WorldWideScience

Sample records for hamilton canonical equations

  1. Integrating factors and conservation theorems for Hamilton's canonical equations of motion of variable mass nonholonomic nonconservative dynamical systems

    Institute of Scientific and Technical Information of China (English)

    李仁杰; 乔永芬; 刘洋

    2002-01-01

    We present a general approach to the construction of conservation laws for variable mass nonholonomic noncon-servative systems. First, we give the definition of integrating factors, and we study in detail the necessary conditionsfor the existence of the conserved quantities. Then, we establish the conservation theorem and its inverse theorem forHamilton's canonical equations of motion of variable mass nonholonomic nonconservative dynamical systems. Finally,we give an example to illustrate the application of the results.

  2. Hamilton's equations for a fluid membrane

    International Nuclear Information System (INIS)

    Capovilla, R; Guven, J; Rojas, E

    2005-01-01

    Consider a homogeneous fluid membrane described by the Helfrich-Canham energy, quadratic in the mean curvature of the membrane surface. The shape equation that determines equilibrium configurations is fourth order in derivatives and cubic in the mean curvature. We introduce a Hamiltonian formulation of this equation which dismantles it into a set of coupled first-order equations. This involves interpreting the Helfrich-Canham energy as an action; equilibrium surfaces are generated by the evolution of space curves. Two features complicate the implementation of a Hamiltonian framework. (i) The action involves second derivatives. This requires treating the velocity as a phase-space variable and the introduction of its conjugate momentum. The canonical Hamiltonian is constructed on this phase space. (ii) The action possesses a local symmetry-reparametrization invariance. The two labels we use to parametrize points on the surface are themselves physically irrelevant. This symmetry implies primary constraints, one for each label, that need to be implemented within the Hamiltonian. The two Lagrange multipliers associated with these constraints are identified as the components of the acceleration tangential to the surface. The conservation of the primary constraints implies two secondary constraints, fixing the tangential components of the momentum conjugate to the position. Hamilton's equations are derived and the appropriate initial conditions on the phase-space variables are identified. Finally, it is shown how the shape equation can be reconstructed from these equations

  3. Quantum Hamilton mechanics: Hamilton equations of quantum motion, origin of quantum operators, and proof of quantization axiom

    International Nuclear Information System (INIS)

    Yang, C.-D.

    2006-01-01

    This paper gives a thorough investigation on formulating and solving quantum problems by extended analytical mechanics that extends canonical variables to complex domain. With this complex extension, we show that quantum mechanics becomes a part of analytical mechanics and hence can be treated integrally with classical mechanics. Complex canonical variables are governed by Hamilton equations of motion, which can be derived naturally from Schroedinger equation. Using complex canonical variables, a formal proof of the quantization axiom p → p = -ih∇, which is the kernel in constructing quantum-mechanical systems, becomes a one-line corollary of Hamilton mechanics. The derivation of quantum operators from Hamilton mechanics is coordinate independent and thus allows us to derive quantum operators directly under any coordinate system without transforming back to Cartesian coordinates. Besides deriving quantum operators, we also show that the various prominent quantum effects, such as quantization, tunneling, atomic shell structure, Aharonov-Bohm effect, and spin, all have the root in Hamilton mechanics and can be described entirely by Hamilton equations of motion

  4. Hamilton's equations for a fluid membrane

    Energy Technology Data Exchange (ETDEWEB)

    Capovilla, R [Departamento de Fisica, Centro de Investigacion y de Estudios Avanzados, Apdo. Postal 14-740, 07000 Mexico, DF (Mexico); Guven, J [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apdo. Postal 70-543, 04510 Mexico, DF (Mexico); Rojas, E [Facultad de Fisica e Inteligencia Artificial, Universidad Veracruzana, 91000 Xalapa, Veracruz (Mexico)

    2005-10-14

    Consider a homogeneous fluid membrane described by the Helfrich-Canham energy, quadratic in the mean curvature of the membrane surface. The shape equation that determines equilibrium configurations is fourth order in derivatives and cubic in the mean curvature. We introduce a Hamiltonian formulation of this equation which dismantles it into a set of coupled first-order equations. This involves interpreting the Helfrich-Canham energy as an action; equilibrium surfaces are generated by the evolution of space curves. Two features complicate the implementation of a Hamiltonian framework. (i) The action involves second derivatives. This requires treating the velocity as a phase-space variable and the introduction of its conjugate momentum. The canonical Hamiltonian is constructed on this phase space. (ii) The action possesses a local symmetry-reparametrization invariance. The two labels we use to parametrize points on the surface are themselves physically irrelevant. This symmetry implies primary constraints, one for each label, that need to be implemented within the Hamiltonian. The two Lagrange multipliers associated with these constraints are identified as the components of the acceleration tangential to the surface. The conservation of the primary constraints implies two secondary constraints, fixing the tangential components of the momentum conjugate to the position. Hamilton's equations are derived and the appropriate initial conditions on the phase-space variables are identified. Finally, it is shown how the shape equation can be reconstructed from these equations.

  5. Hamilton-Jacobi-Bellman equations for quantum control | Ogundiran ...

    African Journals Online (AJOL)

    The aim of this work is to study Hamilton-Jacobi-Bellman equation for quantum control driven by quantum noises. These noises are annhihilation, creation and gauge processes. We shall consider the solutions of Hamilton-Jacobi-Bellman equation via the Hamiltonian system measurable in time. JONAMP Vol. 11 2007: pp.

  6. Convergent Difference Schemes for Hamilton-Jacobi equations

    KAUST Repository

    Duisembay, Serikbolsyn

    2018-01-01

    In this thesis, we consider second-order fully nonlinear partial differential equations of elliptic type. Our aim is to develop computational methods using convergent difference schemes for stationary Hamilton-Jacobi equations with Dirichlet

  7. Empty space-times with separable Hamilton-Jacobi equation

    International Nuclear Information System (INIS)

    Collinson, C.D.; Fugere, J.

    1977-01-01

    All empty space-times admitting a one-parameter group of motions and in which the Hamilton-Jacobi equation is (partially) separable are obtained. Several different cases of such empty space-times exist and the Riemann tensor is found to be either type D or N. The results presented here complete the search for empty space-times with separable Hamilton-Jacobi equation. (author)

  8. Solution Hamilton-Jacobi equation for oscillator Caldirola-Kanai

    Directory of Open Access Journals (Sweden)

    LEONARDO PASTRANA ARTEAGA

    2016-12-01

    Full Text Available The method allows Hamilton-Jacobi explicitly determine the generating function from which is possible to derive a transformation that makes soluble Hamilton's equations. Using the separation of variables the partial differential equation of the first order called Hamilton-Jacobi equation is solved; as a particular case consider the oscillator Caldirola-Kanai (CK, which is characterized in that the mass presents a temporal evolution exponentially  . We demonstrate that the oscillator CK position presents an exponential decay in time similar to that obtained in the damped sub-critical oscillator, which reflects the dissipation of total mechanical energy. We found that in the limit that the damping factor  is small, the behavior is the same as an oscillator with simple harmonic motion, where the effects of energy dissipation is negligible.

  9. Numerical Solution of Hamilton-Jacobi Equations in High Dimension

    Science.gov (United States)

    2012-11-23

    high dimension FA9550-10-1-0029 Maurizio Falcone Dipartimento di Matematica SAPIENZA-Universita di Roma P. Aldo Moro, 2 00185 ROMA AH930...solution of Hamilton-Jacobi equations in high dimension AFOSR contract n. FA9550-10-1-0029 Maurizio Falcone Dipartimento di Matematica SAPIENZA

  10. Convergent Difference Schemes for Hamilton-Jacobi equations

    KAUST Repository

    Duisembay, Serikbolsyn

    2018-05-07

    In this thesis, we consider second-order fully nonlinear partial differential equations of elliptic type. Our aim is to develop computational methods using convergent difference schemes for stationary Hamilton-Jacobi equations with Dirichlet and Neumann type boundary conditions in arbitrary two-dimensional domains. First, we introduce the notion of viscosity solutions in both continuous and discontinuous frameworks. Next, we review Barles-Souganidis approach using monotone, consistent, and stable schemes. In particular, we show that these schemes converge locally uniformly to the unique viscosity solution of the first-order Hamilton-Jacobi equations under mild assumptions. To solve the scheme numerically, we use Euler map with some initial guess. This iterative method gives the viscosity solution as a limit. Moreover, we illustrate our numerical approach in several two-dimensional examples.

  11. Hamilton-Jacobi equations and brane associated Lagrangians

    International Nuclear Information System (INIS)

    Baker, L.M.; Fairlie, D.B.

    2001-01-01

    This article seeks to relate a recent proposal for the association of a covariant Field Theory with a string or brane Lagrangian to the Hamilton-Jacobi formalism for strings and branes. It turns out that since in this special case, the Hamiltonian depends only upon the momenta of the Jacobi fields and not the fields themselves, it is the same as a Lagrangian, subject to a constancy constraint. We find that the associated Lagrangians for strings or branes have a covariant description in terms of the square root of the same Lagrangian. If the Hamilton-Jacobi function is zero, rather than a constant, then it is in in one dimension lower, reminiscent of the 'holographic' idea. In the second part of the paper, we discuss properties of these Lagrangians, which lead to what we have called 'Universal Field Equations', characteristic of covariant equations of motion

  12. Derivation of the Schrodinger Equation from the Hamilton-Jacobi Equation in Feynman's Path Integral Formulation of Quantum Mechanics

    Science.gov (United States)

    Field, J. H.

    2011-01-01

    It is shown how the time-dependent Schrodinger equation may be simply derived from the dynamical postulate of Feynman's path integral formulation of quantum mechanics and the Hamilton-Jacobi equation of classical mechanics. Schrodinger's own published derivations of quantum wave equations, the first of which was also based on the Hamilton-Jacobi…

  13. Quantitative Compactness Estimates for Hamilton-Jacobi Equations

    Science.gov (United States)

    Ancona, Fabio; Cannarsa, Piermarco; Nguyen, Khai T.

    2016-02-01

    We study quantitative compactness estimates in {W^{1,1}_{loc}} for the map {S_t}, {t > 0} that is associated with the given initial data {u_0in Lip (R^N)} for the corresponding solution {S_t u_0} of a Hamilton-Jacobi equation u_t+Hbig(nabla_{x} ubig)=0, qquad t≥ 0,quad xinR^N, with a uniformly convex Hamiltonian {H=H(p)}. We provide upper and lower estimates of order {1/\\varepsilon^N} on the Kolmogorov {\\varepsilon}-entropy in {W^{1,1}} of the image through the map S t of sets of bounded, compactly supported initial data. Estimates of this type are inspired by a question posed by Lax (Course on Hyperbolic Systems of Conservation Laws. XXVII Scuola Estiva di Fisica Matematica, Ravello, 2002) within the context of conservation laws, and could provide a measure of the order of "resolution" of a numerical method implemented for this equation.

  14. Generally covariant Hamilton-Jacobi equation and rotated liquid sphere metrics

    International Nuclear Information System (INIS)

    Abdil'din, M.M.; Abdulgafarov, M.K.; Abishev, M.E.

    2005-01-01

    In the work Lense-Thirring problem on corrected Fock's first approximation metrics by Hamilton-Jacobi method considered. Generally covariant Hamilton-Jacobi equation had been sold by separation of variable method. Path equation of probe particle motion in rotated liquid sphere field is obtained. (author)

  15. The Schroedinger equation and canonical perturbation theory

    International Nuclear Information System (INIS)

    Graffi, S.; Paul, T.

    1987-01-01

    Let T 0 (ℎ,ω)+εV be the Schroedinger operator corresponding to the classical Hamiltonian H 0 (ω)+εV, where H 0 (ω) is the d-dimensional harmonic oscillator with non-resonant frequencies ω=(ω 1 ..., ω d ) and the potential V(q 1 , ..., q d ) is an entire function of order (d+l) -1 . We prove that the algorithm of classical, canonical perturbation theory can be applied to the Schroedinger equation in the Bargmann representation. As a consequence, each term of the Rayleigh-Schroedinger series near any eigenvalue of T 0 (ℎ,ω) admits a convergent expansion in powers of ℎ of initial point the corresponding term of the classical Birkhoff expansion. Moreover if V is an even polynomial, the above result and the KAM theorem show that all eigenvalues λ n (ℎ,ε) of T 0 +εV such that nℎ coincides with a KAM torus are given, up to order ε ∞ , by a quantization formula which reduces to the Bohr-Sommerfeld one up to first order terms in ℎ. (orig.)

  16. An optimal L1-minimization algorithm for stationary Hamilton-Jacobi equations

    KAUST Repository

    Guermond, Jean-Luc; Popov, Bojan

    2009-01-01

    We describe an algorithm for solving steady one-dimensional convex-like Hamilton-Jacobi equations using a L1-minimization technique on piecewise linear approximations. For a large class of convex Hamiltonians, the algorithm is proven

  17. Nonlinear H-infinity control, Hamiltonian systems and Hamilton-Jacobi equations

    CERN Document Server

    Aliyu, MDS

    2011-01-01

    A comprehensive overview of nonlinear Haeu control theory for both continuous-time and discrete-time systems, Nonlinear Haeu-Control, Hamiltonian Systems and Hamilton-Jacobi Equations covers topics as diverse as singular nonlinear Haeu-control, nonlinear Haeu -filtering, mixed H2/ Haeu-nonlinear control and filtering, nonlinear Haeu-almost-disturbance-decoupling, and algorithms for solving the ubiquitous Hamilton-Jacobi-Isaacs equations. The link between the subject and analytical mechanics as well as the theory of partial differential equations is also elegantly summarized in a single chapter

  18. Integrating factors and conservation theorems for Hamilton‘s canonical equations of motion of variable mass nonholonmic nonconservative dynamical systems

    Institute of Scientific and Technical Information of China (English)

    李仁杰; 刘洋; 等

    2002-01-01

    We present a general approach to the construction of conservation laws for variable mass noholonmic nonconservative systems.First,we give the definition of integrating factors,and we study in detail the necessary conditions for the existence of the conserved quantities,Then,we establish the conservatioin theorem and its inverse theorem for Hamilton's canonical equations of motion of variable mass nonholonomic nonocnservative dynamical systems.Finally,we give an example to illustrate the application of the results.

  19. Game theory to characterize solutions of a discrete-time Hamilton-Jacobi equation

    International Nuclear Information System (INIS)

    Toledo, Porfirio

    2013-01-01

    We study the behavior of solutions of a discrete-time Hamilton-Jacobi equation in a minimax framework of game theory. The solutions of this problem represent the optimal payoff of a zero-sum game of two players, where the number of moves between the players converges to infinity. A real number, called the critical value, plays a central role in this work; this number is the asymptotic average action of optimal trajectories. The aim of this paper is to show the existence and characterization of solutions of a Hamilton-Jacobi equation for this kind of games

  20. Canonical algorithms for numerical integration of charged particle motion equations

    Science.gov (United States)

    Efimov, I. N.; Morozov, E. A.; Morozova, A. R.

    2017-02-01

    A technique for numerically integrating the equation of charged particle motion in a magnetic field is considered. It is based on the canonical transformations of the phase space in Hamiltonian mechanics. The canonical transformations make the integration process stable against counting error accumulation. The integration algorithms contain a minimum possible amount of arithmetics and can be used to design accelerators and devices of electron and ion optics.

  1. Hamilton-Jacobi equation and the breaking of the WKB approximation

    Energy Technology Data Exchange (ETDEWEB)

    Canfora, F. [Istituto Nazionale di Fisica Nucleare, GC di Salerno (Italy) and Dipartimento di Fisica E.R. Caianiello, Universita di Salerno, Via S. Allende, 84081 Baronissi (Salerno) (Italy)]. E-mail: canfora@sa.infn.it

    2005-03-17

    A simple method to deal with four-dimensional Hamilton-Jacobi equation for null hypersurfaces is introduced. This method allows to find simple geometrical conditions which give rise to the failure of the WKB approximation on curved spacetimes. The relation between such failure, extreme blackholes and the Cosmic Censor hypothesis is briefly discussed.

  2. L∞-error estimates of a finite element method for the Hamilton-Jacobi-Bellman equations

    International Nuclear Information System (INIS)

    Bouldbrachene, M.

    1994-11-01

    We study the finite element approximation for the solution of the Hamilton-Jacobi-Bellman equations involving a system of quasi-variational inequalities (QVI). We also give the optimal L ∞ -error estimates, using the concepts of subsolutions and discrete regularity. (author). 7 refs

  3. An optimal L1-minimization algorithm for stationary Hamilton-Jacobi equations

    KAUST Repository

    Guermond, Jean-Luc

    2009-01-01

    We describe an algorithm for solving steady one-dimensional convex-like Hamilton-Jacobi equations using a L1-minimization technique on piecewise linear approximations. For a large class of convex Hamiltonians, the algorithm is proven to be convergent and of optimal complexity whenever the viscosity solution is q-semiconcave. Numerical results are presented to illustrate the performance of the method.

  4. Canonical form of Euler-Lagrange equations and gauge symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Geyer, B [Naturwissenschaftlich-Theoretisches Zentrum und Institut fuer Theoretische Physik, Universitaet Leipzig, Leipzig (Germany); Gitman, D M [Institute of Physics, University of Sao Paulo, Sao Paulo (Brazil); Tyutin, I V [Lebedev Physics Institute, Moscow (Russian Federation)

    2003-06-13

    The structure of the Euler-Lagrange equations for a general Lagrangian theory (e.g. singular, with higher derivatives) is studied. For these equations we present a reduction procedure to the so-called canonical form. In the canonical form the equations are solved with respect to highest-order derivatives of nongauge coordinates, whereas gauge coordinates and their derivatives enter the right-hand sides of the equations as arbitrary functions of time. The reduction procedure reveals constraints in the Lagrangian formulation of singular systems and, in that respect, is similar to the Dirac procedure in the Hamiltonian formulation. Moreover, the reduction procedure allows one to reveal the gauge identities between the Euler-Lagrange equations. Thus, a constructive way of finding all the gauge generators within the Lagrangian formulation is presented. At the same time, it is proved that for local theories all the gauge generators are local in time operators.

  5. Balance equations for a viscous fluid from a Hamilton type variational principle

    International Nuclear Information System (INIS)

    Fierros Palacios, A.

    1992-01-01

    The partial differential field equations for any viscous fluid are obtained from the Lagrangian formalism as in classical field theory. An action functional is introduced as a space-time integral over a region of three-dimensional Euclidean space, of a Lagrangian density function of certain field variables. A Hamilton type extremum action principle is postulated with adequate boundary conditions, and a set of differential field equations is derived. With an appropriate Lagrangian density of the T-V type, the equation of motion for any viscous fluid is reproduced. A theorem referring to the invariance of the action under time variations lead to the generalized energy balance equation for the viscous fluid and to the energy balance equation proper. The same theoretical approach can be used to solve the problem of potential flow. (Author)

  6. From the Snell-Descartes refraction law, to the Hamilton equations in the phase space of geometrical optics

    International Nuclear Information System (INIS)

    Lopez Moreno, E.; Wolf, K.B.

    1989-01-01

    Starting from the Snell-Descartes' refraction law, we obtain in a brief and direct way the Hamilton equations of Geometrical Optics. We show the global structure of phase space and compare it with that used in paraxial optics. (Author)

  7. Field differential equations for a potential flow from a Hamilton type variational principle

    International Nuclear Information System (INIS)

    Fierros Palacios, A.

    1992-01-01

    The same theoretical frame that was used to solve the problem of the field equations for a viscous fluid is utilized in this work. The purpose is to obtain the differential field equations for a potential flow from the Lagrangian formalism as in classical field theory. An action functional is introduced as a space-time integral over a region of three-dimensional Euclidean space, of a Lagrangian density as a function of certain field variables. A Hamilton type extremum action principle is postulated with adequate boundary conditions, and a set of differential field equations is derived. A particular Lagrangian density of the T-V type leads to the wave equation for the velocity potential. (Author)

  8. Lax-Friedrichs sweeping scheme for static Hamilton-Jacobi equations

    International Nuclear Information System (INIS)

    Kao, C.Y.; Osher, Stanley; Qian Jianliang

    2004-01-01

    We propose a simple, fast sweeping method based on the Lax-Friedrichs monotone numerical Hamiltonian to approximate viscosity solutions of arbitrary static Hamilton-Jacobi equations in any number of spatial dimensions. By using the Lax-Friedrichs numerical Hamiltonian, we can easily obtain the solution at a specific grid point in terms of its neighbors, so that a Gauss-Seidel type nonlinear iterative method can be utilized. Furthermore, by incorporating a group-wise causality principle into the Gauss-Seidel iteration by following a finite group of characteristics, we have an easy-to-implement, sweeping-type, and fast convergent numerical method. However, unlike other methods based on the Godunov numerical Hamiltonian, some computational boundary conditions are needed in the implementation. We give a simple recipe which enforces a version of discrete min-max principle. Some convergence analysis is done for the one-dimensional eikonal equation. Extensive 2-D and 3-D numerical examples illustrate the efficiency and accuracy of the new approach. To our knowledge, this is the first fast numerical method based on discretizing the Hamilton-Jacobi equation directly without assuming convexity and/or homogeneity of the Hamiltonian

  9. Lax-Friedrichs sweeping scheme for static Hamilton-Jacobi equations

    Science.gov (United States)

    Kao, Chiu Yen; Osher, Stanley; Qian, Jianliang

    2004-05-01

    We propose a simple, fast sweeping method based on the Lax-Friedrichs monotone numerical Hamiltonian to approximate viscosity solutions of arbitrary static Hamilton-Jacobi equations in any number of spatial dimensions. By using the Lax-Friedrichs numerical Hamiltonian, we can easily obtain the solution at a specific grid point in terms of its neighbors, so that a Gauss-Seidel type nonlinear iterative method can be utilized. Furthermore, by incorporating a group-wise causality principle into the Gauss-Seidel iteration by following a finite group of characteristics, we have an easy-to-implement, sweeping-type, and fast convergent numerical method. However, unlike other methods based on the Godunov numerical Hamiltonian, some computational boundary conditions are needed in the implementation. We give a simple recipe which enforces a version of discrete min-max principle. Some convergence analysis is done for the one-dimensional eikonal equation. Extensive 2-D and 3-D numerical examples illustrate the efficiency and accuracy of the new approach. To our knowledge, this is the first fast numerical method based on discretizing the Hamilton-Jacobi equation directly without assuming convexity and/or homogeneity of the Hamiltonian.

  10. On global solutions of the random Hamilton-Jacobi equations and the KPZ problem

    Science.gov (United States)

    Bakhtin, Yuri; Khanin, Konstantin

    2018-04-01

    In this paper, we discuss possible qualitative approaches to the problem of KPZ universality. Throughout the paper, our point of view is based on the geometrical and dynamical properties of minimisers and shocks forming interlacing tree-like structures. We believe that the KPZ universality can be explained in terms of statistics of these structures evolving in time. The paper is focussed on the setting of the random Hamilton-Jacobi equations. We formulate several conjectures concerning global solutions and discuss how their properties are connected to the KPZ scalings in dimension 1  +  1. In the case of general viscous Hamilton-Jacobi equations with non-quadratic Hamiltonians, we define generalised directed polymers. We expect that their behaviour is similar to the behaviour of classical directed polymers, and present arguments in favour of this conjecture. We also define a new renormalisation transformation defined in purely geometrical terms and discuss conjectural properties of the corresponding fixed points. Most of our conjectures are widely open, and supported by only partial rigorous results for particular models.

  11. Solutions to estimation problems for scalar hamilton-jacobi equations using linear programming

    KAUST Repository

    Claudel, Christian G.; Chamoin, Timothee; Bayen, Alexandre M.

    2014-01-01

    This brief presents new convex formulations for solving estimation problems in systems modeled by scalar Hamilton-Jacobi (HJ) equations. Using a semi-analytic formula, we show that the constraints resulting from a HJ equation are convex, and can be written as a set of linear inequalities. We use this fact to pose various (and seemingly unrelated) estimation problems related to traffic flow-engineering as a set of linear programs. In particular, we solve data assimilation and data reconciliation problems for estimating the state of a system when the model and measurement constraints are incompatible. We also solve traffic estimation problems, such as travel time estimation or density estimation. For all these problems, a numerical implementation is performed using experimental data from the Mobile Century experiment. In the context of reproducible research, the code and data used to compute the results presented in this brief have been posted online and are accessible to regenerate the results. © 2013 IEEE.

  12. Probabilistic formulation of estimation problems for a class of Hamilton-Jacobi equations

    KAUST Repository

    Hofleitner, Aude; Claudel, Christian G.; Bayen, Alexandre M.

    2012-01-01

    This article presents a method for deriving the probability distribution of the solution to a Hamilton-Jacobi partial differential equation for which the value conditions are random. The derivations lead to analytical or semi-analytical expressions of the probability distribution function at any point in the domain in which the solution is defined. The characterization of the distribution of the solution at any point is a first step towards the estimation of the parameters defining the random value conditions. This work has important applications for estimation in flow networks in which value conditions are noisy. In particular, we illustrate our derivations on a road segment with random capacity reductions. © 2012 IEEE.

  13. Probabilistic formulation of estimation problems for a class of Hamilton-Jacobi equations

    KAUST Repository

    Hofleitner, Aude

    2012-12-01

    This article presents a method for deriving the probability distribution of the solution to a Hamilton-Jacobi partial differential equation for which the value conditions are random. The derivations lead to analytical or semi-analytical expressions of the probability distribution function at any point in the domain in which the solution is defined. The characterization of the distribution of the solution at any point is a first step towards the estimation of the parameters defining the random value conditions. This work has important applications for estimation in flow networks in which value conditions are noisy. In particular, we illustrate our derivations on a road segment with random capacity reductions. © 2012 IEEE.

  14. Periodic solutions of the Hamilton-Jacobi equation by the shooting method: A technique for beam dynamics

    International Nuclear Information System (INIS)

    Gabella, W.E.; Ruth, R.D.; Warnock, R.L.

    1988-05-01

    Periodic solutions of the Hamilton-Jacobi equation determine invariant tori in phase space. The Fourier spectrum of a torus with respect to angular coordinates gives useful information about nonlinear resonances and their potential for causing instabilities. We describe a method to solve the Hamilton-Jacobi equation for an arbitrary accelerator lattice. The method works with Fourier modes of the generating functions, and imposes periodicity in the machine azimuth by a shooting method. We give examples leading to three-dimensional plots in a surface of section. It is expected that the technique will be useful in lattice optimization. 14 refs., 6 figs., 1 tab

  15. On the Geometry of the Hamilton-Jacobi Equation and Generating Functions

    Science.gov (United States)

    Ferraro, Sebastián; de León, Manuel; Marrero, Juan Carlos; Martín de Diego, David; Vaquero, Miguel

    2017-10-01

    In this paper we develop a geometric version of the Hamilton-Jacobi equation in the Poisson setting. Specifically, we "geometrize" what is usually called a complete solution of the Hamilton-Jacobi equation. We use some well-known results about symplectic groupoids, in particular cotangent groupoids, as a keystone for the construction of our framework. Our methodology follows the ambitious program proposed by Weinstein (In Mechanics day (Waterloo, ON, 1992), volume 7 of fields institute communications, American Mathematical Society, Providence, 1996) in order to develop geometric formulations of the dynamical behavior of Lagrangian and Hamiltonian systems on Lie algebroids and Lie groupoids. This procedure allows us to take symmetries into account, and, as a by-product, we recover results from Channell and Scovel (Phys D 50(1):80-88, 1991), Ge (Indiana Univ. Math. J. 39(3):859-876, 1990), Ge and Marsden (Phys Lett A 133(3):134-139, 1988), but even in these situations our approach is new. A theory of generating functions for the Poisson structures considered here is also developed following the same pattern, solving a longstanding problem of the area: how to obtain a generating function for the identity transformation and the nearby Poisson automorphisms of Poisson manifolds. A direct application of our results gives the construction of a family of Poisson integrators, that is, integrators that conserve the underlying Poisson geometry. These integrators are implemented in the paper in benchmark problems. Some conclusions, current and future directions of research are shown at the end of the paper.

  16. Lie-admissible structure of Hamilton's original equations with external terms

    International Nuclear Information System (INIS)

    Santilli, R.M.

    1991-09-01

    As a necessary additional step in preparation of our operator studies of closed nonhamiltonian systems, in this note we consider the algebraic structure of the original equations proposed by Lagrange and Hamilton, those with external terms representing precisely the contact nonpotential forces of the interior dynamical problem. We show that the brackets of the theory violate the conditions to characterize any algebra. Nevertheless, when properly written, they characterize a covering of the Lie-isotopic algebras called Lie-admissible algebras. It is indicated that a similar occurrence exists for conventional operator treatments, e.g. for nonconservative nuclear cases characterized by nonhermitean Hamiltonians. This occurrence then prevents a rigorous treatment of basic notions, such as that of angular momentum and spin spin, which are centrally dependent on the existence of a consistent algebraic structure. The emergence of the Lie-admissible algebras is therefore expected to be unavoidable for any rigorous operator treatment of open systems with nonlinear, nonlocal and nonhamiltonian external forces. (author). 14 refs, 1 fig

  17. Cable Connected Spinning Spacecraft, 1. the Canonical Equations, 2. Urban Mass Transportation, 3

    Science.gov (United States)

    Sitchin, A.

    1972-01-01

    Work on the dynamics of cable-connected spinning spacecraft was completed by formulating the equations of motion by both the canonical equations and Lagrange's equations and programming them for numerical solution on a digital computer. These energy-based formulations will permit future addition of the effect of cable mass. Comparative runs indicate that the canonical formulation requires less computer time. Available literature on urban mass transportation was surveyed. Areas of the private rapid transit concept of urban transportation are also studied.

  18. Dissipative quantum mechanics: The generalization of the canonical quantization and von Neumann equation

    International Nuclear Information System (INIS)

    Tarasov, V.E.

    1994-07-01

    Sedov variational principle, which is the generalization of the least actional principle for the dissipative processes is used to generalize the canonical quantization and von Neumann equation for dissipative systems (particles and strings). (author). 66 refs, 1 fig

  19. A canonical form of the equation of motion of linear dynamical systems

    Science.gov (United States)

    Kawano, Daniel T.; Salsa, Rubens Goncalves; Ma, Fai; Morzfeld, Matthias

    2018-03-01

    The equation of motion of a discrete linear system has the form of a second-order ordinary differential equation with three real and square coefficient matrices. It is shown that, for almost all linear systems, such an equation can always be converted by an invertible transformation into a canonical form specified by two diagonal coefficient matrices associated with the generalized acceleration and displacement. This canonical form of the equation of motion is unique up to an equivalence class for non-defective systems. As an important by-product, a damped linear system that possesses three symmetric and positive definite coefficients can always be recast as an undamped and decoupled system.

  20. On the relationship between modifications to the Raychaudhuri equation and the canonical Hamiltonian structures

    International Nuclear Information System (INIS)

    Singh, Parampreet; Soni, S K

    2016-01-01

    The problem of obtaining canonical Hamiltonian structures from the equations of motion, without any knowledge of the action, is studied in the context of the spatially flat Friedmann, ‘Robertson’, and Walker models. Modifications to the Raychaudhuri equation are implemented independently as quadratic and cubic terms of energy density without introducing additional degrees of freedom. Depending on their sign, modifications make gravity repulsive above a curvature scale for matter satisfying strong energy conditions, or more attractive than in the classical theory. The canonical structure of the modified theories is determined by demanding that the total Hamiltonian be a linear combination of gravity and matter Hamiltonians. In the quadratic repulsive case, the modified canonical phase space of gravity is a polymerized phase space with canonical momentum as inverse a trigonometric function of the Hubble rate; the canonical Hamiltonian can be identified with the effective Hamiltonian in loop quantum cosmology. The repulsive cubic modification results in a ‘generalized polymerized’ canonical phase space. Both the repulsive modifications are found to yield singularity avoidance. In contrast, the quadratic and cubic attractive modifications result in a canonical phase space in which canonical momentum is nontrigonometric and singularities persist. Our results hint at connections between the repulsive/attractive nature of modifications to gravity arising from the gravitational sector and polymerized/non polymerized gravitational phase space. (paper)

  1. Schaum's outline of theory and problems of Lagrangian dynamics with a treatment of Euler's equations of motion, Hamilton's equations and Hamilton's principle

    CERN Document Server

    Wells, Dare A

    1967-01-01

    The book clearly and concisely explains the basic principles of Lagrangian dynamicsand provides training in the actual physical and mathematical techniques of applying Lagrange's equations, laying the foundation for a later study of topics that bridge the gap between classical and quantum physics, engineering, chemistry and applied mathematics, and for practicing scientists and engineers.

  2. Mathematical methods in the solution of the the Hamilton-Darwin and the Takagi-Taupin equations

    International Nuclear Information System (INIS)

    Werner, S.A.; Berliner, R.R.; Arif, M.; Missouri Univ., Columbia

    1986-01-01

    The diffraction of neutrons by a single crystal is intrinsically a multiple scattering problem. For an ideally imperfect mosaic crystal the Hamilton-Darwin transfer equations describe the coupling of the incident and diffracted beams; whereas, for a perfect crystal one must use the dynamical theory of diffraction, which can be recast in the form of two coupled partial differential equations commonly referred to as the Takagi-Taupin equations. From a mathematical point of view these two problems are equivalent, although the physical manifestations of the solutions are quite different. For the occasion of Professor Shull's seventieth birthday celebration, we bring together in this paper some of the mathematical techniques which we have found useful in elucidating the subtleties of the Bragg diffraction of neutron by crystals. (orig.)

  3. Transforming differential equations of multi-loop Feynman integrals into canonical form

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Christoph [Institut für Physik, Humboldt-Universität zu Berlin,12489 Berlin (Germany)

    2017-04-03

    The method of differential equations has been proven to be a powerful tool for the computation of multi-loop Feynman integrals appearing in quantum field theory. It has been observed that in many instances a canonical basis can be chosen, which drastically simplifies the solution of the differential equation. In this paper, an algorithm is presented that computes the transformation to a canonical basis, starting from some basis that is, for instance, obtained by the usual integration-by-parts reduction techniques. The algorithm requires the existence of a rational transformation to a canonical basis, but is otherwise completely agnostic about the differential equation. In particular, it is applicable to problems involving multiple scales and allows for a rational dependence on the dimensional regulator. It is demonstrated that the algorithm is suitable for current multi-loop calculations by presenting its successful application to a number of non-trivial examples.

  4. Transforming differential equations of multi-loop Feynman integrals into canonical form

    Science.gov (United States)

    Meyer, Christoph

    2017-04-01

    The method of differential equations has been proven to be a powerful tool for the computation of multi-loop Feynman integrals appearing in quantum field theory. It has been observed that in many instances a canonical basis can be chosen, which drastically simplifies the solution of the differential equation. In this paper, an algorithm is presented that computes the transformation to a canonical basis, starting from some basis that is, for instance, obtained by the usual integration-by-parts reduction techniques. The algorithm requires the existence of a rational transformation to a canonical basis, but is otherwise completely agnostic about the differential equation. In particular, it is applicable to problems involving multiple scales and allows for a rational dependence on the dimensional regulator. It is demonstrated that the algorithm is suitable for current multi-loop calculations by presenting its successful application to a number of non-trivial examples.

  5. Transforming differential equations of multi-loop Feynman integrals into canonical form

    International Nuclear Information System (INIS)

    Meyer, Christoph

    2017-01-01

    The method of differential equations has been proven to be a powerful tool for the computation of multi-loop Feynman integrals appearing in quantum field theory. It has been observed that in many instances a canonical basis can be chosen, which drastically simplifies the solution of the differential equation. In this paper, an algorithm is presented that computes the transformation to a canonical basis, starting from some basis that is, for instance, obtained by the usual integration-by-parts reduction techniques. The algorithm requires the existence of a rational transformation to a canonical basis, but is otherwise completely agnostic about the differential equation. In particular, it is applicable to problems involving multiple scales and allows for a rational dependence on the dimensional regulator. It is demonstrated that the algorithm is suitable for current multi-loop calculations by presenting its successful application to a number of non-trivial examples.

  6. Convergence of a semi-discretization scheme for the Hamilton-Jacobi equation: A new approach with the adjoint method

    KAUST Repository

    Cagnetti, Filippo

    2013-11-01

    We consider a numerical scheme for the one dimensional time dependent Hamilton-Jacobi equation in the periodic setting. This scheme consists in a semi-discretization using monotone approximations of the Hamiltonian in the spacial variable. From classical viscosity solution theory, these schemes are known to converge. In this paper we present a new approach to the study of the rate of convergence of the approximations based on the nonlinear adjoint method recently introduced by L.C. Evans. We estimate the rate of convergence for convex Hamiltonians and recover the O(h) convergence rate in terms of the L∞ norm and O(h) in terms of the L1 norm, where h is the size of the spacial grid. We discuss also possible generalizations to higher dimensional problems and present several other additional estimates. The special case of quadratic Hamiltonians is considered in detail in the end of the paper. © 2013 IMACS.

  7. Convergence of a semi-discretization scheme for the Hamilton-Jacobi equation: A new approach with the adjoint method

    KAUST Repository

    Cagnetti, Filippo; Gomes, Diogo A.; Tran, Hung Vinh

    2013-01-01

    We consider a numerical scheme for the one dimensional time dependent Hamilton-Jacobi equation in the periodic setting. This scheme consists in a semi-discretization using monotone approximations of the Hamiltonian in the spacial variable. From classical viscosity solution theory, these schemes are known to converge. In this paper we present a new approach to the study of the rate of convergence of the approximations based on the nonlinear adjoint method recently introduced by L.C. Evans. We estimate the rate of convergence for convex Hamiltonians and recover the O(h) convergence rate in terms of the L∞ norm and O(h) in terms of the L1 norm, where h is the size of the spacial grid. We discuss also possible generalizations to higher dimensional problems and present several other additional estimates. The special case of quadratic Hamiltonians is considered in detail in the end of the paper. © 2013 IMACS.

  8. Newton equation for canonical, Lie-algebraic, and quadratic deformation of classical space

    International Nuclear Information System (INIS)

    Daszkiewicz, Marcin; Walczyk, Cezary J.

    2008-01-01

    The Newton equation describing particle motion in a constant external field force on canonical, Lie-algebraic, and quadratic space-time is investigated. We show that for canonical deformation of space-time the dynamical effects are absent, while in the case of Lie-algebraic noncommutativity, when spatial coordinates commute to the time variable, the additional acceleration of the particle is generated. We also indicate that in the case of spatial coordinates commuting in a Lie-algebraic way, as well as for quadratic deformation, there appear additional velocity and position-dependent forces

  9. Dynamic Programming Algorithms for Planning and Robotics in Continuous Domains and the Hamilton-Jacobi Equation

    Science.gov (United States)

    2008-09-22

    function essentially binary • Value function measures cost to go – Solution of Eikonal equation – Gradient determines optimal control typical laser...of nodes – Dijkstra’s algorithm is essentially unchanged • Continuous space – Static HJ PDE no longer reduces to the Eikonal equation – Gradient of ϑ...bounded: ||·||1 • If action is bounded in ||·||p, then value function is solution of “ Eikonal ” equation ||ϑ(x)||p* = c(x) in the dual norm p* – p = 1

  10. Networked traffic state estimation involving mixed fixed-mobile sensor data using Hamilton-Jacobi equations

    KAUST Repository

    Canepa, Edward S.; Claudel, Christian G.

    2017-01-01

    Nowadays, traffic management has become a challenge for urban areas, which are covering larger geographic spaces and facing the generation of different kinds of traffic data. This article presents a robust traffic estimation framework for highways modeled by a system of Lighthill Whitham Richards equations that is able to assimilate different sensor data available. We first present an equivalent formulation of the problem using a Hamilton–Jacobi equation. Then, using a semi-analytic formula, we show that the model constraints resulting from the Hamilton–Jacobi equation are linear ones. We then pose the problem of estimating the traffic density given incomplete and inaccurate traffic data as a Mixed Integer Program. We then extend the density estimation framework to highway networks with any available data constraint and modeling junctions. Finally, we present a travel estimation application for a small network using real traffic measurements obtained obtained during Mobile Century traffic experiment, and comparing the results with ground truth data.

  11. Networked traffic state estimation involving mixed fixed-mobile sensor data using Hamilton-Jacobi equations

    KAUST Repository

    Canepa, Edward S.

    2017-06-19

    Nowadays, traffic management has become a challenge for urban areas, which are covering larger geographic spaces and facing the generation of different kinds of traffic data. This article presents a robust traffic estimation framework for highways modeled by a system of Lighthill Whitham Richards equations that is able to assimilate different sensor data available. We first present an equivalent formulation of the problem using a Hamilton–Jacobi equation. Then, using a semi-analytic formula, we show that the model constraints resulting from the Hamilton–Jacobi equation are linear ones. We then pose the problem of estimating the traffic density given incomplete and inaccurate traffic data as a Mixed Integer Program. We then extend the density estimation framework to highway networks with any available data constraint and modeling junctions. Finally, we present a travel estimation application for a small network using real traffic measurements obtained obtained during Mobile Century traffic experiment, and comparing the results with ground truth data.

  12. The time dependent Schrodinger equation revisited I: quantum field and classical Hamilton-Jacobi routes to Schrodinger's wave equation

    International Nuclear Information System (INIS)

    Scully, M O

    2008-01-01

    The time dependent Schrodinger equation is frequently 'derived' by postulating the energy E → i h-bar (∂/∂t) and momentum p-vector → ( h-bar /i)∇ operator relations. In the present paper we review the quantum field theoretic route to the Schrodinger wave equation which treats time and space as parameters, not operators. Furthermore, we recall that a classical (nonlinear) wave equation can be derived from the classical action via Hamiltonian-Jacobi theory. By requiring the wave equation to be linear we again arrive at the Schrodinger equation, without postulating operator relations. The underlying philosophy is operational: namely 'a particle is what a particle detector detects.' This leads us to a useful physical picture combining the wave (field) and particle paradigms which points the way to the time-dependent Schrodinger equation

  13. Vacuum spacetimes with a spacelike, hypersurface-orthogonal Killing vector: reduced equations in a canonical frame

    International Nuclear Information System (INIS)

    Bonanos, S

    2003-01-01

    The Newman-Penrose equations for spacetimes having one spacelike Killing vector are reduced-in a geometrically defined 'canonical frame' - to a minimal set, and its differential structure is studied. Expressions for the frame vectors in an arbitrary coordinate basis are given, and coordinate-independent choices of the metric functions are suggested which make the components of the Ricci tensor in the direction of the Killing vector vanish

  14. Axisymmetric black holes allowing for separation of variables in the Klein-Gordon and Hamilton-Jacobi equations

    Science.gov (United States)

    Konoplya, R. A.; Stuchlík, Z.; Zhidenko, A.

    2018-04-01

    We determine the class of axisymmetric and asymptotically flat black-hole spacetimes for which the test Klein-Gordon and Hamilton-Jacobi equations allow for the separation of variables. The known Kerr, Kerr-Newman, Kerr-Sen and some other black-hole metrics in various theories of gravity are within the class of spacetimes described here. It is shown that although the black-hole metric in the Einstein-dilaton-Gauss-Bonnet theory does not allow for the separation of variables (at least in the considered coordinates), for a number of applications it can be effectively approximated by a metric within the above class. This gives us some hope that the class of spacetimes described here may be not only generic for the known solutions allowing for the separation of variables, but also a good approximation for a broader class of metrics, which does not admit such separation. Finally, the generic form of the axisymmetric metric is expanded in the radial direction in terms of the continued fractions and the connection with other black-hole parametrizations is discussed.

  15. Canonical reduction of self-dual Yang-Mills equations to Fitzhugh-Nagumo equation and exact solutions

    Energy Technology Data Exchange (ETDEWEB)

    Sayed, S.M. [Mathematics Department, Faculty of Science, Beni-Suef University, Beni-Suef (Egypt); Mathematics Department, P.O. Box 1144, Tabouk Teacher College, Ministry of Education (Saudi Arabia)], E-mail: eaashour@lycos.com; Gharib, G.M. [Mathematics Department, P.O. Box 1144, Tabouk Teacher College, Ministry of Education (Saudi Arabia)

    2009-01-30

    The (constrained) canonical reduction of four-dimensional self-dual Yang-Mills theory to two-dimensional Fitzhugh-Nagumo and the real Newell-Whitehead equations are considered. On the other hand, other methods and transformations are developed to obtain exact solutions for the original two-dimensional Fitzhugh-Nagumo and Newell-Whitehead equations. The corresponding gauge potential A{sub {mu}} and the gauge field strengths F{sub {mu}}{sub {nu}} are also obtained. New explicit and exact traveling wave and solitary solutions (for Fitzhugh-Nagumo and Newell-Whitehead equations) are obtained by using an improved sine-cosine method and the Wu's elimination method with the aid of Mathematica.

  16. Canonical reduction of self-dual Yang-Mills equations to Fitzhugh-Nagumo equation and exact solutions

    International Nuclear Information System (INIS)

    Sayed, S.M.; Gharib, G.M.

    2009-01-01

    The (constrained) canonical reduction of four-dimensional self-dual Yang-Mills theory to two-dimensional Fitzhugh-Nagumo and the real Newell-Whitehead equations are considered. On the other hand, other methods and transformations are developed to obtain exact solutions for the original two-dimensional Fitzhugh-Nagumo and Newell-Whitehead equations. The corresponding gauge potential A μ and the gauge field strengths F μν are also obtained. New explicit and exact traveling wave and solitary solutions (for Fitzhugh-Nagumo and Newell-Whitehead equations) are obtained by using an improved sine-cosine method and the Wu's elimination method with the aid of Mathematica.

  17. A new general method for transform canonically a Hamiltonian in another one of a given form

    International Nuclear Information System (INIS)

    Gomez T, A.

    2002-01-01

    The more general method to perform a canonical transformation of a Hamiltonian into another one of a given form is based on the repeated use of the Hamilton-Jacobi equation. This is usually a tedious technique which leads to some particular solutions of the problem. We present a new general method which does not rely on the Hamilton-Jacobi equation and moreover it gives all the possible solutions. (Author)

  18. First-order systems of linear partial differential equations: normal forms, canonical systems, transform methods

    Directory of Open Access Journals (Sweden)

    Heinz Toparkus

    2014-04-01

    Full Text Available In this paper we consider first-order systems with constant coefficients for two real-valued functions of two real variables. This is both a problem in itself, as well as an alternative view of the classical linear partial differential equations of second order with constant coefficients. The classification of the systems is done using elementary methods of linear algebra. Each type presents its special canonical form in the associated characteristic coordinate system. Then you can formulate initial value problems in appropriate basic areas, and you can try to achieve a solution of these problems by means of transform methods.

  19. The generalised Marchenko equation and the canonical structure of the A.K.N.S.-Z.S. inverse method

    International Nuclear Information System (INIS)

    Dodd, R.K.; Bullough, R.K.

    1979-01-01

    A generalised Marchenko equation is derived for a 2 X 2 matrix inverse method and it is used to show that, for the subset of equations solvable by the method which can be constructed as defining the flows of Hamiltonians, the inverse transform is a canonical (homogeneous contact) transformation. Baecklund transformations are re-examined from this point of view. (Auth.)

  20. Canonical variables and Heisenberg equations of motion for the spin-3/2 field in the presence of interactions

    International Nuclear Information System (INIS)

    Nagpal, A.K.

    1978-01-01

    Contrary to the prevalent belief, it is shown here that for the spin-3/2 Rarita-Schwinger field in the presence of a fully quantized interaction, the (anti) commutation relations are compatible with the Heisenberg equations of motion. The latter are indeed the same as the Lagrangian equations of motion. Further, it is shown that the validity of the Heisenberg equations of motion does not depend upon the choice of the canonical variables

  1. High-Order Hamilton's Principle and the Hamilton's Principle of High-Order Lagrangian Function

    International Nuclear Information System (INIS)

    Zhao Hongxia; Ma Shanjun

    2008-01-01

    In this paper, based on the theorem of the high-order velocity energy, integration and variation principle, the high-order Hamilton's principle of general holonomic systems is given. Then, three-order Lagrangian equations and four-order Lagrangian equations are obtained from the high-order Hamilton's principle. Finally, the Hamilton's principle of high-order Lagrangian function is given.

  2. Application of the canonical operator to the description of self-focusing soliton-like solutions of the Kadomtsev-Petviashvili equation

    Science.gov (United States)

    Maslov, V. P.; Shafarevich, A. I.

    2011-12-01

    A description for the asymptotic soliton-like solution of the Kadomtsev-Petviashvili I equation (KPI equation) in terms of the canonical operator is suggested. This solution can smoothly be continued to the vicinity of the focal point.

  3. The number of zero solutions for complex canonical differential equation of second order with constant coefficients in the first quadrant

    Directory of Open Access Journals (Sweden)

    Vujaković Jelena

    2016-01-01

    Full Text Available The study of complex differential equations in recent years has opened up some of questions concerning the determination of the frequency of zero solutions, the distribution of zero, oscillation of the solution, asymptotic behavior, rank growth and so on. Besides, this is solved by only some classes of differential equations. In this paper, our aim was to determine the number of zeros and their arrangement in the first quadrant, for the complex canonical differential equation of the second order. The accuracy of our results, we illustrate with two examples.

  4. Dynamical and geometric aspects of Hamilton-Jacobi and linearized Monge-Ampère equations VIASM 2016

    CERN Document Server

    Tran, Hung

    2017-01-01

    Consisting of two parts, the first part of this volume is an essentially self-contained exposition of the geometric aspects of local and global regularity theory for the Monge–Ampère and linearized Monge–Ampère equations. As an application, we solve the second boundary value problem of the prescribed affine mean curvature equation, which can be viewed as a coupling of the latter two equations. Of interest in its own right, the linearized Monge–Ampère equation also has deep connections and applications in analysis, fluid mechanics and geometry, including the semi-geostrophic equations in atmospheric flows, the affine maximal surface equation in affine geometry and the problem of finding Kahler metrics of constant scalar curvature in complex geometry. Among other topics, the second part provides a thorough exposition of the large time behavior and discounted approximation of Hamilton–Jacobi equations, which have received much attention in the last two decades, and a new approach to the subject, the n...

  5. Field lines of gravity, their curvature and torsion, the Lagrange and the Hamilton equations of the plumbline

    Directory of Open Access Journals (Sweden)

    E. W. Grafarend

    1997-06-01

    Full Text Available The length of the gravitational field lines/of the orthogonal trajectories of a family of gravity equipotential surfaces/of the plumbline between a terrestrial topographic point and a point on a reference equipotential surface like the geoid í also known as the orthometric height í plays a central role in Satellite Geodesy as well as in Physical Geodesy. As soon as we determine the geometry of the Earth pointwise by means of a satellite GPS (Global Positioning System: «global problem solver» we are left with the problem of converting ellipsoidal heights (geometric heights into orthometric heights (physical heights. For the computation of the plumbline we derive its three differential equations of first order as well as the three geodesic equations of second order. The three differential equations of second order take the form of a Newton differential equation when we introduce the parameter time via the Marussi gauge on a conformally flat three-dimensional Riemann manifold and the generalized force field, the gradient of the superpotential, namely the modulus of gravity squared and taken half. In particular, we compute curvature and torsion of the plumbline and prove their functional relationship to the second and third derivatives of the gravity potential. For a spherically symmetric gravity field, curvature and torsion of the plumbline are zero, the plumbline is straight. Finally we derive the three Lagrangean as well as the six Hamiltonian differential equations of the plumbline, in particular in their star form with respect to Marussi gauge.

  6. Hamilton-Jacobi theory of continuos systems

    International Nuclear Information System (INIS)

    Guler, Y.

    1987-01-01

    The Hamilton-Jacobi partial differential equation for classical field systems is obtained in a 5n-dimensional phase space and it is integrated by the method of characteristics. Space-time partial derivatives of Hamilton's principal functions S μ (Φ i , x v ) (μ, v = 1, 2, 3, 4) are identified as the energy-momentum tensor of the system

  7. Canonical quantization of so-called non-Lagrangian systems

    Energy Technology Data Exchange (ETDEWEB)

    Gitman, D.M. [Universidade de Sao Paulo, Instituto de Fisica, Caixa Postal 66318-CEP, Sao Paulo, S.P. (Brazil); Kupriyanov, V.G. [Universidade de Sao Paulo, Instituto de Fisica, Caixa Postal 66318-CEP, Sao Paulo, S.P. (Brazil); Tomsk State University, Physics Department, Tomsk (Russian Federation)

    2007-04-15

    We present an approach to the canonical quantization of systems with equations of motion that are historically called non-Lagrangian equations. Our viewpoint of this problem is the following: despite the fact that a set of differential equations cannot be directly identified with a set of Euler-Lagrange equations, one can reformulate such a set in an equivalent first-order form that can always be treated as the Euler-Lagrange equations of a certain action. We construct such an action explicitly. It turns out that in the general case the hamiltonization and canonical quantization of such an action are non-trivial problems, since the theory involves time-dependent constraints. We adopt the general approach of hamiltonization and canonical quantization for such theories as described in D.M. Gitman, I.V. Tyutin, Quantization of Fields with Constraints (Springer, Berlin, 1990). to the case under consideration. There exists an ambiguity (that cannot be reduced to the addition of a total time derivative) in associating a Lagrange function with a given set of equations. We present a complete description of this ambiguity. The proposed scheme is applied to the quantization of a general quadratic theory. In addition, we consider the quantization of a damped oscillator and of a radiating point-like charge. (orig.)

  8. Canonical quantization of so-called non-Lagrangian systems

    International Nuclear Information System (INIS)

    Gitman, D.M.; Kupriyanov, V.G.

    2007-01-01

    We present an approach to the canonical quantization of systems with equations of motion that are historically called non-Lagrangian equations. Our viewpoint of this problem is the following: despite the fact that a set of differential equations cannot be directly identified with a set of Euler-Lagrange equations, one can reformulate such a set in an equivalent first-order form that can always be treated as the Euler-Lagrange equations of a certain action. We construct such an action explicitly. It turns out that in the general case the hamiltonization and canonical quantization of such an action are non-trivial problems, since the theory involves time-dependent constraints. We adopt the general approach of hamiltonization and canonical quantization for such theories as described in D.M. Gitman, I.V. Tyutin, Quantization of Fields with Constraints (Springer, Berlin, 1990). to the case under consideration. There exists an ambiguity (that cannot be reduced to the addition of a total time derivative) in associating a Lagrange function with a given set of equations. We present a complete description of this ambiguity. The proposed scheme is applied to the quantization of a general quadratic theory. In addition, we consider the quantization of a damped oscillator and of a radiating point-like charge. (orig.)

  9. Generalized canonical quantization and background fields equations of motion in the Bosonic string theory

    International Nuclear Information System (INIS)

    Buchbinder, I.L.; Lyakhovich, S.L.; Pershin, V.D.; Fradkin, E.S.

    1991-01-01

    At present, superstring theory is the only candidate to be a unified theory of all fundamental interactions. For this reason, the various aspects of the string theory have been attracting great attention. String theory has a nontrivial gauge symmetry and therefore is an interesting object from the viewpoint of application of general quantization methods. This paper discusses the bosonic string theory. The purpose of this paper is a consistent operator quantization of the theory with the action. The natural basis for it is provided by the method of the generalized canonical quantization

  10. Canonical Methods in the Solution of Variable-Coefficient Lanchester-Type Equations of Modern Warfare

    National Research Council Canada - National Science Library

    Taylor, James G; Brown, Gerald G

    1976-01-01

    This paper develops a mathematical theory for solving deterministic, Lanchester-type, 'square-law' attrition equations for combat between two homogeneous forces with temporal variations in fire effectivenesses...

  11. Canonical harmonic tracking of charged particles in circular accelerators

    International Nuclear Information System (INIS)

    Kvardakov, V.; Levichev, E.

    2006-01-01

    Harmonic tracking is a method used to study non-linear particle dynamics in a circular accelerator. The tracking algorithm is based on numerical solution of the Hamilton equations of motion. An essential feature of the method is the approximation of Hamiltonian perturbation terms by a finite number of azimuthal harmonics, which provides an effective tool for optimization of non-linear particle motion. The equations of motion are solved canonically, with the first-order prediction made using the explicit Lie transformation. The major features of harmonic tracking are presented and examples of its application are discussed

  12. Canonical harmonic tracking of charged particles in circular accelerators

    Science.gov (United States)

    Kvardakov, V.; Levichev, E.

    2006-03-01

    Harmonic tracking is a method used to study non-linear particle dynamics in a circular accelerator. The tracking algorithm is based on numerical solution of the Hamilton equations of motion. An essential feature of the method is the approximation of Hamiltonian perturbation terms by a finite number of azimuthal harmonics, which provides an effective tool for optimization of non-linear particle motion. The equations of motion are solved canonically, with the first-order prediction made using the explicit Lie transformation. The major features of harmonic tracking are presented and examples of its application are discussed.

  13. Canonical formulations of a classical particle in a Yang-Mills field and Wong's equations

    International Nuclear Information System (INIS)

    Montgomery, R.

    1984-01-01

    Wong (1970) introduced equations of motion for a spin 0 particle in a Yang-Mills field which was widely accepted among physicists. It is shown that these are equivalent to the various mathematical formulations for the motion of such particles as given by the Kaluza-Klein formulation of Kerner, and those of Sternberg, and Weinstein. In doing this, we show that Sternberg's space is, in a natural way, a symplectic leaf of a reduced Poisson manifold and relations to a construction of Kummer's for dynamics on the cotangent bundle of a principle bundle are clarified. (orig.)

  14. Canonical formalism, fundamental equation, and generalized thermomechanics for irreversible fluids with heat transfer

    International Nuclear Information System (INIS)

    Sieniutycz, S.; Berry, R.S.

    1993-01-01

    A Lagrangian with dissipative (e.g., Onsager's) potentials is constructed for the field description of irreversible heat-conducting fluids, off local equilibrium. Extremum conditions of action yield Clebsch representations of temperature, chemical potential, velocities, and generalized momenta, including a thermal momentum introduced recently [R. L. Selinger and F. R. S. Whitham, Proc. R. Soc. London, Ser. A 302, 1 (1968); S. Sieniutycz and R. S. Berry, Phys. Rev. A 40, 348 (1989)]. The basic question asked is ''To what extent may irreversibility, represented by a given form of the entropy source, influence the analytical form of the conservation laws for the energy and momentum?'' Noether's energy for a fluid with heat flow is obtained, which leads to a fundamental equation and extended Hamiltonian dynamics obeying the second law of thermodynamics. While in the case of the Onsager potentials this energy coincides numerically with the classical energy E, it contains an extra term (vanishing along the path) still contributing to an irreversible evolution. Components of the energy-momentum tensor preserve all terms regarded standardly as ''irreversible'' (heat, tangential stresses, etc.) generalized to the case when thermodynamics includes the state gradients and the so-called thermal phase, which we introduce here. This variable, the Lagrange multiplier of the entropy generation balance, is crucial for consistent treatment of irreversible processes via an action formalism. We conclude with the hypothesis that embedding the first and second laws in the context of the extremal behavior of action under irreversible conditions may imply accretion of an additional term to the classical energy

  15. The canonical equation of adaptive dynamics for life histories: from fitness-returns to selection gradients and Pontryagin's maximum principle.

    Science.gov (United States)

    Metz, Johan A Jacob; Staňková, Kateřina; Johansson, Jacob

    2016-03-01

    This paper should be read as addendum to Dieckmann et al. (J Theor Biol 241:370-389, 2006) and Parvinen et al. (J Math Biol 67: 509-533, 2013). Our goal is, using little more than high-school calculus, to (1) exhibit the form of the canonical equation of adaptive dynamics for classical life history problems, where the examples in Dieckmann et al. (J Theor Biol 241:370-389, 2006) and Parvinen et al. (J Math Biol 67: 509-533, 2013) are chosen such that they avoid a number of the problems that one gets in this most relevant of applications, (2) derive the fitness gradient occurring in the CE from simple fitness return arguments, (3) show explicitly that setting said fitness gradient equal to zero results in the classical marginal value principle from evolutionary ecology, (4) show that the latter in turn is equivalent to Pontryagin's maximum principle, a well known equivalence that however in the literature is given either ex cathedra or is proven with more advanced tools, (5) connect the classical optimisation arguments of life history theory a little better to real biology (Mendelian populations with separate sexes subject to an environmental feedback loop), (6) make a minor improvement to the form of the CE for the examples in Dieckmann et al. and Parvinen et al.

  16. Backlund transformations as canonical transformations

    International Nuclear Information System (INIS)

    Villani, A.; Zimerman, A.H.

    1977-01-01

    Toda and Wadati as well as Kodama and Wadati have shown that the Backlund transformations, for the exponential lattice equation, sine-Gordon equation, K-dV (Korteweg de Vries) equation and modifies K-dV equation, are canonical transformation. It is shown that the Backlund transformation for the Boussinesq equation, for a generalized K-dV equation, for a model equation for shallow water waves and for the nonlinear Schroedinger equation are also canonical transformations [pt

  17. Canonical transformations and generating functionals

    NARCIS (Netherlands)

    Broer, L.J.F.; Kobussen, J.A.

    1972-01-01

    It is shown that canonical transformations for field variables in hamiltonian partial differential equations can be obtained from generating functionals in the same way as classical canonical transformations from generating functions. A simple proof of the relation between infinitesimal invariant

  18. Three dimensional canonical transformations

    International Nuclear Information System (INIS)

    Tegmen, A.

    2010-01-01

    A generic construction of canonical transformations is given in three-dimensional phase spaces on which Nambu bracket is imposed. First, the canonical transformations are defined as based on cannonade transformations. Second, it is shown that determination of the generating functions and the transformation itself for given generating function is possible by solving correspondent Pfaffian differential equations. Generating functions of type are introduced and all of them are listed. Infinitesimal canonical transformations are also discussed as the complementary subject. Finally, it is shown that decomposition of canonical transformations is also possible in three-dimensional phase spaces as in the usual two-dimensional ones.

  19. Some reference formulas for the generating functions of canonical transformations

    Energy Technology Data Exchange (ETDEWEB)

    Anselmi, Damiano [Universita di Pisa, Dipartimento di Fisica ' ' Enrico Fermi' ' , Pisa (Italy); INFN, Sezione di Pisa, Pisa (Italy)

    2016-02-15

    We study some properties of the canonical transformations in classical mechanics and quantum field theory and give a number of practical formulas concerning their generating functions. First, we give a diagrammatic formula for the perturbative expansion of the composition law around the identity map. Then we propose a standard way to express the generating function of a canonical transformation by means of a certain ''componential'' map, which obeys the Baker-Campbell-Hausdorff formula. We derive the diagrammatic interpretation of the componential map, work out its relation with the solution of the Hamilton-Jacobi equation and derive its time-ordered version. Finally, we generalize the results to the Batalin-Vilkovisky formalism, where the conjugate variables may have both bosonic and fermionic statistics, and describe applications to quantum field theory. (orig.)

  20. Sir William Rowan Hamilton

    Indian Academy of Sciences (India)

    IAS Admin

    In this picture, wave fronts are defined as surfaces of constant S(x), while .... Recall here that physical quantities are represented in ... his memory imperishable? Hamilton ... self in the words Ptolemy used of Hipparchus: a lover of labour and a ...

  1. The influence of the carbon surface chemical composition on Dubinin-Astakhov equation parameters calculated from SF{sub 6} adsorption data-grand canonical Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Furmaniak, Sylwester; Terzyk, Artur P; Gauden, Piotr A [Department of Chemistry, Physicochemistry of Carbon Materials Research Group, N Copernicus University, Gagarin Street 7, 87-100 Torun (Poland); Kowalczyk, Piotr [Nanochemistry Research Institute, Curtin University, PO Box U1987, Perth, WA 6845 (Australia); Harris, Peter J F, E-mail: aterzyk@chem.uni.torun.pl [Centre for Advanced Microscopy, University of Reading, Whiteknights, Reading RG6 6AF (United Kingdom)

    2011-10-05

    Using grand canonical Monte Carlo simulation we show, for the first time, the influence of the carbon porosity and surface oxidation on the parameters of the Dubinin-Astakhov (DA) adsorption isotherm equation. We conclude that upon carbon surface oxidation, the adsorption decreases for all carbons studied. Moreover, the parameters of the DA model depend on the number of surface oxygen groups. That is why in the case of carbons containing surface polar groups, SF{sub 6} adsorption isotherm data cannot be used for characterization of the porosity. (paper)

  2. Hamilton : the electric city

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, R [Richard Gilbert Consultant, Toronto, ON (Canada)

    2006-04-13

    The City of Hamilton has launched an extensive energy planning exercise that examines the possibility of steep increases in oil and natural gas prices. This report examined and illustrated the issue of oil and gas price points. The report also examined and presented the city's role in an era of energy constraints, focusing on the city's transit system and its vehicle fleet. In addition, in response to City Council's direction, the report presented the aerotropolis proposal and discussed freight transport issues. Specific topics of discussion included oil and natural gas prospects; prospects for high oil and natural gas prices; impacts of fuel price increases; strategic planning objectives for energy constraints; reducing energy use by Hamilton's transport and in buildings; and land-use planning for energy constraints. Energy production opportunities involve the use of solar energy; wind energy; deep lake water cooling (DLWC); hydro-electric power; energy from waste; biogas production; district energy; and local food production. Economic and social development through preparing for energy constraints and matters raised by city council were also presented. The report also demonstrated how an energy-based strategy could be paid for and its components approved. The next steps for Hamilton were also identified. refs., tabs., figs.

  3. Hamilton : the electric city

    International Nuclear Information System (INIS)

    Gilbert, R.

    2006-01-01

    The City of Hamilton has launched an extensive energy planning exercise that examines the possibility of steep increases in oil and natural gas prices. This report examined and illustrated the issue of oil and gas price points. The report also examined and presented the city's role in an era of energy constraints, focusing on the city's transit system and its vehicle fleet. In addition, in response to City Council's direction, the report presented the aerotropolis proposal and discussed freight transport issues. Specific topics of discussion included oil and natural gas prospects; prospects for high oil and natural gas prices; impacts of fuel price increases; strategic planning objectives for energy constraints; reducing energy use by Hamilton's transport and in buildings; and land-use planning for energy constraints. Energy production opportunities involve the use of solar energy; wind energy; deep lake water cooling (DLWC); hydro-electric power; energy from waste; biogas production; district energy; and local food production. Economic and social development through preparing for energy constraints and matters raised by city council were also presented. The report also demonstrated how an energy-based strategy could be paid for and its components approved. The next steps for Hamilton were also identified. refs., tabs., figs

  4. Titchmarsh-Weyl theory for canonical systems

    Directory of Open Access Journals (Sweden)

    Keshav Raj Acharya

    2014-11-01

    Full Text Available The main purpose of this paper is to develop Titchmarsh- Weyl theory of canonical systems. To this end, we first observe the fact that Schrodinger and Jacobi equations can be written into canonical systems. We then discuss the theory of Weyl m-function for canonical systems and establish the relation between the Weyl m-functions of Schrodinger equations and that of canonical systems which involve Schrodinger equations.

  5. Hamilton's principle for beginners

    International Nuclear Information System (INIS)

    Brun, J L

    2007-01-01

    I find that students have difficulty with Hamilton's principle, at least the first time they come into contact with it, and therefore it is worth designing some examples to help students grasp its complex meaning. This paper supplies the simplest example to consolidate the learning of the quoted principle: that of a free particle moving along a line. Next, students are challenged to add gravity to reinforce the argument and, finally, a two-dimensional motion in a vertical plane is considered. Furthermore these examples force us to be very clear about such an abstract principle

  6. Hamilton-Jacobi Approach to Pre-Big Bang Cosmology at Long-wavelengths

    CERN Document Server

    Saygili, K

    1999-01-01

    We apply the long-wavelength approximation to the low energy effective string action in the context of Hamilton-Jacobi theory. The Hamilton-Jacobi equation for the effective string action is explicitly invariant under scale factor duality. We present the leading order, general solution of the Hamilton-Jacobi equation. The Hamilton-Jacobi approach yields a solution consistent with the with the Lagrange formalism. The momentum constraints take an elegant, simple form. Furthermore this general solution reduces to the quasi-isotropic one, if the evolution of the gravitational field is neglected. Duality transformation for the general solution is written as a coordinate transformation in an abstract field space.

  7. Dirac Mass Dynamics in Multidimensional Nonlocal Parabolic Equations

    KAUST Repository

    Lorz, Alexander

    2011-01-17

    Nonlocal Lotka-Volterra models have the property that solutions concentrate as Dirac masses in the limit of small diffusion. Is it possible to describe the dynamics of the limiting concentration points and of the weights of the Dirac masses? What is the long time asymptotics of these Dirac masses? Can several Dirac masses coexist? We will explain how these questions relate to the so-called "constrained Hamilton-Jacobi equation" and how a form of canonical equation can be established. This equation has been established assuming smoothness. Here we build a framework where smooth solutions exist and thus the full theory can be developed rigorously. We also show that our form of canonical equation comes with a kind of Lyapunov functional. Numerical simulations show that the trajectories can exhibit unexpected dynamics well explained by this equation. Our motivation comes from population adaptive evolution a branch of mathematical ecology which models Darwinian evolution. © Taylor & Francis Group, LLC.

  8. William Rowan Hamilton: Mathematical genius

    Energy Technology Data Exchange (ETDEWEB)

    Wilkins, D.R. [School of Mathematics, Trinity College, Dublin (Ireland)]. E-mail: dwilkins@maths.tcd.ie

    2005-08-01

    This year Ireland celebrates the bicentenary of the mathematician William Rowan Hamilton, best remembered for 'quaternions' and for his pioneering work on optics and dynamics. Two centuries after his birth, the extent to which terms such as 'Hamiltonian' and 'Hamiltonian system' have entered the everyday language of mathematicians and physicists testifies to the continuing impact of the scientific work of William Rowan Hamilton. (U.K.)

  9. William Rowan Hamilton: Mathematical genius

    International Nuclear Information System (INIS)

    Wilkins, D.R.

    2006-01-01

    This year Ireland celebrates the bicentenary of the mathematician William Rowan Hamilton, best remembered for quaternions and for his pioneering work on optics and dynamics. Two centuries after his birth, the extent to which terms such as Hamiltonian and Hamiltonian system have entered the everyday language of mathematicians and physicists testifies to the continuing impact of the scientific work of William Rowan Hamilton. (U.K.)

  10. Time-advance algorithms based on Hamilton's principle

    International Nuclear Information System (INIS)

    Lewis, H.R.; Kostelec, P.J.

    1993-01-01

    Time-advance algorithms based on Hamilton's variational principle are being developed for application to problems in plasma physics and other areas. Hamilton's principle was applied previously to derive a system of ordinary differential equations in time whose solution provides an approximation to the evolution of a plasma described by the Vlasov-Maxwell equations. However, the variational principle was not used to obtain an algorithm for solving the ordinary differential equations numerically. The present research addresses the numerical solution of systems of ordinary differential equations via Hamilton's principle. The basic idea is first to choose a class of functions for approximating the solution of the ordinary differential equations over a specific time interval. Then the parameters in the approximating function are determined by applying Hamilton's principle exactly within the class of approximating functions. For example, if an approximate solution is desired between time t and time t + Δ t, the class of approximating functions could be polynomials in time up to some degree. The issue of how to choose time-advance algorithms is very important for achieving efficient, physically meaningful computer simulations. The objective is to reliably simulate those characteristics of an evolving system that are scientifically most relevant. Preliminary numerical results are presented, including comparisons with other computational methods

  11. Hamilton-Jacobi formalism for Podolsky's electromagnetic theory on the null-plane

    Science.gov (United States)

    Bertin, M. C.; Pimentel, B. M.; Valcárcel, C. E.; Zambrano, G. E. R.

    2017-08-01

    We develop the Hamilton-Jacobi formalism for Podolsky's electromagnetic theory on the null-plane. The main goal is to build the complete set of Hamiltonian generators of the system as well as to study the canonical and gauge transformations of the theory.

  12. The Magnus problem in Rodrigues-Hamilton parameters

    Science.gov (United States)

    Koshliakov, V. N.

    1984-04-01

    The formalism of Rodrigues-Hamilton parameters is applied to the Magnus problem related to the systematic drift of a gimbal-mounted astatic gyroscope due to the nutational vibration of the main axis of the rotor. It is shown that the use of the above formalism makes it possible to limit the analysis to a consideration of a linear system of differential equations written in perturbed values of Rodrigues-Hamilton parameters. A refined formula for the drift of the main axis of the gyroscope rotor is obtained, and an estimation is made of the effect of the truncation of higher-order terms.

  13. Unified Symmetry of Hamilton Systems

    International Nuclear Information System (INIS)

    Xu Xuejun; Qin Maochang; Mei Fengxiang

    2005-01-01

    The definition and the criterion of a unified symmetry for a Hamilton system are presented. The sufficient condition under which the Noether symmetry is a unified symmetry for the system is given. A new conserved quantity, as well as the Noether conserved quantity and the Hojman conserved quantity, deduced from the unified symmetry, is obtained. An example is finally given to illustrate the application of the results.

  14. Benney's long wave equations

    International Nuclear Information System (INIS)

    Lebedev, D.R.

    1979-01-01

    Benney's equations of motion of incompressible nonviscous fluid with free surface in the approximation of long waves are analyzed. The connection between the Lie algebra of Hamilton plane vector fields and the Benney's momentum equations is shown

  15. CANONICAL BACKWARD DIFFERENTIATION SCHEMES FOR ...

    African Journals Online (AJOL)

    This paper describes a new nonlinear backward differentiation schemes for the numerical solution of nonlinear initial value problems of first order ordinary differential equations. The schemes are based on rational interpolation obtained from canonical polynomials. They are A-stable. The test problems show that they give ...

  16. Canonical symplectic particle-in-cell method for long-term large-scale simulations of the Vlasov–Maxwell equations

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Hong; Liu, Jian; Xiao, Jianyuan; Zhang, Ruili; He, Yang; Wang, Yulei; Sun, Yajuan; Burby, Joshua W.; Ellison, Leland; Zhou, Yao

    2015-12-14

    Particle-in-cell (PIC) simulation is the most important numerical tool in plasma physics. However, its long-term accuracy has not been established. To overcome this difficulty, we developed a canonical symplectic PIC method for the Vlasov-Maxwell system by discretising its canonical Poisson bracket. A fast local algorithm to solve the symplectic implicit time advance is discovered without root searching or global matrix inversion, enabling applications of the proposed method to very large-scale plasma simulations with many, e.g. 10(9), degrees of freedom. The long-term accuracy and fidelity of the algorithm enables us to numerically confirm Mouhot and Villani's theory and conjecture on nonlinear Landau damping over several orders of magnitude using the PIC method, and to calculate the nonlinear evolution of the reflectivity during the mode conversion process from extraordinary waves to Bernstein waves.

  17. Higher order derivatives via Hamilton-Jacobi approach

    International Nuclear Information System (INIS)

    Bertin, M.C.; Pimentel, B.M.; Pompeia, P.J.

    2006-01-01

    In this work we will show how can be derived a general method for dealing with Lagrangians containing high order derivatives using the Hamilton-Jacobi Formalism for singular systems. By the expansion the configuration space of a n dimensional system we will be able to introduce first order actions and build the equations of motion of the system. We will work with the Generalized Electrodynamics of Podolsky as an example. (author)

  18. Hamilton-Jacobi theorems for regular reducible Hamiltonian systems on a cotangent bundle

    Science.gov (United States)

    Wang, Hong

    2017-09-01

    In this paper, some of formulations of Hamilton-Jacobi equations for Hamiltonian system and regular reduced Hamiltonian systems are given. At first, an important lemma is proved, and it is a modification for the corresponding result of Abraham and Marsden (1978), such that we can prove two types of geometric Hamilton-Jacobi theorem for a Hamiltonian system on the cotangent bundle of a configuration manifold, by using the symplectic form and dynamical vector field. Then these results are generalized to the regular reducible Hamiltonian system with symmetry and momentum map, by using the reduced symplectic form and the reduced dynamical vector field. The Hamilton-Jacobi theorems are proved and two types of Hamilton-Jacobi equations, for the regular point reduced Hamiltonian system and the regular orbit reduced Hamiltonian system, are obtained. As an application of the theoretical results, the regular point reducible Hamiltonian system on a Lie group is considered, and two types of Lie-Poisson Hamilton-Jacobi equation for the regular point reduced system are given. In particular, the Type I and Type II of Lie-Poisson Hamilton-Jacobi equations for the regular point reduced rigid body and heavy top systems are shown, respectively.

  19. Beyond WKB quantum corrections to Hamilton-Jacobi theory

    International Nuclear Information System (INIS)

    Jurisch, Alexander

    2007-01-01

    In this paper, we develop quantum mechanics of quasi-one-dimensional systems upon the framework of the quantum-mechanical Hamilton-Jacobi theory. We will show that the Schroedinger point of view and the Hamilton-Jacobi point of view are fully equivalent in their description of physical systems, but differ in their descriptive manner. As a main result of this, a wavefunction in Hamilton-Jacobi theory can be decomposed into travelling waves in any point in space, not only asymptotically. Using the quasi-linearization technique, we derive quantum correction functions in every order of h-bar. The quantum correction functions will remove the turning-point singularity that plagues the WKB-series expansion already in zeroth order and thus provide an extremely good approximation to the full solution of the Schroedinger equation. In the language of quantum action it is also possible to elegantly solve the connection problem without asymptotic approximations. The use of quantum action further allows us to derive an equation by which the Maslov index is directly calculable without any approximations. Stationary quantum trajectories will also be considered and thoroughly discussed

  20. Regularization of Hamilton-Lagrangian guiding center theories

    International Nuclear Information System (INIS)

    Correa-Restrepo, D.; Wimmel, H.K.

    1985-04-01

    The Hamilton-Lagrangian guiding-center (G.C.) theories of Littlejohn, Wimmel, and Pfirsch show a singularity for B-fields with non-vanishing parallel curl at a critical value of vsub(parallel), which complicates applications. The singularity is related to a sudden breakdown, at a critical vsub(parallel), of gyration in the exact particle mechanics. While the latter is a real effect, the G.C. singularity can be removed. To this end a regularization method is defined that preserves the Hamilton-Lagrangian structure and the conservation theorems. For demonstration this method is applied to the standard G.C. theory (without polarization drift). Liouville's theorem and G.C. kinetic equations are also derived in regularized form. The method could equally well be applied to the case with polarization drift and to relativistic G.C. theory. (orig.)

  1. Lie-Hamilton systems on curved spaces: a geometrical approach

    Science.gov (United States)

    Herranz, Francisco J.; de Lucas, Javier; Tobolski, Mariusz

    2017-12-01

    A Lie-Hamilton system is a nonautonomous system of first-order ordinary differential equations describing the integral curves of a t-dependent vector field taking values in a finite-dimensional Lie algebra, a Vessiot-Guldberg Lie algebra, of Hamiltonian vector fields relative to a Poisson structure. Its general solution can be written as an autonomous function, the superposition rule, of a generic finite family of particular solutions and a set of constants. We pioneer the study of Lie-Hamilton systems on Riemannian spaces (sphere, Euclidean and hyperbolic plane), pseudo-Riemannian spaces (anti-de Sitter, de Sitter, and Minkowski spacetimes) as well as on semi-Riemannian spaces (Newtonian spacetimes). Their corresponding constants of motion and superposition rules are obtained explicitly in a geometric way. This work extends the (graded) contraction of Lie algebras to a contraction procedure for Lie algebras of vector fields, Hamiltonian functions, and related symplectic structures, invariants, and superposition rules.

  2. Existence of solutions for Hamiltonian field theories by the Hamilton-Jacobi technique

    International Nuclear Information System (INIS)

    Bruno, Danilo

    2011-01-01

    The paper is devoted to prove the existence of a local solution of the Hamilton-Jacobi equation in field theory, whence the general solution of the field equations can be obtained. The solution is adapted to the choice of the submanifold where the initial data of the field equations are assigned. Finally, a technique to obtain the general solution of the field equations, starting from the given initial manifold, is deduced.

  3. Canonical pseudotensors, Sparling's form and Noether currents

    International Nuclear Information System (INIS)

    Szabados, L.B.

    1991-09-01

    The canonical energy - momentum and spin pseudotensors of the Einstein theory are studied in two ways. First they are studied in the framework of Lagrangian formalism. It is shown, that for first order Lagrangian and rigid basis description the canonical energy - momentum, the canonical spin, and the Noether current are tensorial quantities, and the canonial energy - momentum and spin tensors satisfy the tensorial Belinfante-Rosenfeld equations. Then the differential geometric unification and reformulation of the previous different pseudotensorial approaches is given. Finally, for any vector field on the spacetime an (m-1) form, called the Noether form is defined. (K.A.) 34 refs

  4. Hamiltonian theory of wave and particle in quantum mechanics 2. Hamilton-Jacobi theory and particle back-reaction

    International Nuclear Information System (INIS)

    Holland, P.

    2001-01-01

    Pursuing the Hamiltonian formulation of the De Broglie-Bohm (deBB) theory presented in the preceding paper, the Hamilton-Jacobi (HJ) theory of the wave-particle system is developed. It is shown how to derive a HJ equation for the particle, which enables trajectories to be computed algebraically using Jacobi's method. Using Liouville's equation in the HJ representation it was found the restriction on the Jacobi solutions which implies the quantal distribution. This gives a first method for interpreting the deBB theory in HJ terms. A second method proceeds via an explicit solution of the field+particle HJ equation. Both methods imply that the quantum phase may be interpreted as an incomplete integral. Using these results and those of the first paper it is shown how Schroedinger's equation can be represented in Liouvilian terms, and vice versa. The general theory of canonical transformations that represent quantum unitary transformations is given, and it is shown in principle how the trajectory theory may be expressed in other quantum representations. Using the solution found for the total HJ equation, an explicit solution for the additional field containing a term representing the particle back-reaction is found. The conservation of energy and momentum in the model is established, and weak form of the action-reaction principle is shown to hold. Alternative forms for the Hamiltonian are explored and it is shown that, within this theoretical context, the deBB theory is not unique. The theory potentially provides an alternative way of obtaining the classical limit

  5. Hamilton's gradient estimate for the heat kernel on complete manifolds

    OpenAIRE

    Kotschwar, Brett

    2007-01-01

    In this paper we extend a gradient estimate of R. Hamilton for positive solutions to the heat equation on closed manifolds to bounded positive solutions on complete, non-compact manifolds with $Rc \\geq -Kg$. We accomplish this extension via a maximum principle of L. Karp and P. Li and a Bernstein-type estimate on the gradient of the solution. An application of our result, together with the bounds of P. Li and S.T. Yau, yields an estimate on the gradient of the heat kernel for complete manifol...

  6. Multimodal electromechanical model of piezoelectric transformers by Hamilton's principle.

    Science.gov (United States)

    Nadal, Clement; Pigache, Francois

    2009-11-01

    This work deals with a general energetic approach to establish an accurate electromechanical model of a piezoelectric transformer (PT). Hamilton's principle is used to obtain the equations of motion for free vibrations. The modal characteristics (mass, stiffness, primary and secondary electromechanical conversion factors) are also deduced. Then, to illustrate this general electromechanical method, the variational principle is applied to both homogeneous and nonhomogeneous Rosen-type PT models. A comparison of modal parameters, mechanical displacements, and electrical potentials are presented for both models. Finally, the validity of the electrodynamical model of nonhomogeneous Rosen-type PT is confirmed by a numerical comparison based on a finite elements method and an experimental identification.

  7. Canonical trivialization of gravitational gradients

    International Nuclear Information System (INIS)

    Niedermaier, Max

    2017-01-01

    A one-parameter family of canonical transformations is constructed that reduces the Hamiltonian form of the Einstein–Hilbert action to its strong coupling limit where dynamical spatial gradients are absent. The parameter can alternatively be viewed as the overall scale of the spatial metric or as a fractional inverse power of Newton’s constant. The generating function of the canonical transformation is constructed iteratively as a powerseries in the parameter to all orders. The algorithm draws on Lie–Deprit transformation theory and defines a ‘trivialization map’ with several bonus properties: (i) Trivialization of the Hamiltonian constraint implies that of the action while the diffeomorphism constraint is automatically co-transformed. (ii) Only a set of ordinary differential equations needs to be solved to drive the iteration via a homological equation where no gauge fixing is required. (iii) In contrast to (the classical limit of) a Lagrangian trivialization map the algorithm also produces series solutions of the field equations. (iv) In the strong coupling theory temporal gauge variations are abelian, nevertheless the map intertwines with the respective gauge symmetries on the action, the field equations, and their solutions. (paper)

  8. Canonical trivialization of gravitational gradients

    Science.gov (United States)

    Niedermaier, Max

    2017-06-01

    A one-parameter family of canonical transformations is constructed that reduces the Hamiltonian form of the Einstein-Hilbert action to its strong coupling limit where dynamical spatial gradients are absent. The parameter can alternatively be viewed as the overall scale of the spatial metric or as a fractional inverse power of Newton’s constant. The generating function of the canonical transformation is constructed iteratively as a powerseries in the parameter to all orders. The algorithm draws on Lie-Deprit transformation theory and defines a ‘trivialization map’ with several bonus properties: (i) Trivialization of the Hamiltonian constraint implies that of the action while the diffeomorphism constraint is automatically co-transformed. (ii) Only a set of ordinary differential equations needs to be solved to drive the iteration via a homological equation where no gauge fixing is required. (iii) In contrast to (the classical limit of) a Lagrangian trivialization map the algorithm also produces series solutions of the field equations. (iv) In the strong coupling theory temporal gauge variations are abelian, nevertheless the map intertwines with the respective gauge symmetries on the action, the field equations, and their solutions.

  9. Hamilton's indicators of the force of selection

    DEFF Research Database (Denmark)

    Baudisch, Annette

    2005-01-01

    To quantify the force of selection, Hamilton [Hamilton, W. D. (1966) J. Theor. Biol. 12, 12-45] derived expressions for the change in fitness with respect to age-specific mutations. Hamilton's indicators are decreasing functions of age. He concluded that senescence is inevitable: survival...... and fertility decline with age. I show that alternative parameterizations of mutational effects lead to indicators that can increase with age. I then consider the case of deleterious mutations with age-specific effects. In this case, it is the balance between mutation and selection pressure that determines...... the equilibrium number of mutations in a population. In this balance, the effects of different parameterizations cancel out, but only to a linear approximation. I show that mutation accumulation has little impact at ages when this linear approximation holds. When mutation accumulation matters, nonlinear effects...

  10. Canonical formalism for relativistic dynamics

    International Nuclear Information System (INIS)

    Penafiel-Nava, V.M.

    1982-01-01

    The possibility of a canonical formalism appropriate for a dynamical theory of isolated relativistic multiparticle systems involving scalar interactions is studied. It is shown that a single time-parameter structure satisfying the requirements of Poincare invariance and simultaneity of the constituents (global tranversality) can not be derived from a homogeneous Lagrangian. The dynamics is deduced initially from a non-homogeneous but singular Lagrangian designed to accommodate the global tranversality constraints with the equaltime plane associated to the total momentum of the system. An equivalent standard Lagrangian is used to generalize the parametrization procedure which is referred to an arbitrary geodesic in Minkowski space. The equations of motion and the definition of center of momentum are invariant with respect to the choice of geodesic and the entire formalism becomes separable. In the original 8N-dimensional phase-space, the symmetries of the Lagrangian give rise to a canonical realization of a fifteen-generator Lie algebra which is projected in the 6N dimensional hypersurface of dynamical motions. The time-component of the total momentum is thus reduced to a neutral element and the canonical Hamiltonian survives as the only generator for time-translations so that the no-interaction theorem becomes inapplicable

  11. Fifty years with the Hamilton scales for anxiety and depression. A tribute to Max Hamilton.

    Science.gov (United States)

    Bech, P

    2009-01-01

    From the moment Max Hamilton started his psychiatric education, he considered psychometrics to be a scientific discipline on a par with biochemistry or pharmacology in clinical research. His clinimetric skills were in operation in the 1950s when randomised clinical trials were established as the method for the evaluation of the clinical effects of psychotropic drugs. Inspired by Eysenck, Hamilton took the long route around factor analysis in order to qualify his scales for anxiety (HAM-A) and depression (HAM-D) as scientific tools. From the moment when, 50 years ago, Hamilton published his first placebo-controlled trial with an experimental anti-anxiety drug, he realized the dialectic problem in using the total score on HAM-A as a sufficient statistic for the measurement of outcome. This dialectic problem has been investigated for more than 50 years with different types of factor analyses without success. Using modern psychometric methods, the solution to this problem is a simple matter of reallocating the Hamilton scale items according to the scientific hypothesis under examination. Hamilton's original intention, to measure the global burden of the symptoms experienced by the patients with affective disorders, is in agreement with the DSM-IV and ICD-10 classification systems. Scale reliability and obtainment of valid information from patients and their relatives were the most important clinimetric innovations to be developed by Hamilton. Max Hamilton therefore belongs to the very exclusive family of eminent physicians celebrated by this journal with a tribute. 2009 S. Karger AG, Basel.

  12. Hamilton-Jacobi approach to non-slow-roll inflation

    International Nuclear Information System (INIS)

    Kinney, W.H.

    1997-01-01

    I describe a general approach to characterizing cosmological inflation outside the standard slow-roll approximation, based on the Hamilton-Jacobi formulation of scalar field dynamics. The basic idea is to view the equation of state of the scalar field matter as the fundamental dynamical variable, as opposed to the field value or the expansion rate. I discuss how to formulate the equations of motion for scalar and tensor fluctuations in situations where the assumption of slow roll is not valid. I apply the general results to the simple case of inflation from an open-quotes invertedclose quotes polynomial potential, and to the more complicated case of hybrid inflation. copyright 1997 The American Physical Society

  13. El canon literario peruano

    Directory of Open Access Journals (Sweden)

    Carlos García-Bedoya Maguiña

    2011-05-01

    Full Text Available Canon es un concepto clave en la historia literaria. En el presente artículo,se revisa la evolución histórica del canon literario peruano. Es solo con la llamada República Aristocrática, en las primeras décadas del siglo XX, que cabe hablar en el caso peruano de la formación de un auténtico canon nacional. El autor denomina a esta primera versión del canon literario peruano como canon oligárquico y destaca la importancia de la obra de Riva Agüero y de Ventura García Calderón en su configuración. Es solo más tarde, desde los años 20 y de modo definitivo desde los años 50, que puede hablarse de la emergencia de un nuevo canon literarioal que el autor propone determinar canon posoligárquico.

  14. Measuring Social Capital in Hamilton, Ontario

    Science.gov (United States)

    Kitchen, Peter; Williams, Allison; Simone, Dylan

    2012-01-01

    Social capital has been studied by academics for more than 20 years and within the past decade there has been an explosion of growth in research linking social capital to health. This paper investigates social capital in Hamilton, Ontario by way of a telephone survey of 1,002 households in three neighbourhood groups representing high, mixed and…

  15. Algebra and Geometry of Hamilton's Quaternions

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... ... Public Lectures · Lecture Workshops · Refresher Courses · Symposia. Home; Journals; Resonance – Journal of Science Education; Volume 21; Issue 6. Algebra and Geometry of Hamilton's Quaternions: 'Well, Papa, Can You Multiply Triplets?' General Article Volume 21 Issue 6 June 2016 pp 529-544 ...

  16. Canonical Information Analysis

    DEFF Research Database (Denmark)

    Vestergaard, Jacob Schack; Nielsen, Allan Aasbjerg

    2015-01-01

    is replaced by the information theoretical, entropy based measure mutual information, which is a much more general measure of association. We make canonical information analysis feasible for large sample problems, including for example multispectral images, due to the use of a fast kernel density estimator......Canonical correlation analysis is an established multivariate statistical method in which correlation between linear combinations of multivariate sets of variables is maximized. In canonical information analysis introduced here, linear correlation as a measure of association between variables...... for entropy estimation. Canonical information analysis is applied successfully to (1) simple simulated data to illustrate the basic idea and evaluate performance, (2) fusion of weather radar and optical geostationary satellite data in a situation with heavy precipitation, and (3) change detection in optical...

  17. On the equations of motion

    International Nuclear Information System (INIS)

    Jannussis, A.; Streclas, A.; Sourlas, D.; Vlachos, K.

    1977-01-01

    Using the theorem of the derivative of a function of operators with respect to any parameter, we can find the equation of motion of a system in classical mechanics, in canonical as well as in non-canonical mechanics

  18. Classifying Linear Canonical Relations

    OpenAIRE

    Lorand, Jonathan

    2015-01-01

    In this Master's thesis, we consider the problem of classifying, up to conjugation by linear symplectomorphisms, linear canonical relations (lagrangian correspondences) from a finite-dimensional symplectic vector space to itself. We give an elementary introduction to the theory of linear canonical relations and present partial results toward the classification problem. This exposition should be accessible to undergraduate students with a basic familiarity with linear algebra.

  19. Generalized canonical correlation analysis with missing values

    NARCIS (Netherlands)

    M. van de Velden (Michel); Y. Takane

    2009-01-01

    textabstractTwo new methods for dealing with missing values in generalized canonical correlation analysis are introduced. The first approach, which does not require iterations, is a generalization of the Test Equating method available for principal component analysis. In the second approach,

  20. Relations between canonical and non-canonical inflation

    Energy Technology Data Exchange (ETDEWEB)

    Gwyn, Rhiannon [Max-Planck-Institut fuer Gravitationsphysik (Albert-Einstein-Institut), Potsdam (Germany); Rummel, Markus [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Westphal, Alexander [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group

    2012-12-15

    We look for potential observational degeneracies between canonical and non-canonical models of inflation of a single field {phi}. Non-canonical inflationary models are characterized by higher than linear powers of the standard kinetic term X in the effective Lagrangian p(X,{phi}) and arise for instance in the context of the Dirac-Born-Infeld (DBI) action in string theory. An on-shell transformation is introduced that transforms non-canonical inflationary theories to theories with a canonical kinetic term. The 2-point function observables of the original non-canonical theory and its canonical transform are found to match in the case of DBI inflation.

  1. Value functions for certain class of Hamilton Jacobi equations

    Indian Academy of Sciences (India)

    in Rn × R+ and m > 1, with bounded, Lipschitz continuous initial data. We give a. Hopf-Lax type representation for the value function and also characterize the set of minimizing paths. It is shown that the minimizing paths in the representation of value function need not be straight lines. Then we consider HJE with ...

  2. Hamilton's equations for a fluid membrane: axial symmetry

    International Nuclear Information System (INIS)

    Capovilla, R; Guven, J; Rojas, E

    2005-01-01

    Consider a homogeneous fluid membrane, or vesicle, described by the Helfrich-Canham energy, quadratic in the mean curvature. When the membrane is axially symmetric, this energy can be viewed as an 'action' describing the motion of a particle; the contours of equilibrium geometries are identified with particle trajectories. A novel Hamiltonian formulation of the problem is presented which exhibits the following two features: (i) the second derivatives appearing in the action through the mean curvature are accommodated in a natural phase space and (ii) the intrinsic freedom associated with the choice of evolution parameter along the contour is preserved. As a result, the phase space involves momenta conjugate not only to the particle position but also to its velocity, and there are constraints on the phase space variables. This formulation provides the groundwork for a field theoretical generalization to arbitrary configurations, with the particle replaced by a loop in space

  3. Canonical coordinates for partial differential equations

    Science.gov (United States)

    Hunt, L. R.; Villarreal, Ramiro

    1988-01-01

    Necessary and sufficient conditions are found under which operators of the form Sigma (m, j=1) x (2) sub j + X sub O can be made constant coefficient. In addition, necessary and sufficient conditions are derived which classify those linear partial differential operators that can be moved to the Kolmogorov type.

  4. Canonical coordinates for partial differential equations

    Science.gov (United States)

    Hunt, L. R.; Villarreal, Ramiro

    1987-01-01

    Necessary and sufficient conditions are found under which operators of the form Sigma(m, j=1) X(2)sub j + X sub 0 can be made constant coefficient. In addition, necessary and sufficient conditions are derived which classify those linear partial differential operators that can be moved to the Kolmogorov type.

  5. Equationally Noetherian property of Ershov algebras

    OpenAIRE

    Dvorzhetskiy, Yuriy

    2014-01-01

    This article is about equationally Noetherian and weak equationally Noetherian property of Ershov algebras. Here we show two canonical forms of the system of equations over Ershov algebras and two criteria of equationally Noetherian and weak equationally Noetherian properties.

  6. Hamiltonization of theories with degenerate coordinates

    International Nuclear Information System (INIS)

    Gitman, D.M.; Tyutin, I.V.

    2002-01-01

    We consider a class of Lagrangian theories where part of the coordinates does not have any time derivatives in the Lagrange function (we call such coordinates degenerate). We advocate that it is reasonable to reconsider the conventional definition of singularity based on the usual Hessian and, moreover, to simplify the conventional hamiltonization procedure. In particular, in such a procedure, it is not necessary to complete the degenerate coordinates with the corresponding conjugate momenta

  7. Hamiltonization of theories with degenerate coordinates

    Energy Technology Data Exchange (ETDEWEB)

    Gitman, D.M. E-mail: gitman@fma.if.usp.br; Tyutin, I.V. E-mail: tyutin@lpi.ru

    2002-05-27

    We consider a class of Lagrangian theories where part of the coordinates does not have any time derivatives in the Lagrange function (we call such coordinates degenerate). We advocate that it is reasonable to reconsider the conventional definition of singularity based on the usual Hessian and, moreover, to simplify the conventional hamiltonization procedure. In particular, in such a procedure, it is not necessary to complete the degenerate coordinates with the corresponding conjugate momenta.

  8. On the use of the autonomous Birkhoff equations in Lie series perturbation theory

    Science.gov (United States)

    Boronenko, T. S.

    2017-02-01

    In this article, we present the Lie transformation algorithm for autonomous Birkhoff systems. Here, we are referring to Hamiltonian systems that obey a symplectic structure of the general form. The Birkhoff equations are derived from the linear first-order Pfaff-Birkhoff variational principle, which is more general than the Hamilton principle. The use of 1-form in formulating the equations of motion in dynamics makes the Birkhoff method more universal and flexible. Birkhoff's equations have a tensorial character, so their form is independent of the coordinate system used. Two examples of normalization in the restricted three-body problem are given to illustrate the application of the algorithm in perturbation theory. The efficiency of this algorithm for problems of asymptotic integration in dynamics is discussed for the case where there is a need to use non-canonical variables in phase space.

  9. Fractional Schroedinger equation

    International Nuclear Information System (INIS)

    Laskin, Nick

    2002-01-01

    Some properties of the fractional Schroedinger equation are studied. We prove the Hermiticity of the fractional Hamilton operator and establish the parity conservation law for fractional quantum mechanics. As physical applications of the fractional Schroedinger equation we find the energy spectra of a hydrogenlike atom (fractional 'Bohr atom') and of a fractional oscillator in the semiclassical approximation. An equation for the fractional probability current density is developed and discussed. We also discuss the relationships between the fractional and standard Schroedinger equations

  10. Unified correspondence and canonicity

    NARCIS (Netherlands)

    Zhao, Z.

    2018-01-01

    Correspondence theory originally arises as the study of the relation between modal formulas and first-order formulas interpreted over Kripke frames. We say that a modal formula and a first-order formula correspond to each other if they are valid on the same class of Kripke frames. Canonicity theory

  11. Canonical variate regression.

    Science.gov (United States)

    Luo, Chongliang; Liu, Jin; Dey, Dipak K; Chen, Kun

    2016-07-01

    In many fields, multi-view datasets, measuring multiple distinct but interrelated sets of characteristics on the same set of subjects, together with data on certain outcomes or phenotypes, are routinely collected. The objective in such a problem is often two-fold: both to explore the association structures of multiple sets of measurements and to develop a parsimonious model for predicting the future outcomes. We study a unified canonical variate regression framework to tackle the two problems simultaneously. The proposed criterion integrates multiple canonical correlation analysis with predictive modeling, balancing between the association strength of the canonical variates and their joint predictive power on the outcomes. Moreover, the proposed criterion seeks multiple sets of canonical variates simultaneously to enable the examination of their joint effects on the outcomes, and is able to handle multivariate and non-Gaussian outcomes. An efficient algorithm based on variable splitting and Lagrangian multipliers is proposed. Simulation studies show the superior performance of the proposed approach. We demonstrate the effectiveness of the proposed approach in an [Formula: see text] intercross mice study and an alcohol dependence study. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Fifty years with the Hamilton scales for anxiety and depression. A tribute to Max Hamilton

    DEFF Research Database (Denmark)

    Bech, P; Bech, P

    2009-01-01

    as the method for the evaluation of the clinical effects of psychotropic drugs. Inspired by Eysenck, Hamilton took the long route around factor analysis in order to qualify his scales for anxiety (HAM-A) and depression (HAM-D) as scientific tools. From the moment when, 50 years ago, Hamilton published his first...... placebo-controlled trial with an experimental anti-anxiety drug, he realized the dialectic problem in using the total score on HAM-A as a sufficient statistic for the measurement of outcome. This dialectic problem has been investigated for more than 50 years with different types of factor analyses without...

  13. The canonical and grand canonical models for nuclear ...

    Indian Academy of Sciences (India)

    Many observables seen in intermediate energy heavy-ion collisions can be explained on the basis of statistical equilibrium. Calculations based on statistical equilibrium can be implemented in microcanonical ensemble, canonical ensemble or grand canonical ensemble. This paper deals with calculations with canonical ...

  14. Quaternion Linear Canonical Transform Application

    OpenAIRE

    Bahri, Mawardi

    2015-01-01

    Quaternion linear canonical transform (QLCT) is a generalization of the classical linear canonical transfom (LCT) using quaternion algebra. The focus of this paper is to introduce an application of the QLCT to study of generalized swept-frequency filter

  15. Canonical transformations of Kepler trajectories

    International Nuclear Information System (INIS)

    Mostowski, Jan

    2010-01-01

    In this paper, canonical transformations generated by constants of motion in the case of the Kepler problem are discussed. It is shown that canonical transformations generated by angular momentum are rotations of the trajectory. Particular attention is paid to canonical transformations generated by the Runge-Lenz vector. It is shown that these transformations change the eccentricity of the orbit. A method of obtaining elliptic trajectories from the circular ones with the help of canonical trajectories is discussed.

  16. Whose Canon? Culturalization versus Democratization

    Directory of Open Access Journals (Sweden)

    Erling Bjurström

    2012-06-01

    Full Text Available Current accounts – and particularly the critique – of canon formation are primarily based on some form of identity politics. In the 20th century a representational model of social identities replaced cultivation as the primary means to democratize the canons of the fine arts. In a parallel development, the discourse on canons has shifted its focus from processes of inclusion to those of exclusion. This shift corresponds, on the one hand, to the construction of so-called alternative canons or counter-canons, and, on the other hand, to attempts to restore the authority of canons considered to be in a state of crisis or decaying. Regardless of the democratic stance of these efforts, the construction of alternatives or the reestablishment of decaying canons does not seem to achieve their aims, since they break with the explicit and implicit rules of canon formation. Politically motivated attempts to revise or restore a specific canon make the workings of canon formation too visible, transparent and calculated, thereby breaking the spell of its imaginary character. Retracing the history of the canonization of the fine arts reveals that it was originally tied to the disembedding of artists and artworks from social and worldly affairs, whereas debates about canons of the fine arts since the end of the 20th century are heavily dependent on their social, cultural and historical reembedding. The latter has the character of disenchantment, but has also fettered the canon debate in notions of “our” versus “their” culture. However, by emphasizing the dedifferentiation of contemporary processes of culturalization, the advancing canonization of popular culture seems to be able to break with identity politics that foster notions of “our” culture in the present thinking on canons, and push it in a more transgressive, syncretic or hybrid direction.

  17. Canonical formalism for coupled beam optics

    International Nuclear Information System (INIS)

    Kheifets, S.A.

    1989-09-01

    Beam optics of a lattice with an inter-plane coupling is treated using canonical Hamiltonian formalism. The method developed is equally applicable both to a circular (periodic) machine and to an open transport line. A solution of the equation of a particle motion (and correspondingly transfer matrix between two arbitrary points of the lattice) are described in terms of two amplitude functions (and their derivatives and corresponding phases of oscillations) and four coupling functions, defined by a solution of the system of the first-order nonlinear differential equations derived in the paper. Thus total number of independent parameters is equal to ten. 8 refs

  18. Viscous warm inflation: Hamilton-Jacobi formalism

    Science.gov (United States)

    Akhtari, L.; Mohammadi, A.; Sayar, K.; Saaidi, Kh.

    2017-04-01

    Using Hamilton-Jacobi formalism, the scenario of warm inflation with viscous pressure is considered. The formalism gives a way of computing the slow-rolling parameter without extra approximation, and it is well-known as a powerful method in cold inflation. The model is studied in detail for three different cases of the dissipation and bulk viscous pressure coefficients. In the first case where both coefficients are taken as constant, it is shown that the case could not portray warm inflationary scenario compatible with observational data even it is possible to restrict the model parameters. For other cases, the results shows that the model could properly predicts the perturbation parameters in which they stay in perfect agreement with Planck data. As a further argument, r -ns and αs -ns are drown that show the acquired result could stand in acceptable area expressing a compatibility with observational data.

  19. Hamilton y el Descubrimiento de los Cuaterniones

    Directory of Open Access Journals (Sweden)

    José Manuel Sánchez Muñoz

    2011-10-01

    Full Text Available Este artículo pretende ofrecer una visión general del descubrimiento de los llamados cuaterniones por parte del matemático irlandés William Rowan Hamilton. Se pretende dar al lector algunos detalles del nacimiento de los números imaginarios en el siglo XVI, su interpretación geométrica a principios del siglo XIX, y la extensión del plano complejo a las tres dimensiones a través de los cuaterniones, que abrirían el paso al estudio y el desarrollo de las nuevas álgebras no conmutativas y a una nueva interpretación tridimensional de la realidad física.

  20. 78 FR 9001 - Airworthiness Directives; Hamilton Sundstrand Corporation Propellers

    Science.gov (United States)

    2013-02-07

    ... airplane. The Hamilton Sundstrand investigation revealed some of their auxiliary feathering pump motors had internal corrosion that may cause the stator magnets in the pump motor to fail and rotate into the path of... using certain Hamilton Sundstrand Corporation auxiliary pumps and motors (auxiliary feathering pumps...

  1. On the Connection between the Hamilton-Jacobi-Bellman and the Fokker-Planck Control Frameworks

    KAUST Repository

    Annunziato, Mario

    2014-09-01

    In the framework of stochastic processes, the connection between the dynamic programming scheme given by the Hamilton-Jacobi-Bellman equation and a recently proposed control approach based on the Fokker-Planck equation is discussed. Under appropriate assumptions it is shown that the two strategies are equivalent in the case of expected cost functionals, while the FokkerPlanck formalism allows considering a larger class of objectives. To illustrate the connection between the two control strategies, the cases of an Itō stochastic process and of a piecewise-deterministic process are considered.

  2. Generalized Canonical Time Warping.

    Science.gov (United States)

    Zhou, Feng; De la Torre, Fernando

    2016-02-01

    Temporal alignment of human motion has been of recent interest due to its applications in animation, tele-rehabilitation and activity recognition. This paper presents generalized canonical time warping (GCTW), an extension of dynamic time warping (DTW) and canonical correlation analysis (CCA) for temporally aligning multi-modal sequences from multiple subjects performing similar activities. GCTW extends previous work on DTW and CCA in several ways: (1) it combines CCA with DTW to align multi-modal data (e.g., video and motion capture data); (2) it extends DTW by using a linear combination of monotonic functions to represent the warping path, providing a more flexible temporal warp. Unlike exact DTW, which has quadratic complexity, we propose a linear time algorithm to minimize GCTW. (3) GCTW allows simultaneous alignment of multiple sequences. Experimental results on aligning multi-modal data, facial expressions, motion capture data and video illustrate the benefits of GCTW. The code is available at http://humansensing.cs.cmu.edu/ctw.

  3. IUS CONNUBII: Canonical Dimension

    Directory of Open Access Journals (Sweden)

    Silma Mendes Berti

    2018-03-01

    Full Text Available anon Law, in regulating under Can.1058 the "ius connubii", lays down that: "All those who are not prohibited from doing so by law may contract matrimony." This disposition, although apparently simple, has a wide and deep range of implications, questionings and possibilities for investigation, especially as it involves an extremely delicate relationship. A perfect combination of law and sacrament, the "ius connubii", in its close relationship with the constitution of the family, which is the sanctuary of Love, is an important problem, which faces the legislator, both in the legislation of the State, specifically in Civil Law, and in that of the Church. As the general principle of the canonical matrimonial system, "ius connubii' is the source of interpretation of all rules concerning matrimony, especially when it comes to the distinction between sacramental reality and liturgical ceremony. This is the fact, which is the basis of our reflections.

  4. Hamilton Place - Ontario Canadá

    Directory of Open Access Journals (Sweden)

    Garwood-Jones, T. P.

    1975-04-01

    Full Text Available Although comparatively modest as to its exterior, the interior of the theatre-auditorium Hamilton Place has been most successfully solved, both as regards design and acoustics. Construction techniques and elements have been utilized to achieve two different sections in one and the same hall with on one hand the capacity to be able to capture shades of the spoken word at theatrical functions and on the other to reproduce the sharpness and variety of orchestras and choirs. The following elements deserve special mention: the mobile wall which incorporates the orchestra into the hall by closing the proscenium arch; the two elevating platforms where the orchestra is placed; the vertical velvet surfaces, hung like banners which soften the repercussion of the sound; the mobile horizontal surfaces over the orchestra that direct and orient the sound. The most interesting construction techniques are: the subdivision of the building into different parts, each one with independent foundation so as to avoid the transmission of the sound from one section to the other; the texture of the brick walls that disperse the reflected sound; and the use of counterforts to create smaller more personal sections for varied use. The acoustic characteristics are improved by means of a sound installation, formed by small loudspeakers placed under each seat and by other bigger ones distributed in the walls that surround the hall. The building is completed by various service installations that are appropriate to this type of construction, as well as by a small theatre-studio for the rehearsals of the orchestra and the actors, while other functions are going on in the main hall.El teatro-auditorio Hamilton Place, aunque relativamente modesto por fuera, tiene soluciones muy afortunadas en el interior, tanto por su diseño como por su adecuación acústica. Se han utilizado elementos y técnicas constructivas destinadas a conseguir, en una única sala, dos espacios

  5. Variational energy principle for compressible, baroclinic flow. 2: Free-energy form of Hamilton's principle

    Science.gov (United States)

    Schmid, L. A.

    1977-01-01

    The first and second variations are calculated for the irreducible form of Hamilton's Principle that involves the minimum number of dependent variables necessary to describe the kinetmatics and thermodynamics of inviscid, compressible, baroclinic flow in a specified gravitational field. The form of the second variation shows that, in the neighborhood of a stationary point that corresponds to physically stable flow, the action integral is a complex saddle surface in parameter space. There exists a form of Hamilton's Principle for which a direct solution of a flow problem is possible. This second form is related to the first by a Friedrichs transformation of the thermodynamic variables. This introduces an extra dependent variable, but the first and second variations are shown to have direct physical significance, namely they are equal to the free energy of fluctuations about the equilibrium flow that satisfies the equations of motion. If this equilibrium flow is physically stable, and if a very weak second order integral constraint on the correlation between the fluctuations of otherwise independent variables is satisfied, then the second variation of the action integral for this free energy form of Hamilton's Principle is positive-definite, so the action integral is a minimum, and can serve as the basis for a direct trail and error solution. The second order integral constraint states that the unavailable energy must be maximum at equilibrium, i.e. the fluctuations must be so correlated as to produce a second order decrease in the total unavailable energy.

  6. Researcher Profile: An Interview with Axton Betz-Hamilton

    Directory of Open Access Journals (Sweden)

    Axton Betz-Hamilton

    2015-07-01

    Full Text Available Dr. Axton Betz-Hamilton teaches consumer studies courses at Eastern Illinois University, including Personal and Family Finance, Housing, and Consumer Issues. She conducts research on identity theft as well as financial abuse within families.

  7. Modern Canonical Quantum General Relativity;

    International Nuclear Information System (INIS)

    Kiefer, Claus

    2008-01-01

    quantum field theory do not show up because there is no limit of Δx → 0 to be taken in a given spacetime. On the other hand, it is open whether the theory is free of any type of divergences and anomalies. A central feature of any canonical approach, independent of the choice of variables, is the existence of constraints. In geometrodynamics, these are the Hamiltonian and diffeomorphism constraints. They also hold in loop quantum gravity, but are supplemented there by the Gauss constraint, which emerges due to the use of triads in the formalism. These constraints capture all the physics of the quantum theory because no spacetime is present anymore (analogous to the absence of trajectories in quantum mechanics), so no additional equations of motion are needed. This book presents a careful and comprehensive discussion of these constraints. In particular, the constraint algebra is calculated in a transparent and explicit way. The author makes the important assumption that a Hilbert-space structure is still needed on the fundamental level of quantum gravity. In ordinary quantum theory, such a structure is needed for the probability interpretation, in particular for the conservation of probability with respect to external time. Potentially problematic features are the implementation of the diffeomorphism and Hamiltonian constraints. The Hilbert space H diff defined on the diffeomorphism subspace can throw states out of the kinematical Hilbert space and is thus not contained in it. Moreover, the Hamiltonian constraint does not seem to preserve H diff , so its implementation remains open. To avoid some of these problems, the author proposes his 'master constraint programme' in which the infinitely many local Hamiltonian constraints are combined into one master constraint. This is a subject of his current research. An especially important feature are the discrete spectra of geometric operators such as the area operator. This quantifies the earlier heuristic ideas about a

  8. Generalized quantal equation of motion

    International Nuclear Information System (INIS)

    Morsy, M.W.; Embaby, M.

    1986-07-01

    In the present paper, an attempt is made for establishing a generalized equation of motion for quantal objects, in which intrinsic self adjointness is naturally built in, independently of any prescribed representation. This is accomplished by adopting Hamilton's principle of least action, after incorporating, properly, the quantal features and employing the generalized calculus of variations, without being restricted to fixed end points representation. It turns out that our proposed equation of motion is an intrinsically self-adjoint Euler-Lagrange's differential equation that ensures extremization of the quantal action as required by Hamilton's principle. Time dependence is introduced and the corresponding equation of motion is derived, in which intrinsic self adjointness is also achieved. Reducibility of the proposed equation of motion to the conventional Schroedinger equation is examined. The corresponding continuity equation is established, and both of the probability density and the probability current density are identified. (author)

  9. Canonical formulation of IIB D-branes

    International Nuclear Information System (INIS)

    Kamimura, K.

    1998-01-01

    We find Wess-Zumino actions for kappa invariant type IIB D-branes in explicit forms. A simple and compact expression is obtained by the use of spinor variables which are defined as power series of differential forms. Using the Wess-Zumino actions we develop the canonical formulation and find the complete set of the constraint equations for generic type IIB Dp-branes. The conserved global supersymmetry charges are determined and the algebra containing the central charges can be obtained explicitly. (orig.)

  10. Structure preserving transformations for Newtonian Lie-admissible equations

    International Nuclear Information System (INIS)

    Cantrijn, F.

    1979-01-01

    Recently, a new formulation of non-conservative mechanics has been presented in terms of Hamilton-admissible equations which constitute a generalization of the conventional Hamilton equations. The algebraic structure entering the Hamilton-admissible description of a non-conservative system is that of a Lie-admissible algebra. The corresponding geometrical treatment is related to the existence of a so-called symplectic-admissible form. The transformation theory for Hamilton-admissible systems is currently investigated. The purpose of this paper is to describe one aspect of this theory by identifying the class of transformations which preserve the structure of Hamilton-admissible equations. Necessary and sufficient conditions are established for a transformation to be structure preserving. Some particular cases are discussed and an example is worked out

  11. An unconventional canonical quantization of local scalar fields over quantum space-time

    International Nuclear Information System (INIS)

    Banai, M.

    1985-12-01

    An unconventional extension of the canonical quantization method is presented for a classical local field theory. The proposed canonical commutation relations have a solution in the A-valued Hilbert space where A is the algebra of the bounded operators of the Hilbert space Lsup(2) (IRsup(3)). The canonical equations as operator equations are equivalent formally with the classical field equations, and are well defined for interacting systems, too. This model of quantized field lacks some of the difficulties of the conventional approach. Examples satisfying the asymptotic condition provide examples for Haag-Kastler's axioms, however, they satisfy Wightman's axioms only partially. (author)

  12. Canonical Labelling of Site Graphs

    Directory of Open Access Journals (Sweden)

    Nicolas Oury

    2013-06-01

    Full Text Available We investigate algorithms for canonical labelling of site graphs, i.e. graphs in which edges bind vertices on sites with locally unique names. We first show that the problem of canonical labelling of site graphs reduces to the problem of canonical labelling of graphs with edge colourings. We then present two canonical labelling algorithms based on edge enumeration, and a third based on an extension of Hopcroft's partition refinement algorithm. All run in quadratic worst case time individually. However, one of the edge enumeration algorithms runs in sub-quadratic time for graphs with "many" automorphisms, and the partition refinement algorithm runs in sub-quadratic time for graphs with "few" bisimulation equivalences. This suite of algorithms was chosen based on the expectation that graphs fall in one of those two categories. If that is the case, a combined algorithm runs in sub-quadratic worst case time. Whether this expectation is reasonable remains an interesting open problem.

  13. Canonical transformations and exact invariants for dissipative systems

    International Nuclear Information System (INIS)

    Pedrosa, I.A.

    1986-01-01

    A simple treatment to the problem of finding exact invariants and related auxiliary equations for time-dependent oscillators with friction is presented. The treatment is based on the use of a time-dependent canonical transformation and an auxiliary transformation. (Author) [pt

  14. A QQ→QQ planar double box in canonical form

    Directory of Open Access Journals (Sweden)

    Marco S. Bianchi

    2018-02-01

    Full Text Available We consider a planar double box with four massive external momenta and two massive internal propagators. We derive the system of differential equations for the relevant master integrals, cast it in canonical form, write it as a dlog form and solve it in terms of iterated integrals up to depth four.

  15. Quantum-Wave Equation and Heisenberg Inequalities of Covariant Quantum Gravity

    Directory of Open Access Journals (Sweden)

    Claudio Cremaschini

    2017-07-01

    Full Text Available Key aspects of the manifestly-covariant theory of quantum gravity (Cremaschini and Tessarotto 2015–2017 are investigated. These refer, first, to the establishment of the four-scalar, manifestly-covariant evolution quantum wave equation, denoted as covariant quantum gravity (CQG wave equation, which advances the quantum state ψ associated with a prescribed background space-time. In this paper, the CQG-wave equation is proved to follow at once by means of a Hamilton–Jacobi quantization of the classical variational tensor field g ≡ g μ ν and its conjugate momentum, referred to as (canonical g-quantization. The same equation is also shown to be variational and to follow from a synchronous variational principle identified here with the quantum Hamilton variational principle. The corresponding quantum hydrodynamic equations are then obtained upon introducing the Madelung representation for ψ , which provides an equivalent statistical interpretation of the CQG-wave equation. Finally, the quantum state ψ is proven to fulfill generalized Heisenberg inequalities, relating the statistical measurement errors of quantum observables. These are shown to be represented in terms of the standard deviations of the metric tensor g ≡ g μ ν and its quantum conjugate momentum operator.

  16. Quantum correction and ordering parameter for systems connected by a general point canonical transformation

    International Nuclear Information System (INIS)

    Yeon, Kyu Hwang; Hong, Suc Kyoung; Um, Chung In; George, Thomas F.

    2006-01-01

    With quantum operators corresponding to functions of the canonical variables, Schroedinger equations are constructed for systems corresponding to classical systems connected by a general point canonical transformation. Using the operator connecting quantum states between systems before and after the transformation, the quantum correction term and ordering parameter are obtained

  17. Canonical symmetry of a constrained Hamiltonian system and canonical Ward identity

    International Nuclear Information System (INIS)

    Li, Zi-ping

    1995-01-01

    An algorithm for the construction of the generators of the gauge transformation of a constrained Hamiltonian system is given. The relationships among the coefficients connecting the first constraints in the generator are made clear. Starting from the phase space generating function of the Green function, the Ward identity in canonical formalism is deduced. We point out that the quantum equations of motion in canonical form for a system with singular Lagrangian differ from the classical ones whether Dirac's conjecture holds true or not. Applications of the present formulation to the Abelian and non-Abelian gauge theories are given. The expressions for PCAC and generalized PCAC of the AVV vertex are derived exactly from another point of view. A new form of the Ward identity for gauge-ghost proper vertices is obtained which differs from the usual Ward-Takahashi identity arising from the BRS invariance

  18. Process modelling on a canonical basis[Process modelling; Canonical modelling

    Energy Technology Data Exchange (ETDEWEB)

    Siepmann, Volker

    2006-12-20

    Based on an equation oriented solving strategy, this thesis investigates a new approach to process modelling. Homogeneous thermodynamic state functions represent consistent mathematical models of thermodynamic properties. Such state functions of solely extensive canonical state variables are the basis of this work, as they are natural objective functions in optimisation nodes to calculate thermodynamic equilibrium regarding phase-interaction and chemical reactions. Analytical state function derivatives are utilised within the solution process as well as interpreted as physical properties. By this approach, only a limited range of imaginable process constraints are considered, namely linear balance equations of state variables. A second-order update of source contributions to these balance equations is obtained by an additional constitutive equation system. These equations are general dependent on state variables and first-order sensitivities, and cover therefore practically all potential process constraints. Symbolic computation technology efficiently provides sparsity and derivative information of active equations to avoid performance problems regarding robustness and computational effort. A benefit of detaching the constitutive equation system is that the structure of the main equation system remains unaffected by these constraints, and a priori information allows to implement an efficient solving strategy and a concise error diagnosis. A tailor-made linear algebra library handles the sparse recursive block structures efficiently. The optimisation principle for single modules of thermodynamic equilibrium is extended to host entire process models. State variables of different modules interact through balance equations, representing material flows from one module to the other. To account for reusability and encapsulation of process module details, modular process modelling is supported by a recursive module structure. The second-order solving algorithm makes it

  19. Canonical quantum gravity and consistent discretizations

    Indian Academy of Sciences (India)

    Abstract. This paper covers some developments in canonical quantum gravity that ... derstanding the real Ashtekar variables four dimensionally [4], or the recent work ... Traditionally, canonical formulations of general relativity considered as canonical variables the metric on a spatial slice qab and a canonically conjugate.

  20. A generalization of Hamilton's rule--love others how much?

    Science.gov (United States)

    Alger, Ingela; Weibull, Jörgen W

    2012-04-21

    According to Hamilton's (1964a, b) rule, a costly action will be undertaken if its fitness cost to the actor falls short of the discounted benefit to the recipient, where the discount factor is Wright's index of relatedness between the two. We propose a generalization of this rule, and show that if evolution operates at the level of behavior rules, rather than directly at the level of actions, evolution will select behavior rules that induce a degree of cooperation that may differ from that predicted by Hamilton's rule as applied to actions. In social dilemmas there will be less (more) cooperation than under Hamilton's rule if the actions are strategic substitutes (complements). Our approach is based on natural selection, defined in terms of personal (direct) fitness, and applies to a wide range of pairwise interactions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Hamilton principle for the dual electrodynamics

    International Nuclear Information System (INIS)

    Souza Silva, Saulo Carneiro de

    1995-01-01

    The present work discusses the classical electromagnetic theory in the presence of magnetic monopoles. We review the connection between such objects and the long standing problem of charge quantization and the main theoretical difficulties in formulating the classical dual electromagnetic theory in terms of an action principle. We show that a deeper understanding of the source of such difficulties leads naturally to the construction of a variational principle for a non-local Lagrangian from which all the (local) dynamical equations for electric, magnetic charges and fields can be obtained. (author)

  2. Periodicity, the Canon and Sport

    Directory of Open Access Journals (Sweden)

    Thomas F. Scanlon

    2015-10-01

    Full Text Available The topic according to this title is admittedly a broad one, embracing two very general concepts of time and of the cultural valuation of artistic products. Both phenomena are, in the present view, largely constructed by their contemporary cultures, and given authority to a great extent from the prestige of the past. The antiquity of tradition brings with it a certain cachet. Even though there may be peripheral debates in any given society which question the specifics of periodization or canonicity, individuals generally accept the consensus designation of a sequence of historical periods and they accept a list of highly valued artistic works as canonical or authoritative. We will first examine some of the processes of periodization and of canon-formation, after which we will discuss some specific examples of how these processes have worked in the sport of two ancient cultures, namely Greece and Mesoamerica.

  3. Algorithmic transformation of multi-loop master integrals to a canonical basis with CANONICA

    Science.gov (United States)

    Meyer, Christoph

    2018-01-01

    The integration of differential equations of Feynman integrals can be greatly facilitated by using a canonical basis. This paper presents the Mathematica package CANONICA, which implements a recently developed algorithm to automatize the transformation to a canonical basis. This represents the first publicly available implementation suitable for differential equations depending on multiple scales. In addition to the presentation of the package, this paper extends the description of some aspects of the algorithm, including a proof of the uniqueness of canonical forms up to constant transformations.

  4. Turbulent transport across invariant canonical flux surfaces

    International Nuclear Information System (INIS)

    Hollenberg, J.B.; Callen, J.D.

    1994-07-01

    Net transport due to a combination of Coulomb collisions and turbulence effects in a plasma is investigated using a fluid moment description that allows for kinetic and nonlinear effects via closure relations. The model considered allows for ''ideal'' turbulent fluctuations that distort but preserve the topology of species-dependent canonical flux surfaces ψ number-sign,s triple-bond ∫ dF · B number-sign,s triple-bond ∇ x [A + (m s /q s )u s ] in which u s is the flow velocity of the fluid species. Equations for the net transport relative to these surfaces due to ''nonideal'' dissipative processes are found for the total number of particles and total entropy enclosed by a moving canonical flux surface. The corresponding particle transport flux is calculated using a toroidal axisymmetry approximation of the ideal surfaces. The resulting Lagrangian transport flux includes classical, neoclassical-like, and anomalous contributions and shows for the first time how these various contributions should be summed to obtain the total particle transport flux

  5. First-arrival Tomography Using the Double-square-root Equation Solver Stepping in Subsurface Offset

    KAUST Repository

    Serdyukov, A.S.; Duchkov, A.A.

    2013-01-01

    Double-square-root (DSR) equation can be viewed as a Hamilton-Jacobi equation describing kinematics of downward data continuation in depth. It describes simultaneous propagation of source and receiver rays assuming that they are nowhere horizontal

  6. Proof of the 1-factorization and Hamilton decomposition conjectures

    CERN Document Server

    Csaba, Béla; Lo, Allan; Osthus, Deryk; Treglown, Andrew

    2016-01-01

    In this paper the authors prove the following results (via a unified approach) for all sufficiently large n: (i) [1-factorization conjecture] Suppose that n is even and D\\geq 2\\lceil n/4\\rceil -1. Then every D-regular graph G on n vertices has a decomposition into perfect matchings. Equivalently, \\chi'(G)=D. (ii) [Hamilton decomposition conjecture] Suppose that D \\ge \\lfloor n/2 \\rfloor . Then every D-regular graph G on n vertices has a decomposition into Hamilton cycles and at most one perfect matching. (iii) [Optimal packings of Hamilton cycles] Suppose that G is a graph on n vertices with minimum degree \\delta\\ge n/2. Then G contains at least {\\rm reg}_{\\rm even}(n,\\delta)/2 \\ge (n-2)/8 edge-disjoint Hamilton cycles. Here {\\rm reg}_{\\rm even}(n,\\delta) denotes the degree of the largest even-regular spanning subgraph one can guarantee in a graph on n vertices with minimum degree \\delta. (i) was first explicitly stated by Chetwynd and Hilton. (ii) and the special case \\delta= \\lceil n/2 \\rceil of (iii) answe...

  7. Partial differential equations

    CERN Document Server

    Evans, Lawrence C

    2010-01-01

    This text gives a comprehensive survey of modern techniques in the theoretical study of partial differential equations (PDEs) with particular emphasis on nonlinear equations. The exposition is divided into three parts: representation formulas for solutions; theory for linear partial differential equations; and theory for nonlinear partial differential equations. Included are complete treatments of the method of characteristics; energy methods within Sobolev spaces; regularity for second-order elliptic, parabolic, and hyperbolic equations; maximum principles; the multidimensional calculus of variations; viscosity solutions of Hamilton-Jacobi equations; shock waves and entropy criteria for conservation laws; and, much more.The author summarizes the relevant mathematics required to understand current research in PDEs, especially nonlinear PDEs. While he has reworked and simplified much of the classical theory (particularly the method of characteristics), he primarily emphasizes the modern interplay between funct...

  8. Canonical Authors in Consumption Theory

    DEFF Research Database (Denmark)

    Canonical Authors in Consumption Theory is the first work to compile the contributions of the greatest social thinkers in the global conversation about consumption and consumer culture. A prestigious reference work, it offers original chapters by the world's most prominent thought leaders and sur...

  9. Romanticism, Sexuality, and the Canon.

    Science.gov (United States)

    Rowe, Kathleen K.

    1990-01-01

    Traces the Romanticism in the work and persona of film director Jean-Luc Godard. Examines the contradictions posed by Godard's politics and representations of sexuality. Asserts, that by bringing an ironic distance to the works of such canonized directors, viewers can take pleasure in those works despite their contradictions. (MM)

  10. Realizations of the canonical representation

    Indian Academy of Sciences (India)

    Traditionally, the canonical representation is realized on the Hilbert space ... Fix a decomposition R2n = Rn × Rn ..... to an orthonormal basis {ψ1,ψ2,. ..... [7] Vemuri M K, A non-commutative Sobolev inequality and its application to spectral.

  11. The canonical quantization of local scalar fields over quantum space-time

    International Nuclear Information System (INIS)

    Banai, M.

    1983-05-01

    Canonical quantization of a classical local field theory (CLFT) consisting of N real scalar fields is formulated in the Hilbert space over the sup(*)-algebra A of linear operators of L 2 (R 3 ). The canonical commutation relations (CCR) have an irreducible solution, unique up to A-unitary equivalence. The canonical equations as operator equations are equivalent to the classical (c) field equations. The interaction picture can be introduced in a well-defined manner. The main adventage of this treatment is that the corresponding S-matrix is free of divergences. The Feynman's graph technique is adaptable in a straightforward manner. This approach is a natural extension of the conventional canonical quantization method of quantum mechanics. (author)

  12. A Hamilton-like vector for the special-relativistic Coulomb problem

    International Nuclear Information System (INIS)

    Munoz, Gerardo; Pavic, Ivana

    2006-01-01

    A relativistic point charge moving in a Coulomb potential does not admit a conserved Hamilton vector. Despite this fact, a Hamilton-like vector may be developed that proves useful in the derivation and analysis of the particle's orbit

  13. 78 FR 73750 - Proposed Amendment of Class E Airspace; Hamilton, OH

    Science.gov (United States)

    2013-12-09

    ...: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed rulemaking (NPRM). SUMMARY: This action proposes to amend Class E airspace at Hamilton, OH. Decommissioning of the Hamilton nondirectional... the views and suggestions presented are particularly helpful in developing reasoned regulatory...

  14. Dirac equation of spin particles and tunneling radiation from a Kinnersly black hole

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guo-Ping; Zu, Xiao-Tao [University of Electronic Science and Technology of China, School of Physical Electronics, Chengdu (China); Feng, Zhong-Wen [University of Electronic Science and Technology of China, School of Physical Electronics, Chengdu (China); China West Normal University, College of Physics and Space Science, Nanchong (China); Li, Hui-Ling [University of Electronic Science and Technology of China, School of Physical Electronics, Chengdu (China); Shenyang Normal University, College of Physics Science and Technology, Shenyang (China)

    2017-04-15

    In curved space-time, the Hamilton-Jacobi equation is a semi-classical particle equation of motion, which plays an important role in the research of black hole physics. In this paper, starting from the Dirac equation of spin 1/2 fermions and the Rarita-Schwinger equation of spin 3/2 fermions, respectively, we derive a Hamilton-Jacobi equation for the non-stationary spherically symmetric gravitational field background. Furthermore, the quantum tunneling of a charged spherically symmetric Kinnersly black hole is investigated by using the Hamilton-Jacobi equation. The result shows that the Hamilton-Jacobi equation is helpful to understand the thermodynamic properties and the radiation characteristics of a black hole. (orig.)

  15. Constructing canonical bases of quantized enveloping algebras

    OpenAIRE

    Graaf, W.A. de

    2001-01-01

    An algorithm for computing the elements of a given weight of the canonical basis of a quantized enveloping algebra is described. Subsequently, a similar algorithm is presented for computing the canonical basis of a finite-dimensional module.

  16. Generalized canonical correlation analysis with missing values

    NARCIS (Netherlands)

    M. van de Velden (Michel); Y. Takane

    2012-01-01

    textabstractGeneralized canonical correlation analysis is a versatile technique that allows the joint analysis of several sets of data matrices. The generalized canonical correlation analysis solution can be obtained through an eigenequation and distributional assumptions are not required. When

  17. Modern canonical quantum general relativity

    CERN Document Server

    Thiemann, Thomas

    2007-01-01

    This is an introduction to the by now fifteen years old research field of canonical quantum general relativity, sometimes called "loop quantum gravity". The term "modern" in the title refers to the fact that the quantum theory is based on formulating classical general relativity as a theory of connections rather than metrics as compared to in original version due to Arnowitt, Deser and Misner. Canonical quantum general relativity is an attempt to define a mathematically rigorous, non-perturbative, background independent theory of Lorentzian quantum gravity in four spacetime dimensions in the continuum. The approach is minimal in that one simply analyzes the logical consequences of combining the principles of general relativity with the principles of quantum mechanics. The requirement to preserve background independence has lead to new, fascinating mathematical structures which one does not see in perturbative approaches, e.g. a fundamental discreteness of spacetime seems to be a prediction of the theory provi...

  18. Functional Multiple-Set Canonical Correlation Analysis

    Science.gov (United States)

    Hwang, Heungsun; Jung, Kwanghee; Takane, Yoshio; Woodward, Todd S.

    2012-01-01

    We propose functional multiple-set canonical correlation analysis for exploring associations among multiple sets of functions. The proposed method includes functional canonical correlation analysis as a special case when only two sets of functions are considered. As in classical multiple-set canonical correlation analysis, computationally, the…

  19. Modern Canonical Quantum General Relativity

    Science.gov (United States)

    Thiemann, Thomas

    2008-11-01

    Preface; Notation and conventions; Introduction; Part I. Classical Foundations, Interpretation and the Canonical Quantisation Programme: 1. Classical Hamiltonian formulation of general relativity; 2. The problem of time, locality and the interpretation of quantum mechanics; 3. The programme of canonical quantisation; 4. The new canonical variables of Ashtekar for general relativity; Part II. Foundations of Modern Canonical Quantum General Relativity: 5. Introduction; 6. Step I: the holonomy-flux algebra [P]; 7. Step II: quantum-algebra; 8. Step III: representation theory of [A]; 9. Step IV: 1. Implementation and solution of the kinematical constraints; 10. Step V: 2. Implementation and solution of the Hamiltonian constraint; 11. Step VI: semiclassical analysis; Part III. Physical Applications: 12. Extension to standard matter; 13. Kinematical geometrical operators; 14. Spin foam models; 15. Quantum black hole physics; 16. Applications to particle physics and quantum cosmology; 17. Loop quantum gravity phenomenology; Part IV. Mathematical Tools and their Connection to Physics: 18. Tools from general topology; 19. Differential, Riemannian, symplectic and complex geometry; 20. Semianalytical category; 21. Elements of fibre bundle theory; 22. Holonomies on non-trivial fibre bundles; 23. Geometric quantisation; 24. The Dirac algorithm for field theories with constraints; 25. Tools from measure theory; 26. Elementary introduction to Gel'fand theory for Abelean C* algebras; 27. Bohr compactification of the real line; 28. Operatir -algebras and spectral theorem; 29. Refined algebraic quantisation (RAQ) and direct integral decomposition (DID); 30. Basics of harmonic analysis on compact Lie groups; 31. Spin network functions for SU(2); 32. + Functional analytical description of classical connection dynamics; Bibliography; Index.

  20. Extending canonical Monte Carlo methods

    International Nuclear Information System (INIS)

    Velazquez, L; Curilef, S

    2010-01-01

    In this paper, we discuss the implications of a recently obtained equilibrium fluctuation-dissipation relation for the extension of the available Monte Carlo methods on the basis of the consideration of the Gibbs canonical ensemble to account for the existence of an anomalous regime with negative heat capacities C α with α≈0.2 for the particular case of the 2D ten-state Potts model

  1. Null canonical formalism 1, Maxwell field. [Poisson brackets, boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Wodkiewicz, K [Warsaw Univ. (Poland). Inst. Fizyki Teoretycznej

    1975-01-01

    The purpose of this paper is to formulate the canonical formalism on null hypersurfaces for the Maxwell electrodynamics. The set of the Poisson brackets relations for null variables of the Maxwell field is obtained. The asymptotic properties of the theory are investigated. The Poisson bracket relations for the news-functions of the Maxwell field are computed. The Hamiltonian form of the asymptotic Maxwell equations in terms of these news-functions is obtained.

  2. Completion is an Instance of Abstract Canonical System Inference

    OpenAIRE

    Burel , Guillaume; Kirchner , Claude

    2006-01-01

    http://www.springerlink.com/content/u222753gl333221p/; Abstract canonical systems and inference (ACSI) were introduced to formalize the intuitive notions of good proof and good inference appearing typically in first-order logic or in Knuth-Bendix like completion procedures. Since this abstract framework is intended to be generic, it is of fundamental interest to show its adequacy to represent the main systems of interest. This has been done for ground completion (where all equational axioms a...

  3. Canonical quantum theory of gravitational field with higher derivatives

    International Nuclear Information System (INIS)

    Kawasaki, Shoichiro; Kimura, Tadahiko; Kitago, Koichi.

    1981-01-01

    A renormalizable gravitational theory with higher derivatives is canonically quantized in the Landau gauge. Field equations and various equal-time commutation relations are explicitly given. The main results obtained in this work are 1) the equal-time commutation relations involving b sub(μ) exhibit the tensor-like behaviour and 2) the theory has the 16-dimensional Poincare-like superalgebra. These results are just the same as those discovered by Nakanishi in the Einstein case. (author)

  4. El distribuidor de trafico de Hamilton-Inglaterra

    Directory of Open Access Journals (Sweden)

    Babtie Shaw and Morton, Ingenieros Consultores

    1969-06-01

    Full Text Available The first part of this article describes the initial stages in the construction of the complex traffic interchange at Hamilton, and gives details of all the special aspects which it involves. The second part deals with two of the three bridges at the Maryville interchange, and a detailed description is given of the most important features of these structures.La primera parte de este artículo muestra el trabajo de la primera etapa del complejo del distribuidor de tráfico de Hamilton, dándonos cuenta de las obras que engloba. La segunda parte trata de dos de los tres puentes que hay en el empalme de Maryville, describiéndolos y mostrando sus partes más importantes.

  5. [Anna Hamilton (1864-1935), the excellence of nursing.

    Science.gov (United States)

    Diebolt, Évelyne

    2017-12-01

    A Frenchwoman, Anna Hamilton (1864-1935), daughter of a Franco-English couple, reads with passion the works of Florence Nightingale and takes an interest in nursing. In order to practice it, she first passes the equivalent of a bachelor’s degree in self-education and registers at the Marseille medical school. She wants to prepare a medical thesis on the nursing staff in the hospitals in Europe and is conducting an investigation throughout Europe. She passed her thesis on June 15, 1900 entitled “Considerations on hospital nurses”. This work is immediately published. That same year, she took up a post at the “Maison de santé protestante” in Bordeaux (MSP), founded in 1863. Without managerial staff, she is forced to recruit them abroad. She publishes a professional journal : “La Garde-Malade hospitalière” (1906-1914). Then the war turned the MSP into a military hospital, but the institution continued to receive local paying patients. She was given permission to call the school of nurses : Florence Nightingale School. Anna Hamilton is working with American women to create a medical and social service in Aisne. A graduate, Antoinette Hervey, then opened a medical-social service in Rouen, which would employ up to 30 visiting nurses. In 1916, the MSP received a donation from the domain of Bagatelle. The board of directors wants to sell it, but Anna Hamilton manages to finance a hospital-school thanks to families bereaved by the war and a subscription announced in the “Journal of Nursing”. Other establishments created by former students of the MSP opened : the School-hospital Ambroise Paré in Lille, a nursing home for nurses in Chambon-sur-Lignon in 1927 (the Edith-Seltzer foundation) and a sanatorium in Briançon. After a busy life, Anna Hamilton died of cancer in 1935 and is buried in Bordeaux.

  6. Nuclear power and the Hamilton-Jefferson debate

    International Nuclear Information System (INIS)

    Hacker, A.

    1980-01-01

    The basic sources of nuclear opposition derive from the philosophical arguments of Thomas Jefferson against Alexander Hamilton's vision of an industrial society with a strong central authority. Today's young people continue Jefferson's radical plea for the individual freedoms associated with personal ownership and limited government, but they accept the structure of the former while searching for the romanticism of the latter. The nuclear debate reflects this dichotomy and will continue even if the issues of waste disposal and safety are resolved

  7. Derivation of Mayer Series from Canonical Ensemble

    International Nuclear Information System (INIS)

    Wang Xian-Zhi

    2016-01-01

    Mayer derived the Mayer series from both the canonical ensemble and the grand canonical ensemble by use of the cluster expansion method. In 2002, we conjectured a recursion formula of the canonical partition function of a fluid (X.Z. Wang, Phys. Rev. E 66 (2002) 056102). In this paper we give a proof for this formula by developing an appropriate expansion of the integrand of the canonical partition function. We further derive the Mayer series solely from the canonical ensemble by use of this recursion formula. (paper)

  8. Derivation of Mayer Series from Canonical Ensemble

    Science.gov (United States)

    Wang, Xian-Zhi

    2016-02-01

    Mayer derived the Mayer series from both the canonical ensemble and the grand canonical ensemble by use of the cluster expansion method. In 2002, we conjectured a recursion formula of the canonical partition function of a fluid (X.Z. Wang, Phys. Rev. E 66 (2002) 056102). In this paper we give a proof for this formula by developing an appropriate expansion of the integrand of the canonical partition function. We further derive the Mayer series solely from the canonical ensemble by use of this recursion formula.

  9. Hamilton-Jacobi formalism for inflation with non-minimal derivative coupling

    Energy Technology Data Exchange (ETDEWEB)

    Sheikhahmadi, Haidar [Institute for Advance Studies in Basic Sciences (IASBS) Gava Zang, Zanjan 45137-66731 (Iran, Islamic Republic of); Saridakis, Emmanuel N. [Instituto de Física, Pontificia Universidad de Católica de Valparaíso, Casilla 4950, Valparaíso (Chile); Aghamohammadi, Ali [Sanandaj Branch Islamic Azad University (Iran, Islamic Republic of); Saaidi, Khaled, E-mail: h.sh.ahmadi@gmail.com, E-mail: Emmanuel_Saridakis@baylor.edu, E-mail: a.aqamohamadi@iausdj.ac.ir, E-mail: ksaaidi@uok.ac.ir [Department of Physics, Faculty of Science, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)

    2016-10-01

    In inflation with nonminimal derivative coupling there is not a conformal transformation to the Einstein frame where calculations are straightforward, and thus in order to extract inflationary observables one needs to perform a detailed and lengthy perturbation investigation. In this work we bypass this problem by performing a Hamilton-Jacobi analysis, namely rewriting the cosmological equations considering the scalar field to be the time variable. We apply the method to two specific models, namely the power-law and the exponential cases, and for each model we calculate various observables such as the tensor-to-scalar ratio, and the spectral index and its running. We compare them with 2013 and 2015 Planck data, and we show that they are in a very good agreement with observations.

  10. Hamilton-Jacobi formalism for inflation with non-minimal derivative coupling

    International Nuclear Information System (INIS)

    Sheikhahmadi, Haidar; Saridakis, Emmanuel N.; Aghamohammadi, Ali; Saaidi, Khaled

    2016-01-01

    In inflation with nonminimal derivative coupling there is not a conformal transformation to the Einstein frame where calculations are straightforward, and thus in order to extract inflationary observables one needs to perform a detailed and lengthy perturbation investigation. In this work we bypass this problem by performing a Hamilton-Jacobi analysis, namely rewriting the cosmological equations considering the scalar field to be the time variable. We apply the method to two specific models, namely the power-law and the exponential cases, and for each model we calculate various observables such as the tensor-to-scalar ratio, and the spectral index and its running. We compare them with 2013 and 2015 Planck data, and we show that they are in a very good agreement with observations.

  11. Superintegrability on curved spaces, orbits and momentum hodographs: revisiting a classical result by Hamilton

    International Nuclear Information System (INIS)

    Carinena, Jose F; Ranada, Manuel F; Santander, Mariano

    2007-01-01

    The equation of the orbits (in the configuration space) and of the hodographs (in the 'momentum' plane) for the 'curved' Kepler and harmonic oscillator systems, living in a configuration space of any constant curvature and either signature type, are derived by purely algebraic means. This result extends to the 'curved' Kepler or harmonic oscillator for the classical Hamilton derivation of the orbits of the Euclidean Kepler problem through its hodographs. In both cases, the fundamental property allowing these derivations to work is the superintegrability of the 'curved' Kepler and harmonic oscillator, no matter whether the constant curvature of the configuration space is zero or not, or whether the configuration space metric is Riemannian or Lorentzian. In the 'curved' case the basic result does not refer to the 'velocity hodograph' but to the 'momentum hodograph'; both coincide in a Euclidean configuration space, but only the latter is unambiguously defined in all curved spaces

  12. Direct 'delay' reductions of the Toda equation

    International Nuclear Information System (INIS)

    Joshi, Nalini

    2009-01-01

    A new direct method of obtaining reductions of the Toda equation is described. We find a canonical and complete class of all possible reductions under certain assumptions. The resulting equations are ordinary differential-difference equations, sometimes referred to as delay-differential equations. The representative equation of this class is hypothesized to be a new version of one of the classical Painleve equations. The Lax pair associated with this equation is obtained, also by reduction. (fast track communication)

  13. Semilinear Kolmogorov Equations and Applications to Stochastic Optimal Control

    International Nuclear Information System (INIS)

    Masiero, Federica

    2005-01-01

    Semilinear parabolic differential equations are solved in a mild sense in an infinite-dimensional Hilbert space. Applications to stochastic optimal control problems are studied by solving the associated Hamilton-Jacobi-Bellman equation. These results are applied to some controlled stochastic partial differential equations

  14. Implementation problem for the canonical commutation relation in terms of quantum white noise derivatives

    International Nuclear Information System (INIS)

    Ji, Un Cig; Obata, Nobuaki

    2010-01-01

    The implementation problem for the canonical commutation relation is reduced to a system of differential equations for Fock space operators containing new type of derivatives. We solve these differential equations systematically by means of quantum white noise calculus, and obtain the solution to the implementation problem.

  15. Methods of Weyl representation of the phase space and canonical transformations. 1

    International Nuclear Information System (INIS)

    Budanov, V.G.

    1984-01-01

    The kernel structure of canonical transformation and differential equation for the intertwining operator is found. The Weyl symbol of operators producing linear canonical transformations is associated with the Cayley transformation of classical canonical transformation. Due to the invariance of the Weyl formalism a complete study of singularity and factorization of these symbols is manageable. In particular, one can study the symbols of Green functions and elements of Lie groups and find the spectra of arbitrary stationary quadratic Hamiltonians with the help of the known classification of the spectra of classical systems

  16. Hamilton principle for the dual electrodynamics; Principio de Hamilton para a eletrodinamica dual

    Energy Technology Data Exchange (ETDEWEB)

    Souza Silva, Saulo Carneiro de

    1995-12-31

    The present work discusses the classical electromagnetic theory in the presence of magnetic monopoles. We review the connection between such objects and the long standing problem of charge quantization and the main theoretical difficulties in formulating the classical dual electromagnetic theory in terms of an action principle. We show that a deeper understanding of the source of such difficulties leads naturally to the construction of a variational principle for a non-local Lagrangian from which all the (local) dynamical equations for electric, magnetic charges and fields can be obtained. (author) 53 refs.

  17. Canonical structure of evolution equations with non-linear ...

    Indian Academy of Sciences (India)

    The dispersion produced is compensated by non-linear effects resulting in the formation of exponentially localized .... determining the values of Lagrange's multipliers αis. We postulate that a slightly .... c3 «w2x -v. (36). To include the effect of the secondary constraint c3 in the total Hamiltonian H we modify. (33) as. 104.

  18. Hamilton-Jacobi theory for continuation of magnetic field across a toroidal surface supporting a plasma pressure discontinuity

    International Nuclear Information System (INIS)

    McGann, M.; Hudson, S.R.; Dewar, R.L.; Nessi, G. von

    2010-01-01

    The vanishing of the divergence of the total stress tensor (magnetic plus kinetic) in a neighborhood of an equilibrium plasma containing a toroidal surface of discontinuity gives boundary and jump conditions that strongly constrain allowable continuations of the magnetic field across the surface. The boundary conditions allow the magnetic fields on either side of the discontinuity surface to be described by surface magnetic potentials, reducing the continuation problem to that of solving a Hamilton-Jacobi equation. The characteristics of this equation obey Hamiltonian equations of motion, and a necessary condition for the existence of a continued field across a general toroidal surface is that there exist invariant tori in the phase space of this Hamiltonian system. It is argued from the Birkhoff theorem that existence of such an invariant torus is also, in general, sufficient for continuation to be possible. An important corollary is that the rotational transform of the continued field on a surface of discontinuity must, generically, be irrational.

  19. Nuclear power and the Hamilton-Jefferson debate

    Energy Technology Data Exchange (ETDEWEB)

    Hacker, A.

    The basic sources of nuclear opposition derive from the philosophical arguments of Thomas Jefferson against Alexander Hamilton's vision of an industrial society with a strong central authority. Today's young people continue Jefferson's radical plea for the individual freedoms associated with personal ownership and limited government, but they accept the structure of the former while searching for the romanticism of the latter. The nuclear debate reflects this dichotomy and will continue even if the issues of waste disposal and safety are resolved. (DCK)

  20. Hamilton and Hardy for the 21st Century

    Science.gov (United States)

    Ogden, Trevor

    2016-01-01

    Hamilton and Hardy’s Industrial Toxicology is now 80 years old, and the new sixth edition links us with a pioneer era. This is an impressive book, but the usefulness of the hardback version as a reference book is unfortunately limited by its poor index. There is now an ebook version, and for the practitioner on the move this has the great advantages of searchability and portability. However, Wiley ebooks can apparently only be downloaded when first purchased, so their lifetime is limited to that of the device. The Kindle edition should avoid this shortcoming.

  1. Canonical ensembles and nonzero density quantum chromodynamics

    International Nuclear Information System (INIS)

    Hasenfratz, A.; Toussaint, D.

    1992-01-01

    We study QCD with nonzero chemical potential on 4 4 lattices by averaging over the canonical partition functions, or sectors with fixed quark number. We derive a condensed matrix of size 2x3xL 3 whose eigenvalues can be used to find the canonical partition functions. We also experiment with a weight for configuration generation which respects the Z(3) symmetry which forces the canonical partition function to be zero for quark numbers that are not multiples of three. (orig.)

  2. Robust canonical correlations: A comparative study

    OpenAIRE

    Branco, JA; Croux, Christophe; Filzmoser, P; Oliveira, MR

    2005-01-01

    Several approaches for robust canonical correlation analysis will be presented and discussed. A first method is based on the definition of canonical correlation analysis as looking for linear combinations of two sets of variables having maximal (robust) correlation. A second method is based on alternating robust regressions. These methods axe discussed in detail and compared with the more traditional approach to robust canonical correlation via covariance matrix estimates. A simulation study ...

  3. Baryon number violation and novel canonical anti-commutation relations

    Science.gov (United States)

    Fujikawa, Kazuo; Tureanu, Anca

    2018-02-01

    The possible neutron-antineutron oscillation is described by an effective quadratic Lagrangian analogous to the BCS theory. It is shown that the conventional equal-time anti-commutation relations of the neutron variable n (t , x →) are modified by the baryon number violating terms. This is established by the Bjorken-Johnson-Low prescription and also by the canonical quantization combined with equations of motion. This novel canonical behavior can give rise to an important physical effect, which is illustrated by analyzing the Lagrangian that violates the baryon number but gives rise to the degenerate effective Majorana fermions and thus no neutron-antineutron oscillation. Technically, this model is neatly treated using a relativistic analogue of the Bogoliubov transformation.

  4. Hamilton's inclusive fitness maintains heritable altruism polymorphism through rb = c.

    Science.gov (United States)

    Wang, Changcao; Lu, Xin

    2018-02-20

    How can altruism evolve or be maintained in a selfish world? Hamilton's rule shows that the former process will occur when rb > c -the benefits to the recipients of an altruistic act b , weighted by the relatedness between the social partners r , exceed the costs to the altruists c -drives altruistic genotypes spreading against nonaltruistic ones. From this rule, we infer that altruistic genotypes will persist in a population by forming a stable heritable polymorphism with nonaltruistic genotypes if rb = c makes inclusive fitness of the two morphs equal. We test this prediction using the data of 12 years of study on a cooperatively breeding bird, the Tibetan ground tit Pseudopodoces humilis , where helping is performed by males only and kin-directed. Individual variation in ever acting as a helper was heritable ( h 2 = 0.47), and the resultant altruism polymorphism remained stable as indicated by low-level annual fluctuation of the percentage of helpers among all adult males (24-28%). Helpers' indirect fitness gains from increased lifetime reproductive success of related breeders statistically fully compensated for their lifetime direct fitness losses, suggesting that rb = c holds. While our work provides a fundamental support for Hamilton's idea, it highlights the equivalent inclusive fitness returns to altruists and nonaltruists mediated by rb = c as a theoretically and realistically important mechanism to maintain social polymorphism.

  5. Log canonical thresholds of smooth Fano threefolds

    International Nuclear Information System (INIS)

    Cheltsov, Ivan A; Shramov, Konstantin A

    2008-01-01

    The complex singularity exponent is a local invariant of a holomorphic function determined by the integrability of fractional powers of the function. The log canonical thresholds of effective Q-divisors on normal algebraic varieties are algebraic counterparts of complex singularity exponents. For a Fano variety, these invariants have global analogues. In the former case, it is the so-called α-invariant of Tian; in the latter case, it is the global log canonical threshold of the Fano variety, which is the infimum of log canonical thresholds of all effective Q-divisors numerically equivalent to the anticanonical divisor. An appendix to this paper contains a proof that the global log canonical threshold of a smooth Fano variety coincides with its α-invariant of Tian. The purpose of the paper is to compute the global log canonical thresholds of smooth Fano threefolds (altogether, there are 105 deformation families of such threefolds). The global log canonical thresholds are computed for every smooth threefold in 64 deformation families, and the global log canonical thresholds are computed for a general threefold in 20 deformation families. Some bounds for the global log canonical thresholds are computed for 14 deformation families. Appendix A is due to J.-P. Demailly.

  6. The Current Canon in British Romantics Studies.

    Science.gov (United States)

    Linkin, Harriet Kramer

    1991-01-01

    Describes and reports on a survey of 164 U.S. universities to ascertain what is taught as the current canon of British Romantic literature. Asserts that the canon may now include Mary Shelley with the former standard six major male Romantic poets, indicating a significant emergence of a feminist perspective on British Romanticism in the classroom.…

  7. Moving Targets: Constructing Canons, 2013–2014

    OpenAIRE

    Hirsch, BD

    2015-01-01

    This review essay considers early modern dramatic authorship and canons in the context of two recent publications: an anthology of plays -- William Shakespeare and Others: Collaborative Plays (2013), edited by Jonathan Bate and Eric Rasmussen as a companion volume to the RSC Complete Works -- and a monograph study -- Jeremy Lopez's Constructing the Canon of Early Modern Drama (2014).

  8. Hamilton-Jacobi formalism to warm inflationary scenario

    Science.gov (United States)

    Sayar, K.; Mohammadi, A.; Akhtari, L.; Saaidi, Kh.

    2017-01-01

    The Hamilton-Jacobi formalism as a powerful method is being utilized to reconsider the warm inflationary scenario, where the scalar field as the main component driving inflation interacts with other fields. Separating the context into strong and weak dissipative regimes, the goal is followed for two popular functions of Γ . Applying slow-rolling approximation, the required perturbation parameters are extracted and, by comparing to the latest Planck data, the free parameters are restricted. The possibility of producing an acceptable inflation is studied where the result shows that for all cases the model could successfully suggest the amplitude of scalar perturbation, scalar spectral index, its running, and the tensor-to-scalar ratio.

  9. Lyapunov stability and poisson structure of the thermal TDHF and RPA equations

    International Nuclear Information System (INIS)

    Balian, R.; Veneroni, M.

    1989-01-01

    The thermal TDHF equation is analyzed in the Liouville representation of quantum mechanics, where the matrix elements of the single-particle (s.p) density ρ behave as classical dynamical variables. By introducing the Lie--Poisson bracket associated with the unitary group of the s.p. Hilbert space, we show that TDHF has a Hamiltonian, but non-canonical, classical form. Within this Poisson structure, either the s.p. energy or the s.p. grand potential Ω(ρ) act as a Hamilton function. The Lyapunov stability of both the TDHF and RPA equations around a HF state then follows, since the HF approximation for thermal equilibrium is determined by minimizing Ω(ρ). The RPA matrix in the Liouville space is expressed as the product of the Poisson tensor with the HF stability matrix, interpreted as a metric tensor generated by the entropy. This factorization displays the roles of the energy and entropy terms arising from Ω(ρ) in the RPA dynamics, and it helps to construct the RPA modes. Several extensions are considered. copyright 1989 Academic Press, Inc

  10. Lyapunov stability and Poisson structure of the thermal TDHF and RPA equations

    International Nuclear Information System (INIS)

    Veneroni, M.; Balian, R.

    1989-01-01

    The thermal TDHF equation is analyzed in the Liouville representation of quantum mechanics, where the matrix elements of the single-particle (s.p.) density ρ behave as classical dynamical variables. By introducing the Lie-Poisson bracket associated with the unitary group of the s.p. Hilbert space, we show that TDHF has a hamiltonian, but non-canonical, classical form. Within this Poisson structure, either the s.p. energy or the s.p. grand potential Ω(ρ) act as a Hamilton function. The Lyapunov stability of both the TDHF and RPA equations around a HF state then follows, since the HF approximation for thermal equilibrium is determined by minimizing Ω(ρ). The RPA matrix in the Liouville space is expressed as the product of the Poisson tensor with the HF stability matrix, interpreted as a metric tensor generated by the entropy. This factorization displays the roles of the energy and entropy terms arising from Ω(ρ) in the RPA dynamics, and it helps to construct the RPA modes. Several extensions are considered

  11. Parametric potential determination by the canonical function method

    International Nuclear Information System (INIS)

    Tannous, C.; Fakhreddine, K.; Langlois, J.

    1999-01-01

    The canonical function method (CFM) is a powerful means for solving the radial Schroedinger equation (RSE). The mathematical difficulty of the RSE lies in the fact it is a singular boundary value problem. The CFM turns it into a regular initial value problem and allows the full determination of the spectrum of the Schroedinger operator without calculating the eigenfunctions. Following the parametrisation suggested by Klapisch and Green-Sellin-Zachor we develop a CFM to optimise the potential parameters in order to reproduce the experimental quantum defect results for various Rydberg series of He, Ne and Ar as evaluated from Moore's data. (orig.)

  12. A canonical approach to forces in molecules

    Energy Technology Data Exchange (ETDEWEB)

    Walton, Jay R. [Department of Mathematics, Texas A& M University, College Station, TX 77843-3368 (United States); Rivera-Rivera, Luis A., E-mail: rivera@chem.tamu.edu [Department of Chemistry, Texas A& M University, College Station, TX 77843-3255 (United States); Lucchese, Robert R.; Bevan, John W. [Department of Chemistry, Texas A& M University, College Station, TX 77843-3255 (United States)

    2016-08-02

    Highlights: • Derivation of canonical representation of molecular force. • Correlation of derivations with accurate results from Born–Oppenheimer potentials. • Extension of methodology to Mg{sub 2}, benzene dimer, and water dimer. - Abstract: In previous studies, we introduced a generalized formulation for canonical transformations and spectra to investigate the concept of canonical potentials strictly within the Born–Oppenheimer approximation. Data for the most accurate available ground electronic state pairwise intramolecular potentials in H{sub 2}{sup +}, H{sub 2}, HeH{sup +}, and LiH were used to rigorously establish such conclusions. Now, a canonical transformation is derived for the molecular force, F(R), with H{sub 2}{sup +} as molecular reference. These transformations are demonstrated to be inherently canonical to high accuracy but distinctly different from those corresponding to the respective potentials of H{sub 2}, HeH{sup +}, and LiH. In this paper, we establish the canonical nature of the molecular force which is key to fundamental generalization of canonical approaches to molecular bonding. As further examples Mg{sub 2}, benzene dimer and to water dimer are also considered within the radial limit as applications of the current methodology.

  13. Hamilton's equations for a fluid membrane: axial symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Capovilla, R [Departamento de Fisica, Centro de Investigacion y de Estudios Avanzados del IPN, Apdo Postal 14-740, 07000 Mexico, DF (Mexico); Guven, J [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apdo Postal 70-543, 04510 Mexico, DF (Mexico); Rojas, E [Facultad de Fisica e Inteligencia Artificial, Universidad Veracruzana, 91000 Xalapa, Veracruz (Mexico)

    2005-09-23

    Consider a homogeneous fluid membrane, or vesicle, described by the Helfrich-Canham energy, quadratic in the mean curvature. When the membrane is axially symmetric, this energy can be viewed as an 'action' describing the motion of a particle; the contours of equilibrium geometries are identified with particle trajectories. A novel Hamiltonian formulation of the problem is presented which exhibits the following two features: (i) the second derivatives appearing in the action through the mean curvature are accommodated in a natural phase space and (ii) the intrinsic freedom associated with the choice of evolution parameter along the contour is preserved. As a result, the phase space involves momenta conjugate not only to the particle position but also to its velocity, and there are constraints on the phase space variables. This formulation provides the groundwork for a field theoretical generalization to arbitrary configurations, with the particle replaced by a loop in space.

  14. The linear canonical transformation : definition and properties

    NARCIS (Netherlands)

    Bastiaans, Martin J.; Alieva, Tatiana; Healy, J.J.; Kutay, M.A.; Ozaktas, H.M.; Sheridan, J.T.

    2016-01-01

    In this chapter we introduce the class of linear canonical transformations, which includes as particular cases the Fourier transformation (and its generalization: the fractional Fourier transformation), the Fresnel transformation, and magnifier, rotation and shearing operations. The basic properties

  15. 37 CFR 10.21 - Canon 1.

    Science.gov (United States)

    2010-07-01

    ... REPRESENTATION OF OTHERS BEFORE THE PATENT AND TRADEMARK OFFICE Patent and Trademark Office Code of Professional Responsibility § 10.21 Canon 1. A practitioner should assist in maintaining the integrity and competence of the...

  16. Semiotic Analysis of Canon Camera Advertisements

    OpenAIRE

    INDRAWATI, SUSAN

    2015-01-01

    Keywords: Semiotic Analysis, Canon Camera, Advertisement. Advertisement is a medium to deliver message to people with the goal to influence the to use certain products. Semiotics is applied to develop a correlation within element used in an advertisement. In this study, the writer chose the Semiotic analysis of canon camera advertisement as the subject to be analyzed using semiotic study based on Peirce's theory. Semiotic approach is employed in interpreting the sign, symbol, icon, and index ...

  17. The canonical ensemble redefined - 1: Formalism

    International Nuclear Information System (INIS)

    Venkataraman, R.

    1984-12-01

    For studying the thermodynamic properties of systems we propose an ensemble that lies in between the familiar canonical and microcanonical ensembles. We point out the transition from the canonical to microcanonical ensemble and prove from a comparative study that all these ensembles do not yield the same results even in the thermodynamic limit. An investigation of the coupling between two or more systems with these ensembles suggests that the state of thermodynamical equilibrium is a special case of statistical equilibrium. (author)

  18. On phase, action and canonical conservation laws in kinematic-wave theory

    International Nuclear Information System (INIS)

    Maugin, G.A.

    2008-01-01

    Canonical equations of energy and momentum are constructed in the kinematic-wave theory of waves in a continuum. This is done in analogy with what is achieved in nonlinear continuum mechanics. The starting point is a generalized balance of wave action. The standard formulas are recovered when the system follows from the averaged-Lagrangian variational formulation of Whitham

  19. The dark sector from interacting canonical and non-canonical scalar fields

    International Nuclear Information System (INIS)

    De Souza, Rudinei C; Kremer, Gilberto M

    2010-01-01

    In this work general models with interactions between two canonical scalar fields and between one non-canonical (tachyon type) and one canonical scalar field are investigated. The potentials and couplings to the gravity are selected through the Noether symmetry approach. These general models are employed to describe interactions between dark energy and dark matter, with the fields being constrained by the astronomical data. The cosmological solutions of some cases are compared with the observed evolution of the late Universe.

  20. Both canonical and non-canonical Wnt signaling independently promote stem cell growth in mammospheres.

    Directory of Open Access Journals (Sweden)

    Alexander M Many

    Full Text Available The characterization of mammary stem cells, and signals that regulate their behavior, is of central importance in understanding developmental changes in the mammary gland and possibly for targeting stem-like cells in breast cancer. The canonical Wnt/β-catenin pathway is a signaling mechanism associated with maintenance of self-renewing stem cells in many tissues, including mammary epithelium, and can be oncogenic when deregulated. Wnt1 and Wnt3a are examples of ligands that activate the canonical pathway. Other Wnt ligands, such as Wnt5a, typically signal via non-canonical, β-catenin-independent, pathways that in some cases can antagonize canonical signaling. Since the role of non-canonical Wnt signaling in stem cell regulation is not well characterized, we set out to investigate this using mammosphere formation assays that reflect and quantify stem cell properties. Ex vivo mammosphere cultures were established from both wild-type and Wnt1 transgenic mice and were analyzed in response to manipulation of both canonical and non-canonical Wnt signaling. An increased level of mammosphere formation was observed in cultures derived from MMTV-Wnt1 versus wild-type animals, and this was blocked by treatment with Dkk1, a selective inhibitor of canonical Wnt signaling. Consistent with this, we found that a single dose of recombinant Wnt3a was sufficient to increase mammosphere formation in wild-type cultures. Surprisingly, we found that Wnt5a also increased mammosphere formation in these assays. We confirmed that this was not caused by an increase in canonical Wnt/β-catenin signaling but was instead mediated by non-canonical Wnt signals requiring the receptor tyrosine kinase Ror2 and activity of the Jun N-terminal kinase, JNK. We conclude that both canonical and non-canonical Wnt signals have positive effects promoting stem cell activity in mammosphere assays and that they do so via independent signaling mechanisms.

  1. Nonbijective canonical transformations and applications to some dynamical systems

    International Nuclear Information System (INIS)

    Negadi, T.

    1988-01-01

    A first part is devoted to a presentation of a simplified formalism concerning non-bijective canonical transformations and to an interpretation of some of them in the framework on the theory of Lie algebras. In particular, the well-known Levi-Civita and Kustaanheimo-Stiefel transformations are generalized to the non-compact case and to the dimensions 2, 4 and 8. The differential and geometrical properties of the so-called Hurwitz transformations as well as their interpretation in terms of Lie algebras under constraints are given. A second part is concerned with the application of certain non-bijective canonical transformations (and in particular the Kustaanheimo-Stiefel transformation) to some dynamical systems of interest in theoretical and in chemical physics. The applications concern especially hydrogenoid systems, free or embedded in static and uniform electromagnetic fields, and systems presenting a line of singularity (as the Hartmann system, the Aharonov-Bohm system, and the dyonium system). The Kustaanheimo-Stiefel transformation allows to convert the Schroedinger equations for the later systems into Schroedinger equations for oscillators (harmonic, anharmonic, non-harmonic) in 2 or 4 dimensions [fr

  2. Clifford Algebras and Spinorial Representation of Linear Canonical Transformations in Quantum Theory

    International Nuclear Information System (INIS)

    Raoelina Andriambololona; Ranaivoson, R.T.R.; Rakotoson, H.

    2017-11-01

    This work is a continuation of previous works that we have done concerning linear canonical transformations and a phase space representation of quantum theory. It is mainly focused on the description of an approach which permits to establish spinorial representation of linear canonical transformations. It begins with an introduction section in which the reason and context of the content are discussed. The introduction section is followed by a brief recall about Clifford algebra and spin group. The description of the approach is started with the presentation of an adequate parameterization of linear canonical transformations which permits to represent them with special pseudo-orthogonal transformations in an operators space. The establishment of the spinorial representation is deduced using relation between special pseudo-orthogonal groups and spin groups. The cases of one dimension quantum mechanics and general multidimensional theory are both studied. The case of linear canonical transformation related to Minkowski space is particularly studied and it is shown that Lorentz transformation may be considered as particular case of linear canonical transformation. Some results from the spinorial representation are also exploited to define operators which may be used to establish equations for fields if one considers the possibility of envisaging a field theory which admits as main symmetry group the group constituted by linear canonical transformations.

  3. Hamilton-Ostrogradsky principle in the theory of nonlinear elasticity with the combined approach

    International Nuclear Information System (INIS)

    Sporykhin, A.N.

    1995-01-01

    The assignment of a portion of the edge conditions in the deformed state and a portion of them in the initial state so that the initial and deformed states of the body are unknowns is a characteristic feature of the statement of a number of technological problems. Haber and Haber and Abel have performed studies in this direction, where constitutive relationships have been constructed within the framework of a linearly elastic material. Use of the displacements of individual particles as variable parameters in these relationships has required additional conditions that do not follow from the formulated problem. Use of familiar variational principles described in Euler coordinates is rendered difficult by the complexity of edge-condition formulation in the special case when the initial state is unknown. The latter is governed by the fact that variational principles are derived from the initial formulations open-quotes in Lagrangian coordinates,close quotes by recalculating the operation functional. Using Lagrange's principle, Novikov and Sporykhin constructed constitutive equations in the general case of a nonlinearly elastic body with edge conditions assigned in different configurations. An analogous problem is solved in this paper using the Hamilton-Ostrogradsky principle

  4. Canonical quantization of some midi-superspace models in 3+1 dimensions

    International Nuclear Information System (INIS)

    Christodoulakis, T; Doulis, G; Terzis, Petros A; Melas, E; Grammenos, Th; Papadopoulos, G O; Spanou, A

    2010-01-01

    A proposal is put forward which enables the canonical quantization of a family of spherically symmetric geometries in 3+1 dimensions. The proposal consists of a particular renormalization Assumption and an accompanying Requirement and results in a Wheeler- DeWitt equation which is based on a renormalized manifold parametrized by three smooth scalar functionals. The aforementioned equation is analytically solved for the 3+1 case.

  5. A second order discontinuous Galerkin fast sweeping method for Eikonal equations

    Science.gov (United States)

    Li, Fengyan; Shu, Chi-Wang; Zhang, Yong-Tao; Zhao, Hongkai

    2008-09-01

    In this paper, we construct a second order fast sweeping method with a discontinuous Galerkin (DG) local solver for computing viscosity solutions of a class of static Hamilton-Jacobi equations, namely the Eikonal equations. Our piecewise linear DG local solver is built on a DG method developed recently [Y. Cheng, C.-W. Shu, A discontinuous Galerkin finite element method for directly solving the Hamilton-Jacobi equations, Journal of Computational Physics 223 (2007) 398-415] for the time-dependent Hamilton-Jacobi equations. The causality property of Eikonal equations is incorporated into the design of this solver. The resulting local nonlinear system in the Gauss-Seidel iterations is a simple quadratic system and can be solved explicitly. The compactness of the DG method and the fast sweeping strategy lead to fast convergence of the new scheme for Eikonal equations. Extensive numerical examples verify efficiency, convergence and second order accuracy of the proposed method.

  6. On the coupling of statistic sum of canonical and large canonical ensemble of interacting particles

    International Nuclear Information System (INIS)

    Vall, A.N.

    2000-01-01

    Potentiality of refining the known result based on analytic properties of a great statistical sum, as a function of the absolute activity of the boundary integral contribution into statistical sum, is considered. A strict asymptotic ratio between statistical sums of canonical and large canonical ensemble of interacting particles was derived [ru

  7. Multicollinearity in canonical correlation analysis in maize.

    Science.gov (United States)

    Alves, B M; Cargnelutti Filho, A; Burin, C

    2017-03-30

    The objective of this study was to evaluate the effects of multicollinearity under two methods of canonical correlation analysis (with and without elimination of variables) in maize (Zea mays L.) crop. Seventy-six maize genotypes were evaluated in three experiments, conducted in a randomized block design with three replications, during the 2009/2010 crop season. Eleven agronomic variables (number of days from sowing until female flowering, number of days from sowing until male flowering, plant height, ear insertion height, ear placement, number of plants, number of ears, ear index, ear weight, grain yield, and one thousand grain weight), 12 protein-nutritional variables (crude protein, lysine, methionine, cysteine, threonine, tryptophan, valine, isoleucine, leucine, phenylalanine, histidine, and arginine), and 6 energetic-nutritional variables (apparent metabolizable energy, apparent metabolizable energy corrected for nitrogen, ether extract, crude fiber, starch, and amylose) were measured. A phenotypic correlation matrix was first generated among the 29 variables for each of the experiments. A multicollinearity diagnosis was later performed within each group of variables using methodologies such as variance inflation factor and condition number. Canonical correlation analysis was then performed, with and without the elimination of variables, among groups of agronomic and protein-nutritional, and agronomic and energetic-nutritional variables. The canonical correlation analysis in the presence of multicollinearity (without elimination of variables) overestimates the variability of canonical coefficients. The elimination of variables is an efficient method to circumvent multicollinearity in canonical correlation analysis.

  8. The Bargmann transform and canonical transformations

    International Nuclear Information System (INIS)

    Villegas-Blas, Carlos

    2002-01-01

    This paper concerns a relationship between the kernel of the Bargmann transform and the corresponding canonical transformation. We study this fact for a Bargmann transform introduced by Thomas and Wassell [J. Math. Phys. 36, 5480-5505 (1995)]--when the configuration space is the two-sphere S 2 and for a Bargmann transform that we introduce for the three-sphere S 3 . It is shown that the kernel of the Bargmann transform is a power series in a function which is a generating function of the corresponding canonical transformation (a classical analog of the Bargmann transform). We show in each case that our canonical transformation is a composition of two other canonical transformations involving the complex null quadric in C 3 or C 4 . We also describe quantizations of those two other canonical transformations by dealing with spaces of holomorphic functions on the aforementioned null quadrics. Some of these quantizations have been studied by Bargmann and Todorov [J. Math. Phys. 18, 1141-1148 (1977)] and the other quantizations are related to the work of Guillemin [Integ. Eq. Operator Theory 7, 145-205 (1984)]. Since suitable infinite linear combinations of powers of the generating functions are coherent states for L 2 (S 2 ) or L 2 (S 3 ), we show finally that the studied Bargmann transforms are actually coherent states transforms

  9. 78 FR 28838 - Hamilton Street Hydro, LLC; Notice of Preliminary Permit Application Accepted for Filing and...

    Science.gov (United States)

    2013-05-16

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 14507-000] Hamilton Street... Project would consist of the following: (1) An existing 10.5-foot-high rock fill gravity dam with a 655... a storage [[Page 28839

  10. Dictionary-Based Tensor Canonical Polyadic Decomposition

    Science.gov (United States)

    Cohen, Jeremy Emile; Gillis, Nicolas

    2018-04-01

    To ensure interpretability of extracted sources in tensor decomposition, we introduce in this paper a dictionary-based tensor canonical polyadic decomposition which enforces one factor to belong exactly to a known dictionary. A new formulation of sparse coding is proposed which enables high dimensional tensors dictionary-based canonical polyadic decomposition. The benefits of using a dictionary in tensor decomposition models are explored both in terms of parameter identifiability and estimation accuracy. Performances of the proposed algorithms are evaluated on the decomposition of simulated data and the unmixing of hyperspectral images.

  11. The community takes charge : story and success of Clean Air Hamilton

    International Nuclear Information System (INIS)

    McCarry, B.

    2004-01-01

    Clean Air Hamilton was established in 2001 to identify priority air quality issues, pollution sources, and evaluate impacts and solutions for air quality issues. Clean Air Hamilton also assesses the human health effects of ambient air exposures in Hamilton. A 1997 survey of Hamilton residents showed that most citizens were extremely concerned about health effects, black fallout, smog visibility, and odours. Clean Air Hamilton has established an air monitoring network which includes 19 member companies and 22 industrial sites. The objective is to determine recent contaminant trends in upwind/downwind air quality. The timeline for establishing the Hamilton air monitoring network was presented. The network, which serves as a model for Ontario and Canada, monitors the impact of vehicular and industrial emissions and establishes ten-year air quality trends for benzo(a)pyrene, sulphur, nitrogen dioxide, and ozone at industrial sites and the downtown core. Analysis of air quality trends shows that there has been improvement in levels of some locally-generated contaminants. The data has also been used for epidemiological studies to determine the health effects of industry on Hamiltonians. figs

  12. Hamilton Utilities Corporation annual report 2002 : people, performance, productivity : the business of public service

    International Nuclear Information System (INIS)

    2002-01-01

    A brief overview of the municipally-owned Hamilton Utilities Corporation was provided. When Ontario's electricity market opened to competition, it allowed wholesale and retail electricity marketers to operate on a competitive basis. This report describes how Hamilton Hydro, the largest subsidiary, successfully faced the challenges brought about by the open market. The strategy of growth as a multi-utility corporation progressed significantly. Major financial restructuring was completed, income level was maintained, as well as a strong balance sheet. The construction of Hamilton's first district energy system was effected by Hamilton Community Energy, another subsidiary. This project is expected to provide heat to 10 buildings in the downtown area, producing 3.5 megawatts of electricity for the City. The third subsidiary, FibreWired, applied its vast communications expertise to the health care sector. It offered Virtual Private Network (VPN) services to area hospitals and other health care providers in pharmaceutical and biotechnology. A major study was undertaken jointly with the City of Hamilton. It examined the feasibility of restructuring water and wastewater services into a municipally owned corporation under the umbrella of Hamilton Utilities Corporation. Various examples were provided throughout the report to better illustrate how corporate vision was translated into reality. tabs

  13. Black-hole horizons in modified spacetime structures arising from canonical quantum gravity

    International Nuclear Information System (INIS)

    Bojowald, Martin; Paily, George M; Reyes, Juan D; Tibrewala, Rakesh

    2011-01-01

    Several properties of canonical quantum gravity modify spacetime structures, sometimes to the degree that no effective line elements exist to describe the geometry. An analysis of solutions, for instance in the context of black holes, then requires new insights. In this paper, standard definitions of horizons in spherical symmetry are first reformulated canonically, and then evaluated for solutions of equations and constraints modified by inverse-triad corrections of loop quantum gravity. When possible, a spacetime analysis is performed which reveals a mass threshold for black holes and small changes to Hawking radiation. For more general conclusions, canonical perturbation theory is developed to second order to include back-reaction from matter. The results shed light on the questions of whether renormalization of Newton's constant or other modifications of horizon conditions should be taken into account in computations of black-hole entropy in loop quantum gravity.

  14. Geometric integrator for simulations in the canonical ensemble

    Energy Technology Data Exchange (ETDEWEB)

    Tapias, Diego, E-mail: diego.tapias@nucleares.unam.mx [Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510 (Mexico); Sanders, David P., E-mail: dpsanders@ciencias.unam.mx [Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510 (Mexico); Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139 (United States); Bravetti, Alessandro, E-mail: alessandro.bravetti@iimas.unam.mx [Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510 (Mexico)

    2016-08-28

    We introduce a geometric integrator for molecular dynamics simulations of physical systems in the canonical ensemble that preserves the invariant distribution in equations arising from the density dynamics algorithm, with any possible type of thermostat. Our integrator thus constitutes a unified framework that allows the study and comparison of different thermostats and of their influence on the equilibrium and non-equilibrium (thermo-)dynamic properties of a system. To show the validity and the generality of the integrator, we implement it with a second-order, time-reversible method and apply it to the simulation of a Lennard-Jones system with three different thermostats, obtaining good conservation of the geometrical properties and recovering the expected thermodynamic results. Moreover, to show the advantage of our geometric integrator over a non-geometric one, we compare the results with those obtained by using the non-geometric Gear integrator, which is frequently used to perform simulations in the canonical ensemble. The non-geometric integrator induces a drift in the invariant quantity, while our integrator has no such drift, thus ensuring that the system is effectively sampling the correct ensemble.

  15. Geometric integrator for simulations in the canonical ensemble

    International Nuclear Information System (INIS)

    Tapias, Diego; Sanders, David P.; Bravetti, Alessandro

    2016-01-01

    We introduce a geometric integrator for molecular dynamics simulations of physical systems in the canonical ensemble that preserves the invariant distribution in equations arising from the density dynamics algorithm, with any possible type of thermostat. Our integrator thus constitutes a unified framework that allows the study and comparison of different thermostats and of their influence on the equilibrium and non-equilibrium (thermo-)dynamic properties of a system. To show the validity and the generality of the integrator, we implement it with a second-order, time-reversible method and apply it to the simulation of a Lennard-Jones system with three different thermostats, obtaining good conservation of the geometrical properties and recovering the expected thermodynamic results. Moreover, to show the advantage of our geometric integrator over a non-geometric one, we compare the results with those obtained by using the non-geometric Gear integrator, which is frequently used to perform simulations in the canonical ensemble. The non-geometric integrator induces a drift in the invariant quantity, while our integrator has no such drift, thus ensuring that the system is effectively sampling the correct ensemble.

  16. An Adjoint-based Numerical Method for a class of nonlinear Fokker-Planck Equations

    KAUST Repository

    Festa, Adriano; Gomes, Diogo A.; Machado Velho, Roberto

    2017-01-01

    Here, we introduce a numerical approach for a class of Fokker-Planck (FP) equations. These equations are the adjoint of the linearization of Hamilton-Jacobi (HJ) equations. Using this structure, we show how to transfer the properties of schemes for HJ equations to the FP equations. Hence, we get numerical schemes with desirable features such as positivity and mass-preservation. We illustrate this approach in examples that include mean-field games and a crowd motion model.

  17. An Adjoint-based Numerical Method for a class of nonlinear Fokker-Planck Equations

    KAUST Repository

    Festa, Adriano

    2017-03-22

    Here, we introduce a numerical approach for a class of Fokker-Planck (FP) equations. These equations are the adjoint of the linearization of Hamilton-Jacobi (HJ) equations. Using this structure, we show how to transfer the properties of schemes for HJ equations to the FP equations. Hence, we get numerical schemes with desirable features such as positivity and mass-preservation. We illustrate this approach in examples that include mean-field games and a crowd motion model.

  18. Canonical vs. micro-canonical sampling methods in a 2D Ising model

    International Nuclear Information System (INIS)

    Kepner, J.

    1990-12-01

    Canonical and micro-canonical Monte Carlo algorithms were implemented on a 2D Ising model. Expressions for the internal energy, U, inverse temperature, Z, and specific heat, C, are given. These quantities were calculated over a range of temperature, lattice sizes, and time steps. Both algorithms accurately simulate the Ising model. To obtain greater than three decimal accuracy from the micro-canonical method requires that the more complicated expression for Z be used. The overall difference between the algorithms is small. The physics of the problem under study should be the deciding factor in determining which algorithm to use. 13 refs., 6 figs., 2 tabs

  19. Infants' Recognition of Objects Using Canonical Color

    Science.gov (United States)

    Kimura, Atsushi; Wada, Yuji; Yang, Jiale; Otsuka, Yumiko; Dan, Ippeita; Masuda, Tomohiro; Kanazawa, So; Yamaguchi, Masami K.

    2010-01-01

    We explored infants' ability to recognize the canonical colors of daily objects, including two color-specific objects (human face and fruit) and a non-color-specific object (flower), by using a preferential looking technique. A total of 58 infants between 5 and 8 months of age were tested with a stimulus composed of two color pictures of an object…

  20. Canonical sampling of a lattice gas

    International Nuclear Information System (INIS)

    Mueller, W.F.

    1997-01-01

    It is shown that a sampling algorithm, recently proposed in conjunction with a lattice-gas model of nuclear fragmentation, samples the canonical ensemble only in an approximate fashion. A residual weight factor has to be taken into account to calculate correct thermodynamic averages. Then, however, the algorithm is numerically inefficient. copyright 1997 The American Physical Society

  1. Conformal constraint in canonical quantum gravity

    NARCIS (Netherlands)

    t Hooft, G.

    2010-01-01

    Perturbative canonical quantum gravity is considered, when coupled to a renormalizable model for matter fields. It is proposed that the functional integral over the dilaton field should be disentangled from the other integrations over the metric fields. This should generate a conformally invariant

  2. Contextuality in canonical systems of random variables

    Science.gov (United States)

    Dzhafarov, Ehtibar N.; Cervantes, Víctor H.; Kujala, Janne V.

    2017-10-01

    Random variables representing measurements, broadly understood to include any responses to any inputs, form a system in which each of them is uniquely identified by its content (that which it measures) and its context (the conditions under which it is recorded). Two random variables are jointly distributed if and only if they share a context. In a canonical representation of a system, all random variables are binary, and every content-sharing pair of random variables has a unique maximal coupling (the joint distribution imposed on them so that they coincide with maximal possible probability). The system is contextual if these maximal couplings are incompatible with the joint distributions of the context-sharing random variables. We propose to represent any system of measurements in a canonical form and to consider the system contextual if and only if its canonical representation is contextual. As an illustration, we establish a criterion for contextuality of the canonical system consisting of all dichotomizations of a single pair of content-sharing categorical random variables. This article is part of the themed issue `Second quantum revolution: foundational questions'.

  3. DNA pattern recognition using canonical correlation algorithm

    Indian Academy of Sciences (India)

    2015-09-28

    Sep 28, 2015 ... were considered as the two views, and statistically significant relationships were established between these two ... Canonical correlation analysis is to find two sets of basis ..... Jing XY, Li S, Lan C, Zhang D, Yang JY and Liu Q 2011 Color ... Yu S, Yu K, Tresp V and Kriegel HP 2006 Multi-output regularized.

  4. Universal canonical entropy for gravitating systems

    Indian Academy of Sciences (India)

    Similar to this is the case of ref. [12] which also uses the saddle point approximation to express the microcanonical entropy in terms of the canonical entropy [12a]. Recalling that there is at least 'circumstantial' evidence that the microcanonical entropy has a 'universal' form [13–15], identical to that obtained in ref. [6] quoted.

  5. Canonical analysis based on mutual information

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg; Vestergaard, Jacob Schack

    2015-01-01

    combinations with the information theoretical measure mutual information (MI). We term this type of analysis canonical information analysis (CIA). MI allows for the actual joint distribution of the variables involved and not just second order statistics. While CCA is ideal for Gaussian data, CIA facilitates...

  6. On the canonical treatment of Lagrangian constraints

    International Nuclear Information System (INIS)

    Barbashov, B.M.

    2001-01-01

    The canonical treatment of dynamic systems with manifest Lagrangian constraints proposed by Berezin is applied to concrete examples: a special Lagrangian linear in velocities, relativistic particles in proper time gauge, a relativistic string in orthonormal gauge, and the Maxwell field in the Lorentz gauge

  7. Kuidas Canon suureks kasvas / Andres Eilart

    Index Scriptorium Estoniae

    Eilart, Andres

    2004-01-01

    Jaapani kaamerate ja büroomasinate tootja Canon Groupi arengust, tegevusest kolmes regioonis - USA-s, Euroopas ja Aasias ning ettevõtte pikaajalise edu põhjustest - ärifilosoofiast ning ajastatud tootearendusest. Vt. samas: Firma esialgne nimi oli Kwanon; Konkurendid koonduvad

  8. Probing the small distance structure of canonical

    NARCIS (Netherlands)

    t Hooft, G.

    2010-01-01

    In canonical quantum gravity, the formal functional integral includes an integration over the local conformal factor, and we propose to perform the functional integral over this factor before doing any of the other functional integrals. By construction, the resulting effective theory would be

  9. On the canonical treatment of Lagrangian constraints

    International Nuclear Information System (INIS)

    Barbashov, B.M.

    2001-01-01

    The canonical treatment of dynamic systems with manifest Lagrangian constraints proposed by Berezin is applied to concrete examples: a specific Lagrangian linear in velocities, relativistic particles in proper time gauge, a relativistic string in orthonormal gauge, and the Maxwell field in the Lorentz gauge

  10. The Literary Canon in the Age of New Media

    DEFF Research Database (Denmark)

    Backe, Hans-Joachim

    2015-01-01

    and mediality of the canon. In a development that has largely gone unnoticed outside German speaking countries, new approaches for discussing current and future processes of canonization have been developed in recent years. One pivotal element of this process has been a thorough re-evaluation new media......The article offers a comparative overview of the diverging courses of the canon debate in Anglophone and Germanophone contexts. While the Anglophone canon debate has focused on the politics of canon composition, the Germanophone canon debate has been more concerned with the malleability...

  11. Quantum canonical ensemble: A projection operator approach

    Science.gov (United States)

    Magnus, Wim; Lemmens, Lucien; Brosens, Fons

    2017-09-01

    Knowing the exact number of particles N, and taking this knowledge into account, the quantum canonical ensemble imposes a constraint on the occupation number operators. The constraint particularly hampers the systematic calculation of the partition function and any relevant thermodynamic expectation value for arbitrary but fixed N. On the other hand, fixing only the average number of particles, one may remove the above constraint and simply factorize the traces in Fock space into traces over single-particle states. As is well known, that would be the strategy of the grand-canonical ensemble which, however, comes with an additional Lagrange multiplier to impose the average number of particles. The appearance of this multiplier can be avoided by invoking a projection operator that enables a constraint-free computation of the partition function and its derived quantities in the canonical ensemble, at the price of an angular or contour integration. Introduced in the recent past to handle various issues related to particle-number projected statistics, the projection operator approach proves beneficial to a wide variety of problems in condensed matter physics for which the canonical ensemble offers a natural and appropriate environment. In this light, we present a systematic treatment of the canonical ensemble that embeds the projection operator into the formalism of second quantization while explicitly fixing N, the very number of particles rather than the average. Being applicable to both bosonic and fermionic systems in arbitrary dimensions, transparent integral representations are provided for the partition function ZN and the Helmholtz free energy FN as well as for two- and four-point correlation functions. The chemical potential is not a Lagrange multiplier regulating the average particle number but can be extracted from FN+1 -FN, as illustrated for a two-dimensional fermion gas.

  12. Canonical methods in classical and quantum gravity: An invitation to canonical LQG

    Science.gov (United States)

    Reyes, Juan D.

    2018-04-01

    Loop Quantum Gravity (LQG) is a candidate quantum theory of gravity still under construction. LQG was originally conceived as a background independent canonical quantization of Einstein’s general relativity theory. This contribution provides some physical motivations and an overview of some mathematical tools employed in canonical Loop Quantum Gravity. First, Hamiltonian classical methods are reviewed from a geometric perspective. Canonical Dirac quantization of general gauge systems is sketched next. The Hamiltonian formultation of gravity in geometric ADM and connection-triad variables is then presented to finally lay down the canonical loop quantization program. The presentation is geared toward advanced undergradute or graduate students in physics and/or non-specialists curious about LQG.

  13. Hecke symmetries and characteristic relations on reflection equation algebras

    International Nuclear Information System (INIS)

    Gurevich, D.I.; Pyatov, P.N.

    1996-01-01

    We discuss how properties of Hecke symmetry (i.e., Hecke type R-matrix) influence the algebraic structure of the corresponding Reflection Equation (RE) algebra. Analogues of the Newton relations and Cayley-Hamilton theorem for the matrix of generators of the RE algebra related to a finite rank even Hecke symmetry are derived. 10 refs

  14. Study of interacting fields in a canonical formalism in Heisenberg picture of quantum field theory

    International Nuclear Information System (INIS)

    RANAIVOSON, R.T.R.

    2011-01-01

    In this work, we have made a study on the canonical formalism of the quantum field theory. Our contribution has been the development of a study using the Heisenberg picture. We showed that this approach may be useful for the description of quantum dynamics of interacting fields in bounded states. Our approach is to start from the lagrangian density of a classical theory from which one deduce the classical evolution equations of the fields via Euler-Lagrange equation for fields and establish the expression of conserved quantities characterizing the dynamics using the Noether theorem. Passing to the canonical quantization, fields and quantities characterizing the dynamics become quantum operators and evolution equations become operatorial evolution equations in Heisenberg picture. Expressions of quantum observable are also deduced from the expressions of classical conserved quantities. After, we showed that using the properties of fields operators and quantum states vectors, one can deduce from the operatorial evolution equations, the evolution equations for the wave functions of fermions and the evolution equations of expectation values of boson fields. For the illustration, various studies were conducted: the case of electrodynamics, the case of a general gauge theory and the case of the Standard Model. [fr

  15. Fan fiction, early Greece, and the historicity of canon

    Directory of Open Access Journals (Sweden)

    Ahuvia Kahane

    2016-03-01

    Full Text Available The historicity of canon is considered with an emphasis on contemporary fan fiction and early Greek oral epic traditions. The essay explores the idea of canon by highlighting historical variance, exposing wider conceptual isomorphisms, and formulating a revised notion of canonicity. Based on an analysis of canon in early Greece, the discussion moves away from the idea of canon as a set of valued works and toward canon as a practice of containment in response to inherent states of surplus. This view of canon is applied to the practice of fan fiction, reestablishing the idea of canonicity in fluid production environments within a revised, historically specific understanding in early oral traditions on the one hand and in digital cultures and fan fiction on the other. Several examples of early epigraphic Greek texts embedded in oral environments are analyzed and assessed in terms of their implications for an understanding of fan fiction and its modern contexts.

  16. Canonical sound speed profile for the central Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, T.V.R.; PrasannaKumar, S.; Somayajulu, Y.K.; Sastry, J.S.; De Figueiredo, R.J.P.

    Following Munk's canonical theory, an algorithm has been presented for computing sound channel parameters in the western and southern Bay of Bengal. The estimated canonical sound speed profile using these parameters has been compared with computed...

  17. Théorie de Perron-Frobenius non linéaire et méthodes numériques max-plus pour la résolution d'équations d'Hamilton-Jacobi

    OpenAIRE

    Qu , Zheng

    2013-01-01

    Dynamic programming is one of the main approaches to solve optimal control problems. It reduces the latter problems to Hamilton-Jacobi partial differential equations (PDE). Several techniques have been proposed in the literature to solve these PDE. We mention, for example, finite difference schemes, the so-called discrete dynamic programming method or semi-Lagrangian method, or the antidiffusive schemes. All these methods are grid-based, i.e., they require a discretization of the state space,...

  18. Complex nonlinear Lagrangian for the Hasegawa-Mima equation

    International Nuclear Information System (INIS)

    Dewar, R.L.; Abdullatif, R.F.; Sangeetha, G.G.

    2005-01-01

    The Hasegawa-Mima equation is the simplest nonlinear single-field model equation that captures the essence of drift wave dynamics. Like the Schroedinger equation it is first order in time. However its coefficients are real, so if the potential φ is initially real it remains real. However, by embedding φ in the space of complex functions a simple Lagrangian is found from which the Hasegawa-Mima equation may be derived from Hamilton's Principle. This Lagrangian is used to derive an action conservation equation which agrees with that of Biskamp and Horton. (author)

  19. An introduction to the theory of canonical matrices

    CERN Document Server

    Turnbull, H W

    2004-01-01

    Thorough and self-contained, this penetrating study of the theory of canonical matrices presents a detailed consideration of all the theory's principal features. Topics include elementary transformations and bilinear and quadratic forms; canonical reduction of equivalent matrices; subgroups of the group of equivalent transformations; and rational and classical canonical forms. The final chapters explore several methods of canonical reduction, including those of unitary and orthogonal transformations. 1952 edition. Index. Appendix. Historical notes. Bibliographies. 275 problems.

  20. Minimal canonical comprehensive Gröbner systems

    OpenAIRE

    Manubens, Montserrat; Montes, Antonio

    2009-01-01

    This is the continuation of Montes' paper "On the canonical discussion of polynomial systems with parameters''. In this paper, we define the Minimal Canonical Comprehensive Gröbner System of a parametric ideal and fix under which hypothesis it exists and is computable. An algorithm to obtain a canonical description of the segments of the Minimal Canonical CGS is given, thus completing the whole MCCGS algorithm (implemented in Maple and Singular). We show its high utility for applications, suc...

  1. Towards canonical quantum gravity for 3+1 geometries admitting maximally symmetric two-dimensional surfaces

    International Nuclear Information System (INIS)

    Christodoulakis, T; Doulis, G; Terzis, Petros A; Melas, E; Grammenos, Th; Papadopoulos, G O; Spanou, A

    2010-01-01

    The canonical decomposition of all 3+1 geometries admitting two-dimensional space-like surfaces is exhibited as a generalization of a previous work. A proposal, consisting of a specific renormalization Assumption and an accompanying Requirement, which has been put forward in the 2+1 case is now generalized to 3+1 dimensions. This enables the canonical quantization of these geometries through a generalization of Kuchar's quantization scheme in the case of infinite degrees of freedom. The resulting Wheeler-DeWitt equation is based on a renormalized manifold parameterized by three smooth scalar functionals. The entire space of solutions to this equation is analytically given, a fact that is entirely new to the present case. This is made possible through the exploitation of the residual freedom in the choice of the third functional, which is left by the imposition of the Requirement, and is proven to correspond to a general coordinate transformation in the renormalized manifold.

  2. DNA pattern recognition using canonical correlation algorithm.

    Science.gov (United States)

    Sarkar, B K; Chakraborty, Chiranjib

    2015-10-01

    We performed canonical correlation analysis as an unsupervised statistical tool to describe related views of the same semantic object for identifying patterns. A pattern recognition technique based on canonical correlation analysis (CCA) was proposed for finding required genetic code in the DNA sequence. Two related but different objects were considered: one was a particular pattern, and other was test DNA sequence. CCA found correlations between two observations of the same semantic pattern and test sequence. It is concluded that the relationship possesses maximum value in the position where the pattern exists. As a case study, the potential of CCA was demonstrated on the sequence found from HIV-1 preferred integration sites. The subsequences on the left and right flanking from the integration site were considered as the two views, and statistically significant relationships were established between these two views to elucidate the viral preference as an important factor for the correlation.

  3. Normalization as a canonical neural computation

    Science.gov (United States)

    Carandini, Matteo; Heeger, David J.

    2012-01-01

    There is increasing evidence that the brain relies on a set of canonical neural computations, repeating them across brain regions and modalities to apply similar operations to different problems. A promising candidate for such a computation is normalization, in which the responses of neurons are divided by a common factor that typically includes the summed activity of a pool of neurons. Normalization was developed to explain responses in the primary visual cortex and is now thought to operate throughout the visual system, and in many other sensory modalities and brain regions. Normalization may underlie operations such as the representation of odours, the modulatory effects of visual attention, the encoding of value and the integration of multisensory information. Its presence in such a diversity of neural systems in multiple species, from invertebrates to mammals, suggests that it serves as a canonical neural computation. PMID:22108672

  4. Spanish Literature and Spectrality : Notes on a Haunted Canon

    NARCIS (Netherlands)

    Valdivia, Pablo

    In Spanish Literature, Crisis and Spectrality: Notes on a Haunted Canon, Prof. Dr. Pablo Valdivia analyses the contradictions and complexities of the Spanish traditional canon from a transnational approach. Valdivia explores this particular canon as a 'haunted house' by focusing on the specific

  5. Reminder of Lagrange-Hamilton formalism and of the corpuscular optics invariants

    International Nuclear Information System (INIS)

    Griess, F.

    1958-01-01

    Hamiltonian formalism - Canonical transformations - Invariants of Liouville, Helmholtz-Lagrange, Busch, Stoermer and Lagrange - Synchrotron's Hamiltonian - Betatron oscillation damping. (author) [fr

  6. Canonical ward identities in generalized QCD

    International Nuclear Information System (INIS)

    Li Ziping

    1995-01-01

    The canonical Ward identities for a system with singular higher-order Lagrangian are derived and some application to the generalized QCD are given. The new relations of the Ward identities for gauge ghost field proper vertices are obtained which differ from the usual Ward-Takahashi identities arising from BRS invariance. The expressions for PCAC and generalized PCAC of AVV vertices are also obtained

  7. Canonizing certain Borel equivalences for Silver forcing

    Czech Academy of Sciences Publication Activity Database

    Doucha, Michal

    2012-01-01

    Roč. 159, č. 13 (2012), s. 2973-2979 ISSN 0166-8641. [Prague Symposium on General Topology and its Relations to Modern Analysis and Algebra /11./. Prague, 07.08.2011-12.08.2011] Institutional research plan: CEZ:AV0Z10190503 Keywords : Borel equivalence relations * silver ideal * canonical Ramsey theorem Subject RIV: BA - General Mathematics Impact factor: 0.562, year: 2012 http://www.sciencedirect.com/science/article/pii/S0166864112002180#

  8. Are Young Children's Drawings Canonically Biased?

    Science.gov (United States)

    Picard, Delphine; Durand, Karine

    2005-01-01

    In a between-subjects design, 4-to 6-year-olds were asked to draw from three-dimensional (3D) models, two-and-a-half-dimensional (212D) models with or without depth cues, or two-dimensional (2D) models of a familiar object (a saucepan) in noncanonical orientations (handle at the back or at the front). Results showed that canonical errors were…

  9. Canonical Duality Theory for Topology Optimization

    OpenAIRE

    Gao, David Yang

    2016-01-01

    This paper presents a canonical duality approach for solving a general topology optimization problem of nonlinear elastic structures. By using finite element method, this most challenging problem can be formulated as a mixed integer nonlinear programming problem (MINLP), i.e. for a given deformation, the first-level optimization is a typical linear constrained 0-1 programming problem, while for a given structure, the second-level optimization is a general nonlinear continuous minimization pro...

  10. Il canone linguistico boccacciano, non senza dissenso

    Directory of Open Access Journals (Sweden)

    Cecilia Casini

    2015-06-01

    Full Text Available Author of prose’s greatest masterpiece of medieval literature in the vernacular, Giovanni Boccaccio was crucial to defining the Italian language canon, especially since Pietro Bembo proposed its coding in the sixteenth century. Not without controversy, however, since shortly after the publication of Prose Della Volgar Language, Bembo presents the first contrasting theories that support the linguistic model presented by Machiavelli

  11. Generalized operator canonical formalism and gauge invariance

    International Nuclear Information System (INIS)

    Fradkina, T.E.

    1988-01-01

    A direct proof is given in the functional representation of the invariance of the S-matrix constructed in the framework of the generalized operator canonical formalism. We find the traditional functional expression for the S-matrix (without point-splitting in the time factor) in the generalized phase space, as well as in the ghost configuration space. An explicit expression is obtained for the effective unitarizing Hamiltonian for gauge theories with constraints of arbitrary rank

  12. On the Dynamic Programming Approach for the 3D Navier-Stokes Equations

    International Nuclear Information System (INIS)

    Manca, Luigi

    2008-01-01

    The dynamic programming approach for the control of a 3D flow governed by the stochastic Navier-Stokes equations for incompressible fluid in a bounded domain is studied. By a compactness argument, existence of solutions for the associated Hamilton-Jacobi-Bellman equation is proved. Finally, existence of an optimal control through the feedback formula and of an optimal state is discussed

  13. The Fokker-Planck equation for ray dispersion in gyrotropic stratified media

    NARCIS (Netherlands)

    Golynski, S.M.

    1984-01-01

    The Hamilton equations of geometrical optics determine the rays of the relevant wave field in the short wavelength. We give a systematic derivation of the Fokker-Planck equation for the joint probability density of the position and unit direction vector of rays propagating in a gyrotropic stratified

  14. Hamilton and Hardy: Mentoring and Friendship in the Service of Occupational Health.

    Science.gov (United States)

    Sullivan, Marianne

    This article explores the mentoring relationship between Alice Hamilton and Harriet Hardy, two female physician-researchers who had a tremendous impact on the development of the field of occupational health in the United States during the 20th century. The article relies on letters the women wrote to each other. Hamilton, the elder, supported and furthered Hardy's career by asking her to coauthor the second edition of a seminal occupational health text. After beginning this intellectual collaboration, Hamilton remained a mentor to Hardy, and a decades-long friendship ensued. The article explores their relationship within the historical, political, and social context in which the women worked and made remarkable contributions to public health.

  15. Stochastic optimal control, forward-backward stochastic differential equations and the Schroedinger equation

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Wolfgang; Koeppe, Jeanette [Institut fuer Physik, Martin Luther Universitaet, 06099 Halle (Germany); Grecksch, Wilfried [Institut fuer Mathematik, Martin Luther Universitaet, 06099 Halle (Germany)

    2016-07-01

    The standard approach to solve a non-relativistic quantum problem is through analytical or numerical solution of the Schroedinger equation. We show a way to go around it. This way is based on the derivation of the Schroedinger equation from conservative diffusion processes and the establishment of (several) stochastic variational principles leading to the Schroedinger equation under the assumption of a kinematics described by Nelson's diffusion processes. Mathematically, the variational principle can be considered as a stochastic optimal control problem linked to the forward-backward stochastic differential equations of Nelson's stochastic mechanics. The Hamilton-Jacobi-Bellmann equation of this control problem is the Schroedinger equation. We present the mathematical background and how to turn it into a numerical scheme for analyzing a quantum system without using the Schroedinger equation and exemplify the approach for a simple 1d problem.

  16. Obituary: George Hamilton Bowen Jr. (1925-2009)

    Science.gov (United States)

    Willson, Lee Anne; Struck, Curtis

    2011-12-01

    Our colleague and collaborator George Hamilton Bowen, Jr., passed away November 1, 2009 in Ames, Iowa. George was born June 20, 1925 in Tulsa, Oklahoma to George and Dorothy (Huntington) Bowen. He married Marjorie Brown June 19, 1948 in Redondo Beach, California; they had five children, with eight grandchildren and five great-grandchildren at the time of his death. George H. Bowen's third or perhaps his fourth career was in astronomy. He was drafted into the navy in 1944, at the end of his first year as a student at Caltech, and ended his war-time service as an electronic technician on the aircraft carrier Shangri-La. He later said "In just nine months, starting from scratch (Ohm's law!), we learned an amazing amount - not by memorization, of course, but by study and real understanding of the basic function of the most advanced AC circuits then being used for instrumentation, measurements, communications, control systems, and much more." He gained a confidence that he could quickly and accurately diagnose and solve technical problems that stood him well in future work. One accomplishment he took particular pride in was figuring out how the radar control used cams and gears to solve the trigonometry for accurate pointing. He also described how the captain was alarmed when weather conditions changed so that refraction no longer showed them distant, small boats around the curvature of Earth. After the war, George Bowen returned to undergraduate and eventually graduate study at Caltech, where he was recruited to the biophysics research group headed by future Nobel Laureate Max Delbrück. George often described his joy in working with these first-rate scientists and finding himself accepted as a part of the effort. He finished his BS with honors in 1949 and his PhD in 1953 with a thesis on "Kinetic Studies on the Mechanism of Photoreactivation of Bacteriophase T2 Inactivated by Ultraviolet Light" involving work with E Coli. This work was supported by grants from the U

  17. On some aspects of the geometry of differential equations in physics

    OpenAIRE

    Gràcia, Xavier; Muñoz-Lecanda, Miguel C.; Román-Roy, Narciso

    2004-01-01

    In this review paper, we consider three kinds of systems of differential equations, which are relevant in physics, control theory and other applications in engineering and applied mathematics; namely: Hamilton equations, singular differential equations, and partial differential equations in field theories. The geometric structures underlying these systems are presented and commented. The main results concerning these structures are stated and discussed, as well as their influence on the study...

  18. New Li-Yau-Hamilton Inequalities for the Ricci Flow via the Space-Time Approach

    OpenAIRE

    Chow, Bennett; Knopf, Dan

    2002-01-01

    We generalize Hamilton's matrix Li-Yau-type Harnack estimate for the Ricci flow by considering the space of all LYH (Li-Yau-Hamilton) quadratics that arise as curvature tensors of space-time connections satisfying the Ricci flow with respect to the natural space-time degenerate metric. As a special case, we employ scaling arguments to derive a linear-type matrix LYH estimate. The new LYH quadratics obtained in this way are associated to the system of the Ricci flow coupled to a 1-form and a 2...

  19. Canonical forms for single-qutrit Clifford+T operators

    OpenAIRE

    Glaudell, Andrew N.; Ross, Neil J.; Taylor, Jacob M.

    2018-01-01

    We introduce canonical forms for single qutrit Clifford+T circuits and prove that every single-qutrit Clifford+T operator admits a unique such canonical form. We show that our canonical forms are T-optimal in the sense that among all the single-qutrit Clifford+T circuits implementing a given operator our canonical form uses the least number of T gates. Finally, we provide an algorithm which inputs the description of an operator (as a matrix or a circuit) and constructs the canonical form for ...

  20. Canonical structure and extra mode of generalized unimodular gravity

    Science.gov (United States)

    Bufalo, Rodrigo; Oksanen, Markku

    2018-02-01

    We consider a recently proposed generalization of unimodular gravity, where the lapse function is constrained to be equal to a function of the determinant of the spatial metric f (h ), as a potential origin of a dark fluid with a generally h -dependent equation of state parameter. We establish the Hamiltonian analysis and the canonical path integral for the theory. All the special cases that do not match unimodular gravity involve the violation of general covariance, and consequently the physical content of the theory is changed significantly. Particularly, the case of a constant function f is shown to contain an extra physical degree of freedom in each point of space. Physical consequences of the extra degree of freedom are studied in a linearized theory, where the extra mode is carried by the trace of the metric perturbation. The trace mode does not propagate as a wave, since it satisfies an elliptic partial differential equation in spacetime. Consequently, the trace perturbation is shown to grow exponentially with time, which implies instability. The case of a general f (h ) involves additional second-class constraints, which implies the presence of an extra global degree of freedom that depends only on time (instead of the extra local degree of freedom in the case of a constant f ).

  1. A model of individualized canonical microcircuits supporting cognitive operations.

    Directory of Open Access Journals (Sweden)

    Tim Kunze

    Full Text Available Major cognitive functions such as language, memory, and decision-making are thought to rely on distributed networks of a large number of basic elements, called canonical microcircuits. In this theoretical study we propose a novel canonical microcircuit model and find that it supports two basic computational operations: a gating mechanism and working memory. By means of bifurcation analysis we systematically investigate the dynamical behavior of the canonical microcircuit with respect to parameters that govern the local network balance, that is, the relationship between excitation and inhibition, and key intrinsic feedback architectures of canonical microcircuits. We relate the local behavior of the canonical microcircuit to cognitive processing and demonstrate how a network of interacting canonical microcircuits enables the establishment of spatiotemporal sequences in the context of syntax parsing during sentence comprehension. This study provides a framework for using individualized canonical microcircuits for the construction of biologically realistic networks supporting cognitive operations.

  2. Enabling grand-canonical Monte Carlo: extending the flexibility of GROMACS through the GromPy python interface module.

    Science.gov (United States)

    Pool, René; Heringa, Jaap; Hoefling, Martin; Schulz, Roland; Smith, Jeremy C; Feenstra, K Anton

    2012-05-05

    We report on a python interface to the GROMACS molecular simulation package, GromPy (available at https://github.com/GromPy). This application programming interface (API) uses the ctypes python module that allows function calls to shared libraries, for example, written in C. To the best of our knowledge, this is the first reported interface to the GROMACS library that uses direct library calls. GromPy can be used for extending the current GROMACS simulation and analysis modes. In this work, we demonstrate that the interface enables hybrid Monte-Carlo/molecular dynamics (MD) simulations in the grand-canonical ensemble, a simulation mode that is currently not implemented in GROMACS. For this application, the interplay between GromPy and GROMACS requires only minor modifications of the GROMACS source code, not affecting the operation, efficiency, and performance of the GROMACS applications. We validate the grand-canonical application against MD in the canonical ensemble by comparison of equations of state. The results of the grand-canonical simulations are in complete agreement with MD in the canonical ensemble. The python overhead of the grand-canonical scheme is only minimal. Copyright © 2012 Wiley Periodicals, Inc.

  3. Canonical formulation of the self-dual Yang-Mills system: Algebras and hierarchies

    International Nuclear Information System (INIS)

    Chau, L.; Yamanaka, I.

    1992-01-01

    We construct a canonical formulation of the self-dual Yang-Mills system formulated in the gauge-invariant group-valued J fields and derive their Hamiltonian and the quadratic algebras of the fundamental Dirac brackets. We also show that the quadratic algebras satisfy Jacobi identities and their structure matrices satisfy modified Yang-Baxter equations. From these quadratic algebras, we construct Kac-Moody-like and Virasoro-like algebras. We also discuss their related symmetries, involutive conserved quantities, and hierarchies of nonlinear and linear equations

  4. Canonical group quantization and boundary conditions

    International Nuclear Information System (INIS)

    Jung, Florian

    2012-01-01

    In the present thesis, we study quantization of classical systems with non-trivial phase spaces using the group-theoretical quantization technique proposed by Isham. Our main goal is a better understanding of global and topological aspects of quantum theory. In practice, the group-theoretical approach enables direct quantization of systems subject to constraints and boundary conditions in a natural and physically transparent manner -- cases for which the canonical quantization method of Dirac fails. First, we provide a clarification of the quantization formalism. In contrast to prior treatments, we introduce a sharp distinction between the two group structures that are involved and explain their physical meaning. The benefit is a consistent and conceptually much clearer construction of the Canonical Group. In particular, we shed light upon the 'pathological' case for which the Canonical Group must be defined via a central Lie algebra extension and emphasise the role of the central extension in general. In addition, we study direct quantization of a particle restricted to a half-line with 'hard wall' boundary condition. Despite the apparent simplicity of this example, we show that a naive quantization attempt based on the cotangent bundle over the half-line as classical phase space leads to an incomplete quantum theory; the reflection which is a characteristic aspect of the 'hard wall' is not reproduced. Instead, we propose a different phase space that realises the necessary boundary condition as a topological feature and demonstrate that quantization yields a suitable quantum theory for the half-line model. The insights gained in the present special case improve our understanding of the relation between classical and quantum theory and illustrate how contact interactions may be incorporated.

  5. Canonical group quantization and boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Florian

    2012-07-16

    In the present thesis, we study quantization of classical systems with non-trivial phase spaces using the group-theoretical quantization technique proposed by Isham. Our main goal is a better understanding of global and topological aspects of quantum theory. In practice, the group-theoretical approach enables direct quantization of systems subject to constraints and boundary conditions in a natural and physically transparent manner -- cases for which the canonical quantization method of Dirac fails. First, we provide a clarification of the quantization formalism. In contrast to prior treatments, we introduce a sharp distinction between the two group structures that are involved and explain their physical meaning. The benefit is a consistent and conceptually much clearer construction of the Canonical Group. In particular, we shed light upon the 'pathological' case for which the Canonical Group must be defined via a central Lie algebra extension and emphasise the role of the central extension in general. In addition, we study direct quantization of a particle restricted to a half-line with 'hard wall' boundary condition. Despite the apparent simplicity of this example, we show that a naive quantization attempt based on the cotangent bundle over the half-line as classical phase space leads to an incomplete quantum theory; the reflection which is a characteristic aspect of the 'hard wall' is not reproduced. Instead, we propose a different phase space that realises the necessary boundary condition as a topological feature and demonstrate that quantization yields a suitable quantum theory for the half-line model. The insights gained in the present special case improve our understanding of the relation between classical and quantum theory and illustrate how contact interactions may be incorporated.

  6. Grand Canonical Ensembles in General Relativity

    International Nuclear Information System (INIS)

    Klein, David; Yang, Wei-Shih

    2012-01-01

    We develop a formalism for general relativistic, grand canonical ensembles in space-times with timelike Killing fields. Using that, we derive ideal gas laws, and show how they depend on the geometry of the particular space-times. A systematic method for calculating Newtonian limits is given for a class of these space-times, which is illustrated for Kerr space-time. In addition, we prove uniqueness of the infinite volume Gibbs measure, and absence of phase transitions for a class of interaction potentials in anti-de Sitter space.

  7. Kato expansion in quantum canonical perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaev, Andrey, E-mail: Andrey.Nikolaev@rdtex.ru [Institute of Computing for Physics and Technology, Protvino, Moscow Region, Russia and RDTeX LTD, Moscow (Russian Federation)

    2016-06-15

    This work establishes a connection between canonical perturbation series in quantum mechanics and a Kato expansion for the resolvent of the Liouville superoperator. Our approach leads to an explicit expression for a generator of a block-diagonalizing Dyson’s ordered exponential in arbitrary perturbation order. Unitary intertwining of perturbed and unperturbed averaging superprojectors allows for a description of ambiguities in the generator and block-diagonalized Hamiltonian. We compare the efficiency of the corresponding computational algorithm with the efficiencies of the Van Vleck and Magnus methods for high perturbative orders.

  8. Canonically conjugate pairs and phase operators

    International Nuclear Information System (INIS)

    Schoenhammer, K.

    2002-01-01

    For quantum mechanics on a lattice the position ('particle number') operator and the quasimomentum ('phase') operator obey canonical commutation relations (CCRs) only on a dense set of the Hilbert space. We compare exact numerical results for a particle in a linear and a quadratic potential on the lattice with the expectations, when the CCRs are assumed to be strictly obeyed. Only for sufficiently smooth eigenfunctions does this lead to reasonable results. In the long time limit the use of the CCRs can lead to a qualitatively wrong dynamics even if the initial state is in the dense set

  9. Path integrals for arbitrary canonical transformations

    International Nuclear Information System (INIS)

    Oliveira, L.A.R. de.

    1980-01-01

    Some aspects of the path integral formulation of quantum mechanics are studied. This formalism is generalized to arbitrary canonical transformations, by means of an association between path integral probalility amplitudes and classical generators of transformations, analogous to the usual Hamiltonian time development phase space expression. Such association turns out to be equivalent to the Weyl quantization rule, and it is also shown that this formalism furnishes a path integral representation for a Lie algebra of a given set of classical generators. Some physical considerations about the path integral quantization procedure and about the relationship between classical and quantum dynamical structures are also discussed. (Author) [pt

  10. Canonical transformations and hamiltonian path integrals

    International Nuclear Information System (INIS)

    Prokhorov, L.V.

    1982-01-01

    Behaviour of the Hamiltonian path integrals under canonical transformations produced by a generator, is investigated. An exact form is determined for the kernel of the unitary operator realizing the corresponding quantum transformation. Equivalence rules are found (the Hamiltonian formalism, one-dimensional case) enabling one to exclude non-standard terms from the action. It is shown that the Hamiltonian path integral changes its form under cononical transformations: in the transformed expression besides the classical Hamiltonian function there appear some non-classical terms

  11. Kato expansion in quantum canonical perturbation theory

    International Nuclear Information System (INIS)

    Nikolaev, Andrey

    2016-01-01

    This work establishes a connection between canonical perturbation series in quantum mechanics and a Kato expansion for the resolvent of the Liouville superoperator. Our approach leads to an explicit expression for a generator of a block-diagonalizing Dyson’s ordered exponential in arbitrary perturbation order. Unitary intertwining of perturbed and unperturbed averaging superprojectors allows for a description of ambiguities in the generator and block-diagonalized Hamiltonian. We compare the efficiency of the corresponding computational algorithm with the efficiencies of the Van Vleck and Magnus methods for high perturbative orders.

  12. Canonical particle tracking in undulator fields

    International Nuclear Information System (INIS)

    Wuestefeld, G.; Bahrdt, J.

    1991-01-01

    A new algebraic mapping routine for particle tracking across wiggler and undulator fields in presented. It is based on a power series expansion of the generating function to guarantee fully canonical transformations. This method is 10 to 100 times faster than integration routines, applied in tracking codes like BETA or RACETRACK. The tracking method presented is not restricted to wigglers and undulators, it can be applied to other magnetic fields as well such as fringing fields of quadrupoles or dipoles if the suggested expansion converges

  13. Convergence analysis of canonical genetic algorithms.

    Science.gov (United States)

    Rudolph, G

    1994-01-01

    This paper analyzes the convergence properties of the canonical genetic algorithm (CGA) with mutation, crossover and proportional reproduction applied to static optimization problems. It is proved by means of homogeneous finite Markov chain analysis that a CGA will never converge to the global optimum regardless of the initialization, crossover, operator and objective function. But variants of CGA's that always maintain the best solution in the population, either before or after selection, are shown to converge to the global optimum due to the irreducibility property of the underlying original nonconvergent CGA. These results are discussed with respect to the schema theorem.

  14. Light Rail Transit in Hamilton: Health, Environmental and Economic Impact Analysis

    Science.gov (United States)

    Topalovic, P.; Carter, J.; Topalovic, M.; Krantzberg, G.

    2012-01-01

    Hamilton's historical roots as an electric, industrial and transportation-oriented city provide it with a high potential for rapid transit, especially when combined with its growing population, developing economy, redeveloping downtown core and its plans for sustainable growth. This paper explores the health, environmental, social and economic…

  15. 78 FR 22873 - Hamilton Street Hydro, LLC; Notice of Preliminary Permit Application Accepted for Filing and...

    Science.gov (United States)

    2013-04-17

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 14500-000] Hamilton Street... Hydroelectric Project would consist of the following: (1) An existing 14-foot-high concrete gravity dam with a 480-foot-long spillway; (2) an existing impoundment having a surface area of 50 acres and a storage...

  16. 78 FR 22872 - Hamilton Street Hydro, LLC; Notice of Preliminary Permit Application Accepted for Filing and...

    Science.gov (United States)

    2013-04-17

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 14499-000] Hamilton Street... Project would consist of the following: (1) An existing 20-foot-high concrete gravity dam with a 690-foot-long spillway; (2) an existing impoundment having a surface area of 300 acres and a storage capacity of...

  17. 77 FR 52058 - Notice of Inventory Completion: Longyear Museum of Anthropology, Colgate University, Hamilton, NY

    Science.gov (United States)

    2012-08-28

    ... Inventory Completion: Longyear Museum of Anthropology, Colgate University, Hamilton, NY AGENCY: National Park Service, Interior. ACTION: Notice. SUMMARY: The Longyear Museum of Anthropology has completed an... cultural affiliation with the human remains should contact the Longyear Museum of Anthropology at the...

  18. 76 FR 48178 - Notice of Inventory Completion: Longyear Museum of Anthropology, Colgate University, Hamilton, NY

    Science.gov (United States)

    2011-08-08

    ...: Longyear Museum of Anthropology, Colgate University, Hamilton, NY AGENCY: National Park Service, Interior. ACTION: Notice. SUMMARY: The Longyear Museum of Anthropology has completed an inventory of a human remain... human remain should contact the Longyear Museum of Anthropology at the address below by September 7...

  19. Perceptions of Quality Life in Hamilton's Neighbourhood Hubs: A Qualitative Analysis

    Science.gov (United States)

    Eby, Jeanette; Kitchen, Peter; Williams, Allison

    2012-01-01

    This paper examines perceptions of quality of life in Hamilton, Ontario, Canada from the perspective of residents and key community stakeholders. A series of eight focus groups were conducted. Six sessions were held with residents of neighbourhood "hubs", areas characterized by high levels of poverty. The following themes were…

  20. Octavia Butler and Virginia Hamilton: Black Women Writers and Science Fiction.

    Science.gov (United States)

    Hampton, Gregory Jerome; Brooks, Wanda M.

    2003-01-01

    Notes that African American literature has always had science fiction elements in its focus on narratives of the alienated and marginalized "other." Contends that Octavia Butler and Virginia Hamilton are two African American writers of science fiction who examine the connections between the stories of a culture and the genre of science…

  1. Air Quality in Hamilton: Who Is Concerned? Perceptions from Three Neighbourhoods

    Science.gov (United States)

    Simone, Dylan; Eyles, John; Newbold, K. Bruce; Kitchen, Peter; Williams, Allison

    2012-01-01

    This study investigates the factors influencing perceptions of air quality in the industrial city of Hamilton, Canada. The research employs data collected via a telephone survey of 1,002 adult residents in three neighbourhoods. Perceptions in the neighbourhoods were examined by individual socio-demographic factors (age, gender, marital and…

  2. 76 FR 25534 - Airworthiness Directives; Hamilton Sundstrand Propellers Model 247F Propellers

    Science.gov (United States)

    2011-05-05

    ... 5 p.m., Monday through Friday, except Federal holidays. The AD docket contains this AD, the... through FR2279 inclusive, FR 2398, FR2449 to FR2958 inclusive, FR20010710 to FR20010722 inclusive, and FR20010723RT to FR20020127RT inclusive, installed. Propeller blades reworked to Hamilton Sundstrand Service...

  3. Durand Neighbourhood Heritage Inventory: Toward a Digital Citywide Survey Approach to Heritage Planning in Hamilton

    Science.gov (United States)

    Angel, V.; Garvey, A.; Sydor, M.

    2017-08-01

    In the face of changing economies and patterns of development, the definition of heritage is diversifying, and the role of inventories in local heritage planning is coming to the fore. The Durand neighbourhood is a layered and complex area located in inner-city Hamilton, Ontario, Canada, and the second subject area in a set of pilot inventory studies to develop a new city-wide inventory strategy for the City of Hamilton,. This paper presents an innovative digital workflow developed to undertake the Durand Built Heritage Inventory project. An online database was developed to be at the centre of all processes, including digital documentation, record management, analysis and variable outputs. Digital tools were employed for survey work in the field and analytical work in the office, resulting in a GIS-based dataset that can be integrated into Hamilton's larger municipal planning system. Together with digital mapping and digitized historical resources, the Durand database has been leveraged to produce both digital and static outputs to shape recommendations for the protection of Hamilton's heritage resources.

  4. Mobile Air Monitoring: Measuring Change in Air Quality in the City of Hamilton, 2005-2010

    Science.gov (United States)

    Adams, Matthew D.; DeLuca, Patrick F.; Corr, Denis; Kanaroglou, Pavlos S.

    2012-01-01

    This paper examines the change in air pollutant concentrations between 2005 and 2010 occurring in the City of Hamilton, Ontario, Canada. After analysis of stationary air pollutant concentration data, we analyze mobile air pollutant concentration data. Air pollutants included in the analysis are CO, PM[subscript 2.5], SO[subscript 2], NO,…

  5. Are neoclassical canons valid for southern Chinese faces?

    Directory of Open Access Journals (Sweden)

    Yasas S N Jayaratne

    Full Text Available BACKGROUND: Proportions derived from neoclassical canons, initially described by Renaissance sculptors and painters, are still being employed as aesthetic guidelines during the clinical assessment of the facial morphology. OBJECTIVE: 1. to determine the applicability of neoclassical canons for Southern Chinese faces and 2. to explore gender differences in relation to the applicability of the neoclassical canons and their variants. METHODOLOGY: 3-D photographs acquired from 103 young adults (51 males and 52 females without facial dysmorphology were used to test applicability of four neoclassical canons. Standard anthropometric measurements that determine the facial canons were made on these 3-D images. The validity of the canons as well as their different variants were quantified. PRINCIPAL FINDINGS: The neoclassical cannons seldom applied to these individuals, and facial three-section and orbital canons did not apply at all. The orbitonasal canon was most frequently applicable, with a frequency of 19%. Significant sexual dimorphism was found relative to the prevalence of the variants of facial three-section and orbitonasal canons. CONCLUSION: The neoclassical canons did not appear to apply to our sample when rigorous quantitative measurements were employed. Thus, they should not be used as esthetic goals for craniofacial surgical interventions.

  6. Canonical quantization of the generalized axial gauge

    International Nuclear Information System (INIS)

    Haller, K.

    1990-01-01

    The incompatibility of the constraint A 3 =0 with canonical commutation rules is discussed. A canonical formulation is given of QED and QCD in the axial gauge with n 1 =n 2 =0, n 3 =α and n 0 =β, where α and β are arbitrary real numbers. A Hilbert space is established for the perturbative theory, and a propagator is derived by obtaining an expression for the interaction picture gauge fields, and evaluating the vacuum expectation value of its time-ordered products in the perturbative vacuum. The propagator is expressed in terms of the parameter γ=α/β and is shown to reproduce the light cone gauge propagator when γ=1, and the temporal gauge propagator when γ=0, accommodating various prescriptions for the spurious propagator pole, including the Mandelstam-Leibbrandt and principal value prescriptions. When γ→∞, the generalized axial gauge propagator leads to an expression for the propagator in the A 3 =0 gauge, though in that case the order in which the integration over k 0 is performed, and the limit γ→∞ is taken, affects the resulting expression. Another Hilbert space is established, in which the constraints that include all interactions are implemented in a time independent fashion. It is pointed out that this Hilbert space, and the Hilbert space of the perturbative theory are unitarily equivalent in QED, but that they cannot be unitarily equivalent in QCD. Implications of this fact for the nonperturbative states of QCD are discussed. (orig.)

  7. New constraints for canonical general relativity

    International Nuclear Information System (INIS)

    Reisenberger, M.P.

    1995-01-01

    Ashtekar's canonical theory of classical complex Euclidean GR (no Lorentzian reality conditions) is found to be invariant under the full algebra of infinitesimal 4-diffeomorphisms, but non-invariant under some finite proper 4-diffeos when the densitized dreibein, E a i , is degenerate. The breakdown of 4-diffeo invariance appears to be due to the inability of the Ashtekar Hamiltonian to generate births and deaths of E flux loops (leaving open the possibility that a new 'causality condition' forbidding the birth of flux loops might justify the non-invariance of the theory).A fully 4-diffeo invariant canonical theory in Ashtekar's variables, derived from Plebanski's action, is found to have constraints that are stronger than Ashtekar's for rank E< 2. The corresponding Hamiltonian generates births and deaths of E flux loops.It is argued that this implies a finite amplitude for births and deaths of loops in the physical states of quantum GR in the loop representation, thus modifying this (partly defined) theory substantially.Some of the new constraints are second class, leading to difficulties in quantization in the connection representation. This problem might be overcome in a very nice way by transforming to the classical loop variables, or the 'Faraday line' variables of Newman and Rovelli, and then solving the offending constraints.Note that, though motivated by quantum considerations, the present paper is classical in substance. (orig.)

  8. Power, Gender, and Canon Formation in Mexico

    Directory of Open Access Journals (Sweden)

    Cynthia Steele

    1996-01-01

    Full Text Available I propose to analyze Castellanos's trajectory from marginalized ethnographer and critic of "latino" society, to presidential insider and ambassador, and the first modern Mexican woman writer to be accepted into the literary canon. I will explore the intersection of politics, gender, and the (self- creation of a literary persona with regard to the following issues: 1 the tension between self-exposure and self-censorship in Castellanos's literary work; 2 Castellanos's intense and problematic relationship with her illegitimate, mestizo half-brother; 3 the coincidences and contradictions between Castellanos's journalistic account of her relationship with her servant Maria Escandon, and Maria's own oral history twenty years later; 4 the tension between depression and dependency, on the one hand, and self-assertiveness and audacity, on the other; 5 the relation between Castellanos's role as ambassador and the personal, apolitical, often frivolous character of her journalistic articles written in Israel; 6 the contradictory readings of Castellanos's death, and the respective implications for her place in the canon; and 7 the implications, for their reception, of the love letters published in Cartas a Ricardo 1994, as opposed to 1974.

  9. Computations of Wall Distances Based on Differential Equations

    Science.gov (United States)

    Tucker, Paul G.; Rumsey, Chris L.; Spalart, Philippe R.; Bartels, Robert E.; Biedron, Robert T.

    2004-01-01

    The use of differential equations such as Eikonal, Hamilton-Jacobi and Poisson for the economical calculation of the nearest wall distance d, which is needed by some turbulence models, is explored. Modifications that could palliate some turbulence-modeling anomalies are also discussed. Economy is of especial value for deforming/adaptive grid problems. For these, ideally, d is repeatedly computed. It is shown that the Eikonal and Hamilton-Jacobi equations can be easy to implement when written in implicit (or iterated) advection and advection-diffusion equation analogous forms, respectively. These, like the Poisson Laplacian term, are commonly occurring in CFD solvers, allowing the re-use of efficient algorithms and code components. The use of the NASA CFL3D CFD program to solve the implicit Eikonal and Hamilton-Jacobi equations is explored. The re-formulated d equations are easy to implement, and are found to have robust convergence. For accurate Eikonal solutions, upwind metric differences are required. The Poisson approach is also found effective, and easiest to implement. Modified distances are not found to affect global outputs such as lift and drag significantly, at least in common situations such as airfoil flows.

  10. Non-Noether symmetries of Hamiltonian systems with conformable fractional derivatives

    International Nuclear Information System (INIS)

    Wang Lin-Li; Fu Jing-Li

    2016-01-01

    In this paper, we present the fractional Hamilton’s canonical equations and the fractional non-Noether symmetry of Hamilton systems by the conformable fractional derivative. Firstly, the exchanging relationship between isochronous variation and fractional derivatives, and the fractional Hamilton principle of the system under this fractional derivative are proposed. Secondly, the fractional Hamilton’s canonical equations of Hamilton systems based on the Hamilton principle are established. Thirdly, the fractional non-Noether symmetries, non-Noether theorem and non-Noether conserved quantities for the Hamilton systems with the conformable fractional derivatives are obtained. Finally, an example is given to illustrate the results. (paper)

  11. Strongly asymmetric discrete Painlevé equations: The additive case

    Energy Technology Data Exchange (ETDEWEB)

    Grammaticos, B. [IMNC, Université Paris VII and XI, CNRS, UMR 8165, Bât. 440, 91406 Orsay (France); Ramani, A. [Centre de Physique Théorique, Ecole Polytechnique, CNRS, 91128 Palaiseau (France); Tamizhmani, K. M. [Department of Mathematics, Pondicherry University, Kalapet, 605014 Puducherry (India); Tamizhmani, T. [Avvaiyar Government College for Women, 609602 Karaikal (India); Satsuma, J. [Department of Physics and Mathematics, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara-shi 252-5258 (Japan)

    2014-05-15

    We examine a class of discrete Painlevé equations which present a strong asymmetry. These equations can be written as a system of two equations, the right-hand-sides of which do not have the same functional form. We limit here our investigation to two canonical families of the Quispel-Roberts-Thompson (QRT) classification both of which lead to difference equations. Several new integrable discrete systems are identified.

  12. Canonical transformations in problems of quantum statistical mechanics

    International Nuclear Information System (INIS)

    Sankovich, D.P.

    1985-01-01

    The problem of general canonical transformations in quantum systems possessing a classical analog is considered. The main role plays the Weyl representation of dynamic variables of the quantum system considered. One managed to build a general diagram of canonical transformations in a quantum case and to develop a method for reducing one or another operator to the simplest canonical form. In this case the procedure, being analogous to the Poincare-Birkhof normalization based on the Lie series theory, occurs

  13. Reminder of Lagrange-Hamilton formalism and of the corpuscular optics invariants; Rappel du formalisme de Lagrange-Hamilton et sur les invariants de l'optique corpusculaire

    Energy Technology Data Exchange (ETDEWEB)

    Griess, F.

    1958-03-14

    Hamiltonian formalism - Canonical transformations - Invariants of Liouville, Helmholtz-Lagrange, Busch, Stoermer and Lagrange - Synchrotron's Hamiltonian - Betatron oscillation damping. (author) [French] Formalisme Hamiltonien. Transformations canoniques. Invariants de Liouville, Helmholtz-Lagrange, Busch, Stoermer et Lagrange, Hamiltonien pour le synchrotron, Amortissement des oscillations betatrons (auteur)

  14. Islamic Canon law encounters South African financing and banking ...

    African Journals Online (AJOL)

    Islamic Canon law encounters South African financing and banking institutions: Prospects and possibilities for Islamic economic empowerment and Black Economic Empowerment in a Democratic South Africa.

  15. THE TOPOLOGY OF CANONICAL FLUX TUBES IN FLARED JET GEOMETRY

    Energy Technology Data Exchange (ETDEWEB)

    Lavine, Eric Sander; You, Setthivoine, E-mail: Slavine2@uw.edu, E-mail: syou@aa.washington.edu [University of Washington, 4000 15th Street, NE Aeronautics and Astronautics 211 Guggenheim Hall, Box 352400, Seattle, WA 98195 (United States)

    2017-01-20

    Magnetized plasma jets are generally modeled as magnetic flux tubes filled with flowing plasma governed by magnetohydrodynamics (MHD). We outline here a more fundamental approach based on flux tubes of canonical vorticity, where canonical vorticity is defined as the circulation of the species’ canonical momentum. This approach extends the concept of magnetic flux tube evolution to include the effects of finite particle momentum and enables visualization of the topology of plasma jets in regimes beyond MHD. A flared, current-carrying magnetic flux tube in an ion-electron plasma with finite ion momentum is thus equivalent to either a pair of electron and ion flow flux tubes, a pair of electron and ion canonical momentum flux tubes, or a pair of electron and ion canonical vorticity flux tubes. We examine the morphology of all these flux tubes for increasing electrical currents, different radial current profiles, different electron Mach numbers, and a fixed, flared, axisymmetric magnetic geometry. Calculations of gauge-invariant relative canonical helicities track the evolution of magnetic, cross, and kinetic helicities in the system, and show that ion flow fields can unwind to compensate for an increasing magnetic twist. The results demonstrate that including a species’ finite momentum can result in a very long collimated canonical vorticity flux tube even if the magnetic flux tube is flared. With finite momentum, particle density gradients must be normal to canonical vorticities, not to magnetic fields, so observations of collimated astrophysical jets could be images of canonical vorticity flux tubes instead of magnetic flux tubes.

  16. A non-linear canonical formalism for the coupled synchro-betatron motion of protons with arbitrary energy

    International Nuclear Information System (INIS)

    Barber, D.P.; Ripken, G.; Schmidt, F.

    1987-05-01

    We investigate the motion of protons of arbitrary energy (below and above transition energy) in a storage ring. The motion is described both in terms of the fully six-dimensional formalism with the canonical variables x, p x , z, p z , σ = s - v 0 . t, η = ΔE/E 0 = p σ and in terms of a dispersion formalism with new variables x, p x , z, p z , σ, p σ . Since the dispersion function is introduced into the equations of motion via a canonical transformation the symplectic structure of these equations is completely preserved. In this formulation it is then possible to define three uncoupled linear (unperturbed) oscillation modes which are described by phase ellipses. Perturbations manifest themselves as deviations from these ellipses. The equations of motion are solved within the framework of the fully six-dimensional formalism. (orig.)

  17. The application of the TRAC-PD2 code in the CANON experiment

    International Nuclear Information System (INIS)

    Neves Conti, T. das; Freitas, R.L.

    1991-09-01

    The TRAC code (Transient Reactor Analysis Code), developed in the Los Alamos National Laboratory, is used to accident analysis in light water reactor. The TRAC-PD2 version, used in this paper, has a refined dynamic flow model for two fluids, which is based on the conservation equations of mass, momentum and energy for liquid and vapor, allowing then a mechanical and thermal unbalance between phases. This paper presents a comparison of the TRAC-PD2 code with the CANON experiment, which simulates a Loss of Coolant Accident (LOCA) by depressurizing a horizontal tube filled with water at different temperatures. The experiment consists in a instantaneous rupture in one of the tube's edge, taking measures of pressure and void fraction during the transient. The TRAC-PD2 code results are in a good agreement with the pressure and void fraction evolution obtained in the CANON experiment. (author)

  18. Isobars of an ideal Bose gas within the grand canonical ensemble

    International Nuclear Information System (INIS)

    Jeon, Imtak; Park, Jeong-Hyuck; Kim, Sang-Woo

    2011-01-01

    We investigate the isobar of an ideal Bose gas confined in a cubic box within the grand canonical ensemble for a large yet finite number of particles, N. After solving the equation of the spinodal curve, we derive precise formulas for the supercooling and the superheating temperatures that reveal an N -1/3 or N -1/4 power correction to the known Bose-Einstein condensation temperature in the thermodynamic limit. Numerical computations confirm the accuracy of our analytical approximation, and further show that the isobar zigzags on the temperature-volume plane if N≥14 393. In particular, for the Avogadro's number of particles, the volume expands discretely about 10 5 times. Our results quantitatively agree with a previous study on the canonical ensemble within 0.1% error.

  19. A molecular dynamics algorithm for simulation of field theories in the canonical ensemble

    International Nuclear Information System (INIS)

    Kogut, J.B.; Sinclair, D.K.

    1986-01-01

    We add a single scalar degree of freedom (''demon'') to the microcanonical ensemble which converts its molecular dynamics into a simulation method for the canonical ensemble (euclidean path integral) of the underlying field theory. This generalization of the microcanonical molecular dynamics algorithm simulates the field theory at fixed coupling with a completely deterministic procedure. We discuss the finite size effects of the method, the equipartition theorem and ergodicity. The method is applied to the planar model in two dimensions and SU(3) lattice gauge theory with four species of light, dynamical quarks in four dimensions. The method is much less sensitive to its discrete time step than conventional Langevin equation simulations of the canonical ensemble. The method is a straightforward generalization of a procedure introduced by S. Nose for molecular physics. (orig.)

  20. Gravitational closure of matter field equations

    Science.gov (United States)

    Düll, Maximilian; Schuller, Frederic P.; Stritzelberger, Nadine; Wolz, Florian

    2018-04-01

    The requirement that both the matter and the geometry of a spacetime canonically evolve together, starting and ending on shared Cauchy surfaces and independently of the intermediate foliation, leaves one with little choice for diffeomorphism-invariant gravitational dynamics that can equip the coefficients of a given system of matter field equations with causally compatible canonical dynamics. Concretely, we show how starting from any linear local matter field equations whose principal polynomial satisfies three physicality conditions, one may calculate coefficient functions which then enter an otherwise immutable set of countably many linear homogeneous partial differential equations. Any solution of these so-called gravitational closure equations then provides a Lagrangian density for any type of tensorial geometry that features ultralocally in the initially specified matter Lagrangian density. Thus the given system of matter field equations is indeed closed by the so obtained gravitational equations. In contrast to previous work, we build the theory on a suitable associated bundle encoding the canonical configuration degrees of freedom, which allows one to include necessary constraints on the geometry in practically tractable fashion. By virtue of the presented mechanism, one thus can practically calculate, rather than having to postulate, the gravitational theory that is required by specific matter field dynamics. For the special case of standard model matter one obtains general relativity.

  1. 'From Man to Bacteria': W.D. Hamilton, the theory of inclusive fitness, and the post-war social order.

    Science.gov (United States)

    Swenson, Sarah A

    2015-02-01

    W.D. Hamilton's theory of inclusive fitness aimed to define the evolved limits of altruism with mathematical precision. Although it was meant to apply universally, it has been almost irretrievably entwined with the particular case of social insects that featured in his famous 1964 papers. The assumption that social insects were central to Hamilton's early work contradicts material in his rich personal archive. In fact, careful study of Hamilton's notes, letters, diaries, and early essays indicates the extent to which he had humans in mind when he decided altruism was a topic worthy of biological inquiry. For this reason, this article reconsiders the role of extra-scientific factors in Hamilton's early theorizing. In doing so, it offers an alternative perspective as to why Hamilton saw self-sacrifice to be an important subject. Although the traditional narrative prioritizes his distaste for benefit-of-the-species explanations as a motivating factor behind his foundational work, I argue that greater attention ought to be given to Hamilton's hope that science could be used to address social ills. By reconsidering the meaning Hamilton intended inclusive fitness to have, we see that while he was no political ideologue, the socio-political relevance of his theory was nevertheless integral to its development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Consistency of canonical formulation of Horava gravity

    International Nuclear Information System (INIS)

    Soo, Chopin

    2011-01-01

    Both the non-projectable and projectable version of Horava gravity face serious challenges. In the non-projectable version, the constraint algebra is seemingly inconsistent. The projectable version lacks a local Hamiltonian constraint, thus allowing for an extra graviton mode which can be problematic. A new formulation (based on arXiv:1007.1563) of Horava gravity which is naturally realized as a representation of the master constraint algebra (instead of the Dirac algebra) studied by loop quantum gravity researchers is presented. This formulation yields a consistent canonical theory with first class constraints; and captures the essence of Horava gravity in retaining only spatial diffeomorphisms as the physically relevant non-trivial gauge symmetry. At the same time the local Hamiltonian constraint is equivalently enforced by the master constraint.

  3. Canonical Wnt signaling in diabetic retinopathy.

    Science.gov (United States)

    Chen, Qian; Ma, Jian-Xing

    2017-10-01

    Diabetic retinopathy (DR) is a common eye complication of diabetes, and the pathogenic mechanism of DR is still under investigation. The canonical Wnt signaling pathway is an evolutionarily conserved pathway that plays fundamental roles in embryogenesis and adult tissue homeostasis. Wnt signaling regulates expression of multiple genes that control retinal development and eye organogenesis, and dysregulated Wnt signaling plays pathophysiological roles in many ocular diseases, including DR. This review highlights recent progress in studies of Wnt signaling in DR. We discuss Wnt signaling regulation in the retina and dysregulation of Wnt signaling associated with ocular diseases with an emphasis on DR. We also discuss the therapeutic potential of modulating Wnt signaling in DR. Continued studies in this field will advance our current understanding on DR and contribute to the development of new treatments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Consistency of canonical formulation of Horava gravity

    Energy Technology Data Exchange (ETDEWEB)

    Soo, Chopin, E-mail: cpsoo@mail.ncku.edu.tw [Department of Physics, National Cheng Kung University, Tainan, Taiwan (China)

    2011-09-22

    Both the non-projectable and projectable version of Horava gravity face serious challenges. In the non-projectable version, the constraint algebra is seemingly inconsistent. The projectable version lacks a local Hamiltonian constraint, thus allowing for an extra graviton mode which can be problematic. A new formulation (based on arXiv:1007.1563) of Horava gravity which is naturally realized as a representation of the master constraint algebra (instead of the Dirac algebra) studied by loop quantum gravity researchers is presented. This formulation yields a consistent canonical theory with first class constraints; and captures the essence of Horava gravity in retaining only spatial diffeomorphisms as the physically relevant non-trivial gauge symmetry. At the same time the local Hamiltonian constraint is equivalently enforced by the master constraint.

  5. Improved effective potential by nonlinear canonical transformations

    International Nuclear Information System (INIS)

    Ritschel, U.

    1990-01-01

    We generalize the familiar gaussian-effective-potential formalism to a class of non-gaussian trial states. With the help of exact nonlinear canonical transformations, expectation values can be calculated analytically and in closed form. A detailed description of our method, particularly for quadratic and cubic transformations, and of the related renormalization procedure is given. Applications to φ 4 -models in various dimensionalities are treated. We find the expected critical behaviour in two space-time dimensions. In three and four dimensions we observe instabilities which go back the incompleteness of the gaussian-based renormalization. In the appendices it is shown that the quadratic transformation leads to a coherent state in a certain limiting case, and the generalization to systems at finite temperature is performed. (orig.)

  6. A simple algorithm for computing canonical forms

    Science.gov (United States)

    Ford, H.; Hunt, L. R.; Renjeng, S.

    1986-01-01

    It is well known that all linear time-invariant controllable systems can be transformed to Brunovsky canonical form by a transformation consisting only of coordinate changes and linear feedback. However, the actual procedures for doing this have tended to be overly complex. The technique introduced here is envisioned as an on-line procedure and is inspired by George Meyer's tangent model for nonlinear systems. The process utilizes Meyer's block triangular form as an intermedicate step in going to Brunovsky form. The method also involves orthogonal matrices, thus eliminating the need for the computation of matrix inverses. In addition, the Kronecker indices can be computed as a by-product of this transformation so it is necessary to know them in advance.

  7. Discrete canonical transforms that are Hadamard matrices

    International Nuclear Information System (INIS)

    Healy, John J; Wolf, Kurt Bernardo

    2011-01-01

    The group Sp(2,R) of symplectic linear canonical transformations has an integral kernel which has quadratic and linear phases, and which is realized by the geometric paraxial optical model. The discrete counterpart of this model is a finite Hamiltonian system that acts on N-point signals through N x N matrices whose elements also have a constant absolute value, although they do not form a representation of that group. Those matrices that are also unitary are Hadamard matrices. We investigate the manifolds of these N x N matrices under the Sp(2,R) equivalence imposed by the model, and find them to be on two-sided cosets. By means of an algorithm we determine representatives that lead to collections of mutually unbiased bases.

  8. Linear canonical transforms theory and applications

    CERN Document Server

    Kutay, M; Ozaktas, Haldun; Sheridan, John

    2016-01-01

    This book provides a clear and accessible introduction to the essential mathematical foundations of linear canonical transforms from a signals and systems perspective. Substantial attention is devoted to how these transforms relate to optical systems and wave propagation. There is extensive coverage of sampling theory and fast algorithms for numerically approximating the family of transforms. Chapters on topics ranging from digital holography to speckle metrology provide a window on the wide range of applications. This volume will serve as a reference for researchers in the fields of image and signal processing, wave propagation, optical information processing and holography, optical system design and modeling, and quantum optics. It will be of use to graduate students in physics and engineering, as well as for scientists in other areas seeking to learn more about this important yet relatively unfamiliar class of integral transformations.

  9. Canonical formulation of general-relativistic theories

    International Nuclear Information System (INIS)

    Bergmann, P.G.

    1987-01-01

    With the birth of quantum field theory in the late twenties physicists decided that nature could not be half classical and half quantum, and that the gravitational field ought to be quanticized, just as the electromagnetic field had been. One could accept the group of differomorphisms as a fundamental characteristic of general relativity (and indeed of all general-relativistic theories), and proceed to construct a quantum field-theory that was adapted to that group. Quantization would be attempted by way of a Hamiltonian formulation of the (classical) theory, and quantum commutation relations be patterned after the Poisson brackets arising in that formulation. This program is usually called the canonical quantization program, whereas the weak-field approach is known as covariant quantization. The first steps, conceived entirely within the framework of the classical theory, turned out to be beset with technical and conceptual difficulties, which today are essentially resolved. In this paper the author traces out these initial steps

  10. Multi-symplectic Preissmann methods for generalized Zakharov-Kuznetsov equation

    International Nuclear Information System (INIS)

    Wang Junjie; Yang Kuande; Wang Liantang

    2012-01-01

    Generalized Zakharov-Kuznetsov equation, a typical nonlinear wave equation, was studied based on the multi-symplectic theory in Hamilton space. The multi-symplectic formulations of generalized Zakharov-Kuznetsov equation with several conservation laws are presented. The multi-symplectic Preissmann method is used to discretize the formulations. The numerical experiment is given, and the results verify the efficiency of the multi-symplectic scheme. (authors)

  11. On the regularization in the Callan-Symanzik equation

    International Nuclear Information System (INIS)

    Fujii, Yasunori; Takahashi, Yasushi

    1975-01-01

    The conservative approach of canonical theory of broken scale invariance to the Callan-Symanzik equation is pushed further with the Pauli-Villars regulators. The authors confirm that the Callan-Symanzik equation is derived in a completely general manner. (BMS) [de

  12. Relativistic Spinning Particle without Grassmann Variables and the Dirac Equation

    Directory of Open Access Journals (Sweden)

    A. A. Deriglazov

    2011-01-01

    Full Text Available We present the relativistic particle model without Grassmann variables which, being canonically quantized, leads to the Dirac equation. Classical dynamics of the model is in correspondence with the dynamics of mean values of the corresponding operators in the Dirac theory. Classical equations for the spin tensor are the same as those of the Barut-Zanghi model of spinning particle.

  13. Symmetric minimally entangled typical thermal states for canonical and grand-canonical ensembles

    Science.gov (United States)

    Binder, Moritz; Barthel, Thomas

    2017-05-01

    Based on the density matrix renormalization group (DMRG), strongly correlated quantum many-body systems at finite temperatures can be simulated by sampling over a certain class of pure matrix product states (MPS) called minimally entangled typical thermal states (METTS). When a system features symmetries, these can be utilized to substantially reduce MPS computation costs. It is conceptually straightforward to simulate canonical ensembles using symmetric METTS. In practice, it is important to alternate between different symmetric collapse bases to decrease autocorrelations in the Markov chain of METTS. To this purpose, we introduce symmetric Fourier and Haar-random block bases that are efficiently mixing. We also show how grand-canonical ensembles can be simulated efficiently with symmetric METTS. We demonstrate these approaches for spin-1 /2 X X Z chains and discuss how the choice of the collapse bases influences autocorrelations as well as the distribution of measurement values and, hence, convergence speeds.

  14. A generalization of Hamilton's rule for the evolution of microbial cooperation.

    Science.gov (United States)

    Smith, Jeff; Van Dyken, J David; Zee, Peter C

    2010-06-25

    Hamilton's rule states that cooperation will evolve if the fitness cost to actors is less than the benefit to recipients multiplied by their genetic relatedness. This rule makes many simplifying assumptions, however, and does not accurately describe social evolution in organisms such as microbes where selection is both strong and nonadditive. We derived a generalization of Hamilton's rule and measured its parameters in Myxococcus xanthus bacteria. Nonadditivity made cooperative sporulation remarkably resistant to exploitation by cheater strains. Selection was driven by higher-order moments of population structure, not relatedness. These results provide an empirically testable cooperation principle applicable to both microbes and multicellular organisms and show how nonlinear interactions among cells insulate bacteria against cheaters.

  15. Perturbation to Unified Symmetry and Adiabatic Invariants for Relativistic Hamilton Systems

    International Nuclear Information System (INIS)

    Zhang Mingjiang; Fang Jianhui; Lu Kai; Pang Ting; Lin Peng

    2009-01-01

    Based on the concept of adiabatic invariant, the perturbation to unified symmetry and adiabatic invariants for relativistic Hamilton systems are studied. The definition of the perturbation to unified symmetry for the system is presented, and the criterion of the perturbation to unified symmetry is given. Meanwhile, the Noether adiabatic invariants, the generalized Hojman adiabatic invariants, and the Mei adiabatic invariants for the perturbed system are obtained. (general)

  16. Respiratory Medicine at McMaster University, Hamilton, Ontario: 1968 to 2013

    Directory of Open Access Journals (Sweden)

    Norman L Jones

    2014-01-01

    Full Text Available The medical school at McMaster University (Hamilton, Ontario was conceived in 1965, and admitted the first class in 1969. John Evans became the founding Dean and he invited EJ Moran Campbell to be the first Chairman of the Department of Medicine. Moran Campbell, already a world figure in respiratory medicine and physiology, arrived at McMaster in September 1968, and he invited Norman Jones to be Coordinator of the Respiratory Programme.

  17. Respiratory Medicine at McMaster University, Hamilton, Ontario: 1968 To 2013

    Directory of Open Access Journals (Sweden)

    Norman L Jones

    2014-01-01

    Full Text Available The medical school at McMaster University (Hamilton, Ontario was conceived in 1965 and admitted the first class in 1969. John Evans became the founding Dean and he invited Moran Campbell to be the first Chairman of the Department of Medicine. Moran Campbell, already a world figure in respiratory medicine and physiology, arrived at McMaster in September 1968, and he invited Norman Jones to be Coordinator of the Respiratory Programme.

  18. Regional climate change trends and uncertainty analysis using extreme indices: A case study of Hamilton, Canada

    OpenAIRE

    Razavi, Tara; Switzman, Harris; Arain, Altaf; Coulibaly, Paulin

    2016-01-01

    This study aims to provide a deeper understanding of the level of uncertainty associated with the development of extreme weather frequency and intensity indices at the local scale. Several different global climate models, downscaling methods, and emission scenarios were used to develop extreme temperature and precipitation indices at the local scale in the Hamilton region, Ontario, Canada. Uncertainty associated with historical and future trends in extreme indices and future climate projectio...

  19. Hamilton-Jacobi-Bellman approach for the climbing problem for heavy launchers

    OpenAIRE

    Bokanowski , Olivier; Cristiani , Emiliano; Laurent-Varin , Julien; Zidani , Hasnaa

    2012-01-01

    International audience; In this paper we investigate the Hamilton-Jacobi-Bellman (HJB) approach for solving a complex real-world optimal control problem in high dimension. We consider the climbing problem for the European launcher Ariane V: The launcher has to reach the Geostationary Transfer Orbit with minimal propellant consumption under state/control constraints. In order to circumvent the well-known curse of dimensionality, we reduce the number of variables in the model exploiting the spe...

  20. Taylor-expansion Monte Carlo simulations of classical fluids in the canonical and grand canonical ensemble

    International Nuclear Information System (INIS)

    Schoen, M.

    1995-01-01

    In this article the Taylor-expansion method is introduced by which Monte Carlo (MC) simulations in the canonical ensemble can be speeded up significantly, Substantial gains in computational speed of 20-40% over conventional implementations of the MC technique are obtained over a wide range of densities in homogeneous bulk phases. The basic philosophy behind the Taylor-expansion method is a division of the neighborhood of each atom (or molecule) into three different spatial zones. Interactions between atoms belonging to each zone are treated at different levels of computational sophistication. For example, only interactions between atoms belonging to the primary zone immediately surrounding an atom are treated explicitly before and after displacement. The change in the configurational energy contribution from secondary-zone interactions is obtained from the first-order term of a Taylor expansion of the configurational energy in terms of the displacement vector d. Interactions with atoms in the tertiary zone adjacent to the secondary zone are neglected throughout. The Taylor-expansion method is not restricted to the canonical ensemble but may be employed to enhance computational efficiency of MC simulations in other ensembles as well. This is demonstrated for grand canonical ensemble MC simulations of an inhomogeneous fluid which can be performed essentially on a modern personal computer

  1. From nonlinear Schrödinger hierarchy to some (2+1)-dimensional nonlinear pseudodifferential equations

    Science.gov (United States)

    Yang, Xiao; Du, Dianlou

    2010-08-01

    The Poisson structure on CN×RN is introduced to give the Hamiltonian system associated with a spectral problem which yields the nonlinear Schrödinger (NLS) hierarchy. The Hamiltonian system is proven to be Liouville integrable. Some (2+1)-dimensional equations including NLS equation, Kadomtesev-Petviashvili I (KPI) equation, coupled KPI equation, and modified Kadomtesev-Petviashvili (mKP) equation, are decomposed into Hamilton flows via the NLS hierarchy. The algebraic curve, Abel-Jacobi coordinates, and Riemann-Jacobi inversion are used to obtain the algebrogeometric solutions of these equations.

  2. From nonlinear Schroedinger hierarchy to some (2+1)-dimensional nonlinear pseudodifferential equations

    International Nuclear Information System (INIS)

    Yang Xiao; Du Dianlou

    2010-01-01

    The Poisson structure on C N xR N is introduced to give the Hamiltonian system associated with a spectral problem which yields the nonlinear Schroedinger (NLS) hierarchy. The Hamiltonian system is proven to be Liouville integrable. Some (2+1)-dimensional equations including NLS equation, Kadomtesev-Petviashvili I (KPI) equation, coupled KPI equation, and modified Kadomtesev-Petviashvili (mKP) equation, are decomposed into Hamilton flows via the NLS hierarchy. The algebraic curve, Abel-Jacobi coordinates, and Riemann-Jacobi inversion are used to obtain the algebrogeometric solutions of these equations.

  3. CERN Photo Club (CPC) / Canon Contest - My View of CERN

    CERN Multimedia

    Steyaert, Didier

    2016-01-01

    The CERN Photo Club has organized in collaboration with Canon Switzerland a photo contest open to all members of the CERN (Persons with a CERN access card). The only restriction is that the photos must have been taken with a CANON camera (DSLR, bridge or compact) between 1 and 31 October 2016.

  4. LCPT: a program for finding linear canonical transformations

    International Nuclear Information System (INIS)

    Char, B.W.; McNamara, B.

    1979-01-01

    This article describes a MACSYMA program to compute symbolically a canonical linear transformation between coordinate systems. The difficulties in implementation of this canonical small physics problem are also discussed, along with the implications that may be drawn from such difficulties about widespread MACSYMA usage by the community of computational/theoretical physicists

  5. A canonical-literary reading of Lamentations 5 | Kang | HTS ...

    African Journals Online (AJOL)

    This article presents a canonical and literary reading of Lamentations 5 in the context of the book of Lamentations as a whole. Following the approach by Vanhoozer (1998, 2002) based on speech-act theory, the meaning of Scripture is sought at canonical level, supervening the basic literary level. In Lamentations, as ...

  6. Canonical quantum theory of gravitational field with higher derivatives, 3

    International Nuclear Information System (INIS)

    Kawasaki, Shoichiro; Kimura, Tadahiko

    1983-01-01

    A formulation which is invariant under an additional BRS transformation with nilpotency of order two is presented for the canonical theory of the renormalizable quantum gravity with higher derivatives. The canonical quantization is carried out and various equal time (anti-) commutation relations are derived. The asymptotic fields are reanalyzed. The physical particle contents are just the same as those obtained in previous papers. (author)

  7. Canonical Quantum Teleportation of Two-Particle Arbitrary State

    Institute of Scientific and Technical Information of China (English)

    HAO Xiang; ZHU Shi-Qun

    2005-01-01

    The canonical quantum teleportation of two-particle arbitrary state is realized by means of phase operator and number operator. The maximally entangled eigenstates between the difference of phase operators and the sum of number operators are considered as the quantum channels. In contrast to the standard quantum teleportation, the different unitary local operation of canonical teleportation can be simplified by a general expression.

  8. Gradient estimates on the weighted p-Laplace heat equation

    Science.gov (United States)

    Wang, Lin Feng

    2018-01-01

    In this paper, by a regularization process we derive new gradient estimates for positive solutions to the weighted p-Laplace heat equation when the m-Bakry-Émery curvature is bounded from below by -K for some constant K ≥ 0. When the potential function is constant, which reduce to the gradient estimate established by Ni and Kotschwar for positive solutions to the p-Laplace heat equation on closed manifolds with nonnegative Ricci curvature if K ↘ 0, and reduce to the Davies, Hamilton and Li-Xu's gradient estimates for positive solutions to the heat equation on closed manifolds with Ricci curvature bounded from below if p = 2.

  9. Canonical correlations between chemical and energetic characteristics of lignocellulosic wastes

    Directory of Open Access Journals (Sweden)

    Thiago de Paula Protásio

    2012-09-01

    Full Text Available Canonical correlation analysis is a statistical multivariate procedure that allows analyzing linear correlation that may exist between two groups or sets of variables (X and Y. This paper aimed to provide canonical correlation analysis between a group comprised of lignin and total extractives contents and higher heating value (HHV with a group of elemental components (carbon, hydrogen, nitrogen and sulfur for lignocellulosic wastes. The following wastes were used: eucalyptus shavings; pine shavings; red cedar shavings; sugar cane bagasse; residual bamboo cellulose pulp; coffee husk and parchment; maize harvesting wastes; and rice husk. Only the first canonical function was significant, but it presented a low canonical R². High carbon, hydrogen and sulfur contents and low nitrogen contents seem to be related to high total extractives contents of the lignocellulosic wastes. The preliminary results found in this paper indicate that the canonical correlations were not efficient to explain the correlations between the chemical elemental components and lignin contents and higher heating values.

  10. A Canonical Approach to the Argument/Adjunct Distinction

    Directory of Open Access Journals (Sweden)

    Diana Forker

    2014-01-01

    Full Text Available This paper provides an account of the argument/adjunct distinction implementing the 'canonical approach'. I identify five criteria (obligatoriness, latency, co-occurrence restrictions, grammatical relations, and iterability and seven diagnostic tendencies that can be used to distinguish canonical arguments from canonical adjuncts. I then apply the criteria and tendencies to data from the Nakh-Daghestanian language Hinuq. Hinuq makes extensive use of spatial cases for marking adjunct-like and argument-like NPs. By means of the criteria and tendencies it is possible to distinguish spatial NPs that come close to canonical arguments from those that are canonical adjuncts, and to place the remaining NPs bearing spatial cases within the argument-adjunct continuum.

  11. The canon as text for a biblical theology

    Directory of Open Access Journals (Sweden)

    James A. Loader

    2005-10-01

    Full Text Available The novelty of the canonical approach is questioned and its fascination at least partly traced to the Reformation, as well as to the post-Reformation’s need for a clear and authoritative canon to perform the function previously performed by the church. This does not minimise the elusiveness and deeply contradictory positions both within the canon and triggered by it. On the one hand, the canon itself is a centripetal phenomenon and does play an important role in exegesis and theology. Even so, on the other hand, it not only contains many difficulties, but also causes various additional problems of a formal as well as a theological nature. The question is mooted whether the canonical approach alleviates or aggravates the dilemma. Since this approach has become a major factor in Christian theology, aspects of the Christian canon are used to gauge whether “canon” is an appropriate category for eliminating difficulties that arise by virtue of its own existence. Problematic uses and appropriations of several Old Testament canons are advanced, as well as evidence in the New Testament of a consciousness that the “old” has been surpassed(“Überbietungsbewußtsein”. It is maintained that at least the Childs version of the canonical approach fails to smooth out these and similar difficulties. As a method it can cater for the New Testament’s (superior role as the hermeneutical standard for evaluating the Old, but flounders on its inability to create the theological unity it claims can solve religious problems exposed by Old Testament historical criticism. It is concluded that canon as a category cannot be dispensed with, but is useful for the opposite of the purpose to which it is conventionally put: far from bringing about theological “unity” or producing a standard for “correct” exegesis, it requires different readings of different canons.

  12. El Escritor y las Normas del Canon Literario (The Writer and the Norms of the Literary Canon).

    Science.gov (United States)

    Policarpo, Alcibiades

    This paper speculates about whether a literary canon exists in contemporary Latin American literature, particularly in the prose genre. The paper points to Carlos Fuentes, Gabriel Garcia Marquez, and Mario Vargas Llosa as the three authors who might form this traditional and liberal canon with their works "La Muerte de Artemio Cruz"…

  13. Canonical cortical circuits: current evidence and theoretical implications

    Directory of Open Access Journals (Sweden)

    Capone F

    2016-04-01

    Full Text Available Fioravante Capone,1,2 Matteo Paolucci,1,2 Federica Assenza,1,2 Nicoletta Brunelli,1,2 Lorenzo Ricci,1,2 Lucia Florio,1,2 Vincenzo Di Lazzaro1,2 1Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy; 2Fondazione Alberto Sordi – Research Institute for Aging, Rome, ItalyAbstract: Neurophysiological and neuroanatomical studies have found that the same basic structural and functional organization of neuronal circuits exists throughout the cortex. This kind of cortical organization, termed canonical circuit, has been functionally demonstrated primarily by studies involving visual striate cortex, and then, the concept has been extended to different cortical areas. In brief, the canonical circuit is composed of superficial pyramidal neurons of layers II/III receiving different inputs and deep pyramidal neurons of layer V that are responsible for cortex output. Superficial and deep pyramidal neurons are reciprocally connected, and inhibitory interneurons participate in modulating the activity of the circuit. The main intuition of this model is that the entire cortical network could be modeled as the repetition of relatively simple modules composed of relatively few types of excitatory and inhibitory, highly interconnected neurons. We will review the origin and the application of the canonical cortical circuit model in the six sections of this paper. The first section (The origins of the concept of canonical circuit: the cat visual cortex reviews the experiments performed in the cat visual cortex, from the origin of the concept of canonical circuit to the most recent developments in the modelization of cortex. The second (The canonical circuit in neocortex and third (Toward a canonical circuit in agranular cortex sections try to extend the concept of canonical circuit to other cortical areas, providing some significant examples of circuit functioning in different cytoarchitectonic

  14. Emergent symmetries in the canonical tensor model

    Science.gov (United States)

    Obster, Dennis; Sasakura, Naoki

    2018-04-01

    The canonical tensor model (CTM) is a tensor model proposing a classically and quantum mechanically consistent description of gravity, formulated as a first-class constraint system with structural similarities to the ADM formalism of general relativity. The classical CTM produces a general relativistic system in a formal continuum limit, the emergence of which should be explained by the quantum CTM. In this paper we study the symmetry properties of a wave function that exactly solves the quantum constraints of the CTM. We have found that it has strong peaks at configurations invariant under some Lie groups, as predicted by a mechanism described in our previous paper. A surprising result is the preference for configurations invariant not only under Lie groups with positive definite signature, but also with Lorentzian signature. Such symmetries could characterize the global structures of spacetimes, and our results are encouraging towards showing spacetime emergence in the CTM. To verify the asymptotic convergence of the wave function we have also analyzed the asymptotic behavior, which for the most part seems to be well under control.

  15. Finite canonical measure for nonsingular cosmologies

    International Nuclear Information System (INIS)

    Page, Don N.

    2011-01-01

    The total canonical (Liouville-Henneaux-Gibbons-Hawking-Stewart) measure is finite for completely nonsingular Friedmann-Lemaître-Robertson-Walker classical universes with a minimally coupled massive scalar field and a positive cosmological constant. For a cosmological constant very small in units of the square of the scalar field mass, most of the measure is for nearly de Sitter solutions with no inflation at a much more rapid rate. However, if one restricts to solutions in which the scalar field energy density is ever more than twice the equivalent energy density of the cosmological constant, then the number of e-folds of rapid inflation must be large, and the fraction of the measure is low in which the spatial curvature is comparable to the cosmological constant at the time when it is comparable to the energy density of the scalar field. The measure for such classical FLRWΛ-φ models with both a big bang and a big crunch is also finite. Only the solutions with a big bang that expand forever, or the time-reversed ones that contract from infinity to a big crunch, have infinite measure

  16. The Anonymous Jane Austen: Duelling Canons

    Directory of Open Access Journals (Sweden)

    Edward Copeland

    2017-12-01

    Full Text Available This essay initially addresses some theoretical concepts such as adaptation and appropriation. I intend to analyze how Jane Austen herself indulged in her own appropriations from the woman’s canon, in particular through a story entitled Guilt Pursued by Conscience, a tale she found in the “Lady’s Magazine” of 1802. I will show that this tale that claimed Austen’s particular attention was re-appropriated in Emma (although in the broadest sense of parody and, to a lesser extent, in Sense and Sensibility. The second part of the essay, instead, will move on to analyze how novelists of the generation that followed Austen felt free to import dialogue, characters, and plots from Austen’s works, showing no obligation to their source, just as she had done with the “Lady’s” tale. I will mention and comment on a series of novels, especially from the silver fork school, that draw from Austen’s plot, characters and happenings without acknowledging their legacy to their predecessor.

  17. Some considerations about literary canon books

    Directory of Open Access Journals (Sweden)

    Jorge Gregorio Posada Ramírez

    2017-06-01

    Full Text Available El siguiente texto muestra que las obras clásicas de la literatura, también conocidas como libros del canon, amplían la vida interior de quienes los leen. La permanencia y expansión en tiempo y espacio que hace de un libro una obra clásica se irradia en el lector extendiendo su yo hacia vivencias que van más allá de sus confines biográficos, sociales y culturales. Tomando como ejemplo cuatro obras de la literatura: Edipo Rey de Sófocles, La muerte en Venecia de Thomas Mann, El laberinto de la soledad de Octavio Paz, y Altazor de Vicente Huidobro se expone una interpretación de la manera cómo las obras clásicas de la literatura tienen el poder de profundizar y enriquecer las experiencias corrientes de sus lectores, extendiendo los confines y posibilidades del pensamiento.

  18. Dissolution of Marriage According to Canon Law

    Directory of Open Access Journals (Sweden)

    MSc. Sulejman Ahmedi

    2013-12-01

    Full Text Available In the Canon law, dissolution of marriage is not allowed since it was considered sacred and as such cannot break until the two spouses are alive, except only if one of the spouses passes away. But throughout history we find cases when allowed dissolution of the marriage and causes specific conditions set by the church. Thus, according to the Old Testament, if, a man married to a woman, didn’t like something about his wife, should write a request for divorce and allow her to leave his home. Meanwhile according to the New Testament records, divorce is prohibited. Although most Protestants continue to espouse the view that marriage was sacred and as such should not be divorced, from those who had supported the idea of granting the divorce. One of them was Luther, who in his remarks before his preachers said: "In my opinion, the issue of divorce belongs to the law, are not they to whom called for regulation of parental relationships, why not have they the authority to regulate the relations between spouses". Protestant churches allow the dissolution of marriage: a Because of adultery by the wife; allowed by Jesus, b Unjustified abandonment of the marital community; c If there were other reasons: if one spouse refuses to have sexual marriage, if the husband abuses his wife     repeatedly and without cause, severe illness of one spouse.

  19. Hamilton's Optics

    Indian Academy of Sciences (India)

    IAS Admin

    ing to the two well-known laws. These lead to ... through a telescope – the theory is rather uninspiring. ... Figure 1b. The law of reflection implies that the path length is `stationary' . ..... imum principles, governing two different kinds of sys-.

  20. A canonical perturbation method for computing the guiding-center motion in magnetized axisymmetric plasma columns

    International Nuclear Information System (INIS)

    Gratreau, P.

    1987-01-01

    The motion of charged particles in a magnetized plasma column, such as that of a magnetic mirror trap or a tokamak, is determined in the framework of the canonical perturbation theory through a method of variation of constants which preserves the energy conservation and the symmetry invariance. The choice of a frame of coordinates close to that of the magnetic coordinates allows a relatively precise determination of the guiding-center motion with a low-ordered approximation in the adiabatic parameter. A Hamiltonian formulation of the motion equations is obtained

  1. Statistical mechanics of Fermi-Pasta-Ulam chains with the canonical ensemble

    Science.gov (United States)

    Demirel, Melik C.; Sayar, Mehmet; Atılgan, Ali R.

    1997-03-01

    Low-energy vibrations of a Fermi-Pasta-Ulam-Β (FPU-Β) chain with 16 repeat units are analyzed with the aid of numerical experiments and the statistical mechanics equations of the canonical ensemble. Constant temperature numerical integrations are performed by employing the cubic coupling scheme of Kusnezov et al. [Ann. Phys. 204, 155 (1990)]. Very good agreement is obtained between numerical results and theoretical predictions for the probability distributions of the generalized coordinates and momenta both of the chain and of the thermal bath. It is also shown that the average energy of the chain scales linearly with the bath temperature.

  2. Alternative Hamiltonian for molecular dynamics simulations in the grand canonical ensemble

    International Nuclear Information System (INIS)

    Lo, C.; Palmer, B.

    1995-01-01

    An alternative to the Hamiltonian of Cagin and Pettitt for performing molecular dynamics simulations in the grand canonical ensemble is presented and used as the basis for a new algorithm. The algorithm is tested on the ideal gas and the truncated and shifted Lennard-Jones fluid. Simulations are used to calculate the vapor--liquid coexistence points for the Lennard-Jones system and are found to be in agreement with previous calculations using Gibbs ensemble calculations and with the Nicolas equation of state. Simulations are also performed on the Lennard-Jones solid

  3. Canonical symplectic structure and structure-preserving geometric algorithms for Schrödinger-Maxwell systems

    Science.gov (United States)

    Chen, Qiang; Qin, Hong; Liu, Jian; Xiao, Jianyuan; Zhang, Ruili; He, Yang; Wang, Yulei

    2017-11-01

    An infinite dimensional canonical symplectic structure and structure-preserving geometric algorithms are developed for the photon-matter interactions described by the Schrödinger-Maxwell equations. The algorithms preserve the symplectic structure of the system and the unitary nature of the wavefunctions, and bound the energy error of the simulation for all time-steps. This new numerical capability enables us to carry out first-principle based simulation study of important photon-matter interactions, such as the high harmonic generation and stabilization of ionization, with long-term accuracy and fidelity.

  4. A Chern-Simons gauge-fixed Lagrangian in a 'non-canonical' BRST approach

    International Nuclear Information System (INIS)

    Constantinescu, R; Ionescu, C

    2009-01-01

    This paper presents a possible path which starts from the extended BRST Hamiltonian formalism and ends with a covariant Lagrangian action, using the equivalence between the two formalisms. The approach allows a simple account of the form of the master equation and offers a natural identification of some 'non-canonical' operators and variables. These are the main items which solve the major difficulty of the extended BRST Lagrangian formalism, i.e., the gauge-fixing problem. The algorithm we propose applies to a non-Abelian Chern-Simons model coupled with Dirac fields

  5. Grand canonical electronic density-functional theory: Algorithms and applications to electrochemistry

    International Nuclear Information System (INIS)

    Sundararaman, Ravishankar; Goddard, William A. III; Arias, Tomas A.

    2017-01-01

    First-principles calculations combining density-functional theory and continuum solvation models enable realistic theoretical modeling and design of electrochemical systems. When a reaction proceeds in such systems, the number of electrons in the portion of the system treated quantum mechanically changes continuously, with a balancing charge appearing in the continuum electrolyte. A grand-canonical ensemble of electrons at a chemical potential set by the electrode potential is therefore the ideal description of such systems that directly mimics the experimental condition. We present two distinct algorithms: a self-consistent field method and a direct variational free energy minimization method using auxiliary Hamiltonians (GC-AuxH), to solve the Kohn-Sham equations of electronic density-functional theory directly in the grand canonical ensemble at fixed potential. Both methods substantially improve performance compared to a sequence of conventional fixed-number calculations targeting the desired potential, with the GC-AuxH method additionally exhibiting reliable and smooth exponential convergence of the grand free energy. Lastly, we apply grand-canonical density-functional theory to the under-potential deposition of copper on platinum from chloride-containing electrolytes and show that chloride desorption, not partial copper monolayer formation, is responsible for the second voltammetric peak.

  6. Grand canonical electronic density-functional theory: Algorithms and applications to electrochemistry

    Science.gov (United States)

    Sundararaman, Ravishankar; Goddard, William A.; Arias, Tomas A.

    2017-03-01

    First-principles calculations combining density-functional theory and continuum solvation models enable realistic theoretical modeling and design of electrochemical systems. When a reaction proceeds in such systems, the number of electrons in the portion of the system treated quantum mechanically changes continuously, with a balancing charge appearing in the continuum electrolyte. A grand-canonical ensemble of electrons at a chemical potential set by the electrode potential is therefore the ideal description of such systems that directly mimics the experimental condition. We present two distinct algorithms: a self-consistent field method and a direct variational free energy minimization method using auxiliary Hamiltonians (GC-AuxH), to solve the Kohn-Sham equations of electronic density-functional theory directly in the grand canonical ensemble at fixed potential. Both methods substantially improve performance compared to a sequence of conventional fixed-number calculations targeting the desired potential, with the GC-AuxH method additionally exhibiting reliable and smooth exponential convergence of the grand free energy. Finally, we apply grand-canonical density-functional theory to the under-potential deposition of copper on platinum from chloride-containing electrolytes and show that chloride desorption, not partial copper monolayer formation, is responsible for the second voltammetric peak.

  7. Algorithm for Overcoming the Curse of Dimensionality for Certain Non-convex Hamilton-Jacobi Equations, Projections and Differential Games

    Science.gov (United States)

    2016-05-01

    0.5 × 10−8. Our algorithm is implemented in C++ on an 1.7 GHz Intel Core i7-4650U CPU. Linear algebra packages BLAS [40] and LAPACK [41] are used to...subproblems. Our approach is expected to have wide applications in continuous dynamic games, control theory problems, and elsewhere. Mathematics...differential dynamic games, control theory problems, and dynamical systems coming from the physical world, e.g. [11]. An important application is to

  8. A microscopic derivation of stochastic differential equations

    International Nuclear Information System (INIS)

    Arimitsu, Toshihico

    1996-01-01

    With the help of the formulation of Non-Equilibrium Thermo Field Dynamics, a unified canonical operator formalism is constructed for the quantum stochastic differential equations. In the course of its construction, it is found that there are at least two formulations, i.e. one is non-hermitian and the other is hermitian. Having settled which framework should be satisfied by the quantum stochastic differential equations, a microscopic derivation is performed for these stochastic differential equations by extending the projector methods. This investigation may open a new field for quantum systems in order to understand the deeper meaning of dissipation

  9. Canonical quantisation via conditional symmetries of the closed FLRW model coupled to a scalar field

    International Nuclear Information System (INIS)

    Zampeli, Adamantia

    2015-01-01

    We study the classical, quantum and semiclassical solutions of a Robertson-Walker spacetime coupled to a massless scalar field. The Lagrangian of these minisuperspace models is singular and the application of the theory of Noether symmetries is modified to include the conditional symmetries of the corresponding (weakly vanishing) Hamiltonian. These are found to be the simultaneous symmetries of the supermetric and the superpotential. The quantisation is performed adopting the Dirac proposal for constrained systems. The innovation in the approach we use is that the integrals of motion related to the conditional symmetries are promoted to operators together with the Hamiltonian and momentum constraints. These additional conditions imposed on the wave function render the system integrable and it is possible to obtain solutions of the Wheeler-DeWitt equation. Finally, we use the wave function to perform a semiclassical analysis following Bohm and make contact with the classical solution. The analysis starts with a modified Hamilton-Jacobi equation from which the semiclassical momenta are defined. The solutions of the semiclassical equations are then studied and compared to the classical ones in order to understand the nature and behaviour of the classical singularities. (paper)

  10. Numerical study on a canonized Hamiltonian system representing reduced magnetohydrodynamics and its comparison with two-dimensional Euler system

    International Nuclear Information System (INIS)

    Kaneko, Yuta; Yoshida, Zensho

    2014-01-01

    Introducing a Clebsch-like parameterization, we have formulated a canonical Hamiltonian system on a symplectic leaf of reduced magnetohydrodynamics. An interesting structure of the equations is in that the Lorentz-force, which is a quadratic nonlinear term in the conventional formulation, appears as a linear term −ΔQ, just representing the current density (Q is a Clebsch variable, and Δ is the two-dimensional Laplacian); omitting this term reduces the system into the two-dimensional Euler vorticity equation of a neutral fluid. A heuristic estimate shows that current sheets grow exponentially (even in a fully nonlinear regime) together with the action variable P that is conjugate to Q. By numerical simulation, the predicted behavior of the canonical variables, yielding exponential growth of current sheets, has been demonstrated

  11. A field theoretic generalization of Hajicek and Kuchar's quantization scheme in 3+1 canonical quantum gravity

    International Nuclear Information System (INIS)

    Melas, Evangelos

    2011-01-01

    The 3+1 (canonical) decomposition of all geometries admitting two-dimensional space-like surfaces is exhibited as a generalization of a previous work. A proposal, consisting of a specific re-normalization Assumption and an accompanying Requirement, which has been put forward in the 2+1 case is now generalized to 3+1 dimensions. This enables the canonical quantization of these geometries through a generalization of Kuchar's quantization scheme in the case of infinite degrees of freedom. The resulting Wheeler-deWitt equation is based on a re-normalized manifold parameterized by three smooth scalar functionals. The entire space of solutions to this equation is analytically given, a fact that is entirely new to the present case. This is made possible by exploiting the freedom left by the imposition of the Requirement and contained in the third functional.

  12. Canonical quantization of gravity and a problem of scattering

    International Nuclear Information System (INIS)

    Rubakov, V.A.

    1980-01-01

    Linearized theory of gravity is quantized both in a naive way and as a proper limit of the Dirac-Wheeler-De Witt approach to the quantization of the full theory. The equivalence between the two approaches is established. The problem of scattering in the canonically quantized theory of gravitation is investigated. The concept of the background metric naturally appears in the canonical formalism for this case. The equivalence between canonical and path-integral approaches is established for the problem of scattering. Some kinetical properties of functionals in Wheeler superspace are studied in an appendix. (author)

  13. Covariant canonical quantization of fields and Bohmian mechanics

    International Nuclear Information System (INIS)

    Nikolic, H.

    2005-01-01

    We propose a manifestly covariant canonical method of field quantization based on the classical De Donder-Weyl covariant canonical formulation of field theory. Owing to covariance, the space and time arguments of fields are treated on an equal footing. To achieve both covariance and consistency with standard non-covariant canonical quantization of fields in Minkowski spacetime, it is necessary to adopt a covariant Bohmian formulation of quantum field theory. A preferred foliation of spacetime emerges dynamically owing to a purely quantum effect. The application to a simple time-reparametrization invariant system and quantum gravity is discussed and compared with the conventional non-covariant Wheeler-DeWitt approach. (orig.)

  14. New variable separation approach: application to nonlinear diffusion equations

    International Nuclear Information System (INIS)

    Zhang Shunli; Lou, S Y; Qu Changzheng

    2003-01-01

    The concept of the derivative-dependent functional separable solution (DDFSS), as a generalization to the functional separable solution, is proposed. As an application, it is used to discuss the generalized nonlinear diffusion equations based on the generalized conditional symmetry approach. As a consequence, a complete list of canonical forms for such equations which admit the DDFSS is obtained and some exact solutions to the resulting equations are described

  15. Numerical study on a canonized Hamiltonian system representing reduced magnetohydrodynamics and its comparison with two-dimensional Euler system

    OpenAIRE

    Kaneko, Yuta; Yoshida, Zensho

    2014-01-01

    Introducing a Clebsch-like parameterization, we have formulated a canonical Hamiltonian system on a symplectic leaf of reduced magnetohydrodynamics. An interesting structure of the equations is in that the Lorentz-force, which is a quadratic nonlinear term in the conventional formulation, appears as a linear term -{\\Delta}Q, just representing the current density (Q is a Clebsch variable, and {\\Delta} is the two-dimensional Laplacian); omitting this term reduces the system into the two-dimensi...

  16. Canonical and non-canonical barriers facing antimiR cancer therapeutics.

    Science.gov (United States)

    Cheng, Christopher J; Saltzman, W Mark; Slack, Frank J

    2013-01-01

    Once considered genetic "oddities", microRNAs (miRNAs) are now recognized as key epigenetic regulators of numerous biological processes, including some with a causal link to the pathogenesis, maintenance, and treatment of cancer. The crux of small RNA-based therapeutics lies in the antagonism of potent cellular targets; the main shortcoming of the field in general, lies in ineffective delivery. Inhibition of oncogenic miRNAs is a relatively nascent therapeutic concept, but as with predecessor RNA-based therapies, success hinges on delivery efficacy. This review will describes the canonical (e.g. pharmacokinetics and clearance, cellular uptake, endosome escape, etc.) and non-canonical (e.g. spatial localization and accessibility of miRNA, technical limitations of miRNA inhibition, off-target impacts, etc.) challenges to the delivery of antisense-based anti-miRNA therapeutics (i.e. antimiRs) for the treatment of cancer. Emphasis will be placed on how the current leading antimiR platforms-ranging from naked chemically modified oligonucleotides to nanoscale delivery vehicles-are affected by and overcome these barriers. The perplexity of antimiR delivery presents both engineering and biological hurdles that must be overcome in order to capitalize on the extensive pharmacological benefits of antagonizing tumor-associated miRNAs.

  17. Non-destructive examination of a time capsule recovered from the Gore Park excavations, Hamilton, Ontario

    International Nuclear Information System (INIS)

    MacDonald, B.L.; Vanderstelt, J.

    2015-01-01

    Non-destructive analytical techniques are becoming increasingly important for the study of objects of cultural heritage interest. We present a study that applied two techniques: x-ray fluorescence (XRF) and neutron radiography, for the investigation of a time capsule recovered from an urban construction site in Gore Park, Hamilton. XRF analysis revealed the composition of the artifact, while n-radiography showed that its contents remained intact after being interred for 91 years. Results of this study demonstrate the value of non-destructive techniques for the analysis and preservation of cultural heritage. (author)

  18. Results of the radiological survey at Diebold Safe Company, 1550 Grand Boulevard, Hamilton, Ohio (HO001)

    International Nuclear Information System (INIS)

    Foley, R.D.; Floyd, L.M.

    1990-02-01

    At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducted investigative radiological surveys at Diebold Safe Company, 1550 Grand Boulevard, Hamilton, Ohio in 1988 and 1989. The purpose of the surveys was to determine whether the property was contaminated with radioactive residues, principally 238 U. The surveys included gamma scans; direct and transferable measurements of alpha, beta, and gamma radiation levels; and dust, debris, air, and soil sampling for radionuclide analyses. 6 refs., 6 figs., 5 tabs

  19. Code Red: Explaining Average Age of Death in the City of Hamilton

    Directory of Open Access Journals (Sweden)

    Patrick F. DeLuca

    2015-11-01

    Full Text Available The aim of this study is to identify the underlying factors that explain the average age of death in the City of Hamilton, Ontario, Canada, as identified in the Code Red Series of articles that were published in the city's local newspaper in 2010. Using a combination of data from the Canadian Census, the Government of Ontario and the Canadian Institute for Health Information, factor analysis was performed yielding three factors relating to poverty, working class, and health and aging. In a regression analysis these factors account for 42% of the total variability in the average ages of death observed at the census tract level of geography within the city.

  20. A case study: the initiative to improve RN scheduling at Hamilton Health Sciences.

    Science.gov (United States)

    Wallace, Laurel-Anne; Pierson, Sharon

    2008-01-01

    In 2003, Hamilton Health Sciences embarked on an initiative to improve and standardize nursing schedules and scheduling practices. The scheduling project was one of several initiatives undertaken by a corporate-wide Nursing Resource Group established to enhance the work environment and patient care and to ensure appropriate utilization of nursing resources across the organization's five hospitals. This article focuses on major activities undertaken in the scheduling initiative. The step-by-step approach described, plus examples of the scheduling resources developed and samples of extended-tour schedules, will all provide insight, potential strategies and practical help for nursing administrators, human resources (HR) personnel and others interested in improving nurse scheduling.

  1. Interrelations between different canonical descriptions of dissipative systems

    International Nuclear Information System (INIS)

    Schuch, D; Guerrero, J; López-Ruiz, F F; Aldaya, V

    2015-01-01

    There are many approaches for the description of dissipative systems coupled to some kind of environment. This environment can be described in different ways; only effective models are being considered here. In the Bateman model, the environment is represented by one additional degree of freedom and the corresponding momentum. In two other canonical approaches, no environmental degree of freedom appears explicitly, but the canonical variables are connected with the physical ones via non-canonical transformations. The link between the Bateman approach and those without additional variables is achieved via comparison with a canonical approach using expanding coordinates, as, in this case, both Hamiltonians are constants of motion. This leads to constraints that allow for the elimination of the additional degree of freedom in the Bateman approach. These constraints are not unique. Several choices are studied explicitly, and the consequences for the physical interpretation of the additional variable in the Bateman model are discussed. (paper)

  2. Canonical and D-transformations in Theories with Constraints

    OpenAIRE

    Gitman, Dmitri M.

    1995-01-01

    A class class of transformations in a super phase space (we call them D-transformations) is described, which play in theories with second-class constraints the role of ordinary canonical transformations in theories without constraints.

  3. Deviations from Wick's theorem in the canonical ensemble

    Science.gov (United States)

    Schönhammer, K.

    2017-07-01

    Wick's theorem for the expectation values of products of field operators for a system of noninteracting fermions or bosons plays an important role in the perturbative approach to the quantum many-body problem. A finite-temperature version holds in the framework of the grand canonical ensemble, but not for the canonical ensemble appropriate for systems with fixed particle number such as ultracold quantum gases in optical lattices. Here we present formulas for expectation values of products of field operators in the canonical ensemble using a method in the spirit of Gaudin's proof of Wick's theorem for the grand canonical case. The deviations from Wick's theorem are examined quantitatively for two simple models of noninteracting fermions.

  4. On a canonical formulation of field theories with singular Lagrangians

    International Nuclear Information System (INIS)

    Mal'tsev, V.K.

    1978-01-01

    An attempt is made to introduce the Routh function formalism into the field theory: only ''nondegenerated'' field components are considered as canonical variables. Electrodynamics and general relativity are considered. The formalism appears to be quite simple and gauge-independent

  5. Interrelations between different canonical descriptions of dissipative systems

    Science.gov (United States)

    Schuch, D.; Guerrero, J.; López-Ruiz, F. F.; Aldaya, V.

    2015-04-01

    There are many approaches for the description of dissipative systems coupled to some kind of environment. This environment can be described in different ways; only effective models are being considered here. In the Bateman model, the environment is represented by one additional degree of freedom and the corresponding momentum. In two other canonical approaches, no environmental degree of freedom appears explicitly, but the canonical variables are connected with the physical ones via non-canonical transformations. The link between the Bateman approach and those without additional variables is achieved via comparison with a canonical approach using expanding coordinates, as, in this case, both Hamiltonians are constants of motion. This leads to constraints that allow for the elimination of the additional degree of freedom in the Bateman approach. These constraints are not unique. Several choices are studied explicitly, and the consequences for the physical interpretation of the additional variable in the Bateman model are discussed.

  6. An efficient algorithm for calculation of the Luenberger canonical form.

    Science.gov (United States)

    Jordan, D.; Sridhar, B.

    1973-01-01

    A new algorithm is presented to obtain the Luenberger canonical form for multivariable systems. A distinct feature of the method is that the canonical form is obtained directly and, if necessary, the similarity transformation can be computed. There is a substantial reduction in the amount of computation compared to Luenberger's method. The reduced computations along with Gaussian techniques lend greater inherent accuracy and the ability to refine the solution with additional computations. An example is presented to illustrate the technique.

  7. Canonical transformations method in the potential scattering problem

    International Nuclear Information System (INIS)

    Pavlenko, Yu.G.

    1984-01-01

    Canonical formalism of the first order is used in the present paper to solve the problem of scattering and other problems of quantum mechanics. The theory of canonical transformations (CT) being the basis of hamiltonian approach permits to develop several methods of integration being beyond the scope of the standard theory of perturbations. In this case it is essential for numerical counting that the theory permits to obtain algorithm for plotting highest approximations

  8. Canonical forms of tensor representations and spontaneous symmetry breaking

    International Nuclear Information System (INIS)

    Cummins, C.J.

    1986-01-01

    An algorithm for constructing canonical forms for any tensor representation of the classical compact Lie groups is given. This method is used to find a complete list of the symmetry breaking patterns produced by Higgs fields in the third-rank antisymmetric representations of U(n), SU(n) and SO(n) for n<=7. A simple canonical form is also given for kth-rank symmetric tensor representations. (author)

  9. Integral equations

    CERN Document Server

    Moiseiwitsch, B L

    2005-01-01

    Two distinct but related approaches hold the solutions to many mathematical problems--the forms of expression known as differential and integral equations. The method employed by the integral equation approach specifically includes the boundary conditions, which confers a valuable advantage. In addition, the integral equation approach leads naturally to the solution of the problem--under suitable conditions--in the form of an infinite series.Geared toward upper-level undergraduate students, this text focuses chiefly upon linear integral equations. It begins with a straightforward account, acco

  10. Restoring canonical partition functions from imaginary chemical potential

    Science.gov (United States)

    Bornyakov, V. G.; Boyda, D.; Goy, V.; Molochkov, A.; Nakamura, A.; Nikolaev, A.; Zakharov, V. I.

    2018-03-01

    Using GPGPU techniques and multi-precision calculation we developed the code to study QCD phase transition line in the canonical approach. The canonical approach is a powerful tool to investigate sign problem in Lattice QCD. The central part of the canonical approach is the fugacity expansion of the grand canonical partition functions. Canonical partition functions Zn(T) are coefficients of this expansion. Using various methods we study properties of Zn(T). At the last step we perform cubic spline for temperature dependence of Zn(T) at fixed n and compute baryon number susceptibility χB/T2 as function of temperature. After that we compute numerically ∂χ/∂T and restore crossover line in QCD phase diagram. We use improved Wilson fermions and Iwasaki gauge action on the 163 × 4 lattice with mπ/mρ = 0.8 as a sandbox to check the canonical approach. In this framework we obtain coefficient in parametrization of crossover line Tc(µ2B) = Tc(C-ĸµ2B/T2c) with ĸ = -0.0453 ± 0.0099.

  11. On the possible types of elementary particles compatible with the canonical formulation

    International Nuclear Information System (INIS)

    Cheng Kaijia

    1988-12-01

    In a paper D erivation of Dirac's Equation for a Free Particle , it was shown by the author that Dirac's equation can be deduced from a canonical formulation on the ground of relativity and quantum mechanics only. This idea will be further developed to a criterion on the possible forms of particles compatible with these formalism. It is shown in the text that only two types can exist in conformity with the criterion, namely fermions with spin 1/2 and scalars with spin zero. An example is given for a particle with spin unity to show that they do not fall into the present category. Particles that play roles in vector fields belong to different categories. Discussions are made for particles coupled with an external electronmagnetic field, preliminary results show that the essential features for the free particles still retain

  12. Physical states in the canonical tensor model from the perspective of random tensor networks

    Energy Technology Data Exchange (ETDEWEB)

    Narain, Gaurav [The Institute for Fundamental Study “The Tah Poe Academia Institute”,Naresuan University, Phitsanulok 65000 (Thailand); Sasakura, Naoki [Yukawa Institute for Theoretical Physics,Kyoto University, Kyoto 606-8502 (Japan); Sato, Yuki [National Institute for Theoretical Physics,School of Physics and Centre for Theoretical Physics,University of the Witwartersrand, WITS 2050 (South Africa)

    2015-01-07

    Tensor models, generalization of matrix models, are studied aiming for quantum gravity in dimensions larger than two. Among them, the canonical tensor model is formulated as a totally constrained system with first-class constraints, the algebra of which resembles the Dirac algebra of general relativity. When quantized, the physical states are defined to be vanished by the quantized constraints. In explicit representations, the constraint equations are a set of partial differential equations for the physical wave-functions, which do not seem straightforward to be solved due to their non-linear character. In this paper, after providing some explicit solutions for N=2,3, we show that certain scale-free integration of partition functions of statistical systems on random networks (or random tensor networks more generally) provides a series of solutions for general N. Then, by generalizing this form, we also obtain various solutions for general N. Moreover, we show that the solutions for the cases with a cosmological constant can be obtained from those with no cosmological constant for increased N. This would imply the interesting possibility that a cosmological constant can always be absorbed into the dynamics and is not an input parameter in the canonical tensor model. We also observe the possibility of symmetry enhancement in N=3, and comment on an extension of Airy function related to the solutions.

  13. Canonical quantization of some midi-superspace models in 2+1 and 3+1 dimensions

    International Nuclear Information System (INIS)

    Christodoulakis, T; Doulis, G; Terzis, P A; Melas, E; Grammenos, T H; Papadopoulos, G O; Spanou, A

    2009-01-01

    A proposal is put forward which enables the canonical quantization of a family of axially symmetric geometries in 2+1 dimensions and a corresponding spherically symmetric family in 3+1 dimensions. The proposal consists of a particular renormalization assumption and an accompanying requirement and results in a Wheeler-DeWitt equation which is based on a renormalized manifold parametrized by three smooth scalar functionals. The aforementioned equation is analytically solved for both the 2+1 and 3+1 case.

  14. Canonical differential geometry of string backgrounds

    International Nuclear Information System (INIS)

    Schuller, Frederic P.; Wohlfarth, Mattias N.R.

    2006-01-01

    String backgrounds and D-branes do not possess the structure of Lorentzian manifolds, but that of manifolds with area metric. Area metric geometry is a true generalization of metric geometry, which in particular may accommodate a B-field. While an area metric does not determine a connection, we identify the appropriate differential geometric structure which is of relevance for the minimal surface equation in such a generalized geometry. In particular the notion of a derivative action of areas on areas emerges naturally. Area metric geometry provides new tools in differential geometry, which promise to play a role in the description of gravitational dynamics on D-branes

  15. DURAND NEIGHBOURHOOD HERITAGE INVENTORY: TOWARD A DIGITAL CITYWIDE SURVEY APPROACH TO HERITAGE PLANNING IN HAMILTON

    Directory of Open Access Journals (Sweden)

    V. Angel

    2017-08-01

    Full Text Available In the face of changing economies and patterns of development, the definition of heritage is diversifying, and the role of inventories in local heritage planning is coming to the fore. The Durand neighbourhood is a layered and complex area located in inner-city Hamilton, Ontario, Canada, and the second subject area in a set of pilot inventory studies to develop a new city-wide inventory strategy for the City of Hamilton,. This paper presents an innovative digital workflow developed to undertake the Durand Built Heritage Inventory project. An online database was developed to be at the centre of all processes, including digital documentation, record management, analysis and variable outputs. Digital tools were employed for survey work in the field and analytical work in the office, resulting in a GIS-based dataset that can be integrated into Hamilton’s larger municipal planning system. Together with digital mapping and digitized historical resources, the Durand database has been leveraged to produce both digital and static outputs to shape recommendations for the protection of Hamilton’s heritage resources.

  16. Source apportionment of PAH in Hamilton Harbour suspended sediments: comparison of two factor analysis methods.

    Science.gov (United States)

    Sofowote, Uwayemi M; McCarry, Brian E; Marvin, Christopher H

    2008-08-15

    A total of 26 suspended sediment samples collected over a 5-year period in Hamilton Harbour, Ontario, Canada and surrounding creeks were analyzed for a suite of polycyclic aromatic hydrocarbons and sulfur heterocycles. Hamilton Harbour sediments contain relatively high levels of polycyclic aromatic compounds and heavy metals due to emissions from industrial and mobile sources. Two receptor modeling methods using factor analyses were compared to determine the profiles and relative contributions of pollution sources to the harbor; these methods are principal component analyses (PCA) with multiple linear regression analysis (MLR) and positive matrix factorization (PMF). Both methods identified four factors and gave excellent correlation coefficients between predicted and measured levels of 25 aromatic compounds; both methods predicted similar contributions from coal tar/coal combustion sources to the harbor (19 and 26%, respectively). One PCA factor was identified as contributions from vehicular emissions (61%); PMF was able to differentiate vehicular emissions into two factors, one attributed to gasoline emissions sources (28%) and the other to diesel emissions sources (24%). Overall, PMF afforded better source identification than PCA with MLR. This work constitutes one of the few examples of the application of PMF to the source apportionment of sediments; the addition of sulfur heterocycles to the analyte list greatly aided in the source identification process.

  17. Ecological structuring of yeasts associated with trees around Hamilton, Ontario, Canada.

    Science.gov (United States)

    Maganti, Harinad; Bartfai, David; Xu, Jianping

    2012-02-01

    This study seeks to determine the distribution and diversity of yeasts in and around the Hamilton area in Canada. In light of the increasing number of fungal infections along with rising morbidity and mortality rates, especially among the immunocompromised, understanding the diversity and distribution of yeasts in natural environments close to human habitations has become an increasingly relevant topic. In this study, we analyzed 1110 samples obtained from the hollows of trees, shrubs and avian droppings at 8 geographical sites in and around Hamilton, Ontario, Canada. A total of 88 positive yeast strains were isolated and identified belonging to 20 yeast species. Despite the relative proximity of the sampling sites, our DNA fingerprinting results showed that the yeast populations were highly heterogenous. Among the 14 tree species sampled, cedar, cottonwood and basswood hollows had relatively high yeast colonization rates. Interestingly, Candida parapsilosis was isolated almost exclusively from Pine trees only. Our results are consistent with microgeographic and ecological differentiation of yeast species in and around an urban environment. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  18. Expanded social fitness and Hamilton's rule for kin, kith, and kind.

    Science.gov (United States)

    Queller, David C

    2011-06-28

    Inclusive fitness theory has a combination of simplicity, generality, and accuracy that has made it an extremely successful way of thinking about and modeling effects on kin. However, there are types of social interactions that, although covered, are not illuminated. Here, I expand the inclusive fitness approach and the corresponding neighbor-modulated approach to specify two other kinds of social selection. Kind selection, which includes greenbeards and many nonadditive games, is where selection depends on an actor's trait having different effects on others depending on whether they share the trait. Kith selection includes social effects that do not require either kin or kind, such as mutualism and manipulation. It involves social effects of a trait that affect a partner, with feedback to the actor's fitness. I derive expanded versions of Hamilton's rule for kith and kind selection, generalizing Hamilton's insight that we can model social selection through a sum of fitness effects, each multiplied by an appropriate association coefficient. Kinship is, thus, only one of the important types of association, but all can be incorporated within an expanded inclusive fitness.

  19. Far-red fluorescent probes for canonical and non-canonical nucleic acid structures: current progress and future implications.

    Science.gov (United States)

    Suseela, Y V; Narayanaswamy, Nagarjun; Pratihar, Sumon; Govindaraju, Thimmaiah

    2018-02-05

    The structural diversity and functional relevance of nucleic acids (NAs), mainly deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), are indispensable for almost all living organisms, with minute aberrations in their structure and function becoming causative factors in numerous human diseases. The standard structures of NAs, termed canonical structures, are supported by Watson-Crick hydrogen bonding. Under special physiological conditions, NAs adopt distinct spatial organisations, giving rise to non-canonical conformations supported by hydrogen bonding other than the Watson-Crick type; such non-canonical structures have a definite function in controlling gene expression and are considered as novel diagnostic and therapeutic targets. Development of molecular probes for these canonical and non-canonical DNA/RNA structures has been an active field of research. Among the numerous probes studied, probes with turn-on fluorescence in the far-red (600-750 nm) region are highly sought-after due to minimal autofluorescence and cellular damage. Far-red fluorescent probes are vital for real-time imaging of NAs in live cells as they provide good resolution and minimal perturbation of the cell under investigation. In this review, we present recent advances in the area of far-red fluorescent probes of DNA/RNA and non-canonical G-quadruplex structures. For the sake of continuity and completeness, we provide a brief overview of visible fluorescent probes. Utmost importance is given to design criteria, characteristic properties and biological applications, including in cellulo imaging, apart from critical discussion on limitations of the far-red fluorescent probes. Finally, we offer current and future prospects in targeting canonical and non-canonical NAs specific to cellular organelles, through sequence- and conformation-specific far-red fluorescent probes. We also cover their implications in chemical and molecular biology, with particular focus on decoding various disease

  20. Evolution of perturbations in distinct classes of canonical scalar field models of dark energy

    International Nuclear Information System (INIS)

    Jassal, H. K.

    2010-01-01

    Dark energy must cluster in order to be consistent with the equivalence principle. The background evolution can be effectively modeled by either a scalar field or by a barotropic fluid. The fluid model can be used to emulate perturbations in a scalar field model of dark energy, though this model breaks down at large scales. In this paper we study evolution of dark energy perturbations in canonical scalar field models: the classes of thawing and freezing models. The dark energy equation of state evolves differently in these classes. In freezing models, the equation of state deviates from that of a cosmological constant at early times. For thawing models, the dark energy equation of state remains near that of the cosmological constant at early times and begins to deviate from it only at late times. Since the dark energy equation of state evolves differently in these classes, the dark energy perturbations too evolve differently. In freezing models, since the equation of state deviates from that of a cosmological constant at early times, there is a significant difference in evolution of matter perturbations from those in the cosmological constant model. In comparison, matter perturbations in thawing models differ from the cosmological constant only at late times. This difference provides an additional handle to distinguish between these classes of models and this difference should manifest itself in the integrated Sachs-Wolfe effect.

  1. On a representation of linear differential equations

    Czech Academy of Sciences Publication Activity Database

    Neuman, František

    2010-01-01

    Roč. 52, 1-2 (2010), s. 355-360 ISSN 0895-7177 Grant - others:GA ČR(CZ) GA201/08/0469 Institutional research plan: CEZ:AV0Z10190503 Keywords : Brandt and Ehresmann groupoinds * transformations * canonical forms * linear differential equations Subject RIV: BA - General Mathematics Impact factor: 1.066, year: 2010 http://www.sciencedirect.com/science/article/pii/S0895717710001184

  2. Generation and Identification of Ordinary Differential Equations of Maximal Symmetry Algebra

    Directory of Open Access Journals (Sweden)

    J. C. Ndogmo

    2016-01-01

    Full Text Available An effective method for generating linear ordinary differential equations of maximal symmetry in their most general form is found, and an explicit expression for the point transformation reducing the equation to its canonical form is obtained. New expressions for the general solution are also found, as well as several identification and other results and a direct proof of the fact that a linear ordinary differential equation is iterative if and only if it is reducible to the canonical form by a point transformation. New classes of solvable equations parameterized by an arbitrary function are also found, together with simple algebraic expressions for the corresponding general solution.

  3. Canonical quantization of static spherically symmetric geometries

    International Nuclear Information System (INIS)

    Christodoulakis, T; Dimakis, N; Terzis, P A; Doulis, G; Grammenos, Th; Melas, E; Spanou, A

    2013-01-01

    The conditional symmetries of the reduced Einstein–Hilbert action emerging from a static, spherically symmetric geometry are used as supplementary conditions on the wave function. Based on their integrability conditions, only one of the three existing symmetries can be consistently imposed, while the unique Casimir invariant, being the product of the remaining two symmetries, is calculated as the only possible second condition on the wave function. This quadratic integral of motion is identified with the reparametrization generator, as an implication of the uniqueness of the dynamical evolution, by fixing a suitable parametrization of the r-lapse function. In this parametrization, the determinant of the supermetric plays the role of the mesure. The combined Wheeler – DeWitt and linear conditional symmetry equations are analytically solved. The solutions obtained depend on the product of the two ''scale factors''

  4. Differential equations

    CERN Document Server

    Tricomi, FG

    2013-01-01

    Based on his extensive experience as an educator, F. G. Tricomi wrote this practical and concise teaching text to offer a clear idea of the problems and methods of the theory of differential equations. The treatment is geared toward advanced undergraduates and graduate students and addresses only questions that can be resolved with rigor and simplicity.Starting with a consideration of the existence and uniqueness theorem, the text advances to the behavior of the characteristics of a first-order equation, boundary problems for second-order linear equations, asymptotic methods, and diff

  5. Contraction of high eccentricity satellite orbits using uniformly regular KS canonical elements with oblate diurnally varying atmosphere.

    Science.gov (United States)

    Raj, Xavier James

    2016-07-01

    Accurate orbit prediction of an artificial satellite under the influence of air drag is one of the most difficult and untraceable problem in orbital dynamics. The orbital decay of these satellites is mainly controlled by the atmospheric drag effects. The effects of the atmosphere are difficult to determine, since the atmospheric density undergoes large fluctuations. The classical Newtonian equations of motion, which is non linear is not suitable for long-term integration. Many transformations have emerged in the literature to stabilize the equations of motion either to reduce the accumulation of local numerical errors or allowing the use of large integration step sizes, or both in the transformed space. One such transformation is known as KS transformation by Kustaanheimo and Stiefel, who regularized the nonlinear Kepler equations of motion and reduced it into linear differential equations of a harmonic oscillator of constant frequency. The method of KS total energy element equations has been found to be a very powerful method for obtaining numerical as well as analytical solution with respect to any type of perturbing forces, as the equations are less sensitive to round off and truncation errors. The uniformly regular KS canonical equations are a particular canonical form of the KS differential equations, where all the ten KS Canonical elements αi and βi are constant for unperturbed motion. These equations permit the uniform formulation of the basic laws of elliptic, parabolic and hyperbolic motion. Using these equations, developed analytical solution for short term orbit predictions with respect to Earth's zonal harmonic terms J2, J3, J4. Further, these equations were utilized to include the canonical forces and analytical theories with air drag were developed for low eccentricity orbits (e 0.2) orbits by assuming the atmosphere to be oblate only. In this paper a new non-singular analytical theory is developed for the motion of high eccentricity satellite

  6. The degeneracy problem in non-canonical inflation

    International Nuclear Information System (INIS)

    Easson, Damien A.; Powell, Brian A.

    2013-01-01

    While attempting to connect inflationary theories to observational physics, a potential difficulty is the degeneracy problem: a single set of observables maps to a range of different inflaton potentials. Two important classes of models affected by the degeneracy problem are canonical and non-canonical models, the latter marked by the presence of a non-standard kinetic term that generates observables beyond the scalar and tensor two-point functions on CMB scales. The degeneracy problem is manifest when these distinguishing observables go undetected. We quantify the size of the resulting degeneracy in this case by studying the most well-motivated non-canonical theory having Dirac-Born-Infeld Lagrangian. Beyond the scalar and tensor two-point functions on CMB scales, we then consider the possible detection of equilateral non-Gaussianity at Planck-precision and a measurement of primordial gravitational waves from prospective space-based laser interferometers. The former detection breaks the degeneracy with canonical inflation but results in poor reconstruction prospects, while the latter measurement enables a determination of n T which, while not breaking the degeneracy, can be shown to greatly improve the non-canonical reconstruction

  7. Extension of Kirkwood-Buff theory to the canonical ensemble

    Science.gov (United States)

    Rogers, David M.

    2018-02-01

    Kirkwood-Buff (KB) integrals are notoriously difficult to converge from a canonical simulation because they require estimating the grand-canonical radial distribution. The same essential difficulty is encountered when attempting to estimate the direct correlation function of Ornstein-Zernike theory by inverting the pair correlation functions. We present a new theory that applies to the entire, finite, simulation volume, so that no cutoff issues arise at all. The theory gives the direct correlation function for closed systems, while smoothness of the direct correlation function in reciprocal space allows calculating canonical KB integrals via a well-posed extrapolation to the origin. The present analysis method represents an improvement over previous work because it makes use of the entire simulation volume and its convergence can be accelerated using known properties of the direct correlation function. Using known interaction energy functions can make this extrapolation near perfect accuracy in the low-density case. Because finite size effects are stronger in the canonical than in the grand-canonical ensemble, we state ensemble correction formulas for the chemical potential and the KB coefficients. The new theory is illustrated with both analytical and simulation results on the 1D Ising model and a supercritical Lennard-Jones fluid. For the latter, the finite-size corrections are shown to be small.

  8. Differential equations

    CERN Document Server

    Barbu, Viorel

    2016-01-01

    This textbook is a comprehensive treatment of ordinary differential equations, concisely presenting basic and essential results in a rigorous manner. Including various examples from physics, mechanics, natural sciences, engineering and automatic theory, Differential Equations is a bridge between the abstract theory of differential equations and applied systems theory. Particular attention is given to the existence and uniqueness of the Cauchy problem, linear differential systems, stability theory and applications to first-order partial differential equations. Upper undergraduate students and researchers in applied mathematics and systems theory with a background in advanced calculus will find this book particularly useful. Supplementary topics are covered in an appendix enabling the book to be completely self-contained.

  9. Continuous dependence estimates for viscosity solutions of fully nonlinear degenerate elliptic equations

    Directory of Open Access Journals (Sweden)

    Espen R. Jakobsen

    2002-05-01

    Full Text Available Using the maximum principle for semicontinuous functions [3,4], we prove a general ``continuous dependence on the nonlinearities'' estimate for bounded Holder continuous viscosity solutions of fully nonlinear degenerate elliptic equations. Furthermore, we provide existence, uniqueness, and Holder continuity results for bounded viscosity solutions of such equations. Our results are general enough to encompass Hamilton-Jacobi-Bellman-Isaacs's equations of zero-sum, two-player stochastic differential games. An immediate consequence of the results obtained herein is a rate of convergence for the vanishing viscosity method for fully nonlinear degenerate elliptic equations.

  10. Hamilton-Jacobi approach for first order actions and theories with higher derivatives

    International Nuclear Information System (INIS)

    Bertin, M.C.; Pimentel, B.M.; Pompeia, P.J.

    2008-01-01

    In this work, we analyze systems described by Lagrangians with higher order derivatives in the context of the Hamilton-Jacobi formalism for first order actions. Two different approaches are studied here: the first one is analogous to the description of theories with higher derivatives in the hamiltonian formalism according to [D.M. Gitman, S.L. Lyakhovich, I.V. Tyutin, Soviet Phys. J. 26 (1983) 730; D.M. Gitman, I.V. Tyutin, Quantization of Fields with Constraints, Springer-Verlag, New York, Berlin, 1990] the second treats the case where degenerate coordinate are present, in an analogy to reference [D.M. Gitman, I.V. Tyutin, Nucl. Phys. B 630 (2002) 509]. Several examples are analyzed where a comparison between both approaches is made

  11. The Hamilton Depression Scale (HAM-D) and the Montgomery–Åsberg Depression Scale (MADRS)

    DEFF Research Database (Denmark)

    Bech, Per; Allerup, Peter; Larsen, Erik Roj

    2014-01-01

    The objective of this re-analysis of the European Genome-Based Therapeutic Drugs for Depression Study (GENDEP) was to psychometrically test the unidimensionality of the full Montgomery Åsberg Depression Rating Scale (MADRS10) and the Hamilton Depression Scale (HAM-D17) versus their respective...... subscales (MADRS5 and HAM-D6) containing the core symptoms of depression severity. Rasch analysis was applied using RUMM 2030 software to assess the overall fit for unidimensionality. Neither the MADRS10 nor the HAM-D17 was found to fit the Rasch model for unidimensionality. The HAM-D6 (containing the items...... of depressed mood, guilt, work and interests, psychomotor retardation, psychic anxiety, and somatic general) as well as the analogue MADRS5 were tested for unidimensionality by use of the RUMM 2030 programme, and only the HAM-D6 was accepted. When testing for invariance across rating weeks or centres, the RUMM...

  12. Filling the gaps in SCWR materials research: advanced nuclear corrosion research facilities in Hamilton

    International Nuclear Information System (INIS)

    Krausher, J.L.; Zheng, W.; Li, J.; Guzonas, D.; Botton, G.

    2011-01-01

    Research efforts on materials selection and development in support of the design of supercritical water-cooled reactors (SCWRs) have produced a considerable amount of data on corrosion, creep and other related properties. Summaries of the data on corrosion [1] and stress corrosion cracking [2] have recently been produced. As research on the SCWR advances, gaps and limitations in the published data are being identified. In terms of corrosion properties, these gaps can be seen in several areas, including: 1) the test environment, 2) the physical and chemical severity of the tests conducted as compared with likely reactor service/operating conditions, and 3) the test methods used. While some of these gaps can be filled readily using existing facilities, others require the availability of advanced test facilities for specific tests and assessments. In this paper, highlights of the new materials research facilities jointly established in Hamilton by CANMET Materials Technology Laboratory and McMaster University are presented. (author)

  13. [«I stole with my eyes»: Hamilton Naki, a pioneer in heart transplantation].

    Science.gov (United States)

    López-Valdés, Julio César

    On December 2, 1967, when Denise Darvall was hit by a car, a surgery that made medical history was unfold: Hamilton Naki, a black man, expertly removed her heart and gave it to Christian Barnard, who was preparing the receptor, Louis Washkansky, in an adjacent operating room. Naki's contribution was an outlaw act, a criminal offense under the laws of apartheid due to the difference of races; the law forbade him to cut white meat or touch white blood. Naki was perhaps the second most important man in the team that day. There were few photographs where he and Barnard appeared together, but because of the nature of society was Barnard who won the world's attention.

  14. A canonical-literary reading of Lamentations 5

    Directory of Open Access Journals (Sweden)

    Shinman Kang

    2009-08-01

    Full Text Available This article presents a canonical and literary reading of Lamentations 5 in the context of the book of Lamentations as a whole. Following the approach by Vanhoozer (1998, 2002 based on speech-act theory, the meaning of Scripture is sought at canonical level, supervening the basic literary level. In Lamentations, as polyphonic poetic text, the speaking voices form a very important key for the interpretation of the text. In the polyphonic text of Lamentations, the shifting of the speaking voices occurs between Lamentations 1 and 4. Lamentations 5 is monologic. The theories of Bakhtin (1984 are also used to understand the book of Lamentations. In this book, chapter 5 forms the climax where Jerusalem cries to God. We cannot, however, find God’s answer to this call in Lamentations; we can find it only within the broader text of the Christian canon.

  15. Canonical sectors of five-dimensional Chern-Simons theories

    International Nuclear Information System (INIS)

    Miskovic, Olivera; Troncoso, Ricardo; Zanelli, Jorge

    2005-01-01

    The dynamics of five-dimensional Chern-Simons theories is analyzed. These theories are characterized by intricate self couplings which give rise to dynamical features not present in standard theories. As a consequence, Dirac's canonical formalism cannot be directly applied due to the presence of degeneracies of the symplectic form and irregularities of the constraints on some surfaces of phase space, obscuring the dynamical content of these theories. Here we identify conditions that define sectors where the canonical formalism can be applied for a class of non-Abelian Chern-Simons theories, including supergravity. A family of solutions satisfying the canonical requirements is explicitly found. The splitting between first and second class constraints is performed around these backgrounds, allowing the construction of the charge algebra, including its central extension

  16. Escort entropies and divergences and related canonical distribution

    International Nuclear Information System (INIS)

    Bercher, J.-F.

    2011-01-01

    We discuss two families of two-parameter entropies and divergences, derived from the standard Renyi and Tsallis entropies and divergences. These divergences and entropies are found as divergences or entropies of escort distributions. Exploiting the nonnegativity of the divergences, we derive the expression of the canonical distribution associated to the new entropies and a observable given as an escort-mean value. We show that this canonical distribution extends, and smoothly connects, the results obtained in nonextensive thermodynamics for the standard and generalized mean value constraints. -- Highlights: → Two-parameter entropies are derived from q-entropies and escort distributions. → The related canonical distribution is derived. → This connects and extends known results in nonextensive statistics.

  17. Canonical duality theory unified methodology for multidisciplinary study

    CERN Document Server

    Latorre, Vittorio; Ruan, Ning

    2017-01-01

    This book on canonical duality theory provides a comprehensive review of its philosophical origin, physics foundation, and mathematical statements in both finite- and infinite-dimensional spaces. A ground-breaking methodological theory, canonical duality theory can be used for modeling complex systems within a unified framework and for solving a large class of challenging problems in multidisciplinary fields in engineering, mathematics, and the sciences. This volume places a particular emphasis on canonical duality theory’s role in bridging the gap between non-convex analysis/mechanics and global optimization.  With 18 total chapters written by experts in their fields, this volume provides a nonconventional theory for unified understanding of the fundamental difficulties in large deformation mechanics, bifurcation/chaos in nonlinear science, and the NP-hard problems in global optimization. Additionally, readers will find a unified methodology and powerful algorithms for solving challenging problems in comp...

  18. Canonical Entropy and Phase Transition of Rotating Black Hole

    International Nuclear Information System (INIS)

    Ren, Zhao; Yue-Qin, Wu; Li-Chun, Zhang

    2008-01-01

    Recently, the Hawking radiation of a black hole has been studied using the tunnel effect method. The radiation spectrum of a black hole is derived. By discussing the correction to spectrum of the rotating black hole, we obtain the canonical entropy. The derived canonical entropy is equal to the sum of Bekenstein–Hawking entropy and correction term. The correction term near the critical point is different from the one near others. This difference plays an important role in studying the phase transition of the black hole. The black hole thermal capacity diverges at the critical point. However, the canonical entropy is not a complex number at this point. Thus we think that the phase transition created by this critical point is the second order phase transition. The discussed black hole is a five-dimensional Kerr-AdS black hole. We provide a basis for discussing thermodynamic properties of a higher-dimensional rotating black hole. (general)

  19. QCD phase transition at real chemical potential with canonical approach

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Atsushi [RCNP, Osaka University,Osaka, 567-0047 (Japan); Nishina Center, RIKEN,Wako, Saitama 351-0198 (Japan); School of Biomedicine, Far Eastern Federal University,Vladivostok, 690950 (Russian Federation); Oka, Shotaro [Institute of Theoretical Physics, Department of Physics, Rikkyo University,Toshima-ku, Tokyo 171-8501 (Japan); Taniguchi, Yusuke [Graduate School of Pure and Applied Sciences, University of Tsukuba,Tsukuba, Ibaraki 305-8571 (Japan)

    2016-02-08

    We study the finite density phase transition in the lattice QCD at real chemical potential. We adopt a canonical approach and the canonical partition function is constructed for N{sub f}=2 QCD. After derivation of the canonical partition function we calculate observables like the pressure, the quark number density, its second cumulant and the chiral condensate as a function of the real chemical potential. We covered a wide range of temperature region starting from the confining low to the deconfining high temperature; 0.65T{sub c}≤T≤3.62T{sub c}. We observe a possible signal of the deconfinement and the chiral restoration phase transition at real chemical potential below T{sub c} starting from the confining phase. We give also the convergence range of the fugacity expansion.

  20. Direct oral anticoagulants for treatment of HIT: update of Hamilton experience and literature review.

    Science.gov (United States)

    Warkentin, Theodore E; Pai, Menaka; Linkins, Lori-Ann

    2017-08-31

    Direct oral anticoagulants (DOACs) are attractive options for treatment of heparin-induced thrombocytopenia (HIT). We report our continuing experience in Hamilton, ON, Canada, since January 1, 2015 (when we completed our prospective study of rivaroxaban for HIT), using rivaroxaban for serologically confirmed HIT (4Ts score ≥4 points; positive platelet factor 4 [PF4]/heparin immunoassay, positive serotonin-release assay). We also performed a literature review of HIT treatment using DOACs (rivaroxaban, apixaban, dabigatran, edoxaban). We focused on patients who received DOAC therapy for acute HIT as either primary therapy (group A) or secondary therapy (group B; initial treatment using a non-DOAC/non-heparin anticoagulant with transition to a DOAC during HIT-associated thrombocytopenia). Our primary end point was occurrence of objectively documented thrombosis during DOAC therapy for acute HIT. We found that recovery without new, progressive, or recurrent thrombosis occurred in all 10 Hamilton patients with acute HIT treated with rivaroxaban. Data from the literature review plus these new data identified a thrombosis rate of 1 of 46 patients (2.2%; 95% CI, 0.4%-11.3%) in patients treated with rivaroxaban during acute HIT (group A, n = 25; group B, n = 21); major hemorrhage was seen in 0 of 46 patients. Similar outcomes in smaller numbers of patients were observed with apixaban (n = 12) and dabigatran (n = 11). DOACs offer simplified management of selected patients, as illustrated by a case of persisting (autoimmune) HIT (>2-month platelet recovery with inversely parallel waning of serum-induced heparin-independent serotonin release) with successful outpatient rivaroxaban management of HIT-associated thrombosis. Evidence supporting efficacy and safety of DOACs for acute HIT is increasing, with the most experience reported for rivaroxaban. © 2017 by The American Society of Hematology.

  1. Generalized force in classical field theory. [Euler-Lagrange equations

    Energy Technology Data Exchange (ETDEWEB)

    Krause, J [Universidad Central de Venezuela, Caracas

    1976-02-01

    The source strengths of the Euler-Lagrange equations, for a system of interacting fields, are heuristically interpreted as generalized forces. The canonical form of the energy-momentum tensor thus consistently appears, without recourse to space-time symmetry arguments. A concept of 'conservative' generalized force in classical field theory is also briefly discussed.

  2. Insights into the School Mathematics Tradition from Solving Linear Equations

    Science.gov (United States)

    Buchbinder, Orly; Chazan, Daniel; Fleming, Elizabeth

    2015-01-01

    In this article, we explore how the solving of linear equations is represented in English­-language algebra text books from the early nineteenth century when schooling was becoming institutionalized, and then survey contemporary teachers. In the text books, we identify the increasing presence of a prescribed order of steps (a canonical method) for…

  3. Canonical representations of the Lie superalgebra osp(1,4)

    International Nuclear Information System (INIS)

    Blank, J.; Havlicek, M.; Lassner, W.; Bednar, M.

    1981-06-01

    The method for constructing infinite dimensional representations of Lie superalgebras proposed by the authors recently is applied to the superalgebra osp(1,4). Explicit formulae for its generators in terms of two or three pairs of operators fulfilling the canonical commutation relations, at most one pair of operators fulfilling the canonical anticommutation relations and at most one real parameter are obtained. The generators of the Lie subalgebra sp(4,IR) contains osp(1,4) are represented skew-symmetrically and both Casimir operators are equal to multiples of the unity operator. (author)

  4. Towards a conceptual history of canonization in totalitarian societies

    DEFF Research Database (Denmark)

    Postoutenko, Kirill

    2016-01-01

    a reference to his slogans and speeches. The article compares such a canonization in Soviet Union with parallel processes in Nazi Germany (where Adolf Hitler and his texts are revered to a much lesser degree) and United States of America (where this development is missing altogether despite Franklin D....... Roosevelt unprecedented media exposure). It turns out that Stalin’s discursive canonization has multiple reasons including his reliance on rigid radial networks of power and communication (as opposed to rotation of political and social roles in democracies), his interactional detachment from listeners and...

  5. Canonical correlation analysis of course and teacher evaluation

    DEFF Research Database (Denmark)

    Sliusarenko, Tamara; Ersbøll, Bjarne Kjær

    2010-01-01

    At the Technical University of Denmark course evaluations are performed by the students on a questionnaire. On one form the students are asked specific questions regarding the course. On a second form they are asked specific questions about the teacher. This study investigates the extent to which...... information obtained from the course evaluation form overlaps with information obtained from the teacher evaluation form. Employing canonical correlation analysis it was found that course and teacher evaluations are correlated. However, the structure of the canonical correlation is subject to change...

  6. Canonical extensions of the Johnson homomorphisms to the Torelli groupoid

    DEFF Research Database (Denmark)

    Bene, Alex; Kawazumi, Nariya; Penner, Robert

    2009-01-01

    We prove that every trivalent marked bordered fatgraph comes equipped with a canonical generalized Magnus expansion in the sense of Kawazumi. This Magnus expansion is used to give canonical extensions of the higher Johnson homomorphisms τm , for m 1 , to the Torelli groupoid, and we provide...... a recursive combinatorial formula for tensor representatives of these extensions. In particular, we give an explicit 1-cocycle in the dual fatgraph complex which extends τ2 and thus answer affirmatively a question of Morita and Penner. To illustrate our techniques for calculating higher Johnson homomorphisms...

  7. A Nonlinear GMRES Optimization Algorithm for Canonical Tensor Decomposition

    OpenAIRE

    De Sterck, Hans

    2011-01-01

    A new algorithm is presented for computing a canonical rank-R tensor approximation that has minimal distance to a given tensor in the Frobenius norm, where the canonical rank-R tensor consists of the sum of R rank-one components. Each iteration of the method consists of three steps. In the first step, a tentative new iterate is generated by a stand-alone one-step process, for which we use alternating least squares (ALS). In the second step, an accelerated iterate is generated by a nonlinear g...

  8. Structural Basis for the Canonical and Non-canonical PAM Recognition by CRISPR-Cpf1.

    Science.gov (United States)

    Yamano, Takashi; Zetsche, Bernd; Ishitani, Ryuichiro; Zhang, Feng; Nishimasu, Hiroshi; Nureki, Osamu

    2017-08-17

    The RNA-guided Cpf1 (also known as Cas12a) nuclease associates with a CRISPR RNA (crRNA) and cleaves the double-stranded DNA target complementary to the crRNA guide. The two Cpf1 orthologs from Acidaminococcus sp. (AsCpf1) and Lachnospiraceae bacterium (LbCpf1) have been harnessed for eukaryotic genome editing. Cpf1 requires a specific nucleotide sequence, called a protospacer adjacent motif (PAM), for target recognition. Besides the canonical TTTV PAM, Cpf1 recognizes suboptimal C-containing PAMs. Here, we report four crystal structures of LbCpf1 in complex with the crRNA and its target DNA containing either TTTA, TCTA, TCCA, or CCCA as the PAM. These structures revealed that, depending on the PAM sequences, LbCpf1 undergoes conformational changes to form altered interactions with the PAM-containing DNA duplexes, thereby achieving the relaxed PAM recognition. Collectively, the present structures advance our mechanistic understanding of the PAM-dependent, crRNA-guided DNA cleavage by the Cpf1 family nucleases. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Chaos M-ary modulation and demodulation method based on Hamilton oscillator and its application in communication.

    Science.gov (United States)

    Fu, Yongqing; Li, Xingyuan; Li, Yanan; Yang, Wei; Song, Hailiang

    2013-03-01

    Chaotic communication has aroused general interests in recent years, but its communication effect is not ideal with the restriction of chaos synchronization. In this paper a new chaos M-ary digital modulation and demodulation method is proposed. By using region controllable characteristics of spatiotemporal chaos Hamilton map in phase plane and chaos unique characteristic, which is sensitive to initial value, zone mapping method is proposed. It establishes the map relationship between M-ary digital information and the region of Hamilton map phase plane, thus the M-ary information chaos modulation is realized. In addition, zone partition demodulation method is proposed based on the structure characteristic of Hamilton modulated information, which separates M-ary information from phase trajectory of chaotic Hamilton map, and the theory analysis of zone partition demodulator's boundary range is given. Finally, the communication system based on the two methods is constructed on the personal computer. The simulation shows that in high speed transmission communications and with no chaos synchronization circumstance, the proposed chaotic M-ary modulation and demodulation method has outperformed some conventional M-ary modulation methods, such as quadrature phase shift keying and M-ary pulse amplitude modulation in bit error rate. Besides, it has performance improvement in bandwidth efficiency, transmission efficiency and anti-noise performance, and the system complexity is low and chaos signal is easy to generate.

  10. Welcome to My House: African American and European American Students' Responses to Virginia Hamilton's "House of Dies Drear."

    Science.gov (United States)

    Spears-Bunton, Linda A.

    1990-01-01

    Addresses the relationship between reader response and culture. Presents portraits of a teacher and her Black students and White students as they studied a series of African American literary texts, including Virginia Hamilton's "House of Dies Drear" (1968). The reading of this text marked a turning point for the teacher and students.…

  11. A new look at the free electromagnetic field. The Gauss law as a hamiltonian equation of motion

    International Nuclear Information System (INIS)

    Aldaya, V.; Navarro-Salas, J.

    1992-01-01

    A new canonical formalism for the free electromagnetic field is proposed in terms of an infinite-dimensional Lie group. The Gauss law is derived as a hamiltonian equation of motion and the quantum theory is obtained by constructing the irreducible representation of the group. The quantum Gauss law thus appears as an additional polarization equation and not as a constraint equation. (orig.)

  12. BOOK REVIEW: Canonical Gravity and Applications: Cosmology, Black Holes, and Quantum Gravity Canonical Gravity and Applications: Cosmology, Black Holes, and Quantum Gravity

    Science.gov (United States)

    Husain, Viqar

    2012-03-01

    book are also covered in detail, and with more worked examples, in the former book, and the entire focus of the latter is Bianchi models. After a brief introduction outlining the aim of the book, the second chapter provides the canonical theory of homogeneous isotropic cosmology with scalar matter; this covers the basics and linear perturbation theory, and is meant as a first taste of what is to come. The next chapter is a thorough introduction of the canonical formulation of general relativity in both the ADM and Ashtekar-Barbero variables. This chapter contains details useful for graduate students which are either scattered or missing in the literature. Applications of the canonical formalism are in the following chapter. These cover standard material and techniques for obtaining mini(midi)-superspace models, including the Bianchi and Gowdy cosmologies, and spherically symmetric reductions. There is also a brief discussion of the two-dimensional dilaton gravity. The spherically symmetric reduction is presented in detail also in the connection-triad variables. The chapter on global and asymptotic properties gives introductions to geodesic and null congruences, trapped surfaces, a survey of singularity theorems, horizons and asymptotic properties. The chapter ends with a discussion of junction conditions and the Vaidya solution. As already mentioned, this material is covered in detail in Poisson's book. The final chapter on quantization describes and contrasts the Dirac and reduced phase space methods. It also gives an introduction to background independent quantization using the holonomy-flux operators, which forms the basis of the LQG program. The application of this method to cosmology and its affect on the Friedmann equation is covered next, followed by a brief introduction to the effective constraint method, which is another area developed by the author. I think this book is a useful addition to the literature for graduate students, and potentially also for

  13. Connecting the Canon to Current Young Adult Literature

    Science.gov (United States)

    Rybakova, Katie; Roccanti, Rikki

    2016-01-01

    In this article we discuss the respective roles of young adult literature and literary texts in the secondary level English Language Arts classroom and explore the connections that can be made between popular young adult books and the traditional canon. We provide examples showing how young adult literature bestsellers such as "The Book…

  14. Intermediate inflation from a non-canonical scalar field

    Energy Technology Data Exchange (ETDEWEB)

    Rezazadeh, K.; Karami, K. [Department of Physics, University of Kurdistan, Pasdaran St., Sanandaj (Iran, Islamic Republic of); Karimi, P., E-mail: rezazadeh86@gmail.com, E-mail: KKarami@uok.ac.ir, E-mail: parvin.karimi67@yahoo.com [Center for Excellence in Astronomy and Astrophysics (CEAA-RIAAM), P.O. Box 55134-441, Maragha (Iran, Islamic Republic of)

    2015-09-01

    We study the intermediate inflation in a non-canonical scalar field framework with a power-like Lagrangian. We show that in contrast with the standard canonical intermediate inflation, our non-canonical model is compatible with the observational results of Planck 2015. Also, we estimate the equilateral non-Gaussianity parameter which is in well agreement with the prediction of Planck 2015. Then, we obtain an approximation for the energy scale at the initial time of inflation and show that it can be of order of the Planck energy scale, i.e. M{sub P} ∼ 10{sup 18}GeV. We will see that after a short period of time, inflation enters in the slow-roll regime that its energy scale is of order M{sub P}/100 ∼ 10{sup 16}GeV and the horizon exit takes place in this energy scale. We also examine an idea in our non-canonical model to overcome the central drawback of intermediate inflation which is the fact that inflation never ends. We solve this problem without disturbing significantly the nature of the intermediate inflation until the time of horizon exit.

  15. Comments on the charge-monopole canonical formalism

    International Nuclear Information System (INIS)

    Comay, C.

    1988-01-01

    A recently published canonical formalism of a charge-monopole system written by means of Clifford algebras is discussed. It is shown that the introduction of the Lorentz force must be accompanied by the removal of the pseudo-scalar terms from the lagrangian. Several conclusions follow. (orig.)

  16. The roles of theory in canonical action research

    NARCIS (Netherlands)

    Davison, R.M.; Martinsons, M.G.; Ou, C.X.J.

    2012-01-01

    Canonical action research (CAR) aims to address real-world problems and improve organizational performance by combining scholarly observations with practical interventions. However, efforts to conduct CAR have revealed challenges that reflect a significant research–practice gap. We examine these

  17. Canonical realizations of B2 approximately C2 Lie algebras

    International Nuclear Information System (INIS)

    Iosifescu, M.; Scutaru, H.

    1982-12-01

    Canonical realizations associated to subrepresentations of ad x ad, for B 2 apppoximately C 2 semisimple Lie algebras, have been determined. An algebraic foundation has been obtained for the constraints satisfied by the dinamical variables of the classical limit of the generalized Helium problem. (authors)

  18. Groups of automorphisms of the canonical commutation and anticommutation relations

    International Nuclear Information System (INIS)

    Grosse, H.; Pittner, L.

    1987-01-01

    Observables of supersymmetric quantum mechanics are coded by taking the antisymmetric tensor product with anticommuting parameters. Next we define superunitary transformations, which mix bosonic and fermionic degrees of freedom, in order to construct automorphisms of the canonical (anti-) commutation relations. Conversely, every automorphism of the C(A)CR is implemented by an essentially unique superunitary transformation. 12 refs. (Author)

  19. Canonical understanding of the sacrifice of Isaac: The influence of ...

    African Journals Online (AJOL)

    2016-07-08

    Jul 8, 2016 ... Martyrdom has granted benefits to the people of ... Testament, as the authoritative text and understands the text primarily in the canonical context ... This is more significant in terms of ..... This image of the Father-Son relation recurs in the NT, ..... this passage is Abraham's obedience, not Isaac's self-sacrifice.

  20. Publication bias and the canonization of false facts

    DEFF Research Database (Denmark)

    Nissen, Silas Boye; Magidson, Tali; Gross, Kevin

    2016-01-01

    canonized as fact. Data-dredging, p-hacking, and similar behaviors exacerbate the problem. Should negative results become easier to publish as a claim approaches acceptance as a fact, however, true and false claims would be more readily distinguished. To the degree that the model reflects the real world...

  1. The Meridians of Reference of Indian Astronomical Canons

    Science.gov (United States)

    Mercier, R.

    The canons of Sanskrit astronomy depend on mean motions which are normally postulated to refer to the central meridian of Ujjain. The present work is a statistical analysis of these mean motions designed to discover the optimum position of the meridian, by comparison with modern mean motions. This follows earlier work done by Billard in determining the optimum year.

  2. Canonical wnt signaling regulates atrioventricular junction programming and electrophysiological properties

    NARCIS (Netherlands)

    Gillers, Benjamin S.; Chiplunkar, Aditi; Aly, Haytham; Valenta, Tomas; Basler, Konrad; Christoffels, Vincent M.; Efimov, Igor R.; Boukens, Bastiaan J.; Rentschler, Stacey

    2015-01-01

    Proper patterning of the atrioventricular canal (AVC) is essential for delay of electrical impulses between atria and ventricles, and defects in AVC maturation can result in congenital heart disease. To determine the role of canonical Wnt signaling in the myocardium during AVC development. We used a

  3. The Canon, the Web, and the Long Tail

    DEFF Research Database (Denmark)

    Sanderhoff, Merete

    2017-01-01

    This article argues that releasing images of artworks into the public domain creates a new possibility for the public to challenge the canon or create their own, based on access to previously inaccessible images. Through the dissemination of openly licensed artworks across the Internet, museums c...

  4. Correspondence and canonicity in non-classical logic

    NARCIS (Netherlands)

    Sourabh, S.

    2015-01-01

    In this thesis we study correspondence and canonicity for non-classical logic using algebraic and order-topological methods. Correspondence theory is aimed at answering the question of how precisely modal, first-order, second-order languages interact and overlap in their shared semantic environment.

  5. A Problem-Centered Approach to Canonical Matrix Forms

    Science.gov (United States)

    Sylvestre, Jeremy

    2014-01-01

    This article outlines a problem-centered approach to the topic of canonical matrix forms in a second linear algebra course. In this approach, abstract theory, including such topics as eigenvalues, generalized eigenspaces, invariant subspaces, independent subspaces, nilpotency, and cyclic spaces, is developed in response to the patterns discovered…

  6. Uncertainty relations, zero point energy and the linear canonical group

    Science.gov (United States)

    Sudarshan, E. C. G.

    1993-01-01

    The close relationship between the zero point energy, the uncertainty relations, coherent states, squeezed states, and correlated states for one mode is investigated. This group-theoretic perspective enables the parametrization and identification of their multimode generalization. In particular the generalized Schroedinger-Robertson uncertainty relations are analyzed. An elementary method of determining the canonical structure of the generalized correlated states is presented.

  7. Nonlinear canonical correlation analysis with k sets of variables

    NARCIS (Netherlands)

    van der Burg, Eeke; de Leeuw, Jan

    1987-01-01

    The multivariate technique OVERALS is introduced as a non-linear generalization of canonical correlation analysis (CCA). First, two sets CCA is introduced. Two sets CCA is a technique that computes linear combinations of sets of variables that correlate in an optimal way. Two sets CCA is then

  8. Testing the significance of canonical axes in redundancy analysis

    NARCIS (Netherlands)

    Legendre, P.; Oksanen, J.; Braak, ter C.J.F.

    2011-01-01

    1. Tests of significance of the individual canonical axes in redundancy analysis allow researchers to determine which of the axes represent variation that can be distinguished from random. Variation along the significant axes can be mapped, used to draw biplots or interpreted through subsequent

  9. Canonical Ensemble Model for Black Hole Horizon of Schwarzschild ...

    Indian Academy of Sciences (India)

    Abstract. In this paper, we use the canonical ensemble model to discuss the radiation of a Schwarzschild–de Sitter black hole on the black hole horizon. Using this model, we calculate the probability distribution from function of the emission shell. And the statistical meaning which compare with the distribution function is ...

  10. Non‐Canonical Replication Initiation: You’re Fired!

    Directory of Open Access Journals (Sweden)

    Bazilė Ravoitytė

    2017-01-01

    Full Text Available The division of prokaryotic and eukaryotic cells produces two cells that inherit a perfect copy of the genetic material originally derived from the mother cell. The initiation of canonical DNA replication must be coordinated to the cell cycle to ensure the accuracy of genome duplication. Controlled replication initiation depends on a complex interplay of cis‐acting DNA sequences, the so‐called origins of replication (ori, with trans‐acting factors involved in the onset of DNA synthesis. The interplay of cis‐acting elements and trans‐acting factors ensures that cells initiate replication at sequence‐specific sites only once, and in a timely order, to avoid chromosomal endoreplication. However, chromosome breakage and excessive RNA:DNA hybrid formation can cause breakinduced (BIR or transcription‐initiated replication (TIR, respectively. These non‐canonical replication events are expected to affect eukaryotic genome function and maintenance, and could be important for genome evolution and disease development. In this review, we describe the difference between canonical and non‐canonical DNA replication, and focus on mechanistic differences and common features between BIR and TIR. Finally, we discuss open issues on the factors and molecular mechanisms involved in TIR.

  11. AFP Algorithm and a Canonical Normal Form for Horn Formulas

    OpenAIRE

    Majdoddin, Ruhollah

    2014-01-01

    AFP Algorithm is a learning algorithm for Horn formulas. We show that it does not improve the complexity of AFP Algorithm, if after each negative counterexample more that just one refinements are performed. Moreover, a canonical normal form for Horn formulas is presented, and it is proved that the output formula of AFP Algorithm is in this normal form.

  12. Universal critical wrapping probabilities in the canonical ensemble

    Directory of Open Access Journals (Sweden)

    Hao Hu

    2015-09-01

    Full Text Available Universal dimensionless quantities, such as Binder ratios and wrapping probabilities, play an important role in the study of critical phenomena. We study the finite-size scaling behavior of the wrapping probability for the Potts model in the random-cluster representation, under the constraint that the total number of occupied bonds is fixed, so that the canonical ensemble applies. We derive that, in the limit L→∞, the critical values of the wrapping probability are different from those of the unconstrained model, i.e. the model in the grand-canonical ensemble, but still universal, for systems with 2yt−d>0 where yt=1/ν is the thermal renormalization exponent and d is the spatial dimension. Similar modifications apply to other dimensionless quantities, such as Binder ratios. For systems with 2yt−d≤0, these quantities share same critical universal values in the two ensembles. It is also derived that new finite-size corrections are induced. These findings apply more generally to systems in the canonical ensemble, e.g. the dilute Potts model with a fixed total number of vacancies. Finally, we formulate an efficient cluster-type algorithm for the canonical ensemble, and confirm these predictions by extensive simulations.

  13. Statistical hadronization and hadronic micro-canonical ensemble II

    International Nuclear Information System (INIS)

    Becattini, F.; Ferroni, L.

    2004-01-01

    We present a Monte Carlo calculation of the micro-canonical ensemble of the ideal hadron-resonance gas including all known states up to a mass of about 1.8 GeV and full quantum statistics. The micro-canonical average multiplicities of the various hadron species are found to converge to the canonical ones for moderately low values of the total energy, around 8 GeV, thus bearing out previous analyses of hadronic multiplicities in the canonical ensemble. The main numerical computing method is an importance sampling Monte Carlo algorithm using the product of Poisson distributions to generate multi-hadronic channels. It is shown that the use of this multi-Poisson distribution allows for an efficient and fast computation of averages, which can be further improved in the limit of very large clusters. We have also studied the fitness of a previously proposed computing method, based on the Metropolis Monte Carlo algorithm, for event generation in the statistical hadronization model. We find that the use of the multi-Poisson distribution as proposal matrix dramatically improves the computation performance. However, due to the correlation of subsequent samples, this method proves to be generally less robust and effective than the importance sampling method. (orig.)

  14. A grand-canonical ensemble of randomly triangulated surfaces

    International Nuclear Information System (INIS)

    Jurkiewicz, J.; Krzywicki, A.; Petersson, B.

    1986-01-01

    An algorithm is presented generating the grand-canonical ensemble of discrete, randomly triangulated Polyakov surfaces. The algorithm is used to calculate the susceptibility exponent, which controls the existence of the continuum limit of the considered model, for the dimensionality of the embedding space ranging from 0 to 20. (orig.)

  15. Canonical analysis of non-relativistic particle and superparticle

    Energy Technology Data Exchange (ETDEWEB)

    Kluson, Josef [Masaryk University, Department of Theoretical Physics and Astrophysics, Faculty of Science, Brno (Czech Republic)

    2018-02-15

    We perform canonical analysis of non-relativistic particle in Newton-Cartan Background. Then we extend this analysis to the case of non-relativistic superparticle in the same background. We determine constraints structure of this theory and find generator of κ-symmetry. (orig.)

  16. Canonical quantization of the Bateman-Morse-Feshbach damped oscillator

    International Nuclear Information System (INIS)

    Rideau, G.; Anderson, R.L.; Hebda, P.W.

    1991-01-01

    The Bateman-Morse-Feshbach classical formulation of the damped oscillator is canonically quantized. The spectrum of the Hamiltonian is given. It is shown that the wavefunctions behave asymptotically as a superposition of damped oscillators when their initial values belong to an appropriately-selected dense subset of the Hilbert space. (orig.)

  17. Catechistic Teaching, National Canons, and the Regimentation of Students' Voice

    Science.gov (United States)

    Kroon, Sjaak

    2013-01-01

    Drawing on key incident analysis of classroom transcripts from Bashkortostan, France, North Korea, and Suriname, this article discusses the relationship between an increasingly canonical content of education and the discursive organization of teaching processes at the expense of both teachers' and students' voice. It argues that canonical…

  18. Bernoulli's Equation

    Indian Academy of Sciences (India)

    regarding nature of forces hold equally for liquids, even though the ... particle. Figure A. A fluid particle is a very small imaginary blob of fluid, here shown sche- matically in .... picture gives important information about the flow field. ... Bernoulli's equation is derived assuming ideal flow, .... weight acting in the flow direction S is.

  19. Relativistic equations

    International Nuclear Information System (INIS)

    Gross, F.

    1986-01-01

    Relativistic equations for two and three body scattering are discussed. Particular attention is paid to relativistic three body kinetics because of recent form factor measurements of the Helium 3 - Hydrogen 3 system recently completed at Saclay and Bates and the accompanying speculation that relativistic effects are important for understanding the three nucleon system. 16 refs., 4 figs

  20. Quasiperiodic canonical-cell tiling with pseudo icosahedral symmetry

    Science.gov (United States)

    Fujita, Nobuhisa

    2017-10-01

    Icosahedral quasicrystals and their approximants are generally described as packing of icosahedral clusters. Experimental studies show that clusters in various approximants are orderly arranged, such that their centers are located at the nodes (or vertices) of a periodic tiling composed of four basic polyhedra called the canonical cells. This so called canonical-cell geometry is likely to serve as a common framework for modeling how clusters are arranged in approximants, while its applicability seems to extend naturally to icosahedral quasicrystals. To date, however, it has not been proved yet if the canonical cells can tile the space quasiperiodically, though we usually believe that clusters in icosahedral quasicrystals are arranged such that quasiperiodic long-range order as well as icosahedral point symmetry is maintained. In this paper, we report for the first time an iterative geometrical transformation of the canonical cells defining a so-called substitution rule, which we can use to generate a class of quasiperiodic canonical-cell tilings. Every single step of the transformation proceeds as follows: each cell is first enlarged by a magnification ratio of τ3 (τ = golden mean) and then subdivided into cells of the original size. Here, cells with an identical shape can be subdivided in several distinct manners depending on how their adjacent neighbors are arranged, and sixteen types of cells are identified in terms of unique subdivision. This class of quasiperiodic canonical-cell tilings presents the first realization of three-dimensional quasiperiodic tilings with fractal atomic surfaces. There are four distinct atomic surfaces associated with four sub-modules of the primitive icosahedral module, where a representative of the four submodules corresponds to the Σ = 4 coincidence site module of the icosahedral module. It follows that the present quasiperiodic tilings involve a kind of superlattice ordering that manifests itself in satellite peaks in the

  1. Canonical simulations with worldlines: An exploratory study in ϕ24 lattice field theory

    Science.gov (United States)

    Orasch, Oliver; Gattringer, Christof

    2018-01-01

    In this paper, we explore the perspectives for canonical simulations in the worldline formulation of a lattice field theory. Using the charged ϕ4 field in two dimensions as an example, we present the details of the canonical formulation based on worldlines and outline the algorithmic strategies for canonical worldline simulations. We discuss the steps for converting the data from the canonical approach to the grand canonical picture which we use for cross-checking our results. The canonical approach presented here can easily be generalized to other lattice field theories with a worldline representation.

  2. Quantum statistical model of nuclear multifragmentation in the canonical ensemble method

    International Nuclear Information System (INIS)

    Toneev, V.D.; Ploszajczak, M.; Parvant, A.S.; Toneev, V.D.; Parvant, A.S.

    1999-01-01

    A quantum statistical model of nuclear multifragmentation is proposed. The recurrence equation method used the canonical ensemble makes the model solvable and transparent to physical assumptions and allows to get results without involving the Monte Carlo technique. The model exhibits the first order phase transition. Quantum statistics effects are clearly seen on the microscopic level of occupation numbers but are almost washed out for global thermodynamic variables and the averaged observables studied. In the latter case, the recurrence relations for multiplicity distributions of both intermediate-mass and all fragments are derived and the specific changes in the shape of multiplicity distributions in the narrow region of the transition temperature is stressed. The temperature domain favorable to search for the HBT effect is noted. (authors)

  3. Quantum statistical model of nuclear multifragmentation in the canonical ensemble method

    Energy Technology Data Exchange (ETDEWEB)

    Toneev, V.D.; Ploszajczak, M. [Grand Accelerateur National d' Ions Lourds (GANIL), 14 - Caen (France); Parvant, A.S. [Institute of Applied Physics, Moldova Academy of Sciences, MD Moldova (Ukraine); Parvant, A.S. [Joint Institute for Nuclear Research, Bogoliubov Lab. of Theoretical Physics, Dubna (Russian Federation)

    1999-07-01

    A quantum statistical model of nuclear multifragmentation is proposed. The recurrence equation method used the canonical ensemble makes the model solvable and transparent to physical assumptions and allows to get results without involving the Monte Carlo technique. The model exhibits the first order phase transition. Quantum statistics effects are clearly seen on the microscopic level of occupation numbers but are almost washed out for global thermodynamic variables and the averaged observables studied. In the latter case, the recurrence relations for multiplicity distributions of both intermediate-mass and all fragments are derived and the specific changes in the shape of multiplicity distributions in the narrow region of the transition temperature is stressed. The temperature domain favorable to search for the HBT effect is noted. (authors)

  4. Management of pediatric radiation dose using Canon digital radiography

    International Nuclear Information System (INIS)

    Arreola, M.; Rill, L.

    2004-01-01

    A Canon CXDI-11 digital radiography (DR) system has been in use at Shands Hospital at the University of Florida for the past 2 1/2 years. A first clinical implementation phase was utilized to develop imaging protocols for adult patients, with a second phase incorporating pediatric chest and abdominal studies a few months later. This paper describes some of the steps taken during the modality implementation stages, as well as the methodologies and procedures utilized to monitor compliance by the technologists. The Canon DR system provides the technologist with an indication of the radiation exposure received by the detector (and thus of the patient dose) by means of an indirect exposure level number called the reached exposure (REX) value. The REX value is calculated by the system based on the default grayscale curve preselected for a given anatomical view and used by the system to optimize the appearance of the image. The brightness and contrast of the image can be modified by the user at the QC/control screen for the purpose of improving the appearance of the image. Such changes modify the actual grayscale curve (position and slope, respectively) and thus the calculated REX value. Thus, undisciplined use of the brightness and contrast functions by the technologist can render the REX value meaningless as an exposure indicator. The paper also shows how it is possible to calibrate AEC (phototimer) systems for use with the Canon DR system, and utilize the REX value as a valuable dose indicator through proper training of technologists and strict, disciplined QC of studies. A team consisting of the site's medical physicist, radiologists, and technologists, as well as Canon engineers, can work together in properly calibrating and setting up the system for the purposes of monitoring patient doses (especially pediatric) in DR studies performed in a Canon DR system. (orig.)

  5. A new method for large time behavior of degenerate viscous Hamilton–Jacobi equations with convex Hamiltonians

    KAUST Repository

    Cagnetti, Filippo; Gomes, Diogo A.; Mitake, Hiroyoshi; Tran, Hung V.

    2015-01-01

    We investigate large-time asymptotics for viscous Hamilton-Jacobi equations with possibly degenerate diffusion terms. We establish new results on the convergence, which are the first general ones concerning equations which are neither uniformly parabolic nor first order. Our method is based on the nonlinear adjoint method and the derivation of new estimates on long time averaging effects. It also extends to the case of weakly coupled systems.

  6. Association Study between Lead and Zinc Accumulation at Different Physiological Systems of Cattle by Canonical Correlation and Canonical Correspondence Analyses

    Science.gov (United States)

    Karmakar, Partha; Das, Pradip Kumar; Mondal, Seema Sarkar; Karmakar, Sougata; Mazumdar, Debasis

    2010-10-01

    Pb pollution from automobile exhausts around highways is a persistent problem in India. Pb intoxication in mammalian body is a complex phenomenon which is influence by agonistic and antagonistic interactions of several other heavy metals and micronutrients. An attempt has been made to study the association between Pb and Zn accumulation in different physiological systems of cattles (n = 200) by application of both canonical correlation and canonical correspondence analyses. Pb was estimated from plasma, liver, bone, muscle, kidney, blood and milk where as Zn was measured from all these systems except bone, blood and milk. Both statistical techniques demonstrated that there was a strong association among blood-Pb, liver-Zn, kidney-Zn and muscle-Zn. From observations, it can be assumed that Zn accumulation in cattles' muscle, liver and kidney directs Pb mobilization from those organs which in turn increases Pb pool in blood. It indicates antagonistic activity of Zn to the accumulation of Pb. Although there were some contradictions between the observations obtained from the two different statistical methods, the overall pattern of Pb accumulation in various organs as influenced by Zn were same. It is mainly due to the fact that canonical correlation is actually a special type of canonical correspondence analyses where linear relationship is followed between two groups of variables instead of Gaussian relationship.

  7. Association Study between Lead and Zinc Accumulation at Different Physiological Systems of Cattle by Canonical Correlation and Canonical Correspondence Analyses

    International Nuclear Information System (INIS)

    Karmakar, Partha; Das, Pradip Kumar; Mondal, Seema Sarkar; Karmakar, Sougata; Mazumdar, Debasis

    2010-01-01

    Pb pollution from automobile exhausts around highways is a persistent problem in India. Pb intoxication in mammalian body is a complex phenomenon which is influence by agonistic and antagonistic interactions of several other heavy metals and micronutrients. An attempt has been made to study the association between Pb and Zn accumulation in different physiological systems of cattles (n = 200) by application of both canonical correlation and canonical correspondence analyses. Pb was estimated from plasma, liver, bone, muscle, kidney, blood and milk where as Zn was measured from all these systems except bone, blood and milk. Both statistical techniques demonstrated that there was a strong association among blood-Pb, liver-Zn, kidney-Zn and muscle-Zn. From observations, it can be assumed that Zn accumulation in cattles' muscle, liver and kidney directs Pb mobilization from those organs which in turn increases Pb pool in blood. It indicates antagonistic activity of Zn to the accumulation of Pb. Although there were some contradictions between the observations obtained from the two different statistical methods, the overall pattern of Pb accumulation in various organs as influenced by Zn were same. It is mainly due to the fact that canonical correlation is actually a special type of canonical correspondence analyses where linear relationship is followed between two groups of variables instead of Gaussian relationship.

  8. Canonical and Non-Canonical NF-κB Signaling Promotes Breast Cancer Tumor-Initiating Cells

    Science.gov (United States)

    Kendellen, Megan F.; Bradford, Jennifer W.; Lawrence, Cortney L.; Clark, Kelly S.; Baldwin, Albert S.

    2014-01-01

    Tumor-initiating cells (TICs) are a sub-population of cells that exhibit a robust ability to self-renew and contribute to the formation of primary tumors, the relapse of previously treated tumors, and the development of metastases. TICs have been identified in various tumors, including those of the breast, and are particularly enriched in the basal-like and claudin-low subtypes of breast cancer. The signaling pathways that contribute to the function and maintenance of TICs are under intense study. We explored the potential involvement of the NF-κB family of transcription factors in TICs in cell lines that are representative of basal-like and claudin-low breast cancer. NF-κB was found to be activated in breast cancer cells that form tumorspheres efficiently. Moreover, both canonical and non-canonical NF-κB signaling is required for these cells to self-renew in vitro and to form xenograft tumors efficiently in vivo using limiting dilutions of cells. Consistent with this, canonical and non-canonical NF-κB signaling is activated in TICs isolated from breast cancer cell lines. Experimental results indicate that NF-κB promotes the function of TICs by stimulating epithelial-to-mesenchymal transition (EMT) and by upregulating the expression of the inflammatory cytokines IL-1β and IL-6. The results suggest the use of NF-κB inhibitors for clinical therapy of certain breast cancers. PMID:23474754

  9. Coulombic and ring-shaped potentials treated in a unified way via nonbijective canonical transformation

    International Nuclear Information System (INIS)

    Kibler, M.; Negadi, T.

    1984-02-01

    This paper is concerned with the three-dimensional potential Vsub(q) = eta σ 2 (2a 0 /r - qetaa 0 2 /r 2 sin 2 theta) epsilon 0 which comprises as particular cases the ring-shaped potential (q = 1) and the Coulomb potential (q = 0). The Shroedinger equation for the potential Vsub(q) is transformed via a nonbijective canonical transformation, viz, the Kustaanheimo-Stiefel transformation, into a coupled pair of Schroedinger equations for two-dimensional harmonic oscillators with inverse-square potentials. As a consequence, the discrete spectrum for the potential Vsub(q) is obtained in a straightforward way. A special attention is paid to the case q = 0. In particular, the coupled pair of Schroedinger equations for two-dimensional harmonic oscillators is tackled in the situations where the spectrum for the potential V 0 is discrete, continuous, or reduced to the zero point. Finally, some group-theoretical questions about the potential Vsub(q) are mentioned as well as a connection, via the Kustaanheimo-Stiefel and the Levi-Civita transformations, between the quantum-mechanical problems for the potential Vsuv(q) and the Sommerfeld and Kratzer potentials

  10. Explicit high-order non-canonical symplectic particle-in-cell algorithms for Vlasov-Maxwell systems

    International Nuclear Information System (INIS)

    Xiao, Jianyuan; Liu, Jian; He, Yang; Zhang, Ruili; Qin, Hong; Sun, Yajuan

    2015-01-01

    Explicit high-order non-canonical symplectic particle-in-cell algorithms for classical particle-field systems governed by the Vlasov-Maxwell equations are developed. The algorithms conserve a discrete non-canonical symplectic structure derived from the Lagrangian of the particle-field system, which is naturally discrete in particles. The electromagnetic field is spatially discretized using the method of discrete exterior calculus with high-order interpolating differential forms for a cubic grid. The resulting time-domain Lagrangian assumes a non-canonical symplectic structure. It is also gauge invariant and conserves charge. The system is then solved using a structure-preserving splitting method discovered by He et al. [preprint http://arxiv.org/abs/arXiv:1505.06076 (2015)], which produces five exactly soluble sub-systems, and high-order structure-preserving algorithms follow by combinations. The explicit, high-order, and conservative nature of the algorithms is especially suitable for long-term simulations of particle-field systems with extremely large number of degrees of freedom on massively parallel supercomputers. The algorithms have been tested and verified by the two physics problems, i.e., the nonlinear Landau damping and the electron Bernstein wave

  11. Explicit high-order non-canonical symplectic particle-in-cell algorithms for Vlasov-Maxwell systems

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Jianyuan [School of Nuclear Science and Technology and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China; Key Laboratory of Geospace Environment, CAS, Hefei, Anhui 230026, China; Qin, Hong [School of Nuclear Science and Technology and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China; Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543, USA; Liu, Jian [School of Nuclear Science and Technology and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China; Key Laboratory of Geospace Environment, CAS, Hefei, Anhui 230026, China; He, Yang [School of Nuclear Science and Technology and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China; Key Laboratory of Geospace Environment, CAS, Hefei, Anhui 230026, China; Zhang, Ruili [School of Nuclear Science and Technology and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China; Key Laboratory of Geospace Environment, CAS, Hefei, Anhui 230026, China; Sun, Yajuan [LSEC, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, P.O. Box 2719, Beijing 100190, China

    2015-11-01

    Explicit high-order non-canonical symplectic particle-in-cell algorithms for classical particle-field systems governed by the Vlasov-Maxwell equations are developed. The algorithms conserve a discrete non-canonical symplectic structure derived from the Lagrangian of the particle-field system, which is naturally discrete in particles. The electromagnetic field is spatially discretized using the method of discrete exterior calculus with high-order interpolating differential forms for a cubic grid. The resulting time-domain Lagrangian assumes a non-canonical symplectic structure. It is also gauge invariant and conserves charge. The system is then solved using a structure-preserving splitting method discovered by He et al. [preprint arXiv: 1505.06076 (2015)], which produces five exactly soluble sub-systems, and high-order structure-preserving algorithms follow by combinations. The explicit, high-order, and conservative nature of the algorithms is especially suitable for long-term simulations of particle-field systems with extremely large number of degrees of freedom on massively parallel supercomputers. The algorithms have been tested and verified by the two physics problems, i.e., the nonlinear Landau damping and the electron Bernstein wave. (C) 2015 AIP Publishing LLC.

  12. Climate Prediction Center(CPC)Ensemble Canonical Correlation Analysis Forecast of Temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ensemble Canonical Correlation Analysis (ECCA) temperature forecast is a 90-day (seasonal) outlook of US surface temperature anomalies. The ECCA uses Canonical...

  13. Canonical sound speed profile and related ray acoustic parameters in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, T.V.R.; Sadhuram, Y.; Rao, M.M.M.; Rao, B.P.; SuryaPrakash, S.; Chandramouli, P.; Murthy, K.S.R.; Prasad, K.V.S.R.

    Following Munk's canonical theory, canonical parameters (i.e., B the stratification scale and epsilon the perturbation coefficient) in adiabatic ocean are obtained using SOFAR channel parameters (i.e., C sound velocity at the channel axis, Z sub(1...

  14. Quantized Hamilton dynamics describes quantum discrete breathers in a simple way

    International Nuclear Information System (INIS)

    Igumenshchev, Kirill; Prezhdo, Oleg

    2011-01-01

    We study the localization of energy in a nonlinear coupled system, exhibiting so-called breather modes, using quantized Hamilton dynamics (QHD). Already at the lowest order, which is only twice as complex as classical mechanics, this simple semiclassical method incorporates quantum-mechanical effects. The transition between the localized and delocalized regimes is instantaneous in classical mechanics, while it is gradual due to tunneling in both quantum mechanics and QHD. In contrast to classical mechanics, which predicts an abrupt appearance of breathers, quantum mechanics and QHD show an alternation of localized and delocalized behavior in the transient region. QHD includes zero-point energy that is reflected in a shifted energy asymptote for the localized states, providing another improvement on the classical perspective. By detailed analysis of the distribution and transfer of energy within classical mechanics, QHD, and quantum dynamics, we conclude that QHD is an efficient approach that accounts for moderate quantum effects and can be used to identify quantum breathers in large nonlinear systems.

  15. Hamilton-Jacobi approach for quasi-exponential inflation: predictions and constraints after Planck 2015 results

    Energy Technology Data Exchange (ETDEWEB)

    Videla, Nelson [FCFM, Universidad de Chile, Departamento de Fisica, Santiago (Chile)

    2017-03-15

    In the present work we study the consequences of considering an inflationary universe model in which the Hubble rate has a quasi-exponential dependence in the inflaton field, given by H(φ) = H{sub inf} exp[((φ)/(m{sub p}))/(p(1+(φ)/(m{sub p})))]. We analyze the inflation dynamics under the Hamilton-Jacobi approach, which allows us to consider H(φ), rather than V(φ), as the fundamental quantity to be specified. By comparing the theoretical predictions of the model together with the allowed contour plots in the n{sub s} - r plane and the amplitude of primordial scalar perturbations from the latest Planck data, the parameters charactering this model are constrained. The model predicts values for the tensor-to-scalar ratio r and for the running of the scalar spectral index dn{sub s}/d ln k consistent with the current bounds imposed by Planck, and we conclude that the model is viable. (orig.)

  16. Potential demand for household alternative fuelled vehicles in Hamilton, Canada : a stated choices experiment and survey

    Energy Technology Data Exchange (ETDEWEB)

    Potoglou, D.; Kanaroglou, P.S. [McMaster Univ., Hamilton, ON (Canada). Centre for Spatial Analysis]|[McMaster Univ., Hamilton, ON (Canada). School of Geography and Earth Science

    2005-07-01

    Alternative fuelled vehicle (AFV) technologies are a key strategy towards improved air quality and sustainable development. These fuel-efficient, low- or zero-emission vehicles have the potential to reduce greenhouse gas emissions and other negative externalities linked with the transportation sector. They include battery electric vehicles, fuel cell vehicles, and hybrid electric vehicles with internal combustion engines. This paper discussed AFVs development trends and modelling the demand for AFVs. It was noted that before creating policy measures that promote new vehicle technologies, one should first evaluate the demand for AFVs and the effectiveness of incentives and marketing promotions. This paper discussed the design and application of a stated choices experiment in which urban level surveys were conducted on the Internet to obtain data and public opinion on the demand for AFVs. A Choice Internet Based Experiment for Research on Cars (CIBER-CARS) was designed. This self-administered online questionnaire was used in Hamilton, Ontario. The survey design was described in detail and its implementation and data collection procedures were reviewed. Measures for evaluating the efficiency of the Internet survey were also highlighted and the characteristics of the collected information were summarized with emphasis on the profiles of respondents and households. The purpose was to determine the impact of vehicle attributes and household characteristics to the actual choice of certain vehicles. 28 refs., 2 tabs., 4 figs.

  17. DDT poisoning of big brown bats, Eptesicus fuscus, in Hamilton, Montana.

    Science.gov (United States)

    Buchweitz, John P; Carson, Keri; Rebolloso, Sarah; Lehner, Andreas

    2018-06-01

    Dichlorodiphenyltrichloroethane (DDT) is an insecticidal organochlorine pesticide with; known potential for neurotoxic effects in wildlife. The United States Environmental Protection Agency (US EPA) registration for this pesticide has been cancelled and there are currently no federally active products that contain this ingredient in the U.S. We present a case of a colony of big brown bats (E. Fuscus) found dead in the attic roost of an administrative building; in the city of Hamilton, Montana from unknown cause. DDT and its metabolites; dichlorodiphenyldichloroethylene (DDE) and dichlorodiphenyldichloroethane (DDD) were detected in bat tissues by gas chromatography/mass spectrometry (GC-MS) and quantified by gas chromatography tandem quadrupole mass spectrometry (GC-MS/MS). Concentrations of 4081 ppm DDT and 890 ppm DDE wet weight were found in the brain of one bat and are the highest reported concentrations in such a mortality event to date. This case emphasizes the importance of testing wildlife mortalities against a comprehensive panel of toxicologic agents including persistent organic pollutants in the absence of other more common disease threats. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Histomorphological and microanatomical characteristics of the olfactory organ of freshwater carp, Cirrhinus reba (Hamilton

    Directory of Open Access Journals (Sweden)

    Ghosh Saroj Kumar

    2016-12-01

    Full Text Available The morphoanatomy, cellular organization, and surface architecture of the olfactory apparatus in Cirrhinus reba (Hamilton is described using light and scanning electron microscopy. The oval shaped olfactory rosette contained 32 ± 2 primary lamellae on each side of the median raphe, and was lodged on the floor of the olfactory chamber. The olfactory lamellae were basically flat and compactly arranged in the rosette. The olfactory chamber communicated to the outside aquatic environment through inlet and outlet apertures with a conspicuous nasal flap in between. The mid dorsal portion of the olfactory lamellae was characterized by a linguiform process. Sensory and non-sensory regions were distributed separately on each lamella. The sensory epithelium occupied the apical part including the linguiform process, whereas the resting part of the lamella was covered with non-sensory epithelium. The sensory epithelium comprised both ciliated and microvillous receptor cells distinguished by the architecture on their apical part. The non-sensory epithelium possessed mucous cells, labyrinth cells, and stratified epithelial cells with distinctive microridges. The functional importance of the different cells lining the olfactory mucosa was correlated with the ecological habits of the fish examined.

  19. Susceptibility and pathological consequences of catla, Catla catla (Hamilton experimentally infected with Edwardsiella tarda

    Directory of Open Access Journals (Sweden)

    Devi Thongam Bidya

    2016-12-01

    Full Text Available The present study tested the susceptibility and pathological changes of catla, Catla catla (Hamilton infected with Edwardsiella tarda (ET-PG-29. The bacterium was isolated from the kidney of a diseased pangas catfish. To determine the median lethal dose (LD50, C. catla were challenged with this bacterium (108-103 CFU ml-1, and the LD50 was calculated as 105.5 CFU ml-1. Another set of healthy C. catla were injected intraperitoneally with the LD50 dose to induce edwardsiellosis. The clinical signs of the infected C. catla were observed and recorded. Tissues such as kidney, liver, intestine, heart, and gill from the infected fish with clinical signs of edwardsiellosis were used for histopathology. The clinical and gross signs were first visible at 1 d post-injection, and the infected fish showed typical signs of hemorrhagic septicemia. The most striking histopathological features were found in the kidney which showed multi-focal necrosis with the formation of granuloma indicating an inflammatory response against the pathogen. The intestine displayed goblet cell hyperplasia, the liver showed hydropic degeneration with hyperemic central veins, and there was inflammation of gill lamellae and cardiac myositis associated with leucocyte infiltration. Collectively, the results confirmed the susceptibility of C. catla to E. tarda infection and that this bacterium is a threat to C. catla in aquaculture practices.

  20. Well-spread sequences and edge-labellings with constant Hamilton-weight

    Directory of Open Access Journals (Sweden)

    P. Mark Kayll

    2004-12-01

    Full Text Available A sequence (a i of integers is well-spread if the sums a i +a j, for iHamilton cycle has the same length; we prove that 2n 2-O(n 3/2<Λ(n<2n 2 +O(n 61/40.

  1. Factor analysis of the Hamilton Depression Rating Scale in Parkinson's disease.

    Science.gov (United States)

    Broen, M P G; Moonen, A J H; Kuijf, M L; Dujardin, K; Marsh, L; Richard, I H; Starkstein, S E; Martinez-Martin, P; Leentjens, A F G

    2015-02-01

    Several studies have validated the Hamilton Depression Rating Scale (HAMD) in patients with Parkinson's disease (PD), and reported adequate reliability and construct validity. However, the factorial validity of the HAMD has not yet been investigated. The aim of our analysis was to explore the factor structure of the HAMD in a large sample of PD patients. A principal component analysis of the 17-item HAMD was performed on data of 341 PD patients, available from a previous cross sectional study on anxiety. An eigenvalue ≥1 was used to determine the number of factors. Factor loadings ≥0.4 in combination with oblique rotations were used to identify which variables made up the factors. Kaiser-Meyer-Olkin measure (KMO), Cronbach's alpha, Bartlett's test, communality, percentage of non-redundant residuals and the component correlation matrix were computed to assess factor validity. KMO verified the sample's adequacy for factor analysis and Cronbach's alpha indicated a good internal consistency of the total scale. Six factors had eigenvalues ≥1 and together explained 59.19% of the variance. The number of items per factor varied from 1 to 6. Inter-item correlations within each component were low. There was a high percentage of non-redundant residuals and low communality. This analysis demonstrates that the factorial validity of the HAMD in PD is unsatisfactory. This implies that the scale is not appropriate for studying specific symptom domains of depression based on factorial structure in a PD population. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Husbandry stress exacerbates mycobacterial infections in adult zebrafish, Danio rerio (Hamilton)

    Science.gov (United States)

    Ramsay, J.M.; Watral, Virginia G.; Schreck, C.B.; Kent, M.L.

    2009-01-01

    Mycobacteria are significant pathogens of laboratory zebrafish, Danio rerio (Hamilton). Stress is often implicated in clinical disease and morbidity associated with mycobacterial infections but has yet to be examined with zebrafish. The aim of this study was to examine the effects of husbandry stressors on zebrafish infected with mycobacteria. Adult zebrafish were exposed to Mycobacterium marinum or Mycobacterium chelonae, two species that have been associated with disease in zebrafish. Infected fish and controls were then subjected to chronic crowding and handling stressors and examined over an 8-week period. Whole-body cortisol was significantly elevated in stressed fish compared to non-stressed fish. Fish infected with M. marinum ATCC 927 and subjected to husbandry stressors had 14% cumulative mortality while no mortality occurred among infected fish not subjected to husbandry stressors. Stressed fish, infected with M. chelonae H1E2 from zebrafish, were 15-fold more likely to be infected than non-stressed fish at week 8 post-injection. Sub-acute, diffuse infections were more common among stressed fish infected with M. marinum or M. chelonae than non-stressed fish. This is the first study to demonstrate an effect of stress and elevated cortisol on the morbidity, prevalence, clinical disease and histological presentation associated with mycobacterial infections in zebrafish. Minimizing husbandry stress may be effective at reducing the severity of outbreaks of clinical mycobacteriosis in zebrafish facilities. ?? 2009 Blackwell Publishing Ltd.

  3. Communication and relationship skills for rapid response teams at hamilton health sciences.

    Science.gov (United States)

    Cziraki, Karen; Lucas, Janie; Rogers, Toni; Page, Laura; Zimmerman, Rosanne; Hauer, Lois Ann; Daniels, Charlotte; Gregoroff, Susan

    2008-01-01

    Rapid response teams (RRT) are an important safety strategy in the prevention of deaths in patients who are progressively failing outside of the intensive care unit. The goal is to intervene before a critical event occurs. Effective teamwork and communication skills are frequently cited as critical success factors in the implementation of these teams. However, there is very little literature that clearly provides an education strategy for the development of these skills. Training in simulation labs offers an opportunity to assess and build on current team skills; however, this approach does not address how to meet the gaps in team communication and relationship skill management. At Hamilton Health Sciences (HHS) a two-day program was developed in collaboration with the RRT Team Leads, Organizational Effectiveness and Patient Safety Leaders. Participants reflected on their conflict management styles and considered how their personality traits may contribute to team function. Communication and relationship theories were reviewed and applied in simulated sessions in the relative safety of off-site team sessions. The overwhelming positive response to this training has been demonstrated in the incredible success of these teams from the perspective of the satisfaction surveys of the care units that call the team, and in the multi-phased team evaluation of their application to practice. These sessions offer a useful approach to the development of the soft skills required for successful RRT implementation.

  4. Excellent reliability of the Hamilton Depression Rating Scale (HDRS-21) in Indonesia after training.

    Science.gov (United States)

    Istriana, Erita; Kurnia, Ade; Weijers, Annelies; Hidayat, Teddy; Pinxten, Lucas; de Jong, Cor; Schellekens, Arnt

    2013-09-01

    The Hamilton Depression Rating Scale (HDRS) is the most widely used depression rating scale worldwide. Reliability of HDRS has been reported mainly from Western countries. The current study tested the reliability of HDRS ratings among psychiatric residents in Indonesia, before and after HDRS training. The hypotheses were that: (i) prior to the training reliability of HDRS ratings is poor; and (ii) HDRS training can improve reliability of HDRS ratings to excellent levels. Furthermore, we explored cultural validity at item level. Videotaped HDRS interviews were rated by 30 psychiatric residents before and after 1 day of HDRS training. Based on a gold standard rating, percentage correct ratings and deviation from the standard were calculated. Correct ratings increased from 83% to 99% at item level and from 70% to 100% for the total rating. The average deviation from the gold standard rating improved from 0.07 to 0.02 at item level and from 2.97 to 0.46 for the total rating. HDRS assessment by psychiatric trainees in Indonesia without prior training is unreliable. A short, evidence-based HDRS training improves reliability to near perfect levels. The outlined training program could serve as a template for HDRS trainings. HDRS items that may be less valid for assessment of depression severity in Indonesia are discussed. Copyright © 2013 Wiley Publishing Asia Pty Ltd.

  5. Probing the canonicity of the Wnt/Wingless signaling pathway.

    Directory of Open Access Journals (Sweden)

    Alexandra Franz

    2017-04-01

    Full Text Available The hallmark of canonical Wnt signaling is the transcriptional induction of Wnt target genes by the beta-catenin/TCF complex. Several studies have proposed alternative interaction partners for beta-catenin or TCF, but the relevance of potential bifurcations in the distal Wnt pathway remains unclear. Here we study on a genome-wide scale the requirement for Armadillo (Arm, Drosophila beta-catenin and Pangolin (Pan, Drosophila TCF in the Wnt/Wingless(Wg-induced transcriptional response of Drosophila Kc cells. Using somatic genetics, we demonstrate that both Arm and Pan are absolutely required for mediating activation and repression of target genes. Furthermore, by means of STARR-sequencing we identified Wnt/Wg-responsive enhancer elements and found that all responsive enhancers depend on Pan. Together, our results confirm the dogma of canonical Wnt/Wg signaling and argue against the existence of distal pathway branches in this system.

  6. A canonical correlation neural network for multicollinearity and functional data.

    Science.gov (United States)

    Gou, Zhenkun; Fyfe, Colin

    2004-03-01

    We review a recent neural implementation of Canonical Correlation Analysis and show, using ideas suggested by Ridge Regression, how to make the algorithm robust. The network is shown to operate on data sets which exhibit multicollinearity. We develop a second model which not only performs as well on multicollinear data but also on general data sets. This model allows us to vary a single parameter so that the network is capable of performing Partial Least Squares regression (at one extreme) to Canonical Correlation Analysis (at the other)and every intermediate operation between the two. On multicollinear data, the parameter setting is shown to be important but on more general data no particular parameter setting is required. Finally, we develop a second penalty term which acts on such data as a smoother in that the resulting weight vectors are much smoother and more interpretable than the weights without the robustification term. We illustrate our algorithms on both artificial and real data.

  7. Application of Canonical Effective Methods to Background-Independent Theories

    Science.gov (United States)

    Buyukcam, Umut

    Effective formalisms play an important role in analyzing phenomena above some given length scale when complete theories are not accessible. In diverse exotic but physically important cases, the usual path-integral techniques used in a standard Quantum Field Theory approach seldom serve as adequate tools. This thesis exposes a new effective method for quantum systems, called the Canonical Effective Method, which owns particularly wide applicability in backgroundindependent theories as in the case of gravitational phenomena. The central purpose of this work is to employ these techniques to obtain semi-classical dynamics from canonical quantum gravity theories. Application to non-associative quantum mechanics is developed and testable results are obtained. Types of non-associative algebras relevant for magnetic-monopole systems are discussed. Possible modifications of hypersurface deformation algebra and the emergence of effective space-times are presented. iii.

  8. Geometry of real and complex canonical transformations in quantum mechanics

    International Nuclear Information System (INIS)

    Grossmann, A.

    1977-08-01

    Quantum mechanics of finitely many particles involves the group of linear (and affine) canonical transformations. A well-defined ray representation of this group acts in the space of states of any quantum-mechanical system with finitely many degrees of freedom and plays a central role in many different contexts. This representation appears quite naturally in quantum mechanics over phase space (Weyl-Wigner correspondence), that it becomes, when suitably written, just a matter of looking at one object from different symplectic reference frames. This is particularly interesting for complex canonical transformations which are represented by unbounded operators. The list of references gives an idea of the variety of motivations and points of view in the subject

  9. Magnetic phase diagrams from non-collinear canonical band theory

    DEFF Research Database (Denmark)

    Shallcross, Sam; Nordstrom, L.; Sharma, S.

    2007-01-01

    A canonical band theory of non-collinear magnetism is developed and applied to the close packed fcc and bcc crystal structures. This is a parameter-free theory where the crystal and magnetic symmetry and exchange splitting uniquely determine the electronic bands. In this way, we are able...... hybridization, and on this basis we are able to analyze the microscopic reasons behind the occurrence of non-collinear magnetism in the elemental itinerant magnets....... to construct phase diagrams of magnetic order for the fcc and bcc lattices. Several examples of non-collinear magnetism are seen to be canonical in origin, in particular, that of gamma-Fe. In this approach, the determination of magnetic stability results solely from changes in kinetic energy due to spin...

  10. Lorentz covariant canonical symplectic algorithms for dynamics of charged particles

    Science.gov (United States)

    Wang, Yulei; Liu, Jian; Qin, Hong

    2016-12-01

    In this paper, the Lorentz covariance of algorithms is introduced. Under Lorentz transformation, both the form and performance of a Lorentz covariant algorithm are invariant. To acquire the advantages of symplectic algorithms and Lorentz covariance, a general procedure for constructing Lorentz covariant canonical symplectic algorithms (LCCSAs) is provided, based on which an explicit LCCSA for dynamics of relativistic charged particles is built. LCCSA possesses Lorentz invariance as well as long-term numerical accuracy and stability, due to the preservation of a discrete symplectic structure and the Lorentz symmetry of the system. For situations with time-dependent electromagnetic fields, which are difficult to handle in traditional construction procedures of symplectic algorithms, LCCSA provides a perfect explicit canonical symplectic solution by implementing the discretization in 4-spacetime. We also show that LCCSA has built-in energy-based adaptive time steps, which can optimize the computation performance when the Lorentz factor varies.

  11. A Top-Down Account of Linear Canonical Transforms

    Directory of Open Access Journals (Sweden)

    Kurt Bernardo Wolf

    2012-06-01

    Full Text Available We contend that what are called Linear Canonical Transforms (LCTs should be seen as a part of the theory of unitary irreducible representations of the '2+1' Lorentz group. The integral kernel representation found by Collins, Moshinsky and Quesne, and the radial and hyperbolic LCTs introduced thereafter, belong to the discrete and continuous representation series of the Lorentz group in its parabolic subgroup reduction. The reduction by the elliptic and hyperbolic subgroups can also be considered to yield LCTs that act on functions, discrete or continuous in other Hilbert spaces. We gather the summation and integration kernels reported by Basu and Wolf when studiying all discrete, continuous, and mixed representations of the linear group of 2×2 real matrices. We add some comments on why all should be considered canonical.

  12. Common activation of canonical Wnt signaling in pancreatic adenocarcinoma.

    Directory of Open Access Journals (Sweden)

    Marina Pasca di Magliano

    2007-11-01

    Full Text Available Pancreatic ductal adenocarcinoma (PDA is an extremely aggressive malignancy, which carries a dismal prognosis. Activating mutations of the Kras gene are common to the vast majority of human PDA. In addition, recent studies have demonstrated that embryonic signaling pathway such as Hedgehog and Notch are inappropriately upregulated in this disease. The role of another embryonic signaling pathway, namely the canonical Wnt cascade, is still controversial. Here, we use gene array analysis as a platform to demonstrate general activation of the canonical arm of the Wnt pathway in human PDA. Furthermore, we provide evidence for Wnt activation in mouse models of pancreatic cancer. Our results also indicate that Wnt signaling might be activated downstream of Hedgehog signaling, which is an early event in PDA evolution. Wnt inhibition blocked proliferation and induced apoptosis of cultured adenocarcinoma cells, thereby providing evidence to support the development of novel therapeutical strategies for Wnt inhibition in pancreatic adenocarcinoma.

  13. Canonical Drude Weight for Non-integrable Quantum Spin Chains

    Science.gov (United States)

    Mastropietro, Vieri; Porta, Marcello

    2018-03-01

    The Drude weight is a central quantity for the transport properties of quantum spin chains. The canonical definition of Drude weight is directly related to Kubo formula of conductivity. However, the difficulty in the evaluation of such expression has led to several alternative formulations, accessible to different methods. In particular, the Euclidean, or imaginary-time, Drude weight can be studied via rigorous renormalization group. As a result, in the past years several universality results have been proven for such quantity at zero temperature; remarkably, the proofs work for both integrable and non-integrable quantum spin chains. Here we establish the equivalence of Euclidean and canonical Drude weights at zero temperature. Our proof is based on rigorous renormalization group methods, Ward identities, and complex analytic ideas.

  14. The role of interfacial layers in the enhanced thermal conductivity of nanofluids: A renovated Hamilton-Crosser model

    International Nuclear Information System (INIS)

    Yu, W; Choi, S.U.S.

    2004-01-01

    We previously developed a renovated Maxwell model for the effective thermal conductivity of nanofluids and determined that the solid/liquid interfacial layers play an important role in the enhanced thermal conductivity of nanofluids. However, this renovated Maxwell model is limited to suspensions with spherical particles. Here, we extend the Hamilton--Crosser model for suspensions of nonspherical particles to include the effect of a solid/liquid interface. The solid/liquid interface is described as a confocal ellipsoid with a solid particle. The new model for the three-phase suspensions is mathematically expressed in terms of the equivalent thermal conductivity and equivalent volume fraction of anisotropic complex ellipsoids, as well as an empirical shape factor. With a generalized empirical shape factor, the renovated Hamilton--Crosser model correctly predicts the magnitude of the thermal conductivity of nanotube-in-oil nanofluids. At present, this new model is not able to predict the nonlinear behavior of the nanofluid thermal conductivity

  15. Partitioned Alternating Least Squares Technique for Canonical Polyadic Tensor Decomposition

    Czech Academy of Sciences Publication Activity Database

    Tichavský, Petr; Phan, A. H.; Cichocki, A.

    2016-01-01

    Roč. 23, č. 7 (2016), s. 993-997 ISSN 1070-9908 R&D Projects: GA ČR(CZ) GA14-13713S Institutional support: RVO:67985556 Keywords : canonical polyadic decomposition * PARAFAC * tensor decomposition Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 2.528, year: 2016 http://library.utia.cas.cz/separaty/2016/SI/tichavsky-0460710.pdf

  16. Canonical Ensemble Model for Black Hole Radiation Jingyi Zhang

    Indian Academy of Sciences (India)

    Canonical Ensemble Model for Black Hole Radiation. 575. For entropy, there is no corresponding thermodynamical quantity, without loss of generalization. Let us define an entropy operator. ˆS = −KB ln ˆρ. (11). Then, the mean value of entropy is. S ≡〈ˆS〉 = tr( ˆρ ˆS) = −KBtr( ˆρ ln ˆρ). (12). For ideal gases, let y = V , then the ...

  17. Canonical action-angle formalism for quantized nonlinear fields

    International Nuclear Information System (INIS)

    Garbaczewki, P.

    1987-01-01

    The canonical quantizations of field and action-angle coordinates which (locally) parameterize the phase manifold for the same nonlinear field theory model (e.g. sine-Gordon and nonlinear Schrodinger with the attractive coupling) are reconciled on the common for both cases state space. The classical-quantum relationship is maintained in the mean: coherent state expectation values of operators give rise to classical objects

  18. Canonical quantum theory of gravitational field with higher derivatives, 2

    International Nuclear Information System (INIS)

    Kawasaki, Shoichiro; Kimura, Tadahiko

    1982-01-01

    The asymptotic fields in a canonically quantized graviational field with higher derivatives are analyzed. A possible mechanism of the recovery of the physical S-matrix unitarity is discussed. The constraint nabla sub(μ)(B sup(μν) + (Beta /α)g sup(μν)B) = 0 due to the Bianchi identity on R sub(μν) is treated by Dirac's method. (author)

  19. Bitcoin Market Volatility Analysis Using Grand Canonical Minority Game

    Directory of Open Access Journals (Sweden)

    Matteo Ortisi

    2016-12-01

    Full Text Available In this paper we propose to use the Grand Canonical Minority Game (GCMG, a highly simplified financial market model as a model of bitcoin market to show how the lack of an income for “miners”, similar to yield earned by bond holders, could be a structural reason for high volatility of bitcoin price in a reference currency. Coherently with present analysis, the introduction of future contracts on bitcoin would have the effect of reducing the overall market volatility.

  20. Canons, competencies and critique: delivering an undergraduate entrepreneurial marketing module

    OpenAIRE

    Ardley, Barry; Hardwick, Jialin

    2017-01-01

    In the context of the debate about the status of marketing degrees, graduate knowledge and competencies, this paper reflects on a set of pedagogic issues associated with the delivery of a final level entrepreneurial marketing module. Drawing on key literature, the module takes a set of entrepreneurial marketing canons as the basis of learning. Primary research was conducted into student perceptions of the module based on an interpretative methodology, using an open ended questionnaire. Studen...