WorldWideScience

Sample records for halophyte atriplex nummularia

  1. Water potential in soil and Atriplex nummularia (phytoremediator halophyte) under drought and salt stresses.

    Science.gov (United States)

    de Melo, Hidelblandi Farias; de Souza, Edivan Rodrigues; de Almeida, Brivaldo Gomes; Mulas, Maurizio

    2018-02-23

    Atriplex nummularia is a halophyte widely employed to recover saline soils and was used as a model to evaluate the water potentials in the soil-plant system under drought and salt stresses. Potted plants grown under 70 and 37% of field capacity irrigated with solutions of NaCl and of a mixture of NaCl, KCl, MgCl 2 and CaCl 2 reproducing six electrical conductivity (EC): 0, 5, 10, 20, 30, and 40 dS m -1 . After 100 days, total water (Ψ w, plant ) and osmotic (Ψ o, plant ) potentials at predawn and midday and Ψ o, soil , matric potential (Ψ m, soil ) and Ψ w, soil were determined. The type of ion in the irrigation water did not influence the soil potential, but was altered by EC. The soil Ψ o component was the largest contributor to Ψ w, soil . Atriplex is surviving ECs close to 40 dS m -1 due to the decrease in the Ψ w . The plants reached a Ψ w of approximately -8 MPa. The water potentials determined for different moisture levels, EC levels and salt types showed huge importance for the management of this species in semiarid regions and can be used to recover salt affected soils.

  2. Atividade microbiana em solo do semi-árido sob cultivo de Atriplex nummularia Microbial activity in a semiarid soil cultivated with Atriplex nummularia

    Directory of Open Access Journals (Sweden)

    Sônia Valéria Pereira

    2004-08-01

    Full Text Available Métodos para avaliar a atividade microbiana no solo são fundamentais no monitoramento ambiental de áreas degradadas. O objetivo deste trabalho foi investigar a atividade microbiana de solo do semi-árido cultivado com Atriplex nummularia Lindl. em áreas que receberam rejeito salino durante um e três anos, em comparação com um solo nativo, sem cultivo e não irrigada. O solo cultivado por três anos e que recebeu rejeito salino apresentou, no período seco, valores de pH, CE e atividade de hidrólise do diacetato de fluoresceína (FDA superiores aos das demais áreas. No entanto, foi observada correlação negativa entre o carbono microbiano e os valores do quociente metabólico (qCO2. A biomassa microbiana e a fosfatase alcalina também foram superiores no solo cultivado por três anos e que recebeu rejeito salino em relação ao solo nativo sem irrigação, confirmando o desempenho de plantas halófitas na melhoria da qualidade do solo sob condições de estresse salino. O cultivo de A. nummularia constitui uma das alternativas para utilização de rejeito salino proveniente da dessalinização por osmose reversa.Methods used to estimate the soil microbial activity are important to environmental monitoring of degraded areas. The objective of this research was to investigate the microbial activity of a semiarid soil cultivated with Atriplex nummularia Lindl. in a field receiving saline waste during one and three years, in comparison with an area without crop and irrigation. Soil cultivated during three years presented, during the dry season, values of pH, CE, and activity of FDA hydrolyses higher than those registered in other areas. However, a negative correlation between the microbial carbon and values of qCO2 was observed. The microbial biomass and the alkaline phosphates were also higher in the three years cultivated soil, in comparison with the native soil, non irrigated, confirming the role of halophytes for enhancing quality of

  3. Salinization of the soil solution decreases the further accumulation of salt in the root zone of the halophyte Atriplex nummularia Lindl. growing above shallow saline groundwater.

    Science.gov (United States)

    Alharby, Hesham F; Colmer, Timothy D; Barrett-Lennard, Edward G

    2018-01-01

    Water use by plants in landscapes with shallow saline groundwater may lead to the accumulation of salt in the root zone. We examined the accumulation of Na + and Cl - around the roots of the halophyte Atriplex nummularia Lindl. and the impacts of this increasing salinity for stomatal conductance, water use and growth. Plants were grown in columns filled with a sand-clay mixture and connected at the bottom to reservoirs containing 20, 200 or 400 mM NaCl. At 21 d, Na + and Cl - concentrations in the soil solution were affected by the salinity of the groundwater, height above the water table and the root fresh mass density at various soil depths (P soil solution therefore had a feedback effect on further salinization within the root zone. © 2017 John Wiley & Sons Ltd.

  4. Growth, biomass production and ions accumulation in Atriplex nummularia Lindl grown under abiotic stress

    Directory of Open Access Journals (Sweden)

    Hidelblandi F. de Melo

    2016-02-01

    Full Text Available ABSTRACT Atriplex nummularia is a halophyte of great importance in the recovery of saline soils and is considered as a model plant to study biosaline scenarios. This study aimed to evaluate biometric parameters, biomass production and the accumulation of ions in A. nummularia grown under abiotic stresses. Cultivation was carried out in a Fluvic Neosol for 100 days, adopting two water regimes: 37 and 70% of field capacity. Plants were irrigated with saline solutions containing two types of salts (NaCl and a mixture of NaCl, KCl, MgCl2 and CaCl2 at six levels of electrical conductivity: 0, 5, 10, 20, 30 and 40 dS m-1, arranged in a 6 x 2 x 2 factorial with 4 replicates, forming 96 plots. At the end of the experiment, plants were divided into leaves, stem and roots, for the determination of fresh matter (FM, dry matter (DM and estimated leaf area (LA, besides the contents of Ca2+, Mg2+, Na+, K+ and Cl-. The type of salt did not influence plant growth or biomass production; however, it influenced the levels of Ca2+, Mg2+, Na+ and Cl- in the leaves and Mg2+, K+ and Cl- in the roots. Increase in salinity reduced the contents of Ca2+, Mg2+, Na+, K+ and Cl- for all treatments.

  5. Fitorremediação de solo salino s ódico por Atriplex nummularia e gesso de jazida Use of Atriplex nummularia and gypsum for phytoremediation of saline-sodic soil

    Directory of Open Access Journals (Sweden)

    Isaac Gomes Leal

    2008-06-01

    Full Text Available Atriplex nummularia apresenta-se como alternativa de uso na recuperação de solos salino-sódicos, podendo servir como suporte forrageiro e como folhagem na floricultura e paisagismo. Com o objetivo de avaliar o potencial desta halófita na fitorremediação de solo salino-sódico sob irrigação com águas salinas e verificar o potencial do gesso como potencializador da fitoextração de Na, realizou-se um experimento em casa de vegetação, em esquema fatorial 2 x 3, sendo dois tratamentos com gesso de jazida(ausência, e aplicação de 50 % da dose recomendada pela necessidade de gesso e três classes de água para irrigação (C1 = 175 μS cm-1; C2 = 500 μS cm-1e C3 = 1500 μS cm-1. Foram realizadas avaliações dos teores de Na, no solo e na planta, aos 40, 70, 100 e 130 dias do transplantio da A. nummularia. O gesso proporcionou ganho médio de 96 % na matéria seca de raiz. O teor de Na nas folhas foi significativo a partir da terceira época avaliada com valores de 90,1 e 109,7 g kg-1, para 100 e 130 dias após o transplantio, respectivamente. Este efeito foi aumentado em 30 % com a aplicação de gesso. O teor de Na+ no solo foi menor em média 31 e 26 %, com e sem gesso, respectivamente, a partir de 100 dias após o transplantio. Com base nas condições estudadas, pode-se concluir que a Atriplex nummularia comportou-se como planta hiperacumuladora de Na, com potencial de uso na fitoextração deste elemento no solo. O uso do gesso de jazida promoveu o aumento da capacidade de extração de Na do solo pela planta, podendo ser usado como potencializador da fitoextração. A irrigação da A. nummularia para uso de fitorremediação pode ser feita com águas salinas na faixa de 175 a 1500 μS cm-1.The cultivation of Atriplex nummularia on saline-sodic soils is economically attractive because it can be used as a forage crop as well as in landscape projects. The potential of Atriplex nummularia for phytoextraction of Na+ from a saline

  6. Fitoextração de sais pela Atriplex nummularia lindl. sob estresse hídrico em solo salino sódico Phytoextraction of salts by Atriplex nummularia lindl. under water stress in saline sodic soils

    Directory of Open Access Journals (Sweden)

    Edivan R. de Souza

    2011-05-01

    Full Text Available Objetivou-se avaliar a extração de sais pela Atriplex cultivada em solo salino sódico sob condições de estresse hídrico e comparar propriedades do solo antes e após seu cultivo. O experimento foi desenvolvido em casa de vegetação durante 134 dias, com cultivo em vasos com 20 kg de solo salino sódico em quatro níveis de umidade (35, 55, 75 e 95% da capacidade de campo, com um tratamento controle (sem cultivo, montado em blocos casualizados, com oito repetições. As altas concentrações de Ca2+, Mg2+, K+ e, especialmente Na+ e Cl- nas folhas de Atriplex nummularia, associadas à elevada produção de massa seca, caracterizam esta espécie como planta fitoextratora de sais, chegando a extrair, nas folhas e caule, o equivalente a: 644,25; 757,81; 1.058,55 e 1.182,00 kg ha-1 desses elementos, para 35, 55, 75 e 95% da capacidade de campo, respectivamente. As variáveis do complexo sortivo do solo (Ca2+, Mg2+, K+, soma de bases e o carbono orgânico total, permaneceram estáveis entre o início e o final do experimento, em todos os tratamentos, enquanto o Na+ e a percentagem de sódio trocável diminuíram após o cultivo da planta. A Atriplex respondeu ao incremento de umidade do solo quando se considera a produção de biomassa e a extração de sais.This study aims to evaluate the growth, production and extraction of salts by Atriplex grown on saline-sodic soil under water stress conditions and to compare soil properties before and after their cultivation. The experiment was carried out in a greenhouse during 134 days growing Atriplex nummularia in pots with 20 kg of saline sodic soil with four levels of soil moisture (35, 55, 75 and 95% of field capacity with a control (soil without plant. The experiment was performed in a randomized block with eight replications. The high concentrations of Ca2+, Mg2+, K+, and especially Na+ and Cl- in leaves of Atriplex nummularia, associated with high dry matter production characterizes this species

  7. Effect of water and saline stress on germination of Atriplex nummularia (Chenopodiaceae)

    International Nuclear Information System (INIS)

    Ruiz, Monica B; Parera, Carlos A

    2013-01-01

    Saline soils, characteristic of arid zones, can affect the germination of the species due to low water potential or ion toxicity. The effect of water and saline stress on germination was evaluated in atriplex nummularia a potential source of forage for arid zones. the seeds were scarified to reduce the inhibitory effect on germination and incubated in at 23 Celsius degrade on germination paper imbibed with solutions of sodium chloride (NaCl) and polyethylene glycol (peg) at three water potentials: -0,5; -1,0 and -1,5 MPA. The percentage germination and germination speed were significantly affected by the concentration of the solution and the solute used. While more negative osmotic potentials, the percentage of germination and germination speed were significantly lower. The seeds germinated in peg solution have higher germination and germination speed than the seeds germinated in NaCl, especially in -1,0 MPA. The data suggest that the seeds of a. nummularia show sensitivity to the presence of Na+ and Cl- ions affecting the germination process.

  8. Simulation of water-limited growth of the forage shrub saltbush (Atriplex nummularia Lindl.) in a low-rainfall environment of southern Australia

    NARCIS (Netherlands)

    Descheemaeker, K.K.E.; Smith, A.P.; Robertson, M.J.; Whitbread, A.; Huth, N.I.; Davoren, W.; Emms, J.; Llewellyn, R.

    2014-01-01

    Old man saltbush (Atriplex nummularia Lindl.) is a useful forage shrub for livestock in the low-rainfall areas of the world, and particularly in Australia. In these semi-arid and arid environments, saltbush is valuable for increasing the production from otherwise marginal areas of the farm and

  9. Management of Atriplex nummularia Lindl. in a salt affected soil in a semi arid region of Brazil.

    Science.gov (United States)

    de Souza, Edivan Rodrigues; Freire, Maria Betânia Galvão dos Santos; de Melo, Diego Vandeval Maranhão; Montenegro, Abelardo de Antônio Assunção

    2014-01-01

    This study aims to investigate the behavior of Atriplex nummularia under field conditions, including its growth, periodic cuttings, salt extraction, and soil chemical properties monitored for 16 months. Three treatments were evaluated: soil cultivated with Atriplex pruned at 6 and 12 months after transplanting (MAT); soil cultivated with plants that were harvested only at the end of the experiment (16 MAT); and a control (uncultivated soil) with four replications. Soil samplings were taken at 0, 6, 12, and 16 MAT. The samples were taken at depths of 0-20, 20-40, 40-60, and 60-80 cm. Biometric variables for growth were monitored monthly. The shoot was divided into leaves, thin stems ( 3 mm diameter) to determine its content of Ca, Mg, Na, K, and Cl. We concluded that pruning regime for Atriplex was efficient mainly because it stimulated regrowth of less lignified material (leaves and stems plant tissue can be quantified accurately, making them valuable indicators of the efficiency of the recovery process. The use of the Atriplex is recommended because the the possibility of revegetating areas inhospitable to most species used in conventional farming.

  10. Uso do rejeito da dessalinização de água salobra para irrigação da erva-sal (Atriplex nummularia The use of the brine from desalting brackish water to irrigate saltbush (Atriplex nummularia

    Directory of Open Access Journals (Sweden)

    Everaldo R. Porto

    2001-04-01

    Full Text Available Com o objetivo de se reduzir os impactos causados pela dessalinização de água salobra proveniente do cristalino no trópico semi-árido brasileiro, a erva-sal (Atriplex nummularia foi cultivada durante um ano, nos campos da Estação Experimental da Embrapa Semi-Árido. As plantas foram irrigadas com rejeito do processo de dessalinização, com concentração salina média de 11,38 dS m-1, e cada uma recebeu 75 L de água por semana, durante 48 semanas. A salinidade média do perfil de solo, da camada de 0 a 90 cm, era de 0,64 dS m-1 antes de se iniciar a irrigação das plantas; depois da colheita das plantas, a salinidade do mesmo perfil de solo foi de 12,74 dS m-1, enquanto a produtividade da erva-sal foi de 6.537,0 kg ha-1 de matéria seca, com teor de proteína bruta de 18,40% nas folhas. A Atriplex apresentou grande potencial de extração de sais do perfil de solo, mas quando as plantas são irrigadas com rejeito de alta concentração salina, a quantidade de sais extraída desse perfil pela planta, é da ordem de 3,93% do total de sais adicionados ao solo pelas irrigações; isto implica no fato de que, para um manejo de água sustentável, há necessidade de se gerar mais informações sobre as relações de solo e água para a erva-sal, nas condições das zonas áridas do Brasil.Looking forward to reducing environmental impacts resulting from desalting brackish water in the region of the crystalline rocks in the semi-arid tropic of Brazil, saltbush (Atriplex nummularia was cultivated during one year in an experimental field of Embrapa Semi-Arid. The plants were irrigated with the brine from the desalting plant which presented a salt concentration of 11.38 dS m-1. Each plant received 75 L of water per week, during 48 weeks. The soil salinity, at the depth of 0-90 cm, of the cropped area averaged 0.64 dS m-1 before starting the irrigation process. After the plants were harvested, the soil salinity in the same profile averaged 12.74 d

  11. EFECTO DEL ESTRÉS HÍDRICO Y SALINO SOBRE LA GERMINACIÓN DE Atriplex nummularia (CHENOPODIACEAE

    Directory of Open Access Journals (Sweden)

    Mónica Beatriz Ruiz

    2013-01-01

    Full Text Available Los suelos salinos, característicos de zonas áridas, pueden afectar la germinación de las especies por presentar bajos potenciales hídricos o por toxicidad iónica. En este trabajo se determinó el efecto del estrés hídrico y salino sobre la germinación de Atriplex nummularia, una alternativa forrajera para zonas áridas. Las semillas fueron escarificadas para minimizar el efecto inhibidor de las brácteas y germinadas a 23 ºC sobre papel de germinación en soluciones con diferente potencial hídrico (-0,5, -1,0 y -1,5 MPa de cloruro de sodio (NaCl y polietilenglicol (PEG, utilizando agua destilada como control. El porcentaje de germinación y la velocidad de germinación fueron significativamente afectados por la concentración de la solución y el soluto utilizado. A valores de potencial osmótico más negativos el porcentaje de germinación y velocidad de germinación fueron significativamente menores. En los tres potenciales hídricos ensayados la velocidad y el porcentaje de semillas germinadas en NaCl fue significativamente menor que en PEG, siendo especialmente notoria esta diferencia a -1,0 MPa. Los datos sugieren que las semillas de A. nummularia  presentan sensibilidad a la presencia de los iones Na+  y Cl-  que afectan el proceso de germinación.

  12. Exploration for the Salinity Tolerance-Related Genes from Xero-Halophyte Atriplex canescens Exploiting Yeast Functional Screening System

    Directory of Open Access Journals (Sweden)

    Gang Yu

    2017-11-01

    Full Text Available Plant productivity is limited by salinity stress, both in natural and agricultural systems. Identification of salt stress-related genes from halophyte can provide insights into mechanisms of salt stress tolerance in plants. Atriplex canescens is a xero-halophyte that exhibits optimum growth in the presence of 400 mM NaCl. A cDNA library derived from highly salt-treated A. canescens plants was constructed based on a yeast expression system. A total of 53 transgenic yeast clones expressing enhanced salt tolerance were selected from 105 transformants. Their plasmids were sequenced and the gene characteristics were annotated using a BLASTX search. Retransformation of yeast cells with the selected plasmids conferred salt tolerance to the resulting transformants. The expression patterns of 28 of these stress-related genes were further investigated in A. canescens leaves by quantitative reverse transcription-PCR. In this study, we provided a rapid and robust assay system for large-scale screening of genes for varied abiotic stress tolerance with high efficiency in A. canescens.

  13. Rendimento da Atriplex nummularia irrigada com efluentes da criação de tilápia em rejeito da dessalinização de água Behavior of saltbush (Atriplex nummularia irrigated with effluents from tilapia raised in brackish water

    Directory of Open Access Journals (Sweden)

    Everaldo R. Porto

    2006-03-01

    Full Text Available Com o objetivo de avaliar a influência no rendimento da erva-sal (Atriplex nummularia e em algumas características do solo, quando irrigada com efluentes da criação de tilápia (Oreochromis sp. em rejeito da dessalinização de água salobra no semi-árido brasileiro, a erva-sal foi irrigada durante um ano com quatro volumes de efluentes na Embrapa Semi-Árido, em Petrolina, PE, cuja salinidade média foi, de 8,29 dS m-1. O delineamento experimental foi de blocos ao acaso com quatro tratamentos e três repetições. Os tratamentos T1, T2, T3 e T4 correspondem, respectivamente, aos volumes de efluentes aplicados semanalmente, de 75, 150, 225 e 300 L planta-1 . A salinidade média do solo na profundidade 0 - 90 cm foi de 0,40 dS m-1, antes de serem iniciadas as irrigações. Após a colheita, respectivamente para os tratamentos T1, T2, T3 e T4, as salinidades médias dos perfis de solo na mesma profundidade (0 - 90 cm foram de 8,02, 6,09, 4,97 e 4,60 dS m-1 e os rendimentos de matéria seca da erva-sal, de 9,75, 12,26, 14,49 e 13,81 t ha-1. O maior rendimento de matéria seca por litro de efluente aplicado foi para o tratamento T1, com 4,84 g L-1 que apresentou, também, a melhor relação entrada/saída de sal, removendo 13,84% do total de sal incorporado ao solo.Looking forward to reduce environmental impacts resulting from desalinization of brackish water in the region of the crystalline rocks in the semi-arid Brazil, saltbush (Atriplex nummularia was cultivated during one year with four different volumes of aquiculture effluent generated from an intensive tilapia (Oreochromis sp raising system, with a mean salinity of 8.29 dS m-1, in an experimental field of Embrapa Semi-Arid. A completely randomized block design, with four treatments and three replications was used. The treatments T1, T2, T3 and T4 corresponded, respectively, to the weekly volumes of irrigation of 75, 150, 225 and 300 L of water per plant. The mean soil salinity of the

  14. NaCl protects against Cd and Cu-induced toxicity in the halophyte Atriplex halimus

    Energy Technology Data Exchange (ETDEWEB)

    Bankaji, I.; Sleimi, N.; Gómez-Cadenas, A.; Pérez-Clemente, R.M.

    2016-07-01

    The objective of the present work was to evaluate the extent of Cd- and Cu-induced oxidative stress and the antioxidant response triggered in the halophyte species Atriplex halimus after metallic trace elements exposure. Plants were treated for one month with Cd2+ or Cu2+ (400 µM) in the absence or presence of 200 mM NaCl in the irrigation solution. The interaction between salinity and heavy metal stress was analyzed in relation to plant growth, tissue ion contents (Na+, K+ and Mg2+), oxidative damage and antioxidative metabolism. Data indicate that shoot and root weight significantly decreased as a consequence of Cd2+- or Cu2+-induced stress. Metallic stress leads to unbalanced nutrient uptake by reducing the translocation of K+ and Mg2+ from the root to the shoot. The levels of malondialdehyde increased in root tissue when Cd, and especially Cu, were added to the irrigation solution, indicating that oxidative damage occurred. Results showed that NaCl gave a partial protection against Cd and Cu induced toxicity, although these contaminants had distinct influence on plant physiology. It can be concluded that salinity drastically modified heavy metal absorption and improved plant growth. Salinity also decreased oxidative damage, but differently in plants exposed to Cd or Cu stress.

  15. The agro-ecological suitability of Atriplex nummularia and A. halimus for biomass production in Argentine saline drylands

    Science.gov (United States)

    Falasca, Silvia Liliana; Pizarro, María José; Mezher, Romina Nahir

    2014-09-01

    The choice of the best species to cultivate in semi-arid and arid climates is of fundamental importance, and is determined by many factors, including temperature and rainfall, soil type, water availability for irrigation and crop purposes. Soil or water salinity represents one of the major causes of crop stress. Species of the genus Atriplex are characterized by high biomass productivity, high tolerance to drought and salinity, and high efficiency in use of solar radiation and water. Based on a search of the international literature, the authors outline an agro-climatic zoning model to determine potential production areas in Argentina for Atriplex halimus and Atriplex numularia. Using the agroclimatic limits presented in this work, this model may be applied to any part of the world. When superimposed on the saline areas map, the agroclimatic map shows the suitability of agro-ecological zoning for both species for energy purposes on land unsuitable for food production. This innovative study was based on the implementation of a geographic information system that can be updated by further incorporation of complementary information, with consequent improvement of the original database.

  16. Rapid regulation of the plasma membrane H+-ATPase activity is essential to salinity tolerance in two halophyte species, Atriplex lentiformis and Chenopodium quinoa

    Science.gov (United States)

    Bose, Jayakumar; Rodrigo-Moreno, Ana; Lai, Diwen; Xie, Yanjie; Shen, Wenbiao; Shabala, Sergey

    2015-01-01

    Background and Aims The activity of H+-ATPase is essential for energizing the plasma membrane. It provides the driving force for potassium retention and uptake through voltage-gated channels and for Na+ exclusion via Na+/H+ exchangers. Both of these traits are central to plant salinity tolerance; however, whether the increased activity of H+-ATPase is a constitutive trait in halophyte species and whether this activity is upregulated at either the transcriptional or post-translation level remain disputed. Methods The kinetics of salt-induced net H+, Na+ and K+ fluxes, membrane potential and AHA1/2/3 expression changes in the roots of two halophyte species, Atriplex lentiformis (saltbush) and Chenopodium quinoa (quinoa), were compared with data obtained from Arabidopsis thaliana roots. Key Results Intrinsic (steady-state) membrane potential values were more negative in A. lentiformis and C. quinoa compared with arabidopsis (−144 ± 3·3, −138 ± 5·4 and −128 ± 3·3 mV, respectively). Treatment with 100 mm NaCl depolarized the root plasma membrane, an effect that was much stronger in arabidopsis. The extent of plasma membrane depolarization positively correlated with NaCl-induced stimulation of vanadate-sensitive H+ efflux, Na+ efflux and K+ retention in roots (quinoa > saltbush > arabidopsis). NaCl-induced stimulation of H+ efflux was most pronounced in the root elongation zone. In contrast, H+-ATPase AHA transcript levels were much higher in arabidopsis compared with quinoa plants, and 100 mm NaCl treatment led to a further 3-fold increase in AHA1 and AHA2 transcripts in arabidopsis but not in quinoa. Conclusions Enhanced salinity tolerance in the halophyte species studied here is not related to the constitutively higher AHA transcript levels in the root epidermis, but to the plant’s ability to rapidly upregulate plasma membrane H+-ATPase upon salinity treatment. This is necessary for assisting plants to maintain highly negative

  17. Halophytes: Potential Resources for Salt Stress Tolerance Genes and Promoters.

    Science.gov (United States)

    Mishra, Avinash; Tanna, Bhakti

    2017-01-01

    Halophytes have demonstrated their capability to thrive under extremely saline conditions and thus considered as one of the best germplasm for saline agriculture. Salinity is a worldwide problem, and the salt-affected areas are increasing day-by-day because of scanty rainfall, poor irrigation system, salt ingression, water contamination, and other environmental factors. The salinity stress tolerance mechanism is a very complex phenomenon, and some pathways are coordinately linked for imparting salinity tolerance. Though a number of salt responsive genes have been reported from the halophytes, there is always a quest for promising stress-responsive genes that can modulate plant physiology according to the salt stress. Halophytes such as Aeluropus, Mesembryanthemum, Suaeda, Atriplex, Thellungiella, Cakile , and Salicornia serve as a potential candidate for the salt-responsive genes and promoters. Several known genes like antiporters ( NHX, SOS, HKT, VTPase ), ion channels (Cl - , Ca 2+ , aquaporins), antioxidant encoding genes ( APX, CAT, GST, BADH, SOD ) and some novel genes such as USP, SDR1, SRP etc. were isolated from halophytes and explored for developing stress tolerance in the crop plants (glycophytes). It is evidenced that stress triggers salt sensors that lead to the activation of stress tolerance mechanisms which involve multiple signaling proteins, up- or down-regulation of several genes, and finally the distinctive or collective effects of stress-responsive genes. In this review, halophytes are discussed as an excellent platform for salt responsive genes which can be utilized for developing salinity tolerance in crop plants through genetic engineering.

  18. Rapid regulation of the plasma membrane H⁺-ATPase activity is essential to salinity tolerance in two halophyte species, Atriplex lentiformis and Chenopodium quinoa.

    Science.gov (United States)

    Bose, Jayakumar; Rodrigo-Moreno, Ana; Lai, Diwen; Xie, Yanjie; Shen, Wenbiao; Shabala, Sergey

    2015-02-01

    The activity of H(+)-ATPase is essential for energizing the plasma membrane. It provides the driving force for potassium retention and uptake through voltage-gated channels and for Na(+) exclusion via Na(+)/H(+) exchangers. Both of these traits are central to plant salinity tolerance; however, whether the increased activity of H(+)-ATPase is a constitutive trait in halophyte species and whether this activity is upregulated at either the transcriptional or post-translation level remain disputed. The kinetics of salt-induced net H(+), Na(+) and K(+) fluxes, membrane potential and AHA1/2/3 expression changes in the roots of two halophyte species, Atriplex lentiformis (saltbush) and Chenopodium quinoa (quinoa), were compared with data obtained from Arabidopsis thaliana roots. Intrinsic (steady-state) membrane potential values were more negative in A. lentiformis and C. quinoa compared with arabidopsis (-144 ± 3·3, -138 ± 5·4 and -128 ± 3·3 mV, respectively). Treatment with 100 mm NaCl depolarized the root plasma membrane, an effect that was much stronger in arabidopsis. The extent of plasma membrane depolarization positively correlated with NaCl-induced stimulation of vanadate-sensitive H(+) efflux, Na(+) efflux and K(+) retention in roots (quinoa > saltbush > arabidopsis). NaCl-induced stimulation of H(+) efflux was most pronounced in the root elongation zone. In contrast, H(+)-ATPase AHA transcript levels were much higher in arabidopsis compared with quinoa plants, and 100 mm NaCl treatment led to a further 3-fold increase in AHA1 and AHA2 transcripts in arabidopsis but not in quinoa. Enhanced salinity tolerance in the halophyte species studied here is not related to the constitutively higher AHA transcript levels in the root epidermis, but to the plant's ability to rapidly upregulate plasma membrane H(+)-ATPase upon salinity treatment. This is necessary for assisting plants to maintain highly negative membrane potential values and to

  19. Halophytes: Potential Resources for Salt Stress Tolerance Genes and Promoters

    Directory of Open Access Journals (Sweden)

    Avinash Mishra

    2017-05-01

    Full Text Available Halophytes have demonstrated their capability to thrive under extremely saline conditions and thus considered as one of the best germplasm for saline agriculture. Salinity is a worldwide problem, and the salt-affected areas are increasing day-by-day because of scanty rainfall, poor irrigation system, salt ingression, water contamination, and other environmental factors. The salinity stress tolerance mechanism is a very complex phenomenon, and some pathways are coordinately linked for imparting salinity tolerance. Though a number of salt responsive genes have been reported from the halophytes, there is always a quest for promising stress-responsive genes that can modulate plant physiology according to the salt stress. Halophytes such as Aeluropus, Mesembryanthemum, Suaeda, Atriplex, Thellungiella, Cakile, and Salicornia serve as a potential candidate for the salt-responsive genes and promoters. Several known genes like antiporters (NHX, SOS, HKT, VTPase, ion channels (Cl−, Ca2+, aquaporins, antioxidant encoding genes (APX, CAT, GST, BADH, SOD and some novel genes such as USP, SDR1, SRP etc. were isolated from halophytes and explored for developing stress tolerance in the crop plants (glycophytes. It is evidenced that stress triggers salt sensors that lead to the activation of stress tolerance mechanisms which involve multiple signaling proteins, up- or down-regulation of several genes, and finally the distinctive or collective effects of stress-responsive genes. In this review, halophytes are discussed as an excellent platform for salt responsive genes which can be utilized for developing salinity tolerance in crop plants through genetic engineering.

  20. Salinidade, sodicidade e propriedades microbiológicas de Argissolo cultivado com erva-sal e irrigado com rejeito salino Salinity, sodicity and microbiological properties of an Ultisol cultivated with saltbush and irrigated with saline effluents

    Directory of Open Access Journals (Sweden)

    Célia Maria Maganhotto de Souza Silva

    2008-10-01

    Full Text Available O objetivo deste trabalho foi avaliar o efeito da irrigação com rejeito da dessalinização, oriundo de tanques de produção de tilápia-rosa, sobre as propriedades químicas e microbiológicas de solos cultivados com erva-sal (Atriplex nummularia Lindl.. Quatro áreas foram usadas, das quais duas foram irrigadas com rejeito salino e cultivadas, durante um e cinco anos, com erva-sal. As outras duas áreas foram conduzidas sem irrigação: uma cultivada com vegetação natural e outra com a halófita. Avaliaram-se os parâmetros relativos à salinidade e sodicidade do solo, e também as seguintes características: carbono da biomassa microbiana (Cmic; relação Cmic/carbono orgânico; atividade das enzimas fosfatase ácida, fosfatase alcalina, beta-glucosidase, protease, L-asparaginase, L-glutaminase. A adição de sais afetou as propriedades físicas e químicas dos solos irrigados com rejeito salino, com tendência à salinização e sodificação. A salinidade afetou as propriedades microbiológicas nos solos irrigados, mas o cultivo da halófita favoreceu a produção das enzimas estudadas. O cultivo da erva-sal em áreas que recebem rejeito salino pela irrigação melhora a qualidade biológica dos solos e sua fertilidade, mas não impede a salinização.The objective of this work was to evaluate the effects of irrigation with saline effluents, from red tilapia production ponds, on chemical and microbiological properties of soils cultivated with saltbush (Atriplex nummularia Lindl. Four areas were used, from which two were irrigated with saline waste and cultivated with A. nummularia, during one and five years. The other two areas were not irrigated, and one was cultivated with natural vegetation and the other with the halophyte. The parameters related to soil salinity and sodicity were evaluated, as well as the following characteristics: microbial biomass carbon (Cmic; Cmic/organic carbon; the activity of acid and alcaline phosphatase

  1. Modeling Halophytic Plants in APEX for Sustainable Water and Agriculture

    Science.gov (United States)

    DeRuyter, T.; Saito, L.; Nowak, B.; Rossi, C.; Toderich, K.

    2013-12-01

    A major problem for irrigated agricultural production is soil salinization, which can occur naturally or can be human-induced. Human-induced, or secondary salinization, is particularly a problem in arid and semi-arid regions, especially in irrigated areas. Irrigated land has more than twice the production of rainfed land, and accounts for about one third of the world's food, but nearly 20% of irrigated lands are salt-affected. Many farmers worldwide currently seasonally leach their land to reduce the soil salt content. These practices, however, create further problems such as a raised groundwater table, and salt, fertilizer, and pesticide pollution of nearby lakes and groundwater. In Uzbekistan, a combination of these management practices and a propensity to cultivate 'thirsty' crops such as cotton has also contributed to the Aral Sea shrinking nearly 90% by volume since the 1950s. Most common agricultural crops are glycophytes that have reduced yields when subjected to salt-stress. Some plants, however, are known as halophytic or 'salt-loving' plants and are capable of completing their life-cycle in higher saline soil or water environments. Halophytes may be useful for human consumption, livestock fodder, or biofuel, and may also be able to reduce or maintain salt levels in soil and water. To assess the potential for these halophytes to assist with salinity management, we are developing a model that is capable of tracking salinity under different management practices in agricultural environments. This model is interdisciplinary as it combines fields such as plant ecology, hydrology, and soil science. The US Department of Agriculture (USDA) model, Agricultural Policy/Environmental Extender (APEX), is being augmented with a salinity module that tracks salinity as separate ions across the soil-plant-water interface. The halophytes Atriplex nitens, Climacoptera lanata, and Salicornia europaea are being parameterized and added into the APEX model database. Field sites

  2. A Heavy Metal-Associated Protein (AcHMA1 from the Halophyte, Atriplex canescens (Pursh Nutt., Confers Tolerance to Iron and Other Abiotic Stresses When Expressed in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Xin-Hua Sun

    2014-08-01

    Full Text Available Many heavy metals are essential for metabolic processes, but are toxic at elevated levels. Metal tolerance proteins provide resistance to this toxicity. In this study, we identified and characterized a heavy metal-associated protein, AcHMA1, from the halophyte, Atriplex canescens. Sequence analysis has revealed that AcHMA1 contains two heavy metal binding domains. Treatments with metals (Fe, Cu, Ni, Cd or Pb, PEG6000 and NaHCO3 highly induced AcHMA1 expression in A. canescens, whereas NaCl and low temperature decreased its expression. The role of AcHMA1 in metal stress tolerance was examined using a yeast expression system. Expression of the AcHMA1 gene significantly increased the ability of yeast cells to adapt to and recover from exposure to excess iron. AcHMA1 expression also provided salt, alkaline, osmotic and oxidant stress tolerance in yeast cells. Finally, subcellular localization of an AcHMA1/GFP fusion protein expressed in tobacco cells showed that AcHMA1 was localized in the plasma membrane. Thus, our results suggest that AcHMA1 encodes a membrane-localized metal tolerance protein that mediates the detoxification of iron in eukaryotes. Furthermore, AcHMA1 also participates in the response to abiotic stress.

  3. Seasonal variations in plant water status of four desert halophytes from semi-arid region of Karachi

    International Nuclear Information System (INIS)

    Aziz, I.; Gul, B.; Gulzar, S.; Khan, A

    2011-01-01

    Halophytes in arid and semi arid zones of the world are often subjected to extremely variable drought, salinity and temperature. These fluctuations may bring about changes in their osmoregulation and gas exchange responses besides other physiological and biochemical processes. The purpose of this study was to detect temporal changes in plant water status and osmotic adjustment in four desert halophytes viz., Suaeda fruticosa, Heliotropium curassavicum, Haloxylon stocksii and Atriplex stocksii from an inland community at Karachi University Campus. During the dry period (November to January) water and osmotic potentials of all test species increased with higher values in A. stocksii (salt secretor) than those of S. fruticosa and H. stocksii (salt includer) and H. curassavicum (salt excluder). Proline increased substantially and was highest in H. curassavicum followed by A. stocksii in comparison to the two salt includers. The lowering of osmotic potential corresponded to an increase in Na and Cl, lower stomatal conductance and chlorophyll content indicating reduced gas exchange during the dry period. The increase in proline may have little role in osmoreglation but could contribute in scavenging reactive oxygen species. (author)

  4. Phytoremediation potential of some halophytic species for soil salinity.

    Science.gov (United States)

    Devi, S; Nandwal, A S; Angrish, R; Arya, S S; Kumar, N; Sharma, S K

    2016-01-01

    Phytoremediation potential of six halophytic species i.e. Suaeda nudiflora, Suaeda fruticosa, Portulaca oleracea, Atriplex lentiformis, Parkinsonia aculeata and Xanthium strumarium was assessed under screen house conditions. Plants were raised at 8.0, 12.0, 16.0, and 20.0 dSm(-1) of chloride-dominated salinity. The control plants were irrigated with canal water. Sampling was done at vegetative stage (60-75 DAS). About 95 percent seed germination occurred up to 12 dSm(-1) and thereafter declined slightly. Mean plant height and dry weight plant(-1) were significantly decreased from 48.71 to 32.44 cm and from 1.73 to 0.61g plant(-1) respectively upon salinization. Na(+)/K(+) ratio (0.87 to 2.72), Na(+)/ Ca(2+) + Mg(2+) (0.48 to 1.54) and Cl(-)/SO4(2-) (0.94 to 5.04) ratio showed increasing trend. Salinity susceptibility index was found minimum in Suaeda fruticosa (0.72) and maximum in Parkinsonia aculeata (1.17). Total ionic content also declined and magnitude of decline varied from 8.51 to 18.91% at 8 dSm(-1) and 1.85 to 7.12% at 20 dSm(-1) of salinity. On the basis of phytoremediation potential Suaeda fruticosa (1170.02 mg plant(-1)), Atriplex lentiformis (777.87 mg plant(-1)) were the best salt hyperaccumulator plants whereas Xanthium strumarium (349.61 mg plant(-1)) and Parkinsonia aculeata (310.59 mg plant(-1)) were the least hyperaccumulator plants.

  5. On the distribution and evaluation of Na, Mg and Cl in leaves of selected halophytes

    Energy Technology Data Exchange (ETDEWEB)

    Pongrac, Paula; Vogel-Mikuš, Katarina; Regvar, Marjana [Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, SI-1000 Ljubljana (Slovenia); Kaligarič, Mitja [Department of Biology, Faculty of Natural Sciences and Mathematics, Koroška c. 160, SI-2000 Maribor (Slovenia); Vavpetič, Primož; Kelemen, Mitja; Grlj, Nataša [Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Shelef, Oren; Golan-Goldhirsh, Avi; Rachmilevitch, Shimon [French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research (BIDR), Ben-Gurion University of the Negev, 84990 Midreshet Ben-Gurion (Israel); Pelicon, Primož, E-mail: primoz.pelicon@ijs.si [Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia)

    2013-07-01

    Diverse physiological, biochemical and morphological adaptations enable plants to survive in extreme saline environments where osmotic and ionic stresses limit growth and development. Halophytes are salt-tolerant plants that can withstand extraordinarily high levels of Na and Cl in their leaves. The tissue and cellular distribution patterns of salt ions can be linked to the underlying mechanisms of salt tolerance. Application of fast, reliable, multi-elemental and quantitative techniques such as micro-proton-induced X-ray emission (micro-PIXE) will significantly contribute to and accelerate studies of plant salt tolerance, especially as micro-PIXE also provides spatially resolved quantitative data for light elements, such as Na and Mg. The spatial concentration distributions of Na, Mg, Cl, K, P and S in leaves of four halophytes (Bassia indica, Atriplex prostrata, Spartina maritima and Limonium angustifolium) were determined using micro-PIXE, to study the salt-tolerance strategies of the selected halophytes. Different distribution patterns of the studied elements were seen in the leaves; however, in all four of these plant species, Na was excluded from photosynthetically active chlorophyl tissues. With the exception of L. angustifolium, Cl, P and S contents (representing chloride, phosphate and sulphate ionic forms, respectively) did not ensure charge balance in the leaves, which suggests other anionic compounds, such as nitrate and organic anions, have crucial roles in maintaining electroneutrality in these halophytes. By increasing soil salinisation worldwide, the possibility to reliably complement spatial distributions of Na, Mg, Cl, K, P and S with plant structural morphology will contribute significantly to our understanding of plant tolerance mechanisms at the tissue and cell levels. In addition, these kinds of studies are of particular value for designing crop plants with high salt tolerance and for the development of phytoremediation technologies.

  6. Estudo de caso de três espécies de plantas bioindicadoras de solos salinos

    Directory of Open Access Journals (Sweden)

    Mercia Fonseca Carvalho

    2015-07-01

    Full Text Available Bioindicadores, de uma maneira geral, são seres vivos de natureza diversa, vegetais ou animais, utilizados para analisar a qualidade de um determinado ambiente. A degradação ambiental do solo pela salinidade é um problema muito antigo e de extensão mundial, geralmente, mais pronunciado nas regiões áridas e semi-áridas. As plantas que se desenvolvem em áreas com elevadas concentrações de sais são chamadas de halófitas, e algumas delas são usadas na recuperar desses solos. O objetivo desse trabalho é analisar três espécies de plantas resistentes ao estresse salino gerar recomendações a respeito das mesmas, disponibilizando uma indicação de espécie que possa recuperar o ambiente salinizado. Foram selecionadas aleatoriamente três espécies de plantas resistentes a salinidade Copernicia prunifera, Atriplex nummularia L. e Gossypium hirsutum L, as mesmas foram analisados por uma planilha com características que identificam um bioindicador ideal e em seguida as espécies foram avaliadas de acordo com sua fisiologia e etiologia. Embora as propriedades da espécie A. nummularia tenha se destacado por recuperar os solos salinizados a espécie Copernicia prunifera foi considerada como um bioindicador ideal. Recomendam-se ainda estudos mais aprofundados acerca desse assunto.Case study of three species of saline soil bioindicatorsAbstract: Bioindicators, in general, living organisms are diverse in nature, plant or animal used to assess the quality of a given environment. Environmental degradation by soil salinity is a very old problem and expanse world generally more pronounced in arid and semi-arid regions. Plants that thrive in areas with high concentrations of salts are called halophytes, and some of them are used in recovering these soils. The aim of this work is to analyze three species of plants resistant to salt stress generate recommendations regarding the same, providing an indication of species that can restore the

  7. Comparison of metabolisable energy values of different foodstuffs determined in ostriches and poultry

    DEFF Research Database (Denmark)

    Cilliers, S C; Sales, J; Hayes, J P

    1999-01-01

    Apparent (AMEn) and true (TMEn) metabolisable energy values, corrected for nitrogen retention, of wheat bran, saltbush (Atriplex nummularia), common reed (Phragmites australis), lupins, soyabean oil cake meal (SBOCM), sunflower oil cake meal (SFOCM) and fishmeal were compared in 7 successive trials...

  8. Studies on the genus Atriplex L. (Amaranthaceae) in Italy. IV ...

    African Journals Online (AJOL)

    Studies on the genus Atriplex L. (Amaranthaceae) in Italy. IV. Atriplex bocconei Guss. – Atriplex bocconei Guss. is here typified on one herbarium specimen kept in NAP. The identity of the species is also clarified on the basis of literature analysis and examination of type material and other specimens that allowed to include it ...

  9. Pharmacological basis for medicinal use of Ziziphyus nummularia ...

    African Journals Online (AJOL)

    Methods: Ziziphus nummularia crude extract (Zn.Cr) was investigated for antidiarrheal activity (50, 100 and 300 mg/kg) in terms of reduction diarrhea droppings as well as for antisecretory activity (300 and 1000 mg/kg) in castor-oil induced model in mice. The effect of the extract on potassium chloride (KCl, 80 mM)-induced ...

  10. South African Journal of Animal Science - Vol 16, No 2 (1986)

    African Journals Online (AJOL)

    Summer yield of fish in polyculture in Transkei, South Africa, using pig manure with and without formulated feed · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT ... Effect of level of supplementary feeding on mohair production and reproductive performance of Angora ewes grazing Atriplex nummularia (Oldman saltbush) ...

  11. HALOPHYTIC VEGETATION OF IRAN: TOWARDS A SYNTAXONOMICAL CLASSIFICATION

    Directory of Open Access Journals (Sweden)

    H. AKHANI

    2004-05-01

    Full Text Available Iran with its diverse c1irnatic conditions and geologic and land use history support large areas of saline habitats and diverse halophytic flora. The halophytic diversity in not only enriched by the evolving of a large number of autochthonous Irano-Turanian elements, but also many of the halophytes of other phytochoria like Saharo-Arabian, Mediterranean and even Euro-Siberian elements are represented in Iran. Therefore most of the higher syntaxa of Euro-Mediterranean and Afro-Asian-al last partly-occur in Iran. Prior to a consolidated syntaxonomical system for the halophytic vegetation of Iran, major halophytic vegetation units of Iran are summarized and shown along salinity and moisture gradients. These include: (I: Mangrove communities (Avicennio-Sonneratietea. (2: Submerged aquatic plant communities (Ruppietea maritimae. (3: Annual obligatory hygro-halophytic communities on sea, lake and river marshes dominated by stem or leaf succulent C3 chenopods (Thero-Salicornietea. (4 Semi-woody or perennial halophytic communities on muddy or coastal salt flats dominated by stem succulent C3 chenopods (Salicornietea fruticosae. (5: Hydrophi!ous euryhalophytic rush communities: Phragmitetea australis. (6: Halophytic grassland and herbaceous perennial sedge communities belonging to genera Puccinellia and Juncus (Juncetea maritimi. (7: Salt marsh and riverine bruchwood communities dominated by salt-excreting halophytes (Tamaricetea ramosissimae, prov.. (8: Annua1 halophytic communities dominated by C4 chenopods in temporary moist and inundated, or disturbed salty soils (Climacopteretea crassae, prov.. (9: Halophytic shrubby. semi-woody or hemicrytophytic communities on salty and dry soils dominated by lcaf or stem succulent C4 chenopods (Haloxylo-Salsoletea tomentosae, prov.. (1O: Halophytic shrub communities, on salty and sandy coastal or margin of sabkhas with high water table dominated by Nitraria schoberi and Reaumuria fruticosa. (11. Psarno-halophytic

  12. HALOPHYTIC VEGETATION OF IRAN: TOWARDS A SYNTAXONOMICAL CLASSIFICATION

    Directory of Open Access Journals (Sweden)

    H. AKHANI

    2004-01-01

    Full Text Available Iran with its diverse c1irnatic conditions and geologic and land use history support large areas of saline habitats and diverse halophytic flora. The halophytic diversity in not only enriched by the evolving of a large number of autochthonous Irano-Turanian elements, but also many of the halophytes of other phytochoria like Saharo-Arabian, Mediterranean and even Euro-Siberian elements are represented in Iran. Therefore most of the higher syntaxa of Euro-Mediterranean and Afro-Asian-al last partly-occur in Iran. Prior to a consolidated syntaxonomical system for the halophytic vegetation of Iran, major halophytic vegetation units of Iran are summarized and shown along salinity and moisture gradients. These include: (I: Mangrove communities (Avicennio-Sonneratietea. (2: Submerged aquatic plant communities (Ruppietea maritimae. (3: Annual obligatory hygro-halophytic communities on sea, lake and river marshes dominated by stem or leaf succulent C3 chenopods (Thero-Salicornietea. (4 Semi-woody or perennial halophytic communities on muddy or coastal salt flats dominated by stem succulent C3 chenopods (Salicornietea fruticosae. (5: Hydrophi!ous euryhalophytic rush communities: Phragmitetea australis. (6: Halophytic grassland and herbaceous perennial sedge communities belonging to genera Puccinellia and Juncus (Juncetea maritimi. (7: Salt marsh and riverine bruchwood communities dominated by salt-excreting halophytes (Tamaricetea ramosissimae, prov.. (8: Annua1 halophytic communities dominated by C4 chenopods in temporary moist and inundated, or disturbed salty soils (Climacopteretea crassae, prov.. (9: Halophytic shrubby. semi-woody or hemicrytophytic communities on salty and dry soils dominated by lcaf or stem succulent C4 chenopods (Haloxylo-Salsoletea tomentosae, prov.. (1O: Halophytic shrub communities, on salty and sandy coastal or margin of sabkhas with high water table dominated by Nitraria schoberi and Reaumuria fruticosa. (11. Psarno-halophytic

  13. Honeybee Foraging, Nectar Secretion, and Honey Potential of Wild Jujube Trees, Ziziphus nummularia.

    Science.gov (United States)

    Alqarni, A S

    2015-06-01

    Ziziphus trees are of economic importance due to their aggregated value (source of fruits and timber) and are the most important melliferous plants in the Arabian Peninsula. Interaction between honeybees and Ziziphus nummularia was investigated by assessing foraging, flower phenology, nectar secretion, and honey potential. It is demonstrate that both the native Apis mellifera jemenitica Ruttner and the exotic Apis mellifera carnica Pollmann foraged on Z. nummularia flowers. Bee foraging for nectar and pollen was low (2 ± 0.7 workers/200 flowers/3 min) during early morning and increased to a peak in the afternoon (100 ± 15 workers/200 flowers/3 min). Remarkable foraging activity was recorded during high temperature (35°C) and low humidity (20%) conditions. Foraging for nectar collection was more distinct than that for pollen. The flowering of Z. nummularia was gradual, and was characterized by some flowers that opened and secreted nectar early before sunrise, whereas other flowers remained opened until sunrise. The flowers lasted 2 days, with 83% of nectar secreted in the first day. The peak of nectar secretion was recorded at noon under hot and dry conditions. The lowest amount of nectar was secreted during sunrise under mild temperature (24°C) and humidity (31%) conditions. Under optimum conditions, it is assumed that the average sugar mass was 0.321 ± 0.03 mg TSS/flower, while the total sugar mass was 27.65 ± 11 g/tree. The average honey production potential of tested Z. nummularia was approximately 2.998 kg/tree and 749.475 kg/ha in the main flowering season.

  14. Deficit irrigation of a landscape halophyte for reuse of saline waste water in a desert city

    Science.gov (United States)

    Glenn, E.P.; Mckeon, C.; Gerhart, V.; Nagler, P.L.; Jordan, F.; Artiola, J.

    2009-01-01

    Saline waste waters from industrial and water treatment processes are an under-utilized resource in desert urban environments. Management practices to safely use these water sources are still in development. We used a deeprooted native halophyte, Atriplex lentiformis (quailbush), to absorb mildly saline effluent (1800 mg l-1 total dissolved solids, mainly sodium sulfate) from a water treatment plant in the desert community of Twentynine Palms, California. We developed a deficit irrigation strategy to avoid discharging water past the root zone to the aquifer. The plants were irrigated at about one-third the rate of reference evapotranspiration (ETo) calculated from meteorological data over five years and soil moisture levels were monitored to a soil depth of 4.7 m at monthly intervals with a neutron hydroprobe. The deficit irrigation schedule maintained the soil below field capacity throughout the study. Water was presented on a more or less constant schedule, so that the application rates were less than ETo in summer and equal to or slightly greater than ETo in winter, but the plants were able to consume water stored in the profile in winter to support summer ET. Sodium salts gradually increased in the soil profile over the study but sulfate levels remained low, due to formation of gypsum in the calcic soil. The high salt tolerance, deep roots, and drought tolerance of desert halophytes such as A. lentiformis lend these plants to use as deficit-irrigated landscape plants for disposal of effluents in urban setting when protection of the aquifer is important. ?? 2008 Elsevier B.V.

  15. Mining Halophytes for Plant Growth-Promoting Halotolerant Bacteria to Enhance the Salinity Tolerance of Non-halophytic Crops

    Directory of Open Access Journals (Sweden)

    Hassan Etesami

    2018-02-01

    Full Text Available Salinity stress is one of the major abiotic stresses limiting crop production in arid and semi-arid regions. Interest is increasing in the application of PGPRs (plant growth promoting rhizobacteria to ameliorate stresses such as salinity stress in crop production. The identification of salt-tolerant, or halophilic, PGPRs has the potential to promote saline soil-based agriculture. Halophytes are a useful reservoir of halotolerant bacteria with plant growth-promoting capabilities. Here, we review recent studies on the use of halophilic PGPRs to stimulate plant growth and increase the tolerance of non-halophytic crops to salinity. These studies illustrate that halophilic PGPRs from the rhizosphere of halophytic species can be effective bio-inoculants for promoting the production of non-halophytic species in saline soils. These studies support the viability of bioinoculation with halophilic PGPRs as a strategy for the sustainable enhancement of non-halophytic crop growth. The potential of this strategy is discussed within the context of ensuring sustainable food production for a world with an increasing population and continuing climate change. We also explore future research needs for using halotolerant PGPRs under salinity stress.

  16. Endophyte microbiome diversity in micropropagated Atriplex canescens and Atriplex torreyi var griffithsii.

    Directory of Open Access Journals (Sweden)

    Mary E Lucero

    2011-03-01

    Full Text Available Microbial diversity associated with micropropagated Atriplex species was assessed using microscopy, isolate culturing, and sequencing. Light, electron, and confocal microscopy revealed microbial cells in aseptically regenerated leaves and roots. Clone libraries and tag-encoded FLX amplicon pyrosequencing (TEFAP analysis amplified sequences from callus homologous to diverse fungal and bacterial taxa. Culturing isolated some seed borne endophyte taxa which could be readily propagated apart from the host. Microbial cells were observed within biofilm-like residues associated with plant cell surfaces and intercellular spaces. Various universal primers amplified both plant and microbial sequences, with different primers revealing different patterns of fungal diversity. Bacterial and fungal TEFAP followed by alignment with sequences from curated databases revealed 7 bacterial and 17 ascomycete taxa in A. canescens, and 5 bacterial taxa in A. torreyi. Additional diversity was observed among isolates and clone libraries. Micropropagated Atriplex retains a complex, intimately associated microbiome which includes diverse strains well poised to interact in manners that influence host physiology. Microbiome analysis was facilitated by high throughput sequencing methods, but primer biases continue to limit recovery of diverse sequences from even moderately complex communities.

  17. Four-wing saltbush (Atriplex canescens) seed and seedling consumption by granivorous rodents

    Science.gov (United States)

    Four-wing saltbush (Atriplex canescens [Pursh] Nutt.), native to western North America, extends from Canada to Mexico and from the Great Plains to the Pacific Coast. Shrubby species of Atriplex are in the family Chenopodiacea, which contains other important shrubs such as winter fat (Krascheninnikov...

  18. Coping With Metal Toxicity – Cues From Halophytes

    Directory of Open Access Journals (Sweden)

    Ganesh C. Nikalje

    2018-06-01

    Full Text Available Being the native flora of saline soil, halophytes are well studied for their salt tolerance and adaptation mechanism at the physiological, biochemical, molecular and metabolomic levels. However, these saline habitats are getting contaminated due to various anthropogenic activities like urban waste, agricultural runoff, mining, industrial waste that are rich in toxic metals and metalloids. These toxic metals impose detrimental effects on growth and development of most plant species. Halophytes by virtue of their tolerance to salinity also show high tolerance to heavy metals which is attributed to the enhanced root to shoot metal translocation and bioavailability. Halophytes rapidly uptake toxic ions from the root and transport them toward aerial parts by using different transporters which are involved in metal tolerance and homeostasis. A number of defense related physiological and biochemical strategies are known to be crucial for metal detoxification in halophytes however; there is paucity of information on the molecular regulators. Understanding of the phenomenon of cross-tolerance of salinity with other abiotic stresses in halophytes could very well boost their potential use in phytoremediation. In this article, we present an overview of heavy metal tolerance in case of halophytes, associated mechanisms and cross-tolerance of salinity with other abiotic stresses.

  19. Phytostabilisation of severely contaminated mine tailings using halophytes and field addition of organic and inorganic amendments.

    Science.gov (United States)

    Pardo, T; Bernal, M P; Clemente, R

    2017-07-01

    Phytostabilisation strategies have proven to be an efficient remediation option for mine tailings, but the adequate plant species and amendments have to be carefully selected. A remediation experiment was carried out at the semi-field level in tailings (pH 3.2, ≈1100, 4700 and 5000 mg kg -1 of As, Pb and Zn, respectively) from the mining district of La Unión-Cartagena (SE Spain). A red mud derivative (Fe/Al oxides), its combination with compost, and hydrated lime (Ca hydroxide) were applied in field plots of 0.25 m 2 . After four months of field stabilisation, tailings were transferred unaltered to a plant growth facility, and Atriplex halimus and Zygophyllum fabago (halophytes) were sown. Three months later, trace element (TE) solubility, plant accumulation and chemical speciation in the tailings pore water were studied. In unamended tailings, soluble TEs concentrations were very high (e.g., 40 mg Zn l -1 ), the dominant species being free ions and SO 4 2- - complexes (>70%). The addition of amendments increased tailings pH (6.7-7), reduced TEs solubility and extractability (>80-99%) and changed the dominant species of soluble Al, Cu, Pb and Zn to hydroxides and/or organo-metallic complexes, but increased slightly the extractable As and soluble Tl concentrations. Plants were able to grow only in amended tailings, and both species presented low levels of Al, As, Cd and Zn. Therefore, the use of combined red mud derivative and compost and halophytes was shown to be a good phytostabilisation strategy, although the dose applied must be carefully chosen in order to avoid possible solubilisation of As and Tl. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Potential Use of Halophytes to Remediate Saline Soils

    Directory of Open Access Journals (Sweden)

    Mirza Hasanuzzaman

    2014-01-01

    Full Text Available Salinity is one of the rising problems causing tremendous yield losses in many regions of the world especially in arid and semiarid regions. To maximize crop productivity, these areas should be brought under utilization where there are options for removing salinity or using the salt-tolerant crops. Use of salt-tolerant crops does not remove the salt and hence halophytes that have capacity to accumulate and exclude the salt can be an effective way. Methods for salt removal include agronomic practices or phytoremediation. The first is cost- and labor-intensive and needs some developmental strategies for implication; on the contrary, the phytoremediation by halophyte is more suitable as it can be executed very easily without those problems. Several halophyte species including grasses, shrubs, and trees can remove the salt from different kinds of salt-affected problematic soils through salt excluding, excreting, or accumulating by their morphological, anatomical, physiological adaptation in their organelle level and cellular level. Exploiting halophytes for reducing salinity can be good sources for meeting the basic needs of people in salt-affected areas as well. This review focuses on the special adaptive features of halophytic plants under saline condition and the possible ways to utilize these plants to remediate salinity.

  1. UTILIZACIÓN DE Atriplex canescens Y Opuntia ficus indica EN LA ALIMENTACIÓN DE CABRAS LACTANTES DURANTE LA SEQUÍA

    Directory of Open Access Journals (Sweden)

    Jorge Urrutia-Morales

    2014-01-01

    Full Text Available Utilización de Atriplex canescens y Opuntia ficus indica en la alimentación de cabras lactantes durante la sequía. El objetivo del presente estudio fue evaluar el efecto del Atriplex (Atriplex canescens y nopal (Opuntia ficus indica en la alimentación de cabras lactantes y la producción de leche durante la sequía. Durante los meses secos, entre mayo y agosto de 2005 y entre mayo y junio de 2006, se realizaron tres experimentos en la región semiárida de San Luis Potosí, México. En el primero, se probaron dos tratamientos: CO mantenidas en confinamiento y alimentación controlada (n=10 y AT mantenidas en pastoreo con Atriplex (n=10. En el segundo se aplicaron dos tratamientos: AT Atriplex (n=5 y NP Atriplex más nopal (n=5. En el tercero tres tratamientos: AT Atriplex (n=5, NP-1,0 Atriplex más 1,0% de nopal (n=4 y NP-1,5 Atriplex más 1,5% de nopal (n=5. En el primer experimento las cabras mantuvieron su peso, pero la producción de leche se redujo al 30% bajo confinamiento y menos del 8,0% en Atriplex al final del experimento. En el segundo, las cabras perdieron peso, a pesar de que la producción inicial de leche fue menor de 300 g/d. Las alimentadas con Atriplex redujeron su producción a casi la mitad de la producción inicial, mientras que la inclusión de nopal mantuvo la producción relativamente estable. En el tercer experimento, las cabras alimentadas con Atriplex mantuvieron el peso corporal, pero después de siete semanas la producción de leche fue del 25% de la producción inicial, a pesar de que esta fue de apenas 300 g diarios. En cambio, en las cabras suplementadas con nopal, la producción sólo se redujo al 45 y 64% de la producción inicial. Estos resultados son importantes para los caprinocultores de la región semiárida de México, donde las cabras podrían mantener una buena condición corporal, además de una producción de 150 a 250 g diarios de leche durante la época crítica utilizando Atriplex y nopal.

  2. Influences of Different Halophyte Vegetation on Soil Microbial Community at Temperate Salt Marsh.

    Science.gov (United States)

    Chaudhary, Doongar R; Kim, Jinhyun; Kang, Hojeong

    2018-04-01

    Salt marshes are transitional zone between terrestrial and aquatic ecosystems, occupied mainly by halophytic vegetation which provides numerous ecological services to coastal ecosystem. Halophyte-associated microbial community plays an important role in the adaptation of plants to adverse condition and also affected habitat characteristics. To explore the relationship between halophytes and soil microbial community, we studied the soil enzyme activities, soil microbial community structure, and functional gene abundance in halophytes- (Carex scabrifolia, Phragmites australis, and Suaeda japonica) covered and un-vegetated (mud flat) soils at Suncheon Bay, South Korea. Higher concentrations of total, Gram-positive, Gram-negative, total bacterial, and actinomycetes PLFAs (phospholipid fatty acids) were observed in the soil underneath the halophytes compared with mud flat soil and were highest in Carex soil. Halophyte-covered soils had different microbial community composition due to higher abundance of Gram-negative bacteria than mud flat soil. Similar to PLFA concentrations, the increased activities of β-glucosidase, cellulase, phosphatase, and sulfatase enzymes were observed under halophyte soil compared to mud flat soil and Carex exhibited highest activities. The abundance of archaeal 16S rRNA, fungal ITS, and denitrifying genes (nirK, nirS, and nosZ) were not influenced by the halophytes. Abundance bacterial 16S rRNA and dissimilatory (bi)sulfite (dsrA) genes were highest in Carex-covered soil. The abundance of functional genes involved in methane cycle (mcrA and pmoA) was not affected by the halophytes. However, the ratios of mcrA/pmoA and mcrA/dsrA increased in halophyte-covered soils which indicate higher methanogenesis activities. The finding of the study also suggests that halophytes had increased the microbial and enzyme activities, and played a pivotal role in shaping microbial community structure.

  3. Transfer factor of Radium -226, lead-210 and Polonium-210 from Norm contaminated soil to Atriplex, Afelfa and Bermuda grasses

    International Nuclear Information System (INIS)

    Al-Masri, M.S.; Mukhallati, H.; Al-Hamwi, A.

    2011-10-01

    transfer factors of Radium -226, lead-210 and Polonium-210 from contaminated soil with oil coproduced water to grazing plants in the north eastern region of Syria have been determined. contaminated soil was collected from one of the AL-Furat Petroleum Oil company oil fields;soil was distributed into several pots where the studied plants were planted in order to study the transfer factors of radioisotopes to them. Results have shown that the mean transfer factors of radium to green parts have reached has reached 0.0016 in Atriplex halimus L.,0.0021 in Atriplex canescens Nutt, 0.0025 in Atriplex Leucoclada Bioss,0.0082 in Bermuda grass and 0.0167 in Medicago Sativ L,which was the highest,while the transfer factors of polonium and lead were ten times higher than those for radium and reacted 0.012 in Atriplex Leucoclada Bioss, 0.011 in Atriplex canescens Nutt, 0.007 in Atriplex halimus L.0.32 in bermuda grass and 0.025 in Afelfa.(author)

  4. The ploidy races of Atriplex confertifolia (chenopodiaceae)

    Science.gov (United States)

    Stewart C. Sanderson

    2011-01-01

    Previous accounts of polyploidy in the North American salt desert shrub Atriplex confertifolia (shadscale) have dealt with the distribution of polyploidy and the morphological and secondary chemical differences between races. The present study amplifies these studies and reveals additional ploidy-flavonoid races, with ploidy levels known to extend from 2x to 12x, and...

  5. Generation and Analysis of Expressed Sequence Tags (ESTs from Halophyte Atriplex canescens to Explore Salt-Responsive Related Genes

    Directory of Open Access Journals (Sweden)

    Jingtao Li

    2014-06-01

    Full Text Available Little information is available on gene expression profiling of halophyte A. canescens. To elucidate the molecular mechanism for stress tolerance in A. canescens, a full-length complementary DNA library was generated from A. canescens exposed to 400 mM NaCl, and provided 343 high-quality ESTs. In an evaluation of 343 valid EST sequences in the cDNA library, 197 unigenes were assembled, among which 190 unigenes (83.1% ESTs were identified according to their significant similarities with proteins of known functions. All the 343 EST sequences have been deposited in the dbEST GenBank under accession numbers JZ535802 to JZ536144. According to Arabidopsis MIPS functional category and GO classifications, we identified 193 unigenes of the 311 annotations EST, representing 72 non-redundant unigenes sharing similarities with genes related to the defense response. The sets of ESTs obtained provide a rich genetic resource and 17 up-regulated genes related to salt stress resistance were identified by qRT-PCR. Six of these genes may contribute crucially to earlier and later stage salt stress resistance. Additionally, among the 343 unigenes sequences, 22 simple sequence repeats (SSRs were also identified contributing to the study of A. canescens resources.

  6. Towards saving freshwater: halophytes as unconventional feedstuffs in livestock feed: a review.

    Science.gov (United States)

    Abd El-Hack, Mohamed E; Samak, Dalia H; Noreldin, Ahmed E; Arif, Muhammad; Yaqoob, Hilal S; Swelum, Ayman A

    2018-04-26

    Water represents 71% of all earth area and about 97% of this water is salty water. So, only 3% of the overall world water quantity is freshwater. Human can benefit only from 1% of this water and the remaining 2% freeze at both poles of earth. Therefore, it is important to preserve the freshwater through increasing the plants consuming salty water. The future prosperity of feed resources in arid and semi-arid countries depends on economic use of alternative resources that have been marginalized for long periods of time, such as halophytic plants, which are one such potential future resource. Halophyte plants can grow in high salinity water and soil and to some extent during drought. The growth of these plants depends on the contact of the salted water with plant roots as in semi-desert saline water, mangrove swamps, marshes, and seashores. Halophyte plants need high levels of sodium chloride in the soil water for growth, and the soil water must also contain high levels of salts, as sodium hydroxide or magnesium sulfate. There are many uses for halophyte plants, including feed for animals, vegetables, drugs, sand dune stabilizers, wind shelter, soil cover, wetland cultivation, laundry detergents, and paper production. This paper will focus on the use of halophytes as a feed additive for animals. In spite of the good nutritional value of halophytes, some anti-nutritional factors as nitrates, nitrite complexes, tannins, glycosides, phenolic compounds, saponins, oxalates, and alkaloids may be present in some of them. The presence of such anti-nutritional agents makes halophytes unpalatable to animals, which tends to reduce feed intake and nutrient use. Therefore, the negative effects of these plants on animal performance are the only objection against using halophytes in animal feed diets. This review article highlights the beneficial impact of considering halophytes in animal feeding on saving freshwater and illustrates its nutritive value for livestock from different

  7. Transfer factors of 226Ra, 210Pb and 210Po from NORM-contaminated oil field soil to some Atriplex species, Alfalfa and Bermuda grass

    International Nuclear Information System (INIS)

    Al-Masria, M.S.; Mukalallati, H.; Al-Hamwi, A.

    2014-01-01

    Transfer factors of 226 Ra, 210 Pb and 210 Po from soil contaminated with naturally occurring radioactive materials (NORM) in oil fields to some grazing plants were determined using pot experiments. Contaminated soil was collected from a dry surface evaporation pit from a Syrian oil field in the Der Ezzor area. Five types of plants (Atriplex halimus L., Atriplex canescens, Atriplex Leucoclada Bioss, Alfalfa and Bermuda grass) were grown and harvested three times over two years. The results show that the mean transfer factors of 226 Ra from the contaminated soil to the studied plant species were 1.6 x 10 -3 for Atriplex halimus L., 2.1 x 10 -3 for Atriplex canescens, 2.5 x 10 -3 for Atriplex Leucoclada Bioss, 8.2 x 10 -3 for Bermuda grass, and the highest value was 1.7 x 10 -2 for Alfalfa. Transfer factors of 210 Pb and 210 Po were higher than 226 Ra TFs by one order of magnitude and reached 7 x 10 -3 , 1.1 x 10 -2 , 1.2 x 10 -2 , 3.2 x 10 -2 and 2.5 x 10 -2 for Atriplex halimus, Atriplex canescens, Atriplex Leucoclada Bioss, Bermuda grass and Alfalfa, respectively. The results can be considered as base values for transfer factors of 226 Ra, 210 Pb and 210 Po in semiarid regions. (authors)

  8. Accumulation of cadmium by halophytic and non-halophytic Juncus species

    Czech Academy of Sciences Publication Activity Database

    Vaněk, Tomáš; Moťková, Kateřina; Podlipná, Radka

    2016-01-01

    Roč. 28, č. 4 (2016), s. 415-423 ISSN 2197-0025 R&D Projects: GA MŠk(CZ) OC10028; GA MPO FR-TI3/778 Institutional support: RVO:61389030 Keywords : plant-responses * salt-tolerance * heavy-metals * salinity tolerance * abiotic stress * rice seedlings * amino-acids * proline * phytoremediation * detoxification * Halophyte * Cadmium accumulation * Proline * Juncus gerardii * Juncus inflexus Subject RIV: DJ - Water Pollution ; Quality Impact factor: 1.045, year: 2016

  9. Analysis of oilseed of Halophytic species

    Directory of Open Access Journals (Sweden)

    Parto Roshandel

    2015-07-01

    Full Text Available Seeds of Atriplex griffithii, Haloxylon ammodendron, Salicornia europaea and Salsola yazdiana were analyzed to determine their potential as sources of edible oil. The quantity of total oil varied from 13.8% in Atriplex griffithii to 20.9% in H. ammodendron. The proportion of unsaturated fatty acids were higher (62-73.8%, with the highest values of α-linoleic acid (18.6%, linoleic acid (28.6% and oleic acid (19.7% in the seeds of A. griffithii, H. ammodendron and S. europaea, respectively. Results of physicochemical evaluation of the extracted oils ranged as follows: iodine values, 99.8-106.5 (g I2/100 g; saponification value, 188-283 (mg KOH/1g of oil; peroxide value, 9-13 (meq./kg and refractive index, 1.4750- 1.4761. Amongst these oilseeds, S. europaea (containing 73.8% unsaturated fatty acids but not erucic acid was the highest in quality for human consumption followed by H. ammodendron.

  10. Utilización de Atriplex canescens y Opuntia ficus indica en la alimentación de cabras lactantes durante la sequía.

    Directory of Open Access Journals (Sweden)

    Jorge Urrutia-Morales

    2014-07-01

    Full Text Available El objetivo del presente estudio fue evaluar el efecto del Atriplex (Atriplex canescens y nopal (Opuntia ficus indica en la alimentación de cabras lactantes y la producción de leche durante la sequía. Durante los meses secos, entre mayo y agosto de 2005 y entre mayo y junio de 2006, se realizaron tres experimentos en la región semiárida de San Luis Potosí, México. En el primero, se probaron dos tratamientos: CO mantenidas en confinamiento y alimentación controlada (n=10 y AT mantenidas en pastoreo con Atriplex (n=10. En el segundo se aplicaron dos tratamientos: AT Atriplex (n=5 y NP Atriplex más nopal (n=5. En el tercero tres tratamientos: AT Atriplex (n=5, NP-1,0 Atriplex más 1,0% de nopal (n=4 y NP-1,5 Atriplex más 1,5% de nopal (n=5. En el primer experimento las cabras mantuvieron su peso, pero la producción de leche se redujo al 30% bajo confinamiento y menos del 8,0% en Atriplex al final del experimento. En el segundo, las cabras perdieron peso, a pesar de que la producción inicial de leche fue menor de 300 g/d. Las alimentadas con Atriplex redujeron su producción a casi la mitad de la producción inicial, mientras que la inclusión de nopal mantuvo la producción relativamente estable. En el tercer experimento, las cabras alimentadas con Atriplex mantuvieron el peso corporal, pero después de siete semanas la producción de leche fue del 25% de la producción inicial, a pesar de que esta fue de apenas 300 g diarios. En cambio, en las cabras suplementadas con nopal, la producción sólo se redujo al 45 y 64% de la producción inicial. Estos resultados son importantes para los caprinocultores de la región semiárida de México, donde las cabras podrían mantener una buena condición corporal, además de una producción de 150 a 250 g diarios de leche durante la época crítica utilizando Atriplex y nopal.

  11. Biophysical analysis of water filtration phenomenon in the roots of halophytes

    Science.gov (United States)

    Kim, Kiwoong; Lee, Sang Joon

    2015-11-01

    The water management systems of plants, such as water collection and water filtration have been optimized through a long history. In this point of view, new bio-inspired technologies can be developed by mimicking the nature's strategies for the survival of the fittest. In this study, the biophysical characteristics of water filtration process in the roots of halophytes are experimentally investigated in the plant hydrodynamic point of view. To understand the functional features of the halophytes 3D morphological structure of their roots are analyzed using advanced bioimaging techniques. The surface properties of the roots of halophytes are also examined Based on the quantitatively analyzed information, water filtration phenomenon in the roots is examined. Sodium treated mangroves are soaked in sodium acting fluorescent dye solution to trace sodium ions in the roots. In addition, in vitroexperiment is carried out by using the roots. As a result, the outermost layer of the roots filters out continuously most of sodium ions. This study on developing halophytes would be helpful for understanding the water filtration mechanism of the roots of halophytes and developing a new bio inspired desalination system. This research was financially supported by the National Research Foundation (NRF) of Korea (Contract grant number: 2008-0061991).

  12. Adaptation in Atriplex griffithii and Prosopis juliflora plants in ...

    African Journals Online (AJOL)

    The introduction of cement dust from a cement factory produced negative effects on the morphological traits of both plant species (Atriplex griffithii and Prosopis juliflora) growing at the polluted as compared to unpolluted area. Low seedling height and plant circumference for A. griffithii andi were observed at the polluted site ...

  13. Threat of heavy metal pollution in halophytic and mangrove plants of Tamil Nadu, India

    Energy Technology Data Exchange (ETDEWEB)

    Agoramoorthy, Govindasamy; Chen, F.-A. [Department of Pharmacy, Tajen University, Yanpu, Pingtung 907, Taiwan (China); Hsu, Minna J. [Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (China)], E-mail: hsumin@mail.nsysu.edu.tw

    2008-09-15

    Mangrove and halophytic plants occur along the coastal areas of Tamil Nadu, south India and these plants have been used in traditional medicine for centuries. Heavy metals are known to pose a potential threat to terrestrial and aquatic biota. However, little is known on the toxic levels of heavy metals found in mangrove and halophytic plants that are used in traditional medicine in India. To understand heavy metal toxicity, we investigated the bioconcentration factors (BCF) of heavy metals in leaves collected from eight mangroves and five halophytes in the protected Pichavaram mangrove forest reserve in Tamil Nadu State, south India. Data presented in this paper describe the impact of essential (Cu, Fe, Mg, Mn and Zn) and non-essential/environmentally toxic trace metals (Hg, Pb and Sn) in mangrove and halophytic medicinal plants. The concentrations of Pb among 13 plant species were higher than the normal range of contamination reported for plants. The average concentration of Hg in the halophytic plants (0.43 {+-} 0.37 {mu}g/g) was seven times higher than mangrove plants (0.06 {+-} 0.03 {mu}g/g) and it indicated pollutants from industrial sources affecting halophytes more than mangroves. - Metal effects occur in India's mangrove ecosystem.

  14. Threat of heavy metal pollution in halophytic and mangrove plants of Tamil Nadu, India

    International Nuclear Information System (INIS)

    Agoramoorthy, Govindasamy; Chen, F.-A.; Hsu, Minna J.

    2008-01-01

    Mangrove and halophytic plants occur along the coastal areas of Tamil Nadu, south India and these plants have been used in traditional medicine for centuries. Heavy metals are known to pose a potential threat to terrestrial and aquatic biota. However, little is known on the toxic levels of heavy metals found in mangrove and halophytic plants that are used in traditional medicine in India. To understand heavy metal toxicity, we investigated the bioconcentration factors (BCF) of heavy metals in leaves collected from eight mangroves and five halophytes in the protected Pichavaram mangrove forest reserve in Tamil Nadu State, south India. Data presented in this paper describe the impact of essential (Cu, Fe, Mg, Mn and Zn) and non-essential/environmentally toxic trace metals (Hg, Pb and Sn) in mangrove and halophytic medicinal plants. The concentrations of Pb among 13 plant species were higher than the normal range of contamination reported for plants. The average concentration of Hg in the halophytic plants (0.43 ± 0.37 μg/g) was seven times higher than mangrove plants (0.06 ± 0.03 μg/g) and it indicated pollutants from industrial sources affecting halophytes more than mangroves. - Metal effects occur in India's mangrove ecosystem

  15. Salt tolerance of halophytes, research questions reviewed in the perspective of saline agriculture

    NARCIS (Netherlands)

    Rozema, J.; Schat, H.

    2013-01-01

    Halophytes of the lower coastal salt marsh show increased salt tolerance, and under high salinity they grow faster than upper marsh species. We could not show reduced growth rate of halophytes compared with glycophytes when grown under non-saline conditions. This indicates limited energy costs

  16. Do Halophytes Really Require Salts for Their Growth and Development? An Experimental Approach

    Directory of Open Access Journals (Sweden)

    Marius Nicusor GRIGORE

    2012-05-01

    Full Text Available Halophytes are salt-tolerant plants found exclusively in habitats with high levels of soil salinity. It is generally assumed that salt stress is the most important limiting factor for plant growth in natural saline environments, and that halophytes have developed specific adaptations to elevated salinity which make them unfitted to grow in the absence of salt, thus explaining their distribution in nature. To address experimentally this question, two halophytic species (Inula crithmoides L. and Plantago crassifolia Forssk. and a maritime dune species (Medicago marina L. were grown in the greenhouse for several weeks in different substrates: peat, vegetable garden soil, saline soil and sand from maritime dunes. Measurements of growth parameters number of leaves, plant length, fresh and dry weights showed that all three species grew much better on the salt-free and nutrient-rich substrates, peat and garden soil, than on saline soil and dune sand. These results indicate that salts are not compulsorily required for development of halophytic species, and suggest that limitation of water and nutrients, rather than soil salinity per se, are the most important restrictive factors for plant growth in saline habitats. The distribution of halophytes in nature is probably dependent on their limited ability to compete with glycophytes in non-saline areas, while remaining highly competitive under environmental conditions stressful for non-tolerant species.

  17. Do Halophytes Really Require Salts for Their Growth and Development? An Experimental Approach

    Directory of Open Access Journals (Sweden)

    Marius Nicusor GRIGORE

    2012-05-01

    Full Text Available Halophytes are salt-tolerant plants found exclusively in habitats with high levels of soil salinity. It is generally assumed that salt stress is the most important limiting factor for plant growth in natural saline environments, and that halophytes have developed specific adaptations to elevated salinity which make them unfitted to grow in the absence of salt, thus explaining their distribution in nature. To address experimentally this question, two halophytic species (Inula crithmoides L. and Plantago crassifolia Forssk. and a maritime dune species (Medicago marina L. were grown in the greenhouse for several weeks in different substrates: peat, vegetable garden soil, saline soil and sand from maritime dunes. Measurements of growth parameters � number of leaves, plant length, fresh and dry weights � showed that all three species grew much better on the salt-free and nutrient-rich substrates, peat and garden soil, than on saline soil and dune sand. These results indicate that salts are not compulsorily required for development of halophytic species, and suggest that limitation of water and nutrients, rather than soil salinity per se, are the most important restrictive factors for plant growth in saline habitats. The distribution of halophytes in nature is probably dependent on their limited ability to compete with glycophytes in non-saline areas, while remaining highly competitive under environmental conditions stressful for non-tolerant species.

  18. The development of halophyte-based agriculture: past and present.

    Science.gov (United States)

    Ventura, Yvonne; Eshel, Amram; Pasternak, Dov; Sagi, Moshe

    2015-02-01

    Freshwater comprises about a mere 2·5% of total global water, of which approximately two-thirds is locked into glaciers at the polar ice caps and on mountains. In conjunction with this, in many instances irrigation with freshwater causes an increase in soil salinity due to overirrigation of agricultural land, inefficient water use and poor drainage of unsuitable soils. The problem of salinity was recognized a long time ago and, due to the importance of irrigated agriculture, numerous efforts have been devoted towards improving crop species for better utilization of saline soils and water. Irrigating plants with saline water is a challenge for practitioners and researchers throughout the world. Recruiting wild halophytes with economic potential was suggested several decades ago as a way to reduce the damage caused by salinization of soil and water. A range of cultivation systems for the utilization of halophytes have been developed, for the production of biofuel, purification of saline effluent in constructed wetlands, landscaping, cultivation of gourmet vegetables, and more. This review critically analyses past and present halophyte-based production systems in the context of genetics, physiology, agrotechnical issues and product value. There are still difficulties that need to be overcome, such as direct germination in saline conditions or genotype selection. However, more and more research is being directed not only towards determining salt tolerance of halophytes, but also to the improvement of agricultural traits for long-term progress. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Fruit dispersal and seed banks in Atriplex sagittata: the role of heterocarpy

    Czech Academy of Sciences Publication Activity Database

    Mandák, Bohumil; Pyšek, Petr

    2001-01-01

    Roč. 89, - (2001), s. 159-165 ISSN 0022-0477 R&D Projects: GA AV ČR KSK2005601 Institutional research plan: CEZ:AV0Z6005908 Keywords : Atriplex sagittata * Chenopodiaceae * seed bank Subject RIV: EF - Botanics Impact factor: 2.291, year: 2001

  20. Dendrochronology of Atriplex portulacoides and Artemisia maritima in Wadden Sea salt marshes

    NARCIS (Netherlands)

    Decuyper, M.; Slim, P.A.; Loon-Steensma, van J.M.

    2014-01-01

    The study uses a rather unusual method, dendrochronology, to investigate the growth and survival of Atriplex portulacoides L. and Artemisia maritima L. on salt marshes at two field sites on the Dutch North Sea barrier islands of Terschelling and Ameland. By providing information on longevity of

  1. Halophytes, Algae, and Bacteria Food and Fuel Feedstocks

    Science.gov (United States)

    Hendricks, R. C.; Bushnell, D. M.

    2009-01-01

    The constant, increasing demand for energy, freshwater, and food stresses our ability to meet these demands within reasonable cost and impact on climate while sustaining quality of life. This environmental Triangle of Conflicts between energy, food, and water--while provoked by anthropogenic monetary and power struggles--can be resolved through an anthropogenic paradigm shift in how we produce and use energy, water, and food. With world population (6.6 billion) projected to increase 40 percent in 40 to 60 yr, proper development of saline agriculture and aquaculture is required, as 43 percent of the Earth's landmass is arid or semi-arid and 97 percent of the Earth's water is seawater. In light of this, we seek fuel alternatives in plants that thrive in brackish and saltwater with the ability to survive in arid lands. The development and application of these plants (halophytes) become the primary focus. Herein we introduce some not-so-familiar halophytes and present a few of their benefits, cite a few research projects (including some on the alternatives algae and bacteria), and then set theoretical limits on biomass production followed by projections in terms of world energy demands. Based on diverse arid lands with a total size equivalent to the Sahara Desert (8.6(exp 8) ha, or 2.1(exp 9) acres), these projections show that halophyte agriculture and algae systems can provide for the projected world energy demand.

  2. Development, characterization and cross-amplification of 16 microsatellite primers for Atriplex tatarica (Amaranthaceae)

    Czech Academy of Sciences Publication Activity Database

    Kondrysová, E.; Krak, Karol; Mandák, Bohumil

    2017-01-01

    Roč. 5, č. 11 (2017), s. 1-5, č. článku 1700094. ISSN 2168-0450 Institutional support: RVO:67985939 Keywords : Amaranthaceae * Atriplex * Chenopodium Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Plant sciences, botany Impact factor: 1.492, year: 2016

  3. How does seed heteromorphism influence the life history stages of Atriplex sagittata (Chenopodiaceae)?

    Czech Academy of Sciences Publication Activity Database

    Mandák, Bohumil; Pyšek, Petr

    2005-01-01

    Roč. 200, - (2005), s. 516-526 ISSN 0367-2530 R&D Projects: GA AV ČR(CZ) IAA6005206 Institutional research plan: CEZ:AV0Z60050516 Keywords : Atriplex * heterocarpy * competition Subject RIV: EF - Botanics Impact factor: 1.086, year: 2005

  4. Germination requirements of invasive and non-invasive Atriplex species: a comparative study

    Czech Academy of Sciences Publication Activity Database

    Mandák, Bohumil

    2003-01-01

    Roč. 198, - (2003), s. 45-54 ISSN 0367-2530 R&D Projects: GA AV ČR KSK6005114; GA ČR GA206/99/D083 Institutional research plan: CEZ:AV0Z6005908 Keywords : annual weed * Atriplex * germination Subject RIV: EF - Botanics Impact factor: 0.882, year: 2003

  5. Biophysical and biochemical constraints imposed by salt stress:Learning from halophyte

    Directory of Open Access Journals (Sweden)

    Bernardo eDuarte

    2014-12-01

    Full Text Available Soil salinization is one of the most important factors impacting plant productivity. About 3.6 billion of the world’s 5.2 billion ha of agricultural dryland have already suffered erosion, degradation and salinization. Halophytes typically are considered as plants able to complete their life cycle in environments where the salt concentration is 200 mM NaCl or higher. Different strategies are known to overcome salt stress, as adaptation mechanisms from this type of plants. Salinity adjustment is a complex phenomenon characterized by both biochemical and biophysical adaptations. As photosynthesis is a prerequisite for biomass production, halophytes adapted their electronic transduction pathways and the entire energetic metabolism to overcome the salt excess. The maintenance of ionic homeostasis is in the basis of all cellular stress in particular in terms of redox potential and energy transduction. In the present work the biophysical mechanisms underlying energy capture and transduction in halophytes are discussed alongside with their relation to biochemical mechanisms, integrating data from photosystem light harvesting complexes, electronic transport chains to the quinone pools, carbon harvesting and energy dissipation metabolism.

  6. Carbon transport by symbiotic fungi in fourwing saltbush, Atriplex canescens (Pursh) Nutt

    Science.gov (United States)

    Jerry R. Barrow

    2001-01-01

    Mycorrhizal fungi enhance the nutrition and survival of host plants in native ecosystems. Arid rangelands severely challenge plants because of chronic nutrient and water stress. Fourwing saltbush, Atriplex canescens (Pursh) Nutt., a dominant and important shrub of western arid rangelands, generally considered to be non-mycorrhizal, is more extensively colonized by dark...

  7. Produção e avaliação bromatológica de espécies forrageiras irrigadas com água salina Production and bromatological evaluation of forage species irrigated with saline water

    Directory of Open Access Journals (Sweden)

    Sebastião B. de Carvalho Júnior

    2010-10-01

    Full Text Available Uma das alternativas para a destinação de rejeito de dessalinizadores é a utilização em tanques de piscicultura e carcinocultura e posterior reúso na irrigação de culturas tolerantes a salinidade. O trabalho foi conduzido no município de Barra de Santa Rosa, PB, objetivando verificar a taxa de germinação da semente, brotação das mudas e características bromatológicas de maniçoba (Manihot glaziovii Muell Arg, erva-sal (Atriplex nummularia, flor de seda (Calotropis procera e jureminha (Desmanthus virgatus, cultivadas e irrigadas com água excedentes de tanques de piscicultura e carcinocultura, oriundos de rejeito de dessalinizadores, com condutividade elétrica de 5.800 e 5.200 μS cm-1, respectivamente. A flor de seda e erva-sal apresentam maiores taxas de germinação (96,0% e brotação (70,0%, respectivamente, seguidas da taxa de brotação da maniçoba (62,0% e da jureminha (51,0%. Do total de mudas transplantadas 95,0; 93,0; 82,7 e 80,5% das plantas de flor de seda, maniçoba, atriplex e jureminha, foram viáveis, respectivamente. As forrageiras apresentaram boa taxa de brotação e germinação e propagação e boa composição bromotologica, onde a jureminha e o atriplex apresentaram teor de proteína, matéria orgânica e energia bruta de 9,4 e 17,8%; 95,0 e 76,3% e 4.295,8 e 3.575,9 cal g-1 de energia bruta, respectivamente.One of the alternatives for the disposal of desalinization waste is its use in fishponds and shrimp production and later reuse for irrigation of crops tolerant to salinity. This work was conducted in Barra de Santa Rosa, PB, with the aim of verifying the rate of seed germination, sprouting and bromatologic characteristics of maniçoba (Manihot glaziovii Muell Arg, erva-sal (Atriplex nummularia, silk flower (Calotropis procera and 'jureminha' (Desmanthus virgatus, cultivated and irrigated with excess water of fishponds and shrimp production, coming from desalinization waste, with electrical conductivity

  8. Phenotypic sex ratios of Atriplex canescens shrubs in relation to cattle browsing

    Science.gov (United States)

    Andres F. Cibils; David M. Swift; Richard H. Hart

    2001-01-01

    Previous studies conducted at our research site on the shortgrass steppe in Colorado showed that phenotypic sex ratios of tetraploid fourwing saltbush (Atriplex canescens Pursh [Nutt]) shrubs were less female biased in grazed pastures than in adjacent exclosures. The potential effects of cattle browsing on shrub sex ratios were studied both in the field and in a...

  9. A bio-thermic seawater desalination system using halophytes

    NARCIS (Netherlands)

    Finck, C.

    2014-01-01

    A bio-thermic seawater desalination system using halophytes was developed and successfully tested. A greenhouse as part of a test rig, with different sorts of mangroves, was installed. Measurements showed promising results concerning fresh water relative yielding rates up to 1.4 kg/h/m2 (leaf

  10. Facing the challenge of sustainable bioenergy production: Could halophytes be part of the solution?

    Science.gov (United States)

    Debez, Ahmed; Belghith, Ikram; Friesen, Jan; Montzka, Carsten; Elleuche, Skander

    2017-01-01

    Due to steadily growing population and economic transitions in the more populous countries, renewable sources of energy are needed more than ever. Plant biomass as a raw source of bioenergy and biofuel products may meet the demand for sustainable energy; however, such plants typically compete with food crops, which should not be wasted for producing energy and chemicals. Second-generation or advanced biofuels that are based on renewable and non-edible biomass resources are processed to produce cellulosic ethanol, which could be further used for producing energy, but also bio-based chemicals including higher alcohols, organic acids, and bulk chemicals. Halophytes do not compete with conventional crops for arable areas and freshwater resources, since they grow naturally in saline ecosystems, mostly in semi-arid and arid areas. Using halophytes for biofuel production may provide a mid-term economically feasible and environmentally sustainable solution to producing bioenergy, contributing, at the same time, to making saline areas - which have been considered unproductive for a long time - more valuable. This review emphasises on halophyte definition, global distribution, and environmental requirements. It also examines their enzymatic valorization, focusing on salt-tolerant enzymes from halophilic microbial species that may be deployed with greater advantage compared to their conventional mesophilic counterparts for faster degradation of halophyte biomass.

  11. ADAPTIVE STRATEGIES OF THE HALOPHYTE POPULATIONS

    Directory of Open Access Journals (Sweden)

    O. Z. Glukhov

    2013-11-01

    Full Text Available Studies of the adaptive strategies of halophytes at different levels of their organization are important not only for assessment of their health condition and prognosticating their future behaviors, but also for testing potential suitability of technogenic edaphotopes for plant growth without making additional analyses. We investigated the population structure and morphological variation of three halophilic Gypsophyla L. species which actively spread in different technogenic ecotopes of Ukraine by methods generally accepted in ecology and phytocenology. By the type of strategy populations of species of the genus Gypsophila in technogenic edaphotopes can change the primary type of strategy for the secondary, or gain the stress-tolerant type, mainly due to the changes of parameters of seed productivity. The studied populations are stable with predominance of individuals which reached the prereproductive and reproductive stages of their development. At the organism level the species differ by phenotypic plasticity revealing in compensatory development of vegetative and generative organs. This reflects not only in absolute values of parameters of features, but also when calculating the coefficients of divergence, variation, as well as the vitality classes in populations.By the adaptive strategy halophytes are candidates for use in local phytoremediation of disturbed lands.

  12. Alternate-Fueled Flight: Halophytes, Algae, Bio-, and Synthetic Fuels

    Science.gov (United States)

    Hendricks, R. C.

    2012-01-01

    Synthetic and biomass fueling are now considered to be near-term aviation alternate fueling. The major impediment is a secure sustainable supply of these fuels at reasonable cost. However, biomass fueling raises major concerns related to uses of common food crops and grasses (some also called "weeds") for processing into aviation fuels. These issues are addressed, and then halophytes and algae are shown to be better suited as sources of aerospace fuels and transportation fueling in general. Some of the history related to alternate fuels use is provided as a guideline for current and planned alternate fuels testing (ground and flight) with emphasis on biofuel blends. It is also noted that lessons learned from terrestrial fueling are applicable to space missions. These materials represent an update (to 2009) and additions to the Workshop on Alternate Fueling Sustainable Supply and Halophyte Summit at Twinsburg, Ohio, October 17 to 18, 2007.

  13. Natural polyploidization within tetraploid and hexaploid populations of the desert shrub Atriplex confertifolia

    Science.gov (United States)

    Stewart C. Sanderson

    2011-01-01

    Shadscale (Atriplex confertifolia) is a wind-pollinated dioecious shrub of western North America with an unusual development of apparently autoploid races, showing all even ploidy levels from 2x to 12x (base x = 9). Of these, tetraploid races are the most frequently encountered, with octoploids the next most common, and hexaploids being much less common. In this study...

  14. New xenophytes from Gran Canaria (Canary Islands, Spain, with emphasis on naturalized and (potentially invasive species

    Directory of Open Access Journals (Sweden)

    Verloove, F.

    2013-12-01

    Full Text Available Trabajos recientes de campo en Gran Canaria han facilitado el descubrimiento de nuevas localidades para plantas vasculares no nativas. Agave attenuata, Antigonon leptopus, Atriplex nummularia, Cascabela thevetia, Cenchrus echinatus, Cuscuta campestris, Diplachne fusca subsp. uninervia, Diplotaxis tenuifolia, Dysphania anthelmintica (hasta ahora confundida con D. ambrosioides, Eclipta prostrata, Euphorbia pulcherrima, Fagopyrum esculentum, Gossypium barbadense, Lablab purpureus, Lemna minuta, Opuntia leucotricha, Passiflora edulis, Pennisetum glaucum, Phaseolus acutifolius, Pluchea carolinensis, Prosopis juliflora, Salvia microphylla, Schinus terebinthifolius, Senna spectabilis, Solanum chrysotrichum, Tecoma stans, Tipuana tipu, Urochloa mutica, U. plantaginea y Washingtonia se citan por primera vez para las Islas Canarias, mientras que Alopecurus myosuroides, Amaranthus blitoides, Bothriochloa ischaemum var. songarica, Cardamine flexuosa subsp. debilis, Heliotropium curassavicum, Leonotis nepetifolia, Medicago lupulina, Parkinsonia aculeata, Physalis peruviana, Phytolacca americana y Turnera ulmifolia son nuevas para la flora de la isla de Gran Canaria. Finalmente, se confirma la presencia de Paspalum vaginatum, P. distichum y Cortaderia selloana en Gran Canaria.Trabajos recientes de campo en Gran Canaria han facilitado el descubrimiento de nuevas localidades para plantas vasculares no nativas. Agave attenuata, Antigonon leptopus, Atriplex nummularia, Cascabela thevetia, Cenchrus echinatus, Cuscuta campestris, Diplachne fusca subsp. uninervia, Diplotaxis tenuifolia, Dysphania anthelmintica (hasta ahora confundida con D. ambrosioides, Eclipta prostrata, Euphorbia pulcherrima, Fagopyrum esculentum, Gossypium barbadense, Lablab purpureus, Lemna minuta, Opuntia leucotricha, Passiflora edulis, Pennisetum glaucum, Phaseolus acutifolius, Pluchea carolinensis, Prosopis juliflora, Salvia microphylla, Schinus terebinthifolius, Senna spectabilis, Solanum

  15. Halophytic plants as a component of a bioregenerative life support system for recycling of NaCl contained in human liquid waste.

    Science.gov (United States)

    Balnokin, Yurii; Balnokin, Yurii; Myasoedov, Nikolay; Popova, Larissa; Tikhomirov, Alexander A.; Ushakova, Sofya; Tikhomirova, Natalia; Lasseur, Christophe; Gros, Jean-Bernard

    Currently, the closure of matter turnover is one of the urgent problems of bioregenerative life support system (BLSS) designing. The important aspect of the problem is involving of substances contained in liquid and solid exometabolites of humans inhabiting BLSS into intrasystem matter turnover. Recycling of Na+ and Cl- contained in human liquid exometabolites, i.e. urine is acknowledged to be among the main tasks of the matter turnover in BLSS. The ions excreted with urine may be returned to human organism with food. A way to allow this is including edible halophytic plants into the phototrophic compartment of BLSS. Halophytes are defined as plants which can grow on saline soils and produce high biomass under these conditions. Some halophytes can take up high quantities of Na+ and Cl- and accumulate the ions in the shoots or extrude them to leaf surface by means of salt glands. To allow Na+ and Cl- recycling through halophyte utilization, the following principal steps should be accomplished: (i) mineralization of the exometabolites by physicochemical methods; (ii) oxidation of ammonia formed during the exometabolite mineralization to nitrate by nitrifying bacteria, (iii) growing the halophyte on the nutrient solution prepared on the basis of the mineralized exometabolites, (iv) introducing the halophyte green biomass into human food. The present work is devoted to the following problems: (i) selection of a salt-accumulating/extruding halophytic plant suitable for Na+ and Cl- recycling in BLSS and (ii) parameter evaluation of a plant conveyor containing the halophytic plants at various ages. Halophytic plants selected for BLSS should meet the following criteria: (i) ability to grow under 24-hour-illumination, (ii) high productivity, (iii) ability to accumulate Na+ and Cl- in high quantities in shoots or to excrete salts to leaf surface, (iv) edibility, and (v) high nutritive value of the biomass. Relying on these criteria, salt-accumulating halophyte Salicornia

  16. Land degradation and halophytic plant diversity of milleyha wetland ecosystem (samandag-hatay), Turkey

    International Nuclear Information System (INIS)

    Altay, V.

    2012-01-01

    Investigations were undertaken during 2010-2011 to study effect of human induced land degradation on structure of some halophytic plant communities. Over all 183 taxa of vascular plant were recorded. Out of these 76 were of typical halophytes. The dominant plant taxa were; Phragmites australis, Halimione portulacoides and Bolboschoenus maritimus. The threatened categories of these taxa were identified from the Red Data Book of Turkey together with their distribution. The impact of degradation on the habitats due to land use for agriculture, organic and inorganic waste disposal and housing for tourisitc purposes were identified and conservation measures were outlined in this study. (author)

  17. Environmental change in a Mediterranean salt marsh wetland: ecological drivers of halophytes diversity along flooding frequency gradients

    Directory of Open Access Journals (Sweden)

    Patricia María Rodríguez-González

    2014-04-01

    Full Text Available Coastal wetlands are among most threatened ecosystems, owing to the intense human activity concentrated in shoreline areas together with the expected sea level rise resultant from climate change. Salt marshes are wetlands which are inundated twice daily by the sea, thus tightly dependent on frequency and duration of submergence. Identifying the factors that determine the diversity, distribution and abundance of halophyte species in salt marshes will help retaining their conservation status and adopt anticipate management measures, and this will ultimately contribute to preserve marshland biodiversity and ecological services. Reserva Natural de Castro Marim e Vila Real de Santo António (RNSCMVRSA is a natural reserve located in South Eastern Portugal, comprising the tidal area of Guadiana River mouth. In spite of their great ecological value, salt marsh ecosystems in this region have suffered intense anthropic disturbance, namely hydrologic alterations and vegetation removal to gain soils for agriculture and salt intensive production. The present study aimed at characterizing the halophyte diversity in the RNSCMVRSA salt marshes and determining their major ecological correlates. The end-point is to implement, afterward, a sustainable cultivation of autochthonous halophyte plants, with economic value, in the abandoned saltpans and degraded rangelands. This project will contribute to the conservation of halophyte diversity, promote environmental requalification, and provide an economic alternative for local populations, enabling the reduction of unregulated harvest of halophyte plant populations. Field sampling strategy included a preliminary survey of local vegetation diversity and floristic inventories of halophyte communities in plots established across the existing environmental heterogeneity in order to span the whole variation gradients of the species presence and abundance. The abiotic characterization of halophyte communities included a

  18. Modeling salt movement and halophytic crop growth on marginal lands with the APEX model

    Science.gov (United States)

    Goehring, N.; Saito, L.; Verburg, P.; Jeong, J.; Garrett, A.

    2016-12-01

    Saline soils negatively impact crop productivity in nearly 20% of irrigated agricultural lands worldwide. At these saline sites, cultivation of highly salt-tolerant plants, known as halophytes, may increase productivity compared to conventional salt-sensitive crops (i.e., glycophytes), thereby increasing the economic potential of marginal lands. Through a variety of mechanisms, halophytes are more effective than glycophytes at excluding, accumulating, and secreting salts from their tissues. Each mechanism can have a different impact on the salt balance in the plant-soil-water system. To date, little information is available to understand the long-term impacts of halophyte cultivation on environmental quality. This project utilizes the Agricultural Policy/Environmental Extender (APEX) model, developed by the US Department of Agriculture, to model the growth and production of two halophytic crops. The crops being modeled include quinoa (Chenopodium quinoa), which has utilities for human consumption and forage, and AC Saltlander green wheatgrass (Elymus hoffmannii), which has forage utility. APEX simulates salt movement between soil layers and accounts for the salt balance in the plant-soil-water system, including salinity in irrigation water and crop-specific salt uptake. Key crop growth parameters in APEX are derived from experimental growth data obtained under non-stressed conditions. Data from greenhouse and field experiments in which quinoa and AC Saltlander were grown under various soil salinity and irrigation salinity treatments are being used to parameterize, calibrate, and test the model. This presentation will discuss progress on crop parameterization and completed model runs under different salt-affected soil and irrigation conditions.

  19. [Isolation, identification and characterization of ACC deaminase-containing endophytic bacteria from halophyte Suaeda salsa].

    Science.gov (United States)

    Teng, Songshan; Liu, Yanping; Zhao, Lei

    2010-11-01

    We Isolated and characterized 1-aminocyclopropane-1-carboxylate (ACC) deaminase-containing endophytic bacteria from halophyte Suaeda salsa to understand the interactions between endophytes and halophyte. ACC deaminase-containing endophytic bacteria were isolated from root, stalk and leaf of Suaeda salsa and were identified based on morphological, physiological-biochemical properties, API and 16S rRNA sequence analysis. Isolates were evaluated for their ACC deaminase, antifungal, protease activity, siderophores and phytohormones, such as indole-3-acetic acid, gibberellic acid and abscisic acid production, as well as atmospheric nitrogen fixation and phosphate solubilization. Four ACC deaminase-containing endophytic bacteria strains named as LP11, SS12, TW1 and TW2 were isolated and identified as Pseudomonas oryzihabitans, Pseudomonas sp., Pantoea agglomerans and Pseudomonas putida respectively. All the strains possessed the phosphate-solubilizing ability and could produce siderophores and phytohormones more or less. None of them could fix atmospheric nitrogen or produce protease. Only strain SS12 showed antagonism against two phytopathogenic fungi viz Fusarium oxysporum f. sp. conglutinans and F. oxysporum f. sp. cucumerinum. ACC deaminase-containing endophytic bacteria of Pseudomonas sp. and Pantoea sp. isolated from halophyte Suaeda salsa have abundant biological characteristics related to plant growth promotion, stress homeostasis regulation and biocontrol activity.

  20. Manipulating the antioxidant capacity of halophytes to increase their cultural and economic value through saline cultivation.

    Science.gov (United States)

    Boestfleisch, Christian; Wagenseil, Niko B; Buhmann, Anne K; Seal, Charlotte E; Wade, Ellie Merrett; Muscolo, Adele; Papenbrock, Jutta

    2014-08-13

    Halophytes, salt-tolerant plants, are a source of valuable secondary metabolites with potential economic value. The steady-state pools of many stress-related metabolites are already enhanced in halophytes when compared with glycophytes, but growth under conditions away from the optimum can induce stress and consequently result in changes to secondary metabolites such as antioxidants. However, direct evidence for increasing the concentration of valuable secondary metabolites as a consequence of altering the salinity of the growing environment still remains equivocal. To address this, we analysed a range of metabolites with antioxidant capacity (including total phenols, flavonoids, ascorbate, reduced/oxidized glutathione and reactive oxygen species scavenging enzymes) in seedlings and plants from different families (Amaranthaceae, Brassicaceae, Plantaginaceae and Rhizophoraceae) and habitats grown under different salt concentrations. We show that it is possible to manipulate the antioxidant capacity of plants and seedlings by altering the saline growing environment, the length of time under saline cultivation and the developmental stage. Among the species studied, the halophytes Tripolium pannonicum, Plantago coronopus, Lepidium latifolium and Salicornia europaea demonstrated the most potential as functional foods or nutraceuticals. Published by Oxford University Press on behalf of the Annals of Botany Company.

  1. Comparative transcriptome analysis of the Asteraceae halophyte Karelinia caspica under salt stress.

    Science.gov (United States)

    Zhang, Xia; Liao, Maoseng; Chang, Dan; Zhang, Fuchun

    2014-12-17

    Much attention has been given to the potential of halophytes as sources of tolerance traits for introduction into cereals. However, a great deal remains unknown about the diverse mechanisms employed by halophytes to cope with salinity. To characterize salt tolerance mechanisms underlying Karelinia caspica, an Asteraceae halophyte, we performed Large-scale transcriptomic analysis using a high-throughput Illumina sequencing platform. Comparative gene expression analysis was performed to correlate the effects of salt stress and ABA regulation at the molecular level. Total sequence reads generated by pyrosequencing were assembled into 287,185 non-redundant transcripts with an average length of 652 bp. Using the BLAST function in the Swiss-Prot, NCBI nr, GO, KEGG, and KOG databases, a total of 216,416 coding sequences associated with known proteins were annotated. Among these, 35,533 unigenes were classified into 69 gene ontology categories, and 18,378 unigenes were classified into 202 known pathways. Based on the fold changes observed when comparing the salt stress and control samples, 60,127 unigenes were differentially expressed, with 38,122 and 22,005 up- and down-regulated, respectively. Several of the differentially expressed genes are known to be involved in the signaling pathway of the plant hormone ABA, including ABA metabolism, transport, and sensing as well as the ABA signaling cascade. Transcriptome profiling of K. caspica contribute to a comprehensive understanding of K. caspica at the molecular level. Moreover, the global survey of differentially expressed genes in this species under salt stress and analyses of the effects of salt stress and ABA regulation will contribute to the identification and characterization of genes and molecular mechanisms underlying salt stress responses in Asteraceae plants.

  2. The complexity underlying invasiveness precludes the identification of invasive traits: A comparative study of invasive and noninvasive heterocarpic Atriplex congeners

    Czech Academy of Sciences Publication Activity Database

    Doudová, J.; Douda, J.; Mandák, Bohumil

    2017-01-01

    Roč. 12, č. 4 (2017), s. 1-16, č. článku e017645. E-ISSN 1932-6203 Institutional support: RVO:67985939 Keywords : Atriplex * heterocarpy * invasiveness Subject RIV: EF - Botanics OBOR OECD: Plant sciences, botany Impact factor: 2.806, year: 2016

  3. Soil amendment with halophytes induces physiological changes and reduces root-knot infection in eggplant and okra

    Directory of Open Access Journals (Sweden)

    Waseem M. ABBASI

    2011-01-01

    Full Text Available Root-knot nematode, Meloidogyne javanica (Treub Chitwood is a soil-borne plant pathogen of roots. Nematode infection results in altered plant growth and physicochemical processes due to gall formation. Many plants contain unique biochemicals that have biocidal properties and offer a potential novel approach to suppress the nematode populations in soil and improve growth of crop plants. In the present study effect of some indigenous halophytic plant species (Tamarix indica Willd, Suaeda fruticosa Forssk and Salsola imbricata (Schultz Dandy were tested against M. javanica. Tested halophytes significantly (P<0.001 reduced egg hatching and caused mortality of second stage juveniles (J2 in vitro. These halophytes when incorporated in soil (0.3, 0.5 and 1% w/w markedly increased growth of eggplant (Solanum melongena L. cv. Black beauty and okra (Abelmoschus esculentus [L.] Moench. cv. Arka anamika and provided control of root-knot infection at higher doses (0.5 and 1%. Amended eggplants and okra showed significant (P<0.001 increase in chlorophylls and decrease in chlorophyll a/b ratio. Protein concentration in leaves of both the plants were increased with 1% amendment of S. fruticosa and S. imbricata. While nucleic acid concentrations were varied with different treatments.  

  4. The role of succulent halophytes in the water balance of salt marsh rodents.

    Science.gov (United States)

    Coulombe, Harry N

    1970-09-01

    The role of succulent halophytes in the water balance and ecology of salt marsh rodents is dependent upon an evaluation of the composition of the available sources and the physiological properties of their potential consumers. Studies of the osmotic properties of succulent halophytes from southern California coastal salt marshes are presented, together with experiments regarding the utilization of Common Pickleweed (Salicornia virginica L.) by indigenous populations of cricetid rodents (harvest mouse Reithrodontomys megalotis limicola Von Bloecker, and meadow-mouse Microtus californicus stephensi Von Bloecker). These data are discussed in relation to other available information concerning the ecology of coastal salt marshes, particularly in western North America.Extruded sap of Common Pickleweed was found to have a mean total osmotic pressure (TOP) of 1,450 mOsm/liter, with an average chloride ion content of 876 mEq/liter (about 70% of the TOP). A related species, Salicornia subterminale, had a slightly lower TOP (1,300 mOsm/liter), of which about 29% was accounted for by chloride ion concentration. Sea Blight (Suaeda fruticosa) was the only species in which the TOP correlated with the distance from the tide level; sap TOP increased away from the lagoon's edge. In both Sea Blight and Common Pickle weed, TOP was not directly related to chloride content, indicating the importance of other osmotically active solutes.Harvest mice were placed on three experimental regimes: 1) millet seeds only, 2) pickleweed only, and 3) pickleweed and millet seed. Meadow mice were tested on the last regime only. Harvest mice survived best on a strict millet seed diet; when Salicornia was consumed to a detectable extent, the mice did not survive. Meadow mice, however, could survive using Salicornia as a dietary source in conjunction with seeds. Kidney electrolyte concentrating abilities indicated that harvest mice should be able to utilize pickleweed; this was not confirmed in my

  5. Responses of five Mediterranean halophytes to seasonal changes in environmental conditions.

    Science.gov (United States)

    Gil, Ricardo; Bautista, Inmaculada; Boscaiu, Monica; Lidón, Antonio; Wankhade, Shantanu; Sánchez, Héctor; Llinares, Josep; Vicente, Oscar

    2014-08-19

    In their natural habitats, different mechanisms may contribute to the tolerance of halophytes to high soil salinity and other abiotic stresses, but their relative contribution and ecological relevance, for a given species, remain largely unknown. We studied the responses to changing environmental conditions of five halophytes (Sarcocornia fruticosa, Inula crithmoides, Plantago crassifolia, Juncus maritimus and J. acutus) in a Mediterranean salt marsh, from summer 2009 to autumn 2010. A principal component analysis was used to correlate soil and climatic data with changes in the plants' contents of chemical markers associated with stress responses: ions, osmolytes, malondialdehyde (MDA, a marker of oxidative stress) and antioxidant systems. Stress tolerance in S. fruticosa, I. crithmoides and P. crassifolia (all succulent dicots) seemed to depend mostly on the transport of ions to aerial parts and the biosynthesis of specific osmolytes, whereas both Juncus species (monocots) were able to avoid accumulation of toxic ions, maintaining relatively high K(+)/Na(+) ratios. For the most salt-tolerant taxa (S. fruticosa and I. crithmoides), seasonal variations of Na(+), Cl(-), K(+) and glycine betaine, their major osmolyte, did not correlate with environmental parameters associated with salt or water stress, suggesting that their tolerance mechanisms are constitutive and relatively independent of external conditions, although they could be mediated by changes in the subcellular compartmentalization of ions and compatible osmolytes. Proline levels were too low in all the species to possibly have any effect on osmotic adjustment. However-except for P. crassifolia-proline may play a role in stress tolerance based on its 'osmoprotectant' functions. No correlation was observed between the degree of environmental stress and the levels of MDA or enzymatic and non-enzymatic antioxidants, indicating that the investigated halophytes are not subjected to oxidative stress under natural

  6. Silicon alleviates deleterious effects of high salinity on the halophytic grass Spartina densiflora.

    Science.gov (United States)

    Mateos-Naranjo, Enrique; Andrades-Moreno, Luis; Davy, Anthony J

    2013-02-01

    The non-essential element silicon is known to improve plant fitness by alleviating the effects of biotic and abiotic stresses, particularly in crops. However, its possible role in the exceptional tolerance of halophytes to salinity has not been investigated. This study reports the effect of Si supply on the salinity tolerance of the halophytic grass Spartina densiflora; plants were treated with NaCl (0-680 mM), with or without silicon addition of 500 μM, in a glasshouse experiment. Plant responses were examined using growth analysis, combined with measurements of gas exchange, chlorophyll fluorescence and photosynthetic pigment concentrations. In addition, tissue concentrations of aluminium, calcium, copper, iron, potassium, magnesium, sodium, phosphorus and silicon were determined. Although high salinity decreased growth, this effect was alleviated by treatment with Si. Improved growth was associated with higher net photosynthetic rate (A), and greater water-use efficiency (WUE). Enhanced A at high salinity could be explained by beneficial effects of Si on the photochemical apparatus, and on chlorophyll concentrations. Ameliorative effects of Si were correlated with reduced sodium uptake, which was unrelated to a reduction in the transpiration rate, since Si-supplemented plants had higher stomatal conductances (G(s)). These plants also had higher tissue concentrations of essential nutrients, suggesting that Si had a positive effect on the mineral nutrient balance in salt-stressed plants. Si appears to play a significant role in salinity tolerance even in a halophyte, which has other, specific salt-tolerance mechanisms, through diverse protective effects on the photosynthetic apparatus, water-use efficiency and mineral nutrient balance. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  7. Influence of diets with silage from forage plants adapted to the semi-arid conditions on lamb quality and sensory attributes.

    Science.gov (United States)

    Campos, F S; Carvalho, G G P; Santos, E M; Araújo, G G L; Gois, G C; Rebouças, R A; Leão, A G; Santos, S A; Oliveira, J S; Leite, L C; Araújo, M L G M L; Cirne, L G A; Silva, R R; Carvalho, B M A

    2017-02-01

    Quality and sensory attributes of meat from 32 mixed-breed Santa Inês lambs fed diets composed of four silages with old man saltbush (Atriplex nummularia Lind), buffelgrass (Cenchrus ciliaris), Gliricidia (Gliricidia sepium), and Pornunça (Manihot sp.) were evaluated. Meat from lambs fed diet containing old man saltbush silage (Pcooking loss. Of the sensory attributes evaluated in the Longissimus lumborum muscle of the lambs, color and juiciness did not differ (P>0.05). However, the silages led to differences (Plambs that consumed old man saltbush silage and lower in the meat from those fed buffelgrass silage. Diets formulated with buffelgrass silage for sheep reduce meat production. Based on the results for carcass weight and meat quality, old man saltbush and pornunça are better silages for finishing sheep. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Differential phytosociological interactions involving male and female atriplex bonnevillensis

    Science.gov (United States)

    Sinclair, J.; Emlen, J.M.; Rinella, M.; Snelgrove, J.; Freeman, D.C.

    2009-01-01

    Wind-pollinated dioecious plants often exhibit spatial segregation of the sexes. This partial niche separation has most often been explored using abiotic niche axes. However, if the sexes are truly separated in space, then they are apt to encounter different plant species that may heavily affect growth and reproduction. Also, to the extent that their niches differ, the sexes may respond differently to the same co-occurring species. Here we examine interspecific interactions that influence male and female reproductive potential in Atriplex bonnevillensis. Using Emlen's interaction assessment, a technique which assesses species interactions based on cover classes, we show that Salsola species compete significantly with females but not males, while Halogeton glomeratus competes with males but not females. The effect of competition only became apparent when we corrected for site-specific fertility. These results imply that differential competition must be considered when studying dioecious plants that display spatial segregation of the sexes.

  9. Soil Microbial Community Structure Evolution along Halophyte Succession in Bohai Bay Wetland

    Directory of Open Access Journals (Sweden)

    Mingyang Cong

    2014-01-01

    Full Text Available It is urgent to recover Bohai Bay costal wetland ecosystem because of covering a large area of severe saline-alkali soil. To explore the relationship between halophyte herbaceous succession and microbial community structure, we chose four local communities which played an important role in improving soil microenvironment. We performed phospholipid fatty acid analysis, measured soil parameters, and evaluated shifts of microbial community structure. Results showed that microbial community structure changed significantly along succession and bacteria community was dominant. Total phospholipid fatty acid content increased in different successional stages but decreased with depth, with similar variations in bacterial and fungal biomass. Soil organic carbon and especially total nitrogen were positively correlated with microbial biomass. Colonization of pioneering salt-tolerant plants Suaeda glauca in saline-alkali bare land changed total soil microorganism content and composition. These results showed that belowground processes were strongly related with aboveground halophyte succession. Fungal/bacterial ratio, Gram-negative/Gram-positive bacteria ratio, total microbial biomass, and fungi and bacteria content could indicate the degree of succession stages in Bohai Bay wetland ecosystem. And also these findings demonstrated that microbial community biomass and composition evolved along with vegetation succession environmental variables.

  10. Aerial biomass and elemental changes in Atriplex canescens and A. acanthocarpa as affected by salinity and soil water availability

    Science.gov (United States)

    Ricardo Mata-Gonzalez; Ruben Melendez-Gonzalez; J. Jesus Martinez-Hernandez

    2001-01-01

    Atriplex canescens and A. acanthocarpa from the Chihuahuan Desert in Mexico were subjected to different salinity and irrigation treatments in a greenhouse study. Plants were grown in pots containing soil and irrigated with NaCl solutions of 0, 50, and 100 mM at 40 and 80 percent available soil water. Aerial biomass of A. canescens declined as NaCl treatments increased...

  11. Halophytic Companion Plants Improve Growth and Physiological Parameters of Tomato Plants Grown under Salinity

    International Nuclear Information System (INIS)

    Karakas, S.; Cullu, M. A.; Kaya, C.; Dikilitas, M.

    2016-01-01

    Salinity becomes a major concern when soil salt concentration becomes excessive in growth medium. Halophytes are capable of accumulating high concentrations of NaCl in their tissues, thus using halophytic plants in crop rotations or even in mixed cropping systems may be a promising management practices to mitigate salt stress related yield loses. Salinity induced yield losses and related physiological parameters on tomato plants (Lycopersicon esculentum Mill. cv. SC2121) grown with or without halophytic companion plants (SalsolasodaL. and Portulacaoleracea L.) were investigated in pot experiment. Treatments consist of four soil type (collected from Harran plain-Turkey) with similar physical properties but varying in salinity level: electrical conductivity (EC): 0.9, 4.2, 7.2, and 14.1 dS m/sup -1/. The reduction in plant total dry weight was 24, 19, and 48 percent in soils with slight (4.2dS m/sup -1/), moderate (7.2 dS m/sup -1/) and high (14.1 dS m/sup -1/) salinity as compared to non-saline soil (0.9 dS m/sup -1/), respectively. Leaf content of proline, malondialdehyde (MDA), catalase (CAT) and peroxidase (POX) enzyme activity increased with increasing level of salinity. In tomato plants grown in consociation with Salsolasoda, salinity induced DM decrease was only 6, 12 and 28% in soils with slight, moderate and high salinity as compared to non-saline soil, respectively. However, when Portulaca oleracea used as companion plant, no significant change in biomass or fruit yield was observed. This study showed that mixed planting with Salsolasodain high saline soils may be an effective phyto-remediation technique that may secure yield formation and quality of tomato. (author)

  12. Comparison of respiratory and growth characteristics of two co-occurring shrubs from a cold desert, Coleogyne ramosissima (blackbrush) and Atriplex confertifolia (shadscale)

    Science.gov (United States)

    H. A. Summers; B. N. Smith; L. D. Hansen

    2009-01-01

    Coleogyne ramosissima Torr. (blackbrush) and Atriplex confertifolia [Torr. & Frem.] Wats. (shadscale) are cold desert shrubs from different families. Despite very different life histories they often grow in close geographic proximity in the Great Basin and the Colorado Plateau between 800 and 2000 m elevation. The purpose of...

  13. How can we take advantage of halophyte properties to cope with heavy metal toxicity in salt-affected areas?

    Science.gov (United States)

    Lutts, Stanley; Lefèvre, Isabelle

    2015-01-01

    Background Many areas throughout the world are simultaneously contaminated by high concentrations of soluble salts and by high concentrations of heavy metals that constitute a serious threat to human health. The use of plants to extract or stabilize pollutants is an interesting alternative to classical expensive decontamination procedures. However, suitable plant species still need to be identified for reclamation of substrates presenting a high electrical conductivity. Scope Halophytic plant species are able to cope with several abiotic constraints occurring simultaneously in their natural environment. This review considers their putative interest for remediation of polluted soil in relation to their ability to sequester absorbed toxic ions in trichomes or vacuoles, to perform efficient osmotic adjustment and to limit the deleterious impact of oxidative stress. These physiological adaptations are considered in relation to the impact of salt on heavy metal bioavailabilty in two types of ecosystem: (1) salt marshes and mangroves, and (2) mine tailings in semi-arid areas. Conclusions Numerous halophytes exhibit a high level of heavy metal accumulation and external NaCl may directly influence heavy metal speciation and absorption rate. Maintenance of biomass production and plant water status makes some halophytes promising candidates for further management of heavy-metal-polluted areas in both saline and non-saline environments. PMID:25672360

  14. Glyceride structure and sterol composition of SOS-7 halophyte oil

    Directory of Open Access Journals (Sweden)

    El-Shami, S. M.

    1991-06-01

    Full Text Available Glyceride structure of SOS-7 halophyte oil was studied using the lipase hydrolysis technique. This halophyte sample was obtained from 1988 harvest planted in Ghardaka, on the border of the Red Sea, Egypt. The oilseed was ground and extracted for its oil using commercial hexane in Soxhlet extractor. The unsaturated fatty acids were found centralized in the 2-position of triglycerides, whereas oleic and linolenic acids showed more preference for this position. It was found that P3 was the major component of GS3, whereas P2L and PStL; PL2, POL and StL2 are predominating among GS2U and GSU3 respectively. L3 manifested itself as the principal constituent of GU3 type. Sterol composition of the halophyte oil was determined by GLC as TMS derivative. It was found that the oil contains campsterol, β-sitosterol, stigmasterol and 7-stigmasterol of which 7-stigmasterol is the major sterol and constitute 52.4%.

    Se ha estudiado usando la técnica de hidrólisis mediante lipasa la estructura glicerídica de aceite de halofito SOS-7. Esta muestra de halofito fue obtenida a partir de una cosecha de 1988 plantada en Ghardaka, en la orilla del Mar Rojo, Egipto. Para la extracción del aceite de la semilla molida se utilizó hexano comercial en extractor Soxhlet. Los ácidos grasos insaturados se encontraron centralizados en la posición 2 de los triglicéridos, siendo los ácidos oleico y linolénico los que mostraron mayor preferencia por esta posición. Se encontró que P3 fue el componente mayoritario de GS3, mientras que P2L y PStL; PL2 POL y StL2 son los predominantes para GS2U y GSU3 respectivamente. L3 se manifestó como el principal constituyente de los GU3. La composición esterólica del aceite de halofito se determinó por GLC como derivados del

  15. Effect of saline water irrigation on seed germination and early seedling growth of the halophyte quinoa

    DEFF Research Database (Denmark)

    Panuccio, M.R.; Jacobsen, Sven-Erik; Saleem Akhtar, Saqib

    2014-01-01

    with their high protein content and unique amino acid composition. Although the species has been described as a facultative halophyte, and its tolerance to salt stress has been investigated, its physiological and molecular responses to seawater (SW) and other salts have not been studied. We evaluated the effects...... been carried out to investigate the mechanisms used by quinoa, a facultative halophytic species, in order to cope with high salt levels at various stages of its develop- ment. Quinoa is regarded as one of the crops that might sustain food security in this century, grown primarily for its edible seeds...... of SW and different salts on seed germination, seedling emergence and the antioxidative pathway of quinoa. Seeds were germi- nated in Petri dishes and seedlings grown in pots with SW solutions (25, 50, 75 and 100 %) and NaCl, CaCl2, KCl and MgCl2 individually, at the concentrations in which...

  16. Stoichiometric variation of halophytes in response to changes in soil salinity.

    Science.gov (United States)

    Sun, X; Gao, Y; Wang, D; Chen, J; Zhang, F; Zhou, J; Yan, X; Li, Y

    2017-05-01

    Variation in soil salt may change the stoichiometry of a halophyte by altering plant ecophysiology, and exert different influences on various plant organs, which has potentially important consequences for the nutrition of consumers as well as nutrient cycling in a saline ecosystem. Using a greenhouse pot experiment, we investigated the effect of salinity variability on the growth and stoichiometry of different organs of Suaeda glauca and Salicornia europaea - two dominant species of important ecological and economic value in the saline ecosystem. Our results showed that appropriate salt stimulated the growth of both species during the vigorous growth period, while high salt suppressed growth. Na significantly increased with increased salt in the culture, whereas concentrations of other measured elements and K:Na ratio for both species significantly decreased at low salt treatments, and became more gradual under higher salt conditions. Furthermore, with the change of salt in culture, variations in leaf (degenerated leaf for S. europaea, considered as young stem) stoichiometry, except N:P ratio, were large and less in stems (old stems for S. europaea) than in roots, reflecting physiological and biochemical reactions in the leaf in response to salt stress, supported by sharp changes in trends. These results suggest that appropriate saline conditions can enhance biological C fixation of halophytes; however, increasing salt could affect consumer health and decrease cycling of other nutrients in saline ecosystems. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.

  17. Effect of extraction solvents on polyphenols and antioxidant activity of medicinal halophytes

    International Nuclear Information System (INIS)

    Qasim, M.; Aziz, I.; Gul, B.

    2016-01-01

    This study was conducted to determine the most effective solvent for extraction of polyphenols and antioxidant activity of medicinally important coastal halophytes (Thespesia populneoides, Salvadora persica, Ipomoea pes-caprae, Suaeda fruticosa and Pluchea lanceolata) known for high antioxidant potential. Five different solvents (water, 80% methanol, 80% ethanol, acetone and chloroform) were used to quantify polyphenols including total phenolic (TPC), total flavonoid (TFC) and proanthocyanidin contents (PC) and antioxidant capacity using DPPH radical scavenging and Ferric reducing antioxidant power (FRAP) activities. Among solvents of different polarities 80% methanol appeared most effective for polyphenol extraction. Thespesia populneoides had the highest polyphenols (TPC, TFC and PC) followed by Salvadora persica. Highest antioxidant activity was also found in T. populneoides and S. persica using the same solvent (80% methanol) which appeared better than synthetic antioxidants (BHA and BHT). The correlation analyses of each solvent showed strong to weak relationships among all studied parameters with maximum values (r and R2) in methanol followed by ethanol and water. Weaker correlation of acetone and chloroform indicates low capacity of these solvents both for polyphenol extraction and antioxidant activity. Our results reveal that aqueous methanol extracts of coastal halophytes had comparatively higher antioxidant activity than commercial antioxidants which indicate both their prospective efficacy and potential to replace synthetic derivatives from edible and medicinal products. (abstract)

  18. Salt Induces Features of a Dormancy-Like State in Seeds of Eutrema (Thellungiella salsugineum, a Halophytic Relative of Arabidopsis

    Directory of Open Access Journals (Sweden)

    Yana Kazachkova

    2016-08-01

    Full Text Available The salinization of land is a major factor limiting crop production worldwide. Halophytes adapted to high levels of salinity are likely to possess useful genes for improving crop tolerance to salt stress, as well as providing a food source on marginal lands. However, despite being salt-tolerant plants, the seeds of many halophytes will not germinate on saline soils, yet little is understood regarding biochemical and gene expression changes underlying salt-mediated inhibition of halophyte seed germination. We have used the halophytic Arabidopsis relative model system, Eutrema (Thellungiella salsugineum to explore salt-mediated inhibition of germination. We show that E. salsugineum seed germination is inhibited by salt to a far greater extent than in Arabidopsis, and that this inhibition is in response to the osmotic component of salt exposure. E. salsugineum seeds remain viable even when germination is completely inhibited, and germination resumes once seeds are transferred to non-saline conditions. Moreover, removal of the seed coat from salt-treated seeds allows embryos to germinate on salt-containing medium. Mobilization of seed storage reserves is restricted in salt-treated seeds, while many germination-associated metabolic changes are arrested or progress to a lower extent. Salt-exposed seeds are further characterized by a reduced GA/ABA ratio and increased expression of the germination repressor genes, RGL2, ABI5 and DOG1. Furthermore, a salt-mediated increase in expression of a LATE EMBRYOGENESIS ABUNDANT gene and accretion of metabolites involved in osmoprotection indicates induction of processes associated with stress tolerance, and accumulation of easily mobilized carbon reserves. Overall, our results suggest that salt inhibits E. salsugineum seed germination by inducing a seed state with molecular features of dormancy while a physical constraint to radicle emergence is provided by the seed coat layers. This seed state could facilitate

  19. The relationship between silicon availability, and growth and silicon concentration of the salt marsh halophyte Spartina anglica

    NARCIS (Netherlands)

    De Bakker, N.; Hemminga, M.A.; Van Soelen, J.

    1999-01-01

    Analysis of silicon concentrations of various halophytes from salt marshes in the S.W. Netherlands shows that the silicon concentration of Spartina anglica (Gramineae) is relatively high. To study the influence of dissolved Si concentrations on growth and plant tissue concentrations of S. anglica,

  20. Quality of aged shoulder from lambs fed with different oldman saltbush hay levels (Atriplex nummularia

    Directory of Open Access Journals (Sweden)

    Tharcilla Isabella Rodrigues Costa Alvarenga

    2014-12-01

    Full Text Available This study assessed the effects of different levels of oldman saltbush hay and ageing time on the physical characteristics of Santa Inês lamb meat. Sixty shoulders from 32 male lambs fed with 30, 40, 50 or 60% oldman saltbush hay for 60 days were vacuum-packaged and stored in a refrigerator at 0 ± 1°C for 0, 7 or 14 days of ageing. The shear force, cooking loss and water holding capacity were 3.06kgf cm-2, 37.28% and 76.71%, respectively, and there were no significant changed by studied factors (P>0.05

  1. The SbASR-1 gene cloned from an extreme halophyte Salicornia brachiata enhances salt tolerance in transgenic tobacco.

    Science.gov (United States)

    Jha, Bhavanath; Lal, Sanjay; Tiwari, Vivekanand; Yadav, Sweta Kumari; Agarwal, Pradeep K

    2012-12-01

    Salinity severely affects plant growth and development. Plants evolved various mechanisms to cope up stress both at molecular and cellular levels. Halophytes have developed better mechanism to alleviate the salt stress than glycophytes, and therefore, it is advantageous to study the role of different genes from halophytes. Salicornia brachiata is an extreme halophyte, which grows luxuriantly in the salty marshes in the coastal areas. Earlier, we have isolated SbASR-1 (abscisic acid stress ripening-1) gene from S. brachiata using cDNA subtractive hybridisation library. ASR-1 genes are abscisic acid (ABA) responsive, whose expression level increases under abiotic stresses, injury, during fruit ripening and in pollen grains. The SbASR-1 transcript showed up-regulation under salt stress conditions. The SbASR-1 protein contains 202 amino acids of 21.01-kDa molecular mass and has 79 amino acid long signatures of ABA/WDS gene family. It has a maximum identity (73 %) with Solanum chilense ASR-1 protein. The SbASR-1 has a large number of disorder-promoting amino acids, which make it an intrinsically disordered protein. The SbASR-1 gene was over-expressed under CaMV 35S promoter in tobacco plant to study its physiological functions under salt stress. T(0) transgenic tobacco seeds showed better germination and seedling growth as compared to wild type (Wt) in a salt stress condition. In the leaf tissues of transgenic lines, Na(+) and proline contents were significantly lower, as compared to Wt plant, under salt treatment, suggesting that transgenic plants are better adapted to salt stress.

  2. Comparison of Seed Germination and Recovery Responses of a Salt Marsh Halophyte Halopeplis Perfoliata to Osmotic and Ionic Treatments

    International Nuclear Information System (INIS)

    Rasool, S. G.; Hameed, A.; Ahmed, M. Z.; Khan, M. A.

    2016-01-01

    Salinity affects seed germination of halophytes by inducing ionic toxicity, osmotic constraint or both. Information about the effects of salinity on seed germination of a large number of halophytes exists, but generally little is known about the basis of salinity-induced germination inhibition. In order to partition salinity effects, we studied seed germination and recovery responses of a coastal salt marsh halophyte halopeplis perfoliata to different isotonic treatments (Psi/sub S/: -0.5, -1.0, -1.5, -2.0 and -2.5, MPa) of various salts and polythylene glycol (PEG) under two light regimes (12-h light photo period and 24-h complete darkness). Highest seed germination was observed in distilled water under 12-h light photo period and reduction in osmotic potential of the solution decreased seed germination. However, some seeds of H. perfoliata could germinate in as low as -2.5 MPa (600 mM NaCl), which is equivalent to seawater salinity. Sea-salt treatment was more inhibitory than isotonic NaCl at the lowest osmotic potential (Psi/sub S/ -2.5 MPa). Generally, chloride salts with lowest Psi/sub S/ inhibited germination more than the isotonic sulfate salts. Comparable germination responses of the seeds in NaCl and isotonic PEG treatments as well as high recovery of germination in un-germinated seeds after alleviation of NaCl salinity indicated prevalence of osmotic constraint. These results thus indicate that the seeds of H. perfoliata could tolerate high levels of a wide variety of salts found in soil. (author)

  3. Single cell-type comparative metabolomics of epidermal bladder cells from the halophyte Mesembryanthemum crystallinum

    OpenAIRE

    Barkla, Bronwyn J.; Vera-Estrella, Rosario

    2015-01-01

    One of the remarkable adaptive features of the halophyte and facultative CAM plant Mesembryathemum crystallinum are the specialized modified trichomes called epidermal bladder cells (EBC) which cover the leaves, stems, and peduncle of the plant. They are present from an early developmental stage but upon salt stress rapidly expand due to the accumulation of water and sodium. This particular plant feature makes it an attractive system for single cell type studies, with recent proteomics and tr...

  4. Differential activity of Plasma and Vacuolar Membrane Transporters contributes to Genotypic Differences in Salinity Tolerance in a Halophyte Species, Chenopodium quinoa

    DEFF Research Database (Denmark)

    Bonales-Alatorre, Edgar; Pottosin, Igor; Shabala, Lana

    2013-01-01

    quinoa genotypes contrasting in their salinity tolerance. The work is complemented by studies of the kinetics of net ion fluxes across the plasma membrane of quinoa leaf mesophyll tissue. Our results suggest that multiple mechanisms contribute towards genotypic differences in salinity tolerance in quinoa....... These include: (i) a higher rate of Na+ exclusion from leaf mesophyll; (ii) maintenance of low cytosolic Na+ levels; (iii) better K+ retention in the leaf mesophyll; (iv) a high rate of H+ pumping, which increases the ability of mesophyll cells to restore their membrane potential; and (v) the ability to reduce......Halophytes species can be used as a highly convenient model system to reveal key ionic and molecular mechanisms that confer salinity tolerance in plants. Earlier, we reported that quinoa (Chenopodium quinoa Willd.), a facultative C3 halophyte species, can efficiently control the activity of slow...

  5. [Response characteristics of the field-measured spectrum for the four general types of halophyte and species recognition in the northern slope area of Tianshan Mountain in Xinjiang].

    Science.gov (United States)

    Zhang, Fang; Xiong, Hei-gang; Nurbay, Abdusalih; Luan, Fu-ming

    2011-12-01

    Based on the field-measured Vis-NIR reflectance of four common types of halophyte (Achnatherum splendens(Trin.) Nevski, Sophora alopecuroides L., Camphorosma monspeliaca L. subsp. lessingii(L.)Aellen, Alhagi sparsifolia shap) within given spots in the Northern Slope Area of Tianshan Mountain in Xinjiang, the spectral response characteristics and species recognition of these types of halophyte were analyzed. The results showed that (Alhagi sparsifolia shap) had higher chlorophyll and carotenoid by CARI and SIPI index. (Sophora alopecuroides L. was at a vigorously growing state and had a higher NDVI compared with the other three types of halophyte because of its greater canopy density. But its CARI and SIPI values were lower due to the influence of its flowers. (Sophora alopecuroides L.) and (Camphorosma monspeliaca L. subsp. lessingii(L.)) had stable REPs and BEPs, but REPs and BEPs of (Achnatherum splendens(Trin.)Nevski, Aellen, Alhagi sparsifolia shap) whose spectra red shift and spectra blue shift occurred concurrently obviously changed. There was little difference in spectral curves among the four types of halophyte, so the spectrum mixing phenomenon was severe. (Camphorosma monspeliaca L. subsp. lessingii (L.)Aellen) and (Alhagi sparsifolia shap) could not be separated exactly in a usual R/NIR feature space in remote sensing. Using the stepwise discriminant analysis, five indices were selected to establish the discriminant model, and the model accuracy was discussed using the validated sample group. The total accuracy of the discriminant model was above 92% and (Achnatherum splendens(Trin.)Nevski) and (Camphorosma monspeliaca L. subsp. lessingii(L.)Aellen) could be respectively recognized 100% correctly.

  6. Isolation of Endophytic Plant Growth-Promoting Bacteria Associated with the Halophyte Salicornia europaea and Evaluation of their Promoting Activity Under Salt Stress.

    Science.gov (United States)

    Zhao, Shuai; Zhou, Na; Zhao, Zheng-Yong; Zhang, Ke; Wu, Guo-Hua; Tian, Chang-Yan

    2016-10-01

    Several reports have highlighted that many plant growth-promoting endophytic bacteria (PGPE) can assist their host plants in coping with various biotic and abiotic stresses. However, information about the PGPE colonizing in the halophytes is still scarce. This study was designed to isolate and characterize PGPE from salt-accumulating halophyte Salicornia europaea grown under extreme salinity and to evaluate in vitro the bacterial mechanisms related to plant growth promotion. A total of 105 isolates were obtained from the surface-sterilized roots, stems, and assimilation twigs of S. europaea. Thirty-two isolates were initially selected for their ability to produce 1-aminocyclopropane-1-carboxylate deaminase as well as other properties such as production of indole-3-acetic acid and phosphate-solubilizing activities. The 16S rRNA gene-sequencing analysis revealed that these isolates belong to 13 different genera and 19 bacterial species. For these 32 strains, seed germination and seedling growth in axenically grown S. europaea seedlings at different NaCl concentrations (50-500 mM) were quantified. Five isolates possessing significant stimulation of the host plant growth were obtained. The five isolates were identified as Bacillus endophyticus, Bacillus tequilensis, Planococcus rifietoensis, Variovorax paradoxus, and Arthrobacter agilis. All the five strains could colonize and can be reisolated from the host plant interior tissues. These results demonstrate that habitat-adapted PGPE isolated from halophyte could enhance plant growth under saline stress conditions.

  7. Remediation of saline soils contaminated with crude oil using the halophyte Salicornia persica in conjunction with hydrocarbon-degrading bacteria.

    Science.gov (United States)

    Ebadi, Ali; Khoshkholgh Sima, Nayer Azam; Olamaee, Mohsen; Hashemi, Maryam; Ghorbani Nasrabadi, Reza

    2018-05-08

    The negative impact of salinity on plant growth and the survival of rhizosphere biota complicates the application of bioremediation to crude oil-contaminated saline soils. Here, a comparison was made between the remedial effect of treating the soil with Pseudomonas aeruginosa, a salinity tolerant hydrocarbon-degrading consortium in conjunction with either the halophyte Salicornia persica or the non-halophyte Festuca arundinacea. The effect of the various treatments on salinized soils was measured by assessing the extent of total petroleum hydrocarbon (TPH) degradation, the soil's dehydrogenase activity, the abundance of the bacteria and the level of phytotoxicity as measured by a bioassay. When a non-salinized soil was assessed after a treatment period of 120 days, the ranking for effectiveness with respect to TPH removal was F. arundinacea > P. aeruginosa > S. persica > no treatment control, while in the presence of salinity, the ranking changed to S. persica > P. aeruginosa > F. arundinacea > no treatment control. Combining the planting of S. persica or F. arundinacea with P. aeruginosa inoculation ("bioaugmentation") boosted the degradation of TPH up to 5-17%. Analyses of the residual oil contamination revealed that long chain alkanes (above C20) were particularly strongly degraded following the bioaugmentation treatments. The induced increase in dehydrogenase activity and the abundance of the bacteria (3.5 and 10 fold respectively) achieved in the bioaugmentation/S. persica treatment resulted in 46-76% reduction in soil phytotoxicity in a saline soil. The indication was that bioaugmentation of halophyte can help to mitigate the adverse effects on the effectiveness of bioremediation in a crude oil-contaminated saline soil. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Coping with low nutrient availability and inundation: root growth responses of three halophytic grass species from different elevations along a flooding gradient

    NARCIS (Netherlands)

    Bouma, T.J.; Koutstaal, B.P.; Van Dongen, M.; Nielsen, K.F.

    2001-01-01

    We describe the responses of three halophytic grass species that dominate the low (Spartina anglica), middle (Puccinellia maritima) and high (Elymus pycnanthus) parts of a salt marsh, to soil conditions that are believed to favour contrasting root-growth strategies. Our hypotheses were: (1)

  9. Effect of climate change on halophytic grasslands loss and its impact in the viability of Gopherus flavomarginatus

    Directory of Open Access Journals (Sweden)

    Jorge Luis Becerra-López

    2017-08-01

    Full Text Available The decrease of the habitat is one of the main factors that affect the survival of G. flavomarginatus. This study assesses the halophytic grasslands loss over a period of 30 years in the distribution area of the Bolson tortoise and the effects of climate change on the habitat suitability of these grasslands and its possible impact on this tortoise. Grassland loss was assessed by an analysis of symmetric differences and the habitat suitability model was carried out by the method of overlapping layers raster. Our results showed a grassland loss of 63.7%; however, our current habitat suitability model points out that much of the grassland loss has occurred where the environmental conditions are suitable. These results suggest that anthropic activity is a main factor in the habitat disturbance in the study area. Likewise, the models for years 2050 and 2070 under the criteria RCP 2.6, RCP 4.5, RCP 6.0, suggest that anthropic activity will continue be the main cause of the grassland loss. Therefore, considering the association between the Bolson tortoise and grassland halophyte Hilaria mutica, which comprises around 60% of its diet, the viability of the Bolson tortoise depends largely on strategies aimed at protecting the soil that allow the presence of this grassland.

  10. The use of halophytic plants for salt phytoremediation in constructed wetlands.

    Science.gov (United States)

    Farzi, Abolfazl; Borghei, Seyed Mehdi; Vossoughi, Manouchehr

    2017-07-03

    This research studied the use of constructed wetlands (CWs) to reduce water salinity. For this purpose, three halophytic species of the Chenopodiaceae family (Salicornia europaea, Salsola crassa, and Bienertia cycloptera) that are resistant to saline conditions were planted in the CWs, and experiments were conducted at three different salinity levels [electrical conductivity (EC)∼2, 6, 10 dS/m]. EC and concentrations of calcium (Ca), magnesium (Mg), sodium (Na), and chlorine (Cl) were measured before and after phytoremediation with a retention time of 1 week. The results suggested that these plants were able to grow well and complete their life cycles at all the salinity levels within this study. Moreover, these plants reduced the measured parameters to acceptable levels. Therefore, these plants can be considered good options for salt phytoremediation.

  11. Growing halophytes floating at sea

    Directory of Open Access Journals (Sweden)

    Ricardo Radulovich

    2017-11-01

    Full Text Available Freshwater shortages are increasingly limiting both irrigated and rainfed agriculture. To expand possibilities for controlled plant production without using land nor freshwater, we cultivated potted halophytes floating at sea that were provided with rain- and seawater. Plantlets of two mangroves (Avicennia germinans and Rhizophora mangle and plants of two herbaceous species, sea purslane (Sesuvium portulacastrum and salt couch grass (Sporobolus virginicus were grown in near-coastal tropical Pacific waters of Costa Rica for 733 days. There were a total of 504 rainless days, including two dry periods of ca. 150 d long each, evidencing prolonged and exclusive reliance on seawater. Pots with a sandy soil mixture and the transplanted plants were placed on low-cost wooden floating rafts with their lower end perforated and immersed for capillary rise of water. Free seawater entry and exit through the bottom from bobbing with waves, which also occasionally added water from the top, effectively controlled soil salinity build-up even during the rainless seasons. Continuous leaching made necessary frequent fertilizer addition. No water deficit symptoms were observed and midday canopy temperature during rainless periods was not significantly different between species or from air temperature. With all-year-round growth, height increase of mangrove plantlets ranged from 208.1 to 401.5 mm yr−1. Fresh biomass production of sea purslane and the grass was 10.9 and 3.0 kg m−2 yr−1 respectively. High yield, edibility and protein content of 10.2% dry weight established sea purslane as a potential crop. While further research is needed, the method evidenced to be a viable plant production option of potentially far-reaching applications.

  12. Evaluation of three endemic Mediterranean plant species Atriplex halimus, Medicago lupulina and Portulaca oleracea for Phytoremediation of Ni, Pb and Zn

    Science.gov (United States)

    Chami, Ziad Al; Amer, Nasser; Bitar, Lina Al; Mondelli, Donato; Dumontet, Stefano

    2013-04-01

    The success of phytoremediation depends upon the identification of suitable plants species that hyperaccumulate/tolerate heavy metals and produce large amounts of biomass. In this study, three endemic Mediterranean plant species Atriplex halimus, Medicago lupulina and Portulaca oleracea, were grown hydroponically to assess their potential use in phytoremediation of Ni, Pb and Zn and biomass production. The objective of this research is to improve phytoremediation procedures by searching for a new endemic Mediterranean plant species which can be used for phytoremediation of low/moderate contamination in the Mediterranean arid and semiarid conditions and bioenergy production. The hydroponics experiment was carried out in a growth chamber using half strength Hoagland's solution as control (CTR) and 5 concentrations for Pb and Zn (5, 10, 25, 50 and 100 mg L-1) and 3 concentrations for Ni (1, 2, and 5 mg L-1). Complete randomized design with five replications was adopted. Main growth parameters (shoot and root dry weight, shoot and root length and chlorophyll content) were determined. Shoots and roots were analyzed for their metals contents. Some interesting contributions of this research are: (i) plant metal uptake efficiency ranked as follows: A. halimus > M. lupulina > P. oleracea, whereas heavy metal toxicity ranked as follows: Ni > Zn > Pb, (ii) none of the plant species was identified as hyperaccumulator, (iii) Atriplex halimus and Medicago lupulina can accumulate Ni, Pb and Zn in their roots, (iv) translocate small fraction to their above ground biomass, and (v) indicate moderate pollution levels of the environment. In addition, as they are a good biomass producer, they can be used in phytostabilisation of marginal lands and their above ground biomass can be used for livestock feeding as well for bioenergy production.

  13. Secondary metabolites as anti-nutritional factors in locally used halophytic forage/fodder

    International Nuclear Information System (INIS)

    Ehsen, S.; Qasim, M.; Abideen, Z.; Rizve, R. F.; Gul, B.; Ansari, R.

    2016-01-01

    Rampant salinity coupled with population explosion necessitates search for suitable alternatives to conventional sources of food both for human and animal consumption. While it may be difficult to change our culinary preferences, training animals to adopt a changed diet of nonconventional salt tolerant plants is easier. Using these wild plants however, requires estimation of undesirable secondary metabolites (SMs) produced during stressful conditions, which may be harmful for health of animals. Some of these anti-nutritional components (total phenols, flavonoids, tannins, nitrates, saponins and oxalates) were determined in 22 halophytes locally used as fodder/forage. Most of the species were perennial shrubs and herbs of an area where environmental conditions like high mean annual temperature (∼35 degree C), low rainfall (< 250mm) with soil mostly dry (average 2 percent moisture) and saline (average EC 13 dSm/sup -1/) supported the growth of halophytes and xerophytes. Values of SMs in the studied plants ranged from 0.13-4.05 percent for total phenols, 0.38-6.99 percent for tannins, 0.15-1.50 percent for flavonoids, 0.10-1.15 percent for nitrates, 0.45-8.68 percent for saponins and 0.36-2.34 percent for oxalates. Most of the species (19) contained low to moderate amount of individual as well as total SMs which were within the non-toxic ranges. However, three species distributed in coastal habitats where average soil salinity (27.67 dSm-1) was considerably higher than inland ones (7.09 dSm-1) had SMs contents above the safe limits. It is evident from these Results that most of these plants contained moderate to low levels of anti-nutritional factors, which lies under the safe limits and hence, could be used as a potential feed source to raise animals, particularly in arid/semiarid areas. Additionally, these plants represents a viable choice as they can be grown without encroaching on agricultural lands and fresh water resources and could promote livestock

  14. Identification of Novel and Conserved miRNAs from Extreme Halophyte, Oryza coarctata, a Wild Relative of Rice.

    Science.gov (United States)

    Mondal, Tapan Kumar; Ganie, Showkat Ahmad; Debnath, Ananda Bhusan

    2015-01-01

    Oryza coarctata, a halophyte and wild relative of rice, is grown normally in saline water. MicroRNAs (miRNAs) are non-coding RNAs that play pivotal roles in every domain of life including stress response. There are very few reports on the discovery of salt-responsive miRNAs from halophytes. In this study, two small RNA libraries, one each from the control and salt-treated (450 mM NaCl for 24 h) leaves of O. coarctata were sequenced, which yielded 338 known and 95 novel miRNAs. Additionally, we used publicly available transcriptomics data of O. coarctata which led to the discovery of additional 48 conserved miRNAs along with their pre-miRNA sequences through in silico analysis. In total, 36 known and 7 novel miRNAs were up-regulated whereas, 12 known and 7 novel miRNAs were down-regulated under salinity stress. Further, 233 and 154 target genes were predicted for 48 known and 14 novel differentially regulated miRNAs respectively. These targets with the help of gene ontology analysis were found to be involved in several important biological processes that could be involved in salinity tolerance. Relative expression trends of majority of the miRNAs as detected by real time-PCR as well as predicted by Illumina sequencing were found to be coherent. Additionally, expression of most of the target genes was negatively correlated with their corresponding miRNAs. Thus, the present study provides an account of miRNA-target networking that is involved in salinity adaption of O. coarctata.

  15. Storage on maternal plants affects light and temperature on requirements during germination in two small seeded halophytes in the arabian deserts

    International Nuclear Information System (INIS)

    Ali, A.; Gairola, S.

    2015-01-01

    Seeds are either stored in a soil seed bank or retained on maternal plants until they are released (aerial seed bank). Though there are extensive studies on the germination requirements of seeds in soil banks of saline habitats, studies conducted for halophytes with aerial seed banks are rare. We assessed the impact of aerial and room-temperature storages on the light and temperature requirements during germination in two small-seeded halophytes: Halocnmum strobilaceum having a short-term aerial seed bank (less than one year) and Halopeplis perfoliata having a longer term aerial seed bank (up to two years). Seed storage in the aerial bank reduced the germination in H. strobilaceum, but either increased it (5-months storage) or had no effect (17-months storage) in H. perfoliata. Seeds of both species that were stored in aerial bank germinated to higher percentages in light than in darkness, indicating that considerable portions of the seed populations are light sensitive. Seeds of H. perfoliata attained less than 5.0 percentage germination in darkness at higher temperatures, compared to more than 90.0 percentage in light. The results support the hypothesis that the aerial seed bank is an adaptive strategy for survival in the saline habitats of the two species. (author)

  16. A novel plant-based-sea water culture media for in vitro cultivation and in situ recovery of the halophyte microbiome

    Directory of Open Access Journals (Sweden)

    Mohamed Y. Saleh

    2017-11-01

    Full Text Available The plant-based-sea water culture medium is introduced to in vitro cultivation and in situ recovery of the microbiome of halophytes. The ice plant (Mesembryanthemum crystallinum was used, in the form of juice and/or dehydrated plant powder packed in teabags, to supplement the natural sea water. The resulting culture medium enjoys the combinations of plant materials as rich source of nutrients and sea water exercising the required salt stress. As such without any supplements, the culture medium was sufficient and efficient to support very good in vitro growth of halotolerant bacteria. It was also capable to recover their in situ culturable populations in the phyllosphere, ecto-rhizosphere and endo-rhizosphere of halophytes prevailing in Lake Mariout, Egypt. When related to the total bacterial numbers measured for Suaeda pruinosa roots by quantitative-PCR, the proposed culture medium increased culturability (15.3–19.5% compared to the conventional chemically-synthetic culture medium supplemented with (11.2% or without (3.8% NaCl. Based on 16S rRNA gene sequencing, representative isolates of halotolerant bacteria prevailed on such culture medium were closely related to Bacillus spp., Halomonas spp., and Kocuria spp. Seed germination tests on 25–50% sea water agar indicated positive interaction of such bacterial isolates with the germination and seedlings’ growth of barley seeds.

  17. Oxygen dynamics during submergence in the halophytic stem succulent Halosarcia pergranulata

    DEFF Research Database (Denmark)

    Pedersen, Ole; Vos, Harrie; Colmer, Timothy David

    2006-01-01

    This study elucidated O2 dynamics in shoots and roots of submerged Halosarcia pergranulata (Salicornioideae), a perennial halophytic stem succulent that grows on flood-prone mudflats of salt lakes. Oxygen within shoots and roots was measured using microelectrodes, for plants when waterlogged...... the roots, at least during the first several hours (the time period measured) after submergence or when light periods followed darkness. The influence of light on tissue O2 dynamics was confirmed in an experiment on a submerged plant in a salt lake in south-western Australia. In the late afternoon, partial...... pressure of O2 (pO2) in the succulent stem was 23.2 kPa (i.e. ~10% above that in the air), while in the roots, it was 6.2-9.8 kPa. Upon sunset, the pO2 in the succulent stems declined within 1 h to below detection, but then showed some fluctuations with the pO2 increasing to at most 2.5 kPa during...

  18. Halophyte vegetation influences in salt marsh retention capacity for heavy metals

    International Nuclear Information System (INIS)

    Reboreda, Rosa; Cacador, Isabel

    2007-01-01

    We analysed concentrations of Cu, Cd and Pb in above and belowground tissues of the halophyte species Halimione portulacoides and Spartina maritima, as well as in sediments and pore water between the roots in a Tagus estuary salt marsh (Portugal). From these results we calculated the pools of metals in the compartments mentioned above. Relative percentages of accumulation in each pool were also determined. Our aim was to determine how the type of vegetation in the salt marsh affects overall metal retention capacity of the system. It was concluded that areas colonised by H. portulacoides are potential sources of Cu, Cd and Pb to the marsh ecosystem, whereas areas colonised by S. maritima are more effective sinks at least for Cu and Cd. Consequently, S. maritima seems to contribute more effectively to the stabilisation of metals in salt marsh sediments, reducing their availability to the estuarine system. - The type of vegetal cover can affect the overall retention capacity of a salt marsh as well as the functioning of the salt marsh as a sink or source of metals to the estuarine system

  19. Protein profiling of epidermal bladder cells from the halophyte Mesembryanthemum crystallinum.

    Science.gov (United States)

    Barkla, Bronwyn J; Vera-Estrella, Rosario; Pantoja, Omar

    2012-09-01

    Plant epidermal trichomes are as varied in morphology as they are in function. In the halophyte Mesembryanthemum crystallinum, specialized trichomes called epidermal bladder cells (EBC) line the surface of leaves and stems, and increase dramatically in size and volume upon plant salt-treatment. These cells have been proposed to have roles in plant defense and UV protection, but primarily in sodium sequestration and as water reservoirs. To gain further understanding into the roles of EBC, a cell-type-specific proteomics approach was taken in which precision single-cell sampling of cell sap from individual EBC was combined with shotgun peptide sequencing (LC-MS/MS). Identified proteins showed diverse biological functions and cellular locations, with a high representation of proteins involved in H(+)-transport, carbohydrate metabolism, and photosynthesis. The proteome of EBC provides insight into the roles of these cells in ion and water homeostasis and raises the possibility that they are photosynthetically active and functioning in Crassulacean acid metabolism. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Phenolic composition and prospective anti-infectious properties of Atriplex lindleyi

    Directory of Open Access Journals (Sweden)

    Sahar Salah El Din El Souda

    2015-10-01

    Full Text Available Objective: To investigate the antiplasmodial, antimicrobial, radical scavenging effects and to identifiy the phenolic constituents of Atriplex lindleyi (A. lindleyi. Methods: A. lindleyi extracts and some isolated compounds were tested in vitro against the chloroquine-resistant strains of Plasmodium falciparum. The radical scavenging activity was quantified by using 2,2-diphenyl-2-picrylhydrazyl nitrogen-centered free radical. The IC50 of each extract was compared with references. The in vitro anti-infectious activity of extracts was evaluated against representative Gram-positive and Gram-negative bacterial strains [Staphylococcus aureus CIP 4.83, Enterococcus hirae CIP 5855, Pseudomonas aeruginosa (P. aeruginosa CIP 82118, Escherichia coli CIP 53126], and fungal species [(Candida albicans (C. albicans IP 48.72, Aspergillus niger IP 1431.83]. Ethanol extract was investigated for chemical composition through column and high performance liquid chromatography. The isolated compounds were identified by mass spectrometry and nuclear magnetic resonance. Results: Quercetin-7-O-arabinopyranoside-3-O-neohesperidosides (1, quercetin-3- O-arabinopyranosyl(1→6glucopyranoside (2, quercetin-3-O-glucopyranoside-7-Orhamnopyranoside (3, quercetin-3-O-glucopyranoside-7-O-arabinoside (4, schaftoside (5, quercetin-7-O-glucopyranoside (6 were isolated for the first time from the ethanol extract of A. lindleyi aerial parts in addition to isorhamnetin-3-O-β-glucopyranoside (7 and quercetin (8. The extracts exhibited moderate antiplasmodial activity with IC50≈ ranging from 10–50 μg/mL. Quercetin was the most potent compound with IC50 of 9 µg/mL. P. aeruginosa and C. albicans were the most susceptible organisms. Conclusions: The study implies that A. lindelyi can contribute to the fight against malaria, and be useful as prophylactic against C. albicans and P. aeruginosa.

  1. Differential Activity of Plasma and Vacuolar Membrane Transporters Contributes to Genotypic Differences in Salinity Tolerance in a Halophyte Species, Chenopodium quinoa

    Directory of Open Access Journals (Sweden)

    Edgar Bonales-Alatorre

    2013-04-01

    Full Text Available Halophytes species can be used as a highly convenient model system to reveal key ionic and molecular mechanisms that confer salinity tolerance in plants. Earlier, we reported that quinoa (Chenopodium quinoa Willd., a facultative C3 halophyte species, can efficiently control the activity of slow (SV and fast (FV tonoplast channels to match specific growth conditions by ensuring that most of accumulated Na+ is safely locked in the vacuole (Bonales-Alatorre et al. (2013 Plant Physiology. This work extends these finding by comparing the properties of tonoplast FV and SV channels in two quinoa genotypes contrasting in their salinity tolerance. The work is complemented by studies of the kinetics of net ion fluxes across the plasma membrane of quinoa leaf mesophyll tissue. Our results suggest that multiple mechanisms contribute towards genotypic differences in salinity tolerance in quinoa. These include: (i a higher rate of Na+ exclusion from leaf mesophyll; (ii maintenance of low cytosolic Na+ levels; (iii better K+ retention in the leaf mesophyll; (iv a high rate of H+ pumping, which increases the ability of mesophyll cells to restore their membrane potential; and (v the ability to reduce the activity of SV and FV channels under saline conditions. These mechanisms appear to be highly orchestrated, thus enabling the remarkable overall salinity tolerance of quinoa species.

  2. Differential activity of plasma and vacuolar membrane transporters contributes to genotypic differences in salinity tolerance in a Halophyte Species, Chenopodium quinoa.

    Science.gov (United States)

    Bonales-Alatorre, Edgar; Pottosin, Igor; Shabala, Lana; Chen, Zhong-Hua; Zeng, Fanrong; Jacobsen, Sven-Erik; Shabala, Sergey

    2013-04-29

    Halophytes species can be used as a highly convenient model system to reveal key ionic and molecular mechanisms that confer salinity tolerance in plants. Earlier, we reported that quinoa (Chenopodium quinoa Willd.), a facultative C3 halophyte species, can efficiently control the activity of slow (SV) and fast (FV) tonoplast channels to match specific growth conditions by ensuring that most of accumulated Na+ is safely locked in the vacuole (Bonales-Alatorre et al. (2013) Plant Physiology). This work extends these finding by comparing the properties of tonoplast FV and SV channels in two quinoa genotypes contrasting in their salinity tolerance. The work is complemented by studies of the kinetics of net ion fluxes across the plasma membrane of quinoa leaf mesophyll tissue. Our results suggest that multiple mechanisms contribute towards genotypic differences in salinity tolerance in quinoa. These include: (i) a higher rate of Na+ exclusion from leaf mesophyll; (ii) maintenance of low cytosolic Na+ levels; (iii) better K+ retention in the leaf mesophyll; (iv) a high rate of H+ pumping, which increases the ability of mesophyll cells to restore their membrane potential; and (v) the ability to reduce the activity of SV and FV channels under saline conditions. These mechanisms appear to be highly orchestrated, thus enabling the remarkable overall salinity tolerance of quinoa species.

  3. Enhanced salt stress tolerance of rice plants expressing a vacuolar H+-ATPase subunit c1 (SaVHAc1) gene from the halophyte grass Spartina alterniflora Löisel

    Science.gov (United States)

    The physiological role of a vacuolar ATPase subunit c1 (SaVHAc1) from a halophyte grass Spartina alterniflora was studied through its expression in rice. The SaVHAc1– expressing plants showed enhanced tolerance to salt stress than the wild-type plants, mainly through adjustments in early stage and p...

  4. Germination of dimorphic seeds of the desert annual halophyte Suaeda aralocaspica (Chenopodiaceae), a C4 plant without Kranz anatomy.

    Science.gov (United States)

    Wang, Lei; Huang, Zhenying; Baskin, Carol C; Baskin, Jerry M; Dong, Ming

    2008-11-01

    Suaeda aralocaspica is a C4 summer annual halophyte without Kranz anatomy that is restricted to the deserts of central Asia. It produces two distinct types of seeds that differ in colour, shape and size. The primary aims of the present study were to compare the dormancy and germination characteristics of dimorphic seeds of S. aralocaspica and to develop a conceptual model of their dynamics. Temperatures simulating those in the natural habitat of S. aralocaspica were used to test for primary dormancy and germination behaviour of fresh brown and black seeds. The effects of cold stratification, gibberellic acid, seed coat scarification, seed coat removal and dry storage on dormancy breaking were tested in black seeds. Germination percentage and recovery responses of brown seeds, non-treated black seeds and 8-week cold-stratified black seeds to salt stress were tested. Brown seeds were non-dormant, whereas black seeds had non-deep Type 2 physiological dormancy (PD). Germination percentage and rate of germination of brown seeds and of variously pretreated black seeds were significantly higher than those of non-pretreated black seeds. Exposure of seeds to various salinities had significant effects on germination, germination recovery and induction into secondary dormancy. A conceptual model is presented that ties these results together and puts them into an ecological context. The two seed morphs of S. aralocaspica exhibit distinct differences in dormancy and germination characteristics. Suaeda aralocaspica is the first cold desert halophyte for which non-deep Type 2 PD has been documented.

  5. Single-cell-type quantitative proteomic and ionomic analysis of epidermal bladder cells from the halophyte model plant Mesembryanthemum crystallinum to identify salt-responsive proteins

    OpenAIRE

    Barkla, Bronwyn J.; Vera-Estrella, Rosario; Raymond, Carolyn

    2016-01-01

    Background Epidermal bladder cells (EBC) are large single-celled, specialized, and modified trichomes found on the aerial parts of the halophyte Mesembryanthemum crystallinum. Recent development of a simple but high throughput technique to extract the contents from these cells has provided an opportunity to conduct detailed single-cell-type analyses of their molecular characteristics at high resolution to gain insight into the role of these cells in the salt tolerance of the plant. Results In...

  6. Effects of shrub revegetation with Atriplex halimus L. and Retama sphaerocarpa L. in gypsiferous soils. Influence in soil properties

    Science.gov (United States)

    Bienes, Ramón; Marques, Maria Jose; Ruiz-Colmenero, Marta; Arevalo, Diana; Sastre, Blanca; Garcia-Diaz, Andrés

    2014-05-01

    The low crop yield obtained in semi-arid climates has led to the decline of agriculture and the abandonment of large areas resulting in a high risk of land degradation due to the lack of vegetation. Revegetation with shrubs is considered a way to prevent land degradation and enhance soil conditions, particularly in problematic soils. The study area is located in Colmenar de Oreja (Madrid, Spain, UTM 30T X=455236, Y=4436368). This is a semi-arid region, close to aridity in certain years, with a mean annual rainfall of 390 mm and annual evapotranspiration (Thornthwaite) of 769 mm. The soil is developed over gypsum marls with a xeric moisture regime. These soils are frequent in semiarid and arid countries in the world because leaching is prevented due to low rainfall. They usually show shallow depth, high penetration resistance and compaction, particularly when the soil is dry. Moreover they exhibit low fertility and small water retention capacity. All these circumstances hinder the development of roots and therefore the spontaneous recovery of vegetation after abandonment. Two different species of shrubs -Atriplex halimus L. and Retama sphaerocarpa L.- were planted in USLE plots (80 m2) in 2003 in a sloping area (average 10%). Changes in the physical and chemical properties of soils beneath these different treatments were studied since then, and they were compared with spontaneous vegetation. We considered soil indicators such as bulk density, intrapedal porosity, soil organic matter content, aggregate stability and soil penetration resistance. Two years after planting, vegetation coverage in the low part of the plots covered 70% of soil, rising 80% after the third year. The litter generated by shrubs did not change soil organic matter content at the site where it occurred, but rather a few feet below, where it was deposited by water erosion. Five years later, the lower section of the plots exhibited an increase in soil organic matter (from 2.3 to 3.2%), a decrease

  7. Evaluation of Atriplex halimus, Medicago lupulina and Portulaca oleracea for phytoremediation of Ni, Pb, and Zn.

    Science.gov (United States)

    Amer, Nasser; Al Chami, Ziad; Al Bitar, Lina; Mondelli, Donato; Dumontet, Stefano

    2013-01-01

    Suitable plant species are able to accumulate heavy metals and to produce biomass useful for non-food purposes. In this study, three endemic Mediterranean plant species, Atriplex halimus, Portulaca oleracea and Medicago lupulina were grown hydroponically to assess their potential use in phytoremediation and biomass production. The experiment was carried out in a growth chamber using half strength Hoagland's solutions separately spiked with 5 concentrations of Pb and Zn (5, 10, 25, 50, and 100 mg L(-1)), and 3 concentrations of Ni (1, 2 and 5 mg L(-1)). Shoot and root biomass were determined and analyzed for their metals contents. A. halimus and M. lupulina gave high shoot biomass with relatively low metal translocation to the above ground parts. Metals uptake was a function of both metals and plant species. It is worth noting that M. lupulina was the only tested plant able to grow in treatment Pb50 and to accumulate significant amount of metal in roots. Plant metal uptake efficiency ranked as follows: A. halimus > M. lupulina > P. oleracea. Due to its high biomass production and the relatively high roots metal contents, A. halimus and M. lupulina could be successfully used in phytoremediation, and in phytostabilization, in particular.

  8. Genome structures and halophyte-specific gene expression of the extremophile thellungiella parvula in comparison with Thellungiella salsuginea (Thellungiella halophila) and arabidopsis

    KAUST Repository

    Oh, Dongha

    2010-09-10

    The genome of Thellungiella parvula, a halophytic relative of Arabidopsis (Arabidopsis thaliana), is being assembled using Roche-454 sequencing. Analyses of a 10-Mb scaffold revealed synteny with Arabidopsis, with recombination and inversion and an uneven distribution of repeat sequences. T. parvula genome structure and DNA sequences were compared with orthologous regions from Arabidopsis and publicly available bacterial artificial chromosome sequences from Thellungiella salsuginea (previously Thellungiella halophila). The three-way comparison of sequences, from one abiotic stress-sensitive species and two tolerant species, revealed extensive sequence conservation and microcolinearity, but grouping Thellungiella species separately from Arabidopsis. However, the T. parvula segments are distinguished from their T. salsuginea counterparts by a pronounced paucity of repeat sequences, resulting in a 30% shorter DNA segment with essentially the same gene content in T. parvula. Among the genes is SALT OVERLY SENSITIVE1 (SOS1), a sodium/proton antiporter, which represents an essential component of plant salinity stress tolerance. Although the SOS1 coding region is highly conserved among all three species, the promoter regions show conservation only between the two Thellungiella species. Comparative transcript analyses revealed higher levels of basal as well as salt-induced SOS1 expression in both Thellungiella species as compared with Arabidopsis. The Thellungiella species and other halophytes share conserved pyrimidine-rich 5\\' untranslated region proximal regions of SOS1 that are missing in Arabidopsis. Completion of the genome structure of T. parvula is expected to highlight distinctive genetic elements underlying the extremophile lifestyle of this species. © American Society of Plant Biologists.

  9. Anatomía de los órganos vegetativos de dos especies de Atriplex (Chenopodiaceae de Venezuela

    Directory of Open Access Journals (Sweden)

    Damelis Jáuregui

    2014-12-01

    Full Text Available En Venezuela, Atriplex está representado por A. cristata y A. oestophora, siendo esta última endémica, las mismas habitan zonas costeras con altas temperaturas, alta radiación solar y suelos arenosos con alto contenido de sales. Se caracterizaron anatómicamente sus órganos vegetativos con el fin de aportar rasgos para delimitarlas taxonómicamente y precisar caracteres que contribuyan a su adaptabilidad a las condiciones edafoclimáticas imperantes en su hábitat. El material vegetal fue recolectado en tres individuos de cada especie en Punta Taima Taima y Capatárida (Falcón. Se recolectaron segmentos de raíces próximos al cuello y al ápice; entrenudos basales, medios y apicales, y hojas ubicadas en la porción media de las plan- tas. Este material fue fijado en FAA (formaldehido, ácido acético y etanol 70% hasta su procesamiento. Se prepara- ron láminas semipermanentes y permanentes con secciones transversales y longitudinales hechas a mano alzada o con micrótomo, en este último caso posterior a la inclusión en parafina. Adicionalmente, se realizaron macerados con el fin de obtener las epidermis foliares. Las secciones fueron teñidas con azul de toluidina acuosa (1% o con safranina- fastgreen, montándolas en agua/glicerina o en bálsamo de Canadá. Se cuantificó el número de vasos y su densidad en los anillos vasculares de las raíces, para calcular el índice de vulnerabilidad. Se encontraron rasgos estructurales de valor taxonómico: la presencia de tejido acuífero en la lámina foliar, el número de haces vasculares y su organización en el nervio medio, así como la diferenciación de colénquima en el mismo; además, el arreglo del xilema/ floema en los anillos de crecimiento, la naturaleza del tejido conjuntivo, así como la presencia de floema incluso, en las raíces. Se detectaron caracteres anatómicos típicos de halófitas y xerófitas, como son: alta densidad de tricomas en hojas y tallos jóvenes, que act

  10. Phytoextraction of heavy metals by Sesuvium portulacastrum l. a salt marsh halophyte from tannery effluent.

    Science.gov (United States)

    Ayyappan, Durai; Sathiyaraj, Ganesan; Ravindran, Konganapuram Chellappan

    2016-01-01

    The present study investigated the sources for remediation of heavy metals and salts from tannery effluent using salt marsh halophyte Sesuvium portulacastrum. From the results observed, in tannery effluent treated soil from 1 kg dry weight of plant sample, Sesuvium portulacastrum accumulated 49.82 mg Cr, 22.10 mg Cd, 35.10 mg Cu and 70.10 mg Zn and from 1 g dry weight of the plant sample, 246.21 mg Na Cl. Cultivation of Sesuvium portulacastrum significantly reduced the EC, pH and SAR levels in tannery effluent and salt treated soil and correspondingly increased in plant sample after 125 days of cultivation. In conclusion, Sesuvium portulacastrum was an efficient in accumulating heavy metals such as Chromium, Cadmium, Copper and Zinc, sodium and chloride maximum through its leaves when compared to stem and root. The finding of these bioacccumulation studies indicates that Sesuvium portulacastrum could be used for phytoremediation of tannery effluent contaminated field.

  11. Native-Invasive Plants vs. Halophytes in Mediterranean Salt Marshes: Stress Tolerance Mechanisms in Two Related Species.

    Science.gov (United States)

    Al Hassan, Mohamad; Chaura, Juliana; López-Gresa, María P; Borsai, Orsolya; Daniso, Enrico; Donat-Torres, María P; Mayoral, Olga; Vicente, Oscar; Boscaiu, Monica

    2016-01-01

    Dittrichia viscosa is a Mediterranean ruderal species that over the last decades has expanded into new habitats, including coastal salt marshes, ecosystems that are per se fragile and threatened by human activities. To assess the potential risk that this native-invasive species represents for the genuine salt marsh vegetation, we compared its distribution with that of Inula crithmoides, a taxonomically related halophyte, in three salt marshes located in "La Albufera" Natural Park, near the city of Valencia (East Spain). The presence of D. viscosa was restricted to areas of low and moderate salinity, while I. crithmoides was also present in the most saline zones of the salt marshes. Analyses of the responses of the two species to salt and water stress treatments in controlled experiments revealed that both activate the same physiological stress tolerance mechanisms, based essentially on the transport of toxic ions to the leaves-where they are presumably compartmentalized in vacuoles-and the accumulation of specific osmolytes for osmotic adjustment. The two species differ in the efficiency of those mechanisms: salt-induced increases in Na(+) and Cl(-) contents were higher in I. crithmoides than in D. viscosa, and the osmolytes (especially glycine betaine, but also arabinose, fructose and glucose) accumulated at higher levels in the former species. This explains the (slightly) higher stress tolerance of I. crithmoides, as compared to D. viscosa, established from growth inhibition measurements and their distribution in nature. The possible activation of K(+) transport to the leaves under high salinity conditions may also contribute to salt tolerance in I. crithmoides. Oxidative stress level-estimated from malondialdehyde accumulation-was higher in the less tolerant D. viscosa, which consequently activated antioxidant responses as a defense mechanism against stress; these responses were weaker or absent in the more tolerant I. crithmoides. Based on these results, we

  12. Native-invasive plants vs. halophytes in Mediterranean salt marshes: Stress tolerance mechanisms in two related species

    Directory of Open Access Journals (Sweden)

    Mohamad eAl Hassan

    2016-04-01

    Full Text Available Dittrichia viscosa is a Mediterranean ruderal species that over the last decades has expanded into new habitats, including coastal salt marshes, ecosystems that are per se fragile and threatened by human activities. To assess the potential risk that this native-invasive species represents for the genuine salt marsh vegetation, we compared its distribution with that of Inula crithmoides, a taxonomically related halophyte, in three salt marshes located in ‘La Albufera’ Natural Park, near the city of Valencia (East Spain. The presence of D. viscosa was restricted to areas of low and moderate salinity, while I. crithmoides was also present in the most saline zones of the salt marshes. Analyses of the responses of the two species to salt and water stress treatments in controlled experiments revealed that both activate the same physiological stress tolerance mechanisms, based essentially on the transport of toxic ions to the leaves – where they are presumably compartmentalized in vacuoles – and the accumulation of specific osmolytes for osmotic adjustment. The two species differ in the efficiency of those mechanisms: salt-induced increases in Na+ and Cl- contents were higher in I. crithmoides than in D. viscosa, and the osmolytes (especially glycine betaine, but also arabinose, fructose and glucose accumulated at higher levels in the former species. This explains the (slightly higher stress tolerance of I. crithmoides, as compared to D. viscosa, established from growth inhibition measurements and their distribution in nature. The possible activation of K+ transport to the leaves under high salinity conditions may also contribute to salt tolerance in I. crithmoides. Oxidative stress level – estimated from malondialdehyde accumulation – was higher in the less tolerant D. viscosa, which consequently activated antioxidant responses as a defense mechanism against stress; these responses were weaker or absent in the more tolerant I. crithmoides

  13. Characterization of phenolic compounds from different species of halophytes from Reserva Natural do Sapal de Castro Marim e Vila Real de Santo António (Portugal)

    OpenAIRE

    Mafalda R. Almeida; Joana Pacheco

    2014-01-01

    Reserva Natural do Sapal de Castro Marim e Vila Real de Santo António (RNSCMVRSA) is a natural reserve (SE of Portugal, Algarve region) that has habitats with different saline conditions and great ecological importance. Halophytes are plants that grow in a wide variety of saline habitats, namely in RNSCMVRSA, and can accumulated in their biomass high contents of salt. This plant behavior can increase production of reactive oxygen species (ROS) and consequently, the oxidative stress, cellular ...

  14. Phytohormone profiling in relation to osmotic adjustment in NaCl-treated plants of the halophyte tomato wild relative species Solanum chilense comparatively to the cultivated glycophyte Solanum lycopersicum

    Czech Academy of Sciences Publication Activity Database

    Gharbi, E.; Martínez, J. L.; Benahmed, H.; Hichri, I.; Dobrev, Petre; Motyka, Václav; Quineta, M.; Lutts, S.

    2017-01-01

    Roč. 258, MAY (2017), s. 77-89 ISSN 0168-9452 R&D Projects: GA ČR(CZ) GA16-14649S Institutional support: RVO:61389030 Keywords : antioxidant enzyme-activities * improves salinity tolerance * enhances salt tolerance * abscisic-acid * water-stress * na+-exclusion * accumulation * ethylene * growth * arabidopsis * Osmotic adjustment * Halophyte * Salinity * Solanum chilense * Hormone * Tomato Subject RIV: EF - Botanics OBOR OECD: Plant sciences, botany Impact factor: 3.437, year: 2016

  15. Choline but not its derivative betaine blocks slow vacuolar channels in the halophyte Chenopodium quinoa: implications for salinity stress responses.

    Science.gov (United States)

    Pottosin, Igor; Bonales-Alatorre, Edgar; Shabala, Sergey

    2014-11-03

    Activity of tonoplast slow vacuolar (SV, or TPC1) channels has to be under a tight control, to avoid undesirable leak of cations stored in the vacuole. This is particularly important for salt-grown plants, to ensure efficient vacuolar Na(+) sequestration. In this study we show that choline, a cationic precursor of glycine betaine, efficiently blocks SV channels in leaf and root vacuoles of the two chenopods, Chenopodium quinoa (halophyte) and Beta vulgaris (glycophyte). At the same time, betaine and proline, two major cytosolic organic osmolytes, have no significant effect on SV channel activity. Physiological implications of these findings are discussed. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  16. Characterization of phenolic compounds from different species of halophytes from Reserva Natural do Sapal de Castro Marim e Vila Real de Santo António (Portugal

    Directory of Open Access Journals (Sweden)

    Mafalda R. Almeida

    2014-06-01

    Full Text Available Reserva Natural do Sapal de Castro Marim e Vila Real de Santo António (RNSCMVRSA is a natural reserve (SE of Portugal, Algarve region that has habitats with different saline conditions and great ecological importance. Halophytes are plants that grow in a wide variety of saline habitats, namely in RNSCMVRSA, and can accumulated in their biomass high contents of salt. This plant behavior can increase production of reactive oxygen species (ROS and consequently, the oxidative stress, cellular damage and metabolic disorders. In order to protect the cells from ROS, these plants developed an efficient antioxidant system. This system can be constituted by phenolics compounds that have an important effect on oxidative, anti-inflammatory and microbial stability important properties for food, dietary and pharmaceutical industries. Therefore, this work aims to identify the phenolic compounds in biomass of different autochthones halophytes species growing on natural conditions in RNSCMVSRA. Composite samples of Salicornia patula, Salicornia ramosissima, Sarcoccornia fruticosa and Sarcocornia perennis were collected in 2013. Sequential extraction was realized: firstly the plant samples were subjected to soxhlet extraction using dichloromethane and then by a solid-liquid extraction with ethanol. Finally, the main compounds present in each extract were identified by GC-MS (Gas chromatography–mass spectrometry. The total of phenolic compounds and polyphenolic antioxidants in the extracts was also determined by Folin-Ciocalteu method.

  17. Effect of saline soil parameters on endo mycorrhizal colonisation of dominant halophytes in four Hungarian sites

    Energy Technology Data Exchange (ETDEWEB)

    Fuzy, A.; Biro, B.; Toth, T.

    2010-07-01

    Soil and root samples were collected from the rhizosphere of dominant halophytes (Artemisia santonicum, Aster tripolium, Festuca pseudovina, Lepidium crassifolium, Plantago maritima and Puccinellia limosa) at four locations with saline soils in Hungary. The correlations- between arbuscular mycorrhiza (AM) fungal colonisation parameters (% colonisation, % arbuscules) and soil physical, chemical and biological parameters were determined Endomycorrhiza colonisation was found to be negatively correlated with the electric conductivity of the soil paste, the salt-specific ion concentrations and the cation exchange capacity, showing the sensitivity of AM fungi at increasing salt concentrations, independently of the types of salt-specific anions. A positive correlation was detected between the mycorrhiza colonisation and the abundance of oligotroph bacteria known to be the less variable and more stable (k-strategist) group. This fact and the negative correlation found with the humus content underlines the importance of nutrient availability and the limitations of the symbiotic interactions in stressed saline or sodic soils. (Author) 29 refs.

  18. THE GENESIS OF PHOTOSYNTHESIS TYPES AS THE BASIS OF ECOLOGICAL EXPANSION OF HALOPHYTIC PLANTS

    Directory of Open Access Journals (Sweden)

    Pyurko O.Ye.

    2011-12-01

    Full Text Available The C3, C4, and CAM photosynthesis types are considerably differed by CO2 absorption intensity, its biochemistry, saturation level, water productivity, biological productivity, and other different features, which secure the plants survival at stress and extreme conditions. The aim of current research was to discover the photosynthesis peculiarities at halophytic plants species (Salicornia europaea L., Halimione pedunculata, Artemisia santonica L., Plantago lanceolata L. by salinity at model and natural conditions, and to generalize data in historical aspect. It was constituted that S. europaea L. was characterized by C3 photosynthesis passage which was switched on CAM CO2 fixation under soil salinity conditions till 4-4,5 %, but glycophyte A.santonica was immanent C4assimilation way of aspartate type.Analysis of literature data and own research allows to find out that in majority the C3photosynthesis dependence from environmental factors described by determinate curve with matched mathematical expression. It was suggested to generalize the data by Lagrange polynomial. The obtained results proved that the pattern of photosynthesis evolution is: C3 → C4 → CAM with commute possibilities: C3 → CAM; C4 → CAM.

  19. Accumulation and tolerance characteristics of cadmium in a halophytic Cd-hyperaccumulator, Arthrocnemum macrostachyum

    International Nuclear Information System (INIS)

    Redondo-Gomez, Susana; Mateos-Naranjo, Enrique; Andrades-Moreno, Luis

    2010-01-01

    The potential of the extreme halophyte Arthrocnemum macrostachyum was examined to determine its tolerance and ability to accumulate cadmium for phytoremediation purposes. A glasshouse experiment was designed to investigate the effect of cadmium from 0 to 1.35 mmol l -1 on the growth and the photosynthetic apparatus of A. macrostachyum by measuring chlorophyll fluorescence parameters, gas exchange and photosynthetic pigment concentrations. We also determined ash, cadmium, calcium, copper, iron, manganese, magnesium, phosphorous, sodium, and zinc concentrations, and C/N ratio. A. macrostachyum demonstrated hypertolerance to cadmium stress; it did not show phytotoxicity at shoot concentration as high as 70 mg kg -1 . The bioaccumulator factors exceeded the critical value (1.0) for all Cd treatments, and the transport factors indicated that this species has higher ability to transfer Cd from roots to shoots at lower Cd concentrations. At 1.35 mmol l -1 Cd A. macrostachyum showed 25% biomass reduction after a month of treatment. Long-term effects of cadmium on the growth were mainly determined by variations in net photosynthetic rate (P N ). Reductions in P N could be accounted by higher dark respiration and lower pigment concentrations. Finally, A. macrostachyum has the basic characteristics of a Cd-hyperaccumulator and may be useful for restoring Cd-contaminated sites.

  20. Accumulation and tolerance characteristics of cadmium in a halophytic Cd-hyperaccumulator, Arthrocnemum macrostachyum

    Energy Technology Data Exchange (ETDEWEB)

    Redondo-Gomez, Susana, E-mail: susana@us.es [Departamento de Biologia Vegetal y Ecologia, Facultad de Biologia, Universidad de Sevilla, Apartado 1095, 41080 Sevilla (Spain); Mateos-Naranjo, Enrique; Andrades-Moreno, Luis [Departamento de Biologia Vegetal y Ecologia, Facultad de Biologia, Universidad de Sevilla, Apartado 1095, 41080 Sevilla (Spain)

    2010-12-15

    The potential of the extreme halophyte Arthrocnemum macrostachyum was examined to determine its tolerance and ability to accumulate cadmium for phytoremediation purposes. A glasshouse experiment was designed to investigate the effect of cadmium from 0 to 1.35 mmol l{sup -1} on the growth and the photosynthetic apparatus of A. macrostachyum by measuring chlorophyll fluorescence parameters, gas exchange and photosynthetic pigment concentrations. We also determined ash, cadmium, calcium, copper, iron, manganese, magnesium, phosphorous, sodium, and zinc concentrations, and C/N ratio. A. macrostachyum demonstrated hypertolerance to cadmium stress; it did not show phytotoxicity at shoot concentration as high as 70 mg kg{sup -1}. The bioaccumulator factors exceeded the critical value (1.0) for all Cd treatments, and the transport factors indicated that this species has higher ability to transfer Cd from roots to shoots at lower Cd concentrations. At 1.35 mmol l{sup -1} Cd A. macrostachyum showed 25% biomass reduction after a month of treatment. Long-term effects of cadmium on the growth were mainly determined by variations in net photosynthetic rate (P{sub N}). Reductions in P{sub N} could be accounted by higher dark respiration and lower pigment concentrations. Finally, A. macrostachyum has the basic characteristics of a Cd-hyperaccumulator and may be useful for restoring Cd-contaminated sites.

  1. Reduced Tonoplast Fast-Activating and Slow-Activating Channel Activity Is Essential for Conferring Salinity Tolerance in a Facultative Halophyte, Quinoa1[C][W][OA

    Science.gov (United States)

    Bonales-Alatorre, Edgar; Shabala, Sergey; Chen, Zhong-Hua; Pottosin, Igor

    2013-01-01

    Halophyte species implement a “salt-including” strategy, sequestering significant amounts of Na+ to cell vacuoles. This requires a reduction of passive Na+ leak from the vacuole. In this work, we used quinoa (Chenopodium quinoa) to investigate the ability of halophytes to regulate Na+-permeable slow-activating (SV) and fast-activating (FV) tonoplast channels, linking it with Na+ accumulation in mesophyll cells and salt bladders as well as leaf photosynthetic efficiency under salt stress. Our data indicate that young leaves rely on Na+ exclusion to salt bladders, whereas old ones, possessing far fewer salt bladders, depend almost exclusively on Na+ sequestration to mesophyll vacuoles. Moreover, although old leaves accumulate more Na+, this does not compromise their leaf photochemistry. FV and SV channels are slightly more permeable for K+ than for Na+, and vacuoles in young leaves express less FV current and with a density unchanged in plants subjected to high (400 mm NaCl) salinity. In old leaves, with an intrinsically lower density of the FV current, FV channel density decreases about 2-fold in plants grown under high salinity. In contrast, intrinsic activity of SV channels in vacuoles from young leaves is unchanged under salt stress. In vacuoles of old leaves, however, it is 2- and 7-fold lower in older compared with young leaves in control- and salt-grown plants, respectively. We conclude that the negative control of SV and FV tonoplast channel activity in old leaves reduces Na+ leak, thus enabling efficient sequestration of Na+ to their vacuoles. This enables optimal photosynthetic performance, conferring salinity tolerance in quinoa species. PMID:23624857

  2. NATURAL DEVELOPMENT OF THE HALOPHYTE Salicornia bigelovii (TOR. IN COASTAL AREA OF SONORA STATE

    Directory of Open Access Journals (Sweden)

    Edgar Omar Rueda Puente

    2017-05-01

    Full Text Available In order to increase knowledge about the vegetative structure and environmental conditions, two coastal areas (north and south in Sonora, Mexico, where Salicornia bigelovii develops in natural form were investigated. Based on the abundance of Salicornia, three locations were selected in the two areas. Transects in each of the three sites were developed. The sediments in the northern areas showed higher values compared with the south areas of Sonora in organic matter. Plant biomass, density, height and frequency of occurrence were higher in frequently flooded areas compared to sparsely or less often by the tides. The average total biomass ranged from 2.23 to 6.33 kg (dry weight m-2 and is composed primarily of surface components. The maximum values of biomass of Salicornia were observed in February to May in both areas. The growth of Salicornia bigelovii is influenced mainly by the frequency of flooding, duration of exposure to air during low tide, rainfall, salinity and salt content of the ambient water and sediment, respectively. The carbon content increased with plant age, while protein content decreased by 233.6%. The steady increase in human pressure on coastal areas where Salicornia and other halophytes growth, require immediate protection order to prevent vulnerabilities in their populations.

  3. Searching for new sources of innovative products for the food industry within halophyte aromatic plants: In vitro antioxidant activity and phenolic and mineral contents of infusions and decoctions of Crithmum maritimum L.

    Science.gov (United States)

    Pereira, Catarina Guerreiro; Barreira, Luísa; da Rosa Neng, Nuno; Nogueira, José Manuel Florêncio; Marques, Cátia; Santos, Tamára F; Varela, João; Custódio, Luísa

    2017-09-01

    Aromatic halophyte plants are an outstanding source of bioactive compounds and natural products with potential use in the food industry. This work reports the in vitro antioxidant activity, toxicity, polyphenolic profile and mineral contents of infusions and decoctions from stems, leaves and flowers of Crithmum maritimum L., an aromatic and edible maritime halophyte (sea fennel). Aspalathus linearis (Burm.f.) Dahlg. (rooibos) herbal tea was used as a reference. Sea fennel's tisanes, particularly from leaves, were rich in phenolic compounds and five of them (p-hydroxybenzoic and ferulic acids, epicatechin, pyrocatechol and 4-hydroxybenzaldehyde) were here described in C. maritimum for the first time. Chlorogenic acid was the dominant phenolic determined. Na was the most abundant mineral in all tisanes followed by Ca and Mg in leaves' tisanes and K in flowers. Sea fennel's samples had a similar antioxidant activity than those from A. linearis, and had no significant toxicity towards four different mammalian cell lines. Altogether, our results suggest that sea fennel can be a source of products and/or molecules for the food industry with antioxidant properties and minerals in the form, for example, of innovative health-promoting herbal beverages. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. An Alfin-like gene from Atriplex hortensis enhances salt and drought tolerance and abscisic acid response in transgenic Arabidopsis.

    Science.gov (United States)

    Tao, Jian-Jun; Wei, Wei; Pan, Wen-Jia; Lu, Long; Li, Qing-Tian; Ma, Jin-Biao; Zhang, Wan-Ke; Ma, Biao; Chen, Shou-Yi; Zhang, Jin-Song

    2018-02-09

    Alfin-like (AL) is a small plant-specific gene family with prominent roles in root growth and abiotic stress response. Here, we aimed to identify novel stress tolerance AL genes from the stress-tolerant species Atriplex hortensis. Totally, we isolated four AhAL genes, all encoding nuclear-localized proteins with cis-element-binding and transrepression activities. Constitutive expression of AhAL1 in Arabidopsis facilitated plants to survive under saline condition, while expressing anyone of the other three AhAL genes led to salt-hypersensitive response, indicating functional divergence of AhAL family. AhAL1 also conferred enhanced drought tolerance, as judged from enhanced survival, improved growth, decreased malonaldehyde (MDA) content and reduced water loss in AhAL1-expressing plants compared to WT. In addition, abscisic acid (ABA)-mediated stomatal closure and inhibition of seed germination and primary root elongation were enhanced in AhAL1-transgenic plants. Further analysis demonstrated that AhAL1 could bind to promoter regions of GRF7, DREB1C and several group-A PP2C genes and repress their expression. Correspondingly, the expression levels of positive stress regulator genes DREB1A, DREB2A and three ABFs were all increased in AhAL1-expressing plants. Based on these results, AhAL1 was identified as a novel candidate gene for improving abiotic stress tolerance of crop plants.

  5. The interactive effects of mercury and selenium on metabolic profiles, gene expression and antioxidant enzymes in halophyte Suaeda salsa.

    Science.gov (United States)

    Liu, Xiaoli; Lai, Yongkai; Sun, Hushan; Wang, Yiyan; Zou, Ning

    2016-04-01

    Suaeda salsa is the pioneer halophyte in the Yellow River Delta and was consumed as a popular vegetable. Mercury has become a highly risky contaminant in the sediment of intertidal zones of the Yellow River Delta. In this work, we investigated the interactive effects of mercury and selenium in S. salsa on the basis of metabolic profiling, antioxidant enzyme activities and gene expression quantification. Our results showed that mercury exposure (20 μg L(-1)) inhibited plant growth of S. salsa and induced significant metabolic responses and altered expression levels of INPS, CMO, and MDH in S. salsa samples, together with the increased activities of antioxidant enzymes including SOD and POD. Overall, these results indicated osmotic and oxidative stresses, disturbed protein degradation and energy metabolism change in S. salsa after mercury exposures. Additionally, the addition of selenium could induce both antagonistic and synergistic effects including alleviating protein degradation and aggravating osmotic stress caused by mercury. © 2014 Wiley Periodicals, Inc.

  6. Physiological and proteomic analyses of salt stress response in the halophyte Halogeton glomeratus.

    Science.gov (United States)

    Wang, Juncheng; Meng, Yaxiong; Li, Baochun; Ma, Xiaole; Lai, Yong; Si, Erjing; Yang, Ke; Xu, Xianliang; Shang, Xunwu; Wang, Huajun; Wang, Di

    2015-04-01

    Very little is known about the adaptation mechanism of Chenopodiaceae Halogeton glomeratus, a succulent annual halophyte, under saline conditions. In this study, we investigated the morphological and physiological adaptation mechanisms of seedlings exposed to different concentrations of NaCl treatment for 21 d. Our results revealed that H. glomeratus has a robust ability to tolerate salt; its optimal growth occurs under approximately 100 mm NaCl conditions. Salt crystals were deposited in water-storage tissue under saline conditions. We speculate that osmotic adjustment may be the primary mechanism of salt tolerance in H. glomeratus, which transports toxic ions such as sodium into specific salt-storage cells and compartmentalizes them in large vacuoles to maintain the water content of tissues and the succulence of the leaves. To investigate the molecular response mechanisms to salt stress in H. glomeratus, we conducted a comparative proteomic analysis of seedling leaves that had been exposed to 200 mm NaCl for 24 h, 72 h and 7 d. Forty-nine protein spots, exhibiting significant changes in abundance after stress, were identified using matrix-assisted laser desorption ionization tandem time-of-flight mass spectrometry (MALDI-TOF/TOF MS/MS) and similarity searches across EST database of H. glomeratus. These stress-responsive proteins were categorized into nine functional groups, such as photosynthesis, carbohydrate and energy metabolism, and stress and defence response. © 2014 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.

  7. Effect of saline irrigation water on gas exchange and proline metabolism in ber (Ziziphus).

    Science.gov (United States)

    Bagdi, D L; Bagri, G K

    2016-09-01

    An experiment was conducted in pots of 25 kg capacity to study the effect of saline irrigation (EC 0,5,10,15 and 20 dSm-1) prepared by mixing NaCl, NaSO4, CaCl and MgCl2 in 3:1 ratio of chloride and sulphate on gas exchange traits, membrane stability, chlorophyll stability index and osmolytic defense mechanism in Ziziphus rotundifolia and Ziziphus nummularia species of Indian jujube (Z.mauritiana). Result showed that net photosynthetic rate (PN), transpiration (e) and stomatal conductance were comparatively lower in Ziziphus nummularia, which further declined with increasing level of saline irrigation water. Chlorophyll stability and membrane stability also declined significantly in salt stress, with higher magnitude in Ziziphus nummularia. The activity of proline anabolic enzymes; Δ1-Pyrrolline-5-carboxylate reductase, Δ1-Pyrrolline-5-carboxylate synthetase and Ornithine-δ-aminotransferase were recorded higher in Ziziphus rotundifolia with decrease in proline dehydrogenase. The sodium content was observed higher in roots of Ziziphus rotundifolia and leaves of Ziziphus nummularia. Therefore, it is suggested that salt tolerance mechanism was more efficiently operative in Ziziphus rotundifolia owing to better management of physiological attributes, osmolytic defense mechanism and restricted translocation of sodium from root to leaves along with larger accumulation of potassium in its leaves.

  8. Increased resistance to a generalist herbivore in a salinity-stressed non-halophytic plant.

    Science.gov (United States)

    Renault, Sylvie; Wolfe, Scott; Markham, John; Avila-Sakar, Germán

    2016-01-01

    Plants often grow under the combined stress of several factors. Salinity and herbivory, separately, can severely hinder plant growth and reproduction, but the combined effects of both factors are still not clearly understood. Salinity is known to reduce plant tissue nitrogen content and growth rates. Since herbivores prefer tissues with high N content, and biochemical pathways leading to resistance are commonly elicited by salt-stress, we hypothesized that plants growing in saline conditions would have enhanced resistance against herbivores. The non-halophyte, Brassica juncea, and the generalist herbivore Trichoplusia ni were used to test the prediction that plants subjected to salinity stress would be both more resistant and more tolerant to herbivory than those growing without salt stress. Plants were grown under different NaCl levels, and either exposed to herbivores and followed by removal of half of their leaves, or left intact. Plants were left to grow and reproduce until senescence. Tissue quality was assessed, seeds were counted and biomass of different organs measured. Plants exposed to salinity grew less, had reduced tissue nitrogen, protein and chlorophyll content, although proline levels increased. Specific leaf area, leaf water content, transpiration and root:shoot ratio remained unaffected. Plants growing under saline condition had greater constitutive resistance than unstressed plants. However, induced resistance and tolerance were not affected by salinity. These results support the hypothesis that plants growing under salt-stress are better defended against herbivores, although in B. juncea this may be mostly through resistance, and less through tolerance. Published by Oxford University Press on behalf of the Annals of Botany Company.

  9. Antioxidant and antimicrobial activities of the edible medicinal halophyte Tamarix gallica L. and related polyphenolic constituents.

    Science.gov (United States)

    Ksouri, Riadh; Falleh, Hanen; Megdiche, Wided; Trabelsi, Najla; Mhamdi, Baya; Chaieb, Kamel; Bakrouf, Amina; Magné, Christian; Abdelly, Chedly

    2009-08-01

    Tamarix gallica is a halophytic species having hepatotonic and stimulant properties, as it was traditionally used in the treatment of various liver disorders. Leaf and flower infusion have anti-inflammatory and anti-diarrheic properties. In this work, we have investigated antioxidant and antimicrobial activities of leaf and flower extracts and their phenolic composition. Results showed that flowers exhibit a higher antioxidant activity as compared to the leaves, IC(50) values of the flower extracts are being 1.3 (beta-carotene bleaching) to 19 times (lipid peroxidation inhibition) lower than those for leaves. Accordingly, flower extracts exhibited the highest total phenolic content (135.35 mgGAE/gDW) and RP-HPLC analysis showed that syringic acid, isoquercitin as well as catechin were the major phenolics. Furthermore, Tamarix extracts showed appreciable antibacterial properties against human pathogen strains. The mean inhibition zone was from 0 to 6.5mm when the concentration increased from 2 to 100mg/l. The strongest activity was recorded against Micrococcus luteus and the lowest activity was observed against Escherichia coli. Moreover, organ extracts show a weakly to moderate activity against the tested Candida. These findings suggest that Tamarix may be considered as an interesting source of antioxidants for therapeutic or nutraceutical industries and for food manufactures.

  10. A spatial pattern analysis of the halophytic species distribution in an arid coastal environment.

    Science.gov (United States)

    Badreldin, Nasem; Uria-Diez, J; Mateu, J; Youssef, Ali; Stal, Cornelis; El-Bana, Magdy; Magdy, Ahmed; Goossens, Rudi

    2015-05-01

    Obtaining information about the spatial distribution of desert plants is considered as a serious challenge for ecologists and environmental modeling due to the required intensive field work and infrastructures in harsh and remote arid environments. A new method was applied for assessing the spatial distribution of the halophytic species (HS) in an arid coastal environment. This method was based on the object-based image analysis for a high-resolution Google Earth satellite image. The integration of the image processing techniques and field work provided accurate information about the spatial distribution of HS. The extracted objects were based on assumptions that explained the plant-pixel relationship. Three different types of digital image processing techniques were implemented and validated to obtain an accurate HS spatial distribution. A total of 2703 individuals of the HS community were found in the case study, and approximately 82% were located above an elevation of 2 m. The micro-topography exhibited a significant negative relationship with pH and EC (r = -0.79 and -0.81, respectively, p < 0.001). The spatial structure was modeled using stochastic point processes, in particular a hybrid family of Gibbs processes. A new model is proposed that uses a hard-core structure at very short distances, together with a cluster structure in short-to-medium distances and a Poisson structure for larger distances. This model was found to fit the data perfectly well.

  11. Application of UV-visible absorption spectroscopy combined with two-dimensional correlation for insight into DOM fractions from native halophyte soils in a larger estuarine delta.

    Science.gov (United States)

    Wei, Huaibin; Yu, Huibin; Pan, Hongwei; Gao, Hongjie

    2018-05-01

    UV-visible absorption spectroscopy combined with principal component analysis (PCA) and two-dimensional correlation (2D correlation) is used to trace components of dissolved organic matter (DOM) extracted from soils in a larger estuarine delta and to investigate spatial variations of DOM fractions. Soil samples of different depths were collected from native halophyte soils along a saline gradient, i.e., Suaeda salsa Comm. (SSC), Chenopodium album Comm. (CAC), Phragmites australis Comm. (PAC), and Artemisia selengensis Comm. (ASC). Molecular weights of DOM within the SSC soil profile were the lowest, followed by the CAC, PAC, and ASC soil profiles. Humification degree of DOM within the ASC soil profile was the highest, followed by the PAC, SSC, and CAC soil profiles. DOM within the soil profiles mainly contained phenolic, carboxylic, microbial products, and aromatic and alkyl groups through the PCA, which presented the significant differentiation among the four native halophyte soil profiles. The 2D UV correlation spectra of DOM within the SSC soil profile indicated that the variations of the phenolic groups were the largest, followed by the carboxylic groups, microbial products, and humified organic materials according to the band changing order of 285 → 365 → 425 → 520 nm. The 2D UV correlation spectra of DOM within the CAC soil profiles determined that the decreasing order of the variations was phenolic groups > carboxylic groups > microbial products according the band changing order of 285 → 365 → 425 nm. The 2D UV correlation spectra of DOM within the PAC soil profile proved that the variations of the phenolic groups were larger than those of the carboxylic groups according to the band changing order of 285 → 365 nm. The 2D UV correlation spectra of DOM within the ASC soil profile demonstrated that the variations of the phenolic groups were larger than those of the other DOM fractions according to the broad cross-peak at

  12. Single cell-type comparative metabolomics of epidermal bladder cells from the halophyte Mesembryanthemum crystallinum.

    Science.gov (United States)

    Barkla, Bronwyn J; Vera-Estrella, Rosario

    2015-01-01

    One of the remarkable adaptive features of the halophyte Mesembryanthemum crystallinum are the specialized modified trichomes called epidermal bladder cells (EBC) which cover the leaves, stems, and peduncle of the plant. They are present from an early developmental stage but upon salt stress rapidly expand due to the accumulation of water and sodium. This particular plant feature makes it an attractive system for single cell type studies, with recent proteomics and transcriptomics studies of the EBC establishing that these cells are metabolically active and have roles other than sodium sequestration. To continue our investigation into the function of these unusual cells we carried out a comprehensive global analysis of the metabolites present in the EBC extract by gas chromatography Time-of-Flight mass spectrometry (GC-TOF) and identified 194 known and 722 total molecular features. Statistical analysis of the metabolic changes between control and salt-treated samples identified 352 significantly differing metabolites (268 after correction for FDR). Principal components analysis provided an unbiased evaluation of the data variance structure. Biochemical pathway enrichment analysis suggested significant perturbations in 13 biochemical pathways as defined in KEGG. More than 50% of the metabolites that show significant changes in the EBC, can be classified as compatible solutes and include sugars, sugar alcohols, protein and non-protein amino acids, and organic acids, highlighting the need to maintain osmotic homeostasis to balance the accumulation of Na(+) and Cl(-) ions. Overall, the comparison of metabolic changes in salt treated relative to control samples suggests large alterations in M. crystallinum epidermal bladder cells.

  13. Making Epidermal Bladder Cells Bigger: Developmental- and Salinity-Induced Endopolyploidy in a Model Halophyte.

    Science.gov (United States)

    Barkla, Bronwyn J; Rhodes, Timothy; Tran, Kieu-Nga T; Wijesinghege, Chathura; Larkin, John C; Dassanayake, Maheshi

    2018-06-01

    Endopolyploidy occurs when DNA replication takes place without subsequent mitotic nuclear division, resulting in cell-specific ploidy levels within tissues. In plants, endopolyploidy plays an important role in sustaining growth and development, but only a few studies have demonstrated a role in abiotic stress response. In this study, we investigated the function of ploidy level and nuclear and cell size in leaf expansion throughout development and tracked cell type-specific ploidy in the halophyte Mesembryanthemum crystallinum In addition to developmental endopolyploidy, we examined the effects of salinity stress on ploidy level. We focused specifically on epidermal bladder cells (EBC), which are modified balloon-like trichomes, due to their large size and role in salt accumulation. Our results demonstrate that ploidy increases as the leaves expand in a similar manner for each leaf type, and ploidy levels up to 512C were recorded for nuclei in EBC of leaves of adult plants. Salt treatment led to a significant increase in ploidy levels in the EBC, and these cells showed spatially related differences in their ploidy and nuclear and cell size depending on the positions on the leaf and stem surface. Transcriptome analysis highlighted salinity-induced changes in genes involved in DNA replication, cell cycle, endoreduplication, and trichome development in EBC. The increase in cell size and ploidy observed in M. crystallinum under salinity stress may contribute to salt tolerance by increasing the storage capacity for sodium sequestration brought about by higher metabolic activity driving rapid cell enlargement in the leaf tissue and EBC. © 2018 American Society of Plant Biologists. All rights reserved.

  14. Single cell-type comparative metabolomics of epidermal bladder cells from the halophyte Mesembryanthemum crystallinum

    Science.gov (United States)

    Barkla, Bronwyn J.; Vera-Estrella, Rosario

    2015-01-01

    One of the remarkable adaptive features of the halophyte Mesembryanthemum crystallinum are the specialized modified trichomes called epidermal bladder cells (EBC) which cover the leaves, stems, and peduncle of the plant. They are present from an early developmental stage but upon salt stress rapidly expand due to the accumulation of water and sodium. This particular plant feature makes it an attractive system for single cell type studies, with recent proteomics and transcriptomics studies of the EBC establishing that these cells are metabolically active and have roles other than sodium sequestration. To continue our investigation into the function of these unusual cells we carried out a comprehensive global analysis of the metabolites present in the EBC extract by gas chromatography Time-of-Flight mass spectrometry (GC-TOF) and identified 194 known and 722 total molecular features. Statistical analysis of the metabolic changes between control and salt-treated samples identified 352 significantly differing metabolites (268 after correction for FDR). Principal components analysis provided an unbiased evaluation of the data variance structure. Biochemical pathway enrichment analysis suggested significant perturbations in 13 biochemical pathways as defined in KEGG. More than 50% of the metabolites that show significant changes in the EBC, can be classified as compatible solutes and include sugars, sugar alcohols, protein and non-protein amino acids, and organic acids, highlighting the need to maintain osmotic homeostasis to balance the accumulation of Na+ and Cl− ions. Overall, the comparison of metabolic changes in salt treated relative to control samples suggests large alterations in M. crystallinum epidermal bladder cells. PMID:26113856

  15. Conveyor Cultivation of the Halophytic Plant Salicornia europaea for the Recycling of NaCl from Human Liquid Waste in a Biological Life Support System.

    Science.gov (United States)

    Balnokin, Yurii; Myasoedov, Nikolay; Popova, Larissa; Tikhomirov, Alexander A.; Ushakova, Sofya; Tikhomirova, Natalia; Lasseur, Christophe; Gros, Jean-Bernard

    One problem in designing bioregenerative life support systems (BLSS) is developing technolo-gies to include human liquid and solid waste in intrasystem recycling. A specific task is recycling of NaCl excreted in urine by humans. We showed recently that this could be achieved through inclusion of the salt accumulating halophyte Salicornia europaea in the autotrophic compart-ment of the BLSS (Balnokin et al., ASR, 2010, in press). A model of NaCl circulation in BLSS with inclusion of S. europaea was based on the NaCl turnover in the human -urine -nutrient solution -S. europaea -human cycle. Mineralized urine was used as a basis for preparation of a nutrient solution for the halophyte cultivation. The shoots of the halophyte cultivated in the mineralized urine and containing NaCl could to be used by the BLSS inhabitants in their diets. In this report we describe cultivation of S. europaea which allows turnover of NaCl and produces daily shoot biomass containing Na+ and Cl- in quantities approximately equal to those excreted in daily human urine. The plants were grown in water culture in a climatic chamber under controlled conditions. A solution simulating mineralized urine (SSMU) was used as a basis for preparation of a nutri-ent solution for S. europaea cultivation. For continuous biomass production, seedlings of S. europaea, germinated preliminary in moist sand, were being transferred to the nutrient solu-tion at regular intervals (every two days). Duration of the conveyor operation was 112 days. During the first 56 days, the seedlings were being planted in SSMU diluted by a factor of 1.5 (2/3 SSMU). The same solution was introduced into the growth vessels as volumes of growth medium decreased due to plant transpiration. Starting from the 56th day as conveyor operation was initiated, the plants were being harvested every two days; the solutions from the discharged vessels were mixed with the fresh SSMU and the mixture was introduced into all other growth vessels of

  16. Single cell-type comparative metabolomics of epidermal bladder cells from the halophyte Mesembryanthemum crystallinum.

    Directory of Open Access Journals (Sweden)

    Bronwyn Jane Barkla

    2015-06-01

    Full Text Available One of the remarkable adaptive features of the halophyte and facultative CAM plant Mesembryathemum crystallinum are the specialized modified trichomes called epidermal bladder cells (EBC which cover the leaves, stems, and peduncle of the plant. They are present from an early developmental stage but upon salt stress rapidly expand due to the accumulation of water and sodium. This particular plant feature makes it an attractive system for single cell type studies, with recent proteomics and transcriptomics studies of the EBC establishing that these cells are metabolically active and have roles other than sodium sequestration. To continue our investigation into the function of these unusual cells we carried out a comprehensive global analysis of the metabolites present in the EBC extract by gas chromatography Time-of-Flight mass spectrometry (GC-TOF and identified 194 known and 722 total molecular features. Statistical analysis of the metabolic changes between control and salt-treated samples was used to identify 352 significantly differing metabolites (268 after correction for FDR. Principal components analysis provided an unbiased evaluation of the data variance structure. Biochemical pathway enrichment analysis suggested significant perturbations in 13 biochemical pathways as defined in KEGG. More than 50% of the metabolites that show significant changes in the EBC, can be classified as compatible solutes and include sugars, sugar alcohols, protein and non-protein amino acids, and organic acids, highlighting the need to maintain osmotic homeostasis to balance the accumulation of Na and Cl ions. Overall, the comparison of metabolic changes in salt treated relative to control samples suggest large alterations in Mesembryanthemum crystallinum epidermal bladder cells.

  17. Effect of citric acid on metals mobility in pruning wastes and biosolids compost and metals uptake in Atriplex halimus and Rosmarinus officinalis.

    Science.gov (United States)

    Tapia, Y; Eymar, E; Gárate, A; Masaguer, A

    2013-05-01

    To assess metal mobility in pruning waste and biosolids compost (pH 6.9 and total concentration of metals in milligram per kilogram of Cd 1.9, Cu 132, Fe 8,513, Mn 192, Pb 81, and Zn 313), shrubs species Atriplex halimus and Rosmarinus officinalis were transplanted in this substrate and irrigated with citric acid (4 g L(-1), pH 2.9) and nutrient solution daily for 60 days. Citric acid significantly increased the concentrations of soluble Mn and Fe in the nutrient substrate solution measured by suction probes, while other metals did not vary in concentration (Cu and Zn) or were not observed at detectable levels (Cd and Pb). In plants, citric acid significantly increased the concentrations of Cu (2.7 ± 0.1-3.3 ± 0.1 mg kg(-1)), Fe (49.2 ± 5.2-76.8 ± 6.8 mg kg(-1)), and Mn (7.2 ± 1.1-11.4 ± 0.7 mg kg(-1)) in leaves of R. officinalis, whereas the concentration of only Mn (25.4 ± 0.3-42.2 ± 2.9 mg kg(-1)) was increased in A. halimus. Increasing Fe and Mn solubility by citric acid addition indicates the possibility of using it to improve plant nutrition. The mobility of metals in this substrate was influenced for the concentration of the metal, the degree of humification of organic matter and its high Fe content.

  18. Determination of oil and fatty acids concentration in seeds of coastal halophytic Sueada aegyptica plant

    Directory of Open Access Journals (Sweden)

    Tahereh Assadi

    2013-04-01

    Full Text Available Background: Suaeda aegyptica (S. aegyptica species belong to the Chenepodiaceae family, the second largest family in the world of plants kingdom. It is indigenous to arid and semi-arid regions of the world and salty coastal zones Persian Gulf of Iran. It is an annual succulent halophyte plant which is characterized by producing oily seeds, high growth rate and large number of biomass. The aim of this study was analysis and determination of oil and fatty acids concentration in the S. aegyptica seed. Material and Methods: The seeds of S. aegyptica were collected form coastal zones of Persian Gulf in Bushehr province, washed and dried. The fatty acids content of the dried seeds were extracted in n-hexane solvent by soxhellet apparatus. The residue of n-hexane in oily phase was evaporated by rotary evaporator and remaining oil was collected for fatty acids analysis. In the presence of potassium hydroxide and BF3 by refluxing for 30 minutes, the methyl ester derivative of fatty acids were produced. Then the resulted derivatives were analyzed by gas chromatography (GC-FID. Results: The seeds of S. aegyptica contains eight fatty acids as: Pelargonic (C9, Capric (C10, Undecylic (C11, Tridecylic (C13, Myristic (C14, Palmitic (C16, Stearic (C18, Linoleic (18:2 and Linolenic (18:3. Average oil content in seeds 014/0 ± 87 / percent. Conclusion: The ratio of unsaturated fatty acids was higher than the saturated ones. Linoleic and Palmitic acids are major unsaturated and saturated fatty acids of S. aegyptica seed respectively.

  19. Streptomyces halophytocola sp. nov., an endophytic actinomycete isolated from the surface-sterilized stems of a coastal halophyte Tamarix chinensis Lour.

    Science.gov (United States)

    Qin, Sheng; Bian, Guang-Kai; Tamura, Tomohiko; Zhang, Yue-Ji; Zhang, Wen-Di; Cao, Cheng-Liang; Jiang, Ji-Hong

    2013-08-01

    A novel actinomycete, designated KLBMP 1284(T), was isolated from the surface-sterilized stems of a coastal halophyte Tamarix chinensis Lour. collected from the city of Nantong, Jiangsu Province, east China. The strain was found to have morphological and chemotaxonomic characteristics typical of members of the genus Streptomyces. Analysis of the 16S rRNA gene sequence of strain KLBMP 1284(T) revealed that the strain formed a distinct clade within the phylogenetic tree based on 16S rRNA gene sequences and the highest sequence similarity (99.43 %) was to Streptomyces sulphureus NRRL B-1627(T). 16S rRNA gene sequence similarity to other species of the genus Streptomyces was lower than 97 %. Based on DNA-DNA hybridization values and comparison of morphological and phenotypic data, KLBMP 1284(T) could be distinguished from the closest phylogenetically related species, Streptomyces sulphureus NRRL B-1627(T). Thus, based on these data, it is evident that strain KLBMP 1284(T) represents a novel species of the genus Streptomyces, for which the name Streptomyces halophytocola sp. nov. is proposed. The type strain is KLBMP 1284(T) (= KCTC 19890(T) = NBRC 108770(T)).

  20. The Microstructure Organization and Functional Peculiarities of Euphorbia paralias L. and Polygonum maritimum L. – Halophytic Plants from Dunes of Pomorie Lake (Bulgaria

    Directory of Open Access Journals (Sweden)

    I.V. Kosakivska

    2017-05-01

    Full Text Available The aim of this research was to investigate the leaf surface microstructure, pigments spectrum, hormones status and lipids composition of halophytes Polygonum maritimum L. and Euphorbia paralias L. that grow under natural conditions on the dunes of Pomorie Lake, (Bulgaria. It was shown that the existence in saline and dry soils provided among others adaptive mechanisms by specific microstructure of leaf. The adaxial and abaxial surfaces of P. maritimum leaves are covered with a dense layer of cuticle wax, stomata are located on the leaf both sides below the cuticle level. In E. paralias the cuticle is also well developed on the adaxial surface of leaf laminas. The epidermis of the leaf lower side is covered with a less dense cuticle layer formed by large wax crystals. This plant has stoma pores only on the abaxial side of small leaves below the cuticle level and they are surrounded with hump-shaped cuticle constructions. A high amount of carotenoids (as compared with that of chlorophylls in P. maritimum leaves indicates that these pigments have a light-collecting function and could transfer an additional energy to chlorophylls. The high performance liquid chromatography method has been used to provide a qualitative and quantitative analysis of hormones. It was shown that in leaves of E. paralias and P. maritimum free abscisic (ABA and conjugated indole-3-acetic (IAA acids prevailed. A high level of active ABA is correlated with the salt tolerance and ability to survive and grow in stress conditions. A high level of conjugated form of IAA demonstrated that activity of this hormone is limited. The cytokinins qualitative and quantitative analyses demonstrated that in E. paralias leaves zeatin forms dominated, and the level of inactive cytokinins (cis-zeatin and zeatin-O-glucoside was much higher than that of active ones (trans-zeatin and zeatin riboside. P. maritinum leaves contained a significant quantity of isopentenyl forms

  1. Potential use of the facultative halophyte Chenopodium quinoa Willd. as substrate for biogas production cultivated with different concentrations of sodium chloride under hydroponic conditions.

    Science.gov (United States)

    Turcios, Ariel E; Weichgrebe, Dirk; Papenbrock, Jutta

    2016-03-01

    This project analyses the biogas potential of the halophyte Chenopodium quinoa Willd. In a first approach C. quinoa was grown with different concentrations of NaCl (0, 10 and 20 ppt NaCl) and the crop residues were used as substrate for biogas production. In a second approach, C. quinoa was grown with 0, 10, 20 and 30 ppt NaCl under hydroponic conditions and the fresh biomass was used as substrate. The more NaCl is in the culture medium, the higher the sodium, potassium, crude ash and hemicellulose content in the plant tissue whereas the calcium, sulfur, nitrogen and carbon content in the biomass decrease. According to this study, it is possible to produce high yields of methane using biomass of C. quinoa. The highest specific methane yields were obtained using the substrate from the plants cultivated at 10 and 20 ppt NaCl in both experiments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Hairy root induction and phytoremediation of textile dye, Reactive green 19A-HE4BD, in a halophyte, Sesuvium portulacastrum (L. L.

    Directory of Open Access Journals (Sweden)

    Vinayak H. Lokhande

    2015-12-01

    Full Text Available In this study, we report phytoremediation of textile dyes using hairy roots derived through Agrobacterium rhizogenes (NCIM 5140 infection of in vitro leaf and stem explants of a halophyte Sesuvium portulacastrum (L. L. Leaf explants showed higher frequency of hairy root induction (70% than stem explants (30%, and maximum number of roots (leaf 42.3 ± 2.4 and stem 50.3 ± 1.7. Transformed nature of hairy roots was ascertained by amplifying 970 bp region of T-DNA of Ri plasmid. Hairy roots were screened for phytoremediation of various textile dyes and results showed that HRs were able to degrade Reactive green 19A HE4BD upto 98% within 5 days of incubation. Spectrophotometric analysis showed decrease in dye concentration while HPLC and FTIR analysis confirmed its degradation. Seed germination assay demonstrated non-toxic nature of the extracted metabolites. This is the first report on induction of hairy root culture in Sesuvium portulacastrum and phytoremediation of textile dyes.

  3. Cd and Ni transport and accumulation in the halophyte Sesuvium portulacastrum: implication of organic acids in these processes

    Directory of Open Access Journals (Sweden)

    Tahar eGhnaya

    2015-03-01

    Full Text Available The implication of organic acids in Cd and Ni translocation was studied in the halophyte species Sesuvium portulacastrum. Citric, fumaric, malic and ascorbic acids were separated and quantified by HPLC technique in shoots, roots and xylem saps of plants grown on nutrient solutions added with 50 µM Cd, 100 µM Ni and the combination of 50 µM Cd + 100 µM Ni. Results showed that Cd had no significant impact on biomass production while Ni and the combination of both metals drastically affected plant development. Cadmium and Ni concentrations in tissues and xylem sap were higher in plants individually exposed to heavy metal application than in those subjected to the combined treatment Cd + Ni, suggesting a possible competition between these metals for absorption. Both metals applied separately or in combination induced an increase in citrate concentration in shoots and xylem sap but a decrease of this concentration in the roots. However a minor relationship was observed between metal application and fumaric, malic and ascorbic acids. Both observations suggest the implication of citric acid in Cd, Ni translocation and shoot accumulation in S. portulacastrum. The relatively high accumulation of citric acid in xylem sap and shoot of S. portulacastrum could be involved in metal chelation and thus contributes to heavy metal tolerance in this species.

  4. EFFECT OF EXOGENOUS ABSCISIC ACID ON GROWTH AND BIOCHEMICAL CHANGES IN THE HALOPHYTE SUAEDA MARITIMA

    Directory of Open Access Journals (Sweden)

    Anbarasi G.

    2015-04-01

    Full Text Available Different types of phytohormones are being extensively used to alleviate the adverse effect of salinity stress on plant growth. Among those, Abscisic acid (ABA is a plant stress hormone and one of the most important signaling molecules in plants. Drought and salinity activate De-novo abscisic acid synthesis prevent further water loss by evaporation through stomata, mediated by changes in the guard cell turgor pressure. Under osmotic stress abscisic acid induce the accumulation of protein involved in the biosynthesis of osmolites which increasing the stress tolerance of plant. In addition, exogenous application of ABA enhances the tolerance of plants or plant cells to cold, heat, drought, anoxia and heavy metal stresses. This study was carried out to study the exogenous abscisic (ABA acid induced regulatory role on the growth, water content, protein content, chlorophyll content, osmolyte accumulation and protein profiling through SDS PAGE in a halophyte, Suaeda maritima. The osmolyte accumulation of proline and glycine betaine was found to be more in 50 µM ABA concentrations. The protein profiling through SDS PAGE revealed that ̴ 66KDa proteins was not expressed in the control plant and in 10μM ABA treated plants. Interestingly, the ABA treatment induced a new protein of 14.2KDa in 10μM concentration. The ABA treated plants with concentrations 50μM, 100μM and 150μM showed changes in the expression of protein in abundance than the control and 10μM ABA treated plants. The findings in this study indicate that among all the concentrations, 50μM ABA concentration treated plants exhibited higher growth rate.

  5. Pseudonocardia nantongensis sp. nov., a novel endophytic actinomycete isolated from the coastal halophyte Tamarix chinensis Lour.

    Science.gov (United States)

    Xing, Ke; Qin, Sheng; Bian, Guang-Kai; Zhang, Yue-Ji; Zhang, Wen-Di; Dai, Chuan-Chao; Liu, Chang-Hong; Li, Wen-Jun; Jiang, Ji-Hong

    2012-11-01

    A novel isolate, designated strain KLBMP 1282(T) was isolated from the surface-sterilized leaves of a coastal halophyte Tamarix chinensis Lour., collected from Nantong, Jiangsu Province, east of China. Phylogenetic analysis based on 16S rRNA gene sequences revealed that this strain belongs to the genus Pseudonocardia, being most closely related to Pseudonocardia kongjuensis LM 157(T) (98.33 %), Pseudonocardia autotrophica IMSNU 20050(T) (97.77 %), Pseudonocardia endophytica YIM 56035(T) (97.63 %), Pseudonocardia ammonioxydans H9 (T) (97.62 %) and Pseudonocardia compacta IMSNU 20111(T) (97.56 %); similarity to other type strains of the genus Pseudonocardia was <97.5 %. Chemotaxonomic data confirmed the affiliation of strain KLBMP 1282(T) to the genus Pseudonocardia. Strain KLBMP 1282(T) contained MK-8(H(4)) as the predominant ubiquinone and iso-C(16:0) as the major fatty acid. The polar lipids detected in strain KLBMP 1282(T) were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, phosphatidylmethylethanolamine, phosphatidylethanolamine, phosphatidylinositol, phosphatidylinositol mannosides, one unknown phospholipid and four unknown glycolipids. The DNA G + C content of strain KLBMP 1282(T) was 73.1 mol %. The results of DNA-DNA hybridizations and the phylogenetic analysis, together with the phenotypic and biochemical tests, allowed the differentiation of strain KLBMP 1282(T) from strains of other recognized Pseudonocardia species. Therefore, strain KLBMP 1282(T) represents a novel species of the genus Pseudonocardia, for which the name Pseudonocardia nantongensis sp. nov. is proposed. The type strain is KLBMP 1282(T) (=KCTC 29053(T) = NBRC 108677(T)).

  6. Growth, chlorophyll fluorescence and mineral nutrition in the halophyte Tamarix gallica cultivated in combined stress conditions: Arsenic and NaCl.

    Science.gov (United States)

    Sghaier, Dhouha Belhaj; Duarte, Bernardo; Bankaji, Insaf; Caçador, Isabel; Sleimi, Noomene

    2015-08-01

    Trace metal elements can cause various environmental and health issues due to their accumulation and integration in the food chain. In the present study, we determined the major toxic effects of arsenic on physiological behaviour of plants. For this propose, several combinations of high salinity and arsenic (As) concentrations were applied to the halophytic shrub, Tamarix gallica, by growing for three months with an irrigation solution supplemented with different concentrations of As (0, 200, 500 and 800M) with and without 200mM NaCl. The effect of the combined stress conditions on growth, physiological patterns and biochemical parameters were also assessed. The results demonstrated that T. gallica is a tolerant plant regarding arsenic. The photosynthesis apparatus Fo, Fm and Fv fluorescence, as well as Fv/Fm were not affected by As nor by As combined with salt. Likewise, pigment and nutrient (K(+), Ca(2+) and Mg(2+)) contents were not affected either. However, the study results revealed that As adversely and significantly influenced the growth with increasing the concentration of As. Despite shoots growth reduction, the present research demonstrates that T. gallica is able to cope with high external concentrations of As (under 500μM) alone or in combination with NaCl. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. 2120-IJBCS-Article-Elhadji Faye

    African Journals Online (AJOL)

    hp

    Atriplex lentiformis associé ou non au champignon Rhizophagus irregulare a été observé en ... en sodium des plants, la salinité et l'acidité du sol. Les résultats ...... de mejoramiento en la emergencia de. Atriplex repanda. Phil. Phyton, 36(2):.

  8. Identification of salt-induced genes from Salicornia brachiata, an extreme halophyte through expressed sequence tags analysis.

    Science.gov (United States)

    Jha, Bhavanath; Agarwal, Pradeep K; Reddy, Palakolanu Sudhakar; Lal, Sanjay; Sopory, Sudhir K; Reddy, Malireddy K

    2009-04-01

    Salinity severely affects plant growth and development causing crop loss worldwide. We have isolated a large number of salt-induced genes as well as unknown and hypothetical genes from Salicornia brachiata Roxb. (Amaranthaceae). This is the first description of identification of genes in response to salinity stress in this extreme halophyte plant. Salicornia accumulates salt in its pith and survives even at 2 M NaCl under field conditions. For isolating salt responsive genes, cDNA subtractive hybridization was performed between control and 500 mM NaCl treated plants. Out of the 1200 recombinant clones, 930 sequences were submitted to the NCBI database (GenBank accession: EB484528 to EB485289 and EC906125 to EC906292). 789 ESTs showed matching with different genes in NCBI database. 4.8% ESTs belonged to stress-tolerant gene category and approximately 29% ESTs showed no homology with known functional gene sequences, thus classified as unknown or hypothetical. The detection of a large number of ESTs with unknown putative function in this species makes it an interesting contribution. The 90 unknown and hypothetical genes were selected to study their differential regulation by reverse Northern analysis for identifying their role in salinity tolerance. Interestingly, both up and down regulation at 500 mM NaCl were observed (21 and 10 genes, respectively). Northern analysis of two important salt tolerant genes, ASR1 (Abscisic acid stress ripening gene) and plasma membrane H+ATPase, showed the basal level of transcripts in control condition and an increase with NaCl treatment. ASR1 gene is made full length using 5' RACE and its potential role in imparting salt tolerance is being studied.

  9. Participatory approach for integrated development and management of North African marginal zones: demonstrative plan to fight desertification in Morocco and Tunisia

    Directory of Open Access Journals (Sweden)

    Maurizio Mulas

    2012-12-01

    Full Text Available A demonstrative and participatory development project on desertification mitigation and rural development has been launched in Northern Africa under SMAP Programme (Short and Medium-term priority environmental Action Programme financed by the European Union. The project, which title is Demonstration Project on Strategies to Combat Desertification in Arid Lands with Direct Involvement of Local Agro-pastoral Communities in North Africa, is carried out in sensitive regions of Morocco and Tunisia with the coordination of the Nucleo Ricerca sulla Desertificazione (NRD, Desertification Research Center of the University of Sassari (Italy and the partnership of Morocco and Tunisia Agriculture Ministries. The areas concerned are located in regions characterised by rural poverty, food dependency and land abandoning where urgent measures are needed to promote optimisation of resource availability and management for a sustainable development. The project involves direct desertification mitigation by vegetation cover restoration, with drought resistant perennial forage species (Opuntia ficus-indica, Atriplex nummularia and Acacia saligna in highly degraded rangelands in order to mitigate desertification processes while improving rangelands productivity; and adopts measures for local population technical capacities building through training sessions related to all project activities, and making it a concrete demonstration supported by the direct involvement of local communities. Successful actions already carried out in this field by the participants of the project as well as by other Mediterranean countries, has been taken into account, re-elaborated and exploited, thus promoting south/south co-operation and exchange of knowledge. Participation of all actors and especially of local communities is the key point in all phases of the project and is strengthened by means of dissemination and sensitisation campaigns and by training courses. At the end of the

  10. Local desalination treatment plant wastewater reuse and evaluation potential absorption of salts by the halophyte plants

    Directory of Open Access Journals (Sweden)

    Elham Kalantari

    2018-01-01

    Full Text Available The expansion of arid and semi-arid areas and consequently water scarcity are affected by climate change. This can influence on availability and quality of water while demands on food and water are increasing. As pressure on freshwater is increasing, utilization of saline water in a sustainable approach is inevitable. Therefore, bioremediation using salt tolerant plants that is consistent with sustainable development objectives might be an alternative and effective approach. In this study, saline wastewater from a local desalination treatment plant was utilized to irrigate four halophyte plants, including Aloevera, Tamarix aphylla, Rosmarinus officinalis and Matricaria chamomilla. A field experiment was designed and conducted in Zarrindasht, south of Iran in years 2012-2013 accordingly. Two irrigation treatments consisting of freshwater with salinity of 2.04 dS.m-1 and desalination wastewater with salinity of 5.77dSm-1 were applied. The experiment was designed as a split plot in the form of randomized complete block design (RCB with three replications. The results of variance analysis, ANOVA, on salt concentration in Aloevera showed that there was no significant difference between the effects of two irrigation water qualities except for Na. In Rosmarinus officinalis, only the ratio of K/Na showed a significant difference. None of the examined salt elements showed a significant difference in Tamarix aphylla irrigated with both water qualities. In Matricaria chamomilla, only Mg and K/Na ratio showed a significant difference (Duncan 5%. As a result, no significant difference was observed in salt absorption by the examined plants in treatments which were irrigated by desalination wastewater and freshwater. This could be a good result that encourages the use of similar wastewater to save freshwater in a sustainable system.

  11. The Arabidopsis halophytic relative Thellungiella halophila tolerates nitrogen-limiting conditions by maintaining growth, nitrogen uptake, and assimilation.

    Science.gov (United States)

    Kant, Surya; Bi, Yong-Mei; Weretilnyk, Elizabeth; Barak, Simon; Rothstein, Steven J

    2008-07-01

    A comprehensive knowledge of mechanisms regulating nitrogen (N) use efficiency is required to reduce excessive input of N fertilizers while maintaining acceptable crop yields under limited N supply. Studying plant species that are naturally adapted to low N conditions could facilitate the identification of novel regulatory genes conferring better N use efficiency. Here, we show that Thellungiella halophila, a halophytic relative of Arabidopsis (Arabidopsis thaliana), grows better than Arabidopsis under moderate (1 mm nitrate) and severe (0.4 mm nitrate) N-limiting conditions. Thellungiella exhibited a lower carbon to N ratio than Arabidopsis under N limitation, which was due to Thellungiella plants possessing higher N content, total amino acids, total soluble protein, and lower starch content compared with Arabidopsis. Furthermore, Thellungiella had higher amounts of several metabolites, such as soluble sugars and organic acids, under N-sufficient conditions (4 mm nitrate). Nitrate reductase activity and NR2 gene expression in Thellungiella displayed less of a reduction in response to N limitation than in Arabidopsis. Thellungiella shoot GS1 expression was more induced by low N than in Arabidopsis, while in roots, Thellungiella GS2 expression was maintained under N limitation but was decreased in Arabidopsis. Up-regulation of NRT2.1 and NRT3.1 expression was higher and repression of NRT1.1 was lower in Thellungiella roots under N-limiting conditions compared with Arabidopsis. Differential transporter gene expression was correlated with higher nitrate influx in Thellungiella at low (15)NO(3)(-) supply. Taken together, our results suggest that Thellungiella is tolerant to N-limited conditions and could act as a model system to unravel the mechanisms for low N tolerance.

  12. Effet de la salinité sur les paramètres morpho- physiologiques de ...

    African Journals Online (AJOL)

    SARAH

    31 oct. 2013 ... Effet du Stress Salin sur l'accumulation de Proline chez deux espèces d'Atriplex halimus L. et Atriplex canescens (Pursh) Nutt. European Journal of Scientific Research: Vol.41, n°2, pp 249-260. Durnete, 1960 simplified by El Midaoui and BenBella,. 1996);. EL-iklil Y, Karrou M, Mrabet R, Benichou M, 2002.

  13. Plant nutrition on fly-ash

    Energy Technology Data Exchange (ETDEWEB)

    Rees, W J; Sidrak, G H

    1956-12-01

    Experiments were performed to determine the plant nutritional potential of fly ash. Chemical analysis indicates that it contains all the essential nutrients. It is deficient in nitrogen and only manganese and aluminum appear to be available in quantities toxic to plants. Barley and spinach grown on fly ash accumulate excessive quantities of Al and Mn in their leaves and exhibit symptoms of toxicities of these metals. Atriplex hastata grows vigorously on the ash, has a high Al and Mn leaf content, but does not show toxicity symptoms. Atriplex, barley and spinach grown at reduced N levels gave lower yields than the normal controls, but symptoms of N deficiency which were evident in barley and spinach were not observed in Atriplex. 17 references, 2 figures, 14 tables.

  14. Single cell-type analysis of cellular lipid remodelling in response to salinity in the epidermal bladder cells of the model halophyte Mesembryanthemum crystallinum.

    Science.gov (United States)

    Barkla, Bronwyn J; Garibay-Hernández, Adriana; Melzer, Michael; Rupasinghe, Thusitha W T; Roessner, Ute

    2018-05-29

    Salt stress causes dramatic changes in the organization and dynamic properties of membranes, however, little is known about the underlying mechanisms involved. Modified trichomes, known as epidermal bladder cells (EBC), on the leaves and stems of the halophyte Mesembryanthemum crystallinum can be successfully exploited as a single-cell-type system to investigate salt-induced changes to cellular lipid composition. In this study alterations in key molecular species from different lipid classes highlighted an increase in phospholipid species, particularly those from phosphatidylcholine (PC) and phosphatidic acid (PA), where the latter is central to the synthesis of membrane lipids. Triacylglycerol (TG) species decreased during salinity, while there was little change in plastidic galactolipids. EBC transcriptomic and proteomic data mining revealed changes in genes and proteins involved in lipid metabolism and the upregulation of transcripts for PIPKIB, PI5PII, PIPKIII, and PLDδ, suggested the induction of signalling processes mediated by phosphoinositides and PA. TEM and flow cytometry showed the dynamic nature of lipid droplets in these cells under salt stress. Altogether, this work indicates the metabolism of TG might play an important role in EBC response to salinity as either an energy reserve for sodium accumulation and/or driving membrane biosynthesis for EBC expansion. This article is protected by copyright. All rights reserved.

  15. Radionuclides transfer into halophytes growing in tidal salt marshes from the Southwest of Spain

    International Nuclear Information System (INIS)

    Luque, Carlos J.; Vaca, Federico; García-Trapote, Ana; Hierro, Almudena; Bolívar, Juan P.; Castellanos, Eloy M.

    2015-01-01

    Estuaries are sinks of materials and substances which are released directly into them or transported from rivers that drain the basin. It is usual to find high organic matter loads and fine particles in the sediments. We analyzed radionuclide concentrations ("2"1"0Po, "2"3"0Th, "2"3"2Th, "2"3"4U, "2"3"8U, "2"2"6Ra, "2"2"8Th, "2"2"8Ra, "4"0K) in sediments and three different organs (roots, stems and leaves) of three species of halophytes plants (Spartina maritima, Spartina densiflora and Sarcocornia perennis). The study was carried out in two tidal salt marshes, one polluted by U-series radionuclides and another nearby that was unpolluted and was used as a control (or reference) area. The Tinto River salt marsh shows high levels of U-series radionuclides coming from mining and industrial discharges. On the contrary, the unperturbed Piedras River salt marsh is located about 25 km from the Tinto marsh, and shows little presence of contaminants and radionuclides. The results of this work have shown that natural radionuclide concentrations (specially the U-isotopes) in the Tinto salt marsh sediments are one order of magnitude higher than those in the Piedras marsh. These radionuclide enhancements are reflected in the different organs of the plants, which have similar concentration increases as the sediments where they have grown. Finally, the transfer factor (TF) of the most polluted radionuclides (U-isotopes and "2"1"0Po) in the Tinto area are one order of magnitude higher than in the Piedras area, indicating that the fraction of each radionuclide in the sediment originating from the pollution is more available for the plants than the indigenous fraction. This means that the plants of the salt marshes are unhelpful as bioindicators or for the phytoremediation of radionuclides. - Highlights: • Radionuclides were analyzed in sediments and plants in unpolluted salt marshes. • Plants uptake radionuclides in all organs in both salt marshes. • The transfer factors

  16. Effet de la salinité sur quelques traits physiologiques et ...

    African Journals Online (AJOL)

    Administrateur

    ﺔﯾزوﻣﺳﻻا تﺎﯾﻣﺣﻣ. -. Atriplex halimus L. Résumé. Le présent travail traite de l'effet de la salinité sur quelques réponses physiologiques et biochimiques d'une espèce, Atriplex halimus L. Des plantules sont soumises à des analyses de la biomasse, du statut énergétique. (teneurs en pigments chlorophylliens), du dosage ...

  17. Growth platform-dependent and -independent phenotypic and metabolic responses of Arabidopsis and its halophytic relative, Eutrema salsugineum, to salt stress.

    Science.gov (United States)

    Kazachkova, Yana; Batushansky, Albert; Cisneros, Aroldo; Tel-Zur, Noemi; Fait, Aaron; Barak, Simon

    2013-07-01

    Comparative studies of the stress-tolerant Arabidopsis (Arabidopsis thaliana) halophytic relative, Eutrema salsugineum, have proven a fruitful approach to understanding natural stress tolerance. Here, we performed comparative phenotyping of Arabidopsis and E. salsugineum vegetative development under control and salt-stress conditions, and then compared the metabolic responses of the two species on different growth platforms in a defined leaf developmental stage. Our results reveal both growth platform-dependent and -independent phenotypes and metabolic responses. Leaf emergence was affected in a similar way in both species grown in vitro but the effects observed in Arabidopsis occurred at higher salt concentrations in E. salsugineum. No differences in leaf emergence were observed on soil. A new effect of a salt-mediated reduction in E. salsugineum leaf area was unmasked. On soil, leaf area reduction in E. salsugineum was mainly due to a fall in cell number, whereas both cell number and cell size contributed to the decrease in Arabidopsis leaf area. Common growth platform-independent leaf metabolic signatures such as high raffinose and malate, and low fumarate contents that could reflect core stress tolerance mechanisms, as well as growth platform-dependent metabolic responses were identified. In particular, the in vitro growth platform led to repression of accumulation of many metabolites including sugars, sugar phosphates, and amino acids in E. salsugineum compared with the soil system where these same metabolites accumulated to higher levels in E. salsugineum than in Arabidopsis. The observation that E. salsugineum maintains salt tolerance despite growth platform-specific phenotypes and metabolic responses suggests a considerable degree of phenotypic and metabolic adaptive plasticity in this extremophile.

  18. The Arabidopsis Halophytic Relative Thellungiella halophila Tolerates Nitrogen-Limiting Conditions by Maintaining Growth, Nitrogen Uptake, and Assimilation1[W][OA

    Science.gov (United States)

    Kant, Surya; Bi, Yong-Mei; Weretilnyk, Elizabeth; Barak, Simon; Rothstein, Steven J.

    2008-01-01

    A comprehensive knowledge of mechanisms regulating nitrogen (N) use efficiency is required to reduce excessive input of N fertilizers while maintaining acceptable crop yields under limited N supply. Studying plant species that are naturally adapted to low N conditions could facilitate the identification of novel regulatory genes conferring better N use efficiency. Here, we show that Thellungiella halophila, a halophytic relative of Arabidopsis (Arabidopsis thaliana), grows better than Arabidopsis under moderate (1 mm nitrate) and severe (0.4 mm nitrate) N-limiting conditions. Thellungiella exhibited a lower carbon to N ratio than Arabidopsis under N limitation, which was due to Thellungiella plants possessing higher N content, total amino acids, total soluble protein, and lower starch content compared with Arabidopsis. Furthermore, Thellungiella had higher amounts of several metabolites, such as soluble sugars and organic acids, under N-sufficient conditions (4 mm nitrate). Nitrate reductase activity and NR2 gene expression in Thellungiella displayed less of a reduction in response to N limitation than in Arabidopsis. Thellungiella shoot GS1 expression was more induced by low N than in Arabidopsis, while in roots, Thellungiella GS2 expression was maintained under N limitation but was decreased in Arabidopsis. Up-regulation of NRT2.1 and NRT3.1 expression was higher and repression of NRT1.1 was lower in Thellungiella roots under N-limiting conditions compared with Arabidopsis. Differential transporter gene expression was correlated with higher nitrate influx in Thellungiella at low 15NO3− supply. Taken together, our results suggest that Thellungiella is tolerant to N-limited conditions and could act as a model system to unravel the mechanisms for low N tolerance. PMID:18467466

  19. The SbMT-2 gene from a halophyte confers abiotic stress tolerance and modulates ROS scavenging in transgenic tobacco.

    Directory of Open Access Journals (Sweden)

    Amit Kumar Chaturvedi

    Full Text Available Heavy metals are common pollutants of the coastal saline area and Salicornia brachiata an extreme halophyte is frequently exposed to various abiotic stresses including heavy metals. The SbMT-2 gene was cloned and transformed to tobacco for the functional validation. Transgenic tobacco lines (L2, L4, L6 and L13 showed significantly enhanced salt (NaCl, osmotic (PEG and metals (Zn++, Cu++ and Cd++ tolerance compared to WT plants. Transgenic lines did not show any morphological variation and had enhanced growth parameters viz. shoot length, root length, fresh weight and dry weight. High seed germination percentage, chlorophyll content, relative water content, electrolytic leakage and membrane stability index confirmed that transgenic lines performed better under salt (NaCl, osmotic (PEG and metals (Zn++, Cu++ and Cd++ stress conditions compared to WT plants. Proline, H2O2 and lipid peroxidation (MDA analyses suggested the role of SbMT-2 in cellular homeostasis and H2O2 detoxification. Furthermore in vivo localization of H2O2 and O2-; and elevated expression of key antioxidant enzyme encoding genes, SOD, POD and APX evident the possible role of SbMT-2 in ROS scavenging/detoxification mechanism. Transgenic lines showed accumulation of Cu++ and Cd++ in root while Zn++ in stem under stress condition. Under control (unstressed condition, Zn++ was accumulated more in root but accumulation of Zn++ in stem under stress condition suggested that SbMT-2 may involve in the selective translocation of Zn++ from root to stem. This observation was further supported by the up-regulation of zinc transporter encoding genes NtZIP1 and NtHMA-A under metal ion stress condition. The study suggested that SbMT-2 modulates ROS scavenging and is a potential candidate to be used for phytoremediation and imparting stress tolerance.

  20. The SbMT-2 gene from a halophyte confers abiotic stress tolerance and modulates ROS scavenging in transgenic tobacco.

    Science.gov (United States)

    Chaturvedi, Amit Kumar; Patel, Manish Kumar; Mishra, Avinash; Tiwari, Vivekanand; Jha, Bhavanath

    2014-01-01

    Heavy metals are common pollutants of the coastal saline area and Salicornia brachiata an extreme halophyte is frequently exposed to various abiotic stresses including heavy metals. The SbMT-2 gene was cloned and transformed to tobacco for the functional validation. Transgenic tobacco lines (L2, L4, L6 and L13) showed significantly enhanced salt (NaCl), osmotic (PEG) and metals (Zn++, Cu++ and Cd++) tolerance compared to WT plants. Transgenic lines did not show any morphological variation and had enhanced growth parameters viz. shoot length, root length, fresh weight and dry weight. High seed germination percentage, chlorophyll content, relative water content, electrolytic leakage and membrane stability index confirmed that transgenic lines performed better under salt (NaCl), osmotic (PEG) and metals (Zn++, Cu++ and Cd++) stress conditions compared to WT plants. Proline, H2O2 and lipid peroxidation (MDA) analyses suggested the role of SbMT-2 in cellular homeostasis and H2O2 detoxification. Furthermore in vivo localization of H2O2 and O2-; and elevated expression of key antioxidant enzyme encoding genes, SOD, POD and APX evident the possible role of SbMT-2 in ROS scavenging/detoxification mechanism. Transgenic lines showed accumulation of Cu++ and Cd++ in root while Zn++ in stem under stress condition. Under control (unstressed) condition, Zn++ was accumulated more in root but accumulation of Zn++ in stem under stress condition suggested that SbMT-2 may involve in the selective translocation of Zn++ from root to stem. This observation was further supported by the up-regulation of zinc transporter encoding genes NtZIP1 and NtHMA-A under metal ion stress condition. The study suggested that SbMT-2 modulates ROS scavenging and is a potential candidate to be used for phytoremediation and imparting stress tolerance.

  1. The Impacts of Soil Fertility and Salinity on Soil Nitrogen Dynamics Mediated by the Soil Microbial Community Beneath the Halophytic Shrub Tamarisk.

    Science.gov (United States)

    Iwaoka, Chikae; Imada, Shogo; Taniguchi, Takeshi; Du, Sheng; Yamanaka, Norikazu; Tateno, Ryunosuke

    2018-05-01

    Nitrogen (N) is one of the most common limiting nutrients for primary production in terrestrial ecosystems. Soil microbes transform organic N into inorganic N, which is available to plants, but soil microbe activity in drylands is sometimes critically suppressed by environmental factors, such as low soil substrate availability or high salinity. Tamarisk (Tamarix spp.) is a halophytic shrub species that is widely distributed in the drylands of China; it produces litter enriched in nutrients and salts that are thought to increase soil fertility and salinity under its crown. To elucidate the effects of tamarisks on the soil microbial community, and thus N dynamics, by creating "islands of fertility" and "islands of salinity," we collected soil samples from under tamarisk crowns and adjacent barren areas at three habitats in the summer and fall. We analyzed soil physicochemical properties, inorganic N dynamics, and prokaryotic community abundance and composition. In soils sampled beneath tamarisks, the N mineralization rate was significantly higher, and the prokaryotic community structure was significantly different, from soils sampled in barren areas, irrespective of site and season. Tamarisks provided suitable nutrient conditions for one of the important decomposers in the area, Verrucomicrobia, by creating "islands of fertility," but provided unsuitable salinity conditions for other important decomposers, Flavobacteria, Gammaproteobacteria, and Deltaproteobacteria, by mitigating salt accumulation. However, the quantity of these decomposers tended to be higher beneath tamarisks, because they were relatively unaffected by the small salinity gradient created by the tamarisks, which may explain the higher N mineralization rate beneath tamarisks.

  2. Evaluation of the halophyte Salsola soda as an alternative crop for saline soils high in selenium and boron.

    Science.gov (United States)

    Centofanti, Tiziana; Bañuelos, Gary

    2015-07-01

    Urbanization, industrial development, and intensive agriculture have caused soil contamination and land degradation in many areas of the world. Salinization is one important factor contributing to land degradation and it affects agricultural production and environmental quality. When salinization is combined with soil pollution by trace elements, as it occurs in many arid and semi-arid regions around the world, strategies to phyto-manage pollutants and sustain crop production need to be implemented. In this study, we present the case of saline soils in the West side of Central California which contain naturally-occurring selenium (Se), boron (B), and other salts, such as NaCl, CaCl2, Na2SO4, and Na2SeO4. To sustain crop production on Se- and B-laden arid saline soils, we investigated the potential of the halophyte "agretti" (Salsola soda L.) as an alternative crop. The aim of our greenhouse study was to examine adaptability, B tolerance, and Se accumulation by S. soda grown on soils collected from a typical saline-laden field site located on the West side of the San Joaquin Valley (SJV). Our results showed that S. soda tolerates the saline (EC ∼ 10 dS m(-1)) and B-laden soils (10 mg B L(-1)) of the SJV even with the additional irrigation of saline and B rich water (EC ∼ 3 dS m(-1) and 4 mg B L(-1)). Under these growing conditions, the plant can accumulate high concentrations of Na (80 g Na kg(-1) DW), B (100 mg B kg(-1) DW), and Se (3-4 mg Se kg(-1) DW) without showing toxicity symptoms. Hence, S. soda showed promising potential as a plant species that can be grown in B-laden saline soils and accumulate and potentially manage excessive soluble Se and B in soil. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Physiological, anatomical and metabolic implications of salt tolerance in the halophyte Salvadora persica under hydroponic culture condition

    Directory of Open Access Journals (Sweden)

    ASISH KUMAR PARIDA

    2016-03-01

    Full Text Available Salt tolerance mechanism of an extreme halophyte Salvadora persica was assessed by analysing growth, nutrient uptake, anatomical modifications and alterations in levels of some organic metabolites in seedlings imposed to various levels of salinity (0, 250, 500 and 750 mM NaCl under hydroponic culture condition. After 21 days of salt treatment, plant height, leaf area and shoot biomass decreased with increase in salinity whereas the leaf succulence increased significantly with increasing salinity in S. persica. The RWC% of leaf increased progressively in salt-treated seedlings as compared to control. Na+ contents of leaf, stem and root increased in dose-dependent manner whereas there was no significant changes in K+ content. There was significant alterations in leaf, stem and root anatomy by salinity. The thickness of epidermis and spongy parenchyma of leaf increased in salt treated seedlings as compared to control, whereas palisade parenchyma decreased dramatically in extreme salinity (750 mM NaCl. There was a significant reduction in stomatal density and stomatal pore area of leaf with increasing salinity. Anatomical observations of stem showed that the epidermal cells diameter and thickness of cortex decreased by salinity whereas thickness of hypodermal layer, hypodermal cell diameter, pith area and pith cell diameter increased by high salinity. The root anatomy showed an increase in epidermal thickness by salinity whereas diameters of epidermal cells and xylem vessels decreased. Total soluble sugar content remained unchanged at all levels of salinity whereas reducing sugar content increased by 2-fold at high salinity (750 mM NaCl. The starch content of leaf decreased progressively in NaCl treated seedlings as compared to control. Total free amino acid content did not change at low salinity (250 mM, whereas it increased significantly at higher salinity (500 and 750 mM NaCl. The proline content increased in the NaCl treated seedlings as

  4. Comparison of germination and seed bank dynamics of dimorphic seeds of the cold desert halophyte Suaeda corniculata subsp. mongolica

    Science.gov (United States)

    Cao, Dechang; Baskin, Carol C.; Baskin, Jerry M.; Yang, Fan; Huang, Zhenying

    2012-01-01

    Background and Aims Differences in dormancy and germination requirements have been documented in heteromorphic seeds of many species, but it is unknown how this difference contributes to maintenance and regeneration of populations. The primary aim of this study was to compare the seed bank dynamics, including dormancy cycling, of the two seed morphs (black and brown) of the cold desert halophyte Suaeda corniculata and, if differences were found, to determine their influence on regeneration of the species. Method Seeds of the two seed morphs were buried, exhumed and tested monthly for 24 months over a range of temperatures and salinities, and germination recovery and viability were determined after exposure to salinity and water stress. Seedling emergence and dynamics of the soil seed bank were also investigated for the two morphs. Key Results Black seeds had an annual dormancy/non-dormancy cycle, while brown seeds, which were non-dormant at maturity, remained non-dormant. Black seeds also exhibited an annual cycle in sensitivity of germination to salinity. Seedlings derived from black seeds emerged in July and August and those from brown seeds in May. Seedlings were recruited from 2·6 % of the black seeds and from 2·8 % of the brown seeds in the soil, and only 0·5 % and 0·4 % of the total number of black and brown seeds in the soil, respectively, gave rise to seedlings that survived to produce seeds. Salinity and water stress induced dormancy in black seeds and decreased viability of brown seeds. Brown seeds formed only a transient soil seed bank and black seeds a persistent seed bank. Conclusions The presence of a dormancy cycle in black but not in brown seeds of S. corniculata and differences in germination requirements of the two morphs cause them to differ in their germination dynamics. The study contributes to our limited knowledge of dormancy cycling and seed bank formation in species producing heteromorphic seeds. PMID:22975287

  5. Effects of Salt Stress on Three Ecologically Distinct Plantago Species.

    Science.gov (United States)

    Al Hassan, Mohamad; Pacurar, Andrea; López-Gresa, María P; Donat-Torres, María P; Llinares, Josep V; Boscaiu, Monica; Vicente, Oscar

    2016-01-01

    Comparative studies on the responses to salt stress of taxonomically related taxa should help to elucidate relevant mechanisms of stress tolerance in plants. We have applied this strategy to three Plantago species adapted to different natural habitats, P. crassifolia and P. coronopus-both halophytes-and P. major, considered as salt-sensitive since it is never found in natural saline habitats. Growth inhibition measurements in controlled salt treatments indicated, however, that P. major is quite resistant to salt stress, although less than its halophytic congeners. The contents of monovalent ions and specific osmolytes were determined in plant leaves after four-week salt treatments. Salt-treated plants of the three taxa accumulated Na+ and Cl- in response to increasing external NaCl concentrations, to a lesser extent in P. major than in the halophytes; the latter species also showed higher ion contents in the non-stressed plants. In the halophytes, K+ concentration decreased at moderate salinity levels, to increase again under high salt conditions, whereas in P. major K+ contents were reduced only above 400 mM NaCl. Sorbitol contents augmented in all plants, roughly in parallel with increasing salinity, but the relative increments and the absolute values reached did not differ much in the three taxa. On the contrary, a strong (relative) accumulation of proline in response to high salt concentrations (600-800 mM NaCl) was observed in the halophytes, but not in P. major. These results indicate that the responses to salt stress triggered specifically in the halophytes, and therefore the most relevant for tolerance in the genus Plantago are: a higher efficiency in the transport of toxic ions to the leaves, the capacity to use inorganic ions as osmotica, even under low salinity conditions, and the activation, in response to very high salt concentrations, of proline accumulation and K+ transport to the leaves of the plants.

  6. Rethinking the role of edaphic condition in halophyte vegetation degradation on salt marshes due to coastal defense structure

    Science.gov (United States)

    Xie, Tian; Cui, Baoshan; Bai, Junhong; Li, Shanze; Zhang, Shuyan

    2018-02-01

    Determining how human disturbance affects plant community persistence and species conservation is one of the most pressing ecological challenges. The large-scale disturbance form defense structures usually have a long-term and potential effect on phytocommunity in coastal saltmarshes. Coastal defense structures usually remove the effect of tidal wave on tidal salt marshes. As a consequence, edaphic factors such as the salinity and moisture contents are disturbed by tidal action blocking. However, few previous studies have explicitly addressed the response of halophyte species persistence and dynamics to the changing edaphic conditions. The understanding of the response of species composition in seed banks and aboveground vegetation to the stress is important to identify ecological effect of coastal defense structures and provide usefully insight into restoration. Here, we conducted a field study to distinguish the density, species composition and relationships of seed bank with aboveground vegetation between tidal flat wetlands with and without coastal defense structures. We also addressed the role of edaphic condition in vegetation degradation caused by coastal defense structures in combination with field monitor and greenhouse experiments. Our results showed the density of the seed bank and aboveground vegetation in the tidal flat without coastal defense structures was significantly lower than the surrounded flat with coastal defense structures. A total of 14 species were founded in the surrounded flat seed bank and 11 species in the tidal flat, but three species were only recorded in aboveground vegetation of the tidal flat which was much lower than 24 aboveground species in the surrounded flat. The absent of species in aboveground vegetation contributed to low germination rate which depend on the edaphic condition. The germination of seeds in the seed bank were inhabited by high soil salinity in the tidal flat and low soil moisture in the surrounded flat. Our

  7. High salinity helps the halophyte Sesuvium portulacastrum in defense against Cd toxicity by maintaining redox balance and photosynthesis.

    Science.gov (United States)

    Wali, Mariem; Gunsè, Benet; Llugany, Mercè; Corrales, Isabel; Abdelly, Chedly; Poschenrieder, Charlotte; Ghnaya, Tahar

    2016-08-01

    NaCl alleviates Cd toxicity in Sesvium portulacastrum by maintaining plant water status and redox balance, protecting chloroplasts structure and inducing some potential Cd (2+) chelators as GSH and proline. It has been demonstrated that NaCl alleviates Cd-induced growth inhibition in the halophyte Sesuvium portulacastrum. However, the processes that mediate this effect are still unclear. In this work we combined physiological, biochemical and ultrastructural studies to highlight the effects of salt on the redox balance and photosynthesis in Cd-stressed plants. Seedlings were exposed to different Cd concentrations (0, 25 and 50 µM Cd) combined with low (0.09 mM) (LS), or high (200 mM) NaCl (HS) in hydroponic culture. Plant-water relations, photosynthesis rate, leaf gas exchange, chlorophyll fluorescence, chloroplast ultrastructure, and proline and glutathione concentrations were analyzed after 1 month of treatment. In addition, the endogenous levels of stress-related hormones were determined in plants subjected to 25 µM Cd combined with both NaCl concentrations. In plants with low salt supply (LS), Cd reduced growth, induced plant dehydration, disrupted chloroplast structure and functioning, decreased net CO2 assimilation rate (A) and transpiration rate (E), inhibited the maximum potential quantum efficiency (Fv/Fm) and the quantum yield efficiency (Φ PSII) of PSII, and enhanced the non-photochemical quenching (NPQ). The addition of 200 mM NaCl (HS) to the Cd-containing medium culture significantly mitigated Cd phytotoxicity. Hence, even at similar internal Cd concentrations, HS-Cd plants were less affected by Cd than LS-Cd ones. Hence, 200 mM NaCl significantly alleviates Cd-induced toxicity symptoms, growth inhibition, and photosynthesis disturbances. The cell ultrastructure was better preserved in HS-Cd plants but affected in LS-Cd plants. The HS-Cd plants showed also higher concentrations of reduced glutathione (GSH), proline and jasmonic acid (JA

  8. Single-cell-type quantitative proteomic and ionomic analysis of epidermal bladder cells from the halophyte model plant Mesembryanthemum crystallinum to identify salt-responsive proteins.

    Science.gov (United States)

    Barkla, Bronwyn J; Vera-Estrella, Rosario; Raymond, Carolyn

    2016-05-10

    Epidermal bladder cells (EBC) are large single-celled, specialized, and modified trichomes found on the aerial parts of the halophyte Mesembryanthemum crystallinum. Recent development of a simple but high throughput technique to extract the contents from these cells has provided an opportunity to conduct detailed single-cell-type analyses of their molecular characteristics at high resolution to gain insight into the role of these cells in the salt tolerance of the plant. In this study, we carry out large-scale complementary quantitative proteomic studies using both a label (DIGE) and label-free (GeLC-MS) approach to identify salt-responsive proteins in the EBC extract. Additionally we perform an ionomics analysis (ICP-MS) to follow changes in the amounts of 27 different elements. Using these methods, we were able to identify 54 proteins and nine elements that showed statistically significant changes in the EBC from salt-treated plants. GO enrichment analysis identified a large number of transport proteins but also proteins involved in photosynthesis, primary metabolism and Crassulacean acid metabolism (CAM). Validation of results by western blot, confocal microscopy and enzyme analysis helped to strengthen findings and further our understanding into the role of these specialized cells. As expected EBC accumulated large quantities of sodium, however, the most abundant element was chloride suggesting the sequestration of this ion into the EBC vacuole is just as important for salt tolerance. This single-cell type omics approach shows that epidermal bladder cells of M. crystallinum are metabolically active modified trichomes, with primary metabolism supporting cell growth, ion accumulation, compatible solute synthesis and CAM. Data are available via ProteomeXchange with identifier PXD004045.

  9. Unraveling Salt Tolerance Mechanisms in Halophytes: A Comparative Study on Four Mediterranean Limonium Species with Different Geographic Distribution Patterns

    Directory of Open Access Journals (Sweden)

    Mohamad Al Hassan

    2017-08-01

    Full Text Available We have performed an extensive study on the responses to salt stress in four related Limonium halophytes with different geographic distribution patterns, during seed germination and early vegetative growth. The aims of the work were twofold: to establish the basis for the different chorology of these species, and to identify relevant mechanisms of salt tolerance dependent on the control of ion transport and osmolyte accumulation. Seeds were germinated in vitro, in the presence of increasing NaCl concentrations, and subjected to “recovery of germination” tests; germination percentages and velocity were determined to establish the relative tolerance and competitiveness of the four Limonium taxa. Salt treatments were also applied to young plants, by 1-month irrigation with NaCl up to 800 mM; then, growth parameters, levels of monovalent and divalent ions (in roots and leaves, and leaf contents of photosynthetic pigments and common osmolytes were determined in control and stressed plants of the four species. Seed germination is the most salt-sensitive developmental phase in Limonium. The different germination behavior of the investigated species appears to be responsible for their geographical range size: L. narbonense and L. virgatum, widespread throughout the Mediterranean, are the most tolerant and the most competitive at higher soil salinities; the endemic L. santapolense and L. girardianum are the most sensitive and more competitive only at lower salinities. During early vegetative growth, all taxa showed a strong tolerance to salt stress, although slightly higher in L. virgatum and L. santapolense. Salt tolerance is based on the efficient transport of Na+ and Cl− to the leaves and on the accumulation of fructose and proline for osmotic adjustment. Despite some species-specific quantitative differences, the accumulation patterns of the different ions were similar in all species, not explaining differences in tolerance, except for the

  10. ATRIPLEX HALIMUS (AMARANTACEES) CALLOGENESIS ...

    African Journals Online (AJOL)

    Y. Halfaoui

    1 janv. 2018 ... Le premier lot subi une désinfection par immersion dans l'éthanol 70° pendant 10 min, suivie par un trempage dans une solution d'hypochlorite de sodium à 5% pendant 20 min puis rincées 5 fois avec l'eau distillée stérile. Les graines sont alors séchées avec du papier filtre stérile et mises à germer.

  11. Role of Plants in a Constructed Wetland: Current and New Perspectives

    Directory of Open Access Journals (Sweden)

    Amit Gross

    2013-04-01

    Full Text Available The role of plants in the treatment of effluents by constructed wetland (CW systems is under debate. Here, we review ways in which plants can affect CW processes and suggest two novel functions for plants in CWs. The first is salt phytoremediation by halophytes. We have strong evidence that halophytic plants can reduce wastewater salinity by accumulating salts in their tissues. Our studies have shown that Bassia indica, a halophytic annual, is capable of salt phytoremediation, accumulating sodium to up to 10% of its dry weight. The second novel use of plants in CWs is as phytoindicators of water quality. We demonstrate that accumulation of H2O2, a marker for plant stress, is reduced in the in successive treatment stages, where water quality is improved. It is recommended that monitoring and management of CWs consider the potential of plants as phytoremediators and phytoindicators.

  12. The SbSOS1 gene from the extreme halophyte Salicornia brachiata enhances Na(+) loading in xylem and confers salt tolerance in transgenic tobacco.

    Science.gov (United States)

    Yadav, Narendra Singh; Shukla, Pushp Sheel; Jha, Anupama; Agarwal, Pradeep K; Jha, Bhavanath

    2012-10-11

    Soil salinity adversely affects plant growth and development and disturbs intracellular ion homeostasis resulting cellular toxicity. The Salt Overly Sensitive 1 (SOS1) gene encodes a plasma membrane Na(+)/H(+) antiporter that plays an important role in imparting salt stress tolerance to plants. Here, we report the cloning and characterisation of the SbSOS1 gene from Salicornia brachiata, an extreme halophyte. The SbSOS1 gene is 3774 bp long and encodes a protein of 1159 amino acids. SbSOS1 exhibited a greater level of constitutive expression in roots than in shoots and was further increased by salt stress. Overexpressing the S. brachiata SbSOS1 gene in tobacco conferred high salt tolerance, promoted seed germination and increased root length, shoot length, leaf area, fresh weight, dry weight, relative water content (RWC), chlorophyll, K(+)/Na(+) ratio, membrane stability index, soluble sugar, proline and amino acid content relative to wild type (WT) plants. Transgenic plants exhibited reductions in electrolyte leakage, reactive oxygen species (ROS) and MDA content in response to salt stress, which probably occurred because of reduced cytosolic Na(+) content and oxidative damage. At higher salt stress, transgenic tobacco plants exhibited reduced Na(+) content in root and leaf and higher concentrations in stem and xylem sap relative to WT, which suggests a role of SbSOS1 in Na(+) loading to xylem from root and leaf tissues. Transgenic lines also showed increased K(+) and Ca(2+) content in root tissue compared to WT, which reflect that SbSOS1 indirectly affects the other transporters activity. Overexpression of SbSOS1 in tobacco conferred a high degree of salt tolerance, enhanced plant growth and altered physiological and biochemical parameters in response to salt stress. In addition to Na(+) efflux outside the plasma membrane, SbSOS1 also helps to maintain variable Na(+) content in different organs and also affect the other transporters activity indirectly. These

  13. A SNARE-Like Superfamily Protein SbSLSP from the Halophyte Salicornia brachiata Confers Salt and Drought Tolerance by Maintaining Membrane Stability, K(+)/Na(+) Ratio, and Antioxidant Machinery.

    Science.gov (United States)

    Singh, Dinkar; Yadav, Narendra Singh; Tiwari, Vivekanand; Agarwal, Pradeep K; Jha, Bhavanath

    2016-01-01

    About 1000 salt-responsive ESTs were identified from an extreme halophyte Salicornia brachiata. Among these, a novel salt-inducible gene SbSLSP (Salicornia brachiata SNARE-like superfamily protein), showed up-regulation upon salinity and dehydration stress. The presence of cis-regulatory motifs related to abiotic stress in the putative promoter region supports our finding that SbSLSP gene is inducible by abiotic stress. The SbSLSP protein showed a high sequence identity to hypothetical/uncharacterized proteins from Beta vulgaris, Spinacia oleracea, Eucalyptus grandis, and Prunus persica and with SNARE-like superfamily proteins from Zostera marina and Arabidopsis thaliana. Bioinformatics analysis predicted a clathrin adaptor complex small-chain domain and N-myristoylation site in the SbSLSP protein. Subcellular localization studies indicated that the SbSLSP protein is mainly localized in the plasma membrane. Using transgenic tobacco lines, we establish that overexpression of SbSLSP resulted in elevated tolerance to salt and drought stress. The improved tolerance was confirmed by alterations in a range of physiological parameters, including high germination and survival rate, higher leaf chlorophyll contents, and reduced accumulation of Na(+) ion and reactive oxygen species (ROS). Furthermore, overexpressing lines also showed lower water loss, higher cell membrane stability, and increased accumulation of proline and ROS-scavenging enzymes. Overexpression of SbSLSP also enhanced the transcript levels of ROS-scavenging and signaling enzyme genes. This study is the first investigation of the function of the SbSLSP gene as a novel determinant of salinity/drought tolerance. The results suggest that SbSLSP could be a potential candidate to increase salinity and drought tolerance in crop plants for sustainable agriculture in semi-arid saline soil.

  14. A SNARE-like superfamily protein SbSLSP from the halophyte Salicornia brachiata confers salt and drought tolerance by maintaining membrane stability, K+/Na+ ratio, and antioxidant machinery

    Directory of Open Access Journals (Sweden)

    Dinkar eSingh

    2016-06-01

    Full Text Available About 1000 salt-responsive ESTs were identified from an extreme halophyte Salicornia brachiata. Among these, a novel salt-inducible gene SbSLSP, (Salicornia brachiata SNARE-like superfamily protein showed up-regulation upon salinity and dehydration stress. The presence of cis-regulatory motifs related to abiotic stress in the putative promoter region supports our finding that SbSLSP gene is inducible by abiotic stress. The SbSLSP protein showed a high sequence identity to hypothetical/uncharacterised proteins from Beta vulgaris, Spinacia oleracea, Eucalyptus grandis and Prunus persica and with SNARE-like superfamily proteins from Zostera marina and Arabidopsis thaliana. Bioinformatics analysis predicted a clathrin adaptor complex small-chain domain and N-myristoylation site in the SbSLSP protein. Subcellular localisation studies indicated that the SbSLSP protein is mainly localised in the plasma membrane. Using transgenic tobacco lines, we establish that overexpression of SbSLSP resulted in elevated tolerance to salt and drought stress. The improved tolerance was confirmed by alterations in a range of physiological parameters, including high germination and survival rate, higher leaf chlorophyll contents, and reduced accumulation of Na+ ion and reactive oxygen species (ROS. Furthermore, overexpressing lines also showed lower water loss, higher cell membrane stability and increased accumulation of proline and ROS-scavenging enzymes. Overexpression of SbSLSP also enhanced the transcript levels of ROS-scavenging and signalling enzyme genes. This study is the first investigation of the function of the SbSLSP gene as a novel determinant of salinity/drought tolerance. The results suggest that SbSLSP could be a potential candidate to increase salinity and drought tolerance in crop plants for sustainable agriculture in semi-arid saline soil.

  15. Bistability of mangrove forests and competition with freshwater plants

    Science.gov (United States)

    Jiang, Jiang; Fuller, Douglas O; Teh, Su Yean; Zhai, Lu; Koh, Hock Lye; DeAngelis, Donald L.; Sternberg, L.D.S.L.

    2015-01-01

    Halophytic communities such as mangrove forests and buttonwood hammocks tend to border freshwater plant communities as sharp ecotones. Most studies attribute this purely to underlying physical templates, such as groundwater salinity gradients caused by tidal flux and topography. However, a few recent studies hypothesize that self-reinforcing feedback between vegetation and vadose zone salinity are also involved and create a bistable situation in which either halophytic dominated habitat or freshwater plant communities may dominate as alternative stable states. Here, we revisit the bistability hypothesis and demonstrate the mechanisms that result in bistability. We demonstrate with remote sensing imagery the sharp boundaries between freshwater hardwood hammock communities in southern Florida and halophytic communities such as buttonwood hammocks and mangroves. We further document from the literature how transpiration of mangroves and freshwater plants respond differently to vadose zone salinity, thus altering the salinity through feedback. Using mathematical models, we show how the self-reinforcing feedback, together with physical template, controls the ecotones between halophytic and freshwater communities. Regions of bistability along environmental gradients of salinity have the potential for large-scale vegetation shifts following pulse disturbances such as hurricane tidal surges in Florida, or tsunamis in other regions. The size of the region of bistability can be large for low-lying coastal habitat due to the saline water table, which extends inland due to salinity intrusion. We suggest coupling ecological and hydrologic processes as a framework for future studies.

  16. Validation of reference genes for quantitative RT-PCR normalization in Suaeda aralocaspica, an annual halophyte with heteromorphism and C4 pathway without Kranz anatomy

    Directory of Open Access Journals (Sweden)

    Jing Cao

    2016-02-01

    Full Text Available Reverse transcription quantitative real-time polymerase chain reaction (qRT-PCR is a powerful analytical technique for the measurement of gene expression, which depends on the stability of the reference gene used for data normalization. Suaeda aralocaspica, an annual halophyte with heteromorphic seeds and possessing C4 photosynthesis pathway without Kranz anatomy, is an ideal plant species to identify stress tolerance-related genes and compare relative expression at transcriptional level. So far, no molecular information is available for this species. In the present study, six traditionally used reference genes were selected and their expression stability in two types of seeds of S. aralocaspica under different experimental conditions was evaluated. Three analytical programs, geNorm, NormFinder and BestKeeper, were used to assess and rank the stability of reference gene expression. Results revealed that although some reference genes may display different transcriptional profiles between the two types of seeds, β-TUB and GAPDH appeared to be the most suitable references under different developmental stages and tissues. GAPDH was the appropriate reference gene under different germination time points and salt stress conditions, and ACTIN was suitable for various abiotic stress treatments for the two types of seeds. For all the sample pools, β-TUB served as the most stable reference gene, whereas 18S rRNA and 28S rRNA performed poorly and presented as the least stable genes in our study. UBQ seemed to be unsuitable as internal control under different salt treatments. In addition, the expression of a photosynthesis-related gene (PPDK of C4 pathway and a salt tolerance-related gene (SAT of S. aralocaspica were used to validate the best performance reference genes. This is the first systematic comparison of reference gene selection for qRT-PCR work in S. aralocaspica and these data will facilitate further studies on gene expression in this species

  17. Proteomic response of Hordeum vulgare cv. Tadmor and Hordeum marinum to salinity stress: Similarities and differences between a glycophyte and a halophyte

    Directory of Open Access Journals (Sweden)

    Lucie Maršálová

    2016-08-01

    Full Text Available Response to a high salinity treatment of 300 mM NaCl was studied in a cultivated barley Hordeum vulgare Syrian cultivar Tadmor and in a halophytic wild barley Hordeum marinum. Differential salinity tolerance of H. marinum and H. vulgare is underlied by qualitative and quantitative differences in proteins involved in a variety of biological processes. The major aim was to identify proteins underlying differential salinity tolerance between the two barley species. Analyses of plant water content, osmotic potential and accumulation of proline and dehydrin proteins under high salinity revealed a relatively higher water saturation deficit in H. marinum than in H. vulgare while H. vulgare had lower osmotic potential corresponding with high levels of proline and dehydrins. Analysis of proteins soluble upon boiling isolated from control and salt-treated crown tissues revealed similarities as well as differences between H. marinum and H. vulgare. The similar salinity responses of both barley species lie in enhanced levels of stress-protective proteins such as defence-related proteins from late-embryogenesis abundant (LEA family, several chaperones from heat shock protein (HSP family, and others such as GrpE. However, there have also been found significant differences between H. marinum and H. vulgare salinity response indicating an active stress acclimation in H. marinum while stress damage in H. vulgare. An active acclimation to high salinity in H. marinum is underlined by enhanced levels of several stress-responsive transcription factors from basic leucine zipper (bZIP and nascent polypeptide-associated complex (NAC families. In salt-treated H. marinum, enhanced levels of proteins involved in energy metabolism such as glycolysis, ATP metabolism, and photosynthesis-related proteins indicate an active acclimation to enhanced energy requirements during an establishment of novel plant homeostasis. In contrast, changes at proteome level in salt-treated H

  18. Effects of copper stress on antioxidative enzymes, chlorophyll and ...

    African Journals Online (AJOL)

    Administrator

    2011-09-05

    Sep 5, 2011 ... Our study showed the effect of Cu on Atriplex halimus grown in hydroponics ... three superoxide dismutase (SOD) isoformes and five peroxidase (POX) isoformes. ..... transportation of other metal elements such as Mn, Zn.

  19. Sex and the lonely Atriplex

    Science.gov (United States)

    D. Carl Freeman; E. Durant McArthur; Kathleen J. Miglia; Michelle J. Nilson; Michelle L. Brown

    2007-01-01

    In principle, natural selection should have endowed species with the ability to assess their normal surroundings and respond to changes that enhance, or at least do not diminish, their fitness (Emlen et al. 1998). Hence, the chameleon changes colors to match its background to avoid being eaten, or a sweet pea's tendrils wrap around supporting structures. Buffalo...

  20. Pharmacological basis for medicinal use of Ziziphyus nummularia ...

    African Journals Online (AJOL)

    collected from the Sihala, Islamabad in. September 2015. The plant was authenticated by. Dr. Mushtaq Ahmad, a taxonomist at Department of Plant Sciences, Quaid-a-Azam University,. Islamabad and voucher specimen (ISB-814) was submitted to the same Department. The plant material (2 kg) was air dried, powdered and.

  1. Journal of Applied Sciences and Environmental Management - Vol ...

    African Journals Online (AJOL)

    Adaptation in Atriplex griffithii and Prosopis juliflora plants in response to cement dust pollution · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. MZ Iqbal, M Shafiq, M Athar, 389-395 ...

  2. Effects of copper stress on antioxidative enzymes, chlorophyll and ...

    African Journals Online (AJOL)

    Effects of copper stress on antioxidative enzymes, chlorophyll and protein content in Atriplex ... Journal Home > Vol 10, No 50 (2011) > ... The aim of this work was to investigate some enzymatic systems response of this plant to copper stress.

  3. The SbSOS1 gene from the extreme halophyte Salicornia brachiata enhances Na+ loading in xylem and confers salt tolerance in transgenic tobacco

    Directory of Open Access Journals (Sweden)

    Yadav Narendra

    2012-10-01

    Full Text Available Abstract Background Soil salinity adversely affects plant growth and development and disturbs intracellular ion homeostasis resulting cellular toxicity. The Salt Overly Sensitive 1 (SOS1 gene encodes a plasma membrane Na+/H+ antiporter that plays an important role in imparting salt stress tolerance to plants. Here, we report the cloning and characterisation of the SbSOS1 gene from Salicornia brachiata, an extreme halophyte. Results The SbSOS1 gene is 3774 bp long and encodes a protein of 1159 amino acids. SbSOS1 exhibited a greater level of constitutive expression in roots than in shoots and was further increased by salt stress. Overexpressing the S. brachiata SbSOS1 gene in tobacco conferred high salt tolerance, promoted seed germination and increased root length, shoot length, leaf area, fresh weight, dry weight, relative water content (RWC, chlorophyll, K+/Na+ ratio, membrane stability index, soluble sugar, proline and amino acid content relative to wild type (WT plants. Transgenic plants exhibited reductions in electrolyte leakage, reactive oxygen species (ROS and MDA content in response to salt stress, which probably occurred because of reduced cytosolic Na+ content and oxidative damage. At higher salt stress, transgenic tobacco plants exhibited reduced Na+ content in root and leaf and higher concentrations in stem and xylem sap relative to WT, which suggests a role of SbSOS1 in Na+ loading to xylem from root and leaf tissues. Transgenic lines also showed increased K+ and Ca2+ content in root tissue compared to WT, which reflect that SbSOS1 indirectly affects the other transporters activity. Conclusions Overexpression of SbSOS1 in tobacco conferred a high degree of salt tolerance, enhanced plant growth and altered physiological and biochemical parameters in response to salt stress. In addition to Na+ efflux outside the plasma membrane, SbSOS1 also helps to maintain variable Na+ content in different organs and also affect the other

  4. Salinity tolerance in plants. Quantitative approach to ion transport starting from halophytes and stepping to genetic and protein engineering for manipulating ion fluxes.

    Science.gov (United States)

    Volkov, Vadim

    2015-01-01

    Ion transport is the fundamental factor determining salinity tolerance in plants. The Review starts from differences in ion transport between salt tolerant halophytes and salt-sensitive plants with an emphasis on transport of potassium and sodium via plasma membranes. The comparison provides introductory information for increasing salinity tolerance. Effects of salt stress on ion transport properties of membranes show huge opportunities for manipulating ion fluxes. Further steps require knowledge about mechanisms of ion transport and individual genes of ion transport proteins. Initially, the Review describes methods to measure ion fluxes, the independent set of techniques ensures robust and reliable basement for quantitative approach. The Review briefly summarizes current data concerning Na(+) and K(+) concentrations in cells, refers to primary thermodynamics of ion transport and gives special attention to individual ion channels and transporters. Simplified scheme of a plant cell with known transport systems at the plasma membrane and tonoplast helps to imagine the complexity of ion transport and allows choosing specific transporters for modulating ion transport. The complexity is enhanced by the influence of cell size and cell wall on ion transport. Special attention is given to ion transporters and to potassium and sodium transport by HKT, HAK, NHX, and SOS1 proteins. Comparison between non-selective cation channels and ion transporters reveals potential importance of ion transporters and the balance between the two pathways of ion transport. Further on the Review describes in detail several successful attempts to overexpress or knockout ion transporters for changing salinity tolerance. Future perspectives are questioned with more attention given to promising candidate ion channels and transporters for altered expression. Potential direction of increasing salinity tolerance by modifying ion channels and transporters using single point mutations is discussed and

  5. The SbSOS1 gene from the extreme halophyte Salicornia brachiata enhances Na+ loading in xylem and confers salt tolerance in transgenic tobacco

    Science.gov (United States)

    2012-01-01

    Background Soil salinity adversely affects plant growth and development and disturbs intracellular ion homeostasis resulting cellular toxicity. The Salt Overly Sensitive 1 (SOS1) gene encodes a plasma membrane Na+/H+ antiporter that plays an important role in imparting salt stress tolerance to plants. Here, we report the cloning and characterisation of the SbSOS1 gene from Salicornia brachiata, an extreme halophyte. Results The SbSOS1 gene is 3774 bp long and encodes a protein of 1159 amino acids. SbSOS1 exhibited a greater level of constitutive expression in roots than in shoots and was further increased by salt stress. Overexpressing the S. brachiata SbSOS1 gene in tobacco conferred high salt tolerance, promoted seed germination and increased root length, shoot length, leaf area, fresh weight, dry weight, relative water content (RWC), chlorophyll, K+/Na+ ratio, membrane stability index, soluble sugar, proline and amino acid content relative to wild type (WT) plants. Transgenic plants exhibited reductions in electrolyte leakage, reactive oxygen species (ROS) and MDA content in response to salt stress, which probably occurred because of reduced cytosolic Na+ content and oxidative damage. At higher salt stress, transgenic tobacco plants exhibited reduced Na+ content in root and leaf and higher concentrations in stem and xylem sap relative to WT, which suggests a role of SbSOS1 in Na+ loading to xylem from root and leaf tissues. Transgenic lines also showed increased K+ and Ca2+ content in root tissue compared to WT, which reflect that SbSOS1 indirectly affects the other transporters activity. Conclusions Overexpression of SbSOS1 in tobacco conferred a high degree of salt tolerance, enhanced plant growth and altered physiological and biochemical parameters in response to salt stress. In addition to Na+ efflux outside the plasma membrane, SbSOS1 also helps to maintain variable Na+ content in different organs and also affect the other transporters activity indirectly

  6. Salinity tolerance in plants. Quantitative approach to ion transport starting from halophytes and stepping to genetic and protein engineering for manipulating ion fluxes

    Directory of Open Access Journals (Sweden)

    Vadim eVolkov

    2015-10-01

    Full Text Available Ion transport is the fundamental factor determining salinity tolerance in plants. The Review starts from differences in ion transport between salt tolerant halophytes and salt-sensitive plants with an emphasis on transport of potassium and sodium via plasma membranes. The comparison provides introductory information for increasing salinity tolerance. Effects of salt stress on ion transport properties of membranes show huge opportunities for manipulating ion fluxes. Further steps require knowledge about mechanisms of ion transport and individual genes of ion transport proteins. Initially, the Review describes methods to measure ion fluxes, the independent set of techniques ensures robust and reliable basement for quantitative approach. The Review briefly summarises current data concerning Na+ and K+ concentrations in cells, refers to primary thermodynamics of ion transport and gives special attention to individual ion channels and transporters. Simplified scheme of a plant cell with known transport systems at the plasma membrane and tonoplast helps to imagine the complexity of ion transport and allows to choose specific transporters for modulating ion transport. The complexity is enhanced by the influence of cell size and cell wall on ion transport. Special attention is given to ion transporters and to potassium and sodium transport by HKT, HAK, NHX and SOS1 proteins. Comparison between nonselective cation channels and ion transporters reveals potential importance of ion transporters and the balance between the two pathways of ion transport. Further on the Review describes in detail several successful attempts to overexpress or knockout ion transporters for changing salinity tolerance. Future perspectives are questioned with more attention given to promising candidate ion channels and transporters for altered expression. Potential direction of increasing salinity tolerance by modifying ion channels and transporters using single point mutations is

  7. Area Strip Mine Reclamation Using Dredged Material: A Field Demonstration.

    Science.gov (United States)

    1980-07-01

    COMMON BEGGAR’S TICK Bidens frondosa COMMON EVENING PRIMROSE Oenothera biennis COMMON ORACH Atriplex patula COMMON REED Phraginites communis...altissima ACERACEAE BOX ELDER Acer negundo RHAMNACEAE COMMON BUCKTHORN Rhamnus cathartica A8 r ONAGRACEAE COMMON EVENING PRIMROSE Oenothera biennis

  8. Improving cattle nutrition on the Great Plains with shrubs and fecal seeding of fourwing saltbush

    Science.gov (United States)

    Two in vitro trials were conducted for estimates of dietary percentage of fourwing saltbush (Atriplex canescens; FS) or winterfat (Krascheninnikovia lanata; WF) to improve diet digestibility when cattle graze mature cool-season grass. Three in vitro trials were conducted to estimate the percentage ...

  9. Spatial distribution and changes in occurrence of some weed species in the orchard in AES Felin near Lublin

    Directory of Open Access Journals (Sweden)

    Janusz Lipecki

    2013-12-01

    Full Text Available From 1993 to 1997 a study of spatial distribution of most important weeds in apple orchard herbicide strips was performed. This study was continued in 1998, once the trees were cut down. As the time progressed, Epilobium adenocaulon Hausskn., Chenopodium album L., Polygonum aviculare L. and Atriplex patulum L. showed an increase in their occurrence. An opposite tendency was found with Erigeron canadensis L., Convolvulus arvensis L. and Taraxacum fficinale Web. Some species grew in patches (Convolvulus arvensis L., Chenopodium album L., Atriplex patulum L., while the others appeared sporadically throughout the orchard. In 1998, the decrease of occurrence of Epilobium Haussk. was observed. Simultaneously, this was coupled with an increase of occurrence of Taraxacum officinale Web., Erigeron caanadensis L. and Chenopodium album L. The predominating species in 1998 was Cerastium vulgatum L., followed by Lolium perenne L., Poa annua L. and Bromus mollis L.

  10. Higher degradation of L-Cys by O-acetylserine-thiolyases in Sarcocornia than Salicornia

    KAUST Repository

    Kurmanbayeva, Assylay

    2017-07-26

    Salicornia and Sarcocornia are almost identical halophytes whose edible succulent shoots hold promise for commercial production in saline water. Enhanced sulfur nutrition may be beneficial to crops naturally grown on high sulfate. However, little is known about sulfate nutrition in halophytes. Here we show that Salicornia europaea (ecotype RN) exhibits a significant increase in biomass and organic-S accumulation in response to supplemental sulfate, while Sarcocornia fruticosa (ecotype VM) does not, instead exhibiting increased sulfate accumulation. We investigated the role of two pathways on organic-S and biomass accumulation in Salicornia and Sarcoconia: the sulfate reductive pathway that generates cysteine and L-cysteine desulfhydrase that degrades cysteine to H2S, NH3 and pyruvate. The major function of O-acetylserine-(thiol) lyase (OAS-TL; EC 2.5.1.47) is the formation of L-cysteine, but our study shows that the OAS-TL A and B of both halophytes are enzymes that also degrade L-cysteine to H2S. This activity was significantly higher in Sarcocornia than in Salicornia, especially upon sulfate supplementation. The activity of the sulfate reductive pathway key enzyme, adenosine 5\\'-phosphosulfate reductase (APR, EC 1.8.99.2), was significantly higher in Salicornia than in Sarcocornia. These results suggest that the low organic-S level in Sarcocornia is the result of high L-cysteine degradation rate by OAS-TLs, whereas, the greater organic-S and biomass accumulation in Salicornia is the result of higher APR activity and low L-cysteine degradation rate, resulting in higher net cysteine biosynthesis. These results present an initial road map for halophyte growers to attain better growth rates and nutritional value of Salicornia and Sarcocornia.

  11. Higher degradation of L-Cys by O-acetylserine-thiolyases in Sarcocornia than Salicornia

    KAUST Repository

    Kurmanbayeva, Assylay; Bekturova, Aizat; Srivastava, Sudhakar; Soltabayeva, Aigerim; Khan, Mohammad Suhail; Salazar, Octavio; Fedoroff, Nina V.; Asatryan, Armine; Ventura, Yvonne; Sagi, Moshe

    2017-01-01

    Salicornia and Sarcocornia are almost identical halophytes whose edible succulent shoots hold promise for commercial production in saline water. Enhanced sulfur nutrition may be beneficial to crops naturally grown on high sulfate. However, little is known about sulfate nutrition in halophytes. Here we show that Salicornia europaea (ecotype RN) exhibits a significant increase in biomass and organic-S accumulation in response to supplemental sulfate, while Sarcocornia fruticosa (ecotype VM) does not, instead exhibiting increased sulfate accumulation. We investigated the role of two pathways on organic-S and biomass accumulation in Salicornia and Sarcoconia: the sulfate reductive pathway that generates cysteine and L-cysteine desulfhydrase that degrades cysteine to H2S, NH3 and pyruvate. The major function of O-acetylserine-(thiol) lyase (OAS-TL; EC 2.5.1.47) is the formation of L-cysteine, but our study shows that the OAS-TL A and B of both halophytes are enzymes that also degrade L-cysteine to H2S. This activity was significantly higher in Sarcocornia than in Salicornia, especially upon sulfate supplementation. The activity of the sulfate reductive pathway key enzyme, adenosine 5'-phosphosulfate reductase (APR, EC 1.8.99.2), was significantly higher in Salicornia than in Sarcocornia. These results suggest that the low organic-S level in Sarcocornia is the result of high L-cysteine degradation rate by OAS-TLs, whereas, the greater organic-S and biomass accumulation in Salicornia is the result of higher APR activity and low L-cysteine degradation rate, resulting in higher net cysteine biosynthesis. These results present an initial road map for halophyte growers to attain better growth rates and nutritional value of Salicornia and Sarcocornia.

  12. Redescription of Cadrema pallida var. bilineata (de Meijere, 1904 (Diptera: Chloropidae and its role as pollinator and carrion feeder from Indian Sunderbans

    Directory of Open Access Journals (Sweden)

    Sankarsan Roy

    2016-10-01

    Full Text Available Sunderbans, the UNESCO World Heritage Site is one of the largest mangrove forests in the World. This unique tidal halophytic mangrove ecosystem is also spread over the neighbouring country- Bangladesh. This ecosystem supports a variety of halophytic mangrove species and provides shelter and food to many faunal components (Chakraborty, 2011. Till date, several studies have been made on dipteran fauna from SBR which was altogether compiled by Mitra (2013. Further, Mitra et al. (2014, 2015 added some more records of the Diptera from this area. Apart from documenting the dipteran insects, we attempted here their functional contribution towards sustainability of this sensitive ecosystem.

  13. The phytosociological analysis of saline area of Tehsil Ferozewala ...

    African Journals Online (AJOL)

    By reintegrating these trees and shrubs back into agriculture landscape to reverse salinity such as Atriplex amnicla, Tamarix aphylla, Phoenix dactilifera, Prosopis spp. Susbenia bispinasa, Sesbenia sesbena, Casorina, Grewia asiatie, Psidium guava etc. The incorporation of these plants (grasses, shrubs and trees) into ...

  14. Triticum durum Desf.

    African Journals Online (AJOL)

    SCIENCE

    Atriplex halimus L. face au cadmium, Geo-Eco-Trop., Vol. 32, 17-20. [17] Korn M., Peter K.S., Mock H.P., Heyer A.G.,. & Hincha D.K., 2008. Heterosis in the freezing tolerance, and sugar and flavonoid contents of crosses between Arabidopsis ...

  15. On facilitation between herbivores : How Brent Geese profit from brown hares

    NARCIS (Netherlands)

    van der Wal, R; van Wijnen, H; van Wieren, S.E.; Beucher, O; Bos, D

    Brown hares (Lepus europaeus) are shown to facilitate grazing by Brent Geese (Branta bernicla) in a temperate salt marsh in the Netherlands by retarding vegetation succession for >25 yr. Winter grazing by hares prevented the shrub Atriplex portulacoides from spreading in younger parts nf thp salt

  16. On facilitation between herbivores : how brent geese profit from brown hares

    NARCIS (Netherlands)

    Wal, van der R.; Wijnen, van H.; Wieren, van S.E.; Beucher, O.; Bos, D.

    2000-01-01

    Brown hares (Lepus europaeus) are shown to facilitate grazing by Brent Geese (Branta bernicla) in a temperate salt marsh in the Netherlands by retarding vegetation succession for >25 yr. Winter grazing by hares prevented the shrub Atriplex portulacoides from spreading in younger parts of the salt

  17. Fungal genomes that influence basic physiological processes of black grama and fourwing saltbush in arid southwestern rangelands

    Science.gov (United States)

    J.R. Barrow; M. Lucero; P. Osuna-Avila; I. Reyes-Vera; R.E. Aaltonen

    2007-01-01

    Symbiotic fungi confer multiple benefits such as enhanced photosynthetic rates and drought tolerance in host plants. Shrubs and grasses of southwestern deserts are colonized by symbiotic fungi that cannot be removed by conventional sterilization methods. These fungi were extensively studied in Bouteloua eriopoda (Torr.) Torr. and Atriplex...

  18. Higher Novel L-Cys Degradation Activity Results in Lower Organic-S and Biomass in Sarcocornia than the Related Saltwort, Salicornia1[OPEN

    Science.gov (United States)

    Kurmanbayeva, Assylay; Bekturova, Aizat; Soltabayeva, Aigerim; Asatryan, Armine; Ventura, Yvonne; Salazar, Octavio; Fedoroff, Nina

    2017-01-01

    Salicornia and Sarcocornia are almost identical halophytes whose edible succulent shoots hold promise for commercial production in saline water. Enhanced sulfur nutrition may be beneficial to crops naturally grown on high sulfate. However, little is known about sulfate nutrition in halophytes. Here we show that Salicornia europaea (ecotype RN) exhibits a significant increase in biomass and organic-S accumulation in response to supplemental sulfate, whereas Sarcocornia fruticosa (ecotype VM) does not, instead exhibiting increased sulfate accumulation. We investigated the role of two pathways on organic-S and biomass accumulation in Salicornia and Sarcoconia: the sulfate reductive pathway that generates Cys and l-Cys desulfhydrase that degrades Cys to H2S, NH3, and pyruvate. The major function of O-acetyl-Ser-(thiol) lyase (OAS-TL; EC 2.5.1.47) is the formation of l-Cys, but our study shows that the OAS-TL A and OAS-TL B of both halophytes are enzymes that also degrade l-Cys to H2S. This activity was significantly higher in Sarcocornia than in Salicornia, especially upon sulfate supplementation. The activity of the sulfate reductive pathway key enzyme, adenosine 5′-phosphosulfate reductase (APR, EC 1.8.99.2), was significantly higher in Salicornia than in Sarcocornia. These results suggest that the low organic-S level in Sarcocornia is the result of high l-Cys degradation rate by OAS-TLs, whereas the greater organic-S and biomass accumulation in Salicornia is the result of higher APR activity and low l-Cys degradation rate, resulting in higher net Cys biosynthesis. These results present an initial road map for halophyte growers to attain better growth rates and nutritional value of Salicornia and Sarcocornia. PMID:28743765

  19. Higher Novel L-Cys Degradation Activity Results in Lower Organic-S and Biomass in Sarcocornia than the Related Saltwort, Salicornia.

    Science.gov (United States)

    Kurmanbayeva, Assylay; Bekturova, Aizat; Srivastava, Sudhakar; Soltabayeva, Aigerim; Asatryan, Armine; Ventura, Yvonne; Khan, Mohammad Suhail; Salazar, Octavio; Fedoroff, Nina; Sagi, Moshe

    2017-09-01

    Salicornia and Sarcocornia are almost identical halophytes whose edible succulent shoots hold promise for commercial production in saline water. Enhanced sulfur nutrition may be beneficial to crops naturally grown on high sulfate. However, little is known about sulfate nutrition in halophytes. Here we show that Salicornia europaea (ecotype RN) exhibits a significant increase in biomass and organic-S accumulation in response to supplemental sulfate, whereas Sarcocornia fruticosa (ecotype VM) does not, instead exhibiting increased sulfate accumulation. We investigated the role of two pathways on organic-S and biomass accumulation in Salicornia and Sarcoconia : the sulfate reductive pathway that generates Cys and l-Cys desulfhydrase that degrades Cys to H 2 S, NH 3 , and pyruvate. The major function of O -acetyl-Ser-(thiol) lyase (OAS-TL; EC 2.5.1.47) is the formation of l-Cys, but our study shows that the OAS-TL A and OAS-TL B of both halophytes are enzymes that also degrade l-Cys to H 2 S. This activity was significantly higher in Sarcocornia than in Salicornia , especially upon sulfate supplementation. The activity of the sulfate reductive pathway key enzyme, adenosine 5'-phosphosulfate reductase (APR, EC 1.8.99.2), was significantly higher in Salicornia than in Sarcocornia These results suggest that the low organic-S level in Sarcocornia is the result of high l-Cys degradation rate by OAS-TLs, whereas the greater organic-S and biomass accumulation in Salicornia is the result of higher APR activity and low l-Cys degradation rate, resulting in higher net Cys biosynthesis. These results present an initial road map for halophyte growers to attain better growth rates and nutritional value of Salicornia and Sarcocornia . © 2017 American Society of Plant Biologists. All Rights Reserved.

  20. Preliminary molecular analysis of the genetic diversity of some ...

    African Journals Online (AJOL)

    In the arid and semi arid areas, salt bush (Atriplex) represents an important forage resource. The characterization of the genetic diversity of these species is useful for their classification, their conservation and their improvement. In this context, we used the random amplified polymorphic DNA-polymerase chain reaction ...

  1. Screening of 18 species for digestate phytodepuration.

    Science.gov (United States)

    Pavan, Francesca; Breschigliaro, Simone; Borin, Maurizio

    2015-02-01

    This experiment assesses the aptitude of 18 species in treating the digestate liquid fraction (DLF) in a floating wetland treatment system. The pilot system was created in NE Italy in 2010 and consists of a surface-flow system with 180 floating elements (Tech-IA®) vegetated with ten halophytes and eight other wetland species. The species were transplanted in July 2011 in basins filled with different proportions of DLF/water (DLF/w); periodic increasing of the DLF/w ratio was imposed after transplanting, reaching the worst conditions for plants in summer 2012 (highest EC value 7.3 mS cm/L and NH4-N content 225 mg/L). It emerged that only Cynodon dactylon, Typha latifolia, Elytrigia atherica, Halimione portulacoides, Salicornia fruticosa, Artemisia caerulescens, Spartina maritima and Puccinellia palustris were able to survive under the system conditions. Halophytes showed higher dry matter production than other plants. The best root development (up to 40-cm depth) was recorded for Calamagrostis epigejos, Phragmites australis, T. latifolia and Juncus maritimus. The highest nitrogen (10-15 g/m(2)) and phosphorus (1-4 g/m(2)) uptakes were obtained with P. palustris, Iris pseudacorus and Aster tripolium. In conclusion, two halophytes, P. palustris and E. atherica, present the highest potential to be used to treat DLF in floating wetlands.

  2. Benthic Bacillariophyta of the Paripe River estuary in Pernambuco state, Brazil

    Directory of Open Access Journals (Sweden)

    AN. Moura

    Full Text Available The aim of this study was to evaluate the benthic diatom composition from the estuary sediment in the Pernambuco State, based on 32 samples. Samples were collected monthly from September through December 1999 (dry period and from April through July 2000 (rainy period during four pre established sampling stations. Results indicated 19 families and 31 specific and infraspecific taxa. Eight new records were founded for Pernambuco State: Auliscus coelatus, Fallacia nummularia, Navicula algida, Plagiograma pulchellum, Terpsinoe americana, Triceratium antideluvianna and Tryblionella coarctata and one, Auliscus punctatus Bailey, in northeastern Brazil.

  3. Use of local pastoral species to increase fodder production of the saline rangelands in southern Tunisia

    Science.gov (United States)

    Tlili, Abderrazak; Tarhouni, Mohamed; Cardà, Artemi; Neffati, Mohamed

    2017-04-01

    Climate changes associated with multiple destructive human activities accelerate the degradation process of the natural rangelands around the world and especially the vulnerable areas such as the dryland ecosystems (Anaya-Romero et al., 2015; Eskandari et al., 2016; Muños Rojas et al., 2016; Vicente-Serrano et al., 2016). The vegetation cover and the biomass production of these ecosystems are decreasing and this is resulting in land degradation due to the soil erosion and changes in soil quality due to the abuse and misuse of the soil resources (Cerdà et al., 2016; Prosdocimi et al., 2016; Keesstra et al., 2016). To cope with such threats, it is necessary to develop some management techniques (restoration, plantation…) to enhance the biomass production and the carbon sequestration of the degraded rangelands (Muñoz-Rojas et al., 2016; Tarhouni et al., 2016). The valorization of saline water by planting pastoral halophyte species in salt-affected soils as well as the marginal areas are considered among the valuable tools to increase the rangeland production in dry areas. In this work, the ability of four plants (Atriplex halimus L. (Amaranthaceae), Atriplex mollis Desf. (Amaranthaceae), Lotus creticus L. (Fabaceae) and Cenchrus ciliaris L. (Poaceae)) to grow and to produce are tested under a field saline conditions (water and soil). Non-destructive method (Vegmeasure) is used to estimate the biomass production of these species. Chemical (crude protein, moisture and ash contents) and biochemical analyses (sugars, tannins and polyphenols contents) are also undertaken. Two years after plantation, the obtained results showed the ability of the four species to survive and to grow under high salinity degree. A strong positive correlation was obtained between the canopy cover and the dry biomass of the four studied species. Hence, the restoration of saline soils can be ensured by planting local halophytes. Acknowledgements. The research leading to these results has

  4. Abscisic acid effects on water and photosynthetic characteristics of ...

    African Journals Online (AJOL)

    The aim of this study is to compare the water and photosynthetic characteristics of two xerophilic ecotypes of Atriplex halimus (L.). Seeds collected from two different sites Djelfa and Oran are germinated in controlled greenhouse. After 6 months, the plantlets were treated 21 days with increasing concentrations of abscisic ...

  5. Fourwing saltbrush establishment in the Keating Uniform Shrub Garden—first year results.

    Science.gov (United States)

    J. Michael Geist; Paul J. Edgerton

    1984-01-01

    Site preparation techniques to aid establishment of fourwing saltbush (Atriplex canescens) were compared at a test location in eastern Oregon. Survival and growth of transplanted seedlings were improved after one season of growth by either spot spraying with herbicides or scalping to reduce competing vegetation. Average growth of seedlings was...

  6. Biological and technological effects of some mulberry varieties and ...

    African Journals Online (AJOL)

    egyptian hak

    The Israel Academy of Sciences and Humanities, Jerusalem. Appendix: Specimina visa selecta. Atriplex bocconi Guss. Italia, Sicily: Sciacca al Caricatojo, in argillosis collibus maritimis, V, IX (ante 1844), G. Gussone s.n. (NAP). Sciacca al Caricatolo, V, leg. G. Gussone s.n., det. D. Iamonico (NAP). Tunisia, Tunisi: Tunisi ...

  7. Introgression of the SbASR-1 Gene Cloned from a Halophyte Salicornia brachiata Enhances Salinity and Drought Endurance in Transgenic Groundnut (Arachis hypogaea) and Acts as a Transcription Factor

    Science.gov (United States)

    Tiwari, Vivekanand; Chaturvedi, Amit Kumar; Mishra, Avinash; Jha, Bhavanath

    2015-01-01

    The SbASR-1 gene, cloned from a halophyte Salicornia brachiata, encodes a plant-specific hydrophilic and stress responsive protein. The genome of S. brachiata has two paralogs of the SbASR-1 gene (2549 bp), which is comprised of a single intron of 1611 bp, the largest intron of the  abscisic acid stress ripening [ASR] gene family yet reported. In silico analysis of the 843-bp putative promoter revealed the presence of ABA, biotic stress, dehydration, phytohormone, salinity, and sugar responsive cis-regulatory motifs. The SbASR-1 protein belongs to Group 7 LEA protein family with different amino acid composition compared to their glycophytic homologs. Bipartite Nuclear Localization Signal (NLS) was found on the C-terminal end of protein and localization study confirmed that SbASR-1 is a nuclear protein. Furthermore, transgenic groundnut (Arachis hypogaea) plants over-expressing the SbASR-1 gene constitutively showed enhanced salinity and drought stress tolerance in the T1 generation. Leaves of transgenic lines exhibited higher chlorophyll and relative water contents and lower electrolyte leakage, malondialdehyde content, proline, sugars, and starch accumulation under stress treatments than wild-type (Wt) plants. Also, lower accumulation of H2O2 and O2.- radicals was detected in transgenic lines compared to Wt plants under stress conditions. Transcript expression of APX (ascorbate peroxidase) and CAT (catalase) genes were higher in Wt plants, whereas the SOD (superoxide dismutase) transcripts were higher in transgenic lines under stress. Electrophoretic mobility shift assay (EMSA) confirmed that the SbASR-1 protein binds at the consensus sequence (C/G/A)(G/T)CC(C/G)(C/G/A)(A/T). Based on results of the present study, it may be concluded that SbASR-1 enhances the salinity and drought stress tolerance in transgenic groundnut by functioning as a LEA (late embryogenesis abundant) protein and a transcription factor. PMID:26158616

  8. ETUDE DE LA DISTRIBUTION DES CATIONS ECHANGEABLES

    African Journals Online (AJOL)

    SEI Joseph

    été mené dans une serre en verre au département de Biologie (Université de ... taux de Na+ et K+, et fait l'analyse des paramètres physique et chimique du sol .... comportement de cette espèce : Atriplex. halimus vis-à-vis de cinq doses de ...

  9. Recommended Species for Vegetative Stabilization of Training Lands in Arid and Semi-Arid Environments

    Science.gov (United States)

    1985-09-01

    bitterbrush Purshia glandulosa Apache plume Fallugia paradoxa Arizona fesce Festuca arizonica Ashe juniper Juniperus ashei Australian saltbush Atriplex...elm Ulmus crassifolia *Cheatgrass Bromus tectorum -Chinkapin oak Quercus muhlenbergii Cholla Opuntia, spp. * Cicer milkvetch Astragalus cicer Clovers...Linum lewisii Little bluestem Schizachyrium scoparium *Littleleaf palo verde Cercidium microphyllum *Live oak Quercus virginiana Lovegrasses Eragrostis

  10. Bioensayo de toxicidad aguda con plantas nativas para evaluar un derrame de petróleo

    Directory of Open Access Journals (Sweden)

    Vivien Pentreath

    2015-06-01

    Full Text Available Los bioensayos con plantas constituyen una excelente herramienta en la evaluación del riesgo ambiental y, en particular, la utilización de semillas de plantas vasculares es recomendada debido a su mayor sensibilidad. El objetivo del presente trabajo fue evaluar el comportamiento de plantas nativas para ser utilizadas como indicador biológico de contaminación ambiental con petróleo en relación con un bioindicador estandarizado. Se analizó el Índice de Germinación (IG de Lactuca sativa L., Atriplex lampa (Moq. D.Dietri. y Prosopis denudans Benth. en treinta muestras de suelo extraídas de un yacimiento petrolero a fin de detectar efectos fitotóxicos. El IG es un método económico, rápido y reproducible para determinar toxicidad de suelo, ayudando a caracterizar áreas con suelos contaminados. La germinación de Atriplex lampa (Moq. D.Dietri. y Prosopis denudans resultó más resistente en los suelos contaminados de un yacimiento petrolero que el bioindicador de referencia utilizado (Lactuca sativa L..

  11. Antifungal activity from polar and non-polar extracts of some Chenopodiaceae wild species growing in Tunisia.

    Science.gov (United States)

    Boughalleb, N; Trabelsi, L; Harzallah-Skhiri, F

    2009-01-01

    Nine plants belonging to Chenopodiaceae family were collected around salt marshes near Monastir, located in the east Mediterranean coast of Tunisia. They were tested for their antifungal activities against six plant pathogenic fungi: Botrytis cinerea, Fusarium oxysporum f. sp. niveum, F. solani f. sp. cucurbitae, Phytophthora cactorum, Rhizoctonia solani and Nattrassia mangiferae. Data of this study showed that the highest inhibition of Botrytis cinerea growth was observed with the petroleum ether extract of Atriplex inflata fruits (F) (24.5 mm). The in vitro growth of F. oxysporum f. sp. niveum was reduced only with A. inflata whole plant (WP) petroleum ether extract (32.3 mm). The most important inhibition zones were obtained against F. solani f. sp. cucurbitae with Atriplex semibaccata methanol and acetone extracts (34.7 and 31.0 mm, respectively). This work revealed that fungitoxic compounds were probably present in the petroleum ether extract obtained from A. portulacoides (WP), since it has suppressed the growth of F. s. cucurbitae. Our investigation proved that many Chenopodiaceae species adapted to saline soils may contain phytochemical compounds with fungicidal properties.

  12. Using euhalophytes to understand salt tolerance and to develop saline agriculture: Suaeda salsa as a promising model.

    Science.gov (United States)

    Song, Jie; Wang, Baoshan

    2015-02-01

    As important components in saline agriculture, halophytes can help to provide food for a growing world population. In addition to being potential crops in their own right, halophytes are also potential sources of salt-resistance genes that might help plant breeders and molecular biologists increase the salt tolerance of conventional crop plants. One especially promising halophyte is Suaeda salsa, a euhalophytic herb that occurs both on inland saline soils and in the intertidal zone. The species produces dimorphic seeds: black seeds are sensitive to salinity and remain dormant in light under high salt concentrations, while brown seeds can germinate under high salinity (e.g. 600 mm NaCl) regardless of light. Consequently, the species is useful for studying the mechanisms by which dimorphic seeds are adapted to saline environments. S. salsa has succulent leaves and is highly salt tolerant (e.g. its optimal NaCl concentration for growth is 200 mm). A series of S. salsa genes related to salt tolerance have been cloned and their functions tested: these include SsNHX1, SsHKT1, SsAPX, SsCAT1, SsP5CS and SsBADH. The species is economically important because its fresh branches have high value as a vegetable, and its seed oil is edible and rich in unsaturated fatty acids. Because it can remove salts and heavy metals from saline soils, S. salsa can also be used in the restoration of salinized or contaminated saline land. Because of its economic and ecological value in saline agriculture, S. salsa is one of the most important halophytes in China. In this review, the value of S. salsa as a source of food, medicine and forage is discussed. Its uses in the restoration of salinized or contaminated land and as a source of salt-resistance genes are also considered. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. The Role of Na+ and K+ Transporters in Salt Stress Adaptation in Glycophytes

    Directory of Open Access Journals (Sweden)

    Dekoum V. M. Assaha

    2017-07-01

    Full Text Available Ionic stress is one of the most important components of salinity and is brought about by excess Na+ accumulation, especially in the aerial parts of plants. Since Na+ interferes with K+ homeostasis, and especially given its involvement in numerous metabolic processes, maintaining a balanced cytosolic Na+/K+ ratio has become a key salinity tolerance mechanism. Achieving this homeostatic balance requires the activity of Na+ and K+ transporters and/or channels. The mechanism of Na+ and K+ uptake and translocation in glycophytes and halophytes is essentially the same, but glycophytes are more susceptible to ionic stress than halophytes. The transport mechanisms involve Na+ and/or K+ transporters and channels as well as non-selective cation channels. Thus, the question arises of whether the difference in salt tolerance between glycophytes and halophytes could be the result of differences in the proteins or in the expression of genes coding the transporters. The aim of this review is to seek answers to this question by examining the role of major Na+ and K+ transporters and channels in Na+ and K+ uptake, translocation and intracellular homeostasis in glycophytes. It turns out that these transporters and channels are equally important for the adaptation of glycophytes as they are for halophytes, but differential gene expression, structural differences in the proteins (single nucleotide substitutions, impacting affinity and post-translational modifications (phosphorylation account for the differences in their activity and hence the differences in tolerance between the two groups. Furthermore, lack of the ability to maintain stable plasma membrane (PM potentials following Na+-induced depolarization is also crucial for salt stress tolerance. This stable membrane potential is sustained by the activity of Na+/H+ antiporters such as SOS1 at the PM. Moreover, novel regulators of Na+ and K+ transport pathways including the Nax1 and Nax2 loci regulation of SOS1

  14. Developmental Control and Plasticity of Fruit and Seed Dimorphism in Aethionema arabicum

    Czech Academy of Sciences Publication Activity Database

    Lenser, T.; Graeber, K.; Cevik, O.S.; Adiguzel, N.; Donmez, A. A.; Grosche, C.; Kettermann, M.; Mayland-Quellhorst, S.; Merai, Z.; Mohammadin, S.; Nguyen, T.P.; Rumpler, H.; Schulze, C.; Sperber, K.; Steinbrecher, T.; Wiegand, M.; Strnad, Miroslav; Scheid, O. M.; Rensing, S. A.; Schranz, M. E.; Theissen, G.; Mummenhoff, K.; Leubner-Metzger, Gerhard

    2016-01-01

    Roč. 172, č. 3 (2016), s. 1691-1707 ISSN 0032-0889 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : diptychocarpus-strictus brassicaceae * phenotypic plasticity * arabidopsis-thaliana * lepidium brassicaceae * atriplex-sagittata * dispersal ability * desert annuals * coat mucilage * crepis-sancta * pod shatter Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.456, year: 2016

  15. 50 CFR 17.12 - Endangered and threatened plants.

    Science.gov (United States)

    2010-10-01

    ... 343 NA NA Ancistrocactus tobuschii Tobusch fishhook cactus U.S.A. (TX) Cactaceae E 80 NA NA Apios... ......do E 647 NA NA Astrophytum asterias Star cactus U.S.A. (TX), Mexico Cactaceae E 521 NA NA Atriplex...) Cactaceae E 208 NA NA Chamaecrista glandulosa var. mirabilis None U.S.A. (PR) Fabaceae E 379 NA NA...

  16. Adaptation to climate change in desertified lands of the marginal regions in Egypt through sustainable crop and livestock diversification systems

    Institute of Scientific and Technical Information of China (English)

    Hassan M. El Shaer

    2015-01-01

    Environmental degradation resulting from current climate changes, including prolonged drought, land degradation, desertification, and loss of biodiversity, is presenting enormous challenges to achieve food security and eradication of poverty in the marginal regions (about 90%of the total area) of Egypt. In addition to the natural constraints of high temperature, wind erosion, sand dune movement, and recurrent drought, such regions are subjected to improper land and water management. Moreover, there is a lack of knowledge, technologies, and experiences to match with the current severe climatic changes. There is a great need for establishing sustainable integrated ecosystem rehabilitation and management programs to overcome such problems in the marginal areas, particularly in the Sinai Peninsula due to its strategic and social importance. A series of research and development programs have been conducted in 2006 to im-prove the livelihoods of smallholders through enhancing the efficient management and utilization of local resources that can cope with the drastic changes of climate in the Sinai Peninsula. An integrated livestock/salt-tolerant fodder crop system was introduced, in 2010 by the project teamwork of Desert Research center, Egypt, to many smallholders in the South Sinai region, where studies were conducted at both the general research and individual farmer levels. The most important results were:(1) adoption of the most salt-tolerant genotypes of three forage crops:pearl millet (Pennisetum glaucum L.), sorghum (Sorghum bicolor), and Sudan grass (Sorghum sudanense (Piper) Stapf.); two cereal crops (triticale and barley);and two oil crops:safflower (Carthamus tinctorius) and Brassica (Mustard). Alfalfa (Medicago sativa L. and Medicago arborium), cowpeas (Vigna sinensis L.), fodder beets (Beta vulgaris L.), clumping desert bunchgrass (Panicum turgedum), ryegrass (Lolium perenne) Ray grass, forage shrubs (Kochia indica, Atriplex num-mularia, Sesbania sesban L

  17. Documentation of hypoglycemic and wound healing plants in Kodiyampalayam coastal village (southeast coast of India

    Directory of Open Access Journals (Sweden)

    Satyavani Kaliamurthi

    2014-08-01

    Full Text Available Objective: To document the hypoglycemic and wound healing plant species especially halophytes and associates were carried out in the coastal village of Kodiyampalayam (Southeast coast of India. Methods: The data were collected during the month of December 2011 to November 2012 with personal interviews and group discussion of local coastal fisher women community and traditional practitioner. Results: The results indicated the traditional knowledge of 33 medicinal plant species, photographs, vernacular name, habit, active part and their mode of action. Among these, Citrullus colocynthis, Coccinia grandis, Rhizophora apiculata, Rhizophora mucronata, Bruguiera cylindrica, Excoecaria agallocha and Andrographis paniculata were discovered in huge number. Conclusions: This study concludes medicinal uses of halophytes and associates in the coastal area. It will be needed scientific validation for development of novel therapeutic agents.

  18. Ability of salt marsh plants for TBT remediation in sediments

    OpenAIRE

    Carvalho, P. N.; Basto, M. C.; Moreira da Silva, M.; Machado, A.; Bordalo, A.; Vasconcelos, M. T.

    2010-01-01

    The capability of Halimione portulacoides, Spartina maritima, and Sarcocornia fruticosa (halophytes very commonly found in salt marshes from Mediterranean areas) for enhancing remediation of tributyltin (TBT) from estuarine sediments was investigated, using different experimental conditions.

  19. A comparative study of salt tolerance parameters in 11 wild relatives of Arabidopsis thaliana

    KAUST Repository

    Orsini, Francesco; D'Urzo, Matilde Paino; Inan, Gunsu; Serra, Sara; Oh, Dong-Ha; Mickelbart, Michael V.; Consiglio, Federica; Li, Xia; Jeong, Jae Cheol; Yun, Dae-Jin; Bohnert, Hans J.; Bressan, Ray A.; Maggio, Albino

    2010-01-01

    improved owing to active development of advanced tools in molecular, genomics, and bioinformatics analyses. However, the full potential of investigative power has not been fully exploited, because the use of halophytes as model systems in plant salt

  20. Journal of Genetics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Sexual conflict in plants · N. G. Prasad S. .... Single-nucleotide polymorphisms in the B7H3 gene are not associated with human autoimmune myasthenia gravis ... Antioxidative response mechanisms in halophytes: their role in stress defence.

  1. A comparative study of salt tolerance parameters in 11 wild relatives of Arabidopsis thaliana

    KAUST Repository

    Orsini, Francesco

    2010-07-01

    Salinity is an abiotic stress that limits both yield and the expansion of agricultural crops to new areas. In the last 20 years our basic understanding of the mechanisms underlying plant tolerance and adaptation to saline environments has greatly improved owing to active development of advanced tools in molecular, genomics, and bioinformatics analyses. However, the full potential of investigative power has not been fully exploited, because the use of halophytes as model systems in plant salt tolerance research is largely neglected. The recent introduction of halophytic Arabidopsis-Relative Model Species (ARMS) has begun to compare and relate several unique genetic resources to the well-developed Arabidopsis model. In a search for candidates to begin to understand, through genetic analyses, the biological bases of salt tolerance, 11 wild relatives of Arabidopsis thaliana were compared: Barbarea verna, Capsella bursa-pastoris, Hirschfeldia incana, Lepidium densiflorum, Malcolmia triloba, Lepidium virginicum, Descurainia pinnata, Sisymbrium officinale, Thellungiella parvula, Thellungiella salsuginea (previously T. halophila), and Thlaspi arvense. Among these species, highly salt-tolerant (L. densiflorum and L. virginicum) and moderately salt-tolerant (M. triloba and H. incana) species were identified. Only T. parvula revealed a true halophytic habitus, comparable to the better studied Thellungiella salsuginea. Major differences in growth, water transport properties, and ion accumulation are observed and discussed to describe the distinctive traits and physiological responses that can now be studied genetically in salt stress research. 2010 The Author.

  2. Effect of sugarcane vinasse and EDTA on cadmium phytoextraction by two saltbush plants.

    Science.gov (United States)

    Eissa, Mamdouh A

    2016-05-01

    Although the use of saltbush plants in metal phytoremediation is well known, there is little information about the impact of sugarcane vinasse (SCV) and EDTA on metal uptake. Heavily cadmium-polluted soil (38 mg kg(-1) Cd) was used in pot and incubation experiments to investigate the Cd phytoextraction potential of wavy saltbush (Atriplex undulata) and quail saltbush (Atriplex lentiformis). EDTA at rates of 3, 6, and 10 mM kg(-1) soil and SCV at rates of 7, 15, and 30 mL kg(-1) soil were added to the polluted soil. The application of EDTA significantly (P = 0.002) reduced the growth of saltbush plants; on the other hand, SCV improved the growth. Both EDTA and SCV increased the availability and root-to-shoot transfer of Cd. The plants of A. lentiformis grown on the soil amended with the highest rate of SCV were able to remove 20.4 % of the total soil Cd during a period of 9 months. Based on the obtained results, it may be concluded that A. lentiformis and sugarcane vinasse could be more effective in the phytoextraction of Cd from the polluted soils.

  3. Hvězdnice sivá (Aster canus), Christian Ferdinand Hochstetter a dva málo známé prameny ke květeně Moravy

    Czech Academy of Sciences Publication Activity Database

    Danihelka, Jiří

    2008-01-01

    Roč. 43, č. 1 (2008), s. 1-16 ISSN 1211-5258 R&D Projects: GA MŠk(CZ) LC06073 Institutional research plan: CEZ:AV0Z60050516 Keywords : history of botany * halophytes * exsiccate series Subject RIV: EF - Botanics

  4. Comparative effects of neutral salt and alkaline salt stress on seed ...

    African Journals Online (AJOL)

    ajl user 4

    2012-04-27

    Apr 27, 2012 ... 0991-8583259. Abbreviations: AsA, Ascorbic acid; Car, carotenoids; CAT, ... the most critical stages in the life cycle of plants when ... 2008a). The mechanisms for adaptation of the halophyte to salt ..... Plant Soil, 39: 205-207.

  5. Environmental Assessment for a Global Reach Deployment Center and Ancillary Facilities

    Science.gov (United States)

    2005-07-07

    akali milkvetch (Astragalus tener var. tener), Contra Costa goldfields (Lasthenia conjugens), and the San Joaquin spearscale (Atriplex joaquiniana... Costa goldfields (Lasthenia conjugens), a federally listed plant species. Building the Center at this site would also involve building within the land...AFB. Contra Costa goldfields is listed as federally endangered. Vernal pools are found throughout the Base. These sites vary in size from 1 acre

  6. Environmental Assessment for a Security Forces Armory/Combat Arms Facility

    Science.gov (United States)

    2005-03-21

    tener), Contra Costa goldfields (Lasthenia conjugens), and the San Joaquin spearscale (Atriplex joaquiniana) – that are listed by the California Native...Plant Society as rare. The akali milkvetch and the San Joaquin spearscale are also listed as federal species of concern (Travis AFB, 2002a). The...following federally listed species have been identified at Travis AFB: • Contra Costa goldfields (Lasthenia conjugens), a federally endangered plant

  7. Defining the next generation modeling of coastal ecotone dynamics in response to global change

    Science.gov (United States)

    Jiang, Jiang; DeAngelis, Donald L.; Teh, Su-Y; Krauss, Ken W.; Wang, Hongqing; Haidong, Li; Smith, Thomas; Koh, Hock L.

    2016-01-01

    Coastal ecosystems are especially vulnerable to global change; e.g., sea level rise (SLR) and extreme events. Over the past century, global change has resulted in salt-tolerant (halophytic) plant species migrating into upland salt-intolerant (glycophytic) dominated habitats along major rivers and large wetland expanses along the coast. While habitat transitions can be abrupt, modeling the specific drivers of abrupt change between halophytic and glycophytic vegetation is not a simple task. Correlative studies, which dominate the literature, are unlikely to establish ultimate causation for habitat shifts, and do not generate strong predictive capacity for coastal land managers and climate change adaptation exercises. In this paper, we first review possible drivers of ecotone shifts for coastal wetlands, our understanding of which has expanded rapidly in recent years. Any exogenous factor that increases growth or establishment of halophytic species will favor the ecotone boundary moving upslope. However, internal feedbacks between vegetation and the environment, through which vegetation modifies the local microhabitat (e.g., by changing salinity or surface elevation), can either help the system become resilient to future changes or strengthen ecotone migration. Following this idea, we review a succession of models that have provided progressively better insight into the relative importance of internal positive feedbacks versus external environmental factors. We end with developing a theoretical model to show that both abrupt environmental gradients and internal positive feedbacks can generate the sharp ecotonal boundaries that we commonly see, and we demonstrate that the responses to gradual global change (e.g., SLR) can be quite diverse.

  8. Responses to salinity in invasive cordgrass hybrids and their parental species (Spartina) in a scenario of sea level rise and climate change

    Science.gov (United States)

    Background/Question/Methods: Salinity is one of the main abiotic factors in salt marshes. Studies rooted to analyzed salinity tolerance of halophytes may help to relate their physiological tolerances with distribution limits in the field. Climate change-induced sea level rise and higher temperatures...

  9. Gesteelde zoutmelde [Halimione pedunculata (L.) Aellen] op Texel

    NARCIS (Netherlands)

    Westhoff, V.; Schaminée, J.H.J.

    1989-01-01

    Halimione pedunculata, one of the rarest halophytes of the Netherlands, was known from the southwestern estuaries, as well as from the Westfriesian islands of Terschelling, Ameland and Schiermonnikoog. Its absence from Texel was remarkable. On 6 September 1988, the authors observed and collected the

  10. Molecular responses and expression analysis of genes in a ...

    African Journals Online (AJOL)

    Haloxylon ammodendron (C.A Mey.) Bunge is a xero-halophytic desert shrub with excellent drought resistance and salt tolerance. To decipher the molecular responses involved in its drought resistance, the cDNA-AFLP (amplified fragment length polymorphism) technique was employed to identify genes expressed ...

  11. Aviation Fueling: A Cleaner, Greener Approach

    Science.gov (United States)

    Hendricks, Robert C.; Bushnell, Dennis M.; Shouse, Dale T.

    2010-01-01

    Projected growth of aviation depends on fueling where specific needs must be met. Safety is paramount, and along with political, social, environmental and legacy transport systems requirements, alternate aviation fueling becomes an opportunity of enormous proportions. Biofuels sourced from halophytes, algae, cyanobacteria, and weeds using wastelands, waste water, and seawater have the capacity to be drop-in fuel replacements for petroleum fuels. Biojet fuels from such sources solves the aviation CO2 emissions issue and do not compete with food or freshwater needs. They are not detrimental to the social or environmental fabric and use the existing fuels infrastructure. Cost and sustainable supply remains the major impediments to alternate fuels. Halophytes are the near-term solution to biomass/biofuels capacity at reasonable costs; they simply involve more farming, at usual farming costs. Biofuels represent a win-win approach, proffering as they do at least the ones we are studying massive capacity, climate neutral-to-some sequestration, and ultimately, reasonable costs.

  12. Structure of Living Soil Cover of the White Sea

    Directory of Open Access Journals (Sweden)

    Moseev Dmitriy Sergeevich

    2016-12-01

    Full Text Available The living soil of the Dry Sea gulf's coast in the South-East part of the White Sea's Dvina Bay is practically a blind spot. The bay is a unique water body in respect of plant communities. The majority of halophytes typical for the White Sea coast grows here. There are differences between plant communities of the East and West shores of the Dry Sea gulf. The East coast has developed communities with domination of Phragmites australis, the West coast is occupied by communities of psammophytonis levees with a predominance of Leymus arenarius. For the first time ever, the article provides a classification of halophytic vegetation of the gulf's marshes, which highlighted the prodromus containing ten associations, consisting of seven formations of the type grass vegetation, many of which are rare. The research results can be used to develop environmental protection measures during the construction of a deep sea port in the Dry Sea gulf.

  13. Aviation Fueling: A Cleaner, Greener Approach

    Directory of Open Access Journals (Sweden)

    Robert C. Hendricks

    2011-01-01

    Full Text Available Projected growth of aviation depends on fueling where specific needs must be met. Safety is paramount, and along with political, social, environmental, and legacy transport systems requirements, alternate aviation fueling becomes an opportunity of enormous proportions. Biofuels—sourced from halophytes, algae, cyanobacteria, and “weeds” using wastelands, waste water, and seawater—have the capacity to be drop-in fuel replacements for petroleum fuels. Biojet fuels from such sources solve the aviation CO2 emissions issue and do not compete with food or freshwater needs. They are not detrimental to the social or environmental fabric and use the existing fuels infrastructure. Cost and sustainable supply remain the major impediments to alternate fuels. Halophytes are the near-term solution to biomass/biofuels capacity at reasonable costs; they simply involve more farming, at usual farming costs. Biofuels represent a win-win approach, proffering as they do—at least the ones we are studying—massive capacity, climate neutral-to-some sequestration, and ultimately, reasonable costs.

  14. Heterogeneity of Soil and Vegetation in the Urban Habitats of New Industrial Cities in the Desert Landscape of Egypt

    Directory of Open Access Journals (Sweden)

    Monier Abd EL-GHANI

    2015-03-01

    Full Text Available The relationship between vegetation and soil supporting the habitats in 4 new industrial cities were assessed. Five main habitats were distinguished from inner city toward outskirts: lawns, home gardens, public gardens, waste lands and desert outskirts. After application of Twinspan, 26 vegetation groups were identified in the 5 recognized habitats, demonstrating that some groups are chatracteristic of a certain city, e.g. Asphodelus aestivus - Deverra tortuosa - Thymelaea hirsuta group was confined to the desert habitat of Burg El-Arab city; Thymelaea hirsuta - Linaria albifrons and Atriplex halimus - Atriplex lindleyi subsp. inflata - Suaeda vermiculata - Typha domingensis groups were found in the waste lands of Burg El-Arab city; Conyza bonariensis - Cynodon dactylon - Sonchus oleraceus group in the home garden habitat of 10th Ranadan city; Cynodon dactylon group in the lawns of Burg El-Arab city; Bassia indica - Plantago major group in the public gardens of Burg El-Arab city; Oxalis corniculata - Plantago lagopus group in the public gardens of 10th Ramadan city; Sonchus oleraceus - Cynodon dactylon and Dactyloctenium aegyptium - Leptochloa fusca - Phragmites australis groups in the public gardens of 6th October city. Silt, clay, organic matter, carbonates and carbon contents showed significant diffrences among the 5 habitats.

  15. The tolerance to salinity and nutrient supply in four European Bolboschoenus species (B. maritimus, B. laticarpus, B. planiculmis and B. yagara) affects their vulnerability or expansiveness

    Czech Academy of Sciences Publication Activity Database

    Hroudová, Zdenka; Zákravský, Petr; Flegrová, Monika

    2014-01-01

    Roč. 112, Jan. 2014 (2014), s. 66-75 ISSN 0304-3770 R&D Projects: GA AV ČR IAA6005905 Institutional research plan: CEZ:AV0Z60050516 Institutional support: RVO:67985939 Keywords : halophytes * stress tolerance * wetlands Subject RIV: EF - Botanics Impact factor: 1.608, year: 2014

  16. Comparative 2D-DIGE analysis of salinity responsive microsomal proteins from leaves of salt-sensitive Arabidopsis thaliana and salt-tolerant Thellungiella salsuginea.

    Science.gov (United States)

    Vera-Estrella, Rosario; Barkla, Bronwyn J; Pantoja, Omar

    2014-12-05

    Halophytes have evolved unique molecular strategies to overcome high soil salinity but we still know very little about the main mechanisms that these plants use to complete their lifecycle under salinity stress. One useful approach to further our understanding in this area is to directly compare the response to salinity of two closely related species which show diverse levels of salt tolerance. Here we present a comparative proteomic study using DIGE of leaf microsomal proteins to identify salt-responsive membrane associated proteins in Arabidopsis thaliana (a glycophyte) and Thellungiella salsuginea (a halophyte). While a small number of distinct protein abundance changes were observed upon salt stress in both species, the most notable differences were observed between species and specifically, in untreated plants with a total of 36 proteins displaying significant abundance changes. Gene ontology (GO) term enrichment analysis showed that the majority of these proteins were distributed into two functional categories; transport (31%) and carbohydrate metabolism (17%). Results identify several novel salt responsive proteins in this system and support the theory that T. salsuginea shows a high degree of salt-tolerance because molecular mechanisms are primed to deal with the stress. This intrinsic ability to anticipate salinity stress distinguishes it from the glycophyte A. thaliana. There is significant interest in understanding the molecular mechanisms that plants use to tolerate salinity as soil salinization is becoming an increasing concern for agriculture with high soil Na(+) levels leading to reduced yields and economic loss. Much of our knowledge on the molecular mechanisms employed by plants to combat salinity stress has come from work on salt-sensitive plants, but studies on naturally occurring highly salt-resistant plants, halophytes, and direct comparisons between closely related glycophytes and halophytes, could help to further our understanding of salinity

  17. Flora and vegetation of the Saint David and Lewis Springs Cienegas, Cochise County, Arizona

    Science.gov (United States)

    Elizabeth Makings

    2013-01-01

    In the Sky Island region, cienegas are rare marshlands amidst arid surroundings where groundwater perennially intersects the surface. Their unique physical properties give rise to a characteristic plant community dominated by wetland graminoids. Evaporation usually causes the water to be alkaline, and vegetation around a cienega commonly includes halophytes and other...

  18. Short Communication Assessing the ability of fodder beet ( Beta ...

    African Journals Online (AJOL)

    A pot experiment was carried out to determine the sodium (Na) absorption ability of halophytic fodder beet (Beta vulgaris L. ʽBrigadierʼ) irrigated with water enriched to Na levels found in winery wastewater. Treatments comprised (1) soil without plants irrigated with untreated water or (2) Na-enriched water, and (3) fodder ...

  19. Localization and composition of seed oils of Crithmum maritimum L ...

    African Journals Online (AJOL)

    GREGORY

    2010-09-27

    Sep 27, 2010 ... 1Laboratoire d'Adaptation des Plantes aux Stress Abiotiques, Centre de ... was rich with oleic acid (78.6%), low level of palmitic acid (4.8%) and non negligible amount of linoleic ... soils, only some halophytes can support these conditions. ... Mature fruits were collected in December 2007 from plants in the.

  20. Enzymatic regulation of organic acid metabolism in an alkali-tolerant ...

    African Journals Online (AJOL)

    Chloris virgata, an alkali-tolerant halophyte, was chosen as the test material for our research. The seedlings of C. virgata were treated with varying salt and alkali stress. First, the composition and content of organic acids in shoots were analyzed and the results indicated that there was not only a significant increase in total ...

  1. HALOFYTNÍ ROSTLINY A JEJICH MOŽNÉ VYUŽITÍ VE FYTOREMEDIACÍCH

    Czech Academy of Sciences Publication Activity Database

    Moťková, Kateřina; Podlipná, Radka; Vaněk, Tomáš; Kafka, Z.

    2014-01-01

    Roč. 108, č. 6 (2014), s. 586-591 ISSN 0009-2770 R&D Projects: GA MŠk(CZ) OC10028 Institutional support: RVO:61389030 Keywords : halophytic plants * phytoremediation * heavy metals Subject RIV: DK - Soil Contamination ; De-contamination incl. Pesticides Impact factor: 0.272, year: 2014 http://www.chemicke-listy.cz/docs/full/2014_06_586-591.pdf

  2. NaCl salinity affects lateral root development in Plantago maritima

    NARCIS (Netherlands)

    Rubinigg, M; Wenisch, J; Elzenga, JTM; Stulen, [No Value

    2004-01-01

    Root growth and morphology were assessed weekly in hydroponically-grown seedlings of the halophyte Plantago maritima L. during exposure to 0, 50, 100 and 200 mM NaCl for 21 d. Relative growth rate was reduced by 25% at 200 mM NaCl. The lower NaCl treatments did not affect relative growth rates.

  3. Initial land reclamation procedures related to possible Pu-cleanup activities at the Tonopah Test Range

    International Nuclear Information System (INIS)

    Wallace, A.; Romney, E.M.

    1976-02-01

    If areas of the Tonopah Test Range (TTR) are to be used for experimental tests of procedures for clean-up of 239 Pu contamination, there are experiences in the Great Basin Desert portions of the Nevada Test Site (NTS) which can serve as guides to reclamation and revegetation of such arid lands. Procedures which will encourage development of the grasses Hilaria jamesii and Oryzopsis hymenoides, as well as the perennial shrubs Eurotia lanata and Atriplex canescens would greatly improve the area as range land

  4. Palynomorphological features of Suaeda acuminata (C.A. Mey. Moq., Suaeda prostrata Pall. and Tamarix ramosissima Ledeb.

    Directory of Open Access Journals (Sweden)

    Tatyana I. Tsymbalyuk

    2012-03-01

    Full Text Available The pollen morphology of Suaeda acuminata , S. prostratа and Tamarix ramosissima from Ukrainian flora has been studied with light and scanning electron microscopy. The main morphological features of pollen grains of three taxa, which spread within halophytes vegetation, are determined. The results has considered as potential useful for identification of the fossil pollen under paleopalynological or paleoecological study.

  5. Anticancer Drugs from Marine Flora: An Overview

    OpenAIRE

    Sithranga Boopathy, N.; Kathiresan, K.

    2010-01-01

    Marine floras, such as bacteria, actinobacteria, cyanobacteria, fungi, microalgae, seaweeds, mangroves, and other halophytes are extremely important oceanic resources, constituting over 90% of the oceanic biomass. They are taxonomically diverse, largely productive, biologically active, and chemically unique offering a great scope for discovery of new anticancer drugs. The marine floras are rich in medicinally potent chemicals predominantly belonging to polyphenols and sulphated polysaccharide...

  6. Physiological and biochemical responses of halophyte Kalidium ...

    African Journals Online (AJOL)

    Administrator

    2011-09-21

    Sep 21, 2011 ... Peroxidase (POD) activity was determined by methyl catechol reaction. Fresh leaf tissue (2.5 g) with 4 ml phosphate buffer (50. mM, pH 5.5) was ground into homogenate on ice bath, then centrifugated in 3000 rpm at 4°C for 10 min to get crude extract of. POD. 1 ml of methyl catechol (50 mM) was brought to ...

  7. Stable Agrobacterium -mediated transformation of the halophytic ...

    African Journals Online (AJOL)

    RT-RCR analysis was conducted using salt stressed transgenic plants, and the results suggested that 2-Cys Prx had low transcription levels under non-stressed conditions, and increased transcription after 6 h of 200 mM NaCl stress. This gene continued to demonstrate high levels of transcription until 6 h after withdrawal of ...

  8. Respuesta al abonado, acolchado y ramoneo de tres arbustos forrajeros en ambientes semiáridos.

    OpenAIRE

    Ramos, M. E.; Robles, A.B.; Ruiz-Mirazo, J.; González-Rebollar, J.L.

    2011-01-01

    Los arbustos forrajeros constituyen una fuente de alimentación importante para el ganado extensivo o semiextensivo en los ambientes semiáridos. Este estudio evalúa el comportamiento de tres especies leñosas (Atriplex halimus, Dorycnium pentaphyllum y Olea europaea cv. Marteño) implantadas con fines forrajeros, en secano, a las que se aplicaron distintos tratamientos: 1) abono orgánico, 2) abono orgánico + acolchado con plástico y, 3) control. Dos años después de la plantación, la mit...

  9. New Records To The Vascular Flora Of Kazakhstan (Central Asia

    Directory of Open Access Journals (Sweden)

    Ebel Aleksandr L.

    2015-12-01

    Full Text Available The paper presents distributional data for seven species new for the flora of Kazakhstan: Atriplex gardneri var. aptera (A. Nelson S. L. Welsh. & Crompton, Cardamine hirsuta L., Carduus acanthoides L., Galega orientalis Lam., Silene cserei Baumg., Didymophysa fedtschenkoana Regel and Acinos arvensis (Lam. Dandy. Didymophysa fedtschenkoana is a native element in the Kazakh flora; the other species should be treated as alien, expansively spreading or invasive in this part of Asia. A list of localities of the species in Kazakhstan and their habitat preferences are presented.

  10. Field Surveys, IOC Valleys. Volumes II-I and II-II. Biological Resources Survey, Dry Lake Valley, Nevada and Pine and Wah Wah Valleys, Utah. Supplement. Spring Survey of the IOC Valleys.

    Science.gov (United States)

    1981-08-01

    pinnata X K CACTACEAE Coryphantha vivipara x Opuntia echinocarpa K 0 x K K K 5putaerinacea K Op’untia sp. x X -12- TABLE 3-1 (Cont.) Shelter site...pilosus x Lepidium montanun X CACTACEAE Opuntia echinocarpa x x Opuntia erinacea X X X CHENOPODIACEAE Atriplex canescens X X X Ceratoides lanata X X X X...Stanleya pinnata X CACTACEAE Coryphantha vivipara var. rosea X Echinocereus engelmannii X opuntia echinocarpa X X X X X X X X Opuntia erinacea XX X X X X x

  11. Developmental Peculiarities and Seed-Borne Endophytes in Quinoa: Omnipresent, Robust Bacilli Contribute to Plant Fitness

    OpenAIRE

    Pitzschke, Andrea

    2016-01-01

    Among potential climate change-adapted crops for future agriculture, quinoa (Chenopodium quinoa), a facultative halophyte plant with exceptional nutritional properties, stands out as a prime candidate. This work examined how quinoa deals with extreme situations during seed rehydration. A seed-borne microbiome was discovered and its potential role in early development and stress resistance investigated.Methods involved germination and drought exposure assays, histochemical detection of reactiv...

  12. Spatial Variations in Salinity Stress Across a Coastal Landscape Using Vegetation Indices Derived from Hyperspectral Imagery

    Science.gov (United States)

    2009-01-01

    that M. cer- ifera experienced a drought response, as seen in decreases in stomatal conductance, photosynthesis , and RWC relative to earlier in the...halophytic seagrass . However, Iva frutescens generally only occurs at elevations where the roots are not subject to prolonged water table flooding...sensing: 2. Measurement of leaf and canopy reflectance changes at 531 nm and their relationship with photosynthesis and chlorophyll fluorescence. Remote

  13. Occurrence of organohalogens at the Dead Sea Basin

    Science.gov (United States)

    Tubbesing, Christoph; Kotte, Karsten; Keppler, Frank; Krause, Torsten; Bahlmann, Enno; Schöler, Heinfried

    2013-04-01

    Most arid and semi-arid regions are characterized by evaporites, which are assured sources for volatile organohalogens (VOX) [1]. These compounds play an important role in tropospheric and stratospheric chemistry. The Dead Sea between Israel and Jordan is the world's most famous and biggest all-season water covered salt lake. In both countries chemical plants like the Dead Sea Works and the Arab Potash Company are located at the southern part of the Dead Sea and mine various elements such as bromine and magnesium. Conveying sea water through constructed evaporation pans multifarious salts are enriched and precipitated. In contrast, the Northern basin and main part of the Dead Sea has remained almost untouched by industrial salt production. Its fresh water supply from the Jordan River is constantly decreasing, leading to further increased salinity. During a HALOPROC campaign (Natural Halogenation Processes in the Environment) we collected various samples including air, soils, sediments, halophytic plants, ground- and seawater from the Northern and Southern basin of the Israeli side of the Dead Sea. These samples were investigated for the occurrence of halocarbons using different analytical techniques. Most samples were analyzed for volatile organohalogens such as haloalkanes using gas chromatography- mass spectrometry (GC-MS). Interestingly, there is a strong enrichment of trihalomethanes (THM), especially all chlorinated and brominated ones and also the iodinated compound dichloroiodomethane were found in the Southern basin. In addition, volatile organic carbons (VOC) such as ethene and some other alkenes were analyzed by a gas chromatography-flame ionisation detector (GC-FID) to obtain further information about potential precursors of halogenated compounds. Halophytic plants were investigated for their potential to release chloromethane and bromomethane but also for their stable carbon and hydrogen isotope composition. For this purpose, a plant chamber was

  14. Persistence of Gulf War oil versus intertidal morphology and sediments - one year later

    International Nuclear Information System (INIS)

    Montello, T.M.; Hayes, M.O.; Michel, J.; Al-Momen, A.H.; Al-Mansi, A.M.; Aurand, D.V.

    1993-01-01

    A study of the persistence of oil in the intertidal habitats of the Saudi Arabian coast was carried out one year after the Gulf war spill in conjunction with the National Oceanic and Atmospheric Administration ship Mt. Mitchell's ROPME Sea Cruise. A total of 10 kilometers of transects were surveyed at 20 stations, representing heavily oiled sheltered beaches, tidal flats, algal mats, halophyte saltmarshes, and mangroves at the heads of bays

  15. Aviation Fueling: A Cleaner, Greener Approach

    OpenAIRE

    Hendricks, Robert C.; Bushnell, Dennis M.; Shouse, Dale T.

    2011-01-01

    Projected growth of aviation depends on fueling where specific needs must be met. Safety is paramount, and along with political, social, environmental, and legacy transport systems requirements, alternate aviation fueling becomes an opportunity of enormous proportions. Biofuels—sourced from halophytes, algae, cyanobacteria, and “weeds” using wastelands, waste water, and seawater—have the capacity to be drop-in fuel replacements for petroleum fuels. Biojet fuels from such sources solve the avi...

  16. Transcriptomic Profiling and Physiological Analysis of Haloxylon ammodendron in Response to Osmotic Stress

    Directory of Open Access Journals (Sweden)

    Hui-Juan Gao

    2017-12-01

    Full Text Available Haloxylon ammodendron, a perennial xero-halophyte, is an essential species for investigating the effects of drought on desert tree. To gain a comprehensive knowledge on the responses of H. ammodendron to drought stress, we specially performed the molecular and physiological analysis of H. ammodendron in response to −0.75 MPa osmotic stress for six and 24 h in lab condition via RNA-seq and digital gene expression (DGE. In total, 87,109 unigenes with a mean length of 680 bp and 13,486 potential simple sequence repeats (SSRs were generated, and 3353 differentially expressed genes (DEGs in shoots and 4564 in roots were identified under stress. These DEGs were mainly related to ion transporters, signal transduction, ROS-scavenging, photosynthesis, cell wall organization, membrane stabilization and hormones. Moreover, the physiological changes of inorganic ions and organic solute content, peroxidase (POD activity and osmotic potential were in accordance with dynamic transcript profiles of the relevant genes. In this study, a detailed investigation of the pathways and candidate genes identified promote the research on the molecular mechanisms of abiotic stress tolerance in the xero-halophytic species. Our data provides valuable genetic resources for future improvement of forage and crop species for better adaptation to abiotic stresses.

  17. Ecological Effects of Roads on the Plant Diversity of Coastal Wetland in the Yellow River Delta

    Directory of Open Access Journals (Sweden)

    Yunzhao Li

    2014-01-01

    Full Text Available The 26 sample sites in 7 study plots adjacent to asphalt road and earth road in coastal wetland in the Yellow River Delta were selected to quantify plant diversity using quadrat sampling method in plant bloom phase of July and August 2012. The indice of βT and Jaccard’s coefficient were applied to evaluate the species diversity. The results showed that the plant diversities and alien plants were high in the range of 0–20 m to the road verge. There were more exotics and halophytes in plots of asphalt roadside than that of earth roadside. However, proportion of halophytes in habitats of asphalt roadsides was lower than that of earth roadside. By comparing β-diversity, there were more common species in the asphalt roadsides than that in the earth roadsides. The similarity of plant communities in studied plots of asphalt roadsides and earth roadsides increased with increasing the distance to road verge. The effect range of roads for plant diversity in study region was about 20 m to road verge. Our results indicate that the construction and maintenance of roads in wetland could increase the plant species diversities of communities and risk of alien species invasion.

  18. Cloning and characterization of the Salicornia brachiata Na(+)/H(+) antiporter gene SbNHX1 and its expression by abiotic stress.

    Science.gov (United States)

    Jha, Anupama; Joshi, Mukul; Yadav, Narendra Singh; Agarwal, Pradeep K; Jha, Bhavanath

    2011-03-01

    Salinity causes multifarious adverse effects to plants. Plants response to salt stress involves numerous processes that function in coordination to alleviate both cellular hyperosmolarity and ion disequilibrium. A Na(+)/H(+) antiporter NHX1 gene has been isolated from a halophytic plant Salicornia brachiata in this study. Predicted amino acid sequence similarity, protein topology and the presence of functional domains conserved in SbNHX1 classify it as a plant vacuolar NHX gene. The SbNHX1 cDNA has an open reading frame of 1,683 bp, encoding a polypeptide of 560 amino acid residues with an estimated molecular mass 62.44 kDa. The SbNHX1 shows high amino acid similarity with other halophytic NHX gene and belongs to Class-I type NHXs. TMpred suggests that SbNHX1 contains 11 strong transmembrane (TM). Real time PCR analysis revealed that SbNHX1 transcript expresses maximum at 0.5 M. Transcript increases gradually by increasing the treatment duration at 0.5 M NaCl, however, maximum expression was observed at 48 h. The overexpression of SbNHX1 gene in tobacco plant showed NaCl tolerance. This study shows that SbNHX1 is a potential gene for salt tolerance, and can be used in future for developing salt tolerant crops.

  19. Salicornia strobilacea (synonym of Halocnemum strobilaceum) Grown Under Different Tidal Regimes Selects Rhizosphere Bacteria Capable of Promoting Plant Growth

    KAUST Repository

    Marasco, Ramona; Mapelli, Francesca; Rolli, Eleonora; Mosqueira Santillá n, Marí a José ; Fusi, Marco; Bariselli, Paola; Reddy, Muppala P.; Cherif, Ameur; Tsiamis, George; Borin, Sara; Daffonchio, Daniele

    2016-01-01

    Halophytes classified under the common name of salicornia colonize salty and coastal environments across tidal inundation gradients. To unravel the role of tide-related regimes on the structure and functionality of root associated bacteria, the rhizospheric soil of Salicornia strobilacea (synonym of Halocnemum strobilaceum) plants was studied in a tidal zone of the coastline of Southern Tunisia. Although total counts of cultivable bacteria did not change in the rhizosphere of plants grown along a tidal gradient, significant differences were observed in the diversity of both the cultivable and uncultivable bacterial communities. This observation indicates that the tidal regime is contributing to the bacterial species selection in the rhizosphere. Despite the observed diversity in the bacterial community structure, the PGP potential of cultivable rhizospheric bacteria, assessed through in vitro and in vivo tests, was equally distributed along the tidal gradient. Root colonization tests with selected strains proved that halophyte rhizospheric bacteria (i) stably colonize S. strobilacea rhizoplane and the plant shoot suggesting that they move from the root to the shoot and (ii) are capable of improving plant growth. The versatility in the root colonization, the overall PGP traits and the in vivo plant growth promotion under saline condition suggest that such beneficial activities likely take place naturally under a range of tidal regimes.

  20. Salicornia strobilacea (synonym of Halocnemum strobilaceum) Grown Under Different Tidal Regimes Selects Rhizosphere Bacteria Capable of Promoting Plant Growth

    KAUST Repository

    Marasco, Ramona

    2016-04-01

    Halophytes classified under the common name of salicornia colonize salty and coastal environments across tidal inundation gradients. To unravel the role of tide-related regimes on the structure and functionality of root associated bacteria, the rhizospheric soil of Salicornia strobilacea (synonym of Halocnemum strobilaceum) plants was studied in a tidal zone of the coastline of Southern Tunisia. Although total counts of cultivable bacteria did not change in the rhizosphere of plants grown along a tidal gradient, significant differences were observed in the diversity of both the cultivable and uncultivable bacterial communities. This observation indicates that the tidal regime is contributing to the bacterial species selection in the rhizosphere. Despite the observed diversity in the bacterial community structure, the PGP potential of cultivable rhizospheric bacteria, assessed through in vitro and in vivo tests, was equally distributed along the tidal gradient. Root colonization tests with selected strains proved that halophyte rhizospheric bacteria (i) stably colonize S. strobilacea rhizoplane and the plant shoot suggesting that they move from the root to the shoot and (ii) are capable of improving plant growth. The versatility in the root colonization, the overall PGP traits and the in vivo plant growth promotion under saline condition suggest that such beneficial activities likely take place naturally under a range of tidal regimes.

  1. Novel water filtration of saline water in the outermost layer of mangrove roots.

    Science.gov (United States)

    Kim, Kiwoong; Seo, Eunseok; Chang, Suk-Kyu; Park, Tae Jung; Lee, Sang Joon

    2016-02-05

    The scarcity of fresh water is a global challenge faced at present. Several desalination methods have been suggested to secure fresh water from sea water. However, conventional methods suffer from technical limitations, such as high power consumption, expensive operating costs, and limited system durability. In this study, we examined the feasibility of using halophytes as a novel technology of desalinating high-concentration saline water for long periods. This study investigated the biophysical characteristics of sea water filtration in the roots of the mangrove Rhizophora stylosa from a plant hydrodynamic point of view. R. stylosa can grow even in saline water, and the salt level in its roots is regulated within a certain threshold value through filtration. The root possesses a hierarchical, triple layered pore structure in the epidermis, and most Na(+) ions are filtered at the first sublayer of the outermost layer. The high blockage of Na(+) ions is attributed to the high surface zeta potential of the first layer. The second layer, which is composed of macroporous structures, also facilitates Na(+) ion filtration. This study provides insights into the mechanism underlying water filtration through halophyte roots and serves as a basis for the development of a novel bio-inspired desalination method.

  2. Ecological Effects of Roads on the Plant Diversity of Coastal Wetland in the Yellow River Delta

    Science.gov (United States)

    Li, Yunzhao; Du, Siyao; Han, Guangxuan; Qu, Fanzhu; Wang, Guangmei; Fu, Yuqin; Zhan, Chao

    2014-01-01

    The 26 sample sites in 7 study plots adjacent to asphalt road and earth road in coastal wetland in the Yellow River Delta were selected to quantify plant diversity using quadrat sampling method in plant bloom phase of July and August 2012. The indice of β T and Jaccard's coefficient were applied to evaluate the species diversity. The results showed that the plant diversities and alien plants were high in the range of 0–20 m to the road verge. There were more exotics and halophytes in plots of asphalt roadside than that of earth roadside. However, proportion of halophytes in habitats of asphalt roadsides was lower than that of earth roadside. By comparing β-diversity, there were more common species in the asphalt roadsides than that in the earth roadsides. The similarity of plant communities in studied plots of asphalt roadsides and earth roadsides increased with increasing the distance to road verge. The effect range of roads for plant diversity in study region was about 20 m to road verge. Our results indicate that the construction and maintenance of roads in wetland could increase the plant species diversities of communities and risk of alien species invasion. PMID:25147872

  3. Transcriptome Characterization and Sequencing-Based Identification of Salt-Responsive Genes in Millettia pinnata, a Semi-Mangrove Plant

    OpenAIRE

    Huang, Jianzi; Lu, Xiang; Yan, Hao; Chen, Shouyi; Zhang, Wanke; Huang, Rongfeng; Zheng, Yizhi

    2012-01-01

    Semi-mangroves form a group of transitional species between glycophytes and halophytes, and hold unique potential for learning molecular mechanisms underlying plant salt tolerance. Millettia pinnata is a semi-mangrove plant that can survive a wide range of saline conditions in the absence of specialized morphological and physiological traits. By employing the Illumina sequencing platform, we generated ∼192 million short reads from four cDNA libraries of M. pinnata and processed them into 108 ...

  4. In planta Transformed Cumin (Cuminum cyminum L.) Plants, Overexpressing the SbNHX1 Gene Showed Enhanced Salt Endurance

    OpenAIRE

    Pandey, Sonika; Patel, Manish Kumar; Mishra, Avinash; Jha, Bhavanath

    2016-01-01

    Cumin is an annual, herbaceous, medicinal, aromatic, spice glycophyte that contains diverse applications as a food and flavoring additive, and therapeutic agents. An efficient, less time consuming, Agrobacterium-mediated, a tissue culture-independent in planta genetic transformation method was established for the first time using cumin seeds. The SbNHX1 gene, cloned from an extreme halophyte Salicornia brachiata was transformed in cumin using optimized in planta transformation method. The SbN...

  5. Aviation Fueling: A Cleaner, Greener Approach

    Science.gov (United States)

    2011-01-01

    Considered a noxious weed, it produces 5–10 kg-biomass/m2-yr (similar to macroalgae ), a source of pyrolysis fuels with beneficial water treatment International...donax) pro- duce 23–50 ton/acre. It tolerates some salinity and brackish waters and also overwhelms native vegetation. Seaweed, a macroalgae , has...halophytes, algae, cyanobacteria, and “weeds” using wastelands, waste water , and seawater— have the capacity to be drop-in fuel replacements for

  6. Improved methodologies for extraction of salt in halophytes

    Directory of Open Access Journals (Sweden)

    Tiago Morais

    2014-06-01

    This method yield rates in Salicornia appear to be higher than the expected based on previous publication. The data suggests other elements of interest may be differently distributed between the two genera. A nutritional profile, which we intend to do, may elucidate about the contents of vegetable salt.

  7. Antioxidative response mechanisms in halophytes: their role in ...

    Indian Academy of Sciences (India)

    changes in ionic and water balance cause molecular damage and growth arrest. ... An optimal supply of CO2 determines the availability of. NADP to leaves via the ...... plasts in the plant cell, but could also leak into the cytosol, resulting in ...

  8. Ecosystem Services and Community-Based Approaches to Wastewater and Saline Soils Reclamation in the Drylands of Uzbekistan

    Science.gov (United States)

    Toderich, Kristina; Khujanazarov, Timur; Aralova, Dildora; Shuyskaya, Elena; Gismatulina, Liliya; Boboev, Hasan

    2017-04-01

    The working hypothesis of this article support an indication of declining water quality, increasing soils salinity and higher production costs in the Bukhara oasis- a borderline lands between the sandy Kyzylkum Desert and irrigated zone in the lower stream of Zarafshan River Basin. The pollution of waters and soils with toxic metals is the major environmental problem in these agro-ecological zones. Conventional remediation approaches usually do not ensure adequate results. The mobility of toxic pollutants can be highly facilitated by the chemical properties of soils and the aridity of the climate. The impact of these factors of land degradation induces reduction in biodiversity and yields losses of agricultural crops and wild desert plant communities. A recent survey showed that the chemical composition of the drainage effluents is sulfate-chloride-hydrocarbonate - magnesium-sodium-calcium with high level of mineralization 4200 - 18800 ppm. Concentration of chloride and sulfate, detected both in drainage effluents and ground water, is 10 times higher than maximum allowable concentration (MAC); and traces of heavy metals, such as strontium, selenium, arsenic, lead, zinc, uranium are 2 times higher than MAC. Distribution of boron showed a strong correlation with those of arsenic and antimony. Aluminum has a significant correlation with arsenic and lead distribution. Antimony correlates significantly with zinc and arsenic, while copper and iron (Fe57) also well correlate with each other. Because these metals rarely exist in natural environment, it is presumed that they are caused both by the usage of some chemicals at the agricultural field in harvest season and by the discharge of some technogenic chemicals from industry. The desalinated/treated wastewater were used to irrigate high value crops and the waste brine is transformed into a resource that was used to grow aquatic species (fish, algae) and irrigate halophytic species with benefits for livestock, farmers and

  9. Hormonal dynamics during salt stress responses of salt-sensitive Arabidopsis thaliana and salt-tolerant Thellungiella salsuginea

    Czech Academy of Sciences Publication Activity Database

    Přerostová, Sylva; Dobrev, Petre; Gaudinová, Alena; Hošek, Petr; Soudek, Petr; Knirsch, Vojtěch; Vaňková, Radomíra

    2017-01-01

    Roč. 264, NOV (2017), s. 188-198 ISSN 0168-9452 R&D Projects: GA ČR(CZ) GA16-14649S; GA ČR GA17-04607S; GA MŠk LD15093 Grant - others:European Regional Development Fund(XE) CZ.2.16/3.1.00/24014 Institutional support: RVO:61389030 Keywords : Abscisic acid * Auxin * Cytokinin * Halophyte * Phytohormone * Salt stress Subject RIV: EF - Botanics OBOR OECD: Plant sciences, botany Impact factor: 3.437, year: 2016

  10. Secondary plant succession on disturbed sites at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Angerer, J.P.; Ostler, W.K.; Gabbert, W.D.; Schultz, B.W.

    1994-12-01

    This report presents the results of a study of secondary plant succession on disturbed sites created during initial site investigations in the late 1970s and early 1980s at Yucca Mountain, NV. Specific study objectives were to determine the rate and success of secondary plant succession, identify plant species found in disturbances that may be suitable for site-specific reclamation, and to identify environmental variables that influence succession on disturbed sites. During 1991 and 1992, fifty seven disturbed sites were located. Vegetation parameters, disturbance characteristics and environmental variables were measured at each site. Disturbed site vegetation parameters were compared to that of undisturbed sites to determine the status of disturbed site plant succession. Vegetation on disturbed sites, after an average of ten years, was different from undisturbed areas. Ambrosia dumosa, Chrysothamnus teretifolius, Hymenoclea salsola, Gutierrezia sarothrae, Atriplex confertifolia, Atriplex canescens, and Stephanomeria pauciflora were the most dominant species across all disturbed sites. With the exception of A. dumosa, these species were generally minor components of the undisturbed vegetation. Elevation, soil compaction, soil potassium, and amounts of sand and gravel in the soil were found to be significant environmental variables influencing the species composition and abundance of perennial plants on disturbed sites. The recovery rate for disturbed site secondary succession was estimated. Using a linear function (which would represent optimal conditions), the recovery rate for perennial plant cover, regardless of which species comprised the cover, was estimated to be 20 years. However, when a logarithmic function (which would represent probable conditions) was used, the recovery rate was estimated to be 845 years. Recommendations for future studies and site-specific reclamation of disturbances are presented.

  11. Secondary plant succession on disturbed sites at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Angerer, J.P.; Ostler, W.K.; Gabbert, W.D.; Schultz, B.W.

    1994-12-01

    This report presents the results of a study of secondary plant succession on disturbed sites created during initial site investigations in the late 1970s and early 1980s at Yucca Mountain, NV. Specific study objectives were to determine the rate and success of secondary plant succession, identify plant species found in disturbances that may be suitable for site-specific reclamation, and to identify environmental variables that influence succession on disturbed sites. During 1991 and 1992, fifty seven disturbed sites were located. Vegetation parameters, disturbance characteristics and environmental variables were measured at each site. Disturbed site vegetation parameters were compared to that of undisturbed sites to determine the status of disturbed site plant succession. Vegetation on disturbed sites, after an average of ten years, was different from undisturbed areas. Ambrosia dumosa, Chrysothamnus teretifolius, Hymenoclea salsola, Gutierrezia sarothrae, Atriplex confertifolia, Atriplex canescens, and Stephanomeria pauciflora were the most dominant species across all disturbed sites. With the exception of A. dumosa, these species were generally minor components of the undisturbed vegetation. Elevation, soil compaction, soil potassium, and amounts of sand and gravel in the soil were found to be significant environmental variables influencing the species composition and abundance of perennial plants on disturbed sites. The recovery rate for disturbed site secondary succession was estimated. Using a linear function (which would represent optimal conditions), the recovery rate for perennial plant cover, regardless of which species comprised the cover, was estimated to be 20 years. However, when a logarithmic function (which would represent probable conditions) was used, the recovery rate was estimated to be 845 years. Recommendations for future studies and site-specific reclamation of disturbances are presented

  12. Salicornia strobilacea (synonym of Halocnemum strobilaceum Grown Under Different Tidal Regimes Selects Rhizosphere Bacteria Capable of Promoting Plant Growth

    Directory of Open Access Journals (Sweden)

    Ramona Marasco

    2016-08-01

    Full Text Available Halophytes classified under the common name of salicornia colonize salty and coastal environments across tidal inundation gradients. To unravel the role of tide-related regimes on the structure and functionality of root associated bacteria, the rhizospheric soil of Salicornia strobilacea (synonym of Halocnemum strobilaceum plants was studied in a tidal zone of the coastline of Southern Tunisia. Although total counts of cultivable bacteria did not change in the rhizosphere of plants grown along a tidal gradient, significant differences were observed in the diversity of both the cultivable and uncultivable bacterial communities. This observation indicates that the tidal regime is contributing to the bacterial species selection in the rhizosphere. Despite the observed diversity in the bacterial community structure, the PGP potential of cultivable rhizospheric bacteria, assessed through in vitro and in vivo tests, was equally distributed along the tidal gradient. Root colonization tests with selected strains proved that halophyte rhizospheric bacteria (i stably colonize S. strobilacea rhizoplane and the plant shoot suggesting that they move from the root to the shoot and (ii are capable of improving plant growth. The versatility in the root colonization, the overall PGP traits and the in vivo plant growth promotion under saline condition suggest that such beneficial activities likely take place naturally under a range of tidal regimes.

  13. Salicornia strobilacea (Synonym of Halocnemum strobilaceum) Grown under Different Tidal Regimes Selects Rhizosphere Bacteria Capable of Promoting Plant Growth.

    Science.gov (United States)

    Marasco, Ramona; Mapelli, Francesca; Rolli, Eleonora; Mosqueira, Maria J; Fusi, Marco; Bariselli, Paola; Reddy, Muppala; Cherif, Ameur; Tsiamis, George; Borin, Sara; Daffonchio, Daniele

    2016-01-01

    Halophytes classified under the common name of salicornia colonize salty and coastal environments across tidal inundation gradients. To unravel the role of tide-related regimes on the structure and functionality of root associated bacteria, the rhizospheric soil of Salicornia strobilacea (synonym of Halocnemum strobilaceum) plants was studied in a tidal zone of the coastline of Southern Tunisia. Although total counts of cultivable bacteria did not change in the rhizosphere of plants grown along a tidal gradient, significant differences were observed in the diversity of both the cultivable and uncultivable bacterial communities. This observation indicates that the tidal regime is contributing to the bacterial species selection in the rhizosphere. Despite the observed diversity in the bacterial community structure, the plant growth promoting (PGP) potential of cultivable rhizospheric bacteria, assessed through in vitro and in vivo tests, was equally distributed along the tidal gradient. Root colonization tests with selected strains proved that halophyte rhizospheric bacteria (i) stably colonize S. strobilacea rhizoplane and the plant shoot suggesting that they move from the root to the shoot and (ii) are capable of improving plant growth. The versatility in the root colonization, the overall PGP traits and the in vivo plant growth promotion under saline condition suggest that such beneficial activities likely take place naturally under a range of tidal regimes.

  14. Impact of logging on a mangrove swamp in South Mexico: cost / benefit analysis

    Directory of Open Access Journals (Sweden)

    Cristian Tovilla Hernández

    2001-06-01

    Full Text Available Environmental changes caused by logging in a mangrove swamp were studied in Barra de Tecoanapa, Guerrero, Mexico. Original forest included Rhizophora mangle, Laguncularia racemosa, Avicennia germinans and halophytic vegetation, and produced wood (164.03 m3/ha and organic matter (3.9 g/m2/day. A total of 3.5 tons of wood per year were harvested from this area. Later, an average of 2 555 kg of maize per planting cycle were obtained (market value of 88 USD. Succession when the area was abandoned included strictly facultative and glycophyte halophytes (16 families, Cyperaceae and Poaceae were the best represented. After logging, temperatures increased 13 °C in the soil and 11°C in the air, whereas salinity reached 52 psu in the dry season. These modified soil color and sand content increased from 42.6 to 63.4%. Logging was deleterious to species, habitat, biogeochemical and biological cycles, organic matter production, seeds, young plants, genetic exchange conservation of soil and its fertility, coastal protection, and aesthetic value; 3 000 m2 had eroded as the river advanced towards the deforested area (the cost/benefit analysis showed a ratio of 246: 1. There was long-term economic loss for the community and only 30% of the site has recovered after five years.

  15. Salicornia strobilacea (Synonym of Halocnemum strobilaceum) Grown under Different Tidal Regimes Selects Rhizosphere Bacteria Capable of Promoting Plant Growth

    KAUST Repository

    Marasco, Ramona; Mapelli, Francesca; Rolli, Eleonora; Mosqueira, Maria J.; Fusi, Marco; Bariselli, Paola; Reddy, Muppala P.; Cherif, Ameur; Tsiamis, George; Borin, Sara; Daffonchio, Daniele

    2016-01-01

    Halophytes classified under the common name of salicornia colonize salty and coastal environments across tidal inundation gradients. To unravel the role of tide-related regimes on the structure and functionality of root associated bacteria, the rhizospheric soil of Salicornia strobilacea (synonym of Halocnemum strobilaceum) plants was studied in a tidal zone of the coastline of Southern Tunisia. Although total counts of cultivable bacteria did not change in the rhizosphere of plants grown along a tidal gradient, significant differences were observed in the diversity of both the cultivable and uncultivable bacterial communities. This observation indicates that the tidal regime is contributing to the bacterial species selection in the rhizosphere. Despite the observed diversity in the bacterial community structure, the plant growth promoting (PGP) potential of cultivable rhizospheric bacteria, assessed through in vitro and in vivo tests, was equally distributed along the tidal gradient. Root colonization tests with selected strains proved that halophyte rhizospheric bacteria (i) stably colonize S. strobilacea rhizoplane and the plant shoot suggesting that they move from the root to the shoot and (ii) are capable of improving plant growth. The versatility in the root colonization, the overall PGP traits and the in vivo plant growth promotion under saline condition suggest that such beneficial activities likely take place naturally under a range of tidal regimes.

  16. Salicornia strobilacea (Synonym of Halocnemum strobilaceum) Grown under Different Tidal Regimes Selects Rhizosphere Bacteria Capable of Promoting Plant Growth

    KAUST Repository

    Marasco, Ramona

    2016-08-22

    Halophytes classified under the common name of salicornia colonize salty and coastal environments across tidal inundation gradients. To unravel the role of tide-related regimes on the structure and functionality of root associated bacteria, the rhizospheric soil of Salicornia strobilacea (synonym of Halocnemum strobilaceum) plants was studied in a tidal zone of the coastline of Southern Tunisia. Although total counts of cultivable bacteria did not change in the rhizosphere of plants grown along a tidal gradient, significant differences were observed in the diversity of both the cultivable and uncultivable bacterial communities. This observation indicates that the tidal regime is contributing to the bacterial species selection in the rhizosphere. Despite the observed diversity in the bacterial community structure, the plant growth promoting (PGP) potential of cultivable rhizospheric bacteria, assessed through in vitro and in vivo tests, was equally distributed along the tidal gradient. Root colonization tests with selected strains proved that halophyte rhizospheric bacteria (i) stably colonize S. strobilacea rhizoplane and the plant shoot suggesting that they move from the root to the shoot and (ii) are capable of improving plant growth. The versatility in the root colonization, the overall PGP traits and the in vivo plant growth promotion under saline condition suggest that such beneficial activities likely take place naturally under a range of tidal regimes.

  17. Soil and fertilizer amendments and edge effects on the floral succession of pulverized fuel ash

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, P. [Roehampton University, London (United Kingdom). Whitelands College

    2009-01-15

    Plots of fresh pulverized fuel ash (PFA, an industrial waste) were inoculated with soils from existing PFA sites and fertilizers in a factorial design, then left unmanaged for 12 years during which time the floral development and soil chemistry were monitored annually. For the first 3 years, the site supported a sparse mix of chenopods (including the scarce Chenopodium glaucum) and halophytes. As salinity declined, ruderals, legumes, and grasses plus the fire-site moss Funaria hygrometrica colonized, followed by Festuca arundinacea grassland (NVC community MG12) and Hippophae rhamnoides scrub. Dactylorhiza incarnata (orchidacea) appeared after 7 years, but only in plots that had received soil from existing orchid colonies. Four years later, a larger second generation of Dactylorhiza appeared, but only in the central zone of the site where vegetation was thinnest. By year 12, the site was dominated by coarse grasses and scrub, with early successional species persisting only in the sparsely vegetated center, where nitrate levels were lowest. This edge effect is interpreted as centripetal encroachment, a process of potentially wider concern for the conservation of low-fertility habitat patches. Overall, seed bank inoculation seems to have introduced few but desirable species (D. incarnata, Pyrola rotundifolia, some halophytes, and annuals), whereas initial application of organic fertilizer had long-lasting ({ge} 10 years) effects on cover and soil composition.

  18. De novo sequencing, assembly, and analysis of Iris lactea var. chinensis roots' transcriptome in response to salt stress.

    Science.gov (United States)

    Gu, Chunsun; Xu, Sheng; Wang, Zhiquan; Liu, Liangqin; Zhang, Yongxia; Deng, Yanming; Huang, Suzhen

    2018-04-01

    As a halophyte, Iris lactea var. chinensis (I. lactea var. chinensis) is widely distributed and has good drought and heavy metal resistance. Moreover, it is an excellent ornamental plant. I. lactea var. chinensis has extensive application prospects owing to the global impacts of salinization. To better understand its molecular mechanism involved in salt resistance, the de novo sequencing, assembly, and analysis of I. lactea var. chinensis roots' transcriptome in response to salt-stress conditions was performed. On average, 74.17% of the clean reads were mapped to unigenes. A total of 121,093 unigenes were constructed and 56,398 (46.57%) were annotated. Among these, 13,522 differentially expressed genes (DEGs) were identified between salt-treated and control samples Compared to the transcriptional level of control, 7037 DEGs were up-regulated and 6539 down-regulated. In addition, 129 up-regulated and 1609 down-regulated genes were simultaneously detected in all three pairwise comparisons between control and salt-stressed libraries. At least 247 and 250 DEGs encoding transcription factors and transporter proteins were identified. Meanwhile, 130 DEGs regarding reactive oxygen species (ROS) scavenging system were also summarized. Based on real-time quantitative RT-PCR, we verified the changes in the expression patterns of 10 unigenes. Our study identified potential salt-responsive candidate genes and increased the understanding of halophyte responses to salinity stress. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  19. Tissue-specific and cation/anion-specific DNA methylation variations occurred in C. virgata in response to salinity stress.

    Directory of Open Access Journals (Sweden)

    Xiang Gao

    Full Text Available Salinity is a widespread environmental problem limiting productivity and growth of plants. Halophytes which can adapt and resist certain salt stress have various mechanisms to defend the higher salinity and alkalinity, and epigenetic mechanisms especially DNA methylation may play important roles in plant adaptability and plasticity. In this study, we aimed to investigate the different influences of various single salts (NaCl, Na2SO4, NaHCO3, Na2CO3 and their mixed salts on halophyte Chloris. virgata from the DNA methylation prospective, and discover the underlying relationships between specific DNA methylation variations and specific cations/anions through the methylation-sensitive amplification polymorphism analysis. The results showed that the effects on DNA methylation variations of single salts were ranked as follows: Na2CO3> NaHCO3> Na2SO4> NaCl, and their mixed salts exerted tissue-specific effects on C. virgata seedlings. Eight types of DNA methylation variations were detected and defined in C. virgata according to the specific cations/anions existed in stressful solutions; in addition, mix-specific and higher pH-specific bands were the main type in leaves and roots independently. These findings suggested that mixed salts were not the simple combination of single salts. Furthermore, not only single salts but also mixed salts showed tissue-specific and cations/anions-specific DNA methylation variations.

  20. Tissue-specific and cation/anion-specific DNA methylation variations occurred in C. virgata in response to salinity stress.

    Science.gov (United States)

    Gao, Xiang; Cao, Donghui; Liu, Jie; Wang, Xiaoping; Geng, Shujuan; Liu, Bao; Shi, Decheng

    2013-01-01

    Salinity is a widespread environmental problem limiting productivity and growth of plants. Halophytes which can adapt and resist certain salt stress have various mechanisms to defend the higher salinity and alkalinity, and epigenetic mechanisms especially DNA methylation may play important roles in plant adaptability and plasticity. In this study, we aimed to investigate the different influences of various single salts (NaCl, Na2SO4, NaHCO3, Na2CO3) and their mixed salts on halophyte Chloris. virgata from the DNA methylation prospective, and discover the underlying relationships between specific DNA methylation variations and specific cations/anions through the methylation-sensitive amplification polymorphism analysis. The results showed that the effects on DNA methylation variations of single salts were ranked as follows: Na2CO3> NaHCO3> Na2SO4> NaCl, and their mixed salts exerted tissue-specific effects on C. virgata seedlings. Eight types of DNA methylation variations were detected and defined in C. virgata according to the specific cations/anions existed in stressful solutions; in addition, mix-specific and higher pH-specific bands were the main type in leaves and roots independently. These findings suggested that mixed salts were not the simple combination of single salts. Furthermore, not only single salts but also mixed salts showed tissue-specific and cations/anions-specific DNA methylation variations.

  1. A high-quality genome assembly of quinoa provides insights into the molecular basis of salt bladder-based salinity tolerance and the exceptional nutritional value

    Science.gov (United States)

    Zou, Changsong; Chen, Aojun; Xiao, Lihong; Muller, Heike M; Ache, Peter; Haberer, Georg; Zhang, Meiling; Jia, Wei; Deng, Ping; Huang, Ru; Lang, Daniel; Li, Feng; Zhan, Dongliang; Wu, Xiangyun; Zhang, Hui; Bohm, Jennifer; Liu, Renyi; Shabala, Sergey; Hedrich, Rainer; Zhu, Jian-Kang; Zhang, Heng

    2017-01-01

    Chenopodium quinoa is a halophytic pseudocereal crop that is being cultivated in an ever-growing number of countries. Because quinoa is highly resistant to multiple abiotic stresses and its seed has a better nutritional value than any other major cereals, it is regarded as a future crop to ensure global food security. We generated a high-quality genome draft using an inbred line of the quinoa cultivar Real. The quinoa genome experienced one recent genome duplication about 4.3 million years ago, likely reflecting the genome fusion of two Chenopodium parents, in addition to the γ paleohexaploidization reported for most eudicots. The genome is highly repetitive (64.5% repeat content) and contains 54 438 protein-coding genes and 192 microRNA genes, with more than 99.3% having orthologous genes from glycophylic species. Stress tolerance in quinoa is associated with the expansion of genes involved in ion and nutrient transport, ABA homeostasis and signaling, and enhanced basal-level ABA responses. Epidermal salt bladder cells exhibit similar characteristics as trichomes, with a significantly higher expression of genes related to energy import and ABA biosynthesis compared with the leaf lamina. The quinoa genome sequence provides insights into its exceptional nutritional value and the evolution of halophytes, enabling the identification of genes involved in salinity tolerance, and providing the basis for molecular breeding in quinoa. PMID:28994416

  2. Mercury cycling and sequestration in salt marshes sediments: An ecosystem service provided by Juncus maritimus and Scirpus maritimus

    International Nuclear Information System (INIS)

    Marques, B.; Lillebo, A.I.; Pereira, E.; Duarte, A.C.

    2011-01-01

    In this study two time scales were looked at: a yearlong study was completed, and a 180-day decay experiment was done. Juncus maritimus and Scirpus maritimus have different life cycles, and this seems to have implications in the Hg-contaminated salt marsh sediment chemical environment, namely Eh and pH. In addition, the belowground biomass decomposition rates were faster for J. maritimus, as well as the biomass turnover rates. Results show that all these species-specific factors have implications in the mercury dynamics and sequestration. Meaning that J. maritimus belowground biomass has a sequestration capacity for mercury per square metre approximately 4-5 times higher than S. maritimus, i.e., in S. maritimus colonized areas Hg is more extensively exchange between belowground biomass and the rhizosediment. In conclusion, J. maritimus seems to provide a comparatively higher ecosystem service through phytostabilization (Hg complexation in the rhizosediment) and through phytoaccumulation (Hg sequestration in the belowground biomass). - Graphical abstract: Display Omitted Highlights: → Potentially halophytes auto-remediate systems by reducing Hg availability. → Species-specific factors have implications in the Hg dynamics and sequestration. → Ecosystem services are provided through phytostabilization and/or phytoaccumulation. → J. maritimus provide a comparatively higher ecosystem service. → In S. maritimus rhizosediment Hg is more extensively exchange with the halophyte. - Juncus maritimus provide an ecosystem service through Hg-phytostabilization and Hg-phytoaccumulation.

  3. [A Cellular Automata Model for a Community Comprising Two Plant Species of Different Growth Forms].

    Science.gov (United States)

    Frolov, P V; Zubkova, E V; Komarov, A S

    2015-01-01

    A cellular automata computer model for the interactions between two plant species of different growth forms--the lime hairgrass Deschampsia caespitosa (L.) P. Beauv., a sod cereal, and the moneywort Lysimachia nummularia L., a ground creeping perennial herb--is considered. Computer experiments on the self-maintenance of the populations of each species against the background of a gradual increase in the share of randomly eliminated individuals, coexistence of the populations of two species, and the effect of the phytogenous field have been conducted. As has been shown, all the studied factors determine the number of individuals and self-sustainability of the simulated populations by the degree of their impact. The limits of action have been determined for individual factors; within these limits, the specific features in plant reproduction and dispersal provide sustainable coexistence of the simulated populations. It has been demonstrated that the constructed model allows for studying the long-term developmental dynamics of the plants belonging to the selected growth forms.

  4. A new approach in the monitoring of the phytosanitary conditions of forests: the case of oak and beech stands in the Sicilian Regional Parks

    Directory of Open Access Journals (Sweden)

    Cinzia Rizza

    2016-10-01

    Full Text Available The objective of this study was to investigate the health conditions of oak and beech stands in the three Regional Parks of Sicily (Etna, Madonie and Nebrodi. A total of 81 sampling areas were investigated, 54 in oak stands and 27 in beech stands. The phytosanitary conditions of each tree within the respective sampling area was expressed with a synthetic index namely phytosanitary class (PC. Oak stands showed severe symptoms of decline, with 85% of the sampling areas including symptomatic trees. In general, beech stands were in better condition, with the exception of Nebrodi Park, where trees showed severe symptoms of decline. On oak trees, infections of fungal pathogens were also observed, including Biscogniauxia mediterranea, Polyporus sp., Fistulina hepatica, Mycrosphaera alphitoides and Armillaria sp. By contrast, on beech trees Biscogniauxia nummularia, Fomes fomentarius and Neonectria radicicola were recognized. Furthermore, twenty-two permanent sampling areas were delimited with the aim of monitoring regularly the health conditions of forests in these three parks.

  5. Comparison of the genetic organization of the early salt-stress-response gene system in salt-tolerant Lophopyrum elongatum and salt-sensitive wheat

    OpenAIRE

    Dubcovsky, J; Galvez, AF; Dvořák, J

    1994-01-01

    Lophopyrum elongatum is a facultative halophyte related to wheat. Eleven unique clones corresponding to genes showing enhanced mRNA accumulation in the early stages of salt stress were previously isolated from a L. elongatum salt-stressed-root cDNA library. The chromosomal distribution of genes complementary to these clones in several genomes of the tribe Triticeae and their copy number in the L. elongatum and wheat genomes are reported. Genes complementary to clones pESI4, pESI14, pESI15, pE...

  6. Nutrient cycling in salt marshes: An ecosystem service to reduce eutrophication

    DEFF Research Database (Denmark)

    Lillebø, A. I.; Sousa, A. I.; Flindt, M. R.

    2013-01-01

    and sequestration in salt marshes. This chapter will thus emphasise that salt marsh halophytes have a crucial role on nutrient cycling and sequestration, providing ecological services that contribute to maintain the ecosystem health. © 2012 Nova Science Publishers, Inc. All rights reserved.......Salt marshes are classified as sensitive habitat under the Habitats Directive (92/43/EEC), which aims to promote the maintenance of biodiversity. Worldwide, the reduction of salt marsh areas, as a result of anthropogenic disturbance is of major concern, and several studies on the ecology...

  7. Potential for Conservation Agriculture in the Dry Marginal Zone of Central Syria: A Preliminary Assessment

    Directory of Open Access Journals (Sweden)

    Baqir Lalani

    2018-02-01

    Full Text Available This paper reports on early soil related outcomes from conservation agriculture (CA benchmark sites located within the marginal rainfed environment of agro-ecological zone 4 (annual rainfall: 200–250 mm in pre-conflict central Syria. The outcomes reported are specifically those that relate to beneficial soil quality and water retention attributes relative to conventional tillage-based soil management practices applied to the fodder barley–livestock system, the dominant system in the zone. On-farm operational research was established to examine the impact of a barley (Hordeum vulgare and vetch (Vicia sativa rotation intercropped with atriplex (Atriplex halimus and salsola (Salsola collina, under CA and conventional tillage agriculture, on the soil quality parameters and crop productivity. Preliminary results showed that CA had a positive effect on the soil quality parameters and crop performance. The soil moisture and hydraulic conductivity were higher under CA (p < 0.05, combined with improved productivity (grain and above-ground biomass under specific crop mixes. The results suggest that despite the marginal nature of the zone, the use of CA is a viable option for the future of farmers’ livelihoods within similar localities and agro-climates, given the benefits for soil moisture and grain and straw productivity. In addition, it is likely to positively impact those in marginal environments where both pastoralism and agro-pastoralism production systems co-exist and compete for crop biomass as a main source of livestock feed. The increase in grain and straw yields vis-à-vis improvements in biophysical parameters in the CA system relative to tillage agriculture does suggest, however, that the competition with livestock for biomass is likely to reduce over time, and farmers would be able to return increased levels of straw (as stubble and residue as mulch, given improved biomass yields.

  8. Nutritive value of some herbages for dromedary camel in Iran.

    Science.gov (United States)

    Towhidi, A

    2007-01-01

    To prepare standard tables of chemical composition of feedstuffs and to determine digestibility and palatability of different plant species in dromedary camel, this research was carried out by considering the most consuming herbages of Iranian desert rages. The plant species were included Atriplex lentiformis, Alhagi persarum, Seidlitzia rosmarinus, Saueda fruticosa, Haloxylon ammodendron, Tamarix kotschyi, Hammada salicornica, Salsola yazdiana, Salsola tomentosa, Tamarix aphylla and Artemisia sieberi. Thirty samples of the browsing parts were collected from the rangelands of Yazd province in autumn. Chemical composition of samples including Dry Matter (DM), Crude Protein (CP), Crude Fiber (CF), Neutral Detergent Fiber (NDF), Acid Detergent Fiber (ADF), Ether Extract (EE), Total Ash (TA), macro elements (Ca, P, Mg, K), micro elements (Fe, Mg, Cu, Zn)and gross energy (GE) were analyzed. The in vitro digestibility was determined by camel rumen liquor in Tilley and Terry method. Palatability of the plants were measured by three mature camels in cafeteria trials. The camels voluntarily fed 11 plant species during one hour for six days. Data were analyzed by GLM method in SAS software. The highest CP (18.3%) and the lowest NDF (40.4%) and ADF (35.4%) were related to Tamarix aphylla. The lowest CP (5.5%) and the highest NDF (72.8%) and ADF (59.6%) were related to Artemisia sieberi. The highest organic matter digestibility in dry matter was related to Haloxylon ammodendron. The results also indicated that Atriplex lentiformis, Alhagi persarum, Seidlitzia rosmarinus, Saueda fruticosa, Haloxylon ammodendron, Salsola tomentosa, Hammada salicornica, Tamarix kotschyi, Salsola yazdiana, Tamarix aphylla and Artemisia sieberi were more pleasure feed, respectively. It was not observed any correlation between %DOMD and chemical composition. Moreover, There was not a consistent relationship between the palatability of herbages with %DOMD or chemical composition.

  9. Pérdida de suelo, fósforo y materia orgánica por erosión hídrica en parcelas revegetadas con matorral autóctono bajo clima semiárido Soil, phosphorus and organic matter loss by water erosion in revege­tated plots with autoctonous shrubs under semi-arid climate

    Directory of Open Access Journals (Sweden)

    R. Bienes

    2010-01-01

    Full Text Available Se ensayan arbustos (Atriplex halimus (Ahy Thymus zygis (Tz en laderas del centro peninsular. Se estudia la erosión y la contaminación difusa, analizando el contenido de materia orgánica (MOy fósforo (P2O5 en suelo y sedimentos. En comparación con el control, Ah presentó un descenso significativo de escorrentía de un 47% y un 24% menos de erosión, pero Tz presentó un 12% más de escorren­tía y un 152% más de pérdida de suelo. Se evidencian cocientes de enriquecimiento de MO y P2O5 en sedimentos erosionados y relaciones entre la erosión y el conteni­do en MO y P, observándose ecuaciones de regresión con coeficientes de correla­ción elevados, R=0,91 y 0,87 respectiva­mente.Two treatments with shrubs (Atriplex halimus (Ah and Thymus Zygis (Tz were tested on hillsides from central Spain. It was studied the erosion and dif­fuse contamination by analyzing organic matter content (OM and phosphorus (P2O5 in soil and sediments. Compared with the control treatment, Ah presented a significant decrease of runoff and erosion, 47% and 24% lower respectively, but Tz showed 12% more runoff and 152% more erosion than control. Enrichment ratios of OM and P2O5 are evident in eroded sedi­ment and also a strong relation between erosion and OM and P2O5 content was found, showing regression equations with high correlation coefficients, R=0.87 and 0.91 respectively.

  10. Halophyte filters as saline treatment wetlands; Applicators and constraints

    OpenAIRE

    Gaag, J.J.; Paulissen, M.P.C.P.; Slim, P.A.

    2010-01-01

    Purification of wastewater rich in nutrients and organic pollutants is essential for the protection of receiving waters and to enable water reuse. This report investigates the possibilities and constraints of constructed wetlands for treatment of slightly saline wastewater from aquaculture systems. As the body of literature for saline treatment wetlands is relatively small, the reports starts with a summary of processes in freshwater systems. It is then explained that these processes are also...

  11. Trends in savanna structure and composition along an aridity gradient in the Kalahari

    CSIR Research Space (South Africa)

    Scholes, RJ

    2002-06-01

    Full Text Available Rooyen 1998). Sa- line areas such as the vast Makgadigadi pan support halophytic shrubs and grasses or are bare. Non-saline pans, for example at Nxai pan, support sedge- and grasslands, sometimes with tree clumps on slightly more elevated ground... being larger than about 20 mm (major axis); fine-leafed is smaller than 20 mm, and usually less than 2 mm. Deciduous means that > 90% of all tree and shrub leaves are lost for at least three months, evergreen means that > 80% of tree leaf is retained...

  12. Euphorbia latex: a possible source of hydrocarbons and rubber

    Energy Technology Data Exchange (ETDEWEB)

    Viaud, P; Teisseire, D

    1975-01-01

    Illustrated descriptions are given of 36 plants of potential economic value in underdeveloped tropical countries, classified by use. The plants are either wild or cultivated on a fairly local scale. Accounts of limitations and special requirements and lists of references, research contacts and sources of germ plasm are included for each species. The following tree and shrub species are included: Cnidoscolus aconitifolius, C. chayamansa and hearts of several edible palm species including Euterpe edulis (vegetables); Durio species, Garcinia mangostana, Solanum quitoense, Bactris gaspiaes, Citrus grandis, Annona muricata and Pourouma cecropiaefolia (fruits); Orbignya martiana, Caryocar species, Jessenia polycarpa and Simmondsia chinensis (oil seeds); Acacia albida, Brosimum alicastrum, Cassia sturtii, Atriplex species and Prosopis tamarungo (forage (browse)); Mauritia flexuosa (fruit, wood, etc.); Euphorbia antisyphilitica (wax); and Parthenium argentatum (rubber).

  13. Remarkable, overlooked and new microfungi in North Rhine-Westphalia, Germany.

    Science.gov (United States)

    Ale-Agha, N; Feige, G B; Linke, K

    2001-01-01

    During our investigations of the micro flora in NRW in the years of 1999 and 2000 we were able to collect and identify some new and rare species of micro fungi as parasites and saprophytes on wild and ornamental plants. Some of them are new for Germany: Podosphaera xanthii on Coreopsis verticillata; Cercospora traversiana on Trigonella foenum-graecum; Passalora dubia on Atriplex hortensis; Ophiobolus cirsii on Carduus spec.; Periconia britannica on Polemonium coeruleum; Ascochyta leptospora on Agropyron repens; Apomelasmia urticae on Urtica dioica; Cryptodiaporthe salicina on Salix caprea; Dasyscyphus nidulus on Anemone hupehensis; Rhopographus filicinus on Pteridium aquilinum; Sillia ferruginea on Corylus avellana; Sirococcus spiraeae on Spiraea spec. and Forsythia x intermedia. Examples of these findings are in the Herbarium ESS (Mycotheca Parva, Slg. Feige/Ale-Agha).

  14. Study of the mechanical properties of Ziziphus nummularia (ber) fibers for formation of fiber reinforced composites

    Science.gov (United States)

    Joshi, Akshay; Mangal, R.; Bhojak, N.

    2018-05-01

    Ziziphus is the one of the most abundant plant of arid region of Rajasthan and rest part of desert land in world. There are a lots of research work going on and has been done on medical applications of this plant and it is playing very important role in economy of desert areas. In this paper our discussion will bring the attention its physical properties so that we can find the possibility of its applications in the various field of fiber reinforced composites which either can be used in such as interior & exterior part of automotive so it can reduce their overall weight, cost and improve its fuel efficiency without compromising in strength or can be used in flywheel technology for energy saving in automobiles or in building materials and so on. In this paper our approach is to extract the fiber from this plant, analyze the mechanical properties of the fiber and then discuss the various possibility of its application in appropriate field of composites. To find the possibility in FRC for Ziziphus fiber our next step is to compare it with other fibers whose composites have already been formed and studied.

  15. Highlighting the mechanisms by which proline can confer tolerance to salt stress in cakile maritima

    International Nuclear Information System (INIS)

    Messedi, D.; Farhani, F.; Hamed, K.B.; Trabelsi, N.; Ksouri, R.; Chedly Abdelly, C.; Athar, H.U.R.

    2016-01-01

    Cakile maritima is an oleaginous halophyte growing in the sandy dunes along the Tunisian coast. In order to investigate the role of proline in inducing high salinity tolerance (200 and 400 mM NaCl) in this halophyte, we studied several aspects of the salt responses of C. maritma under exogenous proline supply (20 mM). Salinity levels above 100 mM, reduced growth, photosynthetic activity, and quantum yield of photosystem II (FPSII), while increasing the non photochemical quenching (NPQ). Significant inhibition of the linear electron transport rate (ETR) was also observed in plants grown at 400 mM NaCl. In addition, polyphenol content, total antioxidant and DPPH scavenging activities increased due to increasing salinity stress, and the concentration of malondialdehyde (MDA) also increased. The application of proline counteracted all these adverse effects of salt stress in plants grown at 200 mM NaCl, while it improved some of these physiological attributes at 400 mM NaCl. In addition, contribution of Na+ for the osmotic adjustment decreased in the leaves of salt treated plants supplied with proline exogenously. Exogenous application of proline induced the accumulation of potassium, proline and soluble carbohydrates in salt stressed plants, particularly at 400 mM. This explained the reason of growth enhancement induced by proline application. All together, our Results showed that the beneficial effect of exogenous proline on the response of C. maritima to salinity was due to its role in the protection of chloroplast structures, antioxidant defenses and osmotic adjustment. (author)

  16. Chemical profiling of infusions and decoctions of Helichrysum italicum subsp. picardii by UHPLC-PDA-MS and in vitro biological activities comparatively with green tea (Camellia sinensis) and rooibos tisane (Aspalathus linearis).

    Science.gov (United States)

    Pereira, Catarina Guerreiro; Barreira, Luísa; Bijttebier, Sebastiaan; Pieters, Luc; Neves, Vanessa; Rodrigues, Maria João; Rivas, Ricardo; Varela, João; Custódio, Luísa

    2017-10-25

    Several medicinal plants are currently used by the food industry as functional additives, for example botanical extracts in herbal drinks. Moreover, the scientific community has recently begun focusing on halophytes as sources of functional beverages. Helichrysum italicum subsp. picardii (everlasting) is an aromatic halophyte common in southern Europe frequently used as spice and in traditional medicine. In this context, this work explored for the first time H. italicum subsp. picardii as a potential source of innovative herbal beverages with potential health promoting properties. For that purpose, infusions and decoctions were prepared from roots, vegetative aerial-organs (stems and leaves) and flowers and evaluated for in vitro antioxidant and anti-diabetic activities. Samples were also assessed for toxicity in different mammalian cell lines and chemically characterized by spectrophotometric methods and ultra-high performance liquid chromatography-photodiode array-mass-spectrometry (UHPLC-PDA-MS). Results were expressed relating to 'a cup-of-tea' and compared with those obtained with green tea (Camellia sinensis) and rooibos tisane (Aspalathus linearis). Tisanes from the everlasting's above-ground organs, particularly flowers, have high polyphenolic content and several phenolics were identified; the main compounds were chlorogenic and quinic acids, dicaffeoylquinic-acid isomers and gnaphaliin-A. The antioxidant activity of beverages from the everlasting's above-ground organs matched or surpassed that of green tea and rooibos. Its anti-diabetic activity was moderate and toxicity low. Overall, our results suggest that the everlasting is a potential source of innovative and functional herbal beverages. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. ABA, GA(3), and nitrate may control seed germination of Crithmum maritimum (Apiaceae) under saline conditions.

    Science.gov (United States)

    Atia, Abdallah; Debez, Ahmed; Barhoumi, Zouhaier; Smaoui, Abderrazak; Abdelly, Chedly

    2009-08-01

    Impaired germination is common among halophyte seeds exposed to salt stress, partly resulting from the salt-induced reduction of the growth regulator contents in seeds. Thus, the understanding of hormonal regulation during the germination process is a main key: (i) to overcome the mechanisms by which NaCl-salinity inhibit germination; and (ii) to improve the germination of these species when challenged with NaCl. In the present investigation, the effects of ABA, GA(3), NO(-)(3), and NH(+)(4) on the germination of the oilseed halophyte Crithmum maritimum (Apiaceae) were assessed under NaCl-salinity (up to 200 mM NaCl). Seeds were collected from Tabarka rocky coasts (N-W of Tunisia). The exogenous application of GA(3), nitrate (either as NaNO(3) or KNO(3)), and NH(4)Cl enhanced germination under NaCl salinity. The beneficial impact of KNO(3) on germination upon seed exposure to NaCl salinity was rather due to NO(-)(3) than to K(+), since KCl failed to significantly stimulate germination. Under optimal conditions for germination (0 mM NaCl), ABA inhibited germination over time in a dose dependent manner, but KNO(3) completely restored the germination parameters. Under NaCl salinity, the application of fluridone (FLU) an inhibitor of ABA biosynthesis, stimulated substantially seed germination. Taken together, our results point out that NO(-)(3) and GA(3) mitigate the NaCl-induced reduction of seed germination, and that NO(-)(3) counteracts the inhibitory effect of ABA on germination of C. maritimum.

  18. Expansion of southern distributional range of Ucides occidentalis (Decapoda: Ucididae and Cardisoma crassum (Decapoda: Gecarcinidae

    Directory of Open Access Journals (Sweden)

    Solange Alemán

    2017-04-01

    Full Text Available Is recorded the species of crabs brachyuran Ucides occidentalis (mangrove crab and Cardisoma crassum (Blue crab or without mouth in the mangroves of San Pedro (Piura, expanding its geographical distribution south of Tumbes, which was the known limit. The habitat of these species is characterized by the presence of two varieties of mangrove trees, Jeli white (Laguncularia racemosa and salty Jeli (Avicenia germinans and halophytic shrub called glass (Batis maritima, it observing that the depth of the burrows is shallow (< 60 cm. Biometric information and some biological aspects of the collected specimens are also presented.

  19. Seed oil content and fatty acid composition of annual halophyte ...

    African Journals Online (AJOL)

    ajl yemi

    2011-12-19

    Dec 19, 2011 ... 1State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of. Sciences, Urumqi 830011, China. 2Graduate University of ... of S. acuminata: brown with soft coarse seed coat and black with rigid smooth seed coat (Ding et al., 2010). Brown and black ...

  20. Seed oil content and fatty acid composition of annual halophyte ...

    African Journals Online (AJOL)

    Suaeda acuminata produces two morphologically distinct types of seeds on the same plant. This study was conducted to compare oil content and fatty acid composition of the two seed morphs. Though oil characteristics between dimorphic seeds showed statistically significant difference, these differences were relatively ...

  1. Characterizing gene responses to drought stress in fourwing saltbush [Atriplex canescens (Pursh.) Nutt.)

    Science.gov (United States)

    Linda S. Adair; David L. Andrews; John Cairney; Edward A. Funkhouser; Ronald J. Newton; Earl F. Aldon

    1992-01-01

    New techniques in molecular biology can be used to characterize genes whose expression is induced by drought stress. These techniques can be used to understand responses of range plants to environmental stresses at the biochemical and molecular level. For example, they can be used to characterize genes that respond to drought stress conditions in the native shrub

  2. Transuranium element transport in agricultural systems (soil to food chain transfer of nuclear fuel cycle radionuclides). Annual progress report

    International Nuclear Information System (INIS)

    Wallace, A.

    1977-10-01

    Progress is reported on the following research projects: preparation of bibliography covering literature on plant uptake of transuranium elements; development of techniques for growth of agricultural crops in large containers that simulate field conditions; equipment for counting of alpha-emitting transuranium elements; studies on variability in concentration ratio of 241 Am under different environmental conditions; alpha radiation burn in bush beans exposed to 241 Am in solution; constancy of concentration ratio as a measure of plant uptake of 241 Am; growth of radishes in soil with and without DTPA, and radish peel as source of radionuclides; effects of varying levels of DTPA in loam soil on concentration ratio values; and a plant species (Atriplex hymenelytra--desert holly) with high C.R. values and search for other plants with high C.R. values

  3. New contributions to the knowledge of the alien flora in Baix Llobregat county (Catalonia, Spain

    Directory of Open Access Journals (Sweden)

    H. Álvarez

    2016-08-01

    Full Text Available We provide new records of 17 exotic plants in the Baix Llobregat region observed between the years 2011 and 2014. Two species are the first records for Europe: Acacia rostellifera Benth. and Trichloris crinita (Lag. Parodi; two are new plants for the Iberian Peninsula: Bouteloua dactyloides (Nutt. Columbus and Nassella tenuissima (Trin. Barkworth; three are recorded by their first time in Catalonia: Atriplex semibaccata R. Br., Oenothera speciosa Nutt. and Verbena incompta P. W. Michael; five correspond to first records in Baix Llobregat: Parkinsonia aculeata L., Phacelia tanacetifolia Benth., Physalis peruviana L., Salpichroa origanifolia (Lam. Baill. and Verbena brasiliensis Vell. The remaining species are very rare in the studied area: Abutilon grandifolium (Willd. Sweet, Asperugo procumbens L., Eclipta prostrata (L. L. and Oenothera indecora Cambess.

  4. Suitable woody species for a land application alternative to pulp and paper mill wastewater disposal

    International Nuclear Information System (INIS)

    Aw, M.; Wagner, M.R.

    1993-01-01

    Saline pulp and paper wastewater produced by Stone Container Corporation in Snowflake, Arizona was used to irrigate 32 different species/genotypes/hybrids of woody plants to test their suitability as an alternative treatment to the current wastewater disposal method. Suitability was measured in terms of survival and height growth. Among the 32 species, six were found to be a very good choice for wastewater treatment and biomass production. Their suitability is further justified by the fact that some have salt tolerance and others fix nitrogen. These species are Tamarix ramosissima, Atriplex canescens, Robinia pseudoacacia, Eleagnus angustifoliz, Ulmus pumila, and Populus deltoides x Populus nigra. Three other species are possible candidates. These include Caragana arborescens, Gleditsia triacanthos and Populus deltoides var. siouxland. In general, conifers performed poorly because of the harsh environment and other silvicultural problems

  5. Seasonal variation in natural abundance of δ13C and 15N in Salicornia brachiata Roxb. populations from a coastal area of India.

    Science.gov (United States)

    Chaudhary, Doongar R; Seo, Juyoung; Kang, Hojeong; Rathore, Aditya P; Jha, Bhavanath

    2018-05-01

    High and fluctuating salinity is characteristic for coastal salt marshes, which strongly affect the physiology of halophytes consequently resulting in changes in stable isotope distribution. The natural abundance of stable isotopes (δ 13 C and δ 15 N) of the halophyte plant Salicornia brachiata and physico-chemical characteristics of soils were analysed in order to investigate the relationship of stable isotope distribution in different populations in a growing period in the coastal area of Gujarat, India. Aboveground and belowground biomass of S. brachiata was collected from six different populations at five times (September 2014, November 2014, January 2015, March 2015 and May 2015). The δ 13 C values in aboveground (-30.8 to -23.6 ‰, average: -26.6 ± 0.4 ‰) and belowground biomass (-30.0 to -23.1 ‰, average: -26.3 ± 0.4 ‰) were similar. The δ 13 C values were positively correlated with soil salinity and Na concentration, and negatively correlated with soil mineral nitrogen. The δ 15 N values of aboveground (6.7-16.1 ‰, average: 9.6 ± 0.4 ‰) were comparatively higher than belowground biomass (5.4-13.2 ‰, average: 7.8 ± 0.3 ‰). The δ 15 N values were negatively correlated with soil available P. We conclude that the variation in δ 13 C values of S. brachiata was possibly caused by soil salinity (associated Na content) and N limitation which demonstrates the potential of δ 13 C as an indicator of stress in plants.

  6. Characterization of Salt Overly Sensitive 1 (SOS1) gene homoeologs in quinoa (Chenopodium quinoa Willd.).

    Science.gov (United States)

    Maughan, P J; Turner, T B; Coleman, C E; Elzinga, D B; Jellen, E N; Morales, J A; Udall, J A; Fairbanks, D J; Bonifacio, A

    2009-07-01

    Salt tolerance is an agronomically important trait that affects plant species around the globe. The Salt Overly Sensitive 1 (SOS1) gene encodes a plasma membrane Na+/H+ antiporter that plays an important role in germination and growth of plants in saline environments. Quinoa (Chenopodium quinoa Willd.) is a halophytic, allotetraploid grain crop of the family Amaranthaceae with impressive nutritional content and an increasing worldwide market. Many quinoa varieties have considerable salt tolerance, and research suggests quinoa may utilize novel mechanisms to confer salt tolerance. Here we report the cloning and characterization of two homoeologous SOS1 loci (cqSOS1A and cqSOS1B) from C. quinoa, including full-length cDNA sequences, genomic sequences, relative expression levels, fluorescent in situ hybridization (FISH) analysis, and a phylogenetic analysis of SOS1 genes from 13 plant taxa. The cqSOS1A and cqSOS1B genes each span 23 exons spread over 3477 bp and 3486 bp of coding sequence, respectively. These sequences share a high level of similarity with SOS1 homologs of other species and contain two conserved domains, a Nhap cation-antiporter domain and a cyclic-nucleotide binding domain. Genomic sequence analysis of two BAC clones (98 357 bp and 132 770 bp) containing the homoeologous SOS1 genes suggests possible conservation of synteny across the C. quinoa sub-genomes. This report represents the first molecular characterization of salt-tolerance genes in a halophytic species in the Amaranthaceae as well as the first comparative analysis of coding and non-coding DNA sequences of the two homoeologous genomes of C. quinoa.

  7. Oxidative stress protection and stomatal patterning as components of salinity tolerance mechanism in quinoa (Chenopodium quinoa).

    Science.gov (United States)

    Shabala, Lana; Mackay, Alex; Tian, Yu; Jacobsen, Sven-Erik; Zhou, Daowei; Shabala, Sergey

    2012-09-01

    Two components of salinity stress are a reduction in water availability to plants and the formation of reactive oxygen species. In this work, we have used quinoa (Chenopodium quinoa), a dicotyledonous C3 halophyte species displaying optimal growth at approximately 150 mM NaCl, to study mechanisms by which halophytes cope with the afore-mentioned components of salt stress. The relative contribution of organic and inorganic osmolytes in leaves of different physiological ages (e.g. positions on the stem) was quantified and linked with the osmoprotective function of organic osmolytes. We show that the extent of the oxidative stress (UV-B irradiation) damage to photosynthetic machinery in young leaves is much less when compared with old leaves, and attribute this difference to the difference in the size of the organic osmolyte pool (1.5-fold difference under control conditions; sixfold difference in plants grown at 400 mM NaCl). Consistent with this, salt-grown plants showed higher Fv/Fm values compared with control plants after UV-B exposure. Exogenous application of physiologically relevant concentrations of glycine betaine substantially mitigated oxidative stress damage to PSII, in a dose-dependent manner. We also show that salt-grown plants showed a significant (approximately 30%) reduction in stomatal density observed in all leaves. It is concluded that accumulation of organic osmolytes plays a dual role providing, in addition to osmotic adjustment, protection of photosynthetic machinery against oxidative stress in developing leaves. It is also suggested that salinity-induced reduction in stomatal density represents a fundamental mechanism by which plants optimize water use efficiency under saline conditions. Copyright © Physiologia Plantarum 2012.

  8. Utilization of saline water and land: Reclaiming lost resources

    International Nuclear Information System (INIS)

    Naqvi, Mujtaba

    2001-01-01

    There is an abundance of saline water on the globe. Large tracts of land are arid and/or salt-affected, and a large number of plant species are known to be salt-tolerant. It would seem obvious that salt tolerant plants (halophytes) have a role in utilizing the two wasted resources, saline water and wastelands. We will briefly describe how these resources can be fruitfully utilized and how the IAEA has helped several countries to demonstrate the possibility of cultivating salt tolerant plant species on arid saline wastelands for economic and environmental benefit. After some brief introductory remarks we will discuss the results of the project

  9. Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plants grown at various salinity level

    DEFF Research Database (Denmark)

    Hariadi, Yuda; Marandon, Karl; Tian, Yu

    2011-01-01

    or by the gradual increase of NaCl levels in the irrigation water. For both methods, the optimal plant growth and biomass was achieved between 100 mM and 200 mM NaCl, suggesting that quinoa possess a very efficient system to adjust osmotically for abrupt increases in NaCl stress. Up to 95% of osmotic adjustment......Cl-induced activation of H+-ATPase is needed to restore otherwise depolarized membrane potential and prevent further K+ leak from the cytosol. Taken together, this work emphasizes the role of inorganic ions for osmotic adjustment in halophytes and calls for more in-depth studies of the mechanisms of vacuolar Na...

  10. Inhibitory Activities of Antioxidant Flavonoids from Tamarix gallica on Amyloid Aggregation Related to Alzheimer's and Type 2 Diabetes Diseases.

    Science.gov (United States)

    Ben Hmidene, Asma; Hanaki, Mizuho; Murakami, Kazuma; Irie, Kazuhiro; Isoda, Hiroko; Shigemori, Hideyuki

    2017-01-01

    The prevention of amyloid aggregation is promising for the treatment of age-related diseases such as Alzheimer's (AD) and type 2 diabetes (T2D). Ten antioxidant flavonoids isolated from the medicinal halophyte Tamarix gallica were tested for their amyloid aggregation inhibition potential. Glucuronosylated flavonoids show relatively strong inhibitory activity of Amyloid β (Aβ) and human islet amyloid polypeptide (hIAPP) aggregation compared to their aglycone analogs. Structure-activity relationship of the flavonoids suggests that the catechol moiety is important for amyloid aggregation inhibition, while the methylation of the carboxyl group in the glucuronide moiety and of the hydroxyl group in the aglycone flavonoids decreased it.

  11. Acetylcholinesterase inhibitory effects of some plants from Rosaceae

    Directory of Open Access Journals (Sweden)

    S. Esmaeili

    2015-10-01

    Full Text Available Background and objectives: Alzheimer's disease (AD is an age dependent disorder. AD is associated with decrease of brain acetylcholine level. Nowadays, one of the methods for progression inhibition of AD is using acetylcholinesterase inhibitors. Rosaceae is a large plant family. Different biological effects of some species of this family have been reported. The aim of the present study was to assess the acetylcholinesterase inhibitory (AChEI activity of the selected plants belonging to Rosaceae family. Methods: AChEI activity of six species from Rosaceae including Cotoneaster nummularia, Cerasus microcarpa, Amygdalus scoparia, Agrimonia eupatoria, Rosa canina and Rosa damascena were evaluated based on Ellman’s method in concentration of 300 µg/mL using total extracts and methanol fractions which were obtained by maceration. Results: The results showed that the total extract and methanol fraction of the aerial parts of A. eupatoria demonstrated significant AChEI activity with 46.5% and 56.2% inhibition of the enzyme, respectively. Conclusion: According to the results of the AChEI activity of the methanol fraction of A. eupatoria, it seems that the polar components of the species such as flavonoids may be responsible for its effectiveness.

  12. Site properties for Crimean juniper (Juniperus excelsa) in semi-natural forests of south western Anatolia, Turkey.

    Science.gov (United States)

    Ozkan, Kürsad; Gulsoy, Serkan; Aerts, Raf; Muys, Bart

    2010-01-01

    We explored the semi-natural forests in south western Anatolia along a gradient between Mediterranean and continental climates to determine the site requirements of Juniperus excelsa in Turkey. We hypothesized that environmental variables and indicator species can be used to predict differences in occurrence and cover of J. excelsa and can therefore support decision making in reforestation management planning. Plant species composition and environmental variables were assessed in 153 plots. Association between J. excelsa and other plant species and environmental variables were analyzed using Fisher exact probability tests and stepwise discriminant analysis. High altitude (> 1000 m) as a proxy for an Oromediterranean climate, and high surface stoniness as a proxy for low competition by other tree species, are positive site properties for J. excelsa. The tree species avoids Eumediterranean and Supramediterranean plant communities. Twelve plant species, including the herbs Dianthus zonatus, Ajuga chamaepitys and Paronchia carica and the shrub Cotoneaster nummularia may be used as site indicators for J. excelsa restoration. Platanus orientalis, with similar site requirements but at present negatively associated to J. excelsa due to competitive effects, may be considered an additional indicator if stand conversion (harvesting and replacing P. orientalis) is part of the management plan.

  13. Baseline data on wild flora of crop field boundaries in the agro-ecosystem of pothwar plateau, pakistan

    International Nuclear Information System (INIS)

    Sarwar, M.; Hussain, I.; Anwar, M.; Ashraf, N.; Mirza, S.N.

    2017-01-01

    Wild flora along crop field boundaries in farmlands not only increases habitat heterogeneity but also serves multiple beneficial functions. We collected baseline data on wild flora bordering the crop fields of Pothwar plateau. Overall we selected four study sites including two sites of wheat-maize/millet and two of wheat-groundnut cropping system. We recorded 51 species of plants including 12 species of trees, 14 species of shrubs and 25 species of grasses/herbs. Two tree species namely Acacia modesta and Zizyphus mauritiana and two shrub species namely Calotropis procera and Ziziphus nummularia were common indicating their widespread presence in the area. Among herbs/grasses Abutilon indicum, Amaranthus spp., Cyperus rotundus and Erogrostis poroles were common at sites with wheat-maize/millet cropping pattern while Chenopodium album, Datura stramonium and Tribulus terrestris were common at sites with wheat-groundnut cropping system. The tree and shrub densities did not differ significantly among the study sites. Wheat-groundnut cropping system had higher populations/diversity/species of shrubs as compared to wheat-maize/millet cropping system. Density of grasses/herbs significantly differed across the study sites but there was no association of herb/grass density with cropping practice. (author)

  14. An evaluation of fuelwood properties of some Aravally mountain tree and shrub species of Western India

    Energy Technology Data Exchange (ETDEWEB)

    Nirmal Kumar, J.I.; Patel, Kanti; Bhoi, Rohit Kumar [P.G. Department of Environmental Science and Technology, Institute of Science and Technology for Advanced Studies and Research (ISTAR), Vallabh Vidyanagar 388 120, Gujarat (India); Kumar, Rita N. [Department of Biological and Environmental Science, N.V. Patel college of Pure and Applied Sciences, Vallabh Vidyanagar 388 120, Gujarat (India)

    2011-01-15

    The study analyses the fuelwood characteristics of 26 trees including shrub species from the dry deciduous forest in Aravally region, Rajasthan, Western India was carried out to explore trees with potential for fuelwood production. Fuelwood value index (FVI) based on the properties of calorific value, wood density and ash. Calorific value was ranged between 18.54 {+-} 0.04 and 27.44 {+-} 0.09 KJ g{sup -1} in Jatropha curcus and Wrightia tinctoria respectively. Wood density varied from 0.538 {+-} 0.01 to 0.966 {+-} 0.07 g/cm{sup 3} in J. curcus and Acacia nilotica. Same way ash and moisture content was highest in J. curcus (3.38 {+-} 0.19%) and Sterculia urens (70.28 {+-} 7.52%) and lowest in Miliusa tomentosa (0.85 {+-} 0.06%) and Azadirachta indica (30.7 {+-} 10.02%) respectively. On the basis, of the 26 species analyzed, M. tomentosa has the highest FVI, followed by Lannea coromandelica, Acacia leucophloea, Madhuca indica, A. nilotica, W. tinctoria, Butea monosperma, Zizyphus nummularia, S. urens, Boswellia serrata, A. indica, Grewia tenax, Syzygium cuminii, Tectona grandis and Dalbergia sissoo were shown to have promising fuelwood production. (author)

  15. Maritime Halophyte Species from Southern Portugal as Sources of Bioactive Molecules

    DEFF Research Database (Denmark)

    Rodrigues, Maria João; Gangadhar, Katkam N.; Vizetto-Duarte, Catarina

    2014-01-01

    -ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical was obtained in the ether extract of J. acutus (IC50 = 0.4 mg/mL) and H. portulacoides (IC50 = 0.9 mg/mL). The maximum total phenolic content (TPC) was found in the methanol extract of M. edule (147 mg gallic acid equivalents (GAE)/g) and in the ether extract of J......,1-diphenyl-2-picrylhydrazyl (DPPH) radical were the methanol extracts of M. edule (IC50 = 0.1 mg/mL) and J. acutus (IC50 = 0.4 mg/mL), and the ether extracts of J. acutus (IC50 = 0.2 mg/mL) and A. macrostachyum (IC50 = 0.3 mg/mL). The highest radical scavenging activity (RSA) against the 2,2'-azino-bis (3...... activity and selectivity was obtained with the ether extract of J. acutus. Juncunol was identified as the active compound and for the first time was shown to display selective in vitro cytotoxicity towards various human cancer cells....

  16. Competition from native hydrophytes reduces establishment and growth of invasive dense-flowered cordgrass (Spartina densiflora

    Directory of Open Access Journals (Sweden)

    Ahmed M. Abbas

    2015-10-01

    Full Text Available Experimental studies to determine the nature of ecological interactions between invasive and native species are necessary for conserving and restoring native species in impacted habitats. Theory predicts that species boundaries along environmental gradients are determined by physical factors in stressful environments and by competitive ability in benign environments, but little is known about the mechanisms by which hydrophytes exclude halophytes and the life history stage at which these mechanisms are able to operate. The ongoing invasion of the South American Spartina densiflora in European marshes is causing concern about potential impacts to native plants along the marsh salinity gradient, offering an opportunity to evaluate the mechanisms by which native hydrophytes may limit, or even prevent, the expansion of invasive halophytes. Our study compared S. densiflora seedling establishment with and without competition with Phragmites australis and Typha domingensis, two hydrophytes differing in clonal architecture. We hypothesized that seedlings of the stress tolerant S. densiflora would be out-competed by stands of P. australis and T. domingensis. Growth, survivorship, biomass patterns and foliar nutrient content were recorded in a common garden experiment to determine the effect of mature P. australis and T. domingensis on the growth and colonization of S. densiflora under fresh water conditions where invasion events are likely to occur. Mature P. australis stands prevented establishment of S. densiflora seedlings and T. domingensis reduced S. densiflora establishment by 38%. Seedlings grown with P. australis produced fewer than five short shoots and all plants died after ca. 2 yrs. Our results showed that direct competition, most likely for subterranean resources, was responsible for decreased growth rate and survivorship of S. densiflora. The presence of healthy stands of P. australis, and to some extent T. domingensis, along river channels

  17. Tissue- and environmental response-specific expression of 10 PP2C transcripts in Mesembryanthemum crystallinum.

    Science.gov (United States)

    Miyazaki, S; Koga, R; Bohnert, H J; Fukuhara, T

    1999-03-01

    Ten transcripts (Mpc1-10) homologous to protein phosphatases of the 2C family have been isolated from the halophyte Mesembryanthemum crystallinum (common ice plant). Transcripts range in size from 1.6 to 2.6 kb, and encode proteins whose catalytic domains are between 24% and 62% identical to that of the Arabidopsis PP2C, ABI1. Transcript expression is tissue specific. Two isoforms are present only in roots (Mpc1 and Mpc5), three in young leaves (Mpc6, 8 and 9), two in old leaves (Mpc6 and Mpc8), and two in post-flowering leaves (Mpc8 and Mpc9). Mpc2 is strongly expressed in roots and also in seeds, meristematic tissues and mature flowers. Mpc3 is specific for leaf meristems, and Mpc4 is found in root and leaf meristems. Mpc7 is restricted to meristematic tissues. Mpc10 is only present in mature flowers. Mpc2 (in roots and leaves), Mpc5 (in roots) and Mpc8 (weakly in leaves) are induced by salinity stress and drought conditions with different kinetics in different tissues, but other Mpcs are downregulated by stress. Cold stress (4 degrees C) leads to a decline in Mpc5 and Mp6, but low temperature provoked a long-term (days) increase in Mpc2 levels in leaves and a transient increase (less than 24 h) in roots. Four full-length transcripts have been obtained. In each case, after over-expression in E. coli, the isolated proteins exhibited (Mg2+-dependent, okadeic acid-insensitive) protein phosphatase activity, although activity against 32P-phosphocasein varied among different PP2Cs. Determination of tissue developmental and stress response specificity of PP2C will facilitate functional studies of signal-transducing enzymes in this halophytic organism.

  18. Responses of rice to salinity and exogenous glycinebetaine by using positron emitting tracer imaging system

    International Nuclear Information System (INIS)

    Le Xuan Tham; Vo Huy Dang; Noriko, S.

    2002-01-01

    Effect of salinity stress (NaCl) and glycinebetaine on typical non-halophyte plants - rice (Oryza sativa L.) was examined for the growth, net photosynthesis and transpiration functions of seedlings. Using 22 Na, the inhibition of net uptake and translocation of sodium of seedlings stressed at 0.15% NaCl in solution and previously treated with exogenous glycinebetaine was observed by positron-emitting tracer imaging system, namely PETIS for diagnosis of early responses of plants to salt stress. Effects of exogenous glycinebetaine on rice plants stressed with salinity via osmotic protection and particularly stabilization of membrane permeability to inhibit Na uptake and translocation were discussed in connection with promising potentials of PETIS for researches on plants. (Author)

  19. Genotypic difference in salinity tolerance in quinoa is determined by differential control of xylem Na+ loading and stomatal density

    DEFF Research Database (Denmark)

    Shabala, Sergey; Hariadi, Yuda; Jacobsen, Sven-Erik

    2013-01-01

    old seedlings. Six weeks after the treatment commenced, leaf sap Na and K content and osmolality, stomatal density, chlorophyll fluorescence characteristics, and xylem sap Na and K composition were measured. Responses to salinity differed greatly among the varieties. All cultivars had substantially...... increased K+ concentrations in the leaf sap, but the most tolerant cultivars had lower xylem Na+ content at the time of sampling. Most tolerant cultivars had lowest leaf sap osmolality. All varieties reduced stomata density when grown under saline conditions. All varieties clustered into two groups...... to the xylem, and reduced stomata density are important physiological traits contributing to genotypic differences in salinity tolerance in quinoa, a halophyte species from Chenopodium family....

  20. The changes in contents of Salt Marsh Species and the importance of Edaphic Physiochemical Factors

    International Nuclear Information System (INIS)

    Kutbay, Hamdi G.; Demir, M.

    2001-01-01

    The changes in nutrient contents of some halophytic plants which occurred in a salt marsh located in the vicinity of Bafra town, on the north coast of Turkey during the growing seasons were investigated. Contents of So4, Cl, Na, K, Ca and Mg changed during the growing season in most species. High correlation coefficients were obtained between plant ion and soil ion contents. It has been found that the most prevalent ion was Na in the plant and soil samples. It was also shown that species diversity was quite low in the study area, and species diversity was highly correlated with so4/Cl ratio, electrical conductivity and pH. (author)

  1. MORPHOMETRIC CHARACTERISTICS OF TROPICAL SHALLOW RESERVOIR USED FOR AQUACULTURE AND AGRICULTURE IN THE MEXICAN PLATEAU

    Directory of Open Access Journals (Sweden)

    Aldama GR

    2013-01-01

    Full Text Available Morphometric characteristics of a tropical shallow reservoir situated in the Southern Mexican Highlands were studied. Seventeen morphometric parameters were measured. Results of the morphometric parameters showed that this reservoir presented a soft and roughness bottom, with an ellipsoid form and a concave depression that allow the mix up of water and sediments, causing turbidity and broken thermal gradients; its slight slopes allowed the colonization of submerged macrophyte and halophyte plants and they improve the incidence of sunlight on water surface increasing evaporation and primary productivity. Tropical shallow reservoirs have fluctuations in area and volume according to the amount of rainfall, the effect of evaporation, the temperature levels, lost of volume due to irrigation, and other causes.

  2. Analysis of Roman glass from Albania by PIXE–PIGE method

    International Nuclear Information System (INIS)

    Šmit, Ž.; Tartari, F.; Stamati, F.; Vevecka Priftaj, A.; Istenič, J.

    2013-01-01

    A series of 31 Roman glasses dated to the 1st–4th c. AD from the present Albania was analyzed by the combined PIXE–PIGE method. The analysis shows typical natron-based glass of the Roman period, though statistical treatment using principal component analysis and bivariate plots reveals four distinct groups, which are qualified by increased levels of potassium, magnesium and titanium–manganese–iron oxides, respectively. MgO content may exceed 2% and reach the level commonly accepted for halophytic plant-ash glass. The groups are formed on account of mineral impurities in the sand, which gives support to the thesis of multiple production centers of raw glass in the imperial age

  3. Rehabilitation of river sediments contaminated by heavy metals from tanning industries using the phytoextraction technique

    Science.gov (United States)

    Beltrá Castillo, Juan Carlos; García Orenes, Fuensanta; Mora Navarro, José; Murcia Navarro, Francisco Jose; Zornoza Belmonte, Raúl; Faz Cano, Ángel; Gómez-Garrido, Melisa

    2017-04-01

    Leather tanning is an industrial sector of great tradition in Spain that has progressively evolved until it has reached a high degree of technification in the present. However, in its early days, the leather tanning industry has always been considered a dirty and polluting activity, mainly due to the water spills that ended up in the river channels. The Guadalentin Valley between Lorca and Murcia (SE Spain) is characterised by intensive crop and pig production, and an extensive agroalimentary and leather tannery industry. These anthropogenic sources have released salts and metals such as copper (Cu), zinc (Zn) and chromium (Cr) into Guadalentin river. Up to 2003, wastewater was discharged directly to the dry river, immediately upstream of the urban nucleus of Lorca, without any previous treatment. It contained high concentrations of inorganic salts and heavy metals (Cu, Zn and Cr). Spills, in some events, had a flow of 10 000 m3 d-1, with concentration of Cr over 500 mg L-1. Phytoremediation is a sustainable alternative that allows the environmental rehabilitation of fluvial dry sediments through the transfer of heavy metals from the contaminated soils to the native vegetation present. Atriplex halimus, salsola oppositifolia, suaeda vera and tamarix africana were the most representative autochthonous phytoextractor species that were planted to study the degree of decontamination of dry river sediments before planting and 12 months after planting. The sediments characterization was done by a sampling grid of 40 000 m2 (500 m x 8 m) where samples were taken at 3 depths (0-20 cm, 20-50 cm and 5-100 cm) every 50 m. A vegetation study was carried out by random plots of 10 m x 10 m. The results indicated that after 12 months the vegetation cover increased between 35% and 70%. The degree of contamination of Cu, Zn and Cr of the river dry sediments decreased slightly, being the atriplex halimus the plant specie that presented the highest value of the bioaccumulation factor

  4. Land use and habitat conditions across the southwestern Wyoming sagebrush steppe: development impacts, management effectiveness and the distribution of invasive plants

    Science.gov (United States)

    Manier, Daniel J.; Aldridge, Cameron L.; Anderson, Patrick; Chong, Geneva; Homer, Collin G.; O'Donnell, Michael S.; Schell, Spencer

    2011-01-01

    For the past several years, USGS has taken a multi-faceted approach to investigating the condition and trends in sagebrush steppe ecosystems. This recent effort builds upon decades of work in semi-arid ecosystems providing a specific, applied focus on the cumulative impacts of expanding human activities across these landscapes. Here, we discuss several on-going projects contributing to these efforts: (1) mapping and monitoring the distribution and condition of shrub steppe communities with local detail at a regional scale, (2) assessing the relationships between specific, land-use features (for example, roads, transmission lines, industrial pads) and invasive plants, including their potential (environmentally defined) distribution across the region, and (3) monitoring the effects of habitat treatments on the ecosystem, including wildlife use and invasive plant abundance. This research is focused on the northern sagebrush steppe, primarily in Wyoming, but also extending into Montana, Colorado, Utah and Idaho. The study area includes a range of sagebrush types (including, Artemisia tridentata ssp. tridentata, Artemisia tridentata ssp. wyomingensis, Artemisia tridentata ssp. vaseyana, Artemisia nova) and other semi-arid shrubland types (for example, Sarcobatus vermiculatus, Atriplex confertifolia, Atriplex gardneri), impacted by extensive interface between steppe ecosystems and industrial energy activities resulting in a revealing multiple-variable analysis. We use a combination of remote sensing (AWiFS (1 Any reference to platforms, data sources, equipment, software, patented or trade-marked methods is for information purposes only. It does not represent endorsement of the U.S.D.I., U.S.G.S. or the authors), Landsat and Quickbird platforms), Geographic Information System (GIS) design and data management, and field-based, replicated sampling to generate multiple scales of data representing the distribution of shrub communities for the habitat inventory. Invasive plant

  5. Assessment of impacts and evaluation of restoration methods on areas affected by a well blowout, Naval Petroleum Reserve No. 1, California

    Energy Technology Data Exchange (ETDEWEB)

    Warrick, G.D.; Kato, T.T.; Phillips, M.V. [and others

    1996-12-01

    In June 1994, an oil well on Naval Petroleum Reserve No. 1 blew-out and crude oil was deposited downwind. After the well was capped, information was collected to characterize the release and to assess effects to wildlife and plants. Oil residue was found up to 13.7 km from the well site, but deposition was relatively light and the oil quickly dried to form a thin crust on the soil surface. Elevated levels of hydrocarbons were found in livers collected from Heermann`s kangaroo rats (Dipodomys heermanni) from the oiled area but polycyclic aromatic hydrocarbons (known carcinogens or mutagens) were not detected in the livers. Restoration techniques (surface modification and bioremediation) and natural recovery were evaluated within three portions of the oiled area. Herbaceous cover and production, and survival and vigor of desert saltbush (Atriplex polycarpa) were also monitored within each trapping grid.

  6. Effects of long-term salinity on the growth of the halophyte Spartina ...

    African Journals Online (AJOL)

    use

    2011-12-07

    Dec 7, 2011 ... studies of the salinity tolerance of salt marsh plants are very important and ... In April 2009, seeds were rinsed with fresh water to remove salts, sown into ..... EP, Guntenspergen GP, Brown JJ, Nelson SG (2006). Salt tolerance.

  7. Effects of long-term salinity on the growth of the halophyte Spartina ...

    African Journals Online (AJOL)

    use

    2011-12-07

    Dec 7, 2011 ... randomized design in a glass-covered greenhouse with natural temperature and light. The interior of the greenhouse ceiling was draped with 30% shade ... Scientific, Great Amwell, Herts, UK) in the growth chamber. Statistical ...

  8. APPLIED PHYTO-REMEDIATION TECHNIQUES USING HALOPHYTES FOR OIL AND BRINE SPILL SCARS

    Energy Technology Data Exchange (ETDEWEB)

    M.L. Korphage; Bruce G. Langhus; Scott Campbell

    2003-03-01

    Produced salt water from historical oil and gas production was often managed with inadequate care and unfortunate consequences. In Kansas, the production practices in the 1930's and 1940's--before statewide anti-pollution laws--were such that fluids were often produced to surface impoundments where the oil would segregate from the salt water. The oil was pumped off the pits and the salt water was able to infiltrate into the subsurface soil zones and underlying bedrock. Over the years, oil producing practices were changed so that segregation of fluids was accomplished in steel tanks and salt water was isolated from the natural environment. But before that could happen, significant areas of the state were scarred by salt water. These areas are now in need of economical remediation. Remediation of salt scarred land can be facilitated with soil amendments, land management, and selection of appropriate salt tolerant plants. Current research on the salt scars around the old Leon Waterflood, in Butler County, Kansas show the relative efficiency of remediation options. Based upon these research findings, it is possible to recommend cost efficient remediation techniques for slight, medium, and heavy salt water damaged soil. Slight salt damage includes soils with Electrical Conductivity (EC) values of 4.0 mS/cm or less. Operators can treat these soils with sufficient amounts of gypsum, install irrigation systems, and till the soil. Appropriate plants can be introduced via transplants or seeded. Medium salt damage includes soils with EC values between 4.0 and 16 mS/cm. Operators will add amendments of gypsum, till the soil, and arrange for irrigation. Some particularly salt tolerant plants can be added but most planting ought to be reserved until the second season of remediation. Severe salt damage includes soil with EC values in excess of 16 mS/cm. Operators will add at least part of the gypsum required, till the soil, and arrange for irrigation. The following seasons more gypsum will be added and as the soil EC is reduced, plants can be introduced. If rapid remediation is required, a sufficient volume of topsoil, or sand, or manure can be added to dilute the local salinity, the bulk amendments tilled into the surface with added gypsum, and appropriate plants added. In this case, irrigation will be particularly important. The expense of the more rapid remediation will be much higher.

  9. Analysis of glass from the post-Roman settlement Tonovcov grad (Slovenia) by PIXE–PIGE and LA-ICP-MS

    Energy Technology Data Exchange (ETDEWEB)

    Šmit, Ž., E-mail: ziga.smit@fmf.uni-lj.si [Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, SI-1000 Ljubljana (Slovenia); Jožef Stefan Institute, Jamova 39, SI-1001 Ljubljana (Slovenia); Milavec, T. [Department of Archaeology, Faculty of Arts, University of Ljubljana, Zavetiška 5, SI-1000 Ljubljana (Slovenia); Fajfar, H. [Jožef Stefan Institute, Jamova 39, SI-1001 Ljubljana (Slovenia); Rehren, Th. [UCL Qatar, Education City, P.O. Box 23689, Doha (Qatar); Lankton, J.W. [UCL Institute of Archaeology, 31-34 Gordon Square, London WC1H 0PY (United Kingdom); Gratuze, B. [IRAMAT-Centre Ernest-Babelon, CNRS Université d’Orléans, 3D rue de la Ferollerie, 45071 Orléans Cedex 2 (France)

    2013-09-15

    The combined PIXE–PIGE method was used for the analysis of 43 glass fragments from the archaeological site Tonovcov grad in western Slovenia, with 10 of these additionally being analysed by LA-ICP-MS. The glass objects were attributed to the Late Antique production of the 4th–7th c. AD, with two examples of early Roman glass and three glass beads, one of them presumably of oriental origin. The analysis showed typical natron-type glass, produced in the Levantine region around the river Belus, and a few examples of HIMT glass, which could be recognized also in several other recycled objects. Only one glass bead, found in Early Medieval context, was made of the ash of halophytic plants.

  10. Biofuels as an Alternative Energy Source for Aviation-A Survey

    Science.gov (United States)

    McDowellBomani, Bilal M.; Bulzan, Dan L.; Centeno-Gomez, Diana I.; Hendricks, Robert C.

    2009-01-01

    The use of biofuels has been gaining in popularity over the past few years because of their ability to reduce the dependence on fossil fuels. As a renewable energy source, biofuels can be a viable option for sustaining long-term energy needs if they are managed efficiently. We investigate past, present, and possible future biofuel alternatives currently being researched and applied around the world. More specifically, we investigate the use of ethanol, cellulosic ethanol, biodiesel (palm oil, algae, and halophytes), and synthetic fuel blends that can potentially be used as fuels for aviation and nonaerospace applications. We also investigate the processing of biomass via gasification, hydrolysis, and anaerobic digestion as a way to extract fuel oil from alternative biofuels sources.

  11. Arbuscular mycorrhizal fungi (AMF on a sandbank plant formation: ecology and potential for hydrocarbon oil mycorrhizoremediation

    Directory of Open Access Journals (Sweden)

    Ocimar Ferreira de Andrade

    2016-04-01

    Full Text Available The sources of contamination related to the exploration, production, storage, transport, distribution and disposal of petroleum, and its products, carry risks that threaten fragile coastal environments, little studied and, thus, in need of attention from the scientific community. On the other hand, symbiont mechanisms essential for the very existence of many plant species, and their relation to contaminated soils, remain unknown. Despite the identification of several species of AMF halophytes soil communities in sandbanks, one can infer their bioremediation potential from studies in other types of soil, which, however, report the same genera of fungi as participants in mycorrhizoremediation processes of polluted soil. This study focuses on the application of biotechnology using Arbuscular Mycorrhizal Fungi (AMF in soils impacted by petroleum hydrocarbons.

  12. Forage production and N2 fixation in mixed cropping of saltbush and shrubby medic grown on a salt affected soil

    International Nuclear Information System (INIS)

    Kurdali, F.

    2008-11-01

    Two experiments were conducted to evaluate dry matter, nitrogen yield, N 2 fixation (Ndfa) and soil N uptake in saltbush (Atriplex halimus) and shrubby medic (Medicago arborea) grown either solely or in mixture on a salt affected soil, using 15 N tracer techniques. In a pot experiment, the combined dry matter yield of both species was considerably higher than that of solely grown shrubs. The inclusion of saltbush in the mixed cropping system decreased soil N uptake by shrubby medic and enhanced %Ndfa without affecting amounts of N 2 fixed. Under field conditions, estimated values of %Ndfa via δ 15 N natural abundance were relatively similar to those of the pot experiment using 15 N enrichment method. It can be concluded that the use of mixed cropping system of shrubby medic and saltbush could be a promising bio-saline agricultural approach to utilize salt affected soils in terms of forage yield and N 2 -fixation. (Author)

  13. Interrelations between segetal and ruderal flora in the Olsztyn Lake District

    Directory of Open Access Journals (Sweden)

    Tadeusz Korniak

    2013-12-01

    Full Text Available The paper presents differences and similarities between segetal and ruderal flora in the Olsztyn Lake District. The investigation was conducted in rural areas and in areas of small towns. 415 taxa of vascular plants were noted altogether in the flora examined. The segetal flora includes 259 species, and the ruderal flora - 334 ones. A comparison between species of those two florae (table l, figure l, 81 species appear in segetal habitats, and 156 in ruderal habitats. Common species, for those two comparsing florae (segetal and ruderal were 178. The following plants were classified as frequent or common in ruderal habitats of the Olsztyn Lake District, having (under certain conditions a significant influence on the weed infestation of cultivated fields: Amaranthus retroflexus, Artemisia vulgaris, Atriplex patula, Chamomilla suaveolens, Cirsium arvense, Conyza canadensis, Descurainia sophia, Galinsoga ciliata, Galinsoga parviflora, Geranium pusillum, Lapsana communis, Melandrium album, Poa annua, Polygonum aviculare, Rumex crispus, Sisymbrium officinale, Sonchus arvensis, Sonchus asper, Sonchus oleraceus, Tussil farfara.

  14. Isolation of Pseudobutyrivibrio ruminis and Pseudobutyrivibrio xylanivorans from rumen of Creole goats fed native forage diet.

    Science.gov (United States)

    Grilli, D J; Cerón, M E; Paez, S; Egea, V; Schnittger, L; Cravero, S; Escudero, M Sosa; Allegretti, L; Arenas, G N

    2013-09-01

    We isolated and identified functional groups of bacteria in the rumen of Creole goats involved in ruminal fermentation of native forage shrubs. The functional bacterial groups were evaluated by comparing the total viable, total anaerobic, cellulolytic, hemicellulolytic, and amylolytic bacterial counts in the samples taken from fistulated goats fed native forage diet (Atriplex lampa and Prosopis flexuosa). Alfalfa hay and corn were used as control diet. The roll tubes method increased the possibility of isolating and 16S rDNA gene sequencing allowed definitive identification of bacterial species involved in the ruminal fermentation. The starch and fiber contents of the diets influenced the number of total anaerobic bacteria and fibrolytic and amylolytic functional groups. Pseudobutyrivibrio ruminis and Pseudobutyrivibrio xylanivorans were the main species isolated and identified. The identification of bacterial strains involved in the rumen fermentation helps to explain the ability of these animals to digest fiber plant cell wall contained in native forage species.

  15. Bunias orientalis L. as a natural overwintering host OF Turnip mosaic virus

    Directory of Open Access Journals (Sweden)

    Tadeusz Kobyłko

    2012-12-01

    Full Text Available A virus was isolated, using mechanical inoculation, from hill mustard (Bunias orientalis L. plants exhibiting yellow mottling and blistering on leaves, which were frequently accompanied by asymmetric leaf narrowing. It systemically infected certain plants from the family Brassicaceae (Brassica rapa, Bunias orientalis, Hesperis matronalis, Sinapis alba as well as Cleome spinosa and Nicotiana clevelandii, and locally Atriplex hortensis, Chenopodium quinoa, Ch. amaranticolor, N. tabacum. In the sap, it maintained infectivity for 3-4 days and lost it after heating for 10 min. at a temperature of 55 - 60oC or when diluted with water at 10-3. Virus particles were thread- like with a length of 675 - 710 nm. Based on an analysis of biological properties of the pathogen, serological response, particle morphology and data from field observations, it was identified as an isolate of Turnip mosaic virus (TuMV, and hill mustard was recognised as a natural overwintering host for this pathogen.

  16. Overexpression of a Plasma Membrane-Localized SbSRP-Like Protein Enhances Salinity and Osmotic Stress Tolerance in Transgenic Tobacco

    Directory of Open Access Journals (Sweden)

    Avinash Mishra

    2017-04-01

    Full Text Available An obligate halophyte, Salicornia brachiata grows in salt marshes and is considered to be a potential resource of salt- and drought-responsive genes. It is important to develop an understanding of the mechanisms behind enhanced salt tolerance. To increase this understanding, a novel SbSRP gene was cloned, characterized, over-expressed, and functionally validated in the model plant Nicotiana tabacum. The genome of the halophyte S. brachiata contains two homologs of an intronless SbSRP gene of 1,262 bp in length that encodes for a stress-related protein. An in vivo localization study confirmed that SbSRP is localized on the plasma membrane. Transgenic tobacco plants (T1 that constitutively over-express the SbSRP gene showed improved salinity and osmotic stress tolerance. In comparison to Wild Type (WT and Vector Control (VC plants, transgenic lines showed elevated relative water and chlorophyll content, lower malondialdehyde content, lower electrolyte leakage and higher accumulation of proline, free amino acids, sugars, polyphenols, and starch under abiotic stress treatments. Furthermore, a lower build-up of H2O2 content and superoxide-radicals was found in transgenic lines compared to WT and VC plants under stress conditions. Transcript expression of Nt-APX (ascorbate peroxidase, Nt-CAT (catalase, Nt-SOD (superoxide dismutase, Nt-DREB (dehydration responsive element binding factor, and Nt-AP2 (apetala2 genes was higher in transgenic lines under stress compared to WT and VC plants. The results suggested that overexpression of membrane-localized SbSRP mitigates salt and osmotic stress in the transgenic tobacco plant. It was hypothesized that SbSRP can be a transporter protein to transmit the environmental stimuli downward through the plasma membrane. However, a detailed study is required to ascertain its exact role in the abiotic stress tolerance mechanism. Overall, SbSRP is a potential candidate to be used for engineering salt and osmotic

  17. Distribution of oil from the Gulf War spill within intertidal habitats - one year later

    International Nuclear Information System (INIS)

    Hayes, M.O.; Michel, J.; Montelo, T.M.; Al-Mansi, A.M.; Jensen, J.R.; Narumalani, S.; Aurand, D.V.; Al-Momen, A.H.; Thayer, G.W.

    1993-01-01

    Results of a land-based intertidal survey of the impacts of the Gulf War oil spill on the Saudi Arabian coast, carried out from 1 March to 4 April 1992 in conjunction with Leg II of the NOAA ship Mt. Mitchell's ROPME Sea cruise, show that there is a striking correlation between the near shore geomorphology and the persistence of intertidal oil. Significant quantities of oil (measured in millions of gallons) remained in the sediments of the sheltered tidal flat/marsh areas, and significant erosion of oiled sediments has occurred along many of the outer exposed areas. A massive asphalt pavement, tens of meters wide and over 20 kilometers long, which is believed to have formed as a result of the Nowruz spill of 1983, occurs along the outer coast of the Abu Ali headland. Along certain other exposed outer sand beaches, conditions are conducive to the formation and preservation of a similar asphalt pavement as a result of the Gulf War spill. The most severely impacted areas studied were several halophyte marsh algal mat complexes and mudflats at the heads of sheltered bays, where all the halophytes were dead and there was no sign of living epibiota in the mid to upper intertidal areas. Before the spill, burrowing infauna, such as crabs and polychaetes, occurred in large numbers in these sheltered areas. The previously occupied burrows were heavily oiled, with some containing liquid black oil to depths of over 40 cm. The deep penetration of oil into the burrows and probable slow weathering rates of the oil could result in many years of pollution of these sheltered habitats. Depths of penetration of oil into bubble sand exceeding 40 cm were found at several localities. This deep oil will also remain in the sediment for many years, because of the slow erosion rates that occur in these sheltered environments. Many unoiled portions were rich in epifaunal and infaunal populations of invertebrates and plants. Shorebirds were observed feeding in these unoiled areas

  18. Distribution and Invasion Potential of Limonium ramosissimum subsp. provinciale in San Francisco Estuary Salt Marshes

    Directory of Open Access Journals (Sweden)

    Gavin Archbald

    2014-06-01

    Full Text Available Non-native sea lavenders (Limonium spp. are invasive in salt marshes of southern California and were first documented in the San Francisco Estuary (the estuary in 2007. In this study, we mapped distributions of L. ramosissimum subsp. provinciale (LIRA and L. duriusculum within the estuary and investigated how the invasion potential of the more common species, LIRA, varies with elevation and edaphic conditions. We contacted colleagues and conducted field searches to find and then map sea lavender populations. In addition, we measured LIRA’s elevational range at three salt marshes. Across this range we measured (1 soil properties: salinity, moisture, bulk density, and texture; and (2 indicators of invasion potential: LIRA size, seed production, percent cover, spread (over 1 year, recruitment, and competition with native halophytes (over 6 months. We found LIRA in 15,144 m2 of upper salt marsh habitat in central and south San Francisco bays and L. duriusculum in 511 m2 in Richardson and San Pablo bays. LIRA was distributed from mean high water (MHW to 0.42 m above mean higher high water (MHHW. In both spring and summer, soil moisture and salinity were lowest at higher elevations within LIRA’s range, which corresponded with greater rosette size, inflorescence and seed production (up to 17,400 seeds per plant, percent cover, and recruitment. LIRA cover increased on average by 11% in 1 year across marshes and elevations. Cover of the native halophytes Salicornia pacifica, Jaumea carnosa, and Distichlis spicata declined significantly at all elevations if LIRA were present in plots (over a 6-month, fall–winter period. Results suggest LIRA’s invasion potential is highest above MHHW where salinity and moisture are lower, but that LIRA competes with native plants from MHW to above MHHW. We recommend removal efforts with emphasis on the salt marsh-terrestrial ecotone where LIRA seed output is highest.

  19. A phytogeographic survey of Southern Benin

    Directory of Open Access Journals (Sweden)

    G. Paradis

    1983-11-01

    Full Text Available Southern Benin has a dry subequatoriai climate with a rainfall gradient from 850 mm in the west to 1 500 mm in the east, the geomorphology is varied and the vegetation has been subjected to strong human influence. There are numerous plant formations, namely: 1, forest islands which are probably relics of the primitive vegetation and include (a dense semi-deciduous forests of several types, (b swamp forests of two types, (c periodically flooded forest of two types, (d Lophira lanceolata  (Hutchinson & Dalziel, 1954-72 woodlands and (e mangrove swamps; 2, formations which are probably derived and include (a thickets of several types, (b tree savannas and shrub savannas, (c grassy savannas and prairies varying according to soil characteristics and (d halophytic grasslands; and 3, floating vegetation on fresh-water lakes.

  20. Forested wetland habitat

    Science.gov (United States)

    Duberstein, Jamie A.; Krauss, Ken W.; Kennish, Michael J.

    2015-01-01

    A forested wetland (swamp) is a forest where soils are saturated or flooded for at least a portion of the growing season, and vegetation, dominated by trees, is adapted to tolerate flooded conditions. A tidal freshwater forested wetland is a forested wetland that experiences frequent but short-term surface flooding via tidal action, with average salinity of soil porewater less than 0.5 g/l. It is known locally as tidal várzea in the Amazon delta, Brazil. A tidal saltwater forested wetland (mangrove forest) is a forested wetland that experiences frequent but short-term surface flooding via tidal action, with average salinity often exceeding 3 g/l and reaching levels that can exceed seawater. Mangrove ecosystems are composed of facultative halophytes that generally experience better growth at moderate salinity concentrations.

  1. Using local biodiversity to prevent pollution transfers to environmental components of a Mediterranean semi-arid ecosystem

    Science.gov (United States)

    Heckenroth, Alma; Rabier, Jacques; Laffont-Schwob, Isabelle

    2014-05-01

    In arid and semi-arid Mediterranean coastal areas, metals and metalloids (MM) pollution coming from unreclaimed brownfields has increased the negative environmental stresses leading to ecosystems degradations as soil erosion and losses of organic matter and biodiversity. On these sites, maintaining or restoring a local vegetation cover is considered as a key step to stop the degradation cycle. Furthermore, in a context of high pollution occurring in natural areas, phytoremediation is considered as an attractive alternative to conventional soil remediation techniques, the first reducing pollution transfers, improving the soil quality. In protected or natural areas, it is also important to perceive then design phytoremediation as a way to assist ecosystems recovery, using the restoration ecology concepts. However, only few works in the literature deal with the potential use of native Mediterranean plant species for phytoremediation. On the South-East coast of Marseille (France), the activity of the former smelting factory of l'Escalette, ceased since 1925. However, its brownfield is still a source of pollution by trace metals and metalloids for abiotic and biotic components of the surrounding massif. This massif hosts a rich biodiversity with rare and protected plant species despite the metallic pollution and this area has been included in the recently created first peri-urban French National Park of Calanques. In this context, an integrated research project is being conducted with local actors and stakeholders, from the selection of native plant species, assessment and optimization of phytostabilization capacities of selected species, to the development of ecological engineering techniques well adapted to local constraints and phytostabilization field trials. The first part of this study has been conducted on two areas, corresponding to different pollution pattern, plant communities and environmental drivers: a halophytic area, characterized by typical coastal

  2. Tolerance of combined submergence and salinity in the halophytic stem-succulent Tecticornia pergranulata

    DEFF Research Database (Denmark)

    Colmer, T D; Vos, H; Pedersen, Ole

    2009-01-01

    pergranulata subsp. pergranulata (syn. Halosarcia pergranulata subsp. pergranulata). Growth and total sugars in succulent stems were assessed as a function of time after submergence. Underwater net photosynthesis, dark respiration, total sugars, glycinebetaine, Na(+), Cl(-) and K(+), in succulent stems, were...... assessed in a NaCl dose-response experiment. KEY RESULTS: Submerged plants ceased to grow, and tissue sugars declined. Photosynthesis by succulent stems was reduced markedly when underwater, as compared with in air. Capacity for underwater net photosynthesis (P(N)) was not affected by 10-400 mM Na......Cl, but it was reduced by 30 % at 800 mM. Dark respiration, underwater, increased in succulent stems at 200-800 mM NaCl, as compared with those at 10 mM NaCl. On an ethanol-insoluble dry mass basis, K(+) concentration in succulent stems of submerged plants was equal to that in drained controls, across all Na...

  3. The Arabidopsis-related halophyte Thellungiella halophila: boron tolerance via boron complexation with metabolites?

    Science.gov (United States)

    Lamdan, Netta Li; Attia, Ziv; Moran, Nava; Moshelion, Menachem

    2012-04-01

    Tolerance to boron (B) is still not completely understood. We tested here the hypothesis that Thellungiella halophila, an Arabidopsis thaliana-related 'extremophile' plant, with abundance of B in its natural environment, is tolerant to B, and examined the potential mechanisms of this tolerance. With 1-10 mm B applied ([B](ext)) to Thellungiella and Arabidopsis grown in hydroponics, the steady-state accumulated B concentration ([B](int)) in the root was below [B](ext), and was similar in both, suggesting both extrude B actively. Whether grown in soil or hydroponically, the shoot [B](int) was higher in Arabidopsis than in Thellungiella, suggesting more effective net B exclusion by Thellungiella root. Arabidopsis exhibited toxicity symptoms including reduced shoot fresh weight (FW), but Thellungiella was not affected, even at similar levels of shoot-accumulated [B](int) (about 10 to 40 mm B in 'shoot water'), suggesting additional B tolerance mechanism in Thellungiella shoot. At [B](ext) = 5 mm, the summed shoot concentration of the potentially B-binding polyhydroxyl metabolites (malic acid, fructose, glucose, sucrose and citric acid) in Arabidopsis was below [B](int) , but in Thellungiella it was over twofold higher than [B](int) , and therefore likely to allow appreciable 1:2 boron-metabolite complexation in the shoot. This, we suggest, is an important component of Thellungiella B tolerance mechanism. © 2011 Blackwell Publishing Ltd.

  4. How much genetic variation is stored in the seed bank? A study of Atriplex tatarica (Chenopodiaceae)

    Czech Academy of Sciences Publication Activity Database

    Mandák, Bohumil; Bímová, Kateřina; Mahelka, Václav; Plačková, Ivana

    2006-01-01

    Roč. 15, - (2006), s. 2653-2663 ISSN 0962-1083 R&D Projects: GA AV ČR IAA6005206 Institutional research plan: CEZ:AV0Z60050516 Keywords : seed bank * population genetic structure * competition Subject RIV: EF - Botanics Impact factor: 4.825, year: 2006

  5. Water quality assessment and flora study of desert thar and nagarparkar district tharparkar, sindh Pakistan

    International Nuclear Information System (INIS)

    Leghari, S.M.; Mahar, M.A.; Khuhawar, M.Y.; Jahangir, T.M.

    2007-01-01

    A number of water samples (24) were collected from wells, water pumps, natural and artificial depressions from Naukot, Vajuto, Mithi, Islamkot, Virawah and Nagarparkar area and analyzed on the site and at the laboratories for 18 different parameters. There was a wide variation in water quality; conductivity 157 to 41400 micro S/m and total dissolved solids 100 to 26500 mg/L. The highest values were observed at Virawah area and lowest at an artificial depression of rainwater within Nagarparkar town. The higher vegetation of Thar region consists mainly of thorny or prickly shrubs and perennial herbs capable of drought resistance as Calligonum polygonoides, Aerva javanica, Salvadora oleoides, Acacia senegal, Capparis decidua, Tamarix aphylla, Prosopis spicigera, Leptadenia pyrotechnica and Zizyphus nummularia. During rainy season when dunes are covered with grasses and other herbs Salvadora oleoides, Capparis decidua, and Tamarix aphylla were found scattered in Thar area. Acacia leucophloea, Acacia senegal, Salvadora oleoides, Commiphora mukul, Barleria prionitis, Blepharis sindica, Euphorbia caudicifolia were found on dry and rocky area. Rainwater pools contain total 83 algal sp; 37 sp belonging to Cyanophyta; 23 sp Volocothyta; 10 sp Chlorophyta; 3 sp Charophyta; 10 sp Bacillarophyta; some algal species found epiphytic on aquatic plants such as Chaetophora pisiformis, Stigeoclonium subsecundum, Oedogonium sp. Spirogyra rhizobrachialis, S. fluviatilis and Gloeotrichia natans attached to Najas minor, Nymphaea stellata, and Typha domingensis. (author)

  6. Floristic diversity of posavina's floodplain forests in serbia and their wider geographical context

    International Nuclear Information System (INIS)

    Jurisic, B.; Puvaca, N.

    2014-01-01

    In order to detect floristic divergence of analysed stands we applied TWINSPAN classification and ordinary Correspondence Analysis. Both analyses have shown an almost identical result of floristic composition, where 114 studied samples were grouped into seven association groups at the third twinspan classification level. These seven groups, successively from the most humid to most dry, comprising two large groups of plant associations, completely corresponding to two alliances: Forest of Pedunculate Oak and Alder and Forest of Pedunculate Oak and Hornbeam. SIMPER procedure have shown tahat within the first 20.51% of cumulative contribution, the floristic divegence among the studied forest stands includes 13 taxa: Carpinus betulus., Fraxinus angustifolia, Quercus cerris, Amorpha fruticosa, Convallaria majalis, Crataegus oxyacantha, Quercus robur, Lysimachia nummularia, Tamus communis, Galium aparine, Rubus caesius, Ulmus carpinifolia and Ajuga reptans. ANOSIM analysis were used to determine the degree of floristic discontinuity. It was largest between forest of Pedunculate Oak, Hornbeam and Turkey Oak and forest of Pedunculate Oak and Ash (statistics R = 0.8824 (p<0.001)). The lowest floristic dissimilarity was between the forest of Pedunculate Oak, Hornbeam and Turkey Oak and forest of Pedunculate Oak, Hornbeam and Turkey Oak with Lindens, where R = 0.2009 (p<0.01). Posavina floodplain forests in Serbia generally show good agreement with analogous communities in neighbouring countries in the Balkan peninsula and Central Europe. (author)

  7. Analysing how plants in coastal wetlands respond to varying tidal regimes throughout their life cycles.

    Science.gov (United States)

    Xie, Tian; Cui, Baoshan; Li, Shanze

    2017-10-15

    Important to conserve plant species in coastal wetlands throughout their life cycle. All life stages in these habitats are exposed to varying tidal cycles. It is necessary to investigate all life stages as to how they respond to varying tidal regimes. We examine three wetlands containing populations of an endangered halophyte species, each subjected to different tidal regimes: (1). wetlands completely closed to tidal cycles; (2). wetlands directly exposed to tidal cycles (3). wetlands exposed to a partially closed tidal regime. Our results showed that the most threatened stage varied between wetlands subjected to these varying tidal regimes. We hypothesis that populations of this species have adapted to these different tidal regimes. Such information is useful in developing management options for coastal wetlands and modifying future barriers restricting tidal flushing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. No Evidence for Differential Biomass and Mineral Content in Adult Plants Grown from Dimorphic Suaeda Aralocaspica Seeds

    International Nuclear Information System (INIS)

    Wang, L.; Wang, H. L.; Tian, C. Y.; Huang, Z. Y.

    2016-01-01

    The production of two or more seed types by a single plant is known as seed heteromorphism. There have been many comparisons of seed traits or growth between plants grown from heteromorphic seeds. However, information is scarce regarding the mineral contents of adult plants from heteromorphic seeds. We herein present biomass and mineral profiles of adult plants grown from dimorphic seeds (non-dormant brown seeds and black seeds with non-deep physiological dormancy) of the annual desert halophyte Suaeda aralocaspica at different nutrient and salinity levels. Although nutrient and salinity treatments affected dry weight and mineral content, there were no significant differences among S. aralocaspica seed-dimorphic plants under the same experimental conditions. This study is one of the few to compare the physiological responses between seed-heteromorphic plants, and reveals that mineral status corresponds with growth performance in these plants. (author)

  9. Analysis of early medieval glass beads - Glass in the transition period

    Energy Technology Data Exchange (ETDEWEB)

    Smit, Ziga, E-mail: ziga.smit@ijs.si [Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, SI-1000 Ljubljana (Slovenia); Jozef Stefan Institute, Jamova 39, P.O.B. 3000, SI-1001 Ljubljana (Slovenia); Knific, Timotej [National Museum of Slovenia, Presernova 20, SI-1000 Ljubljana (Slovenia); Jezersek, David [Jozef Stefan Institute, Jamova 39, P.O.B. 3000, SI-1001 Ljubljana (Slovenia); Istenic, Janka [National Museum of Slovenia, Presernova 20, SI-1000 Ljubljana (Slovenia)

    2012-05-01

    Glass beads from graves excavated in Slovenia and dated archaeologically to the 7th-10th century AD were analysed by the combined PIXE-PIGE method. The results indicate two groups of glass; natron glass made in the Roman tradition and glass made with alkalis from the ash of halophytic plants, which gradually replaced natron glass after c. 800 AD. The alkalis used in the second group of glass seem to be in close relation to a variant of the Venetian white glass that appeared several centuries later. The origin of this glass may be traced to glass production in Mesopotamia and around the Aral Sea. All the mosaic beads with eye decoration, as well as most of the drawn-segmented and drawn-cut beads analysed, are of plant-ash glass, which confirms their supposed oriental origin.

  10. Medicinal plants and secondary metabolites for diabetes mellitus control

    Directory of Open Access Journals (Sweden)

    Mahmoud Bahmani

    2014-09-01

    Full Text Available Diabetes mellitus is one of the most common and complex problems of modern societies which has caused many economic and social problems. Because diabetes has no definite treatment, the use of traditional medicine seems to be an appropriate solution to control and manage it. Studies revealed that Vaccinium Arctostaphylos L., Securigera securidaca L., Gymnema sylvestre L., Atriplex halimus L., Camellia sinensis L., Ginkgo biloba L., Mamordica charantia L., Citrullus colocynthis (L. Schrad., Allium cepa L., Allium sativum L., Silybum marianum (L., Gaertn and Trigonella foenum graecum L. are effective against diabetes. Flavonoids, quercin, metformin, quinolizidine, anthocyanin, catechin and flavone, phenylpropanoids, lipoic acid and coumarin metabolites were introduced major impact on diabetes. With regard to the study of plants and their metabolites and the mechanisms of their influence, it is clear that these plants have the potential to reduce blood sugar and diabetes and be considered as candidates for preparing new drugs. Combination of plants extracts or their components may also have synergistic effects to better act on diabetes.

  11. Antiviral activity of some Tunisian medicinal plants against Herpes simplex virus type 1.

    Science.gov (United States)

    Sassi, A Ben; Harzallah-Skhiri, F; Bourgougnon, N; Aouni, M

    2008-01-10

    Fifteen species of Tunisian traditional medicinal plants, belonging to 10 families, were selected for this study. They were Inula viscosa (L.) Ait and Reichardia tingitana (L.) Roth ssp. discolor (Pom.) Batt. (Asteraceae), Mesembryanthemum cristallinum L. and M. nodiflorum L. (Aizoaceae), Arthrocnemum indicum (Willd.) Moq., Atriplex inflata Muell., A. parvifolia Lowe var. ifiniensis (Caball) Maire, and Salicornia fruticosa L. (Chenopodiaceae), Cistus monspeliensis L. (Cistaceae), Juniperus phoenicea L. (Cupressaceae), Erica multiflora L. (Ericaceae), Frankenia pulverulenta L. (Frankeniaceae), Hypericum crispum L. (Hypericaceae), Plantago coronopus L. ssp. eu-coronopus Pilger var. vulgaris G.G. (Plantaginaceae) and Zygophyllum album L. (Zygophyllaceae). Fifty extracts prepared from those plants were screened in order to assay their antiviral activity against Herpes simplex virus type 1 (HSV-1), using neutral red incorporation. Extracts from eight plants among these 15 showed some degree of antiviral activity, while the methanolic extract of E. multiflora was highly active with EC(50) of 132.6 microg mL(-1). These results corroborate that medicinal plants from Tunisia can be a rich source of potential antiviral compounds.

  12. Desert Perennial Shrubs Shape the Microbial-Community Miscellany in Laimosphere and Phyllosphere Space.

    Science.gov (United States)

    Martirosyan, Varsik; Unc, Adrian; Miller, Gad; Doniger, Tirza; Wachtel, Chaim; Steinberger, Yosef

    2016-10-01

    Microbial function, composition, and distribution play a fundamental role in ecosystem ecology. The interaction between desert plants and their associated microbes is expected to greatly affect their response to changes in this harsh environment. Using comparative analyses, we studied the impact of three desert shrubs, Atriplex halimus (A), Artemisia herba-alba (AHA), and Hammada scoparia (HS), on soil- and leaf-associated microbial communities. DNA extracted from the leaf surface and soil samples collected beneath the shrubs were used to study associated microbial diversity using a sequencing survey of variable regions of bacterial 16S rRNA and fungal ribosomal internal transcribed spacer (ITS1). We found that the composition of bacterial and fungal orders is plant-type-specific, indicating that each plant type provides a suitable and unique microenvironment. The different adaptive ecophysiological properties of the three plant species and the differential effect on their associated microbial composition point to the role of adaptation in the shaping of microbial diversity. Overall, our findings suggest a link between plant ecophysiological adaptation as a "temporary host" and the biotic-community parameters in extreme xeric environments.

  13. ESTIMATION OF HEAVY METAL LEVELS IN GREEN LEAFY VEGETABLES PURCHASED FROM SUCEAVA

    Directory of Open Access Journals (Sweden)

    Ancuța Elena PRISACARU

    2017-12-01

    Full Text Available In the present study the levels of five important heavy metals were identified in vegetable samples purchased from Suceava local markets. The concentrations of Cadmium (Cd, Lead (Pb, Iron (Fe, Zinc (Zn and Copper (Cu were analysed using a mass spectrometer with inductively coupled plasma (ICP-MS from the Instrumental Analysis Laboratory within the Faculty of Food Engineering Suceava. The mean levels of heavy metals examined in spinach (Spinacia oleracea, ramsons (Allium ursinum, lettuce (Lactuca sativa, orache (Atriplex hortensis and nettle (Urtica dioica were found to be in the order: Fe (13.52 µg/g > Cu (4.83 µg/g > Zn (3.623 µg/g > Cd (1.890 µg/g> Pb (0.290 µg/g. The highest concentration of heavy metal was identified in the case of Fe (51.333 µg/g in ramsons, whereas the lowest amount was identified for Pb (0.227 µg/g orache. The estimated daily intake for Cd is above 60 µg/kg b.w./day. The levels of the other metals are lower than the safe limits predicted by the FAO/WHO.

  14. How does population genetic diversity change over time? An experimental seed bank study of Atriplex tatarica (Chenopodiaceae)

    Czech Academy of Sciences Publication Activity Database

    Mandák, Bohumil; Plačková, Ivana

    2009-01-01

    Roč. 204, č. 2 (2009), s. 423-433 ISSN 0367-2530 R&D Projects: GA AV ČR IAA6005206; GA AV ČR IAA600050707 Institutional research plan: CEZ:AV0Z60050516 Keywords : seed banks * succession * competition Subject RIV: EF - Botanics Impact factor: 1.439, year: 2009

  15. Designing viable cropping options for salt-affected lands

    Science.gov (United States)

    Shabala, Sergey; Meinke, Holger

    2017-04-01

    Salinity cost agricultural sector over 27Bln pa in lost opportunities and is an issue that crosses all spatial and temporal scales - from individual fields, farms, catchments, landscapes to national and global levels. Salinity manifests itself in many forms and often leads to further soil degradation such as erosion, nutrient and soil organic matter depletion, and a loss of (soil) biodiversity. Salinity may also cause major disturbance to ecosystems due to its impact on resources (e.g. pollution of aquifers). In extreme cases it can turn previously highly productive areas into wastelands. An increasing global population and unprecedented urban sprawls are now putting additional pressures on our soil and water resources, particularly in regions where urbanisation directly competes with agriculture for access to land and water. And although everyone agrees that avoiding soil salinity in the first instance would be the most effective way of combating it, reality is that the amount of saline land and water resources is rapidly increasing, and will continue to increase, especially in developing countries. Purposefully designing our cropping systems that can cope with various levels of salinity could be one answer to this increasing problem. In this work we review some of the key cropping options that can be deployed to either avoid, reduce or remediate salt-affected lands. We argue that for these measures to be most effective an ongoing science - policy - society dialogue is required to ensure that policy frameworks that govern land and water management are conducive to reducing salinity or even assist in restoring affected areas. We first consider several case studies highlighting the extent of the problem using ongoing salinity hotspots around the globe. We then look at halophytes as a possible biological tools to remediate already saline sols, and discuss prospects of mixed (halophytes and glycophytes) cropping solutions for various agricultural systems at different

  16. Insecticidal Activities of Tunisian Halophytic Plant Extracts against Larvae and Adults of Tribolium confusum

    Directory of Open Access Journals (Sweden)

    Mighri, Z.

    2007-01-01

    Full Text Available Salt marsh plants were tested for their insecticidal activities against adults and larvae of Tribolium confusum. Sixteen aerial part extracts of Frankenia laevis, Statice echioides, Suaeda fructicosa and Tamarix boveana were obtained using organic solvents of increasing polarity and tested for their insect growth, antifeedant and toxicity effects. Responses varied with plant material, extract type, insect stage and exposition time. Larval growth inhibition was significantly induced by chloroformic, ethyl acetate extracts of F. laevis, S. echioides and T. boveana, and petroleum ether extract of F. laevis. On the other hand, all extracts of S. fructicosa and the methanolic ones of the four plants tested didn't show any significant activity. In addition, ethyl acetate extracts of F. laevis, S. echioides and T. boveana and petroleum ether extract of F. laevis presented antifeedant property. S. fructicosa seemed to be, however, slightly attractive to the flour beetle. For all extracts, mortality was higher for larvae than adults. By using ethyl acetate extracts of F. laevis, S. echioides and T. boveana, and petroleum ether extract of F. laevis, mortality reached respectively 97, 87, 97 and 80%, when applied at a dose of 1%, mixed with the insect diet.

  17. The Mechanisms of Salinity Tolerance in the Xero-halophyte Blue Panicgrass (Panicum antidotale Retz

    Directory of Open Access Journals (Sweden)

    Hamid R. ESHGHIZADEH

    2012-05-01

    Full Text Available Identifying the physiological traits associated with salt tolerance is important in optimal management of biosaline systems and optimum utilization of saline water resources in dry and saline areas. Therefore, some indices of photosynthetic activity, dry matter production and accumulation of sodium and potassium ions in Blue panicgrass (Panicum antidotale Retz were evaluated in five levels of salinity treatment (0, 70, 140, 210 and 280 mM NaCl solution under greenhouse conditions. The results showed that at 28 and 35 days after salt stress, plant leaf area reduced in the highest salinity treatment, 93 and 96% respectively, compared with control. Leaf stomatal conductance, CO2 fixation and quantum efficiency of photosystem II were decreased by increasing salinity. It caused also a reduction in chlorophyll content (Chl a, Chl b in leaves of Blue panicgrass. Content of carotenoids showed binary patterns to different salinity levels, slightly increased in 70-140 mM NaCl and decreased again in 210-280 mM, respectively. Increasing levels of salinity, increased sodium content in both roots and shoots but the shoots potassium content decreased. Decline in photosynthesis indices caused the reduction of root and shoot dry weight. This decrease resulted from lower leaf area (r=0.91**, lower stomatal conductance (r=0.78**, lower CO2 fixed in photosynthesis (r=0.63**, lower quantum efficiency of photosystem II (r=0.54** and lower Chl a (r=0.45**, respectively. Data analysis base on using stepwise regression introduced leaf area (?=0.560, chlorophyll a content (?=0.245 and shoot potassium content (?= 0.264 as main effective components of salinity tolerance in Blue panicgrass.

  18. Leaf anatomical traits determine the 18O enrichment of leaf water in coastal halophytes

    Science.gov (United States)

    Liang, J.; Lin, G., Sr.; Sternberg, L. O.

    2017-12-01

    Foliar anatomical adaptations to high-salinity environment in mangroves may be recorded by leaf water isotopes. Recent studies observed that a few mangrove species have lower 18O enrichment of leaf water (ΔL) relative to source water than the adjacent terrestrial trees, but what factors actually control this phenomenon is still disputable at present. To resolve this issue, we collected 15 species of true mangrove plants, 14 species of adjacent freshwater trees and 4 species of semi-mangrove plants at five study sites on the southeastern coast of China. Leaf stomatal density and pore size, water content, ΔL and other related leaf physiological traits were determined for the selected leaves of these plants. Our results confirmed that ΔL values of mangroves were generally 3 4 ‰ lower than those of the adjacent freshwater or semi-mangrove species. Higher leaf water per area (LWC) and lower leaf stomatal density (LS) of mangroves played co-dominant roles in lowering ΔL through elongating effective leaf mixing length by about 20%. The Péclet model incorporated by LWC and LS performed well in predicting ΔL. The demonstrated general law between leaf anatomy and ΔL in this paper based on a large pool of species bridges the gap between leaf functional traits and metabolic proxies derived ΔL, which will have considerable potential applications in vegetation succession and reconstruction of paleoclimate research.

  19. Additions to the flora of Tenerife (Canary Islands, Spain

    Directory of Open Access Journals (Sweden)

    Verloove, F.

    2011-12-01

    Full Text Available Additions to the flora of Tenerife (Canary Islands, Spain.- Recent fieldwork in Tenerife, especially in September 2010, yielded several interesting new records of non-native vascular plants. Bothriochloa ischaemum var. songarica, “Asian” Cardamine flexuosa, Cestrum parqui, Digitaria violascens, Ficus lyrata, Ficus rubiginosa, Hoffmannseggia glauca, Hyparrhenia rufa subsp. altissima, Jacaranda mimosifolia, Merremia tuberosa, Passiflora morifolia, Phytolacca dioica, Schefflera actinophylla and Solanum abutiloides are reported for the first time from the Canary Islands, while Eragrostis barrelieri var. pygmaea, Ficus microcarpa, Ipomoea purpurea, Leucaena leucocephala subsp. glabrata, Sechium edule, Tradescantia zebrina and Turnera ulmifolia are new to the flora of the island of Tenerife. New records of Acacia cyclops, Atriplex suberecta, Heliotropium curassavicum, Paspalum dilatatum, P. notatum, Pluchea ovalis, Pulicaria paludosa, Sclerophylax spinescens and Solanum villosum subsp. miniatum confirm their recent expansion on the island of Tenerife. New records are provided for the recently described Sporobolus copei . Finally, Paspalum vaginatum (hitherto possibly confused with P. distichum and Potentilla indica are confirmed from the island of Tenerife.

    Adiciones para la flora de Tenerife (Islas Canarias, España.- Algunos recientes trabajos de campo en Tenerife, especialmente en Septiembre de 2010, trajeron consigo varias nuevas e interesantes adiciones de plantas vasculares no autóctonas. Bothriochloa ischaemum var. songarica, Cardamine flexuosa “Asiática”, Cestrum parqui, Digitaria violascens, Ficus lyrata, Ficus rubiginosa, Hoffmannseggia glauca, Hyparrhenia rufa subsp. altissima, Jacaranda mimosifolia, Merremia tuberosa, Passiflora morifolia, Phytolacca dioica, Schefflera actinophylla y

  20. Plant cell-wall hydrolyzing enzymes from indigenously isolated fungi grown on conventional and novel natural substrates

    International Nuclear Information System (INIS)

    Kumari, D.; Sohail, M.; Jahangeer, S.; Abideen, Z.; Khan, M.A.

    2017-01-01

    Fungi elaborate a variety of plant-hydrolyzing enzymes including cellulases, xylanases, pectinases and amylases. Although these enzymes have potential biotechnological applications, their production at industrial level is limited because of higher costs of the purified substrates. Hence, the present study was aimed to explore the novel, natural and cheaper substrates for enzyme production. Indigenously isolated fungal strains of Aspergillus sp. were grown on banana-peels, grapefruit-peels, pomegranate-peels, sugarcane bagasse, Eucalyptus camaldulensis-leaves and shoots of two halophytic plants including Halopyrum mucronatum and Desmostachya bipinnata under solid-state fermentation (SSF) and submerged fermentation (Smf) conditions. The crude enzyme preparation was screened for cellulase (endoglucanase, beta-glucosidase and filter-paperase), hemicellulase (xylanase), pectinase and amylase production. The results revealed that among all investigated enzymes, the xylanase titers were highest using D. bipinnata- shoots and H. mucronatum- shoots as substrates under solid state fermentation conditions, suggesting their exploitation at commercial scale. (author)

  1. Chemical studies on the polysaccharides of Salicornia brachiata.

    Science.gov (United States)

    Sanandiya, Naresh D; Siddhanta, A K

    2014-11-04

    A group of 12 polysaccharide extracts were prepared from the tips, stem and roots of an Indian halophyte Salicornia brachiata Roxb. obtained by sequential extractions with cold water (CW), hot water (HW), aqueous ammonium oxalate (OX) and aqueous sodium hydroxide (ALK) solutions. Monosaccharide composition analysis revealed that all the polysaccharide extract samples consisted primarily of rhamnose, arabinose, mannose, galactose, glucose, whereas ribose and xylose were present only in some of the extracts. All the extracts exhibited low apparent viscosity (1.47-2.02 cP) and sulphate and contained no prominent toxic metal ions. Fucose was detected only in OX extract of the roots. These polysaccharides were found to be heterogeneous and highly branched (glycoside linkage analysis, size-exclusion chromatography, (13)C-NMR, FT-IR, circular dichroism and optical rotation data). Physico-chemical analyses of these polysaccharides including uronic acid, sulphate and protein contents were also carried out. This constitutes the first report on the profiling of Salicornia polysaccharides. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Germination responses of limonium insigne (coss.) kuntze to salinity and temperature

    International Nuclear Information System (INIS)

    Isabel, C.; Fernandez, D.; Luque, E.G.; Mercado, F.G.

    2015-01-01

    Limonium insigne (Plumbaginaceae) is a perennial halophyte endemic to the SE of the Iberian Peninsula. Experiments were conducted to determine the effects of different salinities (0, 100, 200 and 400 mM NaCl) on the seed germination of L. insigne under different temperature regimes (20/10, 25/15, 30/20 and 35/25 degree C), both in a 14 h light and 10 h dark photoperiod. Seed germination of L. insigne was affected significantly by salinity levels, temperature and their interaction. Maximum germination was observed in the least saline media (100 mM NaCl) and distilled water (0 mM NaCl) at 20/10 degree C temperature. No seeds germinated at concentrations higher than 200 mM NaCl at the highest temperature (35/25 degree C). The increase in salinity delayed the beginning and ending of germination, reduced final germination percentage and increased mean time to germination. The rate of germination decreased with an increase in salinity and temperature. (author)

  3. Ecological Performances of Plant Species of Halophilous Hydromorphic Ecosystems

    Directory of Open Access Journals (Sweden)

    Maria Speranza

    2015-12-01

    Full Text Available Coastal wetlands are very special environments, characterized by soils permanently or seasonally saturated by salt or brackish water. They host microorganisms and plants able to adapt to anoxic conditions. This paper proposes a review of recent scientific papers dealing with the study of coastal wetlands from different points of view. Some studies examine the species composition and the pattern of the spatial distribution of plant communities, depending on the depth of the salt water table, as well as on other related factors. A significant number of studies analyse instead the coastal wetlands in their ability for the phytoremediation (phytostabilisation and/or phytoextraction and highlight the importance of interactions between the rhizosphere of the halophytes and the physical environment. Finally, more recent studies consider the plant species of the coastal wetlands as a source of useful products (food, feed, oils and expose the results of promising researches on their cultivation.

  4. Salicornia europaea L. Na⁺/H⁺ antiporter gene improves salt tolerance in transgenic alfalfa (Medicago sativa L.).

    Science.gov (United States)

    Zhang, L Q; Niu, Y D; Huridu, H; Hao, J F; Qi, Z; Hasi, A

    2014-07-24

    In order to obtain a salt-tolerant perennial alfalfa (Medicago sativa L.), we transferred the halophyte Salicornia europaea L. Na(+)/H(+) antiporter gene, SeNHX1, to alfalfa by using the Agrobacterium-mediated transformation method. The transformants were confirmed by both PCR and RT-PCR analyses. Of 197 plants that were obtained after transformation, 36 were positive by PCR analysis using 2 primer pairs for the CaMV35S-SeNHX1 and SeNHX1-Nos fragments; 6 plants survived in a greenhouse. RT-PCR analysis revealed that SeNHX1 was expressed in 5 plants. The resultant transgenic alfalfa had better salt tolerance. After stress treatment for 21 days with 0.6% NaCl, the chlorophyll and MDA contents in transgenic plants were lower, but proline content and SOD, POD, and CAT activities were higher than those in wild-type plants. These results suggest that the salt tolerance of transgenic alfalfa was improved by the overexpression of the SeNHX1 gene.

  5. Seawater/Saline Agriculture for Energy, Warming, Water, Rainfall, Land, Food and Minerals

    Science.gov (United States)

    Bushnell, Dennis

    2006-01-01

    The combination of the incipient demise of cheap oil and increasing evidence of Global Warming due to anthropogenic fossil carbon release has reinvigorated the need for and efforts on Renewable energy sources, especially for transportation applications. Biomass/Bio-diesel appears to have many benefits compared to Hydrogen, the only other major renewable transportation fuel candidate. Biomass Production is currently limited by available arable land and fresh water. Halophyte Plants and seawater irrigation proffer a wholly new biomass production mantra using wastelands and very plentiful seawater. Such an approach addresses many-to-most of the major emerging Societal Problems including Land, Water, Food, Warming and Energy. For many reasons, including seawater agriculture, portions of the Sahara appear to be viable candidates for future Biomass Production. The apparent nonlinearity between vegetation cover and atmospheric conditions over North Africa necessitates serious coupled boundary layer Meteorology and Global Circulation Modeling to ensure that this form of Terra Forming is Favorable and to avoid adverse Unintended Consequences.

  6. Extraction of inland Nypa fruticans (Nipa Palm) using Support Vector Machine

    Science.gov (United States)

    Alberto, R. T.; Serrano, S. C.; Damian, G. B.; Camaso, E. E.; Biagtan, A. R.; Panuyas, N. Z.; Quibuyen, J. S.

    2017-09-01

    Mangroves are considered as one of the major habitats in coastal ecosystem, providing a lot of economic and ecological services in human society. Nypa fruticans (Nipa palm) is one of the important species of mangroves because of its versatility and uniqueness as halophytic palm. However, nipas are not only adaptable in saline areas, they can also managed to thrive away from the coastline depending on the favorable soil types available in the area. Because of this, mapping of this species are not limited alone in the near shore areas, but in areas where this species are present as well. The extraction process of Nypa fruticans were carried out using the available LiDAR data. Support Vector Machine (SVM) classification process was used to extract nipas in inland areas. The SVM classification process in mapping Nypa fruticans produced high accuracy of 95+%. The Support Vector Machine classification process to extract inland nipas was proven to be effective by utilizing different terrain derivatives from LiDAR data.

  7. Anticancer drugs from marine flora: an overview.

    Science.gov (United States)

    Sithranga Boopathy, N; Kathiresan, K

    2010-01-01

    Marine floras, such as bacteria, actinobacteria, cyanobacteria, fungi, microalgae, seaweeds, mangroves, and other halophytes are extremely important oceanic resources, constituting over 90% of the oceanic biomass. They are taxonomically diverse, largely productive, biologically active, and chemically unique offering a great scope for discovery of new anticancer drugs. The marine floras are rich in medicinally potent chemicals predominantly belonging to polyphenols and sulphated polysaccharides. The chemicals have displayed an array of pharmacological properties especially antioxidant, immunostimulatory, and antitumour activities. The phytochemicals possibly activate macrophages, induce apoptosis, and prevent oxidative damage of DNA, thereby controlling carcinogenesis. In spite of vast resources enriched with chemicals, the marine floras are largely unexplored for anticancer lead compounds. Hence, this paper reviews the works so far conducted on this aspect with a view to provide a baseline information for promoting the marine flora-based anticancer research in the present context of increasing cancer incidence, deprived of the cheaper, safer, and potent medicines to challenge the dreadful human disease.

  8. Anticancer Drugs from Marine Flora: An Overview

    Directory of Open Access Journals (Sweden)

    N. Sithranga Boopathy

    2010-01-01

    Full Text Available Marine floras, such as bacteria, actinobacteria, cyanobacteria, fungi, microalgae, seaweeds, mangroves, and other halophytes are extremely important oceanic resources, constituting over 90% of the oceanic biomass. They are taxonomically diverse, largely productive, biologically active, and chemically unique offering a great scope for discovery of new anticancer drugs. The marine floras are rich in medicinally potent chemicals predominantly belonging to polyphenols and sulphated polysaccharides. The chemicals have displayed an array of pharmacological properties especially antioxidant, immunostimulatory, and antitumour activities. The phytochemicals possibly activate macrophages, induce apoptosis, and prevent oxidative damage of DNA, thereby controlling carcinogenesis. In spite of vast resources enriched with chemicals, the marine floras are largely unexplored for anticancer lead compounds. Hence, this paper reviews the works so far conducted on this aspect with a view to provide a baseline information for promoting the marine flora-based anticancer research in the present context of increasing cancer incidence, deprived of the cheaper, safer, and potent medicines to challenge the dreadful human disease.

  9. Bacillus pumilus ES4: candidate plant growth-promoting bacterium to enhance establishment of plants in mine tailings

    Science.gov (United States)

    de-Bashan, Luz E.; Hernandez, Juan-Pablo; Bashan, Yoav; Maier, Raina

    2014-01-01

    Three plant growth-promoting bacteria (PGPB; Bacillus pumilus ES4, B. pumilus RIZO1, and Azospirillum brasilense Cd) were tested for their ability to enhance plant growth and development of the native Sonoran Desert shrub quailbush (Atriplex lentiformis) and for their effect on the native bacterial community in moderately acidic, high-metal content (AHMT) and in neutral, low metal content natural tailings (NLMT) in controlled greenhouse experiments. Inoculation of quailbush with all three PGPB significantly enhanced plant growth parameters, such as germination, root length, dry weight of shoots and roots, and root/shoot ratio in both types of tailings. The effect of inoculation on the indigenous bacterial community by the most successful PGPB Bacillus pumilus ES4 was evaluated by denaturating gradient gel electrophoresis (PCR-DGGE) fingerprinting and root colonization was followed by specific fluorescent in situ hybridization (FISH). Inoculation with this strain significantly changed the bacterial community over a period of 60 days. FISH analysis showed that the preferred site of colonization was the root tips and root elongation area. This study shows that inoculation of native perennial plants with PGPB can be used for developing technologies for phytostabilizing mine tailings. PMID:25009362

  10. Soil microbiota of Area 13 of the Nevada Test Site

    International Nuclear Information System (INIS)

    Au, F.H.F.; Leavitt, V.D.

    1985-01-01

    The influence of two desert plants, Atriplex canescens and Eurotia lanata, on kind and abundance of soil microbiota was determined in soil samples collected from Area 13 of the Nevada Test Site. This study was part of a larger research program to elucidate the role of soil microorganisms on the biological availability and the mobility of soil-deposited plutonium. The fungi identified in the soil samples included Aspergillus, Penicillium, Rhizopus, Stachybotrys, stysanus, Circinella, Cheaetomium, and Fusarium. The numbers of bacteria and fungi were generally highest at the 2.5- to 5.0-cm soil depth at both the mound and the interspace sampling sites. The highest numbers of fungi were found around the mound. The relative abundance of Aspergillus increased with increasing distance from the plants, whereas that of Penicillium decreased. Dematiaceae and chaetomium, both cellulose decomposers, were highest in the 0- to 2.5-cm soil segment. The abundance and distribution of soil microorganisms capable of incorporating plutonium (and probably other radionuclides as well) around the plants investigated indicate that this may be a factor in the bioavailability and movement of plutonium in the edaphic system. 17 references, 1 figure, 27 tables

  11. Use of hold-gro erosion control fabric in the establishment of plant species on coal mine soil.

    Science.gov (United States)

    Day, A D; Ludeke, K L

    1986-09-01

    Experiments were conducted on the Black Mesa Coal Mine, Kayenta, Arizona in 1977 and 1978 to study the effectiveness of Hold-Gro Erosion Control Fabric (a product from the Gulf States Paper Corporation, Tuscaloosa, Alabama) in the establishment of plants on coal mine soil following the surface mining of coal. Four plant species were planted: (1) spring barley (Horduem vulgare L.), an annual grass (2) crested wheatgrass (Agropyron cristatum L.), a perennial grass (3) alfalfa (lucerne) (Medicago sativa L.), a perennial legume and (4) fourwing saltbush (Atriplex canescens Pursh.), a perennial shrub. Seeds of each plant species were planted in reclaimed coal mine soil in the spring of the year by both broadcast seeding (conventional culture) and the incorporation of seeds in Hold-Gro Erosion Control Fabric. Average numbers of seedlings established and percent ground cover for all species studied were higher in areas where conventional culture was used than they were in areas where seeds were incorporated in Hold-Gro Erosion Control Fabric. The incorporation of seeds in Hold-Gro Erosion Control Fabric in the establishment of plant species on coal mine soil was not an effective cultural practice in the southwestern United States.

  12. Use of Hold-Gro Erosion Control Fabric in the establishment of plant species on coal mine soil

    Energy Technology Data Exchange (ETDEWEB)

    Day, A.D.; Ludeke, K.L.

    1986-09-01

    Experiments were conducted on the Black Mesa Coal Mine, Kayenta, Arizona in 1977 and 1978 to study the effectiveness of Hold-Gro Erosion Control Fabric (a product from the Gulf States Paper Corporation, Tuscaloosa, Alabama) in the establishment of plants on coal mine soil following the surface mining of coal. Four plant species were planted: spring barley (Horduem vulgare L.), an annual grass; crested wheatgrass (Agropyron cristatum L.), a perennial grass; alfalfa (lucerne) (Medicago sativa L.), a perennial legume; and fourwing saltbush (Atriplex canescens Pursh.), a perennial shrub. Seeds of each plant species were planted in reclaimed coal mine soil in the spring of the year by both broadcast seeding (conventional culture) and the incorporation of seeds in Hold-Gro Erosion Control Fabric. Average numbers of seedlings established and percent ground cover for all species studied were higher in areas where conventional culture was used than they were in areas where seeds were incorporated in Hold-Gro Erosion Control Fabric. The incorporation of seeds in Hold-Gro Erosion Control Fabric in the establishment of plant species on coal mine soil was not an effective cultural practice in the southwestern United States. 11 refs.

  13. Physiological and Biochemical Responses of a Medicinal Halophyte Limonium Bicolor (Bag.) Kuntze to Salt-Stress

    International Nuclear Information System (INIS)

    Wang, L.; Li, W.; Yang, H.; Wu, W.; Ma, L.; Huang, T.; Wang, X.

    2016-01-01

    Limonium bicolor (Bag.) Kuntze is a perennial herb belonging to the Plumbaginaceae family. It is a typical recretohalophyte as well as a medicinal plant, distributing at saline soil areas in coastal areas and grasslands. In this paper,physiological mechanisms of L. bicolor to defend salt stress and effects of salinity on medicinal ingredients were investigated. The effects of different NaCl concentrations on the number of salt glands, Na/sup +/ content, dry weight and water content in tissues, gas exchange parameters involving net CO/sub 2/ assimilation rate, stomatal conductance, intercellular CO/sub 2/ concentration and transpiration rate, malondialdehyde content and electrolyte leakage, activities of superoxide dismutase, peroxidase and catalase and accumulations of secondary metabolites such as total phenolic, total flavonoid, gallic acid and myricetrin of leaves were determined. The results show that 100 and 200 mM NaCl induced facilitated effects in L. bicolor reflected in the increase in dry weight, tissue water content, net CO/sub 2/ assimilation rate, the number of salt glands, activity of superoxide dismutase, and content of gallic acid and myricetrin. The 300 mM NaCl treatment resulted in obviously decline in gas exchange parameters, and significant increases in Na/sup +/ levels, malondialdehyde level and electrolyte leakage. It was suggested that increased salt tolerance of L. bicolor was due to the corresponding resistance mechanisms involving an increased number of salt glands, enhanced activities of antioxidant enzymes, and an accelerated accumulation of secondary metabolites. What's more, the results on effects of salinity on medicinal ingredients in L. bicolor under different salt concentrations could provide theoretical basis for the standardization cultivation technique of L. bicolor. (author)

  14. The Life Cycle of Entzia, an Agglutinated Foraminifer from the Salt Marshes in Transylvania

    Science.gov (United States)

    Kaminski, Michael; Telespan, Andreea; Balc, Ramona; Filipescu, Sorin; Varga, Ildiko; Görög, Agnes

    2013-04-01

    The small salt marshes associated with Miocene salt domes in Transylvania are host to a variety of marine organisms, including communities of halophytic plants as well as an agglutinated foraminifer that is normally found in coastal salt marshes worldwide. Originally described as the species Entzia tetrastoma by Daday (1884), the foraminifer is more widely known by the name Jadammina macrescens (Brady, 1870). Because the genus name Entzia has priority over Jadammina, the valid name of this taxon is Entzia macrescens (Brady, 1870). In 2007, we discovered a living population of Entzia inhabiting a small salt marsh just outside the town of Turda in central Transylvania, only a kilometer from the famous Maria Theresa Salt Mine. This is the first discovery of a living population of Entzia in Transylvania since the species was originally described in 1884. To determine whether or not the specimens we found represent a breeding population, samples were collected from the marsh on a monthly basis over the span of a year. This species can be found among the roots of the halophytic plants, in the uppermost one or two centimeters of the mud. Sediment samples were preserved in Vodka with Rose Bengal to distinguish living and dead specimens, and examined quantitatively. To document the life cycle of the species the following metrics were carried out: test size, abundance, number of chambers, ratio between live and dead specimens, and the diameter of the proloculus. An increase in the mean diameter of specimens was found from October to December. However the mean diameter decreased again in January, which suggests that asexual reproduction had apparently taken place. Small specimens again appeared in March, when sexual reproduction is presumed to have taken place. The median proloculus diameter was smallest in April and May, but the monthly changes in mean proloculus size within the population over the span of a year are not significant. However, specimens with largest

  15. Ability of salt marsh plants for TBT remediation in sediments.

    Science.gov (United States)

    Carvalho, Pedro N; Basto, M Clara P; Silva, Manuela F G M; Machado, Ana; Bordalo, A A; Vasconcelos, M Teresa S D

    2010-07-01

    The capability of Halimione portulacoides, Spartina maritima, and Sarcocornia fruticosa (halophytes very commonly found in salt marshes from Mediterranean areas) for enhancing remediation of tributyltin (TBT) from estuarine sediments was investigated, using different experimental conditions. The influence of H. portulacoides on degradation of the butyltin compounds was assessed in two different ways: (1) a 9-month ex situ study carried out in a site of Sado River estuary, center of Portugal, which used polluted sediments collected at other nonvegetated site from the same estuary; and (2) a 12-month laboratorial study, using both plant and sediment collected at a relatively clean site of Cávado River estuary, north of Portugal, the sediment being doped with TBT, DBT, and MBT at the beginning of the experiment. The role of both S. fruticosa and S. maritima on TBT remediation in sediments was evaluated in situ, in salt marshes from Marim channel of Ria Formosa lagoon, south of Portugal, which has large areas colonized by each one of these two plants. For estimation of microbial abundance, total cell counts of sediment samples were enumerated by the DAPI direct count method. Butyltin analyses in sediment were performed using a method previously validated, which consisted of headspace solid-phase micro-extraction combined with gas chromatography-mass spectrometry after in situ ethylation (with tetraethylborate). Sediments colonized both ex situ and at lab by H. portulacoides displayed TBT levels about 30% lower than those for nonvegetated sediments with identical initial composition, after 9-12 months of plant exposure. In addition, H. portulacoides showed to be able of stimulating bacterial growth in the plant rhizosphere, which probably included degraders of TBT. In the in situ study, which compared the levels of TBT, DBT, and MBT in nonvegetated sediment and in sediments colonized by either S. maritima or S. fruticosa from the same area, TBT and DBT were only

  16. Thal and technologies for fodder production

    International Nuclear Information System (INIS)

    Ali, Z.; Ahmad, M.; Haqqanni, A.M.

    2005-01-01

    The climate of the study area is arid and semi-arid subtropical, characterized by high summer- temperature (1200 F) with hot dry winds, frequent dust-storms and torrential and erratic rains. Winter is mild, with cold nights having temperature 320 F. The fodder tree species in arid and semi-arid regions are a valuable resource of feeding livestock in these regions during the lean periods of both winter and summer seasons. Fodder trees are properly looked after, not only for their usefulness for fuel and furniture, etc., but good environment would improve the quality of life, along with manifold higher fodder- production for animals. Fodder trees should be lopped only when they are about two to three meters in height and branches more than 7.5 cm thick should not be lopped. Lopping of the whole tree, as usually practiced, is injurious to trees and affects their vigor. Lopping cycle should be such that we get new leaves at the desired time of the year. It is recommended that; (i) proven grass-species, like Cenchrus ciliaris, Lasiurus sindicus, Pennisetum orientale and Panicum antidotale, be introduced in Thai, (ii) the improved varieties of some fodder-crops like oats, berseem, lucerne, sorghum sudan grass hybrid and mott grass being multicut (would cover the scarcity periods) can be introduced in the irrigated areas and (iii) the trees and shrub-species, such as Acacia tortilis, Zizyphus nummularia, Acacia anura, Prosopis cineraria, Acacia nilotica, Tacomella undulate, Zizyphus mauritiana, Calligonum polygonoides, Tamarax aphylla and Albizia lebbeck, can be propagated and promoted in Thai desert. (author)

  17. Selective-placement burial of drilling fluids: 1. Effects on soil chemical properties

    International Nuclear Information System (INIS)

    McFarland, M.L.; Hartmann, S.; Ueckert, D.N.; Hons, F.M.

    1992-01-01

    Burial of spent drilling fluids used in petroleum and natural gas exploration was evaluated for reducing soil contamination caused by conventional, surface disposal of these wastes on arid and semiarid rangelands. Simulated reserve pits at two locations provided burial depths of 30, 90 (with and without a 30-cm capillary barrier of coarse limestone), and 150 cm below the surface, with sequential replacement of stockpiled subsoil and topsoil. The drilling fluids contained extremely high concentrations of soluble salts, with Na and Cl being the dominant soluble ions. Upward migration of contaminants was evaluated over a 20-month period. Soluble salts migrated upward 15 to 30 cm into the overlying soil, and salt movement appeared to be governed to a greater extent by diffusive rather than convective flow mechanisms. Capillary barriers of coarse limestone effectively reduced salt movement at one of the two sites. Sodium, Ca, and Cl were the dominant mobile ions. Exchangeable Na percentages did not increase in soil increments > 15 cm above buried drilling wastes. Barium, Cr, Cu, Ni, and Zn in drilling fluids did not migrate into overlying soil. Movement of contaminants was similar where fourwing saltbush [Atriplex canescens (Pursh) Nutt.], a deep-rooted shrub, and buffalograss [Buchloe dactyloides (Nutt.) Engelm], a shallow-rooted grass, were used for revegetation

  18. Новые данные по числам хромосом некоторых сосудистых растений из Израиля и России

    Directory of Open Access Journals (Sweden)

    M. N. Lomonosova

    2015-07-01

    Full Text Available Приведены числа хромосом для 10 видов из семейств Amaranthaceae s. str., Asteraceae, Caryophyllaceae, Chenopodiaceae и Frankeniaceae. Для Atriplex intracontinentalis Sukhor. (2n = 18, Corispermum filifolium C.A. Meyer ex Becker (2n = 18 и Frankenia tuvinica Lomon. (2n = 20 числа хромосом не были известны ранее. Впервые на материале из Израиля указаны числа хромосом для Amaranthus albus L. (2n = 32, Dyssodia tenuiloba (DC R.B. Rob. (2n = 24, Lactuca viminea (L. J. et C. Presl (2n = 18, Tragopogon coelesyriacus Boiss. (2n = 12, Chenopodium opulifolium Schrad. ex W.D.J. Koch et Ziz (2n = 54 и Chenopodium missouriense Aellen (2n = 54.

  19. Total and bioavailable arsenic concentration in arid soils and its uptake by native plants from the pre-Andean zones in Chile.

    Science.gov (United States)

    Díaz, O; Tapia, Y; Pastene, R; Montes, S; Núñez, N; Vélez, D; Montoro, R

    2011-06-01

    Arsenic is the most important contaminant of the environment in northern Chile. Soil samples and plant organs from three native plant species, Pluchea absinthioides, Atriplex atacamensis and Lupinus microcarpus, were collected from arid zones in order to determine the total and bioavailable arsenic concentrations in soils and to assess the bioconcentration factor (BCF) and transport index (Ti) of arsenic in the plants. Total arsenic concentrations in soils (pH 8.3-8.5) where A. atacamensis and P. absinthioides were collected, reached levels considered to be contaminated (54.3 ± 15.4 and 52.9 ± 9.9 mg kg⁻¹, respectively), and these values were approximately ten times higher than in soils (pH 7.6) where L. microcarpus was collected. Bioavailable arsenic ranged from 0.18 to 0.42% of total arsenic concentration. In the three plant species, arsenic concentration in leaves were significantly (p ≤ 0.05) higher than in roots. L. microcarpus showed the highest arsenic concentration in its leaves (9.7 ± 1.6 mg kg⁻¹) and higher values of BCF (1.8) and Ti (6.1), indicating that this species has a greater capacity to accumulate and translocate the metalloid to the leaf than do the other species.

  20. Plant species effects on soil nutrients and chemistry in arid ecological zones.

    Science.gov (United States)

    Johnson, Brittany G; Verburg, Paul S J; Arnone, John A

    2016-09-01

    The presence of vegetation strongly influences ecosystem function by controlling the distribution and transformation of nutrients across the landscape. The magnitude of vegetation effects on soil chemistry is largely dependent on the plant species and the background soil chemical properties of the site, but has not been well quantified along vegetation transects in the Great Basin. We studied the effects of plant canopy cover on soil chemistry within five different ecological zones, subalpine, montane, pinyon-juniper, sage/Mojave transition, and desert shrub, in the Great Basin of Nevada all with similar underlying geology. Although plant species differed in their effects on soil chemistry, the desert shrubs Sarcobatus vermiculatus, Atriplex spp., Coleogyne ramosissima, and Larrea tridentata typically exerted the most influence on soil chemistry, especially amounts of K(+) and total nitrogen, beneath their canopies. However, the extent to which vegetation affected soil nutrient status in any given location was not only highly dependent on the species present, and presumably the nutrient requirements and cycling patterns of the plant species, but also on the background soil characteristics (e.g., parent material, weathering rates, leaching) where plant species occurred. The results of this study indicate that the presence or absence of a plant species, especially desert shrubs, could significantly alter soil chemistry and subsequently ecosystem biogeochemistry and function.

  1. Plant occurrence on burning coal waste – a case study from the Katowice-Wełnowiec dump, Poland

    Directory of Open Access Journals (Sweden)

    Ciesielczuk Justyna

    2015-06-01

    Full Text Available Coal-waste dumps superimposed on former rubbish dump frequently undergo selfheating and selfignition of organic matter dispersed in the waste. The special conditions for plant growth generated as a result have been investigated since 2008 on the municipal dump reclaimed with coal wastes in Katowice-Wełnowiec, Poland. The plants observed most frequently where heating has occurred are Sisymbrium loeselii, Artemisia vulgaris, Sonchus arvensis, Chenopodium album, Achillea millefolium, Cirsium arvense, Amaranthus retroflexus, Atriplex nitens and Solanum nigrum. Some new, rare species such as Portulaca oleracea, first noticed in 2011, may be added. Most of encroaching species are annual, alien archeophytes and neophytes. Native species are mainly perennials. The majority of these species show a tendency to form specimens of huge size (gigantism. The abundance of emitted CO2 and nitrogen compounds is the likely cause of this. Additionally, the plants growing there are not attacked by insects. The heating of the ground liquidates the natural seed bank. After cooling, these places are seeded by species providing seeds at that very moment (pioneer species. Heated places on the dumps allow plant growth even in the middle of winter. As the seasonal vegetation cycle is disturbed, plants may be found seeding, blooming and fruiting at the same time.

  2. The secret gardener: vegetation and the emergence of biogeomorphic patterns in tidal environments.

    Science.gov (United States)

    Da Lio, Cristina; D'Alpaos, Andrea; Marani, Marco

    2013-01-01

    The presence and continued existence of tidal morphologies, and in particular of salt marshes, is intimately connected with biological activity, especially with the presence of halophytic vegetation. Here, we review recent contributions to tidal biogeomorphology and identify the presence of multiple competing stable states arising from a two-way feedback between biomass productivity and topographic elevation. Hence, through the analysis of previous and new results on spatially extended biogeomorphological systems, we show that multiple stable states constitute a unifying framework explaining emerging patterns in tidal environments from the local to the system scale. Furthermore, in contrast with traditional views we propose that biota in tidal environments is not just passively adapting to morphological features prescribed by sediment transport, but rather it is 'The Secret Gardener', fundamentally constructing the tidal landscape. The proposed framework allows to identify the observable signature of the biogeomorphic feedbacks underlying tidal landscapes and to explore the response and resilience of tidal biogeomorphic patterns to variations in the forcings, such as the rate of relative sea-level rise.

  3. Succulent species differ substantially in their tolerance and phytoextraction potential when grown in the presence of Cd, Cr, Cu, Mn, Ni, Pb, and Zn.

    Science.gov (United States)

    Zhang, Chengjun; Sale, Peter W G; Clark, Gary J; Liu, Wuxing; Doronila, Augustine I; Kolev, Spas D; Tang, Caixian

    2015-12-01

    Plants for the phytoextraction of heavy metals should have the ability to accumulate high concentrations of such metals and exhibit multiple tolerance traits to cope with adverse conditions such as coexistence of multiple heavy metals, high salinity, and drought which are the characteristics of many contaminated soils. This study compared 14 succulent species for their phytoextraction potential of Cd, Cr, Cu, Mn, Ni, Pb, and Zn. There were species variations in metal tolerance and accumulation. Among the 14 succulent species, an Australian native halophyte Carpobrotus rossii exhibited the highest relative growth rate (20.6-26.6 mg plant(-1) day(-1)) and highest tolerance index (78-93%), whilst Sedum "Autumn Joy" had the lowest relative growth rate (8.3-13.6 mg plant(-1) day(-1)), and Crassula multicava showed the lowest tolerance indices (phytoextraction of these heavy metals than other species. These findings suggest that Carpobrotus rossii is a promising candidate for phytoextraction of multiple heavy metals, and the aquatic or semiterrestrial Crassula helmsii is suitable for phytoextraction of Cd and Zn from polluted waters or wetlands.

  4. [Different NaCl-dependence of the circadian CO2-gas-exchange of some halophil growing coastal plants].

    Science.gov (United States)

    Treichel, Siegfried; Bauer, Peter

    1974-03-01

    CO 2 -exchange, diurnal changes in malate- and ion concentrations of the halophytes Carpobrotus edulis, Crithmum maritimum, Mesembryanthemum nodiflorum, Salicornia fruticosa, Suaeda maritima, and Trifolium fragiferum were investigated after culture at different NaCl concentrations. In Carp. edulis and Mes. nodiflorum the diurnal rhythm of CO 2 -exchange is in accordance with that of crassulacean acid metabolism (CAM), in Sal. fruticosa, Crithm. maritimum, Suaeda maritima, and Trif. fragiferum with that of Benson-Calvin metabolism (C 3 ). Malate concentration and CO 2 uptake in the sap latter group are not influenced. On the other hand, Carp. edulis and Mes. nodiflorum show an accumulation of malate during the night, which can be interpreted as a further indication of CAM.The two species most resistant to NaCl, Carp. edulis and Sal. fruticosa, greatly differ very much in their NaCl content. NaCl concentration in Salicornia is four times higher than in Carpobrotus.The different metabolic properties studied might be of ecological importance for the plants in their natural habitats. The effect of NaCl on metabolic processes is discussed.

  5. Leaf structural adaptations of two Limonium miller (Plumbaginales, Plumbaginaceae taxa

    Directory of Open Access Journals (Sweden)

    Zorić Lana N.

    2013-01-01

    Full Text Available Limonium gmelinii (Willd. O. Kuntze 1891 subsp. hungaricum (Klokov Soó is Pannonian endemic subspecies that inhabits continental halobiomes, while Limonium anfractum (Salmon Salmon 1924 is one of the indicators of halophyte vegetation of marine rocks and its distribution is restricted to the southern parts of Mediterranean Sea coast. In this work, micromorphological and anatomical characters of leaves of these two Limonium taxa were analyzed, in order to examine their adaptations to specific environmental conditions on saline habitats. The results showed that both taxa exhibited strong xeromorphic adaptations that reflected in flat cell walls of epidermal cells, thick cuticle, high palisade/spongy tissue ratio, high index of palisade cells, the presence of sclereid idioblasts in leaf mesophyll and mechanical tissue by phloem and xylem. Both taxa are crynohalophytes and have salt glands on adaxial and abaxial epidermis for excretion of surplus salt. Relatively high dimensions of mesophyll cells, absence of non-glandular hairs and unprotected stomata slightly increased above the level of epidermal cells, are also adaptations to increased salinity. [Projekat Ministarstva nauke Republike Srbije, br. 173002

  6. Saline Agriculture in the 21st Century: Using Salt Contaminated Resources to Cope Food Requirements

    Directory of Open Access Journals (Sweden)

    Bruno Ladeiro

    2012-01-01

    Full Text Available With the continue increase of the world population the requirements for food, freshwater, and fuel are bigger every day. This way an urgent necessity to develop, create, and practice a new type of agriculture, which has to be environmentally sustainable and adequate to the soils, is arising. Among the stresses in plant agriculture worldwide, the increase of soil salinity is considered the major stress. This is particularly emerging in developing countries that present the highest population growth rates, and often the high rates of soil degradation. Therefore, salt-tolerant plants provide a sensible alternative for many developing countries. These plants have the capacity to grow using land and water unsuitable for conventional crops producing food, fuel, fodder, fibber, resin, essential oils, and pharmaceutical products. In addition to their production capabilities they can be used simultaneously for landscape reintegration and soil rehabilitation. This review will cover important subjects concerning saline agriculture and the crop potential of halophytes to use salt-contaminated resources to manage food requirements.

  7. Structure, composition and diversity of the vegetation of hub dam catchment area, pakistan

    International Nuclear Information System (INIS)

    Shaukat, S.; Khan, M.A.

    2014-01-01

    A study of vegetation structure, composition and diversity of Hub-dam catchment area was conducted. A total of 106 species were recorded of which 57 were annuals while 49 were perennials. The vegetation was dominated by small trees and shrubs. Spatial patterns within-community of plant populations using variance/mean ratio and Morisita's index was also investigated. Of the 14 perennial species investigated seven (Barleria acanthoides, Grewia tenax, Indigofera oblongifolia, Aerva persica, Rhazya stricta, Iphiona grantioides and Cymbopogon jwarancusa) predominately exhibited aggregated pattern. Four species (Acacia senegal, Prosopis juliflora, Salvadora oleoides and Calotropis procera) usually exhibited random distribution but infrequently aggregated pattern. Three species (Senna holosericea, Zizyphus nummularia and Vernonia cinerescens) showed aggregated pattern or random distribution more or less equally often. The distribution pattern of vegetation composition and the underlying environmental gradients, correspondence analysis (CA) ordination and canonical correspondence analysis (CCA) were employed. Group structure inherent in the vegetation was disclosed using Ward's agglomerative cluster analysis. Species diversity was measured and diversity was averaged for each group. Diversity of group I (Acacia senegal and Prosopis juliflora community type) was highest because this community included a number of mid-succession species, while diversity was lowest for group 4 (Prosopis juliflora and Capparis decidua community type) as this community was highly disturbed. In the climax community (group 3), the diversity level slightly decreased, suggesting the monopolization of resources by this community. Four major community types were recognized by Ward's cluster analysis, each of which was associated with particular topographic-edaphic factors, while one was mainly governed by anthropogenic disturbance. Biological spectrum constructed for the flora showed dominance of

  8. Adaptabilité des espèces du genre Atriplex aux conditions de salinité et d'aridité

    OpenAIRE

    Belkheiri, Oumelkheir

    2009-01-01

    Plants have had to cope with periodic, unpredictable environmental stresses during growth and development. Surviving such stresses over a long evolutionary scale led plants to acquire mechanisms allowing them to sensitively perceive stresses and regulate their physiology accordingly. In the arid and semi arid regions of the world, shrubs surviving in saline soils have been the subject of considerable research. They have been evaluated as alternative sources of forage for liv...

  9. Dietary supplementation of extracts from a halophyte affects the level of the circulating enzymes in irradiated rats

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. G.; Lee, B. H. [KAERI, Taejon (Korea, Republic of); Kim, J. H.; Youn, Y. D. [Hanyang Univ., Seoul (Korea, Republic of)

    2003-10-01

    Extracts from Salicornia herbacea with two extraction methods (using water or ethanol) were examined for their potential as a radioprotector. This plant accumulates a great amount of salt , Mg, Ca, Fe, and K and thus contains high levels of mineral in its body. It is famous as a remedial material for the constipation and glycosuria in folk medicine. The present study was designed to explore the in vivo antioxidant effects of water - and ethanol- extracts of S. herbacea. Both extracts of the plants were tested for their free radical scavenging activity with the DPPH assay. For the in vivo studies, male F344 rats (3 week- old) received po administration of both extracts 0.5 mg/ml during 5 days before whole- body irradiation. Six hours after irradiation, we measured the body and organ weight and collected blood. The levels of serum aspartate aminotransferase (AST), alanine aminotransferase (ALT) and lactate dehydrogenase (LDH), alkaline phosphatase (ALP) showed a similar pattern six hours after irradiation. In case of the water extract - dietary group after irradiation, the levels of all enzymes had a tendency to decrease toward to the base level. Therefore, the results reflects the antioxidant activity of S. herbacea extracts and its potential to protect against radiation damage.

  10. Salinicola tamaricis sp. nov., a heavy-metal-tolerant, endophytic bacterium isolated from the halophyte Tamarix chinensis Lour.

    Science.gov (United States)

    Zhao, Guo-Yan; Zhao, Li-Ya; Xia, Zhi-Jie; Zhu, Jin-Lei; Liu, Di; Liu, Chun-Yue; Chen, Xiu-Lan; Zhang, Yu-Zhong; Zhang, Xi-Ying; Dai, Mei-Xue

    2017-06-01

    A Gram-stain-negative, rod-shaped bacterium, strain F01T, was isolated from leaves of Tamarix chinensis Lour. The isolate grew optimally at 30 °C, at pH 7.0 and with 5.0 % (w/v) NaCl, and showed a high tolerance to manganese, lead, nickel, ferrous ions and copper ions. The major fatty acids were C18 : 1ω7c and C16 : 0, and the predominant respiratory quinone was Q-9. Polar lipids were dominated by diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, unidentified aminoglycolipids and phospholipids. The DNA G+C content was 65.8 %. Based on multilocus phylogenetic analysis, strain F01T belonged to the genus Salinicola, with highest 16S rRNA gene sequence similarity to Salinicola peritrichatus CGMCC 1.12381T (97.7 %). The level of DNA-DNA hybridization between strain F01T and closely related Salinicola strains was well below 70 %. According to the phenotypic, genetic and chemotaxonomic data, strain F01T is considered to represent a novel species in the genus Salinicola, for which the name Salinicola tamaricis sp. nov. is proposed. The type strain is F01T (=CCTCC AB 2015304T=KCTC 42855T).

  11. Alien plant species list and distribution for Camdeboo National Park, Eastern Cape Province, South Africa

    Directory of Open Access Journals (Sweden)

    Mmoto L. Masubelele

    2009-09-01

    Full Text Available Protected areas globally are threatened by the potential negative impacts that invasive alien plants pose, and Camdeboo National Park (CNP, South Africa, is no exception. Alien plants have been recorded in the CNP since 1981, before it was proclaimed a national park by South African National Parks in 2005. This is the first publication of a list of alien plants in and around the CNP. Distribution maps of some of the first recorded alien plant species are also presented and discussed. To date, 39 species of alien plants have been recorded, of which 13 are invasive and one is a transformer weed. The majority of alien plant species in the park are herbaceous (39% and succulent (24% species. The most widespread alien plant species in the CNP are Atriplex inflata (= A. lindleyi subsp. inflata, Salsola tragus (= S. australis and cacti species, especially Opuntia ficus-indica. Eradication and control measures that have been used for specific problematic alien plant species are described. Conservation implications: This article represents the first step in managing invasive alien plants and includes the collation of a species list and basic information on their distribution in and around the protected area. This is important for enabling effective monitoring of both new introductions and the distribution of species already present. We present the first species list and distribution information for Camdeboo National Park.

  12. Saltmarsh creek bank stability: Biostabilisation and consolidation with depth

    Science.gov (United States)

    Chen, Y.; Thompson, C. E. L.; Collins, M. B.

    2012-03-01

    The stability of cohesive sediments of a saltmarsh in Southern England was measured in the field and the laboratory using a Cohesive Strength Meter (CSM) and a shear vane apparatus. Cores and sediment samples were collected from two tidal creek banks, covered by Atriplex portulacoides (Sea Purslane) and Juncus maritimus (Sea Rush), respectively. The objectives of the study were to examine the variation of sediment stability throughout banks with cantilevers present and investigate the influence of roots and downcore consolidation on bank stability. Data on erosion threshold and shear strength were interpreted with reference to bank depth, sediment properties and biological influences. The higher average erosion threshold was from the Sea Purslane bank whilst the Sea Rush bank showed higher average vane shear strength. The vertical variation in core sediment stability was mainly affected by roots and downcore consolidation with depth. The data obtained from the bank faces revealed that vertical variations in both erosion threshold and vane shear strength were affected primarily by roots and algae. A quantitative estimate of the relative contributions of roots and downcore consolidation to bank sediment stability was undertaken using the bank stability data and sediment density data. This showed that roots contributed more to the Sea Purslane bank stability than downcore consolidation, whilst downcore consolidation has more pronounced effects on the Sea Rush bank stability.

  13. Influence of shrub cover vegetal and slope length on soil bulk density; Influencia de la cubierta vegetal arbustiva y la longitud de la ladera sobre la densidad aparente del suelo

    Energy Technology Data Exchange (ETDEWEB)

    Bienes, R.; Jimenez, R.; Ruiz, M.; Garcia-Estringana, P.; Marques, M. J.

    2009-07-01

    In arid and semiarid environments of the Mediterranean climate, the shrub species play an important role in the revegetation of abandoned lands, which enables to control the soil losses, organic material and water. In this article are compared the results obtained under different revegetation in abandoned lands in the central area of Spain. In these revegetation has been used two native shrubs: A triplex halimus (Ah) and Retama sphaerocarpa (Rs), and were analyzed the influence of these revegetation in the contents of organic material of soil and apparent density in 5 years time after planting. As control, have been considered the pieces of ground with spontaneous vegetation abandoned in the same date that the shrubs revegetation. Atriplex halimus gives to the soil a covering capable to intercept a big amount of water drops absorbing a great amount part of the kinetic energy of the rain, while provides a microclimates as a result of be able to soften the wind, the temperature and the evaporation-transpiration, which makes it efficient to control the erosion and the desertification (Le Houerou, 2000). Retama sphaerocarpa was chosen because it is a native shrub very characteristic, and, due to its symbiosis with the Bradyrhizobium, enriches the soil in nitrogen, which is taken by the nitrophilous species enhancing the spontaneous vegetal covering. (Author) 9 refs.

  14. Rooting depths of plants on low-level waste disposal sites

    International Nuclear Information System (INIS)

    Foxx, T.S.; Tierney, G.D.; Williams, J.M.

    1984-11-01

    In 1981-1982 an extensive bibliographic study was done to reference rooting depths of native plants in the United States. The data base presently contains 1034 different rooting citations with approximately 12,000 data elements. For this report, data were analyzed for rooting depths related to species found on low-level waste (LLW) sites at Los Alamos National Laboratory. Average rooting depth and rooting frequencies were determined and related to present LLW maintenance. The data base was searched for information on rooting depths of 53 species found on LLW sites at Los Alamos National Laboratory. The study indicates 12 out of 13 grasses found on LLW sites root below 91 cm. June grass [Koeleria cristata (L.) Pers.] (76 cm) was the shallowest rooting grass and side-oats grama [Bouteloua curtipendula (Michx.) Torr.] was the deepest rooting grass (396 cm). Forbs were more variable in rooting depths. Indian paintbrush (Castelleja spp.) (30 cm) was the shallowest rooting forb and alfalfa (Medicago sativa L.) was the deepest (>3900 cm). Trees and shrubs commonly rooted below 457 cm. The shallowest rooting tree was elm (Ulmus pumila L.) (127 cm) and the deepest was one-seed juniper [Juniperus monosperma (Engelm) Sarg.] (>6000 cm). Apache plume [Fallugia paradoxa (D. Don) Endl.] rooted to 140 cm, whereas fourwing saltbush [Atriplex canecens (Pursh) Nutt.] rooted to 762 cm

  15. Selective-placement burial of drilling fluids: 2. Effects on buffalograss and fourwing saltbrush

    International Nuclear Information System (INIS)

    McFarland, M.L.; Hartmann, S.; Ueckert, D.N.; Hons, F.M.

    1992-01-01

    Surface disposal of spent drilling fluids used in petroleum and natural gas exploration causes surface soil contamination that severely inhibits secondary plant succession and artificial revegetation efforts. Selective-placement burial was evaluated at two locations in western Texas for on-site disposal of drilling fluids in arid and semiarid regions. Establishment, yield, and chemical composition of fourwing saltbrush [Atriplex canescens (Pursh Nutt.)] and buffalograss [Buchloe dactyloides (Nutt.) Engelm.] transplants on undisturbed soils and on plots with spent drilling fluids and cuttings buried 30, 90 (with and without a 30-cm coarse limestone capillary barrier) and 150 cm were compared. Survival of both species was 97 to 100% 17 months after planting on plots with buried drilling wastes. Canopy cover and aboveground biomass of fourwing saltbrush were greater over buried drilling wastes than on untreated plots, whereas canopy cover and aboveground biomass of buffalograss were not affected by the treatments. Significant increases in Na, M, and Mg concentrations in buffalograss after 17 months on plots with drilling fluids buried 30 cm deep at one location indicated plant uptake of some drilling fluid constituents. Elevated Zn concentrations in fourwing saltbush indicated that a portion of the Zn in the drilling fluids was available for plant uptake, while no evidence of plant accumulation of Ba, Cr, Cu, or Ni from drilling fluids was detected

  16. Comparative Study on the Adaptation and Growth Dynamics of the Helix pomatia and Helix aspersa Muller Terrestrial Snails Under Different Feeding Regimes

    Directory of Open Access Journals (Sweden)

    Adrian Toader-Williams

    2010-05-01

    Full Text Available We used Helix pomatia and Helix aspersa species and measure their growth as the snails were approaching the hibernation season. Helix pomatia 2yo shown a decrease in weight while being raised in enclosed parcels of 4sqm the younger Helix pomatia 1yo as well as Helix aspersa Muller demonstrated the ability to adapt relatively fast to the same conditions. We established 5 experimental lots in a Helix pomatia farm, GPS coordinates N46.606040 E23.599950. Control lot contained Taraxacum officinales, Sonchus oleraceus, Equisetum arvense and Atriplex hortensis, wild flora found within the farm. The other lots contained the same plants as the control lot plus different combinations of imported plants from other areals. The H. pomatia 2yo weight decreased in the control lot by a mean of -3.86% while H. aspersa 1yo marked an increase of +16.89% in the same lot during the same period. The lot containing lupinus polyphyllus delivered snails with weight gain of +24.66% for H. pomatia 2yo and an increase of only +1.98% for H. aspersa 1yo. As a contrast, H. pomatia 2yo gained only +7.72% while H. aspersa 1yo gained +28.89%, in the lot containing Lavanda officinalis, Foeniculum vulgare and Hyssopus officinalis among the other plants.

  17. Influence of shrub cover vegetal and slope length on soil bulk density

    International Nuclear Information System (INIS)

    Bienes, R.; Jimenez, R.; Ruiz, M.; Garcia-Estringana, P.; Marques, M. J.

    2009-01-01

    In arid and semiarid environments of the Mediterranean climate, the shrub species play an important role in the revegetation of abandoned lands, which enables to control the soil losses, organic material and water. In this article are compared the results obtained under different revegetation in abandoned lands in the central area of Spain. In these revegetation has been used two native shrubs: A triplex halimus (Ah) and Retama sphaerocarpa (Rs), and were analyzed the influence of these revegetation in the contents of organic material of soil and apparent density in 5 years time after planting. As control, have been considered the pieces of ground with spontaneous vegetation abandoned in the same date that the shrubs revegetation. Atriplex halimus gives to the soil a covering capable to intercept a big amount of water drops absorbing a great amount part of the kinetic energy of the rain, while provides a microclimates as a result of be able to soften the wind, the temperature and the evaporation-transpiration, which makes it efficient to control the erosion and the desertification (Le Houerou, 2000). Retama sphaerocarpa was chosen because it is a native shrub very characteristic, and, due to its symbiosis with the Bradyrhizobium, enriches the soil in nitrogen, which is taken by the nitrophilous species enhancing the spontaneous vegetal covering. (Author) 9 refs.

  18. Forage uptake of uranium series radionuclides in the vicinity of the anaconda uranium mill

    International Nuclear Information System (INIS)

    Rayno, D.R.; Momeni, M.H.; Sabau, C.

    1980-01-01

    Radiochemical analysis was performed on samples of soil and eight species of common vegetation growing on the Anaconda uranium mill site, located in New Mexico. The concentrations of the long-lived radionuclides U-238, U-234, Th-230, Ra-226, and Pb-210 in these forage plants were determined. The sampling procedures and analytical laboratory methods used are described. The highest radionuclide concentration found in a forage species was 130 pCi of Ra-226 per gram dry weight for grass growing on the main tailings pile at Anaconda, where the surface soil activity of Ra-226 was 236 pCi/g. A comparison of shoots activity with that of roots and soil was used to determine a distribution index and uptake coefficient for each species. The distribution index, the ratio of root activity to shoot activity, ranged from 0.30 (Th-230) in galleta grass (Hilaria jamesii) to 38.0 (Ra-226) in Indian ricegrass (Oryzopsis hymenoides). In nearly all instances, the roots contained higher radionuclide concentrations. The uptake coefficient, the ratio of vegetation activity to soil activity, ranged from 0.69 (U-238) in Indian ricegrass roots to 0.01 (U-238) in four-wing saltbush (Atriplex canescans) shoots. The range of radionuclide concentrations in plants growing on the Anaconda mill site is compared to that in vegetation from a control site 20 km away

  19. Relationships between nuclear magnetic resonance parameters used to characterize weathering spilled oil and soil toxicity in central Patagonia.

    Science.gov (United States)

    Ríos, Stella Maris; Barquin, Mercedes; Katusich, Ofelia; Nudelman, Norma

    2014-01-01

    Oil spill in the Central Patagonian zone was studied to evaluate if any relationship exists between the parameters used to characterize weathering spilled oil and soil toxicity for two plant species and to evaluate if the phytotoxicity to local species would be a good index for the soil contamination. Nuclear magnetic resonance (NMR) structural indexes and column chromatography compositional indexes were determined to characterize the oil spill in the soil samples. Bioassays were also carried out using Lactuca sativa L (reference) and Atriplex lampa (native species) as test organisms. Measurements of the total petroleum hydrocarbon (TPH) and the electrical conductivity (EC) of the soil were carried out to evaluate the effect on the bioassays. The principal components analysis of the parameters determined by NMR, compositional indexes, EC, TPH, and toxicology data shows that the first three principal components accounted for the 78% of the total variance (40%, 25%, and 13% for the first, second, and third PC, respectively). A good agreement was found between information obtained by compositional indexes and NMR structural indexes. Soil toxicity increases with the increase of EC and TPH. Other factors, such as, the presence of branched and aromatic hydrocarbons is also significant. The statistical evaluation showed that the Euclidean distances (3D) between the background and each one of the samples might be a better indicator of the soil contamination, compared with chemical criterion of TPH.

  20. Mangrove Cultivation For Dealing With Coastal Abrasion Case Study Of Karangsong

    Science.gov (United States)

    Fatimatuzzahroh, Feti; Hadi, Sudharto P.; Purnaweni, Hartuti

    2018-02-01

    Coastal abrasion is consequence from destructive waves and sea current. One of cause is human intervention. The effort to solve of abrasion is by mangrove cultivation. Mangroves are halophyte plant that can restrain the sea wave. Mangrove cultivation required participation community that give awareness the importance of mangrove in coastal sustainability. Mangroves in coastal Karangsong, Indramayu west java, in 2007 was through abrasion approximately 127.30 ha. Mangrove cultivation in Karangsong has been replanting since 1998 to 2003, but there was no maintenance and management. In 2007 until 2015 Karangsong replanting mangroves and has been succeed. Karangsong became the center of mangrove study for west java area in 2015. This achievement is result of cooperation between community, NGO, and local government. In addition, this effort made not only overcome the abrasion problem but also give community awareness about the importance of mangrove cultivation in preventing coastal abrasion throughout community development. This paper reviews abrasion in Karangsong and the impact for local community and empowerment in mangrove cultivation. To achieve the success mangrove cultivation required community development approach from planning process, planting, maintenance and management.

  1. OPCIONES DE MANEJO SOSTENIBLE DEL SUELO EN ZONAS ARIDAS: APROVECHAMIENTO DE LA HALÓFITA Salicornia bigelovii (Torr. Y USO DE BIOFERTILIZANTES EN LA AGRICULTURA MODERNA

    Directory of Open Access Journals (Sweden)

    Edgar Omar Rueda Puente

    2010-12-01

    Full Text Available The study and development of plant resources in arid-saline environments is increasing. Salicornia bigelovii is a halophyte of great interest. However, the productivity of these plants is limited by nitrogen availability. An alternative to chemical fertilizers are the plant growth promoting bacteria and mycorrhizae. In the present study was evaluated the effect of Glomus intraradices, three strains of rhizobacteria (Klebsiella pneumoniae, Bacillus amyloliquefaciens and Azospirillum halopraeferens and two soil types (clayey and sandy on Salicornia under greenhouse conditions. The inoculation of bacteria under conditions of sandy soil significantly stimulated growth and nutritional factor of Salicornia (NPK. Synergism was observed between G. intraradices and rhizobacteria. When inoculated bacteria in individually form, behaved with significant differences. There was synergism between G. intraradices and Klebsiella pneumoniae and A. halopraeferens in the uptake of N, the opposite happened with G. intraradices and Bacillus amyloliquefaciens with high significant values in the absorption of P and K. The soil was a determining factor in behavior and expression of the benefit of the microorganisms. Rhizobacteria and mycorrhiza in the study have potential for use as growth promoters in salicornia.

  2. Large-scale risk assessment of polycyclic aromatic hydrocarbons in shoreline sediments from Saudi Arabia: environmental legacy after twelve years of the Gulf war oil spill.

    Science.gov (United States)

    Bejarano, Adriana C; Michel, Jacqueline

    2010-05-01

    A large-scale assessment of polycyclic aromatic hydrocarbons (PAHs) from the 1991 Gulf War oil spill was performed for 2002-2003 sediment samples (n = 1679) collected from habitats along the shoreline of Saudi Arabia. Benthic sediment toxicity was characterized using the Equilibrium Partitioning Sediment Benchmark Toxic Unit approach for 43 PAHs (ESBTU(FCV,43)). Samples were assigned to risk categories according to ESBTU(FCV,43) values: no-risk (1 - 2 - 3 - 5). Sixty seven percent of samples had ESBTU(FCV,43) > 1 indicating potential adverse ecological effects. Sediments from the 0-30 cm layer from tidal flats, and the >30 - oiled halophytes and mangroves had high frequency of high-risk samples. No-risk samples were characterized by chrysene enrichment and depletion of lighter molecular weight PAHs, while high-risk samples showed little oil weathering and PAH patterns similar to 1993 samples. North of Safaniya sediments were not likely to pose adverse ecological effects contrary to sediments south of Tanaqib. Landscape and geomorphology has played a role on the distribution and persistence in sediments of oil from the Gulf War. Copyright 2009 Elsevier Ltd. All rights reserved.

  3. Bioprospecting of Marine Macrophytes Using MS-Based Lipidomics as a New Approach.

    Science.gov (United States)

    Maciel, Elisabete; Costa Leal, Miguel; Lillebø, Ana Isabel; Domingues, Pedro; Domingues, Maria Rosário; Calado, Ricardo

    2016-03-08

    The marine environment supports a remarkable diversity of organisms which are a potential source of natural products with biological activities. These organisms include a wide variety of marine plants (from micro- to macrophytes), which have been used in the food and pharmaceutical industry. However, the biochemistry and biological activities of many of these macrophytes (namely macroalgae and halophytes, including seagrasses) are still far from being fully explored. Most popular bioactive components include polysaccharides, peptides, phenolics and fatty acids (FAs). Polar lipids (glycolipids, phospholipids and betaine lipids) are emerging as novel value-added bioactive phytochemicals, rich in n-3 FA, with high nutritional value and health beneficial effects for the prevention of chronic diseases. Polar lipids account various combinations of polar groups, fatty acyl chains and backbone structures. The polar lipidome of macrophytes is remarkably diverse, and its screening represents a significant analytical challenge. Modern research platforms, particularly mass spectrometry (MS)-based lipidomic approaches, have been recently used to address this challenge and are here reviewed. The application of lipidomics to address lipid composition of marine macrophytes will contribute to the stimulation of further research on this group and foster the exploration of novel applications.

  4. Chemical Processing of Non-Crop Plants for Jet Fuel Blends Production

    Science.gov (United States)

    Kulis, M. J.; Hepp, A. F.; McDowell, M.; Ribita, D.

    2009-01-01

    The use of Biofuels has been gaining in popularity over the past few years due to their ability to reduce the dependence on fossil fuels. Biofuels as a renewable energy source can be a viable option for sustaining long-term energy needs if they are managed efficiently. We describe our initial efforts to exploit algae, halophytes and other non-crop plants to produce synthetics for fuel blends that can potentially be used as fuels for aviation and non-aerospace applications. Our efforts have been dedicated to crafting efficient extraction and refining processes in order to extract constituents from the plant materials with the ultimate goal of determining the feasibility of producing biomass-based jet fuel from the refined extract. Two extraction methods have been developed based on communition processes, and liquid-solid extraction techniques. Refining procedures such as chlorophyll removal and transesterification of triglycerides have been performed. Gas chromatography in tandem with mass spectroscopy is currently being utilized in order to qualitatively determine the individual components of the refined extract. We also briefly discuss and compare alternative methods to extract fuel-blending agents from alternative biofuels sources.

  5. Ectopic over-expression of peroxisomal ascorbate peroxidase (SbpAPX) gene confers salt stress tolerance in transgenic peanut (Arachis hypogaea).

    Science.gov (United States)

    Singh, Natwar; Mishra, Avinash; Jha, Bhavanath

    2014-08-15

    Peroxisomal ascorbate peroxidase gene (SbpAPX) of an extreme halophyte Salicornia brachiata imparts abiotic stress endurance and plays a key role in the protection against oxidative stress. The cloned SbpAPX gene was transformed to local variety of peanut and about 100 transgenic plants were developed using optimized in vitro regeneration and Agrobacterium mediated genetic transformation method. The T0 transgenic plants were confirmed for the gene integration; grown under controlled condition in containment green house facility; seeds were harvested and T1 plants were raised. Transgenic plants (T1) were further confirmed by PCR using gene specific primers and histochemical GUS assay. About 40 transgenic plants (T1) were selected randomly and subjected for salt stress tolerance study. Transgenic plants remained green however non-transgenic plants showed bleaching and yellowish leaves under salt stress conditions. Under stress condition, transgenic plants continued normal growth and completed their life cycle. Transgenic peanut plants exhibited adequate tolerance under salt stress condition and thus could be explored for the cultivation in salt affected areas for the sustainable agriculture. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Bioprospecting of Marine Macrophytes Using MS-Based Lipidomics as a New Approach

    Directory of Open Access Journals (Sweden)

    Elisabete Maciel

    2016-03-01

    Full Text Available The marine environment supports a remarkable diversity of organisms which are a potential source of natural products with biological activities. These organisms include a wide variety of marine plants (from micro- to macrophytes, which have been used in the food and pharmaceutical industry. However, the biochemistry and biological activities of many of these macrophytes (namely macroalgae and halophytes, including seagrasses are still far from being fully explored. Most popular bioactive components include polysaccharides, peptides, phenolics and fatty acids (FAs. Polar lipids (glycolipids, phospholipids and betaine lipids are emerging as novel value-added bioactive phytochemicals, rich in n-3 FA, with high nutritional value and health beneficial effects for the prevention of chronic diseases. Polar lipids account various combinations of polar groups, fatty acyl chains and backbone structures. The polar lipidome of macrophytes is remarkably diverse, and its screening represents a significant analytical challenge. Modern research platforms, particularly mass spectrometry (MS-based lipidomic approaches, have been recently used to address this challenge and are here reviewed. The application of lipidomics to address lipid composition of marine macrophytes will contribute to the stimulation of further research on this group and foster the exploration of novel applications.

  7. Evaluation of base, optimum and ceiling temperature for (Kochia scoparia L. Schard with application of Five-Parameters-Beta Model

    Directory of Open Access Journals (Sweden)

    S. Sabouri Rad

    2016-05-01

    Full Text Available Kochia (Kochia scoparia L. Schard is an annual, halophyte and drought resistant plant, that it can be irrigated with saline water and a valuable source for forage under drought and saline ecosystems. In order to evaluate germination characteristics of kochia, an experiment was conducted at Physiology laboratory of Ferdowsi University of Mashhad, Iran, during 2009. This experiment was conducted in a completely randomized design with four replications. Germination was evaluated at 5, 10, 15, 20, 25, 30, 35 and 40°C under dark germinator with 50-60 percentage relative humidity. The results showed that the highest germination percentage was obtained at 20-30°C and the lowest obtained at 40°C. The longest and the shortest period to 20 and 50 germination percentage were recorded to 5-10°C and 20-30°C, respectively. The longest and the shortest period to 80 percentage germination were belonging to 15 and 30°C, respectively. Based on Five Parameters Beta model, base, optimum and ceiling temperatures for kochia estimated 3.4, 25 and 43.3°C, respectively. However, seed of this plant is able to germinate in wide temperature range.

  8. Volatile organic chemicals of a shore-dwelling cyanobacterial mat community.

    Science.gov (United States)

    Evans, W G

    1994-02-01

    The main components of a cyanobacterial mat community of a hypersaline lake shore consist of edaphic, mat-forming strains (ecophenes), and littoral strains ofOscillatoria animalis Agardh andO. subbrevis Schmidle, other microorganisms associated with these cyanobacteria, several species ofBembidion (Carabidae: Coleoptera), and two halophytic flowering plants:Puccinellia nuttalliana (salt meadow grass) andSalicornia europaea rubra (samphire). The volatile organic compounds of this community are a blend of those emitted by each of these components such as the C17 alka(e)nes, geosmin, 2-methylisoborneol,β-cyclocitral,β-ionone, dimethyl sulfide, and dimethyl trisulfide of cyanobacteria and associated microorganisms; alcohols, esters, and aldehydes usually associated with flowering plants; and possibly some insect-derived esters, particularly isopropyl tetradecanoate. The dominant compounds were: C11, C13, C15, and C17 alka(e)nes, methyl esters of C16 and C18:2 acids, isopropyl tetradecanoate, heptanal, 3-octanone and 2-nonanone, the acyclic terpene linalool, and the alcohols 1-heptanol, 1-hexanol, 1-octanol, 3-hexen-1-ol, and 2-octen-1-ol. It is concluded that this community may be distinguished from related communities by its repertoire of volatile organic compounds.

  9. Real-time mapping of salt glands on the leaf surface of Cynodon dactylon L. using scanning electrochemical microscopy.

    Science.gov (United States)

    Parthasarathy, Meera; Pemaiah, Brindha; Natesan, Ravichandran; Padmavathy, Saralla R; Pachiappan, Jayaraman

    2015-02-01

    Salt glands are specialized organelles present in the leaf tissues of halophytes, which impart salt-tolerance capability to the plant species. These glands are usually identified only by their morphology using conventional staining procedures coupled with optical microscopy. In this work, we have employed scanning electrochemical microscopy to identify the salt glands not only by their morphology but also by their salt excretion behavior. Bermuda grass (Cynodon dactylon L.) species was chosen for the study as they are known to be salt-tolerant and contain salt glands on leaf surfaces. Scanning electrochemical microscopy performed in sodium chloride medium in the presence and absence of potassium ferrocyanide as redox mediator, reveals the identity of salt glands. More insight into the ion expulsion behavior of these glands was obtained by mapping lateral and vertical variations in ion concentrations using surface impedance measurements which indicated five times higher resistance over the salt glands compared to the surrounding tissues and bulk solution. The protocol could be used to understand the developmental processes in plants grown in different soil/water conditions in order to improve salt tolerance of food crops by genetic engineering and hence improve their agricultural productivity.

  10. VEGETATION CHANGES OF SUNDARBANS BASED ON LANDSAT IMAGERY ANALYSIS BETWEEN 1975 AND 2006

    Directory of Open Access Journals (Sweden)

    MD. TARIQUL ISLAM

    2014-06-01

    Full Text Available The Sundarbans in Bangladesh and India is the largest single block of tidal halophytic mangrove forest in the world. This forest is threatened by effect of climate change and manmade activities. The aim of this paper is to show changes in vegetation cover of Sundarbans since 1975 using Landsat imagery. Normalized Difference Vegetation Index is applied to quantify and qualify density of vegetation on a patch of land. Estimated land area (excluded water body of this forest is 66% in Bangladesh, and 34% in India, respectively. Net erosion since 1975 to 2006 is ~5.9%. In vicinity of human settlement, areal changes are not observed since 1975. The mangrove forest is decreased by 19.3% due severe tropical cyclone in 1977 and 1988. Moreover, the dense forest is damaged by about 50%. However, more than 25 years is taken by Sundarbans to recover from damage by a severe tropical cyclone. The biodiversity of Sundarbans depends to fresh water flow through it. Therefore, the future of Sundarbans depends to the impact of climate change which has further effect to increasing intensity and frequency of severe tropical cyclone and salinity in water channels in Sundarbans.

  11. On the salty side of life: molecular, physiological and anatomical adaptation and acclimation of trees to extreme habitats.

    Science.gov (United States)

    Polle, Andrea; Chen, Shaoliang

    2015-09-01

    Saline and sodic soils that cannot be used for agriculture occur worldwide. Cultivating stress-tolerant trees to obtain biomass from salinized areas has been suggested. Various tree species of economic importance for fruit, fibre and timber production exhibit high salinity tolerance. Little is known about the mechanisms enabling tree crops to cope with high salinity for extended periods. Here, the molecular, physiological and anatomical adjustments underlying salt tolerance in glycophytic and halophytic model tree species, such as Populus euphratica in terrestrial habitats, and mangrove species along coastlines are reviewed. Key mechanisms that have been identified as mediating salt tolerance are discussed at scales from the genetic to the morphological level, including leaf succulence and structural adjustments of wood anatomy. The genetic and transcriptomic bases for physiological salt acclimation are salt sensing and signalling networks that activate target genes; the target genes keep reactive oxygen species under control, maintain the ion balance and restore water status. Evolutionary adaptation includes gene duplication in these pathways. Strategies for and limitations to tree improvement, particularly transgenic approaches for increasing salt tolerance by transforming trees with single and multiple candidate genes, are discussed. © 2014 John Wiley & Sons Ltd.

  12. Man and climate in the Maya lowlands

    Science.gov (United States)

    Leyden, Barbara W.

    1987-11-01

    A 15-m sedimentary core from Lake Salpeten provides the first complete Holocene sequence for the lowlying Peten District, Guatemala. Today, Lake Salpeten is a brackish, calcium sulfate lake near saturation surrounded by tropical semievergreen forest. The basal pollen record depicts sparse juniper scrub surrounding a lake basin that held ephermal pools and halophytic marshes. The lake rapidly deepened to > 27 m in the early Holocene and may have been meromictic, because nearly 2 m of gypsum "mush" was deposited. Mesic forests were quickly established and persisted until the Maya entered the district 3000 yr ago and caused extensive deforestation. Any climatic information contained in the pollen record of the Maya period is thus masked, but a regional pollen sequence linked to the archaeological record is substantiated because environmental disturbance was pervasive. Local intensification of occupation and population growth are seen as an increased deposition of pollen of agricultural weeds and colluviation into the lake, while the Classic Maya collapse is marked by a temporary decline in Compositae pollen. Effects of perturbations induced by the Maya persist in the pollen and limnetic record 400 yr after the Spanish conquest.

  13. Uptake of trace elements and radionuclides from uranium mill tailings by four-wing saltbush (Atriplex canescens) and alkali sacaton (Sporobolus airoides)

    International Nuclear Information System (INIS)

    Dreesen, D.R.; Marple, M.L.

    1979-01-01

    A greenhouse experiment was performed to determine the uptake of trace elements and radionuclides from uranium mill tailings by native plant species. Four-wing saltbush and alkali sacaton were grown in alkaline tailings covered with soil and in soil alone as controls. The tailings material was highly enriched in Ra-226, Mo, U, Se, V, and As compared with three local soils. The shrub grown in tailings had elevated concentrations of Mo, Se, Ra-226, U, As, and Na compared with the controls. Alkali sacaton contained high concentrations of Mo, Se, Ra-226, and Ni when grown on tailings. Molybdenum and selenium concentrations in plants grown in tailings are above levels reported to be toxic to grazing animals. These results indicate that the bioavailability of Mo and Se in alkaline environments makes these elements among the most hazardous contaminants present in uranium mill wastes

  14. Ground biomass assessment of shrub species in tehsil takht-e-nasrati, pakistan

    International Nuclear Information System (INIS)

    Khan, M.; Hussain, F.; Musharaf, S.; Musharaf, S.

    2014-01-01

    The shrub biomass of different species of Tehsil Takht-e-Nasrati was different at different altitude. In the present study it was found that the average shrub biomass was decreasing with increasing altitude. Result confirms that the biomass of Saccharum bengalense was high 5020.38 Kg.hec/sup -1/ in phase 1 and phase 2 (4331.58 Kg.hec/sup -1/). The highest ground biomass 1125.1 Kg.hec/sup -1/ of Zizyphus nummularia was found in Phase 3. Furthermore in Phase 4 the biomass of Capparis deciduas was high 437.79 Kg.hec/sup -1/. Along with shrubs average biomass of Saccharum bengalense was high 2665.12 Kg.hec/sup -1/ and low 13.47 Kg.hec/sup -1/ of Cassia angustifolia. With seasons the biomass of Saccharum bengalense (13800 Kg.hec/sup -1/) was greater during winter at Phase 1 and Periploc aaphylla (12.35 Kg.hec-1) biomass was lowers during spring at Phase 4. In comparison in season the biomass was high in winter due to the dormant stage of shrubs in phase 1 while it was low in summer in phase 4. In winter the grazing process was stop due to agriculture point of view while in hilly area the grazing was high and the low percentage of rain fall consequently the biomass was high in plain area as contrast to hilly area. The biomass of shrubs is high in winter while it was low in summer as the grazing and palatability rate was high in summer as well as low in winter. The assessment of shrub biomass in research area is a requirement for successful management at the same time as it gives a complete documentation for the area in complexity and work out unpredictable resources to help imagine shrubs potency and behavior. (author)

  15. Copper distribution in leaves and roots of plants growing on a copper mine-tailing storage facility in northern Chile Distribución de cobre en hojas y raíces de plantas que crecen sobre relaves mineros de cobre en el norte de Chile

    Directory of Open Access Journals (Sweden)

    CLAUDIA ORTIZ-CALDERÓN

    2008-12-01

    Full Text Available In a copper mine-tailing afforested we characterized the physicochemical properties of the substrate at vegetated and non-vegetated patches. We studied the accumulation of copper in roots and leaves of the species present at the site, to evaluate their phytoextraction and/or phytostabilization potential. The non-vegetated mine-tailing substrate showed a high contení of metals, mainly copper (> 2.5 g kg-1, a pH 7.4, high contení of salts and 5.0 % organic matler. Vegelaled palches al íhe lailing showed similar characlerislics of pH, salís and organic maller conlenl, and showed a lolal copper concenlralion lower íhan íhe conlenl found ai íhe non-vegelaled patches. Nine plant species present at the site were screened for copper accumulation and distribulion in rools and leaves, and polenlial for copper phyloexlraclion or phyloslabilizalion was suggesled. The nalive species Schinus polygamus and Atriplex deserticola, accumulaled over 1.2 g kg-1 copper in íheir leaves, showing íhal íhey are pseudomelallophyles for íhe melal. Five of íhe nine plañí species sludied were considered suilable for phyloexlraclion procedures and four were apt for phytostabilization of copper polluted sites. By making a screening of species growing on a copper polluted site, we were able to select plants adapted lo semi-arid environmental conditions and suitable for mine-tailings remediation purposes.En un tranque de relaves previamente forestado, se realizó una caracterización fisicoquímica del sustralo en sectores vegetados y no vegetados. Se esludió la acumulación de cobre en raíces y hojas de las especies présenles en el sitio de trabajo, con el objeto de evaluar su potencial fitoextractor y fitoestabilizador. El sustrato del sector no vegetado presentó un pH 7,4; altos contenidos de sales y 5,0 % de materia orgánica, además de un alto contenido de metales pesados, principalmente cobre (> 2,5 g kg-1. Los sectores vegetados del tranque de relaves

  16. How can we take advantage of halophyte properties to cope with heavy metal toxicity in salt-affected areas?

    Czech Academy of Sciences Publication Activity Database

    Lutts, S.; Lefevre, Isabelle

    2015-01-01

    Roč. 115, č. 3 (2015), s. 509-528 ISSN 0305-7364 Institutional support: RVO:60077344 Keywords : Antioxidants * glycinebetaine * metal distribution * osmoprotectants Subject RIV: BO - Biophysics Impact factor: 3.982, year: 2015

  17. Alleviation of environmental risks associated with severely contaminated mine tailings using amendments: Modeling of trace element speciation, solubility, and plant accumulation.

    Science.gov (United States)

    Pardo, Tania; Bes, Cleménce; Bernal, Maria Pilar; Clemente, Rafael

    2016-11-01

    Tailings are considered one of the most relevant sources of contamination associated with mining activities. Phytostabilization of mine spoils may need the application of the adequate combination of amendments to facilitate plant establishment and reduce their environmental impact. Two pot experiments were set up to assess the capability of 2 inorganic materials (calcium carbonate and a red mud derivate, ViroBind TM ), alone or in combination with organic amendments, for the stabilization of highly acidic trace element-contaminated mine tailings using Atriplex halimus. The effects of the treatments on tailings and porewater physico-chemical properties and trace-element accumulation by the plants, as well as the processes governing trace elements speciation and solubility in soil solution and their bioavailability were modeled. The application of the amendments increased tailings pH and decreased (>99%) trace elements solubility in porewater, but also changed the speciation of soluble Cd, Cu, and Pb. All the treatments made A. halimus growth in the tailings possible; organic amendments increased plant biomass and nutritional status, and reduced trace-element accumulation in the plants. Tailings amendments modified trace-element speciation in porewater (favoring the formation of chlorides and/or organo-metallic forms) and their solubility and plant uptake, which were found to be mainly governed by tailing/porewater pH, electrical conductivity, and organic carbon content, as well as soluble/available trace-element concentrations. Environ Toxicol Chem 2016;35:2874-2884. © 2016 SETAC. © 2016 SETAC.

  18. Remediation of saline-sodic soil with flue gas desulfurization gypsum in a reclaimed tidal flat of southeast China.

    Science.gov (United States)

    Mao, Yumei; Li, Xiaping; Dick, Warren A; Chen, Liming

    2016-07-01

    Salinization and sodicity are obstacles for vegetation reconstruction of coastal tidal flat soils. A study was conducted with flue gas desulfurization (FGD)-gypsum applied at rates of 0, 15, 30, 45 and 60Mg/ha to remediate tidal flat soils of the Yangtze River estuary. Exchangeable sodium percentage (ESP), exchangeable sodium (ExNa), pH, soluble salt concentration, and composition of soluble salts were measured in 10cm increments from the surface to 30cm depth after 6 and 18months. The results indicated that the effect of FGD-gypsum is greatest in the 0-10cm mixing soil layer and 60Mg/ha was the optimal rate that can reduce the ESP to below 6% and decrease soil pH to neutral (7.0). The improvement effect was reached after 6months, and remained after 18months. The composition of soluble salts was transformed from sodic salt ions mainly containing Na(+), HCO3(-)+CO3(2-) and Cl(-) to neutral salt ions mainly containing Ca(2+) and SO4(2-). Non-halophyte plants were survived at 90%. The study demonstrates that the use of FGD-gypsum for remediating tidal flat soils is promising. Copyright © 2016. Published by Elsevier B.V.

  19. Eddy covarianace measurements in a hyper-arid and hyper-saline mangroves ecosystem

    Science.gov (United States)

    Perri, S.; Marpu, P.; Molini, A.; Armstrong, P.

    2017-12-01

    The natural environment of mangroves provides a number of ecosystem services for improving water quality, supporting healthy fisheries, and protecting the coasts. Also, their carbon storage is larger than any other forest type. Several authors have recognized the importance of mangroves in global carbon cycles. However, energy, water and carbon exchanges between ecosystem and atmosphere are still not completely understood. Eddy covariance measurements are extremely valuable to understand the role of the unique stressors of costal ecosystems in gas exchange. In particular, periodic flooding and elevated soil pore water salinity influence land-atmosphere interactions. Despites the importance of flux measurements in mangroves forests, such in-situ observations are extremely rare. Our research team set up an eddy covariance tower in the Mangrove National Park of Abu Dhabi, UAE. The study site (24.4509° N, 54.4288° E) is located in a dwarf Avicennia marina ecosystem experiencing extremely high temperatures and salinity. CO2 and H2O exchanges are estimated and related to water level and salinity measurements. This unique dataset will shed some light on the net ecosystem exchange (NEE) of carbon dioxide, on energy fluxes and on evapotranspiration rates for a halophyte ecosystem under severe salt-stress and high temperature.

  20. Large-scale risk assessment of polycyclic aromatic hydrocarbons in shoreline sediments from Saudi Arabia: Environmental legacy after twelve years of the Gulf war oil spill

    Energy Technology Data Exchange (ETDEWEB)

    Bejarano, Adriana C., E-mail: ABejarano@researchplanning.co [Research Planning Inc., 1121 Park St., Columbia, SC 29201 (United States); Michel, Jacqueline [Research Planning Inc., 1121 Park St., Columbia, SC 29201 (United States)

    2010-05-15

    A large-scale assessment of polycyclic aromatic hydrocarbons (PAHs) from the 1991 Gulf War oil spill was performed for 2002-2003 sediment samples (n = 1679) collected from habitats along the shoreline of Saudi Arabia. Benthic sediment toxicity was characterized using the Equilibrium Partitioning Sediment Benchmark Toxic Unit approach for 43 PAHs (ESBTU{sub FCV,43}). Samples were assigned to risk categories according to ESBTU{sub FCV,43} values: no-risk (<=1), low (>1-<=2), low-medium (>2-<=3), medium (>3-<=5) and high-risk (>5). Sixty seven percent of samples had ESBTU{sub FCV,43} > 1 indicating potential adverse ecological effects. Sediments from the 0-30 cm layer from tidal flats, and the >30-<60 cm layer from heavily oiled halophytes and mangroves had high frequency of high-risk samples. No-risk samples were characterized by chrysene enrichment and depletion of lighter molecular weight PAHs, while high-risk samples showed little oil weathering and PAH patterns similar to 1993 samples. North of Safaniya sediments were not likely to pose adverse ecological effects contrary to sediments south of Tanaqib. Landscape and geomorphology has played a role on the distribution and persistence in sediments of oil from the Gulf War. - Risk Assessment of PAHs in shoreline sediments 12 years after the Gulf War oil spill.

  1. Discovery and Characterization of Two Novel Salt-Tolerance Genes in Puccinellia tenuiflora

    Directory of Open Access Journals (Sweden)

    Ying Li

    2014-09-01

    Full Text Available Puccinellia tenuiflora is a monocotyledonous halophyte that is able to survive in extreme saline soil environments at an alkaline pH range of 9–10. In this study, we transformed full-length cDNAs of P. tenuiflora into Saccharomyces cerevisiae by using the full-length cDNA over-expressing gene-hunting system to identify novel salt-tolerance genes. In all, 32 yeast clones overexpressing P. tenuiflora cDNA were obtained by screening under NaCl stress conditions; of these, 31 clones showed stronger tolerance to NaCl and were amplified using polymerase chain reaction (PCR and sequenced. Four novel genes encoding proteins with unknown function were identified; these genes had no homology with genes from higher plants. Of the four isolated genes, two that encoded proteins with two transmembrane domains showed the strongest resistance to 1.3 M NaCl. RT-PCR and northern blot analysis of P. tenuiflora cultured cells confirmed the endogenous NaCl-induced expression of the two proteins. Both of the proteins conferred better tolerance in yeasts to high salt, alkaline and osmotic conditions, some heavy metals and H2O2 stress. Thus, we inferred that the two novel proteins might alleviate oxidative and other stresses in P. tenuiflora.

  2. Assessment and Determination land uses of Qom's Hoze Soltan Lake southern lands by FAO Agenda and It's Rehabilitation Strategies

    Science.gov (United States)

    Karimpour Reihan, Majid

    2010-05-01

    Increase of playas, decrease of water quality, soil and plant degradation is one of important problems in recent decays. Notwithstanding increase of playa wetlands- 4 million ha in our country- is perform some investigations about this biome and components and this lack of investigation is made degradation of water, soil, plant potentials and at least desertification. Then, management the biome and planning for sustainable development is very important because of sensitive this environments and has requirement to recognize ecological properties and components, so in this study, try to investigate fasting and latent this regions. At last for potentialization of region for rangeland, water and dry culture use, assessment and classification of region was performed with aim of FAO formula. According to this formula, environmental factors studied and performed grading and classifying. Basis on results, the region is not proper for dry farming and view of water farming and rangeland was settled in 5 and 6 classes. Latest result should be conserving the region. For this act, our introduced 13 halophyte plats with view of investigation of 20 factors. May god will, ganged this regions to good rangelands and forests of dry regions. Key words: Assessment of lands, Hoze Soltane of Qom, environmental factors, FAO, Compatible Plants, Reclamation strategies

  3. ON PHYTOCOENOTICAL MAPPING OF CASPIAN DESERT REGION

    Directory of Open Access Journals (Sweden)

    I. SAFRONOVA

    2004-05-01

    Full Text Available The phytoecological map (l :2.500.000 for Desert Region, including the Caspian Lowland and the Mangyshlak. has been compiled. It gives an idea of latitudinal differentiation cf vegetation. Edaphic variants and lithological composition in low mountains. The legend has been constructed according to zonal-typological principle e using an ecological-phytocoenotic classification. Heterogeneity of vegetation is reflected by means of territoria1 units (complex, series, combination and additional marks above the vegetation background. In the northern subzone vegetation is fairly monotonous and characterized by prevalence of wormwood communities (Artemisia of subgenus Seriphidium, joined in three formations: Artemisia lerchiana, A. arenaria. A. pauciflora. Small areas are occupied by shrub deserts of Calligollum aphyllum and Tamarix ramosissima. To southward of 47° N in the middle subzone on the Caspian Lowland the communities of halophyte perennial saltworts essential1y dominate, and to less extent-wormwood communities of hemipsammophytic Artemisia terrae-albae and psammophytic Artemisia arenaria and A. lerchiana. Deserts of Mangyshlak are much diverse. Dwarf semishrubs are presented by species of perennial saltworts (Anabasis salsa, Nanophyton erinaceum,Arthrophytum lehnwnianum, Salsola orientaUs and wonnwood (Artemisia terrae-albae, A. gurganica. A. santolina. To southward of 43° N in the southern subzone dwarf semishrub Salsola gemmascens and Artemisia kemrudica corrnnunities prevail.

  4. ON PHYTOCOENOTICAL MAPPING OF CASPIAN DESERT REGION

    Directory of Open Access Journals (Sweden)

    I. SAFRONOVA

    2004-01-01

    Full Text Available The phytoecological map (l :2.500.000 for Desert Region, including the Caspian Lowland and the Mangyshlak. has been compiled. It gives an idea of latitudinal differentiation cf vegetation. Edaphic variants and lithological composition in low mountains. The legend has been constructed according to zonal-typological principle e using an ecological-phytocoenotic classification. Heterogeneity of vegetation is reflected by means of territoria1 units (complex, series, combination and additional marks above the vegetation background. In the northern subzone vegetation is fairly monotonous and characterized by prevalence of wormwood communities (Artemisia of subgenus Seriphidium, joined in three formations: Artemisia lerchiana, A. arenaria. A. pauciflora. Small areas are occupied by shrub deserts of Calligollum aphyllum and Tamarix ramosissima. To southward of 47° N in the middle subzone on the Caspian Lowland the communities of halophyte perennial saltworts essential1y dominate, and to less extent-wormwood communities of hemipsammophytic Artemisia terrae-albae and psammophytic Artemisia arenaria and A. lerchiana. Deserts of Mangyshlak are much diverse. Dwarf semishrubs are presented by species of perennial saltworts (Anabasis salsa, Nanophyton erinaceum,Arthrophytum lehnwnianum, Salsola orientaUs and wonnwood (Artemisia terrae-albae, A. gurganica. A. santolina. To southward of 43° N in the southern subzone dwarf semishrub Salsola gemmascens and Artemisia kemrudica corrnnunities prevail.

  5. Tamarix microRNA Profiling Reveals New Insight into Salt Tolerance

    Directory of Open Access Journals (Sweden)

    Jianwen Wang

    2018-04-01

    Full Text Available The halophyte tamarisk (Tamarix is extremely salt tolerant, making it an ideal material for salt tolerance-related studies. Although many salt-responsive genes of Tamarix were identified in previous studies, there are no reports on the role of post-transcriptional regulation in its salt tolerance. We constructed six small RNA libraries of Tamarix chinensis roots with NaCl treatments. High-throughput sequencing of the six libraries was performed and microRNA expression profiles were constructed. We investigated salt-responsive microRNAs to uncover the microRNA-mediated genes regulation. From these analyses, 251 conserved and 18 novel microRNA were identified from all small RNAs. From 191 differentially expressed microRNAs, 74 co-expressed microRNAs were identified as salt-responsive candidate microRNAs. The most enriched GO (gene ontology terms for the 157 genes targeted by differentially expressed microRNAs suggested that transcriptions factors were highly active. Two hub microRNAs (miR414, miR5658, which connected by several target genes into an organic microRNA regulatory network, appeared to be the key regulators of post-transcriptional salt-stress responses. As the first survey on the tamarisk small RNAome, this study improves the understanding of tamarisk salt-tolerance mechanisms and will contribute to the molecular-assisted resistance breeding.

  6. The salt glands of Tamarix usneoides E. Mey. ex Bunge (South African Salt Cedar).

    Science.gov (United States)

    Wilson, Hayden; Mycock, David; Weiersbye, Isabel M

    2017-06-03

    Tamarix usneoides is a halophyte tree endemic to south-western Africa. This species is known to excrete a range of ions from specialized glandular structures on its leaves. To understand the mechanisms involved in the transport, sequestration and excretion of ions by the glands, a study was performed on salt gland distribution and ultrastructure. The glands are vesiculated trichomes, comprised of eight cells viz. two basal collecting cells and six excretory cells, partially bounded by a secondary cell wall that could serve as an impermeable barrier, forcing excess ions to move from the apoplast of the surrounding tissue into the cytoplasm of the basal excretory cells. It was hypothesized that the ions are moved across the excretory cells in endocytotic vesicles that fuse with the plasmalemma or form junctional complexes, allowing ion movement from one excretory cell to the next. In the apical cell, the vesicles fuse with the plasmalemma, releasing the ions into the network of cell wall ingrowths which channel the ions to the outside surface of the cell. This study shows that there are distinct structural adaptations for the processing of ions for excretion, although the mechanism by which ions enter the cells still needs to be determined.

  7. The plasma membrane transport systems and adaptation to salinity.

    Science.gov (United States)

    Mansour, Mohamed Magdy F

    2014-11-15

    Salt stress represents one of the environmental challenges that drastically affect plant growth and yield. Evidence suggests that glycophytes and halophytes have a salt tolerance mechanisms working at the cellular level, and the plasma membrane (PM) is believed to be one facet of the cellular mechanisms. The responses of the PM transport proteins to salinity in contrasting species/cultivars were discussed. The review provides a comprehensive overview of the recent advances describing the crucial roles that the PM transport systems have in plant adaptation to salt. Several lines of evidence were presented to demonstrate the correlation between the PM transport proteins and adaptation of plants to high salinity. How alterations in these transport systems of the PM allow plants to cope with the salt stress was also addressed. Although inconsistencies exist in some of the information related to the responses of the PM transport proteins to salinity in different species/cultivars, their key roles in adaptation of plants to high salinity is obvious and evident, and cannot be precluded. Despite the promising results, detailed investigations at the cellular/molecular level are needed in some issues of the PM transport systems in response to salinity to further evaluate their implication in salt tolerance. Copyright © 2014 Elsevier GmbH. All rights reserved.

  8. Large-scale risk assessment of polycyclic aromatic hydrocarbons in shoreline sediments from Saudi Arabia: Environmental legacy after twelve years of the Gulf war oil spill

    International Nuclear Information System (INIS)

    Bejarano, Adriana C.; Michel, Jacqueline

    2010-01-01

    A large-scale assessment of polycyclic aromatic hydrocarbons (PAHs) from the 1991 Gulf War oil spill was performed for 2002-2003 sediment samples (n = 1679) collected from habitats along the shoreline of Saudi Arabia. Benthic sediment toxicity was characterized using the Equilibrium Partitioning Sediment Benchmark Toxic Unit approach for 43 PAHs (ESBTU FCV,43 ). Samples were assigned to risk categories according to ESBTU FCV,43 values: no-risk (≤1), low (>1-≤2), low-medium (>2-≤3), medium (>3-≤5) and high-risk (>5). Sixty seven percent of samples had ESBTU FCV,43 > 1 indicating potential adverse ecological effects. Sediments from the 0-30 cm layer from tidal flats, and the >30-<60 cm layer from heavily oiled halophytes and mangroves had high frequency of high-risk samples. No-risk samples were characterized by chrysene enrichment and depletion of lighter molecular weight PAHs, while high-risk samples showed little oil weathering and PAH patterns similar to 1993 samples. North of Safaniya sediments were not likely to pose adverse ecological effects contrary to sediments south of Tanaqib. Landscape and geomorphology has played a role on the distribution and persistence in sediments of oil from the Gulf War. - Risk Assessment of PAHs in shoreline sediments 12 years after the Gulf War oil spill.

  9. Production of novel vinegar having antioxidant and anti-fatigue activities from Salicornia herbacea L.

    Science.gov (United States)

    Cho, Hyun-Dong; Lee, Ju-Hye; Jeong, Ji-Hye; Kim, Jae-Yong; Yee, Sung-Tae; Park, Seok-Kyu; Lee, Mi-Kyung; Seo, Kwon-Il

    2016-03-15

    Salicornia herbacea L. is a halophyte that grows in salt marshes and contains significant amounts of salts and minerals. Because it is known as a folk medication to treat diseases, various processed products such as powder, globular type of powder, laver and extract have been developed. However, it is difficult to process as a drink because of its high salinity. In the present study, glasswort vinegar (GV) containing high amounts of organic acids and minerals was developed via two-step fermentation with unpolished rice substrates and investigated its antioxidant and anti-fatigue activities. GV showed various free radical scavenging effects, reducing power, oxidized-LDL inhibition and superoxide dismutase-like activities. Compared with the control group (orally administered 7 g kg(-1) distilled water), the GV supplementation group showed increased running endurance and had higher glycogen accumulation in liver and muscles of rats exhausted by exercise. Furthermore, the GV-administered group demonstrated significantly elevated lactate and ATP metabolism, promoting enzyme activities such as muscle creatine kinase and lactate dehydrogenase, whereas serum fatigue biomarkers such as ammonia, lactate and inorganic acid were markedly decreased. These results indicate that GV can be used as a functional food for the development of a dietary beverage to alleviate fatigue. © 2015 Society of Chemical Industry.

  10. Leaf anatomy and subgeneric affiliations of C3 and C4 species of Suaeda (Chenopodiaceae) in North America

    International Nuclear Information System (INIS)

    Fisher, D.D.; Schenk, H.J.; Thorsch, J.A.; Ferren, W.R. Jr.

    1997-01-01

    The halophytic genus Suaeda (Chenopodiaceae) includes species with the C3 and C4 photosynthetic pathways. North American species of this genus were investigated to determine whether C3 and C4 leaf anatomy are consistent within the two sections of Suaeda, Chenopodina and Limbogermen, present on this continent. All species from section Chenopodina were found to possess C3 anatomy, whereas all species from section Limbogermen were found to be C4 species. Characteristics of leaf anatomy and chloroplast ultrastructure are similar to those reported from C3 and C4 species, respectively, from the Eastern Hemisphere. All species from section Limbogermen have the suaedoid type of leaf anatomy, characterized by differentiation of the mesophyll into palisade parenchyma and a chlorenchymatous sheath surrounding central water-storage tissue, as well as leaf carbon isotope ratios of above -20. All species from section Chenopodina have austrobassioid leaf anatomy without a chlorenchymatous sheath and leaf carbon isotope ratio values of below -20. According to our literature review, the photosynthetic pathway has now been reported for about half (44) of the Suaeda species worldwide. The C3 and C4 photosynthetic syndromes are with few exceptions distributed along sectional or subsectional lines. These findings throw new light on the infrageneric taxonomy of this genus

  11. Bioactive Secondary Metabolites from Schizogyne sericea (Asteraceae) Endemic to Canary Islands.

    Science.gov (United States)

    Venditti, Alessandro; Bianco, Armandodoriano; Muscolo, Camilla; Zorzetto, Christian; Sánchez-Mateo, Candelaria C; Rabanal, Rosa M; Quassinti, Luana; Bramucci, Massimo; Damiano, Silvia; Iannarelli, Romilde; Lupidi, Giulio; Papa, Fabrizio; Petrelli, Dezemona; Vitali, Luca A; Vittori, Sauro; Maggi, Filippo

    2016-07-01

    Schizogyne sericea (Asteraceae) is a halophytic shrub endemic to the Canary Islands and traditionally employed as analgesic, astringent, anti-inflammatory, and vulnerary. A comprehensive phytochemical investigation was conducted on the flowering aerial parts by analyzing both essential oil constituents and polar compounds. The essential oil was dominated by p-cymene, with the noteworthy occurrence of β-pinene and thymol esters. From the EtOH extract, eight compounds were isolated and structurally elucidated. Essential oil, polar fractions, and isolates (2), (4), and (5) were separately in vitro assayed for antiproliferative activity on human tumor cell lines (A375, MDA-MB 231, and HCT116) by MTT assay, for antioxidant potential by DPPH, ABTS, and FRAP assays, and for antimicrobial activity by the agar disk diffusion method. Results revealed that essential oil and compounds 1 and 2 exert a strong inhibition on tumor cells, and in some cases, higher than that of cisplatin. Fractions containing thymol derivatives (1 and 2) and caffeoylquinic acid derivatives 4 and 5 displayed antioxidant activity comparable to that of Trolox, making S. sericea extract an interesting natural product with potential applications as preservative or in the treatment of diseases in which oxidative stress plays an important role. © 2016 Wiley-VHCA AG, Zürich.

  12. Developmental Peculiarities and Seed-Borne Endophytes in Quinoa: Omnipresent, Robust Bacilli Contribute to Plant Fitness

    Science.gov (United States)

    Pitzschke, Andrea

    2016-01-01

    Among potential climate change-adapted crops for future agriculture, quinoa (Chenopodium quinoa), a facultative halophyte plant with exceptional nutritional properties, stands out as a prime candidate. This work examined how quinoa deals with extreme situations during seed rehydration. Quinoa distinguishes itself from other plants in multiple ways. It germinates within minutes, even under extremely hostile conditions. Broken seeds/split embryos are able to regenerate. Furthermore, quinoa seedlings are resurrection-competent. These peculiarities became in part explainable upon discovery of seed-borne microorganisms. 100% of quinoa seeds, from different sources, are inhabited by diverse members of the genus Bacillus. These endophytes are motile and reside in all seedling organs, indicating vertical transmission. Owing to their high catalase activities and superoxide contents the bacteria potentially manipulate the host’s redox status. Superoxide-driven cell expansion enables quinoa to overcome a critical period in development, seedling establishment. Quinoa’s immediate confrontation with “foreign” reactive oxygen species and bacterial elicitors likely induces a naturally primed state, enabling plants to withstand extreme situations. The endophytic bacteria, which are cultivable and highly robust themselves, have high potential for application in agriculture, food (amylase) and cosmetics (catalase) industry. This work also discusses the potential of transferring quinoa’s microbiome to improve stress resistance in other plant species. PMID:26834724

  13. Biotreatment of produced waters for volume reduction and contaminant removal

    Energy Technology Data Exchange (ETDEWEB)

    Negri, M.C.; Hinchman, R.R. [Argonne National Lab., IL (United States); Mollock, J. [Devon Energy Corp., Oklahoma City, OK (United States)

    1997-10-01

    Produced water is wastewater that is brought to the surface from natural gas wells during natural gas production. Its constituents, mostly salt, with traces of hydrocarbons and heavy metals, are a significant disposal problem. Argonne National Laboratory (ANL), in partnership with the Gas Research Institute (GRI), has developed a low-cost, low-tech method, in which green plants are used to reduce the volume of produced water. The authors have designed an engineered bioreactor system, which is modeled after natural saline wetland ecosystems. The plant bioreactor system maximizes plant evapotranspiration to reduce wastewater volume and, concurrently, may function as a biological filter to enhance contaminant degradation and immobilization in the root/rhizosphere zone. Halophyte plant species having high salt tolerance and high transpiration rates were selected after they tested them in greenhouse experiments. Models obtained by using their greenhouse findings reduced the volume of the wastewater (up to 6% salt) by 75% in about 8 days. A field demonstration of the bioreactor, designed on the basis of the results from the greenhouse study, is successfully under way at a natural gas well site in Oklahoma. The process could offer the petroleum industry a low-cost biological alternative to existing expensive options.

  14. Physio-biochemical and morphological characters of halophyte legume shrub, Acacia ampliceps seedlings in response to salt stress under greenhouse

    Directory of Open Access Journals (Sweden)

    Cattarin eTheerawitaya

    2015-08-01

    Full Text Available Acacia ampliceps (salt wattle, a leguminous shrub, has been introduced in salt-affected areas in northeast of Thailand for remediation of saline soils. However, the defense mechanisms underlying salt tolerance A. ampliceps are unknown. We investigated various physio-biochemical and morphological attributes of A. ampliceps in response to varying levels of salt treatment (200 to 600 mM NaCl. Seedlings of A. ampliceps (252 cm in plant height raised from seeds were treated with 200 mM (mild stress, 400 and 600 mM (extreme stress of salt treatment (NaCl under greenhouse conditions. Na+ and Ca2+ contents in the leaf tissues increased significantly under salt treatment, whereas K+ content declined in salt-stressed plants. Free proline and soluble sugar contents in plant grown under extreme salt stress (600 mM NaCl for 9 days significantly increased by 28.7 (53.33 mol g1 FW and 3.2 (42.11 mg g1 DW folds, respectively over the control, thereby playing a major role as osmotic adjustment. Na+ enrichment in the phyllode tissues of salt-stressed seedlings positively related to total chlorophyll degradation (R2=0.72. Photosynthetic pigments and chlorophyll fluorescence in salt-stressed plants increased under mild salt stress (200 mM NaCl. However, these declined under high level of salinity (400-600 mM NaCl, consequently resulting in reduced net photosynthetic rate (R2=0.81 and plant dry weight (R2= 0.91. The study concludes that A. ampliceps has an osmotic adjustment and Na+ compartmentation as effective salt defense mechanisms, and thus it could be an excellent species to grow in salt-affected soils.

  15. Seed dimorphism nutrients and salinity differentially affect seed traits of the desert halophyte Suaeda aralocaspica via multiple maternal effects.

    NARCIS (Netherlands)

    Wang, L.; Baskin, J.M.; Baskin, C.C.; Cornelissen, J.H.C.; Dong, M.; Huang, Z.Y.

    2012-01-01

    Background: Maternal effects may influence a range of seed traits simultaneously and are likely to be context-dependent. Disentangling the interactions of plant phenotype and growth environment on various seed traits is important for understanding regeneration and establishment of species in natural

  16. Seed dimorphism, nutrients and salinity differentially affect seed traits of the desert halophyte Suaeda aralocaspica via multiple maternal effects.

    Science.gov (United States)

    Wang, Lei; Baskin, Jerry M; Baskin, Carol C; Cornelissen, J Hans C; Dong, Ming; Huang, Zhenying

    2012-09-25

    Maternal effects may influence a range of seed traits simultaneously and are likely to be context-dependent. Disentangling the interactions of plant phenotype and growth environment on various seed traits is important for understanding regeneration and establishment of species in natural environments. Here, we used the seed-dimorphic plant Suaeda aralocaspica to test the hypothesis that seed traits are regulated by multiple maternal effects. Plants grown from brown seeds had a higher brown:black seed ratio than plants from black seeds, and germination percentage of brown seeds was higher than that of black seeds under all conditions tested. However, the coefficient of variation (CV) for size of black seeds was higher than that of brown seeds. Seeds had the smallest CV at low nutrient and high salinity for plants from brown seeds and at low nutrient and low salinity for plants from black seeds. Low levels of nutrients increased size and germinability of black seeds but did not change the seed morph ratio or size and germinability of brown seeds. High levels of salinity decreased seed size but did not change the seed morph ratio. Seeds from high-salinity maternal plants had a higher germination percentage regardless of level of germination salinity. Our study supports the multiple maternal effects hypothesis. Seed dimorphism, nutrient and salinity interacted in determining a range of seed traits of S. aralocaspica via bet-hedging and anticipatory maternal effects. This study highlights the importance of examining different maternal factors and various offspring traits in studies that estimate maternal effects on regeneration.

  17. Variation in Foliar δ13C of Desert Plant Reaumuria soongorica (Pall.) Maxim. among Different Environments in Northwestern China

    Science.gov (United States)

    Ma, J.; Pendall, E.; Chen, F.

    2008-12-01

    SN, SOM, total SP and available SP in soil. The main soil factors affecting δ13C values in the desert halophyte R. soongorica were SWC and TDS. Leaf δ13C values was significantly correlated with the contents of LK, LWC, and proline (P<0.001). Correlation with the contents of LK content was most profound (r=0.793), followed by that with LWC (r=0.786), indicating that the variation of leaf δ13C value could reflect the degree of drought stress and the variation in leaf δ13C values of R. soongorica were likely caused by stomatal conductance, rather than by nutrient-related changes in photosynthetic efficiency under extremely low available water conditions. The observed significant correlations between foliar δ13C values in R. soongorica and SWC and soil TDS reinforced that R. soongorica is a super-halophyte in terms of adaptive strategies to arid environments.

  18. Wet fractionation of the succulent halophyte Salicornia sinus-persica, with the aim of low input (water saving) biorefining into bioethanol

    DEFF Research Database (Denmark)

    Alassali, Ayah; Cybulska, Iwona; Galvan, Alejandro Ríos

    2017-01-01

    -persica was collected and split into two fractions by wet fractionation; liquid (juice) and solid (pulp). Sugar contents were found to be 1.0–1.5% for the juice fraction and 50% (w/w) for the fresh pulp. Direct fermentation of the juice using Saccharomyces cerevisiae showed no salt inhibition of the yeast and ethanol...... yields of ~70% were achieved. A pretreatment study was carried out for the pulp fraction applying mild hydrothermal pretreatment. Cellulose convertibility was found to be significantly higher for severity factors above 2.00, and the highest ethanol yield (76.91 ± 3.03%) was found at process severity of 3...

  19. The effect of the halophytic shrub Lycium ruthenium (Mutt) on selected soil properties of a desert ecosystem in central Iran

    Science.gov (United States)

    Gholam Ali Jalali; Hossein Akbarian; Charles Rhoades; Hamed Yousefzadeh

    2012-01-01

    We compared soil properties beneath naturally-occurring patches of Lycium ruthenicum Murray (fam. Solanaceae) to evaluate the shrub’s potential to improve the fertility of saline soils. Soil pH, total nitrogen and carbon and extractable potassium, magnesium and phosphorus were respectively significantly higher in the A and B horizons of Lycium shrub patches...

  20. Tonoplast Na+/H+ Antiport Activity and Its Energization by the Vacuolar H+-ATPase in the Halophytic Plant Mesembryanthemum crystallinum L.

    Science.gov (United States)

    Barkla, B. J.; Zingarelli, L.; Blumwald, E.; Smith, JAC.

    1995-10-01

    Tonoplast vesicles were isolated from leaf mesophyll tissue of the inducible Crassulacean acid metabolism plant Mesembryanthemum crystallinum to investigate the mechanism of vacuolar Na+ accumulation in this halophilic species. In 8-week-old plants exposed to 200 mM NaCl for 2 weeks, tonoplast H+-ATPase activity was approximately doubled compared with control plants of the same age, as determined by rates of both ATP hydrolysis and ATP-dependent H+ transport. Evidence was also obtained for the presence of an electroneutral Na+/H+ antiporter at the tonoplast that is constitutively expressed, since extravesicular Na+ was able to dissipate a pre-existing transmembrane pH gradient. Initial rates of H+ efflux showed saturation kinetics with respect to extravesicular Na+ concentration and were 2.1-fold higher from vesicles of salt-treated plants compared with the controls. Na+-dependent H+ efflux also showed a high selectivity for Na+ over K+, was insensitive to the transmembrane electrical potential difference, and was more than 50% inhibited by 200 [mu]M N-amidino-3,5-diamino-6-chloropyrazinecarboxamide hydrochloride. The close correlation between increased Na+/H+ antiport and H+-ATPase activities in response to salt treatment suggests that accumulation of the very high concentrations of vacuolar Na+ found in M. crystallinum is energized by the H+ electrochemical gradient across the tonoplast.

  1. Chemical composition and digestibility of some browse plant species collected from Algerian arid rangelands

    Energy Technology Data Exchange (ETDEWEB)

    Boufennara, S.; Lopez, S.; Boussebouna, H.; Bodas, R.; Bouazza, L.

    2012-11-01

    Many wild browse and bush species are undervalued mainly because of insufficient knowledge about their potential feeding value. The objective was to evaluate some nutritional attributes of various Algerian browse and shub species (Atriplex halimus, Artemisia campestris, Artemisia herba-alba, Astragalus gombiformis, Calobota saharae, Retama raetam, Stipagrostis pungens, Lygeum spartum and Stipa tenacissima). Chemical composition, phenols and tannins concentration, in vitro digestibility, in vitro gas production kinetics and in vitro bio-assay for assessment of tannins using buffered rumen fluid, and in situ disappearence of the edible parts of the plants (leaves, thin twigs and flowers) were determined. In general, protein content in dicotyledon species was always greater than in monocotyledon grasses, these showing higher neutral and acid detergent fibre and lower lignin contents than dicots. The tannin concentrations varied considerably between species, but in general the plants investigated in this study had low tannin contents (except for Artemisia spp. and S. tenacissima). Monocots showed lower in vitro and in situ digestibilities, fermentation rate, cumulative gas production and extent of degradation than dicot species. The plants were clustered by principal components analysis in two groups: poor-quality grasses and the most digestible dicot species. Chemical composition (neutral detergent fibre and protein) and digestibility were the main influential variables determining the ranking. In conclusion, A. halimus, A. campestris, A. herba-alba and A. gombiformis can be considered of greater nutritional value than the highly fibrous and low digestible grasses (S. pungens, L. spartum and S. tenacissima) that should be considered emergency roughages. (Author) 46 refs.

  2. Overaccumulation of glycine betaine makes the function of the thylakoid membrane better in wheat under salt stress

    Directory of Open Access Journals (Sweden)

    Fengxia Tian

    2017-02-01

    Full Text Available Wheat (Triticum aestivum L. lines T1, T4, and T6 were genetically modified to increase glycine betaine (GB synthesis by introduction of the BADH (betaine aldehyde dehydrogenase, BADH gene from mountain spinach (Atriplex hortensis L.. These transgenic lines and WT of wheat (T. aestivum L. were used to study the effect of increased GB synthesis on wheat tolerance to salt stress. Salt stress due to 200 mmol L−1 NaCl impaired the photosynthesis of the four wheat lines, as indicated by declines in net photosynthetic rate (Pn, stomatal conductance (Gs, maximum photochemical efficiency of PSII (Fv/Fm, and actual photochemical efficiency of PSII (ФPSII and an increase in intercellular CO2 concentration (Ci. In comparison with WT, the effect of salinity on the three transgenic lines was mild. Salt stress caused disadvantageous changes in lipids and their fatty acid compositions in the thylakoid membrane of the transgenic lines and WT. Under salt stress, the three transgenic lines showed slightly higher chlorophyll and carotenoid contents and higher Hill reaction activities and Ca2+-ATPase activity than WT. All the results suggest that overaccumulation of GB resulting from introduction of the BADH gene can enhance the salt tolerance of transgenic plants, especially in the protection of the components and function of thylakoid membranes, thereby making photosynthesis better. Changes in lipids and fatty acid compositions in the thylakoid membrane may be involved in the increased salt stress tolerance of the transgenic lines.

  3. [Allergens used in skin tests in Mexico].

    Science.gov (United States)

    Larenas Linnemann, Désirée; Arias Cruz, Alfredo; Guidos Fogelbach, Guillermo Arturo; Cid del Prado, Mari Lou

    2009-01-01

    Immunotherapy is the only recognized causal treatment for allergies. It is prepared on an individual basis, based on the patient's clinical history and the result of the skin prick test (SPT). An adequate composition of the allergens with which to test the patient is crucial for an optimal diagnosis. To know allergens used in tests in allergy practices in Mexico. A national survey among all members of the Colegio Mexicano de Inmunología Clínica y Alergia (CMICA) and of the Colegio Mexicano de Pediatras Especialistas en Inmunología Clínica y Alergia (COMPEDIA) was carried out. In a second phase respondents were asked to send in the composition of a routine SPT in their clinic. The results are presented descriptively and the frequency is calculated by which certain allergen is tested in the interviewed practices. A survey response rate of 61 (17%) was obtained and 54% showed their SPT content. Weeds' representation in the SPT seems adequate; Atriplex is tested in all allergy practices. Some trees that show cross-reactivity might be eliminated from the SPT, but 20% doesn't test for Cynodon nor Holcus, and 25% doesn't for important allergens as cat, dog and cockroach. House dust and tobacco are still tested with certain frequency. The selection of which allergens to test in a SPT is based on multiple data, that change continuously with new investigations and discoveries. Our specialty is the most indicated--and obligated--to adjust constantly to these changes to have the best diagnostic tool to detect specific allergies.

  4. The local knowledge of medicinal plants trader and diversity of medicinal plants in the Kabanjahe traditional market, North Sumatra, Indonesia.

    Science.gov (United States)

    Silalahi, Marina; Nisyawati; Walujo, Eko Baroto; Supriatna, Jatna; Mangunwardoyo, Wibowo

    2015-12-04

    ) Steud., Dischidia nummularia R.Br., Hoya macrophylla Blume, and Hoya coriacea Blume] have been used for cancer treatment by local communities, but pharmacologically unknown, hence they are promising candidates for further investigation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Evaluation and comparison of polyphenols and bioactivities of wild edible fruits of North-West Himalaya, India

    Directory of Open Access Journals (Sweden)

    Himani Singh

    2015-11-01

    Full Text Available Objective: To evaluate and compare the polyphenol contents, antioxidant, anti-elastase, anti-collagenase, anti-tyrosinase and anti-inflammatory activities of 13 wild edible fruits [Pyracantha crenulata, Berberis asiatica (B. asiatica, Ficus subincisa (F. subincisa, Morus serrata, Ziziphus nummularia, Leea asiatica (L. asiatica, Dendrobenthamia capitata, Ziziphus mauritiana, Prunus cerasoides, Ampelocissus latifolia (A. latifolia, Vitis jacquemontii, Morus alba and Grewia optiva] of North-West Himalayan Region of India. Methods: Fruits extracts were prepared with 80% aqueous acetone and evaluated for total phenolic contents (TPC and total flavonoid contents (TFC. Free radical scavenging activities [against 1,1-diphenyl-2-picryl-hydrazyl, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid, linoleate hydroperoxyl and superoxide radicals], ferric reducing ability, ferrous metal chelating capacity, anti-elastase, anti-collagenase, anti-tyrosinase and anti-inflammatory activities were determined by using various in vitro assays. Results: TPC varied from 58.83 to 4 496.39 mg gallic acid equivalents/100 g fruit weight (FW, being highest in A. latifolia and lowest in F. subincisa. TFC ranged from 108.00 to 1 963.75 mg catechin equivalents/100 g FW, standing highest in L. asiatica and lowest in Prunus cerasoides. A. latifolia and L. asiatica possessed the highest antioxidant activities while B. asiatica and L. asiatica owned uppermost anti-elastase and anti-collagenase activities, respectively. B. asiatica revealed the highest anti-tyrosinase activity and F. subincisa demonstrated the highest antiinflammatory activity. The present study revealed differential contribution of TPC and TFC in various antioxidant activities. However, no obvious relationship was visible between antielastase/anti-collagenase/anti-tyrosinase/anti-inflammatory activities and TPC/TFC, suggesting the role of individual or combination of specific phenolics and flavonoids

  6. The Use of a Chlorophyll Meter (SPAD-502) for Field Determinations of Red Mangrove (Rhizophora Mangle L.) Leaf Chlorophyll Amount

    Science.gov (United States)

    Connelly, Xana M.

    1997-01-01

    The red mangrove Rhizophora mangle L., is a halophytic woody spermatophyte common to the land-sea interface of tropical and subtropical intertidal zones. It has been reported that 60 to 75% of the coastline of the earth's tropical regions are lined with mangroves. Mangroves help prevent shoreline erosion, provide breeding, nesting and feeding areas for many marine animals and birds. Mangroves are important contributors of primary production in the coastal environment, and this is largely proportional to the standing crop of leaf chlorophylls. Higher intensities of ultraviolet radiation, resulting from stratospheric ozone depletion, can lead to a reduction of chlorophyll in terrestrial plants. Since the most common method for determining chlorophyll concentration is by extraction and this is labor intensive and time consuming, few studies on photosynthetic pigments of mangroves have been reported. Chlorophyll meter readings have been related to leaf chlorophyll content in apples and maples. It has also been correlated to nitrogen status in corn and cotton. Peterson et al., (1993) used a chlorophyll meter to detect nitrogen deficiency in crops and in determining the need for additional nitrogen fertilizer. Efforts to correlate chlorophyll meter measurements to chlorophyll content of mangroves have not been reported. This paper describes the use of a hand-held chlorophyll meter (Minolta SPAD-502) to determine the amount of red mangrove foliar chlorophyll present in the field.

  7. The physiology of mangrove trees with changing climate

    Science.gov (United States)

    Lovelock, Catherine E.; Krauss, Ken W.; Osland, Michael J.; Reef, Ruth; Ball, Marilyn C.; Meinzer, Frederick C.; Niinemets, Ülo

    2016-01-01

    Mangrove forests grow on saline, periodically flooded soils of the tropical and subtropical coasts. The tree species that comprise the mangrove are halophytes that have suites of traits that confer differing levels of tolerance of salinity, aridity, inundation and extremes of temperature. Here we review how climate change and elevated levels of atmospheric CO2 will influence mangrove forests. Tolerance of salinity and inundation in mangroves is associated with the efficient use of water for photosynthetic carbon gain which unpins anticipated gains in productivity with increasing levels of CO2. We review evidence of increases in productivity with increasing CO2, finding that enhancements in growth appear to be similar to trees in non-mangrove habitats and that gains in productivity with elevated CO2 are likely due to changes in biomass allocation. High levels of trait plasticity are observed in some mangrove species, which potentially facilitates their responses to climate change. Trait plasticity is associated with broad tolerance of salinity, aridity, low temperatures and nutrient availability. Because low temperatures and aridity place strong limits on mangrove growth at the edge of their current distribution, increasing temperatures over time and changing rainfall patterns are likely to have an important influence on the distribution of mangroves. We provide a global analysis based on plant traits and IPCC scenarios of changing temperature and aridity that indicates substantial global potential for mangrove expansion.

  8. Profiling of antioxidant potential and phytoconstituents of Plantago coronopus

    Directory of Open Access Journals (Sweden)

    C. G. Pereira

    Full Text Available Abstract The halophyte species Plantago coronopus has several described ethnomedicinal uses, but few reported biological activities. This work carried out for the first time a comparative analysis of P. coronopus organs in terms of phenolic composition and antioxidant activity of organic and water extracts from roots, leaves and flowers. The leaves contents in selected nutrients, namely amino acids and minerals, are also described. Roots (ethyl acetate and methanol extracts had the highest radical scavenging activity (RSA towards 1,1-diphenyl-2-picrylhydrazyl (DPPH and 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS radicals, while leaves (hexane extract had higher RSA on nitric oxide radical and iron chelating ability. High performance liquid chromatography (HPLC analysis identified eighteen phenolics from which salicylic acid and epicatechin are here firstly described in Plantago species. Leaves had mineral levels similar to those of most vegetables, proving to be a good source for elements like calcium, sodium, iron and magnesium, and also for several of the essential amino acids justifying it use as food. Our results, especially those regarding the phenolics composition, can explain the main traditional uses given to this plantain and, altogether, emphasize the potential of P. coronopus as a source of bioactive molecules particularly useful for the prevention of oxidative stress-related diseases.

  9. Salinity altered root distribution and increased diversity of bacterial communities in the rhizosphere soil of Jerusalem artichoke

    Science.gov (United States)

    Yang, Hui; Hu, Jinxiang; Long, Xiaohua; Liu, Zhaopu; Rengel, Zed

    2016-02-01

    The interaction between roots and bacterial communities in halophytic species is poorly understood. Here, we used Jerusalem artichoke cultivar Nanyu 1 (NY-1) to characterise root distribution patterns and determine diversity and abundance of bacteria in the rhizosphere soil under variable salinity. Root growth was not inhibited within the salinity range 1.2 to 1.9 g salt/kg, but roots were mainly confined to 0-20 cm soil layer vertically and 0-30 cm horizontally from the plant centre. Root concentrations of K+, Na+, Mg2+ and particularly Ca2+ were relatively high under salinity stress. High salinity stress decreased soil invertase and catalase activity. Using a next-generation, Illumina-based sequencing approach, we determined higher diversity of bacteria in the rhizosphere soil at high than low salinity. More than 15,500 valid reads were obtained, and Proteobacteria, Acidobacteria, Bacteroidetes and Actinobacteria predominated in all samples, accounting for >80% of the reads. On a genus level, 636 genera were common to the low and high salinity treatments at 0-5 cm and 5-10 cm depth. The abundance of Steroidobacter and Sphingomonas was significantly decreased by increasing salinity. Higher Shannon and Chao 1 indices with increasing severity of salt stress indicated that high salt stress increased diversity in the bacterial communities.

  10. De Novo Transcriptome Sequencing of Desert Herbaceous Achnatherum splendens (Achnatherum Seedlings and Identification of Salt Tolerance Genes

    Directory of Open Access Journals (Sweden)

    Jiangtao Liu

    2016-03-01

    Full Text Available Achnatherum splendens is an important forage herb in Northwestern China. It has a high tolerance to salinity and is, thus, considered one of the most important constructive plants in saline and alkaline areas of land in Northwest China. However, the mechanisms of salt stress tolerance in A. splendens remain unknown. Next-generation sequencing (NGS technologies can be used for global gene expression profiling. In this study, we examined sequence and transcript abundance data for the root/leaf transcriptome of A. splendens obtained using an Illumina HiSeq 2500. Over 35 million clean reads were obtained from the leaf and root libraries. All of the RNA sequencing (RNA-seq reads were assembled de novo into a total of 126,235 unigenes and 36,511 coding DNA sequences (CDS. We further identified 1663 differentially-expressed genes (DEGs between the salt stress treatment and control. Functional annotation of the DEGs by gene ontology (GO, using Arabidopsis and rice as references, revealed enrichment of salt stress-related GO categories, including “oxidation reduction”, “transcription factor activity”, and “ion channel transporter”. Thus, this global transcriptome analysis of A. splendens has provided an important genetic resource for the study of salt tolerance in this halophyte. The identified sequences and their putative functional data will facilitate future investigations of the tolerance of Achnatherum species to various types of abiotic stress.

  11. Yeast functional screen to identify genes conferring salt stress tolerance in Salicornia europaea.

    Science.gov (United States)

    Nakahara, Yoshiki; Sawabe, Shogo; Kainuma, Kenta; Katsuhara, Maki; Shibasaka, Mineo; Suzuki, Masanori; Yamamoto, Kosuke; Oguri, Suguru; Sakamoto, Hikaru

    2015-01-01

    Salinity is a critical environmental factor that adversely affects crop productivity. Halophytes have evolved various mechanisms to adapt to saline environments. Salicornia europaea L. is one of the most salt-tolerant plant species. It does not have special salt-secreting structures like a salt gland or salt bladder, and is therefore a good model for studying the common mechanisms underlying plant salt tolerance. To identify candidate genes encoding key proteins in the mediation of salt tolerance in S. europaea, we performed a functional screen of a cDNA library in yeast. The library was screened for genes that allowed the yeast to grow in the presence of 1.3 M NaCl. We obtained three full-length S. europaea genes that confer salt tolerance. The genes are predicted to encode (1) a novel protein highly homologous to thaumatin-like proteins, (2) a novel coiled-coil protein of unknown function, and (3) a novel short peptide of 32 residues. Exogenous application of a synthetic peptide corresponding to the 32 residues improved salt tolerance of Arabidopsis. The approach described in this report provides a rapid assay system for large-scale screening of S. europaea genes involved in salt stress tolerance and supports the identification of genes responsible for such mechanisms. These genes may be useful candidates for improving crop salt tolerance by genetic transformation.

  12. Coastal landforms and accumulation of mangrove peat increase carbon sequestration and storage.

    Science.gov (United States)

    Ezcurra, Paula; Ezcurra, Exequiel; Garcillán, Pedro P; Costa, Matthew T; Aburto-Oropeza, Octavio

    2016-04-19

    Given their relatively small area, mangroves and their organic sediments are of disproportionate importance to global carbon sequestration and carbon storage. Peat deposition and preservation allows some mangroves to accrete vertically and keep pace with sea-level rise by growing on their own root remains. In this study we show that mangroves in desert inlets in the coasts of the Baja California have been accumulating root peat for nearly 2,000 y and harbor a belowground carbon content of 900-34,00 Mg C/ha, with an average value of 1,130 (± 128) Mg C/ha, and a belowground carbon accumulation similar to that found under some of the tallest tropical mangroves in the Mexican Pacific coast. The depth-age curve for the mangrove sediments of Baja California indicates that sea level in the peninsula has been rising at a mean rate of 0.70 mm/y (± 0.07) during the last 17 centuries, a value similar to the rates of sea-level rise estimated for the Caribbean during a comparable period. By accreting on their own accumulated peat, these desert mangroves store large amounts of carbon in their sediments. We estimate that mangroves and halophyte scrubs in Mexico's arid northwest, with less than 1% of the terrestrial area, store in their belowground sediments around 28% of the total belowground carbon pool of the whole region.

  13. Yeast functional screen to identify genes conferring salt stress tolerance in Salicornia europaea

    Directory of Open Access Journals (Sweden)

    Yoshiki eNakahara

    2015-10-01

    Full Text Available Salinity is a critical environmental factor that adversely affects crop productivity. Halophytes have evolved various mechanisms to adapt to saline environments. Salicornia europaea L. is one of the most salt-tolerant plant species. It does not have special salt-secreting structures like a salt gland or salt bladder, and is therefore a good model for studying the common mechanisms underlying plant salt tolerance. To identify candidate genes encoding key proteins in the mediation of salt tolerance in S. europaea, we performed a functional screen of a cDNA library in yeast. The library was screened for genes that allowed the yeast to grow in the presence of 1.3 M NaCl. We obtained three full-length S. europaea genes that confer salt tolerance. The genes are predicted to encode (1 a novel protein highly homologous to thaumatin-like proteins, (2 a novel coiled-coil protein of unknown function, and (3 a novel short peptide of 32 residues. Exogenous application of a synthetic peptide corresponding to the 32 residues improved salt tolerance of Arabidopsis. The approach described in this report provides a rapid assay system for large-scale screening of S. europaea genes involved in salt stress tolerance and supports the identification of genes responsible for such mechanisms. These genes may be useful candidates for improving crop salt tolerance by genetic transformation.

  14. Genome structures and halophyte-specific gene expression of the extremophile thellungiella parvula in comparison with Thellungiella salsuginea (Thellungiella halophila) and arabidopsis

    KAUST Repository

    Oh, Dongha; Dassanayake, Maheshi; Haas, Jeffrey S.; Kropornika, Anna; Wright, Chris L.; D'Urzo, Matilde Paino; Hong, Hyewon; Ali, Shahjahan; Herná ndez, Á lvaro Gonzalez; Lambert, Georgina M.; Inan, Gü nsu; Galbraith, David; Bressan, Ray Anthony; Yun, Daejin; Zhu, Jian-Kang; Cheeseman, John McP; Bohnert, Hans Jü rgen

    2010-01-01

    and an uneven distribution of repeat sequences. T. parvula genome structure and DNA sequences were compared with orthologous regions from Arabidopsis and publicly available bacterial artificial chromosome sequences from Thellungiella salsuginea (previously

  15. Paleofloristic and paleofaunistic analysis of Dudváh River oxbow and implication for Late Holocene paleoenvironmental development of the Žitný ostrov Island (SW Slovakia)

    Science.gov (United States)

    Pišút, Peter; Břízová, Eva; Čejka, Tomáš; Pipík, Radovan

    2010-12-01

    Žitný ostrov, the largest island of the Danube River (SW Slovakia) gained its present shape in the Neoholocene period. As a result of increased flood and geomorphological Danube river activity dated to 1378-1528 AD, the Lower Dudváh River was abandoned and its alluvium became a part of the Žitný ostrov. Study of a Dudváh terrestrialized paleomeander by means of pollen and macrofossil analysis provides new information about the paleoenvironments of the Danubian Plain. The meander under study was cut-off during the Sub-Boreal period when the land was mostly covered by oak-dominated mixed forest with a notable high frequency of Fagus and Abies. In low-lying depressions, Alnus glutinosa formed typical alder carrs. The largest decline of the mixed forest occurred during the Sub-Atlantic period. Until the mid-19th century the region was strongly influenced by shallow groundwater and periodical floods, as reflected by pollen of aquatics and marsh species. Amongst non-arboreal taxa, pollen of Cyperaceae, Brassicaceae/Cuscuta, Poaceae and Apiaceae prevailed. Local successional changes started with i) stage of abandoned oxbow still with influx of moving water, poor in both macrophytes and molluscs, ii) shallow eutrophic oxbow lake with slowly flowing or stagnant water overgrown with aquatics (Ranunculus subgen. Batrachium, Potamogeton sp., Ceratophyllum demersum etc.) and abundant molluscs, iii) an open marsh dominated by Cyperaceae (mainly Carex riparia) with Atriplex prostrata, supporting diverse molluscan and Ostracod fauna. Present-day habitat is a result of landscape changes, which have been associated with draining, intensified agriculture, ruderalisation and spread of invasive species.

  16. Selectivity and weed control efficacy of some herbicides applied to sprinkler irrigated rice (Oryza sativa L.)

    Energy Technology Data Exchange (ETDEWEB)

    Cavero, J; Zaragoza, C; Cirujeda, A; Anzalone, A; Faci, J M; Blanco, O

    2011-07-01

    Sprinkler irrigation can reduce the irrigation water needed to grow rice. However, most available information on weed control with herbicides is related to flood irrigated rice because this is the main growing method. Field experiments were conducted at Zaragoza (Spain) during two years to study weed control and tolerance of sprinkler irrigated rice to several herbicides. The main weeds were Atriplex prostrata Boucher ex DC., Cyperus rotundus L., Echinochloa crus-galli (L.) Beauv. and Sonchus oleraceus L. Rice cv Guadiamar was tolerant to preemergence (PRE) application of clomazone at 0.36 kg ha{sup -}1 and oxadiazon at 0.5 kg ha{sup -}1. PRE application of pendimethalin at 1.32 kg ha{sup -}1 combined with clomazone at 0.36 kg ha{sup -}1 decreased rice yield. Postemergence (POST) application of bentazon at 1.6 kg ha{sup -}1 + MCPA at 0.25 kg ha{sup -}1 did not injure rice but POST application of azimsulfuron at 0.025 kg ha{sup -}1 produced visual crop injury. Only treatments that controlled grassy weeds since rice was planted and by more than 80% at harvest time lead to acceptable rice yield (> 5,000 kg ha{sup -}1). Clomazone applied PRE at 0.36 kg ha{sup -}1 provided good control of grassy weeds (> 80%) and the highest rice yield, so it is recommended as a selective and efficacious PRE treatment for weed control of annual weeds in sprinkler irrigated rice. The perennial purple nutsedge was difficult to control at high plant densities (> 150 plants m{sup -}2) and the recommended herbicide is azimsulfuron applied at POST at 0.02 kg ha{sup -}1. (Author) 37 refs.

  17. Ecological studies of small mammals in a nuclear site on Nevada Test Site

    International Nuclear Information System (INIS)

    Bradley, W.G.; Moor, K.S.

    1978-01-01

    Ecological studies of small vertebrates in nuclear event sites in NTS began in spring 1977 with the establishment of a permanent live-trapping grid in Little Feller II. These study areas are located in Area 18, a relatively homogeneous area vegetatively and topographically. Most of the flora and fauna are typical of the Great Basin desert found in southern Nevada. Dominant vegetation includes Artemesia spp. and to a lesser extent Atriplex. Salsola is an abundant weed in areas that have been mechanically disturbed such as the vicinity of GZ. A 400-station live-trapping grid was established in Little Feller II, April 1977. Sixteen lines of live traps (25 traps per line, each trap 50 feet apart) comprise the 8.4 hectare grid encompassing GZ. Nine trapping periods have been completed to date totaling over 10,000 trap nights. Over 400 small vertebrates have been marked for permanent identification in the grid. Over 60 known residents (animals marked 3 months previously and recaptured in the same vicinity) have been collected and prepared for shipping; however, radioanalytical results were not available to include in this report. Both census and field note observations were used to develop an inventory of the vertebrates found in the study areas. Sufficient data have been generated from Little Feller II to estimate density of rodents. These data and comparative data from Area 5 (Mohave Desert), Area 11 (Transition), and Area 13 (Great Basin) are presented. It was readily apparent that rodents in general were more numerous in Little Feller II. In addition, Dipodomys ordii, a Great Basin species, was an important new addition to the rodent fauna

  18. Alien plant species (ephemerophytes in Romensko-Poltavsky Geobotanical District, Ukraine

    Directory of Open Access Journals (Sweden)

    Dvirna Tetyana S.

    2017-09-01

    Full Text Available This paper presents the results of research on ephemerophytes of the alien portion of the flora of the Romensko-Poltavsky Geobotanical District (north-eastern Ukraine. It is a detailed study of this group of plants, conducted for the first time in the Ukraine. The checklist of alien vascular plants contains 345 species, of which 27 species are ephemerophytes (or 8%: Adonis aestivalis, A. annua, Papaver albiflorum, Urtica cannabina, Gypsophila perfoliata, Atriplex micrantha, Chenopodium × preissmannii, Ch. × thellungii, Rumex longifolius, Sisymbrium polymorphum, Euphorbia humifusa, Malus sylvestris, Onobrychis viciifolia, Astrodaucus orientalis, Datura tatula, Solanum schultesii, Lindernia procumbens, Melampyrum cristatum, Helianthus annuus, Petasites spurius, Xanthium ripicola × Xanthium albinum, Echinochloa tzvelevii, Panicum capillare, Panicum capillare L. subsp. barvipulvinatum, Phalaris canariensis, Setaria ×ambigua, Sorghum halepense. The basis of this work is original data of the author obtained during field studies, and a critical study of the literature, archival, cartographic materials and herbarium collections, and the use of classical methods of botanical classification. Complex research of this group of plants was conducted and as a result of these investigations the following characteristics were established: a predominance of kenophytes of Mediterranean origin in this group, species of arid areas, cosmopolitan species with a diffuse type of space structure, therophytes, herbaceous monocarpic plants, mesotrophes, heliophytes and xeromesophytes, with an insignificant degree of impact on native plant communities and with a limited distribution within the study region. The combination of these results indicates that ephemerophytes comprise a temporary, unstable component of the flora of this region of the Ukraine. The paper provides maps of the distribution of these 27 species.

  19. Effects of salinity, temperature, light and dormancy regulating chemicals on seed germination of salsola drummondii ulbr

    International Nuclear Information System (INIS)

    Rasheed, A.; Hameed, A.; Khan, M.A.; Gul, B.

    2015-01-01

    Salsola drummondii Ulbr. is a perennial halophyte found in salt deserts of southern Balochistan, Pakistan. Experiments were conducted to study the effects of salinity (0, 200, 400, 600, 800 and 1000 mM NaCl), thermoperiod (10/20, 15/25, 20/30 and 25/35 degree C), light (12-h photoperiod and dark) and dormancy regulating chemicals (DRCs) on germination, recovery and viability of the seeds of S. drummondii. Seeds of S. drummondii germinated quickly in distilled water at different temperature regimes and increases in salinity decreased seed germination. Interestingly, few seeds could even germinate in 1000 mM NaCl treatment, which is about twice as high as seawater salinity. Seeds were partially photoblastic and showed relatively higher germination under 12-h photoperiod than in dark. Seeds showed poor recovery of germination from salinity and particularly when germinated in dark. Germination inhibition at high salinity (800 mM NaCl) under 12-h photoperiod was partially alleviated by the exogenous application of different DRCs, particularly fusicoccin. Moreover, all the DRCs, except GA4+7, ameliorated germination of salt stressed seeds under complete darkness and GA4 and fusicoccin were most effective. Our study shows that seeds of S. drummondii are highly tolerant to salinity and variation in temperature but partially photoblastic nature indicate that seeds will not germinate if buried under the soil. Seed germination under saline conditions can be improved by the use of DRCs particularly by application of fusicoccin. (author)

  20. Transcriptome characterization and sequencing-based identification of salt-responsive genes in Millettia pinnata, a semi-mangrove plant.

    Science.gov (United States)

    Huang, Jianzi; Lu, Xiang; Yan, Hao; Chen, Shouyi; Zhang, Wanke; Huang, Rongfeng; Zheng, Yizhi

    2012-04-01

    Semi-mangroves form a group of transitional species between glycophytes and halophytes, and hold unique potential for learning molecular mechanisms underlying plant salt tolerance. Millettia pinnata is a semi-mangrove plant that can survive a wide range of saline conditions in the absence of specialized morphological and physiological traits. By employing the Illumina sequencing platform, we generated ~192 million short reads from four cDNA libraries of M. pinnata and processed them into 108,598 unisequences with a high depth of coverage. The mean length and total length of these unisequences were 606 bp and 65.8 Mb, respectively. A total of 54,596 (50.3%) unisequences were assigned Nr annotations. Functional classification revealed the involvement of unisequences in various biological processes related to metabolism and environmental adaptation. We identified 23,815 candidate salt-responsive genes with significantly differential expression under seawater and freshwater treatments. Based on the reverse transcription-polymerase chain reaction (RT-PCR) and real-time PCR analyses, we verified the changes in expression levels for a number of candidate genes. The functional enrichment analyses for the candidate genes showed tissue-specific patterns of transcriptome remodelling upon salt stress in the roots and the leaves. The transcriptome of M. pinnata will provide valuable gene resources for future application in crop improvement. In addition, this study sets a good example for large-scale identification of salt-responsive genes in non-model organisms using the sequencing-based approach.

  1. Response of Soil Fungi Community Structure to Salt Vegetation Succession in the Yellow River Delta.

    Science.gov (United States)

    Wang, Yan-Yun; Guo, Du-Fa

    2016-10-01

    High-throughput sequencing technology was used to reveal the composition and distribution of fungal community structure in the Yellow River Delta under bare land and four kinds of halophyte vegetation (saline seepweed, Angiospermae, Imperata and Apocynum venetum [A. venetum]). The results showed that the soil quality continuously improved with the succession of salt vegetation types. The soil fungi richness of mild-salt communities (Imperata and A. venetum) was relatively higher, with Shannon index values of 5.21 and 5.84, respectively. The soil fungi richness of severe-salt-tolerant communities (saline seepweed, Angiospermae) was relatively lower, with Shannon index values of 4.64 and 4.66, respectively. The UniFrac metric values ranged from 0.48 to 0.67 when the vegetation was in different succession stages. A total of 60,174 valid sequences were obtained for the five vegetation types, and they were classified into Ascomycota, Basidiomycota, Chytridiomycota, Glomeromycota and Mucoromycotina. Ascomycota had the greatest advantage among plant communities of Imperata and A. venetum, as indicated by relative abundances of 2.69 and 69.97 %, respectively. Basidiomycota had the greatest advantage among mild-salt communities of saline seepweed and Angiospermae, with relative abundances of 9.43 and 6.64 %, respectively. Soil physical and chemical properties were correlated with the distribution of the fungi, and Mucor was significantly correlated with soil moisture (r = 0.985; P Soil quality, salt vegetation and soil fungi were influenced by each other.

  2. Stable bromine isotopic composition of methyl bromide released from plant matter

    Science.gov (United States)

    Horst, Axel; Holmstrand, Henry; Andersson, Per; Thornton, Brett F.; Wishkerman, Asher; Keppler, Frank; Gustafsson, Örjan

    2014-01-01

    Methyl bromide (CH3Br) emitted from plants constitutes a natural source of bromine to the atmosphere, and is a component in the currently unbalanced global CH3Br budget. In the stratosphere, CH3Br contributes to ozone loss processes. Studies of stable isotope composition may reduce uncertainties in the atmospheric CH3Br budget, but require well-constrained isotope fingerprints of the source end members. Here we report the first measurements of stable bromine isotopes (δ81Br) in CH3Br from abiotic plant emissions. Incubations of both KBr-fortified pectin, a ubiquitous cell-stabilizing macromolecule, and of a natural halophyte (Salicornia fruticosa), yielded an enrichment factor (ε) of -2.00 ± 0.23‰ (1σ, n = 8) for pectin and -1.82 ± 0.02‰ (1σ, n = 4) for Salicornia (the relative amount of the heavier 81Br was decreased in CH3Br compared to the substrate salt). For short incubations, and up to 10% consumption of the salt substrate, this isotope effect was similar for temperatures from 30 up to 300 °C. For longer incubations of up to 90 h at 180 °C the δ81Br values increased from -2‰ to 0‰ for pectin and to -1‰ for Salicornia. These δ81Br source signatures of CH3Br formation from plant matter combine with similar data for carbon isotopes to facilitate multidimensional isotope diagnostics of the CH3Br budget.

  3. NASA's GreenLab Research Facility: A Guide for a Self-Sustainable Renewable Energy Ecosystem

    Science.gov (United States)

    Bomani, B. M. McDowell; Hendricks, R. C.; Elbuluk, Malik; Okon, Monica; Lee, Eric; Gigante, Bethany

    2011-01-01

    There is a large gap between the production and demand for energy from alternative fuel and alternative renewable energy sources. The sustainability of humanity, as we know it, directly depends on the ability to secure affordable fuel, food, and freshwater. NASA Glenn Research Center (Glenn) has initiated a laboratory pilot study on using biofuels as viable alternative fuel resources for the field of aviation, as well as utilizing wind and solar technology as alternative renewable energy resources. The GreenLab Research Facility focuses on optimizing biomass feedstock using algae and halophytes as the next generation of renewable aviation fuels. The unique approach in this facility helps achieve optimal biomass feedstock through climatic adaptation of balanced ecosystems that do not use freshwater, compete with food crops, or use arable land. In addition, the GreenLab Research Facility is powered, in part, by alternative and renewable energy sources, reducing the major environmental impact of present electricity sources. The ultimate goal is to have a 100 percent clean energy laboratory that, when combined with biomass feedstock research, has the framework in place for a self-sustainable renewable energy ecosystem that can be duplicated anywhere in the world and can potentially be used to mitigate the shortage of food, fuel, and water. This paper describes the GreenLab Research Facility at Glenn and its power and energy sources, and provides recommendations for worldwide expansion and adoption of the facility s concept.

  4. Morphological, sediment and soil chemical characteristics of dry tropical shallow reservoirs in the Southern Mexican Highlands

    Directory of Open Access Journals (Sweden)

    José Luis ARREDONDO-FIGUEROA

    2011-02-01

    Full Text Available The morphometry, sediment and soil chemical characteristics of eleven dry tropical shallow reservoirs situated in Southern Mexican Highlands were studied. The reservoirs are located at 1104 to 1183 meters above sea level in a sedimentary area. Seventeen morphometric and eight sediment and soil chemical parameters were measured. The results of the morphometric parameters showed that these reservoirs presented a soft and roughness bottom, with an ellipsoid form and a concave depression that permit the mix up of water and sediments, causing turbidity and broken thermal gradients; their slight slopes allowed the colonization of submerged macrophyte and halophyte plants and improved the incidence of sunlight on water surface increasing evaporation and primary productivity. Dry tropical shallow reservoirs have fluctuations in area, and volume according to the amount of rainfall, the effect of evaporation, temperature, lost volume for irrigation, and other causes. The sand-clay was the most important sediment texture and their values fluctuated with the flooded periods. The concentration-dilution cycle showed a direct relationship in the percentage of organic matter in the soil as well as with pH, soil nitrogen and phosphorus. El Tilzate, El Candelero and El Movil were related by the shore development and high concentrations of organic matter and nitrogen in the soil. Finally, we emphasize the importance of this study, in relation to possible future changes in morphometrical parameters as a consequence of human impact.

  5. [Interrelations between plant communities and environmental factors of wetlands and surrounding lands in mid- and lower reaches of Tarim River].

    Science.gov (United States)

    Zhao, Ruifeng; Zhou, Huarong; Qian, Yibing; Zhang, Jianjun

    2006-06-01

    A total of 16 quadrants of wetlands and surrounding lands in the mid- and lower reaches of Tarim River were surveyed, and the data about the characteristics of plant communities and environmental factors were collected and counted. By using PCA (principal component analysis) ordination and regression procedure, the distribution patterns of plant communities and the relationships between the characteristics of plant community structure and environmental factors were analyzed. The results showed that the distribution of the plant communities was closely related to soil moisture, salt, and nutrient contents. The accumulative contribution rate of soil moisture and salt contents in the first principal component accounted for 35.70%, and that of soil nutrient content in the second principal component reached 25.97%. There were 4 types of habitats for the plant community distribution, i. e., fenny--light salt--medium nutrient, moist--medium salt--medium nutrient, mesophytic--medium salt--low nutrient, and medium xerophytic-heavy salt--low nutrient. Along these habitats, swamp vegetation, meadow vegetation, riparian sparse forest, halophytic desert, and salinized shrub were distributed. In the wetlands and surrounding lands of mid- and lower reaches of Tarim River, the ecological dominance of the plant communities was markedly and unitary-linearly correlated with the compound gradient of soil moisture and salt contents. The relationships between species diversity, ecological dominance, and compound gradient of soil moisture and salt contents were significantly accorded to binary-linear regression model.

  6. Recent saltmarsh foraminiferal assemblages from Iceland

    Science.gov (United States)

    Lübbers, Julia; Schönfeld, Joachim

    2018-01-01

    This study reports for the first time boreal to subarctic intertidal foraminiferal assemblages from saltmarshes at Borgarnes and Faskrudsfjördur on Iceland. The composition of living and dead foraminiferal assemblages was investigated along transects from the tidal flat to the highest reach of halophytic plants. The foraminiferal assemblages from Borgarnes showed 18 species in the total foraminiferal assemblage of which only 7 species were recorded in the living fauna. The assemblages were dominated by agglutinated taxa, whereas 3 calcareous species were recorded, of which only Haynesina orbicularis was found in the living fauna. The distribution limit of calcifying species corresponds to the lower boundary of the lower saltmarsh vegetation zone. Furthermore, calcareous tests showed many features of dissolution, which is an indication of a carbonate corrosive environment. The species forming the dead assemblages were mainly derived from the ambient intertidal areas and were displaced by tidal currents into the saltmarsh. The foraminiferal assemblages from Faskrudsfjördur showed two species, of which only one species was recorded in the living fauna. The assemblage was dominated by the agglutinated foraminifer Trochaminita irregularis. The foraminiferal species recorded on Iceland were the same as commonly found elsewhere in Europa. Since no species was found which is endemic to North America, Iceland is considered part of the European bio province. The foraminiferal could have been immigrated to Iceland from Europe through warm water currents, migratory birds or marine traffic since the last Ice Age.

  7. A Methodological Approach for Testing the Viability of Seeds Stored in Short-Term Seed Banks

    Directory of Open Access Journals (Sweden)

    Jose A. FORTE GIL

    2017-12-01

    Full Text Available Efficient management of ‘active’ seed banks – specifically aimed at the short-term storage at room temperature of seeds to be used locally in conservation/regeneration programmes of endemic or endangered plant species – requires establishing the optimal storage time to maintain high seed viability, for each stored species. In this work, germination of seeds of the halophytes Thalictrum maritimum, Centaurea dracunculifolia and Linum maritimum has been investigated. The seeds had been stored for different periods of time in the seed bank of ‘La Albufera’ Natural Park (Valencia, SE Spain after collection in salt marshes of the Park, where small populations of the three species are present. Seeds of T. maritimum and C. dracunculifolia have a relatively short period of viability at room temperature, and should not be stored for more than three years. On the other hand, L. maritimum seeds maintain a high germination percentage and can be kept at room temperature for up to 10 years. T. maritimum seeds, in contrast to those of the other two species, did not germinate in in vitro tests nor when sown directly on a standard substrate, unless a pre-treatment of the seeds was applied, mechanical scarification being the most effective. These results will help to improve the management of the seed bank, to generate more efficiently new plants for reintroduction and reinforcement of populations of these species in their natural ecosystems within the Natural Park.

  8. Estructura y estado de conservación de los bosques de Prosopis flexuosa D.C. (Fabaceae, subfamilia: Mimosoideae en el noreste de Mendoza (Argentina Structure and conservative condition of the Prosopis flexuosa D.C. (Fabaceae, subfamily: Mimosoideae woodlands in northeast Mendoza (Argentina

    Directory of Open Access Journals (Sweden)

    JUAN AGUSTÍN ALVAREZ

    2006-03-01

    Full Text Available La recomendación de normas de manejo que regulen el uso de los recursos forestales debe estar basada en el conocimiento de la estructura y dinámica de los mismos. El objetivo de este trabajo fue conocer la estructura poblacional de las principales unidades boscosas del bosque de Prosopis flexuosa del noreste de Mendoza, sus condiciones sanitarias y su potencial productivo. Se muestrearon un total de 1.471 algarrobos en las cuatro unidades boscosas más representativas. La densidad total de algarrobos fue la siguiente: bosque semicerrado de P. flexuosa con Atriplex lampa y Lycium tenuispinosum en valles intermédanos (Bosque 1: 181 árboles ha-1, bosque abierto de P. flexuosa con Trichomaria usillo y Suaeda divaricata en ondulaciones (Bosque 2: 155 árboles ha-1, bosque abierto de P. flexuosa con T. usillo (Bosque 3: 233 árboles ha-1 y bosque abierto de P. flexuosa con A. lampa en ondulaciones suaves (Bosque 4: 215 árboles ha-1. El análisis de componentes principales de la estructura diamétrica agrupó los sitios relevados en las distintas unidades boscosas según la proporción de árboles de diámetro basal mayor a 25 cm. Los sitios del Bosque 1 (mayor proporción de árboles grandes, se separaron de los sitios con mayor proporción árboles pequeños (bosques 2 y 4. Debido al hábito de crecimiento de los algarrobos, la cantidad de productos maderables de estos bosques es baja. Además, P. flexuosa presenta en el área un porcentaje alto de individuos con más de dos fustes, la forma en muchos casos es decumbente y la altura de los fustes es menor a un metro. Por lo tanto, el potencial forestal del bosque es bajo y el posible aprovechamiento debería realizarse a escala local, considerando la inclusión de otras actividades complementarias en zonas establecidas para tal finThe recommendation of management rules that regulate the use of forest resources must be based on the knowledge of the structure and dynamics of forests. This work

  9. Sensitization to Indigenous Pollen and Molds and Other Outdoor and Indoor Allergens in Allergic Patients From Saudi Arabia, United Arab Emirates, and Sudan

    Science.gov (United States)

    2012-01-01

    Background Airborne allergens vary from one climatic region to another. Therefore, it is important to analyze the environment of the region to select the most prevalent allergens for the diagnosis and treatment of allergic patients. Objective To evaluate the prevalence of positive skin tests to pollen and fungal allergens collected from local indigenous plants or isolated molds, as well as other outdoor and indoor allergens in allergic patients in 6 different geographical areas in the Kingdom of Saudi Arabia (KSA), the United Arab Emirates, and Sudan. Materials and methods Four hundred ninety-two consecutive patients evaluated at different Allergy Clinics (276 women and 256 men; mean age, 30 years) participated in this study. The selection of indigenous allergens was based on research findings in different areas from Riyadh and adjoining areas. Indigenous raw material for pollen grains was collected from the desert near the capital city of Riyadh, KSA. The following plants were included: Chenopodium murale, Salsola imbricata, Rumex vesicarius, Ricinus communis, Artiplex nummularia, Amaranthus viridis, Artemisia monosperma, Plantago boissieri, and Prosopis juliflora. Indigenous molds were isolated from air sampling in Riyadh and grown to obtain the raw material. These included the following: Ulocladium spp., Penicillium spp., Aspergillus fumigatus, Cladosporium spp., and Alternaria spp. The raw material was processed under Good Manufacturing Practices for skin testing. Other commercially available outdoor (grass and tree pollens) and indoor (mites, cockroach, and cat dander) allergens were also tested. Results The highest sensitization to indigenous pollens was detected to C. murale (32%) in Khartoum (Sudan) and S. imbricata (30%) and P. juliflora (24%) in the Riyadh region. The highest sensitization to molds was detected in Khartoum, especially to Cladosporium spp. (42%), Aspergillus (40%), and Alternaria spp. (38%). Sensitization to mites was also very prevalent

  10. Extensive summer water pulses do not necessarily lead to canopy growth of Great Basin and northern Mojave Desert shrubs.

    Science.gov (United States)

    Snyder, K A; Donovan, L A; James, J J; Tiller, R L; Richards, J H

    2004-10-01

    Plant species and functionally related species groups from arid and semi-arid habitats vary in their capacity to take up summer precipitation, acquire nitrogen quickly after summer precipitation, and subsequently respond with ecophysiological changes (e.g. water and nitrogen relations, gas exchange). For species that respond ecophysiologically, the use of summer precipitation is generally assumed to affect long-term plant growth and thus alter competitive interactions that structure plant communities and determine potential responses to climate change. We assessed ecophysiological and growth responses to large short-term irrigation pulses over one to three growing seasons for several widespread Great Basin and northern Mojave Desert shrub species: Chrysothamnus nauseosus, Sarcobatus vermiculatus, Atriplex confertifolia, and A. parryi. We compared control and watered plants in nine case studies that encompassed adults of all four species, juveniles for three of the species, and two sites for two of the species. In every comparison, plants used summer water pulses to improve plant water status or increase rates of functioning as indicated by other ecophysiological characters. Species and life history stage responses of ecophysiological parameters (leaf N, delta15N, delta13C, gas exchange, sap flow) were consistent with several previous short-term studies. However, use of summer water pulses did not affect canopy growth in eight out of nine comparisons, despite the range of species, growth stages, and site conditions. Summer water pulses affected canopy growth only for C. nauseosus adults. The general lack of growth effects for these species might be due to close proximity of groundwater at these sites, co-limitation by nutrients, or inability to respond due to phenological canalization. An understanding of the connections between short-term ecophysiological responses and growth, for different habitats and species, is critical for determining the significance of

  11. Groundwater discharge by evapotranspiration, flow of water in unsaturated soil, and stable isotope water sourcing in areas of sparse vegetation, Amargosa Desert, Nye County, Nevada

    Science.gov (United States)

    Moreo, Michael T.; Andraski, Brian J.; Garcia, C. Amanda

    2017-08-29

    This report documents methodology and results of a study to evaluate groundwater discharge by evapotranspiration (GWET) in sparsely vegetated areas of Amargosa Desert and improve understanding of hydrologic-continuum processes controlling groundwater discharge. Evapotranspiration and GWET rates were computed and characterized at three sites over 2 years using a combination of micrometeorological, unsaturated zone, and stable-isotope measurements. One site (Amargosa Flat Shallow [AFS]) was in a sparse and isolated area of saltgrass (Distichlis spicata) where the depth to groundwater was 3.8 meters (m). The second site (Amargosa Flat Deep [AFD]) was in a sparse cover of predominantly shadscale (Atriplex confertifolia) where the depth to groundwater was 5.3 m. The third site (Amargosa Desert Research Site [ADRS]), selected as a control site where GWET is assumed to be zero, was located in sparse vegetation dominated by creosote bush (Larrea tridentata) where the depth to groundwater was 110 m.Results indicated that capillary rise brought groundwater to within 0.9 m (at AFS) and 3 m (at AFD) of land surface, and that GWET rates were largely controlled by the slow but relatively persistent upward flow of water through the unsaturated zone in response to atmospheric-evaporative demands. Greater GWET at AFS (50 ± 20 millimeters per year [mm/yr]) than at AFD (16 ± 15 mm/yr) corresponded with its shallower depth to the capillary fringe and constantly higher soil-water content. The stable-isotope dataset for hydrogen (δ2H) and oxygen (δ18O) illustrated a broad range of plant-water-uptake scenarios. The AFS saltgrass and AFD shadscale responded to changing environmental conditions and their opportunistic water use included the time- and depth-variable uptake of unsaturated-zone water derived from a combination of groundwater and precipitation. These results can be used to estimate GWET in other areas of Amargosa Desert where hydrologic conditions are similar.

  12. Use of the Universal Soil-Loss Equation to determine water erosion with the semi-circular bund water-harvesting technique in the Syrian Steppe

    Directory of Open Access Journals (Sweden)

    Hamdan Al Mahmoud

    2014-05-01

    Full Text Available This research was conducted through the rain season 2009 -2010, in Mehasseh Research Center at (Al Qaryatein, The area is characterized by a hot and dry climate in summer and cold in winter with an annual average rainfall of 114 mm. Three slopes (8%, 6%, 4% were used in semicircular bunds water -harvesting techniques with bunds parallel to the contours lines at flow distance of 18, 12 and 6 m. The bunds were planted with Atriplex Halimus seedlings. Graded metal rulers were planted inside the bunds to determine soil loss and sedimentation associated with the surface runoff, and metallic tanks were placed at the end of the flow paths to determine agricultural soil loss from water runoff. A rain intensity gauge was placed near the experiment site to determine the rainfall intensity that produced runoff. The treatments were done in three replications. The amount of soil erosion (in tons per hectare per year increased with increasing of the slope, the highest recorded value was 38.66 at slope of 8% and the lowest 0.05 at 4% slope. The amount of soil erosion also increased with increasing of water run distance, which was 38.66 T.ha-1.yr-1 at 18 m and 0.05 T.ha-1.yr-1 at 6 m . Bunds with different diameter of water harvesting reduced soil erosion by about 65% at slope of 8%, 55% at 6%, and 46% at 4%. The input parameters of Universal soil-loss equation were found to be suitable for determining soil erosion in this arid and semi-arid region. DOI: http://dx.doi.org/10.3126/ije.v3i2.10499 International Journal of the Environment Vol.3(2 2014: 1-11

  13. Mangrove expansion and saltmarsh decline at mangrove poleward limits

    Science.gov (United States)

    Saintilan, Neil; Wilson, Nicholas C.; Rogers, Kerrylee; Rajkaran, Anusha; Krauss, Ken W.

    2014-01-01

    Mangroves are species of halophytic intertidal trees and shrubs derived from tropical genera and are likely delimited in latitudinal range by varying sensitivity to cold. There is now sufficient evidence that mangrove species have proliferated at or near their poleward limits on at least five continents over the past half century, at the expense of salt marsh. Avicennia is the most cold-tolerant genus worldwide, and is the subject of most of the observed changes. Avicennia germinans has extended in range along the US Atlantic coast and expanded into salt marsh as a consequence of lower frost frequency and intensity in the southern USA. The genus has also expanded into salt marsh at its southern limit in Peru, and on the Pacific coast of Mexico. Mangroves of several species have expanded in extent and replaced salt marsh where protected within mangrove reserves in Guangdong Province. In south-eastern Australia, the expansion of Avicennia marina into salt marshes is now well documented, and Rhizophora stylosa has extended its range southward, while showing strong population growth within estuaries along its southern limits in northern New South Wales. Avicennia marina has extended its range southwards in South Africa. The changes are consistent with the pole-ward extension of temperature thresholds co-incident with sea-level rise, although the specific mechanism of range extension might be complicated by limitations on dispersal or other factors. The shift from salt marsh to mangrove dominance on subtropical and temperate shorelines has important implications for ecological structure, function, and global change adaptation.

  14. Analysis and simulation of propagule dispersal and salinity intrusion from storm surge on the movement of a marsh–mangrove ecotone in South Florida

    Science.gov (United States)

    Jiang, Jiang; DeAngelis, Donald L.; Anderson, Gordon H.; Smith, Thomas J.

    2014-01-01

    Coastal mangrove–freshwater marsh ecotones of the Everglades represent transitions between marine salt-tolerant halophytic and freshwater salt-intolerant glycophytic communities. It is hypothesized here that a self-reinforcing feedback, termed a “vegetation switch,” between vegetation and soil salinity, helps maintain the sharp mangrove–marsh ecotone. A general theoretical implication of the switch mechanism is that the ecotone will be stable to small disturbances but vulnerable to rapid regime shifts from large disturbances, such as storm surges, which could cause large spatial displacements of the ecotone. We develop a simulation model to describe the vegetation switch mechanism. The model couples vegetation dynamics and hydrologic processes. The key factors in the model are the amount of salt-water intrusion into the freshwater wetland and the passive transport of mangrove (e.g., Rhizophora mangle) viviparous seeds or propagules. Results from the model simulations indicate that a regime shift from freshwater marsh to mangroves is sensitive to the duration of soil salinization through storm surge overwash and to the density of mangrove propagules or seedlings transported into the marsh. We parameterized our model with empirical hydrologic data collected from the period 2000–2010 at one mangrove–marsh ecotone location in southwestern Florida to forecast possible long-term effects of Hurricane Wilma (24 October 2005). The model indicated that the effects of that storm surge were too weak to trigger a regime shift at the sites we studied, 50 km south of the Hurricane Wilma eyewall, but simulations with more severe artificial disturbances were capable of causing substantial regime shifts.

  15. Behaviour Of Saline Irrigation Water Components In Pakistani Barley And Calcareous Soil Under Scheduling Irrigation Using Neutron Scattering Technique

    International Nuclear Information System (INIS)

    RIZK, M.A.

    2010-01-01

    This study aims to investigate the behaviour of cation uptake by Pakistani barley (genotype PK-30163) as affected by saline irrigation water, as well as cation distribution within the soil profile. This experiment was carried out at Soil and Water Research Department, Nuclear Research Centre, Atomic Energy Authority, Inshas, Egypt. The soil was transferred from Wadi Sudr (South Sinai, Egypt). It is salted affected soil (calcareous soil, EC = 4.3 dS/m) and was irrigated using ground water irrigation (12.5 dS/m). Nine used lysimeters were irrigated with three artificial saline water (0.3, 4 and 8 dS/m) using drip irrigation system. The irrigation schedule was carried out using neutron scattering technique according to the hydro physical properties of the soil. Pakistani barley (halophytic plant) was used to remove salts from the soil especially sodium cations. The cation uptake and cation distribution (Na, K, Ca, Mg) within the soil profile were studied.The data indicated that roots of barley collected within 0-15 cm layer showed high cation uptake that made the salt concentrations in this layer low. Sodium uptake ratio was 43, 37 and 47% from total cation uptake by using fresh water (0.3 dS/m), 4 and 8 dS/m, respectively. The maximum uptake for Na, K, Ca and Mg was 20.51, 19.13, 3.98 and 12.81 g/lys at 5.69, 3.05, 6.56 and 4.15 dS/m, respectively. It was found that Pakistani barley preferred Mg uptake rather than Ca uptake.

  16. Identification of halophile bacteria from salt deserts of Iran and study some of their physiological traits

    Directory of Open Access Journals (Sweden)

    Maryam Safdarian

    2017-06-01

    Full Text Available Introduction: Halophiles and halotolerant microorganisms are some of the extremophiles that are able to grow in medium containing sodium chloride and have adapted to life in salinity environments. Halophiles bacteria in saline soils by maintaining the food chain, decomposition of organic matter and improvement of soil structure and fertility improve soil conditions. Materials and methods: In order to isolate the halotoletant bacteria, from the halophyte rhizosphere, four desert areas in Golestan province were sampled. To check the Extremophile of isolates, their resistance was tested for resistant to salinity, drought, temperature and PH. Also, plant growth promoting traits were measured. Results: Fromforty-five strains which were isolated, three strains (G3, G6 and G14 have demonstrated the ability of resistance to 35% salt. Isolates G6 and G3 phosphate solubiliziation power of 301 and 201 ppm, respectively. Isolated G6 micrograms produced auxin 20/7 Mg/ ml. G14 and G6 grow at 50 °C, pH = 10 and osmotic potential -0 /7MPa. While G3 strain grows at 50 °C, pH = 7/ 5 and osmotic potential -0/49. The three strains of the bacterial genera Bacillus and Pseudomonas, respectively. Discussion and conclusion: In this study, isolates due to the growth in concentrations of salt and saturated salt tolerance of extreme environmental conditions and are likely halotolerant or halophile bacteria and its potential for use in various fields of biotechnology including biotech, industrial enzyme production and biological fertilizers for saline soil improvement.

  17. Soils and Vegetation of the Khaipudyr Bay Coast of the Barents Sea

    Science.gov (United States)

    Shamrikova, E. V.; Deneva, S. V.; Panyukov, A. N.; Kubik, O. S.

    2018-04-01

    Soils and vegetation of the coastal zone of the Khaipudyr Bay of the Barents Sea have been examined and compared with analogous objects in the Karelian coastal zone of the White Sea. The environmental conditions of these two areas are somewhat different: the climate of the Khaipudyr Bay coast is more severe, and the seawater salinity is higher (32-33‰ in the Khaipudyr Bay and 25-26‰ in the White Sea). The soil cover patterns of both regions are highly variable. Salt-affected marsh soils (Tidalic Fluvisols) are widespread. The complicated mesotopography includes high geomorphic positions that are not affected by tidal water. Under these conditions, zonal factors of pedogenesis predominate and lead to the development of Cryic Folic Histosols and Histic Reductaquic Cryosols. On low marshes, the concentrations of soluble Ca2+, K+ + Na+, Cl-, and SO2- 4 ions in the soils of the Khaipudyr Bay coast are two to four times higher than those in the analogous soils of Karelian coast. Cluster analysis of a number of soil characteristics allows separation of three soils groups: soils of low marshes, soils of middle-high marshes, and soils of higher positions developing under the impact of zonal factors together with the aerial transfer and deposition of seawater drops. The corresponding plant communities are represented by coastal sedge cenoses, forb-grassy halophytic cenoses, and zonal cenoses of hypoarctic tundra. It is argued that the grouping of marsh soils in the new substantivegenetic classification system of Russian soils requires further elaboration.

  18. Dynamic control of osmolality and ionic composition of the xylem sap in two mangrove species.

    Science.gov (United States)

    López-Portillo, Jorge; Ewers, Frank W; Méndez-Alonzo, Rodrigo; Paredes López, Claudia L; Angeles, Guillermo; Alarcón Jiménez, Ana Luisa; Lara-Domínguez, Ana Laura; Torres Barrera, María Del Carmen

    2014-06-01

    • Premise of the study: Xylem sap osmolality and salinity is a critical unresolved issue in plant function with impacts on transport efficiency, pressure gradients, and living cell turgor pressure, especially for halophytes such as mangrove trees.• Methods: We collected successive xylem vessel sap samples from stems and shoots of Avicennia germinans and Laguncularia racemosa using vacuum and pressure extraction and measured their osmolality. Following a series of extractions with the pressure chamber, we depressurized the shoot and pressurized again after various equilibration periods (minutes to hours) to test for dynamic control of osmolality. Transpiration and final sap osmolality were measured in shoots perfused with deionized water or different seawater dilutions.• Key results: For both species, the sap osmolality values of consecutive samples collected by vacuum extraction were stable and matched those of the initial samples extracted with the pressure chamber. Further extraction of samples with the pressure chamber decreased sap osmolality, suggesting reverse osmosis occurred. However, sap osmolalities increased when longer equilibration periods after sap extraction were allowed. Analysis of expressed sap with HPLC indicated a 1:1 relation between measured osmolality and the osmolality of the inorganic ions in the sap (mainly Na + , K + , and Cl - ), suggesting no contamination by organic compounds. In stems perfused with deionized water, the sap osmolality increased to mimic the native sap osmolality.• Conclusions: Xylem sap osmolality and ionic contents are dynamically adjusted by mangroves and may help modulate turgor pressure, hydraulic conductivity, and water potential, thus being important for mangrove physiology, survival, and distribution. © 2014 Botanical Society of America, Inc.

  19. Impact of soil salinity on arbuscular mycorrhizal fungi biodiversity and microflora biomass associated with Tamarix articulata Vahll rhizosphere in arid and semi-arid Algerian areas.

    Science.gov (United States)

    Bencherif, Karima; Boutekrabt, Ammar; Fontaine, Joël; Laruelle, Fréderic; Dalpè, Yolande; Sahraoui, Anissa Lounès-Hadj

    2015-11-15

    Soil salinization is an increasingly important problem in many parts of the world, particularly under arid and semi-arid areas. Unfortunately, the knowledge about restoration of salt affected ecosystems using mycorrhizae is limited. The current study aims to investigate the impact of salinity on the microbial richness of the halophytic plant Tamarix articulata rhizosphere. Soil samples were collected from natural sites with increasing salinity (1.82-4.95 ds.m(-1)). Six arbuscular mycorrhizal fungi (AMF) species were isolated from the different saline soils and identified as Septoglomus constrictum, Funneliformis mosseae, Funneliformis geosporum, Funneliformis coronatum, Rhizophagus fasciculatus, and Gigaspora gigantea. The number of AMF spores increased with soil salinity. Total root colonization rate decreased from 65 to 16% but remained possible with soil salinity. Microbial biomass in T. articulata rhizosphere was affected by salinity. The phospholipid fatty acids (PLFA) C16:1ω5 as well as i15:0, a15:0, i16:0, i17:0, a17:0, cy17:0, C18:1ω7 and cy19:0 increased in high saline soils suggesting that AMF and bacterial biomasses increased with salinity. In contrast, ergosterol amount was negatively correlated with soil salinity indicating that ectomycorrhizal and saprotrophic fungal biomasses were reduced with salinity. Our findings highlight the adaptation of arbuscular and bacterial communities to natural soil salinity and thus the potential use of mycorrhizal T. articulata trees as an approach to restore moderately saline disturbed arid lands. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Immunomodulatory and antioxidant protective effect of Sarcocornia perennis L. (swampfire) in lead intoxicated rat.

    Science.gov (United States)

    Gargouri, Manel; Hamed, Houda; Akrouti, Amel; Christian, Magné; Ksouri, Riadh; El Feki, Abdelfattah

    2017-11-01

    Lead (Pb) is a very toxic metal present in the environment, causing disturbances of several functions. Preventive or curative effects of halophytic plants against these disorders may be a promising and safe therapeutic strategy. Thus, this study was designed to evaluate in vivo immunomodulatory and antioxidant effects of Sarcocornia perennis extract (Sp) against lead toxicity in rats. Groups of six animals each were treated with plant extract (via food), 6 g/L lead acetate (via drinking water) or a combination of both. At the end of the three-week period, rat exposure to lead caused reduction of liver weight but an increase of that of kidney. Moreover, lead intoxication-induced oxidative stress manifested by significant increases of inflammatory cytokines (except IL-10) and lipid peroxidation (TBARS), compared with the control group. Meanwhile, interleukin-10 (IL-10) and glutathione levels (GSH), as well as antioxidant activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), were decreased. Considering liver and renal markers, lead treatment induced a significant increase in the activities of aminotransferases (AST, ALT), and in the levels of urea, creatinine and phosphorous, whereas total plasma protein, albumin and calcium levels were significantly decreased. S. perennis extract alone did not induce any significant changes in hepatic or renal markers, whereas the antioxidant markers were significantly increased. S. perennis supplementation significantly reduced the lead-induced elevation of serum IL-1ß, IL-6, TNF-α, IFN-γ and TBARS but increased the IL-10 and antioxidant enzyme activities. Overall, plant components ameliorated hepatorenal damages caused by lead.