    2016-03-11

    The spectrum and the time evolution of a system, which is modeled by a non-hermitian quantum deformed oscillator Hamiltonian, is analyzed. The proposed Hamiltonian is constructed from a non-standard realization of the algebra of Heisenberg. We show that, for certain values of the coupling constants and for a range of values of the deformation parameter, the deformed Hamiltonian is a pseudo-hermitic Hamiltonian. We explore the conditions under which the Hamiltonian is similar to a Swanson Hamiltonian. Also, we show that the lowest eigenstate of the system is a squeezed state. We study the time evolution of the system, for different initial states, by computing the corresponding Wigner functions. - Highlights: • A generalization of the squeezed harmonic oscillator is constructed from a non-standard realization of the Heisenberg algebra. • It is proved that, for certain values of the parameters of the model, the Hamiltonian is a pseudo-hermitian Hamiltonian. • It is shown that the lowest eigenstate of the Hamiltonian is a squeezed state. • The squeezing behavior of the associated Gazeau–Klauder state, as a function of time, is discussed.

  17. Spectral and resonance properties of the Smilansky Hamiltonian

    Energy Technology Data Exchange (ETDEWEB)

    Exner, Pavel [Department of Theoretical Physics, Nuclear Physics Institute, Czech Academy of Sciences, 25068 Řež near Prague (Czech Republic); Doppler Institute for Mathematical Physics and Applied Mathematics, Czech Technical University, Břehová 7, 11519 Prague (Czech Republic); Lotoreichik, Vladimir [Department of Theoretical Physics, Nuclear Physics Institute, Czech Academy of Sciences, 25068 Řež near Prague (Czech Republic); Tater, Miloš, E-mail: tater@ujf.cas.cz [Department of Theoretical Physics, Nuclear Physics Institute, Czech Academy of Sciences, 25068 Řež near Prague (Czech Republic)

    2017-02-26

    We analyze the Hamiltonian proposed by Smilansky to describe irreversible dynamics in quantum graphs and studied further by Solomyak and others. We derive a weak-coupling asymptotics of the ground state and add new insights by finding the discrete spectrum numerically in the subcritical case. Furthermore, we show that the model then has a rich resonance structure. - Highlights: • We derive conditions on bound states and on resonances of the Smilansky Hamiltonian. • Using these conditions we find numerically discrete spectrum and resonances of this Hamiltonian. • Our numerical tests confirm known properties of the Hamiltonian and allow us to conjecture new ones.

  18. A Hamiltonian approach to model and analyse networks of ...

    Indian Academy of Sciences (India)

    2015-09-24

    Sep 24, 2015 ... Gyroscopes; energy harvesters; synchronization; Hamiltonian mechanics. ... ideas and methods from nonlinear dynamics system theory, in particular, ... deploy highly sensitive, lowpower, magnetic and electric field sensors.

  19. Introducing Nine-Point Circle to Junior High School Students

    Science.gov (United States)

    Fiangga, S.; Azizah, M. A. N.; Rini, R. N. K.; Hidayanti, A. N.

    2018-01-01

    The concept of circles is an ancient concept that has appeared since Ancient Egypt from which this concept gives many significant contributions in mathematics’ development until now. Nevertheless, the concept of circles hides many uncover mysterious features that are of applications in mathematics. One of the mysterious features is the Nine-Point Circle. This Nine-point circle is also known as Euler’s circle, six-point circle, Feuerbach’s circle, the twelve-point circle, and many others. Because of these different names, there have been misunderstand among mathematicians about the Nine-Point Circle’s history. Besides, the discussion of Nine-Point Circle can be used to be an initial material to explain elementary geometry topic in junior high school’s level curriculum of 2013. Therefore, this concept needs to be delivered to the students as a geometry introduction. A possible form of the integration historical aspect of Nine-point circle is suggested in this paper as well as its importance in the curriculum of 2013.

  20. New holographic limit of AdS5(multiply-in-circle sign)S5

    International Nuclear Information System (INIS)

    Hatsuda, Machiko; Siegel, Warren

    2003-01-01

    We reexamine the projective light cone limit of the gauge-invariant Green-Schwarz action on five-dimensional anti-de Sitter (multiply-in-circle sign) the five-sphere. It implies the usual holography for AdS 5 , but also (a complex) one for S 5 . The result is N=4 projective superspace, which unlike N=4 harmonic superspace can describe N=4 super Yang-Mills theory off shell

  1. Circle Maps and C*-algebras

    DEFF Research Database (Denmark)

    Schmidt, Thomas Lundsgaard; Thomsen, Klaus

    2015-01-01

    We consider a construction of $C^*$-algebras from continuous piecewise monotone maps on the circle which generalizes the crossed product construction for homeomorphisms and more generally the construction of Renault, Deaconu and Anantharaman-Delaroche for local homeomorphisms. Assuming that the map...... is surjective and not locally injective we give necessary and sufficient conditions for the simplicity of the $C^*$-algebra and show that it is then a Kirchberg algebra. We provide tools for the calculation of the K-theory groups and turn them into an algorithmic method for Markov maps....

  2. Quantum Chaos via the Quantum Action

    OpenAIRE

    Kröger, H.

    2002-01-01

    We discuss the concept of the quantum action with the purpose to characterize and quantitatively compute quantum chaos. As an example we consider in quantum mechanics a 2-D Hamiltonian system - harmonic oscillators with anharmonic coupling - which is classically a chaotic system. We compare Poincar\\'e sections obtained from the quantum action with those from the classical action.

  3. Contribution from the interaction Hamiltonian to the expectation value of particle number with the non-equilibrium quantum field theory

    International Nuclear Information System (INIS)

    Hotta, Ryuuichi; Morozumi, Takuya; Takata, Hiroyuki

    2012-01-01

    We develop the method analyzing particle number non-conserving phenomena with non-equilibrium quantum field-theory. In this study, we consider a CP violating model with interaction Hamiltonian that breaks particle number conservation. To derive the quantum Boltzmann equation for the particle number, we solve Schwinger-Dyson equation, which are obtained from two particle irreducible closed-time-path (2PI CTP) effective action. In this calculation, we show the contribution from interaction Hamiltonian to the time evolution of expectation value of particle number.

  4. Hamiltonian quantization of self-dual tensor fields and a bosonic Nielsen-Ninomiya theorem

    International Nuclear Information System (INIS)

    Tang Waikeung

    1989-01-01

    The quantization of self-dual tensor fields is carried out following the procedure of Batalin and Fradkin. The (anti) self-duality constraints (either fermionic or bosonic) in the action leads to the gravitational anomaly. In the process of gauge fixing, the impossibility of the co-existence of a positive hamiltonian and covariant action is shown. A version of the Nielsen-Ninomiya theorem applies to self-dual tensor fields viz. the lattice version of the theory shows species doubling with zero net chirality. (orig.)

  5. Role of quality circles in dose control programs at Kaiga generating station

    International Nuclear Information System (INIS)

    Varadhan, R.S.; Sukumar, T.S.; Ramamurthy, K.; Nageswara Rao, G.

    2003-01-01

    To operate the nuclear power station with maximum capacity factors and lowest collective dose it is imperative that a sense of belongingness among the employees is essential. Quality Circles provide an opportunity to the plant personnel irrespective of their grade or discipline to come together to solve the work related problems in a scientific manner to enhance the productivity and safety in the work environment. The concept of Quality Circles came to Kaiga during July 1998. The thought revolution grew slowly and steadily and brought big gains to the station. The organized thoughts and concerted actions in field resulted in development of good work culture among the employees, an important input to achieve super excellence in power generation in the most cost effective manner. This also is a means to set challenging targets and make and break the records among the NPCIL units. The genesis of Quality Circles, the methodology of QC working, promotional activities, the progress and programs of Quality Circles are discussed in this presentation. (author)

  6. Empirical Evaluation of Different Feature Representations for Social Circles Detection

    Science.gov (United States)

    2015-06-16

    study and compare the performance on the available labelled Facebook data from the Kaggle competition on learning social circles in networks . We...Kaggle competition on learning social circles in networks [5]. The data consist of hand- labelled friendship egonets from Facebook and a set of 57...16. SECURITY CLASSIFICATION OF: Social circles detection is a special case of community detection in social network that is currently attracting a

  7. Geometric solitons of Hamiltonian flows on manifolds

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chong, E-mail: songchong@xmu.edu.cn [School of Mathematical Sciences, Xiamen University, Xiamen 361005 (China); Sun, Xiaowei, E-mail: sunxw@cufe.edu.cn [School of Applied Mathematics, Central University of Finance and Economics, Beijing 100081 (China); Wang, Youde, E-mail: wyd@math.ac.cn [Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190 (China)

    2013-12-15

    It is well-known that the LIE (Locally Induction Equation) admit soliton-type solutions and same soliton solutions arise from different and apparently irrelevant physical models. By comparing the solitons of LIE and Killing magnetic geodesics, we observe that these solitons are essentially decided by two families of isometries of the domain and the target space, respectively. With this insight, we propose the new concept of geometric solitons of Hamiltonian flows on manifolds, such as geometric Schrödinger flows and KdV flows for maps. Moreover, we give several examples of geometric solitons of the Schrödinger flow and geometric KdV flow, including magnetic curves as geometric Schrödinger solitons and explicit geometric KdV solitons on surfaces of revolution.

  8. Hamiltonian indices and rational spectral densities

    Science.gov (United States)

    Byrnes, C. I.; Duncan, T. E.

    1980-01-01

    Several (global) topological properties of various spaces of linear systems, particularly symmetric, lossless, and Hamiltonian systems, and multivariable spectral densities of fixed McMillan degree are announced. The study is motivated by a result asserting that on a connected but not simply connected manifold, it is not possible to find a vector field having a sink as its only critical point. In the scalar case, this is illustrated by showing that only on the space of McMillan degree = /Cauchy index/ = n, scalar transfer functions can one define a globally convergent vector field. This result holds both in discrete-time and for the nonautonomous case. With these motivations in mind, theorems of Bochner and Fogarty are used in showing that spaces of transfer functions defined by symmetry conditions are, in fact, smooth algebraic manifolds.

  9. Betatron coupling: Merging Hamiltonian and matrix approaches

    Directory of Open Access Journals (Sweden)

    R. Calaga

    2005-03-01

    Full Text Available Betatron coupling is usually analyzed using either matrix formalism or Hamiltonian perturbation theory. The latter is less exact but provides a better physical insight. In this paper direct relations are derived between the two formalisms. This makes it possible to interpret the matrix approach in terms of resonances, as well as use results of both formalisms indistinctly. An approach to measure the complete coupling matrix and its determinant from turn-by-turn data is presented. Simulations using methodical accelerator design MAD-X, an accelerator design and tracking program, were performed to validate the relations and understand the scope of their application to real accelerators such as the Relativistic Heavy Ion Collider.

  10. A Hamiltonian five-field gyrofluid model

    Energy Technology Data Exchange (ETDEWEB)

    Keramidas Charidakos, I.; Waelbroeck, F. L.; Morrison, P. J. [Institute for Fusion Studies and Department of Physics, The University of Texas at Austin, Austin, TX 78712 (United States)

    2015-11-15

    A Lie-Poisson bracket is presented for a five-field gyrofluid model, thereby showing the model to be Hamiltonian. The model includes the effects of magnetic field curvature and describes the evolution of the electron and ion gyro-center densities, the parallel component of the ion and electron velocities, and the ion temperature. The quasineutrality property and Ampère's law determine, respectively, the electrostatic potential and magnetic flux. The Casimir invariants are presented, and shown to be associated with five Lagrangian invariants advected by distinct velocity fields. A linear, local study of the model is conducted both with and without Landau and diamagnetic resonant damping terms. Stability criteria and dispersion relations for the electrostatic and the electromagnetic cases are derived and compared with their analogs for fluid and kinetic models.

  11. Hamiltonian circuited simulations in reactor physics

    International Nuclear Information System (INIS)

    Rio Hirowati Shariffudin

    2002-01-01

    In the assessment of suitability of reactor designs and in the investigations into reactor safety, the steady state of a nuclear reactor has to be studied carefully. The analysis can be done through mockup designs but this approach costs a lot of money and consumes a lot of time. A less expensive approach is via simulations where the reactor and its neutron interactions are modelled mathematically. Finite difference discretization of the diffusion operator has been used to approximate the steady state multigroup neutron diffusion equations. The steps include the outer scheme which estimates the resulting right hand side of the matrix equation, the group scheme which calculates the upscatter problem and the inner scheme which solves for the flux for a particular group. The Hamiltonian circuited simulations for the inner iterations of the said neutron diffusion equation enable the effective use of parallel computing, especially where the solutions of multigroup neutron diffusion equations involving two or more space dimensions are required. (Author)

  12. Hamiltonian inclusive fitness: a fitter fitness concept.

    Science.gov (United States)

    Costa, James T

    2013-01-01

    In 1963-1964 W. D. Hamilton introduced the concept of inclusive fitness, the only significant elaboration of Darwinian fitness since the nineteenth century. I discuss the origin of the modern fitness concept, providing context for Hamilton's discovery of inclusive fitness in relation to the puzzle of altruism. While fitness conceptually originates with Darwin, the term itself stems from Spencer and crystallized quantitatively in the early twentieth century. Hamiltonian inclusive fitness, with Price's reformulation, provided the solution to Darwin's 'special difficulty'-the evolution of caste polymorphism and sterility in social insects. Hamilton further explored the roles of inclusive fitness and reciprocation to tackle Darwin's other difficulty, the evolution of human altruism. The heuristically powerful inclusive fitness concept ramified over the past 50 years: the number and diversity of 'offspring ideas' that it has engendered render it a fitter fitness concept, one that Darwin would have appreciated.

  13. Renormalized semiclassical quantization for rescalable Hamiltonians

    International Nuclear Information System (INIS)

    Takahashi, Satoshi; Takatsuka, Kazuo

    2004-01-01

    A renormalized semiclassical quantization method for rescalable Hamiltonians is proposed. A classical Hamilton system having a potential function that consists of homogeneous polynomials like the Coulombic potential can have a scale invariance in its extended phase space (phase space plus time). Consequently, infinitely many copies of a single trajectory constitute a one-parameter family that is characterized in terms of a scaling factor. This scaling invariance in classical dynamics is lost in quantum mechanics due to the presence of the Planck constant. It is shown that in a system whose classical motions have a self-similarity in the above sense, classical trajectories adopted in the semiclassical scheme interact with infinitely many copies of their own that are reproduced by the relevant scaling procedure, thereby undergoing quantum interference among themselves to produce a quantized spectrum

  14. Effective hamiltonian calculations using incomplete model spaces

    International Nuclear Information System (INIS)

    Koch, S.; Mukherjee, D.

    1987-01-01

    It appears that the danger of encountering ''intruder states'' is substantially reduced if an effective hamiltonian formalism is developed for incomplete model spaces (IMS). In a Fock-space approach, the proof a ''connected diagram theorem'' is fairly straightforward with exponential-type of ansatze for the wave-operator W, provided the normalization chosen for W is separable. Operationally, one just needs a suitable categorization of the Fock-space operators into ''diagonal'' and ''non-diagonal'' parts that is generalization of the corresponding procedure for the complete model space. The formalism is applied to prototypical 2-electron systems. The calculations have been performed on the Cyber 205 super-computer. The authors paid special attention to an efficient vectorization for the construction and solution of the resulting coupled non-linear equations

  15. Non-self-adjoint hamiltonians defined by Riesz bases

    Energy Technology Data Exchange (ETDEWEB)

    Bagarello, F., E-mail: fabio.bagarello@unipa.it [Dipartimento di Energia, Ingegneria dell' Informazione e Modelli Matematici, Facoltà di Ingegneria, Università di Palermo, I-90128 Palermo, Italy and INFN, Università di Torino, Torino (Italy); Inoue, A., E-mail: a-inoue@fukuoka-u.ac.jp [Department of Applied Mathematics, Fukuoka University, Fukuoka 814-0180 (Japan); Trapani, C., E-mail: camillo.trapani@unipa.it [Dipartimento di Matematica e Informatica, Università di Palermo, I-90123 Palermo (Italy)

    2014-03-15

    We discuss some features of non-self-adjoint Hamiltonians with real discrete simple spectrum under the assumption that the eigenvectors form a Riesz basis of Hilbert space. Among other things, we give conditions under which these Hamiltonians can be factorized in terms of generalized lowering and raising operators.

  16. The Group of Hamiltonian Automorphisms of a Star Product

    Energy Technology Data Exchange (ETDEWEB)

    La Fuente-Gravy, Laurent, E-mail: lfuente@ulg.ac.be [Université de Liège, Département de Mathématique (Belgium)

    2016-09-15

    We deform the group of Hamiltonian diffeomorphisms into a group of Hamiltonian automorphisms, Ham(M,∗), of a formal star product ∗ on a symplectic manifold (M,ω). We study the geometry of that group and deform the Flux morphism in the framework of deformation quantization.

  17. Hamiltonian formulation for the Martin-Taylor model

    International Nuclear Information System (INIS)

    Vasconcelos, D.B.; Viana, R.L.

    1993-01-01

    Locally stochastic layer and its optimization are studied. In order to accomplish this task, it is employed a Hamiltonian formulation of magnetic field line flow with a subsequent application of Escande-Doveil renormalization method which have been extensively used to obtain accurate estimates of stochasticity thresholds in systems exhibiting Hamiltonian chaos. (author)

  18. Formulation of Hamiltonian mechanics with even and odd Poisson brackets

    International Nuclear Information System (INIS)

    Khudaverdyan, O.M.; Nersesyan, A.P.

    1987-01-01

    A possibility is studied as to constrict the odd Poisson bracket and odd Hamiltonian by the given dynamics in phase superspace - the even Poisson bracket and even Hamiltonian so the transition to the new structure does not change the equations of motion. 9 refs

  19. Effective Hamiltonian within the microscopic unitary nuclear model

    International Nuclear Information System (INIS)

    Filippov, G.F.; Blokhin, A.L.

    1989-01-01

    A technique of projecting the microscopic nuclear Hamiltonian on the SU(3)-group enveloping algebra is developed. The approach proposed is based on the effective Hamiltonian restored from the matrix elements between the coherent states of the SU(3) irreducible representations. The technique is displayed for almost magic nuclei within the mixed representation basis, and for arbitrary nuclei within the single representation. 40 refs

  20. Classical and quantum mechanics of complex Hamiltonian systems ...

    Indian Academy of Sciences (India)

    Vol. 73, No. 2. — journal of. August 2009 physics pp. 287–297. Classical and quantum mechanics of complex. Hamiltonian systems: An extended complex phase space ... 1Department of Physics, Ramjas College (University Enclave), University of Delhi,. Delhi 110 ... 1.1 Motivation behind the study of complex Hamiltonians.

  1. Local Hamiltonians for maximally multipartite-entangled states

    Science.gov (United States)

    Facchi, P.; Florio, G.; Pascazio, S.; Pepe, F.

    2010-10-01

    We study the conditions for obtaining maximally multipartite-entangled states (MMESs) as nondegenerate eigenstates of Hamiltonians that involve only short-range interactions. We investigate small-size systems (with a number of qubits ranging from 3 to 5) and show some example Hamiltonians with MMESs as eigenstates.

  2. Local Hamiltonians for maximally multipartite-entangled states

    International Nuclear Information System (INIS)

    Facchi, P.; Florio, G.; Pascazio, S.; Pepe, F.

    2010-01-01

    We study the conditions for obtaining maximally multipartite-entangled states (MMESs) as nondegenerate eigenstates of Hamiltonians that involve only short-range interactions. We investigate small-size systems (with a number of qubits ranging from 3 to 5) and show some example Hamiltonians with MMESs as eigenstates.

  3. Modelling chaotic Hamiltonian systems as a Markov Chain ...

    African Journals Online (AJOL)

    The behaviour of chaotic Hamiltonian system has been characterised qualitatively in recent times by its appearance on the Poincaré section and quantitatively by the Lyapunov exponent. Studying the dynamics of the two chaotic Hamiltonian systems: the Henon-Heiles system and non-linearly coupled oscillators as their ...

  4. On the physical applications of hyper-Hamiltonian dynamics

    International Nuclear Information System (INIS)

    Gaeta, Giuseppe; Rodriguez, Miguel A

    2008-01-01

    An extension of Hamiltonian dynamics, defined on hyper-Kahler manifolds ('hyper-Hamiltonian dynamics') and sharing many of the attractive features of standard Hamiltonian dynamics, was introduced in previous work. In this paper, we discuss applications of the theory to physically interesting cases, dealing with the dynamics of particles with spin 1/2 in a magnetic field, i.e. the Pauli and the Dirac equations. While the free Pauli equation corresponds to a hyper-Hamiltonian flow, it turns out that the hyper-Hamiltonian description of the Dirac equation, and of the full Pauli one, is in terms of two commuting hyper-Hamiltonian flows. In this framework one can use a factorization principle discussed here (which is a special case of a general phenomenon studied by Walcher) and provide an explicit description of the resulting flow. On the other hand, by applying the familiar Foldy-Wouthuysen and Cini-Tousheck transformations (and the one recently introduced by Mulligan) which separate-in suitable limits-the Dirac equation into two equations, each of these turn out to be described by a single hyper-Hamiltonian flow. Thus the hyper-Hamiltonian construction is able to describe the fundamental dynamics for particles with spin

  5. The Group of Hamiltonian Automorphisms of a Star Product

    International Nuclear Information System (INIS)

    La Fuente-Gravy, Laurent

    2016-01-01

    We deform the group of Hamiltonian diffeomorphisms into a group of Hamiltonian automorphisms, Ham(M,∗), of a formal star product ∗ on a symplectic manifold (M,ω). We study the geometry of that group and deform the Flux morphism in the framework of deformation quantization.

  6. Hamiltonian reduction of SU(2) Yang-Mills field theory

    International Nuclear Information System (INIS)

    Khvedelidze, A.M.; Pavel, H.-P.

    1998-01-01

    The unconstrained system equivalent to SU (2) Yang-Mills field theory is obtained in the framework of the generalized Hamiltonian formalism using the method of Hamiltonian reduction. The reduced system is expressed in terms of fields with 'nonrelativistic' spin-0 and spin-2

  7. An effective Hamiltonian approach to quantum random walk

    Indian Academy of Sciences (India)

    2017-02-09

    Feb 9, 2017 ... Abstract. In this article we present an effective Hamiltonian approach for discrete time quantum random walk. A form of the Hamiltonian for one-dimensional quantum walk has been prescribed, utilizing the fact that Hamil- tonians are generators of time translations. Then an attempt has been made to ...

  8. Model reduction of port-Hamiltonian systems as structured systems

    NARCIS (Netherlands)

    Polyuga, R.V.; Schaft, van der A.J.

    2010-01-01

    The goal of this work is to demonstrate that a specific projection-based model reduction method, which provides an H2 error bound, turns out to be applicable to port-Hamiltonian systems, preserving the port-Hamiltonian structure for the reduced order model, and, as a consequence, passivity.

  9. Port Hamiltonian Formulation of Infinite Dimensional Systems I. Modeling

    NARCIS (Netherlands)

    Macchelli, Alessandro; Schaft, Arjan J. van der; Melchiorri, Claudio

    2004-01-01

    In this paper, some new results concerning the modeling of distributed parameter systems in port Hamiltonian form are presented. The classical finite dimensional port Hamiltonian formulation of a dynamical system is generalized in order to cope with the distributed parameter and multi-variable case.

  10. Port-Hamiltonian approaches to motion generation for mechanical systems

    NARCIS (Netherlands)

    Sakai, Satoru; Stramigioli, Stefano

    This paper gives new motion generation methods for mechanical port-Hamiltonian systems. First, we propose a generation method based on an asymptotic stabilization method without damping assignment. This asymptotic stabilization method preserves the Hamiltonian structure in the closed-loop system

  11. Structure preserving port-Hamiltonian model reduction of electrical circuits

    NARCIS (Netherlands)

    Polyuga, R.; Schaft, van der A.J.; Benner, P.; Hinze, M.; Maten, ter E.J.W.

    2011-01-01

    This paper discusses model reduction of electrical circuits based on a port-Hamiltonian representation. It is shown that by the use of the Kalman decomposition an uncontrollable and/or unobservable port-Hamiltonian system is reduced to a controllable/observable system that inherits the

  12. Residual gauge invariance of Hamiltonian lattice gauge theories

    International Nuclear Information System (INIS)

    Ryang, S.; Saito, T.; Shigemoto, K.

    1984-01-01

    The time-independent residual gauge invariance of Hamiltonian lattice gauge theories is considered. Eigenvalues and eigenfunctions of the unperturbed Hamiltonian are found in terms of Gegengauer's polynomials. Physical states which satisfy the subsidiary condition corresponding to Gauss' law are constructed systematically. (orig.)

  13. Locating a circle on the plane using the minimax criterion

    DEFF Research Database (Denmark)

    Brimberg, Jack; Juel, Henrik; Schöbel, Anita

    2009-01-01

    We consider the problem of locating a circle with respect to existing facilities on the plane, such that the largest weighted distance between the circumference of the circle and the facilities is minimized. The problem properties are analyzed, and a solution procedure proposed......We consider the problem of locating a circle with respect to existing facilities on the plane, such that the largest weighted distance between the circumference of the circle and the facilities is minimized. The problem properties are analyzed, and a solution procedure proposed...

  14. Locating a general minisum 'circle' on a plane

    DEFF Research Database (Denmark)

    Brimberg, Jack; Juel, Henrik; Körner, Mark-Christoph

    2011-01-01

    We approximate a set of given points in the plane by the boundary of a convex and symmetric set which is the unit circle of some norm. This generalizes previous work on the subject which considers Euclidean circles only. More precisely, we examine the problem of locating and scaling the unit circle...... of some given norm k with respect to given points on the plane such that the sum of weighted distances (as measured by the same norm k) between the circumference of the circle and the points is minimized. We present general results and are able to identify a finite dominating set in the case that k...

  15. A generalized AKNS hierarchy and its bi-Hamiltonian structures

    International Nuclear Information System (INIS)

    Xia Tiecheng; You Fucai; Chen Dengyuan

    2005-01-01

    First we construct a new isospectral problem with 8 potentials in the present paper. And then a new Lax pair is presented. By making use of Tu scheme, a class of new soliton hierarchy of equations is derived, which is integrable in the sense of Liouville and possesses bi-Hamiltonian structures. After making some reductions, the well-known AKNS hierarchy and other hierarchies of evolution equations are obtained. Finally, in order to illustrate that soliton hierarchy obtained in the paper possesses bi-Hamiltonian structures exactly, we prove that the linear combination of two-Hamiltonian operators admitted are also a Hamiltonian operator constantly. We point out that two Hamiltonian operators obtained of the system are directly derived from a recurrence relations, not from a recurrence operator

  16. Local modular Hamiltonians from the quantum null energy condition

    Science.gov (United States)

    Koeller, Jason; Leichenauer, Stefan; Levine, Adam; Shahbazi-Moghaddam, Arvin

    2018-03-01

    The vacuum modular Hamiltonian K of the Rindler wedge in any relativistic quantum field theory is given by the boost generator. Here we investigate the modular Hamiltonian for more general half-spaces which are bounded by an arbitrary smooth cut of a null plane. We derive a formula for the second derivative of the modular Hamiltonian with respect to the coordinates of the cut which schematically reads K''=Tv v . This formula can be integrated twice to obtain a simple expression for the modular Hamiltonian. The result naturally generalizes the standard expression for the Rindler modular Hamiltonian to this larger class of regions. Our primary assumptions are the quantum null energy condition—an inequality between the second derivative of the von Neumann entropy of a region and the stress tensor—and its saturation in the vacuum for these regions. We discuss the validity of these assumptions in free theories and holographic theories to all orders in 1 /N .

  17. Periodic solutions of asymptotically linear Hamiltonian systems without twist conditions

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Rong [Coll. of Mathematics and Physics, Nanjing Univ. of Information Science and Tech., Nanjing (China); Dept. of Mathematics, Southeast Univ., Nanjing (China); Zhang Dongfeng [Dept. of Mathematics, Southeast Univ., Nanjing (China)

    2010-05-15

    In dynamical system theory, especially in many fields of applications from mechanics, Hamiltonian systems play an important role, since many related equations in mechanics can be written in an Hamiltonian form. In this paper, we study the existence of periodic solutions for a class of Hamiltonian systems. By applying the Galerkin approximation method together with a result of critical point theory, we establish the existence of periodic solutions of asymptotically linear Hamiltonian systems without twist conditions. Twist conditions play crucial roles in the study of periodic solutions for asymptotically linear Hamiltonian systems. The lack of twist conditions brings some difficulty to the study. To the authors' knowledge, very little is known about the case, where twist conditions do not hold. (orig.)

  18. Sdg interacting boson hamiltonian in the seniority scheme

    Energy Technology Data Exchange (ETDEWEB)

    Yoshinaga, N.

    1989-03-06

    The sdg interacting boson hamiltonian is derived in the seniority scheme. We use the method of Otsuka, Arima and Iachello in order to derive the boson hamiltonian from the fermion hamiltonian. To examine how good is the boson approximation in the zeroth-order, we carry out the exact shell model calculations in a single j-shell. It is found that almost all low-lying levels are reproduced quite well by diagonalizing the sdg interacting boson hamiltonian in the vibrational case. In the deformed case the introduction of g-bosons improves the reproduction of the spectra and of the binding energies which are obtained by diagnoalizing the exact shell model hamiltonian. In particular the sdg interacting boson model reproduces well-developed rotational bands.

  19. sdg Interacting boson hamiltonian in the seniority scheme

    Science.gov (United States)

    Yoshinaga, N.

    1989-03-01

    The sdg interacting boson hamiltonian is derived in the seniority scheme. We use the method of Otsuka, Arima and Iachello in order to derive the boson hamiltonian from the fermion hamiltonian. To examine how good is the boson approximation in the zeroth-order, we carry out the exact shell model calculations in a single j-shell. It is found that almost all low-lying levels are reproduced quite well by diagonalizing the sdg interacting boson hamiltonian in the vibrational case. In the deformed case the introduction of g-bosons improves the reproduction of the spectra and of the binding energies which are obtained by diagonalizing the exact shell model hamiltonian. In particular the sdg interacting boson model reproduces well-developed rotational bands.

  20. Frustration-free Hamiltonians supporting Majorana zero edge modes

    International Nuclear Information System (INIS)

    Jevtic, Sania; Barnett, Ryan

    2017-01-01

    A one-dimensional fermionic system, such as a superconducting wire, may host Majorana zero-energy edge modes (MZMs) at its edges when it is in the topological phase. MZMs provide a path to realising fault-tolerant quantum computation, and so are the focus of intense experimental and theoretical studies. However, given a Hamiltonian, determining whether MZMs exist is a daunting task as it relies on knowing the spectral properties of the Hamiltonian in the thermodynamic limit. The Kitaev chain is a paradigmatic non-interacting model that supports MZMs and the Hamiltonian can be fully diagonalised. However, for interacting models, the situation is far more complex. Here we consider a different classification of models, namely, ones with frustration-free Hamiltonians. Within this class of models, interacting and non-interacting systems are treated on an equal footing, and we identify exactly which Hamiltonians can realise MZMs. (paper)

  1. Frustration-free Hamiltonians supporting Majorana zero edge modes

    Science.gov (United States)

    Jevtic, Sania; Barnett, Ryan

    2017-10-01

    A one-dimensional fermionic system, such as a superconducting wire, may host Majorana zero-energy edge modes (MZMs) at its edges when it is in the topological phase. MZMs provide a path to realising fault-tolerant quantum computation, and so are the focus of intense experimental and theoretical studies. However, given a Hamiltonian, determining whether MZMs exist is a daunting task as it relies on knowing the spectral properties of the Hamiltonian in the thermodynamic limit. The Kitaev chain is a paradigmatic non-interacting model that supports MZMs and the Hamiltonian can be fully diagonalised. However, for interacting models, the situation is far more complex. Here we consider a different classification of models, namely, ones with frustration-free Hamiltonians. Within this class of models, interacting and non-interacting systems are treated on an equal footing, and we identify exactly which Hamiltonians can realise MZMs.

  2. Quality Circles: Determination of Significant Factors for Success an a General Model for Implementing a Quality Circle Process.

    Science.gov (United States)

    1981-06-01

    receive for contributions to quality and productivity /4:Apdx-47. The initiative for the Quality Circle concept came from Dr Kaoru Ishikawa , a...eloquently summarized by the "Father of Quality Circles", Dr Kaoru Ishikawa . He sees that, although Japan started with the worst quality reputation among...Perceptions of Influence, Academy of Management Journal. December 1974, pp 649-bz. 49. Ishikawa , Kaoru . S.C. Circle Activities. Union of Japanese Scientists and

  3. Combinatorial quantization of the Hamiltonian Chern-Simons theory

    International Nuclear Information System (INIS)

    Alekseev, A.Yu.; Grosse, H.; Schomerus, V.

    1996-01-01

    This paper further develops the combinatorial approach to quantization of the Hamiltonian Chern Simons theory. Using the theory of quantum Wilson lines, we show how the Verlinde algebra appears within the context of quantum group gauge theory. This allows to discuss flatness of quantum connections so that we can give a mathematically rigorous definition of the algebra of observables A CS of the Chern Simons model. It is a *-algebra of ''functions on the quantum moduli space of flat connections'' and comes equipped with a positive functional ω (''integration''). We prove that this data does not depend on the particular choices which have been made in the construction. The algebra A CS provides a deformation quantization of the algebra of functions on the moduli space along the natural Poisson bracket induced by the Chern Simons action. We evaluate a volume of the quantized moduli space and prove that it coincides with the Verlinde number. This answer is also interpreted as a partition partition function of the lattice Yang-Mills theory corresponding to a quantum gauge group. (orig.). With 1 fig

  4. Meromorphic Vector Fields and Circle Packings

    DEFF Research Database (Denmark)

    Dias, Kealey

    The objective of the Ph.D. project is to initiate a classification of bifurcations of meromorphic vector fields and to clarify their relation to circle packings. Technological applications are to image analysis and to effective grid generation using discrete conformal mappings. The two branches...... of dynamical systems, continuous and discrete, correspond to the study of differential equations (vector fields) and iteration of mappings respectively. In holomorphic dynamics, the systems studied are restricted to those described by holomorphic (complex analytic) functions or meromorphic (allowing poles...... as singularities) functions. There already exists a well-developed theory for iterative holomorphic dynamical systems, and successful relations found between iteration theory and flows of vector fields have been one of the main motivations for the recent interest in holomorphic vector fields. Restricting...

  5. Controlled Microwave Heating Accelerates Rolling Circle Amplification.

    Science.gov (United States)

    Yoshimura, Takeo; Suzuki, Takamasa; Mineki, Shigeru; Ohuchi, Shokichi

    2015-01-01

    Rolling circle amplification (RCA) generates single-stranded DNAs or RNA, and the diverse applications of this isothermal technique range from the sensitive detection of nucleic acids to analysis of single nucleotide polymorphisms. Microwave chemistry is widely applied to increase reaction rate as well as product yield and purity. The objectives of the present research were to apply microwave heating to RCA and indicate factors that contribute to the microwave selective heating effect. The microwave reaction temperature was strictly controlled using a microwave applicator optimized for enzymatic-scale reactions. Here, we showed that microwave-assisted RCA reactions catalyzed by either of the four thermostable DNA polymerases were accelerated over 4-folds compared with conventional RCA. Furthermore, the temperatures of the individual buffer components were specifically influenced by microwave heating. We concluded that microwave heating accelerated isothermal RCA of DNA because of the differential heating mechanisms of microwaves on the temperatures of reaction components, although the overall reaction temperatures were the same.

  6. Model Hamiltonian Calculations of the Nonlinear Polarizabilities of Conjugated Molecules.

    Science.gov (United States)

    Risser, Steven Michael

    This dissertation advances the theoretical knowledge of the nonlinear polarizabilities of conjugated molecules. The unifying feature of these molecules is an extended delocalized pi electron structure. The pi electrons dominate the electronic properties of the molecules, allowing prediction of molecular properties based on the treatment of just the pi electrons. Two separate pi electron Hamiltonians are used in the research. The principal Hamiltonian used is the non-interacting single-particle Huckel Hamiltonian, which replaces the Coulomb interaction among the pi electrons with a mean field interaction. The simplification allows for exact solution of the Hamiltonian for large molecules. The second Hamiltonian used for this research is the interacting multi-particle Pariser-Parr-Pople (PPP) Hamiltonian, which retains explicit Coulomb interactions. This limits exact solutions to molecules containing at most eight electrons. The molecular properties being investigated are the linear polarizability, and the second and third order hyperpolarizabilities. The hyperpolarizabilities determine the nonlinear optical response of materials. These molecular parameters are determined by two independent approaches. The results from the Huckel Hamiltonian are obtained through first, second and third order perturbation theory. The results from the PPP Hamiltonian are obtained by including the applied field directly in the Hamiltonian and determining the ground state energy at a series of field strengths. By fitting the energy to a polynomial in field strength, the polarizability and hyperpolarizabilities are determined. The Huckel Hamiltonian is used to calculate the third order hyperpolarizability of polyenes. These calculations were the first to show the average hyperpolarizability of the polyenes to be positive, and also to show the saturation of the hyperpolarizability. Comparison of these Huckel results to those from the PPP Hamiltonian shows the lack of explicit Coulomb

  7. The rolling circle amplification and next generation sequencing ...

    African Journals Online (AJOL)

    Rolling circle amplification is a simple approach of enriching populations of single-stranded DNA plant begomovirus genomes (genus, Begomovirus; family, Geminiviridae). This is an innovative approach that utilizes the robustness of the bacteriophage phi29 DNA polymerase used in circle amplification, together with deep ...

  8. Quality Circles in Higher Education: Quality, Satisfaction, and Climate.

    Science.gov (United States)

    Kay, Carol; Healy, Margaret

    The effect of quality circles at Iowa State University on absenteeism, performance evaluation, perceptions of the organization climate, job satisfaction, and perceived opportunities for professional and personal growth was measured in this study. The process of quality circles is designed to promote job fulfillment and organizational productivity…

  9. D'Nealian Handwriting versus Circle-Stick Print.

    Science.gov (United States)

    Thurber, Donald N.

    This paper argues against teaching children to make letters using circle-stick writing. It contends that the circle-stick method requires continued pen/pencil lifts hindering rhythm or flow in the writing process and that there is little carry-over value into cursive writing as the two scripts are totally different. D'Nealian print, one type of…

  10. An Effective Time and Management Strategy in Quality Circles.

    Science.gov (United States)

    Halverson, Don E.

    Contending that participation in quality circles enhances effective time management by school administrators and teachers, this guide provides both a theoretical briefing and practical recommendations for better time management. A pre- posttest prefaces a review of basic concepts of quality circles with reference to the work of Abraham Maslow,…

  11. Building quality into academic programmes using quality circles | Ivy ...

    African Journals Online (AJOL)

    The use of teams or quality circles is a relatively new approach to quality improvement in higher education in South Africa. This article describes some of the advantages in using the approach and some of the pitfalls that need to be considered. The debate of the "quality circle life cycle", which culminates in the demise of the ...

  12. Growing a Circle of Courage Culture: One School's Journey

    Science.gov (United States)

    Espiner, Deborah; Guild, Diane

    2010-01-01

    Mt. Richmond Special School is the first Circle of Courage school in New Zealand. The school reflects the richness of the cultural and learning diversity found in many New Zealand schools. Located in the heart of South Auckland, the school's 130 students represent a wide range of ethnic backgrounds. The universal values in the Circle of Courage…

  13. Finding the Maximal Area of Bounded Polygons in a Circle

    Science.gov (United States)

    Rokach, Arie

    2005-01-01

    The article deals with the area of polygons that are inscribed in a given circle. Naturally, the following question arises: Among all n-polygons that are inscribed in a given circle, which one has the biggest area? Intuitively, it may be guessed that is suitable for secondary students, and without any use id calculus, but only using very…

  14. New Hamiltonian constraint operator for loop quantum gravity

    Directory of Open Access Journals (Sweden)

    Jinsong Yang

    2015-12-01

    Full Text Available A new symmetric Hamiltonian constraint operator is proposed for loop quantum gravity, which is well defined in the Hilbert space of diffeomorphism invariant states up to non-planar vertices with valence higher than three. It inherits the advantage of the original regularization method to create new vertices to the spin networks. The quantum algebra of this Hamiltonian is anomaly-free on shell, and there is less ambiguity in its construction in comparison with the original method. The regularization procedure for this Hamiltonian constraint operator can also be applied to the symmetric model of loop quantum cosmology, which leads to a new quantum dynamics of the cosmological model.

  15. Greenberger-Horne-Zeilinger States and Few-Body Hamiltonians

    Science.gov (United States)

    Facchi, Paolo; Florio, Giuseppe; Pascazio, Saverio; Pepe, Francesco V.

    2011-12-01

    The generation of Greenberger-Horne-Zeilinger (GHZ) states is a crucial problem in quantum information. We derive general conditions for obtaining GHZ states as eigenstates of a Hamiltonian. We find that a necessary condition for an n-qubit GHZ state to be a nondegenerate eigenstate of a Hamiltonian is the presence of m-qubit couplings with m≥[(n+1)/2]. Moreover, we introduce a Hamiltonian with a GHZ eigenstate and derive sufficient conditions for the removal of the degeneracy.

  16. Homotopical Dynamics IV: Hopf invariants and hamiltonian flows

    OpenAIRE

    Cornea, Octavian

    2001-01-01

    In a non-compact context the first natural step in the search for periodic orbits of a hamiltonian flow is to detect bounded ones. In this paper we show that, in a non-compact setting, certain algebraic topological constraints imposed to a gradient flow of the hamiltonian function $f$ imply the existence of bounded orbits for the hamiltonian flow of $f$. Once the existence of bounded orbits is established, under favorable circumstances, application of the $C^{1}$-closing lemma leads to period...

  17. New Hamiltonian constraint operator for loop quantum gravity

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jinsong, E-mail: yangksong@gmail.com [Department of Physics, Guizhou university, Guiyang 550025 (China); Institute of Physics, Academia Sinica, Taiwan (China); Ma, Yongge, E-mail: mayg@bnu.edu.cn [Department of Physics, Beijing Normal University, Beijing 100875 (China)

    2015-12-17

    A new symmetric Hamiltonian constraint operator is proposed for loop quantum gravity, which is well defined in the Hilbert space of diffeomorphism invariant states up to non-planar vertices with valence higher than three. It inherits the advantage of the original regularization method to create new vertices to the spin networks. The quantum algebra of this Hamiltonian is anomaly-free on shell, and there is less ambiguity in its construction in comparison with the original method. The regularization procedure for this Hamiltonian constraint operator can also be applied to the symmetric model of loop quantum cosmology, which leads to a new quantum dynamics of the cosmological model.

  18. Remarks on Hamiltonian structures in G2-geometry

    International Nuclear Information System (INIS)

    Cho, Hyunjoo; Salur, Sema; Todd, A. J.

    2013-01-01

    In this article, we treat G 2 -geometry as a special case of multisymplectic geometry and make a number of remarks regarding Hamiltonian multivector fields and Hamiltonian differential forms on manifolds with an integrable G 2 -structure; in particular, we discuss existence and make a number of identifications of the spaces of Hamiltonian structures associated to the two multisymplectic structures associated to an integrable G 2 -structure. Along the way, we prove some results in multisymplectic geometry that are generalizations of results from symplectic geometry

  19. Hamiltonian reduction and supersymmetric mechanics with Dirac monopole

    International Nuclear Information System (INIS)

    Bellucci, Stefano; Nersessian, Armen; Yeranyan, Armen

    2006-01-01

    We apply the technique of Hamiltonian reduction for the construction of three-dimensional N=4 supersymmetric mechanics specified by the presence of a Dirac monopole. For this purpose we take the conventional N=4 supersymmetric mechanics on the four-dimensional conformally-flat spaces and perform its Hamiltonian reduction to three-dimensional system. We formulate the final system in the canonical coordinates, and present, in these terms, the explicit expressions of the Hamiltonian and supercharges. We show that, besides a magnetic monopole field, the resulting system is specified by the presence of a spin-orbit coupling term. A comparision with previous work is also carried out

  20. The Hamiltonian structure of general relativistic perfect fluids

    International Nuclear Information System (INIS)

    Bao, D.; Houston Univ., TX; Marsden, J.; Walton, R.

    1985-01-01

    We show that the evolution equations for a perfect fluid coupled to general relativity in a general lapse and shift, are Hamiltonian relative to a certain Poisson structure. For the fluid variables, a Lie-Poisson structure associated to the dual of a semi-direct product Lie algebra is used, while the bracket for the gravitational variables has the usual canonical symplectic structure. The evolution is governed by a Hamiltonian which is equivalent to that obtained from a canonical analysis. The relationship of our Hamiltonian structure with other approaches in the literature, such as Clebsch potentials, Lagrangian to Eulerian transformations, and its use in clarifying linearization stability, are discussed. (orig.)

  1. Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces

    CERN Document Server

    Jacob, Birgit

    2012-01-01

    This book provides a self-contained introduction to the theory of infinite-dimensional systems theory and its applications to port-Hamiltonian systems. The textbook starts with elementary known results, then progresses smoothly to advanced topics in current research. Many physical systems can be formulated using a Hamiltonian framework, leading to models described by ordinary or partial differential equations. For the purpose of control and for the interconnection of two or more Hamiltonian systems it is essential to take into account this interaction with the environment. This book is the fir

  2. Toric codes and quantum doubles from two-body Hamiltonians

    Energy Technology Data Exchange (ETDEWEB)

    Brell, Courtney G; Bartlett, Stephen D; Doherty, Andrew C [Centre for Engineered Quantum Systems, School of Physics, University of Sydney, Sydney (Australia); Flammia, Steven T, E-mail: cbrell@physics.usyd.edu.au [Perimeter Institute for Theoretical Physics, Waterloo (Canada)

    2011-05-15

    We present here a procedure to obtain the Hamiltonians of the toric code and Kitaev quantum double models as the low-energy limits of entirely two-body Hamiltonians. Our construction makes use of a new type of perturbation gadget based on error-detecting subsystem codes. The procedure is motivated by a projected entangled pair states (PEPS) description of the target models, and reproduces the target models' behavior using only couplings that are natural in terms of the original Hamiltonians. This allows our construction to capture the symmetries of the target models.

  3. Greenberger-Horne-Zeilinger states and few-body Hamiltonians.

    Science.gov (United States)

    Facchi, Paolo; Florio, Giuseppe; Pascazio, Saverio; Pepe, Francesco V

    2011-12-23

    The generation of Greenberger-Horne-Zeilinger (GHZ) states is a crucial problem in quantum information. We derive general conditions for obtaining GHZ states as eigenstates of a Hamiltonian. We find that a necessary condition for an n-qubit GHZ state to be a nondegenerate eigenstate of a Hamiltonian is the presence of m-qubit couplings with m≥[(n+1)/2]. Moreover, we introduce a Hamiltonian with a GHZ eigenstate and derive sufficient conditions for the removal of the degeneracy.

  4. Quantum bootstrapping via compressed quantum Hamiltonian learning

    International Nuclear Information System (INIS)

    Wiebe, Nathan; Granade, Christopher; Cory, D G

    2015-01-01

    A major problem facing the development of quantum computers or large scale quantum simulators is that general methods for characterizing and controlling are intractable. We provide a new approach to this problem that uses small quantum simulators to efficiently characterize and learn control models for larger devices. Our protocol achieves this by using Bayesian inference in concert with Lieb–Robinson bounds and interactive quantum learning methods to achieve compressed simulations for characterization. We also show that the Lieb–Robinson velocity is epistemic for our protocol, meaning that information propagates at a rate that depends on the uncertainty in the system Hamiltonian. We illustrate the efficiency of our bootstrapping protocol by showing numerically that an 8 qubit Ising model simulator can be used to calibrate and control a 50 qubit Ising simulator while using only about 750 kilobits of experimental data. Finally, we provide upper bounds for the Fisher information that show that the number of experiments needed to characterize a system rapidly diverges as the duration of the experiments used in the characterization shrinks, which motivates the use of methods such as ours that do not require short evolution times. (fast track communication)

  5. Relativistic and separable classical hamiltonian particle dynamics

    International Nuclear Information System (INIS)

    Sazdjian, H.

    1981-01-01

    We show within the Hamiltonian formalism the existence of classical relativistic mechanics of N scalar particles interacting at a distance which satisfies the requirements of Poincare invariance, separability, world-line invariance and Einstein causality. The line of approach which is adopted here uses the methods of the theory of systems with constraints applied to manifestly covariant systems of particles. The study is limited to the case of scalar interactions remaining weak in the whole phase space and vanishing at large space-like separation distances of the particles. Poincare invariance requires the inclusion of many-body, up to N-body, potentials. Separability requires the use of individual or two-body variables and the construction of the total interaction from basic two-body interactions. Position variables of the particles are constructed in terms of the canonical variables of the theory according to the world-line invariance condition and the subsidiary conditions of the non-relativistic limit and separability. Positivity constraints on the interaction masses squared of the particles ensure that the velocities of the latter remain always smaller than the velocity of light

  6. Superconformal gravity in Hamiltonian form: another approach to the renormalization of gravitation

    International Nuclear Information System (INIS)

    Kaku, M.

    1983-01-01

    We reexpress superconformal gravity in Hamiltonian form, explicitly displaying all 24 generators of the group as Dirac constraints on the Hilbert space. From this, we can establish a firm foundation for the canonical quantization of superconformal gravity. The purpose of writing down the Hamiltonian form of the theory is to reexamine the question of renormalization and unitarity. Usually, we start with unitary theories of gravity, such as the Einstein-Hilbert action or supergravity, both of which are probably not renormalizable. In this series of papers, we take the opposite approach and start with a theory which is renormalizable but has problems with unitarity. Conformal and superconformal gravity are both plagued with dipole ghosts when we use perturbation theory to quantize the theories. It is difficult to interpret the results of perturbation theory because the asymptotic states have zero norm and the potential between particles grows linearly with the separation distance. The purpose of writing the Hamiltonian form of these theories is to approach the question of unitarity from a different point of view. For example, a strong-coupling approach to these theories may yield a totally different perturbation expansion. We speculate that canonically quantizing the theory by power expanding in the strong-coupling regime may yield a different set of asymptotic states, somewhat similar to the situation in gauge theories. In this series of papers, we wish to reopen the question of the unitarity of conformal theories. We conjecture that ghosts are ''confined.''

  7. The topology of Lagrangian foliations of integrable systems with hyperelliptic Hamiltonian

    International Nuclear Information System (INIS)

    Kudryavtseva, Elena A; Lepskii, Timur A

    2011-01-01

    We study the integrable Hamiltonian systems (C 2 ,Re(dz and dw),H=Ref(z,w)) with the additional first integral F=Imf which correspond to the complex Hamiltonian systems (C 2 ,dz and dw,f(z,w)) with a hyperelliptic Hamiltonian f(z,w)=z 2 +P n (w), n element of N. For n≥3 the system has incomplete flows on any Lagrangian leaf f -1 (a). The topology of the Lagrangian foliation of such systems in a small neighbourhood of any leaf f -1 (a) is described in terms of the number n and the combinatorial type of the leaf--the set of multiplicities of the critical points of the function f that belong to the leaf. For odd n, a complex analogue of Liouville's theorem is obtained for those systems corresponding to polynomials P n (w) with simple real roots. In particular, a set of complex canonical variables analogous to action-angle variables is constructed in a small neighbourhood of the leaf f -1 (0). Bibliography: 12 titles.

  8. g Algebra and two-dimensional quasiexactly solvable Hamiltonian ...

    Indian Academy of Sciences (India)

    Keywords. g2 algebra; quasiexactly solvable Hamiltonian; hidden algebra; Poschl–Teller potential. ... space of the polynomials, restricting to a linear transformation on this space, the associ- .... The operators L6 and L7 are the positive root.

  9. Integrable Hamiltonian systems and interactions through quadratic constraints

    International Nuclear Information System (INIS)

    Pohlmeyer, K.

    1975-08-01

    Osub(n)-invariant classical relativistic field theories in one time and one space dimension with interactions that are entirely due to quadratic constraints are shown to be closely related to integrable Hamiltonian systems. (orig.) [de

  10. Towards practical characterization of quantum systems with quantum Hamiltonian learning

    NARCIS (Netherlands)

    Santagati, R.; Wang, J.; Paesani, S.; Knauer, S.; Gentile, A. A.; Wiebe, N.; Petruzzella, M.; O'Brien, J. L.; Rarity, J. G.; Laing, A.; Thompson, M. G.

    2017-01-01

    Here we show the first experimental implementation of quantum Hamiltonian Learning, where a silicon-on-insulator quantum photonic simulator is used to learn the dynamics of an electron-spin in an NV center in diamond.

  11. On the quantization of sectorially Hamiltonian dissipative systems

    Energy Technology Data Exchange (ETDEWEB)

    Castagnino, M. [Instituto de Fisica de Rosario, 2000 Rosario (Argentina); Instituto de Astronomia y Fisica del Espacio, Casilla de Correos 67, Sucursal 28, 1428 Buenos Aires (Argentina); Gadella, M. [Instituto de Fisica de Rosario, 2000 Rosario (Argentina); Departamento de Fisica Teorica, Atomica y Optica, Facultad de Ciencias, Universidad de Valladolid, 47005 Valladolid (Spain)], E-mail: manuelgadella@yahoo.com.ar; Lara, L.P. [Instituto de Fisica de Rosario, 2000 Rosario (Argentina); Facultad Regional Rosario, UTN, 2000 Rosario (Argentina)

    2009-10-15

    We present a theoretical discussion showing that, although some dissipative systems may have a sectorial Hamiltonian description, this description does not allow for canonical quantization. However, a quantum Liouville counterpart of these systems is possible, although it is not unique.

  12. On the quantization of sectorially Hamiltonian dissipative systems

    International Nuclear Information System (INIS)

    Castagnino, M.; Gadella, M.; Lara, L.P.

    2009-01-01

    We present a theoretical discussion showing that, although some dissipative systems may have a sectorial Hamiltonian description, this description does not allow for canonical quantization. However, a quantum Liouville counterpart of these systems is possible, although it is not unique.

  13. Hamiltonian formalisms and symmetries of the Pais–Uhlenbeck oscillator

    Directory of Open Access Journals (Sweden)

    Krzysztof Andrzejewski

    2014-12-01

    Full Text Available The study of the symmetry of Pais–Uhlenbeck oscillator initiated in Andrzejewski et al. (2014 [24] is continued with special emphasis put on the Hamiltonian formalism. The symmetry generators within the original Pais and Uhlenbeck Hamiltonian approach as well as the canonical transformation to the Ostrogradski Hamiltonian framework are derived. The resulting algebra of generators appears to be the central extension of the one obtained on the Lagrangian level; in particular, in the case of odd frequencies one obtains the centrally extended l-conformal Newton–Hooke algebra. In this important case the canonical transformation to an alternative Hamiltonian formalism (related to the free higher derivatives theory is constructed. It is shown that all generators can be expressed in terms of the ones for the free theory and the result agrees with that obtained by the orbit method.

  14. Experimental Hamiltonian identification for controlled two-level systems

    International Nuclear Information System (INIS)

    Schirmer, S.G.; Kolli, A.; Oi, D.K.L.

    2004-01-01

    We present a strategy to empirically determine the internal and control Hamiltonians for an unknown two-level system (black box) subject to various (piecewise constant) control fields when direct readout by measurement is limited to a single, fixed observable

  15. A local inverse spectral theorem for Hamiltonian systems

    International Nuclear Information System (INIS)

    Langer, Matthias; Woracek, Harald

    2011-01-01

    We consider (2 × 2)-Hamiltonian systems of the form y'(x) = zJH(x)y(x), x in [s − , s + ). If a system of this form is in the limit point case, an analytic function is associated with it, namely its Titchmarsh–Weyl coefficient q H . The (global) uniqueness theorem due to de Branges says that the Hamiltonian H is (up to reparameterization) uniquely determined by the function q H . In this paper we give a local uniqueness theorem; if the Titchmarsh–Weyl coefficients q H 1 and q H 2 corresponding to two Hamiltonian systems are exponentially close, then the Hamiltonians H 1 and H 2 coincide (up to reparameterization) up to a certain point of their domain, which depends on the quantitative degree of exponential closeness of the Titchmarsh–Weyl coefficients

  16. Diffusion Monte Carlo approach versus adiabatic computation for local Hamiltonians

    Science.gov (United States)

    Bringewatt, Jacob; Dorland, William; Jordan, Stephen P.; Mink, Alan

    2018-02-01

    Most research regarding quantum adiabatic optimization has focused on stoquastic Hamiltonians, whose ground states can be expressed with only real non-negative amplitudes and thus for whom destructive interference is not manifest. This raises the question of whether classical Monte Carlo algorithms can efficiently simulate quantum adiabatic optimization with stoquastic Hamiltonians. Recent results have given counterexamples in which path-integral and diffusion Monte Carlo fail to do so. However, most adiabatic optimization algorithms, such as for solving MAX-k -SAT problems, use k -local Hamiltonians, whereas our previous counterexample for diffusion Monte Carlo involved n -body interactions. Here we present a 6-local counterexample which demonstrates that even for these local Hamiltonians there are cases where diffusion Monte Carlo cannot efficiently simulate quantum adiabatic optimization. Furthermore, we perform empirical testing of diffusion Monte Carlo on a standard well-studied class of permutation-symmetric tunneling problems and similarly find large advantages for quantum optimization over diffusion Monte Carlo.

  17. Time and a physical Hamiltonian for quantum gravity.

    Science.gov (United States)

    Husain, Viqar; Pawłowski, Tomasz

    2012-04-06

    We present a nonperturbative quantization of general relativity coupled to dust and other matter fields. The dust provides a natural time variable, leading to a physical Hamiltonian with spatial diffeomorphism symmetry. The surprising feature is that the Hamiltonian is not a square root. This property, together with the kinematical structure of loop quantum gravity, provides a complete theory of quantum gravity, and puts applications to cosmology, quantum gravitational collapse, and Hawking radiation within technical reach. © 2012 American Physical Society

  18. A hierarchy of Liouville integrable discrete Hamiltonian equations

    Energy Technology Data Exchange (ETDEWEB)

    Xu Xixiang [College of Science, Shandong University of Science and Technology, Qingdao 266510 (China)], E-mail: xixiang_xu@yahoo.com.cn

    2008-05-12

    Based on a discrete four-by-four matrix spectral problem, a hierarchy of Lax integrable lattice equations with two potentials is derived. Two Hamiltonian forms are constructed for each lattice equation in the resulting hierarchy by means of the discrete variational identity. A strong symmetry operator of the resulting hierarchy is given. Finally, it is shown that the resulting lattice equations are all Liouville integrable discrete Hamiltonian systems.

  19. On the topological entropy of an optical Hamiltonian flow

    OpenAIRE

    Niche, Cesar J.

    2000-01-01

    In this article we prove two formulas for the topological entropy of an F-optical Hamiltonian flow induced by a C^{\\infty} Hamiltonian, where F is a Lagrangian distribution. In these formulas, we calculate the topological entropy as the exponential growth rate of the average of the determinant of the differential of the flow, restricted to the Lagrangian distribution or to a proper modification.

  20. SOLVING THE HAMILTONIAN CYCLE PROBLEM USING SYMBOLIC DETERMINANTS

    OpenAIRE

    Ejov, V.; Filar, J. A.; Lucas, S. K.; Nelson, J. L.

    2006-01-01

    In this note we show how the Hamiltonian Cycle problem can be reduced to solving a system of polynomial equations related to the adjacency matrix of a graph. This system of equations can be solved using the method of Gröbner bases, but we also show how a symbolic determinant related to the adjacency matrix can be used to directly decide whether a graph has a Hamiltonian cycle.

  1. Noncanonical Hamiltonian density formulation of hydrodynamics and ideal MHD

    International Nuclear Information System (INIS)

    Morrison, P.J.; Greene, J.M.

    1980-04-01

    A new Hamiltonian density formulation of a perfect fluid with or without a magnetic field is presented. Contrary to previous work the dynamical variables are the physical variables, rho, v, B, and s, which form a noncanonical set. A Poisson bracket which satisfies the Jacobi identity is defined. This formulation is transformed to a Hamiltonian system where the dynamical variables are the spatial Fourier coefficients of the fluid variables

  2. Families of superintegrable Hamiltonians constructed from exceptional polynomials

    International Nuclear Information System (INIS)

    Post, Sarah; Tsujimoto, Satoshi; Vinet, Luc

    2012-01-01

    We introduce a family of exactly-solvable two-dimensional Hamiltonians whose wave functions are given in terms of Laguerre and exceptional Jacobi polynomials. The Hamiltonians contain purely quantum terms which vanish in the classical limit leaving only a previously known family of superintegrable systems. Additional, higher-order integrals of motion are constructed from ladder operators for the considered orthogonal polynomials proving the quantum system to be superintegrable. (paper)

  3. Construction of alternative Hamiltonian structures for field equations

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, Mauricio [Departamento de Fisica, Facultad de Ciencias Fisicas y Matematicas, Universidad de Chile, Santiago (Chile); Hojman, Sergio A. [Departamento de Fisica, Facultad de Ciencias, Universidad de Chile, Santiago (Chile); Facultad de Educacion, Universidad Nacional Andres Bello, Santiago (Chile); Centro de Recursos Educativos Avanzados, CREA, Santiago (Chile)

    2001-08-10

    We use symmetry vectors of nonlinear field equations to build alternative Hamiltonian structures. We construct such structures even for equations which are usually believed to be non-Hamiltonian such as heat, Burger and potential Burger equations. We improve on a previous version of the approach using recursion operators to increase the rank of the Poisson bracket matrices. Cole-Hopf and Miura-type transformations allow the mapping of these structures from one equation to another. (author)

  4. Entropic dynamics: From entropy and information geometry to Hamiltonians and quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Caticha, Ariel; Bartolomeo, Daniel [Department of Physics, University at Albany-SUNY, Albany, NY 12222 (United States); Reginatto, Marcel [Physicalisch-Technische Bundesanstalt, 38116 Braunschweig (Germany)

    2015-01-13

    Entropic Dynamics is a framework in which quantum theory is derived as an application of entropic methods of inference. There is no underlying action principle. Instead, the dynamics is driven by entropy subject to the appropriate constraints. In this paper we show how a Hamiltonian dynamics arises as a type of non-dissipative entropic dynamics. We also show that the particular form of the 'quantum potential' that leads to the Schrödinger equation follows naturally from information geometry.

  5. Entropic dynamics: From entropy and information geometry to Hamiltonians and quantum mechanics

    International Nuclear Information System (INIS)

    Caticha, Ariel; Bartolomeo, Daniel; Reginatto, Marcel

    2015-01-01

    Entropic Dynamics is a framework in which quantum theory is derived as an application of entropic methods of inference. There is no underlying action principle. Instead, the dynamics is driven by entropy subject to the appropriate constraints. In this paper we show how a Hamiltonian dynamics arises as a type of non-dissipative entropic dynamics. We also show that the particular form of the 'quantum potential' that leads to the Schrödinger equation follows naturally from information geometry

  6. Graphical calculus of volume, inverse volume and Hamiltonian operators in loop quantum gravity

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jinsong [Guizhou University, Department of Physics, Guiyang (China); Academia Sinica, Institute of Physics, Taipei (China); Ma, Yongge [Beijing Normal University, Department of Physics, Beijing (China)

    2017-04-15

    To adopt a practical method to calculate the action of geometrical operators on quantum states is a crucial task in loop quantum gravity. In this paper, the graphical calculus based on the original Brink graphical method is applied to loop quantum gravity along the line of previous work. The graphical method provides a very powerful technique for simplifying complicated calculations. The closed formula of the volume operator and the actions of the Euclidean Hamiltonian constraint operator and the so-called inverse volume operator on spin-network states with trivalent vertices are derived via the graphical method. By employing suitable and non-ambiguous graphs to represent the action of operators as well as the spin-network states, we use the simple rules of transforming graphs to obtain the resulting formula. Comparing with the complicated algebraic derivation in some literature, our procedure is more concise, intuitive and visual. The resulting matrix elements of the volume operator is compact and uniform, fitting for both gauge-invariant and gauge-variant spin-network states. Our results indicate some corrections to the existing results for the Hamiltonian operator and inverse volume operator in the literature. (orig.)

  7. The Prague Linguistic Circle and Dialectics

    Directory of Open Access Journals (Sweden)

    Ondřej Sládek

    2017-12-01

    Full Text Available The study deals with dialectics in the context of the Prague Linguistic Circle, particularly in the context of Jan Mukařovský’s thinking. The essay presents 1 main sources of Mukařovský’s dialectics, and outlines 2 Mukařovský’s dialectical method. The notion of dialectics appears in Mukařovský’s scholarly work in a set of connections. He applied dialectics as a method, manner or form of rationality. It served as a means of gaining knowledge about the world, specific phenomena and objects, their essence, interconnectedness as well as development. Mukařovský also used it as a procedure for resolving contradictions (antinomies that he encountered in his scientific explorations and in ordinary practical activities. He understood dialectical thinking as dynamic, open, and pluralist thinking striving to reflect reality as a constant process. Gradual coming together of dialectics and materialism, evident in Mukařovský’s scholarly works from the mid-1930s, resulted, ten years later, in a public adoption of dialectical materialism.

  8. Quality circles--new wave or fad?

    Science.gov (United States)

    Herkimer, A G

    1984-07-01

    The American healthcare industry must avoid the dangers of commitment to bureaucratic organizational thinking and be willing to experiment with Theory Z and quality circles. Productivity depends on trust, subtlety and intimacy. The industry must acknowledge that management style and organizational form are nothing more than facets of the larger organization of society. The ultimate goal should be to understand how the structure of society and the management of healthcare organizations can be coordinated. The common thread in Japanese life is intimacy. The caring, support, and disciplined unselfishness which makes life possible come through close social relationships. Accordingly, there is (or at least, there should be) a common thread in this nation's healthcare industry--the desire to render quality health care in an effective and efficient manner. The underlying messages are many, but they are not overwhelming. Perhaps the first message to healthcare managers is that a healthcare delivery system can realize the full potential of its employees only if it invests in their training and then shares with them the power to influence decisions. Without training, the invitation to participate in decision making will lead only to frustration and conflict. Without a sharing of decision-making power, an investment in training will be both frustrating and wasteful.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Controlled Microwave Heating Accelerates Rolling Circle Amplification.

    Directory of Open Access Journals (Sweden)

    Takeo Yoshimura

    Full Text Available Rolling circle amplification (RCA generates single-stranded DNAs or RNA, and the diverse applications of this isothermal technique range from the sensitive detection of nucleic acids to analysis of single nucleotide polymorphisms. Microwave chemistry is widely applied to increase reaction rate as well as product yield and purity. The objectives of the present research were to apply microwave heating to RCA and indicate factors that contribute to the microwave selective heating effect. The microwave reaction temperature was strictly controlled using a microwave applicator optimized for enzymatic-scale reactions. Here, we showed that microwave-assisted RCA reactions catalyzed by either of the four thermostable DNA polymerases were accelerated over 4-folds compared with conventional RCA. Furthermore, the temperatures of the individual buffer components were specifically influenced by microwave heating. We concluded that microwave heating accelerated isothermal RCA of DNA because of the differential heating mechanisms of microwaves on the temperatures of reaction components, although the overall reaction temperatures were the same.

  10. Geršgorin and his circles

    CERN Document Server

    Varga, Richard S

    2004-01-01

    TheGer? sgorin CircleTheorem, averywell-known resultin linear algebra today, stems from the paper of S. Ger? sgorin in 1931 (which is reproduced in AppendixD)where,givenanarbitraryn×ncomplexmatrix,easyarithmetic operationsontheentriesofthematrixproducendisks,inthecomplexplane, whose union contains all eigenvalues of the given matrix. The beauty and simplicity of Ger? sgorin’s Theorem has undoubtedly inspired further research in this area, resulting in hundreds of papers in which the name “Ger? sgorin” appears. The goal of this book is to give a careful and up-to-date treatment of various aspects of this topic. The author ?rst learned of Ger? sgorin’s results from friendly conversations with Olga Taussky-Todd and John Todd, which inspired me to work in this area.Olgawasclearlypassionateaboutlinearalgebraandmatrixtheory,and her path-?nding results in these areas were like a magnet to many, including this author! It is the author’s hope that the results, presented here on topics related to Ger? sgorin...

  11. Androgen circle of polycystic ovary syndrome.

    Science.gov (United States)

    Homburg, Roy

    2009-07-01

    Although the aetiology of polycystic ovary syndrome (PCOS) is still not known and the search for causative genes is proving elusive, it is generally agreed that hyperandrogenism is at the heart of the syndrome. Here, it is proposed that excess androgens are the root cause of PCOS starting from their influence on the female fetus in programming gene expression, producing the characteristic signs and symptoms which are then exacerbated by a propagation of excess ovarian androgen production from multiple small follicles, anovulation and insulin resistance in the reproductive life-span, thus setting up a vicious perpetual circle of androgen excess. This opinion paper, rather than being a full-scale review, is intentionally biased in support of this hypothesis that androgen excess is the 'root of all evil' in PCOS; in the hope that its acceptance could lead to more direct treatment of the syndrome in all its facets rather than the symptomatic treatment of side effects of androgen excess that we are addressing today.

  12. Oscillator representations for self-adjoint Calogero Hamiltonians

    Energy Technology Data Exchange (ETDEWEB)

    Gitman, D M [Institute of Physics, University of Sao Paulo (Brazil); Tyutin, I V; Voronov, B L, E-mail: gitman@dfn.if.usp.br, E-mail: tyutin@lpi.ru, E-mail: voronov@lpi.ru [Lebedev Physical Institute, Moscow (Russian Federation)

    2011-10-21

    In Gitman et al (2010 J. Phys. A: Math. Theor. 43 145205), we presented a mathematically rigorous quantum-mechanical treatment of a one-dimensional motion of a particle in the Calogero potential V(x) = {alpha}x{sup -2}. We described all possible self-adjoint (s.a.) operators (s.a. Hamiltonians) associated with the differential operation H=-d{sub x}{sup 2}+{alpha}x{sup -2} for the Calogero Hamiltonian. Here, we discuss a new aspect of the problem, the so-called oscillator representations for the Calogero Hamiltonians. As is known, operators of the form N-hat = a-hat{sup +} a-hat and A-hat = a-hat a-hat{sup +} are called operators of oscillator type. Oscillator-type operators possess a number of useful properties in the case when the elementary operators a-hat are closed. It turns out that some s.a. Calogero Hamiltonians allow oscillator-type representations. We describe such Hamiltonians and find the corresponding mutually adjoint elementary operators a-hat and a-hat{sup +}. An oscillator-type representation for a given Hamiltonian is generally not unique. (paper)

  13. Oscillator representations for self-adjoint Calogero Hamiltonians

    International Nuclear Information System (INIS)

    Gitman, D M; Tyutin, I V; Voronov, B L

    2011-01-01

    In Gitman et al (2010 J. Phys. A: Math. Theor. 43 145205), we presented a mathematically rigorous quantum-mechanical treatment of a one-dimensional motion of a particle in the Calogero potential V(x) = αx -2 . We described all possible self-adjoint (s.a.) operators (s.a. Hamiltonians) associated with the differential operation H=-d x 2 +αx -2 for the Calogero Hamiltonian. Here, we discuss a new aspect of the problem, the so-called oscillator representations for the Calogero Hamiltonians. As is known, operators of the form N-hat = a-hat + a-hat and A-hat = a-hat a-hat + are called operators of oscillator type. Oscillator-type operators possess a number of useful properties in the case when the elementary operators a-hat are closed. It turns out that some s.a. Calogero Hamiltonians allow oscillator-type representations. We describe such Hamiltonians and find the corresponding mutually adjoint elementary operators a-hat and a-hat + . An oscillator-type representation for a given Hamiltonian is generally not unique. (paper)

  14. Hamiltonian quantum simulation with bounded-strength controls

    International Nuclear Information System (INIS)

    Bookatz, Adam D; Wocjan, Pawel; Viola, Lorenza

    2014-01-01

    We propose dynamical control schemes for Hamiltonian simulation in many-body quantum systems that avoid instantaneous control operations and rely solely on realistic bounded-strength control Hamiltonians. Each simulation protocol consists of periodic repetitions of a basic control block, constructed as a modification of an ‘Eulerian decoupling cycle,’ that would otherwise implement a trivial (zero) target Hamiltonian. For an open quantum system coupled to an uncontrollable environment, our approach may be employed to engineer an effective evolution that simulates a target Hamiltonian on the system while suppressing unwanted decoherence to the leading order, thereby allowing for dynamically corrected simulation. We present illustrative applications to both closed- and open-system simulation settings, with emphasis on simulation of non-local (two-body) Hamiltonians using only local (one-body) controls. In particular, we provide simulation schemes applicable to Heisenberg-coupled spin chains exposed to general linear decoherence, and show how to simulate Kitaev's honeycomb lattice Hamiltonian starting from Ising-coupled qubits, as potentially relevant to the dynamical generation of a topologically protected quantum memory. Additional implications for quantum information processing are discussed. (papers)

  15. Age and personal values: Similar value circles with shifting priorities.

    Science.gov (United States)

    Borg, Ingwer; Hertel, Guido; Hermann, Dieter

    2017-11-01

    This study examined the relationship of personal values to age using data from two representative surveys. We hypothesized that individuals organize personal values, regardless of their age, as a circle with the same order of values on this circle but that older persons are closer to conservation and more remote from openness to change and closer to self-transcendence and more distant from self-enhancement. The structural stability of the value circle over age was largely confirmed across and within individuals. Different age groups exhibited a tendency to more strongly cluster those values that they rated as relatively important. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  16. Geometric fit of a point set by generalized circles

    DEFF Research Database (Denmark)

    Körner, Mark-Christopher; Brimberg, Jack; Juel, Henrik

    2010-01-01

    In our paper we approximate a set of given points by a general circle. More precisely, given two norms k 1 and k 2 and a set of points in the plane, we consider the problem of locating and scaling the unit circle of norm k 1 such that the sum of weighted distances between the circumference...... of the circle and the given points is minimized, where the distance is measured by a norm k 2. We present results for the general case. In the case that k 1 and k 2 are both polyhedral norms, we are able to solve the problem by investigating a finite candidate set....

  17. A current value Hamiltonian Approach for Discrete time Optimal Control Problems arising in Economic Growth

    OpenAIRE

    Naz, Rehana

    2018-01-01

    Pontrygin-type maximum principle is extended for the present value Hamiltonian systems and current value Hamiltonian systems of nonlinear difference equations for uniform time step $h$. A new method termed as a discrete time current value Hamiltonian method is established for the construction of first integrals for current value Hamiltonian systems of ordinary difference equations arising in Economic growth theory.

  18. A U.K. cost-benefit analysis of circles of support and accountability interventions.

    Science.gov (United States)

    Elliott, Ian A; Beech, Anthony R

    2013-06-01

    Circles of Support and Accountability (CoSA) aim to augment sex offender risk management at the point of community reentry by facilitating "Circles" of volunteers who provide support, guidance, and advice, while ensuring that the offender remains accountable for their actions. In this study, the authors provide (a) a rapid evidence assessment of the effectiveness of CoSA in reducing reoffending, and (b) a U.K. cost-benefit analysis for CoSA when compared to the criminal justice costs of reoffending. From the study analysis, the average cost of a "Circle" was estimated to be £11,303 per annum and appears to produce a 50% reduction in reoffending (sexual and nonsexual), as the estimated cost of reoffending was estimated to be £147,161 per offender, per annum. Based on a hypothetical cohort of 100 offenders--50 of whom receive CoSA and 50 of whom do not--investment in CoSA appears to provide a cost saving of £23,494 and a benefit-cost ratio of 1.04. Accounting for estimates that the full extent of the cost to society may be 5 to 10 times the tangible costs substantially increases estimated cost savings related to CoSA.

  19. Wave Reflection and Loss Characteristics of an Emerged Quarter Circle Breakwater with Varying Seaside Perforations

    Science.gov (United States)

    Binumol, S.; Rao, Subba; Hegde, Arkal Vittal

    2017-09-01

    Breakwaters are one of the most important harbour structures constructed to withstand and dissipate the dynamic energy due to the action of the waves. Due to fast growing need of the universe and advances in technology different types of breakwaters are being developed. Quarter circle breakwater is a new type of breakwater emerged from semi circular breakwater and the first model was developed in Peoples Republic of China (2006). Quarter circle breakwater with perforations posses merits of caisson as well as perforated breakwaters such as low weight, requires less materials, suited for poor soil conditions, easily transported, handled and placed at the site, aesthetically pleasing, cost effective, eco-friendly and stable. Therefore it is necessary to carry out detailed studies on hydrodynamic characteristics to investigate the suitability and applicability of various types of quarter circle breakwaters. The present study investigates the wave reflection and loss characteristics of an emerged seaside perforated quarter circle breakwater of radius 55 cm and with varying ratios of spacing to diameter of perforations, for different water depths and wave conditions. The tests were conducted in the two-dimensional monochromatic wave flume available in Marine Structures laboratory of Department of Applied Mechanics and Hydraulics of National Institute of Technology, Surathkal, Karnataka, India. The results were plotted as non-dimensional graphs and it was observed that the reflection coefficient increases with increase in wave steepness for all values of ratio of height of breakwater structure to water depth. For a constant water depth, wave reflection increases with increase in ratio of spacing to diameter of perforations. It was also found that the loss coefficient decreases with increase in wave steepness for all values of ratio of height of breakwater structure to water depth, and ratio of spacing to diameter of perforations.

  20. Parhelic-like circle from light scattering in Plateau borders

    Energy Technology Data Exchange (ETDEWEB)

    Tufaile, A., E-mail: tufaile@usp.br; Tufaile, A.P.B.

    2015-03-06

    We are reporting a new simple optical element to generate halos. We have observed interesting patterns of light scattering in Plateau borders in foams. In analogy to the atmospheric phenomena known as parhelic circle, sun dogs, and sun pillars, we have named the features of the patterns observed as parlaseric circle, laser dogs, and laser pillars. The triangular symmetry of the Plateau borders is analogous to the hexagonal symmetry of ice crystals which produce these atmospheric phenomena. Working with one Plateau border at a time, we have observed wave optics phenomena that are not perceived in the atmospheric phenomena, such as diffraction and interference. - Highlights: • We obtained halo formation from light scattering in a Plateau border using an experiment. • We explained halo formation using geometrical theory of diffraction. • An optical element based on a Plateau border is proposed. • We compared some aspects of the parhelic circle with the parlaseric circle.

  1. Quality Productivity Circle in Manufacture | Achi | Nigerian Journal of ...

    African Journals Online (AJOL)

    A brief history of quality control and productivity is hereby traced. ... Circle management technique are discussed in its relationship with productivity. ... so should be made sound in body (and spirit) through appropriate training and motivation.

  2. Research Circles - a method for developing guidance practices

    DEFF Research Database (Denmark)

    2012-01-01

    This video reports on our work with using research circles to improve our understanding of how to provide guidance and counseling to help young people in danger of dropping out of school. The video is based on the paper: Research Circles -- a method for developing guidance practices, and was pres......This video reports on our work with using research circles to improve our understanding of how to provide guidance and counseling to help young people in danger of dropping out of school. The video is based on the paper: Research Circles -- a method for developing guidance practices......, and was presented at the Conference for Social Justice, Prosperity and Sustainable Employment 2012 by assistant professor Helle Merete Nordentoft from DPU (http://edu.au.dk/). The film communicating the research paper was created by Mie Nørgaard...

  3. Squaring the Circle: Attempting Peace in Northern Ireland

    National Research Council Canada - National Science Library

    Marchi, Gina

    1997-01-01

    Finding a political framework for self-government in Northern Ireland that will be supported by both nationalists and unionists is referred to as a modern day attempt to do the impossible-to 'square the circle...

  4. Hamiltonian derivation of a gyrofluid model for collisionless magnetic reconnection

    International Nuclear Information System (INIS)

    Tassi, E

    2014-01-01

    We consider a simple electromagnetic gyrokinetic model for collisionless plasmas and show that it possesses a Hamiltonian structure. Subsequently, from this model we derive a two-moment gyrofluid model by means of a procedure which guarantees that the resulting gyrofluid model is also Hamiltonian. The first step in the derivation consists of imposing a generic fluid closure in the Poisson bracket of the gyrokinetic model, after expressing such bracket in terms of the gyrofluid moments. The constraint of the Jacobi identity, which every Poisson bracket has to satisfy, selects then what closures can lead to a Hamiltonian gyrofluid system. For the case at hand, it turns out that the only closures (not involving integro/differential operators or an explicit dependence on the spatial coordinates) that lead to a valid Poisson bracket are those for which the second order parallel moment, independently for each species, is proportional to the zero order moment. In particular, if one chooses an isothermal closure based on the equilibrium temperatures and derives accordingly the Hamiltonian of the system from the Hamiltonian of the parent gyrokinetic model, one recovers a known Hamiltonian gyrofluid model for collisionless reconnection. The proposed procedure, in addition to yield a gyrofluid model which automatically conserves the total energy, provides also, through the resulting Poisson bracket, a way to derive further conservation laws of the gyrofluid model, associated with the so called Casimir invariants. We show that a relation exists between Casimir invariants of the gyrofluid model and those of the gyrokinetic parent model. The application of such Hamiltonian derivation procedure to this two-moment gyrofluid model is a first step toward its application to more realistic, higher-order fluid or gyrofluid models for tokamaks. It also extends to the electromagnetic gyrokinetic case, recent applications of the same procedure to Vlasov and drift- kinetic systems

  5. p-Forms and diffeomorphisms: Hamiltonian formulation

    Science.gov (United States)

    Baulieu, Laurent; Henneaux, Marc

    1987-07-01

    The BRST charges corresponding to various (equivalent) ways of writing the action of the diffeomorphism group on p-form gauge fields are canonically related by a canonical transformation in the extended phase space which is explicitly constructed. The occurrence of higher order structure functions is pointed out. Also at: Centro de Estudios Cientificos de Santiago, Casilla 16443, Santiago 9, Chile.

  6. Spacecraft Attitude Control in Hamiltonian Framework

    DEFF Research Database (Denmark)

    Wisniewski, Rafal

    2000-01-01

    The objective of this paper is to give a design scheme for attitude control algorithms of a generic spacecraft. Along with the system model formulated in the Hamilton's canonical form the algorithm uses information about a required potential energy and a dissipative term. The control action...

  7. Membandingkan Bilangan Pecahan Menggunakan Fraction Circle terhadap Pemahaman Konsep Siswa

    Directory of Open Access Journals (Sweden)

    Renny Sendra Wahyuni

    2017-03-01

    Full Text Available Penelitian bertujuan untuk mendeskripsikan lintasan belajar siswa dalam memahami konsep pembelajaran membandingkan bilangan pecahan dengan menggunakan fraction circle melalui pendekatan PMRI. Penelitian dilaksanakan di SD Negeri 146 Palembang. Metode yang digunakan adalah design research melalui tahap-tahap preparing for the experiment, teaching experiment, dan retrospective analysis. Penelitian ini menunjukkan peranan fraction circle sebagai model yang mendorong peserta didik menemukan pemahaman konsep membandingkan bilangan pecahan dengan menggunakan pendekatan PMRI. Kata Kunci: pecahan, fraction circle, design research, PMRI This study aims to design a learning trajectory to help students understand the concept of rational numbers through fashion context. The study aims to describe students learning trajectory in understanding the concept of comparing fractions through fraction circle with PMRI approach. The research was conducted in SD Negeri 146 Palembang. The method used in this research is design research which consists of three stages: preparing for the experiment, teaching experiment, and retrospective analysis. The result shows the role fraction circle as a model to encourage students to understand the concept of comparing fractions using PMRI approach. Keywords: fractions, fraction circle, design research, PMRI

  8. Circles South East: the first 10 years 2002-2012.

    Science.gov (United States)

    Bates, Andrew; Williams, Dominic; Wilson, Chris; Wilson, Robin J

    2014-07-01

    This article describes the first 10 years of the implementation of Circles of Support and Accountability (Circles) in the management of sexual offenders in South-East England by Circles South East (CSE). The Circles of 71 core members are reviewed in detail, with reference to demographic data, offense and sentencing histories, risk assessment data, and considerations regarding Multi-Agency Public Protection Arrangements. A group of 71 comparison subjects who were referred to CSE and deemed suitable for but did not receive the service was identified. Follow-up behaviors of both groups are examined (including all forms of reconviction, breach of orders, and prison recall). Over a comparable follow-up period of 55 months, the incidence of violent and contact sexual reconviction in the comparison group was significantly higher than for the Circles cohort. Comparisons are made between expected and actual levels of sexual reconviction, with the Circles cohort showing lower than expected rate of sexual reconviction but not to a statistically significant degree. © The Author(s) 2013.

  9. Models to support students’ understanding of measuring area of circles

    Science.gov (United States)

    Rejeki, S.; Putri, R. I. I.

    2018-01-01

    Many studies showed that enormous students got confused about the concepts of measuring area of circles. The main reason is because mathematics classroom practices emphasized on memorizing formulas rather than understanding concepts. Therefore, in this study, a set of learning activities were designed as an innovation in learning area measurement of circles. The activities involved two models namely grid paper and reshaping which are respectively as a means and a strategy to support students’ learning of area measurement of circles. Design research was used as the research approach to achieve the aim. Thirty-eight of 8th graders in Indonesia were involved in this study. In this study, together with the contextual problems, the grid paper and reshaping sectors, which used as the models in this learning, helped the students to gradually develop their understanding of the area measurement of circles. The grid papers plays important role in comparing and estimating areas. Whereas, the reshaping sectors might support students’ understanding of the circumference and the area measurement of circles. Those two models could be the tool for promoting the informal theory of area measurement. Besides, the whole activities gave important role on distinguishing the area and perimeter of circles.

  10. An extended discrete gradient formula for oscillatory Hamiltonian systems

    International Nuclear Information System (INIS)

    Liu Kai; Shi Wei; Wu Xinyuan

    2013-01-01

    In this paper, incorporating the idea of the discrete gradient method into the extended Runge–Kutta–Nyström integrator, we derive and analyze an extended discrete gradient formula for the oscillatory Hamiltonian system with the Hamiltonian H(p,q)= 1/2 p T p+ 1/2 q T Mq+U(q), where q:R→R d represents generalized positions, p:R→R d represents generalized momenta and M is an element of R dxd is a symmetric and positive semi-definite matrix. The solution of this system is a nonlinear oscillator. Basically, many nonlinear oscillatory mechanical systems with a partitioned Hamiltonian function lend themselves to this approach. The extended discrete gradient formula presented in this paper exactly preserves the energy H(p, q). We derive some properties of the new formula. The convergence is analyzed for the implicit schemes based on the discrete gradient formula, and it turns out that the convergence of the implicit schemes based on the extended discrete gradient formula is independent of ‖M‖, which is a significant property for the oscillatory Hamiltonian system. Thus, it transpires that a larger step size can be chosen for the new energy-preserving schemes than that for the traditional discrete gradient methods when applied to the oscillatory Hamiltonian system. Illustrative examples show the competence and efficiency of the new schemes in comparison with the traditional discrete gradient methods in the scientific literature. (paper)

  11. Multivector field formulation of Hamiltonian field theories: equations and symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Echeverria-Enriquez, A.; Munoz-Lecanda, M.C.; Roman-Roy, N. [Departamento de Matematica Aplicada y Telematica, Edificio C-3, Campus Norte UPC, Barcelona (Spain)

    1999-12-03

    We state the intrinsic form of the Hamiltonian equations of first-order classical field theories in three equivalent geometrical ways: using multivector fields, jet fields and connections. Thus, these equations are given in a form similar to that in which the Hamiltonian equations of mechanics are usually given. Then, using multivector fields, we study several aspects of these equations, such as the existence and non-uniqueness of solutions, and the integrability problem. In particular, these problems are analysed for the case of Hamiltonian systems defined in a submanifold of the multimomentum bundle. Furthermore, the existence of first integrals of these Hamiltonian equations is considered, and the relation between Cartan-Noether symmetries and general symmetries of the system is discussed. Noether's theorem is also stated in this context, both the 'classical' version and its generalization to include higher-order Cartan-Noether symmetries. Finally, the equivalence between the Lagrangian and Hamiltonian formalisms is also discussed. (author)

  12. Non-stoquastic Hamiltonians in quantum annealing via geometric phases

    Science.gov (United States)

    Vinci, Walter; Lidar, Daniel A.

    2017-09-01

    We argue that a complete description of quantum annealing implemented with continuous variables must take into account the non-adiabatic Aharonov-Anandan geometric phase that arises when the system Hamiltonian changes during the anneal. We show that this geometric effect leads to the appearance of non-stoquasticity in the effective quantum Ising Hamiltonians that are typically used to describe quantum annealing with flux qubits. We explicitly demonstrate the effect of this geometric non-stoquasticity when quantum annealing is performed with a system of one and two coupled flux qubits. The realization of non-stoquastic Hamiltonians has important implications from a computational complexity perspective, since it is believed that in many cases quantum annealing with stoquastic Hamiltonians can be efficiently simulated via classical algorithms such as Quantum Monte Carlo. It is well known that the direct implementation of non-stoquastic Hamiltonians with flux qubits is particularly challenging. Our results suggest an alternative path for the implementation of non-stoquasticity via geometric phases that can be exploited for computational purposes.

  13. Three Concentric Circles: Young Chinese English Learners' Perceptions of Purposeful Audiences

    Science.gov (United States)

    Liu, Jack Jinghui

    2015-01-01

    English learners have more access to communicate with different purposeful audiences across the Three Concentric Circles of English (Kachu, 1985): the Inner Circle, the Outer Circle and the Expanding Circle. However, young language learners' purposeful audience as a focus of communication has not been emphasized as much as other linguistic…

  14. Effective Hamiltonian for protected edge states in graphene

    International Nuclear Information System (INIS)

    Winkler, R.; Deshpande, H.

    2017-01-01

    Edge states in topological insulators (TIs) disperse symmetrically about one of the time-reversal invariant momenta Λ in the Brillouin zone (BZ) with protected degeneracies at Λ. Commonly TIs are distinguished from trivial insulators by the values of one or multiple topological invariants that require an analysis of the bulk band structure across the BZ. We propose an effective two-band Hamiltonian for the electronic states in graphene based on a Taylor expansion of the tight-binding Hamiltonian about the time-reversal invariant M point at the edge of the BZ. This Hamiltonian provides a faithful description of the protected edge states for both zigzag and armchair ribbons, though the concept of a BZ is not part of such an effective model. In conclusion, we show that the edge states are determined by a band inversion in both reciprocal and real space, which allows one to select Λ for the edge states without affecting the bulk spectrum.

  15. Cluster expansion for ground states of local Hamiltonians

    Directory of Open Access Journals (Sweden)

    Alvise Bastianello

    2016-08-01

    Full Text Available A central problem in many-body quantum physics is the determination of the ground state of a thermodynamically large physical system. We construct a cluster expansion for ground states of local Hamiltonians, which naturally incorporates physical requirements inherited by locality as conditions on its cluster amplitudes. Applying a diagrammatic technique we derive the relation of these amplitudes to thermodynamic quantities and local observables. Moreover we derive a set of functional equations that determine the cluster amplitudes for a general Hamiltonian, verify the consistency with perturbation theory and discuss non-perturbative approaches. Lastly we verify the persistence of locality features of the cluster expansion under unitary evolution with a local Hamiltonian and provide applications to out-of-equilibrium problems: a simplified proof of equilibration to the GGE and a cumulant expansion for the statistics of work, for an interacting-to-free quantum quench.

  16. Hamiltonian formalism of two-dimensional Vlasov kinetic equation.

    Science.gov (United States)

    Pavlov, Maxim V

    2014-12-08

    In this paper, the two-dimensional Benney system describing long wave propagation of a finite depth fluid motion and the multi-dimensional Russo-Smereka kinetic equation describing a bubbly flow are considered. The Hamiltonian approach established by J. Gibbons for the one-dimensional Vlasov kinetic equation is extended to a multi-dimensional case. A local Hamiltonian structure associated with the hydrodynamic lattice of moments derived by D. J. Benney is constructed. A relationship between this hydrodynamic lattice of moments and the two-dimensional Vlasov kinetic equation is found. In the two-dimensional case, a Hamiltonian hydrodynamic lattice for the Russo-Smereka kinetic model is constructed. Simple hydrodynamic reductions are presented.

  17. Riemannian geometry of Hamiltonian chaos: hints for a general theory.

    Science.gov (United States)

    Cerruti-Sola, Monica; Ciraolo, Guido; Franzosi, Roberto; Pettini, Marco

    2008-10-01

    We aim at assessing the validity limits of some simplifying hypotheses that, within a Riemmannian geometric framework, have provided an explanation of the origin of Hamiltonian chaos and have made it possible to develop a method of analytically computing the largest Lyapunov exponent of Hamiltonian systems with many degrees of freedom. Therefore, a numerical hypotheses testing has been performed for the Fermi-Pasta-Ulam beta model and for a chain of coupled rotators. These models, for which analytic computations of the largest Lyapunov exponents have been carried out in the mentioned Riemannian geometric framework, appear as paradigmatic examples to unveil the reason why the main hypothesis of quasi-isotropy of the mechanical manifolds sometimes breaks down. The breakdown is expected whenever the topology of the mechanical manifolds is nontrivial. This is an important step forward in view of developing a geometric theory of Hamiltonian chaos of general validity.

  18. Intertwined Hamiltonians in two-dimensional curved spaces

    International Nuclear Information System (INIS)

    Aghababaei Samani, Keivan; Zarei, Mina

    2005-01-01

    The problem of intertwined Hamiltonians in two-dimensional curved spaces is investigated. Explicit results are obtained for Euclidean plane, Minkowski plane, Poincare half plane (AdS 2 ), de Sitter plane (dS 2 ), sphere, and torus. It is shown that the intertwining operator is related to the Killing vector fields and the isometry group of corresponding space. It is shown that the intertwined potentials are closely connected to the integral curves of the Killing vector fields. Two problems are considered as applications of the formalism presented in the paper. The first one is the problem of Hamiltonians with equispaced energy levels and the second one is the problem of Hamiltonians whose spectrum is like the spectrum of a free particle

  19. Lie transforms and their use in Hamiltonian perturbation theory

    International Nuclear Information System (INIS)

    Cary, J.R.

    1978-06-01

    A review is presented of the theory of Lie transforms as applied to Hamiltonian systems. We begin by presenting some general background on the Hamiltonian formalism and by introducing the operator notation for canonical transformations. We then derive the general theory of Lie transforms. We derive the formula for the new Hamiltonian when one uses a Lie transform to effect a canonical transformation, and we use Lie transforms to prove a very general version of Noether's theorem, or the symmetry-equals-invariant theorem. Next we use the general Lie transform theory to derive Deprit's perturbation theory. We illustrate this perturbation theory by application to two well-known problems in classical mechanics. Finally we present a chapter on conventions. There are many ways to develop Lie transforms. The last chapter explains the reasons for the choices made here

  20. The linearity of quantum mechanics from the perspective of Hamiltonian cellular automata

    International Nuclear Information System (INIS)

    Enrico Fermi, Università di Pisa, Largo Pontecorvo 3, I-56127 Pisa (Italy))" data-affiliation=" (Dipartimento di Fisica Enrico Fermi, Università di Pisa, Largo Pontecorvo 3, I-56127 Pisa (Italy))" >Elze, Hans-Thomas

    2014-01-01

    We discuss the action principle and resulting Hamiltonian equations of motion for a class of integer-valued cellular automata introduced recently [1]. Employing sampling theory, these deterministic finite-difference equations are mapped reversibly on continuum equations describing a set of bandwidth limited harmonic oscillators. They represent the Schrödinger equation. However, modifications reflecting the bandwidth limit are incorporated, i.e., the presence of a time (or length) scale. When this discreteness scale is taken to zero, the usual results are obtained. Thus, the linearity of quantum mechanics can be traced to the postulated action principle of such cellular automata and its conservation laws to discrete ones. The cellular automaton conservation laws are in one-to-one correspondence with those of the related quantum mechanical model, while admissible symmetries are not.

  1. EMR-related problems at the interface between the crystal field Hamiltonians and the zero-field splitting Hamiltonians

    Directory of Open Access Journals (Sweden)

    Rudowicz Czesław

    2015-07-01

    Full Text Available The interface between optical spectroscopy, electron magnetic resonance (EMR, and magnetism of transition ions forms the intricate web of interrelated notions. Major notions are the physical Hamiltonians, which include the crystal field (CF (or equivalently ligand field (LF Hamiltonians, and the effective spin Hamiltonians (SH, which include the zero-field splitting (ZFS Hamiltonians as well as to a certain extent also the notion of magnetic anisotropy (MA. Survey of recent literature has revealed that this interface, denoted CF (LF ↔ SH (ZFS, has become dangerously entangled over the years. The same notion is referred to by three names that are not synonymous: CF (LF, SH (ZFS, and MA. In view of the strong need for systematization of nomenclature aimed at bringing order to the multitude of different Hamiltonians and the associated quantities, we have embarked on this systematization. In this article, we do an overview of our efforts aimed at providing a deeper understanding of the major intricacies occurring at the CF (LF ↔ SH (ZFS interface with the focus on the EMR-related problems for transition ions.

  2. Chiral Schwinger model with the Faddeevian regularization in the light-front frame: construction of the gauge-invariant theory through the Stueckelberg term, Hamiltonian and BRST formulations

    International Nuclear Information System (INIS)

    Kulshreshtha, U.

    1998-01-01

    A chiral Schwinger model with the Faddeevian regularization a la Mitra is studied in the light-front frame. The front-form theory is found to be gauge-non-invariant. The Hamiltonian formulation of this gauge-non-invariant theory is first investigated and then the Stueckelberg term for this theory is constructed. Finally, the Hamiltonian and BRST formulations of the resulting gauge-invariant theory, obtained by the inclusion of the Stueckelberg term in the action of the above gauge-non-invariant theory, are investigated with some specific gauge choices. (orig.)

  3. Blocking Radial Diffusion in a Double-Waved Hamiltonian Model

    International Nuclear Information System (INIS)

    Martins, Caroline G L; De Carvalho, R Egydio; Marcus, F A; Caldas, I L

    2011-01-01

    A non-twist Hamiltonian system perturbed by two waves with particular wave numbers can present Robust Tori, barriers created by the vanishing of the perturbing Hamiltonian at some defined positions. When Robust Tori exist, any trajectory in phase space passing close to them is blocked by emergent invariant curves that prevent the chaotic transport. We analyze the breaking up of the RT as well the transport dependence on the wave numbers and on the wave amplitudes. Moreover, we report the chaotic web formation in the phase space and how this pattern influences the transport.

  4. Some sufficient conditions for Hamiltonian property in terms of ...

    Indian Academy of Sciences (India)

    [1, D], or Wf (G) ≥ f (1). 2 n2 + [f(2) − 3. 2 f(1)]n − 2[f(2) − f(1)] for a monotonically decreasing function f(x) on x ∈ [1, D], then G is Hamiltonian, unless G ∼= K∗ n or K2∨3K1. Proof. Assume that G is not a Hamiltonian graph with degree sequence (d1,d2,...,dn), where d1 ≤ d2 ≤ ··· ≤ dn and n ≥ 3. By Lemma 1, there is a ...

  5. Painlevé IV Hamiltonian systems and coherent states

    International Nuclear Information System (INIS)

    Bermudez, D; Contreras-Astorga, A; Fernández C, D J

    2015-01-01

    Schrödinger Hamiltonians with third-order differential ladder operators are linked to the Painlevé IV equation. Some of these appear from applying SUSY QM to the harmonic oscillator. Departing from them, we will build coherent states as eigenstates of the annihilation operator, then as displaced versions of the extremal states, both involving the third-order ladder operators, and finally as displaced extremal states using linearized ladder operators. To each Hamiltonian corresponds two families of coherent states for fixed ladder operators: one in the infinite dimension subspace associated with the oscillator spectrum and another in the finite dimension one generated by the eigenstates created by SUSY QM. (paper)

  6. Noether symmetries and integrability in time-dependent Hamiltonian mechanics

    Directory of Open Access Journals (Sweden)

    Jovanović Božidar

    2016-01-01

    Full Text Available We consider Noether symmetries within Hamiltonian setting as transformations that preserve Poincaré-Cartan form, i.e., as symmetries of characteristic line bundles of nondegenerate 1-forms. In the case when the Poincaré-Cartan form is contact, the explicit expression for the symmetries in the inverse Noether theorem is given. As examples, we consider natural mechanical systems, in particular the Kepler problem. Finally, we prove a variant of the theorem on complete (non-commutative integrability in terms of Noether symmetries of time-dependent Hamiltonian systems.

  7. Topological color codes and two-body quantum lattice Hamiltonians

    Science.gov (United States)

    Kargarian, M.; Bombin, H.; Martin-Delgado, M. A.

    2010-02-01

    Topological color codes are among the stabilizer codes with remarkable properties from the quantum information perspective. In this paper, we construct a lattice, the so-called ruby lattice, with coordination number 4 governed by a two-body Hamiltonian. In a particular regime of coupling constants, in a strong coupling limit, degenerate perturbation theory implies that the low-energy spectrum of the model can be described by a many-body effective Hamiltonian, which encodes the color code as its ground state subspace. Ground state subspace corresponds to a vortex-free sector. The gauge symmetry Z2×Z2 of the color code could already be realized by identifying three distinct plaquette operators on the ruby lattice. All plaquette operators commute with each other and with the Hamiltonian being integrals of motion. Plaquettes are extended to closed strings or string-net structures. Non-contractible closed strings winding the space commute with Hamiltonian but not always with each other. This gives rise to exact topological degeneracy of the model. A connection to 2-colexes can be established via the coloring of the strings. We discuss it at the non-perturbative level. The particular structure of the two-body Hamiltonian provides a fruitful interpretation in terms of mapping onto bosons coupled to effective spins. We show that high-energy excitations of the model have fermionic statistics. They form three families of high-energy excitations each of one color. Furthermore, we show that they belong to a particular family of topological charges. The emergence of invisible charges is related to the string-net structure of the model. The emerging fermions are coupled to nontrivial gauge fields. We show that for particular 2-colexes, the fermions can see the background fluxes in the ground state. Also, we use the Jordan-Wigner transformation in order to test the integrability of the model via introducing Majorana fermions. The four-valent structure of the lattice prevents the

  8. Necessary conditions for super-integrability of Hamiltonian systems

    Energy Technology Data Exchange (ETDEWEB)

    Maciejewski, Andrzej J. [Institute of Astronomy, University of Zielona Gora, Podgorna 50, PL-65-246 Zielona Gora (Poland)], E-mail: maciejka@astro.ia.uz.zgora.pl; Przybylska, Maria [Torun Centre for Astronomy, N. Copernicus University, Gagarina 11, PL-87-100 Torun (Poland)], E-mail: maria.przybylska@astri.uni.torun.pl; Yoshida, Haruo [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, 181-8588 Tokyo (Japan)], E-mail: h.yoshida@nao.ac.jp

    2008-08-18

    We formulate a general theorem which gives a necessary condition for the maximal super-integrability of a Hamiltonian system. This condition is expressed in terms of properties of the differential Galois group of the variational equations along a particular solution of the considered system. An application of this general theorem to natural Hamiltonian systems of n degrees of freedom with a homogeneous potential gives easily computable and effective necessary conditions for the super-integrability. To illustrate an application of the formulated theorems, we investigate: three known families of integrable potentials, and the three body problem on a line.

  9. A progressive diagonalization scheme for the Rabi Hamiltonian

    International Nuclear Information System (INIS)

    Pan, Feng; Guan, Xin; Wang, Yin; Draayer, J P

    2010-01-01

    A diagonalization scheme for the Rabi Hamiltonian, which describes a qubit interacting with a single-mode radiation field via a dipole interaction, is proposed. It is shown that the Rabi Hamiltonian can be solved almost exactly using a progressive scheme that involves a finite set of one variable polynomial equations. The scheme is especially efficient for the lower part of the spectrum. Some low-lying energy levels of the model with several sets of parameters are calculated and compared to those provided by the recently proposed generalized rotating-wave approximation and a full matrix diagonalization.

  10. A Class of Quasi-exact Solutions of Rabi Hamiltonian

    International Nuclear Information System (INIS)

    Pan Feng; Yao Youkun; Xie Mingxia; Han Wenjuan; Draayer, J.P.

    2007-01-01

    A class of quasi-exact solutions of the Rabi Hamiltonian, which describes a two-level atom interacting with a single-mode radiation field via a dipole interaction without the rotating-wave approximation, are obtained by using a wavefunction ansatz. Exact solutions for part of the spectrum are obtained when the atom-field coupling strength and the field frequency satisfy certain relations. As an example, the lowest exact energy level and the corresponding atom-field entanglement at the quasi-exactly solvable point are calculated and compared to results from the Jaynes-Cummings and counter-rotating cases of the Rabi Hamiltonian.

  11. Phase transition in the non-degenerate Hubbard Hamiltonian

    International Nuclear Information System (INIS)

    Chaves, C.M.; Lederer, P.; Gomes, A.A.

    1976-01-01

    Phase transition in the isotropic non-degenerate Hubbard Hamiltonian within the renormalization group techniques, using the epsilon = 4 - d expansion to first order in epsilon, is studied. The functional obtained from the Hubbard Hamiltonian displays full rotation symmetry and describes two coupled fields: a vector spin field, with n components and a non-soft scalar charge field. The possibility of tricritical behavior then emerges. The effects of simple constraints imposed on the charge field is considered. The relevance of the coupling between the fields in producing Fisher renormalization of the critical exponents is discussed. The possible singularities introduced in the charge-charge correlation function by the coupling are also discussed

  12. Additional integrals of the motion of classical Hamiltonian wave systems

    International Nuclear Information System (INIS)

    Shul'man, E.I.

    1989-01-01

    It is shown that a classical Hamiltonian wave system that possesses at least one additional integral of the motion with quadratic principal part has an infinite number of such integrals in the cases of both nondegenerate and degenerate dispersion laws. Conditions under which in a space of dimension d ≥ 2 a system with nondegenerate dispersion law is completely integratable and its Hamiltonian can be reduced to normal form are found. In the case of a degenerate dispersion law integrals are not sufficient for complete integrability

  13. Floquet-Green function formalism for harmonically driven Hamiltonians

    International Nuclear Information System (INIS)

    Martinez, D F

    2003-01-01

    A method is proposed for the calculation of the Floquet-Green function of a general Hamiltonian with harmonic time dependence. We use matrix continued fractions to derive an expression for the 'dynamical effective potential' that can be used to calculate the Floquet-Green function of the system. We demonstrate the formalism for the simple case of a space-periodic (in the tight-binding approximation) Hamiltonian with a defect whose on-site energy changes harmonically with time. We study the local density of states for this system and the behaviour of the localized states as a function of the different parameters that characterize the system

  14. Divide and conquer approach to quantum Hamiltonian simulation

    Science.gov (United States)

    Hadfield, Stuart; Papageorgiou, Anargyros

    2018-04-01

    We show a divide and conquer approach for simulating quantum mechanical systems on quantum computers. We can obtain fast simulation algorithms using Hamiltonian structure. Considering a sum of Hamiltonians we split them into groups, simulate each group separately, and combine the partial results. Simulation is customized to take advantage of the properties of each group, and hence yield refined bounds to the overall simulation cost. We illustrate our results using the electronic structure problem of quantum chemistry, where we obtain significantly improved cost estimates under very mild assumptions.

  15. Hamiltonian formulation of QCD in the Schwinger gauge

    International Nuclear Information System (INIS)

    Schutte, D.

    1989-01-01

    The structure of the Hamiltonian related to a regularized non-Abelian gauge field theory is discussed in the light of different choices for gauge-invariant wave functionals (loop space, Coulomb, axial, Schwinger gauge). Arguments are given for the suggestion that the Schwinger gauge offers a specially suited framework for the computation of bound-state (hadron) properties. The most important reasons are the manifest rotation invariance, the lack of a Gribov horizon (giving standard many-body techniques a better chance), and the fact that a regularization analogous to the lattice regularization is easily implementable. Some details of the Schwinger-gauge Hamiltonian theory are discussed

  16. Scattering theory of infrared divergent Pauli-Fierz Hamiltonians

    CERN Document Server

    Derezinski, J

    2003-01-01

    We consider in this paper the scattering theory of infrared divergent massless Pauli-Fierz Hamiltonians. We show that the CCR representations obtained from the asymptotic field contain so-called {\\em coherent sectors} describing an infinite number of asymptotically free bosons. We formulate some conjectures leading to mathematically well defined notion of {\\em inclusive and non-inclusive scattering cross-sections} for Pauli-Fierz Hamiltonians. Finally we give a general description of the scattering theory of QFT models in the presence of coherent sectors for the asymptotic CCR representations.

  17. The detectability lemma and its applications to quantum Hamiltonian complexity

    International Nuclear Information System (INIS)

    Aharonov, Dorit; Arad, Itai; Vazirani, Umesh; Landau, Zeph

    2011-01-01

    Quantum Hamiltonian complexity, an emerging area at the intersection of condensed matter physics and quantum complexity theory, studies the properties of local Hamiltonians and their ground states. In this paper we focus on a seemingly specialized technical tool, the detectability lemma (DL), introduced in the context of the quantum PCP challenge (Aharonov et al 2009 arXiv:0811.3412), which is a major open question in quantum Hamiltonian complexity. We show that a reformulated version of the lemma is a versatile tool that can be used in place of the celebrated Lieb-Robinson (LR) bound to prove several important results in quantum Hamiltonian complexity. The resulting proofs are much simpler, more combinatorial and provide a plausible path toward tackling some fundamental open questions in Hamiltonian complexity. We provide an alternative simpler proof of the DL that removes a key restriction in the original statement (Aharonov et al 2009 arXiv:0811.3412), making it more suitable for the broader context of quantum Hamiltonian complexity. Specifically, we first use the DL to provide a one-page proof of Hastings' result that the correlations in the ground states of gapped Hamiltonians decay exponentially with distance (Hastings 2004 Phys. Rev. B 69 104431). We then apply the DL to derive a simpler and more intuitive proof of Hastings' seminal one-dimensional (1D) area law (Hastings 2007 J. Stat. Mech. (2007) P8024) (both these proofs are restricted to frustration-free systems). Proving the area law for two and higher dimensions is one of the most important open questions in the field of Hamiltonian complexity, and the combinatorial nature of the DL-based proof holds out hope for a possible generalization. Indeed, soon after the first publication of the methods presented here, they were applied to derive exponential improvements to Hastings' result (Arad et al 2011, Aharonov et al 2011) in the case of frustration-free 1D systems. Finally, we also provide a more general

  18. The intrinsic stochasticity of near-integrable Hamiltonian systems

    Energy Technology Data Exchange (ETDEWEB)

    Krlin, L [Ceskoslovenska Akademie Ved, Prague (Czechoslovakia). Ustav Fyziky Plazmatu

    1989-09-01

    Under certain conditions, the dynamics of near-integrable Hamiltonian systems appears to be stochastic. This stochasticity (intrinsic stochasticity, or deterministic chaos) is closely related to the Kolmogorov-Arnold-Moser (KAM) theorem of the stability of near-integrable multiperiodic Hamiltonian systems. The effect of the intrinsic stochasticity attracts still growing attention both in theory and in various applications in contemporary physics. The paper discusses the relation of the intrinsic stochasticity to the modern ergodic theory and to the KAM theorem, and describes some numerical experiments on related astrophysical and high-temperature plasma problems. Some open questions are mentioned in conclusion. (author).

  19. Hamiltonian models for the Madelung fluid and generalized Langevin equations

    International Nuclear Information System (INIS)

    Nonnenmacher, T.F.

    1985-01-01

    We present a Hamiltonian formulation of some type of an 'electromagnetic' Madelung fluid leading to a fluid mechanics interpretation of the Aharonov-Bohm effect and to a subsidary condition to be required in order to make the correspondence between Schroedinger's quantum mechanics and Madelung's fluid mechanics unique. Then we discuss some problems related with the Brownian oscillator. Our aim is to start out with a Hamiltonian for the composite system with surrounding heat bath) and to finally arrive at a stochastic differential equation with completely determined statistical properties. (orig./HSI)

  20. Continuum-time Hamiltonian for the Baxter's model

    International Nuclear Information System (INIS)

    Libero, V.L.

    1983-01-01

    The associated Hamiltonian for the symmetric eight-vertex model is obtained by taking the time-continuous limit in an equivalent Ashkin-Teller model. The result is a Heisenberg Hamiltonian with coefficients J sub(x), J sub(y) and J sub(z) identical to those found by Sutherland for choices of the parameters a, b, c and d that bring the model close to the transition. The change in the operators is accomplished explicitly, the relation between the crossover operator for the Ashkin-Teller model and the energy operator for the eight-vertex model being obtained in a transparent form. (Author) [pt

  1. Quantum-circuit model of Hamiltonian search algorithms

    International Nuclear Information System (INIS)

    Roland, Jeremie; Cerf, Nicolas J.

    2003-01-01

    We analyze three different quantum search algorithms, namely, the traditional circuit-based Grover's algorithm, its continuous-time analog by Hamiltonian evolution, and the quantum search by local adiabatic evolution. We show that these algorithms are closely related in the sense that they all perform a rotation, at a constant angular velocity, from a uniform superposition of all states to the solution state. This makes it possible to implement the two Hamiltonian-evolution algorithms on a conventional quantum circuit, while keeping the quadratic speedup of Grover's original algorithm. It also clarifies the link between the adiabatic search algorithm and Grover's algorithm

  2. Constraints and Hamiltonian in light-front quantized field theory

    International Nuclear Information System (INIS)

    Srivastava, P.P.

    1993-01-01

    Self-consistent hamiltonian formulation of scalar theory on the null plane is constructed and quantized following the Dirac procedure. The theory contains also constraint equations which would give, if solved, to a nonlocal Hamiltonian. In contrast to the equal-time formulation we obtain a different description of the spontaneous symmetry breaking in the continuum and the symmetry generators are found to annihilate the light-front vacuum. Two examples are given where the procedure cannot be applied self-consistently. The corresponding theories are known to be ill-defined from the equal-time quantization. (author)

  3. Useful forms of the Hamiltonian for ion-optical systems

    International Nuclear Information System (INIS)

    Davies, W.G.

    1991-04-01

    The symbiosis of differential algebra and the Lie-algebraic formulation of optics provides a set of very powerful tools for analyzing and understanding the orbit dynamics of complex accelerators up to very high orders. In order to use these tools effectively it is usually necessary to express the Hamiltonian in the appropriate coordinate system. In this report, the relativistic Hamiltonian is derived in curvilinear (the fundamental coordinate system for ion-optics), Cartesian and polar coordinates, in forms suitable for solving problems in ion optics and accelerator physics both with and without the help of differential algebra

  4. Three-charge black holes on a circle

    International Nuclear Information System (INIS)

    Harmark, Troels; Obers, Niels A.; Roenne, Peter B.; Kristjansson, Kristjan R.

    2007-01-01

    We study phases of five-dimensional three-charge black holes with a circle in their transverse space. In particular, when the black hole is localized on the circle we compute the corrections to the metric and corresponding thermodynamics in the limit of small mass. When taking the near-extremal limit, this gives the corrections to the finite entropy of the extremal three-charge black hole as a function of the energy above extremality. For the partial extremal limit with two charges sent to infinity and one finite we show that the first correction to the entropy is in agreement with the microscopic entropy by taking into account that the number of branes shift as a consequence of the interactions across the transverse circle. Beyond these analytical results, we also numerically obtain the entire phase of non- and near-extremal three- and two-charge black holes localized on a circle. More generally, we find in this paper a rich phase structure, including a new phase of three-charge black holes that are non-uniformly distributed on the circle. All these three-charge black hole phases are found via a map that relates them to the phases of five-dimensional neutral Kaluza-Klein black holes

  5. Talking Circles for Adolescent Girls in an Urban High School

    Directory of Open Access Journals (Sweden)

    Ann Schumacher

    2014-10-01

    Full Text Available Restorative Practices (RP in schools is a new and emerging field. Meeting in Circles to build friendships, develop emotional literacy skills, resolve conflict, or learn interactively are some of the core components of these programs. This article describes a 2-year study of 12 weekly Talking Circles organized under the auspices of a RP program in an urban high school with 60 adolescent girls. Primary data sources included 257 hr of participant observations in Talking Circles and individual, semi-structured interviews with 31 students. The Relational Cultural model, rooted in the work of Jean Baker Miller, served as the conceptual framework for understanding teens’ interactions within the Circle’s unique set of social conditions in a school environment. Findings demonstrated that Talking Circles provided a safe space for peers helping peers, and that the girls improved their listening, anger management, and empathic skills, which led to greater self-efficacy. It appears that Talking Circles could provide another venue for developing social-emotional literacy skills and growth-fostering relationships in schools.

  6. [A design of refractometer based on blur circle].

    Science.gov (United States)

    Zhang, Yikui; Huang, Shenghai; Ye, Huifang; Zou, Ruitao; Tong, Gengmin; Zhuo, Ran

    2011-03-01

    Design a convenient and stable eye refractometer based on the theory of blur circle. Analyze the retinal blur circle in both Emsly reduced eye model and Liou & Brennan 1997 eye model by ZEMAX. Design the coefficients including PD (pupil diameter) and NO' (length between node point and fovea) with the purpose of improving the accuracy. At last, compare the clinical optometry data from this refractor with the data obtained from optometry hospital in Wenzhou. The blur circle diameters are nearly the same in both reduced eye model and the Liou & Brennan 1997 eye model. With the PD = 4 mm and NO' = 20 mm, the refractor shows a fine accuracy in optometry. The paired t test shows that the myopia group and the astigmatism axial direction group have no statistical difference between the data from the blur circle refractor and the hospital (P > 0.05), while the astigmatism degree group has the result of P = 0.41 which may be caused by the poor cooperation of pediatric patients. 80% of the astigmatism degree data differ from the data from the hospital in less than 0.75D. The blur circle refractor, with the features of convenience and fine accuracy, is promised to be a new style of refractometer in the future.

  7. Effect of stern hull shape on turning circle of ships

    Science.gov (United States)

    Jaswar, Maimun, A.; Wahid, M. A.; Priyanto, A.; Zamani, Pauzi, Saman

    2012-06-01

    Many factors such as: stern hull shape, length, draught, trim, propulsion system and external forces affecting the drift angle influence rate of turn and size of turning circle of ships. This paper discusses turning circle characteristics of U and V stern hull shape of Very Large Crude Oil Carrier (VLCC) ships. The ships have same principal dimension such as length, beam, and draught. The turning circle characteristics of the VLCC ships are simulated at 35 degree of rudder angle. In the analysis, firstly, turning circle performance of U-type VLCC ship is simulated. In the simulation, initial ship speed is determined using given power and rpm. Hydrodynamic derivatives coefficients are determined by including effect of fullness of aft run. Using the obtained, speed and hydrodynamic coefficients, force and moment acting on hull, force and moment induced by propeller, force and moment induced by rudder are determined. Finally, ship trajectory, ratio of speed, yaw angle and drift angle are determined. Results of simulation results of the VLCC ship are compared with the experimental one as validation. Using the same method, V-type VLCC is simulated and the simulation results are compared with U-type VLCC ship. Results shows the turning circle of U-type is larger than V-type due to effect stern hul results of simulation are.

  8. Hamiltonian theory of the ion cyclotron minority heating dynamics in tokamak plasmas

    International Nuclear Information System (INIS)

    Becoulet, A.; Gambier, D.J.; Samain, A.

    1990-03-01

    The question of heating a tokamak plasma by means of electromagnetic waves in the Ion Cyclotron Range of Frequency (ICRF) is considered in the perspective of large RF powers and in the low collisionality regime. In such case the Quasi Linear Theory (QLT) is validated by the Hamiltonian dynamics of the wave particle interaction which exceeds the threshold of the intrinsic stochasticity. The Hamiltonian dynamics is represented by the evolution of a set of three canonical action angle variables well adapted to the tokamak magnetic configuration. This approach allows to derive the RF diffusion coefficient with very few assumptions. The distribution function of the resonant ions is written as a Fokker Planck equation but the emphasis is put on the QL diffusion instead of on the usual diffusion induced by collisions. Then the Fokker Planck equation is given a variational from which a solution is derived in the form of a semi analytical trial function of three parameters: the percentage of resonant particle contained in the tail; an isotropic width ΔT and an anisotropic one ΔP. This solution is successfully tested against real experimental observations. Practically it is shown that in the case of JET the distribution function is influenced by adiabatic barriers which in turn limit the Hamiltonian stochasticity domain within energy values typically in the MeV range. Consequently and for a given ICRF power, the tail energy excursion is lower and its concentration higher than that of a bounce averaged prediction. This may actually be an advantage for machines like JET considering the energy range required to simulate the α-particle behaviour in a relevant fusion reactor

  9. The Artificial Hamiltonian, First Integrals, and Closed-Form Solutions of Dynamical Systems for Epidemics

    Science.gov (United States)

    Naz, Rehana; Naeem, Imran

    2018-03-01

    The non-standard Hamiltonian system, also referred to as a partial Hamiltonian system in the literature, of the form {\\dot q^i} = {partial H}/{partial {p_i}},\\dot p^i = - {partial H}/{partial {q_i}} + {Γ ^i}(t,{q^i},{p_i}) appears widely in economics, physics, mechanics, and other fields. The non-standard (partial) Hamiltonian systems arise from physical Hamiltonian structures as well as from artificial Hamiltonian structures. We introduce the term `artificial Hamiltonian' for the Hamiltonian of a model having no physical structure. We provide here explicitly the notion of an artificial Hamiltonian for dynamical systems of ordinary differential equations (ODEs). Also, we show that every system of second-order ODEs can be expressed as a non-standard (partial) Hamiltonian system of first-order ODEs by introducing an artificial Hamiltonian. This notion of an artificial Hamiltonian gives a new way to solve dynamical systems of first-order ODEs and systems of second-order ODEs that can be expressed as a non-standard (partial) Hamiltonian system by using the known techniques applicable to the non-standard Hamiltonian systems. We employ the proposed notion to solve dynamical systems of first-order ODEs arising in epidemics.

  10. Diagonalization of bosonic quadratic Hamiltonians by Bogoliubov transformations

    DEFF Research Database (Denmark)

    Nam, Phan Thanh; Napiorkowski, Marcin; Solovej, Jan Philip

    2016-01-01

    We provide general conditions for which bosonic quadratic Hamiltonians on Fock spaces can be diagonalized by Bogoliubov transformations. Our results cover the case when quantum systems have infinite degrees of freedom and the associated one-body kinetic and paring operators are unbounded. Our...

  11. The Electromagnetic Dipole Radiation Field through the Hamiltonian Approach

    Science.gov (United States)

    Likar, A.; Razpet, N.

    2009-01-01

    The dipole radiation from an oscillating charge is treated using the Hamiltonian approach to electrodynamics where the concept of cavity modes plays a central role. We show that the calculation of the radiation field can be obtained in a closed form within this approach by emphasizing the role of coherence between the cavity modes, which is…

  12. Measure synchronization in a coupled Hamiltonian associated with ...

    African Journals Online (AJOL)

    We report here, the existence of measure synchronization (MS) in a coupled Hamiltonian system associated with the motion of particles in a periodic potential of the pendulum type. We show that the oscillators can assume chaotic MS stares vis quasiperiodic measure desynchrononized state. In the chaotic MS state, the ...

  13. Approximate first integrals of a chaotic Hamiltonian system | Unal ...

    African Journals Online (AJOL)

    Approximate first integrals (conserved quantities) of a Hamiltonian dynamical system with two-degrees of freedom which arises in the modeling of galaxy have been obtained based on the approximate Noether symmetries for the resonance ω1 = ω2. Furthermore, Kolmogorov-Arnold-Moser (KAM) curves have been ...

  14. Periodic Hamiltonian hierarchies and non-uniqueness of ...

    Indian Academy of Sciences (India)

    2016-12-02

    Dec 2, 2016 ... Ca. 1. Introduction. Through the past few decades, research in supersym- ... The subject of periodic Hamiltonians has been exam- ined for a long time ... The plan of this paper is as follows: In §2, a brief resume of SUSYQM is ...

  15. Nuclear properties with realistic Hamiltonians through spectral distribution theory

    International Nuclear Information System (INIS)

    Vary, J.P.; Belehrad, R.; Dalton, B.J.

    1979-01-01

    Motivated by the need of non-perturbative methods for utilizing realistic nuclear Hamiltonians H, the authors use spectral distribution theory, based on calculated moments of H, to obtain specific bulk and valence properties of finite nuclei. The primary emphasis here is to present results for the binding energies of nuclei obtained with and without an assumed core. (Auth.)

  16. Existence and multiplicity results for homoclinic orbits of Hamiltonian systems

    Directory of Open Access Journals (Sweden)

    Chao-Nien Chen

    1997-03-01

    Full Text Available Homoclinic orbits play an important role in the study of qualitative behavior of dynamical systems. Such kinds of orbits have been studied since the time of Poincare. In this paper, we discuss how to use variational methods to study the existence of homoclinic orbits of Hamiltonian systems.

  17. Multi-component bi-Hamiltonian Dirac integrable equations

    Energy Technology Data Exchange (ETDEWEB)

    Ma Wenxiu [Department of Mathematics and Statistics, University of South Florida, Tampa, FL 33620-5700 (United States)], E-mail: mawx@math.usf.edu

    2009-01-15

    A specific matrix iso-spectral problem of arbitrary order is introduced and an associated hierarchy of multi-component Dirac integrable equations is constructed within the framework of zero curvature equations. The bi-Hamiltonian structure of the obtained Dirac hierarchy is presented be means of the variational trace identity. Two examples in the cases of lower order are computed.

  18. Steiner systems and large non-Hamiltonian hypergraphs

    Directory of Open Access Journals (Sweden)

    Zsolt Tuza

    2006-10-01

    Full Text Available From Steiner systems S(k − 2, 2k − 3, v, we construct k-uniform hyper- graphs of large size without Hamiltonian cycles. This improves previous estimates due to G. Y. Katona and H. Kierstead [J. Graph Theory 30 (1999, pp.  205–212].

  19. Hamiltonian Noether theorem for gauge systems and two time physics

    International Nuclear Information System (INIS)

    Villanueva, V M; Nieto, J A; Ruiz, L; Silvas, J

    2005-01-01

    The Noether theorem for Hamiltonian constrained systems is revisited. In particular, our review presents a novel method to show that the gauge transformations are generated by the conserved quantities associated with the first class constraints. We apply our results to the relativistic point particle, to the Friedberg et al model and, with special emphasis, to two time physics

  20. Conventional hamiltonian for first-order differential systems

    International Nuclear Information System (INIS)

    Farias, J.R.

    1984-01-01

    Lagrangian systems corresponding to a given set of 2n first-order ordinary differential equations are singular ones. In despite this, it is shown that these systems can be put into a Hamiltonian form in the usual manner. (Author) [pt

  1. Classical and quantum mechanics of complex Hamiltonian systems

    Indian Academy of Sciences (India)

    Certain aspects of classical and quantum mechanics of complex Hamiltonian systems in one dimension investigated within the framework of an extended complex phase space approach, characterized by the transformation = 1 + 2, = 1 + 2, are revisited. It is argued that Carl Bender inducted P T symmetry in ...

  2. Propagator of a time-dependent unbound quadratic Hamiltonian system

    International Nuclear Information System (INIS)

    Yeon, K.H.; Kim, H.J.; Um, C.I.; George, T.F.; Pandey, L.N.

    1996-01-01

    The propagator for a time-dependent unbound quadratic Hamiltonian system is explicitly evaluated using the path integral method. Two time-invariant quantities of the system are found where these invariants determine whether or not the system is bound. Several examples are considered to illustrate that the propagator obtained for the unbound systems is correct

  3. Horizontal circulation and jumps in Hamiltonian wave models

    NARCIS (Netherlands)

    Gagarina, Elena; van der Vegt, Jacobus J.W.; Bokhove, Onno

    2013-01-01

    We are interested in the numerical modeling of wave-current interactions around surf zones at beaches. Any model that aims to predict the onset of wave breaking at the breaker line needs to capture both the nonlinearity of the wave and its dispersion. We have therefore formulated the Hamiltonian

  4. On the Curvature and Heat Flow on Hamiltonian Systems

    Directory of Open Access Journals (Sweden)

    Ohta Shin-ichi

    2014-01-01

    Full Text Available We develop the differential geometric and geometric analytic studies of Hamiltonian systems. Key ingredients are the curvature operator, the weighted Laplacian, and the associated Riccati equation.We prove appropriate generalizations of the Bochner-Weitzenböck formula and Laplacian comparison theorem, and study the heat flow.

  5. Spectra of PT -symmetric Hamiltonians on tobogganic contours

    Indian Academy of Sciences (India)

    The term PT -symmetric quantum mechanics, although defined to be of a much broader use, was coined in tight connection with C. Bender's analysis of one- ... on the other hand, the other members of the family were strange Hamiltonians with imaginary potentials which do not appear physical at all. The aim of the.

  6. On the minimization of Hamiltonians over pure Gaussian states

    DEFF Research Database (Denmark)

    Derezinski, Jan; Napiorkowski, Marcin; Solovej, Jan Philip

    2013-01-01

    that this procedure eliminates from the Hamiltonian terms of degree 1 and 2 that do not preserve the particle number, and leaves only terms that can be interpreted as quasiparticles excitations. We propose to call this fact Beliaev's Theorem, since to our knowledge it was mentioned for the first time in a paper...

  7. Hamiltonian formulation of QED in the superaxial gauge

    International Nuclear Information System (INIS)

    Girotti, H.O.; Rothe, H.J.

    A Hamiltonian formulation of QED in a fully fixed axial gauge is presented. The equal-time commutators for all field variables are computed and are shown to lead to the correct equations of motion. The constraints and gauge conditions hold as strong operator relations. (Author) [pt

  8. Fractional Hamiltonian analysis of higher order derivatives systems

    International Nuclear Information System (INIS)

    Baleanu, Dumitru; Muslih, Sami I.; Tas, Kenan

    2006-01-01

    The fractional Hamiltonian analysis of 1+1 dimensional field theory is investigated and the fractional Ostrogradski's formulation is obtained. The fractional path integral of both simple harmonic oscillator with an acceleration-squares part and a damped oscillator are analyzed. The classical results are obtained when fractional derivatives are replaced with the integer order derivatives

  9. The generalized Mayer theorem in the approximating hamiltonian method

    International Nuclear Information System (INIS)

    Bakulev, A.P.; Bogoliubov, N.N. Jr.; Kurbatov, A.M.

    1982-07-01

    With the help of the generalized Mayer theorem we obtain the improved inequality for free energies of model and approximating systems, where only ''connected parts'' over the approximating hamiltonian are taken into account. For the concrete system we discuss the problem of convergency of appropriate series of ''connected parts''. (author)

  10. On Interconnections of Infinite-dimensional Port-Hamiltonian Systems

    NARCIS (Netherlands)

    Pasumarthy, Ramkrishna; Schaft, Arjan J. van der

    2004-01-01

    Network modeling of complex physical systems leads to a class of nonlinear systems called port-Hamiltonian systems, which are defined with respect to a Dirac structure (a geometric structure which formalizes the power-conserving interconnection structure of the system). A power conserving

  11. On interconnections of infinite-dimensional port-Hamiltonian systems

    NARCIS (Netherlands)

    Ramkrishna Pasumarthy, R.P.; van der Schaft, Arjan

    2004-01-01

    Network modeling of complex physical systems leads to a class of nonlinear systems called port-Hamiltonian systems, which are defined with respect to a Dirac structure (a geometric structure which formalizes the power-conserving interconnection structure of the system). A power conserving

  12. Hamiltonian model analysis of ππ scattering and production

    International Nuclear Information System (INIS)

    Obu, Mitsuaki

    2000-01-01

    A simple Hamiltonian model for ππ scattering and production is presented which incorporates resonant and background interactions. Analysis of isoscalar S wave ππ phase shift indicates that the background interaction plays only a minor role and the σ may be a dynamical resonance which is not originated from a corresponding bare state. (author)

  13. Energy preserving integration of bi-Hamiltonian partial differential equations

    NARCIS (Netherlands)

    Karasozen, B.; Simsek, G.

    2013-01-01

    The energy preserving average vector field (AVF) integrator is applied to evolutionary partial differential equations (PDEs) in bi-Hamiltonian form with nonconstant Poisson structures. Numerical results for the Korteweg de Vries (KdV) equation and for the Ito type coupled KdV equation confirm the

  14. On resonances and bound states of Smilansky Hamiltonian

    Czech Academy of Sciences Publication Activity Database

    Exner, Pavel; Lotoreichik, Vladimir; Tater, Miloš

    2016-01-01

    Roč. 7, č. 5 (2016), s. 789-802 ISSN 2220-8054 R&D Projects: GA ČR(CZ) GA14-06818S Institutional support: RVO:61389005 Keywords : Smilansky Hamiltonian * resonances * resonance free region * weak coupling asymptotics * Riemann surface * bound states Subject RIV: BE - Theoretical Physics

  15. Statistical properties of the nuclear shell-model Hamiltonian

    International Nuclear Information System (INIS)

    Dias, H.; Hussein, M.S.; Oliveira, N.A. de

    1986-01-01

    The statistical properties of realistic nuclear shell-model Hamiltonian are investigated in sd-shell nuclei. The probability distribution of the basic-vector amplitude is calculated and compared with the Porter-Thomas distribution. Relevance of the results to the calculation of the giant resonance mixing parameter is pointed out. (Author) [pt

  16. The Lagrangians and Hamiltonians of damped coupled vibrations

    International Nuclear Information System (INIS)

    Ding Guangtao; Gan Huilan; Zheng Xianfeng; Cui Zhifeng

    2012-01-01

    In this paper, the analytical mechanization of two kinds of damped coupled vibrations is studied. First, by use of coordinate transformations the equations of motion are transformed into the self-ad- joint form. Secondly, the Lagrangians are obtained according to Engels method. Finally the Lagrangians and Hamiltonians of the original equations are deduced by using the inverse transformation. (authors)

  17. Maxwell-Vlasov equations as a continuous Hamiltonian system

    International Nuclear Information System (INIS)

    Morrison, P.J.

    1980-09-01

    The well-known Maxwell-Vlasov equations that describe a collisionless plasma are cast into Hamiltonian form. The dynamical variables are the physical although noncanonical variables E, B and f. We present a Poisson bracket which acts on these variables and the energy functional to produce the equations of motion

  18. New bi-Hamiltonian systems on the plane

    Science.gov (United States)

    Tsiganov, A. V.

    2017-06-01

    We discuss several new bi-Hamiltonian integrable systems on the plane with integrals of motion of third, fourth, and sixth orders in momenta. The corresponding variables of separation, separated relations, compatible Poisson brackets, and recursion operators are also presented in the framework of the Jacobi method.

  19. A Hamiltonian structure for the linearized Einstein vacuum field equations

    International Nuclear Information System (INIS)

    Torres del Castillo, G.F.

    1991-01-01

    By considering the Einstein vacuum field equations linearized about the Minkowski metric, the evolution equations for the gauge-invariant quantities characterizing the gravitational field are written in a Hamiltonian form. A Poisson bracket between functionals of the field, compatible with the constraints satisfied by the field variables, is obtained (Author)

  20. Hamiltonian Cycles on a Random Three-coordinate Lattice

    DEFF Research Database (Denmark)

    Eynard, B.; Guitter, E.; Kristjansen, C.

    1998-01-01

    Consider a random three-coordinate lattice of spherical topology having 2v vertices and being densely covered by a single closed, self-avoiding walk, i.e. being equipped with a Hamiltonian cycle. We determine the number of such objects as a function of v. Furthermore we express the partition...

  1. Hamiltonian theory of vacuum helical torus lines of magnetic force

    International Nuclear Information System (INIS)

    Gnudi, Giovanni; Hatori, Tadatsugu

    1994-01-01

    For making plasma into equilibrium state, the lines of magnetic force must have magnetic surfaces. However in a helical system, space is divided into the region having magnetic surface structure and the region that does not have it. Accordingly, it is an important basic research for the plasma confinement in a helical system to examine where is the boundary of both regions and how is the large area structure of the lines of magnetic force in the boundary region. The lines of magnetic force can be treated as a Hamilton mechanics system, and it has been proved that the Hamiltonian for the lines of magnetic force can be expressed by a set of canonical variables and the function of time. In this research, the Hamiltonian that describes the lines of magnetic force of helical system torus coordination in vacuum was successfully determined concretely. Next, the development of new linear symplectic integration method was carried out. The important supports for the theory of determining Hamiltonian are Lie transformation and paraxial expansion. The procedure is explained. In Appendix, Lie transformation, Hamiltonian for the lines of magnetic force, magnetic potential, Taylor expansion of the potential, cylindrical limit approximation, helical toroidal potential and integrable model are described. (K.I.)

  2. Error Estimates for the Approximation of the Effective Hamiltonian

    International Nuclear Information System (INIS)

    Camilli, Fabio; Capuzzo Dolcetta, Italo; Gomes, Diogo A.

    2008-01-01

    We study approximation schemes for the cell problem arising in homogenization of Hamilton-Jacobi equations. We prove several error estimates concerning the rate of convergence of the approximation scheme to the effective Hamiltonian, both in the optimal control setting and as well as in the calculus of variations setting

  3. Geometry and topology in hamiltonian dynamics and statistical mechanics

    CERN Document Server

    Pettini, Marco

    2007-01-01

    Explores the foundations of hamiltonian dynamical systems and statistical mechanics, in particular phase transitions, from the point of view of geometry and topology. This book provides an overview of the research in the area. Using geometrical thinking to solve fundamental problems in these areas could be highly productive

  4. Spectral Results on Some Hamiltonian Properties of Graphs

    Directory of Open Access Journals (Sweden)

    Rao Li

    2014-10-01

    Full Text Available Using Lotker’s interlacing theorem on the Laplacian eigenvalues of a graph in [5] and Wang and Belardo’s interlacing theorem on the signless Laplacian eigenvalues of a graph in [6], we in this note obtain spectral conditions for some Hamiltonian properties of graphs

  5. Relating Lagrangian and Hamiltonian Formalisms of LC Circuits

    NARCIS (Netherlands)

    Clemente-Gallardo, Jesús; Scherpen, Jacquelien M.A.

    2003-01-01

    The Lagrangian formalism earlier defined for (switching) electrical circuits, is adapted to the Lagrangian formalism defined on Lie algebroids. This allows us to define regular Lagrangians and consequently, well-defined Hamiltonian descriptions of arbitrary LC networks. The relation with other

  6. Quantum finance Hamiltonian for coupon bond European and barrier options.

    Science.gov (United States)

    Baaquie, Belal E

    2008-03-01

    Coupon bond European and barrier options are financial derivatives that can be analyzed in the Hamiltonian formulation of quantum finance. Forward interest rates are modeled as a two-dimensional quantum field theory and its Hamiltonian and state space is defined. European and barrier options are realized as transition amplitudes of the time integrated Hamiltonian operator. The double barrier option for a financial instrument is "knocked out" (terminated with zero value) if the price of the underlying instrument exceeds or falls below preset limits; the barrier option is realized by imposing boundary conditions on the eigenfunctions of the forward interest rates' Hamiltonian. The price of the European coupon bond option and the zero coupon bond barrier option are calculated. It is shown that, is general, the constraint function for a coupon bond barrier option can -- to a good approximation -- be linearized. A calculation using an overcomplete set of eigenfunctions yields an approximate price for the coupon bond barrier option, which is given in the form of an integral of a factor that results from the barrier condition times another factor that arises from the payoff function.

  7. Circles Disturbed The Interplay of Mathematics and Narrative

    CERN Document Server

    Doxiadis, Apostolos

    2012-01-01

    Circles Disturbed brings together important thinkers in mathematics, history, and philosophy to explore the relationship between mathematics and narrative. The book's title recalls the last words of the great Greek mathematician Archimedes before he was slain by a Roman soldier--"Don't disturb my circles"--words that seem to refer to two radically different concerns: that of the practical person living in the concrete world of reality, and that of the theoretician lost in a world of abstraction. Stories and theorems are, in a sense, the natural languages of these two worlds--stories represent

  8. The core of C*-algebras associated with circle maps

    DEFF Research Database (Denmark)

    Johannesen, Benjamin Randeris

    2017-01-01

    The relationship between dynamical systems and operator algebras is one that has been fruitful and mutually beneficial and is by now both well-established, -aged and -matured. This thesis contribute in developing the relationship between dynamical systems, groupoids and operator algebra for circle...... dynamics. Another aspect of this thesis are the results solely about dynamics on the unit circle. The reader is supposed to be well versed in C*-algebras and K-theory (and classification). The reader is not assumed to be familiar with dynamical system theory nor with groupoids....

  9. The Existence and Structure of Rotational Systems in the Circle

    OpenAIRE

    Ramanathan, Jayakumar

    2018-01-01

    By a rotational system, we mean a closed subset X of the circle, T=R/Z, together with a continuous transformation f:X→X with the requirements that the dynamical system (X,f) be minimal and that f respect the standard orientation of T. We show that infinite rotational systems (X,f), with the property that map f has finite preimages, are extensions of irrational rotations of the circle. Such systems have been studied when they arise as invariant subsets of certain specific mappings, F:T→T. Beca...

  10. CP violation in Z circle → τ+τ-

    International Nuclear Information System (INIS)

    Lopez, J.M.

    1998-01-01

    Test of CP invariance in the reaction Z circle → τ + τ - on the Z circle peak is performed using the data sample recorded by the four Collaboration at LEP and SLD. From the non-observation of CP violation upper limits on the real (vertical stroke Re(d r W ) vertical stroke) and imaginary (vertical stroke Im(d r W ) vertical stroke) parts of the weak dipole moment of the τ lepton at 95% C.L. are derived. Results on measurements on weak magnetic moment is also reported. (orig.)

  11. A simple algorithm for computing the smallest enclosing circle

    DEFF Research Database (Denmark)

    Skyum, Sven

    1991-01-01

    Presented is a simple O(n log n) algorithm for computing the smallest enclosing circle of a convex polygon. It can be easily extended to algorithms that compute the farthest-and the closest-point Voronoi diagram of a convex polygon within the same time bound.......Presented is a simple O(n log n) algorithm for computing the smallest enclosing circle of a convex polygon. It can be easily extended to algorithms that compute the farthest-and the closest-point Voronoi diagram of a convex polygon within the same time bound....

  12. Environmental Assessment: Disposition of Chiefs’ Circle Residential Structures

    Science.gov (United States)

    2012-04-27

    five structures ranged from Page 4 of 5  $200,000 (with bricks removed) to $500,000 (with bricks intact). Mike Ford, CEO of NewTown Macon, echoed Mr...feasibility 25-Jul-08 and practicality of moving the Chief’s Circle duplexes Mike Ford NewTown Macon 23-Jul-08 478-722-9909 President of NewTown Macon...Daniel.Chavira@ Gave a tour of Chiefs’ Circle huntcompanies.com Not interested in using the houses Bob Sharples RAFB 26-Oct-10 robert.sharples

  13. Hamiltonian reductions in plasma physics about intrinsic gyrokinetic

    International Nuclear Information System (INIS)

    Guillebon de Resnes, L. de

    2013-01-01

    Gyrokinetic is a key model for plasma micro-turbulence, commonly used for fusion plasmas or small-scale astrophysical turbulence, for instance. The model still suffers from several issues, which could imply to reconsider the equations. This thesis dissertation clarifies three of them. First, one of the coordinates caused questions, both from a physical and from a mathematical point of view; a suitable constrained coordinate is introduced, which removes the issues from the theory and explains the intrinsic structures underlying the questions. Second, the perturbative coordinate transformation for gyrokinetic was computed only at lowest orders; explicit induction relations are obtained to go arbitrary order in the expansion. Third, the introduction of the coupling between the plasma and the electromagnetic field was not completely satisfactory; using the Hamiltonian structure of the dynamics, it is implemented in a more appropriate way, with strong consequences on the gyrokinetic equations, especially about their Hamiltonian structure. In order to address these three main points, several other results are obtained, for instance about the origin of the guiding-center adiabatic invariant, about a very efficient minimal guiding center transformation, or about an intermediate Hamiltonian model between Vlasov-Maxwell and gyrokinetic, where the characteristics include both the slow guiding-center dynamics and the fast gyro-angle dynamics. In addition, various reduction methods are used, introduced or developed, e.g. a Lie-transform of the equations of motion, a lifting method to transfer particle reductions to the corresponding Hamiltonian field dynamics, or a truncation method related both to Dirac's theory of constraints and to a projection onto a Lie-subalgebra. Besides gyrokinetic, this is useful to clarify other Hamiltonian reductions in plasma physics, for instance for incompressible or electrostatic dynamics, for magnetohydrodynamics, or for fluid closures including

  14. Hamiltonian formalism for perfect fluids in general relativity

    International Nuclear Information System (INIS)

    Demaret, J.; Moncrief, V.

    1980-01-01

    Schutz's Hamiltonian theory of a relativistic perfect fluid, based on the velocity-potential version of classical perfect fluid hydrodynamics as formulated by Seliger and Whitham, is used to derive, in the framework of the Arnowitt, Deser, and Misner (ADM) method, a general partially reduced Hamiltonian for relativistic systems filled with a perfect fluid. The time coordinate is chosen, as in Lund's treatment of collapsing balls of dust, as minus the only velocity potential different from zero in the case of an irrotational and isentropic fluid. A ''semi-Dirac'' method can be applied to quantize astrophysical and cosmological models in the framework of this partially reduced formalism. If one chooses Taub's adapted comoving coordinate system, it is possible to derive a fully reduced ADM Hamiltonian, which is equal to minus the total baryon number of the fluid, generalizing a result previously obtained by Moncrief in the more particular framework of Taub's variational principle, valid for self-gravitating barotropic relativistic perfect fluids. An unconstrained Hamiltonian density is then explicitly derived for a fluid obeying the equation of state p=(gamma-1)rho (1 < or = γ < or = 2), which can adequately describe the phases of very high density attained in a catastrophic collapse or during the early stages of the Universe. This Hamiltonian density, shown to be equivalent to Moncrief's in the particular case of an isentropic fluid, can be simplified for fluid-filled class-A diagonal Bianchi-type cosmological models and appears as a suitable starting point for the study of the canonical quantization of these models

  15. Nuclear risk management: Widening the circle

    International Nuclear Information System (INIS)

    Ginot, P.

    1992-01-01

    For the French man-in-the-street, the term ''nuclear risk'' will doubtless conjure up, in the first place, the Chernobyl disaster. But owing to the widespread use made in France of radioelements and radiation in research, health protection and many industries, together, of course, with the all-pervading nuclear energy network, this risk is in fact controlled by a multitude of familiar well proven actions performed daily by a large number of people. Naturally, present provisions aimed at preventing disasters or dealing with them if they occur are grounded on analysis of extreme cases, but also on practical routine feedback provided by plant operators, experts and public authorities concerned by the nuclear industry

  16. Hamiltonian structure of the integrable coupling of the Jaulent-Miodek hierarchy

    International Nuclear Information System (INIS)

    Zhang, Yufeng; Fan, Engui

    2006-01-01

    A scheme for deducing Hamiltonian structures of the higher-dimensional hierarchies of evolution equations is presented which is devoting to obtaining the Hamiltonian structures of integrable coupling of the Jaulent-Miodek hierarchy

  17. Integrable quadratic classical Hamiltonians on so(4) and so(3, 1)

    International Nuclear Information System (INIS)

    Sokolov, Vladimir V; Wolf, Thomas

    2006-01-01

    We investigate a special class of quadratic Hamiltonians on so(4) and so(3, 1) and describe Hamiltonians that have additional polynomial integrals. One of the main results is a new integrable case with an integral of sixth degree

  18. Homoclinic Orbits for a Class of Nonperiodic Hamiltonian Systems with Some Twisted Conditions

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2013-01-01

    Full Text Available By the Maslov index theory, we will study the existence and multiplicity of homoclinic orbits for a class of asymptotically linear nonperiodic Hamiltonian systems with some twisted conditions on the Hamiltonian functions.

  19. Types of the cerebral arterial circle (circle of Willis in a Sri Lankan Population

    Directory of Open Access Journals (Sweden)

    Gunasekera WSL

    2011-01-01

    Full Text Available Abstract Background The variations of the circle of Willis (CW are clinically important as patients with effective collateral circulations have a lower risk of transient ischemic attack and stroke than those with ineffective collaterals. The aim of the present cadaveric study was to investigate the anatomical variations of the CW and to compare the frequency of prevalence of the different variations with previous autopsy studies as variations in the anatomy of the CW as a whole have not been studied in the Indian subcontinent. Methods The external diameter of all the arteries forming the CW in 225 normal Sri Lankan adult cadaver brains was measured using a calibrated grid to determine the prevalence in the variation in CW. Chisquared tests and a correspondence analysis were performed to compare the relative frequencies of prevalence of anatomical variations in the CW across 6 studies of diverse ethnic populations. Results We report 15 types of variations of CW out of 22 types previously described and one additional type: hypoplastic precommunicating part of the anterior cerebral arteries (A1 and contralateral posterior communicating arteries (PcoA 5(2%. Statistically significant differences (p Conclusion The present study reveals that there are significant variations in the CW among intra and inter ethnic groups (Caucasian, African and Asian: Iran and Sri Lanka dominant populations, and warrants further studies keeping the methods of measurements, data assessment, and the definitions of hypoplasia the same.

  20. Safety, dose optimisation and security: the quadrature of the circle

    Energy Technology Data Exchange (ETDEWEB)

    Hardeman, Frank; Vermeersch, Fernand [Belgian Nuclear Research Centre (SCK.CEN), Boeretang 200, BE-2400 Mol (Belgium)

    2010-07-01

    The growing concern for potential terrorist acts has lead to a number of new ideas about storing radiological and nuclear materials that are not always compatible with existing practices or infrastructures. This is valid in routine circumstances, but especially poses problems in case of accidents. As such, the management of nuclear safety, radiological protection and security within an evolving world such as a nuclear research centre sometimes looks like implementing the quadrature of the circle. International guidance exists, but is not always easily converted into an adequate policy comprehensible to all levels in a plant, from management to the work floor. Some examples. 1. infrastructure related problems: from a security point of view, fuels are better stored in the heart of a protected zone, while in case of criticality, fire... a more peripheral location is appropriate. 2. Safety related problems: Protection infrastructure may lead to difficulties of evacuation in case of emergencies; access limitations may be a burden in the management of safety interventions, maintenance... 3. Administrative contradictions: inventories of fuel storages and high active sealed sources are a cornerstone of inspections and verifications; yet, this information is a treasure for terrorists aiming at actions to obtain special materials. 4. Dose management: measures taken to secure sources may lead to a dose increase (e.g. labelling of old sources). However, the main difficulty is related to the 'cultural' aspect. There are synergies between safety culture, 'ALARA' culture and security culture. An individual aspect of desirable behaviour (e.g. questioning attitude), complemented with an organisational dimension (e.g. training, raising awareness) are obviously common. The objective is also in line: to avoid reduction of well-being of people, to protect the environment, to prevent damage to facilities. The main difficulties arise however because of the fundamental