WorldWideScience

Sample records for halos galactic disks

  1. INTERACTION BETWEEN DARK MATTER SUB-HALOS AND A GALACTIC GASEOUS DISK

    International Nuclear Information System (INIS)

    Kannan, Rahul; Macciò, Andrea V.; Walter, Fabian; Pasquali, Anna; Moster, Benjamin P.

    2012-01-01

    We investigate the idea that the interaction of dark matter (DM) sub-halos with the gaseous disks of galaxies can be the origin for the observed holes and shells found in their neutral hydrogen (H I) distributions. We use high-resolution hydrodynamic simulations to show that pure DM sub-halos impacting a galactic disk are not able to produce holes; on the contrary, they result in high-density regions in the disk. However, sub-halos containing a small amount of gas (a few percent of the total DM mass of the sub-halo) are able to displace the gas in the disk and form holes and shells. The sizes and lifetimes of these holes depend on the sub-halo gas mass, density, and impact velocity. A DM sub-halo, of mass 10 8 M ☉ and a gas mass fraction of ∼3%, is able to create a kiloparsec-scale hole with a lifetime similar to those observed in nearby galaxies. We also register an increase in the star formation rate at the rim of the hole, again in agreement with observations. Even though the properties of these simulated structures resemble those found in observations, we find that the number of predicted holes (based on mass and orbital distributions of DM halos derived from cosmological N-body simulations) falls short compared to the observations. Only a handful of holes are produced per gigayear. This leads us to conclude that DM halo impact is not the major channel through which these holes are formed.

  2. Population Synthesis Studies of the White Dwarfs of the Galactic Disk and Halo

    Science.gov (United States)

    Cojocaru, Elena-Ruxandra

    2016-09-01

    White dwarfs are fossil stars that can encode valuable information about the formation, evolution and other properties of the different Galactic stellar populations. They are the direct descendants of main-sequence stars with masses ranging from ∼0.8 M⊙ to ∼10 M⊙, which means that over 95% of the stars in our Galaxy will eventually become white dwarfs. This fact, correlated with the excellent quality of modern white dwarf cooling models, clearly marks their potential as cosmic clocks for estimating the ages of Galactic stellar populations, as well as place white dwarfs as privileged objects in understanding several actual astrophysical problems. Stellar population synthesis methods (Tinsley, 1968) use theoretical evolutionary sequences to reproduce luminosities, temperatures and other parameters building up to a synthetic population that can be readily compared to an observed sample of stars. Such techniques are perfect for the study of the different white dwarf populations in our Galaxy and their strength has only grown in recent years, fueled both by improved evolutionary sequences and detailed cooling tracks and also by the ever growing samples of white dwarfs identified through modern survey missions. In particular, the work presented in this thesis uses an updated population synthesis code based on previous versions of the code from our group (García-Berro et al., 1999; Torres et al., 2002; García-Berro et al., 2004; Torres et al., 2005; Camacho et al., 2014). Our synthetic population code, based on Monte Carlo statistical techniques, has been extensively used in the study of the disk (García-Berro et al., 1! 999; Torres et al., 2001; Torres & García-Berro, 2016) and halo (Torres et al., 2002; García-Berro et al., 2004) single white-dwarf population, white dwarf plus main sequence stars (Camacho et al., 2014), as well as open clusters such as NGC 6791 (García-Berro et al., 2010; García-Berro et al., 2011) or globular clusters, as 47 Tuc (Garc

  3. Evolution of heavy-element abundances in the galactic halo and disk

    International Nuclear Information System (INIS)

    Mathews, G.J.; Cowan, J.J.; Schramm, D.N.

    1988-05-01

    The constraints on the universal energy density and cosmological constant from cosmochronological ages and the Hubble age are reviewed. Observational evidence for the galactic chemical evolution of the heavy-element chronometers is described in the context of numerical models. The viability of the recently discovered Th/Nd stellar chronometer is discussed, along with the suggestion that high r-process abundances in metal-poor stars may have resulted from a primordial r-process, as may be required by some inhomogeneous cosmologies

  4. Galactic Angular Momentum in Cosmological Zoom-in Simulations. I. Disk and Bulge Components and the Galaxy-Halo Connection

    Science.gov (United States)

    Sokołowska, Aleksandra; Capelo, Pedro R.; Fall, S. Michael; Mayer, Lucio; Shen, Sijing; Bonoli, Silvia

    2017-02-01

    We investigate the angular momentum evolution of four disk galaxies residing in Milky-Way-sized halos formed in cosmological zoom-in simulations with various sub-grid physics and merging histories. We decompose these galaxies, kinematically and photometrically, into their disk and bulge components. The simulated galaxies and their components lie on the observed sequences in the j *-M * diagram, relating the specific angular momentum and mass of the stellar component. We find that galaxies in low-density environments follow the relation {j}* \\propto {M}* α past major mergers, with α ˜ 0.6 in the case of strong feedback, when bulge-to-disk ratios are relatively constant, and α ˜ 1.4 in the other cases, when secular processes operate on shorter timescales. We compute the retention factors (I.e., the ratio of the specific angular momenta of stars and dark matter) for both disks and bulges and show that they vary relatively slowly after averaging over numerous but brief fluctuations. For disks, the retention factors are usually close to unity, while for bulges, they are a few times smaller. Our simulations therefore indicate that galaxies and their halos grow in a quasi-homologous way.

  5. Galactic warps and the shape of heavy halos

    International Nuclear Information System (INIS)

    Sparke, L.S.

    1984-01-01

    The outer disks of many spiral galaxies are bent away from the plane of the inner disk; the abundance of these warps suggests that they are long-lived. Isolated galactic disks have long been thought to have no discrete modes of vertical oscillation under their own gravity, and so to be incapable of sustaining persistent warps. However, the visible disk contains only a fraction of the galactic mass; an invisible galactic halo makes up the rest. This paper presents an investigation of vertical warping modes in self-gravitating disks, in the imposed potential due to an axisymmetric unseen massive halo. If the halo matter is distributed so that the free precession rate of a test particle decreases with radius near the edge of the disk, then the disk has a discrete mode of vibration; oblate halos which become rapidly more flattened at large radii, and uniformly prolate halos, satisfy this requirement. Otherwise, the disk has no discrete modes and so cannot maintain a long-lived warp, unless the edge is sharply truncated. Computed mode shapes which resemble the observed warps can be found for halo masses consistent with those inferred from galactic rotation curves

  6. Are baryonic galactic halos possible

    International Nuclear Information System (INIS)

    Olive, K.A.; Hegyi, D.J.

    1986-01-01

    There is little doubt from the rotation curves of spiral galaxies that galactic halos must contain large amounts of dark matter. In this contribution, the authors review arguments which indicate that it is very unlikely that galactic halos contain substantial amounts of baryonic matter. While the authors would like to be able to present a single argument which would rule out baryonic matter, at the present time they are only able to present a collection of arguments each of which argues against one form of baryonic matter. These include: 1) snowballs; 2) gas; 3) low mass stars and Jupiters; 4) high mass stars; and 5) high metalicity objects such as rooks or dust. Black holes, which do not have a well defined baryon number, are also a possible candidate for halo matter. They briefly discuss black holes

  7. Comparison between UBV- and RGU-photometrically determined density functions for the photometric disk and halo and between the corresponding mean isodensity behaviour in the halo close to the galactic north-pole (SA 57)

    Science.gov (United States)

    Fenkart, R.; Esin-Yilmaz, F.

    1985-10-01

    SA 57, RG U-photometrically treated by Fenkart (1967), is the third field of the Basle Halo Program (BHP) we investigate by applying the RG U-methods for the separation of the (photometric) populations disk and halo and for the determination of their space densities analogously in UBV in order to compare the results independently obtained in both systems. Figures 1 and 2 give the V- and G-fractioned two-colour diagrams of the same 1179 stars treated in UBV and RG U, respectively. On their basis, the logarithmic space density functions of both populations have been calculated for the overall (3m to 8m ) and for the 1m -intervals absolute magnitudes M(V) and M(G). They are tabulated in tables II and III and plotted in figures 3 and 4, respectively (a : disk, b : halo). The overall density functions for the disk and for the halo are compared between the systems in figures Sa and b, respectively. The mean misidentification-rate per system (MMRS) is 7.3 %, lying between the ones for SA 54(9.2 %) and for SA 82(4.5 %) (Fenkart and Esin-Yilmaz, 1983 and 1984, respectively) and close to the mean for all three investigations (7.0 ± 2.4 %) The direction to SA 57 lies almost in the middle of the sector of the northern galactic meridian which is limited by the directions to SA 54 and to SA 82. Our results permit, together with the ones obtained in these limiting directions, the comparison of the mean isodensity-patterns obtained in both systems within this sector. They are completely parallel and blend in perfectly with the mean (RG U-) isodensity-pattern of the - partly overlapping - sector between SA 51 and SA 57 obtained by Fenkart and Karaall (1984) (Fig. 6). The appendices describe shortly the involved methods (A) and refer to related work by other authors in the direction to the galactic north-pole (B).

  8. The age of the galactic disk

    International Nuclear Information System (INIS)

    Sandage, A.

    1988-07-01

    The galactic disk is a dissipative structure and must, therefore be younger than the halo if galaxy formation generally proceeds by collapse. Just how much younger the oldest stars in the galactic disk are than the oldest halo stars remains an open question. A fast collapse (on a time scale no longer than the rotation period of the extended protogalaxy) permits an age gap of the order of approximately 10 to the 9th power years. A slow collapse, governed by the cooling rate of the partially pressure supported falling gas that formed into what is now the thick stellar disk, permits a longer age gap, claimed by some to be as long as 6 Gyr. Early methods of age dating the oldest components of the disk contain implicit assumptions concerning the details of the age-metallicity relation for stars in the solar neighborhood. The discovery that this relation for open clusters outside the solar circle is different that in the solar neighborhood (Geisler 1987), complicates the earlier arguments. The oldest stars in the galactic disk are at least as old as NGC 188. The new data by Janes on NGC 6791, shown first at this conference, suggest a disk age of at least 12.5 Gyr, as do data near the main sequence termination point of metal rich, high proper motion stars of low orbital eccentricity. Hence, a case can still be made that the oldest part of the galactic thick disk is similar in age to the halo globular clusters, if their ages are the same as 47 Tuc

  9. Brown dwarfs as dark galactic halos

    International Nuclear Information System (INIS)

    Adams, F.C.; Walker, T.P.

    1990-01-01

    The possibility that the dark matter in galactic halos can consist of brown dwarf stars is considered. The radiative signature for such halos consisting solely of brown dwarfs is calculated, and the allowed range of brown dwarf masses, the initial mass function (IMF), the stellar properties, and the density distribution of the galactic halo are discussed. The prediction emission from the halo is compared with existing observations. It is found that, for any IMF of brown dwarfs below the deuterium burning limit, brown dwarf halos are consistent with observations. Brown dwarf halos cannot, however, explain the recently observed near-IR background. It is shown that future satellite missions will either detect brown dwarf halos or place tight constraints on the allowed range of the IMF. 30 refs

  10. Baryonic pinching of galactic dark matter halos

    International Nuclear Information System (INIS)

    Gustafsson, Michael; Fairbairn, Malcolm; Sommer-Larsen, Jesper

    2006-01-01

    High resolution cosmological N-body simulations of four galaxy-scale dark matter halos are compared to corresponding N-body/hydrodynamical simulations containing dark matter, stars and gas. The simulations without baryons share features with others described in the literature in that the dark matter density slope continuously decreases towards the center, with a density ρ DM ∝r -1.3±0.2 , at about 1% of the virial radius for our Milky Way sized galaxies. The central cusps in the simulations which also contain baryons steepen significantly, to ρ DM ∝r -1.9±0.2 , with an indication of the inner logarithmic slope converging. Models of adiabatic contraction of dark matter halos due to the central buildup of stellar/gaseous galaxies are examined. The simplest and most commonly used model, by Blumenthal et al., is shown to overestimate the central dark matter density considerably. A modified model proposed by Gnedin et al. is tested and it is shown that, while it is a considerable improvement, it is not perfect. Moreover, it is found that the contraction parameters in their model not only depend on the orbital structure of the dark-matter-only halos but also on the stellar feedback prescription which is most relevant for the baryonic distribution. Implications for dark matter annihilation at the galactic center are discussed and it is found that, although our simulations show a considerable reduced dark matter halo contraction as compared to the Blumenthal et al. model, the fluxes from dark matter annihilation are still expected to be enhanced by at least a factor of a hundred, as compared to dark-matter-only halos. Finally, it is shown that, while dark-matter-only halos are typically prolate, the dark matter halos containing baryons are mildly oblate with minor-to-major axis ratios of c/a=0.73±0.11, with their flattening aligned with the central baryonic disks

  11. MODIFIED GRAVITY SPINS UP GALACTIC HALOS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jounghun [Astronomy Program, Department of Physics and Astronomy, FPRD, Seoul National University, Seoul 151-747 (Korea, Republic of); Zhao, Gong-Bo [National Astronomy Observatories, Chinese Academy of Science, Beijing 100012 (China); Li, Baojiu [Institute of Computational Cosmology, Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Koyama, Kazuya, E-mail: jounghun@astro.snu.ac.kr [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth, PO1 3FX (United Kingdom)

    2013-01-20

    We investigate the effect of modified gravity on the specific angular momentum of galactic halos by analyzing the halo catalogs at z = 0 from high-resolution N-body simulations for a f(R) gravity model that meets the solar-system constraint. It is shown that the galactic halos in the f(R) gravity model tend to acquire significantly higher specific angular momentum than those in the standard {Lambda}CDM model. The largest difference in the specific angular momentum distribution between these two models occurs for the case of isolated galactic halos with mass less than 10{sup 11} h {sup -1} M {sub Sun }, which are likely least shielded by the chameleon screening mechanism. As the specific angular momentum of galactic halos is rather insensitive to other cosmological parameters, it can in principle be an independent discriminator of modified gravity. We speculate a possibility of using the relative abundance of low surface brightness galaxies (LSBGs) as a test of general relativity given that the formation of the LSBGs occurs in fast spinning dark halos.

  12. Large-scale gas dynamical processes affecting the origin and evolution of gaseous galactic halos

    Science.gov (United States)

    Shapiro, Paul R.

    1991-01-01

    Observations of galactic halo gas are consistent with an interpretation in terms of the galactic fountain model in which supernova heated gas in the galactic disk escapes into the halo, radiatively cools and forms clouds which fall back to the disk. The results of a new study of several large-scale gas dynamical effects which are expected to occur in such a model for the origin and evolution of galactic halo gas will be summarized, including the following: (1) nonequilibrium absorption line and emission spectrum diagnostics for radiatively cooling halo gas in our own galaxy, as well the implications of such absorption line diagnostics for the origin of quasar absorption lines in galactic halo clouds of high redshift galaxies; (2) numerical MHD simulations and analytical analysis of large-scale explosions ad superbubbles in the galactic disk and halo; (3) numerical MHD simulations of halo cloud formation by thermal instability, with and without magnetic field; and (4) the effect of the galactic fountain on the galactic dynamo.

  13. Stellar population samples at the galactic poles. III. UBVRI observations of proper motion stars near the south pole and the luminosity laws for the halo and old disk populations

    International Nuclear Information System (INIS)

    Eggen, O.J.

    1976-01-01

    Some 1200 UBV and 650 R, I observations of 1050 stars, mostly with annual proper motion greater than 0.096'', brighter than visual magnitude 15, and within 10 0 of the south galactic pole, are presented and discussed. The M-type stars (B -- V greater than + 1.15 mag) in the sample are discussed in a current article in The Astrophysical Journal, Part I. The bluer stars indicate that the slopes of the luminosity laws for old disk and halo stars are fairly similar to M/sub v/ near +6 mag, the old-disk-population law has an inflection point near M/sub v/ = +7 mag, the halo-population law may peak near M/sub v/ = +9 mag on a broad plateau that continues to beyond +10 mag and drops to zero near +13 mag, and the upper limit for the mass density of the halo population near the Sun is near 9 x 10 -4 M/sub mass/ pc -3 . Many stars of particular interest in the sample are briefly discussed. These include several possible red subluminous stars, one of which may be a very close solar neighbor; some halo-population giants; and one unique flare star with an amplitude near 0.5 mag in R

  14. Population studies - evidence for accretion of the galactic halo

    International Nuclear Information System (INIS)

    Norris, J.E.; Ryan, S.G.

    1989-01-01

    While there are comparatively few prograde-orbit dwarf stars in advance of the sun's motion of the type of which 510, selected kinematically, are presented, it is noted that there are significant numbers of objects on retrograde orbits that move with a speed greater than the sun's, relative to a nonrotating system, in the opposite direction about the Galactic center. It is suggested that this asymmetry is explainable in terms of the Searle and Zinn (1978) and Rodgers and Paltoglou (1984) models of halo formation by accretion; in these, fragments experience dynamical friction from an already-formed Galactic disk. 21 references

  15. Mass models for disk and halo components in spiral galaxies

    International Nuclear Information System (INIS)

    Athanassoula, E.; Bosma, A.

    1987-01-01

    The mass distribution in spiral galaxies is investigated by means of numerical simulations, summarizing the results reported by Athanassoula et al. (1986). Details of the modeling technique employed are given, including bulge-disk decomposition; computation of bulge and disk rotation curves (assuming constant mass/light ratios for each); and determination (for spherical symmetry) of the total halo mass out to the optical radius, the concentration indices, the halo-density power law, the core radius, the central density, and the velocity dispersion. Also discussed are the procedures for incorporating galactic gas and checking the spiral structure extent. It is found that structural constraints limit disk mass/light ratios to a range of 0.3 dex, and that the most likely models are maximum-disk models with m = 1 disturbances inhibited. 19 references

  16. Numerical experiments on galactic halo formation

    International Nuclear Information System (INIS)

    Quinn, P.J.; Salmon, J.K.; Zurek, W.H.

    1986-01-01

    We have used a hybrid N-body-FFT approach to solving Poisson's equation in a cosmological setting. Using this method, we have explored the connection between the form of the initial Gaussian density perturbations that by today have grown into galaxies and the internal properties of the individual galactic halos that are formed. 19 refs., 4 figs

  17. Imbalance in the Local Galactic halo?

    International Nuclear Information System (INIS)

    Croswell, K.; Latham, D.W.; Carney, B.W.; North Carolina Univ., Chapel Hill)

    1987-01-01

    In a kinematically biased sample of 119 single halo stars, 65 percent of the stars are traveling away from the plane of the Galaxy. Halo spectroscopic binaries do not show this imbalance. Other kinematically biased halo surveys exhibit the same effect. Combining these samples with those of the authors' results in 223 halo stars, 63 percent of which are heading away from the plane of the Galaxy. The probability that the first result could be obtained from a symmetric w velocity distribution is 0.2 percent; the probability that the second result could be so obtained is 0.02 percent. Single halo stars traveling away from the disk appear to have a larger w velocity dispersion than those traveling toward it. Selection effects are analyzed and rejected as the cause of the observed asymmetry. Possible mechanisms for producing the imbalance are discussed, but each has serious difficulties accounting for the observations. 28 references

  18. Stability of BEC galactic dark matter halos

    Energy Technology Data Exchange (ETDEWEB)

    Guzmán, F.S.; Lora-Clavijo, F.D.; González-Avilés, J.J.; Rivera-Paleo, F.J., E-mail: guzman@ifm.umich.mx, E-mail: fadulora@ifm.umich.mx, E-mail: javiles@ifm.umich.mx, E-mail: friverap@ifm.umich.mx [Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio C-3, Cd. Universitaria, 58040 Morelia, Michoacán (Mexico)

    2013-09-01

    In this paper we show that spherically symmetric BEC dark matter halos, with the sin r/r density profile, that accurately fit galactic rotation curves and represent a potential solution to the cusp-core problem are unstable. We do this by introducing back the density profiles into the fully time-dependent Gross-Pitaevskii-Poisson system of equations. Using numerical methods to track the evolution of the system, we found that these galactic halos lose mass at an approximate rate of half of its mass in a time scale of dozens of Myr. We consider this time scale is enough as to consider these halos are unstable and unlikely to be formed. We provide some arguments to show that this behavior is general and discuss some other drawbacks of the model that restrict its viability.

  19. Does SEGUE/SDSS indicate a dual galactic halo?

    International Nuclear Information System (INIS)

    Schönrich, Ralph; Asplund, Martin; Casagrande, Luca

    2014-01-01

    We re-examine recent claims of observational evidence for a dual Galactic halo in SEGUE/SDSS data, and trace them back to improper error treatment and neglect of selection effects. In particular, the detection of a vertical abundance gradient in the halo can be explained as a metallicity bias in distance. A similar bias and the impact of disk contamination affect the sample of blue horizontal branch stars. These examples highlight why non-volume complete samples require forward modeling from theoretical models or extensive bias-corrections. We also show how observational uncertainties produce the specific non-Gaussianity in the observed azimuthal velocity distribution of halo stars, which can be erroneously identified as two Gaussian components. A single kinematic component yields an excellent fit to the observed data, when we model the measurement process including distance uncertainties. Furthermore, we show that sample differences in proper motion space are the direct consequence of kinematic cuts and are enhanced when distance estimates are less accurate. Thus, their presence is neither proof of a separate population nor a measure of reliability for the applied distances. We conclude that currently there is no evidence from SEGUE/SDSS that would favor a dual Galactic halo over a single halo that is full of substructure.

  20. MAPPING THE GALACTIC HALO. VIII. QUANTIFYING SUBSTRUCTURE

    International Nuclear Information System (INIS)

    Starkenburg, Else; Helmi, Amina; Van Woerden, Hugo; Morrison, Heather L.; Harding, Paul; Frey, Lucy; Oravetz, Dan; Mateo, Mario; Dohm-Palmer, R. C.; Olszewski, Edward W.; Sivarani, Thirupathi; Norris, John E.; Freeman, Kenneth C.; Shectman, Stephen A.

    2009-01-01

    We have measured the amount of kinematic substructure in the Galactic halo using the final data set from the Spaghetti project, a pencil-beam high-latitude sky survey. Our sample contains 101 photometrically selected and spectroscopically confirmed giants with accurate distance, radial velocity, and metallicity information. We have developed a new clustering estimator: the '4distance' measure, which when applied to our data set leads to the identification of one group and seven pairs of clumped stars. The group, with six members, can confidently be matched to tidal debris of the Sagittarius dwarf galaxy. Two pairs match the properties of known Virgo structures. Using models of the disruption of Sagittarius in Galactic potentials with different degrees of dark halo flattening, we show that this favors a spherical or prolate halo shape, as demonstrated by Newberg et al. using the Sloan Digital Sky Survey data. One additional pair can be linked to older Sagittarius debris. We find that 20% of the stars in the Spaghetti data set are in substructures. From comparison with random data sets, we derive a very conservative lower limit of 10% to the amount of substructure in the halo. However, comparison to numerical simulations shows that our results are also consistent with a halo entirely built up from disrupted satellites, provided that the dominating features are relatively broad due to early merging or relatively heavy progenitor satellites.

  1. Dynamical or static radio halo - Is there a galactic wind

    International Nuclear Information System (INIS)

    Lerche, I.; Schlickeiser, R.

    1981-01-01

    The effect of a galactic wind on a radio halo can be best observed at frequencies smaller than about 1 GHz. At higher frequencies static halo models predict the same features as dynamical halo models. External galaxies, which exhibit a break by 0.5 in their high frequency nonthermal integral flux spectrum, are the best candidates for studying the influence of galactic winds on the formation of relativistic electron haloes around these systems. Several such cases are presented

  2. Interactions between massive dark halos and warped disks

    NARCIS (Netherlands)

    Kuijken, K; Persic, M; Salucci, P

    1997-01-01

    The normal mode theory for warping of galaxy disks, in which disks are assumed to be tilted with respect to the equator of a massive, flattened dark halo, assumes a rigid, fixed halo. However, consideration of the back-reaction by a misaligned disk on a massive particle halo shows there to be strong

  3. The Mass and Absorption Columns of Galactic Gaseous Halos

    Science.gov (United States)

    Qu, Zhijie; Bregman, Joel N.

    2018-01-01

    The gaseous halo surrounding the galaxy is a reservoir for the gas on the galaxy disk, supplying materials for the star formation. We developed a gaseous halo model connecting the galactic disk and the gaseous halo by assuming the star formation rate is equal to the radiative cooling rate. Besides the single-phase collisional gaseous halo, we also consider the photoionization effect and a time-independent cooling model that assumes the mass cooling rate is constant over all temperatures. The photoionization dominates the low mass galaxy and the outskirts of the massive galaxy due to the low-temperature or low-density nature. The multi-phase cooling model dominates the denser region within the cooling radius, where the efficient radiative cooling must be included. Applying these two improvements, our model can reproduce the most of observed high ionization state ions (i.e., O VI, O VII, Ne VIII and Mg X). Our models show that the O VI column density is almost a constant of around 10^14 cm^-2 over a wide stellar mass from M_\\star ~10^8 M_Sun to 10^11 M_Sun, which is constant with current observations. This model also implies the O VI is photoionized for the galaxy with a halo mass fraction function of the EAGLE simulation. Finally, our model predicts plateaus of the Ne VIII and the Mg X column densities above the sub-L^* galaxy, and the possibly detectable O VII and O VIII column densities for low-mass galaxies, which help to determine the required detection limit for the future observations and missions.

  4. The Disk Mass Project: breaking the disk-halo degeneracy

    NARCIS (Netherlands)

    Verheijen, Marc A. W.; Bershady, Matthew A.; Swaters, Rob A.; Andersen, David R.; Westfall, Kyle B.; DE JONG, R. S.

    2007-01-01

    Little is known about the content and distribution of dark matter in spiral galaxies. To break the degeneracy in galaxy rotation curve decompositions, which allows a wide range of dark matter halo density profiles, an independent measure of the mass surface density of stellar disks is needed. Here,

  5. Disk Heating, Galactoseismology, and the Formation of Stellar Halos

    Directory of Open Access Journals (Sweden)

    Kathryn V. Johnston

    2017-08-01

    Full Text Available Deep photometric surveys of the Milky Way have revealed diffuse structures encircling our Galaxy far beyond the “classical” limits of the stellar disk. This paper reviews results from our own and other observational programs, which together suggest that, despite their extreme positions, the stars in these structures were formed in our Galactic disk. Mounting evidence from recent observations and simulations implies kinematic connections between several of these distinct structures. This suggests the existence of collective disk oscillations that can plausibly be traced all the way to asymmetries seen in the stellar velocity distribution around the Sun. There are multiple interesting implications of these findings: they promise new perspectives on the process of disk heating; they provide direct evidence for a stellar halo formation mechanism in addition to the accretion and disruption of satellite galaxies; and, they motivate searches of current and near-future surveys to trace these oscillations across the Galaxy. Such maps could be used as dynamical diagnostics in the emerging field of “Galactoseismology”, which promises to model the history of interactions between the Milky Way and its entourage of satellites, as well examine the density of our dark matter halo. As sensitivity to very low surface brightness features around external galaxies increases, many more examples of such disk oscillations will likely be identified. Statistical samples of such features not only encode detailed information about interaction rates and mergers, but also about long sought-after dark matter halo densities and shapes. Models for the Milky Way’s own Galactoseismic history will therefore serve as a critical foundation for studying the weak dynamical interactions of galaxies across the universe.

  6. Possible existence of wormholes in the galactic halo region

    Energy Technology Data Exchange (ETDEWEB)

    Rahaman, Farook [Jadavpur University, Department of Mathematics, Kolkata, West Bengal (India); Kuhfittig, P.K.F. [Milwaukee School of Engineering, Department of Mathematics, Milwaukee, WI (United States); Ray, Saibal [Government College of Engineering and Ceramic Technology, Department of Physics, Kolkata, West Bengal (India); Islam, Nasarul [Danga High Madrasah, Department of Mathematics, Kolkata, West Bengal (India)

    2014-02-15

    Two observational results, the density profile from simulations performed in the ΛCDM scenario and the observed flat galactic rotation curves, are taken as input with the aim of showing that the galactic halo possesses some of the characteristics needed to support traversable wormholes. This result should be sufficient to provide an incentive for scientists to seek observational evidence for wormholes in the galactic halo region. (orig.)

  7. Is there dust in galactic haloes

    International Nuclear Information System (INIS)

    Greenberg, J.M.; Ferrini, F.; Pisa Univ.; Barsella, B.; Aiello, S.

    1987-01-01

    The ubiquitous presence of dust within the disks of spiral galaxies is well established. The authors predict that the presence of dust in these regions may be revealed in bright edge-on galaxies, especially by using the polarization of the scattered light from the symmetric lanes. The detection of scattered light above the galactic plane may be an indicator that the parent galaxy has not suffered close encounters with other galaxies at least within the timescale required to establish the dust layers. (author)

  8. Accretion disks in active galactic nuclei

    International Nuclear Information System (INIS)

    Shields, G.A.

    1989-01-01

    Active galactic nuclei (AGN) have taunted astrophysicists for a quarter century. How do these objects produce huge luminosities---in some cases, far outshining our galaxy---from a region perhaps no larger than the solar system? Accretion onto supermassive black holes has been widely considered the best buy in theories of AGN. Much work has gone into accretion disk theory, searches for black holes in galactic nuclei, and observational tests. These efforts have not proved the disk model, but there is progress. Evidence for black holes in the nuclei of nearby galaxies is provided by observations of stellar velocities, and radiation from the disk's hot surface may be observed in the ultraviolet (UV) and neighboring spectral bands. In the review, the author describe some of the recent work on accretion disks in AGN, with an emphasis on points of contact between theory and observation

  9. Rotation of gas above the galactic disk

    International Nuclear Information System (INIS)

    Gvaramadze, V.V.; Lominadze, D.G.

    1988-01-01

    The galactic disk is modeled by an oblate spheroid with confocal spherodial isodensity surfaces. An explicit analytic expression is found for the angular velocity of the gas outside the disk. The parameters of a three-component model of a spiral galaxy (oblate spheroid with central hole, bulge, and massive corona) are chosen in such a way as to obtain in the disk a two-hump rotation curve (as in the Galaxy, M 31, and M 81). It is shown that at heights absolute value z ≤ 2 kpc the gas rotates in the same manner as the disk. However, at greater heights the rotation curve ceases to have two humps. Allowance for the pressure gradient of the gas slightly changes the rotation curve directly above the disk (r r/sub disk/)

  10. The effect of radial migration on galactic disks

    International Nuclear Information System (INIS)

    Vera-Ciro, Carlos; D'Onghia, Elena; Navarro, Julio; Abadi, Mario

    2014-01-01

    We study the radial migration of stars driven by recurring multi-arm spiral features in an exponential disk embedded in a dark matter halo. The spiral perturbations redistribute angular momentum within the disk and lead to substantial radial displacements of individual stars, in a manner that largely preserves the circularity of their orbits and that results, after 5 Gyr (∼40 full rotations at the disk scale length), in little radial heating and no appreciable changes to the vertical or radial structure of the disk. Our results clarify a number of issues related to the spatial distribution and kinematics of migrators. In particular, we find that migrators are a heavily biased subset of stars with preferentially low vertical velocity dispersions. This 'provenance bias' for migrators is not surprising in hindsight, for stars with small vertical excursions spend more time near the disk plane, and thus respond more readily to non-axisymmetric perturbations. We also find that the vertical velocity dispersion of outward migrators always decreases, whereas the opposite holds for inward migrators. To first order, newly arrived migrators simply replace stars that have migrated off to other radii, thus inheriting the vertical bias of the latter. Extreme migrators might therefore be recognized, if present, by the unexpectedly small amplitude of their vertical excursions. Our results show that migration, understood as changes in angular momentum that preserve circularity, can strongly affect the thin disk, but cast doubts on models that envision the Galactic thick disk as a relic of radial migration.

  11. Chemical evolution of the galactic disk

    International Nuclear Information System (INIS)

    Wyse, R.F.G.; Gilmore, G.

    1987-01-01

    The distribution of enriched material in the stars and gas of their Galaxy contains information pertaining to the chemical evolution of the Milky Way from its formation epoch to the present day, and provides general constraints on theories of galaxy formation. The separate stellar components of the Galaxy cannot readily be understood if treated in isolation, but a reasonably self-consistent model for Galactic chemical evolution may be found if one considers together the chemical properties of the extreme spheroid, thick disk and thin disk populations of the Galaxy. The three major stellar components of the Galaxy are characterized by their distinct spatial distributions, metallicity structure, and kinematics, with the newly-identified thick disk being approximately three times more massive than the classical metal-poor, non-rotating extreme spheroid. Stellar evolution in the thick disk straightforwardly provides the desired pre-enrichment for resolution of the thin disk G dwarf problem

  12. The gamma-ray-flux PDF from galactic halo substructure

    International Nuclear Information System (INIS)

    Lee, Samuel K.; Ando, Shin'ichiro; Kamionkowski, Marc

    2009-01-01

    One of the targets of the recently launched Fermi Gamma-ray Space Telescope is a diffuse gamma-ray background from dark-matter annihilation or decay in the Galactic halo. N-body simulations and theoretical arguments suggest that the dark matter in the Galactic halo may be clumped into substructure, rather than smoothly distributed. Here we propose the gamma-ray-flux probability distribution function (PDF) as a probe of substructure in the Galactic halo. We calculate this PDF for a phenomenological model of halo substructure and determine the regions of the substructure parameter space in which the PDF may be distinguished from the PDF for a smooth distribution of dark matter. In principle, the PDF allows a statistical detection of substructure, even if individual halos cannot be detected. It may also allow detection of substructure on the smallest microhalo mass scales, ∼ M ⊕ , for weakly-interacting massive particles (WIMPs). Furthermore, it may also provide a method to measure the substructure mass function. However, an analysis that assumes a typical halo substructure model and a conservative estimate of the diffuse background suggests that the substructure PDF may not be detectable in the lifespan of Fermi in the specific case that the WIMP is a neutralino. Nevertheless, for a large range of substructure, WIMP annihilation, and diffuse background models, PDF analysis may provide a clear signature of substructure

  13. Dynamical behaviour of gaseous halo in a disk galaxy

    International Nuclear Information System (INIS)

    Ikeuchi, S.; Habe, A.

    1981-01-01

    Assuming that the gas in the halo of a disk galaxy is supplied from the disk as a hot gas, the authors have studied its dynamical and thermal behaviour by means of a time dependent, two-dimensional hydrodynamic code. They suppose the following boundary conditions at the disk. (i) The hot gas with the temperature Tsub(d) and the density nsub(d) is uniform at r=4-12 kpc in the disk and it is time independent. (ii) This hot gas rotates with the stellar disk in the same velocity. (iii) This hot gas can escape freely from the disk to the halo. These conditions will be verified if the filling factor of hot gas is so large as f=0.5-0.8, as proposed by McKee and Ostriker (1977). The gas motion in the halo has been studied for wider ranges of gas temperature and its density at the disk than previously studied. At the same time, the authors have clarified the observability of various types of gaseous haloes and discuss the roles of gaseous halo on the evolution of galaxies. (Auth.)

  14. Two chemically similar stellar overdensities on opposite sides of the plane of the Galactic disk.

    Science.gov (United States)

    Bergemann, Maria; Sesar, Branimir; Cohen, Judith G; Serenelli, Aldo M; Sheffield, Allyson; Li, Ting S; Casagrande, Luca; Johnston, Kathryn V; Laporte, Chervin F P; Price-Whelan, Adrian M; Schönrich, Ralph; Gould, Andrew

    2018-03-15

    Our Galaxy is thought to have an active evolutionary history, dominated over the past ten billion years or so by star formation, the accretion of cold gas and, in particular, the merging of clumps of baryonic and dark matter. The stellar halo-the faint, roughly spherical component of the Galaxy-reveals rich 'fossil' evidence of these interactions, in the form of stellar streams, substructures and chemically distinct stellar components. The effects of interactions with dwarf galaxies on the content and morphology of the Galactic disk are still being explored. Recent studies have identified kinematically distinct stellar substructures and moving groups of stars in our Galaxy, which may have extragalactic origins. There is also mounting evidence that stellar overdensities (regions with greater-than-average stellar density) at the interface between the outer disk and the halo could have been caused by the interaction of a dwarf galaxy with the disk. Here we report a spectroscopic analysis of 14 stars from two stellar overdensities, each lying about five kiloparsecs above or below the Galactic plane-locations suggestive of an association with the stellar halo. We find that the chemical compositions of these two groups of stars are almost identical, both within and between these overdensities, and closely match the abundance patterns of stars in the Galactic disk. We conclude that these stars came from the disk, and that the overdensities that they are part of were created by tidal interactions of the disk with passing or merging dwarf galaxies.

  15. Chemical Cartography. I. A Carbonicity Map of the Galactic Halo

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Sun; Kim, Young Kwang [Department of Astronomy and Space Science, Chungnam National University, Daejeon 34134 (Korea, Republic of); Beers, Timothy C.; Placco, Vinicius; Yoon, Jinmi [Department of Physics and JINA Center for the Evolution of the Elements, University of Notre Dame, Notre Dame, IN 46556 (United States); Carollo, Daniela [Research School of Astronomy and Astrophysics, The Australian National University, Canberra, ACT 2611 (Australia); Masseron, Thomas [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Jung, Jaehun, E-mail: youngsun@cnu.ac.kr [Department of Astronomy, Space Science, and Geology, Chungnam National University, Daejeon 34134 (Korea, Republic of)

    2017-02-10

    We present the first map of carbonicity, [C/Fe], for the halo system of the Milky Way, based on a sample of over 100,000 main-sequence turnoff stars with available spectroscopy from the Sloan Digital Sky Survey. This map, which explores distances up to 15 kpc from the Sun, reveals clear evidence for the dual nature of the Galactic halo, based on the spatial distribution of stellar carbonicity. The metallicity distribution functions of stars in the inner- and outer-halo regions of the carbonicity map reproduce those previously argued to arise from contributions of the inner- and outer-halo populations, with peaks at [Fe/H] = −1.5 and −2.2, respectively. From consideration of the absolute carbon abundances for our sample, A (C), we also confirm that the carbon-enhanced metal-poor (CEMP) stars in the outer-halo region exhibit a higher frequency of CEMP-no stars (those with no overabundances of heavy neutron-capture elements) than of CEMP- s stars (those with strong overabundances of elements associated with the s -process), whereas the stars in the inner-halo region exhibit a higher frequency of CEMP- s stars. We argue that the contrast in the behavior of the CEMP-no and CEMP- s fractions in these regions arises from differences in the mass distributions of the mini-halos from which the stars of the inner- and outer-halo populations formed, which gives rise in turn to the observed dichotomy of the Galactic halo.

  16. Binary White Dwarfs in the Galactic Halo

    NARCIS (Netherlands)

    van Oirschot, Pim; Nelemans, Gijs; Helmi, Amina; Starkenburg, Else; Pols, Onno; Brown, Anthony G. A.

    We use the stellar population synthesis code SeBa (Portegies Zwart & Verbunt (1996), Toonen, Nelemans & Portegies Zwart (2012)) to study the halo white dwarf population. Here we assume a Kroupa initial mass function and compare 4 models, varying two parameters: the star formation (SF) history of the

  17. Phase models of galaxies consisting of disk and halo

    International Nuclear Information System (INIS)

    Osipkov, L.P.; Kutuzov, S.A.

    1987-01-01

    A method of finding the phase density of a two-component model of mass distribution is developed. The equipotential surfaces and the potential law are given. The equipotentials are lenslike surfaces with a sharp edge in the equatorial plane, which provides the existence of an imbedded thin disk in halo. The equidensity surfaces of the halo coincide with the equipotentials. Phase models for the halo and the disk are constructed separately on the basis of spatial and surface mass densities by solving the corresponding integral equations. In particular the models for the halo with finite dimensions can be constructed. The even part of the phase density in respect to velocities is only found. For the halo it depends on the energy integral as a single argument

  18. Direct evidence for a massive galactic halo

    International Nuclear Information System (INIS)

    Hawkins, M.R.S.

    1983-01-01

    The discovery of a very distant galactic RR Lyrae star, R15 is reported. Spectroscopic observations of the object show that it has a high negative radial velocity, implying a lower limit to the mass of the galaxy of 1.4 x 10 12 Msun. (author)

  19. THE EDGE OF THE YOUNG GALACTIC DISK

    International Nuclear Information System (INIS)

    Carraro, Giovanni; Vazquez, Ruben A.; Costa, Edgardo; Perren, Gabriel; Moitinho, Andre

    2010-01-01

    In this work, we report and discuss the detection of two distant diffuse stellar groups in the third Galactic quadrant. They are composed of young stars, with spectral types ranging from late O to late B, and lie at galactocentric distances between 15 and 20 kpc. These groups are located in the area of two cataloged open clusters (VdB-Hagen 04 and Ruprecht 30), projected toward the Vela-Puppis constellations, and within the core of the Canis Major overdensity. Their reddening and distances have been estimated by analyzing their color-color and color-magnitude diagrams, derived from deep UBV photometry. The existence of young star aggregates at such extreme distances from the Galactic center challenges the commonly accepted scenario in which the Galactic disk has a sharp cutoff at about 14 kpc from the Galactic center and indicates that it extends to much greater distances (as also supported by the recent detection of CO molecular complexes well beyond this distance). While the groups we find in the area of Ruprecht 30 are compatible with the Orion and Norma-Cygnus spiral arms, respectively, the distant group we identify in the region of VdB-Hagen 04 lies in the external regions of the Norma-Cygnus arm, at a galactocentric distance (∼20 kpc) where no young stars have been detected so far in the optical.

  20. A New Determination of the Luminosity Function of the Galactic Halo.

    Science.gov (United States)

    Dawson, Peter Charles

    The luminosity function of the galactic halo is determined by subtracting from the observed numbers of proper motion stars in the LHS Catalogue the expected numbers of main-sequence, degenerate, and giant stars of the disk population. Selection effects are accounted for by Monte Carlo simulations based upon realistic colour-luminosity relations and kinematic models. The catalogue is shown to be highly complete, and a calibration of the magnitude estimates therein is presented. It is found that, locally, the ratio of disk to halo material is close to 950, and that the mass density in main sequence and subgiant halo stars with 3 account the possibility of a moderate rate of halo rotation, it is argued that the total density does not much exceed 5 x 10('-5) M(,o) pc('-3), in which case the total mass interior to the sun is of the order of 5 x 10('8) M(,o) for a density distribution which projects to a de Vaucouleurs r(' 1/4) law. It is demonstrated that if the Wielen luminosity function is a faithful representation of the stellar distribution in the solar neighbourhood, then the observed numbers of large proper motion stars are inconsistent with the presence of an intermediate popula- tion at the level, and with the kinematics advocated recently by Gilmore and Reid. The initial mass function (IMF) of the halo is considered, and weak evidence is presented that its slope is at least not shallower than that of the disk population IMF. A crude estimate of the halo's age, based on a comparison of the main sequence turnoff in the reduced proper motion diagram with theoretical models is obtained; a tentative lower limit is 15 Gyr with a best estimate of between 15 and 18 Gyr. Finally, the luminosity function obtained here is compared with those determined in other investigations.

  1. Phase models of galaxies consisting of a disk and halo

    International Nuclear Information System (INIS)

    Osipkov, L.P.; Kutuzov, S.A.

    1988-01-01

    A method is developed for finding the phase density of a two-component model of a distribution of masses. The equipotential surfaces and potential law are given. The equipotentials are lenslike surfaces with a sharp edge in the equatorial plane, this ensuring the existence of a vanishingly thin embedded disk. The equidensity surfaces of the halo coincide with the equipotentials. Phase models are constructed separately for the halo and for the disk on the basis of the spatial and surface mass densities by the solution of the corresponding integral equations. In particular, models with a halo having finite dimensions can be constructed. For both components, the part of the phase density even with respect to the velocities is found. For the halo, it depends only on the energy integral. Two examples, for which exact solutions are found, are considered

  2. Unmixing the Galactic halo with RR Lyrae tagging

    Science.gov (United States)

    Belokurov, V.; Deason, A. J.; Koposov, S. E.; Catelan, M.; Erkal, D.; Drake, A. J.; Evans, N. W.

    2018-06-01

    We show that tagging RR Lyrae stars according to their location in the period-amplitude diagram can be used to shed light on the genesis of the Galactic stellar halo. The mixture of RR Lyrae of ab type, separated into classes along the lines suggested by Oosterhoff, displays a strong and coherent evolution with Galactocentric radius. The change in the RR Lyrae composition appears to coincide with the break in the halo's radial density profile at ˜25 kpc. Using simple models of the stellar halo, we establish that at least three different types of accretion events are necessary to explain the observed RRab behaviour. Given that there exists a correlation between the RRab class fraction and the total stellar content of a dwarf satellite, we hypothesize that the field halo RRab composition is controlled by the mass of the progenitor contributing the bulk of the stellar debris at the given radius. This idea is tested against a suite of cosmological zoom-in simulations of Milky Way-like stellar halo formation. Finally, we study some of the most prominent stellar streams in the Milky Way halo and demonstrate that their RRab class fractions follow the trends established previously.

  3. THE SEGUE K GIANT SURVEY. III. QUANTIFYING GALACTIC HALO SUBSTRUCTURE

    Energy Technology Data Exchange (ETDEWEB)

    Janesh, William; Morrison, Heather L.; Ma, Zhibo; Harding, Paul [Department of Astronomy, Case Western Reserve University, Cleveland, OH 44106 (United States); Rockosi, Constance [UCO/Lick Observatory, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Starkenburg, Else [Department of Physics and Astronomy, University of Victoria, P.O. Box 1700, STN CSC, Victoria BC V8W 3P6 (Canada); Xue, Xiang Xiang; Rix, Hans-Walter [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Beers, Timothy C. [Department of Physics and JINA Center for the Evolution of the Elements, University of Notre Dame, Notre Dame, IN 46556 (United States); Johnson, Jennifer [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Lee, Young Sun [Department of Astronomy and Space Science, Chungnam National University, Daejeon 34134 (Korea, Republic of); Schneider, Donald P. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States)

    2016-01-10

    We statistically quantify the amount of substructure in the Milky Way stellar halo using a sample of 4568 halo K giant stars at Galactocentric distances ranging over 5–125 kpc. These stars have been selected photometrically and confirmed spectroscopically as K giants from the Sloan Digital Sky Survey’s Sloan Extension for Galactic Understanding and Exploration project. Using a position–velocity clustering estimator (the 4distance) and a model of a smooth stellar halo, we quantify the amount of substructure in the halo, divided by distance and metallicity. Overall, we find that the halo as a whole is highly structured. We also confirm earlier work using blue horizontal branch (BHB) stars which showed that there is an increasing amount of substructure with increasing Galactocentric radius, and additionally find that the amount of substructure in the halo increases with increasing metallicity. Comparing to resampled BHB stars, we find that K giants and BHBs have similar amounts of substructure over equivalent ranges of Galactocentric radius. Using a friends-of-friends algorithm to identify members of individual groups, we find that a large fraction (∼33%) of grouped stars are associated with Sgr, and identify stars belonging to other halo star streams: the Orphan Stream, the Cetus Polar Stream, and others, including previously unknown substructures. A large fraction of sample K giants (more than 50%) are not grouped into any substructure. We find also that the Sgr stream strongly dominates groups in the outer halo for all except the most metal-poor stars, and suggest that this is the source of the increase of substructure with Galactocentric radius and metallicity.

  4. Two chemically similar stellar overdensities on opposite sides of the plane of the Galactic disk

    Science.gov (United States)

    Bergemann, Maria; Sesar, Branimir; Cohen, Judith G.; Serenelli, Aldo M.; Sheffield, Allyson; Li, Ting S.; Casagrande, Luca; Johnston, Kathryn V.; Laporte, Chervin F. P.; Price-Whelan, Adrian M.; Schönrich, Ralph; Gould, Andrew

    2018-03-01

    Our Galaxy is thought to have an active evolutionary history, dominated over the past ten billion years or so by star formation, the accretion of cold gas and, in particular, the merging of clumps of baryonic and dark matter. The stellar halo—the faint, roughly spherical component of the Galaxy—reveals rich ‘fossil’ evidence of these interactions, in the form of stellar streams, substructures and chemically distinct stellar components. The effects of interactions with dwarf galaxies on the content and morphology of the Galactic disk are still being explored. Recent studies have identified kinematically distinct stellar substructures and moving groups of stars in our Galaxy, which may have extragalactic origins. There is also mounting evidence that stellar overdensities (regions with greater-than-average stellar density) at the interface between the outer disk and the halo could have been caused by the interaction of a dwarf galaxy with the disk. Here we report a spectroscopic analysis of 14 stars from two stellar overdensities, each lying about five kiloparsecs above or below the Galactic plane—locations suggestive of an association with the stellar halo. We find that the chemical compositions of these two groups of stars are almost identical, both within and between these overdensities, and closely match the abundance patterns of stars in the Galactic disk. We conclude that these stars came from the disk, and that the overdensities that they are part of were created by tidal interactions of the disk with passing or merging dwarf galaxies.

  5. RESONANT CLUMPING AND SUBSTRUCTURE IN GALACTIC DISKS

    International Nuclear Information System (INIS)

    Molloy, Matthew; Smith, Martin C.; Shen, Juntai; Evans, N. Wyn

    2015-01-01

    We describe a method to extract resonant orbits from N-body simulations, exploiting the fact that they close in frames rotating with a constant pattern speed. Our method is applied to the N-body simulation of the Milky Way by Shen et al. This simulation hosts a massive bar, which drives strong resonances and persistent angular momentum exchange. Resonant orbits are found throughout the disk, both close to the bar and out to the very edges of the disk. Using Fourier spectrograms, we demonstrate that the bar is driving kinematic substructure even in the very outer parts of the disk. We identify two major orbit families in the outskirts of the disk, one of which makes significant contributions to the kinematic landscape, namely, the m:l = 3:−2 family, resonating with the bar. A mechanism is described that produces bimodal distributions of Galactocentric radial velocities at selected azimuths in the outer disk. It occurs as a result of the temporal coherence of particles on the 3:−2 resonant orbits, which causes them to arrive simultaneously at pericenter or apocenter. This resonant clumping, due to the in-phase motion of the particles through their epicycle, leads to both inward and outward moving groups that belong to the same orbital family and consequently produce bimodal radial velocity distributions. This is a possible explanation of the bimodal velocity distributions observed toward the Galactic anticenter by Liu et al. Another consequence is that transient overdensities appear and dissipate (in a symmetric fashion), resulting in a periodic pulsing of the disk’s surface density

  6. RESONANT CLUMPING AND SUBSTRUCTURE IN GALACTIC DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Molloy, Matthew [Kavli Institute for Astronomy and Astrophysics, Peking University, Yi He Yuan Lu 5, Hai Dian Qu, Beijing 100871 (China); Smith, Martin C.; Shen, Juntai [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China); Evans, N. Wyn, E-mail: matthewmolloy@gmail.com, E-mail: msmith@shao.ac.cn, E-mail: jshen@shao.ac.cn, E-mail: nwe@ast.cam.ac.uk [Institute of Astronomy, Madingley Road, Cambridge, CB3 0HA (United Kingdom)

    2015-05-10

    We describe a method to extract resonant orbits from N-body simulations, exploiting the fact that they close in frames rotating with a constant pattern speed. Our method is applied to the N-body simulation of the Milky Way by Shen et al. This simulation hosts a massive bar, which drives strong resonances and persistent angular momentum exchange. Resonant orbits are found throughout the disk, both close to the bar and out to the very edges of the disk. Using Fourier spectrograms, we demonstrate that the bar is driving kinematic substructure even in the very outer parts of the disk. We identify two major orbit families in the outskirts of the disk, one of which makes significant contributions to the kinematic landscape, namely, the m:l = 3:−2 family, resonating with the bar. A mechanism is described that produces bimodal distributions of Galactocentric radial velocities at selected azimuths in the outer disk. It occurs as a result of the temporal coherence of particles on the 3:−2 resonant orbits, which causes them to arrive simultaneously at pericenter or apocenter. This resonant clumping, due to the in-phase motion of the particles through their epicycle, leads to both inward and outward moving groups that belong to the same orbital family and consequently produce bimodal radial velocity distributions. This is a possible explanation of the bimodal velocity distributions observed toward the Galactic anticenter by Liu et al. Another consequence is that transient overdensities appear and dissipate (in a symmetric fashion), resulting in a periodic pulsing of the disk’s surface density.

  7. Searching for ghosts in the galactic halo: What can we learn about the formation of the Galaxy from the stellar halo?

    Science.gov (United States)

    Aguilar, L. A.; Brown, A. G. A.; Velázquez, H.

    2006-06-01

    We study the feasibility of recovering information of remnants of tidally disrupted satellite galaxies in the halo of our Galaxy, using space astrometry from Gaia. This mission will provide a very large data set ( ˜ 10^9 stars) with an unprecedent level of detail in phase space (tens of μs). However, before recovering useful information, sampling biases, observational errors and the stellar galactic background must be taken into account. We present a Monte Carlo simulation of the Gaia catalogue that excludes the galactic disk (|b|criteria must be used. The numerical tool here developed can be employed to test the feasibility of other search criteria.

  8. Confirmation of the Galactic Thick Disk Component by the Basle RGU-and UBV-photometric space densities. II. (Synopsis of 25 years Basle Halo Program; II: Plaut I, NGC 6171, SA 158, M 13)

    International Nuclear Information System (INIS)

    Fenkart, R.

    1989-01-01

    This contribution treats four fields, all with directions pointing into the galactic centre hemisphere (270 0 0 ). The purpose of the comparison-phase of the BHP is to homogeneously compare the three-colour photometrically determined space densities for different luminosity groups of the combined (photometric) populations I and II with the gradients predicted for the involved direction by a representative set of current standard multi-component models for the stellar space distribution in the Galaxy and to evaluate a best-fitting model by a simple quantitative procedure. In no case the existence of a Thick Disk component is ruled out by the findings; in the safer directions it is even slightly indicated, though much less compellingly than in all previous investigations of the model-comparison phase

  9. Accretion disks in active galactic nuclei

    International Nuclear Information System (INIS)

    Begelman, M.C.

    1985-01-01

    The innermost regions of the central engines in active galactic nuclei are examined, and it is shown how different modes of accretion with angular momentum may account for the diverse manifestations of activity in the nuclei of galaxies. These modes are subsequently compared with the observed properties of quasars, Type I Seyferts, and radio galaxies. It was found that the qualitative features of an accretion flow orbiting a massive black hole depend principally on the ratio of the actual accretion rate to the Eddington accretion rate. For a value of this ratio much less than one, the flow may become an ion torus supported by gas pressure; for a value much greater than one, the flow traps its radiative output and becomes an inefficient radiation torus. At intermediate values, the flow may settle into a thin accretion disk. 62 references

  10. The LAMOST stellar spectroscopic survey and the Galactic halo

    International Nuclear Information System (INIS)

    Liu Chao; Deng Licai

    2015-01-01

    The formation and evolution of galaxies is an extremely important and fundamental question in modern astrophysics. Among the galaxies, the Milky Way is a very special sample not only because we live in it, but also because it is the only one in which we can carefully and individually observe its member stars. It has been confirmed that the Galactic halo, including both the stellar spheroid and the dark matter halo, contains fairly complicated structures, from which the overall shape, formation, and evolutionary history of our Galaxy can be unveiled. Moreover, some very rare and special stars in the Milky Way can be used as tracers to indirectly detect the core region of the Galaxy around the central super-massive black hole, which is also a hot topic of astrophysics. The LAMOST survey of the Milky Way will collect millions of stellar spectra at low wavelength resolution, making it the largest of such projects throughout the world. Its data base is very suitable for the study of the structure and evolution of the Milky Way. In this article, we report our on-going studies on the Galactic halo with LAMOST data, and present some early scientific results. (authors)

  11. White dwarf stars and the age of the Galactic disk

    Science.gov (United States)

    Wood, M. A.

    1990-01-01

    The history of the Galaxy is written in its oldest stars, the white dwarf (WD) stars. Significant limits can be placed on both the Galactic age and star formation history. A wide range of input WD model sequences is used to derive the current limits to the age estimates suggested by fitting to the observed falloff in the WD luminosity function. The results suggest that the star formation rate over the history of the Galaxy has been relatively constant, and that the disk age lies in the range 6-12 billion years, depending upon the assumed structure of WD stars, and in particular on the core composition and surface helium layer mass. Using plausible mixed C/O core input models, the estimates for the disk age range from 8-10.5 Gyr, i.e.,sustantially younger than most age estimates for the halo globular clusters. After speculating on the significance of the results, expected observational and theoretical refinements which will further enhance the reliability of the method are discussed.

  12. NEW CONSTRAINTS ON THE GALACTIC HALO MAGNETIC FIELD USING ROTATION MEASURES OF EXTRAGALACTIC SOURCES TOWARD THE OUTER GALAXY

    International Nuclear Information System (INIS)

    Mao, S. A.; McClure-Griffiths, N. M.; Gaensler, B. M.; Brown, J. C.; Van Eck, C. L.; Stil, J. M.; Taylor, A. R.; Haverkorn, M.; Kronberg, P. P.; Shukurov, A.

    2012-01-01

    We present a study of the Milky Way disk and halo magnetic field, determined from observations of Faraday rotation measure (RM) toward 641 polarized extragalactic radio sources in the Galactic longitude range 100°-117°, within 30° of the Galactic plane. For |b| –2 and –62 ± 5 rad m –2 in the northern and southern Galactic hemispheres, respectively. If the RM distribution is a signature of the large-scale field parallel to the Galactic plane, then this suggests that the halo magnetic field toward the outer Galaxy does not reverse direction across the mid-plane. The variation of RM as a function of Galactic latitude in this longitude range is such that RMs become more negative at larger |b|. This is consistent with an azimuthal magnetic field of strength 2 μG (7 μG) at a height 0.8-2 kpc above (below) the Galactic plane between the local and the Perseus spiral arm. We propose that the Milky Way could possess spiral-like halo magnetic fields similar to those observed in M51.

  13. Orbit elements and kinematics of the halo stars and the old disk population: evidence for active phases in the evolution of the Galaxy

    International Nuclear Information System (INIS)

    Marsakov, V.A.; Suchkov, A.A.

    1978-01-01

    The distributions of orbits eccentricities and of angular momenta for the halo stars and for the old disk population are considered. The distributions have gaps separating the halo from the disk and diving the halo population into three groups. From the point of view of star formation during the collapse at the earliy stages of evolution the gaps evidence that threre were in the Galaxy long periods of suppression of star formation. The kinematics and the orbit elements of the halo stars and of the old disk population allow to conclude that there was no significant relaxation in the halo; the halo subsystems are not stationary, they perform radial oscillations with respect to the galactic centre; the velocity dispersion in the galactic rotation direction for the halo stars having the same age does not exceed 20-40 km/s; the dispersion of the velocity component along the galactic radius is symmetrically higher for the subsystems with a greater eccentrically and reaches 215 km/s for the stars with the greatest eccentricaities; the sing of the angular momentum in the protogalactic gas cloud probably changed at some distance form the galactic centre

  14. Gravitational lensing of wormholes in the galactic halo region

    Energy Technology Data Exchange (ETDEWEB)

    Kuhfittig, Peter K.F. [Milwaukee School of Engineering, Department of Mathematics, Milwaukee, WI (United States)

    2014-03-15

    A recent study by Rahaman et al. has shown that the galactic halo possesses the necessary properties for supporting traversable wormholes, based on two observational results, the Navarro-Frenk-White density profile and the observed flat rotation curves of galaxies. Using a method for calculating the deflection angle pioneered by V. Bozza, it is shown that the deflection angle diverges at the throat of the wormhole. The resulting photon sphere has a radius of about 0.40 ly. Given the dark-matter background, detection may be possible from past data using ordinary light. (orig.)

  15. Photoionization of the diffuse interstellar medium and galactic halo by OB associtations

    Science.gov (United States)

    Dove, James B.; Shull, J. Michael

    1994-01-01

    Assuming smoothly varying H I distributions in te Galactic disk, we have calculated the geometry of diffuse II regions due to OB associations in the Galactic plane. Near the solar circle, OB associations with a Lyman continuum (Lyc) photon luminosity Psi(sub Lyc) = 3.3 x 10(exp 7) cm(exp -2) s(exp -1), produce H II regions that are density bounded in the vertical direction (H II chimneys) allowing Lyc to escape the gaseous disk and penetrate into the Galactic halo. We provide analytic formulae for the Lyc escape fraction as functions of S(sub 0) O-star catalog of Garmany and a new Lyc stellar stellar Lyc stellar flux calibration, we find a production rate of Lyc photons by OB associations within 2.5 kpc of Psi(sub Lyc) = 3.3 x 10(exp 7) cm(exp -2) s(exp -1). Integrating the fraction of Lyc photons that escape the disk over our adopted luminosity function of OB associations, we estimate that approximately 7% of the ionizing photons, or Phi(sub Lyc) = 2.3 x 10(exp 6) cm(exp -2) s(exp -1), escape each side of the H I disk layer and penetrate the diffuse ionized medium ('Reynolds layer'). This flux is sufficient to explain the potoionization of this, although we have not constructed a model for the observed H-alpha emission and pulsar dispersion measures that is fully consistent with the absorption rate of Lyc in the H II layer. Since our quiescent model does not account for the effects of dynamic chimneys and superbubbles, which should enhance Lyc escape, we conclude the O stars are the probable source of ionizing radiation for the Reynolds layer. For a random distribution of OB associations throughout the disk, the Lyc flux is nearly uniform for heights Z is greater than approximately 0.8 kpc above the midplane.

  16. Indications of M-Dwarf Deficits in the Halo and Thick Disk of the Galaxy

    Science.gov (United States)

    Konishi, Mihoko; Shibai, Hiroshi; Sumi, Takahiro; Fukagawa, Misato; Matsuo, Taro; Samland, Matthias S.; Yamamoto, Kodai; Sudo, Jun; Itoh, Yoichi; Arimoto, Nobuo; hide

    2014-01-01

    We compared the number of faint stars detected in deep survey fields with the current stellar distribution model of the Galaxy and found that the detected number in the H band is significantly smaller than the predicted number. This indicates that M-dwarfs, the major component, are fewer in the halo and the thick disk. We used archived data of several surveys in both the north and south field of GOODS (Great Observatories Origins Deep Survey), MODS in GOODS-N, and ERS and CANDELS in GOODS-S. The number density of M-dwarfs in the halo has to be 20+/-13% relative to that in the solar vicinity, in order for the detected number of stars fainter than 20.5 mag in the H band to match with the predicted value from the model. In the thick disk, the number density of M-dwarfs must be reduced (52+/-13%) or the scale height must be decreased ( approx. 600 pc). Alternatively, overall fractions of the halo and thick disks can be significantly reduced to achieve the same effect, because our sample mainly consists of faint M-dwarfs. Our results imply that the M-dwarf population in regions distant from the Galactic plane is significantly smaller than previously thought. We then discussed the implications this has on the suitability of the model predictions for the prediction of non-companion faint stars in direct imaging extrasolar planet surveys by using the best-fit number densities.

  17. Transport of gas from disk to halo in starforming galaxies

    Directory of Open Access Journals (Sweden)

    Shevchenko Mikhail G.

    2017-12-01

    Full Text Available Using 3-D gas dynamic simulations, we study the supernova (SNe driven transport of gas from the galactic disk. We assume that SNe are distributed randomly and uniformly in the galactic plane and we consider sufficiently high volume SNe rates that are typical for starforming galaxies: νSN = (0.3 − 3 × 10−11 pc−3 yr−1. We found that under such conditions, a major part of gas locked initially in the galactic disk is transported up to ∼ 1 − 5 stellar scale heights within several millions years. As expected gas transport is more efficient in the case of a thinner stellar disk. An decrease/increase of SN rate in the galactic disk with the same stellar scale height leads to an enlarging/shortening of time scale for gas transport. Independent of SN rate, the major fraction of the swept up gas is in the cold phase (T 106 K is elevated to larger heights than cold gas.

  18. DAMA RESULTS: DARK MATTER IN THE GALACTIC HALO

    Directory of Open Access Journals (Sweden)

    R. Bernabei

    2013-12-01

    Full Text Available Experimental efforts and theoretical developmens support that most of the Universe is Dark and a large fraction of it should be made of relic particles; many possibilities are open on their nature and interaction types. In particular, the DAMA/LIBRA experiment at Gran Sasso Laboratory (sensitive mass: ~250 kg is mainly devoted to the investigation of Dark Matter (DM particles in the Galactic halo by exploiting the model independent DM annual modulation signature with higly radiopure Na I(Tl targets. DAMA/LIBRA is the succesor of the first generation DAMA/NaI (sensitive mass: ~100 kg; cumulatively the two experiments have released so far the results obtained by analyzing an exposure of 1.17 t yr, collected over 13 annual cycles. The data show a model independent evidence of the presence of DM particles in the galactic halo at 8.9σ confidence level (C.L.. Some of the already achieved results are shortly reminded, the last upgrade occurred at fall 2010 is mentioned and future perspectives are sumarized.

  19. Gauging the Galactic thick disk with RR Lyrae stars

    Directory of Open Access Journals (Sweden)

    Cruz G.

    2012-02-01

    Full Text Available In this contribution we present results from the QUEST RR Lyrae Survey of the thick disk. The survey spans ~480 sq. deg. at low latitude |b| < 30°, with multi-epoch VRI observations, obtained with the QUEST-I camera at the 1m Jürgen Stock Schmidt telescope located at the National Astronomical Observatory of Venezuela. This constitutes the first deep RR Lyrae survey of the Galactic thick disk conducted at low galactic latitudes, covering simultaneously a large range in radial (8Galactic Plane. The spatial coverage of the survey together with the multi-band multi-epoch photometry allowed for the derivation of the thick disk structural parameters from in situ RR Lyrae stars having accurate distances (errors <7% and individual reddenings derived from each star’s color curve at minimum light. Moreover, the use of RR Lyrae stars as tracers ensures negligible contamination from the Galactic thin disk. We find a thick disk mean scale height hZ = 0.94 ± 0.11kpc and scale length hR = 3.2 ± 0.4kpc, derived from the vertical and radial mean density profiles of RR Lyrae stars. We also find evidence of thick disk flaring and results that may suggest the thick disk radial density profile shows signs of antitruncation. We discuss our findings in the context of recent thick disk formation models.

  20. Confirmation of the Galactic thick disk component by the Basle RGU- and UBV-photometric space densities. Synopsis of 25 years Basle Halo Program. III - RGU + UBV: SA 82, SA 133, SA 57, SA 54

    Science.gov (United States)

    Fenkart, R.

    1989-10-01

    The stars in four fields of the Basle Halo Program (BHP), henceforth called "UBV-fields", had been (photographically) observed in RGU and in UBV, in order to treat their data in both photometric systems with the same stellar-statistical method for the determination of space density gradients, developed by Becker (1%5) for the RGU-fields of the BHP The purpose was to compare the corresponding results in both systems and to obtain an idea about their mutual performance with respect to this method. All four investigations (references in Tab. I) proved it to work about equally well in both systems, if the outcome is measured in terms of a relatively rough criterion, the so-called "mean misidentification-rate per system" (MMRS). In order to obtain a better founded view about the degree of equivalence of both systems with respect to their application for the three-colour photometrical purposes of the Basle programs, we decided to treat the UBV-fields in this third contribution to the present model-comparison synopsis, in RGU and in UBV, too, by comparing the total space densities observed in both systems with the five standard model gradients and according to the comparison method homogeneously used within the "comparison-phase" of the BHP which was initiated by del Rio and Fenkart (1987). In the appendix, as in paper I, the first contribution to this synopsis (Fenkart, 1989a), we give a full description of the comparison method, and the definition of the five standard models for the space density distribution in the Galaxy which are essentially three versions of the Bahcall-Soneira (1980) two-component model. BS II i(i = 1, 2, 3), as well as a three- and a four-component version of the Gilmore-Wyse (1985) model, without and with a Thick Disk component, GW III and GW IV respectively, together with their parameters in table In addition to that, paper I contains a full account of the almost 25 years old history of the BHP, of the motivation for this synopsis and of its

  1. Circum-Galactic Medium in the Halo of Quasars

    Directory of Open Access Journals (Sweden)

    Riccardo Ottolina

    2017-12-01

    Full Text Available The properties of circum-galactic gas in the halo of quasar host galaxies are investigated analyzing Mg II 2800 and C IV 1540 absorption-line systems along the line of sight close to quasars. We used optical spectroscopy of closely aligned pairs of quasars (projected distance ≤ 200 kpc, but at very different redshift obtained at the VLT and Gran Telescopio Canarias to investigate the distribution of the absorbing gas for a sample of quasars at z ~1. Absorption systems of EW ≥0.3 associated with the foreground quasars are revealed up to 200 kpc from the centre of the host galaxy, showing that the structure of the absorbing gas is patchy with a covering fraction quickly decreasing beyond 100 kpc. In this contribution we use optical and near-IR images obtained at VLT to investigate the relations between the properties of the circum-galactic medium of the host galaxies and of the large scale galaxy environments of the foreground quasars.

  2. Palomar 13: An Unusual Stellar System in the Galactic Halo

    Science.gov (United States)

    Côté, Patrick; Djorgovski, S. G.; Meylan, G.; Castro, Sandra; McCarthy, J. K.

    2002-08-01

    We report the first results of a program to study the internal kinematics of globular clusters in the outer halo of the Milky Way. Using the Keck telescope and High Resolution Echelle Spectrometer, we have measured precise radial velocities for 30 candidate red giants in the direction of Palomar 13, an object traditionally cataloged as a compact, low-luminosity globular cluster. We have combined these radial velocities with published proper motion membership probabilities and new CCD photometry from the Keck and Canada-France-Hawaii telescopes to isolate a sample of 21 probable members. We find a systemic velocity of s=24.1+/-0.5 km s-1 and a projected, intrinsic velocity dispersion of σp=2.2+/-0.4 km s-1. Although modest, this dispersion is nevertheless several times larger than that expected for a globular cluster of this luminosity and central concentration. Taken at face value, it implies a mass-to-light ratio of ΥV=40+24-17 based on the best-fit King-Michie model. The surface density profile of Palomar 13 also appears unusual compared to most Galactic globular clusters; depending upon the details of background subtraction and model-fitting, Palomar 13 either contains a substantial population of ``extratidal'' stars, or is considerably more spatially extended than previously suspected. The full surface density profile is equally well fitted by a King-Michie model having a high concentration and large tidal radius, or by a Navarro-Frenk-White model. We examine-and tentatively reject-a number of possible origins for the observed characteristics of Palomar 13 (e.g., velocity ``jitter'' among the red giant branch stars, spectroscopic binary stars, nonstandard mass functions, modified Newtonian dynamics) and conclude that the two leading explanations are either catastrophic heating during a recent perigalacticon passage or the presence of a dark matter halo. The available evidence therefore suggests that Palomar 13 is either a globular cluster that is now in the

  3. NO EVIDENCE FOR A DARK MATTER DISK WITHIN 4 kpc FROM THE GALACTIC PLANE

    International Nuclear Information System (INIS)

    Moni Bidin, C.; Carraro, G.; Mendez, R. A.; Van Altena, W. F.

    2010-01-01

    We estimated the dynamical surface mass density (Σ) at the solar Galactocentric distance between 2 and 4 kpc from the Galactic plane, as inferred from the observed kinematics of the thick disk. We find Σ(z = 2 kpc) = 57.6 ± 5.8 M sun pc -2 , and it shows only a tiny increase in the z range considered by our investigation. We compared our results with the expectations for the visible mass, adopting the most recent estimates in the literature for contributions of the Galactic stellar disk and interstellar medium, and proposed models of the dark matter distribution. Our results match the expectation for the visible mass alone, never differing from it by more than 0.8 M sun pc -2 at any z, and thus we find little evidence for any dark component. We assume that the dark halo could be undetectable with our method, but the dark disk, recently proposed as a natural expectation of the ΛCDM models, should be detected. Given the good agreement with the visible mass alone, models including a dark disk are less likely, but within errors its existence cannot be excluded. In any case, these results put constraints on its properties: thinner models (scale height lower than 4 kpc) reconcile better with our results and, for any scale height, the lower-density models are preferred. We believe that successfully predicting the stellar thick disk properties and a dark disk in agreement with our observations could be a challenging theoretical task.

  4. The Galactic magnetic fields

    International Nuclear Information System (INIS)

    Han Jinlin

    2006-01-01

    A good progress has been made on studies of Galactic magnetic fields in last 10 years. I describe what we want to know about the Galactic magnetic fields, and then review we current knowledge about magnetic fields in the Galactic disk, the Galactic halo and the field strengths. I also listed many unsolved problems on this area

  5. The Interaction of Hot and Cold Gas in the Disk and Halo of Galaxies

    Science.gov (United States)

    Slavin, Jonathan; Salamon, Michael (Technical Monitor)

    2004-01-01

    Most of the thermal energy in the Galaxy and perhaps most of the baryons in the Universe are found in hot (log T approximately 5.5 - 7) gas. Hot gas is detected in the local interstellar medium, in supernova remnants (SNR), the Galactic halo, galaxy clusters and the intergalactic medium (IGM). In our own Galaxy, hot gas exists in large superbubbles up to several hundred pc in diameter that locally dominate the interstellar medium (ISM) and determine its thermal and dynamic evolution. While X-ray observations using ROSAT, Chandra and XMM have allowed us to make dramatic progress in mapping out the morphology of the hot gas and in understanding some of its spectral characteristics, there remain fundamental questions that are unanswered. Chief among these questions is the way that hot gas interacts with cooler phase gas and the effects these interactions have on hot gas energetics. The theoretical investigations we proposed in this grant aim to explore these interactions and to develop observational diagnostics that will allow us to gain much improved information on the evolution of hot gas in the disk and halo of galaxies. The first of the series of investigations that we proposed was a thorough exploration of turbulent mixing layers and cloud evaporation. We proposed to employ a multi-dimensional hydrodynamical code that includes non-equilibrium ionization (NEI), radiative cooling and thermal conduction. These models are to be applied to high velocity clouds in our galactic halo that are seen to have O VI by FUSE (Sembach et ai. 2000) and other clouds for which sufficient constraining observations exist.

  6. The angular clustering of WISE-selected active galactic nuclei: Different halos for obscured and unobscured active galactic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Donoso, E. [Instituto de Ciencias Astronómicas, de la Tierra, y del Espacio (ICATE), 5400 San Juan (Argentina); Yan, Lin [Infrared Processing and Analysis Center, Department of Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Stern, D.; Assef, R. J. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2014-07-01

    We calculate the angular correlation function for a sample of ∼170,000 active galactic nuclei (AGNs) extracted from the Wide-field Infrared Survey Explorer (WISE) catalog, selected to have red mid-IR colors (W1 – W2 > 0.8) and 4.6 μm flux densities brighter than 0.14 mJy). The sample is expected to be >90% reliable at identifying AGNs and to have a mean redshift of (z) = 1.1. In total, the angular clustering of WISE AGNs is roughly similar to that of optical AGNs. We cross-match these objects with the photometric Sloan Digital Sky Survey catalog and distinguish obscured sources with r – W2 > 6 from bluer, unobscured AGNs. Obscured sources present a higher clustering signal than unobscured sources. Since the host galaxy morphologies of obscured AGNs are not typical red sequence elliptical galaxies and show disks in many cases, it is unlikely that the increased clustering strength of the obscured population is driven by a host galaxy segregation bias. By using relatively complete redshift distributions from the COSMOS survey, we find that obscured sources at (z) ∼ 0.9 have a bias of b = 2.9 ± 0.6 and are hosted in dark matter halos with a typical mass of log (M/M {sub ☉} h {sup –1}) ∼ 13.5. In contrast, unobscured AGNs at (z) ∼ 1.1 have a bias of b = 1.6 ± 0.6 and inhabit halos of log (M/M {sub ☉} h {sup –1}) ∼ 12.4. These findings suggest that obscured AGNs inhabit denser environments than unobscured AGNs, and they are difficult to reconcile with the simplest AGN unification models, where obscuration is driven solely by orientation.

  7. Scale Length of the Galactic Thin Disk

    Indian Academy of Sciences (India)

    tribpo

    thin disk density scale length, hR, is rather short (2.7 ± 0.1 kpc). Key words. ... The 2MASS near infrared data provide, for the first time, deep star counts on a ... peaks allows to adjust the spatial extinction law in the model. ... probability that fi.

  8. Self-consistent Bulge/Disk/Halo Galaxy Dynamical Modeling Using Integral Field Kinematics

    Science.gov (United States)

    Taranu, D. S.; Obreschkow, D.; Dubinski, J. J.; Fogarty, L. M. R.; van de Sande, J.; Catinella, B.; Cortese, L.; Moffett, A.; Robotham, A. S. G.; Allen, J. T.; Bland-Hawthorn, J.; Bryant, J. J.; Colless, M.; Croom, S. M.; D'Eugenio, F.; Davies, R. L.; Drinkwater, M. J.; Driver, S. P.; Goodwin, M.; Konstantopoulos, I. S.; Lawrence, J. S.; López-Sánchez, Á. R.; Lorente, N. P. F.; Medling, A. M.; Mould, J. R.; Owers, M. S.; Power, C.; Richards, S. N.; Tonini, C.

    2017-11-01

    We introduce a method for modeling disk galaxies designed to take full advantage of data from integral field spectroscopy (IFS). The method fits equilibrium models to simultaneously reproduce the surface brightness, rotation, and velocity dispersion profiles of a galaxy. The models are fully self-consistent 6D distribution functions for a galaxy with a Sérsic profile stellar bulge, exponential disk, and parametric dark-matter halo, generated by an updated version of GalactICS. By creating realistic flux-weighted maps of the kinematic moments (flux, mean velocity, and dispersion), we simultaneously fit photometric and spectroscopic data using both maximum-likelihood and Bayesian (MCMC) techniques. We apply the method to a GAMA spiral galaxy (G79635) with kinematics from the SAMI Galaxy Survey and deep g- and r-band photometry from the VST-KiDS survey, comparing parameter constraints with those from traditional 2D bulge-disk decomposition. Our method returns broadly consistent results for shared parameters while constraining the mass-to-light ratios of stellar components and reproducing the H I-inferred circular velocity well beyond the limits of the SAMI data. Although the method is tailored for fitting integral field kinematic data, it can use other dynamical constraints like central fiber dispersions and H I circular velocities, and is well-suited for modeling galaxies with a combination of deep imaging and H I and/or optical spectra (resolved or otherwise). Our implementation (MagRite) is computationally efficient and can generate well-resolved models and kinematic maps in under a minute on modern processors.

  9. The Surface Density Profile of the Galactic Disk from the Terminal Velocity Curve

    Science.gov (United States)

    McGaugh, Stacy S.

    2016-01-01

    The mass distribution of the Galactic disk is constructed from the terminal velocity curve and the mass discrepancy-acceleration relation. Mass models numerically quantifying the detailed surface density profiles are tabulated. For R0 = 8 kpc, the models have stellar mass 5 spiral galaxy that obeys scaling relations like the Tully-Fisher relation, the size-mass relation, and the disk maximality-surface brightness relation. The stellar disk is maximal, and the spiral arms are massive. The bumps and wiggles in the terminal velocity curve correspond to known spiral features (e.g., the Centaurus arm is a ˜50% overdensity). The rotation curve switches between positive and negative over scales of hundreds of parsecs. The rms amplitude { }1/2≈ 14 {km} {{{s}}}-1 {{kpc}}-1, implying that commonly neglected terms in the Jeans equations may be nonnegligible. The spherically averaged local dark matter density is ρ0,DM ≈ 0.009 {M}⊙ {{pc}}-3 (0.34 {GeV} {{cm}}-3). Adiabatic compression of the dark matter halo may help reconcile the Milky Way with the c-V200 relation expected in ΛCDM while also helping to mitigate the too-big-to-fail problem, but it remains difficult to reconcile the inner bulge/bar-dominated region with a cuspy halo. We note that NGC 3521 is a near twin to the Milky Way, having a similar luminosity, scale length, and rotation curve.

  10. Wobbling The Galactic Disk with Bombardment of Satellite Galaxies

    Science.gov (United States)

    D'Onghia, Elena

    We propose to assess the effect of impacts of large visible satellite galaxies on a disk, as well as the relevance of the continuing bombardment of the Galactic disk by dark matter clumps as predicted by the current cosmological framework that can wobble the disk, heating it and eventually exciting ragged spiral structures. In particular, we make detailed predictions for observable features such as spiral arms, rings and their associated stars in galactic disks and relate them to the physical processes that drive their formation and evolution in our Milky Way galaxy and nearby spirals. To do this, we will combine analytic methods and numerical simulations that allow us to calculate observables, which we will compare to present and forthcoming observations. Our methodology utilizes a combination of state of the art hydrodynamic simulations of galaxy evolution and multi- wavelength radiative transfer simulations. Our primary goals are: (1) To identify the physical processes that are responsible for spiral structure formation observed in our Milky Way and nearby disk galaxies, from the flocculent to grand- designed spiral galaxies and to provide observable signatures to be compared with data on nearby galaxies combining maps of 24 micron emission (Spitzer) and cold gas, CO (Heracles) and HI (THINGS). (2) To explore different morphologies of spiral galaxies: from the multi-armed galaxies to the Milky Way sized galaxies with few arms. (3) For a Milky Way disk we will assess the effect of impacts of substructures passing through the disk to origin the asymmetry in the number density of stars recently discovered from SDSS and SEGUE data and confirmed from RAVE data. We will also investigate the disk heating in the vertical plane due to the formation of vertical oscillations that are produced by the impact and migration of stars in the disk as consequence of the heating as compared to the classical stellar migration mechanism. (4) We will measure the spiral pattern speed

  11. A two-point correlation function for Galactic halo stars

    NARCIS (Netherlands)

    Cooper, A. P.; Cole, S.; Frenk, C. S.; Helmi, A.

    2011-01-01

    We describe a correlation function statistic that quantifies the amount of spatial and kinematic substructure in the stellar halo. We test this statistic using model stellar halo realizations constructed from the Aquarius suite of six high-resolution cosmological N-body simulations, in combination

  12. Stirring up the dust: a dynamical model for halo-like dust clouds in transitional disks

    NARCIS (Netherlands)

    Krijt, S.; Dominik, C.

    2011-01-01

    Context. A small number of young stellar objects show signs of a halo-like structure of optically thin dust, in addition to a circumstellar disk. This halo or torus is located within a few AU of the star, but its origin has not yet been understood. Aims. A dynamically excited cloud of planetesimals

  13. AN XMM-NEWTON SURVEY OF THE SOFT X-RAY BACKGROUND. III. THE GALACTIC HALO X-RAY EMISSION

    International Nuclear Information System (INIS)

    Henley, David B.; Shelton, Robin L.

    2013-01-01

    We present measurements of the Galactic halo's X-ray emission for 110 XMM-Newton sight lines selected to minimize contamination from solar wind charge exchange emission. We detect emission from few million degree gas on ∼4/5 of our sight lines. The temperature is fairly uniform (median = 2.22 × 10 6 K, interquartile range = 0.63 × 10 6 K), while the emission measure and intrinsic 0.5-2.0 keV surface brightness vary by over an order of magnitude (∼(0.4-7) × 10 –3 cm –6 pc and ∼(0.5-7) × 10 –12 erg cm –2 s –1 deg –2 , respectively, with median detections of 1.9 × 10 –3 cm –6 pc and 1.5 × 10 –12 erg cm –2 s –1 deg –2 , respectively). The high-latitude sky contains a patchy distribution of few million degree gas. This gas exhibits a general increase in emission measure toward the inner Galaxy in the southern Galactic hemisphere. However, there is no tendency for our observed emission measures to decrease with increasing Galactic latitude, contrary to what is expected for a disk-like halo morphology. The measured temperatures, brightnesses, and spatial distributions of the gas can be used to place constraints on models for the dominant heating sources of the halo. We provide some discussion of such heating sources, but defer comparisons between the observations and detailed models to a later paper

  14. Fractional Yields Inferred from Halo and Thick Disk Stars

    Science.gov (United States)

    Caimmi, R.

    2013-12-01

    Linear [Q/H]-[O/H] relations, Q = Na, Mg, Si, Ca, Ti, Cr, Fe, Ni, are inferred from a sample (N=67) of recently studied FGK-type dwarf stars in the solar neighbourhood including different populations (Nissen and Schuster 2010, Ramirez et al. 2012), namely LH (N=24, low-α halo), HH (N=25, high-α halo), KD (N=16, thick disk), and OL (N=2, globular cluster outliers). Regression line slope and intercept estimators and related variance estimators are determined. With regard to the straight line, [Q/H]=a_{Q}[O/H]+b_{Q}, sample stars are displayed along a "main sequence", [Q,O] = [a_{Q},b_{Q},Δ b_{Q}], leaving aside the two OL stars, which, in most cases (e.g. Na), lie outside. The unit slope, a_{Q}=1, implies Q is a primary element synthesised via SNII progenitors in the presence of a universal stellar initial mass function (defined as simple primary element). In this respect, Mg, Si, Ti, show hat a_{Q}=1 within ∓2hatσ_ {hat a_{Q}}; Cr, Fe, Ni, within ∓3hatσ_{hat a_{Q}}; Na, Ca, within ∓ rhatσ_{hat a_{Q}}, r>3. The empirical, differential element abundance distributions are inferred from LH, HH, KD, HA = HH + KD subsamples, where related regression lines represent their theoretical counterparts within the framework of simple MCBR (multistage closed box + reservoir) chemical evolution models. Hence, the fractional yields, hat{p}_{Q}/hat{p}_{O}, are determined and (as an example) a comparison is shown with their theoretical counterparts inferred from SNII progenitor nucleosynthesis under the assumption of a power-law stellar initial mass function. The generalized fractional yields, C_{Q}=Z_{Q}/Z_{O}^{a_{Q}}, are determined regardless of the chemical evolution model. The ratio of outflow to star formation rate is compared for different populations in the framework of simple MCBR models. The opposite situation of element abundance variation entirely due to cosmic scatter is also considered under reasonable assumptions. The related differential element abundance

  15. Molecular Abundances in the Disk of AN Active Galactic Nucleus

    Science.gov (United States)

    Harada, N.; Thompson, T. A.; Herbst, E.

    2011-06-01

    There are galactic nuclei that emit high luminosities L˜1044-46 erg S-1 including luminosity produced by X-rays from high mass accretion onto the central black holes. These nuclei are called active galactic nuclei (AGNs), and they are accompanied by molecular disks. Observations show high abundances of CN and HCN in the disks; the molecules are proposed to be probes of X-ray dominated regions (XDRs) created by the X-rays from AGNs. We have constructed a spatially-dependent chemical-abundance model of the molecular disk in NGC 1068, a typical AGN-dominated galaxy. Recently, new observations of CN and HCN have been made at much higher spatial resolution, and there are also detections of polyatomic molecules such as HC3N, c-C3H2, and C2H. We discuss how these observations and our simulations can help us to better understand the physical conditions, the disk structure, and conditions for star formation within molecular disks, which are still uncertain. We also include a comparison with other types of galaxies such as (ultra-) luminous infrared galaxies. Usero et al.Astronomy and Astrophysics. 419 (897), 2004. Initial results were presented at the International Symposium on Molecular Spectroscopy 2010, RF05 Garcia-Burillo et al. Astronomy and Astrophysics. 519 (2), 2010. Garcia-Burillo et al. Journal of Physics Conference Series, 131 (12031), 2008. Costagliola et al. ArXiv e-print arXiv:1101.2122, 2011. Nakajima et al. Astrophysical Journal Letters 728 (L38), 2008.

  16. EROS and MACHO combined limits on planetary-mass dark matter in the galactic halo

    NARCIS (Netherlands)

    Alcock, C; Allsman, RA; Alves, D; Ansari, R; Aubourg, E; Axelrod, TS; Bareyre, P; Beaulieu, JP; Becker, AC; Bennett, DP; Brehin, S; Cavalier, F; Char, S; Cook, KH; Ferlet, R; Fernandez, J; Freeman, KC; Griest, K; Grison, P; Gros, M; Gry, C; Guibert, J; Lachieze-Rey, M; Laurent, B; Lehner, MJ; Lesquoy, E; Magneville, C; Marshall, SL; Maurice, E; Milsztajn, A; Minniti, D; Moniez, M; Moreau, O; Moscoso, L; Palanque-Delabrouille, N; Peterson, BA; Pratt, MR; Prevot, L; Queinnec, F; Quinn, PJ; Renault, C; Rich, J; Spiro, M; Stubbs, CW; Sutherland, W; Tomaney, A; Vandehei, T; Vidal-Madjar, A; Vigroux, L; Zylberajch, S

    1998-01-01

    The EROS and MACHO collaborations have each published upper limits on the amount of planetary-mass dark matter in the Galactic halo obtained from gravitational microlensing searches. In this Letter, the two limits are combined to give a much stronger constraint on the abundance of low-mass MACHOs.

  17. The prolate shape of the galactic dark-matter halo

    NARCIS (Netherlands)

    Helmi, A; Spooner, NJC; Kudryavtsev,

    2005-01-01

    Knowledge of the distribution of dark-matter in our Galaxy plays a crucial role in the interpretation of dark-matter detection experiments. I will argue here that probably the best way of constraining the properties of the dark-matter halo is through astrophysical observations. These provide

  18. Prospects for detecting supersymmetric dark matter in the Galactic halo

    NARCIS (Netherlands)

    Springel, V.; White, S. D. M.; Frenk, C. S.; Navarro, J. F.; Jenkins, A.; Vogelsberger, M.; Wang, J.; Ludlow, A.; Helmi, A.

    2008-01-01

    Dark matter is the dominant form of matter in the Universe, but its nature is unknown. It is plausibly an elementary particle, perhaps the lightest supersymmetric partner of known particle species(1). In this case, annihilation of dark matter in the halo of the Milky Way should produce gamma-rays at

  19. The Galactic Halo in Mixed Dark Matter Cosmologies

    NARCIS (Netherlands)

    Anderhalden, D.; Diemand, J.; Bertone, G.; Macciò, A.V.; Schneider, A.

    2012-01-01

    A possible solution to the small scale problems of the cold dark matter (CDM) scenario is that the dark matter consists of two components, a cold and a warm one. We perform a set of high resolution simulations of the Milky Way halo varying the mass of the WDM particle (mWDM) and the cosmic dark

  20. THE EVOLUTION OF GAS CLOUDS FALLING IN THE MAGNETIZED GALACTIC HALO: HIGH-VELOCITY CLOUDS (HVCs) ORIGINATED IN THE GALACTIC FOUNTAIN

    International Nuclear Information System (INIS)

    Kwak, Kyujin; Shelton, Robin L.; Raley, Elizabeth A.

    2009-01-01

    In the Galactic fountain scenario, supernovae and/or stellar winds propel material into the Galactic halo. As the material cools, it condenses into clouds. By using FLASH three-dimensional magnetohydrodynamic simulations, we model and study the dynamical evolution of these gas clouds after they form and begin to fall toward the Galactic plane. In our simulations, we assume that the gas clouds form at a height of z = 5 kpc above the Galactic midplane, then begin to fall from rest. We investigate how the cloud's evolution, dynamics, and interaction with the interstellar medium (ISM) are affected by the initial mass of the cloud. We find that clouds with sufficiently large initial densities (n ≥ 0.1 H atoms cm -3 ) accelerate sufficiently and maintain sufficiently large column densities as to be observed and identified as high-velocity clouds (HVCs) even if the ISM is weakly magnetized (1.3 μG). However, the ISM can provide noticeable resistance to the motion of a low-density cloud (n ≤ 0.01 H atoms cm -3 ) thus making it more probable that a low-density cloud will attain the speed of an intermediate-velocity cloud rather than the speed of an HVC. We also investigate the effects of various possible magnetic field configurations. As expected, the ISM's resistance is greatest when the magnetic field is strong and perpendicular to the motion of the cloud. The trajectory of the cloud is guided by the magnetic field lines in cases where the magnetic field is oriented diagonal to the Galactic plane. The model cloud simulations show that the interactions between the cloud and the ISM can be understood via analogy to the shock tube problem which involves shock and rarefaction waves. We also discuss accelerated ambient gas, streamers of material ablated from the clouds, and the cloud's evolution from a sphere-shaped to a disk- or cigar-shaped object.

  1. On the evolution of globular clusters and the origin of galactic halo stars

    International Nuclear Information System (INIS)

    Surdin, V.G.

    1978-01-01

    Evolution of globular clusters of galactic halo is considered. It is shown that evolution of massive globular clusters with a greater degree of probability takes place under the effect of dynamic friction, which brings about the cluster fall on the center of galactic and their destruction by tidal forces. Evolution of small massive cluster takes place under the effect of dissipation. All the other reasons, causing the destruction of globular clusters (gravitational tidal forces, mutual cluster collision, outflow of gas from red gigant atmospheres, the change of the radius of the cluster orbit at the expense of the change of the galaxy mass inside the cluster orbit) play a secondary role. The whole mass of the stars lost by globular clusters does not exceed 10 7 M sun. It is concluded that the origin of the star population of galactic halo field can not be explained by destruction of already formed only astral globular clusters

  2. THE FUTILE SEARCH FOR GALACTIC DISK DARK MATTER

    International Nuclear Information System (INIS)

    Garrido Pestana, Jose Luis; Eckhardt, Donald H.

    2010-01-01

    Several approaches have been used to search for dark matter in our galactic disk, but with mixed results: maybe yes and maybe no. The prevailing approach, integrating the Poisson-Boltzmann equation for tracer stars, has led to more definitive results: yes and no. The touchstone 'yes' analysis of Bahcall et al. has subsequently been confirmed or refuted by various other investigators. This has been our motivation for approaching the search from a different direction: applying the virial theorem to extant data. We conclude that the vertical density profile of the disk is not in a state of equilibrium and, therefore, that the Poisson-Boltzmann approach is inappropriate and it thereby leads to indefensible conclusions.

  3. Probing stochastic inter-galactic magnetic fields using blazar-induced gamma ray halo morphology

    Energy Technology Data Exchange (ETDEWEB)

    Duplessis, Francis [Physics Department, Arizona State University, Tempe, AZ 85287 (United States); Vachaspati, Tanmay, E-mail: fdupless@asu.edu, E-mail: tvachasp@asu.edu [Maryland Center for Fundamental Physics, University of Maryland, College Park, MD 20742 (United States)

    2017-05-01

    Inter-galactic magnetic fields can imprint their structure on the morphology of blazar-induced gamma ray halos. We show that the halo morphology arises through the interplay of the source's jet and a two-dimensional surface dictated by the magnetic field. Through extensive numerical simulations, we generate mock halos created by stochastic magnetic fields with and without helicity, and study the dependence of the halo features on the properties of the magnetic field. We propose a sharper version of the Q-statistics and demonstrate its sensitivity to the magnetic field strength, the coherence scale, and the handedness of the helicity. We also identify and explain a new feature of the Q-statistics that can further enhance its power.

  4. A Formation Timescale of the Galactic Halo from Mg Isotopes in Dwarf Stars

    Science.gov (United States)

    Carlos, Marília; Karakas, Amanda I.; Cohen, Judith G.; Kobayashi, Chiaki; Meléndez, Jorge

    2018-04-01

    We determine magnesium isotopic abundances of metal-poor dwarf stars from the galactic halo, to shed light on the onset of asymptotic giant branch (AGB) star nucleosynthesis in the galactic halo and constrain the timescale of its formation. We observed a sample of eight new halo K dwarfs in a metallicity range of ‑1.9 ‑1.4 are somewhat higher (1–3σ) than previous chemical evolution model predictions, indicating perhaps higher yields of the neutron-rich isotopes. Our results using only AGB star enrichment suggest a timescale for formation for the galactic halo of about 0.3 Gyr, but considering also supernova enrichment, the upper limit for the timescale formation is about 1.5 Gyr. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  5. Using photometrically selected metal-poor stars to study dwarf galaxies and the Galactic stellar halo

    Science.gov (United States)

    Youakim, Kris; Starkenburg, Else; Martin, Nicolas; Pristine Team

    2018-06-01

    The Pristine survey is a narrow-band photometric survey designed to efficiently search for extremely metal-poor (EMP) stars. In the first three years of the survey, it has demonstrated great efficiency at finding EMP stars, and also great promise for increasing the current, small sample of the most metal-poor stars. The present sky coverage is ~2500 square degrees in the Northern Galactic Halo, including several individual fields targeting dwarf galaxies. By efficiently identifying member stars in the outskirts of known faint dwarf galaxies, the dynamical histories and chemical abundance patterns of these systems can be understood in greater detail. Additionally, with reliable photometric metallicities over a large sky coverage it is possible to perform a large scale clustering analysis in the Milky Way halo, and investigate the characteristic scale of substructure at different metallicities. This can reveal important details about the process of building up the halo through dwarf galaxy accretion, and offer insight into the connection between dwarf galaxies and the Milky Way halo. In this talk I will outline our results on the search for the most pristine stars, with a focus on how we are using this information to advance our understanding of dwarf galaxies and their contribution to the formation of the Galactic stellar halo.

  6. PROBING THE GALACTIC POTENTIAL WITH NEXT-GENERATION OBSERVATIONS OF DISK STARS

    International Nuclear Information System (INIS)

    Sumi, T.; Johnston, K. V.; Tremaine, S.; Spergel, D. N.; Majewski, S. R.

    2009-01-01

    Our current knowledge of the rotation curve of the Milky Way is remarkably poor compared to other galaxies, limited by the combined effects of extinction and the lack of large samples of stars with good distance estimates and proper motions. Near-future surveys promise a dramatic improvement in the number and precision of astrometric, photometric, and spectroscopic measurements of stars in the Milky Way's disk. We examine the impact of such surveys on our understanding of the Galaxy by 'observing' particle realizations of nonaxisymmetric disk distributions orbiting in an axisymmetric halo with appropriate errors and then attempting to recover the underlying potential using a Markov Chain Monte Carlo approach. We demonstrate that the azimuthally averaged gravitational force field in the Galactic plane-and hence, to a lesser extent, the Galactic mass distribution-can be tightly constrained over a large range of radii using a variety of types of surveys so long as the error distribution of the measurements of the parallax, proper motion, and radial velocity are well understood and the disk is surveyed globally. One advantage of our method is that the target stars can be selected nonrandomly in real or apparent-magnitude space to ensure just such a global sample without biasing the results. Assuming that we can always measure the line-of-sight velocity of a star with at least 1 km s -1 precision, we demonstrate that the force field can be determined to better than ∼1% for Galactocentric radii in the range R = 4-20 kpc using either: (1) small samples (a few hundred stars) with very accurate trigonometric parallaxes and good proper-motion measurements (uncertainties δ p,tri ∼ μ ∼ -1 respectively); (2) modest samples (∼1000 stars) with good indirect parallax estimates (e.g., uncertainty in photometric parallax δ p,phot ∼ 10%-20%) and good proper-motion measurements (δ μ ∼ 100 μas yr -1 ); or (3) large samples (∼10 4 stars) with good indirect parallax

  7. The white dwarf luminosity function - A possible probe of the galactic halo

    Science.gov (United States)

    Tamanaha, Christopher M.; Silk, Joseph; Wood, M. A.; Winget, D. E.

    1990-01-01

    The dynamically inferred dark halo mass density, amounting to above 0.01 solar masses/cu pc at the sun's Galactocentric radius, can be composed of faint white dwarfs provided that the halo formed in a sufficiently early burst of star formation. The model is constrained by the observed disk white dwarf luminosity function which falls off below log (L/solar L) = -4.4, due to the onset of star formation in the disk. By using a narrow range for the initial mass function and an exponentially decaying halo star formation rate with an e-folding time equal to the free-fall time, all the halo dark matter is allowed to be in cool white dwarfs which lie beyond the falloff in the disk luminosity function. Although it is unlikely that all the dark matter is in these dim white dwarfs, a definite signature in the low-luminosity end of the white dwarf luminosity function is predicted even if they comprise only 1 percent of the dark matter. Current CCD surveys should answer the question of the existence of this population within the next few years.

  8. Ultra Light Axionic Dark Matter: Galactic Halos and Implications for Observations with Pulsar Timing Arrays

    Science.gov (United States)

    de Martino, Ivan; Broadhurst, Tom; Tye, S.-H. Henry; Chiueh, Tzihong; Shive, Hsi-Yu; Lazkoz, Ruth

    2018-01-01

    The cold dark matter (CDM) paradigm successfully explains the cosmic structure over an enormous span of redshifts. However, it fails when probing the innermost regions of dark matter halos and the properties of the Milky Way's dwarf galaxy satellites. Moreover, the lack of experimental detection of Weakly Interacting Massive Particle (WIMP) favors alternative candidates such as light axionic dark matter that naturally arise in string theory. Cosmological N-body simulations have shown that axionic dark matter forms a solitonic core of size of ≃ 150 pc in the innermost region of the galactic halos. The oscillating scalar field associated to the axionic dark matter halo produces an oscillating gravitational potential that induces a time dilation of the pulse arrival time of ≃ 400 ns/(m_B/10^{-22} eV) for pulsar within such a solitonic core. Over the whole galaxy, the averaged predicted signal may be detectable with current and forthcoming pulsar timing array telescopes.

  9. Constraints on baryonic dark matter in the Galactic halo and Local Group

    Science.gov (United States)

    Richstone, Douglas; Gould, Andrew; Guhathakurta, Puragra; Flynn, Chris

    1992-01-01

    A four-color method and deep CCD data are used to search for very faint metal-poor stars in the direction of the south Galactic pole. The results make it possible to limit the contribution of ordinary old, metal-poor stars to the dynamical halo of the Galaxy or to the Local Group. The ratio of the mass of the halo to its ordinary starlight must be more than about 2000, unless the halo is very small. For the Local Group, this ratio is greater than about 400. If this local dark matter is baryonic, the process of compact-object formation must produce very few 'impurities' in the form of stars similar to those found in globular clusters. The expected number of unbound stars with MV not greater than 6 within 100 pc of the sun is less than 1 based on the present 90-percent upper limit to the Local Group starlight.

  10. Molecular Gas Feeding the Circumnuclear Disk of the Galactic Center

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Pei-Ying; Koch, Patrick M.; Ho, Paul T. P.; Tang, Ya-Wen [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 10617, Taiwan (China); Kim, Woong-Tae [Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Wang, Hsiang-Hsu [Department of Physics and Institute of Theoretical Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong (China); Yen, Hsi-Wei [European Southern Observatory (ESO), Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Hwang, Chorng-Yuan, E-mail: pyhsieh@asiaa.sinica.edu.tw [Institute of Astronomy, National Central University, No.300, Jhongda Road, Jhongli City, Taoyuan County 32001, Taiwan (China)

    2017-09-20

    The interaction between a supermassive black hole (SMBH) and the surrounding material is of primary importance in modern astrophysics. The detection of the molecular 2 pc circumnuclear disk (CND) immediately around the Milky Way SMBH, SgrA*, provides a unique opportunity to study SMBH accretion at subparsec scales. Our new wide-field CS( J = 2 − 1) map toward the Galactic center (GC) reveals multiple dense molecular streamers that originated from the ambient clouds 20 pc further out, and that are connected to the central 2 pc of the CND. These dense gas streamers appear to carry gas directly toward the nuclear region and might be captured by the central potential. Our phase-plot analysis indicates that these streamers show a signature of rotation and inward radial motion with progressively higher velocities as the gas approaches the CND and finally ends up corotating with the CND. Our results might suggest a possible mechanism of gas feeding the CND from 20 pc around 2 pc in the GC. In this paper, we discuss the morphology and the kinematics of these streamers. As the nearest observable Galactic nucleus, this feeding process may have implications for understanding the processes in extragalactic nuclei.

  11. Dark Matter: Looking for WIMPs in the Galactic Halo

    International Nuclear Information System (INIS)

    Akerib, Daniel S.

    2006-01-01

    Overwhelming observational evidence indicates that most of the matter in the Universe consists of non-baryonic dark matter. One possibility is that the dark matter is Weakly-Interacting Massive Particles (WIMPs) that were produced in the early Universe. These relics could comprise the Milky Way's dark halo and provide evidence for new particle physics, such as Supersymmetry. After reviewing some of the evidence for dark matter and the WIMP hypothesis, I will describe the strategy for searching for WIMPs, along with a survey of the current status and outlook. In particular, dark matter searches have begun to explore the region of parameter space where SUSY particles could provide dark matter candidates. I will also mention some of the recent theoretical work on dark matter candidates which is being done in anticipation of the turn-on of the LHC and as part of the active R and D on the ILC. Finally, a vigorous detector development program promises significant advances in WIMP sensitivity in the coming years

  12. Water Masers and Accretion Disks in Galactic Nuclei

    Science.gov (United States)

    Greenhill, L. J.

    2005-12-01

    There are over 50 sources of H2O maser emission in type-2 active galactic nuclei, a large fraction discovered in the last two years. Interferometer maps of water masers are presently the only means by which structures ⪉ 1 pc from massive black holes can be mapped directly, which is particularly important for type-2 systems because edge-on orientation and obscuration complicate study by other means. Investigations of several sources have demonstrated convincingly that the maser emission traces warped accretion disks 0.1 to 1 pc from central engines of order 106-108 M⊙. The same may be true for almost half the known (but unmapped) sources, based on spectral characteristics consistent with emission from edge-on accretion disks. Mapping these sources is a high priority. Study of most recently discovered masers requires long baseline arrays that include 100-m class apertures and would benefit from aggregate bit rates on the order of 1 gigabit per second. The Square Kilometer Array should provide an order of magnitude boost in mapping sensitivity, but outrigger antennas will be needed to achieve necesssary angular resolutions, as may be space-borne antennas.

  13. THE STELLAR METALLICITY DISTRIBUTION FUNCTION OF THE GALACTIC HALO FROM SDSS PHOTOMETRY

    International Nuclear Information System (INIS)

    An, Deokkeun; Beers, Timothy C.; Johnson, Jennifer A.; Pinsonneault, Marc H.; Lee, Young Sun; Bovy, Jo; Ivezić, Željko; Carollo, Daniela; Newby, Matthew

    2013-01-01

    We explore the stellar metallicity distribution function of the Galactic halo based on SDSS ugriz photometry. A set of stellar isochrones is calibrated using observations of several star clusters and validated by comparisons with medium-resolution spectroscopic values over a wide range of metal abundance. We estimate distances and metallicities for individual main-sequence stars in the multiply scanned SDSS Stripe 82, at heliocentric distances in the range 5-8 kpc and |b| > 35°, and find that the in situ photometric metallicity distribution has a shape that matches that of the kinematically selected local halo stars from Ryan and Norris. We also examine independent kinematic information from proper-motion measurements for high Galactic latitude stars in our sample. We find that stars with retrograde rotation in the rest frame of the Galaxy are generally more metal poor than those exhibiting prograde rotation, which is consistent with earlier arguments by Carollo et al. that the halo system comprises at least two spatially overlapping components with differing metallicity, kinematics, and spatial distributions. The observed photometric metallicity distribution and that of Ryan and Norris can be described by a simple chemical evolution model by Hartwick (or by a single Gaussian distribution); however, the suggestive metallicity-kinematic correlation contradicts the basic assumption in this model that the Milky Way halo consists primarily of a single stellar population. When the observed metallicity distribution is deconvolved using two Gaussian components with peaks at [Fe/H] ≈ –1.7 and –2.3, the metal-poor component accounts for ∼20%-35% of the entire halo population in this distance range.

  14. The dependence of cosmic ray-driven galactic winds on halo mass

    Science.gov (United States)

    Jacob, Svenja; Pakmor, Rüdiger; Simpson, Christine M.; Springel, Volker; Pfrommer, Christoph

    2018-03-01

    Galactic winds regulate star formation in disc galaxies and help to enrich the circum-galactic medium. They are therefore crucial for galaxy formation, but their driving mechanism is still poorly understood. Recent studies have demonstrated that cosmic rays (CRs) can drive outflows if active CR transport is taken into account. Using hydrodynamical simulations of isolated galaxies with virial masses between 1010 and 1013 M⊙, we study how the properties of CR-driven winds depend on halo mass. CRs are treated in a two-fluid approximation and their transport is modelled through isotropic or anisotropic diffusion. We find that CRs are only able to drive mass-loaded winds beyond the virial radius in haloes with masses below 1012 M⊙. For our lowest examined halo mass, the wind is roughly spherical and has velocities of ˜20 km s-1. With increasing halo mass, the wind becomes biconical and can reach 10 times higher velocities. The mass loading factor drops rapidly with virial mass, a dependence that approximately follows a power law with a slope between -1 and -2. This scaling is slightly steeper than observational inferences, and also steeper than commonly used prescriptions for wind feedback in cosmological simulations. The slope is quite robust to variations of the CR injection efficiency or the CR diffusion coefficient. In contrast to the mass loading, the energy loading shows no significant dependence on halo mass. While these scalings are close to successful heuristic models of wind feedback, the CR-driven winds in our present models are not yet powerful enough to fully account for the required feedback strength.

  15. Millisecond Pulsars, TeV Halos, and Implications For The Galactic Center Gamma-Ray Excess

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, Dan [Fermilab; Linden, Tim [UC, Santa Cruz, Inst. Part. Phys.

    2018-03-21

    Observations by HAWC indicate that many young pulsars (including Geminga and Monogem) are surrounded by spatially extended, multi-TeV emitting regions. It is not currently known, however, whether TeV emission is also produced by recycled, millisecond pulsars (MSPs). In this study, we perform a stacked analysis of 24 MSPs within HAWC's field-of-view, finding between 2.6-3.2 sigma evidence that these sources are, in fact, surrounded by TeV halos. The efficiency with which these MSPs produce TeV halos is similar to that exhibited by young pulsars. This result suggests that several dozen MSPs will ultimately be detectable by HAWC, including many "invisible" pulsars without radio beams oriented in our direction. The TeV halos of unresolved MSPs could also dominate the TeV-scale diffuse emission observed at high galactic latitudes. We also discuss the possibility that TeV and radio observations could be used to constrain the population of MSPs that is present in the inner Milky Way, thereby providing us with a new way to test the hypothesis that MSPs are responsible for the Galactic Center GeV excess.

  16. HOT GAS HALOS AROUND DISK GALAXIES: CONFRONTING COSMOLOGICAL SIMULATIONS WITH OBSERVATIONS

    International Nuclear Information System (INIS)

    Rasmussen, Jesper; Sommer-Larsen, Jesper; Pedersen, Kristian; Toft, Sune; Grove, Lisbeth F.; Benson, Andrew; Bower, Richard G.

    2009-01-01

    Models of disk galaxy formation commonly predict the existence of an extended reservoir of accreted hot gas surrounding massive spirals at low redshift. As a test of these models, we use X-ray and Hα data of the two massive, quiescent edge-on spirals NGC 5746 and NGC 5170 to investigate the amount and origin of any hot gas in their halos. Contrary to our earlier claim, the Chandra analysis of NGC 5746, employing more recent calibration data, does not reveal any significant evidence for diffuse X-ray emission outside the optical disk, with a 3σ upper limit to the halo X-ray luminosity of 4 x 10 39 erg s -1 . An identical study of the less massive NGC 5170 also fails to detect any extraplanar X-ray emission. By extracting hot halo properties of disk galaxies formed in cosmological hydrodynamical simulations, we compare these results to expectations for cosmological accretion of hot gas by spirals. For Milky-Way-sized galaxies, these high-resolution simulations predict hot halo X-ray luminosities which are lower by a factor of ∼2 compared to our earlier results reported by Toft et al. We find the new simulation predictions to be consistent with our observational constraints for both NGC 5746 and NGC 5170, while also confirming that the hot gas detected so far around more actively star-forming spirals is in general probably associated with stellar activity in the disk. Observational results on quiescent disk galaxies at the high-mass end are nevertheless providing powerful constraints on theoretical predictions, and hence on the assumed input physics in numerical studies of disk galaxy formation and evolution.

  17. Clustered supernovae versus the gaseous disk and halo

    International Nuclear Information System (INIS)

    Heiles, C.

    1990-01-01

    The effects of clustered supernovae on the two-dimensional porosity parameter Q(2D) and the rates M of mass injection of both hot and cold gas into the halo are reconsidered. The effects of high-absolute value z, low-density extension of the neutral gas layer are theoretically calculated and the distribution of H-alpha luminosities of extragalactic H II regions is observationally determined. These results are used to estimate the birth rate of star clusters having N supernovae as a function of N. A Galaxy-wide average of Q(2D) roughly 0.30 is obtained, corresponding to an area filling factor of 0.23. Area filling factors and mass injection rates into the halo due to breakthrough bubbles with large N are calculated for different types of galaxy. The calculations are related to the area covered by H I 'holes' and the area covered by giant H II regions. The effects of supernova clusters that are too small to produce breakthrough bubbles are discussed. 53 refs

  18. H I Clouds in the Lower Halo. I. The Galactic All-Sky Survey Pilot Region

    International Nuclear Information System (INIS)

    Ford, H. Alyson; McClure-Griffiths, N. M.; Calabretta, M. R.; Lockman, Felix J.; Pisano, D. J.; Bailin, J.; Kalberla, P. M. W.; Murphy, T.

    2008-01-01

    We have detected over 400 H I clouds in the lower halo of the Galaxy within the pilot region of the Galactic All-Sky Survey (GASS), a region of the fourth quadrant that spans 18 deg. in longitude, 40 deg. in latitude, and is centered on the Galactic equator. These clouds have a median peak brightness temperature of 0.6 K, a median velocity width of 12.8 km s -1 , and angular sizes ∼ -1 . A sample of clouds likely to be near tangent points was analyzed in detail. These clouds have radii on the order of 30 pc and a median H I mass of 630 M sun . The population has a vertical scale height of 400 pc and is concentrated in Galactocentric radius, peaking at R = 3.8 kpc. This confined structure suggests that the clouds are linked to spiral features, while morphological evidence that many clouds are aligned with loops and filaments is suggestive of a relationship with star formation. The clouds might result from supernovae and stellar winds in the form of fragmenting shells and gas that has been pushed into the halo rather than from a galactic fountain.

  19. WEAK GALACTIC HALO-DWARF SPHEROIDAL CONNECTION FROM RR LYRAE STARS

    Energy Technology Data Exchange (ETDEWEB)

    Fiorentino, Giuliana [INAF-Osservatorio Astronomico di Bologna, via Ranzani 1, I-40127 Bologna (Italy); Bono, Giuseppe [Dipartimento di Fisica, Universitá di Roma Tor Vergata, Via della Ricerca Scientifica 1, I-00133 Roma (Italy); Monelli, Matteo; Gallart, Carme; Martínez-Vásquez, Clara E. [Instituto de Astrofísica de Canarias, Calle Via Lactea s/n, E-38205 La Laguna, Tenerife (Spain); Stetson, Peter B. [National Research Council, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Tolstoy, Eline [Kapteyn Astronomical Institute, University of Groningen, Postbus 800, 9700 AV Groningen (Netherlands); Salaris, Maurizio [Astrophysics Research Institute, Liverpool John Moores University IC2, Liverpool Science Park, 146 Brownlow Hill, Liverpool L35RF (United Kingdom); Bernard, Edouard J., E-mail: giuliana.fiorentino@oabo.inaf.it [SUPA, Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom)

    2015-01-01

    We discuss the role that dwarf galaxies may have played in the formation of the Galactic halo (Halo) using RR Lyrae stars (RRL) as tracers of their ancient stellar component. The comparison is performed using two observables (periods, luminosity amplitudes) that are reddening and distance independent. Fundamental mode RRL in 6 dwarf spheroidals (dSphs) and 11 ultra faint dwarf galaxies (∼1300) show a Gaussian period distribution well peaked around a mean period of (Pab) = 0.610 ± 0.001 days (σ = 0.03). The Halo RRL (∼15,000) are characterized by a broader period distribution. The fundamental mode RRL in all the dSphs apart from Sagittarius are completely lacking in High Amplitude Short Period (HASP) variables, defined as those having P ≲ 0.48 days and A{sub V} ≥ 0.75 mag. Such variables are not uncommon in the Halo and among the globular clusters and massive dwarf irregulars. To further interpret this evidence, we considered 18 globulars covering a broad range in metallicity (–2.3 ≲ [Fe/H] ≲ –1.1) and hosting more than 35 RRL each. The metallicity turns out to be the main parameter, since only globulars more metal-rich than [Fe/H] ∼ –1.5 host RRL in the HASP region. This finding suggests that dSphs similar to the surviving ones do not appear to be the major building-blocks of the Halo. Leading physical arguments suggest an extreme upper limit of ∼50% to their contribution. On the other hand, massive dwarfs hosting an old population with a broad metallicity distribution (Large Magellanic Cloud, Sagittarius) may have played a primary role in the formation of the Halo.

  20. Halo histories versus galaxy properties at z = 0 II: large-scale galactic conformity

    Science.gov (United States)

    Tinker, Jeremy L.; Hahn, ChangHoon; Mao, Yao-Yuan; Wetzel, Andrew R.; Conroy, Charlie

    2018-06-01

    Using group catalogues from the Sloan Digital Sky Survey (SDSS) Data Release 7, we measure galactic conformity in the local universe. We measure the quenched fraction of neighbour galaxies around isolated primary galaxies, dividing the isolated sample into star-forming and quiescent objects. We restrict our measurements to scales >1 Mpc to probe the correlations between halo formation histories. Over the stellar mass range 109.7 ≤ M*/M⊙ ≤ 1010.9, we find minimal evidence for conformity. We further compare these data to predictions of the halo age-matching model, in which the oldest galaxies are associated with the oldest haloes. For models with strong correlations between halo and stellar age, the conformity is too large to be consistent with the data. Weaker implementations of the age-matching model would not produce a detectable signal in SDSS data. We reproduce the results of Kauffmann et al., in which the star formation rates of neighbour galaxies are reduced around primary galaxies when the primaries are low star formers. However, we find this result is mainly driven by contamination in the isolation criterion; when removing the small fraction of satellite galaxies in the sample, the conformity signal largely goes away. Lastly, we show that small conformity signals, i.e. 2-5 per cent differences in the quenched fractions of neighbour galaxies, can be produced by mechanisms other than halo assembly bias. For example, if passive galaxies occupy more massive haloes than star-forming galaxies of the same stellar mass, a conformity signal that is consistent with recent measurements from PRIMUS (Berti et al.) can be produced.

  1. ORIGIN OF CHEMICAL AND DYNAMICAL PROPERTIES OF THE GALACTIC THICK DISK

    International Nuclear Information System (INIS)

    Bekki, Kenji; Tsujimoto, Takuji

    2011-01-01

    We adopt a scenario in which the Galactic thick disk was formed by minor merging between the first generation of the Galactic thin disk (FGTD) and a dwarf galaxy about ∼9 Gyr ago and thereby investigate chemical and dynamical properties of the Galactic thick disk. In this scenario, the dynamical properties of the thick disk have long been influenced both by the mass growth of the second generation of the Galactic thin disk (i.e., the present thin disk) and by its non-axisymmetric structures. On the other hand, the early star formation history and chemical evolution of the thin disk was influenced by the remaining gas of the thick disk. Based on N-body simulations and chemical evolution models, we investigate the radial metallicity gradient, structural and kinematical properties, and detailed chemical abundance patterns of the thick disk. Our numerical simulations show that the ancient minor merger event can significantly flatten the original radial metallicity gradient of the FGTD, in particular, in the outer part, and also can be responsible for migration of inner metal-rich stars into the outer part (R > 10 kpc). The simulations show that the central region of the thick disk can develop a bar due to dynamical effects of a separate bar in the thin disk. Whether or not rotational velocities (V φ ) can correlate with metallicities ([Fe/H]) for the simulated thick disks depends on the initial metallicity gradients of the FGTDs. The simulated orbital eccentricity distributions in the thick disk for models with higher mass ratios (∼0.2) and lower orbital eccentricities (∼0.5) of minor mergers are in good agreement with the corresponding observations. The simulated V φ -|z| relation of the thick disk in models with low orbital inclination angles of mergers are also in good agreement with the latest observational results. The vertical metallicity gradient of the simulated thick disk is rather flat or very weakly negative in the solar neighborhood. Our Galactic

  2. Open Clusters as Tracers of the Galactic Disk

    Science.gov (United States)

    Cantat-Gaudin, Tristan

    2015-01-01

    Open clusters (OCs) are routinely used as reliable tracers of the properties and evolution of the galactic disk, as they can be found at all galactocentric distances and span a wide range of ages. More than 3000 OCs are listed in catalogues, although few have been studied in details. The goal of this work is to study the properties of open clusters. This work was conducted in the framework of the Gaia-ESO Survey (GES). GES is an observational campaign targeting more than 100,000 stars in all major components of the Milky Way, including stars in a hundred open clusters. It uses the FLAMES instrument at the VLT to produce high and medium-resolution spectra, which provide accurate radial velocities and individual elemental abundances. In this framework, the goals of the Thesis are: * to study the properties of OCs and of their stars from photometry and spectroscopy to derive their age, the extinction and the chemical composition of the stars, to begin to build a homogeneous data base. Looking at literature data it is clear that different authors derive substantially different chemical compositions, and in general OC parameters. * the study of OCs and their chemical homogeneity (or inhomogeneity) can cast light on what is still an open issue: the presence of multiple populations in clusters. While multiple generations of stars are now ubiquitously found in globular clusters in the Milky Way and in the Magellanic Clouds, they have not been yet detected in open clusters. What is the main driver of the self-pollution process? * to study the cluster formation process. All, or at least a significant fraction of stars form in clusters. Young clusters (a few Myr) can retain some of the properties of the molecular cloud they originate from and give us insight about the cluster assembly process. The first GES data release contains data for the young OC Gamma Velorum, in which two (dynamically different) subpopulations have been identified. This cluster can serve as a test case

  3. Milky Way Tomography with K and M Dwarf Stars: The Vertical Structure of the Galactic Disk

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, Deborah; Gardner, Susan [Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506-0055 (United States); Yanny, Brian [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States)

    2017-07-10

    We use the number density distributions of K and M dwarf stars with vertical height from the Galactic disk, determined using observations from the Sloan Digital Sky Survey, to probe the structure of the Milky Way disk across the survey’s footprint. Using photometric parallax as a distance estimator we analyze a sample of several million disk stars in matching footprints above and below the Galactic plane, and we determine the location and extent of vertical asymmetries in the number counts in a variety of thin- and thick-disk subsamples in regions of some 200 square degrees within 2 kpc in vertical distance from the Galactic disk. These disk asymmetries present wave-like features as previously observed on other scales and at other distances from the Sun. We additionally explore the scale height of the disk and the implied offset of the Sun from the Galactic plane at different locations, noting that the scale height of the disk can differ significantly when measured using stars only above or only below the plane. Moreover, we compare the shape of the number density distribution in the north for different latitude ranges with a fixed range in longitude and find the shape to be sensitive to the selected latitude window. We explain why this may be indicative of a change in stellar populations in the latitude regions compared, possibly allowing access to the systematic metallicity difference between thin- and thick-disk populations through photometry.

  4. ULTRAVIOLET HALOS AROUND SPIRAL GALAXIES. I. MORPHOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Hodges-Kluck, Edmund; Cafmeyer, Julian; Bregman, Joel N., E-mail: hodgeskl@umich.edu [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States)

    2016-12-10

    We examine ultraviolet halos around a sample of highly inclined galaxies within 25 Mpc to measure their morphology and luminosity. Despite contamination from galactic light scattered into the wings of the point-spread function, we find that ultraviolet (UV) halos occur around each galaxy in our sample. Around most galaxies the halos form a thick, diffuse disk-like structure, but starburst galaxies with galactic superwinds have qualitatively different halos that are more extensive and have filamentary structure. The spatial coincidence of the UV halos above star-forming regions, the lack of consistent association with outflows or extraplanar ionized gas, and the strong correlation between the halo and galaxy UV luminosity suggest that the UV light is an extragalactic reflection nebula. UV halos may thus represent 10{sup 6}–10{sup 7} M {sub ⊙} of dust within 2–10 kpc of the disk, whose properties may change with height in starburst galaxies.

  5. Galactic Structure in the Outer Disk: The Field in the Line of Sight to the Intermediate-Age open Cluster Tombaugh 1

    Energy Technology Data Exchange (ETDEWEB)

    Carraro, Giovanni [Dipartimento di Fisica e Astronomia, Universitá di Padova Vicolo Osservatorio 3 I-35122, Padova (Italy); Silva, Joao Victor Sales [Observatorio Nacional/MCT Rua Gen. José Cristino 77 20291-400, Rio de Janeiro (Brazil); Bidin, Christian Moni [Instituto de Astronomia, Universidad Catolica del Norte Av. Angamos 0610, Casilla 1280 Antofagasta (Chile); Vazquez, Ruben A., E-mail: giovanni.carraro@unipd.it [Instituto de Astrofisica de La Plata CONICET/ UNLP, Paseo del Bosque s/n La Plata (Argentina)

    2017-03-01

    We employ optical photometry and high-resolution spectroscopy to study a field toward the open cluster Tombaugh 1, where we identify a complex population mixture that we describe in terms of young and old Galactic thin disks. Of particular interest is the spatial distribution of the young population, which consists of dwarfs with spectral types as early as B6 and is distributed in a blue plume feature in the color–magnitude diagram. For the first time, we confirm spectroscopically that most of these stars are early-type stars and not blue stragglers or halo/thick-disk subdwarfs. Moreover, they are not evenly distributed along the line of sight but crowd at heliocentric distances between 6.6 and 8.2 kpc. We compare these results with present-day understanding of the spiral structure of the Galaxy and suggest that they trace the outer arm. This range of distances challenges current Galactic models adopting a disk cutoff at 14 kpc from the Galactic center. The young dwarfs overlap in space with an older component, which is identified as an old Galactic thin disk. Both young and old populations are confined in space since the disk is warped at the latitude and longitude of Tombaugh 1. The main effects of the warp are that the line of sight intersects the disk and entirely crosses it at the outer arm distance and that there are no traces of the closer Perseus arm, which would then be either unimportant in this sector or located much closer to the formal Galactic plane. Finally, we analyze a group of giant stars, which turn out to be located at very different distances and to possess very different chemical properties, with no obvious relation to the other populations.

  6. Chemical constraints on the formation of the Galactic thick disk

    Directory of Open Access Journals (Sweden)

    Feltzing S.

    2012-02-01

    Full Text Available We highlight some results from our detailed abundance analysis study of 703 kinematically selected F and G dwarf stars in the solar neighbourhood. The analysis is based on spectra of high-resolution (R = 45000 to 110 000 and high signal-to-noise (S/N ≈ 150 to 300. The main findings include: (1 at a given metallicity, the thick disk abundance trends are more α-enhanced than those of the thin disk; (2 the metal-rich limit of the thick disk reaches at least solar metallicities; (3 the metal-poor limit of the thin disk is around [Fe/H] ≈−0.8; (4 the thick disk shows an age-metallicity gradient; (5 the thin disk does not show an age-metallicity gradient; (6 the most metal-rich thick disk stars at [Fe/H] ≈ 0 are significantly older than the most metal-poor thin disk stars at [Fe/H] ≈−0.7; (7 based on our elemental abundances we find that kinematical criteria produce thin and thick disk stellar samples that are biased in the sense that stars from the low-velocity tail of the thick disk are classified as thin disk stars, and stars from the high-velocity tail of the thin disk are classified as thick disk stars; (8 age criteria appears to produce thin and thick disk stellar samples with less contamination.

  7. Boundary layer circulation in disk-halo galaxies. III. The dispersion relation for local disturbances and large-scale spiral waves

    International Nuclear Information System (INIS)

    Waxman, A.M.

    1980-01-01

    This paper concerns the geometry and physical properties of waves which arise from a shear-flow (i.e. inflection point) instability of the galactic boundary layer circulation. This circulation was shown to exist in the meridional plane of a model galaxy containing a gaseous disk embedded in a rotating gaseous halo. Previously derived equations describe the local effects of Boussinesq perturbations, in the form of spiral waves with aribitrary pitch angle, on the model disk-halo system. The equations are solved asymptotically for large values of the local Reynolds number. In passing to the limit of inviscid waves, it is possible to derive a locally valid dispersion relation. A perturbation technique is developed whereby the inviscid wave eigenvalues can be corrected for the effects of small but finite viscosity. In this way the roles of the buoyancy force, Coriolis acceleration, viscous stresses, and their interactions can be studied. It is found that, locally, the most unstable inviscid waves are leading and open with large azimuthal wavenumbers. However, these waves display little or no coherence over the face of the disk and so would not emerge as modes in a global analysis.The geometry of the dominant inviscid waves is found to be leading, tightly wound spirals. Viscous corrections shift the dominant wave form to trailing, tightly wound spirals with small azimuthal wavenumbers. These waves grow on a time scale of about 10 7 years. It is suggested that these waves can initiate spiral structure in galaxies during disk formation and that a subsequent transition to a self-gravitating acoustical mode with the same spiral geometry may occur. This transition becomes possible once the contrast in gas densities between the disk and surrounding halo becomes sufficiently large

  8. Planck early results. XXIV. Dust in the diffuse interstellar medium and the Galactic halo

    DEFF Research Database (Denmark)

    Poutanen, T.; Natoli, P.; Polenta, G.

    2011-01-01

    by this correlation analysis. Its spectral properties are consistent with, compared to the local ISM values, significantly hotter dust (T ~ 20 K), lower submm dust opacity normalized per H-atom, and a relative abundance of very small grains to large grains about four times higher. These results are compatible......This paper presents the first results from a comparison of Planck dust maps at 353, 545 and 857GHz, along with IRAS data at 3000 (100 μm) and 5000GHz (60 μm), with Green Bank Telescope 21-cm observations of Hi in 14 fields covering more than 800deg2 at high Galactic latitude. The main goal...... of this study is to estimate the far-infrared to sub-millimeter (submm) emissivity of dust in the diffuse local interstellar medium (ISM) and in the intermediate-velocity (IVC) and high-velocity clouds (HVC) of the Galactic halo. Galactic dust emission for fields with average Hi column density lower than 2...

  9. KINEMATICAL AND CHEMICAL VERTICAL STRUCTURE OF THE GALACTIC THICK DISK. II. A LACK OF DARK MATTER IN THE SOLAR NEIGHBORHOOD

    International Nuclear Information System (INIS)

    Moni Bidin, C.; Smith, R.; Carraro, G.; Méndez, R. A.

    2012-01-01

    We estimated the dynamical surface mass density Σ at the solar position between Z = 1.5 and 4 kpc from the Galactic plane, as inferred from the kinematics of thick disk stars. The formulation is exact within the limit of validity of a few basic assumptions. The resulting trend of Σ(Z) matches the expectations of visible mass alone, and no dark component is required to account for the observations. We extrapolate a dark matter (DM) density in the solar neighborhood of 0 ± 1 mM ☉ pc –3 , and all the current models of a spherical DM halo are excluded at a confidence level higher than 4σ. A detailed analysis reveals that a small amount of DM is allowed in the volume under study by the change of some input parameter or hypothesis, but not enough to match the expectations of the models, except under an exotic combination of non-standard assumptions. Identical results are obtained when repeating the calculation with kinematical measurements available in the literature. We demonstrate that a DM halo would be detected by our method, and therefore the results have no straightforward interpretation. Only the presence of a highly prolate (flattening q > 2) DM halo can be reconciled with the observations, but this is highly unlikely in ΛCDM models. The results challenge the current understanding of the spatial distribution and nature of the Galactic DM. In particular, our results may indicate that any direct DM detection experiment is doomed to fail if the local density of the target particles is negligible.

  10. KINEMATICAL AND CHEMICAL VERTICAL STRUCTURE OF THE GALACTIC THICK DISK. II. A LACK OF DARK MATTER IN THE SOLAR NEIGHBORHOOD

    Energy Technology Data Exchange (ETDEWEB)

    Moni Bidin, C.; Smith, R. [Departamento de Astronomia, Universidad de Concepcion, Casilla 160-C, Concepcion (Chile); Carraro, G. [European Southern Observatory, Alonso de Cordova 3107, Vitacura, Santiago (Chile); Mendez, R. A., E-mail: cmbidin@astro-udec.cl [Departamento de Astronomia, Universidad de Chile, Casilla 36-D, Santiago (Chile)

    2012-05-20

    We estimated the dynamical surface mass density {Sigma} at the solar position between Z = 1.5 and 4 kpc from the Galactic plane, as inferred from the kinematics of thick disk stars. The formulation is exact within the limit of validity of a few basic assumptions. The resulting trend of {Sigma}(Z) matches the expectations of visible mass alone, and no dark component is required to account for the observations. We extrapolate a dark matter (DM) density in the solar neighborhood of 0 {+-} 1 mM{sub Sun} pc{sup -3}, and all the current models of a spherical DM halo are excluded at a confidence level higher than 4{sigma}. A detailed analysis reveals that a small amount of DM is allowed in the volume under study by the change of some input parameter or hypothesis, but not enough to match the expectations of the models, except under an exotic combination of non-standard assumptions. Identical results are obtained when repeating the calculation with kinematical measurements available in the literature. We demonstrate that a DM halo would be detected by our method, and therefore the results have no straightforward interpretation. Only the presence of a highly prolate (flattening q > 2) DM halo can be reconciled with the observations, but this is highly unlikely in {Lambda}CDM models. The results challenge the current understanding of the spatial distribution and nature of the Galactic DM. In particular, our results may indicate that any direct DM detection experiment is doomed to fail if the local density of the target particles is negligible.

  11. Cosmic Rays and Non-thermal Emission Induced by Accretion of Cool Gas onto the Galactic Disk

    Science.gov (United States)

    Inoue, Susumu; Uchiyama, Yasunobu; Arakawa, Masanori; Renaud, Matthieu; Wada, Keiichi

    2017-11-01

    On both observational and theoretical grounds, the disk of our Galaxy should be accreting cool gas with temperature ≲ {10}5 K via the halo at a rate ˜1 {{M}⊙ {yr}}-1. At least some of this accretion is mediated by high-velocity clouds (HVCs), observed to be traveling in the halo with velocities of a few 100 km s-1 and occasionally impacting the disk at such velocities, especially in the outer regions of the Galaxy. We address the possibility of particle acceleration in shocks triggered by such HVC accretion events, and the detectability of consequent non-thermal emission in the radio to gamma-ray bands and high-energy neutrinos. For plausible shock velocities ˜ 300 {km} {{{s}}}-1 and magnetic field strengths ˜ 0.3{--}10 μ {{G}}, electrons and protons may be accelerated up to ˜1-10 TeV and ˜ 30{--}{10}3 TeV, respectively, in sufficiently strong adiabatic shocks during their lifetime of ˜ {10}6 {{yr}}. The resultant pion decay and inverse Compton gamma-rays may be the origin of some unidentified Galactic GeV-TeV sources, particularly the “dark” source HESS J1503-582 that is spatially coincident with the anomalous H I structure known as “forbidden-velocity wings.” Correlation of their locations with star-forming regions may be weak, absent, or even opposite. Non-thermal radio and X-ray emission from primary and/or secondary electrons may be detectable with deeper observations. The contribution of HVC accretion to Galactic cosmic rays is subdominant, but could be non-negligible in the outer Galaxy. As the thermal emission induced by HVC accretion is likely difficult to detect, observations of such phenomena may offer a unique perspective on probing gas accretion onto the Milky Way and other galaxies.

  12. A SCALING RELATION BETWEEN MEGAMASER DISK RADIUS AND BLACK HOLE MASS IN ACTIVE GALACTIC NUCLEI

    International Nuclear Information System (INIS)

    Wardle, Mark; Yusef-Zadeh, Farhad

    2012-01-01

    Several thin, Keplerian, sub-parsec megamaser disks have been discovered in the nuclei of active galaxies and used to precisely determine the mass of their host black holes. We show that there is an empirical linear correlation between the disk radius and the black hole mass. We demonstrate that such disks are naturally formed by the partial capture of molecular clouds passing through the galactic nucleus and temporarily engulfing the central supermassive black hole. Imperfect cancellation of the angular momenta of the cloud material colliding after passing on opposite sides of the hole leads to the formation of a compact disk. The radial extent of the disk is determined by the efficiency of this process and the Bondi-Hoyle capture radius of the black hole, and naturally produces the empirical linear correlation of the radial extent of the maser distribution with black hole mass. The disk has sufficient column density to allow X-ray irradiation from the central source to generate physical and chemical conditions conducive to the formation of 22 GHz H 2 O masers. For initial cloud column densities ∼ 23.5 cm –2 the disk is non-self-gravitating, consistent with the ordered kinematics of the edge-on megamaser disks; for higher cloud columns the disk would fragment and produce a compact stellar disk similar to that observed around Sgr A* at the galactic center.

  13. Sc and neutron-capture abundances in Galactic low- and high-alpha field halo stars

    DEFF Research Database (Denmark)

    Fishlock, Cherie K.; Yong, D.; Karakas, Amanda I.

    2017-01-01

    We determine relative abundance ratios for the neutron-capture elements Zr, La, Ce, Nd and Eu for a sample of 27 Galactic dwarf stars with -1.5 stars separate into three populations (low-and high-a halo and thick-disc stars) based......-alpha stars have a lower abundance compared to the high-alpha stars. The low-alpha stars display the same abundance patterns of high [Ba/Y] and low [Y/Eu] as observed in present-day dwarf spheroidal galaxies, although with smaller abundance differences, when compared to the high-alpha stars. These distinct...... chemical patterns have been attributed to differences in the star formation rate between the two populations and the contribution of low-metallicity, low-mass asymptotic giant branch (AGB) stars to the low-alpha population. By comparing the low-alpha population with AGB stellar models, we place constraints...

  14. Light bending in the galactic halo by Rindler-Ishak method

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Amrita; Nandi, Kamal K. [Department of Mathematics, University of North Bengal, Rajarammohunpur, Siliguri 734 013 (India); Isaev, Ruslan [Joint Research Laboratory, Bashkir State Pedagogical University, 3A, October Revolution Street, Ufa 450000 (Russian Federation); Scalia, Massimo; Cattani, Carlo, E-mail: amrita_852003@yahoo.co.in, E-mail: subfear@gmail.com, E-mail: Massimo.Scalia@uniroma1.it, E-mail: ccattani@unisa.it, E-mail: kamalnandi1952@yahoo.co.in [Dipartimento di Matematica, Istituto ' ' G. Castelnuovo' ' , Università La Sapienza, P.le Aldo Moro, 2, Rome (Italy)

    2010-09-01

    After the work of Rindler and Ishak, it is now well established that the bending of light is influenced by the cosmological constant Λ appearing in the Schwarzschild-de Sitter spacetime. We show that their method, when applied to the exact Mannheim-Kazanas-de Sitter solution of the Weyl conformal gravity, nicely yields the expected answer together with several other physically interesting new terms. Apart from Λ, the solution is parametrized by a conformal parameter γ, which is known to play a dominant role in the galactic halo gravity. The application of the method yields exactly the same γ− correction to Schwarzschild bending as obtained by standard methods. Different cases are analyzed, which include some corrections to the special cases considered in the original paper by Rindler and Ishak.

  15. Light bending in the galactic halo by Rindler-Ishak method

    International Nuclear Information System (INIS)

    Bhattacharya, Amrita; Nandi, Kamal K.; Isaev, Ruslan; Scalia, Massimo; Cattani, Carlo

    2010-01-01

    After the work of Rindler and Ishak, it is now well established that the bending of light is influenced by the cosmological constant Λ appearing in the Schwarzschild-de Sitter spacetime. We show that their method, when applied to the exact Mannheim-Kazanas-de Sitter solution of the Weyl conformal gravity, nicely yields the expected answer together with several other physically interesting new terms. Apart from Λ, the solution is parametrized by a conformal parameter γ, which is known to play a dominant role in the galactic halo gravity. The application of the method yields exactly the same γ− correction to Schwarzschild bending as obtained by standard methods. Different cases are analyzed, which include some corrections to the special cases considered in the original paper by Rindler and Ishak

  16. XMM-NEWTON MEASUREMENT OF THE GALACTIC HALO X-RAY EMISSION USING A COMPACT SHADOWING CLOUD

    International Nuclear Information System (INIS)

    Henley, David B.; Shelton, Robin L.; Cumbee, Renata S.; Stancil, Phillip C.

    2015-01-01

    Observations of interstellar clouds that cast shadows in the soft X-ray background can be used to separate the background Galactic halo emission from the local emission due to solar wind charge exchange (SWCX) and/or the Local Bubble (LB). We present an XMM-Newton observation of a shadowing cloud, G225.60–66.40, that is sufficiently compact that the on- and off-shadow spectra can be extracted from a single field of view (unlike previous shadowing observations of the halo with CCD-resolution spectrometers, which consisted of separate on- and off-shadow pointings). We analyzed the spectra using a variety of foreground models: one representing LB emission, and two representing SWCX emission. We found that the resulting halo model parameters (temperature T h ≈ 2 × 10 6 K, emission measure E h ≈4×10 −3  cm −6  pc) were not sensitive to the foreground model used. This is likely due to the relative faintness of the foreground emission in this observation. However, the data do favor the existence of a foreground. The halo parameters derived from this observation are in good agreement with those from previous shadowing observations, and from an XMM-Newton survey of the Galactic halo emission. This supports the conclusion that the latter results are not subject to systematic errors, and can confidently be used to test models of the halo emission

  17. Circumstellar Disk Lifetimes In Numerous Galactic Young Stellar Clusters

    Science.gov (United States)

    Richert, A. J. W.; Getman, K. V.; Feigelson, E. D.; Kuhn, M. A.; Broos, P. S.; Povich, M. S.; Bate, M. R.; Garmire, G. P.

    2018-04-01

    Photometric detections of dust circumstellar disks around pre-main sequence (PMS) stars, coupled with estimates of stellar ages, provide constraints on the time available for planet formation. Most previous studies on disk longevity, starting with Haisch, Lada & Lada (2001), use star samples from PMS clusters but do not consider datasets with homogeneous photometric sensitivities and/or ages placed on a uniform timescale. Here we conduct the largest study to date of the longevity of inner dust disks using X-ray and 1-8 {μ m} infrared photometry from the MYStIX and SFiNCs projects for 69 young clusters in 32 nearby star-forming regions with ages t ≤ 5 Myr. Cluster ages are derived by combining the empirical AgeJX method with PMS evolutionary models, which treat dynamo-generated magnetic fields in different ways. Leveraging X-ray data to identify disk-free objects, we impose similar stellar mass sensitivity limits for disk-bearing and disk-free YSOs while extending the analysis to stellar masses as low as M ˜ 0.1 M⊙. We find that the disk longevity estimates are strongly affected by the choice of PMS evolutionary model. Assuming a disk fraction of 100% at zero age, the inferred disk half-life changes significantly, from t1/2 ˜ 1.3 - 2 Myr to t1/2 ˜ 3.5 Myr when switching from non-magnetic to magnetic PMS models. In addition, we find no statistically significant evidence that disk fraction varies with stellar mass within the first few Myr of life for stars with masses <2 M⊙, but our samples may not be complete for more massive stars. The effects of initial disk fraction and star-forming environment are also explored.

  18. HIERARCHICAL FORMATION OF THE GALACTIC HALO AND THE ORIGIN OF HYPER METAL-POOR STARS

    International Nuclear Information System (INIS)

    Komiya, Yutaka; Habe, Asao; Suda, Takuma; Fujimoto, Masayuki Y.

    2009-01-01

    Extremely metal-poor (EMP) stars in the Galactic halo are unique probes into the early universe and the first stars. We construct a new program to calculate the formation history of EMP stars in the early universe with the chemical evolution, based on the merging history of the Galaxy. We show that the hierarchical structure formation model reproduces the observed metallicity distribution function and also the total number of observed EMP stars, when we take into account the high-mass initial mass function and the contribution of binaries, as proposed by Komiya et al. The low-mass survivors divide into two groups of those born before and after the mini-halos are polluted by their own first supernovae. The former has observational counterparts in the hyper metal-poor (HMP) stars below [Fe/H] - 4. In this Letter, we focus on the origin of the extremely small iron abundances of HMP stars. We compute the change in the surface abundances of individual stars through the accretion of the metal-enriched interstellar gas along with the dynamical and chemical evolution of the Galaxy, to demonstrate that after-birth pollution of Population III stars is sufficiently effective to explain the observed abundances of HMP stars. Metal pre-enrichment by possible pair instability supernovae is also discussed, to derive constraints on their roles and on the formation of the first low-mass stars.

  19. Spherical harmonics analysis of Fermi gamma-ray data and the Galactic dark matter halo

    International Nuclear Information System (INIS)

    Malyshev, Dmitry; Bovy, Jo; Cholis, Ilias

    2011-01-01

    We argue that the decomposition of gamma-ray maps in spherical harmonics is a sensitive tool to study dark matter (DM) annihilation or decay in the main Galactic halo of the Milky Way. Using the spherical harmonic decomposition in a window excluding the Galactic plane, we show for 1 yr of Fermi data that adding a spherical template (such as a line-of-sight DM annihilation profile) to an astrophysical background significantly reduces χ 2 of the fit to the data. In some energy bins the significance of this DM fraction is above three sigma. This can be viewed as a hint of a DM annihilation signal, although astrophysical sources cannot be ruled out at this moment. We use the derived DM fraction as a conservative upper limit on the DM annihilation signal. In the case of bb annihilation channel the limits are about a factor of 2 less constraining than the limits from dwarf galaxies. The uncertainty of our method is dominated by systematics related to modeling the astrophysical background. We show that with 1 yr of Fermi data the statistical sensitivity would be sufficient to detect DM annihilation with thermal freeze-out cross section for masses below 100 GeV.

  20. The role of neutron star mergers in the chemical evolution of the Galactic halo

    Science.gov (United States)

    Cescutti, G.; Romano, D.; Matteucci, F.; Chiappini, C.; Hirschi, R.

    2015-05-01

    Context. The dominant astrophysical production site of the r-process elements has not yet been unambiguously identified. The suggested main r-process sites are core-collapse supernovae and merging neutron stars. Aims: We explore the problem of the production site of Eu. We also use the information present in the observed spread in the Eu abundances in the early Galaxy, and not only its average trend. Moreover, we extend our investigations to other heavy elements (Ba, Sr, Rb, Zr) to provide additional constraints on our results. Methods: We adopt a stochastic chemical evolution model that takes inhomogeneous mixing into account. The adopted yields of Eu from merging neutron stars and from core-collapse supernovae are those that are able to explain the average [Eu/Fe]-[Fe/H] trend observed for solar neighbourhood stars, the solar abundance of Eu, and the present-day abundance gradient of Eu along the Galactic disc in the framework of a well-tested homogeneous model for the chemical evolution of the Milky Way. Rb, Sr, Zr, and Ba are produced by both the s- and r-processes. The r-process yields were obtained by scaling the Eu yields described above according to the abundance ratios observed in r-process rich stars. The s-process contribution by spinstars is the same as in our previous papers. Results: Neutron star binaries that merge in less than 10 Myr or neutron star mergers combined with a source of r-process generated by massive stars can explain the spread of [Eu/Fe] in the Galactic halo. The combination of r-process production by neutron star mergers and s-process production by spinstars is able to reproduce the available observational data for Sr, Zr, and Ba. We also show the first predictions for Rb in the Galactic halo. Conclusions: We confirm previous results that either neutron star mergers on a very short timescale or both neutron star mergers and at least a fraction of Type II supernovae have contributed to the synthesis of Eu in the Galaxy. The r

  1. Finding evolved stars in the inner Galactic disk with Gaia

    Science.gov (United States)

    Quiroga-Nuñez, L. H.; van Langevelde, H. J.; Pihlström, Y. M.; Sjouwerman, L. O.; Brown, A. G. A.

    2018-04-01

    The Bulge Asymmetries and Dynamical Evolution (BAaDE) survey will provide positions and line-of-sight velocities of ~20, 000 evolved, maser bearing stars in the Galactic plane. Although this Galactic region is affected by optical extinction, BAaDE targets may have Gaia cross-matches, eventually providing additional stellar information. In an initial attempt to cross-match BAaDE targets with Gaia, we have found more than 5,000 candidates. Of these, we may expect half to show SiO emission, which will allow us to obtain velocity information. The cross-match is being refined to avoid false positives using different criteria based on distance analysis, flux variability, and color assessment in the mid- and near-IR. Once the cross-matches can be confirmed, we will have a unique sample to characterize the stellar population of evolved stars in the Galactic bulge, which can be considered fossils of the Milky Way formation.

  2. Angular Spectra of Polarized Galactic Foregrounds

    OpenAIRE

    Cho, Jung; Lazarian, A.

    2003-01-01

    It is believed that magnetic field lines are twisted and bend by turbulent motions in the Galaxy. Therefore, both Galactic synchrotron emission and thermal emission from dust reflects statistics of Galactic turbulence. Our simple model of Galactic turbulence, motivated by results of our simulations, predicts that Galactic disk and halo exhibit different angular power spectra. We show that observed angular spectra of synchrotron emission are compatible with our model. We also show that our mod...

  3. Binary pulsars as probes of a Galactic dark matter disk

    Science.gov (United States)

    Caputo, Andrea; Zavala, Jesús; Blas, Diego

    2018-03-01

    As a binary pulsar moves through a wind of dark matter particles, the resulting dynamical friction modifies the binary's orbit. We study this effect for the double disk dark matter (DDDM) scenario, where a fraction of the dark matter is dissipative and settles into a thin disk. For binaries within the dark disk, this effect is enhanced due to the higher dark matter density and lower velocity dispersion of the dark disk, and due to its co-rotation with the baryonic disk. We estimate the effect and compare it with observations for two different limits in the Knudsen number (Kn). First, in the case where DDDM is effectively collisionless within the characteristic scale of the binary (Kn ≫ 1) and ignoring the possible interaction between the pair of dark matter wakes. Second, in the fully collisional case (Kn ≪ 1), where a fluid description can be adopted and the interaction of the pair of wakes is taken into account. We find that the change in the orbital period is of the same order of magnitude in both limits. A comparison with observations reveals good prospects to probe currently allowed DDDM models with timing data from binary pulsars in the near future. We finally comment on the possibility of extending the analysis to the intermediate (rarefied gas) case with Kn ∼ 1.

  4. General relativistic model for the gravitational field of active galactic nuclei surrounded by a disk

    NARCIS (Netherlands)

    Vogt, D.; Letelier, P.S.

    2005-01-01

    An exact but simple general relativistic model for the gravitational field of active galactic nuclei is constructed, based on the superposition in Weyl coordinates of a black hole, a Chazy-Curzon disk and two rods, which represent matter jets. The influence of the rods on the matter properties of

  5. On the metallicity distribution of classical Cepheids in the Galactic inner disk

    NARCIS (Netherlands)

    Genovali, K.; Lemasle, B.; Bono, G.; Romaniello, M.; Primas, F.; Fabrizio, M.; Buonanno, R.; François, P.; Inno, L.; Laney, C.D.; Matsunaga, N.; Pedicelli, S.; Thévenin, F.

    2013-01-01

    We present homogeneous and accurate iron abundances for almost four dozen (47) of Galactic Cepheids using high-spectral resolution (R ~ 40 000) high signal-to-noise ratio (S/N ≥ 100) optical spectra collected with UVES at VLT. A significant fraction of the sample (32) is located in the inner disk

  6. DETECTING TRIAXIALITY IN THE GALACTIC DARK MATTER HALO THROUGH STELLAR KINEMATICS. II. DEPENDENCE ON NATURE DARK MATTER AND GRAVITY

    Energy Technology Data Exchange (ETDEWEB)

    Rojas-Niño, Armando; Pichardo, Barbara; Valenzuela, Octavio [Instituto de Astronomía, Universidad Nacional Autónoma de México, A.P. 70-264, 04510, México, D.F., Universitaria, D.F., México (Mexico); Martínez-Medina, Luis A., E-mail: barbara@astro.unam.mx, E-mail: octavio@astro.unam.mx [Departamento de Física, Centro de Investigación y de Estudios Avanzados del IPN, A.P. 14-740, 07000 México D.F., México (Mexico)

    2015-05-20

    Recent studies have presented evidence that the Milky Way global potential may be non-spherical. In this case, the assembling process of the Galaxy may have left long-lasting stellar halo kinematic fossils due to the shape of the dark matter halo, potentially originated by orbital resonances. We further investigate such a possibility, now considering potential models further away from ΛCDM halos, like scalar field dark matter halos and Modified Newtonian Dynamics (MOND), and including several other factors that may mimic the emergence and permanence of kinematic groups, such as a spherical and triaxial halo with an embedded disk potential. We find that regardless of the density profile (DM nature), kinematic groups only appear in the presence of a triaxial halo potential. For the case of a MOND-like gravity theory no kinematic structure is present. We conclude that the detection of these kinematic stellar groups could confirm the predicted triaxiality of dark halos in cosmological galaxy formation scenarios.

  7. Do the Herschel cold clouds in the Galactic halo embody its dark matter?

    International Nuclear Information System (INIS)

    Nieuwenhuizen, Theo M; Heusden, Erik F G van; Liska, Matthew T P

    2012-01-01

    Recent Herschel/SPIRE (Spectral and Photometric Imaging Receiver) maps of the Small and Large Magellanic Clouds (SMC, LMC) exhibit, in each, thousands of clouds. Observed at 250 μm, they must be cold, T ∼ 15 K, hence the name ‘Herschel cold clouds’ (HCCs). From the observed rotational velocity profile of the Galaxy and the assumption of spherical symmetry, its mass density is modeled in a form close to that of an isothermal sphere. If the HCCs constitute a certain fraction of it, their angular size distribution has a specified shape. A fit to the data deduced from the SMC/LMC maps supports this and yields 1.7 pc for their average radius. There are so many HCCs that they will make up all the missing Halo mass density if there is spherical symmetry and their average mass is of the order of 10 000M ⊙ . This compares with the Jeans mass of about 40 000M ⊙ and puts forward that the HCCs are, in fact, Jeans clusters, constituting all the Galactic dark matter and many of its missing baryons, a conclusion deduced before from a different field of the sky (Nieuwenhuizen et al 2011 J. Cosmol. 15 6017-29). A preliminary analysis of the intensities yields that the Jeans clusters themselves may consist of some billion MACHOs of a few dozen Earth masses. With a size of dozens of solar radii, they would mostly not lens, but cause occultation of stars in the LMC, SMC and toward the Galactic center, and may thus have been overlooked in microlensing.

  8. An ancient F-type subdwarf from the halo crossing the Galactic plane

    Science.gov (United States)

    Scholz, R.-D.; Heber, U.; Heuser, C.; Ziegerer, E.; Geier, S.; Niederhofer, F.

    2015-02-01

    Aims: We selected the bluest object, WISE J0725-2351, from Luhman's new high proper motion (HPM) survey based on observations with the Wide-field Infrared Survey Explorer (WISE) for spectroscopic follow-up observations. Our aim was to unravel the nature of this relatively bright (V ~ 12, J ~ 11) HPM star (μ = 267 mas/yr). Methods: We obtained low- and medium-resolution spectra with the European Southern Observatory (ESO) New Technology Telescope (NTT)/EFOSC2 and Very Large Telescope (VLT)/X-Shooter instruments, investigated the radial velocity and performed a quantitative spectral analysis that allowed us to determine physical parameters. The fit of the spectral energy distribution based on the available photometry to low-metallicity model spectra and the similarity of our target to a metal-poor benchmark star (HD 84937) allowed us to estimate the distance and space velocity. Results: As in the case of HD 84937, we classified WISE J0725-2351 as sdF5: or a metal-poor turnoff star with [ Fe/H ] = -2.0 ± 0.2, Teff = 6250 ± 100 K, log g = 4.0 ± 0.2, and a possible age of about 12 Gyr. At an estimated distance of more than 400 pc, its proper motion translates to a tangential velocity of more than 500 km s-1. Together with its constant (on timescales of hours, days, and months) and large radial velocity (about +240 km s-1), the resulting Galactic restframe velocity is about 460 km s-1, implying a bound retrograde orbit for this extreme halo object that currently crosses the Galactic plane at high speed. Based on observations at the La Silla-Paranal Observatory of the European Southern Observatory for programmes 092.D-0040(A) and 093.D-0127(A).

  9. SPITZER PARALLAX OF OGLE-2015-BLG-0966: A COLD NEPTUNE IN THE GALACTIC DISK

    Energy Technology Data Exchange (ETDEWEB)

    Street, R. A.; Bachelet, E. [LCOGT, 6740 Cortona Drive, Suite 102, Goleta, CA 93117 (United States); Udalski, A. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Novati, S. Calchi [NASA Exoplanet Science Institute, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States); Hundertmark, M. P. G.; Jørgensen, U. G. [Niels Bohr Institute and Centre for Star and Planet Formation, University of Copenhagen, Øster Voldgade 5, DK-1350—Copenhagen K (Denmark); Zhu, W.; Gould, A. [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Yee, J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Tsapras, Y. [Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg (ZAH), D-69120 Heidelberg (Germany); Bennett, D. P. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Dominik, M. [SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS (United Kingdom); Andersen, M. I. [Niels Bohr Institute and Dark Cosmology Centre, University of Copenhagen, Juliane Mariesvej 30, DK-2100—Copenhagen Ø (Denmark); Bozza, V. [Dipartimento di Fisica “E.R. Caianiello,” Università di Salerno, Via Giovanni Paolo II 132, I-84084, Fisciano (Italy); Bramich, D. M. [Qatar Environment and Energy Research Institute, Qatar Foundation, P.O. Box 5825, Doha (Qatar); Collaboration: RoboNet Project and MiNDSTEp Consortium; OGLE Project; Spitzer Team; MOA Collaboration; KMTNet Modeling Team; and others

    2016-03-10

    We report the detection of a cold Neptune m{sub planet} = 21 ± 2 M{sub ⊕} orbiting a 0.38 M{sub ⊙} M dwarf lying 2.5–3.3 kpc toward the Galactic center as part of a campaign combining ground-based and Spitzer observations to measure the Galactic distribution of planets. This is the first time that the complex real-time protocols described by Yee et al., which aim to maximize planet sensitivity while maintaining sample integrity, have been carried out in practice. Multiple survey and follow up teams successfully combined their efforts within the framework of these protocols to detect this planet. This is the second planet in the Spitzer Galactic distribution sample. Both are in the near to mid-disk and are clearly not in the Galactic bulge.

  10. Gas infall into atomic cooling haloes: on the formation of protogalactic disks and supermassive black holes at z > 10

    CERN Document Server

    Prieto, Joaquin; Haiman, Zoltan

    2013-01-01

    We have performed cosmo-hydro simulations using the RAMSES code to study atomic cooling (ACHs) haloes at z=10 with masses 5E7Msun10 to date. We examine the morphology, angular momentum (AM), thermodynamic, and turbulence of these haloes, in order to assess the prevalence of disks and supermassive black holes (SMBHs). We find no correlation between either the magnitude or the direction of the AM of the gas and its parent DM halo. Only 3 haloes form rotationally supported cores. Two of the most massive haloes form massive, compact overdense blobs. These blobs have an accretion rate ~0.5 Msun/yr (at a distance of 100 pc), and are possible sites of SMBH formation. Our results suggest that the degree of rotational support and the fate of the gas in a halo is determined by its large-scale environment and merger history. In particular, the two haloes forming blobs are located at knots of the cosmic web, cooled early on, and experienced many mergers. The gas in these haloes is lumpy and highly turbulent, with Mach N....

  11. Constraining cosmic scatter in the Galactic halo through a differential analysis of metal-poor stars

    Science.gov (United States)

    Reggiani, Henrique; Meléndez, Jorge; Kobayashi, Chiaki; Karakas, Amanda; Placco, Vinicius

    2017-12-01

    Context. The chemical abundances of metal-poor halo stars are important to understanding key aspects of Galactic formation and evolution. Aims: We aim to constrain Galactic chemical evolution with precise chemical abundances of metal-poor stars (-2.8 ≤ [Fe/H] ≤ -1.5). Methods: Using high resolution and high S/N UVES spectra of 23 stars and employing the differential analysis technique we estimated stellar parameters and obtained precise LTE chemical abundances. Results: We present the abundances of Li, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, Zn, Sr, Y, Zr, and Ba. The differential technique allowed us to obtain an unprecedented low level of scatter in our analysis, with standard deviations as low as 0.05 dex, and mean errors as low as 0.05 dex for [X/Fe]. Conclusions: By expanding our metallicity range with precise abundances from other works, we were able to precisely constrain Galactic chemical evolution models in a wide metallicity range (-3.6 ≤ [Fe/H] ≤ -0.4). The agreements and discrepancies found are key for further improvement of both models and observations. We also show that the LTE analysis of Cr II is a much more reliable source of abundance for chromium, as Cr I has important NLTE effects. These effects can be clearly seen when we compare the observed abundances of Cr I and Cr II with GCE models. While Cr I has a clear disagreement between model and observations, Cr II is very well modeled. We confirm tight increasing trends of Co and Zn toward lower metallicities, and a tight flat evolution of Ni relative to Fe. Our results strongly suggest inhomogeneous enrichment from hypernovae. Our precise stellar parameters results in a low star-to-star scatter (0.04 dex) in the Li abundances of our sample, with a mean value about 0.4 dex lower than the prediction from standard Big Bang nucleosynthesis; we also study the relation between lithium depletion and stellar mass, but it is difficult to assess a correlation due to the limited mass range. We

  12. Bose-Einstein Condensate Dark Matter Halos Confronted with Galactic Rotation Curves

    Directory of Open Access Journals (Sweden)

    M. Dwornik

    2017-01-01

    Full Text Available We present a comparative confrontation of both the Bose-Einstein Condensate (BEC and the Navarro-Frenk-White (NFW dark halo models with galactic rotation curves. We employ 6 High Surface Brightness (HSB, 6 Low Surface Brightness (LSB, and 7 dwarf galaxies with rotation curves falling into two classes. In the first class rotational velocities increase with radius over the observed range. The BEC and NFW models give comparable fits for HSB and LSB galaxies of this type, while for dwarf galaxies the fit is significantly better with the BEC model. In the second class the rotational velocity of HSB and LSB galaxies exhibits long flat plateaus, resulting in better fit with the NFW model for HSB galaxies and comparable fits for LSB galaxies. We conclude that due to its central density cusp avoidance the BEC model fits better dwarf galaxy dark matter distribution. Nevertheless it suffers from sharp cutoff in larger galaxies, where the NFW model performs better. The investigated galaxy sample obeys the Tully-Fisher relation, including the particular characteristics exhibited by dwarf galaxies. In both models the fitting enforces a relation between dark matter parameters: the characteristic density and the corresponding characteristic distance scale with an inverse power.

  13. A window on first-stars models from studies of dwarf galaxies and galactic halo stars

    Science.gov (United States)

    Venkatesan, Aparna

    2018-06-01

    Dwarf galaxies dominate the local universe by number and are predicted to be even more dominant at early times, with many having large star formation rates per unit mass. The cosmological role of dwarf galaxies in the metal enrichment and the reionization of the universe is an important but unresolved problem at present. Nearby low-mass galaxies are much more accessible observationally for detailed study and may be local analogs of the types of galaxies that hosted the first-light sources relevant for reionization. I will share recent results on UV studies of the escaping radiation from nearby low-mass starforming galaxies, as well as the tantalizing similarities in element abundance patterns between local dwarf galaxies and the latest data compilations on extremely metal-poor stars in galactic halos. I will highlight trends of interest in a variety of individual elements at values of [Fe/H] between -7 and -3, including alpha-elements, elements originating mostly in intermediate-mass stars, lithium, titanium, and r-process elements. These trends constrain not only models of the first stars and their supernovae, but provide a window into the physical conditions in early galaxies and when metal-free star formation may have ceased in the early universe.This work was supported by the University of San Francisco Faculty Development Fund, and NSF grant AST-1637339. We thank the Aspen Center for Physics, where some of this work was conducted, and which is supported by National Science Foundation grant PHY-1607611.

  14. Properties of Stellar Streams in the Galactic Disk

    Directory of Open Access Journals (Sweden)

    Marsakov V. A.

    2016-12-01

    Full Text Available Stars of the Sirius, Coma Berenices, Hyades, Pleiades, Wolf 630, Dehnen 6, Dehnen 14, HR 1614, η Cephei, γ Leo streams, the newly identified two subgroups of the Hercules stream, and the streams BB 14, BB 17, BB 20, and BB 21 are selected using the components of space velocities from three independent catalogs. The relationship between their ages, metallicities and relative abundances of α-elements are studied. The data of the three catalogs show slightly different properties for each of the streams studied. However, the general tendency shows that the dependences studied for the stars within the streams hardly differ from those found for the field stars with the corresponding velocities. The dependences found confirm the assumption that all of the streams studied could have been formed as a result of resonance effects due to the Galactic bar or spiral density waves acting on field stars.

  15. A high spatial resolution X-ray and Hα study of hot gas in the halos of star-forming disk galaxies -- testing feedback models

    Science.gov (United States)

    Strickland, D. K.; Heckman, T. M.; Colbert, E. J. M.; Hoopes, C. G.; Weaver, K. A.

    2002-12-01

    We present arcsecond resolution Chandra X-ray and ground-based optical Hα imaging of a sample of ten edge-on star-forming disk galaxies (seven starburst and three ``normal'' spiral galaxies), a sample which covers the full range of star-formation intensity found in disk galaxies. The X-ray observations make use of the unprecented spatial resolution of the Chandra X-ray observatory to robustly remove X-ray emission from point sources, and hence obtain the X-ray properties of the diffuse thermal emission alone. This data has been combined with existing, comparable-resolution, ground-based Hα imaging. We compare these empirically-derived diffuse X-ray properties with various models for the generation of hot gas in the halos of star-forming galaxies: supernova feedback-based models (starburst-driven winds, galactic fountains), cosmologically-motivated accretion of the IGM and AGN-driven winds. SN feedback models best explain the observed diffuse X-ray emission. We then use the data to test basic, but fundamental, aspects of wind and fountain theories, e.g. the critical energy required for disk "break-out." DKS is supported by NASA through Chandra Postdoctoral Fellowship Award Number PF0-10012.

  16. The continuous rise of bulges out of galactic disks

    Science.gov (United States)

    Breda, Iris; Papaderos, Polychronis

    2018-06-01

    Context. A key subject in extragalactic astronomy concerns the chronology and driving mechanisms of bulge formation in late-type galaxies (LTGs). The standard scenario distinguishes between classical bulges and pseudo-bulges (CBs and PBs, respectively), the first thought to form monolithically prior to disks and the second gradually out of disks. These two bulge formation routes obviously yield antipodal predictions on the bulge age and bulge-to-disk age contrast, both expected to be high (low) in CBs (PBs). Aims: Our main goal is to explore whether bulges in present-day LTGs segregate into two evolutionary distinct classes, as expected from the standard scenario. Other questions motivating this study center on evolutionary relations between LTG bulges and their hosting disks, and the occurrence of accretion-powered nuclear activity as a function of bulge stellar mass ℳ⋆ and stellar surface density Σ⋆. Methods: In this study, we have combined three techniques - surface photometry, spectral modeling of integral field spectroscopy data and suppression of stellar populations younger than an adjustable age cutoff with the code REMOVEYOUNG (ℛ𝒴) - toward a systematic analysis of the physical and evolutionary properties (e.g., ℳ⋆, Σ⋆ and mass-weighted stellar age ℳ and metallicity ℳ, respectively) of a representative sample of 135 nearby (≤ 130 Mpc) LTGs from the CALIFA survey that cover a range between 108.9 M⊙ and 1011.5 M⊙ in total stellar mass ℳ⋆,T. In particular, the analysis here revolves around ⟨δμ9G⟩, a new distance- and formally extinction-independent measure of the contribution by stellar populations of age ≥ 9 Gyr to the mean r-band surface brightness of the bulge. We argue that ⟨δμ9G⟩ offers a handy semi-empirical tracer of the physical and evolutionary properties of LTG bulges and a promising means for their characterization. Results: The essential insight from this study is that LTG bulges form over 3 dex

  17. On planetary nebulae as sources of carbon dust: Infrared emission from planetary nebulae of the galactic halo

    International Nuclear Information System (INIS)

    Dinerstein, H.L.; Lester, D.F.

    1990-01-01

    Researchers examine here the characteristics of the infrared emission from the four planetary nebulae which are believed on the basis of their low overall metallicities to belong to the halo population. These nebulae are of particular interest because they are the most metal-poor ionized nebulae known in our Galaxy, and offer the opportunity to probe possible dependences of the dust properties on nebular composition. Researchers present fluxes extracted from co-addition of the IRAS data, as well as ground-based near infrared measurements. Each of the four halo objects, including the planetary nebula in the globular cluster M15, is detected in at least one infrared band. Researchers compare the estimated infrared excesses of these nebulae (IRE, the ratio of measured infrared power to the power available in the form of resonantly-trapped Lyman alpha photons) to those of disk planetary nebulae with similar densities but more normal abundances. Three of the halo planetaries have IRE values similar to those of the disk nebulae, despite the fact that their Fe- and Si-peak gas phase abundances are factors of 10 to 100 lower. However, these halo nebulae have normal or elevated C/H ratios, due to nuclear processing and mixing in their red giant progenitors. Unlike the other halo planetaries, DDDM1 is deficient in carbon as well as in the other light metals. This nebula has a substantially lower IRE than the other halo planetaries, and may be truly dust efficient. Researchers suggest that the deficiency is due to a lack of the raw material for producing carbon-based grains, and that the main bulk constituent of the dust in these planetary nebulae is carbon

  18. Planck early results. XXIV. Dust in the diffuse interstellar medium and the Galactic halo

    Science.gov (United States)

    Planck Collaboration; Abergel, A.; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Bernard, J.-P.; Bersanelli, M.; Bhatia, R.; Blagrave, K.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Cabella, P.; Cantalupo, C. M.; Cardoso, J.-F.; Catalano, A.; Cayón, L.; Challinor, A.; Chamballu, A.; Chiang, L.-Y.; Chiang, C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Couchot, F.; Coulais, A.; Crill, B. P.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Gasperis, G.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Donzelli, S.; Doré, O.; Dörl, U.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Harrison, D.; Helou, G.; Henrot-Versillé, S.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hovest, W.; Hoyland, R. J.; Huffenberger, K. M.; Jaffe, A. H.; Joncas, G.; Jones, A.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knox, L.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leach, S.; Leonardi, R.; Leroy, C.; Linden-Vørnle, M.; Lockman, F. J.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; MacTavish, C. J.; Maffei, B.; Maino, D.; Mandolesi, N.; Mann, R.; Maris, M.; Marshall, D. J.; Martin, P.; Martínez-González, E.; Masi, S.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Osborne, S.; Pajot, F.; Paladini, R.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pinheiro Gonçalves, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Poutanen, T.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Reinecke, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, P.; Smoot, G. F.; Starck, J.-L.; Stivoli, F.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Torre, J.-P.; Tristram, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Wilkinson, A.; Yvon, D.; Zacchei, A.; Zonca, A.

    2011-12-01

    This paper presents the first results from a comparison of Planck dust maps at 353, 545 and 857GHz, along with IRAS data at 3000 (100 μm) and 5000GHz (60 μm), with Green Bank Telescope 21-cm observations of Hi in 14 fields covering more than 800 deg2 at high Galactic latitude. The main goal of this study is to estimate the far-infrared to sub-millimeter (submm) emissivity of dust in the diffuse local interstellar medium (ISM) and in the intermediate-velocity (IVC) and high-velocity clouds (HVC) of the Galactic halo. Galactic dust emission for fields with average Hi column density lower than 2 × 1020 cm-2 is well correlated with 21-cm emission because in such diffuse areas the hydrogen is predominantly in the neutral atomic phase. The residual emission in these fields, once the Hi-correlated emission is removed, is consistent with the expected statistical properties of the cosmic infrared background fluctuations. The brighter fields in our sample, with an average Hi column density greater than 2 × 1020 cm-2, show significant excess dust emission compared to the Hi column density. Regions of excess lie in organized structures that suggest the presence of hydrogen in molecular form, though they are not always correlated with CO emission. In the higher Hi column density fields the excess emission at 857 GHz is about 40% of that coming from the Hi, but over all the high latitude fields surveyed the molecular mass faction is about 10%. Dust emission from IVCs is detected with high significance by this correlation analysis. Its spectral properties are consistent with, compared to the local ISM values, significantly hotter dust (T ~ 20K), lower submm dust opacity normalized per H-atom, and a relative abundance of very small grains to large grains about four times higher. These results are compatible with expectations for clouds that are part of the Galactic fountain in which there is dust shattering and fragmentation. Correlated dust emission in HVCs is not detected

  19. Relations between age, metallicity and kinematics of F-G stars of the Galactic disk

    International Nuclear Information System (INIS)

    Shevelev, Yu.G.; Marsakov, V.A.; Suchkov, A.A.

    1989-01-01

    The data for ∼ 5500 F-G stars are used to study their kinematics, metal abindance and HR diagram in terms of uvby photometry. The age-metallicity, velocity-metallicity, and age-velocity relations are derived. An estimate for the age of the galactic disk is obtained. The following is shown: 1) At[Fe/H] -0.1, turn out to be kinematically younger than these G dwarfs. The same paradox is revealed by G and K giants

  20. New Classical Cepheids in the Inner Part of the Northern Galactic Disk, and Their Kinematics

    Energy Technology Data Exchange (ETDEWEB)

    Tanioka, Satoshi [Department of Astronomical Science, School of Physical Sciences, SOKENDAI (The Graduate University for Advanced Studies), Mitaka, Tokyo 181-8588 (Japan); Matsunaga, Noriyuki [Department of Astronomy, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Fukue, Kei [Koyama Astronomical Observatory, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555 (Japan); Inno, Laura [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Bono, Giuseppe [Instituto Nazionale de Astrofisica, Osservatorio Astronomico di Roma, Via Frascati 33, I-00040 Monte Porzio Catone (Italy); Kobayashi, Naoto, E-mail: matsunaga@astron.s.u-tokyo.ac.jp [Laboratory of Infrared High-resolution spectroscopy (LiH), Koyama Astronomical Observatory, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555 (Japan)

    2017-06-20

    The characteristics of the inner Galaxy remain obscured by significant dust extinction, hence infrared surveys are useful for finding young Cepheids whose distances and ages can be accurately determined. A near-infrared photometric and spectroscopic survey was carried out and three classical Cepheids were unveiled in the inner disk, around 20° and 30° in Galactic longitude. The targets feature small Galactocentric distances, 3–5 kpc, and their velocities are important, as they may be under the environmental influence of the Galactic bar. While one of the Cepheids has a radial velocity consistent with the Galactic rotation, the other two are moving significantly slower. We also compare their kinematics with that of high-mass star-forming regions with measured parallactic distances.

  1. Massachusetts Stony Brook galactic plane CO survey - disk and spiral arm molecular cloud populations

    International Nuclear Information System (INIS)

    Solomon, P.M.; Sanders, D.B.; Rivolo, A.R.; Five College Radio Astronomy Observatory, Pasadena, CA; Space Telescope Science Institute, Baltimore, MD)

    1985-01-01

    A preliminary analysis of a new high-resolution CO survey of the galactic disk is presented, which can detect and measure essentially all molecular clouds and cloud components in the inner Galaxy with size greater than 10 pc. In the region of l between 20 and 50 deg approximately 2000 emission centers are identified. Two populations which separate according to temperature are found. The disk population of cold molecular cores contains about three-quarters of the total number of cores, is not confined to any large-scale pattern in longitude-velocity space, and must be widespread in the Galaxy both in and out of spiral arms. The spiral arm population of warm molecular cores contains about one-quarter of the population with one-half of the emission and is very closely associated with radio H II regions. Between longitudes 20 and 50 deg their radial distribution shows two peaks at R = 5 and 7.5 kpc. The warm molecular cloud cores have a nonaxisymmetric galactic distribution, occur in clusters, and are confined to restricted regions and patterns in longitude-velocity space and in the galactic disk. 20 references

  2. THE H I MASS DENSITY IN GALACTIC HALOS, WINDS, AND COLD ACCRETION AS TRACED BY Mg II ABSORPTION

    Energy Technology Data Exchange (ETDEWEB)

    Kacprzak, Glenn G. [Swinburne University of Technology, Victoria 3122 (Australia); Churchill, Christopher W., E-mail: gkacprzak@astro.swin.edu.au, E-mail: cwc@nmsu.edu [New Mexico State University, Las Cruces, NM 88003 (United States)

    2011-12-20

    It is well established that Mg II absorption lines detected in background quasar spectra arise from gas structures associated with foreground galaxies. The degree to which galaxy evolution is driven by the gas cycling through halos is highly uncertain because their gas mass density is poorly constrained. Fitting the Mg II equivalent width (W) distribution with a Schechter function and applying the N(H I)-W correlation of Menard and Chelouche, we computed {Omega}(H I){sub MgII} {identical_to} {Omega}(H I){sub halo} = 1.41{sup +0.75}{sub -0.44} Multiplication-Sign 10{sup -4} for 0.4 {<=} z {<=} 1.4. We exclude damped Ly{alpha}'s (DLAs) from our calculations so that {Omega}(H I){sub halo} comprises accreting and/or outflowing halo gas not locked up in cold neutral clouds. We deduce that the cosmic H I gas mass density fraction in galactic halos traced by Mg II absorption is {Omega}(H I){sub halo}/{Omega}(H I){sub DLA} {approx_equal} 15% and {Omega}(H I){sub halo}/{Omega}{sub b} {approx_equal} 0.3%. Citing several lines of evidence, we propose that infall/accretion material is sampled by small W whereas outflow/winds are sampled by large W, and find that {Omega}(H I){sub infall} is consistent with {Omega}(H I){sub outflow} for bifurcation at W = 1.23{sup +0.15}{sub -0.28} Angstrom-Sign ; cold accretion would then comprise no more than {approx}7% of the total H I mass density. We discuss evidence that (1) the total H I mass cycling through halos remains fairly constant with cosmic time and that the accretion of H I gas sustains galaxy winds, and (2) evolution in the cosmic star formation rate depends primarily on the rate at which cool H I gas cycles through halos.

  3. HIDE AND SEEK BETWEEN ANDROMEDA'S HALO, DISK, AND GIANT STREAM

    Energy Technology Data Exchange (ETDEWEB)

    Clementini, Gisella; Contreras Ramos, Rodrigo; Federici, Luciana; Macario, Giulia; Tosi, Monica; Bellazzini, Michele; Fusi Pecci, Flavio; Diolaiti, Emiliano; Cacciari, Carla [INAF, Osservatorio Astronomico di Bologna, Bologna (Italy); Beccari, Giacomo [European Southern Observatory, 85748 Garching bei Munchen (Germany); Testa, Vincenzo; Giallongo, Emanuele; Di Paola, Andrea; Gallozzi, Stefano [INAF, Osservatorio Astronomico di Roma, Monteporzio (Italy); Cignoni, Michele; Marano, Bruno [Dipartimento di Astronomia, Universita di Bologna, Bologna (Italy); Marconi, Marcella; Ripepi, Vincenzo [INAF, Osservatorio Astronomico di Capodimonte, Napoli (Italy); Ragazzoni, Roberto [INAF, Osservatorio Astronomico di Padova, Padova (Italy); Smareglia, Riccardo, E-mail: gisella.clementini@oabo.inaf.it [INAF, Osservatorio Astronomico di Trieste, Trieste (Italy)

    2011-12-10

    Photometry in B, V (down to V {approx} 26 mag) is presented for two 23' Multiplication-Sign 23' fields of the Andromeda galaxy (M31) that were observed with the blue channel camera of the Large Binocular Telescope during the Science Demonstration Time. Each field covers an area of about 5.1 Multiplication-Sign 5.1 kpc{sup 2} at the distance of M31 ({mu}{sub M31} {approx} 24.4 mag), sampling, respectively, a northeast region close to the M31 giant stream (field S2) and an eastern portion of the halo in the direction of the galaxy minor axis (field H1). The stream field spans a region that includes Andromeda's disk and giant stream, and this is reflected in the complexity of the color-magnitude diagram of the field. One corner of the halo field also includes a portion of the giant stream. Even though these demonstration time data were obtained under non-optimal observing conditions, the B photometry, which was acquired in time-series mode, allowed us to identify 274 variable stars (among which 96 are bona fide and 31 are candidate RR Lyrae stars, 71 are Cepheids, and 16 are binary systems) by applying the image subtraction technique to the selected portions of the observed fields. Differential flux light curves were obtained for the vast majority of these variables. Our sample mainly includes pulsating stars that populate the instability strip from the Classical Cepheids down to the RR Lyrae stars, thus tracing the different stellar generations in these regions of M31 down to the horizontal branch of the oldest (t {approx} 10 Gyr) component.

  4. THE ODD OFFSET BETWEEN THE GALACTIC DISK AND ITS BAR IN NGC 3906

    Energy Technology Data Exchange (ETDEWEB)

    Swardt, Bonita de [South African Astronomical Observatory, Observatory, 7935 Cape Town (South Africa); Sheth, Kartik; Kim, Taehyun; Muñoz-Mateos, Juan-Carlos [National Radio Astronomy Observatory/NAASC, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Stephen Pardy; Elena D’ Onghia; Eric Wilcots [Department of Astronomy, University of Wisconsin, 475 North Charter Street, Madison, WI 53706 (United States); Hinz, Joannah [MMTO, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Regan, Michael W. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Athanassoula, E.; Bosma, Albert [Aix Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR 7326, F-13388 Marseille (France); Buta, Ronald J. [Department of Physics and Astronomy, University of Alabama, Box 870324, Tuscaloosa, AL 35487 (United States); Cisternas, Mauricio; Erroz-Ferrer, Santiago [Instituto de Astrofísica de Canarias, E-38200 La Laguna, Tenerife (Spain); Comerón, Sébastien [Division of Astronomy, Department of Physical Sciences, University of Oulu, Oulu, FI-90014 (Finland); Gadotti, Dimitri A. [European Southern Observatory, Casilla 19001, Santiago 19 (Chile); Paz, Armando Gil de [Departamento de Astrofísica, Universidad Complutense de Madrid, Madrid E-28040 (Spain); Jarrett, Thomas H. [Astronomy Department, University of Cape Town, Rondebosch 7701 (South Africa); Elmegreen, Bruce G. [IBM Research Division, T.J. Watson Research Center, Yorktown Hts., NY 10598 (United States); Ho, Luis C. [The Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); and others

    2015-07-20

    We use mid-infrared 3.6 and 4.5 μm imaging of NGC 3906 from the Spitzer Survey of Stellar Structure in Galaxies (S{sup 4}G) to understand the nature of an unusual offset between its stellar bar and the photometric center of an otherwise regular, circular outer stellar disk. We measure an offset of ∼910 pc between the center of the stellar bar and photometric center of the stellar disk; the bar center coincides with the kinematic center of the disk determined from previous HI observations. Although the undisturbed shape of the disk suggests that NGC 3906 has not undergone a significant merger event in its recent history, the most plausible explanation for the observed offset is an interaction. Given the relatively isolated nature of NGC 3906 this interaction could be with dark matter substructure in the galaxy's halo or from a recent interaction with a fast moving neighbor that remains to be identified. Simulations aimed at reproducing the observed offset between the stellar bar/kinematic center of the system and the photometric center of the disk are necessary to confirm this hypothesis and constrain the interaction history of the galaxy.

  5. CO LINE EMISSION FROM COMPACT NUCLEAR STARBURST DISKS AROUND ACTIVE GALACTIC NUCLEI

    Energy Technology Data Exchange (ETDEWEB)

    Armour, J. N.; Ballantyne, D. R., E-mail: jarmour3@gatech.edu [Center for Relativistic Astrophysics, School of Physics, Georgia Institute of Technology, 837 State Street, Atlanta, GA 30332-0430 (United States)

    2012-06-20

    There is substantial evidence for a connection between star formation in the nuclear region of a galaxy and growth of the central supermassive black hole. Furthermore, starburst activity in the region around an active galactic nucleus (AGN) may provide the obscuration required by the unified model of AGNs. Molecular line emission is one of the best observational avenues to detect and characterize dense, star-forming gas in galactic nuclei over a range of redshift. This paper presents predictions for the carbon monoxide (CO) line features from models of nuclear starburst disks around AGNs. These small-scale ({approx}< 100 pc), dense and hot starbursts have CO luminosities similar to scaled-down ultra-luminous infrared galaxies and quasar host galaxies. Nuclear starburst disks that exhibit a pc-scale starburst and could potentially act as the obscuring torus show more efficient CO excitation and higher brightness temperature ratios than those without such a compact starburst. In addition, the compact starburst models predict strong absorption when J{sub Upper} {approx}> 10, a unique observational signature of these objects. These findings allow for the possibility that CO spectral line energy distributions (SLEDs) could be used to determine if starburst disks are responsible for the obscuration in z {approx}< 1 AGNs. Directly isolating the nuclear CO line emission of such compact regions around AGNs from galactic-scale emission will require high-resolution imaging or selecting AGN host galaxies with weak galactic-scale star formation. Stacking individual CO SLEDs will also be useful in detecting the predicted high-J features.

  6. On the metallicity gradients of the Galactic disk as revealed by LSS-GAC red clump stars

    Science.gov (United States)

    Huang, Yang; Liu, Xiao-Wei; Zhang, Hua-Wei; Yuan, Hai-Bo; Xiang, Mao-Sheng; Chen, Bing-Qiu; Ren, Juan-Juan; Sun, Ning-Chen; Wang, Chun; Zhang, Yong; Hou, Yong-Hui; Wang, Yue-Fei; Yang, Ming

    2015-08-01

    Using a sample of over 70 000 red clump (RC) stars with 5%-10% distance accuracy selected from the LAMOST Spectroscopic Survey of the Galactic Anti-center (LSS-GAC), we study the radial and vertical gradients of the Galactic disk(s) mainly in the anti-center direction, covering a significant volume of the disk in the range of projected Galactocentric radius 7 ≤ RGC ≤ 14 kpc and height from the Galactic midplane 0 ≤ |Z| ≤ 3 kpc. Our analysis shows that both the radial and vertical metallicity gradients are negative across much of the volume of the disk that is probed, and they exhibit significant spatial variations. Near the solar circle (7 ≤ RGC ≤ 115 kpc), the radial gradient has a moderately steep, negative slope of -0.08 dex kpc-1 near the midplane (|Z| plane, suggesting that the outer disk may have experienced an evolutionary path different from that of the inner disk. The vertical gradients are found to flatten largely with increasing RGC. However, the vertical gradient of the lower disk (0 ≤ |Z| ≤ 1 kpc) is found to flatten with RGC quicker than that of the upper disk (1 < |Z| ≤ 3 kpc). Our results should provide strong constraints on the theory of disk formation and evolution, as well as the underlying physical processes that shape the disk (e.g. gas flows, radial migration, and internal and external perturbations).

  7. An asymmetric distribution of positrons in the Galactic disk revealed by {gamma}-rays

    Energy Technology Data Exchange (ETDEWEB)

    Weidenspointner, G; Skinner, G; Jean, P; Knoedlseder, J; Von Ballmoos, P; Bignami, G [UPS, CNRS, Ctr Etud Spatiale Rayonnements, Toulouse 4, (France); Weidenspointner, G; Diehl, R; Strong, A [Max Planck Inst Extraterr Phys, D-85741 Garching, (Germany); Weidenspointner, G [MPI Halbleiterlab, D-81739 Munich, (Germany); Skinner, G [NASA, CRESST, Greenbelt, MD 20771 (United States); Skinner, G [NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 (United States); Skinner, G [Univ Maryland, Dept Astron, College Pk, MD 20742 (United States); Cordier, B; Schanne, S [CEA Saclay, DSM, DAPNIA, SAp, F-91191 Gif Sur Yvette, (France); Winkler, Ch [ESA, ESTEC, SCI SA, NL-2201 AZ Noordwijk, (Netherlands); Bignami, G [IUSS, I-27100 Pavia, (Italy)

    2008-07-01

    Gamma-ray line radiation at 511 keV is the signature of electron positron annihilation. Such radiation has been known for 30 years to come from the general direction of the Galactic Centre, but the origin of the positrons has remained a mystery. Stellar nucleosynthesis, accreting compact objects, and even the annihilation of exotic dark-matter particles have all been suggested. Here we report a distinct asymmetry in the 511 keV line emission coming from the inner Galactic disk ({approx} 10-50 degrees from the Galactic Centre). This asymmetry resembles an asymmetry in the distribution of low mass X-ray binaries with strong emission at photon energies {>=}20 keV ('hard' LMXBs), indicating that they may be the dominant origin of the positrons. Although it had long been suspected that electron-positron pair plasmas may exist in X-ray binaries, it was not evident that many of the positrons could escape to lose energy and ultimately annihilate with electrons in the interstellar medium and thus lead to the emission of a narrow 511 keV line. For these models, our result implies that up to a few times 10{sup 41} positrons escape per second from a typical hard LMXB. Positron production at this level from hard LMXBs in the Galactic bulge would reduce (and possibly eliminate) the need for more exotic explanations, such as those involving dark matter. (authors)

  8. An asymmetric distribution of positrons in the Galactic disk revealed by γ-rays

    International Nuclear Information System (INIS)

    Weidenspointner, G.; Skinner, G.; Jean, P.; Knoedlseder, J.; Von Ballmoos, P.; Bignami, G.; Weidenspointner, G.; Diehl, R.; Strong, A.; Weidenspointner, G.; Skinner, G.; Skinner, G.; Skinner, G.; Cordier, B.; Schanne, S.; Winkler, Ch.; Bignami, G.

    2008-01-01

    Gamma-ray line radiation at 511 keV is the signature of electron positron annihilation. Such radiation has been known for 30 years to come from the general direction of the Galactic Centre, but the origin of the positrons has remained a mystery. Stellar nucleosynthesis, accreting compact objects, and even the annihilation of exotic dark-matter particles have all been suggested. Here we report a distinct asymmetry in the 511 keV line emission coming from the inner Galactic disk (∼ 10-50 degrees from the Galactic Centre). This asymmetry resembles an asymmetry in the distribution of low mass X-ray binaries with strong emission at photon energies ≥20 keV ('hard' LMXBs), indicating that they may be the dominant origin of the positrons. Although it had long been suspected that electron-positron pair plasmas may exist in X-ray binaries, it was not evident that many of the positrons could escape to lose energy and ultimately annihilate with electrons in the interstellar medium and thus lead to the emission of a narrow 511 keV line. For these models, our result implies that up to a few times 10 41 positrons escape per second from a typical hard LMXB. Positron production at this level from hard LMXBs in the Galactic bulge would reduce (and possibly eliminate) the need for more exotic explanations, such as those involving dark matter. (authors)

  9. Multipole analysis of IceCube data to search for dark matter accumulated in the Galactic halo

    Energy Technology Data Exchange (ETDEWEB)

    Aartsen, M.G.; Hill, G.C.; Robertson, S.; Whelan, B.J. [University of Adelaide, School of Chemistry and Physics, Adelaide, SA (Australia); Ackermann, M.; Berghaus, P.; Bernardini, E.; Bretz, H.P.; Cruz Silva, A.H.; Gluesenkamp, T.; Gora, D.; Jacobi, E.; Kaminsky, B.; Karg, T.; Middell, E.; Mohrmann, L.; Nahnhauer, R.; Schoenwald, A.; Shanidze, R.; Spiering, C.; Stoessl, A.; Terliuk, A.; Yanez, J.P. [DESY, Zeuthen (Germany); Adams, J.; Brown, A.M.; Hickford, S.; Macias, O. [University of Canterbury, Department of Physics and Astronomy, Christchurch (New Zealand); Aguilar, J.A.; Altmann, D.; Christov, A.; Montaruli, T.; Rameez, M.; Vallecorsa, S. [Universite de Geneve, Departement de physique nucleaire et corpusculaire, Geneva (Switzerland); Ahlers, M.; Arguelles, C.; BenZvi, S.; Chirkin, D.; Day, M.; Desiati, P.; Diaz-Velez, J.C.; Eisch, J.; Fadiran, O.; Feintzeig, J.; Gladstone, L.; Halzen, F.; Hoshina, K.; Jacobsen, J.; Jero, K.; Karle, A.; Kauer, M.; Kelley, J.L.; Kheirandish, A.; Kopper, C.; Kurahashi, N.; Larsen, D.T.; Maruyama, R.; McNally, F.; Middlemas, E.; Morse, R.; Rees, I.; Riedel, B.; Rodrigues, J.P.; Santander, M.; Tobin, M.N.; Tosi, D.; Vandenbroucke, J.; Van Santen, J.; Weaver, C.; Wellons, M.; Wendt, C.; Westerhoff, S.; Whitehorn, N. [University of Wisconsin, Department of Physics, Wisconsin IceCube Particle Astrophysics Center, Madison, WI (United States); Ahrens, M.; Bohm, C.; Danninger, M.; Finley, C.; Flis, S.; Hulth, P.O.; Hultqvist, K.; Walck, C.; Wolf, M.; Zoll, M. [Stockholm University, Department of Physics, Oskar Klein Centre, Stockholm (Sweden); Anderson, T.; Arlen, T.C.; De Andre, J.P.A.M.; DeYoung, T.; Dunkman, M.; Eagan, R.; Groh, J.C.; Huang, F.; Quinnan, M.; Smith, M.W.E.; Stanisha, N.A.; Tesic, G. [Pennsylvania State University, Department of Physics, University Park, PA (United States); Auffenberg, J.; Bissok, M.; Blumenthal, J.; Gier, D.; Gretskov, P.; Haack, C.; Hallen, P.; Heinen, D.; Hellwig, D.; Jagielski, K.; Koob, A.; Kriesten, A.; Krings, K.; Leuermann, M.; Paul, L.; Penek, Oe.; Puetz, J.; Raedel, L.; Reimann, R.; Rongen, M.; Schoenen, S.; Schukraft, A.; Vehring, M.; Wallraff, M.; Wichary, C.; Wiebusch, C.H.; Zierke, S. [RWTH Aachen University, III. Physikalisches Institut, Aachen (Germany); Bai, X. [South Dakota School of Mines and Technology, Physics Department, Rapid City, SD (United States); Barwick, S.W.; Yodh, G. [University of California, Department of Physics and Astronomy, Irvine, CA (United States); Baum, V.; Eberhardt, B.; Koepke, L.; Kroll, G.; Luenemann, J.; Sander, H.G.; Schatto, K.; Wiebe, K. [University of Mainz, Institute of Physics, Mainz (Germany); Beatty, J.J. [Ohio State University, Department of Physics, Center for Cosmology and Astro-Particle Physics, Columbus, OH (United States); Ohio State University, Department of Astronomy, Columbus, OH (United States); Becker Tjus, J.; Bos, F.; Eichmann, B.; Fedynitch, A.; Kroll, M.; Saba, S.M.; Schoeneberg, S.; Unger, E. [Ruhr-Universitaet Bochum, Fakultaet fuer Physik und Astronomie, Bochum (Germany); Becker, K.H.; Bindig, D.; Fischer-Wasels, T.; Helbing, K.; Hoffmann, R.; Klaes, J.; Kopper, S.; Naumann, U.; Obertacke, A.; Omairat, A.; Posselt, J.; Soldin, D.; Tepe, A. [University of Wuppertal, Department of Physics, Wuppertal (Germany); Berley, D.; Blaufuss, E.; Christy, B.; Felde, J.; Goodman, J.A.; Hellauer, R.; Hoffman, K.D.; Huelsnitz, W.; Meagher, K.; Olivas, A.; Redl, P.; Richman, M.; Schmidt, T.; Sullivan, G.W.; Wissing, H. [University of Maryland, Department of Physics, College Park, MD (United States); Bernhard, A.; Coenders, S.; Gross, A.; Jurkovic, M.; Leute, J.; Resconi, E.; Schulz, O.; Sestayo, Y. [Technische Universitaet Muenchen, Garching (Germany); Besson, D.Z. [University of Kansas, Department of Physics and Astronomy, Lawrence, KS (United States); Binder, G.; Gerhardt, L.; Ha, C.; Klein, S.R.; Miarecki, S. [University of California, Department of Physics, Berkeley, CA (United States); Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Boersma, D.J.; Botner, O.; Euler, S.; Hallgren, A.; Perez de los Heros, C.; Stroem, R.; Taavola, H. [Uppsala University, Department of Physics and Astronomy, Uppsala (Sweden); Bose, D.; Rott, C. [Sungkyunkwan University, Department of Physics, Suwon (Korea, Republic of); Collaboration: IceCube Collaboration; and others

    2015-01-01

    Dark matter which is bound in the Galactic halo might self-annihilate and produce a flux of stable final state particles, e.g. high energy neutrinos. These neutrinos can be detected with IceCube, a cubic-kilometer sized Cherenkov detector. Given IceCube's large field of view, a characteristic anisotropy of the additional neutrino flux is expected. In this paper we describe a multipole method to search for such a large-scale anisotropy in IceCube data. This method uses the expansion coefficients of a multipole expansion of neutrino arrival directions and incorporates signal-specific weights for each expansion coefficient. We apply the technique to a high-purity muon neutrino sample from the Northern Hemisphere. The final result is compatible with the nullhypothesis. As no signal was observed, we present limits on the self-annihilation cross-section averaged over the relative velocity distribution left angle σ{sub A}υ right angle down to 1.9 x 10{sup -23} cm{sup 3} s{sup -1} for a dark matter particle mass of 700-1,000 GeV and direct annihilation into ν anti ν. The resulting exclusion limits come close to exclusion limits from γ-ray experiments, that focus on the outer Galactic halo, for high dark matter masses of a few TeV and hard annihilation channels. (orig.)

  10. What to expect from dynamical modelling of galactic haloes - II. The spherical Jeans equation

    Science.gov (United States)

    Wang, Wenting; Han, Jiaxin; Cole, Shaun; More, Surhud; Frenk, Carlos; Schaller, Matthieu

    2018-06-01

    The spherical Jeans equation (SJE) is widely used in dynamical modelling of the Milky Way (MW) halo potential. We use haloes and galaxies from the cosmological Millennium-II simulation and hydrodynamical APOSTLE (A Project of Simulations of The Local Environment) simulations to investigate the performance of the SJE in recovering the underlying mass profiles of MW mass haloes. The best-fitting halo mass and concentration parameters scatter by 25 per cent and 40 per cent around their input values, respectively, when dark matter particles are used as tracers. This scatter becomes as large as a factor of 3 when using star particles instead. This is significantly larger than the estimated statistical uncertainty associated with the use of the SJE. The existence of correlated phase-space structures that violate the steady-state assumption of the SJE as well as non-spherical geometries is the principal source of the scatter. Binary haloes show larger scatter because they are more aspherical in shape and have a more perturbed dynamical state. Our results confirm that the number of independent phase-space structures sets an intrinsic limiting precision on dynamical inferences based on the steady-state assumption. Modelling with a radius-independent velocity anisotropy, or using tracers within a limited outer radius, result in significantly larger scatter, but the ensemble-averaged measurement over the whole halo sample is approximately unbiased.

  11. The origin of the mass, disk-to-halo mass ratio, and L-V relation of spiral galaxies

    International Nuclear Information System (INIS)

    Ashman, K.M.

    1990-01-01

    A model is presented in which spiral galaxies only form when t(c) is roughly equal to t(f) in a hot component of the protogalactic gas. This assumption, along with a disk stability criterion, predicts a range of spiral galaxy masses roughly consistent with observation. The nature of the cooling function for a primordial plasma implies that in less massive galaxies, more gas must fragment in the halo to preserve t(c) roughly equal to t(f). Consequently, less gas survives to form the disk, so that the disk-to-halo mass ratio increases with disk mass and hence galaxy luminosity. The canonical L proportional to V exp 4 relation can be reproduced by the model, and the apparent change in the slope of this relation also arises naturally. In the hierarchical clustering scenario, the model requires that all spirals formed at about the same epoch. These results support earlier claims that much of the dark matter observed in the universe is baryonic and probably formed during protogalactic collapse. 38 refs

  12. The Segue K giant survey. II. A catalog of distance determinations for the Segue K giants in the galactic halo

    International Nuclear Information System (INIS)

    Xue, Xiang-Xiang; Rix, Hans-Walter; Ma, Zhibo; Morrison, Heather L.; Harding, Paul; Beers, Timothy C.; Ivans, Inese I.; Jacobson, Heather R.; Johnson, Jennifer; Lee, Young Sun; Lucatello, Sara; Rockosi, Constance M.; Sobeck, Jennifer S.; Yanny, Brian; Zhao, Gang; Allende Prieto, Carlos

    2014-01-01

    We present an online catalog of distance determinations for 6036 K giants, most of which are members of the Milky Way's stellar halo. Their medium-resolution spectra from the Sloan Digital Sky Survey/Sloan Extension for Galactic Understanding and Exploration are used to derive metallicities and rough gravity estimates, along with radial velocities. Distance moduli are derived from a comparison of each star's apparent magnitude with the absolute magnitude of empirically calibrated color-luminosity fiducials, at the observed (g – r) 0 color and spectroscopic [Fe/H]. We employ a probabilistic approach that makes it straightforward to properly propagate the errors in metallicities, magnitudes, and colors into distance uncertainties. We also fold in prior information about the giant-branch luminosity function and the different metallicity distributions of the SEGUE K-giant targeting sub-categories. We show that the metallicity prior plays a small role in the distance estimates, but that neglecting the luminosity prior could lead to a systematic distance modulus bias of up to 0.25 mag, compared to the case of using the luminosity prior. We find a median distance precision of 16%, with distance estimates most precise for the least metal-poor stars near the tip of the red giant branch. The precision and accuracy of our distance estimates are validated with observations of globular and open clusters. The stars in our catalog are up to 125 kpc from the Galactic center, with 283 stars beyond 50 kpc, forming the largest available spectroscopic sample of distant tracers in the Galactic halo.

  13. RECONSTRUCTING THE ACCRETION HISTORY OF THE GALACTIC STELLAR HALO FROM CHEMICAL ABUNDANCE RATIO DISTRIBUTIONS

    International Nuclear Information System (INIS)

    Lee, Duane M.; Johnston, Kathryn V.; Sen, Bodhisattva; Jessop, Will

    2015-01-01

    Observational studies of halo stars during the past two decades have placed some limits on the quantity and nature of accreted dwarf galaxy contributions to the Milky Way (MW) stellar halo by typically utilizing stellar phase-space information to identify the most recent halo accretion events. In this study we tested the prospects of using 2D chemical abundance ratio distributions (CARDs) found in stars of the stellar halo to determine its formation history. First, we used simulated data from 11 “MW-like” halos to generate satellite template sets (STSs) of 2D CARDs of accreted dwarf satellites, which are composed of accreted dwarfs from various mass regimes and epochs of accretion. Next, we randomly drew samples of ∼10 3–4 mock observations of stellar chemical abundance ratios ([α/Fe], [Fe/H]) from those 11 halos to generate samples of the underlying densities for our CARDs to be compared to our templates in our analysis. Finally, we used the expectation-maximization algorithm to derive accretion histories in relation to the STS used and the sample size. For certain STSs used we typically can identify the relative mass contributions of all accreted satellites to within a factor of two. We also find that this method is particularly sensitive to older accretion events involving low-luminosity dwarfs, e.g., ultra-faint dwarfs—precisely those events that are too ancient to be seen by phase-space studies of stars and too faint to be seen by high-z studies of the early universe. Since our results only exploit two chemical dimensions and near-future surveys promise to provide ∼6–9 dimensions, we conclude that these new high-resolution spectroscopic surveys of the stellar halo will allow us to recover its accretion history—and the luminosity function of infalling dwarf galaxies—across cosmic time

  14. RECONSTRUCTING THE ACCRETION HISTORY OF THE GALACTIC STELLAR HALO FROM CHEMICAL ABUNDANCE RATIO DISTRIBUTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Duane M. [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China); Johnston, Kathryn V. [Department of Astronomy, Columbia University, New York City, NY 10027 (United States); Sen, Bodhisattva; Jessop, Will, E-mail: duane@shao.ac.cn [Department of Statistics, Columbia University, New York City, NY 10027 (United States)

    2015-03-20

    Observational studies of halo stars during the past two decades have placed some limits on the quantity and nature of accreted dwarf galaxy contributions to the Milky Way (MW) stellar halo by typically utilizing stellar phase-space information to identify the most recent halo accretion events. In this study we tested the prospects of using 2D chemical abundance ratio distributions (CARDs) found in stars of the stellar halo to determine its formation history. First, we used simulated data from 11 “MW-like” halos to generate satellite template sets (STSs) of 2D CARDs of accreted dwarf satellites, which are composed of accreted dwarfs from various mass regimes and epochs of accretion. Next, we randomly drew samples of ∼10{sup 3–4} mock observations of stellar chemical abundance ratios ([α/Fe], [Fe/H]) from those 11 halos to generate samples of the underlying densities for our CARDs to be compared to our templates in our analysis. Finally, we used the expectation-maximization algorithm to derive accretion histories in relation to the STS used and the sample size. For certain STSs used we typically can identify the relative mass contributions of all accreted satellites to within a factor of two. We also find that this method is particularly sensitive to older accretion events involving low-luminosity dwarfs, e.g., ultra-faint dwarfs—precisely those events that are too ancient to be seen by phase-space studies of stars and too faint to be seen by high-z studies of the early universe. Since our results only exploit two chemical dimensions and near-future surveys promise to provide ∼6–9 dimensions, we conclude that these new high-resolution spectroscopic surveys of the stellar halo will allow us to recover its accretion history—and the luminosity function of infalling dwarf galaxies—across cosmic time.

  15. The Chandra Dust-scattering Halo of Galactic Center Transient Swift J174540.7–290015

    Energy Technology Data Exchange (ETDEWEB)

    Corrales, L. R. [Einstein Fellow, University of Wisconsin-Madison, 475 North Charter Street, Madison, WI, 53706 (United States); Mon, B.; Haggard, D. [McGill Space Institute, McGill University, 3550 University Street, Montreal, QC, H3A 2A7 (Canada); Baganoff, F. K. [MIT Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue, Cambridge, MA, 02139 (United States); Garmire, G. [Huntingdon Institute for X-ray Astronomy, 10677 Franks Road Huntingdon, PA, 16652 (United States); Degenaar, N. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 OHA (United Kingdom); Reynolds, M. [University of Michigan, 1085 S. University, 311 West Hall, Ann Arbor, MI 48109 (United States)

    2017-04-20

    We report the detection of a dust-scattering halo around a recently discovered X-ray transient, Swift J174540.7–290015, which in early 2016 February underwent one of the brightest outbursts ( F {sub X} ≈ 5 × 10{sup −10} erg cm{sup −2} s{sup −1}) observed from a compact object in the Galactic Center field. We analyze four Chandra images that were taken as follow-up observations to Swift discoveries of new Galactic Center transients. After adjusting our spectral extraction for the effects of detector pile-up, we construct a point-spread function for each observation and compare it to the GC field before the outburst. We find residual surface brightness around Swift J174540.7–290015, which has a shape and temporal evolution consistent with the behavior expected from X-rays scattered by foreground dust. We examine the spectral properties of the source, which shows evidence that the object transitioned from a soft to hard spectral state as it faded below L {sub X} ∼ 10{sup 36} erg s{sup −1}. This behavior is consistent with the hypothesis that the object is a low-mass X-ray binary in the Galactic Center.

  16. Non-linear dynamics in galactic disks: the spiral-warps connection

    International Nuclear Information System (INIS)

    Masset, Frederic

    1997-01-01

    After a recall on warp theories and on warp waves, this research thesis reports a linear study of warp waves with an assessment of the role of gas compressibility when taking the galactic disk thickness into account. Then, the author reports an analytical study of the non-linear coupling between warp waves and density waves, in order to calculate coupling efficiency, to identify areas of the galactic disk in which it is efficient, and to discuss concurrent physical processes (such as Landau absorption) and the validity of assumptions made to perform the calculations. The next part reports numerical simulations which have been performed to check the coupling mechanism. The author notably comments evolutions brought to existing codes, and finally presents the three-dimensional version of the developed code, and discusses choices made for this code (presence of gas, choice of hydrodynamics algorithms and of gas mesh geometry, and so on). Numerical results are then presented and discussed: they actually show the existence of a coupling between density waves and warp waves [fr

  17. DISCOVERY OF CANDIDATE H2O DISK MASERS IN ACTIVE GALACTIC NUCLEI AND ESTIMATIONS OF CENTRIPETAL ACCELERATIONS

    International Nuclear Information System (INIS)

    Greenhill, Lincoln J.; Moran, James M.; Tilak, Avanti; Kondratko, Paul T.

    2009-01-01

    Based on spectroscopic signatures, about one-third of known H 2 O maser sources in active galactic nuclei (AGNs) are believed to arise in highly inclined accretion disks around central engines. These 'disk maser candidates' are of interest primarily because angular structure and rotation curves can be resolved with interferometers, enabling dynamical study. We identify five new disk maser candidates in studies with the Green Bank Telescope, bringing the total number published to 30. We discovered two (NGC 1320, NGC 17) in a survey of 40 inclined active galaxies (v sys -1 ). The remaining three disk maser candidates were identified in monitoring of known sources: NGC 449, NGC 2979, and NGC 3735. We also confirm a previously marginal case in UGC 4203. For the disk maser candidates reported here, inferred rotation speeds are 130-500 km s -1 . Monitoring of three more rapidly rotating candidate disks (CG 211, NGC 6264, VV 340A) has enabled measurement of likely orbital centripetal acceleration, and estimation of central masses ((2-7) x10 7 M sun ) and mean disk radii (0.2-0.4 pc). Accelerations may ultimately permit estimation of distances when combined with interferometer data. This is notable because the three AGNs are relatively distant (10,000 km s -1 sys -1 ), and fractional error in a derived Hubble constant, due to peculiar motion of the galaxies, would be small. As signposts of highly inclined geometries at galactocentric radii of ∼0.1-1 pc, disk masers also provide robust orientation references that allow analysis of (mis)alignment between AGNs and surrounding galactic stellar disks, even without extensive interferometric mapping. We find no preference among published disk maser candidates to lie in high-inclination galaxies. This provides independent support for conclusions that in late-type galaxies, central engine accretion disks and galactic plane orientations are not correlated.

  18. Compressional heating in magnetized disks neighborhood: from the galactic center to micro-quasars

    International Nuclear Information System (INIS)

    Belmont, Renaud

    2005-01-01

    Faint, magnetized and energetic plasmas are very common media in Astrophysics. This thesis is dedicated to two specific cases characterized by a thin disk geometry: the Galactic center and the corona of micro-quasars. In both cases, observations show evidence for a faint and very hot plasma (at 100 million and 1 billion degrees) whose origin is unknown; some clues seem also to indicate a strong, large scale bipolar magnetic field. At the Galactic Center, the gas temperature is such that, if it were collisional and mostly composed by hydrogen, it would escape quickly, so that the power required to sustain the related energy losses would be huge. We however show that the specific conditions of this region can lead to form a helium plasma that is confined by the Galactic potential. In this favorable situation, we study a possible heating mechanism based on the high viscosity of the hot plasma and friction with cold molecular clouds flowing in this region. The corona of micro-quasars is a very similar issue but it is probably weakly collisional. In this regime we study a heating by magnetic pumping, by which the resonance between the periodic motion of some coronal ions and the periodic excitation by an instability in the disc itself can energize the corona. We show that this mechanism is inefficient to explain the hot temperature. (author) [fr

  19. IRON OPACITY BUMP CHANGES THE STABILITY AND STRUCTURE OF ACCRETION DISKS IN ACTIVE GALACTIC NUCLEI

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yan-Fei [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Davis, Shane W. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States); Stone, James M. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)

    2016-08-10

    Accretion disks around supermassive black holes have regions where the Rosseland mean opacity can be larger than the electron scattering opacity due to the large number of bound–bound transitions in iron. We study the effects of this iron opacity “bump” on the thermal stability and vertical structure of radiation-pressure-dominated accretion disks, utilizing three-dimensional radiation magnetohydrodynamic (MHD) simulations in the local shearing box approximation. The simulations self-consistently calculate the heating due to MHD turbulence caused by magneto-rotational instability and radiative cooling by using the radiative transfer module based on a variable Eddington tensor in Athena. For a 5 × 10{sup 8} solar mass black hole with ∼3% of the Eddington luminosity, a model including the iron opacity bump maintains its structure for more than 10 thermal times without showing significant signs of thermal runaway. In contrast, if only electron scattering and free–free opacity are included as in the standard thin disk model, the disk collapses on the thermal timescale. The difference is caused by a combination of (1) an anti-correlation between the total optical depth and the midplane pressure, and (2) enhanced vertical advective energy transport. These results suggest that the iron opacity bump may have a strong impact on the stability and structure of active galactic nucleus (AGN) accretion disks, and may contribute to a dependence of AGN properties on metallicity. Since this opacity is relevant primarily in UV emitting regions of the flow, it may help to explain discrepancies between observation and theory that are unique to AGNs.

  20. Search for gravitational waves from primordial black hole binary coalescences in the galactic halo

    International Nuclear Information System (INIS)

    Abbott, B.; Anderson, S.B.; Araya, M.; Armandula, H.; Asiri, F.; Barish, B.C.; Barnes, M.; Barton, M.A.; Bhawal, B.; Billingsley, G.; Black, E.; Blackburn, K.; Bogue, L.; Bork, R.; Brown, D.A.; Busby, D.; Cardenas, L.; Chandler, A.; Chapsky, J.; Charlton, P.

    2005-01-01

    We use data from the second science run of the LIGO gravitational-wave detectors to search for the gravitational waves from primordial black hole binary coalescence with component masses in the range 0.2-1.0M · . The analysis requires a signal to be found in the data from both LIGO observatories, according to a set of coincidence criteria. No inspiral signals were found. Assuming a spherical halo with core radius 5 kpc extending to 50 kpc containing nonspinning black holes with masses in the range 0.2-1.0M · , we place an observational upper limit on the rate of primordial black hole coalescence of 63 per year per Milky Way halo (MWH) with 90% confidence

  1. Metal flows of the circumgalactic medium, and the metal budget in galactic haloes

    Science.gov (United States)

    Muratov, Alexander L.; Kereš, Dušan; Faucher-Giguère, Claude-André; Hopkins, Philip F.; Ma, Xiangcheng; Anglés-Alcázar, Daniel; Chan, T. K.; Torrey, Paul; Hafen, Zachary H.; Quataert, Eliot; Murray, Norman

    2017-07-01

    We present an analysis of the flow of metals through the circumgalactic medium (CGM) in the Feedback in Realistic Environments (FIRE) simulations of galaxy formation, ranging from isolated dwarfs to L* galaxies. We find that nearly all metals produced in high-redshift galaxies are carried out in winds that reach 0.25Rvir. When measured at 0.25Rvir the metallicity of outflows is slightly higher than the interstellar medium (ISM) metallicity. Many metals thus reside in the CGM. Cooling and recycling from this reservoir determine the metal budget in the ISM. The outflowing metal flux decreases by a factor of ˜2-5 between 0.25Rvir and Rvir. Furthermore, outflow metallicity is typically lower at Rvir owing to dilution of the remaining outflow by metal-poor material swept up from the CGM. The inflow metallicity at Rvir is generally low, but outflow and inflow metallicities are similar in the inner halo. At low redshift, massive galaxies no longer generate outflows that reach the CGM, causing a divergence in CGM and ISM metallicity. Dwarf galaxies continue to generate outflows, although they preferentially retain metal ejecta. In all but the least massive galaxy considered, a majority of the metals are within the halo at z = 0. We measure the fraction of metals in CGM, ISM and stars, and quantify the thermal state of CGM metals in each halo. The total amount of metals in the low-redshift CGM of two simulated L* galaxies is consistent with estimates from the Cosmic Origin Spectrograph haloes survey, while for the other two it appears to be lower.

  2. A Wide-Field Photometric Survey for Extratidal Tails Around Five Metal-Poor Globular Clusters in the Galactic Halo

    Science.gov (United States)

    Chun, Sang-Hyun; Kim, Jae-Woo; Sohn, Sangmo T.; Park, Jang-Hyun; Han, Wonyong; Kim, Ho-Il; Lee, Young-Wook; Lee, Myung Gyoon; Lee, Sang-Gak; Sohn, Young-Jong

    2010-02-01

    Wide-field deep g'r'i' images obtained with the Megacam of the Canada-France-Hawaii Telescope are used to investigate the spatial configuration of stars around five metal-poor globular clusters M15, M30, M53, NGC 5053, and NGC 5466, in a field-of-view ~3°. Applying a mask filtering algorithm to the color-magnitude diagrams of the observed stars, we sorted cluster's member star candidates that are used to examine the characteristics of the spatial stellar distribution surrounding the target clusters. The smoothed surface density maps and the overlaid isodensity contours indicate that all of the five metal-poor globular clusters exhibit strong evidence of extratidal overdensity features over their tidal radii, in the form of extended tidal tails around the clusters. The orientations of the observed extratidal features show signatures of tidal tails tracing the clusters' orbits, inferred from their proper motions, and effects of dynamical interactions with the Galaxy. Our findings include detections of a tidal bridge-like feature and an envelope structure around the pair of globular clusters M53 and NGC 5053. The observed radial surface density profiles of target clusters have a deviation from theoretical King models, for which the profiles show a break at 0.5-0.7rt , extending the overdensity features out to 1.5-2rt . Both radial surface density profiles for different angular sections and azimuthal number density profiles confirm the overdensity features of tidal tails around the five metal-poor globular clusters. Our results add further observational evidence that the observed metal-poor halo globular clusters originate from an accreted satellite system, indicative of the merging scenario of the formation of the Galactic halo. Based on observations carried out at the Canada-France-Hawaii Telescope, operated by the National Research Council of Canada, the Centre National de la Recherche Scientifique de France, and the University of Hawaii. This is part of the

  3. MOA-2013-BLG-220Lb: Massive planetary companion to galactic-disk host

    Energy Technology Data Exchange (ETDEWEB)

    Yee, J. C.; Gould, A.; Gaudi, B. S. [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Han, C.; Choi, J.-Y.; Hwang, K.-H.; Jung, Y. K. [Department of Physics, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Skowron, J.; Udalski, A. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Bond, I. A. [Institute of Information and Mathematical Sciences, Massey University, Private Bag 102-904, North Shore Mail Centre, Auckland (New Zealand); Hundertmark, M. [SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS (United Kingdom); Monard, L. A. G. [Klein Karoo Observatory, Centre for Backyard Astrophysics, Calitzdorp (South Africa); Porritt, I. [Turitea Observatory, Palmerston North (New Zealand); Nelson, P. [Ellinbank Observatory, Ellinbank, Victoria (Australia); Bozza, V. [Dipartimento di Fisica " E. R. Caianiello," Università degli Studi di Salerno, Via S. Allende, I-84081 Baronissi (Italy); Albrow, M. D. [Department of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch 8020 (New Zealand); Christie, G. W. [Auckland Observatory, Auckland (New Zealand); DePoy, D. L. [Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843-4242 (United States); Lee, C.-U. [Korea Astronomy and Space Science Institute, 776 Daedukdae-ro, Yuseong-gu, Daejeon 305-348 (Korea, Republic of); McCormick, J. [Farm Cove Observatory, Centre for Backyard Astrophysics, Pakuranga, Auckland (New Zealand); Collaboration: μFUN Collaboration),; MOA Collaboration),; OGLE Collaboration),; RoboNet Collaboration),; and others

    2014-07-20

    We report the discovery of MOA-2013-BLG-220Lb, which has a super-Jupiter mass ratio q = 3.01 ± 0.02 × 10{sup –3} relative to its host. The proper motion, μ = 12.5 ± 1 mas yr{sup –1}, is one of the highest for microlensing planets yet discovered, implying that it will be possible to separately resolve the host within ∼7 yr. Two separate lines of evidence imply that the planet and host are in the Galactic disk. The planet could have been detected and characterized purely with follow-up data, which has important implications for microlensing surveys, both current and into the Large Synoptic Survey Telescope (LSST) era.

  4. The Power Spectrum of the Milky Way: Velocity Fluctuations in the Galactic Disk

    Science.gov (United States)

    Bovy, Jo; Bird, Jonathan C.; García Pérez, Ana E.; Majewski, Steven R.; Nidever, David L.; Zasowski, Gail

    2015-02-01

    We investigate the kinematics of stars in the mid-plane of the Milky Way (MW) on scales between 25 pc and 10 kpc with data from the Apache Point Observatory Galactic Evolution Experiment (APOGEE), the Radial Velocity Experiment (RAVE), and the Geneva-Copenhagen survey (GCS). Using red-clump (RC) stars in APOGEE, we determine the large-scale line-of-sight velocity field out to 5 kpc from the Sun in (0.75 kpc)2 bins. The solar motion V ⊙ - c with respect to the circular velocity Vc is the largest contribution to the power on large scales after subtracting an axisymmetric rotation field; we determine the solar motion by minimizing the large-scale power to be V ⊙ - c = 24 ± 1 (ran.) ± 2 (syst. [Vc ]) ± 5 (syst.[large-scale]) km s-1, where the systematic uncertainty is due to (1) a conservative 20 km s-1 uncertainty in Vc and (2) the estimated power on unobserved larger scales. Combining the APOGEE peculiar-velocity field with RC stars in RAVE out to 2 kpc from the Sun and with local GCS stars, we determine the power spectrum of residual velocity fluctuations in the MW's disk on scales between 0.2 kpc-1 plane of the Galactic disk near the Sun. Streaming motions ≈10 km s-1 on >~ 3 kpc scales in the MW are in good agreement with observations of external galaxies and directly explain why local determinations of the solar motion are inconsistent with global measurements.

  5. THE CONTRIBUTION OF HALO WHITE DWARF BINARIES TO THE LASER INTERFEROMETER SPACE ANTENNA SIGNAL

    International Nuclear Information System (INIS)

    Ruiter, Ashley J.; Belczynski, Krzysztof; Benacquista, Matthew; Holley-Bockelmann, Kelly

    2009-01-01

    Galactic double white dwarfs were postulated as a source of confusion limited noise for the Laser Interferometer Space Antenna (LISA), the future space-based gravitational wave observatory. Until very recently, the Galactic population consisted of a relatively well-studied disk population, a somewhat studied smaller bulge population and a mostly unknown, but potentially large halo population. It has been argued that the halo population may produce a signal that is much stronger (factor of ∼5 in spectral amplitude) than the disk population. However, this surprising result was not based on an actual calculation of a halo white dwarf population, but was derived on (1) the assumption that one can extrapolate the halo population properties from those of the disk population and (2) the postulated (unrealistically) high number of white dwarfs in the halo. We perform the first calculation of a halo white dwarf population using population synthesis models. Our comparison with the signal arising from double white dwarfs in the Galactic disk+bulge clearly shows that it is impossible for the double white dwarf halo signal to exceed that of the rest of the Galaxy. Using microlensing results to give an upper limit on the content of white dwarfs in the halo (∼30% baryonic mass in white dwarfs), our predicted halo signal is a factor of 10 lower than the disk+bulge signal. Even in the implausible case, where all of the baryonic halo mass is found in white dwarfs, the halo signal does not become comparable to that of the disk+bulge, and thus would still have a negligible effect on the detection of other LISA sources.

  6. Ab Initio Simulations of a Supernova-driven Galactic Dynamo in an Isolated Disk Galaxy

    Energy Technology Data Exchange (ETDEWEB)

    Butsky, Iryna [Astronomy Department, University of Washington, Seattle, WA 98195 (United States); Zrake, Jonathan; Kim, Ji-hoon; Yang, Hung-I; Abel, Tom [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Menlo Park, CA 94025 (United States)

    2017-07-10

    We study the magnetic field evolution of an isolated spiral galaxy, using isolated Milky Way–mass galaxy formation simulations and a novel prescription for magnetohydrodynamic (MHD) supernova feedback. Our main result is that a galactic dynamo can be seeded and driven by supernova explosions, resulting in magnetic fields whose strength and morphology are consistent with observations. In our model, supernovae supply thermal energy and a low-level magnetic field along with their ejecta. The thermal expansion drives turbulence, which serves a dual role by efficiently mixing the magnetic field into the interstellar medium and amplifying it by means of a turbulent dynamo. The computational prescription for MHD supernova feedback has been implemented within the publicly available ENZO code and is fully described in this paper. This improves upon ENZO 's existing modules for hydrodynamic feedback from stars and active galaxies. We find that the field attains microgauss levels over gigayear timescales throughout the disk. The field also develops a large-scale structure, which appears to be correlated with the disk’s spiral arm density structure. We find that seeding of the galactic dynamo by supernova ejecta predicts a persistent correlation between gas metallicity and magnetic field strength. We also generate all-sky maps of the Faraday rotation measure from the simulation-predicted magnetic field, and we present a direct comparison with observations.

  7. Constraints on the Galactic Halo Dark Matter from Fermi-LAT Diffuse Measurements

    Science.gov (United States)

    Ackermann, M.; Ajello, M.; Atwood, W. B.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Blandford, R. D.; Bloom, E. D.; hide

    2012-01-01

    We have performed an analysis of the diffuse gamma-ray emission with the Fermi Large Area Telescope (LAT) in the Milky Way halo region, searching for a signal from dark matter annihilation or decay. In the absence of a robust dark matter signal, constraints are presented. We consider both gamma rays produced directly in the dark matter annihilation/decay and produced by inverse Compton scattering of the e+/e- produced in the annihilation/decay. Conservative limits are derived requiring that the dark matter signal does not exceed the observed diffuse gamma-ray emission. A second set of more stringent limits is derived based on modeling the foreground astrophysical diffuse emission using the GALPROP code. Uncertainties in the height of the diffusive cosmic-ray halo, the distribution of the cosmic-ray sources in the Galaxy, the index of the injection cosmic-ray electron spectrum, and the column density of the interstellar gas are taken into account using a profile likelihood formalism, while the parameters governing the cosmic-ray propagation have been derived from fits to local cosmic-ray data. The resulting limits impact the range of particle masses over which dark matter thermal production in the early universe is possible, and challenge the interpretation of the PAMELA/Fermi-LAT cosmic ray anomalies as the annihilation of dark matter.

  8. THE POWER SPECTRUM OF THE MILKY WAY: VELOCITY FLUCTUATIONS IN THE GALACTIC DISK

    Energy Technology Data Exchange (ETDEWEB)

    Bovy, Jo [Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540 (United States); Bird, Jonathan C. [Department of Physics and Astronomy, Vanderbilt University, 6301 Stevenson Center, Nashville, TN 37235 (United States); Pérez, Ana E. García; Majewski, Steven R. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); Nidever, David L. [Department of Astronomy, University of Michigan, Ann Arbor, MI 48104 (United States); Zasowski, Gail, E-mail: bovy@ias.edu [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States)

    2015-02-20

    We investigate the kinematics of stars in the mid-plane of the Milky Way (MW) on scales between 25 pc and 10 kpc with data from the Apache Point Observatory Galactic Evolution Experiment (APOGEE), the Radial Velocity Experiment (RAVE), and the Geneva-Copenhagen survey (GCS). Using red-clump (RC) stars in APOGEE, we determine the large-scale line-of-sight velocity field out to 5 kpc from the Sun in (0.75 kpc){sup 2} bins. The solar motion V{sub ☉} {sub –} {sub c} with respect to the circular velocity V{sub c} is the largest contribution to the power on large scales after subtracting an axisymmetric rotation field; we determine the solar motion by minimizing the large-scale power to be V{sub ☉} {sub –} {sub c} = 24 ± 1 (ran.) ± 2 (syst. [V{sub c} ]) ± 5 (syst.[large-scale]) km s{sup –1}, where the systematic uncertainty is due to (1) a conservative 20 km s{sup –1} uncertainty in V{sub c} and (2) the estimated power on unobserved larger scales. Combining the APOGEE peculiar-velocity field with RC stars in RAVE out to 2 kpc from the Sun and with local GCS stars, we determine the power spectrum of residual velocity fluctuations in the MW's disk on scales between 0.2 kpc{sup –1} ≤ k ≤ 40 kpc{sup –1}. Most of the power is contained in a broad peak between 0.2 kpc{sup –1} < k < 0.9 kpc{sup –1}. We investigate the expected power spectrum for various non-axisymmetric perturbations and demonstrate that the central bar with commonly used parameters but of relatively high mass can explain the bulk of velocity fluctuations in the plane of the Galactic disk near the Sun. Streaming motions ≈10 km s{sup –1} on ≳ 3 kpc scales in the MW are in good agreement with observations of external galaxies and directly explain why local determinations of the solar motion are inconsistent with global measurements.

  9. Stellar substructure in the halo and outer disk of M31

    NARCIS (Netherlands)

    Ferguson, AMN; Irwin, MJ; Ibata, RA; Lewis, GF; Tanvir, NR; Piotto, G; Meylan, G; Djougovski, SG; Riello, M

    2003-01-01

    Our panoramic imaging survey of M31 with the INT Wide-Field Camera currently maps an area of 25 squaredegrees around our nearest large galactic neighbour. We discuss evidence for spatial density and metallicity (as inferred from color) variations in the distribution of individual red giant branch

  10. Variable Stars Observed in the Galactic Disk by AST3-1 from Dome A, Antarctica

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lingzhi; Ma, Bin; Hu, Yi; Liu, Qiang; Shang, Zhaohui [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Li, Gang; Fu, Jianning [Department of Astronomy, Beijing Normal University, Beijing, 100875 (China); Wang, Lifan; Cui, Xiangqun; Du, Fujia; Gong, Xuefei; Li, Xiaoyan; Li, Zhengyang; Yuan, Xiangyan; Zhou, Jilin [Chinese Center for Antarctic Astronomy, Nanjing 210008 (China); Ashley, Michael C. B. [School of Physics, University of New South Wales, NSW 2052 (Australia); Pennypacker, Carl R. [Center for Astrophysics, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); York, Donald G., E-mail: wanglingzhi@bao.ac.cn [Department of Astronomy and Astrophysics and Enrico Fermi Institute, University of Chicago, Chicago, IL 60637 (United States)

    2017-03-01

    AST3-1 is the second-generation wide-field optical photometric telescope dedicated to time-domain astronomy at Dome A, Antarctica. Here, we present the results of an i -band images survey from AST3-1 toward one Galactic disk field. Based on time-series photometry of 92,583 stars, 560 variable stars were detected with i magnitude ≤16.5 mag during eight days of observations; 339 of these are previously unknown variables. We tentatively classify the 560 variables as 285 eclipsing binaries (EW, EB, and EA), 27 pulsating variable stars ( δ Scuti, γ Doradus, δ Cephei variable, and RR Lyrae stars), and 248 other types of variables (unclassified periodic, multiperiodic, and aperiodic variable stars). Of the eclipsing binaries, 34 show O’Connell effects. One of the aperiodic variables shows a plateau light curve and another variable shows a secondary maximum after peak brightness. We also detected a complex binary system with an RS CVn-like light-curve morphology; this object is being followed-up spectroscopically using the Gemini South telescope.

  11. Dark matter substructure modelling and sensitivity of the Cherenkov Telescope Array to Galactic dark halos

    Energy Technology Data Exchange (ETDEWEB)

    Huetten, M. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Humboldt Univ. Berlin (Germany); Combet, C.; Maurin, D. [Grenoble-Alpes Univ., CNRS/IN2P3, Grenoble (France). LPSC; Maier, G. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2016-07-15

    Hierarchical structure formation leads to a clumpy distribution of dark matter in the Milky Way. These clumps are possible targets to search for dark matter annihilation with present and future γ-ray instruments. Many uncertainties exist on the clump distribution, leading to disputed conclusions about the expected number of detectable clumps and the ensuing limits that can be obtained from non-detection. In this paper, we use the CLUMPY code to simulate thousands of skymaps for several clump distributions. This allows us to statistically assess the typical properties (mass, distance, angular size, luminosity) of the detectable clumps. Varying parameters of the clump distributions allows us to identify the key quantities to which the number of detectable clumps is the most sensitive. Focusing our analysis on two extreme clump configurations, yet consistent with results from numerical simulations, we revisit and compare various calculations made for the Fermi-LAT instrument, in terms of number of dark clumps expected and the angular power spectrum for the Galactic signal. We then focus on the prospects of detecting dark clumps with the future CTA instrument, for which we make a detailed sensitivity analysis using open-source CTA software. Based on a realistic scenario for the foreseen CTA extragalactic survey, and accounting for a post-trial sensitivity in the survey, we show that we obtain competitive and complementary limits to those based on long observation of a single bright dwarf spheroidal galaxy.

  12. Dark matter substructure modelling and sensitivity of the Cherenkov Telescope Array to Galactic dark halos

    International Nuclear Information System (INIS)

    Huetten, M.; Combet, C.; Maurin, D.

    2016-07-01

    Hierarchical structure formation leads to a clumpy distribution of dark matter in the Milky Way. These clumps are possible targets to search for dark matter annihilation with present and future γ-ray instruments. Many uncertainties exist on the clump distribution, leading to disputed conclusions about the expected number of detectable clumps and the ensuing limits that can be obtained from non-detection. In this paper, we use the CLUMPY code to simulate thousands of skymaps for several clump distributions. This allows us to statistically assess the typical properties (mass, distance, angular size, luminosity) of the detectable clumps. Varying parameters of the clump distributions allows us to identify the key quantities to which the number of detectable clumps is the most sensitive. Focusing our analysis on two extreme clump configurations, yet consistent with results from numerical simulations, we revisit and compare various calculations made for the Fermi-LAT instrument, in terms of number of dark clumps expected and the angular power spectrum for the Galactic signal. We then focus on the prospects of detecting dark clumps with the future CTA instrument, for which we make a detailed sensitivity analysis using open-source CTA software. Based on a realistic scenario for the foreseen CTA extragalactic survey, and accounting for a post-trial sensitivity in the survey, we show that we obtain competitive and complementary limits to those based on long observation of a single bright dwarf spheroidal galaxy.

  13. STELLAR ARCHAEOLOGY IN THE GALACTIC HALO WITH THE ULTRA-FAINT DWARFS. VI. URSA MAJOR II

    Energy Technology Data Exchange (ETDEWEB)

    Dall' Ora, M.; Ripepi, Vincenzo; Marconi, Marcella; Musella, Ilaria, E-mail: dallora@na.astro.it, E-mail: ripepi@na.astro.it, E-mail: marcella@na.astro.it, E-mail: ilaria@na.astro.it [INAF, Osservatorio Astronomico di Capodimonte, Napoli (Italy); and others

    2012-06-10

    We present a B, V color-magnitude diagram (CMD) of the Milky Way dwarf satellite Ursa Major II (UMa II), spanning the magnitude range from V {approx} 15 to V {approx} 23.5 mag and extending over an 18 Multiplication-Sign 18 arcmin{sup 2} area centered on the Galaxy. Our photometry goes down to about 2 mag below the Galaxy's main-sequence turnoff that we detected at V {approx} 21.5 mag. We have discovered a bona fide RR Lyrae variable star in UMa II, which we use to estimate a conservative dereddened distance modulus for the galaxy of (m - M){sub 0} = 17.70 {+-} 0.04 {+-} 0.12 mag, where the first error accounts for the uncertainties of the calibrated photometry, and the second reflects our lack of information on the metallicity of the star. The corresponding distance to UMa II is 34.7{sup +0.6}{sub -0.7}({sup +2.0}{sub -1.9}) kpc. Our photometry shows evidence of a spread in the Galaxy's subgiant branch, compatible with a spread in metal abundance in the range between Z = 0.0001 and Z = 0.001. Based on our estimate of the distance, a comparison of the fiducial lines of the Galactic globular clusters M68 and M5 ([Fe/H] = -2.27 {+-} 0.04 dex and -1.33 {+-} 0.02 dex, respectively), with the position on the CMD of spectroscopically confirmed Galaxy members, may suggest the existence of stellar populations of different metal abundance/age in the central region of UMa II.

  14. STELLAR ARCHEOLOGY IN THE GALACTIC HALO WITH ULTRA-FAINT DWARFS. VII. HERCULES

    Energy Technology Data Exchange (ETDEWEB)

    Musella, Ilaria; Ripepi, Vincenzo; Marconi, Marcella, E-mail: ilaria@na.astro.it, E-mail: ripepi@na.astro.it, E-mail: marcella@na.astro.it [INAF, Osservatorio Astronomico di Capodimonte, I-8013 Napoli (Italy); and others

    2012-09-10

    We present the first time-series study of the ultra-faint dwarf galaxy Hercules. Using a variety of telescope/instrument facilities we secured about 50 V and 80 B epochs. These data allowed us to detect and characterize 10 pulsating variable stars in Hercules. Our final sample includes six fundamental-mode (ab-type) and three first-overtone (c-type) RR Lyrae stars, and one Anomalous Cepheid. The average period of the ab-type RR Lyrae stars, (P{sub ab}) = 0.68 days ({sigma} = 0.03 days), places Hercules in the Oosterhoff II group, as found for almost the totality of the ultra-faint dwarf galaxies investigated so far for variability. The RR Lyrae stars were used to obtain independent estimates of the metallicity, reddening, and distance to Hercules, for which we find [Fe/H] = -2.30 {+-} 0.15 dex, E(B - V) = 0.09 {+-} 0.02 mag, and (m - M){sub 0} = 20.6 {+-} 0.1 mag, in good agreement with the literature values. We have obtained a V, B - V color-magnitude diagram (CMD) of Hercules that reaches V {approx} 25 mag and extends beyond the galaxy's half-light radius over a total area of 40' Multiplication-Sign 36'. The CMD and the RR Lyrae stars indicate the presence of a population as old and metal-poor as (at least) the Galactic globular cluster M68.

  15. Accretion Disk Spectra of the Ultra-Luminous X-Ray Sources in Nearby Spiral Galaxies and Galactic Superluminal Jet Sources

    Energy Technology Data Exchange (ETDEWEB)

    Mizuno, T

    2003-12-11

    Ultra-luminous Compact X-ray Sources (ULXs) in nearby spiral galaxies and Galactic superluminal jet sources share the common spectral characteristic that they have unusually high disk temperatures which cannot be explained in the framework of the standard optically thick accretion disk in the Schwarzschild metric. On the other hand, the standard accretion disk around the Kerr black hole might explain the observed high disk temperature, as the inner radius of the Kerr disk gets smaller and the disk temperature can be consequently higher. However, we point out that the observable Kerr disk spectra becomes significantly harder than Schwarzschild disk spectra only when the disk is highly inclined. This is because the emission from the innermost part of the accretion disk is Doppler-boosted for an edge-on Kerr disk, while hardly seen for a face-on disk. The Galactic superluminal jet sources are known to be highly inclined systems, thus their energy spectra may be explained with the standard Kerr disk with known black hole masses. For ULXs, on the other hand, the standard Kerr disk model seems implausible, since it is highly unlikely that their accretion disks are preferentially inclined, and, if edge-on Kerr disk model is applied, the black hole mass becomes unreasonably large (> 300 M{sub solar}). Instead, the slim disk (advection dominated optically thick disk) model is likely to explain the observed super-Eddington luminosities, hard energy spectra, and spectral variations of ULXs. We suggest that ULXs are accreting black holes with a few tens of solar mass, which is not unexpected from the standard stellar evolution scenario, and that their X-ray emission is from the slim disk shining at super-Eddington luminosities.

  16. EVOLUTION OF WARPED ACCRETION DISKS IN ACTIVE GALACTIC NUCLEI. I. ROLES OF FEEDING AT THE OUTER BOUNDARIES

    International Nuclear Information System (INIS)

    Li, Yan-Rong; Wang, Jian-Min; Cheng, Cheng; Qiu, Jie

    2013-01-01

    We investigate the alignment processes of spinning black holes and their surrounding warped accretion disks in a frame of two different types of feeding at the outer boundaries. We consider (1) fixed flows in which gas is continually fed with a preferred angular momentum, and (2) free flows in which there is no gas supply and the disks diffuse freely at their outer edges. As expected, we find that for the cases of fixed flows the black hole disk systems always align on timescales of several 10 6 yr, irrespective of the initial inclinations. If the initial inclination angles are larger than π/2, the black hole accretion transits from retrograde to prograde fashion, and the accreted mass onto the black holes during these two phases is comparable. On the other hand, for the cases of free flows, both alignments and anti-alignments can occur, depending on the initial inclinations and the ratios of the angular momentum of the disks to that of the black holes. In such cases, the disks will be consumed within timescales of 10 6 yr by black holes accreting at the Eddington limit. We propose that there is a close connection between the black hole spin and the lifetime for which the feeding persists, which determines the observable episodic lifetimes of active galactic nuclei. We conclude that careful inclusion of the disk feeding at the outer boundaries is crucial for modeling the evolution of the black hole spin.

  17. MAXIMALLY STAR-FORMING GALACTIC DISKS. II. VERTICALLY RESOLVED HYDRODYNAMIC SIMULATIONS OF STARBURST REGULATION

    Energy Technology Data Exchange (ETDEWEB)

    Shetty, Rahul [Zentrum fuer Astronomie der Universitaet Heidelberg, Institut fuer Theoretische Astrophysik, Albert-Ueberle-Str. 2, 69120 Heidelberg (Germany); Ostriker, Eve C., E-mail: R.Shetty@.uni-heidelberg.de, E-mail: ostriker@astro.umd.edu [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States)

    2012-07-20

    We explore the self-regulation of star formation using a large suite of high-resolution hydrodynamic simulations, focusing on molecule-dominated regions (galactic centers and [U]LIRGS) where feedback from star formation drives highly supersonic turbulence. In equilibrium, the total midplane pressure, dominated by turbulence, must balance the vertical weight of the interstellar medium. Under self-regulation, the momentum flux injected by feedback evolves until it matches the vertical weight. We test this flux balance in simulations spanning a wide range of parameters, including surface density {Sigma}, momentum injected per stellar mass formed (p{sub *}/m{sub *}), and angular velocity. The simulations are two-dimensional radial-vertical slices, and include both self-gravity and an external potential that helps to confine gas to the disk midplane. After the simulations reach a steady state in all relevant quantities, including the star formation rate {Sigma}{sub SFR}, there is remarkably good agreement between the vertical weight, the turbulent pressure, and the momentum injection rate from supernovae. Gas velocity dispersions and disk thicknesses increase with p{sub *}/m{sub *}. The efficiency of star formation per free-fall time at the midplane density, {epsilon}{sub ff}(n{sub 0}), is insensitive to the local conditions and to the star formation prescription in very dense gas. We measure {epsilon}{sub ff}(n{sub 0}) {approx} 0.004-0.01, consistent with low and approximately constant efficiencies inferred from observations. For {Sigma} in (100-1000) M{sub Sun} pc{sup -2}, we find {Sigma}{sub SFR} in (0.1-4) M{sub Sun} kpc{sup -2} yr{sup -1}, generally following a {Sigma}{sub SFR} {proportional_to} {Sigma}{sup 2} relationship. The measured relationships agree very well with vertical equilibrium and with turbulent energy replenishment by feedback within a vertical crossing time. These results, along with the observed {Sigma}-{Sigma}{sub SFR} relation in high

  18. Protracted storage of CR chondrules in a region of the disk transparent to galactic cosmic rays

    Science.gov (United States)

    Roth, Antoine S. G.; Metzler, Knut; Baumgartner, Lukas P.; Hofmann, Beda A.; Leya, Ingo

    2017-10-01

    Renazzo-type carbonaceous (CR) chondrites are accretionary breccias that formed last. As such they are ideal samples to study precompaction exposures to cosmic rays. Here, we present noble gas data for 24 chondrules and 3 dark inclusion samples (DIs) from Shişr 033 (CR2). The meteorite was selected based on the absence of implanted solar wind noble gases and an anomalous oxygen isotopic composition of the DIs; the oxygen isotopes match those in CV3 and CO3 chondrites. Our samples contain variable mixtures of galactic cosmic ray (GCR)-produced cosmogenic noble gases and trapped noble gases of presolar origin. Remarkably, all chondrules have cosmogenic 3He and 21Ne concentrations up to 4.3 and 7.1 times higher than the DIs, respectively. We derived an average 3He-21Ne cosmic ray exposure (CRE) age for Shişr 033 of 2.03 ± 0.20 Ma (2 SD) and excesses in cosmogenic 3He and 21Ne in chondrules (relative to the DIs) in the range (in 10-8 cm3STP/g) 3.99-7.76 and 0.94-1.71, respectively. Assuming present-day GCR flux density, the excesses translate into average precompaction 3He-21Ne CRE ages of 3.1-27.3 Ma depending on the exposure geometry. The data can be interpreted assuming a protracted storage of a single chondrule generation prior to the final assembly of the Shişr 033 parent body in a region of the disk transparent to GCRs.

  19. Radiation pressure in galactic disks: stability, turbulence, and winds in the single-scattering limit

    Science.gov (United States)

    Wibking, Benjamin D.; Thompson, Todd A.; Krumholz, Mark R.

    2018-04-01

    The radiation force on dust grains may be dynamically important in driving turbulence and outflows in rapidly star-forming galaxies. Recent studies focus on the highly optically-thick limit relevant to the densest ultra-luminous galaxies and super star clusters, where reprocessed infrared photons provide the dominant source of electromagnetic momentum. However, even among starburst galaxies, the great majority instead lie in the so-called "single-scattering" limit, where the system is optically-thick to the incident starlight, but optically-thin to the re-radiated infrared. In this paper we present a stability analysis and multidimensional radiation-hydrodynamic simulations exploring the stability and dynamics of isothermal dusty gas columns in this regime. We describe our algorithm for full angle-dependent radiation transport based on the discontinuous Galerkin finite element method. For a range of near-Eddington fluxes, we show that the medium is unstable, producing convective-like motions in a turbulent atmosphere with a scale height significantly inflated compared to the gas pressure scale height and mass-weighted turbulent energy densities of ˜0.01 - 0.1 of the midplane radiation energy density, corresponding to mass-weighted velocity dispersions of Mach number ˜0.5 - 2. Extrapolation of our results to optical depths of 103 implies maximum turbulent Mach numbers of ˜20. Comparing our results to galaxy-averaged observations, and subject to the approximations of our calculations, we find that radiation pressure does not contribute significantly to the effective supersonic pressure support in star-forming disks, which in general are substantially sub-Eddington. We further examine the time-averaged vertical density profiles in dynamical equilibrium and comment on implications for radiation-pressure-driven galactic winds.

  20. Disk

    NARCIS (Netherlands)

    P.A. Boncz (Peter); L. Liu (Lei); M. Tamer Özsu

    2008-01-01

    htmlabstractIn disk storage, data is recorded on planar, round and rotating surfaces (disks, discs, or platters). A disk drive is a peripheral device of a computer system, connected by some communication medium to a disk controller. The disk controller is a chip, typically connected to the CPU of

  1. Extraplanar H II Regions in Spiral Galaxies. I. Low-metallicity Gas Accreting through the Disk-halo Interface of NGC 4013

    Science.gov (United States)

    Howk, J. Christopher; Rueff, Katherine M.; Lehner, Nicolas; Wotta, Christopher B.; Croxall, Kevin; Savage, Blair D.

    2018-04-01

    The interstellar thick disks of galaxies serve as the interface between the thin star-forming disk, where feedback-driven outflows originate, and the distant halo, the repository for accreted gas. We present optical emission line spectroscopy of a luminous, thick disk H II region located at z = 860 pc above the plane of the spiral galaxy NGC 4013 taken with the Multi-Object Double Spectrograph on the Large Binocular Telescope. This nebula, with an Hα luminosity ∼4–7 times that of the Orion nebula, surrounds a luminous cluster of young, hot stars that ionize the surrounding interstellar gas of the thick disk, providing a measure of the properties of that gas. We demonstrate that strong emission line methods can provide accurate measures of relative abundances between pairs of H II regions. From our emission line spectroscopy, we show that the metal content of the thick disk H II region is a factor of ≈2 lower than gas in H II regions at the midplane of this galaxy (with the relative abundance of O in the thick disk lower by ‑0.32 ± 0.09 dex). This implies incomplete mixing of material in the thick disk on small scales (hundreds of parsecs) and that there is accretion of low-metallicity gas through the thick disks of spirals. The inclusion of low-metallicity gas this close to the plane of NGC 4013 is reminiscent of the recently proposed “fountain-driven” accretion models.

  2. THE DISTRIBUTION OF THE ELEMENTS IN THE GALACTIC DISK. II. AZIMUTHAL AND RADIAL VARIATION IN ABUNDANCES FROM CEPHEIDS

    International Nuclear Information System (INIS)

    Luck, R. E.; Andrievsky, S. M.; Kovtyukh, V. V.; Gieren, W.; Graczyk, D.

    2011-01-01

    This paper reports on the spectroscopic investigation of 101 Cepheids in the Carina region. These Cepheids extend previous samples by about 35% in number and increase the amount of the Galactic disk coverage especially in the direction of l ∼ 270 0 . The new Cepheids do not add much information to the radial gradient, but provide a substantial increase in azimuthal coverage. We find no azimuthal dependence in abundance over an 80 deg. angle from the Galactic center in an annulus of 1 kpc depth centered on the Sun. A simple linear fit to the Cepheid data yields a gradient d[Fe/H]/dR G = -0.055 ± 0.003 dex kpc -1 which is somewhat shallower than found from our previous, smaller Cepheid sample.

  3. Numerical Simulations of Multiphase Winds and Fountains from Star-forming Galactic Disks. I. Solar Neighborhood TIGRESS Model

    Science.gov (United States)

    Kim, Chang-Goo; Ostriker, Eve C.

    2018-02-01

    Gas blown away from galactic disks by supernova (SN) feedback plays a key role in galaxy evolution. We investigate outflows utilizing the solar neighborhood model of our high-resolution, local galactic disk simulation suite, TIGRESS. In our numerical implementation, star formation and SN feedback are self-consistently treated and well resolved in the multiphase, turbulent, magnetized interstellar medium. Bursts of star formation produce spatially and temporally correlated SNe that drive strong outflows, consisting of hot (T> 5× {10}5 {{K}}) winds and warm (5050 {{K}} 1 {kpc} from the midplane has mass and energy fluxes nearly constant with d. The hot flow escapes our local Cartesian box barely affected by gravity, and is expected to accelerate up to terminal velocity of {v}{wind}∼ 350{--}500 {km} {{{s}}}-1. The mean mass and energy loading factors of the hot wind are 0.1 and 0.02, respectively. For warm gas, the mean outward mass flux through d=1 {kpc} is comparable to the mean star formation rate, but only a small fraction of this gas is at velocity > 50 {km} {{{s}}}-1. Thus, the warm outflows eventually fall back as inflows. The warm fountain flows are created by expanding hot superbubbles at d< 1 {kpc}; at larger d neither ram pressure acceleration nor cooling transfers significant momentum or energy flux from the hot wind to the warm outflow. The velocity distribution at launching near d∼ 1 {kpc} is a better representation of warm outflows than a single mass loading factor, potentially enabling development of subgrid models for warm galactic winds in arbitrary large-scale galactic potentials.

  4. MAGNETOHYDRODYNAMIC ACCRETION DISK WINDS AS X-RAY ABSORBERS IN ACTIVE GALACTIC NUCLEI

    International Nuclear Information System (INIS)

    Fukumura, Keigo; Kazanas, Demosthenes; Behar, Ehud; Contopoulos, Ioannis

    2010-01-01

    We present the two-dimensional ionization structure of self-similar magnetohydrodynamic winds off accretion disks around and irradiated by a central X-ray point source. On the basis of earlier observational clues and theoretical arguments, we focus our attention on a subset of these winds, namely those with radial density dependence n(r) ∝ 1/r (r is the spherical radial coordinate). We employ the photoionization code XSTAR to compute the ionic abundances of a large number of ions of different elements and then compile their line-of-sight (LOS) absorption columns. We focus our attention on the distribution of the column density of the various ions as a function of the ionization parameter ξ (or equivalently r) and the angle θ. Particular attention is paid to the absorption measure distribution (AMD), namely their hydrogen-equivalent column per logarithmic ξ interval, dN H /dlog ξ, which provides a measure of the winds' radial density profiles. For the chosen density profile n(r) ∝ 1/r, the AMD is found to be independent of ξ, in good agreement with its behavior inferred from the X-ray spectra of several active galactic nuclei (AGNs). For the specific wind structure and X-ray spectrum, we also compute detailed absorption line profiles for a number of ions to obtain their LOS velocities, v ∼ 100-300 km s -1 (at log ξ ∼ 2-3) for Fe XVII and v ∼ 1000-4000 km s -1 (at log ξ ∼ 4-5) for Fe XXV, in good agreement with the observation. Our models describe the X-ray absorption properties of these winds with only two parameters, namely the mass-accretion rate m-dot and the LOS angle θ. The probability of obscuration of the X-ray ionizing source in these winds decreases with increasing m-dot and increases steeply with the LOS inclination angle θ. As such, we concur with previous authors that these wind configurations, viewed globally, incorporate all the requisite properties of the parsec scale 'torii' invoked in AGN unification schemes. We indicate that a

  5. Evidence for Distinct Components of the Galactic Stellar Halo from 838 RR Lyrae Stars Discovered in the LONEOS-I Survey

    Energy Technology Data Exchange (ETDEWEB)

    Miceli, A; Rest, A; Stubbs, C W; Hawley, S L; Cook, K H; Magnier, E A; Krisciunas, K; Bowell, E; Koehn, B

    2007-02-23

    We present 838 ab-type RR Lyrae stars from the Lowell Observatory Near Earth Objects Survey Phase I (LONEOS-I). These objects cover 1430 deg{sup 2} and span distances ranging from 3-30kpc from the Galactic Center. Object selection is based on phased, photometric data with 28-50 epochs. We use this large sample to explore the bulk properties of the stellar halo, including the spatial distribution. The period-amplitude distribution of this sample shows that the majority of these RR Lyrae stars resemble Oosterhoff type I, but there is a significant fraction (26%) which have longer periods and appear to be Oosterhoff type II. We find that the radial distributions of these two populations have significantly different profiles ({rho}{sub OoI} {approx} R{sup -2.26{+-}0.07} and {rho}{sub OoII} {approx} R{sup -2.88{+-}0.11}). This suggests that the stellar halo was formed by at least two distinct accretion processes and supports dual-halo models.

  6. A truncated accretion disk in the galactic black hole candidate source H1743-322

    International Nuclear Information System (INIS)

    Sriram, Kandulapati; Agrawal, Vivek Kumar; Rao, Arikkala Raghurama

    2009-01-01

    To investigate the geometry of the accretion disk in the source H1743-322, we have carried out a detailed X-ray temporal and spectral study using RXTE pointed observations. We have selected all data pertaining to the Steep Power Law (SPL) state during the 2003 outburst of this source. We find anti-correlated hard X-ray lags in three of the observations and the changes in the spectral and timing parameters (like the QPO frequency) confirm the idea of a truncated accretion disk in this source. Compiling data from similar observations of other sources, we find a correlation between the fractional change in the QPO frequency and the observed delay. We suggest that these observations indicate a definite size scale in the inner accretion disk (the radius of the truncated disk) and we explain the observed correlation using various disk parameters like Compton cooling time scale, viscous time scale etc. (research papers)

  7. The impact of galactic fountains on the global evolution of galaxy disks

    NARCIS (Netherlands)

    Fraternali, F.; Binney, J.; Marasco, A.; Marinacci, F.

    2016-01-01

    The evolution of the Milky Way, and its thin disc in particular, is a history of continuous accretion of fresh gas from the surrounding environment. Evidence for this accretion taking place include high-velocity clouds (HVCs) that appear to be raining down from the halo. I present a model that

  8. Gaia reveals a metal-rich in-situ component of the local stellar halo

    Science.gov (United States)

    Bonaca, Ana; Conroy, Charlie; Wetzel, Andrew; Hopkins, Philip; Keres, Dusan

    2018-01-01

    We use the first Gaia data release, combined with RAVE and APOGEE spectroscopic surveys, to investigate the origin of halo stars within ~3 kpc from the Sun. We identify halo stars kinematically, as moving with a relative speed of at least 220 km/s with respect to the local standard of rest. These stars are in general more metal-poor than the disk, but surprisingly, half of our halo sample is comprised of stars with [Fe/H]>-1. The orbital directions of these metal-rich halo stars are preferentially aligned with the disk rotation, in sharp contrast with the isotropic orbital distribution of the more metal-poor halo stars. We find similar properties in the Latte cosmological zoom-in simulation of a Milky Way-like galaxy from the FIRE project. In Latte, metal-rich halo stars formed primarily inside of the solar circle, while lower-metallicity halo stars preferentially formed at larger distances (extending beyond the virial radius). This suggests that metal-rich halo stars in the Solar neighborhood in fact formed in situ within the Galactic disk rather than having been accreted from satellite systems. These stars, currently on halo-like orbits, therefore have likely undergone substantial radial migration/heating.

  9. Gaia Reveals a Metal-rich, in situ Component of the Local Stellar Halo

    Science.gov (United States)

    Bonaca, Ana; Conroy, Charlie; Wetzel, Andrew; Hopkins, Philip F.; Kereš, Dušan

    2017-08-01

    We use the first Gaia data release, combined with the RAVE and APOGEE spectroscopic surveys, to investigate the origin of halo stars within ≲ 3 kpc from the Sun. We identify halo stars kinematically as moving at a relative speed of at least 220 km s-1 with respect to the local standard of rest. These stars are generally less metal-rich than the disk, but surprisingly, half of our halo sample is comprised of stars with [{Fe}/{{H}}]> -1. The orbital directions of these metal-rich halo stars are preferentially aligned with the disk rotation, in sharp contrast with the intrinsically isotropic orbital distribution of the metal-poor halo stars. We find similar properties in the Latte cosmological zoom-in simulation of a Milky Way-like galaxy from the FIRE project. In Latte, metal-rich halo stars formed primarily inside of the solar circle, whereas lower-metallicity halo stars preferentially formed at larger distances (extending beyond the virial radius). This suggests that metal-rich halo stars in the solar neighborhood actually formed in situ within the Galactic disk, rather than having been accreted from satellite systems. These stars, currently on halo-like orbits, therefore have likely undergone substantial radial migration/heating.

  10. Kiloparsec-scale Simulations of Star Formation in Disk Galaxies. IV. Regulation of Galactic Star Formation Rates by Stellar Feedback

    International Nuclear Information System (INIS)

    Butler, Michael J.; Tan, Jonathan C.; Teyssier, Romain; Nickerson, Sarah; Rosdahl, Joakim; Van Loo, Sven

    2017-01-01

    Star formation from the interstellar medium of galactic disks is a basic process controlling the evolution of galaxies. Understanding the star formation rate (SFR) in a local patch of a disk with a given gas mass is thus an important challenge for theoretical models. Here we simulate a kiloparsec region of a disk, following the evolution of self-gravitating molecular clouds down to subparsec scales, as they form stars that then inject feedback energy by dissociating and ionizing UV photons and supernova explosions. We assess the relative importance of each feedback mechanism. We find that H 2 -dissociating feedback results in the largest absolute reduction in star formation compared to the run with no feedback. Subsequently adding photoionization feedback produces a more modest reduction. Our fiducial models that combine all three feedback mechanisms yield, without fine-tuning, SFRs that are in excellent agreement with observations, with H 2 -dissociating photons playing a crucial role. Models that only include supernova feedback—a common method in galaxy evolution simulations—settle to similar SFRs, but with very different temperatures and chemical states of the gas, and with very different spatial distributions of young stars.

  11. Kiloparsec-scale Simulations of Star Formation in Disk Galaxies. IV. Regulation of Galactic Star Formation Rates by Stellar Feedback

    Energy Technology Data Exchange (ETDEWEB)

    Butler, Michael J. [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Tan, Jonathan C. [Departments of Astronomy and Physics, University of Florida, Gainesville, FL 32611 (United States); Teyssier, Romain; Nickerson, Sarah [Institute for Computational Science, University of Zurich, 8049 Zurich (Switzerland); Rosdahl, Joakim [Leiden Observatory, Leiden University, P.O. Box 9513, NL-2300 RA Leiden (Netherlands); Van Loo, Sven [School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2017-06-01

    Star formation from the interstellar medium of galactic disks is a basic process controlling the evolution of galaxies. Understanding the star formation rate (SFR) in a local patch of a disk with a given gas mass is thus an important challenge for theoretical models. Here we simulate a kiloparsec region of a disk, following the evolution of self-gravitating molecular clouds down to subparsec scales, as they form stars that then inject feedback energy by dissociating and ionizing UV photons and supernova explosions. We assess the relative importance of each feedback mechanism. We find that H{sub 2}-dissociating feedback results in the largest absolute reduction in star formation compared to the run with no feedback. Subsequently adding photoionization feedback produces a more modest reduction. Our fiducial models that combine all three feedback mechanisms yield, without fine-tuning, SFRs that are in excellent agreement with observations, with H{sub 2}-dissociating photons playing a crucial role. Models that only include supernova feedback—a common method in galaxy evolution simulations—settle to similar SFRs, but with very different temperatures and chemical states of the gas, and with very different spatial distributions of young stars.

  12. Properties of the ISM - Gas in the halo

    Science.gov (United States)

    Savage, Blair D.

    1990-01-01

    The properties of interstellar gas in the galactic halo are reviewed. Halo gas is found to have a wide range of physical conditions with temperatures ranging from less than 170 K to more than 200,000 K. The gas extending away from the plane of the Milky Way has density scale heights ranging from less than 300 pc for certain species in the neutral medium to approximately 3000 pc for the most highly ionized gas. The complex kinematical characteristics of the gas provides important clues about its origin. The gas phase elemental abundances in the neutral halo gas are closer to solar than is found for the highly depleted gas of the Milky Way disk. The possible origin of gas at large distances away from the galactic plane is discussed.

  13. Sinuous oscillations and steady warps of polytropic disks

    International Nuclear Information System (INIS)

    Balmforth, N.J.; Spiegel, E.A.

    1995-05-01

    In an asymptotic development of the equations governing the equilibria and linear stability of rapidly rotating polytropes we employed the slender aspect of these objects to reduce the three-dimensional partial differential equations to a somewhat simpler, ordinary integro-differential form. The earlier calculations dealt with isolated objects that were in centrifugal balance, that is the centrifugal acceleration of the configuration was balanced largely by self gravity with small contributions from the pressure gradient. Another interesting situation is that in which the polytrope rotates subject to externally imposed gravitational fields. In astrophysics, this is common in the theory of galactic dynamics because disks are unlikely to be isolated objects. The dark halos associated with disks also provide one possible explanation of the apparent warping of many galaxies. If the axis of the highly flattened disk is not aligned with that of the much less flattened halo, then the resultant torque of the halo gravity on the disk might provide a nonaxisymmetric distortion or disk warp. Motivated by these possibilities we shall here build models of polytropic disks of small but finite thickness which are subjected to prescribed, external gravitational fields. First we estimate how a symmetrical potential distorts the structure of the disk, then we examine its sinuous oscillations to confirm that they freely decay, hence suggesting that a warp must be externally forced. Finally, we consider steady warps of the disk plane when the axis of the disk does not coincide with that of the halo

  14. THE MASS-INDEPENDENCE OF SPECIFIC STAR FORMATION RATES IN GALACTIC DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Abramson, Louis E.; Gladders, Michael D. [Department of Astronomy and Astrophysics and Kavli Institute for Cosmological Physics, The University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Kelson, Daniel D.; Dressler, Alan; Oemler, Augustus Jr. [The Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Poggianti, Bianca [INAF-Osservatorio Astronomico di Padova, Vicolo Osservatorio 5, I-35122 Padova (Italy); Vulcani, Benedetta, E-mail: labramson@uchicago.edu [Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, University of Tokyo, Kashiwa 277-8582 (Japan)

    2014-04-20

    The slope of the star formation rate/stellar mass relation (the SFR {sup M}ain Sequence{sup ;} SFR-M {sub *}) is not quite unity: specific star formation rates (SFR/M {sub *}) are weakly but significantly anti-correlated with M {sub *}. Here we demonstrate that this trend may simply reflect the well-known increase in bulge mass-fractions—portions of a galaxy not forming stars—with M {sub *}. Using a large set of bulge/disk decompositions and SFR estimates derived from the Sloan Digital Sky Survey, we show that re-normalizing SFR by disk stellar mass (sSFR{sub disk} ≡ SFR/M {sub *,} {sub disk}) reduces the M {sub *} dependence of SF efficiency by ∼0.25 dex per dex, erasing it entirely in some subsamples. Quantitatively, we find log sSFR{sub disk}-log M {sub *} to have a slope β{sub disk} in [ – 0.20, 0.00] ± 0.02 (depending on the SFR estimator and Main Sequence definition) for star-forming galaxies with M {sub *} ≥ 10{sup 10} M {sub ☉} and bulge mass-fractions B/T ≲ 0.6, generally consistent with a pure-disk control sample (β{sub control} = –0.05 ± 0.04). That (SFR/M {sub *,} {sub disk}) is (largely) independent of host mass for star-forming disks has strong implications for aspects of galaxy evolution inferred from any SFR-M {sub *} relation, including manifestations of ''mass quenching'' (bulge growth), factors shaping the star-forming stellar mass function (uniform dlog M {sub *}/dt for low-mass, disk-dominated galaxies), and diversity in star formation histories (dispersion in SFR(M {sub *}, t)). Our results emphasize the need to treat galaxies as composite systems—not integrated masses—in observational and theoretical work.

  15. Galactic abundance gradients from Cepheids : α and heavy elements in the outer disk

    NARCIS (Netherlands)

    Lemasle, B.; Francois, P.; Genovali, K.; Kovtyukh, V. V.; Bono, G.; Inno, L.; Laney, C. D.; Kaper, L.; Bergemann, M.; Fabrizio, M.; Matsunaga, N.; Pedicelli, S.; Primas, F.; Romaniello, M.

    2013-01-01

    Context. Galactic abundance gradients set strong constraints to chemo-dynamical evolutionary models of the Milky Way. Given the period-luminosity relations that provide accurate distances and the large number of spectral lines, Cepheids are excellent tracers of the present-day abundance gradients.

  16. STAR FORMATION IN SELF-GRAVITATING DISKS IN ACTIVE GALACTIC NUCLEI. II. EPISODIC FORMATION OF BROAD-LINE REGIONS

    International Nuclear Information System (INIS)

    WangJianmin; Du Pu; Ge Junqiang; Hu Chen; Baldwin, Jack A.; Ferland, Gary J.

    2012-01-01

    This is the second in a series of papers discussing the process and effects of star formation in the self-gravitating disk around the supermassive black holes in active galactic nuclei (AGNs). We have previously suggested that warm skins are formed above the star-forming (SF) disk through the diffusion of warm gas driven by supernova explosions. Here we study the evolution of the warm skins when they are exposed to the powerful radiation from the inner part of the accretion disk. The skins initially are heated to the Compton temperature, forming a Compton atmosphere (CAS) whose subsequent evolution is divided into four phases. Phase I is the duration of pure accumulation supplied by the SF disk. During phase II clouds begin to form due to line cooling and sink to the SF disk. Phase III is a period of preventing clouds from sinking to the SF disk through dynamic interaction between clouds and the CAS because of the CAS overdensity driven by continuous injection of warm gas from the SF disk. Finally, phase IV is an inevitable collapse of the entire CAS through line cooling. This CAS evolution drives the episodic appearance of broad-line regions (BLRs). We follow the formation of cold clouds through the thermal instability of the CAS during phases II and III, using linear analysis. Since the clouds are produced inside the CAS, the initial spatial distribution of newly formed clouds and angular momentum naturally follow the CAS dynamics, producing a flattened disk of clouds. The number of clouds in phases II and III can be estimated, as well as the filling factor of clouds in the BLR. Since the cooling function depends on the metallicity, the metallicity gradients that originate in the SF disk give rise to different properties of clouds in different radial regions. We find from the instability analysis that clouds have column density N H ∼ 22 cm –2 in the metal-rich regions whereas they have N H ∼> 10 22 cm –2 in the metal-poor regions. The metal-rich clouds

  17. Spin temperature and density of cold and warm H I in the Galactic disk: Hidden H I

    Science.gov (United States)

    Sofue, Yoshiaki

    2018-05-01

    We present a method to determine the spin temperature TS and volume density n of H I gas simultaneously along the tangent-point circle of Galactic rotation in the Milky Way by using the χ2 method. The best-fit TS is shown to range either in TS ˜ 100-120 K or in 1000-3000 K, indicating that the gas is in the cold H I phase with high density and large optical depth, or in warm H I with low density and small optical depth. Averaged values at 3 ≤ R ≤ 8 kpc are obtained to be TS = 106.7 ± 16.0 K and n = 1.53 ± 0.86 H cm-3 for cold H I, and 1720 ± 1060 K and 0.38 ± 0.10 H cm-3 for warm H I, where R = 8 |sinl| kpc is the galacto-centric distance along the tangent-point circle. The cold H I appears in spiral arms and rings, whereas warm H I appears in the inter-arm regions. The cold H I is denser by a factor of ˜4 than warm H I. The present analysis has revealed the hidden H I mass in the cold and optically thick phase in the Galactic disk. The total H I mass inside the solar circle is shown to be greater by a factor of 2-2.5 than the current estimation by the optically thin assumption.

  18. DETERMINATION OF THE POINT-SPREAD FUNCTION FOR THE FERMI LARGE AREA TELESCOPE FROM ON-ORBIT DATA AND LIMITS ON PAIR HALOS OF ACTIVE GALACTIC NUCLEI

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, M. [Deutsches Elektronen Synchrotron DESY, D-15738 Zeuthen (Germany); Ajello, M.; Allafort, A.; Bechtol, K.; Bloom, E. D.; Borgland, A. W.; Bottacini, E.; Buehler, R. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Asano, K. [Interactive Research Center of Science, Tokyo Institute of Technology, Meguro City, Tokyo 152-8551 (Japan); Atwood, W. B. [Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); Baldini, L.; Bellazzini, R.; Bregeon, J. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Ballet, J. [Laboratoire AIM, CEA-IRFU/CNRS/Universite Paris Diderot, Service d' Astrophysique, CEA Saclay, F-91191 Gif sur Yvette (France); Barbiellini, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Bastieri, D. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy); Bonamente, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, I-06123 Perugia (Italy); Brandt, T. J. [CNRS, IRAP, F-31028 Toulouse cedex 4 (France); Brigida, M. [Dipartimento di Fisica ' M. Merlin' dell' Universita e del Politecnico di Bari, I-70126 Bari (Italy); Bruel, P., E-mail: mdwood@slac.stanford.edu, E-mail: mar0@uw.edu [Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, F-91128 Palaiseau (France); and others

    2013-03-01

    The Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope is a pair-conversion telescope designed to detect photons with energies from Almost-Equal-To 20 MeV to >300 GeV. The pre-launch response functions of the LAT were determined through extensive Monte Carlo simulations and beam tests. The point-spread function (PSF) characterizing the angular distribution of reconstructed photons as a function of energy and geometry in the detector is determined here from two years of on-orbit data by examining the distributions of {gamma} rays from pulsars and active galactic nuclei (AGNs). Above 3 GeV, the PSF is found to be broader than the pre-launch PSF. We checked for dependence of the PSF on the class of {gamma}-ray source and observation epoch and found none. We also investigated several possible spatial models for pair-halo emission around BL Lac AGNs. We found no evidence for a component with spatial extension larger than the PSF and set upper limits on the amplitude of halo emission in stacked images of low- and high-redshift BL Lac AGNs and the TeV blazars 1ES0229+200 and 1ES0347-121.

  19. Abundances of Copper and Zinc in Stars of the Galactic Thin and Thick Disks

    Science.gov (United States)

    Gorbaneva, T. I.; Mishenina, T. V.; Basak, N. Yu.; Soubiran, C.; Kovtyukh, V. V.

    The spectra of studied stars were obtained with the ELODIE spectrograph at the 1.93-m telescope of the Observatoire de Haute Provence (France). The determination of Cu and Zn abundances was carried out in LTE assumption by model atmosphere method, for Cu the hyperfine structure was taken into account. Cu and Zn abundance trends for thin and thick disk's stars are presented.

  20. THE ROLE OF THE ACCRETION DISK, DUST, AND JETS IN THE IR EMISSION OF LOW-LUMINOSITY ACTIVE GALACTIC NUCLEI

    Energy Technology Data Exchange (ETDEWEB)

    Mason, R. E. [Gemini Observatory, Northern Operations Center, 670 N. A' ohoku Place, Hilo, HI 96720 (United States); Ramos Almeida, C. [Instituto de Astrofísica de Canarias, C/Vía Láctea, s/n, E-38205 La Laguna, Tenerife (Spain); Levenson, N. A. [Gemini Observatory, Southern Operations Center, c/o AURA, Casilla 603, La Serena (Chile); Nemmen, R. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Alonso-Herrero, A., E-mail: rmason@gemini.edu [Instituto de Física de Cantabria, CSIC-UC, Avenida de los Castros s/n, E-39005 Santander (Spain)

    2013-11-10

    We use recent high-resolution infrared (IR; 1-20 μm) photometry to examine the origin of the IR emission in low-luminosity active galactic nuclei (LLAGN). The data are compared with published model fits that describe the spectral energy distribution (SED) of LLAGN in terms of an advection-dominated accretion flow, truncated thin accretion disk, and jet. The truncated disk in these models is usually not luminous enough to explain the observed IR emission, and in all cases its spectral shape is much narrower than the broad IR peaks in the data. Synchrotron radiation from the jet appears to be important in very radio-loud nuclei, but the detection of strong silicate emission features in many objects indicates that dust must also contribute. We investigate this point by fitting the IR SED of NGC 3998 using dusty torus and optically thin (τ{sub mid-IR} ∼ 1) dust shell models. While more detailed modeling is necessary, these initial results suggest that dust may account for the nuclear mid-IR emission of many LLAGN.

  1. Line-driven disk winds in active galactic nuclei: The critical importance of ionization and radiative transfer

    Energy Technology Data Exchange (ETDEWEB)

    Higginbottom, Nick; Knigge, Christian; Matthews, James H. [School of Physics and Astronomy, University of Southampton, Highfield, Southampton, SO17 1BJ (United Kingdom); Proga, Daniel [Department of Physics and Astronomy, University of Nevada, Las Vegas, 4505 South Maryland Parkway, Las Vegas, NV 89154-4002 (United States); Long, Knox S. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Sim, Stuart A., E-mail: nick_higginbottom@fastmail.fm [School of Mathematics and Physics, Queens University Belfast, University Road, Belfast, BT7 1NN (United Kingdom)

    2014-07-01

    Accretion disk winds are thought to produce many of the characteristic features seen in the spectra of active galactic nuclei (AGNs) and quasi-stellar objects (QSOs). These outflows also represent a natural form of feedback between the central supermassive black hole and its host galaxy. The mechanism for driving this mass loss remains unknown, although radiation pressure mediated by spectral lines is a leading candidate. Here, we calculate the ionization state of, and emergent spectra for, the hydrodynamic simulation of a line-driven disk wind previously presented by Proga and Kallman. To achieve this, we carry out a comprehensive Monte Carlo simulation of the radiative transfer through, and energy exchange within, the predicted outflow. We find that the wind is much more ionized than originally estimated. This is in part because it is much more difficult to shield any wind regions effectively when the outflow itself is allowed to reprocess and redirect ionizing photons. As a result, the calculated spectrum that would be observed from this particular outflow solution would not contain the ultraviolet spectral lines that are observed in many AGN/QSOs. Furthermore, the wind is so highly ionized that line driving would not actually be efficient. This does not necessarily mean that line-driven winds are not viable. However, our work does illustrate that in order to arrive at a self-consistent model of line-driven disk winds in AGN/QSO, it will be critical to include a more detailed treatment of radiative transfer and ionization in the next generation of hydrodynamic simulations.

  2. THE TILT OF THE HALO VELOCITY ELLIPSOID AND THE SHAPE OF THE MILKY WAY HALO

    International Nuclear Information System (INIS)

    Smith, Martin C.; Wyn Evans, N.; An, Jin H.

    2009-01-01

    A sample of ∼1800 halo subdwarf stars with radial velocities and proper motions is assembled from Bramich et al.'s light-motion catalog of 2008. This is based on the repeated multiband Sloan Digital Sky Survey photometric measurements in Stripe 82. Our sample of halo subdwarfs is extracted via a reduced proper motion diagram and distances are obtained using photometric parallaxes, thus giving full phase-space information. The tilt of the velocity ellipsoid with respect to the spherical polar coordinate system is computed and found to be consistent with zero for two of the three tilt angles, and very small for the third. We prove that if the inner halo is in a steady state and the triaxial velocity ellipsoid is everywhere aligned in spherical polar coordinates, then the potential must be spherically symmetric. The detectable, but very mild, misalignment with spherical polars is consistent with the perturbative effects of the Galactic disk on a spherical dark halo. Banana orbits are generated at the 1:1 resonance (in horizontal and vertical frequencies) by the disk. They populate Galactic potentials at the typical radii of our subdwarf sample, along with the much more dominant short-axis tubes. However, on geometric grounds alone, the tilt cannot vanish for the banana orbits and this leads to a slight, but detectable, misalignment. We argue that the tilt of the stellar halo velocity ellipsoid therefore provides a hitherto largely neglected but important line of argument that the Milky Way's dark halo, which dominates the potential, must be nearly spherical.

  3. NO EVIDENCE FOR CLASSICAL CEPHEIDS AND A NEW DWARF GALAXY BEHIND THE GALACTIC DISK

    Energy Technology Data Exchange (ETDEWEB)

    Pietrukowicz, P.; Udalski, A.; Szymański, M. K.; Soszyński, I.; Pietrzyński, G.; Wyrzykowski, Ł.; Poleski, R.; Ulaczyk, K.; Skowron, J.; Mróz, P.; Pawlak, M.; Kozłowski, S. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland)

    2015-11-10

    Based on data from the ongoing OGLE Galaxy Variability Survey (OGLE GVS), we have verified observed properties of stars detected by the near-infrared VVV survey in a direction near the Galactic plane at longitude l ≈ −27° and recently tentatively classified as classical Cepheids belonging to, hence claimed, a dwarf galaxy at a distance of about 90 kpc from the Galactic Center. Three of four stars are detected in the OGLE GVS I-band images. We show that two of the objects are not variable at all, and the third one with a period of 5.695 days and a nearly sinusoidal light curve of an amplitude of 0.5 mag cannot be a classical Cepheid and is very likely a spotted object. These results together with a very unusual shape of the K{sub s}-band light curve of the fourth star indicate that it is very likely that none of them is a Cepheid and, thus there is no evidence for a background dwarf galaxy. Our observations show that great care must be taken when classifying objects by their low-amplitude close-to-sinusoidal near-infrared light curves, especially with a small number of measurements. We also provide a sample of high-amplitude spotted stars with periods of a few days that can mimic pulsations and even eclipses.

  4. Chemical composition of stars in kinematical substructures of the galactic disk

    Directory of Open Access Journals (Sweden)

    Gorbaneva T.I.

    2012-02-01

    Full Text Available The Y, Zr, La, Ce, Nd , Sm and Eu abundances were found in LTE approach, and the abundance of Ba was computed in NLTE approximation for 280 FGK dwarfs in the region of metallicity of − 1<[Fe]< + 0.3. The selection of stars belonging to thin and thick disks and the stream Hercules was made on kinematic criteria. The analysis of enrichment of the different substructures of the Galaxy with α-element (Mg, Si, the iron peak (Ni and neutron-capture elements was carried out.

  5. On a simple model for self-regulating star formation in the galactic disk

    International Nuclear Information System (INIS)

    Meusinger, H.

    1989-01-01

    Star formation in galaxies is a process with feedback to the interstellar medium (ISM) and possibly it is part of a self-regulating cycle. Dopita (1985) proposed a model in which star formation in spiral and irregular galaxies is self-regulated by the pressure in the ISM. In the present paper it is shown that available data for radial distributions of gas, total mass and the flux of Lyman continuum photons in the disk of our galaxy do not support such a simple model. Several possible causes are discussed. (author)

  6. Analysis Of Ultra Compact Ionized Hydrogen Regions Within The Northern Half Of The Galactic Disk

    Science.gov (United States)

    Bruce, John

    2011-01-01

    From a catalog of 199 candidate ultra compact (UC) HII regions 123 sources included in the the intersection of the GLIMPSE (8 μm),Cornish (6 cm), and Bolocam ( 1.1 mm) galactic plane surveys (BGPS) were analyzed. The sources were sorted based on 6 cm morphology and coincidence with 8 μm bubbles. The 1.1 mm flux attributes were measured and calculations were performed to determine the ionized hydrogen contributions to the 1.1 mm flux. The category averages and frequencies were obtained as well. Significant differences in HII percentages were present among the morphology groups but ranged widely, without apparent distinction, between the bubble forming and triggered source categories.

  7. Search for γ -Ray Line Signals from Dark Matter Annihilations in the Inner Galactic Halo from 10 Years of Observations with H.E.S.S.

    Science.gov (United States)

    Abdallah, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Angüner, E. O.; Arakawa, M.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bonnefoy, S.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Capasso, M.; Caroff, S.; Carosi, A.; Carr, J.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Colafrancesco, S.; Condon, B.; Conrad, J.; Davids, I. D.; Decock, J.; Deil, C.; Devin, J.; deWilt, P.; Dirson, L.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O'C.; Dutson, K.; Dyks, J.; Edwards, T.; Egberts, K.; Eger, P.; Emery, G.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Funk, S.; Füßling, M.; Gabici, S.; Gallant, Y. A.; Garrigoux, T.; Gaté, F.; Giavitto, G.; Giebels, B.; Glawion, D.; Glicenstein, J. F.; Gottschall, D.; Grondin, M.-H.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holch, T. L.; Holler, M.; Horns, D.; Ivascenko, A.; Iwasaki, H.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katsuragawa, M.; Katz, U.; Kerszberg, D.; Khangulyan, D.; Khélifi, B.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Liu, R.; Lohse, T.; Lorentz, M.; López-Coto, R.; Lypova, I.; Malyshev, D.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Morâ, K.; Moulin, E.; Murach, T.; Nakashima, S.; de Naurois, M.; Ndiyavala, H.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Piel, Q.; Pita, S.; Poireau, V.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Rauth, R.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Rinchiuso, L.; Romoli, C.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Saito, S.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schandri, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Shiningayamwe, K.; Simoni, R.; Sol, H.; Spanier, F.; Spir-Jacob, M.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Steppa, C.; Sushch, I.; Takahashi, T.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tsirou, M.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zaborov, D.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Zorn, J.; Żywucka, N.; H. E. S. S. Collaboration

    2018-05-01

    Spectral lines are among the most powerful signatures for dark matter (DM) annihilation searches in very-high-energy γ rays. The central region of the Milky Way halo is one of the most promising targets given its large amount of DM and proximity to Earth. We report on a search for a monoenergetic spectral line from self-annihilations of DM particles in the energy range from 300 GeV to 70 TeV using a two-dimensional maximum likelihood method taking advantage of both the spectral and spatial features of the signal versus background. The analysis makes use of Galactic center observations accumulated over ten years (2004-2014) with the H.E.S.S. array of ground-based Cherenkov telescopes. No significant γ -ray excess above the background is found. We derive upper limits on the annihilation cross section ⟨σ v ⟩ for monoenergetic DM lines at the level of 4 ×10-28 cm3 s-1 at 1 TeV, assuming an Einasto DM profile for the Milky Way halo. For a DM mass of 1 TeV, they improve over the previous ones by a factor of 6. The present constraints are the strongest obtained so far for DM particles in the mass range 300 GeV-70 TeV. Ground-based γ -ray observations have reached sufficient sensitivity to explore relevant velocity-averaged cross sections for DM annihilation into two γ -ray photons at the level expected from the thermal relic density for TeV DM particles.

  8. A DISTINCTIVE DISK-JET COUPLING IN THE SEYFERT-1 ACTIVE GALACTIC NUCLEUS NGC 4051

    International Nuclear Information System (INIS)

    King, A. L.; Miller, J. M.; Gueltekin, K.; Reynolds, M. T.; Cackett, E. M.; Fabian, A. C.; Markoff, S.; Nowak, M. A.; Rupen, M.

    2011-01-01

    We report on the results of a simultaneous monitoring campaign employing eight Chandra X-ray (0.5-10 keV) and six Very Large Array/Extended Very Large Array (8.4 GHz) radio observations of NGC 4051 over seven months. Evidence for compact jets is observed in the 8.4 GHz radio band; this builds on mounting evidence that jet production may be prevalent even in radio-quiet Seyferts. Assuming comparatively negligible local diffuse emission in the nucleus, the results also demonstrate an inverse correlation of L radio ∝ L -0.72±0.04 X-ray . If the A configuration is excluded in the case where diffuse emission plays a significant role, the relation is still L radio ∝ L X-ray -0.12±0.05 . Current research linking the mass of supermassive black holes and stellar-mass black holes in the 'low/hard' state to X-ray luminosities and radio luminosities suggests a 'fundamental plane of accretion onto black holes' that has a positive correlation of L radio ∝ L 0.67±0.12 X-ray . Our simultaneous results differ from this relation by more than 11σ (6σ excluding the A configuration), indicating that a separate mode of accretion and ejection may operate in this system. A review of the literature shows that the inverse correlation seen in NGC 4051 is seen in three other black hole systems, all of which accrete at near 10% of their Eddington luminosity, perhaps suggesting a distinct mode of disk-jet coupling at high Eddington fractions. We discuss our results in the context of disks and jets in black holes and accretion across the black hole mass scale.

  9. Galactic winds and the hubble sequence

    International Nuclear Information System (INIS)

    Bregman, J.N.

    1978-01-01

    The conditions for maintenance of supernova-driven galactic winds have been investigated to assess their role in the morphology of disk-bulge galaxies. A fluid mechanical model with gas and stars which includes galactic rotation has been used to investigate several classes of winds. It is found that many galaxies, once their initial gas is depleted, can maintain a wind throughout the entire galaxy, a conditon most easily satisfied by systems with a small bulge-to-disk ratio. If the ratio of supernova heating to total mass loss falls below a critical value that depends on galaxy type and mass, only a partial wind exterior to a critical surface can exist, with infall occurring at interior points. Galaxies in which only the bulge was depleted of gas may support a bulge wind that does not interact with the colder and denser gas in the disk.These results indicate that if SO galaxies are a transition class between elliptical and spiral galaxies, it is probably because early galactic winds, which may initially deplete a galaxy of gas, are more prevalent in SO than in spiral galaxies. However, if SO's form a parallel sequence with spirals, the initial gas-depletion mechanism must be independent of bulge-to-disk ratio. These results are not strongly influenced by altering the galactic mass model, including electron conduction in the flow equations, or adding massive halos

  10. Constraints on Galactic populations from the unidentified EGRET sources

    International Nuclear Information System (INIS)

    Siegal-Gaskins, Jennifer M.; Pavlidou, Vasiliki; Brown, Carolyn; Olinto, Angela V.; Fields, Brian D.

    2007-01-01

    A significant fraction of the sources in the third EGRET catalog have not yet been identified with a low-energy counterpart. We evaluate the plausibility of a Galactic population accounting for some or all of the unidentified EGRET sources by making the simple assumption that galaxies similar to the Milky Way host comparable populations of gamma-ray emitters. Rather than focusing on the properties of a specific candidate emitter, we constrain the abundance and spatial distribution of proposed Galactic populations. We find that it is highly improbable that the unidentified EGRET sources contain more than a handful of members of a Galactic halo population, but that current observations are consistent with all of these sources being Galactic objects if they reside entirely in the disk and bulge. We discuss the additional constraints and new insights into the nature of Galactic gamma-ray emitting populations that GLAST is expected to provide

  11. The excitation of HCN and HCO{sup +} in the galactic center circumnuclear disk

    Energy Technology Data Exchange (ETDEWEB)

    Mills, E. A. C. [National Radio Astronomy Observatory, P.O. Box O 1009, Lopezville Drive, Socorro, NM 87801 (United States); Güsten, R.; Requena-Torres, M. A. [Max Planck Institut für Radioastronomie, Auf Dem Huegel 69, D-53121 Bonn (Germany); Morris, M. R., E-mail: millsb@astro.ucla.edu [Department of Physics and Astronomy, University of California, Physics and Astronomy Building, 430 Portola Plaza, Box 951547 Los Angeles, CA 90095-1547 (United States)

    2013-12-10

    We present new observations of HCN and HCO{sup +} in the circumnuclear disk (CND) of the Galaxy, which we obtained with the Atacama Pathfinder Experiment telescope. We mapped emission in rotational lines of HCN J = 3-2, 4-3, and 8-7, as well as of HCO{sup +} J = 3-2, 4-3, and 9-8. We also present spectra of H{sup 13}CN J = 3-2 and 4-3 as well as H{sup 13}CO{sup +} J = 3-2 and 4-3 toward four positions in the CND. Using the intensities of all of these lines, we present an excitation analysis for each molecule using the non-LTE radiative transfer code RADEX. The HCN line intensities toward the northern emission peak of the CND yield log densities (cm{sup –3}) of 5.6{sub −0.6}{sup +0.6}, consistent with those measured with HCO{sup +} as well as with densities recently reported for this region from an excitation analysis of highly excited lines of CO. These densities are too low for the gas to be tidally stable. The HCN line intensities toward the CND's southern emission peak yield log densities of 6.5{sub −0.7}{sup +0.5}, higher than densities determined for this part of the CND with CO (although the densities measured with HCO{sup +}, log [n] = 5.6{sub −0.2}{sup +0.2}, are more consistent with the CO-derived densities). We investigate whether the higher densities we infer from HCN are affected by midinfrared radiative excitation of this molecule through its 14 μm rovibrational transitions. We find that radiative excitation is important for at least one clump in the CND, where we additionally detect the J = 4-3, v {sub 2} = 1 vibrationally excited transition of HCN, which is excited by dust temperatures of ≳125-150 K. If this hot dust is present elsewhere in the CND, it could lower our inferred densities, potentially bringing the HCN-derived densities for the southern part of the CND into agreement with those measured using HCO{sup +} and CO. Additional sensitive, high-resolution submillimeter observations, as well as midinfrared observations, would be

  12. A UNIVERSAL, LOCAL STAR FORMATION LAW IN GALACTIC CLOUDS, NEARBY GALAXIES, HIGH-REDSHIFT DISKS, AND STARBURSTS

    International Nuclear Information System (INIS)

    Krumholz, Mark R.; Dekel, Avishai; McKee, Christopher F.

    2012-01-01

    Star formation laws are rules that relate the rate of star formation in a particular region, either an entire galaxy or some portion of it, to the properties of the gas, or other galactic properties, in that region. While observations of Local Group galaxies show a very simple, local star formation law in which the star formation rate per unit area in each patch of a galaxy scales linearly with the molecular gas surface density in that patch, recent observations of both Milky Way molecular clouds and high-redshift galaxies apparently show a more complicated relationship in which regions of equal molecular gas surface density can form stars at quite different rates. These data have been interpreted as implying either that different star formation laws may apply in different circumstances, that the star formation law is sensitive to large-scale galaxy properties rather than local properties, or that there are high-density thresholds for star formation. Here we collate observations of the relationship between gas and star formation rate from resolved observations of Milky Way molecular clouds, from kpc-scale observations of Local Group galaxies, and from unresolved observations of both disk and starburst galaxies in the local universe and at high redshift. We show that all of these data are in fact consistent with a simple, local, volumetric star formation law. The apparent variations stem from the fact that the observed objects have a wide variety of three-dimensional size scales and degrees of internal clumping, so even at fixed gas column density the regions being observed can have wildly varying volume densities. We provide a simple theoretical framework to remove this projection effect, and we use it to show that all the data, from small solar neighborhood clouds with masses ∼10 3 M ☉ to submillimeter galaxies with masses ∼10 11 M ☉ , fall on a single star formation law in which the star formation rate is simply ∼1% of the molecular gas mass per local

  13. No more active galactic nuclei in clumpy disks than in smooth galaxies at z ∼ 2 in CANDELS/3D-HST

    Energy Technology Data Exchange (ETDEWEB)

    Trump, Jonathan R.; Luo, Bin; Brandt, W. N. [Department of Astronomy and Astrophysics, 525 Davey Lab, The Pennsylvania State University, University Park, PA 16802 (United States); Barro, Guillermo; Guo, Yicheng; Koo, David C.; Faber, S. M. [University of California Observatories/Lick Observatory and Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Juneau, Stéphanie [Irfu/Service d' Astrophysique, CEA-Saclay, Orme des Merisiers, F-91191 Gif-sur-Yvette Cedex (France); Weiner, Benjamin J. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Brammer, Gabriel B.; Ferguson, Henry C.; Grogin, Norman A.; Kartaltepe, Jeyhan; Koekemoer, Anton M. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Bell, Eric F. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Dekel, Avishai [Center for Astrophysics and Planetary Science, Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel); Hopkins, Philip F. [California Institute of Technology, MC 105-24, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Kocevski, Dale D. [Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506 (United States); McIntosh, Daniel H. [Department of Physics and Astronomy, University of Missouri-Kansas City, 5110 Rockhill Road, Kansas City, MO 64110 (United States); Momcheva, Ivelina [Department of Astronomy, Yale University, New Haven, CT 06520 (United States); and others

    2014-10-01

    We use CANDELS imaging, 3D-HST spectroscopy, and Chandra X-ray data to investigate if active galactic nuclei (AGNs) are preferentially fueled by violent disk instabilities funneling gas into galaxy centers at 1.3 < z < 2.4. We select galaxies undergoing gravitational instabilities using the number of clumps and degree of patchiness as proxies. The CANDELS visual classification system is used to identify 44 clumpy disk galaxies, along with mass-matched comparison samples of smooth and intermediate morphology galaxies. We note that despite being mass-matched and having similar star formation rates, the smoother galaxies tend to be smaller disks with more prominent bulges compared to the clumpy galaxies. The lack of smooth extended disks is probably a general feature of the z ∼ 2 galaxy population, and means we cannot directly compare with the clumpy and smooth extended disks observed at lower redshift. We find that z ∼ 2 clumpy galaxies have slightly enhanced AGN fractions selected by integrated line ratios (in the mass-excitation method), but the spatially resolved line ratios indicate this is likely due to extended phenomena rather than nuclear AGNs. Meanwhile, the X-ray data show that clumpy, smooth, and intermediate galaxies have nearly indistinguishable AGN fractions derived from both individual detections and stacked non-detections. The data demonstrate that AGN fueling modes at z ∼ 1.85—whether violent disk instabilities or secular processes—are as efficient in smooth galaxies as they are in clumpy galaxies.

  14. Photoionization in the halo of the Galaxy

    Science.gov (United States)

    Bregman, Joel N.; Harrington, J. Patrick

    1986-01-01

    The ionizing radiation field in the halo is calculated and found to be dominated in the 13.6-45 eV range by light from O-B stars that escapes the disk, by planetary nebulae at 45-54 eV, by quasars and the Galactic soft X-ray background at 54-2000 eV, and by the extragalactic X-ray background at higher energies. Photoionization models are calculated with this radiation field incident on halo clouds of constant density for a variety of densities, for normal and depleted abundances, and with variations of the incident spectrum. For species at least triply ionized, such as Si IV, C IV, N V, and O VI, the line ratios are determined by intervening gas with the greatest volume, which is not necessarily the greatest mass component. Column densities from doubly ionized species like Si III should be greater than from triply ionized species. The role of photoionized gas in cosmic ray-supported halos and Galactic fountains is discussed. Observational tests of photoionization models are suggested.

  15. A Discovery of a Compact High Velocity Cloud-Galactic Supershell System

    Science.gov (United States)

    Park, Geumsook; Koo, Bon-Chul; Kang, Ji-hyun; Gibson, Steven J.; Peek, Joshua Eli Goldston; Douglas, Kevin A.; Korpela, Eric J.; Heiles, Carl E.

    2017-01-01

    High velocity clouds (HVCs) are neutral hydrogen (HI) gas clouds having very different radial velocities from those of the Galactic disk material. While some large HVC complexes are known to be gas streams tidally stripped from satellite galaxies of the Milky Way, there are relatively isolated and small angular-sized HVCs, so called “compact HVCs (CHVCs)”, the origin of which remains controversial. There are about 300 known CHVCs in the Milky Way, and many of them show a head-tail structure, implying a ram pressure interaction with the diffuse Galactic halo gas. It is, however, not clear whether CHVCs are completely dissipated in the Galactic halo to feed the multi-phase circumgalactic medium or they can survive their trip through the halo and collide with the Galactic disk. The colliding CHVCs may leave a gigantic trail in the disk, and it had been suggested that some of HI supershells that require ≧ 3 x 1052 erg may be produced by the collision of such HVCs.Here we report the detection of a kiloparsec (kpc)-size supershell in the outskirts of the Milky Way with the compact HVC 040+01-282 (hereafter, CHVC040) at its geometrical center using the “Inner-Galaxy Arecibo L-band Feed Array” HI 21 cm survey data. The morphological and physical properties of both objects suggest that CHVC040, which is either a fragment of a nearby disrupted galaxy or a cloud that originated from an intergalactic accreting flow, collided with the disk ˜5 Myr ago to form the supershell. Our results show that some compact HVCs can survive their trip through the Galactic halo and inject energy and momentum into the Milky Way disk.

  16. PHYSICAL CONTACT BETWEEN THE +20 km s{sup −1} CLOUD AND THE GALACTIC CIRCUMNUCLEAR DISK

    Energy Technology Data Exchange (ETDEWEB)

    Takekawa, Shunya; Oka, Tomoharu [School of Fundamental Science and Technology, Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Yokohama, Kanagawa 223-8522 (Japan); Tanaka, Kunihiko, E-mail: shunya@aysheaia.phys.keio.ac.jp [Department of Physics, Institute of Science and Technology, Keio University, 3-14-1 Hiyoshi, Yokohama, Kanagawa 223-8522 (Japan)

    2017-01-10

    This paper reports the discovery of evidence for physical contact between the Galactic circumnuclear disk (CND) and an exterior giant molecular cloud. The central 10 pc of our Galaxy has been imaged in the HCN J  = 1–0, HCO{sup +} J  = 1–0, CS J  = 2–1, H{sup 13}CN J  = 1–0, SiO J  = 2–1, SO N{sub J}  = 2{sub 3}–1{sub 2}, and HC{sub 3}N J  = 11–10 lines using the Nobeyama Radio Observatory 45 m radio telescope. Based on our examination of the position–velocity maps of several high-density probe lines, we have found that an emission “bridge” may be connecting the +20 km s{sup −1} cloud (M–0.13–0.08) and the negative-longitude extension of the CND. Analyses of line intensity ratios imply that the chemical property of the bridge is located between the +20 km s{sup −1} cloud and the CND. We introduce a new interpretation that a part of the CND may be colliding with the 20 km s{sup −1} cloud and the collision may be responsible for the formation of the bridge. Such collisional events could promote mass accretion onto the CND or into the inner ionized cavity, which may be further tested by proper motion studies.

  17. A galactic disk as a two-fluid system: Consequences for the critical stellar velocity dispersion and the formation of condensations in the gas

    International Nuclear Information System (INIS)

    Jog, C.J.; Solomon, P.M.

    1984-01-01

    We examine the consequences of treating a galactic disk as a two-fluid system for the stability of the entire disk and for the stability and form of the gas in the disk. We find that the existence of even a small fraction of the total disk surface density in a cold fluid (that is, the gas) makes it much harder to stabilize the entire two-fluid disk. (C/sub s/,min)/sub 2-f/, the critical stellar velocity dispersion for a two-fluid disk in an increasing function of μ/sub g//μ/sub s/, the gas fraction, and μ/sub t//kappa, where μ/sub g/, μ/sub s/, and μ/sub t/ are the gaseous, stellar, and total disk surface densities and kappa is the epicyclic frequency. In the Galaxy, we find that (C/sub s/,min)/sub 2-f/ as a function of R peaks when μ/sub t//kappa peaks-at galactocentric radii of Rapprox.5-7 kpc; two-fluid instabilities are most likely to occur in this region. This region is coincident with the peak in the molecular cloud distribution in the Galaxy. At the higher effective gas density resulting from the growth of a two-fluid instability, the gas may become unstble, even when originally the gas by itself is stable. The wavelength of a typical (induced) gas instability in the inner galaxy is approx.400 pc, and it contains approx.10 7 M/sub sun/ of interstellar matter; these instabilities may be identified with clusters of giant molecular clouds. We suggest that many of the spiral features seen in gas-rich spiral galaxies may be material arms or arm segments resulting from sheared two-fluid gravitational instabilities. The analysis presented here is applicable to any general disk galaxy consisting of stars and gas

  18. Gravitational instability of polytropic spheres containing region of trapped null geodesics: a possible explanation of central supermassive black holes in galactic halos

    Energy Technology Data Exchange (ETDEWEB)

    Stuchlík, Zdeněk; Schee, Jan; Toshmatov, Bobir; Hladík, Jan; Novotný, Jan, E-mail: zdenek.stuchlik@fpf.slu.cz, E-mail: jan.schee@fpf.slu.cz, E-mail: bobir.toshmatov@fpf.slu.cz, E-mail: jan.hladik@fpf.slu.cz, E-mail: jan.novotny@fpf.slu.cz [Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Faculty of Philosophy and Science, Silesian University in Opava, Bezručovo náměstí 13, CZ-74601 Opava (Czech Republic)

    2017-06-01

    We study behaviour of gravitational waves in the recently introduced general relativistic polytropic spheres containing a region of trapped null geodesics extended around radius of the stable null circular geodesic that can exist for the polytropic index N > 2.138 and the relativistic parameter, giving ratio of the central pressure p {sub c} to the central energy density ρ{sub c}, higher than σ = 0.677. In the trapping zones of such polytropes, the effective potential of the axial gravitational wave perturbations resembles those related to the ultracompact uniform density objects, giving thus similar long-lived axial gravitational modes. These long-lived linear perturbations are related to the stable circular null geodesic and due to additional non-linear phenomena could lead to conversion of the trapping zone to a black hole. We give in the eikonal limit examples of the long-lived gravitational modes, their oscillatory frequencies and slow damping rates, for the trapping zones of the polytropes with N element of (2.138,4). However, in the trapping polytropes the long-lived damped modes exist only for very large values of the multipole number ℓ > 50, while for smaller values of ℓ the numerical calculations indicate existence of fast growing unstable axial gravitational modes. We demonstrate that for polytropes with N ≥ 3.78, the trapping region is by many orders smaller than extension of the polytrope, and the mass contained in the trapping zone is about 10{sup −3} of the total mass of the polytrope. Therefore, the gravitational instability of such trapping zones could serve as a model explaining creation of central supermassive black holes in galactic halos or galaxy clusters.

  19. The interstellar medium and star formation of galactic disks. I. Interstellar medium and giant molecular cloud properties with diffuse far-ultraviolet and cosmic-ray backgrounds

    Science.gov (United States)

    Li, Qi; Tan, Jonathan C.; Christie, Duncan; Bisbas, Thomas G.; Wu, Benjamin

    2018-01-01

    We present a series of adaptive mesh refinement hydrodynamic simulations of flat rotation curve galactic gas disks, with a detailed treatment of the interstellar medium (ISM) physics of the atomic to molecular phase transition under the influence of diffuse far-ultraviolet (FUV) radiation fields and cosmic-ray backgrounds. We explore the effects of different FUV intensities, including a model with a radial gradient designed to mimic the Milky Way. The effects of cosmic rays, including radial gradients in their heating and ionization rates, are also explored. The final simulations in this series achieve 4 pc resolution across the ˜20 kpc global disk diameter, with heating and cooling followed down to temperatures of ˜10 K. The disks are evolved for 300 Myr, which is enough time for the ISM to achieve a quasi-statistical equilibrium. In particular, the mass fraction of molecular gas is stabilized by ˜200 Myr. Additional global ISM properties are analyzed. Giant molecular clouds (GMCs) are also identified and the statistical properties of their populations are examined. GMCs are tracked as the disks evolve. GMC collisions, which may be a means of triggering star cluster formation, are counted and their rates are compared with analytic models. Relatively frequent GMC collision rates are seen in these simulations, and their implications for understanding GMC properties, including the driving of internal turbulence, are discussed.

  20. The interstellar medium and star formation of galactic disks. I. Interstellar medium and giant molecular cloud properties with diffuse far-ultraviolet and cosmic-ray backgrounds

    Science.gov (United States)

    Li, Qi; Tan, Jonathan C.; Christie, Duncan; Bisbas, Thomas G.; Wu, Benjamin

    2018-05-01

    We present a series of adaptive mesh refinement hydrodynamic simulations of flat rotation curve galactic gas disks, with a detailed treatment of the interstellar medium (ISM) physics of the atomic to molecular phase transition under the influence of diffuse far-ultraviolet (FUV) radiation fields and cosmic-ray backgrounds. We explore the effects of different FUV intensities, including a model with a radial gradient designed to mimic the Milky Way. The effects of cosmic rays, including radial gradients in their heating and ionization rates, are also explored. The final simulations in this series achieve 4 pc resolution across the ˜20 kpc global disk diameter, with heating and cooling followed down to temperatures of ˜10 K. The disks are evolved for 300 Myr, which is enough time for the ISM to achieve a quasi-statistical equilibrium. In particular, the mass fraction of molecular gas is stabilized by ˜200 Myr. Additional global ISM properties are analyzed. Giant molecular clouds (GMCs) are also identified and the statistical properties of their populations are examined. GMCs are tracked as the disks evolve. GMC collisions, which may be a means of triggering star cluster formation, are counted and their rates are compared with analytic models. Relatively frequent GMC collision rates are seen in these simulations, and their implications for understanding GMC properties, including the driving of internal turbulence, are discussed.

  1. THE STRUCTURE AND SPECTRAL FEATURES OF A THIN DISK AND EVAPORATION-FED CORONA IN HIGH-LUMINOSITY ACTIVE GALACTIC NUCLEI

    International Nuclear Information System (INIS)

    Liu, J. Y.; Liu, B. F.; Qiao, E. L.; Mineshige, S.

    2012-01-01

    We investigate the accretion process in high-luminosity active galactic nuclei (HLAGNs) in the scenario of the disk evaporation model. Based on this model, the thin disk can extend down to the innermost stable circular orbit (ISCO) at accretion rates higher than 0.02 M-dot Edd while the corona is weak since part of the coronal gas is cooled by strong inverse Compton scattering of the disk photons. This implies that the corona cannot produce as strong X-ray radiation as observed in HLAGNs with large Eddington ratio. In addition to the viscous heating, other heating to the corona is necessary to interpret HLAGN. In this paper, we assume that a part of accretion energy released in the disk is transported into the corona, heating up the electrons, and is thereby radiated away. For the first time, we compute the corona structure with additional heating, fully taking into account the mass supply to the corona, and find that the corona could indeed survive at higher accretion rates and that its radiation power increases. The spectra composed of bremsstrahlung and Compton radiation are also calculated. Our calculations show that the Compton-dominated spectrum becomes harder with the increase of energy fraction (f) liberating in the corona, and the photon index for hard X-ray (2-10 keV) is 2.2 bol /L 2-10keV ) increases with increasing accretion rate for f < 8/35, which is roughly consistent with the observational results.

  2. THE DARK DISK OF THE MILKY WAY

    International Nuclear Information System (INIS)

    Purcell, Chris W.; Bullock, James S.; Kaplinghat, Manoj

    2009-01-01

    Massive satellite accretions onto early galactic disks can lead to the deposition of dark matter in disk-like configurations that co-rotate with the galaxy. This phenomenon has potentially dramatic consequences for dark matter detection experiments. We utilize focused, high-resolution simulations of accretion events onto disks designed to be Galaxy analogues, and compare the resultant disks to the morphological and kinematic properties of the Milky Way's thick disk in order to bracket the range of co-rotating accreted dark matter. In agreement with previous results, we find that the Milky Way's merger history must have been unusually quiescent compared to median Λ cold dark matter expectations and, therefore, its dark disk must be relatively small: the fraction of accreted dark disk material near the Sun is about 20% of the host halo density or smaller and the co-rotating dark matter fraction near the Sun, defined as particles moving with a rotational velocity lag less than 50 km s -1 , is enhanced by about 30% or less compared to a standard halo model. Such a dark disk could contribute dominantly to the low energy (of order keV for a dark matter particle with mass 100 GeV) nuclear recoil event rate of direct detection experiments, but it will not change the likelihood of detection significantly. These dark disks provide testable predictions of weakly interacting massive particle dark matter models and should be considered in detailed comparisons to experimental data. Our findings suggest that the dark disk of the Milky Way may provide a detectable signal for indirect detection experiments, contributing up to about 25% of the dark matter self-annihilation signal in the direction of the center of the Galaxy, lending the signal a noticeably oblate morphology.

  3. Measurement of the abundance of stellar mass compact objects in the galactic halo by detecting micro-lenses in the Large Magellanic Cloud; Mesure de l'abondance des astres sombres de masse stellaire dans le halo galactique par la recherche de phenomenes de microlentilles vers les nuages de magellan

    Energy Technology Data Exchange (ETDEWEB)

    Lasserre, Th

    2000-05-09

    Many experimental and theoretical results lead to the conclusion that at least 80 percent of the mass of our Galaxy is dark. Part of this so-called dark matter could be in the form of stellar mass compact objects, called MACHOS; these could be detected using the gravitational microlensing effect. The first generation experiments EROS1 and MACHO have strongly constrained the galactic abundance of objects lighter than 0.01 solar mass to less than 10 percent of the total mass. In parallel, the observation by the MACHO group of massive candidates (half the Sun's mass), numerous enough to constitute 50 percent of galactic dark matter, was a further motivation for the EROS group to extend this search to stellar mass objects in a second phase, EROS2. The present work deals with the analysis of 25 million stellar light curves in the Large Magellanic Cloud, observed for three years in order to extract the rare microlensing candidates and to measure the galactic halo mass fraction in the form of compact objects. After recalling the motivations of this search and the theoretical context, I describe the EROS2 experiment. The observational strategy and the photometric reduction procedures needed to deal with the 1.2 To of data are then presented. A new method to detect micro-lenses is detailed, as well as a discussion of background light curves, poorly known. We do not find enough microlensing candidates to explain the galactic rotation curve; this confirms, and improve on previous EROS1 and EROS2 results. Combining all results from EROS allows to exclude that MACHOS with a mass between 10 e-7 and 10 solar mass are important constituents of the galactic halo. This statement agrees with recent results from the MACHO group, although our interpretations differ, namely on the topics of the location of the lenses, and of a possible contamination of the microlensing ample by background phenomena. (author)

  4. Evidence for halo kinematics among cool carbon-rich dwarfs

    Science.gov (United States)

    Farihi, J.; Arendt, A. R.; Machado, H. S.; Whitehouse, L. J.

    2018-04-01

    This paper reports preliminary yet compelling kinematical inferences for N ≳ 600 carbon-rich dwarf stars that demonstrate around 30% to 60% are members of the Galactic halo. The study uses a spectroscopically and non-kinematically selected sample of stars from the SDSS, and cross-correlates these data with three proper motion catalogs based on Gaia DR1 astrometry to generate estimates of their 3-D space velocities. The fraction of stars with halo-like kinematics is roughly 30% for distances based on a limited number of parallax measurements, with the remainder dominated by the thick disk, but close to 60% of the sample lie below an old, metal-poor disk isochrone in reduced proper motion. An ancient population is consistent with an extrinsic origin for C/O >1 in cool dwarfs, where a fixed mass of carbon pollution more readily surmounts lower oxygen abundances, and with a lack of detectable ultraviolet-blue flux from younger white dwarf companions. For an initial stellar mass function that favors low-mass stars as in the Galactic disk, the dC stars are likely to be the dominant source of carbon-enhanced, metal-poor stars in the Galaxy.

  5. Ordinary Dark Matter versus Mysterious Dark Matter in Galactic Rotation

    Science.gov (United States)

    Gallo, C. F.; Feng, James

    2008-04-01

    To theoretically describe the measured rotational velocity curves of spiral galaxies, there are two different approaches and conclusions. (1) ORDINARY DARK MATTER. We assume Newtonian gravity/dynamics and successfully find (via computer) mass distributions in bulge/disk configurations that duplicate the measured rotational velocities. There is ordinary dark matter within the galactic disk towards the cooler periphery which has lower emissivity/opacity. There are no mysteries in this scenario based on verified physics. (2) MYSTERIOUS DARK MATTER. Others INaccurately assume the galactic mass distributions follow the measured light distributions, and then the measured rotational velocity curves are NOT duplicated. To alleviate this discrepancy, speculations are invoked re ``Massive Peripheral Spherical Halos of Mysterious Dark Matter.'' But NO matter has been detected in this UNtenable Halo configuration. Many UNverified ``Mysteries'' are invoked as necessary and convenient. CONCLUSION. The first approach utilizing Newtonian gravity/dynamics and searching for the ordinary mass distributions within the galactic disk simulates reality and agrees with data.

  6. Hot Gas Halos in Galaxies

    Science.gov (United States)

    Mulchaey, John

    Most galaxy formation models predict that massive low-redshift disk galaxies are embedded in extended hot halos of externally accreted gas. Such gas appears necessary to maintain ongoing star formation in isolated spirals like the Milky Way. To explain the large population of red galaxies in rich groups and clusters, most galaxy evolution models assume that these hot gas halos are stripped completely when a galaxy enters a denser environment. This simple model has been remarkably successful at reproducing many observed properties of galaxies. Although theoretical arguments suggest hot gas halos are an important component in galaxies, we know very little about this gas from an observational standpoint. In fact, previous observations have failed to detect soft X-ray emission from such halos in disk galaxies. Furthermore, the assumption that hot gas halos are stripped completely when a galaxy enters a group or cluster has not been verified. We propose to combine proprietary and archival XMM-Newton observations of galaxies in the field, groups and clusters to study how hot gas halos are impacted by environment. Our proposed program has three components: 1) The deepest search to date for a hot gas halo in a quiescent spiral galaxy. A detection will confirm a basic tenet of disk galaxy formation models, whereas a non-detection will seriously challenge these models and impose new constraints on the growth mode and feedback history of disk galaxies. 2) A detailed study of the hot gas halos properties of field early-type galaxies. As environmental processes such as stripping are not expected to be important in the field, a study of hot gas halos in this environment will allow us to better understand how feedback and other internal processes impact hot gas halos. 3) A study of hot gas halos in the outskirts of groups and clusters. By comparing observations with our suite of simulations we can begin to understand what role the stripping of hot gas halos plays in galaxy

  7. Chemo-orbital evidence from SDSS/SEGUE G dwarf stars for a mixed origin of the Galactic thick disk

    Directory of Open Access Journals (Sweden)

    van de Ven G.

    2012-02-01

    Full Text Available About 13,000 G dwarf within 7disk. Combining [α/Fe] and [Fe/H] measurements with six-dimensional position-velocity parameters, we find that the sample is composed of two distinct stellar populations. The metal-rich population encompasses the thin disk with α-deficient stars and smoothly extends into a thick disk with α-enhanced stars, consistent with an in-situ formation through radial migration. On the other hand, the metal-poor population with enhanced α-abundance, higher scale height, and disperse kinematical properties, is difficult to explain with radial migration but might have originated from gas-rich mergers. The thick disk of the Milky Way seems to have a mixed origin.

  8. Two distinct halo populations in the solar neighborhood II. Evidence from stellar abundances of Mn, Cu, Zn, Y, and Ba

    DEFF Research Database (Denmark)

    Nissen, Poul Erik; Schuster, William J.

    2011-01-01

    are measured from high resolution VLT/UVES and NOT/FIES spectra and used to derive abundance ratios from an LTE analysis based on MARCS model atmospheres. The analysis is made relative to two thick-disk stars, HD22879 and HD76932, such that very precise differential values are obtained. Results. Systematic......Context. Current models of galaxy formation predict that the Galactic halo was assembled hierarchically. By measuring abundance ratios in stars it may be possible to identify substructures in the halo resulting from this process. Aims. A previous study of 94 dwarf stars with −1.6

  9. Impact of Supernova and Cosmic-Ray Driving on the Surface Brightness of the Galactic Halo in Soft X-Rays

    Czech Academy of Sciences Publication Activity Database

    Thomas, P.; Girichidis, P.; Gatto, A.; Naab, T.; Walch, S.; Wünsch, Richard; Glover, S.C.O.; Clark, P.C.; Klessen, R.S.; Baczynski, C.

    2015-01-01

    Roč. 813, č. 2 (2015), L27/1-L27/7 ISSN 2041-8205 R&D Projects: GA ČR GAP209/12/1795 Institutional support: RVO:67985815 Keywords : galaxy halo * ISM kinematics and dynamics * stars formation Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.487, year: 2015

  10. ELEMENTAL ABUNDANCE RATIOS IN STARS OF THE OUTER GALACTIC DISK. IV. A NEW SAMPLE OF OPEN CLUSTERS

    International Nuclear Information System (INIS)

    Yong, David; Carney, Bruce W.; Friel, Eileen D.

    2012-01-01

    We present radial velocities and chemical abundances for nine stars in the old, distant open clusters Be18, Be21, Be22, Be32, and PWM4. For Be18 and PWM4, these are the first chemical abundance measurements. Combining our data with literature results produces a compilation of some 68 chemical abundance measurements in 49 unique clusters. For this combined sample, we study the chemical abundances of open clusters as a function of distance, age, and metallicity. We confirm that the metallicity gradient in the outer disk is flatter than the gradient in the vicinity of the solar neighborhood. We also confirm that the open clusters in the outer disk are metal-poor with enhancements in the ratios [α/Fe] and perhaps [Eu/Fe]. All elements show negligible or small trends between [X/Fe] and distance ( –1 ), but for some elements, there is a hint that the local (R GC GC > 13 kpc) samples may have different trends with distance. There is no evidence for significant abundance trends versus age ( –1 ). We measure the linear relation between [X/Fe] and metallicity, [Fe/H], and find that the scatter about the mean trend is comparable to the measurement uncertainties. Comparison with solar neighborhood field giants shows that the open clusters share similar abundance ratios [X/Fe] at a given metallicity. While the flattening of the metallicity gradient and enhanced [α/Fe] ratios in the outer disk suggest a chemical enrichment history different from that of the solar neighborhood, we echo the sentiments expressed by Friel et al. that definitive conclusions await homogeneous analyses of larger samples of stars in larger numbers of clusters. Arguably, our understanding of the evolution of the outer disk from open clusters is currently limited by systematic abundance differences between various studies.

  11. Galactic models

    International Nuclear Information System (INIS)

    Buchler, J.R.; Gottesman, S.T.; Hunter, J.H. Jr.

    1990-01-01

    Various papers on galactic models are presented. Individual topics addressed include: observations relating to galactic mass distributions; the structure of the Galaxy; mass distribution in spiral galaxies; rotation curves of spiral galaxies in clusters; grand design, multiple arm, and flocculent spiral galaxies; observations of barred spirals; ringed galaxies; elliptical galaxies; the modal approach to models of galaxies; self-consistent models of spiral galaxies; dynamical models of spiral galaxies; N-body models. Also discussed are: two-component models of galaxies; simulations of cloudy, gaseous galactic disks; numerical experiments on the stability of hot stellar systems; instabilities of slowly rotating galaxies; spiral structure as a recurrent instability; model gas flows in selected barred spiral galaxies; bar shapes and orbital stochasticity; three-dimensional models; polar ring galaxies; dynamical models of polar rings

  12. THE DISTRIBUTION OF THE ELEMENTS IN THE GALACTIC DISK. III. A RECONSIDERATION OF CEPHEIDS FROM l = 300 TO 2500

    International Nuclear Information System (INIS)

    Luck, R. Earle; Lambert, David L.

    2011-01-01

    This paper reports on the spectroscopic investigation of 238 Cepheids in the northern sky. Of these stars, about 150 are new to the study of the galactic abundance gradient. These new Cepheids bring the total number of Cepheids involved in abundance distribution studies to over 400. In this work, we also consider systematics between various studies and also those which result from the choice of models. We find that systematic variations exist at the 0.06 dex level both between studies and model atmospheres. In order to control the systematic effects our final gradients depend only on abundances derived herein. A simple linear fit to the Cepheid data from 398 stars yields a gradient d[Fe/H]/dR G = -0.062 ± 0.002 dex kpc -1 which is in good agreement with previously determined values. We have also re-examined the region of the 'metallicity island' of Luck et al. With the doubling of the sample in that region and our internally consistent abundances, we find that there is scant evidence for a distinct island. We also find in our sample the first reported Cepheid (V1033 Cyg) with a pronounced Li feature. The Li abundance is consistent with the star being on its redward pass toward the first giant branch.

  13. A NEW NETWORK FOR HIGHER-TEMPERATURE GAS-PHASE CHEMISTRY. I. A PRELIMINARY STUDY OF ACCRETION DISKS IN ACTIVE GALACTIC NUCLEI

    International Nuclear Information System (INIS)

    Harada, Nanase; Herbst, Eric; Wakelam, Valentine

    2010-01-01

    We present a new interstellar chemical gas-phase reaction network for time-dependent kinetics that can be used for modeling high-temperature sources up to ∼800 K. This network contains an extended set of reactions based on the Ohio State University (OSU) gas-phase chemical network. The additional reactions include processes with significant activation energies, reverse reactions, proton exchange reactions, charge exchange reactions, and collisional dissociation. Rate coefficients already in the OSU network are modified for H 2 formation on grains, ion-neutral dipole reactions, and some radiative association reactions. The abundance of H 2 O is enhanced at high temperature by hydrogenation of atomic O. Much of the elemental oxygen is in the form of water at T ≥ 300 K, leading to effective carbon-rich conditions, which can efficiently produce carbon-chain species such as C 2 H 2 . At higher temperatures, HCN and NH 3 are also produced much more efficiently. We have applied the extended network to a simplified model of the accretion disk of an active galactic nucleus.

  14. Review of the fermionic dark matter model applied to galactic structures

    Science.gov (United States)

    Krut, A.; Argüelles, C. R.; Rueda, J.; Ruffini, R.

    2015-12-01

    Baryonic components (e.g. bulge and disk) of galactic structures are assumed to be embedded in an isothermal dark matter halo of fermionic nature. Besides the Pauli principle only gravitational interaction is considered. Using the underlying Fermi-Dirac phase space distribution, typical of collisionless relaxation processes, it yields an one-parameter family of scaled solutions which reproduces the observed flat rotation curves in galaxies, and additionally predicts a degenerate core through their centers. In order to provide the right DM halo properties of galaxies a set of four parameters (particle mass, degeneracy parameter at the galactic center, central density and the velocity dispersion) is necessary. The more general density profile shows three regimes depending on radius: an almost uniform very dense quantum core followed by a steep fall, a plateau in the diluted regime and a Boltzmannian tail representing the halo. In contrast to purely Boltzmannian configurations the fermionic DM model containing a quantum core allows to determine the particle mass. We show that the quantum core can be well approximated by a polytrope of index n = 3/2, while the halo can be perfectly described by an isothermal sphere with a halo scale length radius equal to approximately 3/4 of the King-radius.

  15. Review of the fermionic dark matter model applied to galactic structures

    Energy Technology Data Exchange (ETDEWEB)

    Krut, A. [Dipartimento di Fisica, Sapienza Università di Roma, P.le Aldo Moro 5, I–00185 Rome (Italy); Argüelles, C. R. [ICRANet, P.zza della Repubblica 10, I-65122 Pescara (Italy); Rueda, J.; Ruffini, R. [Dipartimento di Fisica, Sapienza Università di Roma, P.le Aldo Moro 5, I–00185 Rome (Italy); ICRANet, P.zza della Repubblica 10, I-65122 Pescara (Italy)

    2015-12-17

    Baryonic components (e.g. bulge and disk) of galactic structures are assumed to be embedded in an isothermal dark matter halo of fermionic nature. Besides the Pauli principle only gravitational interaction is considered. Using the underlying Fermi-Dirac phase space distribution, typical of collisionless relaxation processes, it yields an one-parameter family of scaled solutions which reproduces the observed flat rotation curves in galaxies, and additionally predicts a degenerate core through their centers. In order to provide the right DM halo properties of galaxies a set of four parameters (particle mass, degeneracy parameter at the galactic center, central density and the velocity dispersion) is necessary. The more general density profile shows three regimes depending on radius: an almost uniform very dense quantum core followed by a steep fall, a plateau in the diluted regime and a Boltzmannian tail representing the halo. In contrast to purely Boltzmannian configurations the fermionic DM model containing a quantum core allows to determine the particle mass. We show that the quantum core can be well approximated by a polytrope of index n = 3/2, while the halo can be perfectly described by an isothermal sphere with a halo scale length radius equal to approximately 3/4 of the King-radius.

  16. AN INITIAL MASS FUNCTION FOR INDIVIDUAL STARS IN GALACTIC DISKS. I. CONSTRAINING THE SHAPE OF THE INITIAL MASS FUNCTION

    International Nuclear Information System (INIS)

    Parravano, Antonio; McKee, Christopher F.; Hollenbach, David J.

    2011-01-01

    We derive a semi-empirical galactic initial mass function (IMF) from observational constraints. We assume that the IMF, ψ(m), is a smooth function of the stellar mass m. The mass dependence of the proposed IMF is determined by five parameters: the low-mass slope γ, the high-mass slope -Γ (taken to be -1.35), the characteristic mass m ch (∼ the peak mass of the IMF), and the lower and upper limits on the mass, m l and m u (taken to be 0.004 and 120 M sun , respectively): ψ(m)dln m ∝ m -Γ {1 - exp [- (m/m ch ) γ+Γ ]}dln m. The values of γ and m ch are derived from two integral constraints: (1) the ratio of the number density of stars in the range m = 0.1-0.6 M sun to that in the range m = 0.6-0.8 M sun as inferred from the mass distribution of field stars in the local neighborhood and (2) the ratio of the number of stars in the range m = 0.08-1 M sun to the number of brown dwarfs in the range m = 0.03-0.08 M sun in young clusters. The IMF satisfying the above constraints is characterized by the parameters γ = 0.51 and m ch = 0.35 M sun (which corresponds to a peak mass of 0.27 M sun ). This IMF agrees quite well with the Chabrier IMF for the entire mass range over which we have compared with data, but predicts significantly more stars with masses sun ; we also compare with other IMFs in current use and give a number of important parameters implied by the IMFs.

  17. RED FRACTION AMONG SATELLITE GALAXIES WITH DISK-LIKE LIGHT PROFILES: EVIDENCE FOR INFLOW IN THE H I DISK

    International Nuclear Information System (INIS)

    Hester, J. A.

    2010-01-01

    The relationships between color, characterized with respect to the g - r red sequence; stellar structure, as determined using the i-band Sersic index; and group membership are explored using the Sloan Digital Sky Survey (SDSS). The new results place novel constraints on theories of galaxy evolution, despite the strong correlation between color and stellar structure. Observed correlations are of three independent types-those based on stellar structure, on the color of disk-like galaxies, and on the color of elliptical galaxies. Of particular note, the fraction of galaxies residing on the red sequence measured among galaxies with disk-like light profiles is enhanced for satellite galaxies compared to central galaxies. This fraction increases with group mass. When these new results are considered, theoretical treatments of galaxy evolution that adopt a gas accretion model centered on the hot galactic halo cannot consistently account for all observations of disk galaxies. The hypothesis is advanced that inflow within the extended H I disk prolongs star formation in satellite galaxies. When combined with partial ram pressure stripping (RPS) of this disk, this new scenario is consistent with the observations. This is demonstrated by applying an analytical model of RPS of the extended H I disk to the SDSS groups. These results motivate incorporating more complex modes of gas accretion into models of galaxy evolution, including cold mode accretion, an improved treatment of gas dynamics within disks, and disk stripping.

  18. Non-local thermodynamic equilibrium stellar spectroscopy with 1D and 3D models - II. Chemical properties of the Galactic metal-poor disk and the halo

    DEFF Research Database (Denmark)

    Bergemann, Maria; Collet, Remo; Schönrich, Ralph

    2016-01-01

    We have analysed high-resolution spectra of 328 stars and derived Mg abundances using non-local thermodynamic equilibrium (NLTE) spectral line formation calculations and plane-parallel model stellar atmospheres derived from the mean stratification of 3D hydrodynamical surface convection simulations...

  19. Are dSph galaxies Galactic building blocks?

    Directory of Open Access Journals (Sweden)

    Gilmore G.

    2012-02-01

    Full Text Available Dwarf spheroidal galaxies (dSph are frequently assumed to represent surviving examples of a vast now destroyed population of small systems in which many of the stars now forming the Milky Way were formed. Ongoing accretion and considerable sub-structure in the outer Galactic halo is direct evidence that there is some role for stars formed in small galaxies in populating the (outer galaxy. The evidence from stellar populations is however contradictory to this. dSph stellar populations are unlike any stars found in significant numbers in the Milky Way. The dSph are indeed small galaxies, formed over long times with low rates of star formation. Most of the stars in the Milky Way halo however seem to have formed quickly, at higher star formation rate, in gas mixed efficiently on kpc scales. The overwhelming majority of Milky Way stars, those in the Galactic thick disk and thin disk, seem to have nothing at all to do with dwarf galaxy origins.

  20. Sagittarius A* as an origin of the Galactic PeV cosmic rays?

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Yutaka [Department of Earth and Space Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Murase, Kohta; Kimura, Shigeo S., E-mail: fujita@vega.ess.sci.osaka-u.ac.jp, E-mail: murase@psu.edu, E-mail: szk323@psu.edu [Center for Particle and Gravitational Astrophysics, Department of Physics, Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States)

    2017-04-01

    Supernova remnants (SNRs) have commonly been considered as a source of the observed PeV cosmic rays (CRs) or a Galactic PeV particle accelerator ('Pevatron'). In this work, we study Sagittarius A* (Sgr A*), which is the low-luminosity active galactic nucleus of the Milky Way Galaxy, as another possible canditate of the Pevatron, because it sometimes became very active in the past. We assume that a large number of PeV CRs were injected by Sgr A* at the outburst about 10{sup 7} yr ago when the Fermi bubbles were created. We constrain the diffusion coefficient for the CRs in the Galactic halo on the condition that the CRs have arrived on the Earth by now, while a fairly large fraction of them have escaped from the halo. Based on a diffusion-halo model, we solve a diffusion equation for the CRs and compare the results with the CR spectrum on the Earth. The observed small anisotropy of the arrival directions of CRs may be explained if the diffusion coefficient in the Galactic disk is smaller than that in the halo. Our model predicts that a boron-to-carbon ratio should be energy-independent around the knee, where the CRs from Sgr A* become dominant. It is unlikely that the spectrum of the CRs accelerated at the outburst is represented by a power-law similar to the one for those responsible for the gamma-ray emission from the central molecular zone (CMZ) around the Galactic center.

  1. Metallicity and Kinematics of M31's Outer Stellar Halo from a Keck Spectroscopic Survey

    Science.gov (United States)

    Reitzel, David B.; Guhathakurta, Puragra

    2002-07-01

    We present first results from a spectroscopic survey designed to examine the metallicity and kinematics of individual red giant branch stars in the outer halo of the Andromeda spiral galaxy (M31). This study is based on multislit spectroscopy with the Keck II 10 m telescope and Low Resolution Imaging Spectrograph of the Ca II near-infrared triplet in 99 M31 halo candidates in a field at R=19 kpc on the southeast minor axis with brightnesses from 20intermediate-velocity stars (-160~2 dex range over which the abundance measurement methods are calibrated. The mean/median metallicity of the M31 halo is about =-1.9 to -1.1 dex (depending on the details of metallicity calibration and sample selection) and possibly higher: the high-metallicity end of the distribution is poorly constrained by our data since the selection function for the secure M31 sample excludes over 80% of the giants in solar/supersolar metallicity range. Possible reasons are explored for the apparent discrepancy between the mean [Fe/H] found in our spectroscopic survey (corrected for metallicity selection bias) and the slightly higher mean values found in earlier photometric studies. Field halo red giants in M31 appear to be somewhat more metal-rich on average than their Milky Way counterparts. The M31 halo [Fe/H] distribution is comparable to that of M31 globular clusters, Galactic globular clusters, and Local Group dwarf satellite galaxies. The data in this 19 kpc outer halo field are broadly consistent with a scenario in which the halo is built from the accretion of small stellar subsystems. There are four stars in the secure M31 sample that have particularly strong Ca II lines, indicating solar metallicity, at a common velocity of ~-340 km s-1 close to the galaxy's systemic velocity, similar to what might be expected for M31 disk giants on the minor axis. An extrapolation of the inner disk brightness profile, however, falls far short of accounting for these four stars-the disk would instead have to

  2. Oscillations of disks

    CERN Document Server

    Kato, Shoji

    2016-01-01

    This book presents the current state of research on disk oscillation theory, focusing on relativistic disks and tidally deformed disks. Since the launch of the Rossi X-ray Timing Explorer (RXTE) in 1996, many high-frequency quasiperiodic oscillations (HFQPOs) have been observed in X-ray binaries. Subsequently, similar quasi-periodic oscillations have been found in such relativistic objects as microquasars, ultra-luminous X-ray sources, and galactic nuclei. One of the most promising explanations of their origin is based on oscillations in relativistic disks, and a new field called discoseismology is currently developing. After reviewing observational aspects, the book presents the basic characteristics of disk oscillations, especially focusing on those in relativistic disks. Relativistic disks are essentially different from Newtonian disks in terms of several basic characteristics of their disk oscillations, including the radial distributions of epicyclic frequencies. In order to understand the basic processes...

  3. On the physical origin of galactic conformity

    Science.gov (United States)

    Hearin, Andrew P.; Behroozi, Peter S.; van den Bosch, Frank C.

    2016-09-01

    Correlations between the star formation rates (SFRs) of nearby galaxies (so-called galactic conformity) have been observed for projected separations up to 4 Mpc, an effect not predicted by current semi-analytic models. We investigate correlations between the mass accretion rates (dMvir/dt) of nearby haloes as a potential physical origin for this effect. We find that pairs of host haloes `know about' each others' assembly histories even when their present-day separation is greater than thirty times the virial radius of either halo. These distances are far too large for direct interaction between the haloes to explain the correlation in their dMvir/dt. Instead, halo pairs at these distances reside in the same large-scale tidal environment, which regulates dMvir/dt for both haloes. Larger haloes are less affected by external forces, which naturally gives rise to a mass dependence of the halo conformity signal. SDSS measurements of galactic conformity exhibit a qualitatively similar dependence on stellar mass, including how the signal varies with distance. Based on the expectation that halo accretion and galaxy SFR are correlated, we predict the scale-, mass- and redshift-dependence of large-scale galactic conformity, finding that the signal should drop to undetectable levels by z ≳ 1. These predictions are testable with current surveys to z ˜ 1; confirmation would establish a strong correlation between dark matter halo accretion rate and central galaxy SFR.

  4. Remarks on the spherical scalar field halo in galaxies

    International Nuclear Information System (INIS)

    Nandi, Kamal K.; Valitov, Ildar; Migranov, Nail G.

    2009-01-01

    Matos, Guzman, and Nunez proposed a model for the galactic halo within the framework of scalar field theory. We argue that an analysis involving the full metric can reveal the true physical nature of the halo only when a certain condition is maintained. We fix that condition and also calculate its impact on observable parameters of the model.

  5. Figuring Out Gas and Galaxies in Enzo (FOGGIE): Simulating effects of feedback on galactic outflows

    Science.gov (United States)

    Morris, Melissa Elizabeth; Corlies, Lauren; Peeples, Molly; Tumlinson, Jason; O'Shea, Brian; Smith, Britton

    2018-01-01

    The circumgalactic medium (CGM) is the region beyond the galactic disk in which gas is accreted through pristine inflows from the intergalactic medium and expelled from the galaxy by stellar feedback in large outflows that can then be recycled back onto the disk. These gas cycles connect the galactic disk with its cosmic environment, making the CGM a vital component of galaxy evolution. However, the CGM is primarily observed in absorption, which can be difficult to interpret. In this study, we use high resolution cosmological hydrodynamic simulations of a Milky Way mass halo evolved with the code Enzo to aid the interpretation of these observations. In our simulations, we vary feedback strength and observe the effect it has on galactic outflows and the evolution of the galaxy’s CGM. We compare the star formation rate of the galaxy with the velocity flux and mass outflow rate as a function of height above the plane of the galaxy in order to measure the strength of the outflows and how far they extend outside of the galaxy.This work was supported by The Space Astronomy Summer Program at STScI and NSF grant AST-1517908.

  6. The Age of the Inner Halo Globular Cluster NGC 6652

    Science.gov (United States)

    Chaboyer, Brian; Sarajedini, Ata; Armandroff, Taft E.

    2000-01-01

    Hubble Space Telescope (HST) (V,I) photometry has been obtained for the inner halo globular cluster NGC 6652. The photometry reaches approximately 4 mag below the turn-off and includes a well populated horizontal branch (HB). This cluster is located close to the Galactic center at RGC approximately equal to 2.0 kpc with a reddening of E(V-I) = 0.15 +/- 0.02 and has a metallicity of [Fe/H] approximately equal to -0.85. Based upon DELTA V (sup SGB) (sub HB), NGC 6652 is 11.7 plus or minus 1.6 Gyr old. Using A HB precise differential ages for 47 Tuc (a thick disk globular), M107 and NGC 1851 (both halo clusters) were obtained. NGC 6652 appears to be the same age as 47 Tuc and NGC 1851 (within +/- 1.2 Gyr), while there is a slight suggestion that M107 is older than NGC 6652 by 2.3 +/- 1.5 Gyr. As this is a less than 2 sigma result, this issue needs to be investigated further before a definitive statement regarding the relative age of M107 and NGC 6652 may be made.

  7. Chemical evolution of the solar neighborhood. II. The age-metallicity relation and the history of star formation in the galactic disk

    International Nuclear Information System (INIS)

    Twarog, B.A.

    1980-01-01

    The age-metallicty relation for the disk in the neighborhood of the Sun is derived from four-color and Hβ photometry of a large sample of southern F dwarfs, analyzed in combination with theoretical isochrones. It is found that the mean metallicity of the disk increased by about a factor of 5 between 12 and 5 billion years ago and has increased only slightly since then; this conclusion is independent of the helium abundance assumed for the models

  8. The Disk Mass Project

    NARCIS (Netherlands)

    Verheijen, Marc A. W.; Bershady, Matthew A.; Swaters, Rob A.; Andersen, David R.; Westfall, Kyle B.; de Jong, Roelof Sybe

    2007-01-01

    Little is known about the content and distribution of dark matter in spiral galaxies. To break the degeneracy in galaxy rotation curve decompositions, which allows a wide range of dark matter halo density profiles, an independent measure of the mass surface density of stellar disks is needed. Here,

  9. Suzaku Observations of 4U 1957+11: Potentially the Most Rapidly Spinning Black Hole in (the Halo of) the Galaxy

    Science.gov (United States)

    Nowak, Michael A.; Wilms, Joern; Pottschmidt, Katja; Schulz, Norbert; Maitra, Dipankar; Miller, Jon

    2011-01-01

    We present three Suzaku observations of the black hole candidate 4U 1957+11 (V 1408 Aql) - a source that exhibits some of. the simplest and cleanest examples of soft, disk-dominated spectra. 4U 1957+ II also presents among the. highest peak temperatures found from disk-dominated spectra. Such temperatures may be associated with rapid black hole spin. The 4U 1957+11 spectra also require a very low normalization, which can be explained by a combination of small inner disk radius and a large distance (> 10 kpc) which places 4U 1957+ 11 well into the Galactic halo. We perform Joint fits to the Suzaku spectra with both relativistic and Comptonized disk models. Assuming a low mass black hole and the nearest distance (3 Stellar Mass, 10 kpc), the dimensionless spin parameter a* = Jc/GM(sup 2)> or approx. 0.9. Higher masses and farther distances yield a* approx. = 1. Similar conclusions are reached with Comptonization models; they imply a combination of small inner disk radii (or, equivalently, rapid spin) and large distance. Low spin cannot be recovered unless 4U 1957+11 is a low mass black hole that is at the unusually large distance of > or approx.40 kpc. We speculate whether the suggested maximal spin is related to how the system came to reside in the halo.

  10. Research Progresses of Halo Streams in the Solar Neighborhood

    Science.gov (United States)

    Xi-long, Liang; Jing-kun, Zhao; Yu-qin, Chen; Gang, Zhao

    2018-01-01

    The stellar streams originated from the Galactic halo may be detected when they pass by the solar neighborhood, and they still keep some information at their birth times. Thus, the investigation of halo streams in the solar neighborhood is very important for understanding the formation and evolution of our Galaxy. In this paper, the researches of halo streams in the solar neighborhood are briefly reviewed. We have introduced the methods how to detect the halo streams and identify their member stars, summarized the progresses in the observation of member stars of halo streams and in the study of their origins, introduced in detail how to analyze the origins of halo streams in the solar neighborhood by means of numerical simulation and chemical abundance, and finally discussed the prospects of the LAMOST and GAIA in the research of halo streams in the solar neighborhood.

  11. Millisecond Pulsars and the Galactic Center Excess

    Science.gov (United States)

    Gonthier, Peter L.; Koh, Yew-Meng; Kust Harding, Alice; Ferrara, Elizabeth C.

    2017-08-01

    Various groups including the Fermi team have confirmed the spectrum of the gamma- ray excess in the Galactic Center (GCE). While some authors interpret the GCE as evidence for the annihilation of dark matter (DM), others have pointed out that the GCE spectrum is nearly identical to the average spectrum of Fermi millisecond pul- sars (MSP). Assuming the Galactic Center (GC) is populated by a yet unobserved source of MSPs that has similar properties to that of MSPs in the Galactic Disk (GD), we present results of a population synthesis of MSPs from the GC. We establish parameters of various models implemented in the simulation code by matching characteristics of 54 detected Fermi MSPs in the first point source catalog and 92 detected radio MSPs in a select group of thirteen radio surveys and targeting a birth rate of 45 MSPs per mega-year. As a check of our simulation, we find excellent agreement with the estimated numbers of MSPs in eight globular clusters. In order to reproduce the gamma-ray spectrum of the GCE, we need to populate the GC with 10,000 MSPs having a Navarro-Frenk-White distribution suggested by the halo density of DM. It may be possible for Fermi to detect some of these MSPs in the near future; the simulation also predicts that many GC MSPs have radio fluxes S1400above 10 �μJy observable by future pointed radio observations. We express our gratitude for the generous support of the National Science Foundation (RUI: AST-1009731), Fermi Guest Investigator Program and the NASA Astrophysics Theory and Fundamental Program (NNX09AQ71G).

  12. Constraining dark matter halo profiles and galaxy formation models using spiral arm morphology. II. Dark and stellar mass concentrations for 13 nearby face-on galaxies

    International Nuclear Information System (INIS)

    Seigar, Marc S.; Davis, Benjamin L.; Berrier, Joel; Kennefick, Daniel

    2014-01-01

    We investigate the use of spiral arm pitch angles as a probe of disk galaxy mass profiles. We confirm our previous result that spiral arm pitch angles (P) are well correlated with the rate of shear (S) in disk galaxy rotation curves. We use this correlation to argue that imaging data alone can provide a powerful probe of galactic mass distributions out to large look-back times. We then use a sample of 13 galaxies, with Spitzer 3.6 μm imaging data and observed Hα rotation curves, to demonstrate how an inferred shear rate coupled with a bulge-disk decomposition model and a Tully-Fisher-derived velocity normalization can be used to place constraints on a galaxy's baryon fraction and dark matter halo profile. Finally, we show that there appears to be a trend (albeit a weak correlation) between spiral arm pitch angle and halo concentration. We discuss implications for the suggested link between supermassive black hole (SMBH) mass and dark halo concentration, using pitch angle as a proxy for SMBH mass.

  13. Tully-Fisher relation, galactic rotation curves and dissipative mirror dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Foot, R., E-mail: rfoot@unimelb.edu.au [ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, University of Melbourne, Victoria 3010 Australia (Australia)

    2014-12-01

    If dark matter is dissipative then the distribution of dark matter within galactic halos can be governed by dissipation, heating and hydrostatic equilibrium. Previous work has shown that a specific model, in the framework of mirror dark matter, can explain several empirical galactic scaling relations. It is shown here that this dynamical halo model implies a quasi-isothermal dark matter density, ρ(r) ≅ ρ{sub 0}r{sub 0}{sup 2}/(r{sup 2}+r{sub 0}{sup 2}), where the core radius, r{sub 0}, scales with disk scale length, r{sub D}, via r{sub 0}/kpc ≈ 1.4(r{sub D}/kpc). Additionally, the product ρ{sub 0}r{sub 0} is roughly constant, i.e. independent of galaxy size (the constant is set by the parameters of the model). The derived dark matter density profile implies that the galactic rotation velocity satisfies the Tully-Fisher relation, L{sub B}∝v{sup 3}{sub max}, where v{sub max} is the maximal rotational velocity. Examples of rotation curves resulting from this dynamics are given.

  14. Results from the Splash Survey: Spectroscopic and Photometric Landscape of Andromeda's Stellar Halo

    Science.gov (United States)

    Guhathakurta, Puragra; SPLASH Collaboration

    2009-01-01

    Detailed studies of nearby galaxies provide vital clues about their formation and evolutionary history. This "fossil record" approach is complementary to direct look-back studies of distant galaxies. Our Galaxy and the Andromeda spiral galaxy (M31) have long been cornerstones in the former category. M31 provides an external perspective on a large galaxy similar to our own and yet is close enough to allow detailed studies of individual stars. In my talk, I will present results from the SPLASH collaboration: Spectroscopic and Photometric Landscape of Andromeda's Stellar Halo. The collective data set from this large international team includes thousands of Keck/DEIMOS spectra of individual red giant branch stars, ground-based deep wide-field imaging and photometry with KPNO/Mosaic, CFHT/MegaCam, and Subaru/Suprime-Cam, and ultra-deep pencil-beam probes with HST/ACS imaging reaching below the main-sequence turnoff. Our recent discovery of an extended stellar halo in M31 (R > 150 kpc) shows that most previous studies of its spheroid have been sampling its inner bulge-like spheroidal component, not its halo. In my talk I will touch upon several related topics related to the general theme of hierarchical galaxy formation including: M31's global structure and subcomponents (halo, bulge/central bar, and disk), stellar dynamics, statistical properties of substructure, detailed chemical abundance measurements, detailed forensic reconstruction of recent collision events, dwarf satellites as tracers and building blocks of larger galaxies, and empirical constraints on the tangential motion of the M31 system. I will also discuss recent results on the chemical abundance of the lowest luminosity Galactic satellites (recently discovered by SDSS) and implications for the formation of the Milky Way halo. This research was supported by funds from the National Science Foundation, NASA, and the Institute for Geophysics and Planetary Physics.

  15. TESTING GALAXY FORMATION MODELS WITH THE GHOSTS SURVEY: THE COLOR PROFILE OF M81's STELLAR HALO

    International Nuclear Information System (INIS)

    Monachesi, Antonela; Bell, Eric F.; Bailin, Jeremy; Radburn-Smith, David J.; Dalcanton, Julianne J.; Vlajić, Marija; De Jong, Roelof S.; Streich, David; Holwerda, Benne W.

    2013-01-01

    We study the properties of the stellar populations in M81's outermost part, which hereafter we will call the stellar halo, using Hubble Space Telescope (HST) Advanced Camera for Surveys observations of 19 fields from the GHOSTS survey. The observed fields probe the stellar halo out to a projected distance of ∼50 kpc from the galactic center. Each field was observed in both F606W and F814W filters. The 50% completeness levels of the color-magnitude diagrams (CMDs) are typically at 2 mag below the tip of the red giant branch (TRGB). Fields at distances closer than 15 kpc show evidence of disk-dominated populations whereas fields at larger distances are mostly populated by halo stars. The red giant branch (RGB) of the M81's halo CMDs is well matched with isochrones of ∼10 Gyr and metallicities [Fe/H] ∼ – 1.2 dex, suggesting that the dominant stellar population of M81's halo has a similar age and metallicity. The halo of M81 is characterized by a color distribution of width ∼0.4 mag and an approximately constant median value of (F606W – F814W) ∼1 mag measured using stars within the magnitude range 23.7 ∼ 15 kpc, we detect no color gradient in the stellar halo of M81. We place a limit of 0.03 ± 0.11 mag difference between the median color of RGB M81 halo stars at ∼15 and at 50 kpc, corresponding to a metallicity difference of 0.08 ± 0.35 dex over that radial range for an assumed constant age of 10 Gyr. We compare these results with model predictions for the colors of stellar halos formed purely via accretion of satellite galaxies. When we analyze the cosmologically motivated models in the same way as the HST data, we find that they predict no color gradient for the stellar halos, in good agreement with the observations.

  16. Evolution of hot galactic flows

    International Nuclear Information System (INIS)

    Loewenstein, M.; Mathews, W.G.

    1987-01-01

    The time-dependent equations describing galactic flows, including detailed models for the evolving source terms, are integrated over a Hubble time for two elliptical galaxies with total masses of 3.1 x 10 to the 12th and 8.3 x 10 to the 12th solar masses, 90 percent of which resides in extended, nonluminous halos. The standard supernova rate of Tammann and a rate 4 times smaller are considered for each galaxy model. The combination of the extended gravitational potential of the dark halo and the time-dependent source terms generally lead to the development of massive, quasi-hydrostatic, nearly isothermal distributions of gas at about 10 to the 7th K with cooling inflows inside their galactic cores. For the less massive galaxy with the higher supernova rate, however, a low-luminosity supersonic galactic wind develops. The effects of a lowered metal abundance, thermal conduction, and the absence of a massive halo are explored separately for one of the present models. The X-ray luminosities of the hot gas in the models with dark halos and the lower supernova rate are in good agreement with Einstein observations of early-type galaxies. 42 references

  17. Stellar dynamics and galactic evolution

    International Nuclear Information System (INIS)

    Gilmore, G.; Kuijken, K.; Wyse, R.F.G.

    1989-01-01

    Solar neighbourhood observations have the unique capability of providing detailed study of the consequences of the early evolution of the Galaxy. Important examples of this capability include determination of the distribution of luminous and unseen mass in the Galaxy, and deduction of the rate of star formation and chemical evolution in the proto-Galaxy. We describe a new method to determine the distribution of mass in the Galactic disk. We reinvestigate determinations of the local volume mass density (the Oort limit) and show there to be serious internal inconsistencies in the available data. The most likely value for the local volume mass density, based on old stars and with kinematic models consistent with the age structure of the local disk is ∼ 0.1 solar mass pc -3 , though this value is still poorly determined. Thus, there is no significant evidence for any missing mass associated with the Galactic disk. We also reinvestigate observational data on the chemical abundances and kinematics of old stars in the Galaxy. The (Intermediate Population II) thick disk stars are most likely as old as the globular clusters, and kinematically distinct from the old disk. This favours models of thick disk origin involving a discrete disruptive event, such as the accretion of a satellite of the Galaxy early in the evolution of the Galactic disk. (author)

  18. An observational study of disk-population globular clusters

    International Nuclear Information System (INIS)

    Armandroff, T.E.

    1988-01-01

    Integrated-light spectroscopy was obtained for twenty-seven globular clusters at the Ca II infrared triplet. Line strengths and radial velocities were measured from the spectra. For the well-studied clusters in the sample, the strength of the CA II lines is very well correlated with previous metallicity estimates obtained using a variety of techniques. The greatly reduced effect of interstellar extinction at these wavelengths compared to the blue region of the spectrum has permitted observations of some of the most heavily reddened clusters in the Galaxy. For several such clusters, the Ca II triplet metallicities are in poor agreement with metallicity estimates from infrared photometry by Malkan. Color-magnitude diagrams were constructed for six previously unstudied metal-rich globular clusters and for the well-studied cluster 47 Tuc. The V magnitudes of the horizontal branch stars in the six clusters are in poor agreement with previous estimates based on secondary methods. The horizontal branch morphologies and reddenings of the program clusters were also determined. Using the improved set of metallicities, radial velocities, and distance moduli, the spatial distribution, kinematics, and metallicity distribution of the Galactic globulars were analyzed. The revised data supports Zinn's conclusion that the metal-rich clusters form a highly flattened, rapidly rotating disk system, while the metal-poor clusters make up the familiar, spherically distributed, slowly rotating halo population. The scale height, metallicity distribution, and kinematics of the metal-rich globulars are in good agreement with those of the stellar thick disk. Luminosity functions were constructed, and no significant difference is found between disk and halo samples. Metallicity gradients seem to be present in the disk cluster system. The implications of these results for the formation and evol

  19. Star formation and galactic evolution. I. General expressions and applications to our galaxy

    International Nuclear Information System (INIS)

    Kaufman, M.

    1979-01-01

    The study of galactic evolution involves three mechanisms for triggering star formation in interstellar clouds: (i) star formation triggered by a galactic spiral density wave, (ii) star formation triggered by shock waves from supernovae, and (iii) star formation triggered by an expanding H II region. Useful analytic approximations to the birthrate per unit mass are obtained by treating the efficiencies of these various mechanisms as time independent. In situations where shock waves from high-mass stars (either expanding H II regions or supernova explosions) are the only important star-forming mechanisms, the birthrate is exponential in time. This case is appropriate for the past evolution of an elliptical galaxy, nuclear bulge, or galactic halo. In the disk of a spiral galaxy where all three mechanisms operate, the birthrate consists of an exponential term plus a time-independent term. In both situations, the value of the time constant T in the exponential term is directly related to the efficiency of the shock waves from massive stars in initiating star formation.For our Galaxy, this simplified model is used to compute the radial distributions of young objects and low-mass stars in the disk, and the past and present birthrates in the solar-neighborhood shell

  20. Exotic nuclei: Halos

    Energy Technology Data Exchange (ETDEWEB)

    Orr, Nigel [Lab. de Physique Corpusculaire, Caen Univ., 14 (France); Collaboration: La Direction des Sciences de la Matiere du CEA (FR); Le Fonds National de la Recherche Scientifique de Belgique (BE)

    1998-12-31

    A brief overview of the nuclear halo is presented. Following some historical remarks the general characteristics of the halo systems are discussed with reference to a simple model. The conditions governing the formation of halos are also explored, as are two subjects of current interest - low-lying resonances of halo nucleon correlations. (author) 54 refs., 16 figs., 1 tabs.

  1. Role of Turbulent Damping in Cosmic Ray Galactic Winds

    Science.gov (United States)

    Holguin, Francisco; Ruszkowski, Mateusz; Lazarian, Alex; Yang, H. Y. Karen

    2018-06-01

    Large-scale galactic winds driven by stellar feedback are one phenomenon that influences the dynamical and chemical evolution of a galaxy, pushing and redistributing material throughout the interstellar medium (ISM) and galactic halo. A detailed understanding of the exact physical mechanisms responsible for these winds is lacking. Non-thermal feedback from galactic cosmic rays (CR), high-energy charged particles accelerated in supernovae and young stars, can impact the efficiency in accelerating the wind. In the self-confinement model, CR stream along magnetic field lines at the Alfven speed due to scattering off self-excited Aflv{é}n waves. However, magneto-hydrodynamic (MHD) turbulence stirred up by stellar feedback dissipates these confining waves, allowing CR to be super Aflvenic. Previous simulations relying on a simplified model of transport have shown that super-Alfv{é}nic streaming of CRs can launch a stronger wind. We perform three-dimensional MHD simulations of a section of a galactic disk, including CR streaming dependent on the local environment, using a realistic model of turbulent dissipation of Alfven waves presented in Lazarian (2016). In this implementation, the CR streaming speed can be super Alfv{é}nic depending on local conditions. We compare results for Alfv{é}nic and locally determined streaming, and find that gas/CR distributions and instantaneous mass loading factor of the wind are different depending on the level of turbulence.Lazarian, A. “Damping of Alfven waves by turbulence and its consequences: from cosmic-ray streaming to launching winds.” ApJ. Vol. 833, Num. 2. (2016).

  2. The prolate dark matter halo of the Andromeda galaxy

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Kohei; Chiba, Masashi, E-mail: k.hayasi@astr.tohoku.ac.jp, E-mail: chiba@astr.tohoku.ac.jp [Astronomical Institute, Tohoku University, Aoba-ku, Sendai 980-8578 (Japan)

    2014-07-01

    We present new limits on the global shape of the dark matter halo in the Andromeda galaxy using and generalizing non-spherical mass models developed by Hayashi and Chiba and compare our results with theoretical predictions of cold dark matter (CDM) models. This is motivated by the fact that CDM models predict non-spherical virialized dark halos, which reflect the process of mass assembly in the galactic scale. Applying our models to the latest kinematic data of globular clusters and dwarf spheroidal galaxies in the Andromeda halo, we find that the most plausible cases for Andromeda yield a prolate shape for its dark halo, irrespective of assumed density profiles. We also find that this prolate dark halo in Andromeda is consistent with theoretical predictions in which the satellites are distributed anisotropically and preferentially located along major axes of their host halos. It is a reflection of the intimate connection between galactic dark matter halos and the cosmic web. Therefore, our result is profound in understanding internal dynamics of halo tracers in Andromeda, such as orbital evolutions of tidal stellar streams, which play important roles in extracting the abundance of CDM subhalos through their dynamical effects on stream structures.

  3. The prolate dark matter halo of the Andromeda galaxy

    International Nuclear Information System (INIS)

    Hayashi, Kohei; Chiba, Masashi

    2014-01-01

    We present new limits on the global shape of the dark matter halo in the Andromeda galaxy using and generalizing non-spherical mass models developed by Hayashi and Chiba and compare our results with theoretical predictions of cold dark matter (CDM) models. This is motivated by the fact that CDM models predict non-spherical virialized dark halos, which reflect the process of mass assembly in the galactic scale. Applying our models to the latest kinematic data of globular clusters and dwarf spheroidal galaxies in the Andromeda halo, we find that the most plausible cases for Andromeda yield a prolate shape for its dark halo, irrespective of assumed density profiles. We also find that this prolate dark halo in Andromeda is consistent with theoretical predictions in which the satellites are distributed anisotropically and preferentially located along major axes of their host halos. It is a reflection of the intimate connection between galactic dark matter halos and the cosmic web. Therefore, our result is profound in understanding internal dynamics of halo tracers in Andromeda, such as orbital evolutions of tidal stellar streams, which play important roles in extracting the abundance of CDM subhalos through their dynamical effects on stream structures.

  4. Galactic diffusion and the antiproton signal of supersymmetric dark matter

    CERN Document Server

    Chardonnet, P; Salati, Pierre; Taillet, R

    1996-01-01

    The leaky box model is now ruled out by measurements of a cosmic ray gradient throughout the galactic disk. It needs to be replaced by a more refined treatment which takes into account the diffusion of cosmic rays in the magnetic fields of the Galaxy. We have estimated the flux of antiprotons on the Earth in the framework of a two-zone diffusion model. Those species are created by the spallation reactions of high-energy nuclei with the interstellar gas. Another potential source of antiprotons is the annihilation of supersymmetric particles in the dark halo that surrounds our Galaxy. In this letter, we investigate both processes. Special emphasis is given to the antiproton signature of supersymmetric dark matter. The corresponding signal exceeds the conventional spallation flux below 300 MeV, a domain that will be thoroughly explored by the Antimatter Spectrometer experiment. The propagation of the antiprotons produced in the remote regions of the halo back to the Earth plays a crucial role. Depending on the e...

  5. Possible existence of wormholes in the central regions of halos

    Energy Technology Data Exchange (ETDEWEB)

    Rahaman, Farook, E-mail: rahaman@iucaa.ernet.in [Department of Mathematics, Jadavpur University, Kolkata 700032, West Bengal (India); Salucci, P., E-mail: salucci@sissa.it [SISSA, International School for Advanced Studies, Via Bonomea 265, 34136, Trieste (Italy); INFN, Sezione di Trieste, Via Valerio 2, 34127, Trieste (Italy); Kuhfittig, P.K.F., E-mail: kuhfitti@msoe.edu [Department of Mathematics, Milwaukee School of Engineering, Milwaukee, WI 53202-3109 (United States); Ray, Saibal, E-mail: saibal@iucaa.ernet.in [Department of Physics, Government College of Engineering and Ceramic Technology, Kolkata 700010, West Bengal (India); Rahaman, Mosiur, E-mail: mosiurju@gmail.com [Department of Mathematics, Meghnad Saha Institute of Technology, Kolkata 700150 (India)

    2014-11-15

    An earlier study (Rahaman, et al., 2014 and Kuhfittig, 2014) has demonstrated the possible existence of wormholes in the outer regions of the galactic halo, based on the Navarro–Frenk–White (NFW) density profile. This paper uses the Universal Rotation Curve (URC) dark matter model to obtain analogous results for the central parts of the halo. This result is an important compliment to the earlier result, thereby confirming the possible existence of wormholes in most of the spiral galaxies. - Highlights: • Earlier we showed possible existence of wormholes in the outer regions of halo. • We obtain here analogous results for the central parts of the galactic halo. • Our result is an important compliment to the earlier result. • This confirms possible existence of wormholes in most of the spiral galaxies.

  6. How do stars affect ψDM halos?

    Science.gov (United States)

    Chan, James H. H.; Schive, Hsi-Yu; Woo, Tak-Pong; Chiueh, Tzihong

    2018-04-01

    Wave dark matter (ψDM) predicts a compact soliton core and a granular halo in every galaxy. This work presents the first simulation study of an elliptical galaxy by including both stars and ψDM, focusing on the systematic changes of the central soliton and halo granules. With the addition of stars in the inner halo, we find the soliton core consistently becomes more prominent by absorbing mass from the host halo than that without stars, and the halo granules become "non-isothermal", "hotter" in the inner halo and "cooler" in the outer halo, as opposed to the isothermal halo in pure ψDM cosmological simulations. Moreover, the composite (star+ψDM) mass density is found to follow a r-2 isothermal profile near the half-light radius in most cases. Most striking is the velocity dispersion of halo stars that increases rapidly toward the galactic center by a factor of at least 2 inside the half-light radius caused by the deepened soliton gravitational potential, a result that compares favorably with observations of elliptical galaxies and bulges in spiral galaxies. However in some rare situations we find a phase segregation turning a compact distribution of stars into two distinct populations with high and very low velocity dispersions; while the high-velocity component mostly resides in the halo, the very low-velocity component is bound to the interior of the soliton core, resembling stars in faint dwarf spheroidal galaxies.

  7. Magnetic spiral arms in galaxy haloes

    Science.gov (United States)

    Henriksen, R. N.

    2017-08-01

    We seek the conditions for a steady mean field galactic dynamo. The parameter set is reduced to those appearing in the α2 and α/ω dynamo, namely velocity amplitudes, and the ratio of sub-scale helicity to diffusivity. The parameters can be allowed to vary on conical spirals. We analyse the mean field dynamo equations in terms of scale invariant logarithmic spiral modes and special exact solutions. Compatible scale invariant gravitational spiral arms are introduced and illustrated in an appendix, but the detailed dynamical interaction with the magnetic field is left for another work. As a result of planar magnetic spirals `lifting' into the halo, multiple sign changes in average rotation measures forming a regular pattern on each side of the galactic minor axis, are predicted. Such changes have recently been detected in the Continuum Halos in Nearby Galaxies-an EVLA Survey (CHANG-ES) survey.

  8. Analytical shear and flexion of Einasto dark matter haloes

    OpenAIRE

    Retana-Montenegro, E.; Frutos-Alfaro, F.; Baes, M.

    2012-01-01

    N-body simulations predict that dark matter haloes are described by specific density profiles on both galactic- and cluster-sized scales. Weak gravitational lensing through the measurements of their first and second order properties, shear and flexion, is a powerful observational tool for investigating the true shape of these profiles. One of the three-parameter density profiles recently favoured in the description of dark matter haloes is the Einasto profile. We present exact expressions for...

  9. One dark matter mystery: halos in the cosmic web

    Science.gov (United States)

    Gaite, Jose

    2015-01-01

    The current cold dark matter cosmological model explains the large scale cosmic web structure but is challenged by the observation of a relatively smooth distribution of matter in galactic clusters. We consider various aspects of modeling the dark matter around galaxies as distributed in smooth halos and, especially, the smoothness of the dark matter halos seen in N-body cosmological simulations. We conclude that the problems of the cold dark matter cosmology on small scales are more serious than normally admitted.

  10. One dark matter mystery: halos in the cosmic web

    International Nuclear Information System (INIS)

    Gaite, Jose

    2015-01-01

    The current cold dark matter cosmological model explains the large scale cosmic web structure but is challenged by the observation of a relatively smooth distribution of matter in galactic clusters. We consider various aspects of modeling the dark matter around galaxies as distributed in smooth halos and, especially, the smoothness of the dark matter halos seen in N-body cosmological simulations. We conclude that the problems of the cold dark matter cosmology on small scales are more serious than normally admitted

  11. H II REGION DRIVEN GALACTIC BUBBLES AND THEIR RELATIONSHIP TO THE GALACTIC MAGNETIC FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Pavel, Michael D.; Clemens, D. P., E-mail: pavelmi@bu.edu, E-mail: clemens@bu.edu [Institute for Astrophysical Research, Boston University, 725 Commonwealth Ave., Boston, MA 02215 (United States)

    2012-12-01

    The relative alignments of mid-infrared traced Galactic bubbles are compared to the orientation of the mean Galactic magnetic field in the disk. The orientations of bubbles in the northern Galactic plane were measured and are consistent with random orientations-no preferential alignment with respect to the Galactic disk was found. A subsample of H II region driven Galactic bubbles was identified, and as a single population they show random orientations. When this subsample was further divided into subthermal and suprathermal H II regions, based on hydrogen radio recombination linewidths, the subthermal H II regions showed a marginal deviation from random orientations, but the suprathermal H II regions showed significant alignment with the Galactic plane. The mean orientation of the Galactic disk magnetic field was characterized using new near-infrared starlight polarimetry and the suprathermal H II regions were found to preferentially align with the disk magnetic field. If suprathermal linewidths are associated with younger H II regions, then the evolution of young H II regions is significantly affected by the Galactic magnetic field. As H II regions age, they cease to be strongly linked to the Galactic magnetic field, as surrounding density variations come to dominate their morphological evolution. From the new observations, the ratios of magnetic-to-ram pressures in the expanding ionization fronts were estimated for younger H II regions.

  12. Population II brown dwarfs and dark haloes

    International Nuclear Information System (INIS)

    Zinnecker, H.

    1986-01-01

    Opacity-limited fragmentation is investigated as a function of the dust-to-gas ratio and it is found that the characteristic protostellar mass Msub(*) is metallicity-dependent. This dependence is such that, for the low metallicity gas out of which the stars of Population II formed in the halo, Msub(*) is less than 0.1 M solar mass. If applicable, these theoretical considerations would predict that substellar masses have formed more frequently under the metal-poor conditions in the early Galaxy (Population II brown dwarfs). Thus the missing mass in the Galactic halo and in the dark haloes around other spirals may well reside in these metal-poor Population II brown dwarfs. (author)

  13. Cosmic ray acceleration by large scale galactic shocks

    International Nuclear Information System (INIS)

    Cesarsky, C.J.; Lagage, P.O.

    1987-01-01

    The mechanism of diffusive shock acceleration may account for the existence of galactic cosmic rays detailed application to stellar wind shocks and especially to supernova shocks have been developed. Existing models can usually deal with the energetics or the spectral slope, but the observed energy range of cosmic rays is not explained. Therefore it seems worthwhile to examine the effect that large scale, long-lived galactic shocks may have on galactic cosmic rays, in the frame of the diffusive shock acceleration mechanism. Large scale fast shocks can only be expected to exist in the galactic halo. We consider three situations where they may arise: expansion of a supernova shock in the halo, galactic wind, galactic infall; and discuss the possible existence of these shocks and their role in accelerating cosmic rays

  14. ANGULAR MOMENTUM ACQUISITION IN GALAXY HALOS

    International Nuclear Information System (INIS)

    Stewart, Kyle R.; Brooks, Alyson M.; Bullock, James S.; Maller, Ariyeh H.; Diemand, Jürg; Wadsley, James; Moustakas, Leonidas A.

    2013-01-01

    We use high-resolution cosmological hydrodynamic simulations to study the angular momentum acquisition of gaseous halos around Milky-Way-sized galaxies. We find that cold mode accreted gas enters a galaxy halo with ∼70% more specific angular momentum than dark matter averaged over cosmic time (though with a very large dispersion). In fact, we find that all matter has a higher spin parameter when measured at accretion than when averaged over the entire halo lifetime, and is well characterized by λ ∼ 0.1, at accretion. Combined with the fact that cold flow gas spends a relatively short time (1-2 dynamical times) in the halo before sinking to the center, this naturally explains why cold flow halo gas has a specific angular momentum much higher than that of the halo and often forms ''cold flow disks.'' We demonstrate that the higher angular momentum of cold flow gas is related to the fact that it tends to be accreted along filaments.

  15. VERY METAL-POOR STARS IN THE OUTER GALACTIC BULGE FOUND BY THE APOGEE SURVEY

    International Nuclear Information System (INIS)

    García Pérez, Ana E.; Majewski, Steven R.; Hearty, Fred R.; Cunha, Katia; Shetrone, Matthew; Johnson, Jennifer A.; Zasowski, Gail; Smith, Verne V.; Beers, Timothy C.; Schiavon, Ricardo P.; Holtzman, Jon; Nidever, David; Allende Prieto, Carlos; Bizyaev, Dmitry; Ebelke, Garrett; Malanushenko, Elena; Malanushenko, Viktor; Eisenstein, Daniel J.; Frinchaboy, Peter M.; Girardi, Léo

    2013-01-01

    Despite its importance for understanding the nature of early stellar generations and for constraining Galactic bulge formation models, at present little is known about the metal-poor stellar content of the central Milky Way. This is a consequence of the great distances involved and intervening dust obscuration, which challenge optical studies. However, the Apache Point Observatory Galactic Evolution Experiment (APOGEE), a wide-area, multifiber, high-resolution spectroscopic survey within Sloan Digital Sky Survey III, is exploring the chemistry of all Galactic stellar populations at infrared wavelengths, with particular emphasis on the disk and the bulge. An automated spectral analysis of data on 2403 giant stars in 12 fields in the bulge obtained during APOGEE commissioning yielded five stars with low metallicity ([Fe/H] ≤ –1.7), including two that are very metal-poor [Fe/H] ∼ –2.1 by bulge standards. Luminosity-based distance estimates place the 5 stars within the outer bulge, where 1246 of the other analyzed stars may reside. A manual reanalysis of the spectra verifies the low metallicities, and finds these stars to be enhanced in the α-elements O, Mg, and Si without significant α-pattern differences with other local halo or metal-weak thick-disk stars of similar metallicity, or even with other more metal-rich bulge stars. While neither the kinematics nor chemistry of these stars can yet definitively determine which, if any, are truly bulge members, rather than denizens of other populations co-located with the bulge, the newly identified stars reveal that the chemistry of metal-poor stars in the central Galaxy resembles that of metal-weak thick-disk stars at similar metallicity.

  16. VERY METAL-POOR STARS IN THE OUTER GALACTIC BULGE FOUND BY THE APOGEE SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Perez, Ana E.; Majewski, Steven R.; Hearty, Fred R. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904-4325 (United States); Cunha, Katia [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Shetrone, Matthew [McDonald Observatory, University of Texas at Austin, Fort Davis, TX 79734 (United States); Johnson, Jennifer A.; Zasowski, Gail [Department of Astronomy, The Ohio State University, Columbus, OH 43210 (United States); Smith, Verne V.; Beers, Timothy C. [National Optical Astronomy Observatories, Tucson, AZ 85719 (United States); Schiavon, Ricardo P. [Gemini Observatory, 670 N. A' Ohoku Place, Hilo, HI 96720 (United States); Holtzman, Jon [Department of Astronomy, MSC 4500, New Mexico State University, P.O. Box 30001, Las Cruces, NM 88003 (United States); Nidever, David [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Allende Prieto, Carlos [Departamento de Astrofisica, Universidad de La Laguna, E-38206 La Laguna, Tenerife (Spain); Bizyaev, Dmitry; Ebelke, Garrett; Malanushenko, Elena; Malanushenko, Viktor [Apache Point Observatory, P.O. Box 59, Sunspot, NM 88349-0059 (United States); Eisenstein, Daniel J. [Harvard Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Frinchaboy, Peter M. [Department of Physics and Astronomy, Texas Christian University, 2800 South University Drive, Fort Worth, TX 76129 (United States); Girardi, Leo [Laboratorio Interinstitucional de e-Astronomia - LIneA, Rua Gal. Jose Cristino 77, Rio de Janeiro, RJ - 20921-400 (Brazil); and others

    2013-04-10

    Despite its importance for understanding the nature of early stellar generations and for constraining Galactic bulge formation models, at present little is known about the metal-poor stellar content of the central Milky Way. This is a consequence of the great distances involved and intervening dust obscuration, which challenge optical studies. However, the Apache Point Observatory Galactic Evolution Experiment (APOGEE), a wide-area, multifiber, high-resolution spectroscopic survey within Sloan Digital Sky Survey III, is exploring the chemistry of all Galactic stellar populations at infrared wavelengths, with particular emphasis on the disk and the bulge. An automated spectral analysis of data on 2403 giant stars in 12 fields in the bulge obtained during APOGEE commissioning yielded five stars with low metallicity ([Fe/H] {<=} -1.7), including two that are very metal-poor [Fe/H] {approx} -2.1 by bulge standards. Luminosity-based distance estimates place the 5 stars within the outer bulge, where 1246 of the other analyzed stars may reside. A manual reanalysis of the spectra verifies the low metallicities, and finds these stars to be enhanced in the {alpha}-elements O, Mg, and Si without significant {alpha}-pattern differences with other local halo or metal-weak thick-disk stars of similar metallicity, or even with other more metal-rich bulge stars. While neither the kinematics nor chemistry of these stars can yet definitively determine which, if any, are truly bulge members, rather than denizens of other populations co-located with the bulge, the newly identified stars reveal that the chemistry of metal-poor stars in the central Galaxy resembles that of metal-weak thick-disk stars at similar metallicity.

  17. Galactic structure

    International Nuclear Information System (INIS)

    1989-01-01

    The occurrence of hot, apparently normal, massive stars far from the galactic plane has been a major puzzle in an understanding of galactic structure and evolution. Such stars have been discovered and studied at the South African Astronomical Observatory (SAAO) over a number of years. During 1989 further evidence has been obtained indicating that these stars are normal, massive objects. Other studies of galactic structure conducted by the SAAO have included research on: the central bulge region of our galaxy; populations of M giants in the galaxy; a faint blue object survey; a survey of the galactic plane for distant Cepheid variables; interstellar reddening, and K-type dwarfs as tracers for the gravitational force perpendicular to the galactic plane. 1 fig

  18. ATOMIC HYDROGEN IN A GALACTIC CENTER OUTFLOW

    Energy Technology Data Exchange (ETDEWEB)

    McClure-Griffiths, N. M.; Green, J. A.; Hill, A. S. [Australia Telescope National Facility, CSIRO Astronomy and Space Science, Marsfield, NSW 2122 (Australia); Lockman, F. J. [National Radio Astronomy Observatory, Green Bank, WV 24944 (United States); Dickey, J. M. [School of Physics and Mathematics, University of Tasmania, TAS 7001 (Australia); Gaensler, B. M.; Green, A. J., E-mail: naomi.mcclure-griffiths@csiro.au [Sydney Institute for Astronomy, School of Physics, The University of Sydney, NSW 2006 (Australia)

    2013-06-10

    We describe a population of small, high-velocity, atomic hydrogen clouds, loops, and filaments found above and below the disk near the Galactic center. The objects have a mean radius of 15 pc, velocity widths of {approx}14 km s{sup -1}, and are observed at |z| heights up to 700 pc. The velocity distribution of the clouds shows no signature of Galactic rotation. We propose a scenario where the clouds are associated with an outflow from a central star-forming region at the Galactic center. We discuss the clouds as entrained material traveling at {approx}200 km s{sup -1} in a Galactic wind.

  19. ATOMIC HYDROGEN IN A GALACTIC CENTER OUTFLOW

    International Nuclear Information System (INIS)

    McClure-Griffiths, N. M.; Green, J. A.; Hill, A. S.; Lockman, F. J.; Dickey, J. M.; Gaensler, B. M.; Green, A. J.

    2013-01-01

    We describe a population of small, high-velocity, atomic hydrogen clouds, loops, and filaments found above and below the disk near the Galactic center. The objects have a mean radius of 15 pc, velocity widths of ∼14 km s –1 , and are observed at |z| heights up to 700 pc. The velocity distribution of the clouds shows no signature of Galactic rotation. We propose a scenario where the clouds are associated with an outflow from a central star-forming region at the Galactic center. We discuss the clouds as entrained material traveling at ∼200 km s –1 in a Galactic wind.

  20. Globular Clusters: Absolute Proper Motions and Galactic Orbits

    Science.gov (United States)

    Chemel, A. A.; Glushkova, E. V.; Dambis, A. K.; Rastorguev, A. S.; Yalyalieva, L. N.; Klinichev, A. D.

    2018-04-01

    We cross-match objects from several different astronomical catalogs to determine the absolute proper motions of stars within the 30-arcmin radius fields of 115 Milky-Way globular clusters with the accuracy of 1-2 mas yr-1. The proper motions are based on positional data recovered from the USNO-B1, 2MASS, URAT1, ALLWISE, UCAC5, and Gaia DR1 surveys with up to ten positions spanning an epoch difference of up to about 65 years, and reduced to Gaia DR1 TGAS frame using UCAC5 as the reference catalog. Cluster members are photometrically identified by selecting horizontal- and red-giant branch stars on color-magnitude diagrams, and the mean absolute proper motions of the clusters with a typical formal error of about 0.4 mas yr-1 are computed by averaging the proper motions of selected members. The inferred absolute proper motions of clusters are combined with available radial-velocity data and heliocentric distance estimates to compute the cluster orbits in terms of the Galactic potential models based on Miyamoto and Nagai disk, Hernquist spheroid, and modified isothermal dark-matter halo (axisymmetric model without a bar) and the same model + rotating Ferre's bar (non-axisymmetric). Five distant clusters have higher-than-escape velocities, most likely due to large errors of computed transversal velocities, whereas the computed orbits of all other clusters remain bound to the Galaxy. Unlike previously published results, we find the bar to affect substantially the orbits of most of the clusters, even those at large Galactocentric distances, bringing appreciable chaotization, especially in the portions of the orbits close to the Galactic center, and stretching out the orbits of some of the thick-disk clusters.

  1. PROBING THE STRUCTURE AND KINEMATICS OF THE TRANSITION LAYER BETWEEN THE MAGELLANIC STREAM AND THE HALO IN H I

    International Nuclear Information System (INIS)

    Nigra, Lou; Stanimirović, Snežana; Gallagher, John S. III; Wood, Kenneth; Nidever, David; Majewski, Steven

    2012-01-01

    The Magellanic Stream (MS) is a nearby laboratory for studying the fate of cool gas streams injected into a gaseous galactic halo. We investigate properties of the boundary layer between the cool MS gas and the hot Milky Way halo with 21 cm H I observations of a relatively isolated cloud having circular projection in the northern MS. Through averaging and modeling techniques, our observations, obtained with the Robert C. Byrd Green Bank Telescope, reach unprecedented 3σ sensitivity of ∼1 × 10 17 cm –2 , while retaining the telescope's 9.'1 resolution in the essential radial dimension. We find an envelope of diffuse neutral gas with FWHM of 60 km s –1 , associated in velocity with the cloud core having FWHM of 20 km s –1 , extending to 3.5 times the core radius with a neutral mass seven times that of the core. We show that the envelope is too extended to represent a conduction-dominated layer between the core and the halo. Its observed properties are better explained by a turbulent mixing layer driven by hydrodynamic instabilities. The fortuitous alignment of the NGC 7469 background source near the cloud center allows us to combine UV absorption and H I emission data to determine a core temperature of 8350 ± 350 K. We show that the H I column density and size of the core can be reproduced when a slightly larger cloud is exposed to Galactic and extragalactic background ionizing radiation. Cooling in the large diffuse turbulent mixing layer envelope extends the cloud lifetime by at least a factor of two relative to a simple hydrodynamic ablation case, suggesting that the cloud is likely to reach the Milky Way disk.

  2. Galactic dynamics

    CERN Document Server

    Binney, James

    2008-01-01

    Since it was first published in 1987, Galactic Dynamics has become the most widely used advanced textbook on the structure and dynamics of galaxies and one of the most cited references in astrophysics. Now, in this extensively revised and updated edition, James Binney and Scott Tremaine describe the dramatic recent advances in this subject, making Galactic Dynamics the most authoritative introduction to galactic astrophysics available to advanced undergraduate students, graduate students, and researchers. Every part of the book has been thoroughly overhauled, and many section

  3. Strongly baryon-dominated disk galaxies at the peak of galaxy formation ten billion years ago.

    Science.gov (United States)

    Genzel, R; Schreiber, N M Förster; Übler, H; Lang, P; Naab, T; Bender, R; Tacconi, L J; Wisnioski, E; Wuyts, S; Alexander, T; Beifiori, A; Belli, S; Brammer, G; Burkert, A; Carollo, C M; Chan, J; Davies, R; Fossati, M; Galametz, A; Genel, S; Gerhard, O; Lutz, D; Mendel, J T; Momcheva, I; Nelson, E J; Renzini, A; Saglia, R; Sternberg, A; Tacchella, S; Tadaki, K; Wilman, D

    2017-03-15

    In the cold dark matter cosmology, the baryonic components of galaxies-stars and gas-are thought to be mixed with and embedded in non-baryonic and non-relativistic dark matter, which dominates the total mass of the galaxy and its dark-matter halo. In the local (low-redshift) Universe, the mass of dark matter within a galactic disk increases with disk radius, becoming appreciable and then dominant in the outer, baryonic regions of the disks of star-forming galaxies. This results in rotation velocities of the visible matter within the disk that are constant or increasing with disk radius-a hallmark of the dark-matter model. Comparisons between the dynamical mass, inferred from these velocities in rotational equilibrium, and the sum of the stellar and cold-gas mass at the peak epoch of galaxy formation ten billion years ago, inferred from ancillary data, suggest high baryon fractions in the inner, star-forming regions of the disks. Although this implied baryon fraction may be larger than in the local Universe, the systematic uncertainties (owing to the chosen stellar initial-mass function and the calibration of gas masses) render such comparisons inconclusive in terms of the mass of dark matter. Here we report rotation curves (showing rotation velocity as a function of disk radius) for the outer disks of six massive star-forming galaxies, and find that the rotation velocities are not constant, but decrease with radius. We propose that this trend arises because of a combination of two main factors: first, a large fraction of the massive high-redshift galaxy population was strongly baryon-dominated, with dark matter playing a smaller part than in the local Universe; and second, the large velocity dispersion in high-redshift disks introduces a substantial pressure term that leads to a decrease in rotation velocity with increasing radius. The effect of both factors appears to increase with redshift. Qualitatively, the observations suggest that baryons in the early (high

  4. Giant Radio Halos in Galaxy Clusters as Probes of Particle ...

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Giant radio halos in galaxy clusters probe mechanisms of particle acceleration connected with cluster merger events. Shocks and turbulence are driven in the inter-galactic medium (IGM) during clusters mergers and may have a deep impact on the non-thermal properties of galaxy clusters. Models of ...

  5. The evoluation of the galactic globular clusters; I Metal abundance calibrations

    International Nuclear Information System (INIS)

    Lee, S.W.; Park, N.K.

    1984-01-01

    Five different calibrations of metal abundances of globular clusters are examined and these are compared with metallicity ranking parameters such as (Sp)sub(c), , Q39 and IR-indices. Except for the calibration *(Fe/H*)sub(H) by the high dispersion echelle analysis, the other calibration scales are correlated with the morphological parameters of red giant branch. In the *(Fe/H*)sub(Hsup(-))scale, the clusters later than approx.F8 have nearly a constant metal abundance, *(Fe/H*)sub(H)approx.-1.05, regardless of morphological characteristics of horizontal branch and red giant branch. By the two fundamental calibration scales of *(Fe/H*)sub(L) (derived by the low dispersion analysis), and *(Fe/H*)sub(delta S) (derived by the spectral analysis of RR Lyrae stars), the globular clusters are divided into the halo clusters with *(Fe/H*)<-1.0 and the disk clusters confined within the galactocentric distance rsub(G)=10 kpc and galactic plane distance absolute z=3 kpc. In this case the abundance gradient is given by d*(Fe/H*)/drsub(G)approx.-0.05kpcsup(-1) and d*(Fe/H*)/d absolute z approx. -0.08 kpcsup(-1) within rsub(G)=20 kpc and absolute z=10 kpc, respectively. According to these characteristics of the spatial distribution of globular clusters, the chemical evolution of the galactic globular clusters can be accounted for by the two-zone (disk-halo) slow collapse model when the *(Fe/H*)sub(Lsup(-)) or *(Fe/H*)sub(DELTA Ssup(-))scale is applied. In the case of *(Fe/H*)sub(Hsup(-))scale, the one-zone fast collapse model is preferred for the evolution of globular clusters. (Author)

  6. Asymmetric mass models of disk galaxies. I. Messier 99

    Science.gov (United States)

    Chemin, Laurent; Huré, Jean-Marc; Soubiran, Caroline; Zibetti, Stefano; Charlot, Stéphane; Kawata, Daisuke

    2016-04-01

    Mass models of galactic disks traditionally rely on axisymmetric density and rotation curves, paradoxically acting as if their most remarkable asymmetric features, such as lopsidedness or spiral arms, were not important. In this article, we relax the axisymmetry approximation and introduce a methodology that derives 3D gravitational potentials of disk-like objects and robustly estimates the impacts of asymmetries on circular velocities in the disk midplane. Mass distribution models can then be directly fitted to asymmetric line-of-sight velocity fields. Applied to the grand-design spiral M 99, the new strategy shows that circular velocities are highly nonuniform, particularly in the inner disk of the galaxy, as a natural response to the perturbed gravitational potential of luminous matter. A cuspy inner density profile of dark matter is found in M 99, in the usual case where luminous and dark matter share the same center. The impact of the velocity nonuniformity is to make the inner profile less steep, although the density remains cuspy. On another hand, a model where the halo is core dominated and shifted by 2.2-2.5 kpc from the luminous mass center is more appropriate to explain most of the kinematical lopsidedness evidenced in the velocity field of M 99. However, the gravitational potential of luminous baryons is not asymmetric enough to explain the kinematical lopsidedness of the innermost regions, irrespective of the density shape of dark matter. This discrepancy points out the necessity of an additional dynamical process in these regions: possibly a lopsided distribution of dark matter.

  7. Dissecting the large-scale galactic conformity

    Science.gov (United States)

    Seo, Seongu

    2018-01-01

    Galactic conformity is an observed phenomenon that galaxies located in the same region have similar properties such as star formation rate, color, gas fraction, and so on. The conformity was first observed among galaxies within in the same halos (“one-halo conformity”). The one-halo conformity can be readily explained by mutual interactions among galaxies within a halo. Recent observations however further witnessed a puzzling connection among galaxies with no direct interaction. In particular, galaxies located within a sphere of ~5 Mpc radius tend to show similarities, even though the galaxies do not share common halos with each other ("two-halo conformity" or “large-scale conformity”). Using a cosmological hydrodynamic simulation, Illustris, we investigate the physical origin of the two-halo conformity and put forward two scenarios. First, back-splash galaxies are likely responsible for the large-scale conformity. They have evolved into red galaxies due to ram-pressure stripping in a given galaxy cluster and happen to reside now within a ~5 Mpc sphere. Second, galaxies in strong tidal field induced by large-scale structure also seem to give rise to the large-scale conformity. The strong tides suppress star formation in the galaxies. We discuss the importance of the large-scale conformity in the context of galaxy evolution.

  8. The galactic population of white dwarfs

    International Nuclear Information System (INIS)

    Napiwotzki, Ralf

    2009-01-01

    The contribution of white dwarfs of the different Galactic populations to the stellar content of our Galaxy is only poorly known. Some authors claim a vast population of halo white dwarfs, which would be in accordance with some investigations of the early phases of Galaxy formation claiming a top-heavy initial- mass- function. Here, I present a model of the population of white dwarfs in the Milky Way based on observations of the local white dwarf sample and a standard model of Galactic structure. This model will be used to estimate the space densities of thin disc, thick disc and halo white dwarfs and their contribution to the baryonic mass budget of the Milky Way. One result of this investigation is that white dwarfs of the halo population contribute a large fraction of the Galactic white dwarf number count, but they are not responsible for the lion's share of stellar mass in the Milky Way. Another important result is the substantial contribution of the - often neglected - population of thick disc white dwarfs. Misclassification of thick disc white dwarfs is responsible for overestimates of the halo population in previous investigations.

  9. Enrichment of r-Process Elements by Neutron Star Mergers through the Sub-Halo Clustering

    Science.gov (United States)

    Ishimaru, Yuhri; Ojima, Takuya; Wanajo, Shinya; Prantzos, Nikos

    Neutron star mergers (NSMs) are suggested to be the most plausible site of r-process by nucleosynthesis studies, while previous chemical evolution models pointed out that the long lifetimes of NS binaries are in conflict with the observed [r/Fe] of the Galactic halo stars. We attempt to solve this problem, assuming the Galactic halo was formed from merging sub-halos. We find that [r/Fe] start increasing at [Fe/H] < -3, if the star formation efficiencies are smaller for less massive sub-halos. We also show that small numbers of NSMs for least massive sub-halos could cause the large enhancement of [r/Fe]. Our results support NSMs as the major site of r-process.

  10. Galactic sprinklers

    International Nuclear Information System (INIS)

    Vandeusen, W.

    1984-01-01

    It is believed by many astronomers that gravitation is responsible for holding a strong whirlpool of hot, dense material together at the center of the Milky Way galaxy. However, the galactic-sprinkler model suggests that the whirlpool is not being held together, and that the stars, gas and dust within the spirals are being thrown outward. It is also suggested that much of the ejected material eventually returns to the galactic center, as do stars within our stellar neighborhood. The material is believed to be subjected to extreme changes in the gravitational time rate which may cause it to follow an inbound spiral that is basically similar to the outbound spiral. Radio studies also indicate that the galactic arms on either side of the galactic center move at different velocities and in different directions with respect to our location and that the whole group of stars in the vicinity of the solar system may be moving outward from the galactic center at a velocity of about 40 kps. Through the use of velocity data in kps, and distance data in light years, the radial component of the sun's trajectory can be estimated with respect to time by a parabola. The spiral trajectory of the sun can be calculated and plotted on polar coordinates by combining both the radial component and tangential component (230 kps)

  11. The age of the galactic disk

    International Nuclear Information System (INIS)

    Clayton, D.D.

    1989-01-01

    This paper presents arguments suggesting that the best estimate of the age of the galaxy is 12 G < 16 Gyr. The author has emphasized the theoretical closeness of nuclear chronology to a correct and detailed description of the evolution of stars and of the galaxy itself. Nuclear cosmochronology does not stand alone as a technique for age determination. Conventional old-fashioned astronomy is at least as important, as is the detailed distribution of histories of astrated matter

  12. Gravitational lens effect and pregalactic halo objects

    International Nuclear Information System (INIS)

    Bontz, R.J.

    1979-01-01

    The changes in flux, position, and size of a distant extended (galaxy, etc.) source that result from the gravitational lens action of a massive opaque object are discussed. The flux increase is described by a single function of two parameters. One of these parameters characterizes the strength of the gravitational lens, the other describes the alignment of source and lens object. This function also describes the relative intensity of the images formed by lens. ( A similar formalism is discussed by Bourassa et al. for a point source). The formalism is applied to the problem of the galactic halo. It appears that a massive (10 1 2 M/sub sun/) spherical halo surrounding the visible part of the galaxy is consistent with the observable properties of extragalactic sources

  13. Galactoseismology: From The Milky Way To XUV Disks

    Science.gov (United States)

    Chakrabarti, Sukanya

    The variety of discrepancies between observations and simulations on galactic scales, from the anisotropic distribution of dwarf galaxies to the "too big to fail" problem (where massive satellites in simulations are too dense relative to observations), suggests that we may not yet fully understand galaxy formation. If these satellites exist, they would leave traces of their passage in extended HI disks. Extended HI disks of galaxies reach to several times the optical radius, presenting the largest possible cross-section for interaction with sub-halos at large distances (where theoretical models expect them to be). We will provide definitive constraints on the distribution of dark matter in spiral galaxies by building on our ongoing work in characterizing galactic satellites from analysis of disturbances in extended HI disks with respect to hydrodynamical simulations. Spiral galaxies in the Local Volume (from the Milky Way to the XUV disks discovered by GALEX) exhibit a wealth of unexplained morphology, but these morphological signatures have not yet been used to place constraints on the evolution of HI disks and the dark matter distribution. We are now poised to make significant progress in Galactoseismology, i.e. connect morphological disturbances with the mass distribution. By using the FIRE model for explicit star formation and feedback, we will also develop a better understanding for the star formation history of our Galaxy and XUV Disks. Our Milky Way models will be informed by the HST proper motions, and will match the observed planar disturbances, the warp, and vertical waves recently discovered by the RAVE and LAMOST surveys. We are also carrying high resolution simulations with the Gizmo code that incorporates the FIRE model to develop a comprehensive understanding of the star formation history and star formation rate (that matches Spitzer observations) of the Milky Way. These models will provide a much needed interpretative framework for JWST and WFIRST

  14. DARK MATTER SUB-HALO COUNTS VIA STAR STREAM CROSSINGS

    International Nuclear Information System (INIS)

    Carlberg, R. G.

    2012-01-01

    Dark matter sub-halos create gaps in the stellar streams orbiting in the halos of galaxies. We evaluate the sub-halo stream crossing integral with the guidance of simulations to find that the linear rate of gap creation, R U , in a typical cold dark matter (CDM) galactic halo at 100 kpc is R U ≅0.0066 M-hat 8 -0.35 kpc -1 Gyr -1 , where M-hat 8 (≡ M-hat /10 8 M ☉ ) is the minimum mass halo that creates a visible gap. The relation can be recast entirely in terms of observables, as R U ≅0.059w -0.85 kpc -1 Gyr -1 , for w in kpc, normalized at 100 kpc. Using published data, the density of gaps is estimated for M31's NW stream and the Milky Way Pal 5 stream, Orphan stream, and Eastern Banded Structure. The estimated rates of gap creation all have errors of 50% or more due to uncertain dynamical ages and the relatively noisy stream density measurements. The gap-rate-width data are in good agreement with the CDM-predicted relation. The high density of gaps in the narrow streams requires a total halo population of 10 5 sub-halos above a minimum mass of 10 5 M ☉ .

  15. Galactic absorption line coronae

    International Nuclear Information System (INIS)

    Bregman, J.N.

    1981-01-01

    We have investigated whether gaseous coronae around galaxies rise to the absorption systems seen in quasar spectra. In our model, gas originally located in the disk is heated to the million degree range and rises to surround the galaxy; the gas remains bound to the galaxy. Optically thin radiative cooling drives a thermal instability in the hot gas which causes cool clouds (T 4 K) to condense out of the corona. These clouds, which follow ballistic trajectories back to the disk, are the absorption sites. A two-dimensional hydrodynamic code with radiative cooling was used to study the dynamics and thermodynamics of the corona as well as the position rate at which clouds form. Coupled to the code is a galaxy with two mass components, a disk (approx.10 11 M/sub sun/) and a dark halo (approx.10 12 M/sub sun/). In a model where the temperature at the base of the corona (in the disk) is 3 x 10 6 K, absorbing gas of column density NL> or approx. =10 18 cm 2 extends radially to 100 kpc (face-on orientation) and vertically to 60 Kpc (edge-on orientation). The total mass of gas required here (coronal plus cloud gas) is 1.4 x 10 10 M/sub sun/, while the minimum supernova heating rate is one supernova per 27 years. In two other models (base coronal temperatures of 0.50 x 10 6 K and 1 x 10 6 K), coronal gas rises from an extended gaseous disk (in the previous model, the gas comes from a typical gaseous disk approximately 15 kpc in extent). Here, column densities of 10 19 cm -2 out to a radius of 70 kpc (face-on orientation) are achieved with a total gas mass of 1.7 x 10 9 M/sub direct-product/ and 2.0 x 10 9 M/sub sun/ and minimum heating rates of approximately one supernova per 170 years and one supernova per 60 years

  16. A Near-infrared RR Lyrae Census along the Southern Galactic Plane: The Milky Way’s Stellar Fossil Brought to Light

    Science.gov (United States)

    Dékány, István; Hajdu, Gergely; Grebel, Eva K.; Catelan, Márcio; Elorrieta, Felipe; Eyheramendy, Susana; Majaess, Daniel; Jordán, Andrés

    2018-04-01

    RR Lyrae stars (RRLs) are tracers of the Milky Way’s fossil record, holding valuable information on its formation and early evolution. Owing to the high interstellar extinction endemic to the Galactic plane, distant RRLs lying at low Galactic latitudes have been elusive. We attained a census of 1892 high-confidence RRLs by exploiting the near-infrared photometric database of the VVV survey’s disk footprint spanning ∼70° of Galactic longitude, using a machine-learned classifier. Novel data-driven methods were employed to accurately characterize their spatial distribution using sparsely sampled multi-band photometry. The RRL metallicity distribution function (MDF) was derived from their K s -band light-curve parameters using machine-learning methods. The MDF shows remarkable structural similarities to both the spectroscopic MDF of red clump giants and the MDF of bulge RRLs. We model the MDF with a multi-component density distribution and find that the number density of stars associated with the different model components systematically changes with both the Galactocentric radius and vertical distance from the Galactic plane, equivalent to weak metallicity gradients. Based on the consistency with results from the ARGOS survey, three MDF modes are attributed to the old disk populations, while the most metal-poor RRLs are probably halo interlopers. We propose that the dominant [Fe/H] component with a mean of ‑1 dex might correspond to the outskirts of an ancient Galactic spheroid or classical bulge component residing in the central Milky Way. The physical origins of the RRLs in this study need to be verified by kinematical information.

  17. Kinematics of HI near the galactic center

    International Nuclear Information System (INIS)

    Sinha, R.P.

    1979-01-01

    The results of a survey of 21-cm line emission in the Milky Way Galaxy from 338. 0 5 through 360 0 to 11 0 longitude and from -2 0 to +2 0 latitude are presented. The latitude coverage is complete over this range for a given longitude. Points are observed at an interval of 15 arcmin (0.7 beamwidth). The longitude coverage is complete between 1 = 357 0 and 1 = 3 0 . Outside this range points have been observed at intervals of 0. 0 5 in longitude. The symmetry properties of the distribution of HI in the region around the galactic center have been explored. Inside a radius of 1 kpc the HI appears to be distributed in the shape of an elongated non-circular slowly rotating disk which is inclined to the galactic equator. This disk is separate from the general galactic disk of HI. In the central disk the density of HI decreases steeply as the distance from the center increases. The density of HI in the annular space between the central disk and the general galactic disk is very low. The velocity dispersion of the HI distribution in the central elongated disk is of the order of 100 km/s. The isovelocity contours on the longitude-latitude plane of the HI associated with this elongated central disk have the characteristic shape such that the angle between the minor axis and the zero-Doppler velocity contour is different than zero. Such a phenomenon has been observed in the central regions of elliptical galaxies and has been attributed to the triaxial nature of the mass distribution

  18. Effects of Interstellar Dust Scattering on the X-ray Eclipses of the LMXB AX J1745.6-2901 in the Galactic Center

    Science.gov (United States)

    Jin, Chichuan; Ponti, Gabriele; Haberl, Frank; Smith, Randall; Valencic, Lynne

    2018-04-01

    AX J1745.6-2901 is an eclipsing low mass X-ray binary (LMXB) in the Galactic Centre (GC). It shows significant X-ray excess emission during the eclipse phase, and its eclipse light curve shows an asymmetric shape. We use archival XMM-Newton and Chandra observations to study the origin of these peculiar X-ray eclipsing phenomena. We find that the shape of the observed X-ray eclipse light curves depends on both photon energy and the shape of the source extraction region, and also shows differences between the two instruments. By performing detailed simulations for the time-dependent X-ray dust scattering halo, as well as directly modelling the observed eclipse and non-eclipse halo profiles of AX J1745.6-2901, we obtained solid evidence that its peculiar eclipse phenomena are indeed caused by the X-ray dust scattering in multiple foreground dust layers along the line-of-sight (LOS). The apparent dependence on the instruments is caused by different instrumental point-spread-functions. Our results can be used to assess the influence of dust scattering in other eclipsing X-ray sources, and raise the importance of considering the timing effects of dust scattering halo when studying the variability of other X-ray sources in the GC, such as Sgr A⋆. Moreover, our study of halo eclipse reinforces the existence of a dust layer local to AX J1745.6-2901 as reported by Jin et al. (2017), as well as identifying another dust layer within a few hundred parsecs to Earth, containing up to several tens of percent LOS dust, which is likely to be associated with the molecular clouds in the Solar neighbourhood. The remaining LOS dust is likely to be associated with the molecular clouds located in the Galactic disk in-between.

  19. Dark Matter Annihilation in The Galactic Center As Seen by the Fermi Gamma Ray Space Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, Dan; /Fermilab /Chicago U., Astron. Astrophys. Ctr.; Goodenough, Lisa; /New York U.

    2010-10-01

    We analyze the first two years of data from the Fermi Gamma Ray Space Telescope from the direction of the inner 10{sup o} around the Galactic Center with the intention of constraining, or finding evidence of, annihilating dark matter. We find that the morphology and spectrum of the emission between 1.25{sup o} and 10{sup o} from the Galactic Center is well described by a the processes of decaying pions produced in cosmic ray collisions with gas, and the inverse Compton scattering of cosmic ray electrons in both the disk and bulge of the Inner Galaxy, along with gamma rays from known points sources in the region. The observed spectrum and morphology of the emission within approximately 1.25{sup o} ({approx}175 parsecs) of the Galactic Center, in contrast, cannot be accounted for by these processes or known sources. We find that an additional component of gamma ray emission is clearly present which is highly concentrated around the Galactic Center, but is not point-like in nature. The observed morphology of this component is consistent with that predicted from annihilating dark matter with a cusped (and possibly adiabatically contracted) halo distribution ({rho} {proportional_to} r{sup -1.34{+-}0.04}). The observed spectrum of this component, which peaks at energies between 2-4 GeV (in E{sup 2} units), is well fit by that predicted for a 7.3-9.2 GeV dark matter particle annihilating primarily to tau leptons with a cross section in the range of <{sigma}{nu}> = 3.3 x 10{sup -27} to 1.5 x 10{sup -26} cm{sup 3}/s, depending on how the dark matter distribution is normalized. We discuss other possible sources for this component, but argue that they are unlikely to account for the observed emission.

  20. Chataika Halo.pmd

    African Journals Online (AJOL)

    Prof. Adipala Ekwamu

    INHERITANCE OF HALO BLIGHT RESISTANCE IN COMMON BEAN ... pv phaseolicola (Psp) is a serious seed-borne disease of common bean ... a toxin produced by the Psp bacterium when ... stakes or in association with maize for support.

  1. Exact axially symmetric galactic dynamos

    Science.gov (United States)

    Henriksen, R. N.; Woodfinden, A.; Irwin, J. A.

    2018-05-01

    We give a selection of exact dynamos in axial symmetry on a galactic scale. These include some steady examples, at least one of which is wholly analytic in terms of simple functions and has been discussed elsewhere. Most solutions are found in terms of special functions, such as associated Lagrange or hypergeometric functions. They may be considered exact in the sense that they are known to any desired accuracy in principle. The new aspect developed here is to present scale-invariant solutions with zero resistivity that are self-similar in time. The time dependence is either a power law or an exponential factor, but since the geometry of the solution is self-similar in time we do not need to fix a time to study it. Several examples are discussed. Our results demonstrate (without the need to invoke any other mechanisms) X-shaped magnetic fields and (axially symmetric) magnetic spiral arms (both of which are well observed and documented) and predict reversing rotation measures in galaxy haloes (now observed in the CHANG-ES sample) as well as the fact that planar magnetic spirals are lifted into the galactic halo.

  2. RINGED ACCRETION DISKS: EQUILIBRIUM CONFIGURATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Pugliese, D.; Stuchlík, Z., E-mail: d.pugliese.physics@gmail.com, E-mail: zdenek.stuchlik@physics.cz [Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Faculty of Philosophy and Science, Silesian University in Opava, Bezručovo náměstí 13, CZ-74601 Opava (Czech Republic)

    2015-12-15

    We investigate a model of a ringed accretion disk, made up by several rings rotating around a supermassive Kerr black hole attractor. Each toroid of the ringed disk is governed by the general relativity hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. Properties of the tori can then be determined by an appropriately defined effective potential reflecting the background Kerr geometry and the centrifugal effects. The ringed disks could be created in various regimes during the evolution of matter configurations around supermassive black holes. Therefore, both corotating and counterrotating rings have to be considered as being a constituent of the ringed disk. We provide constraints on the model parameters for the existence and stability of various ringed configurations and discuss occurrence of accretion onto the Kerr black hole and possible launching of jets from the ringed disk. We demonstrate that various ringed disks can be characterized by a maximum number of rings. We present also a perturbation analysis based on evolution of the oscillating components of the ringed disk. The dynamics of the unstable phases of the ringed disk evolution seems to be promising in relation to high-energy phenomena demonstrated in active galactic nuclei.

  3. FASHIONABLY LATE? BUILDING UP THE MILKY WAY'S INNER HALO

    International Nuclear Information System (INIS)

    Morrison, Heather L.; Harding, Paul; Helmi, Amina

    2009-01-01

    Using a sample of 246 metal-poor stars (RR Lyraes, red giants, and red horizontal branch stars) which is remarkable for the accuracy of its six-dimensional kinematical data, we find, by examining the distribution of stellar orbital angular momenta, a new component for the local halo which has an axial ratio c/a ∼ 0.2, a similar flattening to the thick disk. It has a small prograde rotation but is supported by velocity anisotropy, and contains more intermediate-metallicity stars (with -1.5 < [Fe/H] < -1.0) than the rest of our sample. We suggest that this component was formed quite late, during or after the formation of the disk. It formed either from the gas that was accreted by the last major mergers experienced by the Galaxy, or by dynamical friction of massive infalling satellite(s) with the halo and possibly the stellar disk or thick disk. The remainder of the halo stars in our sample, which are less closely confined to the disk plane, exhibit a clumpy distribution in energy and angular momentum, suggesting that the early, chaotic conditions under which the inner halo formed were not violent enough to erase the record of their origins. The clumpy structure suggests that a relatively small number of progenitors were responsible for building up the inner halo, in line with theoretical expectations. We find a difference in mean binding energy between the RR Lyrae variables and the red giants in our sample, suggesting that more of the RR Lyraes in the sample belong to the outer halo, and that the outer halo may be somewhat younger, as first suggested by Searle and Zinn. We also find that the RR Lyrae mean rotation is more negative than the red giants, which is consistent with the recent result of Carollo et al. that the outer halo has a retrograde rotation and with the difference in kinematics seen between RR Lyraes and blue horizontal branch stars by Kinman et al. (2007).

  4. THE DATA REDUCTION PIPELINE FOR THE APACHE POINT OBSERVATORY GALACTIC EVOLUTION EXPERIMENT

    International Nuclear Information System (INIS)

    Nidever, David L.; Holtzman, Jon A.; Prieto, Carlos Allende; Mészáros, Szabolcs; Beland, Stephane; Bender, Chad; Desphande, Rohit; Bizyaev, Dmitry; Burton, Adam; García Pérez, Ana E.; Hearty, Fred R.; Majewski, Steven R.; Skrutskie, Michael F.; Sobeck, Jennifer S.; Wilson, John C.; Fleming, Scott W.; Muna, Demitri; Nguyen, Duy; Schiavon, Ricardo P.; Shetrone, Matthew

    2015-01-01

    The Apache Point Observatory Galactic Evolution Experiment (APOGEE), part of the Sloan Digital Sky Survey III, explores the stellar populations of the Milky Way using the Sloan 2.5-m telescope linked to a high resolution (R ∼ 22,500), near-infrared (1.51–1.70 μm) spectrograph with 300 optical fibers. For over 150,000 predominantly red giant branch stars that APOGEE targeted across the Galactic bulge, disks and halo, the collected high signal-to-noise ratio (>100 per half-resolution element) spectra provide accurate (∼0.1 km s −1 ) RVs, stellar atmospheric parameters, and precise (≲0.1 dex) chemical abundances for about 15 chemical species. Here we describe the basic APOGEE data reduction software that reduces multiple 3D raw data cubes into calibrated, well-sampled, combined 1D spectra, as implemented for the SDSS-III/APOGEE data releases (DR10, DR11 and DR12). The processing of the near-IR spectral data of APOGEE presents some challenges for reduction, including automated sky subtraction and telluric correction over a 3°-diameter field and the combination of spectrally dithered spectra. We also discuss areas for future improvement

  5. THE DATA REDUCTION PIPELINE FOR THE APACHE POINT OBSERVATORY GALACTIC EVOLUTION EXPERIMENT

    Energy Technology Data Exchange (ETDEWEB)

    Nidever, David L. [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Holtzman, Jon A. [New Mexico State University, Las Cruces, NM 88003 (United States); Prieto, Carlos Allende; Mészáros, Szabolcs [Instituto de Astrofísica de Canarias, Via Láctea s/n, E-38205 La Laguna, Tenerife (Spain); Beland, Stephane [Laboratory for Atmospheric and Space Sciences, University of Colorado at Boulder, Boulder, CO (United States); Bender, Chad; Desphande, Rohit [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Bizyaev, Dmitry [Apache Point Observatory and New Mexico State University, P.O. Box 59, sunspot, NM 88349-0059 (United States); Burton, Adam; García Pérez, Ana E.; Hearty, Fred R.; Majewski, Steven R.; Skrutskie, Michael F.; Sobeck, Jennifer S.; Wilson, John C. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904-4325 (United States); Fleming, Scott W. [Computer Sciences Corporation, 3700 San Martin Dr, Baltimore, MD 21218 (United States); Muna, Demitri [Department of Astronomy and the Center for Cosmology and Astro-Particle Physics, The Ohio State University, Columbus, OH 43210 (United States); Nguyen, Duy [Department of Astronomy and Astrophysics, University of Toronto, Toronto, Ontario, M5S 3H4 (Canada); Schiavon, Ricardo P. [Gemini Observatory, 670 N. A’Ohoku Place, Hilo, HI 96720 (United States); Shetrone, Matthew, E-mail: dnidever@umich.edu [University of Texas at Austin, McDonald Observatory, Fort Davis, TX 79734 (United States)

    2015-12-15

    The Apache Point Observatory Galactic Evolution Experiment (APOGEE), part of the Sloan Digital Sky Survey III, explores the stellar populations of the Milky Way using the Sloan 2.5-m telescope linked to a high resolution (R ∼ 22,500), near-infrared (1.51–1.70 μm) spectrograph with 300 optical fibers. For over 150,000 predominantly red giant branch stars that APOGEE targeted across the Galactic bulge, disks and halo, the collected high signal-to-noise ratio (>100 per half-resolution element) spectra provide accurate (∼0.1 km s{sup −1}) RVs, stellar atmospheric parameters, and precise (≲0.1 dex) chemical abundances for about 15 chemical species. Here we describe the basic APOGEE data reduction software that reduces multiple 3D raw data cubes into calibrated, well-sampled, combined 1D spectra, as implemented for the SDSS-III/APOGEE data releases (DR10, DR11 and DR12). The processing of the near-IR spectral data of APOGEE presents some challenges for reduction, including automated sky subtraction and telluric correction over a 3°-diameter field and the combination of spectrally dithered spectra. We also discuss areas for future improvement.

  6. QUANTIFYING KINEMATIC SUBSTRUCTURE IN THE MILKY WAY'S STELLAR HALO

    International Nuclear Information System (INIS)

    Xue Xiangxiang; Zhao Gang; Luo Ali; Rix, Hans-Walter; Bell, Eric F.; Koposov, Sergey E.; Kang, Xi; Liu, Chao; Yanny, Brian; Beers, Timothy C.; Lee, Young Sun; Bullock, James S.; Johnston, Kathryn V.; Morrison, Heather; Rockosi, Constance; Weaver, Benjamin A.

    2011-01-01

    We present and analyze the positions, distances, and radial velocities for over 4000 blue horizontal-branch (BHB) stars in the Milky Way's halo, drawn from SDSS DR8. We search for position-velocity substructure in these data, a signature of the hierarchical assembly of the stellar halo. Using a cumulative 'close pair distribution' as a statistic in the four-dimensional space of sky position, distance, and velocity, we quantify the presence of position-velocity substructure at high statistical significance among the BHB stars: pairs of BHB stars that are close in position on the sky tend to have more similar distances and radial velocities compared to a random sampling of these overall distributions. We make analogous mock observations of 11 numerical halo formation simulations, in which the stellar halo is entirely composed of disrupted satellite debris, and find a level of substructure comparable to that seen in the actually observed BHB star sample. This result quantitatively confirms the hierarchical build-up of the stellar halo through a signature in phase (position-velocity) space. In detail, the structure present in the BHB stars is somewhat less prominent than that seen in most simulated halos, quite possibly because BHB stars represent an older sub-population. BHB stars located beyond 20 kpc from the Galactic center exhibit stronger substructure than at r gc < 20 kpc.

  7. Halos and related structures

    DEFF Research Database (Denmark)

    Riisager, Karsten

    2013-01-01

    The halo structure originated from nuclear physics but is now encountered more widely. It appears in loosely bound, clustered systems where the spatial extension of the system is significantly larger than that of the binding potentials. A review is given on our current understanding of these stru......The halo structure originated from nuclear physics but is now encountered more widely. It appears in loosely bound, clustered systems where the spatial extension of the system is significantly larger than that of the binding potentials. A review is given on our current understanding...... of these structures, with an emphasis on how the structures evolve as more cluster components are added and on the experimental situation concerning halo states in light nuclei....

  8. HALO | Arts at CERN

    CERN Multimedia

    Caraban Gonzalez, Noemi

    2018-01-01

    In 2015, the artists participated in a research residency at CERN and began to work with data captured by ATLAS, one of the four detectors at the Large Hadron Collider (LHC) that sits in a cavern 100 metres below ground near the main site of CERN, in Meyrin (Switzerland). For Art Basel, they created HALO, an installation that surrounds visitors with data collected by the ATLAS experiment at the LHC. HALO consists of a 10 m wide cylinder defined by vertical piano wires, within which a 4-m tall screen displays particle collisions. The data also triggers hammers that strike the vertical wires and set up vibrations to create a truly multisensory experience. More info: https://arts.cern/event/unveiling-halo-art-basel

  9. Weighing halo nuclides

    International Nuclear Information System (INIS)

    Lunney, D.

    2009-01-01

    Weak binding energy is one of the fundamental criteria characterizing the unique properties of nuclear halos. As such, it must be known with great accuracy and is best obtained through direct mass measurements. The global mass market is now a competitive one. Of the many investment vehicles, the Penning trap has emerged as providing the best rate of return and reliability. We examine mass-market trends, highlighting the recent cases of interest. We also hazard a prediction for the halo futures market. (author)

  10. Star formation in the outskirts of disk galaxies

    NARCIS (Netherlands)

    Ferguson, AMN

    2002-01-01

    The far outer regions of galactic disks allow an important probe of both star formation and galaxy formation. I discuss how observations of HII regions in these low gas density, low metallicity environments can shed light on the physical processes which drive galactic star formation. The history of

  11. Astrophysical disks Collective and Stochastic Phenomena

    CERN Document Server

    Fridman, Alexei M; Kovalenko, Ilya G

    2006-01-01

    The book deals with collective and stochastic processes in astrophysical discs involving theory, observations, and the results of modelling. Among others, it examines the spiral-vortex structure in galactic and accretion disks , stochastic and ordered structures in the developed turbulence. It also describes sources of turbulence in the accretion disks, internal structure of disk in the vicinity of a black hole, numerical modelling of Be envelopes in binaries, gaseous disks in spiral galaxies with shock waves formation, observation of accretion disks in a binary system and mass distribution of luminous matter in disk galaxies. The editors adaptly brought together collective and stochastic phenomena in the modern field of astrophysical discs, their formation, structure, and evolution involving the methodology to deal with, the results of observation and modelling, thereby advancing the study in this important branch of astrophysics and benefiting Professional Researchers, Lecturers, and Graduate Students.

  12. Dissipative dark matter halos: The steady state solution. II.

    Science.gov (United States)

    Foot, R.

    2018-05-01

    Within the mirror dark matter model and dissipative dark matter models in general, halos around galaxies with active star formation (including spirals and gas-rich dwarfs) are dynamical: they expand and contract in response to heating and cooling processes. Ordinary type II supernovae (SNe) can provide the dominant heat source, which is possible if kinetic mixing interaction exists with strength ɛ ˜10-9- 10-10 . Dissipative dark matter halos can be modeled as a fluid governed by Euler's equations. Around sufficiently isolated and unperturbed galaxies the halo can relax to a steady state configuration, where heating and cooling rates locally balance and hydrostatic equilibrium prevails. These steady state conditions can be solved to derive the physical properties, including the halo density and temperature profiles, for model galaxies. Here, we consider idealized spherically symmetric galaxies within the mirror dark particle model, as in our earlier paper [Phys. Rev. D 97, 043012 (2018), 10.1103/PhysRevD.97.043012], but we assume that the local halo heating in the SN vicinity dominates over radiative sources. With this assumption, physically interesting steady state solutions arise which we compute for a representative range of model galaxies. The end result is a rather simple description of the dark matter halo around idealized spherically symmetric systems, characterized in principle by only one parameter, with physical properties that closely resemble the empirical properties of disk galaxies.

  13. Convergence properties of halo merger trees; halo and substructure merger rates across cosmic history

    Science.gov (United States)

    Poole, Gregory B.; Mutch, Simon J.; Croton, Darren J.; Wyithe, Stuart

    2017-12-01

    We introduce GBPTREES: an algorithm for constructing merger trees from cosmological simulations, designed to identify and correct for pathological cases introduced by errors or ambiguities in the halo finding process. GBPTREES is built upon a halo matching method utilizing pseudo-radial moments constructed from radially sorted particle ID lists (no other information is required) and a scheme for classifying merger tree pathologies from networks of matches made to-and-from haloes across snapshots ranging forward-and-backward in time. Focusing on SUBFIND catalogues for this work, a sweep of parameters influencing our merger tree construction yields the optimal snapshot cadence and scanning range required for converged results. Pathologies proliferate when snapshots are spaced by ≲0.128 dynamical times; conveniently similar to that needed for convergence of semi-analytical modelling, as established by Benson et al. Total merger counts are converged at the level of ∼5 per cent for friends-of-friends (FoF) haloes of size np ≳ 75 across a factor of 512 in mass resolution, but substructure rates converge more slowly with mass resolution, reaching convergence of ∼10 per cent for np ≳ 100 and particle mass mp ≲ 109 M⊙. We present analytic fits to FoF and substructure merger rates across nearly all observed galactic history (z ≤ 8.5). While we find good agreement with the results presented by Fakhouri et al. for FoF haloes, a slightly flatter dependence on merger ratio and increased major merger rates are found, reducing previously reported discrepancies with extended Press-Schechter estimates. When appropriately defined, substructure merger rates show a similar mass ratio dependence as FoF rates, but with stronger mass and redshift dependencies for their normalization.

  14. Spectrum of Sprite Halos

    Czech Academy of Sciences Publication Activity Database

    Gordillo-Vázquez, F.J.; Luque, A.; Šimek, Milan

    2011-01-01

    Roč. 116, č. 9 (2011), A09319-A09319 ISSN 0148-0227 Institutional research plan: CEZ:AV0Z20430508 Keywords : sprites * halos * spectroscopy Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.021, year: 2011 http://www.trappa.iaa.es/sites/all/files/papers/isi_journal_papers/2011/2011_08.pdf

  15. THE MAGELLANIC STREAM: BREAK-UP AND ACCRETION ONTO THE HOT GALACTIC CORONA

    Energy Technology Data Exchange (ETDEWEB)

    Tepper-García, Thor; Bland-Hawthorn, Joss [Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006 (Australia); Sutherland, Ralph S. [Mount Stromlo Observatory, Australia National University, Woden, ACT 2611 (Australia)

    2015-11-10

    The Magellanic H i Stream (≈2 × 10{sup 9} M{sub ⊙} [d/55 kpc]{sup 2}) encircling the Galaxy at a distance d is arguably the most important tracer of what happens to gas accreting onto a disk galaxy. Recent observations reveal that the Stream’s mass is in fact dominated (3:1) by its ionized component. Here we revisit the origin of the mysterious Hα recombination emission observed along much of its length that is overly bright (∼150–200 mR) for the known Galactic ultraviolet (UV) background (≈20–40 mR [d/55 kpc]{sup −2}). In an earlier model, we proposed that a slow shock cascade was operating along the Stream due to its interaction with the extended Galactic hot corona. We find that for a smooth coronal density profile, this model can explain the bright Hα emission if the coronal density satisfies 2 × 10{sup −4} < (n/cm{sup −3}) < 4 × 10{sup −4} at d = 55 kpc. But in view of updated parameters for the Galactic halo and mounting evidence that most of the Stream must lie far beyond the Magellanic Clouds (d > 55 kpc), we revisit the shock cascade model in detail. At lower densities, the H i gas is broken down by the shock cascade but mostly mixes with the hot corona without significant recombination. At higher densities, the hot coronal mass (including the other baryonic components) exceeds the baryon budget of the Galaxy. If the Hα emission arises from the shock cascade, the upper limit on the smooth coronal density constrains the Stream’s mean distance to ≲75 kpc. If, as some models indicate, the Stream is even further out, either the shock cascade is operating in a regime where the corona is substantially mass-loaded with recent gas debris, or an entirely different ionization mechanism is responsible.

  16. Nearby stars of the Galactic disc and halo - IV

    Science.gov (United States)

    Fuhrmann, Klaus

    2008-02-01

    The Milky Way Galaxy has an age of about 13 billion years. Solar-type stars evolve all the long way to the realm of degenerate objects on essentially this time-scale. This, as well as the particular advantage that the Sun offers through reliable differential spectroscopic analyses, render these stars the ideal tracers for the fossil record of our parent spiral. Astrophysics is a science that is known to be notoriously plagued by selection effects. The present work - with a major focus in this fourth contribution on model atmosphere analyses of spectroscopic binaries and multiple star systems - aims at a volume-complete sample of about 300 nearby F-, G-, and K-type stars that particularly avoids any kinematical or chemical pre-selection from the outset. It thereby provides an unbiased record of the local stellar populations - the ancient thick disc and the much younger thin disc. On this base, the detailed individual scrutiny of the long-lived stars of both populations unveils the thick disc as a single-burst component with a local normalization of no less than 20 per cent. This enormous fraction, combined with its much larger scaleheight, implies a mass for the thick disc that is comparable to that of the thin disc. On account of its completely different mass-to-light ratio the thick disc thereby becomes the dark side of the Milky Way, an ideal major source for baryonic dark matter. This massive, ancient population consequently challenges any gradual build-up scenario for our parent spiral. Even more, on the supposition that the Galaxy is not unusual, the thick disc - as it emerges from this unbiased spectroscopic work - particularly challenges the hierarchical cold-dark-matter-dominated formation picture for spiral galaxies in general.

  17. Not enough stellar mass objects to fill the Galactic halo?

    CERN Document Server

    Milshtein, A I

    2000-01-01

    The Universe contains a lot more than meets the eye. Sophisticated experiments search diligently for this invisible dark matter. Here the author describes the latest results to emerge from the microlensing technique. (0 refs).

  18. HOT GAS HALOS IN EARLY-TYPE FIELD GALAXIES

    International Nuclear Information System (INIS)

    Mulchaey, John S.; Jeltema, Tesla E.

    2010-01-01

    We use Chandra and XMM-Newton to study the hot gas content in a sample of field early-type galaxies. We find that the L X -L K relationship is steeper for field galaxies than for comparable galaxies in groups and clusters. The low hot gas content of field galaxies with L K ∼ * suggests that internal processes such as supernovae-driven winds or active galactic nucleus feedback expel hot gas from low-mass galaxies. Such mechanisms may be less effective in groups and clusters where the presence of an intragroup or intracluster medium can confine outflowing material. In addition, galaxies in groups and clusters may be able to accrete gas from the ambient medium. While there is a population of L K ∼ * galaxies in groups and clusters that retain hot gas halos, some galaxies in these rich environments, including brighter galaxies, are largely devoid of hot gas. In these cases, the hot gas halos have likely been removed via ram pressure stripping. This suggests a very complex interplay between the intragroup/intracluster medium and hot gas halos of galaxies in rich environments, with the ambient medium helping to confine or even enhance the halos in some cases and acting to remove gas in others. In contrast, the hot gas content of more isolated galaxies is largely a function of the mass of the galaxy, with more massive galaxies able to maintain their halos, while in lower mass systems the hot gas escapes in outflowing winds.

  19. A self-consistent model of the three-phase interstellar medium in disk galaxies

    International Nuclear Information System (INIS)

    Wang, Z.

    1989-01-01

    In the present study the author analyzes a number of physical processes concerning velocity and spatial distributions, ionization structure, pressure variation, mass and energy balance, and equation of state of the diffuse interstellar gas in a three phase model. He also considers the effects of this model on the formation of molecular clouds and the evolution of disk galaxies. The primary purpose is to incorporate self-consistently the interstellar conditions in a typical late-type galaxy, and to relate these to various observed large-scale phenomena. He models idealized situations both analytically and numerically, and compares the results with observational data of the Milky Way Galaxy and other nearby disk galaxies. Several main conclusions of this study are: (1) the highly ionized gas found in the lower Galactic halo is shown to be consistent with a model in which the gas is photoionized by the diffuse ultraviolet radiation; (2) in a quasi-static and self-regulatory configuration, the photoelectric effects of interstellar grains are primarily responsible for heating the cold (T ≅ 100K) gas; the warm (T ≅ 8,000K) gas may be heated by supernova remnants and other mechanisms; (3) the large-scale atomic and molecular gas distributions in a sample of 15 disk galaxies can be well explained if molecular cloud formation and star formation follow a modified Schmidt Law; a scaling law for the radial gas profiles is proposed based on this model, and it is shown to be applicable to the nearby late-type galaxies where radio mapping data is available; for disk galaxies of earlier type, the effect of their massive central bulges may have to be taken into account

  20. Galactic bulges

    CERN Document Server

    Peletier, Reynier; Gadotti, Dimitri

    2016-01-01

    This book consists of invited reviews on Galactic Bulges written by experts in the field. A central point of the book is that, while in the standard picture of galaxy formation a significant amount of the baryonic mass is expected to reside in classical bulges, the question what is the fraction of galaxies with no classical bulges in the local Universe has remained open. The most spectacular example of a galaxy with no significant classical bulge is the Milky Way. The reviews of this book attempt to clarify the role of the various types of bulges during the mass build-up of galaxies, based on morphology, kinematics, and stellar populations, and connecting their properties at low and high redshifts. The observed properties are compared with the predictions of the theoretical models, accounting for the many physical processes leading to the central mass concentration and their destruction in galaxies. This book serves as an entry point for PhD students and non-specialists and as a reference work for researchers...

  1. Tracking the LHC halo

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    In the LHC, beams of 25-ns-spaced proton bunches travel at almost the speed of light and pass through many different devices installed along the ring that monitor their properties. During their whirling motion, beam particles might interact with the collimation instrumentation or with residual gas in the vacuum chambers and this creates the beam halo – an annoying source of background for the physics data. Newly installed CMS sub-detectors are now able to monitor it.   The Beam Halo Monitors (BHM) are installed around the CMS rotating shielding. The BHM are designed and built by University of Minnesota, CERN, Princeton University, INFN Bologna and the National Technical University of Athens. (Image: Andrea Manna). The Beam Halo Monitor (BHM) is a set of 20 Cherenkov radiators – 10-cm-long quartz crystals – installed at each end of the huge CMS detector. Their design goal is to measure the particles that can cause the so-called “machine-induced...

  2. The MACHO Project Sample of Galactic Bulge High-Amplitude Scuti Stars: Pulsation Behavior and Stellar Properties

    International Nuclear Information System (INIS)

    Bennett, D.P.; Cook, K.H.; Freeman, K.C.; Geha, M.; Griest, K.; Lehner, M.J.; Marshall, S.L.; McNamara, B.J.; Minniti, D.; Nelson, C.; Peterson, B.A.; Popowski, P.; Pratt, M.R.; Quinn, P.J.; Rodgers, A.W.; Sutherland, W.; Templeton, M.R.; Vandehei, T.; Welch, D.L.

    1999-01-01

    We have detected 90 objects with periods and lightcurve structure similar to those of field(delta) Scuti stars, using the Massive Compact Halo Object (MACHO) Project database of Galactic bulge photometry. If we assume similar extinction values for all candidates and absolute magnitudes similar to those of other field high-amplitude(delta) Scuti stars (HADS), the majority of these objects lie in or near the Galactic bulge. At least two of these objects are likely foreground(delta) Scuti stars, one of which may be an evolved nonradial pulsator, similar to other evolved, disk-population(delta) Scuti stars. We have analyzed the light curves of these objects and find that they are similar to the light curves of field(delta) Scuti stars and the(delta) Scuti stars found by the Optical Gravitational Lens Experiment (OGLE). However, the amplitude distribution of these sources lies between those of low- and high-amplitude(delta) Scuti stars, which suggests that they may be an intermediate population. We have found nine double-mode HADS with frequency ratios ranging from 0.75 to 0.79, four probable double- and multiple-mode objects, and another four objects with marginal detections of secondary modes. The low frequencies (5-14 cycles d(sup -1)) and the observed period ratios of(approx)0.77 suggest that the majority of these objects are evolved stars pulsating in fundamental or first overtone radial modes

  3. The MACHO Project Sample of Galactic Bulge High-Amplitude {delta} Scuti Stars: Pulsation Behavior and Stellar Properties

    Energy Technology Data Exchange (ETDEWEB)

    Alcock, C.; Allsman, R. A.; Alves, D. R.; Axelrod, T. S.; Becker, A. C.; Bennett, D. P.; Cook, K. H.; Freeman, K. C.; Geha, M.; Griest, K. (and others)

    2000-06-20

    We have detected 90 objects with periods and light-curve structures similar to those of field {delta} Scuti stars using the Massive Compact Halo Object (MACHO) Project database of Galactic bulge photometry. If we assume similar extinction values for all candidates and absolute magnitudes similar to those of other field high-amplitude {delta} Scuti stars (HADS), the majority of these objects lie in or near the Galactic bulge. At least two of these objects are likely foreground {delta} Scuti stars, one of which may be an evolved nonradial pulsator, similar to other evolved, disk-population {delta} Scuti stars. We have analyzed the light curves of these objects and find that they are similar to the light curves of field {delta} Scuti stars and the {delta} Scuti stars found by the Optical Gravitational Lens Experiment (OGLE). However, the amplitude distribution of these sources lies between those of low- and high-amplitude {delta} Scuti stars, which suggests that they may be an intermediate population. We have found nine double-mode HADS with frequency ratios ranging from 0.75 to 0.79, four probable double- and multiple-mode objects, and another four objects with marginal detections of secondary modes. The low frequencies (5-14 cycles day-1) and the observed period ratios of {approx}0.77 suggest that the majority of these objects are evolved stars pulsating in fundamental or first overtone radial modes. (c) 2000 The American Astronomical Society.

  4. Formation of Tidally Induced Bars in Galactic Flybys: Prograde versus Retrograde Encounters

    Science.gov (United States)

    Łokas, Ewa L.

    2018-04-01

    Bars in disk galaxies can be formed by interactions with other systems, including those of comparable mass. It has long been established that the effect of such interactions on galaxy morphology depends strongly on the orbital configuration, in particular the orientation of the intrinsic spin of the galactic disk with respect to its orbital angular momentum. Prograde encounters modify the morphology strongly, including the formation of tidally induced bars, while retrograde flybys should have little effect on morphology. Recent works on the subject reached conflicting conclusions, one using the impulse approximation and claiming no dependence on this angle in the properties of tidal bars. To resolve the controversy, we performed self-consistent N-body simulations of hyperbolic encounters between two identical Milky Way-like galaxies assuming different velocities and impact parameters, with one of the galaxies on a prograde and the other on a retrograde orbit. The galaxies were initially composed of an exponential stellar disk and an NFW dark halo, and they were stable against bar formation in isolation for 3 Gyr. We find that strong tidally induced bars form only in galaxies on prograde orbits. For smaller impact parameters and lower relative velocities, the bars are stronger and have lower pattern speeds. Stronger bars undergo extended periods of buckling instability that thicken their vertical structure. The encounters also lead to the formation of two-armed spirals with strength inversely proportional to the strength of the bars. We conclude that proper modeling of prograde and retrograde encounters cannot rely on the simplest impulse approximation.

  5. LSS-GAC - A LAMOST Spectroscopic Survey of the Galactic Anti-center

    Science.gov (United States)

    Liu, X.-W.; Yuan, H.-B.; Huo, Z.-Y.; Deng, L.-C.; Hou, J.-L.; Zhao, Y.-H.; Zhao, G.; Shi, J.-R.; Luo, A.-L.; Xiang, M.-S.; Zhang, H.-H.; Huang, Y.; Zhang, H.-W.

    2014-01-01

    As a major component of the LAMOST Galactic surveys, the LAMOST Spectroscopic Survey of the Galactic Anti-center (LSS-GAC) will survey a significant volume of the Galactic thin/thick disks and halo in a contiguous sky area of ~3,400 sq.deg., centered on the Galactic anti-center (|b| ~ 3 M stars of all colors, uniformly and randomly selected from (r, g - r) and (r, r - i) Hess diagrams obtained from a CCD imaging photometric survey of ~5,400 sq.deg. with the Xuyi 1.04/1.20 m Schmidt Telescope, ranging from r = 14.0 to a limiting magnitude of r = 17.8 (18.5 for limited fields). The survey will deliver spectral classification, radial velocity (V r) and stellar parameters (effective temperature (T eff), surface gravity (log g) and metallicity [Fe/H]) for millions of Galactic stars. Together with Gaia which will provide accurate distances and tangential velocities for a billion stars, the LSS-GAC will yield a unique data set to study the stellar populations, chemical composition, kinematics and structure of the disks and their interface with the halo, identify streams of debris of tidally disrupted dwarf galaxies and clusters, probe the gravitational potential and dark matter distribution, map the 3D distribution of interstellar dust extinction, search for rare objects (e.g. extremely metal-poor or hyper-velocity stars), and ultimately advance our understanding of the assemblage of the Milky Way and other galaxies and the origin of regularity and diversity of their properties. The survey was initiated in the fall of 2012 and expected to complete in the spring of 2017. Hitherto, about 0.4 M spectra of S/N(λ7450) >= 10 per pixel have been accumulated. In addition, bright nights have been used to target stars brighter than 14 mag and have so far generated over 0.4 M spectra, yielding an excellent sample of local stars to probe the solar neighborhood. LSP3, a set of pipelines tailored to the need of LSS-GAC, for spectral flux-calibration, and radial velocity and stellar

  6. Halo Star Lithium Depletion

    International Nuclear Information System (INIS)

    Pinsonneault, M. H.; Walker, T. P.; Steigman, G.; Narayanan, Vijay K.

    1999-01-01

    The depletion of lithium during the pre-main-sequence and main-sequence phases of stellar evolution plays a crucial role in the comparison of the predictions of big bang nucleosynthesis with the abundances observed in halo stars. Previous work has indicated a wide range of possible depletion factors, ranging from minimal in standard (nonrotating) stellar models to as much as an order of magnitude in models that include rotational mixing. Recent progress in the study of the angular momentum evolution of low-mass stars permits the construction of theoretical models capable of reproducing the angular momentum evolution of low-mass open cluster stars. The distribution of initial angular momenta can be inferred from stellar rotation data in young open clusters. In this paper we report on the application of these models to the study of lithium depletion in main-sequence halo stars. A range of initial angular momenta produces a range of lithium depletion factors on the main sequence. Using the distribution of initial conditions inferred from young open clusters leads to a well-defined halo lithium plateau with modest scatter and a small population of outliers. The mass-dependent angular momentum loss law inferred from open cluster studies produces a nearly flat plateau, unlike previous models that exhibited a downward curvature for hotter temperatures in the 7Li-Teff plane. The overall depletion factor for the plateau stars is sensitive primarily to the solar initial angular momentum used in the calibration for the mixing diffusion coefficients. Uncertainties remain in the treatment of the internal angular momentum transport in the models, and the potential impact of these uncertainties on our results is discussed. The 6Li/7Li depletion ratio is also examined. We find that the dispersion in the plateau and the 6Li/7Li depletion ratio scale with the absolute 7Li depletion in the plateau, and we use observational data to set bounds on the 7Li depletion in main-sequence halo

  7. THE PECULIAR CHEMICAL INVENTORY OF NGC 2419: AN EXTREME OUTER HALO 'GLOBULAR CLUSTER'

    International Nuclear Information System (INIS)

    Cohen, Judith G.; Kirby, Evan N.; Huang Wenjin

    2011-01-01

    NGC 2419 is a massive outer halo Galactic globular cluster (GC) whose stars have previously been shown to have somewhat peculiar abundance patterns. We have observed seven luminous giants that are members of NGC 2419 with Keck/HIRES at reasonable signal-to-noise ratio. One of these giants is very peculiar, with an extremely low [Mg/Fe] and high [K/Fe] but normal abundances of most other elements. The abundance pattern does not match the nucleosynthetic yields of any supernova model. The other six stars show abundance ratios typical of inner halo Galactic GCs, represented here by a sample of giants in the nearby GC M30. Although our measurements show that NGC 2419 is unusual in some respects, its bulk properties do not provide compelling evidence for a difference between inner and outer halo GCs.

  8. Tune-Based Halo Diagnostics

    International Nuclear Information System (INIS)

    Cameron, Peter

    2003-01-01

    Tune-based halo diagnostics can be divided into two categories -- diagnostics for halo prevention, and diagnostics for halo measurement. Diagnostics for halo prevention are standard fare in accumulators, synchrotrons, and storage rings, and again can be divided into two categories -- diagnostics to measure the tune distribution (primarily to avoid resonances), and diagnostics to identify instabilities (which will not be discussed here). These diagnostic systems include kicked (coherent) tune measurement, phase-locked loop (PLL) tune measurement, Schottky tune measurement, beam transfer function (BTF) measurements, and measurement of transverse quadrupole mode envelope oscillations. We refer briefly to tune diagnostics used at RHIC and intended for the SNS, and then present experimental results. Tune-based diagnostics for halo measurement (as opposed to prevention) are considerably more difficult. We present one brief example of tune-based halo measurement

  9. Decoding Galactic Merger Histories

    Directory of Open Access Journals (Sweden)

    Eric F. Bell

    2017-12-01

    Full Text Available Galaxy mergers are expected to influence galaxy properties, yet measurements of individual merger histories are lacking. Models predict that merger histories can be measured using stellar halos and that these halos can be quantified using observations of resolved stars along their minor axis. Such observations reveal that Milky Way-mass galaxies have a wide range of stellar halo properties and show a correlation between their stellar halo masses and metallicities. This correlation agrees with merger-driven models where stellar halos are formed by satellite galaxy disruption. In these models, the largest accreted satellite dominates the stellar halo properties. Consequently, the observed diversity in the stellar halos of Milky Way-mass galaxies implies a large range in the masses of their largest merger partners. In particular, the Milky Way’s low mass halo implies an unusually quiet merger history. We used these measurements to seek predicted correlations between the bulge and central black hole (BH mass and the mass of the largest merger partner. We found no significant correlations: while some galaxies with large bulges and BHs have large stellar halos and thus experienced a major or minor merger, half have small stellar halos and never experienced a significant merger event. These results indicate that bulge and BH growth is not solely driven by merger-related processes.

  10. Island universes structure and evolution of disk galaxies

    CERN Document Server

    DE JONG, R. S

    2007-01-01

    This book contains an up-to-date review of the structure and evolution of disk galaxies from both the observational and theoretical point of view. The book is the proceedings of the "Island Universes" conference held at the island of Terschelling, The Netherlands in July 2005, which attracted about 130 experts and students in the field. The conference was organized as a tribute to Dr. Piet C. van der Kruit for receiving the honorary Jacobus C. Kapteyn Professorship in Astronomy. The eight topical themes discussed at the meeting are reflected in these proceedings: 1) Properties of Stellar Disks, 2) Kinematics and Dynamics of Disk Galaxies, 3) Bars, Spiral Structure, and Secular Evolution in Disk Galaxies, 4) The Outskirts and Environment of Disk Galaxies, 5) Interstellar Matter, 6) (Evolution of) Star Formation in Galactic Disks, 7) Disk Galaxies through Cosmic Time, and 8) Formation Models of Disk Galaxies. These proceedings are concluded with a conference summary reflecting on the most significant recent pro...

  11. The angular power spectrum of the diffuse gamma-ray background as a probe of Galactic dark matter substructure

    OpenAIRE

    Siegal-Gaskins, Jennifer M.

    2009-01-01

    Dark matter annihilation in Galactic substructure produces diffuse gamma-ray emission of remarkably constant intensity across the sky, and in general this signal dominates over the smooth halo signal at angles greater than a few tens of degrees from the Galactic Center. The large-scale isotropy of the emission from substructure suggests that it may be difficult to extract this Galactic dark matter signal from the extragalactic gamma-ray background. I show that dark matter substructure induces...

  12. The DiskMass Survey. II. Error Budget

    Science.gov (United States)

    Bershady, Matthew A.; Verheijen, Marc A. W.; Westfall, Kyle B.; Andersen, David R.; Swaters, Rob A.; Martinsson, Thomas

    2010-06-01

    We present a performance analysis of the DiskMass Survey. The survey uses collisionless tracers in the form of disk stars to measure the surface density of spiral disks, to provide an absolute calibration of the stellar mass-to-light ratio (Υ_{*}), and to yield robust estimates of the dark-matter halo density profile in the inner regions of galaxies. We find that a disk inclination range of 25°-35° is optimal for our measurements, consistent with our survey design to select nearly face-on galaxies. Uncertainties in disk scale heights are significant, but can be estimated from radial scale lengths to 25% now, and more precisely in the future. We detail the spectroscopic analysis used to derive line-of-sight velocity dispersions, precise at low surface-brightness, and accurate in the presence of composite stellar populations. Our methods take full advantage of large-grasp integral-field spectroscopy and an extensive library of observed stars. We show that the baryon-to-total mass fraction ({F}_bar) is not a well-defined observational quantity because it is coupled to the halo mass model. This remains true even when the disk mass is known and spatially extended rotation curves are available. In contrast, the fraction of the rotation speed supplied by the disk at 2.2 scale lengths (disk maximality) is a robust observational indicator of the baryonic disk contribution to the potential. We construct the error budget for the key quantities: dynamical disk mass surface density (Σdyn), disk stellar mass-to-light ratio (Υ^disk_{*}), and disk maximality ({F}_{*,max}^disk≡ V^disk_{*,max}/ V_c). Random and systematic errors in these quantities for individual galaxies will be ~25%, while survey precision for sample quartiles are reduced to 10%, largely devoid of systematic errors outside of distance uncertainties.

  13. Galactic synchrotron emission from WIMPs at radio frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Fornengo, Nicolao; Regis, Marco [Dipartimento di Fisica Teorica, Università di Torino, Istituto Nazionale di Fisica Nucleare, via P. Giuria 1, I-10125 Torino (Italy); Lineros, Roberto A.; Taoso, Marco, E-mail: fornengo@to.infn.it, E-mail: rlineros@ific.uv.es, E-mail: regis@to.infn.it, E-mail: taoso@ific.uv.es [IFIC, CSIC-Universidad de Valencia, Ed. Institutos, Apdo. Correos 22085, E-46071 Valencia (Spain)

    2012-01-01

    Dark matter annihilations in the Galactic halo inject relativistic electrons and positrons which in turn generate a synchrotron radiation when interacting with the galactic magnetic field. We calculate the synchrotron flux for various dark matter annihilation channels, masses, and astrophysical assumptions in the low-frequency range and compare our results with radio surveys from 22 MHz to 1420 MHz. We find that current observations are able to constrain particle dark matter with ''thermal'' annihilation cross-sections, i.e. (σv) = 3 × 10{sup −26} cm{sup 3} s{sup −1}, and masses M{sub DM}∼<10 GeV. We discuss the dependence of these bounds on the astrophysical assumptions, namely galactic dark matter distribution, cosmic rays propagation parameters, and structure of the galactic magnetic field. Prospects for detection in future radio surveys are outlined.

  14. Galactic synchrotron emission from WIMPs at radio frequencies

    International Nuclear Information System (INIS)

    Fornengo, Nicolao; Regis, Marco; Lineros, Roberto A.; Taoso, Marco

    2012-01-01

    Dark matter annihilations in the Galactic halo inject relativistic electrons and positrons which in turn generate a synchrotron radiation when interacting with the galactic magnetic field. We calculate the synchrotron flux for various dark matter annihilation channels, masses, and astrophysical assumptions in the low-frequency range and compare our results with radio surveys from 22 MHz to 1420 MHz. We find that current observations are able to constrain particle dark matter with ''thermal'' annihilation cross-sections, i.e. (σv) = 3 × 10 −26 cm 3 s −1 , and masses M DM ∼<10 GeV. We discuss the dependence of these bounds on the astrophysical assumptions, namely galactic dark matter distribution, cosmic rays propagation parameters, and structure of the galactic magnetic field. Prospects for detection in future radio surveys are outlined

  15. Diffuse interstellar gas in disk galaxies

    International Nuclear Information System (INIS)

    Vladilo, G.

    1989-01-01

    The physical properties of the diffuse gas in our Galaxy are reviewed and considered as a starting point for interstellar (IS) studies of disk galaxies. Attention is focussed on the atomic and ionic component, detected through radio, optical, ultraviolet (UV) and X-ray observations. The cooling and heating processes in the IS gas are briefly recalled in order to introduce current models of disk and halo gas. Observations of nearby galaxies critical to test IS models are considered, including 21-cm surveys, optical and UV absorptions of bright, extragalactic sources, and X-ray emission from hot halos. Finally, further steps necessary to develop a global model for the structure and evolution of the interstellar medium are indicated. (author)

  16. The first all-sky view of the Milky Way stellar halo with Gaia+2MASS RR Lyrae

    Science.gov (United States)

    Iorio, G.; Belokurov, V.; Erkal, D.; Koposov, S. E.; Nipoti, C.; Fraternali, F.

    2018-02-01

    We exploit the first Gaia data release to study the properties of the Galactic stellar halo as traced by RR Lyrae. We demonstrate that it is possible to select a pure sample of RR Lyrae using only photometric information available in the Gaia+2MASS catalogue. The final sample contains about 21 600 RR Lyrae covering an unprecedented fraction ( ˜ 60 per cent) of the volume of the Galactic inner halo (R < 28 kpc). We study the morphology of the stellar halo by analysing the RR Lyrae distribution with parametric and non-parametric techniques. Taking advantage of the uniform all-sky coverage, we test halo models more sophisticated than usually considered in the literature, such as those with varying flattening, tilts and/or offset of the halo with respect to the Galactic disc. A consistent picture emerges: the inner halo is well reproduced by a smooth distribution of stars settled on triaxial density ellipsoids. The shortest axis is perpendicular to the Milky Way's disc, while the longest axis forms an angle of ˜70° with the axis connecting the Sun and the Galactic Centre. The elongation along the major axis is mild (p = 1.27), and the vertical flattening is shown to evolve from a squashed state with q ≈ 0.57 in the centre to a more spherical q ≈ 0.75 at the outer edge of our data set. Within the radial range probed, the density profile of the stellar halo is well approximated by a single power law with exponent α = -2.96. We do not find evidence of tilt or offset of the halo with respect to the Galaxy's disc.

  17. Disc-halo interactions in ΛCDM

    Science.gov (United States)

    Bauer, Jacob S.; Widrow, Lawrence M.; Erkal, Denis

    2018-05-01

    We present a new method for embedding a stellar disc in a cosmological dark matter halo and provide a worked example from a Λ cold dark matter zoom-in simulation. The disc is inserted into the halo at a redshift z = 3 as a zero-mass rigid body. Its mass and size are then increased adiabatically while its position, velocity, and orientation are determined from rigid-body dynamics. At z = 1, the rigid disc (RD) is replaced by an N-body disc whose particles sample a three-integral distribution function (DF). The simulation then proceeds to z = 0 with live disc (LD) and halo particles. By comparison, other methods assume one or more of the following: the centre of the RD during the growth phase is pinned to the minimum of the halo potential, the orientation of the RD is fixed, or the live N-body disc is constructed from a two rather than three-integral DF. In general, the presence of a disc makes the halo rounder, more centrally concentrated, and smoother, especially in the innermost regions. We find that methods in which the disc is pinned to the minimum of the halo potential tend to overestimate the amount of adiabatic contraction. Additionally, the effect of the disc on the subhalo distribution appears to be rather insensitive to the disc insertion method. The LD in our simulation develops a bar that is consistent with the bars seen in late-type spiral galaxies. In addition, particles from the disc are launched or `kicked up' to high galactic latitudes.

  18. Exploring the Local Milky Way: M Dwarfs as Tracers of Galactic Populations

    National Research Council Canada - National Science Library

    Bochanski, John J; Munn, Jeffrey A; Hawley, Suzanne L; West, Andrew A; Covey, Kevin R; Schneider, Donald P

    2007-01-01

    We have assembled a spectroscopic sample of low-mass dwarfs observed as part of the Sloan Digital Sky Survey along one Galactic sight line, designed to investigate the observable properties of the thin and thick disks. This sample...

  19. Does the Galactic Bulge Have Fewer Planets?

    Science.gov (United States)

    Kohler, Susanna

    2016-12-01

    The Milky Ways dense central bulge is a very different environment than the surrounding galactic disk in which we live. Do the differences affect the ability of planets to form in the bulge?Exploring Galactic PlanetsSchematic illustrating how gravitational microlensing by an extrasolar planet works. [NASA]Planet formation is a complex process with many aspects that we dont yet understand. Do environmental properties like host star metallicity, the density of nearby stars, or the intensity of the ambient radiation field affect the ability of planets to form? To answer these questions, we will ultimately need to search for planets around stars in a large variety of different environments in our galaxy.One way to detect recently formed, distant planets is by gravitational microlensing. In this process, light from a distant source star is bent by a lens star that is briefly located between us and the source. As the Earth moves, this momentary alignment causes a blip in the sources light curve that we can detect and planets hosted by the lens star can cause an additional observable bump.Artists impression of the Milky Way galaxy. The central bulge is much denserthan the surroundingdisk. [ESO/NASA/JPL-Caltech/M. Kornmesser/R. Hurt]Relative AbundancesMost source stars reside in the galactic bulge, so microlensing events can probe planetary systems at any distance between the Earth and the galactic bulge. This means that planet detections from microlensing could potentially be used to measure the relative abundances of exoplanets in different parts of our galaxy.A team of scientists led by Matthew Penny, a Sagan postdoctoral fellow at Ohio State University, set out to do just that. The group considered a sample of 31 exoplanetary systems detected by microlensing and asked the following question: are the planet abundances in the galactic bulge and the galactic disk the same?A Paucity of PlanetsTo answer this question, Penny and collaborators derived the expected

  20. THE GALACTIC POTENTIAL AND THE ASYMMETRIC DISTRIBUTION OF HYPERVELOCITY STARS

    International Nuclear Information System (INIS)

    Perets, Hagai B.; Alexander, Tal; Wu Xufen; Zhao Hongsheng; Famaey, Benoit; Gentile, Gianfranco

    2009-01-01

    In recent years several hypervelocity stars (HVSs) have been observed in the halo of our Galaxy. Such HVSs have possibly been ejected from the Galactic center and then propagated in the Galactic potential up to their current position. The recent survey for candidate HVSs show an asymmetry in the kinematics of candidate HVSs (position and velocity vectors), where more outgoing stars than ingoing stars (i.e., positive Galactocentric velocities versus negative ones) are observed. We show that such kinematic asymmetry, which is likely due to the finite lifetime of the stars and Galactic potential structure, could be used in a novel method to probe and constrain the Galactic potential, identify the stellar type of the stars in the survey and estimate the number of HVSs. Kinematics-independent identification of the stellar types of the stars in such surveys (e.g., spectroscopic identification) could further improve these results. We find that the observed asymmetry between ingoing and outgoing stars favors specific Galactic potential models. It also implies a lower limit of ∼54 ± 8 main-sequence HVSs in the survey sample (∼>648 ± 96 in the Galaxy), assuming that all of the MS stars in the survey originate from the GC. The other stars in the survey are likely to be hot blue horizontal branch stars born in the halo rather than stars ejected from the GC.

  1. The puzzling assembly of the Milky Way halo – contributions from dwarf Spheroidals and globular clusters

    Directory of Open Access Journals (Sweden)

    Lépine S.

    2012-02-01

    Full Text Available While recent sky surveys have uncovered large numbers of ever fainter Milky Way satellites, their classification as star clusters, low-luminosity galaxies, or tidal overdensities remains often unclear. Likewise, their contributions to the build-up of the halo is yet debated. In this contribution we will discuss the current knowledge of the stellar populations and chemo-dynamics in these puzzling satellites, with a particular focus on dwarf spheroidal galaxies and the globular clusters in the outer Galactic halo. Also the question of whether some of the outermost halo objects are dynamically associated with the (Milky Way halo at all is addressed in terms of proper measurements in the remote Leo I and II dwarf galaxies.

  2. AXIAL RATIO OF EDGE-ON SPIRAL GALAXIES AS A TEST FOR BRIGHT RADIO HALOS

    International Nuclear Information System (INIS)

    Singal, J.; Jones, E.; Dunlap, H.; Kogut, A.

    2015-01-01

    We use surface brightness contour maps of nearby edge-on spiral galaxies to determine whether extended bright radio halos are common. In particular, we test a recent model of the spatial structure of the diffuse radio continuum by Subrahmanyan and Cowsik which posits that a substantial fraction of the observed high-latitude surface brightness originates from an extended Galactic halo of uniform emissivity. Measurements of the axial ratio of emission contours within a sample of normal spiral galaxies at 1500 MHz and below show no evidence for such a bright, extended radio halo. Either the Galaxy is atypical compared to nearby quiescent spirals or the bulk of the observed high-latitude emission does not originate from this type of extended halo. (letters)

  3. HALOE test and evaluation software

    Science.gov (United States)

    Edmonds, W.; Natarajan, S.

    1987-01-01

    Computer programming, system development and analysis efforts during this contract were carried out in support of the Halogen Occultation Experiment (HALOE) at NASA/Langley. Support in the major areas of data acquisition and monitoring, data reduction and system development are described along with a brief explanation of the HALOE project. Documented listings of major software are located in the appendix.

  4. The Galactic fountain as an origin for the Smith Cloud

    OpenAIRE

    Marasco, A.; Fraternali, F.

    2017-01-01

    The recent discovery of an enriched metallicity for the Smith high-velocity H I Cloud (SC) lends support to a Galactic origin for this system. We use a dynamical model of the galactic fountain to reproduce the observed properties of the SC. In our model, fountain clouds are ejected from the region of the disc spiral arms and move through the halo interacting with a pre-existing hot corona. We find that a simple model where cold gas outflows vertically from the Perseus spiral arm reproduces th...

  5. Neutron halo in deformed nuclei

    International Nuclear Information System (INIS)

    Zhou Shangui; Meng Jie; Ring, P.; Zhao Enguang

    2010-01-01

    Halo phenomena in deformed nuclei are investigated within a deformed relativistic Hartree Bogoliubov (DRHB) theory. These weakly bound quantum systems present interesting examples for the study of the interdependence between the deformation of the core and the particles in the halo. Contributions of the halo, deformation effects, and large spatial extensions of these systems are described in a fully self-consistent way by the DRHB equations in a spherical Woods-Saxon basis with the proper asymptotic behavior at a large distance from the nuclear center. Magnesium and neon isotopes are studied and detailed results are presented for the deformed neutron-rich and weakly bound nucleus 44 Mg. The core of this nucleus is prolate, but the halo has a slightly oblate shape. This indicates a decoupling of the halo orbitals from the deformation of the core. The generic conditions for the occurrence of this decoupling effects are discussed.

  6. Caustic ring model of the Milky Way halo

    International Nuclear Information System (INIS)

    Duffy, L. D.; Sikivie, P.

    2008-01-01

    We present a proposal for the full phase-space distribution of the Milky Way halo. The model is axially and reflection symmetric and its time evolution is self-similar. It describes the halo as a set of discrete dark matter flows with stated densities and velocity vectors everywhere. We first discuss the general conditions under which the time evolution of a cold collisionless self-gravitating fluid is self-similar, and show that symmetry is not necessary for self-similarity. When spherical symmetry is imposed, the model is the same as described by Fillmore and Goldreich, and by Bertschinger, twenty-three years ago. The spherically symmetric model depends on one dimensionless parameter ε and two dimensionful parameters. We set ε=0.3, a value consistent with the slope of the power spectrum of density perturbations on galactic scales. The dimensionful parameters are determined by the galactic rotation velocity (220 km/s) at the position of the Sun and by the age of the Galaxy (13.7 Gyr). The properties of the outer caustics are derived in the spherically symmetric model. The structure of the inner halo depends on the angular momentum distribution of the dark matter particles. We assume that distribution to be axial and reflection symmetric, and dominated by net overall rotation. The inner caustics are rings whose radii are determined in terms of a single additional parameter j max . We summarize the observational evidence in support of the model. The evidence is consistent with j max =0.18 in Concordance cosmology, equivalent to j max,old =0.26 in Einstein-de Sitter cosmology. We give formulas to estimate the flow densities and velocity vectors anywhere in the Milky Way halo. The properties of the first 40 flows at the location of the Earth are listed.

  7. Galactic radio astronomy

    CERN Document Server

    Sofue, Yoshiaki

    2017-01-01

    This book is a concise primer on galactic radio astronomy for undergraduate and graduate students, and provides wide coverage of galactic astronomy and astrophysics such as the physics of interstellar matter and the dynamics and structure of the Milky Way Galaxy and galaxies. Radio astronomy and its technological development have led to significant progress in galactic astronomy and contributed to understanding interstellar matter and galactic structures. The book begins with the fundamental physics of radio-wave radiation, i.e., black body radiation, thermal emission, synchrotron radiation, and HI and molecular line emissions. The author then gives overviews of ingredients of galactic physics, including interstellar matter such as the neutral (HI), molecular hydrogen, and ionized gases, as well as magnetic fields in galaxies. In addition, more advanced topics relevant to the Galaxy and galaxies are also contained here: star formation, supernova remnants, the Galactic Center and black holes, galactic dynamics...

  8. TeV Gamma Rays From Galactic Center Pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, Dan [Fermilab; Cholis, Ilias [Johns Hopkins U.; Linden, Tim [Ohio State U., CCAPP

    2017-05-25

    Measurements of the nearby pulsars Geminga and B0656+14 by the HAWC and Milagro telescopes have revealed the presence of bright TeV-emitting halos surrounding these objects. If young and middle-aged pulsars near the Galactic Center transfer a similar fraction of their energy into TeV photons, then these sources could dominate the emission that is observed by HESS and other ground-based telescopes from the innermost ~10^2 parsecs of the Milky Way. In particular, both the spectral shape and the angular extent of this emission is consistent with TeV halos produced by a population of pulsars. The overall flux of this emission requires a birth rate of ~100-1000 neutron stars per Myr near the Galactic Center, in good agreement with recent estimates.

  9. Galactic Habitable Zone and Astrobiological Complexity

    Science.gov (United States)

    Vukotic, B.

    2012-12-01

    This is a short thesis description and for the sake of brevity most things are left out. For more details, those interested are further directed to the thesis related papers in this article reference list. Thesis itself is available at the University of Belgrade library "Svetozar Markovic" (Serbian version only). In this thesis we study the astrobiological history of the Galactic habitable zone through the means of numerical modeling. First group of simulations are unidimensional (time-axis) toy models examine the influence of global regulation mechanisms (gamma-ray bursts and supernovae) on temporal evolution of Galactic astrobiological complexity. It is shown that under the assumption of global regulation classical anti SETI arguments can be undermined. Second group of simulations are more complex bidimensional probabilistic cellular automata models of the Galactic thin disk. They confirm the findings of the toy models and give some insights into the spatial clustering of astrobiological complexity. As a new emerging multidisciplinary science the basic concepts of astrobiology are poorly understood and although all the simulations present here do not include some basic physics (such as Galactic kinematics and dynamics), the input parameters are somewhat arbitrary and could use a future refinement (such as the boundaries of the Galactic habitable zone). This is the cause for low weight and high uncertainty in the output results of the simulations. However, the probabilistic cellular automata has shown as a highly adaptable modeling platform that can simulate various class of astrobiological models with great ease.

  10. The Age of the Inner Halo Globular Cluster NGC 6652

    OpenAIRE

    Chaboyer, Brian; Sarajedini, Ata; Armandroff, Taft E.

    2000-01-01

    HST (V,I) photometry has been obtained for the inner halo globular cluster NGC 6652. The photometry reaches approximately 4 mag below the turn-off and includes a well populated horizontal branch. This cluster is located close to the Galactic center at a galactocentric distance of approximately 2.0 kpc with a reddening of E(V-I) = 0.15 +/- 0.02 and has a metallicity of [Fe/H] approximately -0.85. Based upon Delta(V) between the point on the sub-giant branch which is 0.05 mag redder than the tu...

  11. The DiskMass Survey. VII. The distribution of luminous and dark matter in spiral galaxies

    NARCIS (Netherlands)

    Martinsson, T.P.K.; Verheijen, M.; Westfall, K.; Bershady, M.; Andersen, D.; Swaters, R.

    2013-01-01

    We present dynamically-determined rotation-curve mass decompositions of 30 spiral galaxies, which were carried out to test the maximum-disk hypothesis and to quantify properties of their dark-matter halos. We used measured vertical velocity dispersions of the disk stars to calculate dynamical mass

  12. The DiskMass Survey. VII. The distribution of luminous and dark matter in spiral galaxies

    NARCIS (Netherlands)

    Martinsson, Thomas P. K.; Verheijen, Marc A. W.; Westfall, Kyle B.; Bershady, Matthew A.; Andersen, David R.; Swaters, Rob A.

    We present dynamically-determined rotation-curve mass decompositions of 30 spiral galaxies, which were carried out to test the maximum-disk hypothesis and to quantify properties of their dark-matter halos. We used measured vertical velocity dispersions of the disk stars to calculate dynamical mass

  13. The DiskMass Survey : VII. The distribution of luminous and dark matter in spiral galaxies

    NARCIS (Netherlands)

    Martinsson, Thomas P. K.; Verheijen, Marc A. W.; Westfall, Kyle B.; Bershady, Matthew A.; Andersen, David R.; Swaters, Rob A.

    We present dynamically- determined rotation- curve mass decompositions of 30 spiral galaxies, which were carried out to test the maximum- disk hypothesis and to quantify properties of their dark- matter halos. We used measured vertical velocity dispersions of the disk stars to calculate dynamical

  14. Black holes with halos

    Science.gov (United States)

    Monten, Ruben; Toldo, Chiara

    2018-02-01

    We present new AdS4 black hole solutions in N =2 gauged supergravity coupled to vector and hypermultiplets. We focus on a particular consistent truncation of M-theory on the homogeneous Sasaki–Einstein seven-manifold M 111, characterized by the presence of one Betti vector multiplet. We numerically construct static and spherically symmetric black holes with electric and magnetic charges, corresponding to M2 and M5 branes wrapping non-contractible cycles of the internal manifold. The novel feature characterizing these nonzero temperature configurations is the presence of a massive vector field halo. Moreover, we verify the first law of black hole mechanics and we study the thermodynamics in the canonical ensemble. We analyze the behavior of the massive vector field condensate across the small-large black hole phase transition and we interpret the process in the dual field theory.

  15. Star formation rates and abundance gradients in disk galaxies

    International Nuclear Information System (INIS)

    Wyse, R.F.G.; Silk, J.

    1989-01-01

    Analytic models for the evolution of disk galaxies are presented, placing special emphasis on the radial properties. These models are straightforward extensions of the original Schmidt (1959, 1963) models, with a dependence of star formation rate on gas density. The models provide successful descriptions of several measures of galactic disk evolution, including solar neighborhood chemical evolution, the presence and amplitude of metallicity and color gradients in disk galaxies, and the global rates of star formation in disk galaxies, and aid in the understanding of the apparent connection between young and old stellar populations in spiral galaxies. 67 refs

  16. The role of self-interacting right-handed neutrinos in galactic structure

    CERN Document Server

    Argüelles, C.R.; Rueda, J.A.; Ruffini, R.

    2016-01-01

    We show that warm dark matter keV fermions (`inos') can be responsible for both core and halo galactic structure, in agreement with current astrophysical/cosmological constraints. We identify the inos with sterile right-handed neutrinos. The possible mass range of up to a few tens of keV, obtained independently from the galactic structure and dark matter astroparticle physics, points towards an important role of the right-handed neutrinos in the cosmic structure.

  17. Power spectrum analysis of polarized emission from the Canadian galactic plane survey

    Energy Technology Data Exchange (ETDEWEB)

    Stutz, R. A.; Rosolowsky, E. W. [University of British Columbia Okanagan, 3333 University Way, Kelowna BC, V1V 1V7 (Canada); Kothes, R.; Landecker, T. L. [National Research Council Canada, Dominion Radio Astrophysical Observatory, Box 248, Penticton, BC, V2A 6J9 (Canada)

    2014-05-20

    Angular power spectra are calculated and presented for the entirety of the Canadian Galactic Plane Survey polarization data set at 1.4 GHz covering an area of 1060 deg{sup 2}. The data analyzed are a combination of data from the 100 m Effelsberg Telescope, the 26 m Telescope at the Dominion Radio Astrophysical Observatory, and the Synthesis Telescope at the Dominion Radio Astrophysical Observatory, allowing all scales to be sampled down to arcminute resolution. The resulting power spectra cover multipoles from ℓ ≈ 60 to ℓ ≈ 10{sup 4} and display both a power-law component at low multipoles and a flattening at high multipoles from point sources. We fit the power spectrum with a model that accounts for these components and instrumental effects. The resulting power-law indices are found to have a mode of 2.3, similar to previous results. However, there are significant regional variations in the index, defying attempts to characterize the emission with a single value. The power-law index is found to increase away from the Galactic plane. A transition from small-scale to large-scale structure is evident at b = 9°, associated with the disk-halo transition in a 15° region around l = 108°. Localized variations in the index are found toward H II regions and supernova remnants, but the interpretation of these variations is inconclusive. The power in the polarized emission is anticorrelated with bright thermal emission (traced by Hα emission) indicating that the thermal emission depolarizes background synchrotron emission.

  18. Probing the Spatial Distribution of the Interstellar Dust Medium by High Angular Resolution X-ray Halos of Point Sources

    Science.gov (United States)

    Xiang, Jingen

    _{H,WD01} = (0.720±0.009) × N_{H,abs} + (0.051±0.013) and N_{H, MRN} = (1.156±0.016) × N_{H,abs} + (0.062±0.024) in the units 10^{22} cm^{-2}. Then the correlation between FHI and N_{H} is obtained. Both WD01 model and MRN model fits show that the scattering dust density very close to these sources is much higher than the normal interstellar medium and we consider it is the evidence of molecular clouds around these X-ray binaries. We also find that there is the linear correlation between the effective distance through the galactic dust layer and hydrogen scattering olumn density N_{H} excluding the one in x=0.99-1.0 but the correlation does not exist between he effective distance and the N_{H} in x=0.99-1.0. It shows that the dust nearby the X-ray sources is not the dust from galactic disk. Then we estimate the structure and density of the stellar wind around the special X-ray pulsars Vela X-1 and GX 301-2. Finally we discuss the possibility of probing the three dimensional structure of the interstellar using the X-ray halos of the transient sources, probing the spatial distributions of interstellar dust medium nearby the point sources, even the structure of the stellar winds using higher angular resolution X-ray dust scattering halos and testing the model that the black hole can be formed from the direct collapse of a massive star without supernova using the statistical distribution of the dust density nearby the X-ray binaries.

  19. Estimating the tumble rates of galaxy halos

    International Nuclear Information System (INIS)

    Simonson, G.F.; Tohline, J.E.

    1983-01-01

    It has previously been demonstrated that cold gas in a static spheroidal galaxy will damp to a preferred plane, in which the angular momentum vector of the gas is aligned with the symmetry axis of the potential, through dissipative processes. We show now that, if the same galaxy rigidly tumbles about a nonsymmetry axis, the preferred orientation of the gas can become a permanently and smoothly warped sheet, in which rings of gas at large radii may be fully orthogonal to those near the galaxy's core. Detailed numerical orbit calculations closely match an analytic prediction made previously for the structure of the warp. This structure depends primarily on the eccentricity, density profile, and tumble rate of the spheroid. We show that the tumble rate can now be determined for a galaxy containing a significantly warped disk. Ordinary observations used in conjunction with graphs such as those we present, yield at least firm lower limits to the tumble periods of these objects. We have applied this method to the two peculiar systems NGC 5128 and NGC 2685 and found that, if they are prolate systems supporting permanently warped gaseous disks, they must tumble with periods near 5 x 10 9 yr and 2 x 10 9 yr respectively. In a preliminary investigation, we also find that the massive, unseen halos surrounding spiral galaxies must tumble with periods longer than or on the same order as those of the elliptical galaxies

  20. The stellar content of the halo of NGC 5907 from deep Hubble Space Telescope NICMOS imaging

    NARCIS (Netherlands)

    Zepf, SE; Liu, MC; Marleau, FR; Sackett, PD; Graham, [No Value

    We present H-band images obtained with the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) of a field 75 " (5 kpc) above the plane of the disk of the edge-on spiral galaxy NGC 5907. Ground-based observations have shown that NGC 5907 has a luminous halo with a shallow radial profile

  1. The Excursion Set Theory of Halo Mass Functions, Halo Clustering, and Halo Growth

    Science.gov (United States)

    Zentner, Andrew R.

    I review the excursion set theory with particular attention toward applications to cold dark matter halo formation and growth, halo abundance, and halo clustering. After a brief introduction to notation and conventions, I begin by recounting the heuristic argument leading to the mass function of bound objects given by Press and Schechter. I then review the more formal derivation of the Press-Schechter halo mass function that makes use of excursion sets of the density field. The excursion set formalism is powerful and can be applied to numerous other problems. I review the excursion set formalism for describing both halo clustering and bias and the properties of void regions. As one of the most enduring legacies of the excursion set approach and one of its most common applications, I spend considerable time reviewing the excursion set theory of halo growth. This section of the review culminates with the description of two Monte Carlo methods for generating ensembles of halo mass accretion histories. In the last section, I emphasize that the standard excursion set approach is the result of several simplifying assumptions. Dropping these assumptions can lead to more faithful predictions and open excursion set theory to new applications. One such assumption is that the height of the barriers that define collapsed objects is a constant function of scale. I illustrate the implementation of the excursion set approach for barriers of arbitrary shape. One such application is the now well-known improvement of the excursion set mass function derived from the "moving" barrier for ellipsoidal collapse. I also emphasize that the statement that halo accretion histories are independent of halo environment in the excursion set approach is not a general prediction of the theory. It is a simplifying assumption. I review the method for constructing correlated random walks of the density field in the more general case. I construct a simple toy model to illustrate that excursion set

  2. Linking dwarf galaxies to halo building blocks with the most metal-poor star in Sculptor.

    Science.gov (United States)

    Frebel, Anna; Kirby, Evan N; Simon, Joshua D

    2010-03-04

    Current cosmological models indicate that the Milky Way's stellar halo was assembled from many smaller systems. On the basis of the apparent absence of the most metal-poor stars in present-day dwarf galaxies, recent studies claimed that the true Galactic building blocks must have been vastly different from the surviving dwarfs. The discovery of an extremely iron-poor star (S1020549) in the Sculptor dwarf galaxy based on a medium-resolution spectrum cast some doubt on this conclusion. Verification of the iron-deficiency, however, and measurements of additional elements, such as the alpha-element Mg, are necessary to demonstrate that the same type of stars produced the metals found in dwarf galaxies and the Galactic halo. Only then can dwarf galaxy stars be conclusively linked to early stellar halo assembly. Here we report high-resolution spectroscopic abundances for 11 elements in S1020549, confirming its iron abundance of less than 1/4,000th that of the Sun, and showing that the overall abundance pattern follows that seen in low-metallicity halo stars, including the alpha-elements. Such chemical similarity indicates that the systems destroyed to form the halo billions of years ago were not fundamentally different from the progenitors of present-day dwarfs, and suggests that the early chemical enrichment of all galaxies may be nearly identical.

  3. Ionized Absorbers as Evidence for Supernova-driven Cooling of the Lower Galactic Corona

    NARCIS (Netherlands)

    Fraternali, Filippo; Marasco, Antonino; Marinacci, Federico; Binney, James

    2013-01-01

    We show that the ultraviolet absorption features, newly discovered in Hubble Space Telescope spectra, are consistent with being formed in a layer that extends a few kpc above the disk of the Milky Way. In this interface between the disk and the Galactic corona, high-metallicity gas ejected from the

  4. El halo de la memoria

    OpenAIRE

    GAVINO ROSELLÓ, AARÓN

    2017-01-01

    The halo effect is one of the most classic cognitive biases of psychology, and one that we can observe frequently in everyday life. It consists in the realization of an erroneous generalization from a single characteristic or quality of an object or a person, that is, we make a previous judgment from which, we generalize the rest of characteristics. The halo effect manifests itself as continuous in our life. For example, if someone is very handsome or attractive we attribute another series...

  5. Detection of Hot Halo Gets Theory Out of Hot Water

    Science.gov (United States)

    2006-02-01

    Scientists using NASA's Chandra X-ray Observatory have detected an extensive halo of hot gas around a quiescent spiral galaxy. This discovery is evidence that galaxies like our Milky Way are still accumulating matter from the gradual inflow of intergalactic gas. "What we are likely witnessing here is the ongoing galaxy formation process," said Kristian Pedersen of the University of Copenhagen, Denmark, and lead author of a report on the discovery. Chandra observations show that the hot halo extends more than 60,000 light years on either side of the disk of the galaxy known as NGC 5746. The detection of such a large halo alleviates a long-standing problem for the theory of galaxy formation. Spiral galaxies are thought to form from enormous clouds of intergalactic gas that collapse to form giant, spinning disks of stars and gas. Chandra X-ray Image of NGC 5746 Chandra X-ray Image of NGC 5746 One prediction of this theory is that large spiral galaxies should be immersed in halos of hot gas left over from the galaxy formation process. Hot gas has been detected around spiral galaxies in which vigorous star formation is ejecting matter from the galaxy, but until now hot halos due to infall of intergalactic matter have not been detected. "Our observations solve the mystery of the missing hot halos around spiral galaxies," said Pedersen. "The halos exist, but are so faint that an extremely sensitive telescope such as Chandra is needed to detect them." DSS Optical Image of NGC 5746 DSS Optical Image of NGC 5746 NGC 5746 is a massive spiral galaxy about a 100 million light years from Earth. Its disk of stars and gas is viewed almost edge-on. The galaxy shows no signs of unusual star formation, or energetic activity from its nuclear region, making it unlikely that the hot halo is produced by gas flowing out of the galaxy. "We targeted NGC 5746 because we thought its distance and orientation would give us the best chance to detect a hot halo caused by the infall of

  6. Neutron halos in hypernuclei

    CERN Document Server

    Lue, H F; Meng, J; Zhou, S G

    2003-01-01

    Properties of single-LAMBDA and double-LAMBDA hypernuclei for even-N Ca isotopes ranging from the proton dripline to the neutron dripline are studied using the relativistic continuum Hartree-Bogolyubov theory with a zero-range pairing interaction. Compared with ordinary nuclei, the addition of one or two LAMBDA-hyperons lowers the Fermi level. The predicted neutron dripline nuclei are, respectively, sup 7 sup 5 subLAMBDA Ca and sup 7 sup 6 sub 2 subLAMBDA Ca, as the additional attractive force provided by the LAMBDA-N interaction shifts nuclei from outside to inside the dripline. Therefore, the last bound hypernuclei have two more neutrons than the corresponding ordinary nuclei. Based on the analysis of two-neutron separation energies, neutron single-particle energy levels, the contribution of continuum and nucleon density distribution, giant halo phenomena due to the pairing correlation, and the contribution from the continuum are suggested to exist in Ca hypernuclei similar to those that appear in ordinary ...

  7. Spatial clustering and halo occupation distribution modelling of local AGN via cross-correlation measurements with 2MASS galaxies

    Science.gov (United States)

    Krumpe, Mirko; Miyaji, Takamitsu; Coil, Alison L.; Aceves, Hector

    2018-02-01

    We present the clustering properties and halo occupation distribution (HOD) modelling of very low redshift, hard X-ray-detected active galactic nuclei (AGN) using cross-correlation function measurements with Two-Micron All Sky Survey galaxies. Spanning a redshift range of 0.007 2MASS galaxies.

  8. Active galactic nucleus outflows in galaxy discs

    Science.gov (United States)

    Hartwig, Tilman; Volonteri, Marta; Dashyan, Gohar

    2018-05-01

    Galactic outflows, driven by active galactic nuclei (AGNs), play a crucial role in galaxy formation and in the self-regulated growth of supermassive black holes (BHs). AGN feedback couples to and affects gas, rather than stars, and in many, if not most, gas-rich galaxies cold gas is rotationally supported and settles in a disc. We present a 2D analytical model for AGN-driven outflows in a gaseous disc and demonstrate the main improvements, compared to existing 1D solutions. We find significant differences for the outflow dynamics and wind efficiency. The outflow is energy-driven due to inefficient cooling up to a certain AGN luminosity (˜1043 erg s-1 in our fiducial model), above which the outflow remains momentum-driven in the disc up to galactic scales. We reproduce results of 3D simulations that gas is preferentially ejected perpendicular to the disc and find that the fraction of ejected interstellar medium is lower than in 1D models. The recovery time of gas in the disc, defined as the free-fall time from the radius to which the AGN pushes the ISM at most, is remarkably short, of the order 1 Myr. This indicates that AGN-driven winds cannot suppress BH growth for long. Without the inclusion of supernova feedback, we find a scaling of the BH mass with the halo velocity dispersion of MBH ∝ σ4.8.

  9. Galactic hail: the origin of the high-velocity cloud complex C

    NARCIS (Netherlands)

    Fraternali, F.; Marasco, A.; Armillotta, L.; Marinacci, F.

    High-velocity clouds consist of cold gas that appears to be raining down from the halo to the disc of the Milky Way. Over the past 50 years, two competing scenarios have attributed their origin either to gas accretion from outside the Galaxy or to circulation of gas from the Galactic disc powered by

  10. Stroemgren and BV photometry of potential halo blue horizontal branch field stars

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, C; Sommer-Larsen, J

    1988-11-01

    Stroemgren four-colour and broadband BV photoelectric photometry has been obtained for a sample of potential halo blue horizontal branch stars in two high galactic latitude fields. The large majority of the stars observed are classified as blue horizontal branch stars on the basis of two different surface gravity indicators. Measurements of Ca K-line equivalent widths from medium-dispersion spectra of the stars confirm that most are Population II objects. No metal-rich A-stars were found beyond a few kpc from the galactic disc in the study of faint blue stars.

  11. Halo modelling in chameleon theories

    Energy Technology Data Exchange (ETDEWEB)

    Lombriser, Lucas; Koyama, Kazuya [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth, PO1 3FX (United Kingdom); Li, Baojiu, E-mail: lucas.lombriser@port.ac.uk, E-mail: kazuya.koyama@port.ac.uk, E-mail: baojiu.li@durham.ac.uk [Institute for Computational Cosmology, Ogden Centre for Fundamental Physics, Department of Physics, University of Durham, Science Laboratories, South Road, Durham, DH1 3LE (United Kingdom)

    2014-03-01

    We analyse modelling techniques for the large-scale structure formed in scalar-tensor theories of constant Brans-Dicke parameter which match the concordance model background expansion history and produce a chameleon suppression of the gravitational modification in high-density regions. Thereby, we use a mass and environment dependent chameleon spherical collapse model, the Sheth-Tormen halo mass function and linear halo bias, the Navarro-Frenk-White halo density profile, and the halo model. Furthermore, using the spherical collapse model, we extrapolate a chameleon mass-concentration scaling relation from a ΛCDM prescription calibrated to N-body simulations. We also provide constraints on the model parameters to ensure viability on local scales. We test our description of the halo mass function and nonlinear matter power spectrum against the respective observables extracted from large-volume and high-resolution N-body simulations in the limiting case of f(R) gravity, corresponding to a vanishing Brans-Dicke parameter. We find good agreement between the two; the halo model provides a good qualitative description of the shape of the relative enhancement of the f(R) matter power spectrum with respect to ΛCDM caused by the extra attractive gravitational force but fails to recover the correct amplitude. Introducing an effective linear power spectrum in the computation of the two-halo term to account for an underestimation of the chameleon suppression at intermediate scales in our approach, we accurately reproduce the measurements from the N-body simulations.

  12. Halo modelling in chameleon theories

    International Nuclear Information System (INIS)

    Lombriser, Lucas; Koyama, Kazuya; Li, Baojiu

    2014-01-01

    We analyse modelling techniques for the large-scale structure formed in scalar-tensor theories of constant Brans-Dicke parameter which match the concordance model background expansion history and produce a chameleon suppression of the gravitational modification in high-density regions. Thereby, we use a mass and environment dependent chameleon spherical collapse model, the Sheth-Tormen halo mass function and linear halo bias, the Navarro-Frenk-White halo density profile, and the halo model. Furthermore, using the spherical collapse model, we extrapolate a chameleon mass-concentration scaling relation from a ΛCDM prescription calibrated to N-body simulations. We also provide constraints on the model parameters to ensure viability on local scales. We test our description of the halo mass function and nonlinear matter power spectrum against the respective observables extracted from large-volume and high-resolution N-body simulations in the limiting case of f(R) gravity, corresponding to a vanishing Brans-Dicke parameter. We find good agreement between the two; the halo model provides a good qualitative description of the shape of the relative enhancement of the f(R) matter power spectrum with respect to ΛCDM caused by the extra attractive gravitational force but fails to recover the correct amplitude. Introducing an effective linear power spectrum in the computation of the two-halo term to account for an underestimation of the chameleon suppression at intermediate scales in our approach, we accurately reproduce the measurements from the N-body simulations

  13. Fluorosis: halo effect

    International Nuclear Information System (INIS)

    Diaz Madriz, Jose Esteban; Granados Quesada, Maria Pamela; Lopez Chacon, Angelica Maria; Monge Cantillo, Carol Paola; Munoz Aguero, Geiner Andres; Vargas Vargas, Jorge Andres

    2013-01-01

    The halo effect was determined from the consumption of potatoes from Tierra Blanca de Cartago and Palmira de Zarcero. Seminars were held to get to know the topic of fluorosis. A mini health fair was held to explain the effects of fluoride in a population affected by it. Samples of water and forest type potato were collected in the area of Zarcero and San Juan de Chicoa. Measurements of the samples were made in the Chemistry Laboratory of the Universidad de Costa Rica. 20 mg of potato from each zone and 80 ml of distilled water were weighed and then liquefied. Each shake was dispensed in 2 clean test tubes and 7 samples were obtained, of which, 2 test tubes contained the liquefied 1, 2 tubes the liquefied 2, 1 tube with the Rio Reventado water centrifuged. 1 tube with Zarcero irrigation water and 1 tube with distilled water, for the subsequent analysis of fluoride concentration. The samples were taken to the LAMBDA Chemical Laboratory, where the ion chromatography test was performed on each of the samples. A concentration of fluorides of 0.73 ppm was obtained in the water of the Rio Reventado, while a concentration of less than 0.60 ppm was obtained in the water collected in Zarcero. The highest concentration of fluoride was presented in the potato from the area of Palmira de Zarcero with 2.41 ppm compared to that obtained in Cartago, with a lower concentration of 1.34 ppm. The maximum recommended concentration was exceeded in both results. A concentration less than 0.02 ppm was obtained in the analysis of distilled water as a control test [es

  14. The outskirts of spiral galaxies: touching stellar halos at z˜0 and z˜1

    Science.gov (United States)

    Bakos, J.; Trujillo, I.

    Taking advantage of ultra-deep imaging of SDSS Stripe82 and the Hubble Ultra Deep Field by HST, we explore the properties of stellar halos at two relevant epochs of cosmic history. At z˜0 we find that the radial surface brightness profiles of disks have a smooth continuation into the stellar halo that starts to affect the surface brightness profiles at mu r'˜28 {mag arcsec-2}, and at a radial distance of gtrsim 4-10 inner scale-lengths. The light contribution of the stellar halo to the total galaxy light varies from ˜1% to ˜5%, but in case of ongoing mergers, the halo light fraction can be as high as ˜10%. The integrated (g'-r') color of the stellar halo of our galaxies range from ˜0.4 to ˜1.2. By confronting these colors with model predictions, these halos can be attributed to moderately aged and metal-poor populations, however the extreme red colors (˜1) cannot be explained by populations of conventional IMFs. Very red halo colors can be attributed to stellar populations dominated by very low mass stars of low to intermediate metallicity produced by bottom-heavy IMFs. At z˜1 stellar halos appear to be ˜2 magnitudes brighter than their local counterparts, meanwhile they exhibit bluer colors ((g'-r')≲0.3 mag), as well. The stellar populations corresponding to these colors are compatible with having ages ≲1 Gyr. This latter observation strongly suggests the possibility that these halos were formed between z˜1 and z˜2. This result matches very well the theoretical predictions that locate most of the formation of the stellar halos at those early epochs. A pure passive evolutionary scenario, where the stellar populations of our high-z haloes simply fade to match the stellar halo properties found in the local universe, is consistent with our data.

  15. Mapping stellar content to dark matter haloes - III. Environmental dependence and conformity of galaxy colours

    Science.gov (United States)

    Zu, Ying; Mandelbaum, Rachel

    2018-05-01

    Recent studies suggest that the quenching properties of galaxies are correlated over several megaparsecs. The large-scale `galactic conformity' phenomenon around central galaxies has been regarded as a potential signature of `galaxy assembly bias' or `pre-heating', both of which interpret conformity as a result of direct environmental effects acting on galaxy formation. Building on the iHOD halo quenching framework developed in Zu and Mandelbaum, we discover that our fiducial halo mass quenching model, without any galaxy assembly bias, can successfully explain the overall environmental dependence and the conformity of galaxy colours in Sloan Digital Sky Survey, as measured by the mark correlation functions of galaxy colours and the red galaxy fractions around isolated primaries, respectively. Our fiducial iHOD halo quenching mock also correctly predicts the differences in the spatial clustering and galaxy-galaxy lensing signals between the more versus less red galaxy subsamples, split by the red-sequence ridge line at fixed stellar mass. Meanwhile, models that tie galaxy colours fully or partially to halo assembly bias have difficulties in matching all these observables simultaneously. Therefore, we demonstrate that the observed environmental dependence of galaxy colours can be naturally explained by the combination of (1) halo quenching and (2) the variation of halo mass function with environment - an indirect environmental effect mediated by two separate physical processes.

  16. MIGRATION TRAPS IN DISKS AROUND SUPERMASSIVE BLACK HOLES

    International Nuclear Information System (INIS)

    Bellovary, Jillian M.; Low, Mordecai-Mark Mac; McKernan, Barry; Ford, K. E. Saavik

    2016-01-01

    Accretion disks around supermassive black holes (SMBHs) in active galactic nuclei (AGNs) contain stars, stellar mass black holes, and other stellar remnants, which perturb the disk gas gravitationally. The resulting density perturbations exert torques on the embedded masses causing them to migrate through the disk in a manner analogous to planets in protoplanetary disks. We determine the strength and direction of these torques using an empirical analytic description dependent on local disk gradients, applied to two different analytic, steady-state disk models of SMBH accretion disks. We find that there are radii in such disks where the gas torque changes sign, trapping migrating objects. Our analysis shows that major migration traps generally occur where the disk surface density gradient changes sign from positive to negative, around 20–300R g , where R g  = 2GM/c 2 is the Schwarzschild radius. At these traps, massive objects in the AGN disk can accumulate, collide, scatter, and accrete. Intermediate mass black hole formation is likely in these disk locations, which may lead to preferential gap and cavity creation at these radii. Our model thus has significant implications for SMBH growth as well as gravitational wave source populations

  17. MIGRATION TRAPS IN DISKS AROUND SUPERMASSIVE BLACK HOLES

    Energy Technology Data Exchange (ETDEWEB)

    Bellovary, Jillian M.; Low, Mordecai-Mark Mac; McKernan, Barry; Ford, K. E. Saavik [Department of Astrophysics, American Museum of Natural History, Central Park West at 79th Street, NY 10024 (United States)

    2016-03-10

    Accretion disks around supermassive black holes (SMBHs) in active galactic nuclei (AGNs) contain stars, stellar mass black holes, and other stellar remnants, which perturb the disk gas gravitationally. The resulting density perturbations exert torques on the embedded masses causing them to migrate through the disk in a manner analogous to planets in protoplanetary disks. We determine the strength and direction of these torques using an empirical analytic description dependent on local disk gradients, applied to two different analytic, steady-state disk models of SMBH accretion disks. We find that there are radii in such disks where the gas torque changes sign, trapping migrating objects. Our analysis shows that major migration traps generally occur where the disk surface density gradient changes sign from positive to negative, around 20–300R{sub g}, where R{sub g} = 2GM/c{sup 2} is the Schwarzschild radius. At these traps, massive objects in the AGN disk can accumulate, collide, scatter, and accrete. Intermediate mass black hole formation is likely in these disk locations, which may lead to preferential gap and cavity creation at these radii. Our model thus has significant implications for SMBH growth as well as gravitational wave source populations.

  18. Projection Of The Stellar To Halo Mass Relation Into The Scaling Relations Of A Disc Galaxy Population

    Science.gov (United States)

    Mancillas, Brisa; Ávila-Reese, Vladimir; Rodríguez-Puebla, Aldo; Valls-Gabaud, David

    2017-06-01

    Several pieces of evidence suggest that disk formation is the generic process of assembly of galaxies, while the spheroidal component arises from the merging/interactions of disks as well as from their secular evolution. To understand galaxy formation and evolution, a cosmological framework is required. The current cosmological paradigm is summarized in the so-called Λ-cold dark matter model (ΛCDM). The statistical connection between the masses of the observed galaxies and those of the simulated CDM halos in large volumes leads us to the galaxy-halo mass relation, which summarizes the main astrophysical processes of galaxy formation and evolution (gas heating and cooling, SF, SN- and AGN-driven feedback, etc.). An important question is how this relation constrained by semi-empirical methods (e.g., Rodriguez-Puebla et al. 2014) is "projected" into the disk galaxy scaling relations and other galaxy correlations. To explore this question, we generate a synthetic catalog of thousands of disk/halo systems by means of an extended Mo, Mao & White (1998) model, and by using as input the baryonic-to-halo mass relation, fbar(Mh), of local disk galaxy as recently constrained by Calette et al. (2015).

  19. Systematic problems with using dark matter simulations to model stellar halos

    International Nuclear Information System (INIS)

    Bailin, Jeremy; Bell, Eric F.; Valluri, Monica; Stinson, Greg S.; Debattista, Victor P.; Couchman, H. M. P.; Wadsley, James

    2014-01-01

    The limits of available computing power have forced models for the structure of stellar halos to adopt one or both of the following simplifying assumptions: (1) stellar mass can be 'painted' onto dark matter (DM) particles in progenitor satellites; (2) pure DM simulations that do not form a luminous galaxy can be used. We estimate the magnitude of the systematic errors introduced by these assumptions using a controlled set of stellar halo models where we independently vary whether we look at star particles or painted DM particles, and whether we use a simulation in which a baryonic disk galaxy forms or a matching pure DM simulation that does not form a baryonic disk. We find that the 'painting' simplification reduces the halo concentration and internal structure, predominantly because painted DM particles have different kinematics from star particles even when both are buried deep in the potential well of the satellite. The simplification of using pure DM simulations reduces the concentration further, but increases the internal structure, and results in a more prolate stellar halo. These differences can be a factor of 1.5-7 in concentration (as measured by the half-mass radius) and 2-7 in internal density structure. Given this level of systematic uncertainty, one should be wary of overinterpreting differences between observations and the current generation of stellar halo models based on DM-only simulations when such differences are less than an order of magnitude.

  20. Beyond assembly bias: exploring secondary halo biases for cluster-size haloes

    Science.gov (United States)

    Mao, Yao-Yuan; Zentner, Andrew R.; Wechsler, Risa H.

    2018-03-01

    Secondary halo bias, commonly known as `assembly bias', is the dependence of halo clustering on a halo property other than mass. This prediction of the Λ Cold Dark Matter cosmology is essential to modelling the galaxy distribution to high precision and interpreting clustering measurements. As the name suggests, different manifestations of secondary halo bias have been thought to originate from halo assembly histories. We show conclusively that this is incorrect for cluster-size haloes. We present an up-to-date summary of secondary halo biases of high-mass haloes due to various halo properties including concentration, spin, several proxies of assembly history, and subhalo properties. While concentration, spin, and the abundance and radial distribution of subhaloes exhibit significant secondary biases, properties that directly quantify halo assembly history do not. In fact, the entire assembly histories of haloes in pairs are nearly identical to those of isolated haloes. In general, a global correlation between two halo properties does not predict whether or not these two properties exhibit similar secondary biases. For example, assembly history and concentration (or subhalo abundance) are correlated for both paired and isolated haloes, but follow slightly different conditional distributions in these two cases. This results in a secondary halo bias due to concentration (or subhalo abundance), despite the lack of assembly bias in the strict sense for cluster-size haloes. Due to this complexity, caution must be exercised in using any one halo property as a proxy to study the secondary bias due to another property.

  1. Halo-independence with quantified maximum entropy at DAMA/LIBRA

    Energy Technology Data Exchange (ETDEWEB)

    Fowlie, Andrew, E-mail: andrew.j.fowlie@googlemail.com [ARC Centre of Excellence for Particle Physics at the Tera-scale, Monash University, Melbourne, Victoria 3800 (Australia)

    2017-10-01

    Using the DAMA/LIBRA anomaly as an example, we formalise the notion of halo-independence in the context of Bayesian statistics and quantified maximum entropy. We consider an infinite set of possible profiles, weighted by an entropic prior and constrained by a likelihood describing noisy measurements of modulated moments by DAMA/LIBRA. Assuming an isotropic dark matter (DM) profile in the galactic rest frame, we find the most plausible DM profiles and predictions for unmodulated signal rates at DAMA/LIBRA. The entropic prior contains an a priori unknown regularisation factor, β, that describes the strength of our conviction that the profile is approximately Maxwellian. By varying β, we smoothly interpolate between a halo-independent and a halo-dependent analysis, thus exploring the impact of prior information about the DM profile.

  2. Large-scale structure after COBE: Peculiar velocities and correlations of cold dark matter halos

    Science.gov (United States)

    Zurek, Wojciech H.; Quinn, Peter J.; Salmon, John K.; Warren, Michael S.

    1994-01-01

    Large N-body simulations on parallel supercomputers allow one to simultaneously investigate large-scale structure and the formation of galactic halos with unprecedented resolution. Our study shows that the masses as well as the spatial distribution of halos on scales of tens of megaparsecs in a cold dark matter (CDM) universe with the spectrum normalized to the anisotropies detected by Cosmic Background Explorer (COBE) is compatible with the observations. We also show that the average value of the relative pairwise velocity dispersion sigma(sub v) - used as a principal argument against COBE-normalized CDM models-is significantly lower for halos than for individual particles. When the observational methods of extracting sigma(sub v) are applied to the redshift catalogs obtained from the numerical experiments, estimates differ significantly between different observation-sized samples and overlap observational estimates obtained following the same procedure.

  3. Dark halos formed via dissipationless collapse. I - Shapes and alignment of angular momentum

    Science.gov (United States)

    Warren, Michael S.; Quinn, Peter J.; Salmon, John K.; Zurek, Wojciech H.

    1992-11-01

    We use N-body simulations on highly parallel supercomputers to study the structure of Galactic dark matter halos. The systems form by gravitational collapse from scale-free and more general Gaussian initial density perturbations in an expanding 400 Mpc-cubed spherical slice of an Einstein-deSitter universe. We analyze the structure and kinematics of about 100 of the largest relaxed halos in each of 10 separate simulations. A typical halo is a triaxial spheroid which tends to be more often prolate than oblate. These shapes are maintained by anisotropic velocity dispersion rather than by angular momentum. Nevertheless, there is a significant tendency for the total angular momentum vector to be aligned with the minor axis of the density distribution.

  4. Halo vest effect on balance.

    Science.gov (United States)

    Richardson, J K; Ross, A D; Riley, B; Rhodes, R L

    2000-03-01

    To determine the effect of a halo vest, a cervical orthosis, on clinically relevant balance parameters. Subjects performed unipedal stance (with eyes open and closed, on both firm and soft surfaces) and functional reach, with and without the application of a halo vest. A convenience sample of 12 healthy young subjects, with an equal number of men and women. Seconds for unipedal stance (maximum 45); inches for functional reach. Both unipedal stance times and functional reach (mean +/- standard deviation) were significantly decreased with the halo vest as compared to without it (29.1+/-5.8 vs. 32.8+/-6.4 seconds, p = .002; 12.9+/-1.4 vs. 15.1+/-2.1 inches, prisk for a fall, which could have devastating consequences.

  5. Photoionization of disk galaxies: An explanation of the sharp edges in the H I distribution

    Science.gov (United States)

    Dove, James B.; Shull, J. Michael

    1994-01-01

    We have reproduced the observed radial truncation of the H I distribution in isolated spiral galaxies with a model in which extragalactic radiation photoionizes the gaseous disk. For a galactic mass distribution model that reproduces the observed rotation curves, including dark matter in the disk and halo, the vertical structure of the gas is determined self-consistently. The ionization structure and column densities of H and He ions are computed by solving the radiation transfer equation for both continuum and lines. Our model is similar to that of Maloney, and the H I structure differs by less than 10%. The radial structure of the column density of H I is found to be more sensitive to the extragalactic radiation field than to the distribution of mass. For this reason, considerable progress can be made in determining the extragalactic flux of ionizing photons, phi(sub ex), with more 21 cm observations of isolated galaxies. However, owing to the uncertainty of the radial distribution of total hydrogen at large radii, inferring the extragalactic flux by comparing the observed edges to photoionization models is somewhat subjective. We find 1 x 10(exp 4)/sq cm/s is less than or approximately phi(sub ex) is less than or approximately 5 x 10(exp 4)/sq cm/s, corresponding to 2.1 is less than or approximately iota(sub 0) is less than or approximately 10.5 x 10(exp -23) ergs/sq cm/s/Hz/sr for a 1/nu spectrum. Although somewhat higher, our inferred range of iota(sub 0) is consistent with the large range of values obtained by Kulkarni & Fall from the 'proximity effect' toward Quasi-Stellar Objects (QSOs) at approximately 0.5.

  6. Cool carbon stars in the halo and in dwarf galaxies: Hα, colours, and variability

    Science.gov (United States)

    Mauron, N.; Gigoyan, K. S.; Berlioz-Arthaud, P.; Klotz, A.

    2014-02-01

    The population of cool carbon (C) stars located far from the galactic plane is probably made of debris of small galaxies such as the Sagittarius dwarf spheroidal galaxy (Sgr), which are disrupted by the gravitational field of the Galaxy. We aim to know this population better through spectroscopy, 2MASS photometric colours, and variability data. When possible, we compared the halo results to C star populations in the Fornax dwarf spheroidal galaxy, Sgr, and the solar neighbourhood. We first present a few new discoveries of C stars in the halo and in Fornax. The number of spectra of halo C stars is now 125. Forty percent show Hα in emission. The narrow location in the JHK diagram of the halo C stars is found to differ from that of similar C stars in the above galaxies. The light curves of the Catalina and LINEAR variability databases were exploited to derive the pulsation periods of 66 halo C stars. A few supplementary periods were obtained with the TAROT telescopes. We confirm that the period distribution of the halo strongly resembles that of Fornax, and we found that it is very different from the C stars in the solar neighbourhood. There is a larger proportion of short-period Mira/SRa variables in the halo than in Sgr, but the survey for C stars in this dwarf galaxy is not complete, and the study of their variability needs to be continued to investigate the link between Sgr and the cool halo C stars. Based on observations made with the NTT and 3.6 m telescope at the European Southern Observatory (La Silla, Chile; programs 084.D-0302 and 070.D-0203), with the TAROT telescopes at La Silla and at Observatoire de la Côte d'Azur (France), and on the exploitation of the Catalina Sky Survey and the LINEAR variability databases.Appendix A is available in electronic form at http://www.aanda.org

  7. METALLICITY GRADIENTS OF THICK DISK DWARF STARS

    Energy Technology Data Exchange (ETDEWEB)

    Carrell, Kenneth; Chen Yuqin; Zhao Gang, E-mail: carrell@nao.cas.cn [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2012-12-01

    We examine the metallicity distribution of the Galactic thick disk using F, G, and K dwarf stars selected from the Sloan Digital Sky Survey, Data Release 8. Using the large sample of dwarf stars with proper motions and spectroscopically determined stellar parameters, metallicity gradients in the radial direction for various heights above the Galactic plane and in the vertical direction for various radial distances from the Galaxy center have been found. In particular, we find a vertical metallicity gradient of -0.113 {+-} 0.010 (-0.125 {+-} 0.008) dex kpc{sup -1} using an isochrone (photometric) distance determination in the range 1 kpc <|Z| < 3 kpc, which is the vertical height range most consistent with the thick disk of our Galaxy. In the radial direction, we find metallicity gradients between +0.02 and +0.03 dex kpc{sup -1} for bins in the vertical direction between 1 kpc <|Z| < 3 kpc. Both of these results agree with similar values determined from other populations of stars, but this is the first time a radial metallicity gradient for the thick disk has been found at these vertical heights. We are also able to separate thin and thick disk stars based on kinematic and spatial probabilities in the vertical height range where there is significant overlap of these two populations. This should aid further studies of the metallicity gradients of the disk for vertical heights lower than those studied here but above the solar neighborhood. Metallicity gradients in the thin and thick disks are important probes into possible formation scenarios for our Galaxy and a consistent picture is beginning to emerge from results using large spectroscopic surveys, such as the ones presented here.

  8. Gravitational plasmas and galactic dynamics

    International Nuclear Information System (INIS)

    Bertin, G.

    1999-01-01

    The discovery of dark halos, spectroscopic evidence that elliptical galaxies are dominated by collisionless dynamics and the opening of new observational windows (especially in the near-infrared) able to provide direct information on the underlying mass distribution in spiral galaxies, have significantly changed our perception of the internal structure of galaxies. The modelling tools and the theories developed to explain many interesting observations (from the study of global spiral and bar modes of galaxy disks to the construction of self-consistent anisotropic collisionless models to explain the universality of the luminosity profile of elliptical galaxies) present many analogies with parallel work in the physics of electromagnetic plasmas. Beyond specific mechanisms, the main source of similarities between the two fields is probably to be found in the common semi-empirical approach, where the major struggle is to set up the most appropriate equations to describe inherently complex systems, governed by collective behaviour in the presence of long-range forces. At the frontier of current research in extragalactic astrophysics, the Hubble space telescope and new large telescopes from the ground are giving us a view of the early dynamical stages of galaxies and on the small scale for relatively nearby galaxies, unprecedented accurate data on their structure and kinematics. After focusing on some recent results relative to the collective dynamics of stellar systems, we will identify a few basic questions that remain unresolved, where the study of galaxies as gravitational plasmas may help significantly towards further progress. (author)

  9. Simulation of halo particles with Simpsons

    International Nuclear Information System (INIS)

    Machida, Shinji

    2003-01-01

    Recent code improvements and some simulation results of halo particles with Simpsons will be presented. We tried to identify resonance behavior of halo particles by looking at tune evolution of individual macro particle

  10. Simulation of halo particles with Simpsons

    Science.gov (United States)

    Machida, Shinji

    2003-12-01

    Recent code improvements and some simulation results of halo particles with Simpsons will be presented. We tried to identify resonance behavior of halo particles by looking at tune evolution of individual macro particle.

  11. The properties of the disk system of globular clusters

    Science.gov (United States)

    Armandroff, Taft E.

    1989-01-01

    A large refined data sample is used to study the properties and origin of the disk system of globular clusters. A scale height for the disk cluster system of 800-1500 pc is found which is consistent with scale-height determinations for samples of field stars identified with the Galactic thick disk. A rotational velocity of 193 + or - 29 km/s and a line-of-sight velocity dispersion of 59 + or - 14 km/s have been found for the metal-rich clusters.

  12. Properties of the disk system of globular clusters

    International Nuclear Information System (INIS)

    Armandroff, T.E.

    1989-01-01

    A large refined data sample is used to study the properties and origin of the disk system of globular clusters. A scale height for the disk cluster system of 800-1500 pc is found which is consistent with scale-height determinations for samples of field stars identified with the Galactic thick disk. A rotational velocity of 193 + or - 29 km/s and a line-of-sight velocity dispersion of 59 + or - 14 km/s have been found for the metal-rich clusters. 70 references

  13. Disk Model with Central Bulge for Galaxy M94

    International Nuclear Information System (INIS)

    Jalocha, J.; Bratek, L.; Kutschera, M.

    2010-01-01

    A global disk model for spiral galaxies is modified by adding a spherical component to the galactic center to account for the presence of a central spherical bulge. It is verified whether such modification could be substantial for predictions of total mass and of its distribution in spiral galaxy M94. (authors)

  14. The propagation of galactic cosmic rays

    International Nuclear Information System (INIS)

    Hall, A.N.

    1981-01-01

    Large scale (approximately 15 pc) turbulence in the interstellar medium (ISM) causes the firehose and mirror instabilities to occur. These produce small scale (approximately 10 -7 pc) magnetic irregularities, which scatter cosmic rays. We use pulsar scintillation data, and a model of the origin of these scintillations, to construct a slab model of the turbulent ISM. Then we find the amplitudes and wavelengths of the magnetic irregularities that arise, and we calculate the coefficients for the diffusion of cosmic rays along the interstellar magnetic fields. We incorporate this diffusion into our model of the turbulent ISM, and show that it can account naturally for both the lifetime of low energy cosmic rays, and the variation of their mean pathlength with energy. Our model has no galactic halo, and contains no scattering by Alfven waves. (author)

  15. Quasars and galactic evolution

    CERN Document Server

    Woltjer, L

    1978-01-01

    The evolution of quasars is discussed. It is noted that substantial clustering may be present at faint magnitudes. The relationship between quasar evolution and galactic evolution is considered. (4 refs).

  16. PRESENT-DAY GALACTIC EVOLUTION: LOW-METALLICITY, WARM, IONIZED GAS INFLOW ASSOCIATED WITH HIGH-VELOCITY CLOUD COMPLEX A

    Energy Technology Data Exchange (ETDEWEB)

    Barger, K. A.; Haffner, L. M.; Wakker, B. P.; Hill, Alex S. [Department of Astronomy, University of Wisconsin-Madison, Madison, WI 53706 (United States); Madsen, G. J. [Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006 (Australia); Duncan, A. K., E-mail: kbarger@astro.wisc.edu, E-mail: haffner@astro.wisc.edu, E-mail: Alex.Hill@csiro.au, E-mail: wakker@astro.wisc.edu, E-mail: greg.madsen@sydney.edu.au [Rose-Hulman Institute of Technology, Terre Haute, IN 47803 (United States)

    2012-12-20

    The high-velocity cloud Complex A is a probe of the physical conditions in the Galactic halo. The kinematics, morphology, distance, and metallicity of Complex A indicate that it represents new material that is accreting onto the Galaxy. We present Wisconsin H{alpha} Mapper kinematically resolved observations of Complex A over the velocity range of -250 to -50 km s{sup -1} in the local standard of rest reference frame. These observations include the first full H{alpha} intensity map of Complex A across (l, b) = (124 Degree-Sign , 18 Degree-Sign ) to (171 Degree-Sign , 53 Degree-Sign ) and deep targeted observations in H{alpha}, [S II] {lambda}6716, [N II] {lambda}6584, and [O I] {lambda}6300 toward regions with high H I column densities, background quasars, and stars. The H{alpha} data imply that the masses of neutral and ionized material in the cloud are similar, both being greater than 10{sup 6} M{sub Sun }. We find that the Bland-Hawthorn and Maloney model for the intensity of the ionizing radiation near the Milky Way is consistent with the known distance of the high-latitude part of Complex A and an assumed cloud geometry that puts the lower-latitude parts of the cloud at a distance of 7-8 kpc. This compatibility implies a 5% ionizing photon escape fraction from the Galactic disk. We also provide the nitrogen and sulfur upper abundance solutions for a series of temperatures, metallicities, and cloud configurations for purely photoionized gas; these solutions are consistent with the sub-solar abundances found by previous studies, especially for temperatures above 10{sup 4} K or for gas with a high fraction of singly ionized nitrogen and sulfur.

  17. APOGEE-2: The Second Phase of the Apache Point Observatory Galactic Evolution Experiment in SDSS-IV

    Science.gov (United States)

    Sobeck, Jennifer; Majewski, S.; Hearty, F.; Schiavon, R. P.; Holtzman, J. A.; Johnson, J.; Frinchaboy, P. M.; Skrutskie, M. F.; Munoz, R.; Pinsonneault, M. H.; Nidever, D. L.; Zasowski, G.; Garcia Perez, A.; Fabbian, D.; Meza Cofre, A.; Cunha, K. M.; Smith, V. V.; Chiappini, C.; Beers, T. C.; Steinmetz, M.; Anders, F.; Bizyaev, D.; Roman, A.; Fleming, S. W.; Crane, J. D.; SDSS-IV/APOGEE-2 Collaboration

    2014-01-01

    The second phase of the Apache Point Observatory Galactic Evolution Experiment (APOGEE-2), a part of the Sloan Digital Sky Survey IV (SDSS-IV), will commence operations in 2014. APOGEE-2 represents a significant expansion over APOGEE-1, not only in the size of the stellar sample, but also in the coverage of the sky through observations in both the Northern and Southern Hemispheres. Observations on the 2.5m Sloan Foundation Telescope of the Apache Point Observatory (APOGEE-2N) will continue immediately after the conclusion of APOGEE-1, to be followed by observations with the 2.5m du Pont Telescope of the Las Campanas Observatory (APOGEE-2S) within three years. Over the six-year lifetime of the project, high resolution (R˜22,500), high signal-to-noise (≥100) spectroscopic data in the H-band wavelength regime (1.51-1.69 μm) will be obtained for several hundred thousand stars, more than tripling the total APOGEE-1 sample. Accurate radial velocities and detailed chemical compositions will be generated for target stars in the main Galactic components (bulge, disk, and halo), open/globular clusters, and satellite dwarf galaxies. The spectroscopic follow-up program of Kepler targets with the APOGEE-2N instrument will be continued and expanded. APOGEE-2 will significantly extend and enhance the APOGEE-1 legacy of scientific contributions to understanding the origin and evolution of the elements, the assembly and formation history of galaxies like the Milky Way, and fundamental stellar astrophysics.

  18. Symbiotic stars as an old disk population

    Energy Technology Data Exchange (ETDEWEB)

    Wallerstein, G [Joint Inst. for Lab. Astrophysics, Boulder, CO (USA)

    1981-10-01

    A table of all symbiotic stars in the General Catalogue of Variable Stars and its supplements has been assembled and their radial velocities have been discussed. A velocity dispersion of 63 +- 14 km/s is found for all the stars and a value of 58 +- 14 km/s is established if the probable halo star, AG Dra, is omitted. The space distribution is similar to that of an old disk population. Some implications of low masses for the symbiotic stars are discussed, and some suggestions are made regarding possibly useful observations.

  19. Non-Gaussian halo assembly bias

    International Nuclear Information System (INIS)

    Reid, Beth A.; Verde, Licia; Dolag, Klaus; Matarrese, Sabino; Moscardini, Lauro

    2010-01-01

    The strong dependence of the large-scale dark matter halo bias on the (local) non-Gaussianity parameter, f NL , offers a promising avenue towards constraining primordial non-Gaussianity with large-scale structure surveys. In this paper, we present the first detection of the dependence of the non-Gaussian halo bias on halo formation history using N-body simulations. We also present an analytic derivation of the expected signal based on the extended Press-Schechter formalism. In excellent agreement with our analytic prediction, we find that the halo formation history-dependent contribution to the non-Gaussian halo bias (which we call non-Gaussian halo assembly bias) can be factorized in a form approximately independent of redshift and halo mass. The correction to the non-Gaussian halo bias due to the halo formation history can be as large as 100%, with a suppression of the signal for recently formed halos and enhancement for old halos. This could in principle be a problem for realistic galaxy surveys if observational selection effects were to pick galaxies occupying only recently formed halos. Current semi-analytic galaxy formation models, for example, imply an enhancement in the expected signal of ∼ 23% and ∼ 48% for galaxies at z = 1 selected by stellar mass and star formation rate, respectively

  20. THE EVOLUTION OF PROTOPLANETARY DISKS IN THE ARCHES CLUSTER

    International Nuclear Information System (INIS)

    Olczak, C.; Kaczmarek, T.; Pfalzner, S.; Harfst, S.; Portegies Zwart, S.

    2012-01-01

    Most stars form in a cluster environment. These stars are initially surrounded by disks from which potentially planetary systems form. Of all cluster environments, starburst clusters are probably the most hostile for planetary systems in our Galaxy. The intense stellar radiation and extreme density favor rapid destruction of circumstellar disks via photoevaporation and stellar encounters. Evolving a virialized model of the Arches cluster in the Galactic tidal field, we investigate the effect of stellar encounters on circumstellar disks in a prototypical starburst cluster. Despite its proximity to the deep gravitational potential of the Galactic center, only a moderate fraction of members escapes to form an extended pair of tidal tails. Our simulations show that encounters destroy one-third of the circumstellar disks in the cluster core within the first 2.5 Myr of evolution, preferentially affecting the least and most massive stars. A small fraction of these events causes rapid ejection and the formation of a weaker second pair of tidal tails that is overpopulated by disk-poor stars. Two predictions arise from our study. (1) If not destroyed by photoevaporation protoplanetary disks of massive late B- and early O-type stars represent the most likely hosts of planet formation in starburst clusters. (2) Multi-epoch K- and L-band photometry of the Arches cluster would provide the kinematically selected membership sample required to detect the additional pair of disk-poor tidal tails.

  1. Halo Mitigation Using Nonlinear Lattices

    CERN Document Server

    Sonnad, Kiran G

    2005-01-01

    This work shows that halos in beams with space charge effects can be controlled by combining nonlinear focusing and collimation. The study relies on Particle-in-Cell (PIC) simulations for a one dimensional, continuous focusing model. The PIC simulation results show that nonlinear focusing leads to damping of the beam oscillations thereby reducing the mismatch. It is well established that reduced mismatch leads to reduced halo formation. However, the nonlinear damping is accompanied by emittance growth causing the beam to spread in phase space. As a result, inducing nonlinear damping alone cannot help mitigate the halo. To compensate for this expansion in phase space, the beam is collimated in the simulation and further evolution of the beam shows that the halo is not regenerated. The focusing model used in the PIC is analysed using the Lie Transform perturbation theory showing that by averaging over a lattice period, one can reuduce the focusing force to a form that is identical to that used in the PIC simula...

  2. A HIGH-VELOCITY BULGE RR LYRAE VARIABLE ON A HALO-LIKE ORBIT

    International Nuclear Information System (INIS)

    Kunder, Andrea; Storm, J.; Rich, R. M.; Hawkins, K.; Poleski, R.; Johnson, C. I.; Shen, J.; Li, Z.-Y.; Cordero, M. J.; Nataf, D. M.; Bono, G.; Walker, A. R.; Koch, A.; De Propris, R.; Udalski, A.; Szymanski, M. K.; Soszynski, I.; Pietrzynski, G.; Ulaczyk, K.; Wyrzykowski, Ł.

    2015-01-01

    We report on the RR Lyrae variable star, MACHO 176.18833.411, located toward the Galactic bulge and observed within the data from the ongoing Bulge RR Lyrae Radial Velocity Assay, which has the unusual radial velocity of −372 ± 8 km s −1 and true space velocity of −482 ± 22 km s −1 relative to the Galactic rest frame. Located less than 1 kpc from the Galactic center and toward a field at (l, b) = (3, −2.5), this pulsating star has properties suggesting it belongs to the bulge RR Lyrae star population, yet a velocity indicating it is abnormal, at least with respect to bulge giants and red clump stars. We show that this star is most likely a halo interloper and therefore suggest that halo contamination is not insignificant when studying metal-poor stars found within the bulge area, even for stars within 1 kpc of the Galactic center. We discuss the possibility that MACHO 176.18833.411 is on the extreme edge of the bulge RR Lyrae radial velocity distribution, and also consider a more exotic scenario in which it is a runaway star moving through the Galaxy

  3. A HIGH-VELOCITY BULGE RR LYRAE VARIABLE ON A HALO-LIKE ORBIT

    Energy Technology Data Exchange (ETDEWEB)

    Kunder, Andrea; Storm, J. [Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam (Germany); Rich, R. M. [Department of Physics and Astronomy, University of California at Los Angeles, Los Angeles, CA 90095-1562 (United States); Hawkins, K. [Institute of Astronomy, Madingley Road, Cambridge CB3 0HA (United Kingdom); Poleski, R. [Department of Astronomy, Ohio State University, 140 W. 18th Avenue, Columbus, OH 43210 (United States); Johnson, C. I. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Shen, J.; Li, Z.-Y. [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China); Cordero, M. J. [Astronomisches Rechen-Institut: Zentrum für Astronomie, Mönchhofstr. 12-14, D-69120 Heidelberg (Germany); Nataf, D. M. [Research School of Astronomy and Astrophysics, The Australian National University, Canberra, ACT 2611 (Australia); Bono, G. [Dipartimento di Fisica, Universita di Roma Tor Vergata, Via della Ricerca Scientifica 1, I-00133 Roma (Italy); Walker, A. R. [Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory, Casilla 603, La Serena (Chile); Koch, A. [Landessternwarte, Zentrum für Astronomie der Universität Heidelberg, Königstuhl 12, D-69117 Heidelberg (Germany); De Propris, R. [Finnish Centre for Astronomy with ESO (FINCA), University of Turku, Turku (Finland); Udalski, A.; Szymanski, M. K.; Soszynski, I.; Pietrzynski, G.; Ulaczyk, K.; Wyrzykowski, Ł. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); and others

    2015-07-20

    We report on the RR Lyrae variable star, MACHO 176.18833.411, located toward the Galactic bulge and observed within the data from the ongoing Bulge RR Lyrae Radial Velocity Assay, which has the unusual radial velocity of −372 ± 8 km s{sup −1} and true space velocity of −482 ± 22 km s{sup −1} relative to the Galactic rest frame. Located less than 1 kpc from the Galactic center and toward a field at (l, b) = (3, −2.5), this pulsating star has properties suggesting it belongs to the bulge RR Lyrae star population, yet a velocity indicating it is abnormal, at least with respect to bulge giants and red clump stars. We show that this star is most likely a halo interloper and therefore suggest that halo contamination is not insignificant when studying metal-poor stars found within the bulge area, even for stars within 1 kpc of the Galactic center. We discuss the possibility that MACHO 176.18833.411 is on the extreme edge of the bulge RR Lyrae radial velocity distribution, and also consider a more exotic scenario in which it is a runaway star moving through the Galaxy.

  4. Impact of Distance Determinations on Galactic Structure. I. Young and Intermediate-Age Tracers

    Science.gov (United States)

    Matsunaga, Noriyuki; Bono, Giuseppe; Chen, Xiaodian; de Grijs, Richard; Inno, Laura; Nishiyama, Shogo

    2018-06-01

    Here we discuss impacts of distance determinations on the Galactic disk traced by relatively young objects. The Galactic disk, ˜40 kpc in diameter, is a cross-road of studies on the methods of measuring distances, interstellar extinction, evolution of galaxies, and other subjects of interest in astronomy. A proper treatment of interstellar extinction is, for example, crucial for estimating distances to stars in the disk outside the small range of the solar neighborhood. We'll review the current status of relevant studies and discuss some new approaches to the extinction law. When the extinction law is reasonably constrained, distance indicators found in today and future surveys are telling us stellar distribution and more throughout the Galactic disk. Among several useful distance indicators, the focus of this review is Cepheids and open clusters (especially contact binaries in clusters). These tracers are particularly useful for addressing the metallicity gradient of the Galactic disk, an important feature for which comparison between observations and theoretical models can reveal the evolution of the disk.

  5. Self-interacting dark matter constraints in a thick dark disk scenario

    Science.gov (United States)

    Vattis, Kyriakos; Koushiappas, Savvas M.

    2018-05-01

    A thick dark matter disk is predicted in cold dark matter simulations as the outcome of the interaction between accreted satellites and the stellar disk in Milky Way-sized halos. We study the effects of a self-interacting thick dark disk on the energetic neutrino flux from the Sun. We find that for particle masses between 100 GeV and 1 TeV and dark matter annihilation to τ+τ-, either the self-interaction may not be strong enough to solve the small-scale structure motivation or a dark disk cannot be present in the Milky Way.

  6. STELLAR TRANSITS IN ACTIVE GALACTIC NUCLEI

    International Nuclear Information System (INIS)

    Béky, Bence; Kocsis, Bence

    2013-01-01

    Supermassive black holes (SMBHs) are typically surrounded by a dense stellar population in galactic nuclei. Stars crossing the line of site in active galactic nuclei (AGNs) produce a characteristic transit light curve, just like extrasolar planets do when they transit their host star. We examine the possibility of finding such AGN transits in deep optical, UV, and X-ray surveys. We calculate transit light curves using the Novikov-Thorne thin accretion disk model, including general relativistic effects. Based on the expected properties of stellar cusps, we find that around 10 6 solar mass SMBHs, transits of red giants are most common for stars on close orbits with transit durations of a few weeks and orbital periods of a few years. We find that detecting AGN transits requires repeated observations of thousands of low-mass AGNs to 1% photometric accuracy in optical, or ∼10% in UV bands or soft X-ray. It may be possible to identify stellar transits in the Pan-STARRS and LSST optical and the eROSITA X-ray surveys. Such observations could be used to constrain black hole mass, spin, inclination, and accretion rate. Transit rates and durations could give valuable information on the circumnuclear stellar clusters as well. Transit light curves could be used to image accretion disks with unprecedented resolution, allowing us to resolve the SMBH silhouette in distant AGNs.

  7. Hard X-ray emission mechanism of active galactic nuclei sources

    International Nuclear Information System (INIS)

    Liang, E.P.T.

    1979-01-01

    Within the framework of unsaturated Compton disk accretion onto a supermassive black hole as model for power-law active galactic nuclei X-ray sources (as opposed to the synchro-Compton model), we compare the hot inner disk model of Shapiro, Lightman, and Eardley and the disk corona model with balanced conduction and Compton losses. Both can generate electron temperatures > or approx. =10 9 K in the supermassive case but promise other observable distinctions. The sandwich configuration of the disk corona provides a natural explanation of why Comptonization is unsaturated

  8. The detectability of supernovae against elliptical galactic disks.

    Science.gov (United States)

    Pearce, E. C.

    A 75 cm telescope has been automated with a Prime 300 mini-computer to search approximately 250 galaxies per hour for young supernovae. The high-speed star-location and comparison algorithms used in the Digitized Astronomy Supernova Search (DASS) system is described.

  9. Interplay between Dark Matter and Galactic Structure in Disk and ...

    Indian Academy of Sciences (India)

    the Universe, we will see that the total visible matter present in it, is not enough to create the ... The role of dark matter in the solar system is important due to its possible ..... figure 5a at (a) the beginning and (b) end of the numerical integration.

  10. Normal Spiral Galaxies Really Do Have Hot Gas in Their Halos: Chandra Observations of NGC 4013 and NGC 4217.

    Science.gov (United States)

    Strickland, D. K.; Colbert, E. J. M.; Heckman, T. M.; Hoopes, C. G.; Howk, J. C.; Rand, R. J.

    2004-08-01

    Although soft X-ray emission from million degree plasma has long been observed in the halos of starburst galaxies known to have supernova-driven galactic superwinds, X-ray observations have generally failed to detect hot halos around normal spiral galaxies. Indeed, the Milky Way and NGC 891 have historically been the only genuinely "normal" spiral galaxies with unambiguous X-ray halo detections, until now. Here we report on deep observations of NGC 4013 and NGC 4217, two Milky-Way-mass spiral galaxies with star formation rates per unit area similar to the Milky Way and NGC 891, using the Chandra X-ray observatory. Preliminary investigation of the observations clearly show extra-planar diffuse X-ray emission extending several kpc into the halo of NGC 4013. We will present the results of these observations, compare them to the non-detections of hot gas around normal spirals, and relate them to galactic fountain and IGM accretion based models for hot halos. DKS acknowledges funding from NASA through the Smithsonian Astrophysical Observatory. grant G045095X.

  11. The halo current in ASDEX Upgrade

    International Nuclear Information System (INIS)

    Pautasso, G.; Giannone, L.; Gruber, O.; Herrmann, A.; Maraschek, M.; Schuhbeck, K.H.

    2011-01-01

    Due to the complexity of the phenomena involved, a self-consistent physical model for the prediction of the halo current is not available. Therefore the ITER specifications of the spatial distribution and evolution of the halo current rely on empirical assumptions. This paper presents the results of an extensive analysis of the halo current measured in ASDEX Upgrade with particular emphasis on the evolution of the halo region, on the magnitude and time history of the halo current, and on the structure and duration of its toroidal and poloidal asymmetries. The effective length of the poloidal path of the halo current in the vessel is found to be rather insensitive to plasma parameters. Large values of the toroidally averaged halo current are observed in both vertical displacement events and centred disruptions but last a small fraction of the current quench; they coincide typically with a large but short-lived MHD event.

  12. The halo current in ASDEX Upgrade

    Science.gov (United States)

    Pautasso, G.; Giannone, L.; Gruber, O.; Herrmann, A.; Maraschek, M.; Schuhbeck, K. H.; ASDEX Upgrade Team

    2011-04-01

    Due to the complexity of the phenomena involved, a self-consistent physical model for the prediction of the halo current is not available. Therefore the ITER specifications of the spatial distribution and evolution of the halo current rely on empirical assumptions. This paper presents the results of an extensive analysis of the halo current measured in ASDEX Upgrade with particular emphasis on the evolution of the halo region, on the magnitude and time history of the halo current, and on the structure and duration of its toroidal and poloidal asymmetries. The effective length of the poloidal path of the halo current in the vessel is found to be rather insensitive to plasma parameters. Large values of the toroidally averaged halo current are observed in both vertical displacement events and centred disruptions but last a small fraction of the current quench; they coincide typically with a large but short-lived MHD event.

  13. Hydraulic jumps in ''viscous'' accretion disks

    International Nuclear Information System (INIS)

    Michel, F.C.

    1984-01-01

    We propose that the dissipative process necessary for rapid accretion disk evolution is driven by hydraulic jump waves on the surface of the disk. These waves are excited by the asymmetric nature of the central rotator (e.g., neutron star magnetosphere) and spiral out into the disk to form a pattern corotating with the central object. Disk matter in turn is slowed slightly at each encounter with the jump and spirals inward. In this process, the disk is heated by true turbulence produced in the jumps. Additional effects, such as a systematic misalignment of the magnetic moment of the neutron star until it is nearly orthogonal, and systematic distortion of the magnetosphere in such a way as to form an even more asymmetric central ''paddle wheel'' may enhance the interaction with inflowing matter. The application to X-ray sources corresponds to the ''slow'' solutions of Ghosh and Lamb, and therefore to rms magnetic fields of about 4 x 10 10 gauss. Analogous phenomena have been proposed to act in the formation of galactic spiral structure

  14. Reionization histories of Milky Way mass halos

    International Nuclear Information System (INIS)

    Li, Tony Y.; Wechsler, Risa H.; Abel, Tom; Alvarez, Marcelo A.

    2014-01-01

    We investigate the connection between the reionization era and the present-day universe by examining the mass reionization histories of z = 0 dark matter halos. In a 600 3 Mpc 3 volume, we combine a dark matter N-body simulation with a three-dimensional seminumerical reionization model. This tags each particle with a reionization redshift, so that individual present-day halos can be connected to their reionization histories and environments. We find that the vast majority of present-day halos with masses larger than ∼ few × 10 11 M ☉ reionize earlier than the rest of the universe. We also find significant halo-to-halo diversity in mass reionization histories, and find that in realistic inhomogeneous models, the material within a given halo is not expected to reionize at the same time. In particular, the scatter in reionization times within individual halos is typically larger than the scatter among halos. From our fiducial reionization model, we find that the typical 68% scatter in reionization times within halos is ∼115 Myr for 10 12±0.25 M ☉ halos, decreasing slightly to ∼95 Myr for 10 15±0.25 M ☉ halos. We find a mild correlation between reionization history and environment: halos with shorter reionization histories are typically in more clustered environments, with the strongest trend on a scale of ∼20 Mpc. Material in Milky Way mass halos with short reionization histories is preferentially reionized in relatively large H II regions, implying reionization mostly by sources external to the progenitors of the present-day halo. We investigate the impact on our results of varying the reionization model parameters, which span a range of reionization scenarios with varying timing and morphology.

  15. Dark energy and dark matter in galaxy halos

    International Nuclear Information System (INIS)

    Tetradis, N.

    2006-01-01

    We consider the possibility that the dark matter is coupled through its mass to a scalar field associated with the dark energy of the Universe. In order for such a field to play a role at the present cosmological distances, it must be effectively massless at galactic length scales. We discuss the effect of the field on the distribution of dark matter in galaxy halos. We show that the profile of the distribution outside the galaxy core remains largely unaffected and the approximately flat rotation curves persist. The dispersion of the dark matter velocity is enhanced by a potentially large factor relative to the case of zero coupling between dark energy and dark matter. The counting rates in terrestrial dark matter detectors are similarly enhanced. Existing bounds on the properties of dark matter candidates can be extended to the coupled case, by taking into account the enhancement factor

  16. The Next Generation Virgo Cluster Survey. XXVIII. Characterization of the Galactic White Dwarf Population

    Energy Technology Data Exchange (ETDEWEB)

    Fantin, Nicholas J. [Department of Physics and Astronomy,University of Victoria, Victoria, BC, V8P 1A1 (Canada); Côté, Patrick; Gwyn, S. D. J.; Ferrarese, Laura; McConnachie, Alan [National Research Council of Canada, Herzberg Astronomy and Astrophysics Program, 5071 W. Saanich Road, Victoria, BC, V9E 2E7 (Canada); Hanes, David A. [Queen’s University, Department of Physics, Engineering Physics and Astronomy, Kingston, Ontario (Canada); Bianchi, Luciana [Department of Physics and Astronomy, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218 (United States); Cuillandre, Jean-Charles [CEA/IRFU/SAp, Laboratoire AIM Paris-Saclay, CNRS/INSU, Université Paris Diderot, Observatoire de Paris, PSL Research University, F-91191 Gif-sur-Yvette Cedex (France); Starkenburg, Else, E-mail: nfantin@uvic.ca [Leibniz Institute for Astrophysics Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam (Germany)

    2017-07-01

    We use three different techniques to identify hundreds of white dwarf (WD) candidates in the Next Generation Virgo Cluster Survey (NGVS) based on photometry from the NGVS and GUViCS, and proper motions derived from the NGVS and the Sloan Digital Sky Survey (SDSS). Photometric distances for these candidates are calculated using theoretical color–absolute magnitude relations, while effective temperatures are measured by fitting their spectral energy distributions. Disk and halo WD candidates are separated using a tangential velocity cut of 200 km s{sup −1} in a reduced proper motion diagram, which leads to a sample of six halo WD candidates. Cooling ages, calculated for an assumed WD mass of 0.6 M {sub ⊙}, range between 60 Myr and 6 Gyr, although these estimates depend sensitively on the adopted mass. Luminosity functions for the disk and halo subsamples are constructed and compared to previous results from the SDSS and SuperCOSMOS survey. We compute a number density of (2.81 ± 0.52) × 10{sup −3} pc{sup −3} for the disk WD population—consistent with previous measurements. We find (7.85 ± 4.55) × 10{sup −6} pc{sup −3} for the halo, or 0.3% of the disk. Observed stellar counts are also compared to predictions made by the TRILEGAL and Besançon stellar population synthesis models. The comparison suggests that the TRILEGAL model overpredicts the total number of WDs. The WD counts predicted by the Besançon model agree with the observations, although a discrepancy arises when comparing the predicted and observed halo WD populations; the difference is likely due to the WD masses in the adopted model halo.

  17. galpy: A python LIBRARY FOR GALACTIC DYNAMICS

    International Nuclear Information System (INIS)

    Bovy, Jo

    2015-01-01

    I describe the design, implementation, and usage of galpy, a python package for galactic-dynamics calculations. At its core, galpy consists of a general framework for representing galactic potentials both in python and in C (for accelerated computations); galpy functions, objects, and methods can generally take arbitrary combinations of these as arguments. Numerical orbit integration is supported with a variety of Runge-Kutta-type and symplectic integrators. For planar orbits, integration of the phase-space volume is also possible. galpy supports the calculation of action-angle coordinates and orbital frequencies for a given phase-space point for general spherical potentials, using state-of-the-art numerical approximations for axisymmetric potentials, and making use of a recent general approximation for any static potential. A number of different distribution functions (DFs) are also included in the current release; currently, these consist of two-dimensional axisymmetric and non-axisymmetric disk DFs, a three-dimensional disk DF, and a DF framework for tidal streams. I provide several examples to illustrate the use of the code. I present a simple model for the Milky Way's gravitational potential consistent with the latest observations. I also numerically calculate the Oort functions for different tracer populations of stars and compare them to a new analytical approximation. Additionally, I characterize the response of a kinematically warm disk to an elliptical m = 2 perturbation in detail. Overall, galpy consists of about 54,000 lines, including 23,000 lines of code in the module, 11,000 lines of test code, and about 20,000 lines of documentation. The test suite covers 99.6% of the code. galpy is available at http://github.com/jobovy/galpy with extensive documentation available at http://galpy.readthedocs.org/en/latest

  18. HERSCHEL OBSERVATIONS REVEAL ANOMALOUS MOLECULAR ABUNDANCES TOWARD THE GALACTIC CENTER

    Energy Technology Data Exchange (ETDEWEB)

    Sonnentrucker, P. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Neufeld, D. A.; Indriolo, N. [Physics and Astronomy Department, Johns Hopkins University, Baltimore, MD 21218 (United States); Gerin, M.; De Luca, M. [LERMA-LRA, UMR 8112 du CNRS, Observatoire de Paris, Ecole Normale Superieure, UPMC and UCP, 24 rue Lhomond, F-75231, Paris Cedex 05 (France); Lis, D. C. [Astronomy Department, California Institute of Technology, Pasadena, CA 91125 (United States); Goicoechea, J. R., E-mail: sonnentr@stsci.edu [Centro de Astrobiologia, CSIC/INTA, E-28850, Madrid (Spain)

    2013-01-20

    We report the Herschel detections of hydrogen fluoride (HF) and para-water (p-H{sub 2}O) in gas intercepting the sight lines to two well-studied molecular clouds in the vicinity of the Sgr A complex: G-0.02-0.07 (the {sup +}50 km s{sup -1} cloud{sup )} and G-0.13-0.08 (the {sup +}20 km s{sup -1} cloud{sup )}. Toward both sight lines, HF and water absorption components are detected over a wide range of velocities covering {approx}250 km s{sup -1}. For all velocity components with V{sub LSR} > -85 km s{sup -1}, we find that the HF and water abundances are consistent with those measured toward other sight lines probing the Galactic disk gas. The velocity components with V{sub LSR} {<=} -85 km s{sup -1}, which are known to trace gas residing within {approx}200 pc of the Galactic center, however, exhibit water vapor abundances with respect to HF at least a factor three higher than those found in the Galactic disk gas. Comparison with CH data indicates that our observations are consistent with a picture where HF and a fraction of the H{sub 2}O absorption arise in diffuse molecular clouds showing Galactic disk-like abundances while the bulk of the water absorption arises in warmer (T {>=} 400 K) diffuse molecular gas for V{sub LSR} {<=} -85 km s{sup -1}. This diffuse Interstellar Medium (ISM) phase has also been recently revealed through observations of CO, HF, H{sup +}{sub 3}, and H{sub 3}O{sup +} absorption toward other sight lines probing the Galactic center inner region.

  19. Halo Histories vs. Galaxy Properties at z=0, III: The Properties of Star-Forming Galaxies

    Science.gov (United States)

    Tinker, Jeremy L.; Hahn, ChangHoon; Mao, Yao-Yuan; Wetzel, Andrew R.

    2018-05-01

    We measure how the properties of star-forming central galaxies correlate with large-scale environment, δ, measured on 10 h-1Mpc scales. We use galaxy group catalogs to isolate a robust sample of central galaxies with high purity and completeness. The galaxy properties we investigate are star formation rate (SFR), exponential disk scale length Rexp, and Sersic index of the galaxy light profile, nS. We find that, at all stellar masses, there is an inverse correlation between SFR and δ, meaning that above-average star forming centrals live in underdense regions. For nS and Rexp, there is no correlation with δ at M_\\ast ≲ 10^{10.5} M⊙, but at higher masses there are positive correlations; a weak correlation with Rexp and a strong correlation with nS. These data are evidence of assembly bias within the star-forming population. The results for SFR are consistent with a model in which SFR correlates with present-day halo accretion rate, \\dot{M}_h. In this model, galaxies are assigned to halos using the abundance matching ansatz, which maps galaxy stellar mass onto halo mass. At fixed halo mass, SFR is then assigned to galaxies using the same approach, but \\dot{M}_h is used to map onto SFR. The best-fit model requires some scatter in the \\dot{M}_h-SFR relation. The Rexp and nS measurements are consistent with a model in which both of these quantities are correlated with the spin parameter of the halo, λ. Halo spin does not correlate with δ at low halo masses, but for higher mass halos, high-spin halos live in higher density environments at fixed Mh. Put together with the earlier installments of this series, these data demonstrate that quenching processes have limited correlation with halo formation history, but the growth of active galaxies, as well as other detailed galaxies properties, are influenced by the details of halo assembly.

  20. VERITAS Galactic Observations

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Gareth

    2013-06-15

    We report on recent Galactic results and discoveries made by the VERITAS collaboration. The Very Energetic Radiation Imaging Telescope Array System (VERITAS) is a ground-based gamma-ray observatory, located in southern Arizona, able to detect gamma rays of energies from 100 GeV up to 30 TeV. VERITAS has been fully operational since 2007 and its current sensitivity enables the detection of a 1% Crab Nebula flux at 5 sigma in under 30 hours. The observatory is well placed to view large parts of the galactic plane including its center, resulting in a strong galactic program. Objects routinely observed include Pulsars, Pulsar Wind Nebula, X-ray binaries and sources with unidentified counterparts in other wavelengths.

  1. An Alternative Explanation of the Varying Boron-to-carbon Ratio in Galactic Cosmic Rays

    Energy Technology Data Exchange (ETDEWEB)

    Eichler, David [Department of Physics, Ben-Gurion University, Be’er-Sheba 84105 (Israel)

    2017-06-10

    It is suggested that the decline with energy of the boron-to-carbon abundance ratio in Galactic cosmic rays is due, in part, to a correlation between the maximum energy attainable by shock acceleration in a given region of the Galactic disk and the grammage traversed before escape. In this case the energy dependence of the escape rate from the Galaxy may be less than previously thought and the spectrum of antiprotons becomes easier to understand.

  2. Annihilation physics of exotic galactic dark matter particles

    Science.gov (United States)

    Stecker, F. W.

    1990-01-01

    Various theoretical arguments make exotic heavy neutral weakly interacting fermions, particularly those predicted by supersymmetry theory, attractive candidates for making up the large amount of unseen gravitating mass in galactic halos. Such particles can annihilate with each other, producing secondary particles of cosmic-ray energies, among which are antiprotons, positrons, neutrinos, and gamma-rays. Spectra and fluxes of these annihilation products can be calculated, partly by making use of positron electron collider data and quantum chromodynamic models of particle production derived therefrom. These spectra may provide detectable signatures of exotic particle remnants of the big bang.

  3. Cumulative Neutrino and Gamma-Ray Backgrounds from Halo and Galaxy Mergers

    Science.gov (United States)

    Yuan, Chengchao; Mészáros, Peter; Murase, Kohta; Jeong, Donghui

    2018-04-01

    The merger of dark matter halos and the gaseous structures embedded in them, such as protogalaxies, galaxies, and groups and clusters of galaxies, results in strong shocks that are capable of accelerating cosmic rays (CRs) to ≳10 PeV. These shocks will produce high-energy neutrinos and γ-rays through inelastic pp collisions. In this work, we study the contributions of these halo mergers to the diffuse neutrino flux and to the nonblazar portion of the extragalactic γ-ray background. We formulate the redshift dependence of the shock velocity, galactic radius, halo gas content, and galactic/intergalactic magnetic fields over the dark matter halo distribution up to a redshift z = 10. We find that high-redshift mergers contribute a significant amount of the CR luminosity density, and the resulting neutrino spectra could explain a large part of the observed diffuse neutrino flux above 0.1 PeV up to several PeV. We also show that our model can somewhat alleviate tensions with the extragalactic γ-ray background. First, since a larger fraction of the CR luminosity density comes from high redshifts, the accompanying γ-rays are more strongly suppressed through γγ annihilations with the cosmic microwave background and the extragalactic background light. Second, mildly radiative-cooled shocks may lead to a harder CR spectrum with spectral indices of 1.5 ≲ s ≲ 2.0. Our study suggests that halo mergers, a fraction of which may also induce starbursts in the merged galaxies, can be promising neutrino emitters without violating the existing Fermi γ-ray constraints on the nonblazar component of the extragalactic γ-ray background.

  4. COBE diffuse infrared background experiment observations of the galactic bulge

    Science.gov (United States)

    Weiland, J. L.; Arendt, R. G.; Berriman, G. B.; Dwek, E.; Freudenreich, H. T.; Hauser, M. G.; Kelsall, T.; Lisse, C. M.; Mitra, M.; Moseley, S. H.

    1994-01-01

    Low angular resolution maps of the Galactic bulge at 1.25, 2.2, 3.5, and 4.9 micrometers obtained by the Diffuse Infrared Background Experiment (DIRBE) onboard NASA's Cosmic Background Explorer (COBE) are presented. After correction for extinction and subtraction of an empirical model for the Galactic disk, the surface brightness distribution of the bulge resembles a flattened ellipse with a minor-to-major axis ratio of approximately 0.6. The bulge minor axis scale height is found to be 2.1 deg +/- 0.2 deg for all four near-infrared wavelengths. Asymmetries in the longitudinal distribution of bulge brightness contours are qualitatively consistent with those expected for a triaxial bar with its near end in the first Galactic quadrant (0 deg less than l less than 90 deg). There is no evidence for an out-of-plane tilt of such a bar.

  5. Probing the Galactic Structure of the Milky Way with H II Regions

    Science.gov (United States)

    Red, Wesley Alexander; Wenger, Trey V.; Balser, Dana; Anderson, Loren; Bania, Thomas

    2018-01-01

    Mapping the structure of the Milky Way is challenging since we reside within the Galactic disk and distances are difficult to determine. Elemental abundances provide important constraints on theories of the formation and evolution of the Milky Way. HII regions are the brightest objects in the Galaxy at radio wavelengths and are detected across the entire Galactic disk. We use the Jansky Very Large Array (VLA) to observe the radio recombination line (RRL) and continuum emission of 120 Galactic HII regions located across the Galactic disk. In thermal equilibrium, metal abundances are expected to set the nebular electron temperature with high abundances producing low temperatures. We derive the metallicity of HII regions using an empirical relation between an HII region's radio recombination line-to-continuum ratio and nebular metallicity. Here we focus on a subset of 20 HII regions from our sample that have been well studied with the Green Bank Telescope (GBT) to test our data reduction pipeline and analysis methods. Our goal is to expand this study to the Southern skies with the Australia Telescope Compact Array and create a metallicity map of the entire Galactic disk.

  6. Disk Storage Server

    CERN Multimedia

    This model was a disk storage server used in the Data Centre up until 2012. Each tray contains a hard disk drive (see the 5TB hard disk drive on the main disk display section - this actually fits into one of the trays). There are 16 trays in all per server. There are hundreds of these servers mounted on racks in the Data Centre, as can be seen.

  7. Evidence for a vanishing 6Li/7Li isotopic signature in the metal-poor halo star HD84937

    DEFF Research Database (Denmark)

    Lind, K.; Asplund, M.; Collet, Remo

    2012-01-01

    The claimed detections of 6Li in the atmospheres of some metal-poor halo stars have lead to speculative additions to the standard model of Big Bang nucleosynthesis and the early Universe, as the inferred abundances cannot be explained by Galactic cosmic ray production. A prominent example of a so...

  8. A giant protogalactic disk linked to the cosmic web

    Science.gov (United States)

    Martin, D. Christopher; Matuszewski, Mateusz; Morrissey, Patrick; Neill, James D.; Moore, Anna; Cantalupo, Sebastiano; Prochaska, J. Xavier; Chang, Daphne

    2015-08-01

    The specifics of how galaxies form from, and are fuelled by, gas from the intergalactic medium remain uncertain. Hydrodynamic simulations suggest that `cold accretion flows'--relatively cool (temperatures of the order of 104 kelvin), unshocked gas streaming along filaments of the cosmic web into dark-matter halos--are important. These flows are thought to deposit gas and angular momentum into the circumgalactic medium, creating disk- or ring-like structures that eventually coalesce into galaxies that form at filamentary intersections. Recently, a large and luminous filament, consistent with such a cold accretion flow, was discovered near the quasi-stellar object QSO UM287 at redshift 2.279 using narrow-band imaging. Unfortunately, imaging is not sufficient to constrain the physical characteristics of the filament, to determine its kinematics, to explain how it is linked to nearby sources, or to account for its unusual brightness, more than a factor of ten above what is expected for a filament. Here we report a two-dimensional spectroscopic investigation of the emitting structure. We find that the brightest emission region is an extended rotating hydrogen disk with a velocity profile that is characteristic of gas in a dark-matter halo with a mass of 1013 solar masses. This giant protogalactic disk appears to be connected to a quiescent filament that may extend beyond the virial radius of the halo. The geometry is strongly suggestive of a cold accretion flow.

  9. Understanding Floppy Disks.

    Science.gov (United States)

    Valentine, Pamela

    1980-01-01

    The author describes the floppy disk with an analogy to the phonograph record, and discusses the advantages, disadvantages, and capabilities of hard-sectored and soft-sectored floppy disks. She concludes that, at present, the floppy disk will continue to be the primary choice of personal computer manufacturers and their customers. (KC)

  10. Galaxy and Mass Assembly (GAMA): halo formation times and halo assembly bias on the cosmic web

    Science.gov (United States)

    Tojeiro, Rita; Eardley, Elizabeth; Peacock, John A.; Norberg, Peder; Alpaslan, Mehmet; Driver, Simon P.; Henriques, Bruno; Hopkins, Andrew M.; Kafle, Prajwal R.; Robotham, Aaron S. G.; Thomas, Peter; Tonini, Chiara; Wild, Vivienne

    2017-09-01

    We present evidence for halo assembly bias as a function of geometric environment (GE). By classifying Galaxy and Mass Assembly (GAMA) galaxy groups as residing in voids, sheets, filaments or knots using a tidal tensor method, we find that low-mass haloes that reside in knots are older than haloes of the same mass that reside in voids. This result provides direct support to theories that link strong halo tidal interactions with halo assembly times. The trend with GE is reversed at large halo mass, with haloes in knots being younger than haloes of the same mass in voids. We find a clear signal of halo downsizing - more massive haloes host galaxies that assembled their stars earlier. This overall trend holds independently of GE. We support our analysis with an in-depth exploration of the L-Galaxies semi-analytic model, used here to correlate several galaxy properties with three different definitions of halo formation time. We find a complex relationship between halo formation time and galaxy properties, with significant scatter. We confirm that stellar mass to halo mass ratio, specific star formation rate (SFR) and mass-weighed age are reasonable proxies of halo formation time, especially at low halo masses. Instantaneous SFR is a poor indicator at all halo masses. Using the same semi-analytic model, we create mock spectral observations using complex star formation and chemical enrichment histories, which approximately mimic GAMA's typical signal-to-noise ratio and wavelength range. We use these mocks to assert how well potential proxies of halo formation time may be recovered from GAMA-like spectroscopic data.

  11. Models of disk chemical evolution focusing the pure dynamical radial mixing

    Directory of Open Access Journals (Sweden)

    Re Fiorentin P.

    2012-02-01

    Full Text Available We performed N-body simulations to study the dynamical evolution of a stellar disk inside a Dark Matter (DM halo. Our results evidence how a standard -radially decreasing- metallicity gradient produces a negative vϕ vs. [Fe/H] correlation, similar to that shown by the thin disk stars, while an inverse radial gradient generates a positive rotation-metallicity correlation, as that observed in the old thick population.

  12. On Estimating the Mass of Keplerian Accretion Disks in H2O Maser Galaxies

    Science.gov (United States)

    Kuo, C. Y.; Reid, M. J.; Braatz, J. A.; Gao, F.; Impellizzeri, C. M. V.; Chien, W. T.

    2018-06-01

    H2O maser disks with Keplerian rotation in active galactic nuclei offer a clean way to determine accurate black hole mass and the Hubble constant. An important assumption made in using a Keplerian H2O maser disk for measuring black hole mass and the Hubble constant is that the disk mass is negligible compared to the black hole mass. A simple and useful model of Huré et al. can be used to test this assumption. In that work, the authors apply a linear disk model to a position–dynamical mass diagram and re-analyze position–velocity data from H2O maser disks associated with active galactic nuclei. They claim that a maser disk with nearly perfect Keplerian rotation could have a disk mass comparable to the black hole mass. This would imply that ignoring the effects of disk self-gravity can lead to large systematic errors in the measurement of black hole mass and the Hubble constant. We examine their methods and find that their large estimated disk masses of Keplerian disks are likely the result of their use of projected instead of three-dimensional position and velocity information. To place better constraints on the disk masses of Keplerian maser systems, we incorporate disk self-gravity into a three-dimensional Bayesian modeling program for maser disks and also evaluate constraints based on the physical conditions for disks that support water maser emission. We find that there is little evidence that disk masses are dynamically important at the ≲1% level compared to the black holes.

  13. The clustering of QSOs and the dark matter halos that host them

    Science.gov (United States)

    Zhao, Dong-Yao; Yan, Chang-Shuo; Lu, Youjun

    2013-10-01

    The spatial clustering of QSOs is an important measurable quantity which can be used to infer the properties of dark matter halos that host them. We construct a simple QSO model to explain the linear bias of QSOs measured by recent observations and explore the properties of dark matter halos that host a QSO. We assume that major mergers of dark matter halos can lead to the triggering of QSO phenomena, and the evolution of luminosity for a QSO generally shows two accretion phases, i.e., initially having a constant Eddington ratio due to the self-regulation of the accretion process when supply is sufficient, and then declining in rate with time as a power law due to either diminished supply or long term disk evolution. Using a Markov Chain Monte Carlo method, the model parameters are constrained by fitting the observationally determined QSO luminosity functions (LFs) in the hard X-ray and in the optical band simultaneously. Adopting the model parameters that best fit the QSO LFs, the linear bias of QSOs can be predicted and then compared with the observational measurements by accounting for various selection effects in different QSO surveys. We find that the latest measurements of the linear bias of QSOs from both the SDSS and BOSS QSO surveys can be well reproduced. The typical mass of SDSS QSOs at redshift 1.5 < z < 4.5 is ~ (3 - 6) × 1012 h-1 Msolar and the typical mass of BOSS QSOs at z ~ 2.4 is ~ 2 × 1012 h-1 Msolar. For relatively faint QSOs, the mass distribution of their host dark matter halos is wider than that of bright QSOs because faint QSOs can be hosted in both big halos and smaller halos, but bright QSOs are only hosted in big halos, which is part of the reason for the predicted weak dependence of the linear biases on the QSO luminosity.

  14. The clustering of QSOs and the dark matter halos that host them

    International Nuclear Information System (INIS)

    Zhao Dong-Yao; Yan Chang-Shuo; Lu Youjun

    2013-01-01

    The spatial clustering of QSOs is an important measurable quantity which can be used to infer the properties of dark matter halos that host them. We construct a simple QSO model to explain the linear bias of QSOs measured by recent observations and explore the properties of dark matter halos that host a QSO. We assume that major mergers of dark matter halos can lead to the triggering of QSO phenomena, and the evolution of luminosity for a QSO generally shows two accretion phases, i.e., initially having a constant Eddington ratio due to the self-regulation of the accretion process when supply is sufficient, and then declining in rate with time as a power law due to either diminished supply or long term disk evolution. Using a Markov Chain Monte Carlo method, the model parameters are constrained by fitting the observationally determined QSO luminosity functions (LFs) in the hard X-ray and in the optical band simultaneously. Adopting the model parameters that best fit the QSO LFs, the linear bias of QSOs can be predicted and then compared with the observational measurements by accounting for various selection effects in different QSO surveys. We find that the latest measurements of the linear bias of QSOs from both the SDSS and BOSS QSO surveys can be well reproduced. The typical mass of SDSS QSOs at redshift 1.5 12 h −1 M s un and the typical mass of BOSS QSOs at z ∼ 2.4 is ∼ 2 × 10 12 h −1 M s un. For relatively faint QSOs, the mass distribution of their host dark matter halos is wider than that of bright QSOs because faint QSOs can be hosted in both big halos and smaller halos, but bright QSOs are only hosted in big halos, which is part of the reason for the predicted weak dependence of the linear biases on the QSO luminosity

  15. The Peculiar Chemical Inventory of NGC 2419: An Extreme Outer Halo "Globular Cluster"

    Science.gov (United States)

    Cohen, Judith G.; Huang, Wenjin; Kirby, Evan N.

    2011-10-01

    NGC 2419 is a massive outer halo Galactic globular cluster (GC) whose stars have previously been shown to have somewhat peculiar abundance patterns. We have observed seven luminous giants that are members of NGC 2419 with Keck/HIRES at reasonable signal-to-noise ratio. One of these giants is very peculiar, with an extremely low [Mg/Fe] and high [K/Fe] but normal abundances of most other elements. The abundance pattern does not match the nucleosynthetic yields of any supernova model. The other six stars show abundance ratios typical of inner halo Galactic GCs, represented here by a sample of giants in the nearby GC M30. Although our measurements show that NGC 2419 is unusual in some respects, its bulk properties do not provide compelling evidence for a difference between inner and outer halo GCs. Based in part on observations obtained at the W. M. Keck Observatory, which is operated jointly by the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration.

  16. Using artificial neural networks to constrain the halo baryon fraction during reionization

    Science.gov (United States)

    Sullivan, David; Iliev, Ilian T.; Dixon, Keri L.

    2018-01-01

    Radiative feedback from stars and galaxies has been proposed as a potential solution to many of the tensions with simplistic galaxy formation models based on Λcold dark matter, such as the faint end of the ultraviolet (UV) luminosity function. The total energy budget of radiation could exceed that of galactic winds and supernovae combined, which has driven the development of sophisticated algorithms that evolve both the radiation field and the hydrodynamical response of gas simultaneously, in a cosmological context. We probe self-feedback on galactic scales using the adaptive mesh refinement, radiative transfer, hydrodynamics, and N-body code RAMSES-RT. Unlike previous studies which assume a homogeneous UV background, we self-consistently evolve both the radiation field and gas to constrain the halo baryon fraction during cosmic reionization. We demonstrate that the characteristic halo mass with mean baryon fraction half the cosmic mean, Mc(z), shows very little variation as a function of mass-weighted ionization fraction. Furthermore, we find that the inclusion of metal cooling and the ability to resolve scales small enough for self-shielding to become efficient leads to a significant drop in Mc when compared to recent studies. Finally, we develop an artificial neural network that is capable of predicting the baryon fraction of haloes based on recent tidal interactions, gas temperature, and mass-weighted ionization fraction. Such a model can be applied to any reionization history, and trivially incorporated into semi-analytical models of galaxy formation.

  17. MASS TRANSPORT AND TURBULENCE IN GRAVITATIONALLY UNSTABLE DISK GALAXIES. II. THE EFFECTS OF STAR FORMATION FEEDBACK

    Energy Technology Data Exchange (ETDEWEB)

    Goldbaum, Nathan J. [National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, 1205 W. Clark St., Urbana, IL 61801 (United States); Krumholz, Mark R. [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2601 (Australia); Forbes, John C., E-mail: ngoldbau@illinois.edu [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2016-08-10

    Self-gravity and stellar feedback are capable of driving turbulence and transporting mass and angular momentum in disk galaxies, but the balance between them is not well understood. In the previous paper in this series, we showed that gravity alone can drive turbulence in galactic disks, regulate their Toomre Q parameters to ∼1, and transport mass inwards at a rate sufficient to fuel star formation in the centers of present-day galaxies. In this paper we extend our models to include the effects of star formation feedback. We show that feedback suppresses galaxies’ star formation rates by a factor of ∼5 and leads to the formation of a multi-phase atomic and molecular interstellar medium. Both the star formation rate and the phase balance produced in our simulations agree well with observations of nearby spirals. After our galaxies reach steady state, we find that the inclusion of feedback actually lowers the gas velocity dispersion slightly compared to the case of pure self-gravity, and also slightly reduces the rate of inward mass transport. Nevertheless, we find that, even with feedback included, our galactic disks self-regulate to Q ∼ 1, and transport mass inwards at a rate sufficient to supply a substantial fraction of the inner disk star formation. We argue that gravitational instability is therefore likely to be the dominant source of turbulence and transport in galactic disks, and that it is responsible for fueling star formation in the inner parts of galactic disks over cosmological times.

  18. Galactic densities, substructure and the initial power spectrum

    International Nuclear Information System (INIS)

    Bullock, J.S.; Zentner, A.R.

    2003-01-01

    Although the currently favored cold dark matter plus cosmological constant model for structure formation assumes an n = 1 scale-invariant initial power spectrum, most inflation models produce at least mild deviations from n = 1. Because the lever arm from the CMB normalization to galaxy scales is long, even a small 'tilt' can have important implications for galactic observations. Here we calculate the COBS-normalized power spectra for several well-motivated models of inflation and compute implications for the substructure content and central densities of galaxy halos. Using an analytic model, normalized against N-body simulations, we show that while halos in the standard (n = 1) model are overdense by a factor of ∼ 6 compared to observations, several of our example inflation+LCDM models predict halo densities well within the range of observations, which prefer models with n ∼ 0.85. We go on to use a semi-analytic model (also normalized against N-body simulations) to follow the merger histories of galaxy-sized halos and track the orbital decay, disruption, and evolution of the merging substructure. Models with n ∼ 0.85 predict a factor of ∼ 3 fewer subhalos at a fixed circular velocity than the standard n 1 case. Although this level of reduction does not resolve the 'dwarf satellite problem', it does imply that the level of feedback required to match the observed number of dwarfs is sensitive to the initial power spectrum. Finally, the fraction of galaxy-halo mass that is bound up in substructure is consistent with limits imposed by multiply imaged quasars for all models considered: f sat > 0.01 even for an effective tilt of n ∼ 0.8. We conclude that, at their current level, lensing constraints of this kind do not provide an interesting probe of the primordial power spectrum

  19. Group quenching and galactic conformity at low redshift

    Science.gov (United States)

    Treyer, M.; Kraljic, K.; Arnouts, S.; de la Torre, S.; Pichon, C.; Dubois, Y.; Vibert, D.; Milliard, B.; Laigle, C.; Seibert, M.; Brown, M. J. I.; Grootes, M. W.; Wright, A. H.; Liske, J.; Lara-Lopez, M. A.; Bland-Hawthorn, J.

    2018-06-01

    We quantify the quenching impact of the group environment using the spectroscopic survey Galaxy and Mass Assembly to z ˜ 0.2. The fraction of red (quiescent) galaxies, whether in groups or isolated, increases with both stellar mass and large-scale (5 Mpc) density. At fixed stellar mass, the red fraction is on average higher for satellites of red centrals than of blue (star-forming) centrals, a galactic conformity effect that increases with density. Most of the signal originates from groups that have the highest stellar mass, reside in the densest environments, and have massive, red only centrals. Assuming a colour-dependent halo-to-stellar-mass ratio, whereby red central galaxies inhabit significantly more massive haloes than blue ones of the same stellar mass, two regimes emerge more distinctly: at log (Mhalo/M⊙) ≲ 13, central quenching is still ongoing, conformity is no longer existent, and satellites and group centrals exhibit the same quenching excess over field galaxies at all mass and density, in agreement with the concept of `group quenching'; at log (Mh/M⊙) ≳ 13, a cut-off that sets apart massive (log (M⋆/M⊙) > 11), fully quenched group centrals, conformity is meaningless, and satellites undergo significantly more quenching than their counterparts in smaller haloes. The latter effect strongly increases with density, giving rise to the density-dependent conformity signal when both regimes are mixed. The star formation of blue satellites in massive haloes is also suppressed compared to blue field galaxies, while blue group centrals and the majority of blue satellites, which reside in low-mass haloes, show no deviation from the colour-stellar mass relation of blue field galaxies.

  20. Group quenching and galactic conformity at low redshift

    Science.gov (United States)

    Treyer, M.; Kraljic, K.; Arnouts, S.; de la Torre, S.; Pichon, C.; Dubois, Y.; Vibert, D.; Milliard, B.; Laigle, C.; Seibert, M.; Brown, M. J. I.; Grootes, M. W.; Wright, A. H.; Liske, J.; Lara-Lopez, M. A.; Bland-Hawthorn, J.

    2018-03-01

    We quantify the quenching impact of the group environment using the spectroscopic survey Galaxy and Mass Assembly (GAMA) to z ˜ 0.2. The fraction of red (quiescent) galaxies, whether in groups or isolated, increases with both stellar mass and large-scale (5 Mpc) density. At fixed stellar mass, the red fraction is on average higher for satellites of red centrals than of blue (star-forming) centrals, a galactic conformity effect that increases with density. Most of the signal originates from groups that have the highest stellar mass, reside in the densest environments, and have massive, red only centrals. Assuming a color-dependent halo-to-stellar-mass ratio, whereby red central galaxies inhabit significantly more massive halos than blue ones of the same stellar mass, two regimes emerge more distinctly: at log (Mhalo/M⊙) ≲ 13, central quenching is still ongoing, conformity is no longer existent, and satellites and group centrals exhibit the same quenching excess over field galaxies at all mass and density, in agreement with the concept of "group quenching"; at log (Mh/M⊙) ≳ 13, a cutoff that sets apart massive (log (M⋆/M⊙) > 11), fully quenched group centrals, conformity is meaningless, and satellites undergo significantly more quenching than their counterparts in smaller halos. The latter effect strongly increases with density, giving rise to the density-dependent conformity signal when both regimes are mixed. The star-formation of blue satellites in massive halos is also suppressed compared to blue field galaxies, while blue group centrals and the majority of blue satellites, which reside in low mass halos, show no deviation from the color-stellar mass relation of blue field galaxies.

  1. HNC IN PROTOPLANETARY DISKS

    International Nuclear Information System (INIS)

    Graninger, Dawn; Öberg, Karin I.; Qi, Chunhua; Kastner, Joel

    2015-01-01

    The distributions and abundances of small organics in protoplanetary disks are potentially powerful probes of disk physics and chemistry. HNC is a common probe of dense interstellar regions and the target of this study. We use the Submillimeter Array (SMA) to observe HNC 3–2 toward the protoplanetary disks around the T Tauri star TW Hya and the Herbig Ae star HD 163296. HNC is detected toward both disks, constituting the first spatially resolved observations of HNC in disks. We also present SMA observations of HCN 3–2 and IRAM 30 m observations of HCN and HNC 1–0 toward HD 163296. The disk-averaged HNC/HCN emission ratio is 0.1–0.2 toward both disks. Toward TW Hya, the HNC emission is confined to a ring. The varying HNC abundance in the TW Hya disk demonstrates that HNC chemistry is strongly linked to the disk physical structure. In particular, the inner rim of the HNC ring can be explained by efficient destruction of HNC at elevated temperatures, similar to what is observed in the ISM. However, to realize the full potential of HNC as a disk tracer requires a combination of high SNR spatially resolved observations of HNC and HCN and disk-specific HNC chemical modeling

  2. HNC IN PROTOPLANETARY DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Graninger, Dawn; Öberg, Karin I.; Qi, Chunhua [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Kastner, Joel, E-mail: dgraninger@cfa.harvard.edu [Center for Imaging Science, School of Physics and Astronomy, and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States)

    2015-07-01

    The distributions and abundances of small organics in protoplanetary disks are potentially powerful probes of disk physics and chemistry. HNC is a common probe of dense interstellar regions and the target of this study. We use the Submillimeter Array (SMA) to observe HNC 3–2 toward the protoplanetary disks around the T Tauri star TW Hya and the Herbig Ae star HD 163296. HNC is detected toward both disks, constituting the first spatially resolved observations of HNC in disks. We also present SMA observations of HCN 3–2 and IRAM 30 m observations of HCN and HNC 1–0 toward HD 163296. The disk-averaged HNC/HCN emission ratio is 0.1–0.2 toward both disks. Toward TW Hya, the HNC emission is confined to a ring. The varying HNC abundance in the TW Hya disk demonstrates that HNC chemistry is strongly linked to the disk physical structure. In particular, the inner rim of the HNC ring can be explained by efficient destruction of HNC at elevated temperatures, similar to what is observed in the ISM. However, to realize the full potential of HNC as a disk tracer requires a combination of high SNR spatially resolved observations of HNC and HCN and disk-specific HNC chemical modeling.

  3. Halo scale predictions of symmetron modified gravity

    Energy Technology Data Exchange (ETDEWEB)

    Clampitt, Joseph; Jain, Bhuvnesh; Khoury, Justin, E-mail: clampitt@sas.upenn.edu, E-mail: bjain@physics.upenn.edu, E-mail: jkhoury@sas.upenn.edu [Center for Particle Cosmology and Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd St., Philadelphia, PA 19104 (United States)

    2012-01-01

    We offer predictions of symmetron modified gravity in the neighborhood of realistic dark matter halos. The predictions for the fifth force are obtained by solving the nonlinear symmetron equation of motion in the spherical NFW approximation. In addition, we compare the three major known screening mechanisms: Vainshtein, Chameleon, and Symmetron around such dark matter halos, emphasizing the significant differences between them and highlighting observational tests which exploit these differences. Finally, we demonstrate the host halo environmental screening effect (''blanket screening'') on smaller satellite halos by solving for the modified forces around a density profile which is the sum of satellite and approximate host components.

  4. Unbound particles in dark matter halos

    Energy Technology Data Exchange (ETDEWEB)

    Behroozi, Peter S.; Loeb, Abraham; Wechsler, Risa H.

    2013-06-13

    We investigate unbound dark matter particles in halos by tracing particle trajectories in a simulation run to the far future (a = 100). We find that the traditional sum of kinetic and potential energies is a very poor predictor of which dark matter particles will eventually become unbound from halos. We also study the mass fraction of unbound particles, which increases strongly towards the edges of halos, and decreases significantly at higher redshifts. We discuss implications for dark matter detection experiments, precision calibrations of the halo mass function, the use of baryon fractions to constrain dark energy, and searches for intergalactic supernovae.

  5. THE CONTRIBUTION OF SPIRAL ARMS TO THE THICK DISK ALONG THE HUBBLE SEQUENCE

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Medina, L. A. [Departamento de Física, Centro de Investigación y de Estudios Avanzados del IPN, A.P. 14-740, 07000 México D.F. (Mexico); Pichardo, B.; Moreno, E. [Instituto de Astronomía, Universidad Nacional Autónoma de México, A.P. 70-264, 04510, México D.F. (Mexico); Pérez-Villegas, A., E-mail: lmedina@fis.cinvestav.mx, E-mail: barbara@astro.unam.mx, E-mail: mperez@astro.unam.mx [Centro de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Apartado Postal 3-72, 58090 Morelia, Michoacán (Mexico)

    2015-04-01

    The first mechanism invoked to explain the existence of the thick disk in the Milky Way Galaxy was the spiral arms. Up-to-date work summons several other possibilities that together seem to better explain this component of our Galaxy. All these processes must affect distinct types of galaxies differently, but the contribution of each one has not been straightforward to quantify. In this work, we present the first comprehensive study of the effect of the spiral arms on the formation of thick disks, looking at early- to late-type disk galaxies in an attempt to characterize and quantify this specific mechanism in galactic potentials. To this purpose, we perform test particle numerical simulations in a three-dimensional spiral galactic potential (for early- to late-types spiral galaxies). By varying the parameters of the spiral arms we found that the vertical heating of the stellar disk becomes very important in some cases and strongly depends on the galactic morphology, pitch angle, arm mass, and the arm pattern speed. The later the galaxy type, the larger is the effect on the disk heating. This study shows that the physical mechanism causing the vertical heating is different from simple resonant excitation. The spiral pattern induces chaotic behavior not linked necessarily to resonances but to direct scattering of disk stars, which leads to an increase of the velocity dispersion. We applied this study to the specific example of the Milky Way Galaxy, for which we have also added an experiment that includes the Galactic bar. From this study we deduce that the effect of spiral arms of a Milky-Way-like potential on the dynamical vertical heating of the disk is negligible, unlike later galactic potentials for disks.

  6. THE INNER GALACTIC BULGE: EVIDENCE FOR A NUCLEAR BAR?

    International Nuclear Information System (INIS)

    Gerhard, Ortwin; Martinez-Valpuesta, Inma

    2012-01-01

    Recent data from the VVV survey have strengthened evidence for a structural change in the Galactic bulge inward of |l| ≤ 4°. Here we show with an N-body barred galaxy simulation that a boxy bulge formed through the bar and buckling instabilities effortlessly matches measured bulge longitude profiles for red clump stars. The same simulation snapshot was earlier used to clarify the apparent boxy bulge—long bar dichotomy, for the same orientation and scaling. The change in the slope of the model longitude profiles in the inner few degrees is caused by a transition from highly elongated to more nearly axisymmetric isodensity contours in the inner boxy bulge. This transition is confined to a few degrees from the Galactic plane; thus the change of slope is predicted to disappear at higher Galactic latitudes. We also show that the nuclear star count map derived from this simulation snapshot displays a longitudinal asymmetry similar to that observed in the Two Micron All Sky Survey (2MASS) data, but is less flattened to the Galactic plane than the 2MASS map. These results support the interpretation that the Galactic bulge originated from disk evolution and question the evidence advanced from star count data for the existence of a secondary nuclear bar in the Milky Way.

  7. Analytic modeling of axisymmetric disruption halo currents

    International Nuclear Information System (INIS)

    Humphreys, D.A.; Kellman, A.G.

    1999-01-01

    Currents which can flow in plasma facing components during disruptions pose a challenge to the design of next generation tokamaks. Induced toroidal eddy currents and both induced and conducted poloidal ''halo'' currents can produce design-limiting electromagnetic loads. While induction of toroidal and poloidal currents in passive structures is a well-understood phenomenon, the driving terms and scalings for poloidal currents flowing on open field lines during disruptions are less well established. A model of halo current evolution is presented in which the current is induced in the halo by decay of the plasma current and change in enclosed toroidal flux while being convected into the halo from the core by plasma motion. Fundamental physical processes and scalings are described in a simplified analytic version of the model. The peak axisymmetric halo current is found to depend on halo and core plasma characteristics during the current quench, including machine and plasma dimensions, resistivities, safety factor, and vertical stability growth rate. Two extreme regimes in poloidal halo current amplitude are identified depending on the minimum halo safety factor reached during the disruption. A 'type I' disruption is characterized by a minimum safety factor that remains relatively high (typically 2 - 3, comparable to the predisruption safety factor), and a relatively low poloidal halo current. A 'type II' disruption is characterized by a minimum safety factor comparable to unity and a relatively high poloidal halo current. Model predictions for these two regimes are found to agree well with halo current measurements from vertical displacement event disruptions in DIII-D [T. S. Taylor, K. H. Burrell, D. R. Baker, G. L. Jackson, R. J. La Haye, M. A. Mahdavi, R. Prater, T. C. Simonen, and A. D. Turnbull, open-quotes Results from the DIII-D Scientific Research Program,close quotes in Proceedings of the 17th IAEA Fusion Energy Conference, Yokohama, 1998, to be published in

  8. THE PSEUDO-EVOLUTION OF HALO MASS

    International Nuclear Information System (INIS)

    Diemer, Benedikt; Kravtsov, Andrey V.; More, Surhud

    2013-01-01

    A dark matter halo is commonly defined as a spherical overdensity of matter with respect to a reference density, such as the critical density or the mean matter density of the universe. Such definitions can lead to a spurious pseudo-evolution of halo mass simply due to redshift evolution of the reference density, even if its physical density profile remains constant over time. We estimate the amount of such pseudo-evolution of mass between z = 1 and 0 for halos identified in a large N-body simulation, and show that it accounts for almost the entire mass evolution of the majority of halos with M 200ρ-bar ≲ 10 12 h -1 M ☉ and can be a significant fraction of the apparent mass growth even for cluster-sized halos. We estimate the magnitude of the pseudo-evolution assuming that halo density profiles remain static in physical coordinates, and show that this simple model predicts the pseudo-evolution of halos identified in numerical simulations to good accuracy, albeit with significant scatter. We discuss the impact of pseudo-evolution on the evolution of the halo mass function and show that the non-evolution of the low-mass end of the halo mass function is the result of a fortuitous cancellation between pseudo-evolution and the absorption of small halos into larger hosts. We also show that the evolution of the low-mass end of the concentration-mass relation observed in simulations is almost entirely due to the pseudo-evolution of mass. Finally, we discuss the implications of our results for the interpretation of the evolution of various scaling relations between the observable properties of galaxies and galaxy clusters and their halo masses.

  9. UARS Halogen Occultation Experiment (HALOE) Level 2 V001

    Data.gov (United States)

    National Aeronautics and Space Administration — The HALOE home page on the WWW is http://haloe.gats-inc.com/home/index.php The Halogen Occultation Experiment (HALOE) on NASA's Upper Atmosphere Research Satellite...

  10. Origins of galactic spiral structures

    International Nuclear Information System (INIS)

    Piddington, J.H.

    1978-01-01

    Theories of galactic structure are reviewed briefly before comparing them with recent observations. Also reviewed is the evidence for an intergalactic magnetic field and its possible effects on gas concentrations and patterns of star creation, including spiral arms. It is then shown that normal spiral galaxies may be divided into the M51-type and others. The rare M51-type have H I gas arms coincident with unusually filamentary and luminous optical arms; they also have a companion galaxy. The remaining great majority of spirals have no well-defined gas arms and their optical arms are irregular, broader and less luminous; they have no companion galaxy. It appears that without exception the half-dozen or so galaxies whose structures appear to support the density-wave theory show one or more of the characteristics of the rare type of spiral, and that 'the three principal confirmations of the spiral-wave idea' (M51, M81, M101) have companions which may account for their arms. Toomre has rejected this idea on the grounds that his models do not agree with the observed structures. It is shown that these models are inadequate in two major respects, and when replaced by magneto-tidal models using non-uniform gas disks one might expect agreement. The original hydromagnetic model of spiral arms is now reserved for non-interacting galaxies, of which M33 might be taken as a prototype. The model predicts broad or 'massive' optical arms and no corresponding arms of neutral hydrogen, as observed. (Auth.)

  11. Baryonic distributions in galaxy dark matter haloes - II. Final results

    Science.gov (United States)

    Richards, Emily E.; van Zee, L.; Barnes, K. L.; Staudaher, S.; Dale, D. A.; Braun, T. T.; Wavle, D. C.; Dalcanton, J. J.; Bullock, J. S.; Chandar, R.

    2018-06-01

    Re-creating the observed diversity in the organization of baryonic mass within dark matter haloes represents a key challenge for galaxy formation models. To address the growth of galaxy discs in dark matter haloes, we have constrained the distribution of baryonic and non-baryonic matter in a statistically representative sample of 44 nearby galaxies defined from the Extended Disk Galaxy Exploration Science (EDGES) Survey. The gravitational potentials of each galaxy are traced using rotation curves derived from new and archival radio synthesis observations of neutral hydrogen (H I). The measured rotation curves are decomposed into baryonic and dark matter halo components using 3.6 μm images for the stellar content, the H I observations for the atomic gas component, and, when available, CO data from the literature for the molecular gas component. The H I kinematics are supplemented with optical integral field spectroscopic (IFS) observations to measure the central ionized gas kinematics in 26 galaxies, including 13 galaxies that are presented for the first time in this paper. Distributions of baryonic-to-total mass ratios are determined from the rotation curve decompositions under different assumptions about the contribution of the stellar component and are compared to global and radial properties of the dominant stellar populations extracted from optical and near-infrared photometry. Galaxies are grouped into clusters of similar baryonic-to-total mass distributions to examine whether they also exhibit similar star and gas properties. The radial distribution of baryonic-to-total mass in a galaxy does not appear to correlate with any characteristics of its star formation history.

  12. PREFACE: Galactic Center Workshop 2006

    Science.gov (United States)

    Schödel, Rainer; Bower, Geoffrey C.; Muno, Michael P.; Nayakshin, Sergei; Ott, Thomas

    2006-12-01

    We are pleased to present the proceedings from the Galactic Center Workshop 2006—From the Center of the Milky Way to Nearby Low-Luminosity Galactic Nuclei. The conference took place in the Physikzentrum, Bad Honnef, Germany, on 18 to 22 April 2006. It is the third workshop of this kind, following the Galactic Center Workshops held 1998 in Tucson, Arizona, and 2002 in Kona, Hawaii. The center of the Milky Way is the only galactic nucleus of a fairly common spiral galaxy that can be observed in great detail. With a distance of roughly 8 kpc, the resolution that can currently be achieved is of the order 40 mpc/8000 AU in the X-ray domain, 2 mpc/400 AU in the near-infrared, and 0.01 mpc/1 AU with VLBI in the millimeter domain. This is two to three orders of magnitude better than for any comparable nearby galaxy, making thus the center of the Milky Way thetemplate object for the general physical interpretation of the phenomena that can be observed in galactic nuclei. We recommend the summary article News from the year 2006 Galactic Centre workshopby Mark Morris and Sergei Nayakshin—who also gave the summary talk of the conference—to the reader in order to obtain a first, concise overview of the results presented at the workshop and some of the currently most exciting—and debated—developments in recent GC research. While the workshops held in 1998 and 2002 were dedicated solely to the center of the Milky Way, the field of view was widened in Bad Honnef to include nearby low-luminosity nuclei. This new feature followed the realization that not only the GC serves as a template for understanding extragalactic nuclei, but that the latter can also provide the context and broader statistical base for understanding the center of our Milky Way. This concerns especially the accretion and emission processes related to the Sagittarius A*, the manifestation of the super massive black hole in the GC, but also the surprising observation of great numbers of massive, young

  13. Precision Scaling Relations for Disk Galaxies in the Local Universe

    Science.gov (United States)

    Lapi, A.; Salucci, P.; Danese, L.

    2018-05-01

    We build templates of rotation curves as a function of the I-band luminosity via the mass modeling (by the sum of a thin exponential disk and a cored halo profile) of suitably normalized, stacked data from wide samples of local spiral galaxies. We then exploit such templates to determine fundamental stellar and halo properties for a sample of about 550 local disk-dominated galaxies with high-quality measurements of the optical radius R opt and of the corresponding rotation velocity V opt. Specifically, we determine the stellar M ⋆ and halo M H masses, the halo size R H and velocity scale V H, and the specific angular momenta of the stellar j ⋆ and dark matter j H components. We derive global scaling relationships involving such stellar and halo properties both for the individual galaxies in our sample and for their mean within bins; the latter are found to be in pleasing agreement with previous determinations by independent methods (e.g., abundance matching techniques, weak-lensing observations, and individual rotation curve modeling). Remarkably, the size of our sample and the robustness of our statistical approach allow us to attain an unprecedented level of precision over an extended range of mass and velocity scales, with 1σ dispersion around the mean relationships of less than 0.1 dex. We thus set new standard local relationships that must be reproduced by detailed physical models, which offer a basis for improving the subgrid recipes in numerical simulations, that provide a benchmark to gauge independent observations and check for systematics, and that constitute a basic step toward the future exploitation of the spiral galaxy population as a cosmological probe.

  14. Is Sextans dwarf galaxy in a scalar field dark matter halo?

    International Nuclear Information System (INIS)

    Lora, V.; Magaña, Juan

    2014-01-01

    The Bose-Einstein condensate/scalar field dark matter model, considers that the dark matter is composed by spinless-ultra-light particles which can be described by a scalar field. This model is an alternative model to the Λ-cold dark matter paradigm, and therefore should be studied at galactic and cosmological scales. Dwarf spheroidal galaxies have been very useful when studying any dark matter theory, because the dark matter dominates their dynamics. In this paper we study the Sextans dwarf spheroidal galaxy, embedded in a scalar field dark matter halo. We explore how the dissolution time-scale of the stellar substructures in Sextans, constrain the mass, and the self-interacting parameter of the scalar field dark matter boson. We find that for masses in the range (0.12< m φ <8) ×10 -22 eV, scalar field dark halos without self-interaction would have cores large enough to explain the longevity of the stellar substructures in Sextans, and small enough mass to be compatible with dynamical limits. If the self-interacting parameter is distinct to zero, then the mass of the boson could be as high as m φ ≈2×10 -21 eV, but it would correspond to an unrealistic low mass for the Sextans dark matter halo . Therefore, the Sextans dwarf galaxy could be embedded in a scalar field/BEC dark matter halo with a preferred self-interacting parameter equal to zero

  15. Pulsar TeV Halos Explain the Diffuse TeV Excess Observed by Milagro.

    Science.gov (United States)

    Linden, Tim; Buckman, Benjamin J

    2018-03-23

    Milagro observations have found bright, diffuse TeV emission concentrated along the galactic plane of the Milky Way. The intensity and spectrum of this emission is difficult to explain with current models of hadronic γ-ray production, and has been named the "TeV excess." We show that TeV emission from pulsars naturally explains this excess. Recent observations have detected "TeV halos" surrounding pulsars that are either nearby or particularly luminous. Extrapolating this emission to the full population of Milky Way pulsars indicates that the ensemble of "subthreshold" sources necessarily produces bright TeV emission diffusively along the Milky Way plane. Models indicate that the TeV halo γ-ray flux exceeds that from hadronic γ rays above an energy of ∼500  GeV. Moreover, the spectrum and intensity of TeV halo emission naturally matches the TeV excess. Finally, we show that upcoming HAWC observations will resolve a significant fraction of the TeV excess into individual TeV halos, conclusively confirming, or ruling out, this model.

  16. Modeling galactic extinction

    OpenAIRE

    Cecchi-Pestellini, C.; Mulas, G.; Casu, S.; Iatì, M. A.; Saija, R.; Cacciola, A.; Borghese, F.; Denti, P.

    2011-01-01

    We present a model for interstellar extinction dust, in which we assume a bimodal distribution of extinction carriers, a dispersion of core-mantle grains, supplemented by a collection of PAHs in free molecular form. We use state-of-the-art methods to calculate the extinction due to macroscopic dust particles, and the absorption cross-sections of PAHs in four different charge states. While successfull for most of observed Galactic extinction curves, in few cases the model cannot provide reliab...

  17. CONSTRAINTS ON COMPTON-THICK WINDS FROM BLACK HOLE ACCRETION DISKS: CAN WE SEE THE INNER DISK?

    International Nuclear Information System (INIS)

    Reynolds, Christopher S.

    2012-01-01

    Strong evidence is emerging that winds can be driven from the central regions of accretion disks in both active galactic nuclei and Galactic black hole binaries. Direct evidence for highly ionized, Compton-thin inner-disk winds comes from observations of blueshifted (v ∼ 0.05-0.1c) iron-K X-ray absorption lines. However, it has been suggested that the inner regions of black hole accretion disks can also drive Compton-thick winds—such winds would enshroud the inner disk, preventing us from seeing direct signatures of the accretion disk (i.e., the photospheric thermal emission, or the Doppler/gravitationally broadened iron Kα line). Here, we show that, provided the source is sub-Eddington, the well-established wind-driving mechanisms fail to launch a Compton-thick wind from the inner disk. For the accelerated region of the wind to be Compton-thick, the momentum carried in the wind must exceed the available photon momentum by a factor of at least 2/λ, where λ is the Eddington ratio of the source, ruling out radiative acceleration unless the source is very close to the Eddington limit. Compton-thick winds also carry large mass fluxes, and a consideration of the connections between the wind and the disk shows this to be incompatible with magneto-centrifugal driving. Finally, thermal driving of the wind is ruled out on the basis of the large Compton radii that typify black hole systems. In the absence of some new acceleration mechanisms, we conclude that the inner regions of sub-Eddington accretion disks around black holes are indeed naked.

  18. Fossil imprint of a powerful flare at the galactic center along the Magellanic stream

    Energy Technology Data Exchange (ETDEWEB)

    Bland-Hawthorn, J. [Sydney Institute for Astronomy, School of Physics A28, University of Sydney, NSW 2006 (Australia); Maloney, Philip R. [CASA, University of Colorado, Boulder, CO 80309-0389 (United States); Sutherland, Ralph S. [Mount Stromlo Observatory, Australia National University, Woden, ACT 2611 (Australia); Madsen, G. J. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom)

    2013-11-20

    The Fermi satellite discovery of the gamma-ray emitting bubbles extending 50° (10 kpc) from the Galactic center has revitalized earlier claims that our Galaxy has undergone an explosive episode in the recent past. We now explore a new constraint on such activity. The Magellanic Stream is a clumpy gaseous structure free of stars trailing behind the Magellanic Clouds, passing over the south Galactic pole (SGP) at a distance of at least 50-100 kpc from the Galactic center. Several groups have detected faint Hα emission along the Magellanic Stream (1.1 ± 0.3 × 10{sup –18} erg cm{sup –2} s{sup –1} arcsec{sup –2}) which is a factor of five too bright to have been produced by the Galactic stellar population. The brightest emission is confined to a cone with half angle θ{sub 1/2} ≈ 25° roughly centered on the SGP. Time-dependent models of Stream clouds exposed to a flare in ionizing photon flux show that the ionized gas must recombine and cool for a time interval T{sub o} = 0.6 – 2.9 Myr for the emitted Hα surface brightness to drop to the observed level. A nuclear starburst is ruled out by the low star formation rates across the inner Galaxy, and the non-existence of starburst ionization cones in external galaxies extending more than a few kiloparsecs. Sgr A{sup *} is a more likely candidate because it is two orders of magnitude more efficient at converting gas to UV radiation. The central black hole (M {sub •} ≈ 4 × 10{sup 6} M {sub ☉}) can supply the required ionizing luminosity with a fraction of the Eddington accretion rate (f{sub E} ∼ 0.03-0.3, depending on uncertain factors, e.g., Stream distance) typical of Seyfert galaxies. In support of nuclear activity, the Hα emission along the Stream has a polar angle dependence peaking close to the SGP. Moreover, it is now generally accepted that the Stream over the SGP must be farther than the Magellanic Clouds. At the lower halo gas densities, shocks become too ineffective and are unlikely to

  19. A Pulsar and a Disk

    Science.gov (United States)

    Kohler, Susanna

    2016-07-01

    Recent, unusual X-ray observations from our galactic neighbor, the Small Magellanic Cloud, have led to an interesting model for SXP 214, a pulsar in a binary star system.Artists illustration of the magnetic field lines of a pulsar, a highly magnetized, rotating neutron star. [NASA]An Intriguing BinaryAn X-ray pulsar is a magnetized, rotating neutron star in a binary system with a stellar companion. Material is fed from the companion onto the neutron star, channeled by the objects magnetic fields onto a hotspot thats millions of degrees. This hotspot rotating past our line of sight is what produces the pulsations that we observe from X-ray pulsars.Located in the Small Magellanic Cloud, SXP 214 is a transient X-ray pulsar in a binary with a Be-type star. This star is spinning so quickly that material is thrown off of it to form a circumstellar disk.Recently, a team of authors led by JaeSub Hong (Harvard-Smithsonian Center for Astrophysics) have presented new Chandra X-ray observations of SXP 214, tracking it for 50 ks (~14 hours) in January 2013. These observations reveal some very unexpected behavior for this pulsar.X-ray PuzzleThe energy distribution of the X-ray emission from SXP 214 over time. Dark shades or blue colors indicate high counts, and light shades or yellow colors indicate low counts. Lower-energy X-ray emission appeared only later, after about 20 ks. [Hong et al. 2016]Three interesting pieces of information came from the Chandra observations:SXP 214s rotation period was measured to be 211.5 s an increase in the spin rate since the discovery measurement of a 214-second period. Pulsars usually spin down as they lose angular momentum over time so what caused this one to spin up?Its overall X-ray luminosity steadily increased over the 50 ks of observations.Its spectrum became gradually softer (lower energy) over time; in the first 20 ks, the spectrum only consisted of hard X-ray photons above 3 keV, but after 20 ks, softer X-ray photons below 2 ke

  20. Halo star streams in the solar neighborhood

    NARCIS (Netherlands)

    Kepley, Amanda A.; Morrison, Heather L.; Helmi, Amina; Kinman, T. D.; Van Duyne, Jeffrey; Martin, John C.; Harding, Paul; Norris, John E.; Freeman, Kenneth C.

    2007-01-01

    We have assembled a sample of halo stars in the solar neighborhood to look for halo substructure in velocity and angular momentum space. Our sample ( 231 stars) includes red giants, RR Lyrae variable stars, and red horizontal branch stars within 2.5 kpc of the Sun with [Fe/H] less than -1.0. It was

  1. Studying dark matter haloes with weak lensing

    NARCIS (Netherlands)

    Velander, Malin Barbro Margareta

    2012-01-01

    Our Universe is comprised not only of normal matter but also of unknown components: dark matter and dark energy. This Thesis recounts studies of dark matter haloes, using a technique known as weak gravitational lensing, in order to learn more about the nature of these dark components. The haloes

  2. THE UNORTHODOX ORBITS OF SUBSTRUCTURE HALOS

    NARCIS (Netherlands)

    Ludlow, Aaron D.; Navarro, Julio F.; Springel, Volker; Jenkins, Adrian; Frenk, Carlos S.; Helmi, Amina

    2009-01-01

    We use a suite of cosmological N-body simulations to study the properties of substructure halos (subhalos) in galaxy-sized cold dark matter halos. We extend prior work on the subject by considering the whole population of subhalos physically associated with the main system. These are defined as

  3. Efimov effect in 2-neutron halo nuclei

    Indian Academy of Sciences (India)

    This paper presents an overview of our theoretical investigations in search of Efimov states in light 2-neutron halo nuclei. The calculations have been carried out within a three-body formalism, assuming a compact core and two valence neutrons forming the halo. The calculations provide strong evidence for the occurrence ...

  4. Exploring Disks Around Planets

    Science.gov (United States)

    Kohler, Susanna

    2017-07-01

    Giant planets are thought to form in circumstellar disks surrounding young stars, but material may also accrete into a smaller disk around the planet. Weve never detected one of these circumplanetary disks before but thanks to new simulations, we now have a better idea of what to look for.Image from previous work simulating a Jupiter-mass planet forming inside a circumstellar disk. The planet has its own circumplanetary disk of accreted material. [Frdric Masset]Elusive DisksIn the formation of giant planets, we think the final phase consists of accretion onto the planet from a disk that surrounds it. This circumplanetary disk is important to understand, since it both regulates the late gas accretion and forms the birthplace of future satellites of the planet.Weve yet to detect a circumplanetary disk thus far, because the resolution needed to spot one has been out of reach. Now, however, were entering an era where the disk and its kinematics may be observable with high-powered telescopes (like the Atacama Large Millimeter Array).To prepare for such observations, we need models that predict the basic characteristics of these disks like the mass, temperature, and kinematic properties. Now a researcher at the ETH Zrich Institute for Astronomy in Switzerland, Judit Szulgyi, has worked toward this goal.Simulating CoolingSzulgyi performs a series of 3D global radiative hydrodynamic simulations of 1, 3, 5, and 10 Jupiter-mass (MJ) giant planets and their surrounding circumplanetary disks, embedded within the larger circumstellar disk around the central star.Density (left column), temperature (center), and normalized angular momentum (right) for a 1 MJ planet over temperatures cooling from 10,000 K (top) to 1,000 K (bottom). At high temperatures, a spherical circumplanetary envelope surrounds the planet, but as the planet cools, the envelope transitions around 64,000 K to a flattened disk. [Szulgyi 2017]This work explores the effects of different planet temperatures and

  5. The HI Distribution Observed toward a Halo Region of the Milky Way

    Directory of Open Access Journals (Sweden)

    Ericson López

    2017-08-01

    Full Text Available We use observations of the neutral atomic hydrogen (HI 21-cm emission line to study the spatial distribution of the HI gas in a 80° × 90° region of the Galaxy halo. The HI column densities in the range of 3–11 × 10 20 cm − 2 have been estimated for some of the studied regions. In our map—obtained with a spectral sensitivity of ∼2 K—we do not detect any HI 21-cm emission line above 2 σ at Galactic latitudes higher than ∼46°. This report summarizes our contribution presented at the conference on the origin and evolution of barionic Galaxy halos.

  6. HALO EXPANSION IN COSMOLOGICAL HYDRO SIMULATIONS: TOWARD A BARYONIC SOLUTION OF THE CUSP/CORE PROBLEM IN MASSIVE SPIRALS

    Energy Technology Data Exchange (ETDEWEB)

    Maccio, A. V.; Stinson, G. [Max-Planck-Institut fuer Astronomie, 69117 Heidelberg (Germany); Brook, C. B.; Gibson, B. K. [University of Central Lancashire, Jeremiah Horrocks Institute for Astrophysics and Supercomputing, Preston PR1 2HE (United Kingdom); Wadsley, J.; Couchman, H. M. P. [Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, L8S 4M1 (Canada); Shen, S. [Department of Astronomy and Astrophysics, University of California Santa Cruz, Santa Cruz, CA 95064 (United States); Quinn, T., E-mail: maccio@mpia.de, E-mail: stinson@mpia.de [Astronomy Department, University of Washington, Seattle, WA 98195-1580 (United States)

    2012-01-15

    A clear prediction of the cold dark matter (CDM) model is the existence of cuspy dark matter halo density profiles on all mass scales. This is not in agreement with the observed rotation curves of spiral galaxies, challenging on small scales the otherwise successful CDM paradigm. In this work we employ high-resolution cosmological hydrodynamical simulations to study the effects of dissipative processes on the inner distribution of dark matter in Milky Way like objects (M Almost-Equal-To 10{sup 12} M{sub Sun }). Our simulations include supernova feedback, and the effects of the radiation pressure of massive stars before they explode as supernovae. The increased stellar feedback results in the expansion of the dark matter halo instead of contraction with respect to N-body simulations. Baryons are able to erase the dark matter cuspy distribution, creating a flat, cored, dark matter density profile in the central several kiloparsecs of a massive Milky-Way-like halo. The profile is well fit by a Burkert profile, with fitting parameters consistent with the observations. In addition, we obtain flat rotation curves as well as extended, exponential stellar disk profiles. While the stellar disk we obtain is still partially too thick to resemble the Milky Way thin disk, this pilot study shows that there is enough energy available in the baryonic component to alter the dark matter distribution even in massive disk galaxies, providing a possible solution to the long-standing problem of cusps versus cores.

  7. Search for dark matter annihilation in the Galactic Center with IceCube-79

    International Nuclear Information System (INIS)

    Aartsen, M.G.; Hill, G.C.; Robertson, S.; Whelan, B.J.; Abraham, K.; Bernhard, A.; Coenders, S.; Gross, A.; Holzapfel, K.; Huber, M.; Jurkovic, M.; Krings, K.; Resconi, E.; Veenkamp, J.; Ackermann, M.; Berghaus, P.; Bernardini, E.; Bretz, H.P.; Cruz Silva, A.H.; Gluesenkamp, T.; Gora, D.; Jacobi, E.; Kaminsky, B.; Karg, T.; Middell, E.; Mohrmann, L.; Nahnhauer, R.; Schoenwald, A.; Shanidze, R.; Spiering, C.; Stasik, A.; Stoessl, A.; Strotjohann, N.L.; Terliuk, A.; Usner, M.; Yanez, J.P.; Adams, J.; Brown, A.M.; Aguilar, J.A.; Heereman, D.; Meagher, K.; Meures, T.; O'Murchadha, A.; Pinat, E.; Ahlers, M.; Arguelles, C.; Beiser, E.; BenZvi, S.; Braun, J.; Chirkin, D.; Day, M.; Desiati, P.; Diaz-Velez, J.C.; Fadiran, O.; Fahey, S.; Feintzeig, J.; Ghorbani, K.; Gladstone, L.; Halzen, F.; Hanson, K.; Hoshina, K.; Jero, K.; Karle, A.; Kelley, J.L.; Kheirandish, A.; McNally, F.; Merino, G.; Middlemas, E.; Morse, R.; Richter, S.; Sabbatini, L.; Tobin, M.N.; Tosi, D.; Vandenbroucke, J.; Van Santen, J.; Wandkowsky, N.; Weaver, C.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wille, L.; Ahrens, M.; Bohm, C.; Dumm, J.P.; Finley, C.; Flis, S.; Hulth, P.O.; Hultqvist, K.; Walck, C.; Wolf, M.; Zoll, M.; Altmann, D.; Classen, L.; Kappes, A.; Tselengidou, M.; Anderson, T.; Arlen, T.C.; Dunkman, M.; Eagan, R.; Groh, J.C.; Huang, F.; Keivani, A.; Lanfranchi, J.L.; Quinnan, M.; Smith, M.W.E.; Stanisha, N.A.; Tesic, G.; Archinger, M.; Baum, V.; Boeser, S.; Eberhardt, B.; Ehrhardt, T.; Koepke, L.; Kroll, G.; Luenemann, J.; Sander, H.G.; Schatto, K.; Wiebe, K.; Auffenberg, J.; Bissok, M.; Blumenthal, J.; Glagla, M.; Gier, D.; Gretskov, P.; Haack, C.; Hansmann, B.; Hellwig, D.; Kemp, J.; Konietz, R.; Koob, A.; Leuermann, M.; Leuner, J.; Paul, L.; Puetz, J.; Raedel, L.; Reimann, R.; Rongen, M.; Schimp, M.; Schoenen, S.; Schukraft, A.; Stahlberg, M.; Vehring, M.; Wallraff, M.; Wichary, C.; Wiebusch, C.H.; Bai, X.; Barwick, S.W.; Yodh, G.; Bay, R.; Filimonov, K.; Price, P.B.; Woschnagg, K.; Beatty, J.J.; Becker Tjus, J.; Bos, F.; Eichmann, B.; Fedynitch, A.; Kroll, M.; Saba, S.M.; Schoeneberg, S.; Becker, K.H.; Bindig, D.; Fischer-Wasels, T.; Helbing, K.; Hickford, S.; Hoffmann, R.; Klaes, J.; Kopper, S.; Naumann, U.; Obertacke, A.; Omairat, A.; Posselt, J.; Soldin, D.; Berley, D.; Blaufuss, E.; Cheung, E.; Christy, B.; Felde, J.; Hellauer, R.; Hoffman, K.D.; Huelsnitz, W.; Maunu, R.; Olivas, A.; Redl, P.; Schmidt, T.; Sullivan, G.W.; Wissing, H.; Besson, D.Z.; Binder, G.; Gerhardt, L.; Ha, C.; Klein, S.R.; Miarecki, S.; Boersma, D.J.; Botner, O.; Euler, S.; Hallgren, A.

    2015-01-01

    The Milky Way is expected to be embedded in a halo of dark matter particles, with the highest density in the central region, and decreasing density with the halo-centric radius. Dark matter might be indirectly detectable at Earth through a flux of stable particles generated in dark matter annihilations and peaked in the direction of the Galactic Center. We present a search for an excess flux of muon (anti-) neutrinos from dark matter annihilation in the Galactic Center using the cubic-kilometer-sized IceCube neutrino detector at the South Pole. There, the Galactic Center is always seen above the horizon. Thus, new and dedicated veto techniques against atmospheric muons are required to make the southern hemisphere accessible for IceCube. We used 319.7 live-days of data from IceCube operating in its 79-string configuration during 2010 and 2011. No neutrino excess was found and the final result is compatible with the background. We present upper limits on the self-annihilation cross-section, left angle σ A right angle, for WIMP masses ranging from 30 GeV up to 10 TeV, assuming cuspy (NFW) and flat-cored (Burkert) dark matter halo profiles, reaching down to ≅ 4 . 10 -24 cm 3 s -1 , and ≅ 2.6 . 10 -23 cm 3 s -1 for the νanti ν channel, respectively. (orig.)

  8. Search for dark matter annihilation in the Galactic Center with IceCube-79

    Energy Technology Data Exchange (ETDEWEB)

    Aartsen, M.G.; Hill, G.C.; Robertson, S.; Whelan, B.J. [University of Adelaide, School of Chemistry and Physics, Adelaide, SA (Australia); Abraham, K.; Bernhard, A.; Coenders, S.; Gross, A.; Holzapfel, K.; Huber, M.; Jurkovic, M.; Krings, K.; Resconi, E.; Veenkamp, J. [Technische Universitaet Muenchen, Garching (Germany); Ackermann, M.; Berghaus, P.; Bernardini, E.; Bretz, H.P.; Cruz Silva, A.H.; Gluesenkamp, T.; Gora, D.; Jacobi, E.; Kaminsky, B.; Karg, T.; Middell, E.; Mohrmann, L.; Nahnhauer, R.; Schoenwald, A.; Shanidze, R.; Spiering, C.; Stasik, A.; Stoessl, A.; Strotjohann, N.L.; Terliuk, A.; Usner, M.; Yanez, J.P. [DESY, Zeuthen (Germany); Adams, J.; Brown, A.M. [University of Canterbury, Department of Physics and Astronomy, Private Bag 4800, Christchurch (New Zealand); Aguilar, J.A.; Heereman, D.; Meagher, K.; Meures, T.; O' Murchadha, A.; Pinat, E. [Universite Libre de Bruxelles, Science Faculty CP230, Brussels (Belgium); Ahlers, M.; Arguelles, C.; Beiser, E.; BenZvi, S.; Braun, J.; Chirkin, D.; Day, M.; Desiati, P.; Diaz-Velez, J.C.; Fadiran, O.; Fahey, S.; Feintzeig, J.; Ghorbani, K.; Gladstone, L.; Halzen, F.; Hanson, K.; Hoshina, K.; Jero, K.; Karle, A.; Kelley, J.L.; Kheirandish, A.; McNally, F.; Merino, G.; Middlemas, E.; Morse, R.; Richter, S.; Sabbatini, L.; Tobin, M.N.; Tosi, D.; Vandenbroucke, J.; Van Santen, J.; Wandkowsky, N.; Weaver, C.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wille, L. [Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin, Department of Physics, Madison, WI (United States); Ahrens, M.; Bohm, C.; Dumm, J.P.; Finley, C.; Flis, S.; Hulth, P.O.; Hultqvist, K.; Walck, C.; Wolf, M.; Zoll, M. [Oskar Klein Centre, Stockholm University, Department of Physics, Stockholm (Sweden); Altmann, D.; Classen, L.; Kappes, A.; Tselengidou, M. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erlangen (Germany); Anderson, T.; Arlen, T.C.; Dunkman, M.; Eagan, R.; Groh, J.C.; Huang, F.; Keivani, A.; Lanfranchi, J.L.; Quinnan, M.; Smith, M.W.E.; Stanisha, N.A.; Tesic, G. [Pennsylvania State University, Department of Physics, University Park, PA (United States); Archinger, M.; Baum, V.; Boeser, S.; Eberhardt, B.; Ehrhardt, T.; Koepke, L.; Kroll, G.; Luenemann, J.; Sander, H.G.; Schatto, K.; Wiebe, K. [University of Mainz, Institute of Physics, Mainz (Germany); Auffenberg, J.; Bissok, M.; Blumenthal, J.; Glagla, M.; Gier, D.; Gretskov, P.; Haack, C.; Hansmann, B.; Hellwig, D.; Kemp, J.; Konietz, R.; Koob, A.; Leuermann, M.; Leuner, J.; Paul, L.; Puetz, J.; Raedel, L.; Reimann, R.; Rongen, M.; Schimp, M.; Schoenen, S.; Schukraft, A.; Stahlberg, M.; Vehring, M.; Wallraff, M.; Wichary, C.; Wiebusch, C.H. [RWTH Aachen University, III. Physikalisches Institut, Aachen (Germany); Bai, X. [South Dakota School of Mines and Technology, Physics Department, Rapid City, SD (United States); Barwick, S.W.; Yodh, G. [University of California, Department of Physics and Astronomy, Irvine, CA (United States); Bay, R.; Filimonov, K.; Price, P.B.; Woschnagg, K. [University of California, Department of Physics, Berkeley, CA (United States); Beatty, J.J. [Ohio State University, Department of Physics and Center for Cosmology and Astro-Particle Physics, Columbus, OH (United States); Ohio State University, Department of Astronomy, Columbus, OH (United States); Becker Tjus, J.; Bos, F.; Eichmann, B.; Fedynitch, A.; Kroll, M.; Saba, S.M.; Sch