WorldWideScience

Sample records for halophyte atriplex hortensis

  1. Water potential in soil and Atriplex nummularia (phytoremediator halophyte) under drought and salt stresses.

    Science.gov (United States)

    de Melo, Hidelblandi Farias; de Souza, Edivan Rodrigues; de Almeida, Brivaldo Gomes; Mulas, Maurizio

    2018-02-23

    Atriplex nummularia is a halophyte widely employed to recover saline soils and was used as a model to evaluate the water potentials in the soil-plant system under drought and salt stresses. Potted plants grown under 70 and 37% of field capacity irrigated with solutions of NaCl and of a mixture of NaCl, KCl, MgCl 2 and CaCl 2 reproducing six electrical conductivity (EC): 0, 5, 10, 20, 30, and 40 dS m -1 . After 100 days, total water (Ψ w, plant ) and osmotic (Ψ o, plant ) potentials at predawn and midday and Ψ o, soil , matric potential (Ψ m, soil ) and Ψ w, soil were determined. The type of ion in the irrigation water did not influence the soil potential, but was altered by EC. The soil Ψ o component was the largest contributor to Ψ w, soil . Atriplex is surviving ECs close to 40 dS m -1 due to the decrease in the Ψ w . The plants reached a Ψ w of approximately -8 MPa. The water potentials determined for different moisture levels, EC levels and salt types showed huge importance for the management of this species in semiarid regions and can be used to recover salt affected soils.

  2. Exploration for the Salinity Tolerance-Related Genes from Xero-Halophyte Atriplex canescens Exploiting Yeast Functional Screening System

    Directory of Open Access Journals (Sweden)

    Gang Yu

    2017-11-01

    Full Text Available Plant productivity is limited by salinity stress, both in natural and agricultural systems. Identification of salt stress-related genes from halophyte can provide insights into mechanisms of salt stress tolerance in plants. Atriplex canescens is a xero-halophyte that exhibits optimum growth in the presence of 400 mM NaCl. A cDNA library derived from highly salt-treated A. canescens plants was constructed based on a yeast expression system. A total of 53 transgenic yeast clones expressing enhanced salt tolerance were selected from 105 transformants. Their plasmids were sequenced and the gene characteristics were annotated using a BLASTX search. Retransformation of yeast cells with the selected plasmids conferred salt tolerance to the resulting transformants. The expression patterns of 28 of these stress-related genes were further investigated in A. canescens leaves by quantitative reverse transcription-PCR. In this study, we provided a rapid and robust assay system for large-scale screening of genes for varied abiotic stress tolerance with high efficiency in A. canescens.

  3. NaCl protects against Cd and Cu-induced toxicity in the halophyte Atriplex halimus

    Energy Technology Data Exchange (ETDEWEB)

    Bankaji, I.; Sleimi, N.; Gómez-Cadenas, A.; Pérez-Clemente, R.M.

    2016-07-01

    The objective of the present work was to evaluate the extent of Cd- and Cu-induced oxidative stress and the antioxidant response triggered in the halophyte species Atriplex halimus after metallic trace elements exposure. Plants were treated for one month with Cd2+ or Cu2+ (400 µM) in the absence or presence of 200 mM NaCl in the irrigation solution. The interaction between salinity and heavy metal stress was analyzed in relation to plant growth, tissue ion contents (Na+, K+ and Mg2+), oxidative damage and antioxidative metabolism. Data indicate that shoot and root weight significantly decreased as a consequence of Cd2+- or Cu2+-induced stress. Metallic stress leads to unbalanced nutrient uptake by reducing the translocation of K+ and Mg2+ from the root to the shoot. The levels of malondialdehyde increased in root tissue when Cd, and especially Cu, were added to the irrigation solution, indicating that oxidative damage occurred. Results showed that NaCl gave a partial protection against Cd and Cu induced toxicity, although these contaminants had distinct influence on plant physiology. It can be concluded that salinity drastically modified heavy metal absorption and improved plant growth. Salinity also decreased oxidative damage, but differently in plants exposed to Cd or Cu stress.

  4. An Alfin-like gene from Atriplex hortensis enhances salt and drought tolerance and abscisic acid response in transgenic Arabidopsis.

    Science.gov (United States)

    Tao, Jian-Jun; Wei, Wei; Pan, Wen-Jia; Lu, Long; Li, Qing-Tian; Ma, Jin-Biao; Zhang, Wan-Ke; Ma, Biao; Chen, Shou-Yi; Zhang, Jin-Song

    2018-02-09

    Alfin-like (AL) is a small plant-specific gene family with prominent roles in root growth and abiotic stress response. Here, we aimed to identify novel stress tolerance AL genes from the stress-tolerant species Atriplex hortensis. Totally, we isolated four AhAL genes, all encoding nuclear-localized proteins with cis-element-binding and transrepression activities. Constitutive expression of AhAL1 in Arabidopsis facilitated plants to survive under saline condition, while expressing anyone of the other three AhAL genes led to salt-hypersensitive response, indicating functional divergence of AhAL family. AhAL1 also conferred enhanced drought tolerance, as judged from enhanced survival, improved growth, decreased malonaldehyde (MDA) content and reduced water loss in AhAL1-expressing plants compared to WT. In addition, abscisic acid (ABA)-mediated stomatal closure and inhibition of seed germination and primary root elongation were enhanced in AhAL1-transgenic plants. Further analysis demonstrated that AhAL1 could bind to promoter regions of GRF7, DREB1C and several group-A PP2C genes and repress their expression. Correspondingly, the expression levels of positive stress regulator genes DREB1A, DREB2A and three ABFs were all increased in AhAL1-expressing plants. Based on these results, AhAL1 was identified as a novel candidate gene for improving abiotic stress tolerance of crop plants.

  5. Salinization of the soil solution decreases the further accumulation of salt in the root zone of the halophyte Atriplex nummularia Lindl. growing above shallow saline groundwater.

    Science.gov (United States)

    Alharby, Hesham F; Colmer, Timothy D; Barrett-Lennard, Edward G

    2018-01-01

    Water use by plants in landscapes with shallow saline groundwater may lead to the accumulation of salt in the root zone. We examined the accumulation of Na + and Cl - around the roots of the halophyte Atriplex nummularia Lindl. and the impacts of this increasing salinity for stomatal conductance, water use and growth. Plants were grown in columns filled with a sand-clay mixture and connected at the bottom to reservoirs containing 20, 200 or 400 mM NaCl. At 21 d, Na + and Cl - concentrations in the soil solution were affected by the salinity of the groundwater, height above the water table and the root fresh mass density at various soil depths (P soil solution therefore had a feedback effect on further salinization within the root zone. © 2017 John Wiley & Sons Ltd.

  6. Rapid regulation of the plasma membrane H+-ATPase activity is essential to salinity tolerance in two halophyte species, Atriplex lentiformis and Chenopodium quinoa

    Science.gov (United States)

    Bose, Jayakumar; Rodrigo-Moreno, Ana; Lai, Diwen; Xie, Yanjie; Shen, Wenbiao; Shabala, Sergey

    2015-01-01

    Background and Aims The activity of H+-ATPase is essential for energizing the plasma membrane. It provides the driving force for potassium retention and uptake through voltage-gated channels and for Na+ exclusion via Na+/H+ exchangers. Both of these traits are central to plant salinity tolerance; however, whether the increased activity of H+-ATPase is a constitutive trait in halophyte species and whether this activity is upregulated at either the transcriptional or post-translation level remain disputed. Methods The kinetics of salt-induced net H+, Na+ and K+ fluxes, membrane potential and AHA1/2/3 expression changes in the roots of two halophyte species, Atriplex lentiformis (saltbush) and Chenopodium quinoa (quinoa), were compared with data obtained from Arabidopsis thaliana roots. Key Results Intrinsic (steady-state) membrane potential values were more negative in A. lentiformis and C. quinoa compared with arabidopsis (−144 ± 3·3, −138 ± 5·4 and −128 ± 3·3 mV, respectively). Treatment with 100 mm NaCl depolarized the root plasma membrane, an effect that was much stronger in arabidopsis. The extent of plasma membrane depolarization positively correlated with NaCl-induced stimulation of vanadate-sensitive H+ efflux, Na+ efflux and K+ retention in roots (quinoa > saltbush > arabidopsis). NaCl-induced stimulation of H+ efflux was most pronounced in the root elongation zone. In contrast, H+-ATPase AHA transcript levels were much higher in arabidopsis compared with quinoa plants, and 100 mm NaCl treatment led to a further 3-fold increase in AHA1 and AHA2 transcripts in arabidopsis but not in quinoa. Conclusions Enhanced salinity tolerance in the halophyte species studied here is not related to the constitutively higher AHA transcript levels in the root epidermis, but to the plant’s ability to rapidly upregulate plasma membrane H+-ATPase upon salinity treatment. This is necessary for assisting plants to maintain highly negative

  7. Halophytes: Potential Resources for Salt Stress Tolerance Genes and Promoters.

    Science.gov (United States)

    Mishra, Avinash; Tanna, Bhakti

    2017-01-01

    Halophytes have demonstrated their capability to thrive under extremely saline conditions and thus considered as one of the best germplasm for saline agriculture. Salinity is a worldwide problem, and the salt-affected areas are increasing day-by-day because of scanty rainfall, poor irrigation system, salt ingression, water contamination, and other environmental factors. The salinity stress tolerance mechanism is a very complex phenomenon, and some pathways are coordinately linked for imparting salinity tolerance. Though a number of salt responsive genes have been reported from the halophytes, there is always a quest for promising stress-responsive genes that can modulate plant physiology according to the salt stress. Halophytes such as Aeluropus, Mesembryanthemum, Suaeda, Atriplex, Thellungiella, Cakile , and Salicornia serve as a potential candidate for the salt-responsive genes and promoters. Several known genes like antiporters ( NHX, SOS, HKT, VTPase ), ion channels (Cl - , Ca 2+ , aquaporins), antioxidant encoding genes ( APX, CAT, GST, BADH, SOD ) and some novel genes such as USP, SDR1, SRP etc. were isolated from halophytes and explored for developing stress tolerance in the crop plants (glycophytes). It is evidenced that stress triggers salt sensors that lead to the activation of stress tolerance mechanisms which involve multiple signaling proteins, up- or down-regulation of several genes, and finally the distinctive or collective effects of stress-responsive genes. In this review, halophytes are discussed as an excellent platform for salt responsive genes which can be utilized for developing salinity tolerance in crop plants through genetic engineering.

  8. Rapid regulation of the plasma membrane H⁺-ATPase activity is essential to salinity tolerance in two halophyte species, Atriplex lentiformis and Chenopodium quinoa.

    Science.gov (United States)

    Bose, Jayakumar; Rodrigo-Moreno, Ana; Lai, Diwen; Xie, Yanjie; Shen, Wenbiao; Shabala, Sergey

    2015-02-01

    The activity of H(+)-ATPase is essential for energizing the plasma membrane. It provides the driving force for potassium retention and uptake through voltage-gated channels and for Na(+) exclusion via Na(+)/H(+) exchangers. Both of these traits are central to plant salinity tolerance; however, whether the increased activity of H(+)-ATPase is a constitutive trait in halophyte species and whether this activity is upregulated at either the transcriptional or post-translation level remain disputed. The kinetics of salt-induced net H(+), Na(+) and K(+) fluxes, membrane potential and AHA1/2/3 expression changes in the roots of two halophyte species, Atriplex lentiformis (saltbush) and Chenopodium quinoa (quinoa), were compared with data obtained from Arabidopsis thaliana roots. Intrinsic (steady-state) membrane potential values were more negative in A. lentiformis and C. quinoa compared with arabidopsis (-144 ± 3·3, -138 ± 5·4 and -128 ± 3·3 mV, respectively). Treatment with 100 mm NaCl depolarized the root plasma membrane, an effect that was much stronger in arabidopsis. The extent of plasma membrane depolarization positively correlated with NaCl-induced stimulation of vanadate-sensitive H(+) efflux, Na(+) efflux and K(+) retention in roots (quinoa > saltbush > arabidopsis). NaCl-induced stimulation of H(+) efflux was most pronounced in the root elongation zone. In contrast, H(+)-ATPase AHA transcript levels were much higher in arabidopsis compared with quinoa plants, and 100 mm NaCl treatment led to a further 3-fold increase in AHA1 and AHA2 transcripts in arabidopsis but not in quinoa. Enhanced salinity tolerance in the halophyte species studied here is not related to the constitutively higher AHA transcript levels in the root epidermis, but to the plant's ability to rapidly upregulate plasma membrane H(+)-ATPase upon salinity treatment. This is necessary for assisting plants to maintain highly negative membrane potential values and to

  9. Halophytes: Potential Resources for Salt Stress Tolerance Genes and Promoters

    Directory of Open Access Journals (Sweden)

    Avinash Mishra

    2017-05-01

    Full Text Available Halophytes have demonstrated their capability to thrive under extremely saline conditions and thus considered as one of the best germplasm for saline agriculture. Salinity is a worldwide problem, and the salt-affected areas are increasing day-by-day because of scanty rainfall, poor irrigation system, salt ingression, water contamination, and other environmental factors. The salinity stress tolerance mechanism is a very complex phenomenon, and some pathways are coordinately linked for imparting salinity tolerance. Though a number of salt responsive genes have been reported from the halophytes, there is always a quest for promising stress-responsive genes that can modulate plant physiology according to the salt stress. Halophytes such as Aeluropus, Mesembryanthemum, Suaeda, Atriplex, Thellungiella, Cakile, and Salicornia serve as a potential candidate for the salt-responsive genes and promoters. Several known genes like antiporters (NHX, SOS, HKT, VTPase, ion channels (Cl−, Ca2+, aquaporins, antioxidant encoding genes (APX, CAT, GST, BADH, SOD and some novel genes such as USP, SDR1, SRP etc. were isolated from halophytes and explored for developing stress tolerance in the crop plants (glycophytes. It is evidenced that stress triggers salt sensors that lead to the activation of stress tolerance mechanisms which involve multiple signaling proteins, up- or down-regulation of several genes, and finally the distinctive or collective effects of stress-responsive genes. In this review, halophytes are discussed as an excellent platform for salt responsive genes which can be utilized for developing salinity tolerance in crop plants through genetic engineering.

  10. Modeling Halophytic Plants in APEX for Sustainable Water and Agriculture

    Science.gov (United States)

    DeRuyter, T.; Saito, L.; Nowak, B.; Rossi, C.; Toderich, K.

    2013-12-01

    A major problem for irrigated agricultural production is soil salinization, which can occur naturally or can be human-induced. Human-induced, or secondary salinization, is particularly a problem in arid and semi-arid regions, especially in irrigated areas. Irrigated land has more than twice the production of rainfed land, and accounts for about one third of the world's food, but nearly 20% of irrigated lands are salt-affected. Many farmers worldwide currently seasonally leach their land to reduce the soil salt content. These practices, however, create further problems such as a raised groundwater table, and salt, fertilizer, and pesticide pollution of nearby lakes and groundwater. In Uzbekistan, a combination of these management practices and a propensity to cultivate 'thirsty' crops such as cotton has also contributed to the Aral Sea shrinking nearly 90% by volume since the 1950s. Most common agricultural crops are glycophytes that have reduced yields when subjected to salt-stress. Some plants, however, are known as halophytic or 'salt-loving' plants and are capable of completing their life-cycle in higher saline soil or water environments. Halophytes may be useful for human consumption, livestock fodder, or biofuel, and may also be able to reduce or maintain salt levels in soil and water. To assess the potential for these halophytes to assist with salinity management, we are developing a model that is capable of tracking salinity under different management practices in agricultural environments. This model is interdisciplinary as it combines fields such as plant ecology, hydrology, and soil science. The US Department of Agriculture (USDA) model, Agricultural Policy/Environmental Extender (APEX), is being augmented with a salinity module that tracks salinity as separate ions across the soil-plant-water interface. The halophytes Atriplex nitens, Climacoptera lanata, and Salicornia europaea are being parameterized and added into the APEX model database. Field sites

  11. A Heavy Metal-Associated Protein (AcHMA1 from the Halophyte, Atriplex canescens (Pursh Nutt., Confers Tolerance to Iron and Other Abiotic Stresses When Expressed in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Xin-Hua Sun

    2014-08-01

    Full Text Available Many heavy metals are essential for metabolic processes, but are toxic at elevated levels. Metal tolerance proteins provide resistance to this toxicity. In this study, we identified and characterized a heavy metal-associated protein, AcHMA1, from the halophyte, Atriplex canescens. Sequence analysis has revealed that AcHMA1 contains two heavy metal binding domains. Treatments with metals (Fe, Cu, Ni, Cd or Pb, PEG6000 and NaHCO3 highly induced AcHMA1 expression in A. canescens, whereas NaCl and low temperature decreased its expression. The role of AcHMA1 in metal stress tolerance was examined using a yeast expression system. Expression of the AcHMA1 gene significantly increased the ability of yeast cells to adapt to and recover from exposure to excess iron. AcHMA1 expression also provided salt, alkaline, osmotic and oxidant stress tolerance in yeast cells. Finally, subcellular localization of an AcHMA1/GFP fusion protein expressed in tobacco cells showed that AcHMA1 was localized in the plasma membrane. Thus, our results suggest that AcHMA1 encodes a membrane-localized metal tolerance protein that mediates the detoxification of iron in eukaryotes. Furthermore, AcHMA1 also participates in the response to abiotic stress.

  12. Seasonal variations in plant water status of four desert halophytes from semi-arid region of Karachi

    International Nuclear Information System (INIS)

    Aziz, I.; Gul, B.; Gulzar, S.; Khan, A

    2011-01-01

    Halophytes in arid and semi arid zones of the world are often subjected to extremely variable drought, salinity and temperature. These fluctuations may bring about changes in their osmoregulation and gas exchange responses besides other physiological and biochemical processes. The purpose of this study was to detect temporal changes in plant water status and osmotic adjustment in four desert halophytes viz., Suaeda fruticosa, Heliotropium curassavicum, Haloxylon stocksii and Atriplex stocksii from an inland community at Karachi University Campus. During the dry period (November to January) water and osmotic potentials of all test species increased with higher values in A. stocksii (salt secretor) than those of S. fruticosa and H. stocksii (salt includer) and H. curassavicum (salt excluder). Proline increased substantially and was highest in H. curassavicum followed by A. stocksii in comparison to the two salt includers. The lowering of osmotic potential corresponded to an increase in Na and Cl, lower stomatal conductance and chlorophyll content indicating reduced gas exchange during the dry period. The increase in proline may have little role in osmoreglation but could contribute in scavenging reactive oxygen species. (author)

  13. Phytoremediation potential of some halophytic species for soil salinity.

    Science.gov (United States)

    Devi, S; Nandwal, A S; Angrish, R; Arya, S S; Kumar, N; Sharma, S K

    2016-01-01

    Phytoremediation potential of six halophytic species i.e. Suaeda nudiflora, Suaeda fruticosa, Portulaca oleracea, Atriplex lentiformis, Parkinsonia aculeata and Xanthium strumarium was assessed under screen house conditions. Plants were raised at 8.0, 12.0, 16.0, and 20.0 dSm(-1) of chloride-dominated salinity. The control plants were irrigated with canal water. Sampling was done at vegetative stage (60-75 DAS). About 95 percent seed germination occurred up to 12 dSm(-1) and thereafter declined slightly. Mean plant height and dry weight plant(-1) were significantly decreased from 48.71 to 32.44 cm and from 1.73 to 0.61g plant(-1) respectively upon salinization. Na(+)/K(+) ratio (0.87 to 2.72), Na(+)/ Ca(2+) + Mg(2+) (0.48 to 1.54) and Cl(-)/SO4(2-) (0.94 to 5.04) ratio showed increasing trend. Salinity susceptibility index was found minimum in Suaeda fruticosa (0.72) and maximum in Parkinsonia aculeata (1.17). Total ionic content also declined and magnitude of decline varied from 8.51 to 18.91% at 8 dSm(-1) and 1.85 to 7.12% at 20 dSm(-1) of salinity. On the basis of phytoremediation potential Suaeda fruticosa (1170.02 mg plant(-1)), Atriplex lentiformis (777.87 mg plant(-1)) were the best salt hyperaccumulator plants whereas Xanthium strumarium (349.61 mg plant(-1)) and Parkinsonia aculeata (310.59 mg plant(-1)) were the least hyperaccumulator plants.

  14. On the distribution and evaluation of Na, Mg and Cl in leaves of selected halophytes

    Energy Technology Data Exchange (ETDEWEB)

    Pongrac, Paula; Vogel-Mikuš, Katarina; Regvar, Marjana [Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, SI-1000 Ljubljana (Slovenia); Kaligarič, Mitja [Department of Biology, Faculty of Natural Sciences and Mathematics, Koroška c. 160, SI-2000 Maribor (Slovenia); Vavpetič, Primož; Kelemen, Mitja; Grlj, Nataša [Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Shelef, Oren; Golan-Goldhirsh, Avi; Rachmilevitch, Shimon [French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research (BIDR), Ben-Gurion University of the Negev, 84990 Midreshet Ben-Gurion (Israel); Pelicon, Primož, E-mail: primoz.pelicon@ijs.si [Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia)

    2013-07-01

    Diverse physiological, biochemical and morphological adaptations enable plants to survive in extreme saline environments where osmotic and ionic stresses limit growth and development. Halophytes are salt-tolerant plants that can withstand extraordinarily high levels of Na and Cl in their leaves. The tissue and cellular distribution patterns of salt ions can be linked to the underlying mechanisms of salt tolerance. Application of fast, reliable, multi-elemental and quantitative techniques such as micro-proton-induced X-ray emission (micro-PIXE) will significantly contribute to and accelerate studies of plant salt tolerance, especially as micro-PIXE also provides spatially resolved quantitative data for light elements, such as Na and Mg. The spatial concentration distributions of Na, Mg, Cl, K, P and S in leaves of four halophytes (Bassia indica, Atriplex prostrata, Spartina maritima and Limonium angustifolium) were determined using micro-PIXE, to study the salt-tolerance strategies of the selected halophytes. Different distribution patterns of the studied elements were seen in the leaves; however, in all four of these plant species, Na was excluded from photosynthetically active chlorophyl tissues. With the exception of L. angustifolium, Cl, P and S contents (representing chloride, phosphate and sulphate ionic forms, respectively) did not ensure charge balance in the leaves, which suggests other anionic compounds, such as nitrate and organic anions, have crucial roles in maintaining electroneutrality in these halophytes. By increasing soil salinisation worldwide, the possibility to reliably complement spatial distributions of Na, Mg, Cl, K, P and S with plant structural morphology will contribute significantly to our understanding of plant tolerance mechanisms at the tissue and cell levels. In addition, these kinds of studies are of particular value for designing crop plants with high salt tolerance and for the development of phytoremediation technologies.

  15. Studies on the genus Atriplex L. (Amaranthaceae) in Italy. IV ...

    African Journals Online (AJOL)

    Studies on the genus Atriplex L. (Amaranthaceae) in Italy. IV. Atriplex bocconei Guss. – Atriplex bocconei Guss. is here typified on one herbarium specimen kept in NAP. The identity of the species is also clarified on the basis of literature analysis and examination of type material and other specimens that allowed to include it ...

  16. Clinical evaluation of the essential oil of "Satureja Hortensis" for the treatment of denture stomatitis

    Directory of Open Access Journals (Sweden)

    Ali Mohammad Sabzghabaee

    2012-01-01

    Full Text Available Background: The prevalence of denture stomatitis has been shown to vary from 15 to 65% in complete denture wearers. Satureja hortensis L. has been considered to have antinociceptive, anti-inflammatory, antifungal and antimicrobial activities in vitro and exhibits strong inhibitory effect on the growth of periodontal bacteria. The aim of this study was to evaluate the efficacy of a 1% gel formulation of S. hortensis essential oil for the treatment of denture stomatitis. Materials and Methods: A randomized, controlled clinical trial study was conducted on 80 patients (mean age 62.91±7.34 in two parallel groups treated either with S. hortensis essential oil 1% gel or placebo applied two times daily for two weeks. Denture stomatitis was diagnosed by clinical examination and paraclinical confirmation with sampling the palatal mucosa for Candida albicans. Data were analyzed using Chi-squared or Student′s t tests. Results: The erythematous lesions of palatal area were significantly reduced (P<0.0001 in the treatment group who applied 1% topical gel of S. hortensis essential oil and Candida colonies count were reduced significantly (P=0.001. Conclusion: Topical application of the essential oil of S. hortensis could be considered as an effective agent for the treatment of denture stomatitis.

  17. The effect of alcoholic extracts of Arctium lappa L. and Satureja hortensis L. against Trichomonas vaginalis in vitro

    Directory of Open Access Journals (Sweden)

    Mohsen Arbabi

    2017-12-01

    Full Text Available Background: Trichomonas vaginalis infection is one of the most prevalent type of vaginitis in women. Considering the side effects of metronidazole and therapeutic properties of Arctium lappa L. and Satureja hortensis L. in traditional medicine, this study aimed to examine the anti-Trichomonas effects of Arctium lappa and Satureja hortensis alcoholic extracts in vitro. Materials and Methods: This experimental study was conducted on T. vaginalis isolated from 1203 persons referred to five health centers in Kashan city. Five T. vaginalis isolates were cultured in a TYI-S-33 medium and were used to study the effect of Arctium lappa and Satureja hortensis extracts. The effects of different concentrations (12.5, 25, 50, 100, 200, 400, 800 and 1000 µg/mL of plant extracts on the growth of T. vaginalis trophozoeites were studied 12, 24, and 48 h after the culture. Also, the culture media and metronidazole (0.025, 0.05, 0.1, 0.2, 0.4 µg/mL were considered as the negative and positive controls, respectively. The effects of the extracts and drug were examined by counting the number of live and dead parasites using the trypan blue staining method. Results: Results showed that the alcoholic extracts of Satureja hortensis and Arctium lappa had an inhibitory effect on the growth of T. vaginalis. The IC50 values of the alcoholic extracts of Satureja hortensis, Arctium lappa and metronidazole after 24 h were 190.8, 996.7 and 0.0326 µg/mL, respectively. Conclusion: The present study shows the in vitro anti-Trichomonas effect of Arctium lappa and Satureja hortensis extracts. The anti-Trichomonas effect of Satureja hortensis extract was higher than that of the Arctium lappa extract. Further studies are recommended to investigate the anti-Trichomonas effect of major components of these plants, especially the Satureja hortensis extract.

  18. Atividade microbiana em solo do semi-árido sob cultivo de Atriplex nummularia Microbial activity in a semiarid soil cultivated with Atriplex nummularia

    Directory of Open Access Journals (Sweden)

    Sônia Valéria Pereira

    2004-08-01

    Full Text Available Métodos para avaliar a atividade microbiana no solo são fundamentais no monitoramento ambiental de áreas degradadas. O objetivo deste trabalho foi investigar a atividade microbiana de solo do semi-árido cultivado com Atriplex nummularia Lindl. em áreas que receberam rejeito salino durante um e três anos, em comparação com um solo nativo, sem cultivo e não irrigada. O solo cultivado por três anos e que recebeu rejeito salino apresentou, no período seco, valores de pH, CE e atividade de hidrólise do diacetato de fluoresceína (FDA superiores aos das demais áreas. No entanto, foi observada correlação negativa entre o carbono microbiano e os valores do quociente metabólico (qCO2. A biomassa microbiana e a fosfatase alcalina também foram superiores no solo cultivado por três anos e que recebeu rejeito salino em relação ao solo nativo sem irrigação, confirmando o desempenho de plantas halófitas na melhoria da qualidade do solo sob condições de estresse salino. O cultivo de A. nummularia constitui uma das alternativas para utilização de rejeito salino proveniente da dessalinização por osmose reversa.Methods used to estimate the soil microbial activity are important to environmental monitoring of degraded areas. The objective of this research was to investigate the microbial activity of a semiarid soil cultivated with Atriplex nummularia Lindl. in a field receiving saline waste during one and three years, in comparison with an area without crop and irrigation. Soil cultivated during three years presented, during the dry season, values of pH, CE, and activity of FDA hydrolyses higher than those registered in other areas. However, a negative correlation between the microbial carbon and values of qCO2 was observed. The microbial biomass and the alkaline phosphates were also higher in the three years cultivated soil, in comparison with the native soil, non irrigated, confirming the role of halophytes for enhancing quality of

  19. HALOPHYTIC VEGETATION OF IRAN: TOWARDS A SYNTAXONOMICAL CLASSIFICATION

    Directory of Open Access Journals (Sweden)

    H. AKHANI

    2004-05-01

    Full Text Available Iran with its diverse c1irnatic conditions and geologic and land use history support large areas of saline habitats and diverse halophytic flora. The halophytic diversity in not only enriched by the evolving of a large number of autochthonous Irano-Turanian elements, but also many of the halophytes of other phytochoria like Saharo-Arabian, Mediterranean and even Euro-Siberian elements are represented in Iran. Therefore most of the higher syntaxa of Euro-Mediterranean and Afro-Asian-al last partly-occur in Iran. Prior to a consolidated syntaxonomical system for the halophytic vegetation of Iran, major halophytic vegetation units of Iran are summarized and shown along salinity and moisture gradients. These include: (I: Mangrove communities (Avicennio-Sonneratietea. (2: Submerged aquatic plant communities (Ruppietea maritimae. (3: Annual obligatory hygro-halophytic communities on sea, lake and river marshes dominated by stem or leaf succulent C3 chenopods (Thero-Salicornietea. (4 Semi-woody or perennial halophytic communities on muddy or coastal salt flats dominated by stem succulent C3 chenopods (Salicornietea fruticosae. (5: Hydrophi!ous euryhalophytic rush communities: Phragmitetea australis. (6: Halophytic grassland and herbaceous perennial sedge communities belonging to genera Puccinellia and Juncus (Juncetea maritimi. (7: Salt marsh and riverine bruchwood communities dominated by salt-excreting halophytes (Tamaricetea ramosissimae, prov.. (8: Annua1 halophytic communities dominated by C4 chenopods in temporary moist and inundated, or disturbed salty soils (Climacopteretea crassae, prov.. (9: Halophytic shrubby. semi-woody or hemicrytophytic communities on salty and dry soils dominated by lcaf or stem succulent C4 chenopods (Haloxylo-Salsoletea tomentosae, prov.. (1O: Halophytic shrub communities, on salty and sandy coastal or margin of sabkhas with high water table dominated by Nitraria schoberi and Reaumuria fruticosa. (11. Psarno-halophytic

  20. HALOPHYTIC VEGETATION OF IRAN: TOWARDS A SYNTAXONOMICAL CLASSIFICATION

    Directory of Open Access Journals (Sweden)

    H. AKHANI

    2004-01-01

    Full Text Available Iran with its diverse c1irnatic conditions and geologic and land use history support large areas of saline habitats and diverse halophytic flora. The halophytic diversity in not only enriched by the evolving of a large number of autochthonous Irano-Turanian elements, but also many of the halophytes of other phytochoria like Saharo-Arabian, Mediterranean and even Euro-Siberian elements are represented in Iran. Therefore most of the higher syntaxa of Euro-Mediterranean and Afro-Asian-al last partly-occur in Iran. Prior to a consolidated syntaxonomical system for the halophytic vegetation of Iran, major halophytic vegetation units of Iran are summarized and shown along salinity and moisture gradients. These include: (I: Mangrove communities (Avicennio-Sonneratietea. (2: Submerged aquatic plant communities (Ruppietea maritimae. (3: Annual obligatory hygro-halophytic communities on sea, lake and river marshes dominated by stem or leaf succulent C3 chenopods (Thero-Salicornietea. (4 Semi-woody or perennial halophytic communities on muddy or coastal salt flats dominated by stem succulent C3 chenopods (Salicornietea fruticosae. (5: Hydrophi!ous euryhalophytic rush communities: Phragmitetea australis. (6: Halophytic grassland and herbaceous perennial sedge communities belonging to genera Puccinellia and Juncus (Juncetea maritimi. (7: Salt marsh and riverine bruchwood communities dominated by salt-excreting halophytes (Tamaricetea ramosissimae, prov.. (8: Annua1 halophytic communities dominated by C4 chenopods in temporary moist and inundated, or disturbed salty soils (Climacopteretea crassae, prov.. (9: Halophytic shrubby. semi-woody or hemicrytophytic communities on salty and dry soils dominated by lcaf or stem succulent C4 chenopods (Haloxylo-Salsoletea tomentosae, prov.. (1O: Halophytic shrub communities, on salty and sandy coastal or margin of sabkhas with high water table dominated by Nitraria schoberi and Reaumuria fruticosa. (11. Psarno-halophytic

  1. Antibacterial activity of essential oils extracted from Satureja hortensis against selected clinical pathogens

    Science.gov (United States)

    Görmez, Arzu; Yanmiş, Derya; Bozari, Sedat; Gürkök, Sumeyra

    2017-04-01

    The antibiotic resistance of pathogenic microorganisms has become a worldwide concern to public health. To overcome the current resistance problem, new antimicrobial agents are extremely needed. The aim of the present study was to evaluate the antibacterial activity of Satureja hortensis essential oils against seven clinical pathogens. Chemical compositions of hydro distillated essential oils from S. hortensis were analyzed by GS-MS. The antibacterial activity was investigated against Corynebacterium diphtheria, Salmonella typhimurium, Serratia plymuthica Yersinia enterocolitica, Y. frederiksenii, Y. pseudotuberculosis and Vibrio cholerae by the use of disc diffusion method and broth micro dilution method. The minimum inhibitory concentration (MIC) values of essential oils were found as low as 7.81 µg/mL. Notably, essential oils of S. hortensis exhibited remarkable antimicrobial activities against the tested clinical pathogens. The results indicate that these essential oils can be used in treatment of different infectious diseases.

  2. Deficit irrigation of a landscape halophyte for reuse of saline waste water in a desert city

    Science.gov (United States)

    Glenn, E.P.; Mckeon, C.; Gerhart, V.; Nagler, P.L.; Jordan, F.; Artiola, J.

    2009-01-01

    Saline waste waters from industrial and water treatment processes are an under-utilized resource in desert urban environments. Management practices to safely use these water sources are still in development. We used a deeprooted native halophyte, Atriplex lentiformis (quailbush), to absorb mildly saline effluent (1800 mg l-1 total dissolved solids, mainly sodium sulfate) from a water treatment plant in the desert community of Twentynine Palms, California. We developed a deficit irrigation strategy to avoid discharging water past the root zone to the aquifer. The plants were irrigated at about one-third the rate of reference evapotranspiration (ETo) calculated from meteorological data over five years and soil moisture levels were monitored to a soil depth of 4.7 m at monthly intervals with a neutron hydroprobe. The deficit irrigation schedule maintained the soil below field capacity throughout the study. Water was presented on a more or less constant schedule, so that the application rates were less than ETo in summer and equal to or slightly greater than ETo in winter, but the plants were able to consume water stored in the profile in winter to support summer ET. Sodium salts gradually increased in the soil profile over the study but sulfate levels remained low, due to formation of gypsum in the calcic soil. The high salt tolerance, deep roots, and drought tolerance of desert halophytes such as A. lentiformis lend these plants to use as deficit-irrigated landscape plants for disposal of effluents in urban setting when protection of the aquifer is important. ?? 2008 Elsevier B.V.

  3. ANTIMICROBIAL ACTIVITY OF ETHANOL EXTRACT OF SATUREJA HORTENSIS L. TOWARDS PATHOGENIC MICROBIAL STRAINS

    Directory of Open Access Journals (Sweden)

    L. A. Kotyuk

    2014-12-01

    Full Text Available The paper provides the information on the component composition of ethereal oil of Satureja hortensis cultivated in Zhytomyr Polissya. In the ethereal oil of summer savory, 19 components were identified: carvacrol (89,07%, γ-terpinene (3,53%, α-thujone (1,7%, camphora (1,48%, terpinen-4 ol 4 (0,91%, β-bisabolen (0,56%, β-caryophyllene (0,45%, bitsiklogermakren (0,38% para-cymene (0,34%, 1,8-cineole (0,33%, trans-sabinengidrat (0.25%, 1-octen-3-ol (0.20%, spatulenol (0,18%, β-thujone (0,14%, eugenol (0,11%, geranylacetate (0,11%, humulene (0,09%, α-terpinene (0,09%, octanol-3 (0,07%. A high carvacrol content determines antimicrobial properties of summer savory. The antimicrobial activity of S. hortensis extract was studied in accordance with the common methodology of determining the sensitivity of microorganisms to antibacterial preparations. The aboveground part of plants harvested in the last ten-day period of August, in the flowering phase, was used in the experiments. The raw material was reduced to fragments of 1-1.5mm according to the requirements of pharmacopoeia. The extract of S. hortensis was obtained by the method of maceration in 40% ethyl alcohol at a ratio of 1:5 and the concentration of 200mg/ml. The availability of antimicrobial activity of extracted substances in the structure of the substances studied was determined by the way of comparison of their minimum inhibiting concentrations (MIC and minimum bactericidal/fungicidal concentrations (MBC/MFC with those in 40% ethyl alcohol. The paper investigates the biological activity of 40 % ethanol extract of Satureja hortensis herb grown under the conditions of Ukrainian Polissya as to golden staphylococcus (Staphylococcus aureus, coliform bacillus Escherichia coli, Pseudomonas aeruginosa and Candida albicans which are pathogenic in reference to other organisms. It has been shown that S. hortensis extract was characterized by antimicrobial activity since extracted substances

  4. Mining Halophytes for Plant Growth-Promoting Halotolerant Bacteria to Enhance the Salinity Tolerance of Non-halophytic Crops

    Directory of Open Access Journals (Sweden)

    Hassan Etesami

    2018-02-01

    Full Text Available Salinity stress is one of the major abiotic stresses limiting crop production in arid and semi-arid regions. Interest is increasing in the application of PGPRs (plant growth promoting rhizobacteria to ameliorate stresses such as salinity stress in crop production. The identification of salt-tolerant, or halophilic, PGPRs has the potential to promote saline soil-based agriculture. Halophytes are a useful reservoir of halotolerant bacteria with plant growth-promoting capabilities. Here, we review recent studies on the use of halophilic PGPRs to stimulate plant growth and increase the tolerance of non-halophytic crops to salinity. These studies illustrate that halophilic PGPRs from the rhizosphere of halophytic species can be effective bio-inoculants for promoting the production of non-halophytic species in saline soils. These studies support the viability of bioinoculation with halophilic PGPRs as a strategy for the sustainable enhancement of non-halophytic crop growth. The potential of this strategy is discussed within the context of ensuring sustainable food production for a world with an increasing population and continuing climate change. We also explore future research needs for using halotolerant PGPRs under salinity stress.

  5. Endophyte microbiome diversity in micropropagated Atriplex canescens and Atriplex torreyi var griffithsii.

    Directory of Open Access Journals (Sweden)

    Mary E Lucero

    2011-03-01

    Full Text Available Microbial diversity associated with micropropagated Atriplex species was assessed using microscopy, isolate culturing, and sequencing. Light, electron, and confocal microscopy revealed microbial cells in aseptically regenerated leaves and roots. Clone libraries and tag-encoded FLX amplicon pyrosequencing (TEFAP analysis amplified sequences from callus homologous to diverse fungal and bacterial taxa. Culturing isolated some seed borne endophyte taxa which could be readily propagated apart from the host. Microbial cells were observed within biofilm-like residues associated with plant cell surfaces and intercellular spaces. Various universal primers amplified both plant and microbial sequences, with different primers revealing different patterns of fungal diversity. Bacterial and fungal TEFAP followed by alignment with sequences from curated databases revealed 7 bacterial and 17 ascomycete taxa in A. canescens, and 5 bacterial taxa in A. torreyi. Additional diversity was observed among isolates and clone libraries. Micropropagated Atriplex retains a complex, intimately associated microbiome which includes diverse strains well poised to interact in manners that influence host physiology. Microbiome analysis was facilitated by high throughput sequencing methods, but primer biases continue to limit recovery of diverse sequences from even moderately complex communities.

  6. Chemical Composition and Repellent Activity of Achillea vermiculata and Satureja hortensis against Anopheles stephensi

    Directory of Open Access Journals (Sweden)

    Masoumeh Pirmohammadi

    2016-01-01

    Full Text Available Background: One of the best ways to control the malaria disease and to be protected human against Anopheles mos­quito biting is the use of repellents. Throughout repellents, herbal ones may be an appropriate and safe source for protection.Methods: Chemical constituents of Achillea vermiculata and Satoreja hortensis were determined by using gas chromatography-mass spectrometry. Efficacy and the protection time of these plants were assessed on Anopheles stephensi under the laboratory condition.Results: The mean assessed protection time and efficacy for A. vermiculata was 2.16 and 3.16 hours respectively and the obtained ED50 and ED90 for this plant was 5.67 and 63 µl/cm2 respectively. The figured for S. hortensis was 4.16 and 5 hours respectively.  ED50 and ED90 for this plant were 5.63 and 45.75µl/cm2 respectively.Conclusion: Results of investigation showed that S. hortensis plant has an acceptable protection time, therefore, this plant could be considered as a good herbal repellent against anopheles mosquitoes.

  7. Four-wing saltbush (Atriplex canescens) seed and seedling consumption by granivorous rodents

    Science.gov (United States)

    Four-wing saltbush (Atriplex canescens [Pursh] Nutt.), native to western North America, extends from Canada to Mexico and from the Great Plains to the Pacific Coast. Shrubby species of Atriplex are in the family Chenopodiacea, which contains other important shrubs such as winter fat (Krascheninnikov...

  8. Coping With Metal Toxicity – Cues From Halophytes

    Directory of Open Access Journals (Sweden)

    Ganesh C. Nikalje

    2018-06-01

    Full Text Available Being the native flora of saline soil, halophytes are well studied for their salt tolerance and adaptation mechanism at the physiological, biochemical, molecular and metabolomic levels. However, these saline habitats are getting contaminated due to various anthropogenic activities like urban waste, agricultural runoff, mining, industrial waste that are rich in toxic metals and metalloids. These toxic metals impose detrimental effects on growth and development of most plant species. Halophytes by virtue of their tolerance to salinity also show high tolerance to heavy metals which is attributed to the enhanced root to shoot metal translocation and bioavailability. Halophytes rapidly uptake toxic ions from the root and transport them toward aerial parts by using different transporters which are involved in metal tolerance and homeostasis. A number of defense related physiological and biochemical strategies are known to be crucial for metal detoxification in halophytes however; there is paucity of information on the molecular regulators. Understanding of the phenomenon of cross-tolerance of salinity with other abiotic stresses in halophytes could very well boost their potential use in phytoremediation. In this article, we present an overview of heavy metal tolerance in case of halophytes, associated mechanisms and cross-tolerance of salinity with other abiotic stresses.

  9. Growth, biomass production and ions accumulation in Atriplex nummularia Lindl grown under abiotic stress

    Directory of Open Access Journals (Sweden)

    Hidelblandi F. de Melo

    2016-02-01

    Full Text Available ABSTRACT Atriplex nummularia is a halophyte of great importance in the recovery of saline soils and is considered as a model plant to study biosaline scenarios. This study aimed to evaluate biometric parameters, biomass production and the accumulation of ions in A. nummularia grown under abiotic stresses. Cultivation was carried out in a Fluvic Neosol for 100 days, adopting two water regimes: 37 and 70% of field capacity. Plants were irrigated with saline solutions containing two types of salts (NaCl and a mixture of NaCl, KCl, MgCl2 and CaCl2 at six levels of electrical conductivity: 0, 5, 10, 20, 30 and 40 dS m-1, arranged in a 6 x 2 x 2 factorial with 4 replicates, forming 96 plots. At the end of the experiment, plants were divided into leaves, stem and roots, for the determination of fresh matter (FM, dry matter (DM and estimated leaf area (LA, besides the contents of Ca2+, Mg2+, Na+, K+ and Cl-. The type of salt did not influence plant growth or biomass production; however, it influenced the levels of Ca2+, Mg2+, Na+ and Cl- in the leaves and Mg2+, K+ and Cl- in the roots. Increase in salinity reduced the contents of Ca2+, Mg2+, Na+, K+ and Cl- for all treatments.

  10. Molecular structure and chromosome distribution of three repetitive DNA families in Anemone hortensis L. (Ranunculaceae).

    Science.gov (United States)

    Mlinarec, Jelena; Chester, Mike; Siljak-Yakovlev, Sonja; Papes, Drazena; Leitch, Andrew R; Besendorfer, Visnja

    2009-01-01

    The structure, abundance and location of repetitive DNA sequences on chromosomes can characterize the nature of higher plant genomes. Here we report on three new repeat DNA families isolated from Anemone hortensis L.; (i) AhTR1, a family of satellite DNA (stDNA) composed of a 554-561 bp long EcoRV monomer; (ii) AhTR2, a stDNA family composed of a 743 bp long HindIII monomer and; (iii) AhDR, a repeat family composed of a 945 bp long HindIII fragment that exhibits some sequence similarity to Ty3/gypsy-like retroelements. Fluorescence in-situ hybridization (FISH) to metaphase chromosomes of A. hortensis (2n = 16) revealed that both AhTR1 and AhTR2 sequences co-localized with DAPI-positive AT-rich heterochromatic regions. AhTR1 sequences occur at intercalary DAPI bands while AhTR2 sequences occur at 8-10 terminally located heterochromatic blocks. In contrast AhDR sequences are dispersed over all chromosomes as expected of a Ty3/gypsy-like element. AhTR2 and AhTR1 repeat families include polyA- and polyT-tracks, AT/TA-motifs and a pentanucleotide sequence (CAAAA) that may have consequences for chromatin packing and sequence homogeneity. AhTR2 repeats also contain TTTAGGG motifs and degenerate variants. We suggest that they arose by interspersion of telomeric repeats with subtelomeric repeats, before hybrid unit(s) amplified through the heterochromatic domain. The three repetitive DNA families together occupy approximately 10% of the A. hortensis genome. Comparative analyses of eight Anemone species revealed that the divergence of the A. hortensis genome was accompanied by considerable modification and/or amplification of repeats.

  11. Phytostabilisation of severely contaminated mine tailings using halophytes and field addition of organic and inorganic amendments.

    Science.gov (United States)

    Pardo, T; Bernal, M P; Clemente, R

    2017-07-01

    Phytostabilisation strategies have proven to be an efficient remediation option for mine tailings, but the adequate plant species and amendments have to be carefully selected. A remediation experiment was carried out at the semi-field level in tailings (pH 3.2, ≈1100, 4700 and 5000 mg kg -1 of As, Pb and Zn, respectively) from the mining district of La Unión-Cartagena (SE Spain). A red mud derivative (Fe/Al oxides), its combination with compost, and hydrated lime (Ca hydroxide) were applied in field plots of 0.25 m 2 . After four months of field stabilisation, tailings were transferred unaltered to a plant growth facility, and Atriplex halimus and Zygophyllum fabago (halophytes) were sown. Three months later, trace element (TE) solubility, plant accumulation and chemical speciation in the tailings pore water were studied. In unamended tailings, soluble TEs concentrations were very high (e.g., 40 mg Zn l -1 ), the dominant species being free ions and SO 4 2- - complexes (>70%). The addition of amendments increased tailings pH (6.7-7), reduced TEs solubility and extractability (>80-99%) and changed the dominant species of soluble Al, Cu, Pb and Zn to hydroxides and/or organo-metallic complexes, but increased slightly the extractable As and soluble Tl concentrations. Plants were able to grow only in amended tailings, and both species presented low levels of Al, As, Cd and Zn. Therefore, the use of combined red mud derivative and compost and halophytes was shown to be a good phytostabilisation strategy, although the dose applied must be carefully chosen in order to avoid possible solubilisation of As and Tl. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. ANTIMICROBIAL ACTIVITY OF ETHANOL EXTRACT OF SATUREJA HORTENSIS L. TOWARDS PATHOGENIC MICROBIAL STRAINS

    Directory of Open Access Journals (Sweden)

    Kotyuk L. A.

    2014-12-01

    Full Text Available The paper provides the information on the component composition of ethereal oil of Satureja hortensis cultivated in Zhytomyr Polissya. In the ethereal oil of summer savory, 19 components were identified: carvacrol (89,07%, γ-terpinene (3,53%, α-thujone (1,7%, camphora (1,48%, terpinen-4 ol 4 (0,91%, β-bisabolen (0,56%, β-caryophyllene (0,45%, bitsiklogermakren (0,38% para-cymene (0,34%, 1,8-cineole (0,33%, trans-sabinengidrat (0.25%, 1-octen-3-ol (0.20%, spatulenol (0,18%, β-thujone (0,14%, eugenol (0,11%, geranylacetate (0,11%, humulene (0,09%, α-terpinene (0,09%, octanol-3 (0,07%. A high carvacrol content determines antimicrobial properties of summer savory. The antimicrobial activity of S. hortensis extract was studied in accordance with the common methodology of determining the sensitivity of microorganisms to antibacterial preparations. The aboveground part of plants harvested in the last ten-day period of August, in the flowering phase, was used in the experiments. The raw material was reduced to fragments of 1-1.5mm according to the requirements of pharmacopoeia. The extract of S. hortensis was obtained by the method of maceration in 40% ethyl alcohol at a ratio of 1:5 and the concentration of 200mg/ml. The availability of antimicrobial activity of extracted substances in the structure of the substances studied was determined by the way of comparison of their minimum inhibiting concentrations (MIC and minimum bactericidal/fungicidal concentrations (MBC/MFC with those in 40% ethyl alcohol. The paper investigates the biological activity of 40 % ethanol extract of Satureja hortensis herb grown under the conditions of Ukrainian Polissya as to golden staphylococcus (Staphylococcus aureus, coliform bacillus Escherichia coli, Pseudomonas aeruginosa and Candida albicans which are pathogenic in reference to other organisms. It has been shown that S. hortensis extract was characterized by antimicrobial activity since extracted substances

  13. The Effect of Essential Oil of Nigella sativa and Satureia hortensis on Promastigot Stage of Lishmania major

    Directory of Open Access Journals (Sweden)

    KH Pirali-Kheirabadi

    2013-12-01

    Full Text Available Abstract Background & aim: Leishmaniasis is a zoonotic disease caused by a protozoan parasite of the genus Leishmania. Traditionally, medicinal plants have been used for topical effects of leishmaniasis. The aim of this study was to evaluate the effect of the essential oil of Satureia hortensis and Nigella sativa on the Leishmania major. Methods: In this experimental study, the effects of the plant’s essential oils and savory black beans on the Leishmania major form were studied. Evaluation was determined based on the average of Leishmania parasites form survival after exposure to different concentrations of herbs and chemical drugs MA dose at different intervals. For this purpose, different extracts with ratios of 0.1, 0.2, 0.4, 0.8, 1.2, 1.6, and 2% were added. Different groups of this study were kept in the same condition (incubated at 26 ° C. The parasites were removed from the incubator and the numbers of viable parasites were counted after 24hours. Data were analyzed using descriptive statistics, Tukey test and GM. Results: There was a significant difference in reducing parasites on groups receiving Satureia hortensis and Nigella sativa with Glucantime (p <0.05. Conclusion: Due to the increasing drug resistance of Leishmania, plant oils such as Satureia hortensis and Nigella sativa could be used as an alternative treatment for controlling leishmaniasis. Key words: Essential oil, Leishmaniasis, Nigella sativa, Satureia hortensis

  14. Potential Use of Halophytes to Remediate Saline Soils

    Directory of Open Access Journals (Sweden)

    Mirza Hasanuzzaman

    2014-01-01

    Full Text Available Salinity is one of the rising problems causing tremendous yield losses in many regions of the world especially in arid and semiarid regions. To maximize crop productivity, these areas should be brought under utilization where there are options for removing salinity or using the salt-tolerant crops. Use of salt-tolerant crops does not remove the salt and hence halophytes that have capacity to accumulate and exclude the salt can be an effective way. Methods for salt removal include agronomic practices or phytoremediation. The first is cost- and labor-intensive and needs some developmental strategies for implication; on the contrary, the phytoremediation by halophyte is more suitable as it can be executed very easily without those problems. Several halophyte species including grasses, shrubs, and trees can remove the salt from different kinds of salt-affected problematic soils through salt excluding, excreting, or accumulating by their morphological, anatomical, physiological adaptation in their organelle level and cellular level. Exploiting halophytes for reducing salinity can be good sources for meeting the basic needs of people in salt-affected areas as well. This review focuses on the special adaptive features of halophytic plants under saline condition and the possible ways to utilize these plants to remediate salinity.

  15. UTILIZACIÓN DE Atriplex canescens Y Opuntia ficus indica EN LA ALIMENTACIÓN DE CABRAS LACTANTES DURANTE LA SEQUÍA

    Directory of Open Access Journals (Sweden)

    Jorge Urrutia-Morales

    2014-01-01

    Full Text Available Utilización de Atriplex canescens y Opuntia ficus indica en la alimentación de cabras lactantes durante la sequía. El objetivo del presente estudio fue evaluar el efecto del Atriplex (Atriplex canescens y nopal (Opuntia ficus indica en la alimentación de cabras lactantes y la producción de leche durante la sequía. Durante los meses secos, entre mayo y agosto de 2005 y entre mayo y junio de 2006, se realizaron tres experimentos en la región semiárida de San Luis Potosí, México. En el primero, se probaron dos tratamientos: CO mantenidas en confinamiento y alimentación controlada (n=10 y AT mantenidas en pastoreo con Atriplex (n=10. En el segundo se aplicaron dos tratamientos: AT Atriplex (n=5 y NP Atriplex más nopal (n=5. En el tercero tres tratamientos: AT Atriplex (n=5, NP-1,0 Atriplex más 1,0% de nopal (n=4 y NP-1,5 Atriplex más 1,5% de nopal (n=5. En el primer experimento las cabras mantuvieron su peso, pero la producción de leche se redujo al 30% bajo confinamiento y menos del 8,0% en Atriplex al final del experimento. En el segundo, las cabras perdieron peso, a pesar de que la producción inicial de leche fue menor de 300 g/d. Las alimentadas con Atriplex redujeron su producción a casi la mitad de la producción inicial, mientras que la inclusión de nopal mantuvo la producción relativamente estable. En el tercer experimento, las cabras alimentadas con Atriplex mantuvieron el peso corporal, pero después de siete semanas la producción de leche fue del 25% de la producción inicial, a pesar de que esta fue de apenas 300 g diarios. En cambio, en las cabras suplementadas con nopal, la producción sólo se redujo al 45 y 64% de la producción inicial. Estos resultados son importantes para los caprinocultores de la región semiárida de México, donde las cabras podrían mantener una buena condición corporal, además de una producción de 150 a 250 g diarios de leche durante la época crítica utilizando Atriplex y nopal.

  16. Influences of Different Halophyte Vegetation on Soil Microbial Community at Temperate Salt Marsh.

    Science.gov (United States)

    Chaudhary, Doongar R; Kim, Jinhyun; Kang, Hojeong

    2018-04-01

    Salt marshes are transitional zone between terrestrial and aquatic ecosystems, occupied mainly by halophytic vegetation which provides numerous ecological services to coastal ecosystem. Halophyte-associated microbial community plays an important role in the adaptation of plants to adverse condition and also affected habitat characteristics. To explore the relationship between halophytes and soil microbial community, we studied the soil enzyme activities, soil microbial community structure, and functional gene abundance in halophytes- (Carex scabrifolia, Phragmites australis, and Suaeda japonica) covered and un-vegetated (mud flat) soils at Suncheon Bay, South Korea. Higher concentrations of total, Gram-positive, Gram-negative, total bacterial, and actinomycetes PLFAs (phospholipid fatty acids) were observed in the soil underneath the halophytes compared with mud flat soil and were highest in Carex soil. Halophyte-covered soils had different microbial community composition due to higher abundance of Gram-negative bacteria than mud flat soil. Similar to PLFA concentrations, the increased activities of β-glucosidase, cellulase, phosphatase, and sulfatase enzymes were observed under halophyte soil compared to mud flat soil and Carex exhibited highest activities. The abundance of archaeal 16S rRNA, fungal ITS, and denitrifying genes (nirK, nirS, and nosZ) were not influenced by the halophytes. Abundance bacterial 16S rRNA and dissimilatory (bi)sulfite (dsrA) genes were highest in Carex-covered soil. The abundance of functional genes involved in methane cycle (mcrA and pmoA) was not affected by the halophytes. However, the ratios of mcrA/pmoA and mcrA/dsrA increased in halophyte-covered soils which indicate higher methanogenesis activities. The finding of the study also suggests that halophytes had increased the microbial and enzyme activities, and played a pivotal role in shaping microbial community structure.

  17. Transfer factor of Radium -226, lead-210 and Polonium-210 from Norm contaminated soil to Atriplex, Afelfa and Bermuda grasses

    International Nuclear Information System (INIS)

    Al-Masri, M.S.; Mukhallati, H.; Al-Hamwi, A.

    2011-10-01

    transfer factors of Radium -226, lead-210 and Polonium-210 from contaminated soil with oil coproduced water to grazing plants in the north eastern region of Syria have been determined. contaminated soil was collected from one of the AL-Furat Petroleum Oil company oil fields;soil was distributed into several pots where the studied plants were planted in order to study the transfer factors of radioisotopes to them. Results have shown that the mean transfer factors of radium to green parts have reached has reached 0.0016 in Atriplex halimus L.,0.0021 in Atriplex canescens Nutt, 0.0025 in Atriplex Leucoclada Bioss,0.0082 in Bermuda grass and 0.0167 in Medicago Sativ L,which was the highest,while the transfer factors of polonium and lead were ten times higher than those for radium and reacted 0.012 in Atriplex Leucoclada Bioss, 0.011 in Atriplex canescens Nutt, 0.007 in Atriplex halimus L.0.32 in bermuda grass and 0.025 in Afelfa.(author)

  18. Molecular Verification of Cryptops hortensis (Scolopendromorpha: Cryptopidae) in theNearctic Region

    Science.gov (United States)

    2018-01-29

    Journal Article 3. DATES COVERED (From – To) March – April 2016 4. TITLE AND SUBTITLE Molecular Verification of Cryptops hortensis...PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) USAF School of Aerospace Medicine ...Public Health and Preventive Medicine Dept/PHR 2510 Fifth St., Bldg. 840 Wright-Patterson AFB, OH 45433-7913 8. PERFORMING ORGANIZATION REPORT

  19. The ploidy races of Atriplex confertifolia (chenopodiaceae)

    Science.gov (United States)

    Stewart C. Sanderson

    2011-01-01

    Previous accounts of polyploidy in the North American salt desert shrub Atriplex confertifolia (shadscale) have dealt with the distribution of polyploidy and the morphological and secondary chemical differences between races. The present study amplifies these studies and reveals additional ploidy-flavonoid races, with ploidy levels known to extend from 2x to 12x, and...

  20. Generation and Analysis of Expressed Sequence Tags (ESTs from Halophyte Atriplex canescens to Explore Salt-Responsive Related Genes

    Directory of Open Access Journals (Sweden)

    Jingtao Li

    2014-06-01

    Full Text Available Little information is available on gene expression profiling of halophyte A. canescens. To elucidate the molecular mechanism for stress tolerance in A. canescens, a full-length complementary DNA library was generated from A. canescens exposed to 400 mM NaCl, and provided 343 high-quality ESTs. In an evaluation of 343 valid EST sequences in the cDNA library, 197 unigenes were assembled, among which 190 unigenes (83.1% ESTs were identified according to their significant similarities with proteins of known functions. All the 343 EST sequences have been deposited in the dbEST GenBank under accession numbers JZ535802 to JZ536144. According to Arabidopsis MIPS functional category and GO classifications, we identified 193 unigenes of the 311 annotations EST, representing 72 non-redundant unigenes sharing similarities with genes related to the defense response. The sets of ESTs obtained provide a rich genetic resource and 17 up-regulated genes related to salt stress resistance were identified by qRT-PCR. Six of these genes may contribute crucially to earlier and later stage salt stress resistance. Additionally, among the 343 unigenes sequences, 22 simple sequence repeats (SSRs were also identified contributing to the study of A. canescens resources.

  1. Towards saving freshwater: halophytes as unconventional feedstuffs in livestock feed: a review.

    Science.gov (United States)

    Abd El-Hack, Mohamed E; Samak, Dalia H; Noreldin, Ahmed E; Arif, Muhammad; Yaqoob, Hilal S; Swelum, Ayman A

    2018-04-26

    Water represents 71% of all earth area and about 97% of this water is salty water. So, only 3% of the overall world water quantity is freshwater. Human can benefit only from 1% of this water and the remaining 2% freeze at both poles of earth. Therefore, it is important to preserve the freshwater through increasing the plants consuming salty water. The future prosperity of feed resources in arid and semi-arid countries depends on economic use of alternative resources that have been marginalized for long periods of time, such as halophytic plants, which are one such potential future resource. Halophyte plants can grow in high salinity water and soil and to some extent during drought. The growth of these plants depends on the contact of the salted water with plant roots as in semi-desert saline water, mangrove swamps, marshes, and seashores. Halophyte plants need high levels of sodium chloride in the soil water for growth, and the soil water must also contain high levels of salts, as sodium hydroxide or magnesium sulfate. There are many uses for halophyte plants, including feed for animals, vegetables, drugs, sand dune stabilizers, wind shelter, soil cover, wetland cultivation, laundry detergents, and paper production. This paper will focus on the use of halophytes as a feed additive for animals. In spite of the good nutritional value of halophytes, some anti-nutritional factors as nitrates, nitrite complexes, tannins, glycosides, phenolic compounds, saponins, oxalates, and alkaloids may be present in some of them. The presence of such anti-nutritional agents makes halophytes unpalatable to animals, which tends to reduce feed intake and nutrient use. Therefore, the negative effects of these plants on animal performance are the only objection against using halophytes in animal feed diets. This review article highlights the beneficial impact of considering halophytes in animal feeding on saving freshwater and illustrates its nutritive value for livestock from different

  2. Transfer factors of 226Ra, 210Pb and 210Po from NORM-contaminated oil field soil to some Atriplex species, Alfalfa and Bermuda grass

    International Nuclear Information System (INIS)

    Al-Masria, M.S.; Mukalallati, H.; Al-Hamwi, A.

    2014-01-01

    Transfer factors of 226 Ra, 210 Pb and 210 Po from soil contaminated with naturally occurring radioactive materials (NORM) in oil fields to some grazing plants were determined using pot experiments. Contaminated soil was collected from a dry surface evaporation pit from a Syrian oil field in the Der Ezzor area. Five types of plants (Atriplex halimus L., Atriplex canescens, Atriplex Leucoclada Bioss, Alfalfa and Bermuda grass) were grown and harvested three times over two years. The results show that the mean transfer factors of 226 Ra from the contaminated soil to the studied plant species were 1.6 x 10 -3 for Atriplex halimus L., 2.1 x 10 -3 for Atriplex canescens, 2.5 x 10 -3 for Atriplex Leucoclada Bioss, 8.2 x 10 -3 for Bermuda grass, and the highest value was 1.7 x 10 -2 for Alfalfa. Transfer factors of 210 Pb and 210 Po were higher than 226 Ra TFs by one order of magnitude and reached 7 x 10 -3 , 1.1 x 10 -2 , 1.2 x 10 -2 , 3.2 x 10 -2 and 2.5 x 10 -2 for Atriplex halimus, Atriplex canescens, Atriplex Leucoclada Bioss, Bermuda grass and Alfalfa, respectively. The results can be considered as base values for transfer factors of 226 Ra, 210 Pb and 210 Po in semiarid regions. (authors)

  3. Accumulation of cadmium by halophytic and non-halophytic Juncus species

    Czech Academy of Sciences Publication Activity Database

    Vaněk, Tomáš; Moťková, Kateřina; Podlipná, Radka

    2016-01-01

    Roč. 28, č. 4 (2016), s. 415-423 ISSN 2197-0025 R&D Projects: GA MŠk(CZ) OC10028; GA MPO FR-TI3/778 Institutional support: RVO:61389030 Keywords : plant-responses * salt-tolerance * heavy-metals * salinity tolerance * abiotic stress * rice seedlings * amino-acids * proline * phytoremediation * detoxification * Halophyte * Cadmium accumulation * Proline * Juncus gerardii * Juncus inflexus Subject RIV: DJ - Water Pollution ; Quality Impact factor: 1.045, year: 2016

  4. Analysis of oilseed of Halophytic species

    Directory of Open Access Journals (Sweden)

    Parto Roshandel

    2015-07-01

    Full Text Available Seeds of Atriplex griffithii, Haloxylon ammodendron, Salicornia europaea and Salsola yazdiana were analyzed to determine their potential as sources of edible oil. The quantity of total oil varied from 13.8% in Atriplex griffithii to 20.9% in H. ammodendron. The proportion of unsaturated fatty acids were higher (62-73.8%, with the highest values of α-linoleic acid (18.6%, linoleic acid (28.6% and oleic acid (19.7% in the seeds of A. griffithii, H. ammodendron and S. europaea, respectively. Results of physicochemical evaluation of the extracted oils ranged as follows: iodine values, 99.8-106.5 (g I2/100 g; saponification value, 188-283 (mg KOH/1g of oil; peroxide value, 9-13 (meq./kg and refractive index, 1.4750- 1.4761. Amongst these oilseeds, S. europaea (containing 73.8% unsaturated fatty acids but not erucic acid was the highest in quality for human consumption followed by H. ammodendron.

  5. Utilización de Atriplex canescens y Opuntia ficus indica en la alimentación de cabras lactantes durante la sequía.

    Directory of Open Access Journals (Sweden)

    Jorge Urrutia-Morales

    2014-07-01

    Full Text Available El objetivo del presente estudio fue evaluar el efecto del Atriplex (Atriplex canescens y nopal (Opuntia ficus indica en la alimentación de cabras lactantes y la producción de leche durante la sequía. Durante los meses secos, entre mayo y agosto de 2005 y entre mayo y junio de 2006, se realizaron tres experimentos en la región semiárida de San Luis Potosí, México. En el primero, se probaron dos tratamientos: CO mantenidas en confinamiento y alimentación controlada (n=10 y AT mantenidas en pastoreo con Atriplex (n=10. En el segundo se aplicaron dos tratamientos: AT Atriplex (n=5 y NP Atriplex más nopal (n=5. En el tercero tres tratamientos: AT Atriplex (n=5, NP-1,0 Atriplex más 1,0% de nopal (n=4 y NP-1,5 Atriplex más 1,5% de nopal (n=5. En el primer experimento las cabras mantuvieron su peso, pero la producción de leche se redujo al 30% bajo confinamiento y menos del 8,0% en Atriplex al final del experimento. En el segundo, las cabras perdieron peso, a pesar de que la producción inicial de leche fue menor de 300 g/d. Las alimentadas con Atriplex redujeron su producción a casi la mitad de la producción inicial, mientras que la inclusión de nopal mantuvo la producción relativamente estable. En el tercer experimento, las cabras alimentadas con Atriplex mantuvieron el peso corporal, pero después de siete semanas la producción de leche fue del 25% de la producción inicial, a pesar de que esta fue de apenas 300 g diarios. En cambio, en las cabras suplementadas con nopal, la producción sólo se redujo al 45 y 64% de la producción inicial. Estos resultados son importantes para los caprinocultores de la región semiárida de México, donde las cabras podrían mantener una buena condición corporal, además de una producción de 150 a 250 g diarios de leche durante la época crítica utilizando Atriplex y nopal.

  6. Biophysical analysis of water filtration phenomenon in the roots of halophytes

    Science.gov (United States)

    Kim, Kiwoong; Lee, Sang Joon

    2015-11-01

    The water management systems of plants, such as water collection and water filtration have been optimized through a long history. In this point of view, new bio-inspired technologies can be developed by mimicking the nature's strategies for the survival of the fittest. In this study, the biophysical characteristics of water filtration process in the roots of halophytes are experimentally investigated in the plant hydrodynamic point of view. To understand the functional features of the halophytes 3D morphological structure of their roots are analyzed using advanced bioimaging techniques. The surface properties of the roots of halophytes are also examined Based on the quantitatively analyzed information, water filtration phenomenon in the roots is examined. Sodium treated mangroves are soaked in sodium acting fluorescent dye solution to trace sodium ions in the roots. In addition, in vitroexperiment is carried out by using the roots. As a result, the outermost layer of the roots filters out continuously most of sodium ions. This study on developing halophytes would be helpful for understanding the water filtration mechanism of the roots of halophytes and developing a new bio inspired desalination system. This research was financially supported by the National Research Foundation (NRF) of Korea (Contract grant number: 2008-0061991).

  7. Adaptation in Atriplex griffithii and Prosopis juliflora plants in ...

    African Journals Online (AJOL)

    The introduction of cement dust from a cement factory produced negative effects on the morphological traits of both plant species (Atriplex griffithii and Prosopis juliflora) growing at the polluted as compared to unpolluted area. Low seedling height and plant circumference for A. griffithii andi were observed at the polluted site ...

  8. Management of Atriplex nummularia Lindl. in a salt affected soil in a semi arid region of Brazil.

    Science.gov (United States)

    de Souza, Edivan Rodrigues; Freire, Maria Betânia Galvão dos Santos; de Melo, Diego Vandeval Maranhão; Montenegro, Abelardo de Antônio Assunção

    2014-01-01

    This study aims to investigate the behavior of Atriplex nummularia under field conditions, including its growth, periodic cuttings, salt extraction, and soil chemical properties monitored for 16 months. Three treatments were evaluated: soil cultivated with Atriplex pruned at 6 and 12 months after transplanting (MAT); soil cultivated with plants that were harvested only at the end of the experiment (16 MAT); and a control (uncultivated soil) with four replications. Soil samplings were taken at 0, 6, 12, and 16 MAT. The samples were taken at depths of 0-20, 20-40, 40-60, and 60-80 cm. Biometric variables for growth were monitored monthly. The shoot was divided into leaves, thin stems ( 3 mm diameter) to determine its content of Ca, Mg, Na, K, and Cl. We concluded that pruning regime for Atriplex was efficient mainly because it stimulated regrowth of less lignified material (leaves and stems plant tissue can be quantified accurately, making them valuable indicators of the efficiency of the recovery process. The use of the Atriplex is recommended because the the possibility of revegetating areas inhospitable to most species used in conventional farming.

  9. Threat of heavy metal pollution in halophytic and mangrove plants of Tamil Nadu, India

    Energy Technology Data Exchange (ETDEWEB)

    Agoramoorthy, Govindasamy; Chen, F.-A. [Department of Pharmacy, Tajen University, Yanpu, Pingtung 907, Taiwan (China); Hsu, Minna J. [Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (China)], E-mail: hsumin@mail.nsysu.edu.tw

    2008-09-15

    Mangrove and halophytic plants occur along the coastal areas of Tamil Nadu, south India and these plants have been used in traditional medicine for centuries. Heavy metals are known to pose a potential threat to terrestrial and aquatic biota. However, little is known on the toxic levels of heavy metals found in mangrove and halophytic plants that are used in traditional medicine in India. To understand heavy metal toxicity, we investigated the bioconcentration factors (BCF) of heavy metals in leaves collected from eight mangroves and five halophytes in the protected Pichavaram mangrove forest reserve in Tamil Nadu State, south India. Data presented in this paper describe the impact of essential (Cu, Fe, Mg, Mn and Zn) and non-essential/environmentally toxic trace metals (Hg, Pb and Sn) in mangrove and halophytic medicinal plants. The concentrations of Pb among 13 plant species were higher than the normal range of contamination reported for plants. The average concentration of Hg in the halophytic plants (0.43 {+-} 0.37 {mu}g/g) was seven times higher than mangrove plants (0.06 {+-} 0.03 {mu}g/g) and it indicated pollutants from industrial sources affecting halophytes more than mangroves. - Metal effects occur in India's mangrove ecosystem.

  10. Threat of heavy metal pollution in halophytic and mangrove plants of Tamil Nadu, India

    International Nuclear Information System (INIS)

    Agoramoorthy, Govindasamy; Chen, F.-A.; Hsu, Minna J.

    2008-01-01

    Mangrove and halophytic plants occur along the coastal areas of Tamil Nadu, south India and these plants have been used in traditional medicine for centuries. Heavy metals are known to pose a potential threat to terrestrial and aquatic biota. However, little is known on the toxic levels of heavy metals found in mangrove and halophytic plants that are used in traditional medicine in India. To understand heavy metal toxicity, we investigated the bioconcentration factors (BCF) of heavy metals in leaves collected from eight mangroves and five halophytes in the protected Pichavaram mangrove forest reserve in Tamil Nadu State, south India. Data presented in this paper describe the impact of essential (Cu, Fe, Mg, Mn and Zn) and non-essential/environmentally toxic trace metals (Hg, Pb and Sn) in mangrove and halophytic medicinal plants. The concentrations of Pb among 13 plant species were higher than the normal range of contamination reported for plants. The average concentration of Hg in the halophytic plants (0.43 ± 0.37 μg/g) was seven times higher than mangrove plants (0.06 ± 0.03 μg/g) and it indicated pollutants from industrial sources affecting halophytes more than mangroves. - Metal effects occur in India's mangrove ecosystem

  11. Fitoextração de sais pela Atriplex nummularia lindl. sob estresse hídrico em solo salino sódico Phytoextraction of salts by Atriplex nummularia lindl. under water stress in saline sodic soils

    Directory of Open Access Journals (Sweden)

    Edivan R. de Souza

    2011-05-01

    Full Text Available Objetivou-se avaliar a extração de sais pela Atriplex cultivada em solo salino sódico sob condições de estresse hídrico e comparar propriedades do solo antes e após seu cultivo. O experimento foi desenvolvido em casa de vegetação durante 134 dias, com cultivo em vasos com 20 kg de solo salino sódico em quatro níveis de umidade (35, 55, 75 e 95% da capacidade de campo, com um tratamento controle (sem cultivo, montado em blocos casualizados, com oito repetições. As altas concentrações de Ca2+, Mg2+, K+ e, especialmente Na+ e Cl- nas folhas de Atriplex nummularia, associadas à elevada produção de massa seca, caracterizam esta espécie como planta fitoextratora de sais, chegando a extrair, nas folhas e caule, o equivalente a: 644,25; 757,81; 1.058,55 e 1.182,00 kg ha-1 desses elementos, para 35, 55, 75 e 95% da capacidade de campo, respectivamente. As variáveis do complexo sortivo do solo (Ca2+, Mg2+, K+, soma de bases e o carbono orgânico total, permaneceram estáveis entre o início e o final do experimento, em todos os tratamentos, enquanto o Na+ e a percentagem de sódio trocável diminuíram após o cultivo da planta. A Atriplex respondeu ao incremento de umidade do solo quando se considera a produção de biomassa e a extração de sais.This study aims to evaluate the growth, production and extraction of salts by Atriplex grown on saline-sodic soil under water stress conditions and to compare soil properties before and after their cultivation. The experiment was carried out in a greenhouse during 134 days growing Atriplex nummularia in pots with 20 kg of saline sodic soil with four levels of soil moisture (35, 55, 75 and 95% of field capacity with a control (soil without plant. The experiment was performed in a randomized block with eight replications. The high concentrations of Ca2+, Mg2+, K+, and especially Na+ and Cl- in leaves of Atriplex nummularia, associated with high dry matter production characterizes this species

  12. Salt tolerance of halophytes, research questions reviewed in the perspective of saline agriculture

    NARCIS (Netherlands)

    Rozema, J.; Schat, H.

    2013-01-01

    Halophytes of the lower coastal salt marsh show increased salt tolerance, and under high salinity they grow faster than upper marsh species. We could not show reduced growth rate of halophytes compared with glycophytes when grown under non-saline conditions. This indicates limited energy costs

  13. Do Halophytes Really Require Salts for Their Growth and Development? An Experimental Approach

    Directory of Open Access Journals (Sweden)

    Marius Nicusor GRIGORE

    2012-05-01

    Full Text Available Halophytes are salt-tolerant plants found exclusively in habitats with high levels of soil salinity. It is generally assumed that salt stress is the most important limiting factor for plant growth in natural saline environments, and that halophytes have developed specific adaptations to elevated salinity which make them unfitted to grow in the absence of salt, thus explaining their distribution in nature. To address experimentally this question, two halophytic species (Inula crithmoides L. and Plantago crassifolia Forssk. and a maritime dune species (Medicago marina L. were grown in the greenhouse for several weeks in different substrates: peat, vegetable garden soil, saline soil and sand from maritime dunes. Measurements of growth parameters number of leaves, plant length, fresh and dry weights showed that all three species grew much better on the salt-free and nutrient-rich substrates, peat and garden soil, than on saline soil and dune sand. These results indicate that salts are not compulsorily required for development of halophytic species, and suggest that limitation of water and nutrients, rather than soil salinity per se, are the most important restrictive factors for plant growth in saline habitats. The distribution of halophytes in nature is probably dependent on their limited ability to compete with glycophytes in non-saline areas, while remaining highly competitive under environmental conditions stressful for non-tolerant species.

  14. Do Halophytes Really Require Salts for Their Growth and Development? An Experimental Approach

    Directory of Open Access Journals (Sweden)

    Marius Nicusor GRIGORE

    2012-05-01

    Full Text Available Halophytes are salt-tolerant plants found exclusively in habitats with high levels of soil salinity. It is generally assumed that salt stress is the most important limiting factor for plant growth in natural saline environments, and that halophytes have developed specific adaptations to elevated salinity which make them unfitted to grow in the absence of salt, thus explaining their distribution in nature. To address experimentally this question, two halophytic species (Inula crithmoides L. and Plantago crassifolia Forssk. and a maritime dune species (Medicago marina L. were grown in the greenhouse for several weeks in different substrates: peat, vegetable garden soil, saline soil and sand from maritime dunes. Measurements of growth parameters � number of leaves, plant length, fresh and dry weights � showed that all three species grew much better on the salt-free and nutrient-rich substrates, peat and garden soil, than on saline soil and dune sand. These results indicate that salts are not compulsorily required for development of halophytic species, and suggest that limitation of water and nutrients, rather than soil salinity per se, are the most important restrictive factors for plant growth in saline habitats. The distribution of halophytes in nature is probably dependent on their limited ability to compete with glycophytes in non-saline areas, while remaining highly competitive under environmental conditions stressful for non-tolerant species.

  15. The development of halophyte-based agriculture: past and present.

    Science.gov (United States)

    Ventura, Yvonne; Eshel, Amram; Pasternak, Dov; Sagi, Moshe

    2015-02-01

    Freshwater comprises about a mere 2·5% of total global water, of which approximately two-thirds is locked into glaciers at the polar ice caps and on mountains. In conjunction with this, in many instances irrigation with freshwater causes an increase in soil salinity due to overirrigation of agricultural land, inefficient water use and poor drainage of unsuitable soils. The problem of salinity was recognized a long time ago and, due to the importance of irrigated agriculture, numerous efforts have been devoted towards improving crop species for better utilization of saline soils and water. Irrigating plants with saline water is a challenge for practitioners and researchers throughout the world. Recruiting wild halophytes with economic potential was suggested several decades ago as a way to reduce the damage caused by salinization of soil and water. A range of cultivation systems for the utilization of halophytes have been developed, for the production of biofuel, purification of saline effluent in constructed wetlands, landscaping, cultivation of gourmet vegetables, and more. This review critically analyses past and present halophyte-based production systems in the context of genetics, physiology, agrotechnical issues and product value. There are still difficulties that need to be overcome, such as direct germination in saline conditions or genotype selection. However, more and more research is being directed not only towards determining salt tolerance of halophytes, but also to the improvement of agricultural traits for long-term progress. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Fruit dispersal and seed banks in Atriplex sagittata: the role of heterocarpy

    Czech Academy of Sciences Publication Activity Database

    Mandák, Bohumil; Pyšek, Petr

    2001-01-01

    Roč. 89, - (2001), s. 159-165 ISSN 0022-0477 R&D Projects: GA AV ČR KSK2005601 Institutional research plan: CEZ:AV0Z6005908 Keywords : Atriplex sagittata * Chenopodiaceae * seed bank Subject RIV: EF - Botanics Impact factor: 2.291, year: 2001

  17. Dendrochronology of Atriplex portulacoides and Artemisia maritima in Wadden Sea salt marshes

    NARCIS (Netherlands)

    Decuyper, M.; Slim, P.A.; Loon-Steensma, van J.M.

    2014-01-01

    The study uses a rather unusual method, dendrochronology, to investigate the growth and survival of Atriplex portulacoides L. and Artemisia maritima L. on salt marshes at two field sites on the Dutch North Sea barrier islands of Terschelling and Ameland. By providing information on longevity of

  18. Effect of essential oil of Satureja hortensis against Bacillus pumilus, which cause of soft rot on some plants

    Science.gov (United States)

    Dadaşoǧlu, Fatih

    2017-04-01

    In this study, it is aimmed to be determined the antimicrobial effects of the essential oil in vitro conditions, extracted from wild forms of plant which is known as Satureja hortensis around the world and grows naturally at Erzurum province of Turkey against Bacillus pumilus isolates, which are the agent of Soft Rot for some fruits and vegetables. For this purpose, 18 isolates of B. pumilus which have been determined as the agent of Soft Rot in previous studies performed in plants such as potatos, onions, strawberries, melons and watermelons. As the positive control, Streptomycin antibiotics sold as ready produce were used. According to the obtained results, the essential oil have the antibactericidal effect of 19-29 mm against 18 isolates of B. pumilus. It has been observed that the antibiotics used as the positive control has the antibacterial effect of 16-22 mm. In conclusion, the essential oil has the lethal effect against 18 B. pumilus isolates which are agents of Soft Rot. It is assesed that these essential oil extracted from Satureja hortensis can be used against these Soft Rot pathogens.

  19. Halophytes, Algae, and Bacteria Food and Fuel Feedstocks

    Science.gov (United States)

    Hendricks, R. C.; Bushnell, D. M.

    2009-01-01

    The constant, increasing demand for energy, freshwater, and food stresses our ability to meet these demands within reasonable cost and impact on climate while sustaining quality of life. This environmental Triangle of Conflicts between energy, food, and water--while provoked by anthropogenic monetary and power struggles--can be resolved through an anthropogenic paradigm shift in how we produce and use energy, water, and food. With world population (6.6 billion) projected to increase 40 percent in 40 to 60 yr, proper development of saline agriculture and aquaculture is required, as 43 percent of the Earth's landmass is arid or semi-arid and 97 percent of the Earth's water is seawater. In light of this, we seek fuel alternatives in plants that thrive in brackish and saltwater with the ability to survive in arid lands. The development and application of these plants (halophytes) become the primary focus. Herein we introduce some not-so-familiar halophytes and present a few of their benefits, cite a few research projects (including some on the alternatives algae and bacteria), and then set theoretical limits on biomass production followed by projections in terms of world energy demands. Based on diverse arid lands with a total size equivalent to the Sahara Desert (8.6(exp 8) ha, or 2.1(exp 9) acres), these projections show that halophyte agriculture and algae systems can provide for the projected world energy demand.

  20. Development, characterization and cross-amplification of 16 microsatellite primers for Atriplex tatarica (Amaranthaceae)

    Czech Academy of Sciences Publication Activity Database

    Kondrysová, E.; Krak, Karol; Mandák, Bohumil

    2017-01-01

    Roč. 5, č. 11 (2017), s. 1-5, č. článku 1700094. ISSN 2168-0450 Institutional support: RVO:67985939 Keywords : Amaranthaceae * Atriplex * Chenopodium Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Plant sciences, botany Impact factor: 1.492, year: 2016

  1. How does seed heteromorphism influence the life history stages of Atriplex sagittata (Chenopodiaceae)?

    Czech Academy of Sciences Publication Activity Database

    Mandák, Bohumil; Pyšek, Petr

    2005-01-01

    Roč. 200, - (2005), s. 516-526 ISSN 0367-2530 R&D Projects: GA AV ČR(CZ) IAA6005206 Institutional research plan: CEZ:AV0Z60050516 Keywords : Atriplex * heterocarpy * competition Subject RIV: EF - Botanics Impact factor: 1.086, year: 2005

  2. Germination requirements of invasive and non-invasive Atriplex species: a comparative study

    Czech Academy of Sciences Publication Activity Database

    Mandák, Bohumil

    2003-01-01

    Roč. 198, - (2003), s. 45-54 ISSN 0367-2530 R&D Projects: GA AV ČR KSK6005114; GA ČR GA206/99/D083 Institutional research plan: CEZ:AV0Z6005908 Keywords : annual weed * Atriplex * germination Subject RIV: EF - Botanics Impact factor: 0.882, year: 2003

  3. Biophysical and biochemical constraints imposed by salt stress:Learning from halophyte

    Directory of Open Access Journals (Sweden)

    Bernardo eDuarte

    2014-12-01

    Full Text Available Soil salinization is one of the most important factors impacting plant productivity. About 3.6 billion of the world’s 5.2 billion ha of agricultural dryland have already suffered erosion, degradation and salinization. Halophytes typically are considered as plants able to complete their life cycle in environments where the salt concentration is 200 mM NaCl or higher. Different strategies are known to overcome salt stress, as adaptation mechanisms from this type of plants. Salinity adjustment is a complex phenomenon characterized by both biochemical and biophysical adaptations. As photosynthesis is a prerequisite for biomass production, halophytes adapted their electronic transduction pathways and the entire energetic metabolism to overcome the salt excess. The maintenance of ionic homeostasis is in the basis of all cellular stress in particular in terms of redox potential and energy transduction. In the present work the biophysical mechanisms underlying energy capture and transduction in halophytes are discussed alongside with their relation to biochemical mechanisms, integrating data from photosystem light harvesting complexes, electronic transport chains to the quinone pools, carbon harvesting and energy dissipation metabolism.

  4. Carbon transport by symbiotic fungi in fourwing saltbush, Atriplex canescens (Pursh) Nutt

    Science.gov (United States)

    Jerry R. Barrow

    2001-01-01

    Mycorrhizal fungi enhance the nutrition and survival of host plants in native ecosystems. Arid rangelands severely challenge plants because of chronic nutrient and water stress. Fourwing saltbush, Atriplex canescens (Pursh) Nutt., a dominant and important shrub of western arid rangelands, generally considered to be non-mycorrhizal, is more extensively colonized by dark...

  5. The agro-ecological suitability of Atriplex nummularia and A. halimus for biomass production in Argentine saline drylands

    Science.gov (United States)

    Falasca, Silvia Liliana; Pizarro, María José; Mezher, Romina Nahir

    2014-09-01

    The choice of the best species to cultivate in semi-arid and arid climates is of fundamental importance, and is determined by many factors, including temperature and rainfall, soil type, water availability for irrigation and crop purposes. Soil or water salinity represents one of the major causes of crop stress. Species of the genus Atriplex are characterized by high biomass productivity, high tolerance to drought and salinity, and high efficiency in use of solar radiation and water. Based on a search of the international literature, the authors outline an agro-climatic zoning model to determine potential production areas in Argentina for Atriplex halimus and Atriplex numularia. Using the agroclimatic limits presented in this work, this model may be applied to any part of the world. When superimposed on the saline areas map, the agroclimatic map shows the suitability of agro-ecological zoning for both species for energy purposes on land unsuitable for food production. This innovative study was based on the implementation of a geographic information system that can be updated by further incorporation of complementary information, with consequent improvement of the original database.

  6. Phenotypic sex ratios of Atriplex canescens shrubs in relation to cattle browsing

    Science.gov (United States)

    Andres F. Cibils; David M. Swift; Richard H. Hart

    2001-01-01

    Previous studies conducted at our research site on the shortgrass steppe in Colorado showed that phenotypic sex ratios of tetraploid fourwing saltbush (Atriplex canescens Pursh [Nutt]) shrubs were less female biased in grazed pastures than in adjacent exclosures. The potential effects of cattle browsing on shrub sex ratios were studied both in the field and in a...

  7. A bio-thermic seawater desalination system using halophytes

    NARCIS (Netherlands)

    Finck, C.

    2014-01-01

    A bio-thermic seawater desalination system using halophytes was developed and successfully tested. A greenhouse as part of a test rig, with different sorts of mangroves, was installed. Measurements showed promising results concerning fresh water relative yielding rates up to 1.4 kg/h/m2 (leaf

  8. Facing the challenge of sustainable bioenergy production: Could halophytes be part of the solution?

    Science.gov (United States)

    Debez, Ahmed; Belghith, Ikram; Friesen, Jan; Montzka, Carsten; Elleuche, Skander

    2017-01-01

    Due to steadily growing population and economic transitions in the more populous countries, renewable sources of energy are needed more than ever. Plant biomass as a raw source of bioenergy and biofuel products may meet the demand for sustainable energy; however, such plants typically compete with food crops, which should not be wasted for producing energy and chemicals. Second-generation or advanced biofuels that are based on renewable and non-edible biomass resources are processed to produce cellulosic ethanol, which could be further used for producing energy, but also bio-based chemicals including higher alcohols, organic acids, and bulk chemicals. Halophytes do not compete with conventional crops for arable areas and freshwater resources, since they grow naturally in saline ecosystems, mostly in semi-arid and arid areas. Using halophytes for biofuel production may provide a mid-term economically feasible and environmentally sustainable solution to producing bioenergy, contributing, at the same time, to making saline areas - which have been considered unproductive for a long time - more valuable. This review emphasises on halophyte definition, global distribution, and environmental requirements. It also examines their enzymatic valorization, focusing on salt-tolerant enzymes from halophilic microbial species that may be deployed with greater advantage compared to their conventional mesophilic counterparts for faster degradation of halophyte biomass.

  9. ADAPTIVE STRATEGIES OF THE HALOPHYTE POPULATIONS

    Directory of Open Access Journals (Sweden)

    O. Z. Glukhov

    2013-11-01

    Full Text Available Studies of the adaptive strategies of halophytes at different levels of their organization are important not only for assessment of their health condition and prognosticating their future behaviors, but also for testing potential suitability of technogenic edaphotopes for plant growth without making additional analyses. We investigated the population structure and morphological variation of three halophilic Gypsophyla L. species which actively spread in different technogenic ecotopes of Ukraine by methods generally accepted in ecology and phytocenology. By the type of strategy populations of species of the genus Gypsophila in technogenic edaphotopes can change the primary type of strategy for the secondary, or gain the stress-tolerant type, mainly due to the changes of parameters of seed productivity. The studied populations are stable with predominance of individuals which reached the prereproductive and reproductive stages of their development. At the organism level the species differ by phenotypic plasticity revealing in compensatory development of vegetative and generative organs. This reflects not only in absolute values of parameters of features, but also when calculating the coefficients of divergence, variation, as well as the vitality classes in populations.By the adaptive strategy halophytes are candidates for use in local phytoremediation of disturbed lands.

  10. Alternate-Fueled Flight: Halophytes, Algae, Bio-, and Synthetic Fuels

    Science.gov (United States)

    Hendricks, R. C.

    2012-01-01

    Synthetic and biomass fueling are now considered to be near-term aviation alternate fueling. The major impediment is a secure sustainable supply of these fuels at reasonable cost. However, biomass fueling raises major concerns related to uses of common food crops and grasses (some also called "weeds") for processing into aviation fuels. These issues are addressed, and then halophytes and algae are shown to be better suited as sources of aerospace fuels and transportation fueling in general. Some of the history related to alternate fuels use is provided as a guideline for current and planned alternate fuels testing (ground and flight) with emphasis on biofuel blends. It is also noted that lessons learned from terrestrial fueling are applicable to space missions. These materials represent an update (to 2009) and additions to the Workshop on Alternate Fueling Sustainable Supply and Halophyte Summit at Twinsburg, Ohio, October 17 to 18, 2007.

  11. Natural polyploidization within tetraploid and hexaploid populations of the desert shrub Atriplex confertifolia

    Science.gov (United States)

    Stewart C. Sanderson

    2011-01-01

    Shadscale (Atriplex confertifolia) is a wind-pollinated dioecious shrub of western North America with an unusual development of apparently autoploid races, showing all even ploidy levels from 2x to 12x (base x = 9). Of these, tetraploid races are the most frequently encountered, with octoploids the next most common, and hexaploids being much less common. In this study...

  12. Halophytic plants as a component of a bioregenerative life support system for recycling of NaCl contained in human liquid waste.

    Science.gov (United States)

    Balnokin, Yurii; Balnokin, Yurii; Myasoedov, Nikolay; Popova, Larissa; Tikhomirov, Alexander A.; Ushakova, Sofya; Tikhomirova, Natalia; Lasseur, Christophe; Gros, Jean-Bernard

    Currently, the closure of matter turnover is one of the urgent problems of bioregenerative life support system (BLSS) designing. The important aspect of the problem is involving of substances contained in liquid and solid exometabolites of humans inhabiting BLSS into intrasystem matter turnover. Recycling of Na+ and Cl- contained in human liquid exometabolites, i.e. urine is acknowledged to be among the main tasks of the matter turnover in BLSS. The ions excreted with urine may be returned to human organism with food. A way to allow this is including edible halophytic plants into the phototrophic compartment of BLSS. Halophytes are defined as plants which can grow on saline soils and produce high biomass under these conditions. Some halophytes can take up high quantities of Na+ and Cl- and accumulate the ions in the shoots or extrude them to leaf surface by means of salt glands. To allow Na+ and Cl- recycling through halophyte utilization, the following principal steps should be accomplished: (i) mineralization of the exometabolites by physicochemical methods; (ii) oxidation of ammonia formed during the exometabolite mineralization to nitrate by nitrifying bacteria, (iii) growing the halophyte on the nutrient solution prepared on the basis of the mineralized exometabolites, (iv) introducing the halophyte green biomass into human food. The present work is devoted to the following problems: (i) selection of a salt-accumulating/extruding halophytic plant suitable for Na+ and Cl- recycling in BLSS and (ii) parameter evaluation of a plant conveyor containing the halophytic plants at various ages. Halophytic plants selected for BLSS should meet the following criteria: (i) ability to grow under 24-hour-illumination, (ii) high productivity, (iii) ability to accumulate Na+ and Cl- in high quantities in shoots or to excrete salts to leaf surface, (iv) edibility, and (v) high nutritive value of the biomass. Relying on these criteria, salt-accumulating halophyte Salicornia

  13. Land degradation and halophytic plant diversity of milleyha wetland ecosystem (samandag-hatay), Turkey

    International Nuclear Information System (INIS)

    Altay, V.

    2012-01-01

    Investigations were undertaken during 2010-2011 to study effect of human induced land degradation on structure of some halophytic plant communities. Over all 183 taxa of vascular plant were recorded. Out of these 76 were of typical halophytes. The dominant plant taxa were; Phragmites australis, Halimione portulacoides and Bolboschoenus maritimus. The threatened categories of these taxa were identified from the Red Data Book of Turkey together with their distribution. The impact of degradation on the habitats due to land use for agriculture, organic and inorganic waste disposal and housing for tourisitc purposes were identified and conservation measures were outlined in this study. (author)

  14. Effects of drought stress and arbuscular mycorrhizal fungi on some morphophysiological traits and yield of savory (Satureja hortensis L.)

    OpenAIRE

    B. Esmaielpour; P. Jalilvand; J. Hadian

    2016-01-01

    Water deficit stress permanent or temporary limits the growth and distribution of natural vegetation and performance of plants more than other environmental factors. In order to investigate the effect of drought stress and mycorrhizal-arbuscular fungi inoculation on the growth and yield of savory (Satureja hortensis L.) a factorial experiment based on completely randomized design were conducted in Research Greenhouse of Horticulture Department of Mohaghegh Ardabili University during 2010. Exp...

  15. Environmental change in a Mediterranean salt marsh wetland: ecological drivers of halophytes diversity along flooding frequency gradients

    Directory of Open Access Journals (Sweden)

    Patricia María Rodríguez-González

    2014-04-01

    Full Text Available Coastal wetlands are among most threatened ecosystems, owing to the intense human activity concentrated in shoreline areas together with the expected sea level rise resultant from climate change. Salt marshes are wetlands which are inundated twice daily by the sea, thus tightly dependent on frequency and duration of submergence. Identifying the factors that determine the diversity, distribution and abundance of halophyte species in salt marshes will help retaining their conservation status and adopt anticipate management measures, and this will ultimately contribute to preserve marshland biodiversity and ecological services. Reserva Natural de Castro Marim e Vila Real de Santo António (RNSCMVRSA is a natural reserve located in South Eastern Portugal, comprising the tidal area of Guadiana River mouth. In spite of their great ecological value, salt marsh ecosystems in this region have suffered intense anthropic disturbance, namely hydrologic alterations and vegetation removal to gain soils for agriculture and salt intensive production. The present study aimed at characterizing the halophyte diversity in the RNSCMVRSA salt marshes and determining their major ecological correlates. The end-point is to implement, afterward, a sustainable cultivation of autochthonous halophyte plants, with economic value, in the abandoned saltpans and degraded rangelands. This project will contribute to the conservation of halophyte diversity, promote environmental requalification, and provide an economic alternative for local populations, enabling the reduction of unregulated harvest of halophyte plant populations. Field sampling strategy included a preliminary survey of local vegetation diversity and floristic inventories of halophyte communities in plots established across the existing environmental heterogeneity in order to span the whole variation gradients of the species presence and abundance. The abiotic characterization of halophyte communities included a

  16. Modeling salt movement and halophytic crop growth on marginal lands with the APEX model

    Science.gov (United States)

    Goehring, N.; Saito, L.; Verburg, P.; Jeong, J.; Garrett, A.

    2016-12-01

    Saline soils negatively impact crop productivity in nearly 20% of irrigated agricultural lands worldwide. At these saline sites, cultivation of highly salt-tolerant plants, known as halophytes, may increase productivity compared to conventional salt-sensitive crops (i.e., glycophytes), thereby increasing the economic potential of marginal lands. Through a variety of mechanisms, halophytes are more effective than glycophytes at excluding, accumulating, and secreting salts from their tissues. Each mechanism can have a different impact on the salt balance in the plant-soil-water system. To date, little information is available to understand the long-term impacts of halophyte cultivation on environmental quality. This project utilizes the Agricultural Policy/Environmental Extender (APEX) model, developed by the US Department of Agriculture, to model the growth and production of two halophytic crops. The crops being modeled include quinoa (Chenopodium quinoa), which has utilities for human consumption and forage, and AC Saltlander green wheatgrass (Elymus hoffmannii), which has forage utility. APEX simulates salt movement between soil layers and accounts for the salt balance in the plant-soil-water system, including salinity in irrigation water and crop-specific salt uptake. Key crop growth parameters in APEX are derived from experimental growth data obtained under non-stressed conditions. Data from greenhouse and field experiments in which quinoa and AC Saltlander were grown under various soil salinity and irrigation salinity treatments are being used to parameterize, calibrate, and test the model. This presentation will discuss progress on crop parameterization and completed model runs under different salt-affected soil and irrigation conditions.

  17. [Isolation, identification and characterization of ACC deaminase-containing endophytic bacteria from halophyte Suaeda salsa].

    Science.gov (United States)

    Teng, Songshan; Liu, Yanping; Zhao, Lei

    2010-11-01

    We Isolated and characterized 1-aminocyclopropane-1-carboxylate (ACC) deaminase-containing endophytic bacteria from halophyte Suaeda salsa to understand the interactions between endophytes and halophyte. ACC deaminase-containing endophytic bacteria were isolated from root, stalk and leaf of Suaeda salsa and were identified based on morphological, physiological-biochemical properties, API and 16S rRNA sequence analysis. Isolates were evaluated for their ACC deaminase, antifungal, protease activity, siderophores and phytohormones, such as indole-3-acetic acid, gibberellic acid and abscisic acid production, as well as atmospheric nitrogen fixation and phosphate solubilization. Four ACC deaminase-containing endophytic bacteria strains named as LP11, SS12, TW1 and TW2 were isolated and identified as Pseudomonas oryzihabitans, Pseudomonas sp., Pantoea agglomerans and Pseudomonas putida respectively. All the strains possessed the phosphate-solubilizing ability and could produce siderophores and phytohormones more or less. None of them could fix atmospheric nitrogen or produce protease. Only strain SS12 showed antagonism against two phytopathogenic fungi viz Fusarium oxysporum f. sp. conglutinans and F. oxysporum f. sp. cucumerinum. ACC deaminase-containing endophytic bacteria of Pseudomonas sp. and Pantoea sp. isolated from halophyte Suaeda salsa have abundant biological characteristics related to plant growth promotion, stress homeostasis regulation and biocontrol activity.

  18. Manipulating the antioxidant capacity of halophytes to increase their cultural and economic value through saline cultivation.

    Science.gov (United States)

    Boestfleisch, Christian; Wagenseil, Niko B; Buhmann, Anne K; Seal, Charlotte E; Wade, Ellie Merrett; Muscolo, Adele; Papenbrock, Jutta

    2014-08-13

    Halophytes, salt-tolerant plants, are a source of valuable secondary metabolites with potential economic value. The steady-state pools of many stress-related metabolites are already enhanced in halophytes when compared with glycophytes, but growth under conditions away from the optimum can induce stress and consequently result in changes to secondary metabolites such as antioxidants. However, direct evidence for increasing the concentration of valuable secondary metabolites as a consequence of altering the salinity of the growing environment still remains equivocal. To address this, we analysed a range of metabolites with antioxidant capacity (including total phenols, flavonoids, ascorbate, reduced/oxidized glutathione and reactive oxygen species scavenging enzymes) in seedlings and plants from different families (Amaranthaceae, Brassicaceae, Plantaginaceae and Rhizophoraceae) and habitats grown under different salt concentrations. We show that it is possible to manipulate the antioxidant capacity of plants and seedlings by altering the saline growing environment, the length of time under saline cultivation and the developmental stage. Among the species studied, the halophytes Tripolium pannonicum, Plantago coronopus, Lepidium latifolium and Salicornia europaea demonstrated the most potential as functional foods or nutraceuticals. Published by Oxford University Press on behalf of the Annals of Botany Company.

  19. Remarkable, overlooked and new microfungi in North Rhine-Westphalia, Germany.

    Science.gov (United States)

    Ale-Agha, N; Feige, G B; Linke, K

    2001-01-01

    During our investigations of the micro flora in NRW in the years of 1999 and 2000 we were able to collect and identify some new and rare species of micro fungi as parasites and saprophytes on wild and ornamental plants. Some of them are new for Germany: Podosphaera xanthii on Coreopsis verticillata; Cercospora traversiana on Trigonella foenum-graecum; Passalora dubia on Atriplex hortensis; Ophiobolus cirsii on Carduus spec.; Periconia britannica on Polemonium coeruleum; Ascochyta leptospora on Agropyron repens; Apomelasmia urticae on Urtica dioica; Cryptodiaporthe salicina on Salix caprea; Dasyscyphus nidulus on Anemone hupehensis; Rhopographus filicinus on Pteridium aquilinum; Sillia ferruginea on Corylus avellana; Sirococcus spiraeae on Spiraea spec. and Forsythia x intermedia. Examples of these findings are in the Herbarium ESS (Mycotheca Parva, Slg. Feige/Ale-Agha).

  20. In vitro antibacterial, antifungal, and antioxidant activities of the essential oil and methanol extracts of herbal parts and callus cultures of Satureja hortensis L.

    Science.gov (United States)

    Güllüce, M; Sökmen, M; Daferera, D; Ağar, G; Ozkan, H; Kartal, N; Polissiou, M; Sökmen, A; Sahin, F

    2003-07-02

    The present study was designated to evaluate the antimicrobial and antioxidant activities of the essential oil, obtained by using a Clevenger distillation apparatus, water soluble (polar) and water insoluble (nonpolar) subfractions of the methanol extracts from aerial parts of Satureja hortensis L. plants, and methanol extract from calli established from the seeds using Gamborg's B5 basal media supplemented with indole-3-butyric acid (1.0 ppm), 6-benzylaminopurine (N(6)-benzyladenine) (1.0 ppm), and sucrose (2.5%). The antimicrobial test results showed that the essential oil of S. hortensis had great potential antimicrobial activities against all 23 bacteria and 15 fungi and yeast species tested. In contrast, the methanol extract from callus cultures and water soluble subfraction of the methanol extract did not show antimicrobial activities, but the nonpolar subfraction had antibacterial activity against only five out of 23 bacterial species, which were Bacillus subtilis, Enterococcus fecalis, Pseudomonas aeruginosa, Salmonella enteritidis, and Streptococcus pyogenes. Antioxidant studies suggested that the polar subfractions of the methanol extract of intact plant and methanol extract of callus cultures were able to reduce the stable free radical 2,2-diphenyl-1-picrylhydrazyl to the yellow-colored diphenylpicrylhydrazine. In this assay, the strongest effect was observed for the tissue culture extract, with an IC(50) value of 23.76 +/- 0.80 microgram/mL, which could be compared with the synthetic antioxidant agent butylated hydroxytoluene. On the other hand, linoleic acid oxidation was 95% inhibited in the presence of the essential oil while the inhibition was 90% with the chloroform subfraction of the intact plant. The chemical composition of a hydrodistilled essential oil of S. hortensis was analyzed by gas chromatography (GC)/flame ionization detection (FID) and a GC-mass spectrometry system. A total 22 constituents representing 99.9% of the essential oil were

  1. Comparative transcriptome analysis of the Asteraceae halophyte Karelinia caspica under salt stress.

    Science.gov (United States)

    Zhang, Xia; Liao, Maoseng; Chang, Dan; Zhang, Fuchun

    2014-12-17

    Much attention has been given to the potential of halophytes as sources of tolerance traits for introduction into cereals. However, a great deal remains unknown about the diverse mechanisms employed by halophytes to cope with salinity. To characterize salt tolerance mechanisms underlying Karelinia caspica, an Asteraceae halophyte, we performed Large-scale transcriptomic analysis using a high-throughput Illumina sequencing platform. Comparative gene expression analysis was performed to correlate the effects of salt stress and ABA regulation at the molecular level. Total sequence reads generated by pyrosequencing were assembled into 287,185 non-redundant transcripts with an average length of 652 bp. Using the BLAST function in the Swiss-Prot, NCBI nr, GO, KEGG, and KOG databases, a total of 216,416 coding sequences associated with known proteins were annotated. Among these, 35,533 unigenes were classified into 69 gene ontology categories, and 18,378 unigenes were classified into 202 known pathways. Based on the fold changes observed when comparing the salt stress and control samples, 60,127 unigenes were differentially expressed, with 38,122 and 22,005 up- and down-regulated, respectively. Several of the differentially expressed genes are known to be involved in the signaling pathway of the plant hormone ABA, including ABA metabolism, transport, and sensing as well as the ABA signaling cascade. Transcriptome profiling of K. caspica contribute to a comprehensive understanding of K. caspica at the molecular level. Moreover, the global survey of differentially expressed genes in this species under salt stress and analyses of the effects of salt stress and ABA regulation will contribute to the identification and characterization of genes and molecular mechanisms underlying salt stress responses in Asteraceae plants.

  2. The complexity underlying invasiveness precludes the identification of invasive traits: A comparative study of invasive and noninvasive heterocarpic Atriplex congeners

    Czech Academy of Sciences Publication Activity Database

    Doudová, J.; Douda, J.; Mandák, Bohumil

    2017-01-01

    Roč. 12, č. 4 (2017), s. 1-16, č. článku e017645. E-ISSN 1932-6203 Institutional support: RVO:67985939 Keywords : Atriplex * heterocarpy * invasiveness Subject RIV: EF - Botanics OBOR OECD: Plant sciences, botany Impact factor: 2.806, year: 2016

  3. Soil amendment with halophytes induces physiological changes and reduces root-knot infection in eggplant and okra

    Directory of Open Access Journals (Sweden)

    Waseem M. ABBASI

    2011-01-01

    Full Text Available Root-knot nematode, Meloidogyne javanica (Treub Chitwood is a soil-borne plant pathogen of roots. Nematode infection results in altered plant growth and physicochemical processes due to gall formation. Many plants contain unique biochemicals that have biocidal properties and offer a potential novel approach to suppress the nematode populations in soil and improve growth of crop plants. In the present study effect of some indigenous halophytic plant species (Tamarix indica Willd, Suaeda fruticosa Forssk and Salsola imbricata (Schultz Dandy were tested against M. javanica. Tested halophytes significantly (P<0.001 reduced egg hatching and caused mortality of second stage juveniles (J2 in vitro. These halophytes when incorporated in soil (0.3, 0.5 and 1% w/w markedly increased growth of eggplant (Solanum melongena L. cv. Black beauty and okra (Abelmoschus esculentus [L.] Moench. cv. Arka anamika and provided control of root-knot infection at higher doses (0.5 and 1%. Amended eggplants and okra showed significant (P<0.001 increase in chlorophylls and decrease in chlorophyll a/b ratio. Protein concentration in leaves of both the plants were increased with 1% amendment of S. fruticosa and S. imbricata. While nucleic acid concentrations were varied with different treatments.  

  4. The role of succulent halophytes in the water balance of salt marsh rodents.

    Science.gov (United States)

    Coulombe, Harry N

    1970-09-01

    The role of succulent halophytes in the water balance and ecology of salt marsh rodents is dependent upon an evaluation of the composition of the available sources and the physiological properties of their potential consumers. Studies of the osmotic properties of succulent halophytes from southern California coastal salt marshes are presented, together with experiments regarding the utilization of Common Pickleweed (Salicornia virginica L.) by indigenous populations of cricetid rodents (harvest mouse Reithrodontomys megalotis limicola Von Bloecker, and meadow-mouse Microtus californicus stephensi Von Bloecker). These data are discussed in relation to other available information concerning the ecology of coastal salt marshes, particularly in western North America.Extruded sap of Common Pickleweed was found to have a mean total osmotic pressure (TOP) of 1,450 mOsm/liter, with an average chloride ion content of 876 mEq/liter (about 70% of the TOP). A related species, Salicornia subterminale, had a slightly lower TOP (1,300 mOsm/liter), of which about 29% was accounted for by chloride ion concentration. Sea Blight (Suaeda fruticosa) was the only species in which the TOP correlated with the distance from the tide level; sap TOP increased away from the lagoon's edge. In both Sea Blight and Common Pickle weed, TOP was not directly related to chloride content, indicating the importance of other osmotically active solutes.Harvest mice were placed on three experimental regimes: 1) millet seeds only, 2) pickleweed only, and 3) pickleweed and millet seed. Meadow mice were tested on the last regime only. Harvest mice survived best on a strict millet seed diet; when Salicornia was consumed to a detectable extent, the mice did not survive. Meadow mice, however, could survive using Salicornia as a dietary source in conjunction with seeds. Kidney electrolyte concentrating abilities indicated that harvest mice should be able to utilize pickleweed; this was not confirmed in my

  5. Responses of five Mediterranean halophytes to seasonal changes in environmental conditions.

    Science.gov (United States)

    Gil, Ricardo; Bautista, Inmaculada; Boscaiu, Monica; Lidón, Antonio; Wankhade, Shantanu; Sánchez, Héctor; Llinares, Josep; Vicente, Oscar

    2014-08-19

    In their natural habitats, different mechanisms may contribute to the tolerance of halophytes to high soil salinity and other abiotic stresses, but their relative contribution and ecological relevance, for a given species, remain largely unknown. We studied the responses to changing environmental conditions of five halophytes (Sarcocornia fruticosa, Inula crithmoides, Plantago crassifolia, Juncus maritimus and J. acutus) in a Mediterranean salt marsh, from summer 2009 to autumn 2010. A principal component analysis was used to correlate soil and climatic data with changes in the plants' contents of chemical markers associated with stress responses: ions, osmolytes, malondialdehyde (MDA, a marker of oxidative stress) and antioxidant systems. Stress tolerance in S. fruticosa, I. crithmoides and P. crassifolia (all succulent dicots) seemed to depend mostly on the transport of ions to aerial parts and the biosynthesis of specific osmolytes, whereas both Juncus species (monocots) were able to avoid accumulation of toxic ions, maintaining relatively high K(+)/Na(+) ratios. For the most salt-tolerant taxa (S. fruticosa and I. crithmoides), seasonal variations of Na(+), Cl(-), K(+) and glycine betaine, their major osmolyte, did not correlate with environmental parameters associated with salt or water stress, suggesting that their tolerance mechanisms are constitutive and relatively independent of external conditions, although they could be mediated by changes in the subcellular compartmentalization of ions and compatible osmolytes. Proline levels were too low in all the species to possibly have any effect on osmotic adjustment. However-except for P. crassifolia-proline may play a role in stress tolerance based on its 'osmoprotectant' functions. No correlation was observed between the degree of environmental stress and the levels of MDA or enzymatic and non-enzymatic antioxidants, indicating that the investigated halophytes are not subjected to oxidative stress under natural

  6. Silicon alleviates deleterious effects of high salinity on the halophytic grass Spartina densiflora.

    Science.gov (United States)

    Mateos-Naranjo, Enrique; Andrades-Moreno, Luis; Davy, Anthony J

    2013-02-01

    The non-essential element silicon is known to improve plant fitness by alleviating the effects of biotic and abiotic stresses, particularly in crops. However, its possible role in the exceptional tolerance of halophytes to salinity has not been investigated. This study reports the effect of Si supply on the salinity tolerance of the halophytic grass Spartina densiflora; plants were treated with NaCl (0-680 mM), with or without silicon addition of 500 μM, in a glasshouse experiment. Plant responses were examined using growth analysis, combined with measurements of gas exchange, chlorophyll fluorescence and photosynthetic pigment concentrations. In addition, tissue concentrations of aluminium, calcium, copper, iron, potassium, magnesium, sodium, phosphorus and silicon were determined. Although high salinity decreased growth, this effect was alleviated by treatment with Si. Improved growth was associated with higher net photosynthetic rate (A), and greater water-use efficiency (WUE). Enhanced A at high salinity could be explained by beneficial effects of Si on the photochemical apparatus, and on chlorophyll concentrations. Ameliorative effects of Si were correlated with reduced sodium uptake, which was unrelated to a reduction in the transpiration rate, since Si-supplemented plants had higher stomatal conductances (G(s)). These plants also had higher tissue concentrations of essential nutrients, suggesting that Si had a positive effect on the mineral nutrient balance in salt-stressed plants. Si appears to play a significant role in salinity tolerance even in a halophyte, which has other, specific salt-tolerance mechanisms, through diverse protective effects on the photosynthetic apparatus, water-use efficiency and mineral nutrient balance. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  7. Fitorremediação de solo salino s ódico por Atriplex nummularia e gesso de jazida Use of Atriplex nummularia and gypsum for phytoremediation of saline-sodic soil

    Directory of Open Access Journals (Sweden)

    Isaac Gomes Leal

    2008-06-01

    Full Text Available Atriplex nummularia apresenta-se como alternativa de uso na recuperação de solos salino-sódicos, podendo servir como suporte forrageiro e como folhagem na floricultura e paisagismo. Com o objetivo de avaliar o potencial desta halófita na fitorremediação de solo salino-sódico sob irrigação com águas salinas e verificar o potencial do gesso como potencializador da fitoextração de Na, realizou-se um experimento em casa de vegetação, em esquema fatorial 2 x 3, sendo dois tratamentos com gesso de jazida(ausência, e aplicação de 50 % da dose recomendada pela necessidade de gesso e três classes de água para irrigação (C1 = 175 μS cm-1; C2 = 500 μS cm-1e C3 = 1500 μS cm-1. Foram realizadas avaliações dos teores de Na, no solo e na planta, aos 40, 70, 100 e 130 dias do transplantio da A. nummularia. O gesso proporcionou ganho médio de 96 % na matéria seca de raiz. O teor de Na nas folhas foi significativo a partir da terceira época avaliada com valores de 90,1 e 109,7 g kg-1, para 100 e 130 dias após o transplantio, respectivamente. Este efeito foi aumentado em 30 % com a aplicação de gesso. O teor de Na+ no solo foi menor em média 31 e 26 %, com e sem gesso, respectivamente, a partir de 100 dias após o transplantio. Com base nas condições estudadas, pode-se concluir que a Atriplex nummularia comportou-se como planta hiperacumuladora de Na, com potencial de uso na fitoextração deste elemento no solo. O uso do gesso de jazida promoveu o aumento da capacidade de extração de Na do solo pela planta, podendo ser usado como potencializador da fitoextração. A irrigação da A. nummularia para uso de fitorremediação pode ser feita com águas salinas na faixa de 175 a 1500 μS cm-1.The cultivation of Atriplex nummularia on saline-sodic soils is economically attractive because it can be used as a forage crop as well as in landscape projects. The potential of Atriplex nummularia for phytoextraction of Na+ from a saline

  8. Simulation of water-limited growth of the forage shrub saltbush (Atriplex nummularia Lindl.) in a low-rainfall environment of southern Australia

    NARCIS (Netherlands)

    Descheemaeker, K.K.E.; Smith, A.P.; Robertson, M.J.; Whitbread, A.; Huth, N.I.; Davoren, W.; Emms, J.; Llewellyn, R.

    2014-01-01

    Old man saltbush (Atriplex nummularia Lindl.) is a useful forage shrub for livestock in the low-rainfall areas of the world, and particularly in Australia. In these semi-arid and arid environments, saltbush is valuable for increasing the production from otherwise marginal areas of the farm and

  9. Differential phytosociological interactions involving male and female atriplex bonnevillensis

    Science.gov (United States)

    Sinclair, J.; Emlen, J.M.; Rinella, M.; Snelgrove, J.; Freeman, D.C.

    2009-01-01

    Wind-pollinated dioecious plants often exhibit spatial segregation of the sexes. This partial niche separation has most often been explored using abiotic niche axes. However, if the sexes are truly separated in space, then they are apt to encounter different plant species that may heavily affect growth and reproduction. Also, to the extent that their niches differ, the sexes may respond differently to the same co-occurring species. Here we examine interspecific interactions that influence male and female reproductive potential in Atriplex bonnevillensis. Using Emlen's interaction assessment, a technique which assesses species interactions based on cover classes, we show that Salsola species compete significantly with females but not males, while Halogeton glomeratus competes with males but not females. The effect of competition only became apparent when we corrected for site-specific fertility. These results imply that differential competition must be considered when studying dioecious plants that display spatial segregation of the sexes.

  10. Soil Microbial Community Structure Evolution along Halophyte Succession in Bohai Bay Wetland

    Directory of Open Access Journals (Sweden)

    Mingyang Cong

    2014-01-01

    Full Text Available It is urgent to recover Bohai Bay costal wetland ecosystem because of covering a large area of severe saline-alkali soil. To explore the relationship between halophyte herbaceous succession and microbial community structure, we chose four local communities which played an important role in improving soil microenvironment. We performed phospholipid fatty acid analysis, measured soil parameters, and evaluated shifts of microbial community structure. Results showed that microbial community structure changed significantly along succession and bacteria community was dominant. Total phospholipid fatty acid content increased in different successional stages but decreased with depth, with similar variations in bacterial and fungal biomass. Soil organic carbon and especially total nitrogen were positively correlated with microbial biomass. Colonization of pioneering salt-tolerant plants Suaeda glauca in saline-alkali bare land changed total soil microorganism content and composition. These results showed that belowground processes were strongly related with aboveground halophyte succession. Fungal/bacterial ratio, Gram-negative/Gram-positive bacteria ratio, total microbial biomass, and fungi and bacteria content could indicate the degree of succession stages in Bohai Bay wetland ecosystem. And also these findings demonstrated that microbial community biomass and composition evolved along with vegetation succession environmental variables.

  11. Uso do rejeito da dessalinização de água salobra para irrigação da erva-sal (Atriplex nummularia The use of the brine from desalting brackish water to irrigate saltbush (Atriplex nummularia

    Directory of Open Access Journals (Sweden)

    Everaldo R. Porto

    2001-04-01

    Full Text Available Com o objetivo de se reduzir os impactos causados pela dessalinização de água salobra proveniente do cristalino no trópico semi-árido brasileiro, a erva-sal (Atriplex nummularia foi cultivada durante um ano, nos campos da Estação Experimental da Embrapa Semi-Árido. As plantas foram irrigadas com rejeito do processo de dessalinização, com concentração salina média de 11,38 dS m-1, e cada uma recebeu 75 L de água por semana, durante 48 semanas. A salinidade média do perfil de solo, da camada de 0 a 90 cm, era de 0,64 dS m-1 antes de se iniciar a irrigação das plantas; depois da colheita das plantas, a salinidade do mesmo perfil de solo foi de 12,74 dS m-1, enquanto a produtividade da erva-sal foi de 6.537,0 kg ha-1 de matéria seca, com teor de proteína bruta de 18,40% nas folhas. A Atriplex apresentou grande potencial de extração de sais do perfil de solo, mas quando as plantas são irrigadas com rejeito de alta concentração salina, a quantidade de sais extraída desse perfil pela planta, é da ordem de 3,93% do total de sais adicionados ao solo pelas irrigações; isto implica no fato de que, para um manejo de água sustentável, há necessidade de se gerar mais informações sobre as relações de solo e água para a erva-sal, nas condições das zonas áridas do Brasil.Looking forward to reducing environmental impacts resulting from desalting brackish water in the region of the crystalline rocks in the semi-arid tropic of Brazil, saltbush (Atriplex nummularia was cultivated during one year in an experimental field of Embrapa Semi-Arid. The plants were irrigated with the brine from the desalting plant which presented a salt concentration of 11.38 dS m-1. Each plant received 75 L of water per week, during 48 weeks. The soil salinity, at the depth of 0-90 cm, of the cropped area averaged 0.64 dS m-1 before starting the irrigation process. After the plants were harvested, the soil salinity in the same profile averaged 12.74 d

  12. Aerial biomass and elemental changes in Atriplex canescens and A. acanthocarpa as affected by salinity and soil water availability

    Science.gov (United States)

    Ricardo Mata-Gonzalez; Ruben Melendez-Gonzalez; J. Jesus Martinez-Hernandez

    2001-01-01

    Atriplex canescens and A. acanthocarpa from the Chihuahuan Desert in Mexico were subjected to different salinity and irrigation treatments in a greenhouse study. Plants were grown in pots containing soil and irrigated with NaCl solutions of 0, 50, and 100 mM at 40 and 80 percent available soil water. Aerial biomass of A. canescens declined as NaCl treatments increased...

  13. Halophytic Companion Plants Improve Growth and Physiological Parameters of Tomato Plants Grown under Salinity

    International Nuclear Information System (INIS)

    Karakas, S.; Cullu, M. A.; Kaya, C.; Dikilitas, M.

    2016-01-01

    Salinity becomes a major concern when soil salt concentration becomes excessive in growth medium. Halophytes are capable of accumulating high concentrations of NaCl in their tissues, thus using halophytic plants in crop rotations or even in mixed cropping systems may be a promising management practices to mitigate salt stress related yield loses. Salinity induced yield losses and related physiological parameters on tomato plants (Lycopersicon esculentum Mill. cv. SC2121) grown with or without halophytic companion plants (SalsolasodaL. and Portulacaoleracea L.) were investigated in pot experiment. Treatments consist of four soil type (collected from Harran plain-Turkey) with similar physical properties but varying in salinity level: electrical conductivity (EC): 0.9, 4.2, 7.2, and 14.1 dS m/sup -1/. The reduction in plant total dry weight was 24, 19, and 48 percent in soils with slight (4.2dS m/sup -1/), moderate (7.2 dS m/sup -1/) and high (14.1 dS m/sup -1/) salinity as compared to non-saline soil (0.9 dS m/sup -1/), respectively. Leaf content of proline, malondialdehyde (MDA), catalase (CAT) and peroxidase (POX) enzyme activity increased with increasing level of salinity. In tomato plants grown in consociation with Salsolasoda, salinity induced DM decrease was only 6, 12 and 28% in soils with slight, moderate and high salinity as compared to non-saline soil, respectively. However, when Portulaca oleracea used as companion plant, no significant change in biomass or fruit yield was observed. This study showed that mixed planting with Salsolasodain high saline soils may be an effective phyto-remediation technique that may secure yield formation and quality of tomato. (author)

  14. Comparison of respiratory and growth characteristics of two co-occurring shrubs from a cold desert, Coleogyne ramosissima (blackbrush) and Atriplex confertifolia (shadscale)

    Science.gov (United States)

    H. A. Summers; B. N. Smith; L. D. Hansen

    2009-01-01

    Coleogyne ramosissima Torr. (blackbrush) and Atriplex confertifolia [Torr. & Frem.] Wats. (shadscale) are cold desert shrubs from different families. Despite very different life histories they often grow in close geographic proximity in the Great Basin and the Colorado Plateau between 800 and 2000 m elevation. The purpose of...

  15. How can we take advantage of halophyte properties to cope with heavy metal toxicity in salt-affected areas?

    Science.gov (United States)

    Lutts, Stanley; Lefèvre, Isabelle

    2015-01-01

    Background Many areas throughout the world are simultaneously contaminated by high concentrations of soluble salts and by high concentrations of heavy metals that constitute a serious threat to human health. The use of plants to extract or stabilize pollutants is an interesting alternative to classical expensive decontamination procedures. However, suitable plant species still need to be identified for reclamation of substrates presenting a high electrical conductivity. Scope Halophytic plant species are able to cope with several abiotic constraints occurring simultaneously in their natural environment. This review considers their putative interest for remediation of polluted soil in relation to their ability to sequester absorbed toxic ions in trichomes or vacuoles, to perform efficient osmotic adjustment and to limit the deleterious impact of oxidative stress. These physiological adaptations are considered in relation to the impact of salt on heavy metal bioavailabilty in two types of ecosystem: (1) salt marshes and mangroves, and (2) mine tailings in semi-arid areas. Conclusions Numerous halophytes exhibit a high level of heavy metal accumulation and external NaCl may directly influence heavy metal speciation and absorption rate. Maintenance of biomass production and plant water status makes some halophytes promising candidates for further management of heavy-metal-polluted areas in both saline and non-saline environments. PMID:25672360

  16. Glyceride structure and sterol composition of SOS-7 halophyte oil

    Directory of Open Access Journals (Sweden)

    El-Shami, S. M.

    1991-06-01

    Full Text Available Glyceride structure of SOS-7 halophyte oil was studied using the lipase hydrolysis technique. This halophyte sample was obtained from 1988 harvest planted in Ghardaka, on the border of the Red Sea, Egypt. The oilseed was ground and extracted for its oil using commercial hexane in Soxhlet extractor. The unsaturated fatty acids were found centralized in the 2-position of triglycerides, whereas oleic and linolenic acids showed more preference for this position. It was found that P3 was the major component of GS3, whereas P2L and PStL; PL2, POL and StL2 are predominating among GS2U and GSU3 respectively. L3 manifested itself as the principal constituent of GU3 type. Sterol composition of the halophyte oil was determined by GLC as TMS derivative. It was found that the oil contains campsterol, β-sitosterol, stigmasterol and 7-stigmasterol of which 7-stigmasterol is the major sterol and constitute 52.4%.

    Se ha estudiado usando la técnica de hidrólisis mediante lipasa la estructura glicerídica de aceite de halofito SOS-7. Esta muestra de halofito fue obtenida a partir de una cosecha de 1988 plantada en Ghardaka, en la orilla del Mar Rojo, Egipto. Para la extracción del aceite de la semilla molida se utilizó hexano comercial en extractor Soxhlet. Los ácidos grasos insaturados se encontraron centralizados en la posición 2 de los triglicéridos, siendo los ácidos oleico y linolénico los que mostraron mayor preferencia por esta posición. Se encontró que P3 fue el componente mayoritario de GS3, mientras que P2L y PStL; PL2 POL y StL2 son los predominantes para GS2U y GSU3 respectivamente. L3 se manifestó como el principal constituyente de los GU3. La composición esterólica del aceite de halofito se determinó por GLC como derivados del

  17. Genotoxicity assessment of cobalt chloride in Eisenia hortensis earthworms coelomocytes by comet assay and micronucleus test.

    Science.gov (United States)

    Ciğerci, İbrahim Hakkı; Ali, Muhammad Muddassir; Kaygısız, Şöhret Yüksek; Liman, Recep

    2016-02-01

    Cobalt and its different compounds are extensively used worldwide and considered as possible environmental pollutant. Earthworms are useful model organism and its different species are used to monitor soil pollution. No study has been found to detect cobalt chloride (CoCl2) genotoxicity in earthworms. So, current study aimed to evaluate CoCl2 induced genotoxicity in Eisenia hortensis earthworms coelomocytes by alkaline comet assay (CA) and micronucleus (MN) test. The earthworms (n = 10 for each group) were exposed to different series of CoCl2 concentrations (100 ppm, 200 ppm, 300 ppm, 400 ppm, 500 ppm, 600 ppm) to find LD50. The LD50 for CoCl2 was found at 226 ppm. Then, doses of LD50/2, LD50 and 2XLD50 for 48 h were used. CA and MN demonstrated the significant increase (P earthworms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Effect of Plant Density on Growth Characteristics and Yield of Summer Savory (Satureja hortensis L. and Persian Clover (Trifolium resupinatum L. Intercropping

    Directory of Open Access Journals (Sweden)

    f Hassanzadeh Aval

    2012-02-01

    Full Text Available Abstract In order to evaluate intercropping of summer savory (Satureja hortensis L. and Persian clover (Trifolium resupinatum L., an experiment was conducted in the Agricultural Research Station of Ferdowsi University of Mashhad in 2004 growing season. Treatments were sole cropping of Persian clover (eight rows, double-row intercropping of Persian clover and summer savory with 27, 40 and 80 plants.m-2 (eight rows and sole cropping of summer savory with 27, 40 and 80 plants m-2 (eight rows. For this purpose a complete randomized block design with 4 replications was used. Shoot and stem percentage of summer savory in sole crop treatments were significantly higher than in intercrop. In sole crop treatments, these parameters decreased by increasing plant density, in contrast to the intercrop. Leaf percentage and leaf and flower to stem ratio of summer savory in sole crop treatments were significantly lower than in intercrop. In sole crop treatments, these parameters were increased by increasing plant density, in contrast to intercrop. Effect of different treatments on essential oil percentage of summer savory was not significant. In sole cropping of Persian clover treatment, dry weight of vegetative organs and stem percentage of Persian clover in the first harvest, was lower than other treatments. By decreasing plant density these parameters were decreased in intercropping. In the second and third harvests a reversed pattern was observed. The highest Area Time Equivalent Ratio was obtained in intercropping of persian clover and summer savory with 27 plants.m-2. Keywords: Intercropping, Plant density, Satureja hortensis, Trifolium resupinatum, Essential oil percentage, Area Time Equivalent Ratio

  19. Effect of saline water irrigation on seed germination and early seedling growth of the halophyte quinoa

    DEFF Research Database (Denmark)

    Panuccio, M.R.; Jacobsen, Sven-Erik; Saleem Akhtar, Saqib

    2014-01-01

    with their high protein content and unique amino acid composition. Although the species has been described as a facultative halophyte, and its tolerance to salt stress has been investigated, its physiological and molecular responses to seawater (SW) and other salts have not been studied. We evaluated the effects...... been carried out to investigate the mechanisms used by quinoa, a facultative halophytic species, in order to cope with high salt levels at various stages of its develop- ment. Quinoa is regarded as one of the crops that might sustain food security in this century, grown primarily for its edible seeds...... of SW and different salts on seed germination, seedling emergence and the antioxidative pathway of quinoa. Seeds were germi- nated in Petri dishes and seedlings grown in pots with SW solutions (25, 50, 75 and 100 %) and NaCl, CaCl2, KCl and MgCl2 individually, at the concentrations in which...

  20. Stoichiometric variation of halophytes in response to changes in soil salinity.

    Science.gov (United States)

    Sun, X; Gao, Y; Wang, D; Chen, J; Zhang, F; Zhou, J; Yan, X; Li, Y

    2017-05-01

    Variation in soil salt may change the stoichiometry of a halophyte by altering plant ecophysiology, and exert different influences on various plant organs, which has potentially important consequences for the nutrition of consumers as well as nutrient cycling in a saline ecosystem. Using a greenhouse pot experiment, we investigated the effect of salinity variability on the growth and stoichiometry of different organs of Suaeda glauca and Salicornia europaea - two dominant species of important ecological and economic value in the saline ecosystem. Our results showed that appropriate salt stimulated the growth of both species during the vigorous growth period, while high salt suppressed growth. Na significantly increased with increased salt in the culture, whereas concentrations of other measured elements and K:Na ratio for both species significantly decreased at low salt treatments, and became more gradual under higher salt conditions. Furthermore, with the change of salt in culture, variations in leaf (degenerated leaf for S. europaea, considered as young stem) stoichiometry, except N:P ratio, were large and less in stems (old stems for S. europaea) than in roots, reflecting physiological and biochemical reactions in the leaf in response to salt stress, supported by sharp changes in trends. These results suggest that appropriate saline conditions can enhance biological C fixation of halophytes; however, increasing salt could affect consumer health and decrease cycling of other nutrients in saline ecosystems. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.

  1. Effect of extraction solvents on polyphenols and antioxidant activity of medicinal halophytes

    International Nuclear Information System (INIS)

    Qasim, M.; Aziz, I.; Gul, B.

    2016-01-01

    This study was conducted to determine the most effective solvent for extraction of polyphenols and antioxidant activity of medicinally important coastal halophytes (Thespesia populneoides, Salvadora persica, Ipomoea pes-caprae, Suaeda fruticosa and Pluchea lanceolata) known for high antioxidant potential. Five different solvents (water, 80% methanol, 80% ethanol, acetone and chloroform) were used to quantify polyphenols including total phenolic (TPC), total flavonoid (TFC) and proanthocyanidin contents (PC) and antioxidant capacity using DPPH radical scavenging and Ferric reducing antioxidant power (FRAP) activities. Among solvents of different polarities 80% methanol appeared most effective for polyphenol extraction. Thespesia populneoides had the highest polyphenols (TPC, TFC and PC) followed by Salvadora persica. Highest antioxidant activity was also found in T. populneoides and S. persica using the same solvent (80% methanol) which appeared better than synthetic antioxidants (BHA and BHT). The correlation analyses of each solvent showed strong to weak relationships among all studied parameters with maximum values (r and R2) in methanol followed by ethanol and water. Weaker correlation of acetone and chloroform indicates low capacity of these solvents both for polyphenol extraction and antioxidant activity. Our results reveal that aqueous methanol extracts of coastal halophytes had comparatively higher antioxidant activity than commercial antioxidants which indicate both their prospective efficacy and potential to replace synthetic derivatives from edible and medicinal products. (abstract)

  2. Salt Induces Features of a Dormancy-Like State in Seeds of Eutrema (Thellungiella salsugineum, a Halophytic Relative of Arabidopsis

    Directory of Open Access Journals (Sweden)

    Yana Kazachkova

    2016-08-01

    Full Text Available The salinization of land is a major factor limiting crop production worldwide. Halophytes adapted to high levels of salinity are likely to possess useful genes for improving crop tolerance to salt stress, as well as providing a food source on marginal lands. However, despite being salt-tolerant plants, the seeds of many halophytes will not germinate on saline soils, yet little is understood regarding biochemical and gene expression changes underlying salt-mediated inhibition of halophyte seed germination. We have used the halophytic Arabidopsis relative model system, Eutrema (Thellungiella salsugineum to explore salt-mediated inhibition of germination. We show that E. salsugineum seed germination is inhibited by salt to a far greater extent than in Arabidopsis, and that this inhibition is in response to the osmotic component of salt exposure. E. salsugineum seeds remain viable even when germination is completely inhibited, and germination resumes once seeds are transferred to non-saline conditions. Moreover, removal of the seed coat from salt-treated seeds allows embryos to germinate on salt-containing medium. Mobilization of seed storage reserves is restricted in salt-treated seeds, while many germination-associated metabolic changes are arrested or progress to a lower extent. Salt-exposed seeds are further characterized by a reduced GA/ABA ratio and increased expression of the germination repressor genes, RGL2, ABI5 and DOG1. Furthermore, a salt-mediated increase in expression of a LATE EMBRYOGENESIS ABUNDANT gene and accretion of metabolites involved in osmoprotection indicates induction of processes associated with stress tolerance, and accumulation of easily mobilized carbon reserves. Overall, our results suggest that salt inhibits E. salsugineum seed germination by inducing a seed state with molecular features of dormancy while a physical constraint to radicle emergence is provided by the seed coat layers. This seed state could facilitate

  3. The relationship between silicon availability, and growth and silicon concentration of the salt marsh halophyte Spartina anglica

    NARCIS (Netherlands)

    De Bakker, N.; Hemminga, M.A.; Van Soelen, J.

    1999-01-01

    Analysis of silicon concentrations of various halophytes from salt marshes in the S.W. Netherlands shows that the silicon concentration of Spartina anglica (Gramineae) is relatively high. To study the influence of dissolved Si concentrations on growth and plant tissue concentrations of S. anglica,

  4. The SbASR-1 gene cloned from an extreme halophyte Salicornia brachiata enhances salt tolerance in transgenic tobacco.

    Science.gov (United States)

    Jha, Bhavanath; Lal, Sanjay; Tiwari, Vivekanand; Yadav, Sweta Kumari; Agarwal, Pradeep K

    2012-12-01

    Salinity severely affects plant growth and development. Plants evolved various mechanisms to cope up stress both at molecular and cellular levels. Halophytes have developed better mechanism to alleviate the salt stress than glycophytes, and therefore, it is advantageous to study the role of different genes from halophytes. Salicornia brachiata is an extreme halophyte, which grows luxuriantly in the salty marshes in the coastal areas. Earlier, we have isolated SbASR-1 (abscisic acid stress ripening-1) gene from S. brachiata using cDNA subtractive hybridisation library. ASR-1 genes are abscisic acid (ABA) responsive, whose expression level increases under abiotic stresses, injury, during fruit ripening and in pollen grains. The SbASR-1 transcript showed up-regulation under salt stress conditions. The SbASR-1 protein contains 202 amino acids of 21.01-kDa molecular mass and has 79 amino acid long signatures of ABA/WDS gene family. It has a maximum identity (73 %) with Solanum chilense ASR-1 protein. The SbASR-1 has a large number of disorder-promoting amino acids, which make it an intrinsically disordered protein. The SbASR-1 gene was over-expressed under CaMV 35S promoter in tobacco plant to study its physiological functions under salt stress. T(0) transgenic tobacco seeds showed better germination and seedling growth as compared to wild type (Wt) in a salt stress condition. In the leaf tissues of transgenic lines, Na(+) and proline contents were significantly lower, as compared to Wt plant, under salt treatment, suggesting that transgenic plants are better adapted to salt stress.

  5. Comparison of Seed Germination and Recovery Responses of a Salt Marsh Halophyte Halopeplis Perfoliata to Osmotic and Ionic Treatments

    International Nuclear Information System (INIS)

    Rasool, S. G.; Hameed, A.; Ahmed, M. Z.; Khan, M. A.

    2016-01-01

    Salinity affects seed germination of halophytes by inducing ionic toxicity, osmotic constraint or both. Information about the effects of salinity on seed germination of a large number of halophytes exists, but generally little is known about the basis of salinity-induced germination inhibition. In order to partition salinity effects, we studied seed germination and recovery responses of a coastal salt marsh halophyte halopeplis perfoliata to different isotonic treatments (Psi/sub S/: -0.5, -1.0, -1.5, -2.0 and -2.5, MPa) of various salts and polythylene glycol (PEG) under two light regimes (12-h light photo period and 24-h complete darkness). Highest seed germination was observed in distilled water under 12-h light photo period and reduction in osmotic potential of the solution decreased seed germination. However, some seeds of H. perfoliata could germinate in as low as -2.5 MPa (600 mM NaCl), which is equivalent to seawater salinity. Sea-salt treatment was more inhibitory than isotonic NaCl at the lowest osmotic potential (Psi/sub S/ -2.5 MPa). Generally, chloride salts with lowest Psi/sub S/ inhibited germination more than the isotonic sulfate salts. Comparable germination responses of the seeds in NaCl and isotonic PEG treatments as well as high recovery of germination in un-germinated seeds after alleviation of NaCl salinity indicated prevalence of osmotic constraint. These results thus indicate that the seeds of H. perfoliata could tolerate high levels of a wide variety of salts found in soil. (author)

  6. Chemical Composition of the Essential Oil from the Aerial Parts of Satureja hortensis As a Potent Medical Plant Using Traditional Hydrodistillation

    Directory of Open Access Journals (Sweden)

    M. Mohammadhosseini

    2013-04-01

    Full Text Available The water-distilled essential oils, which were obtained from the fresh aerial parts of Satureja hortensis were analyzed by means of GC and CC/MS instruments. The plant was collected during the flowering stage from Foroomad Mountains, Semnan Province, and heart of Iran. Twenty compounds were identified in the different samples analyzed, representing 100% of the total oil contents. In terms of general categories, monoterpene hydrocarbons dominated the chemical profile of the oils with γ-terpinene (27.4%, carvacrol (23.7%, p-cymene (11.1%, α-terpinene (10.2%, α-pinene (5.1% and myrcene (5.1% as the main constituent components. The other constituents were found to be α-thujene (3.9%, β-pinene (3.0%, sylvestrene (3.0%, α-phellandrene (1.2% and (--terpinen-4-ol (1.0%.

  7. Chemical Composition of the Essential Oil from the Aerial Parts of Satureja hortensis As a Potent Medical Plant Using Traditional Hydrodistillation

    Directory of Open Access Journals (Sweden)

    M. Mohammadhosseini

    2014-02-01

    Full Text Available The water-distilled essential oils, which were obtained from the fresh aerial parts of Satureja hortensis were analyzed by means of GC and CC/MS instruments. The plant was collected during the flowering stage from Foroomad Mountains, Semnan Province, and heart of Iran. Twenty compounds were identified in the different samples analyzed, representing 100% of the total oil contents. In terms of general categories, monoterpene hydrocarbons dominated the chemical profile of the oils with γ-terpinene (27.4%, carvacrol (23.7%, p-cymene (11.1%, α-terpinene (10.2%, α-pinene (5.1% and myrcene (5.1% as the main constituent components. The other constituents were found to be α-thujene (3.9%, β-pinene (3.0%, sylvestrene (3.0%, α-phellandrene (1.2% and (--terpinen-4-ol (1.0%.

  8. Single cell-type comparative metabolomics of epidermal bladder cells from the halophyte Mesembryanthemum crystallinum

    OpenAIRE

    Barkla, Bronwyn J.; Vera-Estrella, Rosario

    2015-01-01

    One of the remarkable adaptive features of the halophyte and facultative CAM plant Mesembryathemum crystallinum are the specialized modified trichomes called epidermal bladder cells (EBC) which cover the leaves, stems, and peduncle of the plant. They are present from an early developmental stage but upon salt stress rapidly expand due to the accumulation of water and sodium. This particular plant feature makes it an attractive system for single cell type studies, with recent proteomics and tr...

  9. Bunias orientalis L. as a natural overwintering host OF Turnip mosaic virus

    Directory of Open Access Journals (Sweden)

    Tadeusz Kobyłko

    2012-12-01

    Full Text Available A virus was isolated, using mechanical inoculation, from hill mustard (Bunias orientalis L. plants exhibiting yellow mottling and blistering on leaves, which were frequently accompanied by asymmetric leaf narrowing. It systemically infected certain plants from the family Brassicaceae (Brassica rapa, Bunias orientalis, Hesperis matronalis, Sinapis alba as well as Cleome spinosa and Nicotiana clevelandii, and locally Atriplex hortensis, Chenopodium quinoa, Ch. amaranticolor, N. tabacum. In the sap, it maintained infectivity for 3-4 days and lost it after heating for 10 min. at a temperature of 55 - 60oC or when diluted with water at 10-3. Virus particles were thread- like with a length of 675 - 710 nm. Based on an analysis of biological properties of the pathogen, serological response, particle morphology and data from field observations, it was identified as an isolate of Turnip mosaic virus (TuMV, and hill mustard was recognised as a natural overwintering host for this pathogen.

  10. Differential activity of Plasma and Vacuolar Membrane Transporters contributes to Genotypic Differences in Salinity Tolerance in a Halophyte Species, Chenopodium quinoa

    DEFF Research Database (Denmark)

    Bonales-Alatorre, Edgar; Pottosin, Igor; Shabala, Lana

    2013-01-01

    quinoa genotypes contrasting in their salinity tolerance. The work is complemented by studies of the kinetics of net ion fluxes across the plasma membrane of quinoa leaf mesophyll tissue. Our results suggest that multiple mechanisms contribute towards genotypic differences in salinity tolerance in quinoa....... These include: (i) a higher rate of Na+ exclusion from leaf mesophyll; (ii) maintenance of low cytosolic Na+ levels; (iii) better K+ retention in the leaf mesophyll; (iv) a high rate of H+ pumping, which increases the ability of mesophyll cells to restore their membrane potential; and (v) the ability to reduce......Halophytes species can be used as a highly convenient model system to reveal key ionic and molecular mechanisms that confer salinity tolerance in plants. Earlier, we reported that quinoa (Chenopodium quinoa Willd.), a facultative C3 halophyte species, can efficiently control the activity of slow...

  11. [Response characteristics of the field-measured spectrum for the four general types of halophyte and species recognition in the northern slope area of Tianshan Mountain in Xinjiang].

    Science.gov (United States)

    Zhang, Fang; Xiong, Hei-gang; Nurbay, Abdusalih; Luan, Fu-ming

    2011-12-01

    Based on the field-measured Vis-NIR reflectance of four common types of halophyte (Achnatherum splendens(Trin.) Nevski, Sophora alopecuroides L., Camphorosma monspeliaca L. subsp. lessingii(L.)Aellen, Alhagi sparsifolia shap) within given spots in the Northern Slope Area of Tianshan Mountain in Xinjiang, the spectral response characteristics and species recognition of these types of halophyte were analyzed. The results showed that (Alhagi sparsifolia shap) had higher chlorophyll and carotenoid by CARI and SIPI index. (Sophora alopecuroides L. was at a vigorously growing state and had a higher NDVI compared with the other three types of halophyte because of its greater canopy density. But its CARI and SIPI values were lower due to the influence of its flowers. (Sophora alopecuroides L.) and (Camphorosma monspeliaca L. subsp. lessingii(L.)) had stable REPs and BEPs, but REPs and BEPs of (Achnatherum splendens(Trin.)Nevski, Aellen, Alhagi sparsifolia shap) whose spectra red shift and spectra blue shift occurred concurrently obviously changed. There was little difference in spectral curves among the four types of halophyte, so the spectrum mixing phenomenon was severe. (Camphorosma monspeliaca L. subsp. lessingii (L.)Aellen) and (Alhagi sparsifolia shap) could not be separated exactly in a usual R/NIR feature space in remote sensing. Using the stepwise discriminant analysis, five indices were selected to establish the discriminant model, and the model accuracy was discussed using the validated sample group. The total accuracy of the discriminant model was above 92% and (Achnatherum splendens(Trin.)Nevski) and (Camphorosma monspeliaca L. subsp. lessingii(L.)Aellen) could be respectively recognized 100% correctly.

  12. Biosynthesis of (+)-cis- and (+)-trans-sabinene hydrate from geranyl pyrophosphate by a soluble enzyme system from sweet marjoram (Majorana hortensis)

    International Nuclear Information System (INIS)

    Hallahan, T.W.

    1988-01-01

    A soluble enzyme preparation from the leaves of sweet marjoram (Majorana hortensis Moench) catalyzes the divalent cation-dependent cyclization of [1- 3 H]geranyl pyrophosphate to the bicyclic monoterpene alcohols (+)-cis- and (+)-trans-[6 3 H]sabinene hydrate, providing labeling patterns consistent with current mechanistic considerations. The two enzymatic activities were inseparable by several chromatographic procedures, and differential inactivation studies suggesting that the two activities reside with the same enzyme. The enzymatic cyclization is considered to proceed by the initial ionization and isomerization of geranyl pyrophosphate to (-)-(3R)-linalyl pyrophosphate and the subsequent cyclization of this enzyme bound tertiary allylic intermediate to the monocyclic (+)-(4R)-α-terpinyl cation. A 1,2-hydride shift and a second cyclization with water capture of the resulting cation completes the reaction sequence. No free intermediates were detectable in the conversion of geranyl pyrophosphate to the sabinene hydrates as determined by isotopic dilution experiments

  13. Effect of water and saline stress on germination of Atriplex nummularia (Chenopodiaceae)

    International Nuclear Information System (INIS)

    Ruiz, Monica B; Parera, Carlos A

    2013-01-01

    Saline soils, characteristic of arid zones, can affect the germination of the species due to low water potential or ion toxicity. The effect of water and saline stress on germination was evaluated in atriplex nummularia a potential source of forage for arid zones. the seeds were scarified to reduce the inhibitory effect on germination and incubated in at 23 Celsius degrade on germination paper imbibed with solutions of sodium chloride (NaCl) and polyethylene glycol (peg) at three water potentials: -0,5; -1,0 and -1,5 MPA. The percentage germination and germination speed were significantly affected by the concentration of the solution and the solute used. While more negative osmotic potentials, the percentage of germination and germination speed were significantly lower. The seeds germinated in peg solution have higher germination and germination speed than the seeds germinated in NaCl, especially in -1,0 MPA. The data suggest that the seeds of a. nummularia show sensitivity to the presence of Na+ and Cl- ions affecting the germination process.

  14. Isolation of Endophytic Plant Growth-Promoting Bacteria Associated with the Halophyte Salicornia europaea and Evaluation of their Promoting Activity Under Salt Stress.

    Science.gov (United States)

    Zhao, Shuai; Zhou, Na; Zhao, Zheng-Yong; Zhang, Ke; Wu, Guo-Hua; Tian, Chang-Yan

    2016-10-01

    Several reports have highlighted that many plant growth-promoting endophytic bacteria (PGPE) can assist their host plants in coping with various biotic and abiotic stresses. However, information about the PGPE colonizing in the halophytes is still scarce. This study was designed to isolate and characterize PGPE from salt-accumulating halophyte Salicornia europaea grown under extreme salinity and to evaluate in vitro the bacterial mechanisms related to plant growth promotion. A total of 105 isolates were obtained from the surface-sterilized roots, stems, and assimilation twigs of S. europaea. Thirty-two isolates were initially selected for their ability to produce 1-aminocyclopropane-1-carboxylate deaminase as well as other properties such as production of indole-3-acetic acid and phosphate-solubilizing activities. The 16S rRNA gene-sequencing analysis revealed that these isolates belong to 13 different genera and 19 bacterial species. For these 32 strains, seed germination and seedling growth in axenically grown S. europaea seedlings at different NaCl concentrations (50-500 mM) were quantified. Five isolates possessing significant stimulation of the host plant growth were obtained. The five isolates were identified as Bacillus endophyticus, Bacillus tequilensis, Planococcus rifietoensis, Variovorax paradoxus, and Arthrobacter agilis. All the five strains could colonize and can be reisolated from the host plant interior tissues. These results demonstrate that habitat-adapted PGPE isolated from halophyte could enhance plant growth under saline stress conditions.

  15. Remediation of saline soils contaminated with crude oil using the halophyte Salicornia persica in conjunction with hydrocarbon-degrading bacteria.

    Science.gov (United States)

    Ebadi, Ali; Khoshkholgh Sima, Nayer Azam; Olamaee, Mohsen; Hashemi, Maryam; Ghorbani Nasrabadi, Reza

    2018-05-08

    The negative impact of salinity on plant growth and the survival of rhizosphere biota complicates the application of bioremediation to crude oil-contaminated saline soils. Here, a comparison was made between the remedial effect of treating the soil with Pseudomonas aeruginosa, a salinity tolerant hydrocarbon-degrading consortium in conjunction with either the halophyte Salicornia persica or the non-halophyte Festuca arundinacea. The effect of the various treatments on salinized soils was measured by assessing the extent of total petroleum hydrocarbon (TPH) degradation, the soil's dehydrogenase activity, the abundance of the bacteria and the level of phytotoxicity as measured by a bioassay. When a non-salinized soil was assessed after a treatment period of 120 days, the ranking for effectiveness with respect to TPH removal was F. arundinacea > P. aeruginosa > S. persica > no treatment control, while in the presence of salinity, the ranking changed to S. persica > P. aeruginosa > F. arundinacea > no treatment control. Combining the planting of S. persica or F. arundinacea with P. aeruginosa inoculation ("bioaugmentation") boosted the degradation of TPH up to 5-17%. Analyses of the residual oil contamination revealed that long chain alkanes (above C20) were particularly strongly degraded following the bioaugmentation treatments. The induced increase in dehydrogenase activity and the abundance of the bacteria (3.5 and 10 fold respectively) achieved in the bioaugmentation/S. persica treatment resulted in 46-76% reduction in soil phytotoxicity in a saline soil. The indication was that bioaugmentation of halophyte can help to mitigate the adverse effects on the effectiveness of bioremediation in a crude oil-contaminated saline soil. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Coping with low nutrient availability and inundation: root growth responses of three halophytic grass species from different elevations along a flooding gradient

    NARCIS (Netherlands)

    Bouma, T.J.; Koutstaal, B.P.; Van Dongen, M.; Nielsen, K.F.

    2001-01-01

    We describe the responses of three halophytic grass species that dominate the low (Spartina anglica), middle (Puccinellia maritima) and high (Elymus pycnanthus) parts of a salt marsh, to soil conditions that are believed to favour contrasting root-growth strategies. Our hypotheses were: (1)

  17. Effect of climate change on halophytic grasslands loss and its impact in the viability of Gopherus flavomarginatus

    Directory of Open Access Journals (Sweden)

    Jorge Luis Becerra-López

    2017-08-01

    Full Text Available The decrease of the habitat is one of the main factors that affect the survival of G. flavomarginatus. This study assesses the halophytic grasslands loss over a period of 30 years in the distribution area of the Bolson tortoise and the effects of climate change on the habitat suitability of these grasslands and its possible impact on this tortoise. Grassland loss was assessed by an analysis of symmetric differences and the habitat suitability model was carried out by the method of overlapping layers raster. Our results showed a grassland loss of 63.7%; however, our current habitat suitability model points out that much of the grassland loss has occurred where the environmental conditions are suitable. These results suggest that anthropic activity is a main factor in the habitat disturbance in the study area. Likewise, the models for years 2050 and 2070 under the criteria RCP 2.6, RCP 4.5, RCP 6.0, suggest that anthropic activity will continue be the main cause of the grassland loss. Therefore, considering the association between the Bolson tortoise and grassland halophyte Hilaria mutica, which comprises around 60% of its diet, the viability of the Bolson tortoise depends largely on strategies aimed at protecting the soil that allow the presence of this grassland.

  18. The use of halophytic plants for salt phytoremediation in constructed wetlands.

    Science.gov (United States)

    Farzi, Abolfazl; Borghei, Seyed Mehdi; Vossoughi, Manouchehr

    2017-07-03

    This research studied the use of constructed wetlands (CWs) to reduce water salinity. For this purpose, three halophytic species of the Chenopodiaceae family (Salicornia europaea, Salsola crassa, and Bienertia cycloptera) that are resistant to saline conditions were planted in the CWs, and experiments were conducted at three different salinity levels [electrical conductivity (EC)∼2, 6, 10 dS/m]. EC and concentrations of calcium (Ca), magnesium (Mg), sodium (Na), and chlorine (Cl) were measured before and after phytoremediation with a retention time of 1 week. The results suggested that these plants were able to grow well and complete their life cycles at all the salinity levels within this study. Moreover, these plants reduced the measured parameters to acceptable levels. Therefore, these plants can be considered good options for salt phytoremediation.

  19. Growing halophytes floating at sea

    Directory of Open Access Journals (Sweden)

    Ricardo Radulovich

    2017-11-01

    Full Text Available Freshwater shortages are increasingly limiting both irrigated and rainfed agriculture. To expand possibilities for controlled plant production without using land nor freshwater, we cultivated potted halophytes floating at sea that were provided with rain- and seawater. Plantlets of two mangroves (Avicennia germinans and Rhizophora mangle and plants of two herbaceous species, sea purslane (Sesuvium portulacastrum and salt couch grass (Sporobolus virginicus were grown in near-coastal tropical Pacific waters of Costa Rica for 733 days. There were a total of 504 rainless days, including two dry periods of ca. 150 d long each, evidencing prolonged and exclusive reliance on seawater. Pots with a sandy soil mixture and the transplanted plants were placed on low-cost wooden floating rafts with their lower end perforated and immersed for capillary rise of water. Free seawater entry and exit through the bottom from bobbing with waves, which also occasionally added water from the top, effectively controlled soil salinity build-up even during the rainless seasons. Continuous leaching made necessary frequent fertilizer addition. No water deficit symptoms were observed and midday canopy temperature during rainless periods was not significantly different between species or from air temperature. With all-year-round growth, height increase of mangrove plantlets ranged from 208.1 to 401.5 mm yr−1. Fresh biomass production of sea purslane and the grass was 10.9 and 3.0 kg m−2 yr−1 respectively. High yield, edibility and protein content of 10.2% dry weight established sea purslane as a potential crop. While further research is needed, the method evidenced to be a viable plant production option of potentially far-reaching applications.

  20. Assessing ecotoxicity and uptake of metals and metalloids in relation to two different earthworm species (Eiseina hortensis and Lumbricus terrestris).

    Science.gov (United States)

    Leveque, Thibaut; Capowiez, Yvan; Schreck, Eva; Mazzia, Christophe; Auffan, Mélanie; Foucault, Yann; Austruy, Annabelle; Dumat, Camille

    2013-08-01

    Due to diffuse atmospheric fallouts of process particles enriched by metals and metalloids, polluted soils concern large areas at the global scale. Useful tools to assess ecotoxicity induced by these polluted soils are therefore needed. Earthworms are currently used as biotest, however the influence of specie and earthworm behaviour, soil characteristics are poorly highlighted. Our aim was therefore to assess the toxicity of various polluted soils with process particles enriches by metals and metalloids (Pb, Cd, Cu, Zn, As and Sb) collected from a lead recycling facility on two earthworm species belonging to different ecological types and thus likely to have contrasted behavioural responses (Eiseina hortensis and Lumbricus terrestris). The combination of behavioural factors measurements (cast production and biomass) and physico-chemical parameters such as metal absorption, bioaccumulation by earthworms and their localization in invertebrate tissues provided a valuable indication of pollutant bioavailability and ecotoxicity. Soil characteristics influenced ecotoxicity and metal uptake by earthworms, as well as their soil bioturbation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. ESTIMATION OF HEAVY METAL LEVELS IN GREEN LEAFY VEGETABLES PURCHASED FROM SUCEAVA

    Directory of Open Access Journals (Sweden)

    Ancuța Elena PRISACARU

    2017-12-01

    Full Text Available In the present study the levels of five important heavy metals were identified in vegetable samples purchased from Suceava local markets. The concentrations of Cadmium (Cd, Lead (Pb, Iron (Fe, Zinc (Zn and Copper (Cu were analysed using a mass spectrometer with inductively coupled plasma (ICP-MS from the Instrumental Analysis Laboratory within the Faculty of Food Engineering Suceava. The mean levels of heavy metals examined in spinach (Spinacia oleracea, ramsons (Allium ursinum, lettuce (Lactuca sativa, orache (Atriplex hortensis and nettle (Urtica dioica were found to be in the order: Fe (13.52 µg/g > Cu (4.83 µg/g > Zn (3.623 µg/g > Cd (1.890 µg/g> Pb (0.290 µg/g. The highest concentration of heavy metal was identified in the case of Fe (51.333 µg/g in ramsons, whereas the lowest amount was identified for Pb (0.227 µg/g orache. The estimated daily intake for Cd is above 60 µg/kg b.w./day. The levels of the other metals are lower than the safe limits predicted by the FAO/WHO.

  2. Evaluation of three endemic Mediterranean plant species Atriplex halimus, Medicago lupulina and Portulaca oleracea for Phytoremediation of Ni, Pb and Zn

    Science.gov (United States)

    Chami, Ziad Al; Amer, Nasser; Bitar, Lina Al; Mondelli, Donato; Dumontet, Stefano

    2013-04-01

    The success of phytoremediation depends upon the identification of suitable plants species that hyperaccumulate/tolerate heavy metals and produce large amounts of biomass. In this study, three endemic Mediterranean plant species Atriplex halimus, Medicago lupulina and Portulaca oleracea, were grown hydroponically to assess their potential use in phytoremediation of Ni, Pb and Zn and biomass production. The objective of this research is to improve phytoremediation procedures by searching for a new endemic Mediterranean plant species which can be used for phytoremediation of low/moderate contamination in the Mediterranean arid and semiarid conditions and bioenergy production. The hydroponics experiment was carried out in a growth chamber using half strength Hoagland's solution as control (CTR) and 5 concentrations for Pb and Zn (5, 10, 25, 50 and 100 mg L-1) and 3 concentrations for Ni (1, 2, and 5 mg L-1). Complete randomized design with five replications was adopted. Main growth parameters (shoot and root dry weight, shoot and root length and chlorophyll content) were determined. Shoots and roots were analyzed for their metals contents. Some interesting contributions of this research are: (i) plant metal uptake efficiency ranked as follows: A. halimus > M. lupulina > P. oleracea, whereas heavy metal toxicity ranked as follows: Ni > Zn > Pb, (ii) none of the plant species was identified as hyperaccumulator, (iii) Atriplex halimus and Medicago lupulina can accumulate Ni, Pb and Zn in their roots, (iv) translocate small fraction to their above ground biomass, and (v) indicate moderate pollution levels of the environment. In addition, as they are a good biomass producer, they can be used in phytostabilisation of marginal lands and their above ground biomass can be used for livestock feeding as well for bioenergy production.

  3. Secondary metabolites as anti-nutritional factors in locally used halophytic forage/fodder

    International Nuclear Information System (INIS)

    Ehsen, S.; Qasim, M.; Abideen, Z.; Rizve, R. F.; Gul, B.; Ansari, R.

    2016-01-01

    Rampant salinity coupled with population explosion necessitates search for suitable alternatives to conventional sources of food both for human and animal consumption. While it may be difficult to change our culinary preferences, training animals to adopt a changed diet of nonconventional salt tolerant plants is easier. Using these wild plants however, requires estimation of undesirable secondary metabolites (SMs) produced during stressful conditions, which may be harmful for health of animals. Some of these anti-nutritional components (total phenols, flavonoids, tannins, nitrates, saponins and oxalates) were determined in 22 halophytes locally used as fodder/forage. Most of the species were perennial shrubs and herbs of an area where environmental conditions like high mean annual temperature (∼35 degree C), low rainfall (< 250mm) with soil mostly dry (average 2 percent moisture) and saline (average EC 13 dSm/sup -1/) supported the growth of halophytes and xerophytes. Values of SMs in the studied plants ranged from 0.13-4.05 percent for total phenols, 0.38-6.99 percent for tannins, 0.15-1.50 percent for flavonoids, 0.10-1.15 percent for nitrates, 0.45-8.68 percent for saponins and 0.36-2.34 percent for oxalates. Most of the species (19) contained low to moderate amount of individual as well as total SMs which were within the non-toxic ranges. However, three species distributed in coastal habitats where average soil salinity (27.67 dSm-1) was considerably higher than inland ones (7.09 dSm-1) had SMs contents above the safe limits. It is evident from these Results that most of these plants contained moderate to low levels of anti-nutritional factors, which lies under the safe limits and hence, could be used as a potential feed source to raise animals, particularly in arid/semiarid areas. Additionally, these plants represents a viable choice as they can be grown without encroaching on agricultural lands and fresh water resources and could promote livestock

  4. Identification of Novel and Conserved miRNAs from Extreme Halophyte, Oryza coarctata, a Wild Relative of Rice.

    Science.gov (United States)

    Mondal, Tapan Kumar; Ganie, Showkat Ahmad; Debnath, Ananda Bhusan

    2015-01-01

    Oryza coarctata, a halophyte and wild relative of rice, is grown normally in saline water. MicroRNAs (miRNAs) are non-coding RNAs that play pivotal roles in every domain of life including stress response. There are very few reports on the discovery of salt-responsive miRNAs from halophytes. In this study, two small RNA libraries, one each from the control and salt-treated (450 mM NaCl for 24 h) leaves of O. coarctata were sequenced, which yielded 338 known and 95 novel miRNAs. Additionally, we used publicly available transcriptomics data of O. coarctata which led to the discovery of additional 48 conserved miRNAs along with their pre-miRNA sequences through in silico analysis. In total, 36 known and 7 novel miRNAs were up-regulated whereas, 12 known and 7 novel miRNAs were down-regulated under salinity stress. Further, 233 and 154 target genes were predicted for 48 known and 14 novel differentially regulated miRNAs respectively. These targets with the help of gene ontology analysis were found to be involved in several important biological processes that could be involved in salinity tolerance. Relative expression trends of majority of the miRNAs as detected by real time-PCR as well as predicted by Illumina sequencing were found to be coherent. Additionally, expression of most of the target genes was negatively correlated with their corresponding miRNAs. Thus, the present study provides an account of miRNA-target networking that is involved in salinity adaption of O. coarctata.

  5. Storage on maternal plants affects light and temperature on requirements during germination in two small seeded halophytes in the arabian deserts

    International Nuclear Information System (INIS)

    Ali, A.; Gairola, S.

    2015-01-01

    Seeds are either stored in a soil seed bank or retained on maternal plants until they are released (aerial seed bank). Though there are extensive studies on the germination requirements of seeds in soil banks of saline habitats, studies conducted for halophytes with aerial seed banks are rare. We assessed the impact of aerial and room-temperature storages on the light and temperature requirements during germination in two small-seeded halophytes: Halocnmum strobilaceum having a short-term aerial seed bank (less than one year) and Halopeplis perfoliata having a longer term aerial seed bank (up to two years). Seed storage in the aerial bank reduced the germination in H. strobilaceum, but either increased it (5-months storage) or had no effect (17-months storage) in H. perfoliata. Seeds of both species that were stored in aerial bank germinated to higher percentages in light than in darkness, indicating that considerable portions of the seed populations are light sensitive. Seeds of H. perfoliata attained less than 5.0 percentage germination in darkness at higher temperatures, compared to more than 90.0 percentage in light. The results support the hypothesis that the aerial seed bank is an adaptive strategy for survival in the saline habitats of the two species. (author)

  6. A novel plant-based-sea water culture media for in vitro cultivation and in situ recovery of the halophyte microbiome

    Directory of Open Access Journals (Sweden)

    Mohamed Y. Saleh

    2017-11-01

    Full Text Available The plant-based-sea water culture medium is introduced to in vitro cultivation and in situ recovery of the microbiome of halophytes. The ice plant (Mesembryanthemum crystallinum was used, in the form of juice and/or dehydrated plant powder packed in teabags, to supplement the natural sea water. The resulting culture medium enjoys the combinations of plant materials as rich source of nutrients and sea water exercising the required salt stress. As such without any supplements, the culture medium was sufficient and efficient to support very good in vitro growth of halotolerant bacteria. It was also capable to recover their in situ culturable populations in the phyllosphere, ecto-rhizosphere and endo-rhizosphere of halophytes prevailing in Lake Mariout, Egypt. When related to the total bacterial numbers measured for Suaeda pruinosa roots by quantitative-PCR, the proposed culture medium increased culturability (15.3–19.5% compared to the conventional chemically-synthetic culture medium supplemented with (11.2% or without (3.8% NaCl. Based on 16S rRNA gene sequencing, representative isolates of halotolerant bacteria prevailed on such culture medium were closely related to Bacillus spp., Halomonas spp., and Kocuria spp. Seed germination tests on 25–50% sea water agar indicated positive interaction of such bacterial isolates with the germination and seedlings’ growth of barley seeds.

  7. Oxygen dynamics during submergence in the halophytic stem succulent Halosarcia pergranulata

    DEFF Research Database (Denmark)

    Pedersen, Ole; Vos, Harrie; Colmer, Timothy David

    2006-01-01

    This study elucidated O2 dynamics in shoots and roots of submerged Halosarcia pergranulata (Salicornioideae), a perennial halophytic stem succulent that grows on flood-prone mudflats of salt lakes. Oxygen within shoots and roots was measured using microelectrodes, for plants when waterlogged...... the roots, at least during the first several hours (the time period measured) after submergence or when light periods followed darkness. The influence of light on tissue O2 dynamics was confirmed in an experiment on a submerged plant in a salt lake in south-western Australia. In the late afternoon, partial...... pressure of O2 (pO2) in the succulent stem was 23.2 kPa (i.e. ~10% above that in the air), while in the roots, it was 6.2-9.8 kPa. Upon sunset, the pO2 in the succulent stems declined within 1 h to below detection, but then showed some fluctuations with the pO2 increasing to at most 2.5 kPa during...

  8. Halophyte vegetation influences in salt marsh retention capacity for heavy metals

    International Nuclear Information System (INIS)

    Reboreda, Rosa; Cacador, Isabel

    2007-01-01

    We analysed concentrations of Cu, Cd and Pb in above and belowground tissues of the halophyte species Halimione portulacoides and Spartina maritima, as well as in sediments and pore water between the roots in a Tagus estuary salt marsh (Portugal). From these results we calculated the pools of metals in the compartments mentioned above. Relative percentages of accumulation in each pool were also determined. Our aim was to determine how the type of vegetation in the salt marsh affects overall metal retention capacity of the system. It was concluded that areas colonised by H. portulacoides are potential sources of Cu, Cd and Pb to the marsh ecosystem, whereas areas colonised by S. maritima are more effective sinks at least for Cu and Cd. Consequently, S. maritima seems to contribute more effectively to the stabilisation of metals in salt marsh sediments, reducing their availability to the estuarine system. - The type of vegetal cover can affect the overall retention capacity of a salt marsh as well as the functioning of the salt marsh as a sink or source of metals to the estuarine system

  9. Protein profiling of epidermal bladder cells from the halophyte Mesembryanthemum crystallinum.

    Science.gov (United States)

    Barkla, Bronwyn J; Vera-Estrella, Rosario; Pantoja, Omar

    2012-09-01

    Plant epidermal trichomes are as varied in morphology as they are in function. In the halophyte Mesembryanthemum crystallinum, specialized trichomes called epidermal bladder cells (EBC) line the surface of leaves and stems, and increase dramatically in size and volume upon plant salt-treatment. These cells have been proposed to have roles in plant defense and UV protection, but primarily in sodium sequestration and as water reservoirs. To gain further understanding into the roles of EBC, a cell-type-specific proteomics approach was taken in which precision single-cell sampling of cell sap from individual EBC was combined with shotgun peptide sequencing (LC-MS/MS). Identified proteins showed diverse biological functions and cellular locations, with a high representation of proteins involved in H(+)-transport, carbohydrate metabolism, and photosynthesis. The proteome of EBC provides insight into the roles of these cells in ion and water homeostasis and raises the possibility that they are photosynthetically active and functioning in Crassulacean acid metabolism. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Phenolic composition and prospective anti-infectious properties of Atriplex lindleyi

    Directory of Open Access Journals (Sweden)

    Sahar Salah El Din El Souda

    2015-10-01

    Full Text Available Objective: To investigate the antiplasmodial, antimicrobial, radical scavenging effects and to identifiy the phenolic constituents of Atriplex lindleyi (A. lindleyi. Methods: A. lindleyi extracts and some isolated compounds were tested in vitro against the chloroquine-resistant strains of Plasmodium falciparum. The radical scavenging activity was quantified by using 2,2-diphenyl-2-picrylhydrazyl nitrogen-centered free radical. The IC50 of each extract was compared with references. The in vitro anti-infectious activity of extracts was evaluated against representative Gram-positive and Gram-negative bacterial strains [Staphylococcus aureus CIP 4.83, Enterococcus hirae CIP 5855, Pseudomonas aeruginosa (P. aeruginosa CIP 82118, Escherichia coli CIP 53126], and fungal species [(Candida albicans (C. albicans IP 48.72, Aspergillus niger IP 1431.83]. Ethanol extract was investigated for chemical composition through column and high performance liquid chromatography. The isolated compounds were identified by mass spectrometry and nuclear magnetic resonance. Results: Quercetin-7-O-arabinopyranoside-3-O-neohesperidosides (1, quercetin-3- O-arabinopyranosyl(1→6glucopyranoside (2, quercetin-3-O-glucopyranoside-7-Orhamnopyranoside (3, quercetin-3-O-glucopyranoside-7-O-arabinoside (4, schaftoside (5, quercetin-7-O-glucopyranoside (6 were isolated for the first time from the ethanol extract of A. lindleyi aerial parts in addition to isorhamnetin-3-O-β-glucopyranoside (7 and quercetin (8. The extracts exhibited moderate antiplasmodial activity with IC50≈ ranging from 10–50 μg/mL. Quercetin was the most potent compound with IC50 of 9 µg/mL. P. aeruginosa and C. albicans were the most susceptible organisms. Conclusions: The study implies that A. lindelyi can contribute to the fight against malaria, and be useful as prophylactic against C. albicans and P. aeruginosa.

  11. Effects of Foliar Spraying with Salicylic acid and Putrescine on Growth Characteristics and Yield of Summer Savory (Satureja hortensis L.

    Directory of Open Access Journals (Sweden)

    A Faraji-mehmany

    2016-07-01

    Full Text Available Introduction Summer Savory (Satureja hortensis L. is an annual, herbaceous plant belonging to the Labiatae family. This plant is most often used as a culinary herb, but it also has marked medicinal benefits, especially upon the whole digestive system. The most important components of S. hortensis include volatile oils, phenolic compounds, flavonoids and phenolic acids, tannins, mucus, resins, carotenoids and mineral components. Plant growth regulators are used to improve the quality and quantity of medicinal plant production. Salicylic Acid is one of this PGRs that involved in seed germination, photosynthesis, Stomatal opening and closure, Membrane Permeability, Ions Absorption and transmission and other growth processes. Polyamines are ubiquitous low-molecular-weight aliphatic amines that are involved in regulating plant growth processes. The most commonly found polyamines in higher plants, putrescine (Put, spermidine (Spd and spermine (Spm may be present in free, soluble conjugated and insoluble bound forms. It has been demonstrated that PAs are important for the normal course of diverse plant ontogeny processes such as cell division and elongation, organogenesis and somatic and zygotic embryogenesis. Materials and Methods This experiment was conducted in factorial based on a randomized complete block design with three replications in Karaj, Iran. Foliar spraying with SA (1, 2 and 3 mM.l and Putrecine (50, 100, 150 and 200 mg l-1 was performed in thrice in Savory growth period. Spraying was performed at 21, 35 (Budding Phase and 56 (flowering initiation phase day after seed germination. In flowering stage, some morphological traits such as plant height, weight, yield, canopy diameter, stem diameter, leaf area, essential oil content and efficiency were measured. Results and Discussion Analysis of variance showed that the effects of salicylic acid and putrescine spraying on plant height, canopy diameter, stem diameter, number of axillary stems

  12. Differential Activity of Plasma and Vacuolar Membrane Transporters Contributes to Genotypic Differences in Salinity Tolerance in a Halophyte Species, Chenopodium quinoa

    Directory of Open Access Journals (Sweden)

    Edgar Bonales-Alatorre

    2013-04-01

    Full Text Available Halophytes species can be used as a highly convenient model system to reveal key ionic and molecular mechanisms that confer salinity tolerance in plants. Earlier, we reported that quinoa (Chenopodium quinoa Willd., a facultative C3 halophyte species, can efficiently control the activity of slow (SV and fast (FV tonoplast channels to match specific growth conditions by ensuring that most of accumulated Na+ is safely locked in the vacuole (Bonales-Alatorre et al. (2013 Plant Physiology. This work extends these finding by comparing the properties of tonoplast FV and SV channels in two quinoa genotypes contrasting in their salinity tolerance. The work is complemented by studies of the kinetics of net ion fluxes across the plasma membrane of quinoa leaf mesophyll tissue. Our results suggest that multiple mechanisms contribute towards genotypic differences in salinity tolerance in quinoa. These include: (i a higher rate of Na+ exclusion from leaf mesophyll; (ii maintenance of low cytosolic Na+ levels; (iii better K+ retention in the leaf mesophyll; (iv a high rate of H+ pumping, which increases the ability of mesophyll cells to restore their membrane potential; and (v the ability to reduce the activity of SV and FV channels under saline conditions. These mechanisms appear to be highly orchestrated, thus enabling the remarkable overall salinity tolerance of quinoa species.

  13. Differential activity of plasma and vacuolar membrane transporters contributes to genotypic differences in salinity tolerance in a Halophyte Species, Chenopodium quinoa.

    Science.gov (United States)

    Bonales-Alatorre, Edgar; Pottosin, Igor; Shabala, Lana; Chen, Zhong-Hua; Zeng, Fanrong; Jacobsen, Sven-Erik; Shabala, Sergey

    2013-04-29

    Halophytes species can be used as a highly convenient model system to reveal key ionic and molecular mechanisms that confer salinity tolerance in plants. Earlier, we reported that quinoa (Chenopodium quinoa Willd.), a facultative C3 halophyte species, can efficiently control the activity of slow (SV) and fast (FV) tonoplast channels to match specific growth conditions by ensuring that most of accumulated Na+ is safely locked in the vacuole (Bonales-Alatorre et al. (2013) Plant Physiology). This work extends these finding by comparing the properties of tonoplast FV and SV channels in two quinoa genotypes contrasting in their salinity tolerance. The work is complemented by studies of the kinetics of net ion fluxes across the plasma membrane of quinoa leaf mesophyll tissue. Our results suggest that multiple mechanisms contribute towards genotypic differences in salinity tolerance in quinoa. These include: (i) a higher rate of Na+ exclusion from leaf mesophyll; (ii) maintenance of low cytosolic Na+ levels; (iii) better K+ retention in the leaf mesophyll; (iv) a high rate of H+ pumping, which increases the ability of mesophyll cells to restore their membrane potential; and (v) the ability to reduce the activity of SV and FV channels under saline conditions. These mechanisms appear to be highly orchestrated, thus enabling the remarkable overall salinity tolerance of quinoa species.

  14. Enhanced salt stress tolerance of rice plants expressing a vacuolar H+-ATPase subunit c1 (SaVHAc1) gene from the halophyte grass Spartina alterniflora Löisel

    Science.gov (United States)

    The physiological role of a vacuolar ATPase subunit c1 (SaVHAc1) from a halophyte grass Spartina alterniflora was studied through its expression in rice. The SaVHAc1– expressing plants showed enhanced tolerance to salt stress than the wild-type plants, mainly through adjustments in early stage and p...

  15. Germination of dimorphic seeds of the desert annual halophyte Suaeda aralocaspica (Chenopodiaceae), a C4 plant without Kranz anatomy.

    Science.gov (United States)

    Wang, Lei; Huang, Zhenying; Baskin, Carol C; Baskin, Jerry M; Dong, Ming

    2008-11-01

    Suaeda aralocaspica is a C4 summer annual halophyte without Kranz anatomy that is restricted to the deserts of central Asia. It produces two distinct types of seeds that differ in colour, shape and size. The primary aims of the present study were to compare the dormancy and germination characteristics of dimorphic seeds of S. aralocaspica and to develop a conceptual model of their dynamics. Temperatures simulating those in the natural habitat of S. aralocaspica were used to test for primary dormancy and germination behaviour of fresh brown and black seeds. The effects of cold stratification, gibberellic acid, seed coat scarification, seed coat removal and dry storage on dormancy breaking were tested in black seeds. Germination percentage and recovery responses of brown seeds, non-treated black seeds and 8-week cold-stratified black seeds to salt stress were tested. Brown seeds were non-dormant, whereas black seeds had non-deep Type 2 physiological dormancy (PD). Germination percentage and rate of germination of brown seeds and of variously pretreated black seeds were significantly higher than those of non-pretreated black seeds. Exposure of seeds to various salinities had significant effects on germination, germination recovery and induction into secondary dormancy. A conceptual model is presented that ties these results together and puts them into an ecological context. The two seed morphs of S. aralocaspica exhibit distinct differences in dormancy and germination characteristics. Suaeda aralocaspica is the first cold desert halophyte for which non-deep Type 2 PD has been documented.

  16. Assessing ecotoxicity and uptake of metals and metalloids in relation to two different earthworm species (Eiseina hortensis and Lumbricus terrestris)

    International Nuclear Information System (INIS)

    Leveque, Thibaut; Capowiez, Yvan; Schreck, Eva; Mazzia, Christophe; Auffan, Mélanie; Foucault, Yann; Austruy, Annabelle; Dumat, Camille

    2013-01-01

    Due to diffuse atmospheric fallouts of process particles enriched by metals and metalloids, polluted soils concern large areas at the global scale. Useful tools to assess ecotoxicity induced by these polluted soils are therefore needed. Earthworms are currently used as biotest, however the influence of specie and earthworm behaviour, soil characteristics are poorly highlighted. Our aim was therefore to assess the toxicity of various polluted soils with process particles enriches by metals and metalloids (Pb, Cd, Cu, Zn, As and Sb) collected from a lead recycling facility on two earthworm species belonging to different ecological types and thus likely to have contrasted behavioural responses (Eiseina hortensis and Lumbricus terrestris). The combination of behavioural factors measurements (cast production and biomass) and physico-chemical parameters such as metal absorption, bioaccumulation by earthworms and their localization in invertebrate tissues provided a valuable indication of pollutant bioavailability and ecotoxicity. Soil characteristics influenced ecotoxicity and metal uptake by earthworms, as well as their soil bioturbation. -- Highlights: •Historically polluted soils collected from a lead recycling facility were studied. •Cast production is a sensitive parameter to assess ecotoxicity on earthworms. •Both soil parameters, like organic matter content and pH and earthworm specie influence metal uptake and ecotoxicity. -- Behavioural factors and inorganic pollutant uptake by earthworms provide a valuable indication of bioavailability and ecotoxicity

  17. Single-cell-type quantitative proteomic and ionomic analysis of epidermal bladder cells from the halophyte model plant Mesembryanthemum crystallinum to identify salt-responsive proteins

    OpenAIRE

    Barkla, Bronwyn J.; Vera-Estrella, Rosario; Raymond, Carolyn

    2016-01-01

    Background Epidermal bladder cells (EBC) are large single-celled, specialized, and modified trichomes found on the aerial parts of the halophyte Mesembryanthemum crystallinum. Recent development of a simple but high throughput technique to extract the contents from these cells has provided an opportunity to conduct detailed single-cell-type analyses of their molecular characteristics at high resolution to gain insight into the role of these cells in the salt tolerance of the plant. Results In...

  18. Effects of shrub revegetation with Atriplex halimus L. and Retama sphaerocarpa L. in gypsiferous soils. Influence in soil properties

    Science.gov (United States)

    Bienes, Ramón; Marques, Maria Jose; Ruiz-Colmenero, Marta; Arevalo, Diana; Sastre, Blanca; Garcia-Diaz, Andrés

    2014-05-01

    The low crop yield obtained in semi-arid climates has led to the decline of agriculture and the abandonment of large areas resulting in a high risk of land degradation due to the lack of vegetation. Revegetation with shrubs is considered a way to prevent land degradation and enhance soil conditions, particularly in problematic soils. The study area is located in Colmenar de Oreja (Madrid, Spain, UTM 30T X=455236, Y=4436368). This is a semi-arid region, close to aridity in certain years, with a mean annual rainfall of 390 mm and annual evapotranspiration (Thornthwaite) of 769 mm. The soil is developed over gypsum marls with a xeric moisture regime. These soils are frequent in semiarid and arid countries in the world because leaching is prevented due to low rainfall. They usually show shallow depth, high penetration resistance and compaction, particularly when the soil is dry. Moreover they exhibit low fertility and small water retention capacity. All these circumstances hinder the development of roots and therefore the spontaneous recovery of vegetation after abandonment. Two different species of shrubs -Atriplex halimus L. and Retama sphaerocarpa L.- were planted in USLE plots (80 m2) in 2003 in a sloping area (average 10%). Changes in the physical and chemical properties of soils beneath these different treatments were studied since then, and they were compared with spontaneous vegetation. We considered soil indicators such as bulk density, intrapedal porosity, soil organic matter content, aggregate stability and soil penetration resistance. Two years after planting, vegetation coverage in the low part of the plots covered 70% of soil, rising 80% after the third year. The litter generated by shrubs did not change soil organic matter content at the site where it occurred, but rather a few feet below, where it was deposited by water erosion. Five years later, the lower section of the plots exhibited an increase in soil organic matter (from 2.3 to 3.2%), a decrease

  19. Evaluation of Atriplex halimus, Medicago lupulina and Portulaca oleracea for phytoremediation of Ni, Pb, and Zn.

    Science.gov (United States)

    Amer, Nasser; Al Chami, Ziad; Al Bitar, Lina; Mondelli, Donato; Dumontet, Stefano

    2013-01-01

    Suitable plant species are able to accumulate heavy metals and to produce biomass useful for non-food purposes. In this study, three endemic Mediterranean plant species, Atriplex halimus, Portulaca oleracea and Medicago lupulina were grown hydroponically to assess their potential use in phytoremediation and biomass production. The experiment was carried out in a growth chamber using half strength Hoagland's solutions separately spiked with 5 concentrations of Pb and Zn (5, 10, 25, 50, and 100 mg L(-1)), and 3 concentrations of Ni (1, 2 and 5 mg L(-1)). Shoot and root biomass were determined and analyzed for their metals contents. A. halimus and M. lupulina gave high shoot biomass with relatively low metal translocation to the above ground parts. Metals uptake was a function of both metals and plant species. It is worth noting that M. lupulina was the only tested plant able to grow in treatment Pb50 and to accumulate significant amount of metal in roots. Plant metal uptake efficiency ranked as follows: A. halimus > M. lupulina > P. oleracea. Due to its high biomass production and the relatively high roots metal contents, A. halimus and M. lupulina could be successfully used in phytoremediation, and in phytostabilization, in particular.

  20. Genome structures and halophyte-specific gene expression of the extremophile thellungiella parvula in comparison with Thellungiella salsuginea (Thellungiella halophila) and arabidopsis

    KAUST Repository

    Oh, Dongha

    2010-09-10

    The genome of Thellungiella parvula, a halophytic relative of Arabidopsis (Arabidopsis thaliana), is being assembled using Roche-454 sequencing. Analyses of a 10-Mb scaffold revealed synteny with Arabidopsis, with recombination and inversion and an uneven distribution of repeat sequences. T. parvula genome structure and DNA sequences were compared with orthologous regions from Arabidopsis and publicly available bacterial artificial chromosome sequences from Thellungiella salsuginea (previously Thellungiella halophila). The three-way comparison of sequences, from one abiotic stress-sensitive species and two tolerant species, revealed extensive sequence conservation and microcolinearity, but grouping Thellungiella species separately from Arabidopsis. However, the T. parvula segments are distinguished from their T. salsuginea counterparts by a pronounced paucity of repeat sequences, resulting in a 30% shorter DNA segment with essentially the same gene content in T. parvula. Among the genes is SALT OVERLY SENSITIVE1 (SOS1), a sodium/proton antiporter, which represents an essential component of plant salinity stress tolerance. Although the SOS1 coding region is highly conserved among all three species, the promoter regions show conservation only between the two Thellungiella species. Comparative transcript analyses revealed higher levels of basal as well as salt-induced SOS1 expression in both Thellungiella species as compared with Arabidopsis. The Thellungiella species and other halophytes share conserved pyrimidine-rich 5\\' untranslated region proximal regions of SOS1 that are missing in Arabidopsis. Completion of the genome structure of T. parvula is expected to highlight distinctive genetic elements underlying the extremophile lifestyle of this species. © American Society of Plant Biologists.

  1. Neutral N-glycan patterns of the gastropods Limax maximus, Cepaea hortensis, Planorbarius corneus, Arianta arbustorum and Achatina fulica.

    Science.gov (United States)

    Gutternigg, Martin; Bürgmayr, Sabine; Pöltl, Gerald; Rudolf, Judith; Staudacher, Erika

    2007-11-01

    The N-glycosylation potentials of Limax maximus, Cepaea hortensis, Planorbarius corneus, Arianta arbustorum and Achatina fulica were analysed by investigation of the N-glycan structures of the skin and viscera glycoproteins by a combination of HPLC and mass-spectrometry methods. It is one of the first steps to enlarge the knowledge on the glycosylation abilities of gastropods, which may help to establish new cell culture systems, to uncover new means for pest control for some species, and to identify carbohydrate-epitopes which may be relevant for immune response. All snails analysed contained mainly oligomannosidic and small paucimannosidic structures, often terminated with 3-O-methylated mannoses. The truncated structures carried modifications by beta1-2-linked xylose to the beta-mannose residue, and/or an alpha-fucosylation, mainly alpha1,6-linked to the innermost N-acetylglucosaminyl residue of the core. Many of these structures were missing the terminal N-acetylglucosamine, which has been shown to be a prerequisite for processing to complex N-glycans in the Golgi. In some species (Planorbarius corneus and Achatina fulica) traces of large structures, terminated by 3-O-methylated galactoses and carrying xylose and/or fucose residues, were also detected. In Planorbarius viscera low amounts of terminal alpha1-2-fucosylation were determined. Combining these results, gastropods seem to be capable to produce all kinds of structures ranging from those typical in mammals through to structures similar to those found in plants, insects or nematodes. The detailed knowledge of this very complex glycosylation system of the gastropods will be a valuable tool to understand the principle rules of glycosylation in all organisms.

  2. Anatomía de los órganos vegetativos de dos especies de Atriplex (Chenopodiaceae de Venezuela

    Directory of Open Access Journals (Sweden)

    Damelis Jáuregui

    2014-12-01

    Full Text Available En Venezuela, Atriplex está representado por A. cristata y A. oestophora, siendo esta última endémica, las mismas habitan zonas costeras con altas temperaturas, alta radiación solar y suelos arenosos con alto contenido de sales. Se caracterizaron anatómicamente sus órganos vegetativos con el fin de aportar rasgos para delimitarlas taxonómicamente y precisar caracteres que contribuyan a su adaptabilidad a las condiciones edafoclimáticas imperantes en su hábitat. El material vegetal fue recolectado en tres individuos de cada especie en Punta Taima Taima y Capatárida (Falcón. Se recolectaron segmentos de raíces próximos al cuello y al ápice; entrenudos basales, medios y apicales, y hojas ubicadas en la porción media de las plan- tas. Este material fue fijado en FAA (formaldehido, ácido acético y etanol 70% hasta su procesamiento. Se prepara- ron láminas semipermanentes y permanentes con secciones transversales y longitudinales hechas a mano alzada o con micrótomo, en este último caso posterior a la inclusión en parafina. Adicionalmente, se realizaron macerados con el fin de obtener las epidermis foliares. Las secciones fueron teñidas con azul de toluidina acuosa (1% o con safranina- fastgreen, montándolas en agua/glicerina o en bálsamo de Canadá. Se cuantificó el número de vasos y su densidad en los anillos vasculares de las raíces, para calcular el índice de vulnerabilidad. Se encontraron rasgos estructurales de valor taxonómico: la presencia de tejido acuífero en la lámina foliar, el número de haces vasculares y su organización en el nervio medio, así como la diferenciación de colénquima en el mismo; además, el arreglo del xilema/ floema en los anillos de crecimiento, la naturaleza del tejido conjuntivo, así como la presencia de floema incluso, en las raíces. Se detectaron caracteres anatómicos típicos de halófitas y xerófitas, como son: alta densidad de tricomas en hojas y tallos jóvenes, que act

  3. Phytoextraction of heavy metals by Sesuvium portulacastrum l. a salt marsh halophyte from tannery effluent.

    Science.gov (United States)

    Ayyappan, Durai; Sathiyaraj, Ganesan; Ravindran, Konganapuram Chellappan

    2016-01-01

    The present study investigated the sources for remediation of heavy metals and salts from tannery effluent using salt marsh halophyte Sesuvium portulacastrum. From the results observed, in tannery effluent treated soil from 1 kg dry weight of plant sample, Sesuvium portulacastrum accumulated 49.82 mg Cr, 22.10 mg Cd, 35.10 mg Cu and 70.10 mg Zn and from 1 g dry weight of the plant sample, 246.21 mg Na Cl. Cultivation of Sesuvium portulacastrum significantly reduced the EC, pH and SAR levels in tannery effluent and salt treated soil and correspondingly increased in plant sample after 125 days of cultivation. In conclusion, Sesuvium portulacastrum was an efficient in accumulating heavy metals such as Chromium, Cadmium, Copper and Zinc, sodium and chloride maximum through its leaves when compared to stem and root. The finding of these bioacccumulation studies indicates that Sesuvium portulacastrum could be used for phytoremediation of tannery effluent contaminated field.

  4. Native-Invasive Plants vs. Halophytes in Mediterranean Salt Marshes: Stress Tolerance Mechanisms in Two Related Species.

    Science.gov (United States)

    Al Hassan, Mohamad; Chaura, Juliana; López-Gresa, María P; Borsai, Orsolya; Daniso, Enrico; Donat-Torres, María P; Mayoral, Olga; Vicente, Oscar; Boscaiu, Monica

    2016-01-01

    Dittrichia viscosa is a Mediterranean ruderal species that over the last decades has expanded into new habitats, including coastal salt marshes, ecosystems that are per se fragile and threatened by human activities. To assess the potential risk that this native-invasive species represents for the genuine salt marsh vegetation, we compared its distribution with that of Inula crithmoides, a taxonomically related halophyte, in three salt marshes located in "La Albufera" Natural Park, near the city of Valencia (East Spain). The presence of D. viscosa was restricted to areas of low and moderate salinity, while I. crithmoides was also present in the most saline zones of the salt marshes. Analyses of the responses of the two species to salt and water stress treatments in controlled experiments revealed that both activate the same physiological stress tolerance mechanisms, based essentially on the transport of toxic ions to the leaves-where they are presumably compartmentalized in vacuoles-and the accumulation of specific osmolytes for osmotic adjustment. The two species differ in the efficiency of those mechanisms: salt-induced increases in Na(+) and Cl(-) contents were higher in I. crithmoides than in D. viscosa, and the osmolytes (especially glycine betaine, but also arabinose, fructose and glucose) accumulated at higher levels in the former species. This explains the (slightly) higher stress tolerance of I. crithmoides, as compared to D. viscosa, established from growth inhibition measurements and their distribution in nature. The possible activation of K(+) transport to the leaves under high salinity conditions may also contribute to salt tolerance in I. crithmoides. Oxidative stress level-estimated from malondialdehyde accumulation-was higher in the less tolerant D. viscosa, which consequently activated antioxidant responses as a defense mechanism against stress; these responses were weaker or absent in the more tolerant I. crithmoides. Based on these results, we

  5. Native-invasive plants vs. halophytes in Mediterranean salt marshes: Stress tolerance mechanisms in two related species

    Directory of Open Access Journals (Sweden)

    Mohamad eAl Hassan

    2016-04-01

    Full Text Available Dittrichia viscosa is a Mediterranean ruderal species that over the last decades has expanded into new habitats, including coastal salt marshes, ecosystems that are per se fragile and threatened by human activities. To assess the potential risk that this native-invasive species represents for the genuine salt marsh vegetation, we compared its distribution with that of Inula crithmoides, a taxonomically related halophyte, in three salt marshes located in ‘La Albufera’ Natural Park, near the city of Valencia (East Spain. The presence of D. viscosa was restricted to areas of low and moderate salinity, while I. crithmoides was also present in the most saline zones of the salt marshes. Analyses of the responses of the two species to salt and water stress treatments in controlled experiments revealed that both activate the same physiological stress tolerance mechanisms, based essentially on the transport of toxic ions to the leaves – where they are presumably compartmentalized in vacuoles – and the accumulation of specific osmolytes for osmotic adjustment. The two species differ in the efficiency of those mechanisms: salt-induced increases in Na+ and Cl- contents were higher in I. crithmoides than in D. viscosa, and the osmolytes (especially glycine betaine, but also arabinose, fructose and glucose accumulated at higher levels in the former species. This explains the (slightly higher stress tolerance of I. crithmoides, as compared to D. viscosa, established from growth inhibition measurements and their distribution in nature. The possible activation of K+ transport to the leaves under high salinity conditions may also contribute to salt tolerance in I. crithmoides. Oxidative stress level – estimated from malondialdehyde accumulation – was higher in the less tolerant D. viscosa, which consequently activated antioxidant responses as a defense mechanism against stress; these responses were weaker or absent in the more tolerant I. crithmoides

  6. Characterization of phenolic compounds from different species of halophytes from Reserva Natural do Sapal de Castro Marim e Vila Real de Santo António (Portugal)

    OpenAIRE

    Mafalda R. Almeida; Joana Pacheco

    2014-01-01

    Reserva Natural do Sapal de Castro Marim e Vila Real de Santo António (RNSCMVRSA) is a natural reserve (SE of Portugal, Algarve region) that has habitats with different saline conditions and great ecological importance. Halophytes are plants that grow in a wide variety of saline habitats, namely in RNSCMVRSA, and can accumulated in their biomass high contents of salt. This plant behavior can increase production of reactive oxygen species (ROS) and consequently, the oxidative stress, cellular ...

  7. Phytohormone profiling in relation to osmotic adjustment in NaCl-treated plants of the halophyte tomato wild relative species Solanum chilense comparatively to the cultivated glycophyte Solanum lycopersicum

    Czech Academy of Sciences Publication Activity Database

    Gharbi, E.; Martínez, J. L.; Benahmed, H.; Hichri, I.; Dobrev, Petre; Motyka, Václav; Quineta, M.; Lutts, S.

    2017-01-01

    Roč. 258, MAY (2017), s. 77-89 ISSN 0168-9452 R&D Projects: GA ČR(CZ) GA16-14649S Institutional support: RVO:61389030 Keywords : antioxidant enzyme-activities * improves salinity tolerance * enhances salt tolerance * abscisic-acid * water-stress * na+-exclusion * accumulation * ethylene * growth * arabidopsis * Osmotic adjustment * Halophyte * Salinity * Solanum chilense * Hormone * Tomato Subject RIV: EF - Botanics OBOR OECD: Plant sciences, botany Impact factor: 3.437, year: 2016

  8. Choline but not its derivative betaine blocks slow vacuolar channels in the halophyte Chenopodium quinoa: implications for salinity stress responses.

    Science.gov (United States)

    Pottosin, Igor; Bonales-Alatorre, Edgar; Shabala, Sergey

    2014-11-03

    Activity of tonoplast slow vacuolar (SV, or TPC1) channels has to be under a tight control, to avoid undesirable leak of cations stored in the vacuole. This is particularly important for salt-grown plants, to ensure efficient vacuolar Na(+) sequestration. In this study we show that choline, a cationic precursor of glycine betaine, efficiently blocks SV channels in leaf and root vacuoles of the two chenopods, Chenopodium quinoa (halophyte) and Beta vulgaris (glycophyte). At the same time, betaine and proline, two major cytosolic organic osmolytes, have no significant effect on SV channel activity. Physiological implications of these findings are discussed. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  9. Characterization of phenolic compounds from different species of halophytes from Reserva Natural do Sapal de Castro Marim e Vila Real de Santo António (Portugal

    Directory of Open Access Journals (Sweden)

    Mafalda R. Almeida

    2014-06-01

    Full Text Available Reserva Natural do Sapal de Castro Marim e Vila Real de Santo António (RNSCMVRSA is a natural reserve (SE of Portugal, Algarve region that has habitats with different saline conditions and great ecological importance. Halophytes are plants that grow in a wide variety of saline habitats, namely in RNSCMVRSA, and can accumulated in their biomass high contents of salt. This plant behavior can increase production of reactive oxygen species (ROS and consequently, the oxidative stress, cellular damage and metabolic disorders. In order to protect the cells from ROS, these plants developed an efficient antioxidant system. This system can be constituted by phenolics compounds that have an important effect on oxidative, anti-inflammatory and microbial stability important properties for food, dietary and pharmaceutical industries. Therefore, this work aims to identify the phenolic compounds in biomass of different autochthones halophytes species growing on natural conditions in RNSCMVSRA. Composite samples of Salicornia patula, Salicornia ramosissima, Sarcoccornia fruticosa and Sarcocornia perennis were collected in 2013. Sequential extraction was realized: firstly the plant samples were subjected to soxhlet extraction using dichloromethane and then by a solid-liquid extraction with ethanol. Finally, the main compounds present in each extract were identified by GC-MS (Gas chromatography–mass spectrometry. The total of phenolic compounds and polyphenolic antioxidants in the extracts was also determined by Folin-Ciocalteu method.

  10. Salinidade, sodicidade e propriedades microbiológicas de Argissolo cultivado com erva-sal e irrigado com rejeito salino Salinity, sodicity and microbiological properties of an Ultisol cultivated with saltbush and irrigated with saline effluents

    Directory of Open Access Journals (Sweden)

    Célia Maria Maganhotto de Souza Silva

    2008-10-01

    Full Text Available O objetivo deste trabalho foi avaliar o efeito da irrigação com rejeito da dessalinização, oriundo de tanques de produção de tilápia-rosa, sobre as propriedades químicas e microbiológicas de solos cultivados com erva-sal (Atriplex nummularia Lindl.. Quatro áreas foram usadas, das quais duas foram irrigadas com rejeito salino e cultivadas, durante um e cinco anos, com erva-sal. As outras duas áreas foram conduzidas sem irrigação: uma cultivada com vegetação natural e outra com a halófita. Avaliaram-se os parâmetros relativos à salinidade e sodicidade do solo, e também as seguintes características: carbono da biomassa microbiana (Cmic; relação Cmic/carbono orgânico; atividade das enzimas fosfatase ácida, fosfatase alcalina, beta-glucosidase, protease, L-asparaginase, L-glutaminase. A adição de sais afetou as propriedades físicas e químicas dos solos irrigados com rejeito salino, com tendência à salinização e sodificação. A salinidade afetou as propriedades microbiológicas nos solos irrigados, mas o cultivo da halófita favoreceu a produção das enzimas estudadas. O cultivo da erva-sal em áreas que recebem rejeito salino pela irrigação melhora a qualidade biológica dos solos e sua fertilidade, mas não impede a salinização.The objective of this work was to evaluate the effects of irrigation with saline effluents, from red tilapia production ponds, on chemical and microbiological properties of soils cultivated with saltbush (Atriplex nummularia Lindl. Four areas were used, from which two were irrigated with saline waste and cultivated with A. nummularia, during one and five years. The other two areas were not irrigated, and one was cultivated with natural vegetation and the other with the halophyte. The parameters related to soil salinity and sodicity were evaluated, as well as the following characteristics: microbial biomass carbon (Cmic; Cmic/organic carbon; the activity of acid and alcaline phosphatase

  11. Effect of saline soil parameters on endo mycorrhizal colonisation of dominant halophytes in four Hungarian sites

    Energy Technology Data Exchange (ETDEWEB)

    Fuzy, A.; Biro, B.; Toth, T.

    2010-07-01

    Soil and root samples were collected from the rhizosphere of dominant halophytes (Artemisia santonicum, Aster tripolium, Festuca pseudovina, Lepidium crassifolium, Plantago maritima and Puccinellia limosa) at four locations with saline soils in Hungary. The correlations- between arbuscular mycorrhiza (AM) fungal colonisation parameters (% colonisation, % arbuscules) and soil physical, chemical and biological parameters were determined Endomycorrhiza colonisation was found to be negatively correlated with the electric conductivity of the soil paste, the salt-specific ion concentrations and the cation exchange capacity, showing the sensitivity of AM fungi at increasing salt concentrations, independently of the types of salt-specific anions. A positive correlation was detected between the mycorrhiza colonisation and the abundance of oligotroph bacteria known to be the less variable and more stable (k-strategist) group. This fact and the negative correlation found with the humus content underlines the importance of nutrient availability and the limitations of the symbiotic interactions in stressed saline or sodic soils. (Author) 29 refs.

  12. THE GENESIS OF PHOTOSYNTHESIS TYPES AS THE BASIS OF ECOLOGICAL EXPANSION OF HALOPHYTIC PLANTS

    Directory of Open Access Journals (Sweden)

    Pyurko O.Ye.

    2011-12-01

    Full Text Available The C3, C4, and CAM photosynthesis types are considerably differed by CO2 absorption intensity, its biochemistry, saturation level, water productivity, biological productivity, and other different features, which secure the plants survival at stress and extreme conditions. The aim of current research was to discover the photosynthesis peculiarities at halophytic plants species (Salicornia europaea L., Halimione pedunculata, Artemisia santonica L., Plantago lanceolata L. by salinity at model and natural conditions, and to generalize data in historical aspect. It was constituted that S. europaea L. was characterized by C3 photosynthesis passage which was switched on CAM CO2 fixation under soil salinity conditions till 4-4,5 %, but glycophyte A.santonica was immanent C4assimilation way of aspartate type.Analysis of literature data and own research allows to find out that in majority the C3photosynthesis dependence from environmental factors described by determinate curve with matched mathematical expression. It was suggested to generalize the data by Lagrange polynomial. The obtained results proved that the pattern of photosynthesis evolution is: C3 → C4 → CAM with commute possibilities: C3 → CAM; C4 → CAM.

  13. Accumulation and tolerance characteristics of cadmium in a halophytic Cd-hyperaccumulator, Arthrocnemum macrostachyum

    International Nuclear Information System (INIS)

    Redondo-Gomez, Susana; Mateos-Naranjo, Enrique; Andrades-Moreno, Luis

    2010-01-01

    The potential of the extreme halophyte Arthrocnemum macrostachyum was examined to determine its tolerance and ability to accumulate cadmium for phytoremediation purposes. A glasshouse experiment was designed to investigate the effect of cadmium from 0 to 1.35 mmol l -1 on the growth and the photosynthetic apparatus of A. macrostachyum by measuring chlorophyll fluorescence parameters, gas exchange and photosynthetic pigment concentrations. We also determined ash, cadmium, calcium, copper, iron, manganese, magnesium, phosphorous, sodium, and zinc concentrations, and C/N ratio. A. macrostachyum demonstrated hypertolerance to cadmium stress; it did not show phytotoxicity at shoot concentration as high as 70 mg kg -1 . The bioaccumulator factors exceeded the critical value (1.0) for all Cd treatments, and the transport factors indicated that this species has higher ability to transfer Cd from roots to shoots at lower Cd concentrations. At 1.35 mmol l -1 Cd A. macrostachyum showed 25% biomass reduction after a month of treatment. Long-term effects of cadmium on the growth were mainly determined by variations in net photosynthetic rate (P N ). Reductions in P N could be accounted by higher dark respiration and lower pigment concentrations. Finally, A. macrostachyum has the basic characteristics of a Cd-hyperaccumulator and may be useful for restoring Cd-contaminated sites.

  14. Accumulation and tolerance characteristics of cadmium in a halophytic Cd-hyperaccumulator, Arthrocnemum macrostachyum

    Energy Technology Data Exchange (ETDEWEB)

    Redondo-Gomez, Susana, E-mail: susana@us.es [Departamento de Biologia Vegetal y Ecologia, Facultad de Biologia, Universidad de Sevilla, Apartado 1095, 41080 Sevilla (Spain); Mateos-Naranjo, Enrique; Andrades-Moreno, Luis [Departamento de Biologia Vegetal y Ecologia, Facultad de Biologia, Universidad de Sevilla, Apartado 1095, 41080 Sevilla (Spain)

    2010-12-15

    The potential of the extreme halophyte Arthrocnemum macrostachyum was examined to determine its tolerance and ability to accumulate cadmium for phytoremediation purposes. A glasshouse experiment was designed to investigate the effect of cadmium from 0 to 1.35 mmol l{sup -1} on the growth and the photosynthetic apparatus of A. macrostachyum by measuring chlorophyll fluorescence parameters, gas exchange and photosynthetic pigment concentrations. We also determined ash, cadmium, calcium, copper, iron, manganese, magnesium, phosphorous, sodium, and zinc concentrations, and C/N ratio. A. macrostachyum demonstrated hypertolerance to cadmium stress; it did not show phytotoxicity at shoot concentration as high as 70 mg kg{sup -1}. The bioaccumulator factors exceeded the critical value (1.0) for all Cd treatments, and the transport factors indicated that this species has higher ability to transfer Cd from roots to shoots at lower Cd concentrations. At 1.35 mmol l{sup -1} Cd A. macrostachyum showed 25% biomass reduction after a month of treatment. Long-term effects of cadmium on the growth were mainly determined by variations in net photosynthetic rate (P{sub N}). Reductions in P{sub N} could be accounted by higher dark respiration and lower pigment concentrations. Finally, A. macrostachyum has the basic characteristics of a Cd-hyperaccumulator and may be useful for restoring Cd-contaminated sites.

  15. Comparative Study on the Adaptation and Growth Dynamics of the Helix pomatia and Helix aspersa Muller Terrestrial Snails Under Different Feeding Regimes

    Directory of Open Access Journals (Sweden)

    Adrian Toader-Williams

    2010-05-01

    Full Text Available We used Helix pomatia and Helix aspersa species and measure their growth as the snails were approaching the hibernation season. Helix pomatia 2yo shown a decrease in weight while being raised in enclosed parcels of 4sqm the younger Helix pomatia 1yo as well as Helix aspersa Muller demonstrated the ability to adapt relatively fast to the same conditions. We established 5 experimental lots in a Helix pomatia farm, GPS coordinates N46.606040 E23.599950. Control lot contained Taraxacum officinales, Sonchus oleraceus, Equisetum arvense and Atriplex hortensis, wild flora found within the farm. The other lots contained the same plants as the control lot plus different combinations of imported plants from other areals. The H. pomatia 2yo weight decreased in the control lot by a mean of -3.86% while H. aspersa 1yo marked an increase of +16.89% in the same lot during the same period. The lot containing lupinus polyphyllus delivered snails with weight gain of +24.66% for H. pomatia 2yo and an increase of only +1.98% for H. aspersa 1yo. As a contrast, H. pomatia 2yo gained only +7.72% while H. aspersa 1yo gained +28.89%, in the lot containing Lavanda officinalis, Foeniculum vulgare and Hyssopus officinalis among the other plants.

  16. Reduced Tonoplast Fast-Activating and Slow-Activating Channel Activity Is Essential for Conferring Salinity Tolerance in a Facultative Halophyte, Quinoa1[C][W][OA

    Science.gov (United States)

    Bonales-Alatorre, Edgar; Shabala, Sergey; Chen, Zhong-Hua; Pottosin, Igor

    2013-01-01

    Halophyte species implement a “salt-including” strategy, sequestering significant amounts of Na+ to cell vacuoles. This requires a reduction of passive Na+ leak from the vacuole. In this work, we used quinoa (Chenopodium quinoa) to investigate the ability of halophytes to regulate Na+-permeable slow-activating (SV) and fast-activating (FV) tonoplast channels, linking it with Na+ accumulation in mesophyll cells and salt bladders as well as leaf photosynthetic efficiency under salt stress. Our data indicate that young leaves rely on Na+ exclusion to salt bladders, whereas old ones, possessing far fewer salt bladders, depend almost exclusively on Na+ sequestration to mesophyll vacuoles. Moreover, although old leaves accumulate more Na+, this does not compromise their leaf photochemistry. FV and SV channels are slightly more permeable for K+ than for Na+, and vacuoles in young leaves express less FV current and with a density unchanged in plants subjected to high (400 mm NaCl) salinity. In old leaves, with an intrinsically lower density of the FV current, FV channel density decreases about 2-fold in plants grown under high salinity. In contrast, intrinsic activity of SV channels in vacuoles from young leaves is unchanged under salt stress. In vacuoles of old leaves, however, it is 2- and 7-fold lower in older compared with young leaves in control- and salt-grown plants, respectively. We conclude that the negative control of SV and FV tonoplast channel activity in old leaves reduces Na+ leak, thus enabling efficient sequestration of Na+ to their vacuoles. This enables optimal photosynthetic performance, conferring salinity tolerance in quinoa species. PMID:23624857

  17. EFECTO DEL ESTRÉS HÍDRICO Y SALINO SOBRE LA GERMINACIÓN DE Atriplex nummularia (CHENOPODIACEAE

    Directory of Open Access Journals (Sweden)

    Mónica Beatriz Ruiz

    2013-01-01

    Full Text Available Los suelos salinos, característicos de zonas áridas, pueden afectar la germinación de las especies por presentar bajos potenciales hídricos o por toxicidad iónica. En este trabajo se determinó el efecto del estrés hídrico y salino sobre la germinación de Atriplex nummularia, una alternativa forrajera para zonas áridas. Las semillas fueron escarificadas para minimizar el efecto inhibidor de las brácteas y germinadas a 23 ºC sobre papel de germinación en soluciones con diferente potencial hídrico (-0,5, -1,0 y -1,5 MPa de cloruro de sodio (NaCl y polietilenglicol (PEG, utilizando agua destilada como control. El porcentaje de germinación y la velocidad de germinación fueron significativamente afectados por la concentración de la solución y el soluto utilizado. A valores de potencial osmótico más negativos el porcentaje de germinación y velocidad de germinación fueron significativamente menores. En los tres potenciales hídricos ensayados la velocidad y el porcentaje de semillas germinadas en NaCl fue significativamente menor que en PEG, siendo especialmente notoria esta diferencia a -1,0 MPa. Los datos sugieren que las semillas de A. nummularia  presentan sensibilidad a la presencia de los iones Na+  y Cl-  que afectan el proceso de germinación.

  18. Callus formation in vitro and internodal stem apices in savory = Calogênese in vitro de segmentos apicais caulinares e internodais em segurelha (Satureja hortensis L.

    Directory of Open Access Journals (Sweden)

    Marcio Carlos Navroski

    2012-12-01

    Full Text Available We sought to evaluate with this work different growth regulators on callus formation in shoot apical and internodal stem segments of Satureja hortensis. The explants were isolated from in vitro seedlings and cultured on MS nutrient medium supplemented with NAA (0 and 1 μM and BAP (0, 5, 10, 15 and 20 μM. The presence of auxin NAA gave higher marks to the calluses at 30 days of evaluation, these notes also increased with the addition of BAP. There were significant interactions between factors in evaluating NAA and BAP for 60 days, both in apical stem segments as in internodal stem segments. To stemapices percentage of friable callus tends to decrease with increasing concentration of BAP. As for compact calluses increased BAP leads to an increase in the percentage of this type of callus. The presence of NAA increased callus formation in both friable and compact calluses on. This trend was also observed in internodal stem segments. The callus formation was highly rhizogenic observed in the presence of NAA, hardly occurs in the absence of auxin. The use of BAP is recommended in case of regeneration of plants through micropropagation, if the goal is the production of metabolites, the use of BAP can be harmful by reducing the production of friable callus.= Buscou-se com este trabalho avaliar diferentes reguladores de crescimento sobre a calogênese em segmentos caulinares apicais e internodais de Satureja hortensis L.. Os explantes foram isolados de plântulas germinadas in vitro e cultivados em meio nutritivo MS acrescido de ANA (0 e 1 μM e de BAP (0; 5; 10; 15 e 20 μM. A presença da auxina ANA proporcionou notas mais altas para os calos aos 30 dias de avaliação, estas notas também aumentaram com o acréscimo da citocinina BAP. Houve interações significativas entre os fatores ANA e BAP na avaliação aos 60 dias, nos dois tipos de segmentos caulinares(apicais e internodais. Nos segmentos apicais caulinares a porcentagem de calos fri

  19. NATURAL DEVELOPMENT OF THE HALOPHYTE Salicornia bigelovii (TOR. IN COASTAL AREA OF SONORA STATE

    Directory of Open Access Journals (Sweden)

    Edgar Omar Rueda Puente

    2017-05-01

    Full Text Available In order to increase knowledge about the vegetative structure and environmental conditions, two coastal areas (north and south in Sonora, Mexico, where Salicornia bigelovii develops in natural form were investigated. Based on the abundance of Salicornia, three locations were selected in the two areas. Transects in each of the three sites were developed. The sediments in the northern areas showed higher values compared with the south areas of Sonora in organic matter. Plant biomass, density, height and frequency of occurrence were higher in frequently flooded areas compared to sparsely or less often by the tides. The average total biomass ranged from 2.23 to 6.33 kg (dry weight m-2 and is composed primarily of surface components. The maximum values of biomass of Salicornia were observed in February to May in both areas. The growth of Salicornia bigelovii is influenced mainly by the frequency of flooding, duration of exposure to air during low tide, rainfall, salinity and salt content of the ambient water and sediment, respectively. The carbon content increased with plant age, while protein content decreased by 233.6%. The steady increase in human pressure on coastal areas where Salicornia and other halophytes growth, require immediate protection order to prevent vulnerabilities in their populations.

  20. Searching for new sources of innovative products for the food industry within halophyte aromatic plants: In vitro antioxidant activity and phenolic and mineral contents of infusions and decoctions of Crithmum maritimum L.

    Science.gov (United States)

    Pereira, Catarina Guerreiro; Barreira, Luísa; da Rosa Neng, Nuno; Nogueira, José Manuel Florêncio; Marques, Cátia; Santos, Tamára F; Varela, João; Custódio, Luísa

    2017-09-01

    Aromatic halophyte plants are an outstanding source of bioactive compounds and natural products with potential use in the food industry. This work reports the in vitro antioxidant activity, toxicity, polyphenolic profile and mineral contents of infusions and decoctions from stems, leaves and flowers of Crithmum maritimum L., an aromatic and edible maritime halophyte (sea fennel). Aspalathus linearis (Burm.f.) Dahlg. (rooibos) herbal tea was used as a reference. Sea fennel's tisanes, particularly from leaves, were rich in phenolic compounds and five of them (p-hydroxybenzoic and ferulic acids, epicatechin, pyrocatechol and 4-hydroxybenzaldehyde) were here described in C. maritimum for the first time. Chlorogenic acid was the dominant phenolic determined. Na was the most abundant mineral in all tisanes followed by Ca and Mg in leaves' tisanes and K in flowers. Sea fennel's samples had a similar antioxidant activity than those from A. linearis, and had no significant toxicity towards four different mammalian cell lines. Altogether, our results suggest that sea fennel can be a source of products and/or molecules for the food industry with antioxidant properties and minerals in the form, for example, of innovative health-promoting herbal beverages. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Rendimento da Atriplex nummularia irrigada com efluentes da criação de tilápia em rejeito da dessalinização de água Behavior of saltbush (Atriplex nummularia irrigated with effluents from tilapia raised in brackish water

    Directory of Open Access Journals (Sweden)

    Everaldo R. Porto

    2006-03-01

    Full Text Available Com o objetivo de avaliar a influência no rendimento da erva-sal (Atriplex nummularia e em algumas características do solo, quando irrigada com efluentes da criação de tilápia (Oreochromis sp. em rejeito da dessalinização de água salobra no semi-árido brasileiro, a erva-sal foi irrigada durante um ano com quatro volumes de efluentes na Embrapa Semi-Árido, em Petrolina, PE, cuja salinidade média foi, de 8,29 dS m-1. O delineamento experimental foi de blocos ao acaso com quatro tratamentos e três repetições. Os tratamentos T1, T2, T3 e T4 correspondem, respectivamente, aos volumes de efluentes aplicados semanalmente, de 75, 150, 225 e 300 L planta-1 . A salinidade média do solo na profundidade 0 - 90 cm foi de 0,40 dS m-1, antes de serem iniciadas as irrigações. Após a colheita, respectivamente para os tratamentos T1, T2, T3 e T4, as salinidades médias dos perfis de solo na mesma profundidade (0 - 90 cm foram de 8,02, 6,09, 4,97 e 4,60 dS m-1 e os rendimentos de matéria seca da erva-sal, de 9,75, 12,26, 14,49 e 13,81 t ha-1. O maior rendimento de matéria seca por litro de efluente aplicado foi para o tratamento T1, com 4,84 g L-1 que apresentou, também, a melhor relação entrada/saída de sal, removendo 13,84% do total de sal incorporado ao solo.Looking forward to reduce environmental impacts resulting from desalinization of brackish water in the region of the crystalline rocks in the semi-arid Brazil, saltbush (Atriplex nummularia was cultivated during one year with four different volumes of aquiculture effluent generated from an intensive tilapia (Oreochromis sp raising system, with a mean salinity of 8.29 dS m-1, in an experimental field of Embrapa Semi-Arid. A completely randomized block design, with four treatments and three replications was used. The treatments T1, T2, T3 and T4 corresponded, respectively, to the weekly volumes of irrigation of 75, 150, 225 and 300 L of water per plant. The mean soil salinity of the

  2. The interactive effects of mercury and selenium on metabolic profiles, gene expression and antioxidant enzymes in halophyte Suaeda salsa.

    Science.gov (United States)

    Liu, Xiaoli; Lai, Yongkai; Sun, Hushan; Wang, Yiyan; Zou, Ning

    2016-04-01

    Suaeda salsa is the pioneer halophyte in the Yellow River Delta and was consumed as a popular vegetable. Mercury has become a highly risky contaminant in the sediment of intertidal zones of the Yellow River Delta. In this work, we investigated the interactive effects of mercury and selenium in S. salsa on the basis of metabolic profiling, antioxidant enzyme activities and gene expression quantification. Our results showed that mercury exposure (20 μg L(-1)) inhibited plant growth of S. salsa and induced significant metabolic responses and altered expression levels of INPS, CMO, and MDH in S. salsa samples, together with the increased activities of antioxidant enzymes including SOD and POD. Overall, these results indicated osmotic and oxidative stresses, disturbed protein degradation and energy metabolism change in S. salsa after mercury exposures. Additionally, the addition of selenium could induce both antagonistic and synergistic effects including alleviating protein degradation and aggravating osmotic stress caused by mercury. © 2014 Wiley Periodicals, Inc.

  3. Physiological and proteomic analyses of salt stress response in the halophyte Halogeton glomeratus.

    Science.gov (United States)

    Wang, Juncheng; Meng, Yaxiong; Li, Baochun; Ma, Xiaole; Lai, Yong; Si, Erjing; Yang, Ke; Xu, Xianliang; Shang, Xunwu; Wang, Huajun; Wang, Di

    2015-04-01

    Very little is known about the adaptation mechanism of Chenopodiaceae Halogeton glomeratus, a succulent annual halophyte, under saline conditions. In this study, we investigated the morphological and physiological adaptation mechanisms of seedlings exposed to different concentrations of NaCl treatment for 21 d. Our results revealed that H. glomeratus has a robust ability to tolerate salt; its optimal growth occurs under approximately 100 mm NaCl conditions. Salt crystals were deposited in water-storage tissue under saline conditions. We speculate that osmotic adjustment may be the primary mechanism of salt tolerance in H. glomeratus, which transports toxic ions such as sodium into specific salt-storage cells and compartmentalizes them in large vacuoles to maintain the water content of tissues and the succulence of the leaves. To investigate the molecular response mechanisms to salt stress in H. glomeratus, we conducted a comparative proteomic analysis of seedling leaves that had been exposed to 200 mm NaCl for 24 h, 72 h and 7 d. Forty-nine protein spots, exhibiting significant changes in abundance after stress, were identified using matrix-assisted laser desorption ionization tandem time-of-flight mass spectrometry (MALDI-TOF/TOF MS/MS) and similarity searches across EST database of H. glomeratus. These stress-responsive proteins were categorized into nine functional groups, such as photosynthesis, carbohydrate and energy metabolism, and stress and defence response. © 2014 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.

  4. Increased resistance to a generalist herbivore in a salinity-stressed non-halophytic plant.

    Science.gov (United States)

    Renault, Sylvie; Wolfe, Scott; Markham, John; Avila-Sakar, Germán

    2016-01-01

    Plants often grow under the combined stress of several factors. Salinity and herbivory, separately, can severely hinder plant growth and reproduction, but the combined effects of both factors are still not clearly understood. Salinity is known to reduce plant tissue nitrogen content and growth rates. Since herbivores prefer tissues with high N content, and biochemical pathways leading to resistance are commonly elicited by salt-stress, we hypothesized that plants growing in saline conditions would have enhanced resistance against herbivores. The non-halophyte, Brassica juncea, and the generalist herbivore Trichoplusia ni were used to test the prediction that plants subjected to salinity stress would be both more resistant and more tolerant to herbivory than those growing without salt stress. Plants were grown under different NaCl levels, and either exposed to herbivores and followed by removal of half of their leaves, or left intact. Plants were left to grow and reproduce until senescence. Tissue quality was assessed, seeds were counted and biomass of different organs measured. Plants exposed to salinity grew less, had reduced tissue nitrogen, protein and chlorophyll content, although proline levels increased. Specific leaf area, leaf water content, transpiration and root:shoot ratio remained unaffected. Plants growing under saline condition had greater constitutive resistance than unstressed plants. However, induced resistance and tolerance were not affected by salinity. These results support the hypothesis that plants growing under salt-stress are better defended against herbivores, although in B. juncea this may be mostly through resistance, and less through tolerance. Published by Oxford University Press on behalf of the Annals of Botany Company.

  5. Antioxidant and antimicrobial activities of the edible medicinal halophyte Tamarix gallica L. and related polyphenolic constituents.

    Science.gov (United States)

    Ksouri, Riadh; Falleh, Hanen; Megdiche, Wided; Trabelsi, Najla; Mhamdi, Baya; Chaieb, Kamel; Bakrouf, Amina; Magné, Christian; Abdelly, Chedly

    2009-08-01

    Tamarix gallica is a halophytic species having hepatotonic and stimulant properties, as it was traditionally used in the treatment of various liver disorders. Leaf and flower infusion have anti-inflammatory and anti-diarrheic properties. In this work, we have investigated antioxidant and antimicrobial activities of leaf and flower extracts and their phenolic composition. Results showed that flowers exhibit a higher antioxidant activity as compared to the leaves, IC(50) values of the flower extracts are being 1.3 (beta-carotene bleaching) to 19 times (lipid peroxidation inhibition) lower than those for leaves. Accordingly, flower extracts exhibited the highest total phenolic content (135.35 mgGAE/gDW) and RP-HPLC analysis showed that syringic acid, isoquercitin as well as catechin were the major phenolics. Furthermore, Tamarix extracts showed appreciable antibacterial properties against human pathogen strains. The mean inhibition zone was from 0 to 6.5mm when the concentration increased from 2 to 100mg/l. The strongest activity was recorded against Micrococcus luteus and the lowest activity was observed against Escherichia coli. Moreover, organ extracts show a weakly to moderate activity against the tested Candida. These findings suggest that Tamarix may be considered as an interesting source of antioxidants for therapeutic or nutraceutical industries and for food manufactures.

  6. A spatial pattern analysis of the halophytic species distribution in an arid coastal environment.

    Science.gov (United States)

    Badreldin, Nasem; Uria-Diez, J; Mateu, J; Youssef, Ali; Stal, Cornelis; El-Bana, Magdy; Magdy, Ahmed; Goossens, Rudi

    2015-05-01

    Obtaining information about the spatial distribution of desert plants is considered as a serious challenge for ecologists and environmental modeling due to the required intensive field work and infrastructures in harsh and remote arid environments. A new method was applied for assessing the spatial distribution of the halophytic species (HS) in an arid coastal environment. This method was based on the object-based image analysis for a high-resolution Google Earth satellite image. The integration of the image processing techniques and field work provided accurate information about the spatial distribution of HS. The extracted objects were based on assumptions that explained the plant-pixel relationship. Three different types of digital image processing techniques were implemented and validated to obtain an accurate HS spatial distribution. A total of 2703 individuals of the HS community were found in the case study, and approximately 82% were located above an elevation of 2 m. The micro-topography exhibited a significant negative relationship with pH and EC (r = -0.79 and -0.81, respectively, p < 0.001). The spatial structure was modeled using stochastic point processes, in particular a hybrid family of Gibbs processes. A new model is proposed that uses a hard-core structure at very short distances, together with a cluster structure in short-to-medium distances and a Poisson structure for larger distances. This model was found to fit the data perfectly well.

  7. Application of UV-visible absorption spectroscopy combined with two-dimensional correlation for insight into DOM fractions from native halophyte soils in a larger estuarine delta.

    Science.gov (United States)

    Wei, Huaibin; Yu, Huibin; Pan, Hongwei; Gao, Hongjie

    2018-05-01

    UV-visible absorption spectroscopy combined with principal component analysis (PCA) and two-dimensional correlation (2D correlation) is used to trace components of dissolved organic matter (DOM) extracted from soils in a larger estuarine delta and to investigate spatial variations of DOM fractions. Soil samples of different depths were collected from native halophyte soils along a saline gradient, i.e., Suaeda salsa Comm. (SSC), Chenopodium album Comm. (CAC), Phragmites australis Comm. (PAC), and Artemisia selengensis Comm. (ASC). Molecular weights of DOM within the SSC soil profile were the lowest, followed by the CAC, PAC, and ASC soil profiles. Humification degree of DOM within the ASC soil profile was the highest, followed by the PAC, SSC, and CAC soil profiles. DOM within the soil profiles mainly contained phenolic, carboxylic, microbial products, and aromatic and alkyl groups through the PCA, which presented the significant differentiation among the four native halophyte soil profiles. The 2D UV correlation spectra of DOM within the SSC soil profile indicated that the variations of the phenolic groups were the largest, followed by the carboxylic groups, microbial products, and humified organic materials according to the band changing order of 285 → 365 → 425 → 520 nm. The 2D UV correlation spectra of DOM within the CAC soil profiles determined that the decreasing order of the variations was phenolic groups > carboxylic groups > microbial products according the band changing order of 285 → 365 → 425 nm. The 2D UV correlation spectra of DOM within the PAC soil profile proved that the variations of the phenolic groups were larger than those of the carboxylic groups according to the band changing order of 285 → 365 nm. The 2D UV correlation spectra of DOM within the ASC soil profile demonstrated that the variations of the phenolic groups were larger than those of the other DOM fractions according to the broad cross-peak at

  8. Single cell-type comparative metabolomics of epidermal bladder cells from the halophyte Mesembryanthemum crystallinum.

    Science.gov (United States)

    Barkla, Bronwyn J; Vera-Estrella, Rosario

    2015-01-01

    One of the remarkable adaptive features of the halophyte Mesembryanthemum crystallinum are the specialized modified trichomes called epidermal bladder cells (EBC) which cover the leaves, stems, and peduncle of the plant. They are present from an early developmental stage but upon salt stress rapidly expand due to the accumulation of water and sodium. This particular plant feature makes it an attractive system for single cell type studies, with recent proteomics and transcriptomics studies of the EBC establishing that these cells are metabolically active and have roles other than sodium sequestration. To continue our investigation into the function of these unusual cells we carried out a comprehensive global analysis of the metabolites present in the EBC extract by gas chromatography Time-of-Flight mass spectrometry (GC-TOF) and identified 194 known and 722 total molecular features. Statistical analysis of the metabolic changes between control and salt-treated samples identified 352 significantly differing metabolites (268 after correction for FDR). Principal components analysis provided an unbiased evaluation of the data variance structure. Biochemical pathway enrichment analysis suggested significant perturbations in 13 biochemical pathways as defined in KEGG. More than 50% of the metabolites that show significant changes in the EBC, can be classified as compatible solutes and include sugars, sugar alcohols, protein and non-protein amino acids, and organic acids, highlighting the need to maintain osmotic homeostasis to balance the accumulation of Na(+) and Cl(-) ions. Overall, the comparison of metabolic changes in salt treated relative to control samples suggests large alterations in M. crystallinum epidermal bladder cells.

  9. Making Epidermal Bladder Cells Bigger: Developmental- and Salinity-Induced Endopolyploidy in a Model Halophyte.

    Science.gov (United States)

    Barkla, Bronwyn J; Rhodes, Timothy; Tran, Kieu-Nga T; Wijesinghege, Chathura; Larkin, John C; Dassanayake, Maheshi

    2018-06-01

    Endopolyploidy occurs when DNA replication takes place without subsequent mitotic nuclear division, resulting in cell-specific ploidy levels within tissues. In plants, endopolyploidy plays an important role in sustaining growth and development, but only a few studies have demonstrated a role in abiotic stress response. In this study, we investigated the function of ploidy level and nuclear and cell size in leaf expansion throughout development and tracked cell type-specific ploidy in the halophyte Mesembryanthemum crystallinum In addition to developmental endopolyploidy, we examined the effects of salinity stress on ploidy level. We focused specifically on epidermal bladder cells (EBC), which are modified balloon-like trichomes, due to their large size and role in salt accumulation. Our results demonstrate that ploidy increases as the leaves expand in a similar manner for each leaf type, and ploidy levels up to 512C were recorded for nuclei in EBC of leaves of adult plants. Salt treatment led to a significant increase in ploidy levels in the EBC, and these cells showed spatially related differences in their ploidy and nuclear and cell size depending on the positions on the leaf and stem surface. Transcriptome analysis highlighted salinity-induced changes in genes involved in DNA replication, cell cycle, endoreduplication, and trichome development in EBC. The increase in cell size and ploidy observed in M. crystallinum under salinity stress may contribute to salt tolerance by increasing the storage capacity for sodium sequestration brought about by higher metabolic activity driving rapid cell enlargement in the leaf tissue and EBC. © 2018 American Society of Plant Biologists. All rights reserved.

  10. Single cell-type comparative metabolomics of epidermal bladder cells from the halophyte Mesembryanthemum crystallinum

    Science.gov (United States)

    Barkla, Bronwyn J.; Vera-Estrella, Rosario

    2015-01-01

    One of the remarkable adaptive features of the halophyte Mesembryanthemum crystallinum are the specialized modified trichomes called epidermal bladder cells (EBC) which cover the leaves, stems, and peduncle of the plant. They are present from an early developmental stage but upon salt stress rapidly expand due to the accumulation of water and sodium. This particular plant feature makes it an attractive system for single cell type studies, with recent proteomics and transcriptomics studies of the EBC establishing that these cells are metabolically active and have roles other than sodium sequestration. To continue our investigation into the function of these unusual cells we carried out a comprehensive global analysis of the metabolites present in the EBC extract by gas chromatography Time-of-Flight mass spectrometry (GC-TOF) and identified 194 known and 722 total molecular features. Statistical analysis of the metabolic changes between control and salt-treated samples identified 352 significantly differing metabolites (268 after correction for FDR). Principal components analysis provided an unbiased evaluation of the data variance structure. Biochemical pathway enrichment analysis suggested significant perturbations in 13 biochemical pathways as defined in KEGG. More than 50% of the metabolites that show significant changes in the EBC, can be classified as compatible solutes and include sugars, sugar alcohols, protein and non-protein amino acids, and organic acids, highlighting the need to maintain osmotic homeostasis to balance the accumulation of Na+ and Cl− ions. Overall, the comparison of metabolic changes in salt treated relative to control samples suggests large alterations in M. crystallinum epidermal bladder cells. PMID:26113856

  11. Conveyor Cultivation of the Halophytic Plant Salicornia europaea for the Recycling of NaCl from Human Liquid Waste in a Biological Life Support System.

    Science.gov (United States)

    Balnokin, Yurii; Myasoedov, Nikolay; Popova, Larissa; Tikhomirov, Alexander A.; Ushakova, Sofya; Tikhomirova, Natalia; Lasseur, Christophe; Gros, Jean-Bernard

    One problem in designing bioregenerative life support systems (BLSS) is developing technolo-gies to include human liquid and solid waste in intrasystem recycling. A specific task is recycling of NaCl excreted in urine by humans. We showed recently that this could be achieved through inclusion of the salt accumulating halophyte Salicornia europaea in the autotrophic compart-ment of the BLSS (Balnokin et al., ASR, 2010, in press). A model of NaCl circulation in BLSS with inclusion of S. europaea was based on the NaCl turnover in the human -urine -nutrient solution -S. europaea -human cycle. Mineralized urine was used as a basis for preparation of a nutrient solution for the halophyte cultivation. The shoots of the halophyte cultivated in the mineralized urine and containing NaCl could to be used by the BLSS inhabitants in their diets. In this report we describe cultivation of S. europaea which allows turnover of NaCl and produces daily shoot biomass containing Na+ and Cl- in quantities approximately equal to those excreted in daily human urine. The plants were grown in water culture in a climatic chamber under controlled conditions. A solution simulating mineralized urine (SSMU) was used as a basis for preparation of a nutri-ent solution for S. europaea cultivation. For continuous biomass production, seedlings of S. europaea, germinated preliminary in moist sand, were being transferred to the nutrient solu-tion at regular intervals (every two days). Duration of the conveyor operation was 112 days. During the first 56 days, the seedlings were being planted in SSMU diluted by a factor of 1.5 (2/3 SSMU). The same solution was introduced into the growth vessels as volumes of growth medium decreased due to plant transpiration. Starting from the 56th day as conveyor operation was initiated, the plants were being harvested every two days; the solutions from the discharged vessels were mixed with the fresh SSMU and the mixture was introduced into all other growth vessels of

  12. Overaccumulation of glycine betaine makes the function of the thylakoid membrane better in wheat under salt stress

    Directory of Open Access Journals (Sweden)

    Fengxia Tian

    2017-02-01

    Full Text Available Wheat (Triticum aestivum L. lines T1, T4, and T6 were genetically modified to increase glycine betaine (GB synthesis by introduction of the BADH (betaine aldehyde dehydrogenase, BADH gene from mountain spinach (Atriplex hortensis L.. These transgenic lines and WT of wheat (T. aestivum L. were used to study the effect of increased GB synthesis on wheat tolerance to salt stress. Salt stress due to 200 mmol L−1 NaCl impaired the photosynthesis of the four wheat lines, as indicated by declines in net photosynthetic rate (Pn, stomatal conductance (Gs, maximum photochemical efficiency of PSII (Fv/Fm, and actual photochemical efficiency of PSII (ФPSII and an increase in intercellular CO2 concentration (Ci. In comparison with WT, the effect of salinity on the three transgenic lines was mild. Salt stress caused disadvantageous changes in lipids and their fatty acid compositions in the thylakoid membrane of the transgenic lines and WT. Under salt stress, the three transgenic lines showed slightly higher chlorophyll and carotenoid contents and higher Hill reaction activities and Ca2+-ATPase activity than WT. All the results suggest that overaccumulation of GB resulting from introduction of the BADH gene can enhance the salt tolerance of transgenic plants, especially in the protection of the components and function of thylakoid membranes, thereby making photosynthesis better. Changes in lipids and fatty acid compositions in the thylakoid membrane may be involved in the increased salt stress tolerance of the transgenic lines.

  13. Single cell-type comparative metabolomics of epidermal bladder cells from the halophyte Mesembryanthemum crystallinum.

    Directory of Open Access Journals (Sweden)

    Bronwyn Jane Barkla

    2015-06-01

    Full Text Available One of the remarkable adaptive features of the halophyte and facultative CAM plant Mesembryathemum crystallinum are the specialized modified trichomes called epidermal bladder cells (EBC which cover the leaves, stems, and peduncle of the plant. They are present from an early developmental stage but upon salt stress rapidly expand due to the accumulation of water and sodium. This particular plant feature makes it an attractive system for single cell type studies, with recent proteomics and transcriptomics studies of the EBC establishing that these cells are metabolically active and have roles other than sodium sequestration. To continue our investigation into the function of these unusual cells we carried out a comprehensive global analysis of the metabolites present in the EBC extract by gas chromatography Time-of-Flight mass spectrometry (GC-TOF and identified 194 known and 722 total molecular features. Statistical analysis of the metabolic changes between control and salt-treated samples was used to identify 352 significantly differing metabolites (268 after correction for FDR. Principal components analysis provided an unbiased evaluation of the data variance structure. Biochemical pathway enrichment analysis suggested significant perturbations in 13 biochemical pathways as defined in KEGG. More than 50% of the metabolites that show significant changes in the EBC, can be classified as compatible solutes and include sugars, sugar alcohols, protein and non-protein amino acids, and organic acids, highlighting the need to maintain osmotic homeostasis to balance the accumulation of Na and Cl ions. Overall, the comparison of metabolic changes in salt treated relative to control samples suggest large alterations in Mesembryanthemum crystallinum epidermal bladder cells.

  14. Effect of citric acid on metals mobility in pruning wastes and biosolids compost and metals uptake in Atriplex halimus and Rosmarinus officinalis.

    Science.gov (United States)

    Tapia, Y; Eymar, E; Gárate, A; Masaguer, A

    2013-05-01

    To assess metal mobility in pruning waste and biosolids compost (pH 6.9 and total concentration of metals in milligram per kilogram of Cd 1.9, Cu 132, Fe 8,513, Mn 192, Pb 81, and Zn 313), shrubs species Atriplex halimus and Rosmarinus officinalis were transplanted in this substrate and irrigated with citric acid (4 g L(-1), pH 2.9) and nutrient solution daily for 60 days. Citric acid significantly increased the concentrations of soluble Mn and Fe in the nutrient substrate solution measured by suction probes, while other metals did not vary in concentration (Cu and Zn) or were not observed at detectable levels (Cd and Pb). In plants, citric acid significantly increased the concentrations of Cu (2.7 ± 0.1-3.3 ± 0.1 mg kg(-1)), Fe (49.2 ± 5.2-76.8 ± 6.8 mg kg(-1)), and Mn (7.2 ± 1.1-11.4 ± 0.7 mg kg(-1)) in leaves of R. officinalis, whereas the concentration of only Mn (25.4 ± 0.3-42.2 ± 2.9 mg kg(-1)) was increased in A. halimus. Increasing Fe and Mn solubility by citric acid addition indicates the possibility of using it to improve plant nutrition. The mobility of metals in this substrate was influenced for the concentration of the metal, the degree of humification of organic matter and its high Fe content.

  15. Determination of oil and fatty acids concentration in seeds of coastal halophytic Sueada aegyptica plant

    Directory of Open Access Journals (Sweden)

    Tahereh Assadi

    2013-04-01

    Full Text Available Background: Suaeda aegyptica (S. aegyptica species belong to the Chenepodiaceae family, the second largest family in the world of plants kingdom. It is indigenous to arid and semi-arid regions of the world and salty coastal zones Persian Gulf of Iran. It is an annual succulent halophyte plant which is characterized by producing oily seeds, high growth rate and large number of biomass. The aim of this study was analysis and determination of oil and fatty acids concentration in the S. aegyptica seed. Material and Methods: The seeds of S. aegyptica were collected form coastal zones of Persian Gulf in Bushehr province, washed and dried. The fatty acids content of the dried seeds were extracted in n-hexane solvent by soxhellet apparatus. The residue of n-hexane in oily phase was evaporated by rotary evaporator and remaining oil was collected for fatty acids analysis. In the presence of potassium hydroxide and BF3 by refluxing for 30 minutes, the methyl ester derivative of fatty acids were produced. Then the resulted derivatives were analyzed by gas chromatography (GC-FID. Results: The seeds of S. aegyptica contains eight fatty acids as: Pelargonic (C9, Capric (C10, Undecylic (C11, Tridecylic (C13, Myristic (C14, Palmitic (C16, Stearic (C18, Linoleic (18:2 and Linolenic (18:3. Average oil content in seeds 014/0 ± 87 / percent. Conclusion: The ratio of unsaturated fatty acids was higher than the saturated ones. Linoleic and Palmitic acids are major unsaturated and saturated fatty acids of S. aegyptica seed respectively.

  16. Streptomyces halophytocola sp. nov., an endophytic actinomycete isolated from the surface-sterilized stems of a coastal halophyte Tamarix chinensis Lour.

    Science.gov (United States)

    Qin, Sheng; Bian, Guang-Kai; Tamura, Tomohiko; Zhang, Yue-Ji; Zhang, Wen-Di; Cao, Cheng-Liang; Jiang, Ji-Hong

    2013-08-01

    A novel actinomycete, designated KLBMP 1284(T), was isolated from the surface-sterilized stems of a coastal halophyte Tamarix chinensis Lour. collected from the city of Nantong, Jiangsu Province, east China. The strain was found to have morphological and chemotaxonomic characteristics typical of members of the genus Streptomyces. Analysis of the 16S rRNA gene sequence of strain KLBMP 1284(T) revealed that the strain formed a distinct clade within the phylogenetic tree based on 16S rRNA gene sequences and the highest sequence similarity (99.43 %) was to Streptomyces sulphureus NRRL B-1627(T). 16S rRNA gene sequence similarity to other species of the genus Streptomyces was lower than 97 %. Based on DNA-DNA hybridization values and comparison of morphological and phenotypic data, KLBMP 1284(T) could be distinguished from the closest phylogenetically related species, Streptomyces sulphureus NRRL B-1627(T). Thus, based on these data, it is evident that strain KLBMP 1284(T) represents a novel species of the genus Streptomyces, for which the name Streptomyces halophytocola sp. nov. is proposed. The type strain is KLBMP 1284(T) (= KCTC 19890(T) = NBRC 108770(T)).

  17. The Microstructure Organization and Functional Peculiarities of Euphorbia paralias L. and Polygonum maritimum L. – Halophytic Plants from Dunes of Pomorie Lake (Bulgaria

    Directory of Open Access Journals (Sweden)

    I.V. Kosakivska

    2017-05-01

    Full Text Available The aim of this research was to investigate the leaf surface microstructure, pigments spectrum, hormones status and lipids composition of halophytes Polygonum maritimum L. and Euphorbia paralias L. that grow under natural conditions on the dunes of Pomorie Lake, (Bulgaria. It was shown that the existence in saline and dry soils provided among others adaptive mechanisms by specific microstructure of leaf. The adaxial and abaxial surfaces of P. maritimum leaves are covered with a dense layer of cuticle wax, stomata are located on the leaf both sides below the cuticle level. In E. paralias the cuticle is also well developed on the adaxial surface of leaf laminas. The epidermis of the leaf lower side is covered with a less dense cuticle layer formed by large wax crystals. This plant has stoma pores only on the abaxial side of small leaves below the cuticle level and they are surrounded with hump-shaped cuticle constructions. A high amount of carotenoids (as compared with that of chlorophylls in P. maritimum leaves indicates that these pigments have a light-collecting function and could transfer an additional energy to chlorophylls. The high performance liquid chromatography method has been used to provide a qualitative and quantitative analysis of hormones. It was shown that in leaves of E. paralias and P. maritimum free abscisic (ABA and conjugated indole-3-acetic (IAA acids prevailed. A high level of active ABA is correlated with the salt tolerance and ability to survive and grow in stress conditions. A high level of conjugated form of IAA demonstrated that activity of this hormone is limited. The cytokinins qualitative and quantitative analyses demonstrated that in E. paralias leaves zeatin forms dominated, and the level of inactive cytokinins (cis-zeatin and zeatin-O-glucoside was much higher than that of active ones (trans-zeatin and zeatin riboside. P. maritinum leaves contained a significant quantity of isopentenyl forms

  18. Potential use of the facultative halophyte Chenopodium quinoa Willd. as substrate for biogas production cultivated with different concentrations of sodium chloride under hydroponic conditions.

    Science.gov (United States)

    Turcios, Ariel E; Weichgrebe, Dirk; Papenbrock, Jutta

    2016-03-01

    This project analyses the biogas potential of the halophyte Chenopodium quinoa Willd. In a first approach C. quinoa was grown with different concentrations of NaCl (0, 10 and 20 ppt NaCl) and the crop residues were used as substrate for biogas production. In a second approach, C. quinoa was grown with 0, 10, 20 and 30 ppt NaCl under hydroponic conditions and the fresh biomass was used as substrate. The more NaCl is in the culture medium, the higher the sodium, potassium, crude ash and hemicellulose content in the plant tissue whereas the calcium, sulfur, nitrogen and carbon content in the biomass decrease. According to this study, it is possible to produce high yields of methane using biomass of C. quinoa. The highest specific methane yields were obtained using the substrate from the plants cultivated at 10 and 20 ppt NaCl in both experiments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Hairy root induction and phytoremediation of textile dye, Reactive green 19A-HE4BD, in a halophyte, Sesuvium portulacastrum (L. L.

    Directory of Open Access Journals (Sweden)

    Vinayak H. Lokhande

    2015-12-01

    Full Text Available In this study, we report phytoremediation of textile dyes using hairy roots derived through Agrobacterium rhizogenes (NCIM 5140 infection of in vitro leaf and stem explants of a halophyte Sesuvium portulacastrum (L. L. Leaf explants showed higher frequency of hairy root induction (70% than stem explants (30%, and maximum number of roots (leaf 42.3 ± 2.4 and stem 50.3 ± 1.7. Transformed nature of hairy roots was ascertained by amplifying 970 bp region of T-DNA of Ri plasmid. Hairy roots were screened for phytoremediation of various textile dyes and results showed that HRs were able to degrade Reactive green 19A HE4BD upto 98% within 5 days of incubation. Spectrophotometric analysis showed decrease in dye concentration while HPLC and FTIR analysis confirmed its degradation. Seed germination assay demonstrated non-toxic nature of the extracted metabolites. This is the first report on induction of hairy root culture in Sesuvium portulacastrum and phytoremediation of textile dyes.

  20. Cd and Ni transport and accumulation in the halophyte Sesuvium portulacastrum: implication of organic acids in these processes

    Directory of Open Access Journals (Sweden)

    Tahar eGhnaya

    2015-03-01

    Full Text Available The implication of organic acids in Cd and Ni translocation was studied in the halophyte species Sesuvium portulacastrum. Citric, fumaric, malic and ascorbic acids were separated and quantified by HPLC technique in shoots, roots and xylem saps of plants grown on nutrient solutions added with 50 µM Cd, 100 µM Ni and the combination of 50 µM Cd + 100 µM Ni. Results showed that Cd had no significant impact on biomass production while Ni and the combination of both metals drastically affected plant development. Cadmium and Ni concentrations in tissues and xylem sap were higher in plants individually exposed to heavy metal application than in those subjected to the combined treatment Cd + Ni, suggesting a possible competition between these metals for absorption. Both metals applied separately or in combination induced an increase in citrate concentration in shoots and xylem sap but a decrease of this concentration in the roots. However a minor relationship was observed between metal application and fumaric, malic and ascorbic acids. Both observations suggest the implication of citric acid in Cd, Ni translocation and shoot accumulation in S. portulacastrum. The relatively high accumulation of citric acid in xylem sap and shoot of S. portulacastrum could be involved in metal chelation and thus contributes to heavy metal tolerance in this species.

  1. EFFECT OF EXOGENOUS ABSCISIC ACID ON GROWTH AND BIOCHEMICAL CHANGES IN THE HALOPHYTE SUAEDA MARITIMA

    Directory of Open Access Journals (Sweden)

    Anbarasi G.

    2015-04-01

    Full Text Available Different types of phytohormones are being extensively used to alleviate the adverse effect of salinity stress on plant growth. Among those, Abscisic acid (ABA is a plant stress hormone and one of the most important signaling molecules in plants. Drought and salinity activate De-novo abscisic acid synthesis prevent further water loss by evaporation through stomata, mediated by changes in the guard cell turgor pressure. Under osmotic stress abscisic acid induce the accumulation of protein involved in the biosynthesis of osmolites which increasing the stress tolerance of plant. In addition, exogenous application of ABA enhances the tolerance of plants or plant cells to cold, heat, drought, anoxia and heavy metal stresses. This study was carried out to study the exogenous abscisic (ABA acid induced regulatory role on the growth, water content, protein content, chlorophyll content, osmolyte accumulation and protein profiling through SDS PAGE in a halophyte, Suaeda maritima. The osmolyte accumulation of proline and glycine betaine was found to be more in 50 µM ABA concentrations. The protein profiling through SDS PAGE revealed that ̴ 66KDa proteins was not expressed in the control plant and in 10μM ABA treated plants. Interestingly, the ABA treatment induced a new protein of 14.2KDa in 10μM concentration. The ABA treated plants with concentrations 50μM, 100μM and 150μM showed changes in the expression of protein in abundance than the control and 10μM ABA treated plants. The findings in this study indicate that among all the concentrations, 50μM ABA concentration treated plants exhibited higher growth rate.

  2. Pseudonocardia nantongensis sp. nov., a novel endophytic actinomycete isolated from the coastal halophyte Tamarix chinensis Lour.

    Science.gov (United States)

    Xing, Ke; Qin, Sheng; Bian, Guang-Kai; Zhang, Yue-Ji; Zhang, Wen-Di; Dai, Chuan-Chao; Liu, Chang-Hong; Li, Wen-Jun; Jiang, Ji-Hong

    2012-11-01

    A novel isolate, designated strain KLBMP 1282(T) was isolated from the surface-sterilized leaves of a coastal halophyte Tamarix chinensis Lour., collected from Nantong, Jiangsu Province, east of China. Phylogenetic analysis based on 16S rRNA gene sequences revealed that this strain belongs to the genus Pseudonocardia, being most closely related to Pseudonocardia kongjuensis LM 157(T) (98.33 %), Pseudonocardia autotrophica IMSNU 20050(T) (97.77 %), Pseudonocardia endophytica YIM 56035(T) (97.63 %), Pseudonocardia ammonioxydans H9 (T) (97.62 %) and Pseudonocardia compacta IMSNU 20111(T) (97.56 %); similarity to other type strains of the genus Pseudonocardia was <97.5 %. Chemotaxonomic data confirmed the affiliation of strain KLBMP 1282(T) to the genus Pseudonocardia. Strain KLBMP 1282(T) contained MK-8(H(4)) as the predominant ubiquinone and iso-C(16:0) as the major fatty acid. The polar lipids detected in strain KLBMP 1282(T) were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, phosphatidylmethylethanolamine, phosphatidylethanolamine, phosphatidylinositol, phosphatidylinositol mannosides, one unknown phospholipid and four unknown glycolipids. The DNA G + C content of strain KLBMP 1282(T) was 73.1 mol %. The results of DNA-DNA hybridizations and the phylogenetic analysis, together with the phenotypic and biochemical tests, allowed the differentiation of strain KLBMP 1282(T) from strains of other recognized Pseudonocardia species. Therefore, strain KLBMP 1282(T) represents a novel species of the genus Pseudonocardia, for which the name Pseudonocardia nantongensis sp. nov. is proposed. The type strain is KLBMP 1282(T) (=KCTC 29053(T) = NBRC 108677(T)).

  3. Growth, chlorophyll fluorescence and mineral nutrition in the halophyte Tamarix gallica cultivated in combined stress conditions: Arsenic and NaCl.

    Science.gov (United States)

    Sghaier, Dhouha Belhaj; Duarte, Bernardo; Bankaji, Insaf; Caçador, Isabel; Sleimi, Noomene

    2015-08-01

    Trace metal elements can cause various environmental and health issues due to their accumulation and integration in the food chain. In the present study, we determined the major toxic effects of arsenic on physiological behaviour of plants. For this propose, several combinations of high salinity and arsenic (As) concentrations were applied to the halophytic shrub, Tamarix gallica, by growing for three months with an irrigation solution supplemented with different concentrations of As (0, 200, 500 and 800M) with and without 200mM NaCl. The effect of the combined stress conditions on growth, physiological patterns and biochemical parameters were also assessed. The results demonstrated that T. gallica is a tolerant plant regarding arsenic. The photosynthesis apparatus Fo, Fm and Fv fluorescence, as well as Fv/Fm were not affected by As nor by As combined with salt. Likewise, pigment and nutrient (K(+), Ca(2+) and Mg(2+)) contents were not affected either. However, the study results revealed that As adversely and significantly influenced the growth with increasing the concentration of As. Despite shoots growth reduction, the present research demonstrates that T. gallica is able to cope with high external concentrations of As (under 500μM) alone or in combination with NaCl. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. 2120-IJBCS-Article-Elhadji Faye

    African Journals Online (AJOL)

    hp

    Atriplex lentiformis associé ou non au champignon Rhizophagus irregulare a été observé en ... en sodium des plants, la salinité et l'acidité du sol. Les résultats ...... de mejoramiento en la emergencia de. Atriplex repanda. Phil. Phyton, 36(2):.

  5. Identification of salt-induced genes from Salicornia brachiata, an extreme halophyte through expressed sequence tags analysis.

    Science.gov (United States)

    Jha, Bhavanath; Agarwal, Pradeep K; Reddy, Palakolanu Sudhakar; Lal, Sanjay; Sopory, Sudhir K; Reddy, Malireddy K

    2009-04-01

    Salinity severely affects plant growth and development causing crop loss worldwide. We have isolated a large number of salt-induced genes as well as unknown and hypothetical genes from Salicornia brachiata Roxb. (Amaranthaceae). This is the first description of identification of genes in response to salinity stress in this extreme halophyte plant. Salicornia accumulates salt in its pith and survives even at 2 M NaCl under field conditions. For isolating salt responsive genes, cDNA subtractive hybridization was performed between control and 500 mM NaCl treated plants. Out of the 1200 recombinant clones, 930 sequences were submitted to the NCBI database (GenBank accession: EB484528 to EB485289 and EC906125 to EC906292). 789 ESTs showed matching with different genes in NCBI database. 4.8% ESTs belonged to stress-tolerant gene category and approximately 29% ESTs showed no homology with known functional gene sequences, thus classified as unknown or hypothetical. The detection of a large number of ESTs with unknown putative function in this species makes it an interesting contribution. The 90 unknown and hypothetical genes were selected to study their differential regulation by reverse Northern analysis for identifying their role in salinity tolerance. Interestingly, both up and down regulation at 500 mM NaCl were observed (21 and 10 genes, respectively). Northern analysis of two important salt tolerant genes, ASR1 (Abscisic acid stress ripening gene) and plasma membrane H+ATPase, showed the basal level of transcripts in control condition and an increase with NaCl treatment. ASR1 gene is made full length using 5' RACE and its potential role in imparting salt tolerance is being studied.

  6. Local desalination treatment plant wastewater reuse and evaluation potential absorption of salts by the halophyte plants

    Directory of Open Access Journals (Sweden)

    Elham Kalantari

    2018-01-01

    Full Text Available The expansion of arid and semi-arid areas and consequently water scarcity are affected by climate change. This can influence on availability and quality of water while demands on food and water are increasing. As pressure on freshwater is increasing, utilization of saline water in a sustainable approach is inevitable. Therefore, bioremediation using salt tolerant plants that is consistent with sustainable development objectives might be an alternative and effective approach. In this study, saline wastewater from a local desalination treatment plant was utilized to irrigate four halophyte plants, including Aloevera, Tamarix aphylla, Rosmarinus officinalis and Matricaria chamomilla. A field experiment was designed and conducted in Zarrindasht, south of Iran in years 2012-2013 accordingly. Two irrigation treatments consisting of freshwater with salinity of 2.04 dS.m-1 and desalination wastewater with salinity of 5.77dSm-1 were applied. The experiment was designed as a split plot in the form of randomized complete block design (RCB with three replications. The results of variance analysis, ANOVA, on salt concentration in Aloevera showed that there was no significant difference between the effects of two irrigation water qualities except for Na. In Rosmarinus officinalis, only the ratio of K/Na showed a significant difference. None of the examined salt elements showed a significant difference in Tamarix aphylla irrigated with both water qualities. In Matricaria chamomilla, only Mg and K/Na ratio showed a significant difference (Duncan 5%. As a result, no significant difference was observed in salt absorption by the examined plants in treatments which were irrigated by desalination wastewater and freshwater. This could be a good result that encourages the use of similar wastewater to save freshwater in a sustainable system.

  7. The Arabidopsis halophytic relative Thellungiella halophila tolerates nitrogen-limiting conditions by maintaining growth, nitrogen uptake, and assimilation.

    Science.gov (United States)

    Kant, Surya; Bi, Yong-Mei; Weretilnyk, Elizabeth; Barak, Simon; Rothstein, Steven J

    2008-07-01

    A comprehensive knowledge of mechanisms regulating nitrogen (N) use efficiency is required to reduce excessive input of N fertilizers while maintaining acceptable crop yields under limited N supply. Studying plant species that are naturally adapted to low N conditions could facilitate the identification of novel regulatory genes conferring better N use efficiency. Here, we show that Thellungiella halophila, a halophytic relative of Arabidopsis (Arabidopsis thaliana), grows better than Arabidopsis under moderate (1 mm nitrate) and severe (0.4 mm nitrate) N-limiting conditions. Thellungiella exhibited a lower carbon to N ratio than Arabidopsis under N limitation, which was due to Thellungiella plants possessing higher N content, total amino acids, total soluble protein, and lower starch content compared with Arabidopsis. Furthermore, Thellungiella had higher amounts of several metabolites, such as soluble sugars and organic acids, under N-sufficient conditions (4 mm nitrate). Nitrate reductase activity and NR2 gene expression in Thellungiella displayed less of a reduction in response to N limitation than in Arabidopsis. Thellungiella shoot GS1 expression was more induced by low N than in Arabidopsis, while in roots, Thellungiella GS2 expression was maintained under N limitation but was decreased in Arabidopsis. Up-regulation of NRT2.1 and NRT3.1 expression was higher and repression of NRT1.1 was lower in Thellungiella roots under N-limiting conditions compared with Arabidopsis. Differential transporter gene expression was correlated with higher nitrate influx in Thellungiella at low (15)NO(3)(-) supply. Taken together, our results suggest that Thellungiella is tolerant to N-limited conditions and could act as a model system to unravel the mechanisms for low N tolerance.

  8. Effet de la salinité sur les paramètres morpho- physiologiques de ...

    African Journals Online (AJOL)

    SARAH

    31 oct. 2013 ... Effet du Stress Salin sur l'accumulation de Proline chez deux espèces d'Atriplex halimus L. et Atriplex canescens (Pursh) Nutt. European Journal of Scientific Research: Vol.41, n°2, pp 249-260. Durnete, 1960 simplified by El Midaoui and BenBella,. 1996);. EL-iklil Y, Karrou M, Mrabet R, Benichou M, 2002.

  9. Plant nutrition on fly-ash

    Energy Technology Data Exchange (ETDEWEB)

    Rees, W J; Sidrak, G H

    1956-12-01

    Experiments were performed to determine the plant nutritional potential of fly ash. Chemical analysis indicates that it contains all the essential nutrients. It is deficient in nitrogen and only manganese and aluminum appear to be available in quantities toxic to plants. Barley and spinach grown on fly ash accumulate excessive quantities of Al and Mn in their leaves and exhibit symptoms of toxicities of these metals. Atriplex hastata grows vigorously on the ash, has a high Al and Mn leaf content, but does not show toxicity symptoms. Atriplex, barley and spinach grown at reduced N levels gave lower yields than the normal controls, but symptoms of N deficiency which were evident in barley and spinach were not observed in Atriplex. 17 references, 2 figures, 14 tables.

  10. Single cell-type analysis of cellular lipid remodelling in response to salinity in the epidermal bladder cells of the model halophyte Mesembryanthemum crystallinum.

    Science.gov (United States)

    Barkla, Bronwyn J; Garibay-Hernández, Adriana; Melzer, Michael; Rupasinghe, Thusitha W T; Roessner, Ute

    2018-05-29

    Salt stress causes dramatic changes in the organization and dynamic properties of membranes, however, little is known about the underlying mechanisms involved. Modified trichomes, known as epidermal bladder cells (EBC), on the leaves and stems of the halophyte Mesembryanthemum crystallinum can be successfully exploited as a single-cell-type system to investigate salt-induced changes to cellular lipid composition. In this study alterations in key molecular species from different lipid classes highlighted an increase in phospholipid species, particularly those from phosphatidylcholine (PC) and phosphatidic acid (PA), where the latter is central to the synthesis of membrane lipids. Triacylglycerol (TG) species decreased during salinity, while there was little change in plastidic galactolipids. EBC transcriptomic and proteomic data mining revealed changes in genes and proteins involved in lipid metabolism and the upregulation of transcripts for PIPKIB, PI5PII, PIPKIII, and PLDδ, suggested the induction of signalling processes mediated by phosphoinositides and PA. TEM and flow cytometry showed the dynamic nature of lipid droplets in these cells under salt stress. Altogether, this work indicates the metabolism of TG might play an important role in EBC response to salinity as either an energy reserve for sodium accumulation and/or driving membrane biosynthesis for EBC expansion. This article is protected by copyright. All rights reserved.

  11. Radionuclides transfer into halophytes growing in tidal salt marshes from the Southwest of Spain

    International Nuclear Information System (INIS)

    Luque, Carlos J.; Vaca, Federico; García-Trapote, Ana; Hierro, Almudena; Bolívar, Juan P.; Castellanos, Eloy M.

    2015-01-01

    Estuaries are sinks of materials and substances which are released directly into them or transported from rivers that drain the basin. It is usual to find high organic matter loads and fine particles in the sediments. We analyzed radionuclide concentrations ("2"1"0Po, "2"3"0Th, "2"3"2Th, "2"3"4U, "2"3"8U, "2"2"6Ra, "2"2"8Th, "2"2"8Ra, "4"0K) in sediments and three different organs (roots, stems and leaves) of three species of halophytes plants (Spartina maritima, Spartina densiflora and Sarcocornia perennis). The study was carried out in two tidal salt marshes, one polluted by U-series radionuclides and another nearby that was unpolluted and was used as a control (or reference) area. The Tinto River salt marsh shows high levels of U-series radionuclides coming from mining and industrial discharges. On the contrary, the unperturbed Piedras River salt marsh is located about 25 km from the Tinto marsh, and shows little presence of contaminants and radionuclides. The results of this work have shown that natural radionuclide concentrations (specially the U-isotopes) in the Tinto salt marsh sediments are one order of magnitude higher than those in the Piedras marsh. These radionuclide enhancements are reflected in the different organs of the plants, which have similar concentration increases as the sediments where they have grown. Finally, the transfer factor (TF) of the most polluted radionuclides (U-isotopes and "2"1"0Po) in the Tinto area are one order of magnitude higher than in the Piedras area, indicating that the fraction of each radionuclide in the sediment originating from the pollution is more available for the plants than the indigenous fraction. This means that the plants of the salt marshes are unhelpful as bioindicators or for the phytoremediation of radionuclides. - Highlights: • Radionuclides were analyzed in sediments and plants in unpolluted salt marshes. • Plants uptake radionuclides in all organs in both salt marshes. • The transfer factors

  12. Effet de la salinité sur quelques traits physiologiques et ...

    African Journals Online (AJOL)

    Administrateur

    ﺔﯾزوﻣﺳﻻا تﺎﯾﻣﺣﻣ. -. Atriplex halimus L. Résumé. Le présent travail traite de l'effet de la salinité sur quelques réponses physiologiques et biochimiques d'une espèce, Atriplex halimus L. Des plantules sont soumises à des analyses de la biomasse, du statut énergétique. (teneurs en pigments chlorophylliens), du dosage ...

  13. Assessment of Summe Savory (satureja hortensis L. Biomass by Easily-Attainable Soil Parameters and Artificial Network

    Directory of Open Access Journals (Sweden)

    hossein sabourifard

    2018-02-01

    Full Text Available Introduction: One of the most important requirements in planning production and processing of medicinal plants in order to obtain high yield and high-quality is the initial assessment of the physical and chemical properties of soil, which reduces the production cost by avoiding the use of unnecessary soil analysis. Summer savory (Satureja hortensis L. is one the most widely used medicinal plants that quality index of plant is related to the quantity and the constituent of its essential oil content. Understanding the relations between the quantity and quality of medicinal plants with the very physical and chemical properties of soil is very complex and the estimation of parameters changes of medicinal plants affect by soil quality characteristics is more difficult. Today, with the arrival of multivariable regression models and artificial lattice models in the research, many complex relationships found in nature is understandable. Hence the need for estimation the biomass yield of savory using fast, cheap and with acceptable accuracy is feeling. Materials and Methods: The present study was performed at the Agricultural Research Station Neyshabur as pot experiment based on a completely randomized design with three replications. Around 53 soil samples were collected from different parts of Neyshabur city, and soil texture, organic matter, pH, salinity, phosphorus, potassium, nitrogen and carbon content were selected as the easily available parameters. Before planting the parameters were measured in laboratory. Approximately 90 days after planting seeds in pots containing soil samples, the sampling of plants was done based on the treatments. For drying, samples were placed for 24 hours in an oven at 40 °C. Finally, the relationship between the biomass yield and easily available soil parameters was determined using artificial neural network by Matlab7.9 software. Results and Discussion: The results showed that soil variability, is a key element in

  14. Growth platform-dependent and -independent phenotypic and metabolic responses of Arabidopsis and its halophytic relative, Eutrema salsugineum, to salt stress.

    Science.gov (United States)

    Kazachkova, Yana; Batushansky, Albert; Cisneros, Aroldo; Tel-Zur, Noemi; Fait, Aaron; Barak, Simon

    2013-07-01

    Comparative studies of the stress-tolerant Arabidopsis (Arabidopsis thaliana) halophytic relative, Eutrema salsugineum, have proven a fruitful approach to understanding natural stress tolerance. Here, we performed comparative phenotyping of Arabidopsis and E. salsugineum vegetative development under control and salt-stress conditions, and then compared the metabolic responses of the two species on different growth platforms in a defined leaf developmental stage. Our results reveal both growth platform-dependent and -independent phenotypes and metabolic responses. Leaf emergence was affected in a similar way in both species grown in vitro but the effects observed in Arabidopsis occurred at higher salt concentrations in E. salsugineum. No differences in leaf emergence were observed on soil. A new effect of a salt-mediated reduction in E. salsugineum leaf area was unmasked. On soil, leaf area reduction in E. salsugineum was mainly due to a fall in cell number, whereas both cell number and cell size contributed to the decrease in Arabidopsis leaf area. Common growth platform-independent leaf metabolic signatures such as high raffinose and malate, and low fumarate contents that could reflect core stress tolerance mechanisms, as well as growth platform-dependent metabolic responses were identified. In particular, the in vitro growth platform led to repression of accumulation of many metabolites including sugars, sugar phosphates, and amino acids in E. salsugineum compared with the soil system where these same metabolites accumulated to higher levels in E. salsugineum than in Arabidopsis. The observation that E. salsugineum maintains salt tolerance despite growth platform-specific phenotypes and metabolic responses suggests a considerable degree of phenotypic and metabolic adaptive plasticity in this extremophile.

  15. The Arabidopsis Halophytic Relative Thellungiella halophila Tolerates Nitrogen-Limiting Conditions by Maintaining Growth, Nitrogen Uptake, and Assimilation1[W][OA

    Science.gov (United States)

    Kant, Surya; Bi, Yong-Mei; Weretilnyk, Elizabeth; Barak, Simon; Rothstein, Steven J.

    2008-01-01

    A comprehensive knowledge of mechanisms regulating nitrogen (N) use efficiency is required to reduce excessive input of N fertilizers while maintaining acceptable crop yields under limited N supply. Studying plant species that are naturally adapted to low N conditions could facilitate the identification of novel regulatory genes conferring better N use efficiency. Here, we show that Thellungiella halophila, a halophytic relative of Arabidopsis (Arabidopsis thaliana), grows better than Arabidopsis under moderate (1 mm nitrate) and severe (0.4 mm nitrate) N-limiting conditions. Thellungiella exhibited a lower carbon to N ratio than Arabidopsis under N limitation, which was due to Thellungiella plants possessing higher N content, total amino acids, total soluble protein, and lower starch content compared with Arabidopsis. Furthermore, Thellungiella had higher amounts of several metabolites, such as soluble sugars and organic acids, under N-sufficient conditions (4 mm nitrate). Nitrate reductase activity and NR2 gene expression in Thellungiella displayed less of a reduction in response to N limitation than in Arabidopsis. Thellungiella shoot GS1 expression was more induced by low N than in Arabidopsis, while in roots, Thellungiella GS2 expression was maintained under N limitation but was decreased in Arabidopsis. Up-regulation of NRT2.1 and NRT3.1 expression was higher and repression of NRT1.1 was lower in Thellungiella roots under N-limiting conditions compared with Arabidopsis. Differential transporter gene expression was correlated with higher nitrate influx in Thellungiella at low 15NO3− supply. Taken together, our results suggest that Thellungiella is tolerant to N-limited conditions and could act as a model system to unravel the mechanisms for low N tolerance. PMID:18467466

  16. The SbMT-2 gene from a halophyte confers abiotic stress tolerance and modulates ROS scavenging in transgenic tobacco.

    Directory of Open Access Journals (Sweden)

    Amit Kumar Chaturvedi

    Full Text Available Heavy metals are common pollutants of the coastal saline area and Salicornia brachiata an extreme halophyte is frequently exposed to various abiotic stresses including heavy metals. The SbMT-2 gene was cloned and transformed to tobacco for the functional validation. Transgenic tobacco lines (L2, L4, L6 and L13 showed significantly enhanced salt (NaCl, osmotic (PEG and metals (Zn++, Cu++ and Cd++ tolerance compared to WT plants. Transgenic lines did not show any morphological variation and had enhanced growth parameters viz. shoot length, root length, fresh weight and dry weight. High seed germination percentage, chlorophyll content, relative water content, electrolytic leakage and membrane stability index confirmed that transgenic lines performed better under salt (NaCl, osmotic (PEG and metals (Zn++, Cu++ and Cd++ stress conditions compared to WT plants. Proline, H2O2 and lipid peroxidation (MDA analyses suggested the role of SbMT-2 in cellular homeostasis and H2O2 detoxification. Furthermore in vivo localization of H2O2 and O2-; and elevated expression of key antioxidant enzyme encoding genes, SOD, POD and APX evident the possible role of SbMT-2 in ROS scavenging/detoxification mechanism. Transgenic lines showed accumulation of Cu++ and Cd++ in root while Zn++ in stem under stress condition. Under control (unstressed condition, Zn++ was accumulated more in root but accumulation of Zn++ in stem under stress condition suggested that SbMT-2 may involve in the selective translocation of Zn++ from root to stem. This observation was further supported by the up-regulation of zinc transporter encoding genes NtZIP1 and NtHMA-A under metal ion stress condition. The study suggested that SbMT-2 modulates ROS scavenging and is a potential candidate to be used for phytoremediation and imparting stress tolerance.

  17. The SbMT-2 gene from a halophyte confers abiotic stress tolerance and modulates ROS scavenging in transgenic tobacco.

    Science.gov (United States)

    Chaturvedi, Amit Kumar; Patel, Manish Kumar; Mishra, Avinash; Tiwari, Vivekanand; Jha, Bhavanath

    2014-01-01

    Heavy metals are common pollutants of the coastal saline area and Salicornia brachiata an extreme halophyte is frequently exposed to various abiotic stresses including heavy metals. The SbMT-2 gene was cloned and transformed to tobacco for the functional validation. Transgenic tobacco lines (L2, L4, L6 and L13) showed significantly enhanced salt (NaCl), osmotic (PEG) and metals (Zn++, Cu++ and Cd++) tolerance compared to WT plants. Transgenic lines did not show any morphological variation and had enhanced growth parameters viz. shoot length, root length, fresh weight and dry weight. High seed germination percentage, chlorophyll content, relative water content, electrolytic leakage and membrane stability index confirmed that transgenic lines performed better under salt (NaCl), osmotic (PEG) and metals (Zn++, Cu++ and Cd++) stress conditions compared to WT plants. Proline, H2O2 and lipid peroxidation (MDA) analyses suggested the role of SbMT-2 in cellular homeostasis and H2O2 detoxification. Furthermore in vivo localization of H2O2 and O2-; and elevated expression of key antioxidant enzyme encoding genes, SOD, POD and APX evident the possible role of SbMT-2 in ROS scavenging/detoxification mechanism. Transgenic lines showed accumulation of Cu++ and Cd++ in root while Zn++ in stem under stress condition. Under control (unstressed) condition, Zn++ was accumulated more in root but accumulation of Zn++ in stem under stress condition suggested that SbMT-2 may involve in the selective translocation of Zn++ from root to stem. This observation was further supported by the up-regulation of zinc transporter encoding genes NtZIP1 and NtHMA-A under metal ion stress condition. The study suggested that SbMT-2 modulates ROS scavenging and is a potential candidate to be used for phytoremediation and imparting stress tolerance.

  18. The Impacts of Soil Fertility and Salinity on Soil Nitrogen Dynamics Mediated by the Soil Microbial Community Beneath the Halophytic Shrub Tamarisk.

    Science.gov (United States)

    Iwaoka, Chikae; Imada, Shogo; Taniguchi, Takeshi; Du, Sheng; Yamanaka, Norikazu; Tateno, Ryunosuke

    2018-05-01

    Nitrogen (N) is one of the most common limiting nutrients for primary production in terrestrial ecosystems. Soil microbes transform organic N into inorganic N, which is available to plants, but soil microbe activity in drylands is sometimes critically suppressed by environmental factors, such as low soil substrate availability or high salinity. Tamarisk (Tamarix spp.) is a halophytic shrub species that is widely distributed in the drylands of China; it produces litter enriched in nutrients and salts that are thought to increase soil fertility and salinity under its crown. To elucidate the effects of tamarisks on the soil microbial community, and thus N dynamics, by creating "islands of fertility" and "islands of salinity," we collected soil samples from under tamarisk crowns and adjacent barren areas at three habitats in the summer and fall. We analyzed soil physicochemical properties, inorganic N dynamics, and prokaryotic community abundance and composition. In soils sampled beneath tamarisks, the N mineralization rate was significantly higher, and the prokaryotic community structure was significantly different, from soils sampled in barren areas, irrespective of site and season. Tamarisks provided suitable nutrient conditions for one of the important decomposers in the area, Verrucomicrobia, by creating "islands of fertility," but provided unsuitable salinity conditions for other important decomposers, Flavobacteria, Gammaproteobacteria, and Deltaproteobacteria, by mitigating salt accumulation. However, the quantity of these decomposers tended to be higher beneath tamarisks, because they were relatively unaffected by the small salinity gradient created by the tamarisks, which may explain the higher N mineralization rate beneath tamarisks.

  19. Evaluation of the halophyte Salsola soda as an alternative crop for saline soils high in selenium and boron.

    Science.gov (United States)

    Centofanti, Tiziana; Bañuelos, Gary

    2015-07-01

    Urbanization, industrial development, and intensive agriculture have caused soil contamination and land degradation in many areas of the world. Salinization is one important factor contributing to land degradation and it affects agricultural production and environmental quality. When salinization is combined with soil pollution by trace elements, as it occurs in many arid and semi-arid regions around the world, strategies to phyto-manage pollutants and sustain crop production need to be implemented. In this study, we present the case of saline soils in the West side of Central California which contain naturally-occurring selenium (Se), boron (B), and other salts, such as NaCl, CaCl2, Na2SO4, and Na2SeO4. To sustain crop production on Se- and B-laden arid saline soils, we investigated the potential of the halophyte "agretti" (Salsola soda L.) as an alternative crop. The aim of our greenhouse study was to examine adaptability, B tolerance, and Se accumulation by S. soda grown on soils collected from a typical saline-laden field site located on the West side of the San Joaquin Valley (SJV). Our results showed that S. soda tolerates the saline (EC ∼ 10 dS m(-1)) and B-laden soils (10 mg B L(-1)) of the SJV even with the additional irrigation of saline and B rich water (EC ∼ 3 dS m(-1) and 4 mg B L(-1)). Under these growing conditions, the plant can accumulate high concentrations of Na (80 g Na kg(-1) DW), B (100 mg B kg(-1) DW), and Se (3-4 mg Se kg(-1) DW) without showing toxicity symptoms. Hence, S. soda showed promising potential as a plant species that can be grown in B-laden saline soils and accumulate and potentially manage excessive soluble Se and B in soil. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Estudo de caso de três espécies de plantas bioindicadoras de solos salinos

    Directory of Open Access Journals (Sweden)

    Mercia Fonseca Carvalho

    2015-07-01

    Full Text Available Bioindicadores, de uma maneira geral, são seres vivos de natureza diversa, vegetais ou animais, utilizados para analisar a qualidade de um determinado ambiente. A degradação ambiental do solo pela salinidade é um problema muito antigo e de extensão mundial, geralmente, mais pronunciado nas regiões áridas e semi-áridas. As plantas que se desenvolvem em áreas com elevadas concentrações de sais são chamadas de halófitas, e algumas delas são usadas na recuperar desses solos. O objetivo desse trabalho é analisar três espécies de plantas resistentes ao estresse salino gerar recomendações a respeito das mesmas, disponibilizando uma indicação de espécie que possa recuperar o ambiente salinizado. Foram selecionadas aleatoriamente três espécies de plantas resistentes a salinidade Copernicia prunifera, Atriplex nummularia L. e Gossypium hirsutum L, as mesmas foram analisados por uma planilha com características que identificam um bioindicador ideal e em seguida as espécies foram avaliadas de acordo com sua fisiologia e etiologia. Embora as propriedades da espécie A. nummularia tenha se destacado por recuperar os solos salinizados a espécie Copernicia prunifera foi considerada como um bioindicador ideal. Recomendam-se ainda estudos mais aprofundados acerca desse assunto.Case study of three species of saline soil bioindicatorsAbstract: Bioindicators, in general, living organisms are diverse in nature, plant or animal used to assess the quality of a given environment. Environmental degradation by soil salinity is a very old problem and expanse world generally more pronounced in arid and semi-arid regions. Plants that thrive in areas with high concentrations of salts are called halophytes, and some of them are used in recovering these soils. The aim of this work is to analyze three species of plants resistant to salt stress generate recommendations regarding the same, providing an indication of species that can restore the

  1. Physiological, anatomical and metabolic implications of salt tolerance in the halophyte Salvadora persica under hydroponic culture condition

    Directory of Open Access Journals (Sweden)

    ASISH KUMAR PARIDA

    2016-03-01

    Full Text Available Salt tolerance mechanism of an extreme halophyte Salvadora persica was assessed by analysing growth, nutrient uptake, anatomical modifications and alterations in levels of some organic metabolites in seedlings imposed to various levels of salinity (0, 250, 500 and 750 mM NaCl under hydroponic culture condition. After 21 days of salt treatment, plant height, leaf area and shoot biomass decreased with increase in salinity whereas the leaf succulence increased significantly with increasing salinity in S. persica. The RWC% of leaf increased progressively in salt-treated seedlings as compared to control. Na+ contents of leaf, stem and root increased in dose-dependent manner whereas there was no significant changes in K+ content. There was significant alterations in leaf, stem and root anatomy by salinity. The thickness of epidermis and spongy parenchyma of leaf increased in salt treated seedlings as compared to control, whereas palisade parenchyma decreased dramatically in extreme salinity (750 mM NaCl. There was a significant reduction in stomatal density and stomatal pore area of leaf with increasing salinity. Anatomical observations of stem showed that the epidermal cells diameter and thickness of cortex decreased by salinity whereas thickness of hypodermal layer, hypodermal cell diameter, pith area and pith cell diameter increased by high salinity. The root anatomy showed an increase in epidermal thickness by salinity whereas diameters of epidermal cells and xylem vessels decreased. Total soluble sugar content remained unchanged at all levels of salinity whereas reducing sugar content increased by 2-fold at high salinity (750 mM NaCl. The starch content of leaf decreased progressively in NaCl treated seedlings as compared to control. Total free amino acid content did not change at low salinity (250 mM, whereas it increased significantly at higher salinity (500 and 750 mM NaCl. The proline content increased in the NaCl treated seedlings as

  2. Screening for bioactive metabolites in plant extracts modulating glucose uptake and fat accumulation

    DEFF Research Database (Denmark)

    El-Houri, Rime Bahij; Kotowska, Dorota Ewa; C. B. Olsen, Louise

    2014-01-01

    while weekly activating PPARγ without promoting adipocyte differentiation. In addition, these extracts were able to decrease fat accumulation in C. elegans. Methanol extracts of summer savory (Satureja hortensis), common elder, and broccoli (Brassica oleracea) enhanced glucose uptake in myotubes...

  3. Comparison of germination and seed bank dynamics of dimorphic seeds of the cold desert halophyte Suaeda corniculata subsp. mongolica

    Science.gov (United States)

    Cao, Dechang; Baskin, Carol C.; Baskin, Jerry M.; Yang, Fan; Huang, Zhenying

    2012-01-01

    Background and Aims Differences in dormancy and germination requirements have been documented in heteromorphic seeds of many species, but it is unknown how this difference contributes to maintenance and regeneration of populations. The primary aim of this study was to compare the seed bank dynamics, including dormancy cycling, of the two seed morphs (black and brown) of the cold desert halophyte Suaeda corniculata and, if differences were found, to determine their influence on regeneration of the species. Method Seeds of the two seed morphs were buried, exhumed and tested monthly for 24 months over a range of temperatures and salinities, and germination recovery and viability were determined after exposure to salinity and water stress. Seedling emergence and dynamics of the soil seed bank were also investigated for the two morphs. Key Results Black seeds had an annual dormancy/non-dormancy cycle, while brown seeds, which were non-dormant at maturity, remained non-dormant. Black seeds also exhibited an annual cycle in sensitivity of germination to salinity. Seedlings derived from black seeds emerged in July and August and those from brown seeds in May. Seedlings were recruited from 2·6 % of the black seeds and from 2·8 % of the brown seeds in the soil, and only 0·5 % and 0·4 % of the total number of black and brown seeds in the soil, respectively, gave rise to seedlings that survived to produce seeds. Salinity and water stress induced dormancy in black seeds and decreased viability of brown seeds. Brown seeds formed only a transient soil seed bank and black seeds a persistent seed bank. Conclusions The presence of a dormancy cycle in black but not in brown seeds of S. corniculata and differences in germination requirements of the two morphs cause them to differ in their germination dynamics. The study contributes to our limited knowledge of dormancy cycling and seed bank formation in species producing heteromorphic seeds. PMID:22975287

  4. Effects of Salt Stress on Three Ecologically Distinct Plantago Species.

    Science.gov (United States)

    Al Hassan, Mohamad; Pacurar, Andrea; López-Gresa, María P; Donat-Torres, María P; Llinares, Josep V; Boscaiu, Monica; Vicente, Oscar

    2016-01-01

    Comparative studies on the responses to salt stress of taxonomically related taxa should help to elucidate relevant mechanisms of stress tolerance in plants. We have applied this strategy to three Plantago species adapted to different natural habitats, P. crassifolia and P. coronopus-both halophytes-and P. major, considered as salt-sensitive since it is never found in natural saline habitats. Growth inhibition measurements in controlled salt treatments indicated, however, that P. major is quite resistant to salt stress, although less than its halophytic congeners. The contents of monovalent ions and specific osmolytes were determined in plant leaves after four-week salt treatments. Salt-treated plants of the three taxa accumulated Na+ and Cl- in response to increasing external NaCl concentrations, to a lesser extent in P. major than in the halophytes; the latter species also showed higher ion contents in the non-stressed plants. In the halophytes, K+ concentration decreased at moderate salinity levels, to increase again under high salt conditions, whereas in P. major K+ contents were reduced only above 400 mM NaCl. Sorbitol contents augmented in all plants, roughly in parallel with increasing salinity, but the relative increments and the absolute values reached did not differ much in the three taxa. On the contrary, a strong (relative) accumulation of proline in response to high salt concentrations (600-800 mM NaCl) was observed in the halophytes, but not in P. major. These results indicate that the responses to salt stress triggered specifically in the halophytes, and therefore the most relevant for tolerance in the genus Plantago are: a higher efficiency in the transport of toxic ions to the leaves, the capacity to use inorganic ions as osmotica, even under low salinity conditions, and the activation, in response to very high salt concentrations, of proline accumulation and K+ transport to the leaves of the plants.

  5. Rethinking the role of edaphic condition in halophyte vegetation degradation on salt marshes due to coastal defense structure

    Science.gov (United States)

    Xie, Tian; Cui, Baoshan; Bai, Junhong; Li, Shanze; Zhang, Shuyan

    2018-02-01

    Determining how human disturbance affects plant community persistence and species conservation is one of the most pressing ecological challenges. The large-scale disturbance form defense structures usually have a long-term and potential effect on phytocommunity in coastal saltmarshes. Coastal defense structures usually remove the effect of tidal wave on tidal salt marshes. As a consequence, edaphic factors such as the salinity and moisture contents are disturbed by tidal action blocking. However, few previous studies have explicitly addressed the response of halophyte species persistence and dynamics to the changing edaphic conditions. The understanding of the response of species composition in seed banks and aboveground vegetation to the stress is important to identify ecological effect of coastal defense structures and provide usefully insight into restoration. Here, we conducted a field study to distinguish the density, species composition and relationships of seed bank with aboveground vegetation between tidal flat wetlands with and without coastal defense structures. We also addressed the role of edaphic condition in vegetation degradation caused by coastal defense structures in combination with field monitor and greenhouse experiments. Our results showed the density of the seed bank and aboveground vegetation in the tidal flat without coastal defense structures was significantly lower than the surrounded flat with coastal defense structures. A total of 14 species were founded in the surrounded flat seed bank and 11 species in the tidal flat, but three species were only recorded in aboveground vegetation of the tidal flat which was much lower than 24 aboveground species in the surrounded flat. The absent of species in aboveground vegetation contributed to low germination rate which depend on the edaphic condition. The germination of seeds in the seed bank were inhabited by high soil salinity in the tidal flat and low soil moisture in the surrounded flat. Our

  6. High salinity helps the halophyte Sesuvium portulacastrum in defense against Cd toxicity by maintaining redox balance and photosynthesis.

    Science.gov (United States)

    Wali, Mariem; Gunsè, Benet; Llugany, Mercè; Corrales, Isabel; Abdelly, Chedly; Poschenrieder, Charlotte; Ghnaya, Tahar

    2016-08-01

    NaCl alleviates Cd toxicity in Sesvium portulacastrum by maintaining plant water status and redox balance, protecting chloroplasts structure and inducing some potential Cd (2+) chelators as GSH and proline. It has been demonstrated that NaCl alleviates Cd-induced growth inhibition in the halophyte Sesuvium portulacastrum. However, the processes that mediate this effect are still unclear. In this work we combined physiological, biochemical and ultrastructural studies to highlight the effects of salt on the redox balance and photosynthesis in Cd-stressed plants. Seedlings were exposed to different Cd concentrations (0, 25 and 50 µM Cd) combined with low (0.09 mM) (LS), or high (200 mM) NaCl (HS) in hydroponic culture. Plant-water relations, photosynthesis rate, leaf gas exchange, chlorophyll fluorescence, chloroplast ultrastructure, and proline and glutathione concentrations were analyzed after 1 month of treatment. In addition, the endogenous levels of stress-related hormones were determined in plants subjected to 25 µM Cd combined with both NaCl concentrations. In plants with low salt supply (LS), Cd reduced growth, induced plant dehydration, disrupted chloroplast structure and functioning, decreased net CO2 assimilation rate (A) and transpiration rate (E), inhibited the maximum potential quantum efficiency (Fv/Fm) and the quantum yield efficiency (Φ PSII) of PSII, and enhanced the non-photochemical quenching (NPQ). The addition of 200 mM NaCl (HS) to the Cd-containing medium culture significantly mitigated Cd phytotoxicity. Hence, even at similar internal Cd concentrations, HS-Cd plants were less affected by Cd than LS-Cd ones. Hence, 200 mM NaCl significantly alleviates Cd-induced toxicity symptoms, growth inhibition, and photosynthesis disturbances. The cell ultrastructure was better preserved in HS-Cd plants but affected in LS-Cd plants. The HS-Cd plants showed also higher concentrations of reduced glutathione (GSH), proline and jasmonic acid (JA

  7. Influence of spice and wine based marinades on bovine Biceps ...

    African Journals Online (AJOL)

    Fresh beef slices were marinated by immersion in marinades based on dry red wine, lime-tree honey, salt, spices and seasoning plants as thyme (Thymus vulgaris), marjoram (Majorana hortensis), garlic (Allium sativum) and horseradish (Armoracia rusticana). Control samples were prepared without marinating treatment ...

  8. Differences in predatory pressure on terrestrial snails by birds and ...

    Indian Academy of Sciences (India)

    Supplementary table 2. Number of collected individuals of particular morph categories of C. nemoralis and C. hortensis with specification of undamaged and damaged snails. Morph. Total number of individuals. Undamaged individuals. Shells damaged by. Mice. Birds. Mouse + bird. Cepaea nemoralis. 732. 172. 105. 436.

  9. Single-cell-type quantitative proteomic and ionomic analysis of epidermal bladder cells from the halophyte model plant Mesembryanthemum crystallinum to identify salt-responsive proteins.

    Science.gov (United States)

    Barkla, Bronwyn J; Vera-Estrella, Rosario; Raymond, Carolyn

    2016-05-10

    Epidermal bladder cells (EBC) are large single-celled, specialized, and modified trichomes found on the aerial parts of the halophyte Mesembryanthemum crystallinum. Recent development of a simple but high throughput technique to extract the contents from these cells has provided an opportunity to conduct detailed single-cell-type analyses of their molecular characteristics at high resolution to gain insight into the role of these cells in the salt tolerance of the plant. In this study, we carry out large-scale complementary quantitative proteomic studies using both a label (DIGE) and label-free (GeLC-MS) approach to identify salt-responsive proteins in the EBC extract. Additionally we perform an ionomics analysis (ICP-MS) to follow changes in the amounts of 27 different elements. Using these methods, we were able to identify 54 proteins and nine elements that showed statistically significant changes in the EBC from salt-treated plants. GO enrichment analysis identified a large number of transport proteins but also proteins involved in photosynthesis, primary metabolism and Crassulacean acid metabolism (CAM). Validation of results by western blot, confocal microscopy and enzyme analysis helped to strengthen findings and further our understanding into the role of these specialized cells. As expected EBC accumulated large quantities of sodium, however, the most abundant element was chloride suggesting the sequestration of this ion into the EBC vacuole is just as important for salt tolerance. This single-cell type omics approach shows that epidermal bladder cells of M. crystallinum are metabolically active modified trichomes, with primary metabolism supporting cell growth, ion accumulation, compatible solute synthesis and CAM. Data are available via ProteomeXchange with identifier PXD004045.

  10. Unraveling Salt Tolerance Mechanisms in Halophytes: A Comparative Study on Four Mediterranean Limonium Species with Different Geographic Distribution Patterns

    Directory of Open Access Journals (Sweden)

    Mohamad Al Hassan

    2017-08-01

    Full Text Available We have performed an extensive study on the responses to salt stress in four related Limonium halophytes with different geographic distribution patterns, during seed germination and early vegetative growth. The aims of the work were twofold: to establish the basis for the different chorology of these species, and to identify relevant mechanisms of salt tolerance dependent on the control of ion transport and osmolyte accumulation. Seeds were germinated in vitro, in the presence of increasing NaCl concentrations, and subjected to “recovery of germination” tests; germination percentages and velocity were determined to establish the relative tolerance and competitiveness of the four Limonium taxa. Salt treatments were also applied to young plants, by 1-month irrigation with NaCl up to 800 mM; then, growth parameters, levels of monovalent and divalent ions (in roots and leaves, and leaf contents of photosynthetic pigments and common osmolytes were determined in control and stressed plants of the four species. Seed germination is the most salt-sensitive developmental phase in Limonium. The different germination behavior of the investigated species appears to be responsible for their geographical range size: L. narbonense and L. virgatum, widespread throughout the Mediterranean, are the most tolerant and the most competitive at higher soil salinities; the endemic L. santapolense and L. girardianum are the most sensitive and more competitive only at lower salinities. During early vegetative growth, all taxa showed a strong tolerance to salt stress, although slightly higher in L. virgatum and L. santapolense. Salt tolerance is based on the efficient transport of Na+ and Cl− to the leaves and on the accumulation of fructose and proline for osmotic adjustment. Despite some species-specific quantitative differences, the accumulation patterns of the different ions were similar in all species, not explaining differences in tolerance, except for the

  11. ATRIPLEX HALIMUS (AMARANTACEES) CALLOGENESIS ...

    African Journals Online (AJOL)

    Y. Halfaoui

    1 janv. 2018 ... Le premier lot subi une désinfection par immersion dans l'éthanol 70° pendant 10 min, suivie par un trempage dans une solution d'hypochlorite de sodium à 5% pendant 20 min puis rincées 5 fois avec l'eau distillée stérile. Les graines sont alors séchées avec du papier filtre stérile et mises à germer.

  12. The Effects of Extracts Obtained by Supercritical Fluid Extraction and Traditional Extraction Techniques on Larvae Leptinotarsa decemlineata SAY

    Czech Academy of Sciences Publication Activity Database

    Pavela, R.; Sajfrtová, Marie; Sovová, Helena; Karban, Jindřich; Bárnet, M.

    2009-01-01

    Roč. 21, č. 4 (2009), s. 367-373 ISSN 1041-2905 R&D Projects: GA MŠk 2B06049 Institutional research plan: CEZ:AV0Z40720504 Keywords : satureja hortensis * thymus vulgaris * botanical insecticides Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 0.498, year: 2009

  13. Role of Plants in a Constructed Wetland: Current and New Perspectives

    Directory of Open Access Journals (Sweden)

    Amit Gross

    2013-04-01

    Full Text Available The role of plants in the treatment of effluents by constructed wetland (CW systems is under debate. Here, we review ways in which plants can affect CW processes and suggest two novel functions for plants in CWs. The first is salt phytoremediation by halophytes. We have strong evidence that halophytic plants can reduce wastewater salinity by accumulating salts in their tissues. Our studies have shown that Bassia indica, a halophytic annual, is capable of salt phytoremediation, accumulating sodium to up to 10% of its dry weight. The second novel use of plants in CWs is as phytoindicators of water quality. We demonstrate that accumulation of H2O2, a marker for plant stress, is reduced in the in successive treatment stages, where water quality is improved. It is recommended that monitoring and management of CWs consider the potential of plants as phytoremediators and phytoindicators.

  14. Produção e avaliação bromatológica de espécies forrageiras irrigadas com água salina Production and bromatological evaluation of forage species irrigated with saline water

    Directory of Open Access Journals (Sweden)

    Sebastião B. de Carvalho Júnior

    2010-10-01

    Full Text Available Uma das alternativas para a destinação de rejeito de dessalinizadores é a utilização em tanques de piscicultura e carcinocultura e posterior reúso na irrigação de culturas tolerantes a salinidade. O trabalho foi conduzido no município de Barra de Santa Rosa, PB, objetivando verificar a taxa de germinação da semente, brotação das mudas e características bromatológicas de maniçoba (Manihot glaziovii Muell Arg, erva-sal (Atriplex nummularia, flor de seda (Calotropis procera e jureminha (Desmanthus virgatus, cultivadas e irrigadas com água excedentes de tanques de piscicultura e carcinocultura, oriundos de rejeito de dessalinizadores, com condutividade elétrica de 5.800 e 5.200 μS cm-1, respectivamente. A flor de seda e erva-sal apresentam maiores taxas de germinação (96,0% e brotação (70,0%, respectivamente, seguidas da taxa de brotação da maniçoba (62,0% e da jureminha (51,0%. Do total de mudas transplantadas 95,0; 93,0; 82,7 e 80,5% das plantas de flor de seda, maniçoba, atriplex e jureminha, foram viáveis, respectivamente. As forrageiras apresentaram boa taxa de brotação e germinação e propagação e boa composição bromotologica, onde a jureminha e o atriplex apresentaram teor de proteína, matéria orgânica e energia bruta de 9,4 e 17,8%; 95,0 e 76,3% e 4.295,8 e 3.575,9 cal g-1 de energia bruta, respectivamente.One of the alternatives for the disposal of desalinization waste is its use in fishponds and shrimp production and later reuse for irrigation of crops tolerant to salinity. This work was conducted in Barra de Santa Rosa, PB, with the aim of verifying the rate of seed germination, sprouting and bromatologic characteristics of maniçoba (Manihot glaziovii Muell Arg, erva-sal (Atriplex nummularia, silk flower (Calotropis procera and 'jureminha' (Desmanthus virgatus, cultivated and irrigated with excess water of fishponds and shrimp production, coming from desalinization waste, with electrical conductivity

  15. The SbSOS1 gene from the extreme halophyte Salicornia brachiata enhances Na(+) loading in xylem and confers salt tolerance in transgenic tobacco.

    Science.gov (United States)

    Yadav, Narendra Singh; Shukla, Pushp Sheel; Jha, Anupama; Agarwal, Pradeep K; Jha, Bhavanath

    2012-10-11

    Soil salinity adversely affects plant growth and development and disturbs intracellular ion homeostasis resulting cellular toxicity. The Salt Overly Sensitive 1 (SOS1) gene encodes a plasma membrane Na(+)/H(+) antiporter that plays an important role in imparting salt stress tolerance to plants. Here, we report the cloning and characterisation of the SbSOS1 gene from Salicornia brachiata, an extreme halophyte. The SbSOS1 gene is 3774 bp long and encodes a protein of 1159 amino acids. SbSOS1 exhibited a greater level of constitutive expression in roots than in shoots and was further increased by salt stress. Overexpressing the S. brachiata SbSOS1 gene in tobacco conferred high salt tolerance, promoted seed germination and increased root length, shoot length, leaf area, fresh weight, dry weight, relative water content (RWC), chlorophyll, K(+)/Na(+) ratio, membrane stability index, soluble sugar, proline and amino acid content relative to wild type (WT) plants. Transgenic plants exhibited reductions in electrolyte leakage, reactive oxygen species (ROS) and MDA content in response to salt stress, which probably occurred because of reduced cytosolic Na(+) content and oxidative damage. At higher salt stress, transgenic tobacco plants exhibited reduced Na(+) content in root and leaf and higher concentrations in stem and xylem sap relative to WT, which suggests a role of SbSOS1 in Na(+) loading to xylem from root and leaf tissues. Transgenic lines also showed increased K(+) and Ca(2+) content in root tissue compared to WT, which reflect that SbSOS1 indirectly affects the other transporters activity. Overexpression of SbSOS1 in tobacco conferred a high degree of salt tolerance, enhanced plant growth and altered physiological and biochemical parameters in response to salt stress. In addition to Na(+) efflux outside the plasma membrane, SbSOS1 also helps to maintain variable Na(+) content in different organs and also affect the other transporters activity indirectly. These

  16. A SNARE-Like Superfamily Protein SbSLSP from the Halophyte Salicornia brachiata Confers Salt and Drought Tolerance by Maintaining Membrane Stability, K(+)/Na(+) Ratio, and Antioxidant Machinery.

    Science.gov (United States)

    Singh, Dinkar; Yadav, Narendra Singh; Tiwari, Vivekanand; Agarwal, Pradeep K; Jha, Bhavanath

    2016-01-01

    About 1000 salt-responsive ESTs were identified from an extreme halophyte Salicornia brachiata. Among these, a novel salt-inducible gene SbSLSP (Salicornia brachiata SNARE-like superfamily protein), showed up-regulation upon salinity and dehydration stress. The presence of cis-regulatory motifs related to abiotic stress in the putative promoter region supports our finding that SbSLSP gene is inducible by abiotic stress. The SbSLSP protein showed a high sequence identity to hypothetical/uncharacterized proteins from Beta vulgaris, Spinacia oleracea, Eucalyptus grandis, and Prunus persica and with SNARE-like superfamily proteins from Zostera marina and Arabidopsis thaliana. Bioinformatics analysis predicted a clathrin adaptor complex small-chain domain and N-myristoylation site in the SbSLSP protein. Subcellular localization studies indicated that the SbSLSP protein is mainly localized in the plasma membrane. Using transgenic tobacco lines, we establish that overexpression of SbSLSP resulted in elevated tolerance to salt and drought stress. The improved tolerance was confirmed by alterations in a range of physiological parameters, including high germination and survival rate, higher leaf chlorophyll contents, and reduced accumulation of Na(+) ion and reactive oxygen species (ROS). Furthermore, overexpressing lines also showed lower water loss, higher cell membrane stability, and increased accumulation of proline and ROS-scavenging enzymes. Overexpression of SbSLSP also enhanced the transcript levels of ROS-scavenging and signaling enzyme genes. This study is the first investigation of the function of the SbSLSP gene as a novel determinant of salinity/drought tolerance. The results suggest that SbSLSP could be a potential candidate to increase salinity and drought tolerance in crop plants for sustainable agriculture in semi-arid saline soil.

  17. A SNARE-like superfamily protein SbSLSP from the halophyte Salicornia brachiata confers salt and drought tolerance by maintaining membrane stability, K+/Na+ ratio, and antioxidant machinery

    Directory of Open Access Journals (Sweden)

    Dinkar eSingh

    2016-06-01

    Full Text Available About 1000 salt-responsive ESTs were identified from an extreme halophyte Salicornia brachiata. Among these, a novel salt-inducible gene SbSLSP, (Salicornia brachiata SNARE-like superfamily protein showed up-regulation upon salinity and dehydration stress. The presence of cis-regulatory motifs related to abiotic stress in the putative promoter region supports our finding that SbSLSP gene is inducible by abiotic stress. The SbSLSP protein showed a high sequence identity to hypothetical/uncharacterised proteins from Beta vulgaris, Spinacia oleracea, Eucalyptus grandis and Prunus persica and with SNARE-like superfamily proteins from Zostera marina and Arabidopsis thaliana. Bioinformatics analysis predicted a clathrin adaptor complex small-chain domain and N-myristoylation site in the SbSLSP protein. Subcellular localisation studies indicated that the SbSLSP protein is mainly localised in the plasma membrane. Using transgenic tobacco lines, we establish that overexpression of SbSLSP resulted in elevated tolerance to salt and drought stress. The improved tolerance was confirmed by alterations in a range of physiological parameters, including high germination and survival rate, higher leaf chlorophyll contents, and reduced accumulation of Na+ ion and reactive oxygen species (ROS. Furthermore, overexpressing lines also showed lower water loss, higher cell membrane stability and increased accumulation of proline and ROS-scavenging enzymes. Overexpression of SbSLSP also enhanced the transcript levels of ROS-scavenging and signalling enzyme genes. This study is the first investigation of the function of the SbSLSP gene as a novel determinant of salinity/drought tolerance. The results suggest that SbSLSP could be a potential candidate to increase salinity and drought tolerance in crop plants for sustainable agriculture in semi-arid saline soil.

  18. Effect of Organic and Chemical Fertilizers on Yield and Essential Oil of Two Ecotypes of Savory (Satureja hortensis L. under Normal and Drought Stress Conditions

    Directory of Open Access Journals (Sweden)

    O Akrami nejad

    2016-02-01

    Full Text Available Introduction Savory (Satureja hortensis L. is an annual and aromatic plant from Labiatae family, which has plenty of essential oil and is important in medicinal, food, health and beauty industries (6. In comparison with chemical fertilizers, organic fertilizers especially manure have lots of organic material sources, and can be used as nutrients, especially Nitrogen, Phosphor and Potassium. Organic fertilizers also keeps more water in the soil (14. Water deficit is one of the most important boundaries of production in arid and semi-arid regions. Drought stress reduces water content, limits plant growth and changes some physiological and metabolic activities (31. This experiment was conducted as there is a global interest for production of medicinal plants with sustainable agriculture system, and with low input and shortage of information about Savory reaction to fertilization in drought stress condition. The objective of this research was to compare the effects of chemical fertilizers and different organic fertilizers on quantitative and qualitative characteristics of two ecotypes of savory under drought stress condition. Materials and Methods In order to study the effects of organic and mineral (N, P and K fertilizers on quantitative and qualitative characteristics of savory in drought stress condition, two separate split plot designs with three replications were carried out in 2012-2013 year, at the research field of Shahid Bahonar University of Kerman, Iran. In each design fertilizers including cow manure (30 ton per hectare, poultry manure (10 ton per hectare, chemical fertilizers (used equally with macro elements existing in both poultry and cow manure and control (no fertilizer were used as main factor. Kerman and Khuzestan ecotypes were sub-factor. One of the experiments was irrigated to 100% and the other to 50% of field capacity. Two experiments were analyzed as a combined design. The important characteristics of Savory such as plant

  19. Bistability of mangrove forests and competition with freshwater plants

    Science.gov (United States)

    Jiang, Jiang; Fuller, Douglas O; Teh, Su Yean; Zhai, Lu; Koh, Hock Lye; DeAngelis, Donald L.; Sternberg, L.D.S.L.

    2015-01-01

    Halophytic communities such as mangrove forests and buttonwood hammocks tend to border freshwater plant communities as sharp ecotones. Most studies attribute this purely to underlying physical templates, such as groundwater salinity gradients caused by tidal flux and topography. However, a few recent studies hypothesize that self-reinforcing feedback between vegetation and vadose zone salinity are also involved and create a bistable situation in which either halophytic dominated habitat or freshwater plant communities may dominate as alternative stable states. Here, we revisit the bistability hypothesis and demonstrate the mechanisms that result in bistability. We demonstrate with remote sensing imagery the sharp boundaries between freshwater hardwood hammock communities in southern Florida and halophytic communities such as buttonwood hammocks and mangroves. We further document from the literature how transpiration of mangroves and freshwater plants respond differently to vadose zone salinity, thus altering the salinity through feedback. Using mathematical models, we show how the self-reinforcing feedback, together with physical template, controls the ecotones between halophytic and freshwater communities. Regions of bistability along environmental gradients of salinity have the potential for large-scale vegetation shifts following pulse disturbances such as hurricane tidal surges in Florida, or tsunamis in other regions. The size of the region of bistability can be large for low-lying coastal habitat due to the saline water table, which extends inland due to salinity intrusion. We suggest coupling ecological and hydrologic processes as a framework for future studies.

  20. Validation of reference genes for quantitative RT-PCR normalization in Suaeda aralocaspica, an annual halophyte with heteromorphism and C4 pathway without Kranz anatomy

    Directory of Open Access Journals (Sweden)

    Jing Cao

    2016-02-01

    Full Text Available Reverse transcription quantitative real-time polymerase chain reaction (qRT-PCR is a powerful analytical technique for the measurement of gene expression, which depends on the stability of the reference gene used for data normalization. Suaeda aralocaspica, an annual halophyte with heteromorphic seeds and possessing C4 photosynthesis pathway without Kranz anatomy, is an ideal plant species to identify stress tolerance-related genes and compare relative expression at transcriptional level. So far, no molecular information is available for this species. In the present study, six traditionally used reference genes were selected and their expression stability in two types of seeds of S. aralocaspica under different experimental conditions was evaluated. Three analytical programs, geNorm, NormFinder and BestKeeper, were used to assess and rank the stability of reference gene expression. Results revealed that although some reference genes may display different transcriptional profiles between the two types of seeds, β-TUB and GAPDH appeared to be the most suitable references under different developmental stages and tissues. GAPDH was the appropriate reference gene under different germination time points and salt stress conditions, and ACTIN was suitable for various abiotic stress treatments for the two types of seeds. For all the sample pools, β-TUB served as the most stable reference gene, whereas 18S rRNA and 28S rRNA performed poorly and presented as the least stable genes in our study. UBQ seemed to be unsuitable as internal control under different salt treatments. In addition, the expression of a photosynthesis-related gene (PPDK of C4 pathway and a salt tolerance-related gene (SAT of S. aralocaspica were used to validate the best performance reference genes. This is the first systematic comparison of reference gene selection for qRT-PCR work in S. aralocaspica and these data will facilitate further studies on gene expression in this species

  1. Proteomic response of Hordeum vulgare cv. Tadmor and Hordeum marinum to salinity stress: Similarities and differences between a glycophyte and a halophyte

    Directory of Open Access Journals (Sweden)

    Lucie Maršálová

    2016-08-01

    Full Text Available Response to a high salinity treatment of 300 mM NaCl was studied in a cultivated barley Hordeum vulgare Syrian cultivar Tadmor and in a halophytic wild barley Hordeum marinum. Differential salinity tolerance of H. marinum and H. vulgare is underlied by qualitative and quantitative differences in proteins involved in a variety of biological processes. The major aim was to identify proteins underlying differential salinity tolerance between the two barley species. Analyses of plant water content, osmotic potential and accumulation of proline and dehydrin proteins under high salinity revealed a relatively higher water saturation deficit in H. marinum than in H. vulgare while H. vulgare had lower osmotic potential corresponding with high levels of proline and dehydrins. Analysis of proteins soluble upon boiling isolated from control and salt-treated crown tissues revealed similarities as well as differences between H. marinum and H. vulgare. The similar salinity responses of both barley species lie in enhanced levels of stress-protective proteins such as defence-related proteins from late-embryogenesis abundant (LEA family, several chaperones from heat shock protein (HSP family, and others such as GrpE. However, there have also been found significant differences between H. marinum and H. vulgare salinity response indicating an active stress acclimation in H. marinum while stress damage in H. vulgare. An active acclimation to high salinity in H. marinum is underlined by enhanced levels of several stress-responsive transcription factors from basic leucine zipper (bZIP and nascent polypeptide-associated complex (NAC families. In salt-treated H. marinum, enhanced levels of proteins involved in energy metabolism such as glycolysis, ATP metabolism, and photosynthesis-related proteins indicate an active acclimation to enhanced energy requirements during an establishment of novel plant homeostasis. In contrast, changes at proteome level in salt-treated H

  2. The effect of organic, biological and chemical fertilizers on yield, essential oil percentage and some agroecological characteristics of summer savory (Satureja hortensis L. under Mashhad conditions

    Directory of Open Access Journals (Sweden)

    E Gholami Sharafkhane

    2016-05-01

    Full Text Available Introduction Savory (Satureja hortensis L. is an annual herbaceous plant that belongs to the Lamiaceae family. Nowadays, the use of biofertilizers is increased in agriculture and their role in increasing the crops production has been demonstrated in many research works (Vessey, 2003; Chen, 2006; Mahfouz & Sharaf- Eldin, 2007. One of the most important visions is sustainable production of enough food plus paying attention to social, economical and environmental aspects. (Gliessman, 1998 stated that the first step to achieve this goal is optimization and improvement of resources use efficiencies. Considering medicinal importance of savory and its role in the food and pharmaceutical industries (Omidbeigi, 2000, beside the limited nutrient resources and need to increase healthy production through using ecological inputs, this study was designed and conducted aimed to evaluate agroecological characteristics of savory as affected by the application of bio fertilizers, chemical and organic fertilizers under Mashhad conditions. Materials and methods In order to study the effects of organic, biological and chemical fertilizers on quantitative and qualitative characteristics of summer savory, a split-plot design based on RCBD with three replications was conducted during the growing season of 2012 at the Agricultural Research Station, College of Agriculture, Ferdowsi University of Mashhad, Iran. Different levels of cattle manure (0 and 25 t.ha-1 were assigned to the main plots and different types of bio fertilizers (Nitroxin, containing Azotobacter sp. and Azospirillum sp., Biophosphor, containing phosphate-solubilizing bacteria (Bacillus sp. and Pseudomonas sp., Biosulfur, containing sulfur-solubilizing bacteria (Thiobacillus ssp., combination of Nitroxin+Biophosphor+ Biosulfur, vermicompost (7 t.ha-1, chemical fertilizers (NPK: 60, 60 and 70 kg.ha-1 and control (no fertilizer were used in the sub- plots. Results and discussion According to the results

  3. Effects of copper stress on antioxidative enzymes, chlorophyll and ...

    African Journals Online (AJOL)

    Administrator

    2011-09-05

    Sep 5, 2011 ... Our study showed the effect of Cu on Atriplex halimus grown in hydroponics ... three superoxide dismutase (SOD) isoformes and five peroxidase (POX) isoformes. ..... transportation of other metal elements such as Mn, Zn.

  4. Sex and the lonely Atriplex

    Science.gov (United States)

    D. Carl Freeman; E. Durant McArthur; Kathleen J. Miglia; Michelle J. Nilson; Michelle L. Brown

    2007-01-01

    In principle, natural selection should have endowed species with the ability to assess their normal surroundings and respond to changes that enhance, or at least do not diminish, their fitness (Emlen et al. 1998). Hence, the chameleon changes colors to match its background to avoid being eaten, or a sweet pea's tendrils wrap around supporting structures. Buffalo...

  5. Journal of Applied Sciences and Environmental Management - Vol ...

    African Journals Online (AJOL)

    Adaptation in Atriplex griffithii and Prosopis juliflora plants in response to cement dust pollution · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. MZ Iqbal, M Shafiq, M Athar, 389-395 ...

  6. Effects of copper stress on antioxidative enzymes, chlorophyll and ...

    African Journals Online (AJOL)

    Effects of copper stress on antioxidative enzymes, chlorophyll and protein content in Atriplex ... Journal Home > Vol 10, No 50 (2011) > ... The aim of this work was to investigate some enzymatic systems response of this plant to copper stress.

  7. The SbSOS1 gene from the extreme halophyte Salicornia brachiata enhances Na+ loading in xylem and confers salt tolerance in transgenic tobacco

    Directory of Open Access Journals (Sweden)

    Yadav Narendra

    2012-10-01

    Full Text Available Abstract Background Soil salinity adversely affects plant growth and development and disturbs intracellular ion homeostasis resulting cellular toxicity. The Salt Overly Sensitive 1 (SOS1 gene encodes a plasma membrane Na+/H+ antiporter that plays an important role in imparting salt stress tolerance to plants. Here, we report the cloning and characterisation of the SbSOS1 gene from Salicornia brachiata, an extreme halophyte. Results The SbSOS1 gene is 3774 bp long and encodes a protein of 1159 amino acids. SbSOS1 exhibited a greater level of constitutive expression in roots than in shoots and was further increased by salt stress. Overexpressing the S. brachiata SbSOS1 gene in tobacco conferred high salt tolerance, promoted seed germination and increased root length, shoot length, leaf area, fresh weight, dry weight, relative water content (RWC, chlorophyll, K+/Na+ ratio, membrane stability index, soluble sugar, proline and amino acid content relative to wild type (WT plants. Transgenic plants exhibited reductions in electrolyte leakage, reactive oxygen species (ROS and MDA content in response to salt stress, which probably occurred because of reduced cytosolic Na+ content and oxidative damage. At higher salt stress, transgenic tobacco plants exhibited reduced Na+ content in root and leaf and higher concentrations in stem and xylem sap relative to WT, which suggests a role of SbSOS1 in Na+ loading to xylem from root and leaf tissues. Transgenic lines also showed increased K+ and Ca2+ content in root tissue compared to WT, which reflect that SbSOS1 indirectly affects the other transporters activity. Conclusions Overexpression of SbSOS1 in tobacco conferred a high degree of salt tolerance, enhanced plant growth and altered physiological and biochemical parameters in response to salt stress. In addition to Na+ efflux outside the plasma membrane, SbSOS1 also helps to maintain variable Na+ content in different organs and also affect the other

  8. Salinity tolerance in plants. Quantitative approach to ion transport starting from halophytes and stepping to genetic and protein engineering for manipulating ion fluxes.

    Science.gov (United States)

    Volkov, Vadim

    2015-01-01

    Ion transport is the fundamental factor determining salinity tolerance in plants. The Review starts from differences in ion transport between salt tolerant halophytes and salt-sensitive plants with an emphasis on transport of potassium and sodium via plasma membranes. The comparison provides introductory information for increasing salinity tolerance. Effects of salt stress on ion transport properties of membranes show huge opportunities for manipulating ion fluxes. Further steps require knowledge about mechanisms of ion transport and individual genes of ion transport proteins. Initially, the Review describes methods to measure ion fluxes, the independent set of techniques ensures robust and reliable basement for quantitative approach. The Review briefly summarizes current data concerning Na(+) and K(+) concentrations in cells, refers to primary thermodynamics of ion transport and gives special attention to individual ion channels and transporters. Simplified scheme of a plant cell with known transport systems at the plasma membrane and tonoplast helps to imagine the complexity of ion transport and allows choosing specific transporters for modulating ion transport. The complexity is enhanced by the influence of cell size and cell wall on ion transport. Special attention is given to ion transporters and to potassium and sodium transport by HKT, HAK, NHX, and SOS1 proteins. Comparison between non-selective cation channels and ion transporters reveals potential importance of ion transporters and the balance between the two pathways of ion transport. Further on the Review describes in detail several successful attempts to overexpress or knockout ion transporters for changing salinity tolerance. Future perspectives are questioned with more attention given to promising candidate ion channels and transporters for altered expression. Potential direction of increasing salinity tolerance by modifying ion channels and transporters using single point mutations is discussed and

  9. The SbSOS1 gene from the extreme halophyte Salicornia brachiata enhances Na+ loading in xylem and confers salt tolerance in transgenic tobacco

    Science.gov (United States)

    2012-01-01

    Background Soil salinity adversely affects plant growth and development and disturbs intracellular ion homeostasis resulting cellular toxicity. The Salt Overly Sensitive 1 (SOS1) gene encodes a plasma membrane Na+/H+ antiporter that plays an important role in imparting salt stress tolerance to plants. Here, we report the cloning and characterisation of the SbSOS1 gene from Salicornia brachiata, an extreme halophyte. Results The SbSOS1 gene is 3774 bp long and encodes a protein of 1159 amino acids. SbSOS1 exhibited a greater level of constitutive expression in roots than in shoots and was further increased by salt stress. Overexpressing the S. brachiata SbSOS1 gene in tobacco conferred high salt tolerance, promoted seed germination and increased root length, shoot length, leaf area, fresh weight, dry weight, relative water content (RWC), chlorophyll, K+/Na+ ratio, membrane stability index, soluble sugar, proline and amino acid content relative to wild type (WT) plants. Transgenic plants exhibited reductions in electrolyte leakage, reactive oxygen species (ROS) and MDA content in response to salt stress, which probably occurred because of reduced cytosolic Na+ content and oxidative damage. At higher salt stress, transgenic tobacco plants exhibited reduced Na+ content in root and leaf and higher concentrations in stem and xylem sap relative to WT, which suggests a role of SbSOS1 in Na+ loading to xylem from root and leaf tissues. Transgenic lines also showed increased K+ and Ca2+ content in root tissue compared to WT, which reflect that SbSOS1 indirectly affects the other transporters activity. Conclusions Overexpression of SbSOS1 in tobacco conferred a high degree of salt tolerance, enhanced plant growth and altered physiological and biochemical parameters in response to salt stress. In addition to Na+ efflux outside the plasma membrane, SbSOS1 also helps to maintain variable Na+ content in different organs and also affect the other transporters activity indirectly

  10. Salinity tolerance in plants. Quantitative approach to ion transport starting from halophytes and stepping to genetic and protein engineering for manipulating ion fluxes

    Directory of Open Access Journals (Sweden)

    Vadim eVolkov

    2015-10-01

    Full Text Available Ion transport is the fundamental factor determining salinity tolerance in plants. The Review starts from differences in ion transport between salt tolerant halophytes and salt-sensitive plants with an emphasis on transport of potassium and sodium via plasma membranes. The comparison provides introductory information for increasing salinity tolerance. Effects of salt stress on ion transport properties of membranes show huge opportunities for manipulating ion fluxes. Further steps require knowledge about mechanisms of ion transport and individual genes of ion transport proteins. Initially, the Review describes methods to measure ion fluxes, the independent set of techniques ensures robust and reliable basement for quantitative approach. The Review briefly summarises current data concerning Na+ and K+ concentrations in cells, refers to primary thermodynamics of ion transport and gives special attention to individual ion channels and transporters. Simplified scheme of a plant cell with known transport systems at the plasma membrane and tonoplast helps to imagine the complexity of ion transport and allows to choose specific transporters for modulating ion transport. The complexity is enhanced by the influence of cell size and cell wall on ion transport. Special attention is given to ion transporters and to potassium and sodium transport by HKT, HAK, NHX and SOS1 proteins. Comparison between nonselective cation channels and ion transporters reveals potential importance of ion transporters and the balance between the two pathways of ion transport. Further on the Review describes in detail several successful attempts to overexpress or knockout ion transporters for changing salinity tolerance. Future perspectives are questioned with more attention given to promising candidate ion channels and transporters for altered expression. Potential direction of increasing salinity tolerance by modifying ion channels and transporters using single point mutations is

  11. Comparison of metabolisable energy values of different foodstuffs determined in ostriches and poultry

    DEFF Research Database (Denmark)

    Cilliers, S C; Sales, J; Hayes, J P

    1999-01-01

    Apparent (AMEn) and true (TMEn) metabolisable energy values, corrected for nitrogen retention, of wheat bran, saltbush (Atriplex nummularia), common reed (Phragmites australis), lupins, soyabean oil cake meal (SBOCM), sunflower oil cake meal (SFOCM) and fishmeal were compared in 7 successive trials...

  12. Area Strip Mine Reclamation Using Dredged Material: A Field Demonstration.

    Science.gov (United States)

    1980-07-01

    COMMON BEGGAR’S TICK Bidens frondosa COMMON EVENING PRIMROSE Oenothera biennis COMMON ORACH Atriplex patula COMMON REED Phraginites communis...altissima ACERACEAE BOX ELDER Acer negundo RHAMNACEAE COMMON BUCKTHORN Rhamnus cathartica A8 r ONAGRACEAE COMMON EVENING PRIMROSE Oenothera biennis

  13. Improving cattle nutrition on the Great Plains with shrubs and fecal seeding of fourwing saltbush

    Science.gov (United States)

    Two in vitro trials were conducted for estimates of dietary percentage of fourwing saltbush (Atriplex canescens; FS) or winterfat (Krascheninnikovia lanata; WF) to improve diet digestibility when cattle graze mature cool-season grass. Three in vitro trials were conducted to estimate the percentage ...

  14. Spatial distribution and changes in occurrence of some weed species in the orchard in AES Felin near Lublin

    Directory of Open Access Journals (Sweden)

    Janusz Lipecki

    2013-12-01

    Full Text Available From 1993 to 1997 a study of spatial distribution of most important weeds in apple orchard herbicide strips was performed. This study was continued in 1998, once the trees were cut down. As the time progressed, Epilobium adenocaulon Hausskn., Chenopodium album L., Polygonum aviculare L. and Atriplex patulum L. showed an increase in their occurrence. An opposite tendency was found with Erigeron canadensis L., Convolvulus arvensis L. and Taraxacum fficinale Web. Some species grew in patches (Convolvulus arvensis L., Chenopodium album L., Atriplex patulum L., while the others appeared sporadically throughout the orchard. In 1998, the decrease of occurrence of Epilobium Haussk. was observed. Simultaneously, this was coupled with an increase of occurrence of Taraxacum officinale Web., Erigeron caanadensis L. and Chenopodium album L. The predominating species in 1998 was Cerastium vulgatum L., followed by Lolium perenne L., Poa annua L. and Bromus mollis L.

  15. Higher degradation of L-Cys by O-acetylserine-thiolyases in Sarcocornia than Salicornia

    KAUST Repository

    Kurmanbayeva, Assylay

    2017-07-26

    Salicornia and Sarcocornia are almost identical halophytes whose edible succulent shoots hold promise for commercial production in saline water. Enhanced sulfur nutrition may be beneficial to crops naturally grown on high sulfate. However, little is known about sulfate nutrition in halophytes. Here we show that Salicornia europaea (ecotype RN) exhibits a significant increase in biomass and organic-S accumulation in response to supplemental sulfate, while Sarcocornia fruticosa (ecotype VM) does not, instead exhibiting increased sulfate accumulation. We investigated the role of two pathways on organic-S and biomass accumulation in Salicornia and Sarcoconia: the sulfate reductive pathway that generates cysteine and L-cysteine desulfhydrase that degrades cysteine to H2S, NH3 and pyruvate. The major function of O-acetylserine-(thiol) lyase (OAS-TL; EC 2.5.1.47) is the formation of L-cysteine, but our study shows that the OAS-TL A and B of both halophytes are enzymes that also degrade L-cysteine to H2S. This activity was significantly higher in Sarcocornia than in Salicornia, especially upon sulfate supplementation. The activity of the sulfate reductive pathway key enzyme, adenosine 5\\'-phosphosulfate reductase (APR, EC 1.8.99.2), was significantly higher in Salicornia than in Sarcocornia. These results suggest that the low organic-S level in Sarcocornia is the result of high L-cysteine degradation rate by OAS-TLs, whereas, the greater organic-S and biomass accumulation in Salicornia is the result of higher APR activity and low L-cysteine degradation rate, resulting in higher net cysteine biosynthesis. These results present an initial road map for halophyte growers to attain better growth rates and nutritional value of Salicornia and Sarcocornia.

  16. Higher degradation of L-Cys by O-acetylserine-thiolyases in Sarcocornia than Salicornia

    KAUST Repository

    Kurmanbayeva, Assylay; Bekturova, Aizat; Srivastava, Sudhakar; Soltabayeva, Aigerim; Khan, Mohammad Suhail; Salazar, Octavio; Fedoroff, Nina V.; Asatryan, Armine; Ventura, Yvonne; Sagi, Moshe

    2017-01-01

    Salicornia and Sarcocornia are almost identical halophytes whose edible succulent shoots hold promise for commercial production in saline water. Enhanced sulfur nutrition may be beneficial to crops naturally grown on high sulfate. However, little is known about sulfate nutrition in halophytes. Here we show that Salicornia europaea (ecotype RN) exhibits a significant increase in biomass and organic-S accumulation in response to supplemental sulfate, while Sarcocornia fruticosa (ecotype VM) does not, instead exhibiting increased sulfate accumulation. We investigated the role of two pathways on organic-S and biomass accumulation in Salicornia and Sarcoconia: the sulfate reductive pathway that generates cysteine and L-cysteine desulfhydrase that degrades cysteine to H2S, NH3 and pyruvate. The major function of O-acetylserine-(thiol) lyase (OAS-TL; EC 2.5.1.47) is the formation of L-cysteine, but our study shows that the OAS-TL A and B of both halophytes are enzymes that also degrade L-cysteine to H2S. This activity was significantly higher in Sarcocornia than in Salicornia, especially upon sulfate supplementation. The activity of the sulfate reductive pathway key enzyme, adenosine 5'-phosphosulfate reductase (APR, EC 1.8.99.2), was significantly higher in Salicornia than in Sarcocornia. These results suggest that the low organic-S level in Sarcocornia is the result of high L-cysteine degradation rate by OAS-TLs, whereas, the greater organic-S and biomass accumulation in Salicornia is the result of higher APR activity and low L-cysteine degradation rate, resulting in higher net cysteine biosynthesis. These results present an initial road map for halophyte growers to attain better growth rates and nutritional value of Salicornia and Sarcocornia.

  17. Redescription of Cadrema pallida var. bilineata (de Meijere, 1904 (Diptera: Chloropidae and its role as pollinator and carrion feeder from Indian Sunderbans

    Directory of Open Access Journals (Sweden)

    Sankarsan Roy

    2016-10-01

    Full Text Available Sunderbans, the UNESCO World Heritage Site is one of the largest mangrove forests in the World. This unique tidal halophytic mangrove ecosystem is also spread over the neighbouring country- Bangladesh. This ecosystem supports a variety of halophytic mangrove species and provides shelter and food to many faunal components (Chakraborty, 2011. Till date, several studies have been made on dipteran fauna from SBR which was altogether compiled by Mitra (2013. Further, Mitra et al. (2014, 2015 added some more records of the Diptera from this area. Apart from documenting the dipteran insects, we attempted here their functional contribution towards sustainability of this sensitive ecosystem.

  18. Evaluation of Vermicompost and Nitrogen Biofertilizer Effects on Flowering Shoot Yield, Essential Oil and Mineral Uptake (N, P and K in Summer Savory (Satureja hortensis L.

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Haj Seyed Hadi

    2018-02-01

    Full Text Available Introduction Summer Savory (Satureia hortensis L. is the representative plants of Lamiaceae family, which has high significant nutritional and taste values. Its pharmacopoeial raw material is herb (Satureiae herba, which contains many different biologically active compounds beside essential oil and minerals like calcium, potassium, magnesium, iron, and zinc. Sustainable agricultural systems has became an important issue throughout the world. It is obvious that intensive cultivation has led to a rapid decline in organic matter and nutrient levels as well as affecting the physical soil properties . The biofertilizers practice (such as vermicompost and biological nitrogen fixing bacteria has been recognized for a long time as an effective means of improving the structure and fertility of the soil, increasing the microbial diversity, activity and population, improving the water storage capacity of soils and crop yield. Materials and Methods This investigation was conducted at agricultural research fields of RAN Company at Firouzkuh, Iran in 2015. Factorial experiment based on randomized complete blocks design with two factors and three replications were chosen as an experimental design. The factors were biological nitrogen fertilizer at three levels of Control, Nitroxine and Supernitroplus, and vermicompost at four levels 0, 5, 10 and 15 ton per hectare. Measured traits consisted of fresh and dry plant weight, flowering shoot yield, essential oil content, nitrogen, phosphorus and potassium percentage in aboveground shoots. All data were subjected to statistical analysis (one-way ANOVA using SAS software. Duncan’s multiple range test (DMRT at 5% probability level were performed to calculate means of comparison. Data were transformed when necessary before analysis to satisfy the assumptions of normality. Results and Discussion Results showed that the highest fresh and dry plant weight (41.10 and 12.93g/plant, respectively and essential oil content

  19. The phytosociological analysis of saline area of Tehsil Ferozewala ...

    African Journals Online (AJOL)

    By reintegrating these trees and shrubs back into agriculture landscape to reverse salinity such as Atriplex amnicla, Tamarix aphylla, Phoenix dactilifera, Prosopis spp. Susbenia bispinasa, Sesbenia sesbena, Casorina, Grewia asiatie, Psidium guava etc. The incorporation of these plants (grasses, shrubs and trees) into ...

  20. Triticum durum Desf.

    African Journals Online (AJOL)

    SCIENCE

    Atriplex halimus L. face au cadmium, Geo-Eco-Trop., Vol. 32, 17-20. [17] Korn M., Peter K.S., Mock H.P., Heyer A.G.,. & Hincha D.K., 2008. Heterosis in the freezing tolerance, and sugar and flavonoid contents of crosses between Arabidopsis ...

  1. On facilitation between herbivores : How Brent Geese profit from brown hares

    NARCIS (Netherlands)

    van der Wal, R; van Wijnen, H; van Wieren, S.E.; Beucher, O; Bos, D

    Brown hares (Lepus europaeus) are shown to facilitate grazing by Brent Geese (Branta bernicla) in a temperate salt marsh in the Netherlands by retarding vegetation succession for >25 yr. Winter grazing by hares prevented the shrub Atriplex portulacoides from spreading in younger parts nf thp salt

  2. On facilitation between herbivores : how brent geese profit from brown hares

    NARCIS (Netherlands)

    Wal, van der R.; Wijnen, van H.; Wieren, van S.E.; Beucher, O.; Bos, D.

    2000-01-01

    Brown hares (Lepus europaeus) are shown to facilitate grazing by Brent Geese (Branta bernicla) in a temperate salt marsh in the Netherlands by retarding vegetation succession for >25 yr. Winter grazing by hares prevented the shrub Atriplex portulacoides from spreading in younger parts of the salt

  3. Fungal genomes that influence basic physiological processes of black grama and fourwing saltbush in arid southwestern rangelands

    Science.gov (United States)

    J.R. Barrow; M. Lucero; P. Osuna-Avila; I. Reyes-Vera; R.E. Aaltonen

    2007-01-01

    Symbiotic fungi confer multiple benefits such as enhanced photosynthetic rates and drought tolerance in host plants. Shrubs and grasses of southwestern deserts are colonized by symbiotic fungi that cannot be removed by conventional sterilization methods. These fungi were extensively studied in Bouteloua eriopoda (Torr.) Torr. and Atriplex...

  4. Higher Novel L-Cys Degradation Activity Results in Lower Organic-S and Biomass in Sarcocornia than the Related Saltwort, Salicornia1[OPEN

    Science.gov (United States)

    Kurmanbayeva, Assylay; Bekturova, Aizat; Soltabayeva, Aigerim; Asatryan, Armine; Ventura, Yvonne; Salazar, Octavio; Fedoroff, Nina

    2017-01-01

    Salicornia and Sarcocornia are almost identical halophytes whose edible succulent shoots hold promise for commercial production in saline water. Enhanced sulfur nutrition may be beneficial to crops naturally grown on high sulfate. However, little is known about sulfate nutrition in halophytes. Here we show that Salicornia europaea (ecotype RN) exhibits a significant increase in biomass and organic-S accumulation in response to supplemental sulfate, whereas Sarcocornia fruticosa (ecotype VM) does not, instead exhibiting increased sulfate accumulation. We investigated the role of two pathways on organic-S and biomass accumulation in Salicornia and Sarcoconia: the sulfate reductive pathway that generates Cys and l-Cys desulfhydrase that degrades Cys to H2S, NH3, and pyruvate. The major function of O-acetyl-Ser-(thiol) lyase (OAS-TL; EC 2.5.1.47) is the formation of l-Cys, but our study shows that the OAS-TL A and OAS-TL B of both halophytes are enzymes that also degrade l-Cys to H2S. This activity was significantly higher in Sarcocornia than in Salicornia, especially upon sulfate supplementation. The activity of the sulfate reductive pathway key enzyme, adenosine 5′-phosphosulfate reductase (APR, EC 1.8.99.2), was significantly higher in Salicornia than in Sarcocornia. These results suggest that the low organic-S level in Sarcocornia is the result of high l-Cys degradation rate by OAS-TLs, whereas the greater organic-S and biomass accumulation in Salicornia is the result of higher APR activity and low l-Cys degradation rate, resulting in higher net Cys biosynthesis. These results present an initial road map for halophyte growers to attain better growth rates and nutritional value of Salicornia and Sarcocornia. PMID:28743765

  5. Higher Novel L-Cys Degradation Activity Results in Lower Organic-S and Biomass in Sarcocornia than the Related Saltwort, Salicornia.

    Science.gov (United States)

    Kurmanbayeva, Assylay; Bekturova, Aizat; Srivastava, Sudhakar; Soltabayeva, Aigerim; Asatryan, Armine; Ventura, Yvonne; Khan, Mohammad Suhail; Salazar, Octavio; Fedoroff, Nina; Sagi, Moshe

    2017-09-01

    Salicornia and Sarcocornia are almost identical halophytes whose edible succulent shoots hold promise for commercial production in saline water. Enhanced sulfur nutrition may be beneficial to crops naturally grown on high sulfate. However, little is known about sulfate nutrition in halophytes. Here we show that Salicornia europaea (ecotype RN) exhibits a significant increase in biomass and organic-S accumulation in response to supplemental sulfate, whereas Sarcocornia fruticosa (ecotype VM) does not, instead exhibiting increased sulfate accumulation. We investigated the role of two pathways on organic-S and biomass accumulation in Salicornia and Sarcoconia : the sulfate reductive pathway that generates Cys and l-Cys desulfhydrase that degrades Cys to H 2 S, NH 3 , and pyruvate. The major function of O -acetyl-Ser-(thiol) lyase (OAS-TL; EC 2.5.1.47) is the formation of l-Cys, but our study shows that the OAS-TL A and OAS-TL B of both halophytes are enzymes that also degrade l-Cys to H 2 S. This activity was significantly higher in Sarcocornia than in Salicornia , especially upon sulfate supplementation. The activity of the sulfate reductive pathway key enzyme, adenosine 5'-phosphosulfate reductase (APR, EC 1.8.99.2), was significantly higher in Salicornia than in Sarcocornia These results suggest that the low organic-S level in Sarcocornia is the result of high l-Cys degradation rate by OAS-TLs, whereas the greater organic-S and biomass accumulation in Salicornia is the result of higher APR activity and low l-Cys degradation rate, resulting in higher net Cys biosynthesis. These results present an initial road map for halophyte growers to attain better growth rates and nutritional value of Salicornia and Sarcocornia . © 2017 American Society of Plant Biologists. All Rights Reserved.

  6. Preliminary molecular analysis of the genetic diversity of some ...

    African Journals Online (AJOL)

    In the arid and semi arid areas, salt bush (Atriplex) represents an important forage resource. The characterization of the genetic diversity of these species is useful for their classification, their conservation and their improvement. In this context, we used the random amplified polymorphic DNA-polymerase chain reaction ...

  7. South African Journal of Animal Science - Vol 16, No 2 (1986)

    African Journals Online (AJOL)

    Summer yield of fish in polyculture in Transkei, South Africa, using pig manure with and without formulated feed · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT ... Effect of level of supplementary feeding on mohair production and reproductive performance of Angora ewes grazing Atriplex nummularia (Oldman saltbush) ...

  8. Screening of 18 species for digestate phytodepuration.

    Science.gov (United States)

    Pavan, Francesca; Breschigliaro, Simone; Borin, Maurizio

    2015-02-01

    This experiment assesses the aptitude of 18 species in treating the digestate liquid fraction (DLF) in a floating wetland treatment system. The pilot system was created in NE Italy in 2010 and consists of a surface-flow system with 180 floating elements (Tech-IA®) vegetated with ten halophytes and eight other wetland species. The species were transplanted in July 2011 in basins filled with different proportions of DLF/water (DLF/w); periodic increasing of the DLF/w ratio was imposed after transplanting, reaching the worst conditions for plants in summer 2012 (highest EC value 7.3 mS cm/L and NH4-N content 225 mg/L). It emerged that only Cynodon dactylon, Typha latifolia, Elytrigia atherica, Halimione portulacoides, Salicornia fruticosa, Artemisia caerulescens, Spartina maritima and Puccinellia palustris were able to survive under the system conditions. Halophytes showed higher dry matter production than other plants. The best root development (up to 40-cm depth) was recorded for Calamagrostis epigejos, Phragmites australis, T. latifolia and Juncus maritimus. The highest nitrogen (10-15 g/m(2)) and phosphorus (1-4 g/m(2)) uptakes were obtained with P. palustris, Iris pseudacorus and Aster tripolium. In conclusion, two halophytes, P. palustris and E. atherica, present the highest potential to be used to treat DLF in floating wetlands.

  9. Use of local pastoral species to increase fodder production of the saline rangelands in southern Tunisia

    Science.gov (United States)

    Tlili, Abderrazak; Tarhouni, Mohamed; Cardà, Artemi; Neffati, Mohamed

    2017-04-01

    Climate changes associated with multiple destructive human activities accelerate the degradation process of the natural rangelands around the world and especially the vulnerable areas such as the dryland ecosystems (Anaya-Romero et al., 2015; Eskandari et al., 2016; Muños Rojas et al., 2016; Vicente-Serrano et al., 2016). The vegetation cover and the biomass production of these ecosystems are decreasing and this is resulting in land degradation due to the soil erosion and changes in soil quality due to the abuse and misuse of the soil resources (Cerdà et al., 2016; Prosdocimi et al., 2016; Keesstra et al., 2016). To cope with such threats, it is necessary to develop some management techniques (restoration, plantation…) to enhance the biomass production and the carbon sequestration of the degraded rangelands (Muñoz-Rojas et al., 2016; Tarhouni et al., 2016). The valorization of saline water by planting pastoral halophyte species in salt-affected soils as well as the marginal areas are considered among the valuable tools to increase the rangeland production in dry areas. In this work, the ability of four plants (Atriplex halimus L. (Amaranthaceae), Atriplex mollis Desf. (Amaranthaceae), Lotus creticus L. (Fabaceae) and Cenchrus ciliaris L. (Poaceae)) to grow and to produce are tested under a field saline conditions (water and soil). Non-destructive method (Vegmeasure) is used to estimate the biomass production of these species. Chemical (crude protein, moisture and ash contents) and biochemical analyses (sugars, tannins and polyphenols contents) are also undertaken. Two years after plantation, the obtained results showed the ability of the four species to survive and to grow under high salinity degree. A strong positive correlation was obtained between the canopy cover and the dry biomass of the four studied species. Hence, the restoration of saline soils can be ensured by planting local halophytes. Acknowledgements. The research leading to these results has

  10. Abscisic acid effects on water and photosynthetic characteristics of ...

    African Journals Online (AJOL)

    The aim of this study is to compare the water and photosynthetic characteristics of two xerophilic ecotypes of Atriplex halimus (L.). Seeds collected from two different sites Djelfa and Oran are germinated in controlled greenhouse. After 6 months, the plantlets were treated 21 days with increasing concentrations of abscisic ...

  11. Fourwing saltbrush establishment in the Keating Uniform Shrub Garden—first year results.

    Science.gov (United States)

    J. Michael Geist; Paul J. Edgerton

    1984-01-01

    Site preparation techniques to aid establishment of fourwing saltbush (Atriplex canescens) were compared at a test location in eastern Oregon. Survival and growth of transplanted seedlings were improved after one season of growth by either spot spraying with herbicides or scalping to reduce competing vegetation. Average growth of seedlings was...

  12. Biological and technological effects of some mulberry varieties and ...

    African Journals Online (AJOL)

    egyptian hak

    The Israel Academy of Sciences and Humanities, Jerusalem. Appendix: Specimina visa selecta. Atriplex bocconi Guss. Italia, Sicily: Sciacca al Caricatojo, in argillosis collibus maritimis, V, IX (ante 1844), G. Gussone s.n. (NAP). Sciacca al Caricatolo, V, leg. G. Gussone s.n., det. D. Iamonico (NAP). Tunisia, Tunisi: Tunisi ...

  13. Introgression of the SbASR-1 Gene Cloned from a Halophyte Salicornia brachiata Enhances Salinity and Drought Endurance in Transgenic Groundnut (Arachis hypogaea) and Acts as a Transcription Factor

    Science.gov (United States)

    Tiwari, Vivekanand; Chaturvedi, Amit Kumar; Mishra, Avinash; Jha, Bhavanath

    2015-01-01

    The SbASR-1 gene, cloned from a halophyte Salicornia brachiata, encodes a plant-specific hydrophilic and stress responsive protein. The genome of S. brachiata has two paralogs of the SbASR-1 gene (2549 bp), which is comprised of a single intron of 1611 bp, the largest intron of the  abscisic acid stress ripening [ASR] gene family yet reported. In silico analysis of the 843-bp putative promoter revealed the presence of ABA, biotic stress, dehydration, phytohormone, salinity, and sugar responsive cis-regulatory motifs. The SbASR-1 protein belongs to Group 7 LEA protein family with different amino acid composition compared to their glycophytic homologs. Bipartite Nuclear Localization Signal (NLS) was found on the C-terminal end of protein and localization study confirmed that SbASR-1 is a nuclear protein. Furthermore, transgenic groundnut (Arachis hypogaea) plants over-expressing the SbASR-1 gene constitutively showed enhanced salinity and drought stress tolerance in the T1 generation. Leaves of transgenic lines exhibited higher chlorophyll and relative water contents and lower electrolyte leakage, malondialdehyde content, proline, sugars, and starch accumulation under stress treatments than wild-type (Wt) plants. Also, lower accumulation of H2O2 and O2.- radicals was detected in transgenic lines compared to Wt plants under stress conditions. Transcript expression of APX (ascorbate peroxidase) and CAT (catalase) genes were higher in Wt plants, whereas the SOD (superoxide dismutase) transcripts were higher in transgenic lines under stress. Electrophoretic mobility shift assay (EMSA) confirmed that the SbASR-1 protein binds at the consensus sequence (C/G/A)(G/T)CC(C/G)(C/G/A)(A/T). Based on results of the present study, it may be concluded that SbASR-1 enhances the salinity and drought stress tolerance in transgenic groundnut by functioning as a LEA (late embryogenesis abundant) protein and a transcription factor. PMID:26158616

  14. Escape and avoidance learning in the earthworm Eisenia hortensis

    Directory of Open Access Journals (Sweden)

    W. Jeffrey Wilson

    2014-01-01

    Full Text Available Interest in instrumental learning in earthworms dates back to 1912 when Yerkes concluded that they can learn a spatial discrimination in a T-maze. Rosenkoetter and Boice determined in the 1970s that the “learning” that Yerkes observed was probably chemotaxis and not learning at all. We examined a different form of instrumental learning: the ability to learn both to escape and to avoid an aversive stimulus. Freely moving “master” worms could turn off an aversive white light by increasing their movement; the behavior of yoked controls had no effect on the light. We demonstrate that in as few as 12 trials the behavior of the master worms comes under the control of this contingency.

  15. ETUDE DE LA DISTRIBUTION DES CATIONS ECHANGEABLES

    African Journals Online (AJOL)

    SEI Joseph

    été mené dans une serre en verre au département de Biologie (Université de ... taux de Na+ et K+, et fait l'analyse des paramètres physique et chimique du sol .... comportement de cette espèce : Atriplex. halimus vis-à-vis de cinq doses de ...

  16. Recommended Species for Vegetative Stabilization of Training Lands in Arid and Semi-Arid Environments

    Science.gov (United States)

    1985-09-01

    bitterbrush Purshia glandulosa Apache plume Fallugia paradoxa Arizona fesce Festuca arizonica Ashe juniper Juniperus ashei Australian saltbush Atriplex...elm Ulmus crassifolia *Cheatgrass Bromus tectorum -Chinkapin oak Quercus muhlenbergii Cholla Opuntia, spp. * Cicer milkvetch Astragalus cicer Clovers...Linum lewisii Little bluestem Schizachyrium scoparium *Littleleaf palo verde Cercidium microphyllum *Live oak Quercus virginiana Lovegrasses Eragrostis

  17. Bioensayo de toxicidad aguda con plantas nativas para evaluar un derrame de petróleo

    Directory of Open Access Journals (Sweden)

    Vivien Pentreath

    2015-06-01

    Full Text Available Los bioensayos con plantas constituyen una excelente herramienta en la evaluación del riesgo ambiental y, en particular, la utilización de semillas de plantas vasculares es recomendada debido a su mayor sensibilidad. El objetivo del presente trabajo fue evaluar el comportamiento de plantas nativas para ser utilizadas como indicador biológico de contaminación ambiental con petróleo en relación con un bioindicador estandarizado. Se analizó el Índice de Germinación (IG de Lactuca sativa L., Atriplex lampa (Moq. D.Dietri. y Prosopis denudans Benth. en treinta muestras de suelo extraídas de un yacimiento petrolero a fin de detectar efectos fitotóxicos. El IG es un método económico, rápido y reproducible para determinar toxicidad de suelo, ayudando a caracterizar áreas con suelos contaminados. La germinación de Atriplex lampa (Moq. D.Dietri. y Prosopis denudans resultó más resistente en los suelos contaminados de un yacimiento petrolero que el bioindicador de referencia utilizado (Lactuca sativa L..

  18. Antifungal activity from polar and non-polar extracts of some Chenopodiaceae wild species growing in Tunisia.

    Science.gov (United States)

    Boughalleb, N; Trabelsi, L; Harzallah-Skhiri, F

    2009-01-01

    Nine plants belonging to Chenopodiaceae family were collected around salt marshes near Monastir, located in the east Mediterranean coast of Tunisia. They were tested for their antifungal activities against six plant pathogenic fungi: Botrytis cinerea, Fusarium oxysporum f. sp. niveum, F. solani f. sp. cucurbitae, Phytophthora cactorum, Rhizoctonia solani and Nattrassia mangiferae. Data of this study showed that the highest inhibition of Botrytis cinerea growth was observed with the petroleum ether extract of Atriplex inflata fruits (F) (24.5 mm). The in vitro growth of F. oxysporum f. sp. niveum was reduced only with A. inflata whole plant (WP) petroleum ether extract (32.3 mm). The most important inhibition zones were obtained against F. solani f. sp. cucurbitae with Atriplex semibaccata methanol and acetone extracts (34.7 and 31.0 mm, respectively). This work revealed that fungitoxic compounds were probably present in the petroleum ether extract obtained from A. portulacoides (WP), since it has suppressed the growth of F. s. cucurbitae. Our investigation proved that many Chenopodiaceae species adapted to saline soils may contain phytochemical compounds with fungicidal properties.

  19. Using euhalophytes to understand salt tolerance and to develop saline agriculture: Suaeda salsa as a promising model.

    Science.gov (United States)

    Song, Jie; Wang, Baoshan

    2015-02-01

    As important components in saline agriculture, halophytes can help to provide food for a growing world population. In addition to being potential crops in their own right, halophytes are also potential sources of salt-resistance genes that might help plant breeders and molecular biologists increase the salt tolerance of conventional crop plants. One especially promising halophyte is Suaeda salsa, a euhalophytic herb that occurs both on inland saline soils and in the intertidal zone. The species produces dimorphic seeds: black seeds are sensitive to salinity and remain dormant in light under high salt concentrations, while brown seeds can germinate under high salinity (e.g. 600 mm NaCl) regardless of light. Consequently, the species is useful for studying the mechanisms by which dimorphic seeds are adapted to saline environments. S. salsa has succulent leaves and is highly salt tolerant (e.g. its optimal NaCl concentration for growth is 200 mm). A series of S. salsa genes related to salt tolerance have been cloned and their functions tested: these include SsNHX1, SsHKT1, SsAPX, SsCAT1, SsP5CS and SsBADH. The species is economically important because its fresh branches have high value as a vegetable, and its seed oil is edible and rich in unsaturated fatty acids. Because it can remove salts and heavy metals from saline soils, S. salsa can also be used in the restoration of salinized or contaminated saline land. Because of its economic and ecological value in saline agriculture, S. salsa is one of the most important halophytes in China. In this review, the value of S. salsa as a source of food, medicine and forage is discussed. Its uses in the restoration of salinized or contaminated land and as a source of salt-resistance genes are also considered. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. The Role of Na+ and K+ Transporters in Salt Stress Adaptation in Glycophytes

    Directory of Open Access Journals (Sweden)

    Dekoum V. M. Assaha

    2017-07-01

    Full Text Available Ionic stress is one of the most important components of salinity and is brought about by excess Na+ accumulation, especially in the aerial parts of plants. Since Na+ interferes with K+ homeostasis, and especially given its involvement in numerous metabolic processes, maintaining a balanced cytosolic Na+/K+ ratio has become a key salinity tolerance mechanism. Achieving this homeostatic balance requires the activity of Na+ and K+ transporters and/or channels. The mechanism of Na+ and K+ uptake and translocation in glycophytes and halophytes is essentially the same, but glycophytes are more susceptible to ionic stress than halophytes. The transport mechanisms involve Na+ and/or K+ transporters and channels as well as non-selective cation channels. Thus, the question arises of whether the difference in salt tolerance between glycophytes and halophytes could be the result of differences in the proteins or in the expression of genes coding the transporters. The aim of this review is to seek answers to this question by examining the role of major Na+ and K+ transporters and channels in Na+ and K+ uptake, translocation and intracellular homeostasis in glycophytes. It turns out that these transporters and channels are equally important for the adaptation of glycophytes as they are for halophytes, but differential gene expression, structural differences in the proteins (single nucleotide substitutions, impacting affinity and post-translational modifications (phosphorylation account for the differences in their activity and hence the differences in tolerance between the two groups. Furthermore, lack of the ability to maintain stable plasma membrane (PM potentials following Na+-induced depolarization is also crucial for salt stress tolerance. This stable membrane potential is sustained by the activity of Na+/H+ antiporters such as SOS1 at the PM. Moreover, novel regulators of Na+ and K+ transport pathways including the Nax1 and Nax2 loci regulation of SOS1

  1. Developmental Control and Plasticity of Fruit and Seed Dimorphism in Aethionema arabicum

    Czech Academy of Sciences Publication Activity Database

    Lenser, T.; Graeber, K.; Cevik, O.S.; Adiguzel, N.; Donmez, A. A.; Grosche, C.; Kettermann, M.; Mayland-Quellhorst, S.; Merai, Z.; Mohammadin, S.; Nguyen, T.P.; Rumpler, H.; Schulze, C.; Sperber, K.; Steinbrecher, T.; Wiegand, M.; Strnad, Miroslav; Scheid, O. M.; Rensing, S. A.; Schranz, M. E.; Theissen, G.; Mummenhoff, K.; Leubner-Metzger, Gerhard

    2016-01-01

    Roč. 172, č. 3 (2016), s. 1691-1707 ISSN 0032-0889 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : diptychocarpus-strictus brassicaceae * phenotypic plasticity * arabidopsis-thaliana * lepidium brassicaceae * atriplex-sagittata * dispersal ability * desert annuals * coat mucilage * crepis-sancta * pod shatter Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.456, year: 2016

  2. 50 CFR 17.12 - Endangered and threatened plants.

    Science.gov (United States)

    2010-10-01

    ... 343 NA NA Ancistrocactus tobuschii Tobusch fishhook cactus U.S.A. (TX) Cactaceae E 80 NA NA Apios... ......do E 647 NA NA Astrophytum asterias Star cactus U.S.A. (TX), Mexico Cactaceae E 521 NA NA Atriplex...) Cactaceae E 208 NA NA Chamaecrista glandulosa var. mirabilis None U.S.A. (PR) Fabaceae E 379 NA NA...

  3. Documentation of hypoglycemic and wound healing plants in Kodiyampalayam coastal village (southeast coast of India

    Directory of Open Access Journals (Sweden)

    Satyavani Kaliamurthi

    2014-08-01

    Full Text Available Objective: To document the hypoglycemic and wound healing plant species especially halophytes and associates were carried out in the coastal village of Kodiyampalayam (Southeast coast of India. Methods: The data were collected during the month of December 2011 to November 2012 with personal interviews and group discussion of local coastal fisher women community and traditional practitioner. Results: The results indicated the traditional knowledge of 33 medicinal plant species, photographs, vernacular name, habit, active part and their mode of action. Among these, Citrullus colocynthis, Coccinia grandis, Rhizophora apiculata, Rhizophora mucronata, Bruguiera cylindrica, Excoecaria agallocha and Andrographis paniculata were discovered in huge number. Conclusions: This study concludes medicinal uses of halophytes and associates in the coastal area. It will be needed scientific validation for development of novel therapeutic agents.

  4. Ability of salt marsh plants for TBT remediation in sediments

    OpenAIRE

    Carvalho, P. N.; Basto, M. C.; Moreira da Silva, M.; Machado, A.; Bordalo, A.; Vasconcelos, M. T.

    2010-01-01

    The capability of Halimione portulacoides, Spartina maritima, and Sarcocornia fruticosa (halophytes very commonly found in salt marshes from Mediterranean areas) for enhancing remediation of tributyltin (TBT) from estuarine sediments was investigated, using different experimental conditions.

  5. A comparative study of salt tolerance parameters in 11 wild relatives of Arabidopsis thaliana

    KAUST Repository

    Orsini, Francesco; D'Urzo, Matilde Paino; Inan, Gunsu; Serra, Sara; Oh, Dong-Ha; Mickelbart, Michael V.; Consiglio, Federica; Li, Xia; Jeong, Jae Cheol; Yun, Dae-Jin; Bohnert, Hans J.; Bressan, Ray A.; Maggio, Albino

    2010-01-01

    improved owing to active development of advanced tools in molecular, genomics, and bioinformatics analyses. However, the full potential of investigative power has not been fully exploited, because the use of halophytes as model systems in plant salt

  6. Journal of Genetics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Sexual conflict in plants · N. G. Prasad S. .... Single-nucleotide polymorphisms in the B7H3 gene are not associated with human autoimmune myasthenia gravis ... Antioxidative response mechanisms in halophytes: their role in stress defence.

  7. A comparative study of salt tolerance parameters in 11 wild relatives of Arabidopsis thaliana

    KAUST Repository

    Orsini, Francesco

    2010-07-01

    Salinity is an abiotic stress that limits both yield and the expansion of agricultural crops to new areas. In the last 20 years our basic understanding of the mechanisms underlying plant tolerance and adaptation to saline environments has greatly improved owing to active development of advanced tools in molecular, genomics, and bioinformatics analyses. However, the full potential of investigative power has not been fully exploited, because the use of halophytes as model systems in plant salt tolerance research is largely neglected. The recent introduction of halophytic Arabidopsis-Relative Model Species (ARMS) has begun to compare and relate several unique genetic resources to the well-developed Arabidopsis model. In a search for candidates to begin to understand, through genetic analyses, the biological bases of salt tolerance, 11 wild relatives of Arabidopsis thaliana were compared: Barbarea verna, Capsella bursa-pastoris, Hirschfeldia incana, Lepidium densiflorum, Malcolmia triloba, Lepidium virginicum, Descurainia pinnata, Sisymbrium officinale, Thellungiella parvula, Thellungiella salsuginea (previously T. halophila), and Thlaspi arvense. Among these species, highly salt-tolerant (L. densiflorum and L. virginicum) and moderately salt-tolerant (M. triloba and H. incana) species were identified. Only T. parvula revealed a true halophytic habitus, comparable to the better studied Thellungiella salsuginea. Major differences in growth, water transport properties, and ion accumulation are observed and discussed to describe the distinctive traits and physiological responses that can now be studied genetically in salt stress research. 2010 The Author.

  8. Seasonal dynamics, age structure and reproduction of four Carabus species (Coleoptera: Carabidae) living in forested landscapes in Hungary

    DEFF Research Database (Denmark)

    Kádár, Ferenc; Fazekas, Judit P.; Sárospataki, Miklós

    2015-01-01

    Seasonal dynamics and reproductive phenological parameters of four Carabus species (C. convexus, C. coriaceus, C. germarii and C. hortensis) common in Hungary were studied by pitfall trapping and dissection. Beetles were collected in an abandoned apple orchard and in the bordering oak forest near...... Budapest (Central Hungary), in 1988–1991. The sex ratio was male-dominated, but this was significant only for C. coriaceus. The catch of C. germarii adults showed relatively short activity period with unimodal curve, but activity was longer and bimodal for the other three species. Adults of C. germarii...

  9. Флористические находки в бассейне Верхнего Енисея (2

    Directory of Open Access Journals (Sweden)

    D. N. Shaulo

    2015-03-01

    Full Text Available В результате экспедиционных исследований, анализа ранее опубликованных работ и просмотра материалов, хранящихся в гербариях ЦСБС (NS, NSK и государственного природного заповедника «Азас», уточнены сведения о видовом составе флоры бассейна Верхнего Енисея. Впервые во флоре Тывы отмечены Humulus lupulus, Atriplex hortensis, Saponaria officinalis, Raphanus sativus, Abutilon theophrastii, Cichorium intybus, Elodea canadensis, Cypripedium × ventricosum, Poa sergievskajae; во флоре Хакасии – Microcerasus tomentosa, Cypripedium × ventricosum, S. viridis subsp. pycnocoma; во флоре южной части Красноярского края – Microcerasus tomentosa, Cypripedium × ventricosum. Уточнено распростране- ние и обнаружены новые местонахождения редких на этой территории видов – Asterothamnus heteropappoides, Ulmus pumila, Saxifraga nivalis, Euphorbia caesia.

  10. Effect of sugarcane vinasse and EDTA on cadmium phytoextraction by two saltbush plants.

    Science.gov (United States)

    Eissa, Mamdouh A

    2016-05-01

    Although the use of saltbush plants in metal phytoremediation is well known, there is little information about the impact of sugarcane vinasse (SCV) and EDTA on metal uptake. Heavily cadmium-polluted soil (38 mg kg(-1) Cd) was used in pot and incubation experiments to investigate the Cd phytoextraction potential of wavy saltbush (Atriplex undulata) and quail saltbush (Atriplex lentiformis). EDTA at rates of 3, 6, and 10 mM kg(-1) soil and SCV at rates of 7, 15, and 30 mL kg(-1) soil were added to the polluted soil. The application of EDTA significantly (P = 0.002) reduced the growth of saltbush plants; on the other hand, SCV improved the growth. Both EDTA and SCV increased the availability and root-to-shoot transfer of Cd. The plants of A. lentiformis grown on the soil amended with the highest rate of SCV were able to remove 20.4 % of the total soil Cd during a period of 9 months. Based on the obtained results, it may be concluded that A. lentiformis and sugarcane vinasse could be more effective in the phytoextraction of Cd from the polluted soils.

  11. Hvězdnice sivá (Aster canus), Christian Ferdinand Hochstetter a dva málo známé prameny ke květeně Moravy

    Czech Academy of Sciences Publication Activity Database

    Danihelka, Jiří

    2008-01-01

    Roč. 43, č. 1 (2008), s. 1-16 ISSN 1211-5258 R&D Projects: GA MŠk(CZ) LC06073 Institutional research plan: CEZ:AV0Z60050516 Keywords : history of botany * halophytes * exsiccate series Subject RIV: EF - Botanics

  12. Comparative effects of neutral salt and alkaline salt stress on seed ...

    African Journals Online (AJOL)

    ajl user 4

    2012-04-27

    Apr 27, 2012 ... 0991-8583259. Abbreviations: AsA, Ascorbic acid; Car, carotenoids; CAT, ... the most critical stages in the life cycle of plants when ... 2008a). The mechanisms for adaptation of the halophyte to salt ..... Plant Soil, 39: 205-207.

  13. Environmental Assessment for a Global Reach Deployment Center and Ancillary Facilities

    Science.gov (United States)

    2005-07-07

    akali milkvetch (Astragalus tener var. tener), Contra Costa goldfields (Lasthenia conjugens), and the San Joaquin spearscale (Atriplex joaquiniana... Costa goldfields (Lasthenia conjugens), a federally listed plant species. Building the Center at this site would also involve building within the land...AFB. Contra Costa goldfields is listed as federally endangered. Vernal pools are found throughout the Base. These sites vary in size from 1 acre

  14. Environmental Assessment for a Security Forces Armory/Combat Arms Facility

    Science.gov (United States)

    2005-03-21

    tener), Contra Costa goldfields (Lasthenia conjugens), and the San Joaquin spearscale (Atriplex joaquiniana) – that are listed by the California Native...Plant Society as rare. The akali milkvetch and the San Joaquin spearscale are also listed as federal species of concern (Travis AFB, 2002a). The...following federally listed species have been identified at Travis AFB: • Contra Costa goldfields (Lasthenia conjugens), a federally endangered plant

  15. Defining the next generation modeling of coastal ecotone dynamics in response to global change

    Science.gov (United States)

    Jiang, Jiang; DeAngelis, Donald L.; Teh, Su-Y; Krauss, Ken W.; Wang, Hongqing; Haidong, Li; Smith, Thomas; Koh, Hock L.

    2016-01-01

    Coastal ecosystems are especially vulnerable to global change; e.g., sea level rise (SLR) and extreme events. Over the past century, global change has resulted in salt-tolerant (halophytic) plant species migrating into upland salt-intolerant (glycophytic) dominated habitats along major rivers and large wetland expanses along the coast. While habitat transitions can be abrupt, modeling the specific drivers of abrupt change between halophytic and glycophytic vegetation is not a simple task. Correlative studies, which dominate the literature, are unlikely to establish ultimate causation for habitat shifts, and do not generate strong predictive capacity for coastal land managers and climate change adaptation exercises. In this paper, we first review possible drivers of ecotone shifts for coastal wetlands, our understanding of which has expanded rapidly in recent years. Any exogenous factor that increases growth or establishment of halophytic species will favor the ecotone boundary moving upslope. However, internal feedbacks between vegetation and the environment, through which vegetation modifies the local microhabitat (e.g., by changing salinity or surface elevation), can either help the system become resilient to future changes or strengthen ecotone migration. Following this idea, we review a succession of models that have provided progressively better insight into the relative importance of internal positive feedbacks versus external environmental factors. We end with developing a theoretical model to show that both abrupt environmental gradients and internal positive feedbacks can generate the sharp ecotonal boundaries that we commonly see, and we demonstrate that the responses to gradual global change (e.g., SLR) can be quite diverse.

  16. Responses to salinity in invasive cordgrass hybrids and their parental species (Spartina) in a scenario of sea level rise and climate change

    Science.gov (United States)

    Background/Question/Methods: Salinity is one of the main abiotic factors in salt marshes. Studies rooted to analyzed salinity tolerance of halophytes may help to relate their physiological tolerances with distribution limits in the field. Climate change-induced sea level rise and higher temperatures...

  17. Gesteelde zoutmelde [Halimione pedunculata (L.) Aellen] op Texel

    NARCIS (Netherlands)

    Westhoff, V.; Schaminée, J.H.J.

    1989-01-01

    Halimione pedunculata, one of the rarest halophytes of the Netherlands, was known from the southwestern estuaries, as well as from the Westfriesian islands of Terschelling, Ameland and Schiermonnikoog. Its absence from Texel was remarkable. On 6 September 1988, the authors observed and collected the

  18. Molecular responses and expression analysis of genes in a ...

    African Journals Online (AJOL)

    Haloxylon ammodendron (C.A Mey.) Bunge is a xero-halophytic desert shrub with excellent drought resistance and salt tolerance. To decipher the molecular responses involved in its drought resistance, the cDNA-AFLP (amplified fragment length polymorphism) technique was employed to identify genes expressed ...

  19. Aviation Fueling: A Cleaner, Greener Approach

    Science.gov (United States)

    Hendricks, Robert C.; Bushnell, Dennis M.; Shouse, Dale T.

    2010-01-01

    Projected growth of aviation depends on fueling where specific needs must be met. Safety is paramount, and along with political, social, environmental and legacy transport systems requirements, alternate aviation fueling becomes an opportunity of enormous proportions. Biofuels sourced from halophytes, algae, cyanobacteria, and weeds using wastelands, waste water, and seawater have the capacity to be drop-in fuel replacements for petroleum fuels. Biojet fuels from such sources solves the aviation CO2 emissions issue and do not compete with food or freshwater needs. They are not detrimental to the social or environmental fabric and use the existing fuels infrastructure. Cost and sustainable supply remains the major impediments to alternate fuels. Halophytes are the near-term solution to biomass/biofuels capacity at reasonable costs; they simply involve more farming, at usual farming costs. Biofuels represent a win-win approach, proffering as they do at least the ones we are studying massive capacity, climate neutral-to-some sequestration, and ultimately, reasonable costs.

  20. Structure of Living Soil Cover of the White Sea

    Directory of Open Access Journals (Sweden)

    Moseev Dmitriy Sergeevich

    2016-12-01

    Full Text Available The living soil of the Dry Sea gulf's coast in the South-East part of the White Sea's Dvina Bay is practically a blind spot. The bay is a unique water body in respect of plant communities. The majority of halophytes typical for the White Sea coast grows here. There are differences between plant communities of the East and West shores of the Dry Sea gulf. The East coast has developed communities with domination of Phragmites australis, the West coast is occupied by communities of psammophytonis levees with a predominance of Leymus arenarius. For the first time ever, the article provides a classification of halophytic vegetation of the gulf's marshes, which highlighted the prodromus containing ten associations, consisting of seven formations of the type grass vegetation, many of which are rare. The research results can be used to develop environmental protection measures during the construction of a deep sea port in the Dry Sea gulf.

  1. Aviation Fueling: A Cleaner, Greener Approach

    Directory of Open Access Journals (Sweden)

    Robert C. Hendricks

    2011-01-01

    Full Text Available Projected growth of aviation depends on fueling where specific needs must be met. Safety is paramount, and along with political, social, environmental, and legacy transport systems requirements, alternate aviation fueling becomes an opportunity of enormous proportions. Biofuels—sourced from halophytes, algae, cyanobacteria, and “weeds” using wastelands, waste water, and seawater—have the capacity to be drop-in fuel replacements for petroleum fuels. Biojet fuels from such sources solve the aviation CO2 emissions issue and do not compete with food or freshwater needs. They are not detrimental to the social or environmental fabric and use the existing fuels infrastructure. Cost and sustainable supply remain the major impediments to alternate fuels. Halophytes are the near-term solution to biomass/biofuels capacity at reasonable costs; they simply involve more farming, at usual farming costs. Biofuels represent a win-win approach, proffering as they do—at least the ones we are studying—massive capacity, climate neutral-to-some sequestration, and ultimately, reasonable costs.

  2. Heterogeneity of Soil and Vegetation in the Urban Habitats of New Industrial Cities in the Desert Landscape of Egypt

    Directory of Open Access Journals (Sweden)

    Monier Abd EL-GHANI

    2015-03-01

    Full Text Available The relationship between vegetation and soil supporting the habitats in 4 new industrial cities were assessed. Five main habitats were distinguished from inner city toward outskirts: lawns, home gardens, public gardens, waste lands and desert outskirts. After application of Twinspan, 26 vegetation groups were identified in the 5 recognized habitats, demonstrating that some groups are chatracteristic of a certain city, e.g. Asphodelus aestivus - Deverra tortuosa - Thymelaea hirsuta group was confined to the desert habitat of Burg El-Arab city; Thymelaea hirsuta - Linaria albifrons and Atriplex halimus - Atriplex lindleyi subsp. inflata - Suaeda vermiculata - Typha domingensis groups were found in the waste lands of Burg El-Arab city; Conyza bonariensis - Cynodon dactylon - Sonchus oleraceus group in the home garden habitat of 10th Ranadan city; Cynodon dactylon group in the lawns of Burg El-Arab city; Bassia indica - Plantago major group in the public gardens of Burg El-Arab city; Oxalis corniculata - Plantago lagopus group in the public gardens of 10th Ramadan city; Sonchus oleraceus - Cynodon dactylon and Dactyloctenium aegyptium - Leptochloa fusca - Phragmites australis groups in the public gardens of 6th October city. Silt, clay, organic matter, carbonates and carbon contents showed significant diffrences among the 5 habitats.

  3. The tolerance to salinity and nutrient supply in four European Bolboschoenus species (B. maritimus, B. laticarpus, B. planiculmis and B. yagara) affects their vulnerability or expansiveness

    Czech Academy of Sciences Publication Activity Database

    Hroudová, Zdenka; Zákravský, Petr; Flegrová, Monika

    2014-01-01

    Roč. 112, Jan. 2014 (2014), s. 66-75 ISSN 0304-3770 R&D Projects: GA AV ČR IAA6005905 Institutional research plan: CEZ:AV0Z60050516 Institutional support: RVO:67985939 Keywords : halophytes * stress tolerance * wetlands Subject RIV: EF - Botanics Impact factor: 1.608, year: 2014

  4. Comparative 2D-DIGE analysis of salinity responsive microsomal proteins from leaves of salt-sensitive Arabidopsis thaliana and salt-tolerant Thellungiella salsuginea.

    Science.gov (United States)

    Vera-Estrella, Rosario; Barkla, Bronwyn J; Pantoja, Omar

    2014-12-05

    Halophytes have evolved unique molecular strategies to overcome high soil salinity but we still know very little about the main mechanisms that these plants use to complete their lifecycle under salinity stress. One useful approach to further our understanding in this area is to directly compare the response to salinity of two closely related species which show diverse levels of salt tolerance. Here we present a comparative proteomic study using DIGE of leaf microsomal proteins to identify salt-responsive membrane associated proteins in Arabidopsis thaliana (a glycophyte) and Thellungiella salsuginea (a halophyte). While a small number of distinct protein abundance changes were observed upon salt stress in both species, the most notable differences were observed between species and specifically, in untreated plants with a total of 36 proteins displaying significant abundance changes. Gene ontology (GO) term enrichment analysis showed that the majority of these proteins were distributed into two functional categories; transport (31%) and carbohydrate metabolism (17%). Results identify several novel salt responsive proteins in this system and support the theory that T. salsuginea shows a high degree of salt-tolerance because molecular mechanisms are primed to deal with the stress. This intrinsic ability to anticipate salinity stress distinguishes it from the glycophyte A. thaliana. There is significant interest in understanding the molecular mechanisms that plants use to tolerate salinity as soil salinization is becoming an increasing concern for agriculture with high soil Na(+) levels leading to reduced yields and economic loss. Much of our knowledge on the molecular mechanisms employed by plants to combat salinity stress has come from work on salt-sensitive plants, but studies on naturally occurring highly salt-resistant plants, halophytes, and direct comparisons between closely related glycophytes and halophytes, could help to further our understanding of salinity

  5. Flora and vegetation of the Saint David and Lewis Springs Cienegas, Cochise County, Arizona

    Science.gov (United States)

    Elizabeth Makings

    2013-01-01

    In the Sky Island region, cienegas are rare marshlands amidst arid surroundings where groundwater perennially intersects the surface. Their unique physical properties give rise to a characteristic plant community dominated by wetland graminoids. Evaporation usually causes the water to be alkaline, and vegetation around a cienega commonly includes halophytes and other...

  6. Antibacterial activity of some disinfectants, essential oils and radiation against some bacterial isolates

    International Nuclear Information System (INIS)

    Ramadan, A.B.; Abo-State, M.A.M.; Ghaly, M.F.; Ezzat, S.M.; Hefni, H.M.I.

    2006-01-01

    Nosocomial bacteria has been considered problems for all hospitals. Bacterial isolates of the present study were isolated from Sharkia Hospitals, Egypt. The isolates were S. aureus, P. aeruginosa, E. coli, Klebsiella spp., Citrobacter spp., Enterobacter spp., Proteus spp., Serratia spp. and S. epidermidis. Two disinfectants (savlon and phenolics) were examined against all the bacterial isolates at the hospitals recommended concentrations to determine the most resistance bacterial isolates. Twelve essential oils, ultraviolet radiation, Gamma radiation and laser were tested against the most resistant bacterial isolates to disinfectants and antiseptics. These bacterial isolates were S. aureus and P. aeruginosa. The most effective concentration of savlon was 2%, while that of phenolics were 4 and 5% . Fumigation of essential oils of Eugenia caryophyllata L., Marjorum hortensis L., Foeniculum vulgare L., Rosmarinus officinalis L. and Thymus vulgaris L. had high effects against these bacterial isolates. Rosmarinus officinalis L., Marjorum hortensis L., Eugenia caryophyllata L. and Thymus vulgaris L. essential oils had high effects on bacterial isolates by disc diffusion method. Matricaria chamomilla L. and Eucalyptus spp. oils had no effects against P. aeruginosa. Both essential oils of Jasminum gradiflocum L. and Jasminum sambac L. had no effects by fumigation and diffused essential oils. Ultraviolet irradiation had lethal effect on S. aureus when it exposed to ultraviolet for 10 minutes at a distance of 20 cm, while it had a lethal effect on P. aeruginosa when exposed to the rays for 7 minutes at the same distance. Gamma irradiation had lethal effect on P. aeruginosa and S. aureus at 2.5 and 3 KGy, respectively. Laser had a lethal effect on P. aeruginosa and S. aureus after 14 and 15 minutes of exposure, respectively

  7. Local ecological knowledge and its relationship with biodiversity conservation among two Quilombola groups living in the Atlantic Rainforest, Brazil.

    Science.gov (United States)

    Conde, Bruno Esteves; Ticktin, Tamara; Fonseca, Amanda Surerus; Macedo, Arthur Ladeira; Orsi, Timothy Ongaro; Chedier, Luciana Moreira; Rodrigues, Eliana; Pimenta, Daniel Sales

    2017-01-01

    Information on the knowledge, uses, and abundance of natural resources in local communities can provide insight on conservation status and conservation strategies in these locations. The aim of this research was to evaluate the uses, knowledge and conservation status of plants in two Quilombolas (descendants of slaves of African origin) communities in the Atlantic rainforest of Brazil, São Sebastião da Boa Vista (SSBV) and São Bento (SB). We used a combination of ethnobotanical and ecological survey methods to ask: 1) What ethnobotanical knowledge do the communities hold? 2) What native species are most valuable to them? 3) What is the conservation status of the native species used? Thirteen local experts described the names and uses of 212 species in SSBV (105 native species) and 221 in SB (96 native species). Shannon Wiener diversity and Pielou's Equitability indices of ethnobotanical knowledge of species were very high (5.27/0.96 and 5.28/0.96, respectively). Species with the highest cultural significance and use-value indexes in SSBV were Dalbergia hortensis (26/2.14), Eremanthus erythropappus (6.88/1), and Tibouchina granulosa (6.02/1); while Piptadenia gonoacantha (3.32/1), Sparattosperma leucanthum (3.32/1) and Cecropia glaziovii (3.32/0.67) were the highest in SB. Thirty-three native species ranked in the highest conservation priority category at SSBV and 31 at SB. D. hortensis was noteworthy because of its extremely high cultural importance at SSBV, and its categorization as a conservation priority in both communities. This information can be used towards generating sustainable use and conservation plans that are appropriate for the local communities.

  8. SPIDERS (ARANEI OF THE REPUBLIC OF SOUTH OSSETIA

    Directory of Open Access Journals (Sweden)

    Alexander V. Ponomarev

    2015-01-01

    Full Text Available Aim. Until recently, spider fauna of the Republic of South Ossetia has been the least studied among the regional araneofaunas of the Caucasus. According to the literature data, as little as 30 spider species have been known from the republic’s territory (Mkheidze, 1997, Mikhailov, 1990; Ponomarev, Dvadnenko, 2013; Trilicauscas, Komarov, 2014. Therefore, the aim of the present article is to summarize available data on the spider fauna of South Ossetia.Location. Republic of South Ossetia.Methods. The material was collected in various districts of South Ossetia in 2011-2014 by Yu.E. Komarov. Mainly, the collecting was performed in the city of Tskhinvali and its environs, and in the South Ossetian State Reserve. Spiders were sampled with pitfall traps and sweep netting. The time of traps’ exposure is April–December.Results and main conclusions. To date, the spider fauna of the Republic of South Ossetia includes 230 species from 29 families. 222 species were registered by the authors, eight species (Clubiona pseudosimilis, Gnaphosa lugubris, Linyphia hortensis, Neriene peltata, Geolycosa vultuosa, Pardosa azerifalcata, Ero aphana, and Philodromus rufus are known from the literature only. Seven species are new to the Caucasus (Clubiona pseudosimilis, Gnaphosa lugubris, Linyphia hortensis, Neriene peltata, Geolycosa vultuosa, Pardosa azerifalcata, Ero aphana, and Philodromus rufus. Of these, two species were known earlier only from Turkey (Pardosa consimilis, Ozyptila spirembolus, and one species (Tegenaria pseudolyncea only from Azerbaijan. Against the background of the widespread species predominance, the Caucasian element is small and presented by twelve species (Tegenaria pseudolyncea, Dysdera tkibuliensis, Haplodrassus caucasius, Zelotes khostensis, Mansuphantes ovalis, Sintula oseticus, Tenuiphantes teberdaensis, Pardosa azerifalcata, P. caucasica, Piratula hurkai, Trochosa cachetiensis, and Xysticus ukrainicus.

  9. Short Communication Assessing the ability of fodder beet ( Beta ...

    African Journals Online (AJOL)

    A pot experiment was carried out to determine the sodium (Na) absorption ability of halophytic fodder beet (Beta vulgaris L. ʽBrigadierʼ) irrigated with water enriched to Na levels found in winery wastewater. Treatments comprised (1) soil without plants irrigated with untreated water or (2) Na-enriched water, and (3) fodder ...

  10. Localization and composition of seed oils of Crithmum maritimum L ...

    African Journals Online (AJOL)

    GREGORY

    2010-09-27

    Sep 27, 2010 ... 1Laboratoire d'Adaptation des Plantes aux Stress Abiotiques, Centre de ... was rich with oleic acid (78.6%), low level of palmitic acid (4.8%) and non negligible amount of linoleic ... soils, only some halophytes can support these conditions. ... Mature fruits were collected in December 2007 from plants in the.

  11. Phytotoxic Activities of Mediterranean Essential Oils

    Directory of Open Access Journals (Sweden)

    Luiz Fernando Rolim de Almeida

    2010-06-01

    Full Text Available Twelve essential oils from Mediterranean aromatic plants were tested for their phytotoxic activity, at different doses, against the germination and the initial radicle growth of seeds of Raphanus sativus, Lactuca sativa and Lepidium sativum. The essential oils were obtained from Hyssopus officinalis, Lavandula angustifolia, Majorana hortensis, Melissa officinalis, Ocimum basilicum, Origanum vulgare, Salvia officinalis and Thymus vulgaris (Lamiaceae, Verbena officinalis (Verbenaceae, Pimpinella anisum, Foeniculum vulgare and Carum carvi (Apiaceae. The germination and radicle growth of tested seeds were affected in different ways by the oils. Thyme, balm, vervain and caraway essential oils were more active against both germination and radicle elongation.

  12. Enzymatic regulation of organic acid metabolism in an alkali-tolerant ...

    African Journals Online (AJOL)

    Chloris virgata, an alkali-tolerant halophyte, was chosen as the test material for our research. The seedlings of C. virgata were treated with varying salt and alkali stress. First, the composition and content of organic acids in shoots were analyzed and the results indicated that there was not only a significant increase in total ...

  13. HALOFYTNÍ ROSTLINY A JEJICH MOŽNÉ VYUŽITÍ VE FYTOREMEDIACÍCH

    Czech Academy of Sciences Publication Activity Database

    Moťková, Kateřina; Podlipná, Radka; Vaněk, Tomáš; Kafka, Z.

    2014-01-01

    Roč. 108, č. 6 (2014), s. 586-591 ISSN 0009-2770 R&D Projects: GA MŠk(CZ) OC10028 Institutional support: RVO:61389030 Keywords : halophytic plants * phytoremediation * heavy metals Subject RIV: DK - Soil Contamination ; De-contamination incl. Pesticides Impact factor: 0.272, year: 2014 http://www.chemicke-listy.cz/docs/full/2014_06_586-591.pdf

  14. NaCl salinity affects lateral root development in Plantago maritima

    NARCIS (Netherlands)

    Rubinigg, M; Wenisch, J; Elzenga, JTM; Stulen, [No Value

    2004-01-01

    Root growth and morphology were assessed weekly in hydroponically-grown seedlings of the halophyte Plantago maritima L. during exposure to 0, 50, 100 and 200 mM NaCl for 21 d. Relative growth rate was reduced by 25% at 200 mM NaCl. The lower NaCl treatments did not affect relative growth rates.

  15. Seasonal dynamics of common ground beetles (Coleoptera: Carabidae) along an urbanisation gradient near Sorø, Zealand, Denmark

    DEFF Research Database (Denmark)

    Elek, Zoltan; Howe, Andy G.; Enggaard, Mattias

    2017-01-01

    The seasonal activity of six carabid species (Nebria brevicollis, Carabus nemoralis, C. hortensis, C. coriaceus, Pterostichus melanarius and Abax parallelepipedus) was studied along an urbanisation gradient (rural forest – suburban forest – forest fragments in urban park) in Sorø, Denmark, during...... and between the years (C. nemoralis, N. brevicollis and P. melanarius). In four out of six studied species, 2005 was less favourable than 2004. Spring activity in the urban habitat started earlier than in the suburban or forested ones. Abetter understanding of urban green infrastructures in biodiversity...... assessments may need the study of seasonality in order to distinguish whether the bioindicator’s responses are to habitat quality or stochastic seasonal events....

  16. Initial land reclamation procedures related to possible Pu-cleanup activities at the Tonopah Test Range

    International Nuclear Information System (INIS)

    Wallace, A.; Romney, E.M.

    1976-02-01

    If areas of the Tonopah Test Range (TTR) are to be used for experimental tests of procedures for clean-up of 239 Pu contamination, there are experiences in the Great Basin Desert portions of the Nevada Test Site (NTS) which can serve as guides to reclamation and revegetation of such arid lands. Procedures which will encourage development of the grasses Hilaria jamesii and Oryzopsis hymenoides, as well as the perennial shrubs Eurotia lanata and Atriplex canescens would greatly improve the area as range land

  17. Palynomorphological features of Suaeda acuminata (C.A. Mey. Moq., Suaeda prostrata Pall. and Tamarix ramosissima Ledeb.

    Directory of Open Access Journals (Sweden)

    Tatyana I. Tsymbalyuk

    2012-03-01

    Full Text Available The pollen morphology of Suaeda acuminata , S. prostratа and Tamarix ramosissima from Ukrainian flora has been studied with light and scanning electron microscopy. The main morphological features of pollen grains of three taxa, which spread within halophytes vegetation, are determined. The results has considered as potential useful for identification of the fossil pollen under paleopalynological or paleoecological study.

  18. Anticancer Drugs from Marine Flora: An Overview

    OpenAIRE

    Sithranga Boopathy, N.; Kathiresan, K.

    2010-01-01

    Marine floras, such as bacteria, actinobacteria, cyanobacteria, fungi, microalgae, seaweeds, mangroves, and other halophytes are extremely important oceanic resources, constituting over 90% of the oceanic biomass. They are taxonomically diverse, largely productive, biologically active, and chemically unique offering a great scope for discovery of new anticancer drugs. The marine floras are rich in medicinally potent chemicals predominantly belonging to polyphenols and sulphated polysaccharide...

  19. Physiological and biochemical responses of halophyte Kalidium ...

    African Journals Online (AJOL)

    Administrator

    2011-09-21

    Sep 21, 2011 ... Peroxidase (POD) activity was determined by methyl catechol reaction. Fresh leaf tissue (2.5 g) with 4 ml phosphate buffer (50. mM, pH 5.5) was ground into homogenate on ice bath, then centrifugated in 3000 rpm at 4°C for 10 min to get crude extract of. POD. 1 ml of methyl catechol (50 mM) was brought to ...

  20. Stable Agrobacterium -mediated transformation of the halophytic ...

    African Journals Online (AJOL)

    RT-RCR analysis was conducted using salt stressed transgenic plants, and the results suggested that 2-Cys Prx had low transcription levels under non-stressed conditions, and increased transcription after 6 h of 200 mM NaCl stress. This gene continued to demonstrate high levels of transcription until 6 h after withdrawal of ...

  1. Respuesta al abonado, acolchado y ramoneo de tres arbustos forrajeros en ambientes semiáridos.

    OpenAIRE

    Ramos, M. E.; Robles, A.B.; Ruiz-Mirazo, J.; González-Rebollar, J.L.

    2011-01-01

    Los arbustos forrajeros constituyen una fuente de alimentación importante para el ganado extensivo o semiextensivo en los ambientes semiáridos. Este estudio evalúa el comportamiento de tres especies leñosas (Atriplex halimus, Dorycnium pentaphyllum y Olea europaea cv. Marteño) implantadas con fines forrajeros, en secano, a las que se aplicaron distintos tratamientos: 1) abono orgánico, 2) abono orgánico + acolchado con plástico y, 3) control. Dos años después de la plantación, la mit...

  2. New Records To The Vascular Flora Of Kazakhstan (Central Asia

    Directory of Open Access Journals (Sweden)

    Ebel Aleksandr L.

    2015-12-01

    Full Text Available The paper presents distributional data for seven species new for the flora of Kazakhstan: Atriplex gardneri var. aptera (A. Nelson S. L. Welsh. & Crompton, Cardamine hirsuta L., Carduus acanthoides L., Galega orientalis Lam., Silene cserei Baumg., Didymophysa fedtschenkoana Regel and Acinos arvensis (Lam. Dandy. Didymophysa fedtschenkoana is a native element in the Kazakh flora; the other species should be treated as alien, expansively spreading or invasive in this part of Asia. A list of localities of the species in Kazakhstan and their habitat preferences are presented.

  3. Field Surveys, IOC Valleys. Volumes II-I and II-II. Biological Resources Survey, Dry Lake Valley, Nevada and Pine and Wah Wah Valleys, Utah. Supplement. Spring Survey of the IOC Valleys.

    Science.gov (United States)

    1981-08-01

    pinnata X K CACTACEAE Coryphantha vivipara x Opuntia echinocarpa K 0 x K K K 5putaerinacea K Op’untia sp. x X -12- TABLE 3-1 (Cont.) Shelter site...pilosus x Lepidium montanun X CACTACEAE Opuntia echinocarpa x x Opuntia erinacea X X X CHENOPODIACEAE Atriplex canescens X X X Ceratoides lanata X X X X...Stanleya pinnata X CACTACEAE Coryphantha vivipara var. rosea X Echinocereus engelmannii X opuntia echinocarpa X X X X X X X X Opuntia erinacea XX X X X X x

  4. Developmental Peculiarities and Seed-Borne Endophytes in Quinoa: Omnipresent, Robust Bacilli Contribute to Plant Fitness

    OpenAIRE

    Pitzschke, Andrea

    2016-01-01

    Among potential climate change-adapted crops for future agriculture, quinoa (Chenopodium quinoa), a facultative halophyte plant with exceptional nutritional properties, stands out as a prime candidate. This work examined how quinoa deals with extreme situations during seed rehydration. A seed-borne microbiome was discovered and its potential role in early development and stress resistance investigated.Methods involved germination and drought exposure assays, histochemical detection of reactiv...

  5. Spatial Variations in Salinity Stress Across a Coastal Landscape Using Vegetation Indices Derived from Hyperspectral Imagery

    Science.gov (United States)

    2009-01-01

    that M. cer- ifera experienced a drought response, as seen in decreases in stomatal conductance, photosynthesis , and RWC relative to earlier in the...halophytic seagrass . However, Iva frutescens generally only occurs at elevations where the roots are not subject to prolonged water table flooding...sensing: 2. Measurement of leaf and canopy reflectance changes at 531 nm and their relationship with photosynthesis and chlorophyll fluorescence. Remote

  6. Occurrence of organohalogens at the Dead Sea Basin

    Science.gov (United States)

    Tubbesing, Christoph; Kotte, Karsten; Keppler, Frank; Krause, Torsten; Bahlmann, Enno; Schöler, Heinfried

    2013-04-01

    Most arid and semi-arid regions are characterized by evaporites, which are assured sources for volatile organohalogens (VOX) [1]. These compounds play an important role in tropospheric and stratospheric chemistry. The Dead Sea between Israel and Jordan is the world's most famous and biggest all-season water covered salt lake. In both countries chemical plants like the Dead Sea Works and the Arab Potash Company are located at the southern part of the Dead Sea and mine various elements such as bromine and magnesium. Conveying sea water through constructed evaporation pans multifarious salts are enriched and precipitated. In contrast, the Northern basin and main part of the Dead Sea has remained almost untouched by industrial salt production. Its fresh water supply from the Jordan River is constantly decreasing, leading to further increased salinity. During a HALOPROC campaign (Natural Halogenation Processes in the Environment) we collected various samples including air, soils, sediments, halophytic plants, ground- and seawater from the Northern and Southern basin of the Israeli side of the Dead Sea. These samples were investigated for the occurrence of halocarbons using different analytical techniques. Most samples were analyzed for volatile organohalogens such as haloalkanes using gas chromatography- mass spectrometry (GC-MS). Interestingly, there is a strong enrichment of trihalomethanes (THM), especially all chlorinated and brominated ones and also the iodinated compound dichloroiodomethane were found in the Southern basin. In addition, volatile organic carbons (VOC) such as ethene and some other alkenes were analyzed by a gas chromatography-flame ionisation detector (GC-FID) to obtain further information about potential precursors of halogenated compounds. Halophytic plants were investigated for their potential to release chloromethane and bromomethane but also for their stable carbon and hydrogen isotope composition. For this purpose, a plant chamber was

  7. Persistence of Gulf War oil versus intertidal morphology and sediments - one year later

    International Nuclear Information System (INIS)

    Montello, T.M.; Hayes, M.O.; Michel, J.; Al-Momen, A.H.; Al-Mansi, A.M.; Aurand, D.V.

    1993-01-01

    A study of the persistence of oil in the intertidal habitats of the Saudi Arabian coast was carried out one year after the Gulf war spill in conjunction with the National Oceanic and Atmospheric Administration ship Mt. Mitchell's ROPME Sea Cruise. A total of 10 kilometers of transects were surveyed at 20 stations, representing heavily oiled sheltered beaches, tidal flats, algal mats, halophyte saltmarshes, and mangroves at the heads of bays

  8. Aviation Fueling: A Cleaner, Greener Approach

    OpenAIRE

    Hendricks, Robert C.; Bushnell, Dennis M.; Shouse, Dale T.

    2011-01-01

    Projected growth of aviation depends on fueling where specific needs must be met. Safety is paramount, and along with political, social, environmental, and legacy transport systems requirements, alternate aviation fueling becomes an opportunity of enormous proportions. Biofuels—sourced from halophytes, algae, cyanobacteria, and “weeds” using wastelands, waste water, and seawater—have the capacity to be drop-in fuel replacements for petroleum fuels. Biojet fuels from such sources solve the avi...

  9. BIOCHEMICAL EVALUATION OF CUMIN (CUMINUM CYMINUM) AND MARJORAM (MARJORANA HORTENSIS) AS NATURAL ANTIOXIDANTS

    Energy Technology Data Exchange (ETDEWEB)

    MAHMOUD, K A; HAMZA, R G [Food Irradiation Research Dept., National Centre for Radiation Research and Technology, Atomic Energy Authority, Cairo, (Egypt)

    2009-07-01

    Hypercholesterolemia, high cholesterol diet and oxidative stress increase serum total cholesterol and LDL-cholesterol levels resulting in increased risk for development of atherosclerosis. Antioxidants play an important role in inhibiting and scavenging free radicals, thus, providing protection to humans against infectious and degenerative diseases. Several studies showed that the antioxidant activity is high in medicinal plants. The present study was carried out to determine the effect of using cumin or marjoram as supplement on serum lipid levels, serum glucose and serum lipid peroxidation in hypercholesterolemic rats. GC-MS for analysis of essential oil showed that the number of identified compounds was 18; the most important were alpha-trepenol, linalool and gamma-terpinene (natural antioxidants). Hypercholesterolemic diet (HCD) containing cholesterol (1% w/w) and sodium cholate (0.2% w/w) was investigated on male rats. Cumin or marjoram (1% w/w) was added to the HCD as a decontaminated supplement to evaluate the efficacy of these medicinal plants in reducing hypercholesterolemia. Their effects on serum lipid, blood lipid peroxidation and antioxidant properties were determined. It was found that the use of either cumin or marjoram reduced TG, TC, LDL-C and glucose level and increased HDL-C. Also, these medicinal plants suppressed lipid peroxidation via enhancement of antioxidant activities. It could be concluded that intake of cumin or marjoram may minimize the risk of atherosclerosis associated with a high cholesterol diet. These overall results support the future use of these medicinal plants as natural antioxidants and the continuous medicinal plants intake may be recommended as food supplement.

  10. BIOCHEMICAL EVALUATION OF CUMIN (CUMINUM CYMINUM) AND MARJORAM (MARJORANA HORTENSIS) AS NATURAL ANTIOXIDANTS

    International Nuclear Information System (INIS)

    MAHMOUD, K.A.; HAMZA, R.G.

    2009-01-01

    Hypercholesterolemia, high cholesterol diet and oxidative stress increase serum total cholesterol and LDL-cholesterol levels resulting in increased risk for development of atherosclerosis. Antioxidants play an important role in inhibiting and scavenging free radicals, thus, providing protection to humans against infectious and degenerative diseases. Several studies showed that the antioxidant activity is high in medicinal plants. The present study was carried out to determine the effect of using cumin or marjoram as supplement on serum lipid levels, serum glucose and serum lipid peroxidation in hypercholesterolemic rats. GC-MS for analysis of essential oil showed that the number of identified compounds was 18; the most important were α-trepenol, linalool and γ-terpinene (natural antioxidants). Hypercholesterolemic diet (HCD) containing cholesterol (1% w/w) and sodium cholate (0.2% w/w) was investigated on male rats. Cumin or marjoram (1% w/w) was added to the HCD as a decontaminated supplement to evaluate the efficacy of these medicinal plants in reducing hypercholesterolemia. Their effects on serum lipid, blood lipid peroxidation and antioxidant properties were determined. It was found that the use of either cumin or marjoram reduced TG, TC, LDL-C and glucose level and increased HDL-C. Also, these medicinal plants suppressed lipid peroxidation via enhancement of antioxidant activities. It could be concluded that intake of cumin or marjoram may minimize the risk of atherosclerosis associated with a high cholesterol diet. These overall results support the future use of these medicinal plants as natural antioxidants and the continuous medicinal plants intake may be recommended as food supplement.

  11. Transcriptomic Profiling and Physiological Analysis of Haloxylon ammodendron in Response to Osmotic Stress

    Directory of Open Access Journals (Sweden)

    Hui-Juan Gao

    2017-12-01

    Full Text Available Haloxylon ammodendron, a perennial xero-halophyte, is an essential species for investigating the effects of drought on desert tree. To gain a comprehensive knowledge on the responses of H. ammodendron to drought stress, we specially performed the molecular and physiological analysis of H. ammodendron in response to −0.75 MPa osmotic stress for six and 24 h in lab condition via RNA-seq and digital gene expression (DGE. In total, 87,109 unigenes with a mean length of 680 bp and 13,486 potential simple sequence repeats (SSRs were generated, and 3353 differentially expressed genes (DEGs in shoots and 4564 in roots were identified under stress. These DEGs were mainly related to ion transporters, signal transduction, ROS-scavenging, photosynthesis, cell wall organization, membrane stabilization and hormones. Moreover, the physiological changes of inorganic ions and organic solute content, peroxidase (POD activity and osmotic potential were in accordance with dynamic transcript profiles of the relevant genes. In this study, a detailed investigation of the pathways and candidate genes identified promote the research on the molecular mechanisms of abiotic stress tolerance in the xero-halophytic species. Our data provides valuable genetic resources for future improvement of forage and crop species for better adaptation to abiotic stresses.

  12. Ecological Effects of Roads on the Plant Diversity of Coastal Wetland in the Yellow River Delta

    Directory of Open Access Journals (Sweden)

    Yunzhao Li

    2014-01-01

    Full Text Available The 26 sample sites in 7 study plots adjacent to asphalt road and earth road in coastal wetland in the Yellow River Delta were selected to quantify plant diversity using quadrat sampling method in plant bloom phase of July and August 2012. The indice of βT and Jaccard’s coefficient were applied to evaluate the species diversity. The results showed that the plant diversities and alien plants were high in the range of 0–20 m to the road verge. There were more exotics and halophytes in plots of asphalt roadside than that of earth roadside. However, proportion of halophytes in habitats of asphalt roadsides was lower than that of earth roadside. By comparing β-diversity, there were more common species in the asphalt roadsides than that in the earth roadsides. The similarity of plant communities in studied plots of asphalt roadsides and earth roadsides increased with increasing the distance to road verge. The effect range of roads for plant diversity in study region was about 20 m to road verge. Our results indicate that the construction and maintenance of roads in wetland could increase the plant species diversities of communities and risk of alien species invasion.

  13. Cloning and characterization of the Salicornia brachiata Na(+)/H(+) antiporter gene SbNHX1 and its expression by abiotic stress.

    Science.gov (United States)

    Jha, Anupama; Joshi, Mukul; Yadav, Narendra Singh; Agarwal, Pradeep K; Jha, Bhavanath

    2011-03-01

    Salinity causes multifarious adverse effects to plants. Plants response to salt stress involves numerous processes that function in coordination to alleviate both cellular hyperosmolarity and ion disequilibrium. A Na(+)/H(+) antiporter NHX1 gene has been isolated from a halophytic plant Salicornia brachiata in this study. Predicted amino acid sequence similarity, protein topology and the presence of functional domains conserved in SbNHX1 classify it as a plant vacuolar NHX gene. The SbNHX1 cDNA has an open reading frame of 1,683 bp, encoding a polypeptide of 560 amino acid residues with an estimated molecular mass 62.44 kDa. The SbNHX1 shows high amino acid similarity with other halophytic NHX gene and belongs to Class-I type NHXs. TMpred suggests that SbNHX1 contains 11 strong transmembrane (TM). Real time PCR analysis revealed that SbNHX1 transcript expresses maximum at 0.5 M. Transcript increases gradually by increasing the treatment duration at 0.5 M NaCl, however, maximum expression was observed at 48 h. The overexpression of SbNHX1 gene in tobacco plant showed NaCl tolerance. This study shows that SbNHX1 is a potential gene for salt tolerance, and can be used in future for developing salt tolerant crops.

  14. Salicornia strobilacea (synonym of Halocnemum strobilaceum) Grown Under Different Tidal Regimes Selects Rhizosphere Bacteria Capable of Promoting Plant Growth

    KAUST Repository

    Marasco, Ramona; Mapelli, Francesca; Rolli, Eleonora; Mosqueira Santillá n, Marí a José ; Fusi, Marco; Bariselli, Paola; Reddy, Muppala P.; Cherif, Ameur; Tsiamis, George; Borin, Sara; Daffonchio, Daniele

    2016-01-01

    Halophytes classified under the common name of salicornia colonize salty and coastal environments across tidal inundation gradients. To unravel the role of tide-related regimes on the structure and functionality of root associated bacteria, the rhizospheric soil of Salicornia strobilacea (synonym of Halocnemum strobilaceum) plants was studied in a tidal zone of the coastline of Southern Tunisia. Although total counts of cultivable bacteria did not change in the rhizosphere of plants grown along a tidal gradient, significant differences were observed in the diversity of both the cultivable and uncultivable bacterial communities. This observation indicates that the tidal regime is contributing to the bacterial species selection in the rhizosphere. Despite the observed diversity in the bacterial community structure, the PGP potential of cultivable rhizospheric bacteria, assessed through in vitro and in vivo tests, was equally distributed along the tidal gradient. Root colonization tests with selected strains proved that halophyte rhizospheric bacteria (i) stably colonize S. strobilacea rhizoplane and the plant shoot suggesting that they move from the root to the shoot and (ii) are capable of improving plant growth. The versatility in the root colonization, the overall PGP traits and the in vivo plant growth promotion under saline condition suggest that such beneficial activities likely take place naturally under a range of tidal regimes.

  15. Salicornia strobilacea (synonym of Halocnemum strobilaceum) Grown Under Different Tidal Regimes Selects Rhizosphere Bacteria Capable of Promoting Plant Growth

    KAUST Repository

    Marasco, Ramona

    2016-04-01

    Halophytes classified under the common name of salicornia colonize salty and coastal environments across tidal inundation gradients. To unravel the role of tide-related regimes on the structure and functionality of root associated bacteria, the rhizospheric soil of Salicornia strobilacea (synonym of Halocnemum strobilaceum) plants was studied in a tidal zone of the coastline of Southern Tunisia. Although total counts of cultivable bacteria did not change in the rhizosphere of plants grown along a tidal gradient, significant differences were observed in the diversity of both the cultivable and uncultivable bacterial communities. This observation indicates that the tidal regime is contributing to the bacterial species selection in the rhizosphere. Despite the observed diversity in the bacterial community structure, the PGP potential of cultivable rhizospheric bacteria, assessed through in vitro and in vivo tests, was equally distributed along the tidal gradient. Root colonization tests with selected strains proved that halophyte rhizospheric bacteria (i) stably colonize S. strobilacea rhizoplane and the plant shoot suggesting that they move from the root to the shoot and (ii) are capable of improving plant growth. The versatility in the root colonization, the overall PGP traits and the in vivo plant growth promotion under saline condition suggest that such beneficial activities likely take place naturally under a range of tidal regimes.

  16. Novel water filtration of saline water in the outermost layer of mangrove roots.

    Science.gov (United States)

    Kim, Kiwoong; Seo, Eunseok; Chang, Suk-Kyu; Park, Tae Jung; Lee, Sang Joon

    2016-02-05

    The scarcity of fresh water is a global challenge faced at present. Several desalination methods have been suggested to secure fresh water from sea water. However, conventional methods suffer from technical limitations, such as high power consumption, expensive operating costs, and limited system durability. In this study, we examined the feasibility of using halophytes as a novel technology of desalinating high-concentration saline water for long periods. This study investigated the biophysical characteristics of sea water filtration in the roots of the mangrove Rhizophora stylosa from a plant hydrodynamic point of view. R. stylosa can grow even in saline water, and the salt level in its roots is regulated within a certain threshold value through filtration. The root possesses a hierarchical, triple layered pore structure in the epidermis, and most Na(+) ions are filtered at the first sublayer of the outermost layer. The high blockage of Na(+) ions is attributed to the high surface zeta potential of the first layer. The second layer, which is composed of macroporous structures, also facilitates Na(+) ion filtration. This study provides insights into the mechanism underlying water filtration through halophyte roots and serves as a basis for the development of a novel bio-inspired desalination method.

  17. Ecological Effects of Roads on the Plant Diversity of Coastal Wetland in the Yellow River Delta

    Science.gov (United States)

    Li, Yunzhao; Du, Siyao; Han, Guangxuan; Qu, Fanzhu; Wang, Guangmei; Fu, Yuqin; Zhan, Chao

    2014-01-01

    The 26 sample sites in 7 study plots adjacent to asphalt road and earth road in coastal wetland in the Yellow River Delta were selected to quantify plant diversity using quadrat sampling method in plant bloom phase of July and August 2012. The indice of β T and Jaccard's coefficient were applied to evaluate the species diversity. The results showed that the plant diversities and alien plants were high in the range of 0–20 m to the road verge. There were more exotics and halophytes in plots of asphalt roadside than that of earth roadside. However, proportion of halophytes in habitats of asphalt roadsides was lower than that of earth roadside. By comparing β-diversity, there were more common species in the asphalt roadsides than that in the earth roadsides. The similarity of plant communities in studied plots of asphalt roadsides and earth roadsides increased with increasing the distance to road verge. The effect range of roads for plant diversity in study region was about 20 m to road verge. Our results indicate that the construction and maintenance of roads in wetland could increase the plant species diversities of communities and risk of alien species invasion. PMID:25147872

  18. Anti-leishmanial and toxicity activities of some selected Iranian medicinal plants.

    Science.gov (United States)

    Kheiri Manjili, Hamidreza; Jafari, Hamidreza; Ramazani, Ali; Davoudi, Noushin

    2012-11-01

    Leishmaniasis is caused by protozoan parasites belonging to the genus Leishmania. Cutaneous leishmaniasis is the most common form of leishmaniasis in Iran. As there is not any vaccine for leishmaniasis, treatment is important to prevent the spreading of parasites. There is, therefore, a need to develop newer drugs from different sources. The aim of this study was to assess anti-leishmanial activity of the ethanolic extracts of 17 different medicinal plants against Leishmania major promastigotes and macrophage cell line J774. The selection of the hereby studied 17 plants was based on the existing information on their local ethnobotanic history. Plants were dried, powdered, and macerated in a hydroalcoholic solution. Resulting extracts have been assessed for in vitro anti-leishmanial and brine shrimp toxicity activities. Four plants, Caesalpinia gilliesii, Satureia hortensis, Carum copticum heirm, and Thymus migricus, displayed high anti-leishmanial activity (IC50, 9.76 ± 1.27, 15.625 ± 3.76, 15.625 ± 5.46, and 31.25 ± 15.44 μM, respectively) and were toxic against the J774 macrophage cell line at higher concentrations than those needed to inhibit the parasite cell growth (IC50, 45.13 ± 3.17, 100.44 ± 17.48, 43.76 ± 0.78, and 39.67 ± 3.29 μM, respectively). Glucantime as positive control inhibited the growth of L. major promastigotes with IC50 = 254 μg/ml on promastigotes (1 × 10(6)/100 μ/well) of a log phase culture, without affecting the growth of J774 macrophages. These data revealed that C. gilliesii, S. hortensis, C. copticum heirm, and T. migricus extracts contain active compounds, which could serve as alternative agents in the control of cutaneous leishmaniasis. The activity of these herbs against L. major promastigotes and macrophage cell line J774 was reported for the first time in our study.

  19. Metode de atracţie şi localizare a faunei utile în agrocenoza culturii de piersic ca factor biologic de control al densităţii speciilor dăunătoare

    Directory of Open Access Journals (Sweden)

    Mihai BATCO

    2016-06-01

    Full Text Available The use of such biorational means as nectariferous plants (Eruca sativa, Fagopyrum esculentum, Phacelia tanacetifolia, Satureja hortensis, Lobulalaria maritima, Dracocephalum moldavica and lawn grasses, protein-carbohydrate compositions and methyl salicylate as factors influencing the beneficial fauna in peach orchard agrocenosis has contributed to the attraction and location of 26 species of Encyrtidae belonging to 19 genera. The species capable to influence the numeric dynamics of economically important species such as oriental moth (Grapholita molesta Busck, peach twig borer (Anarsia lineatella Z, San Jose scale (Diaspidiotus perniciosus Comst., fruit apple scale (Eulecanium coryli L. were nominated. Encyrtidae species whose hosts are potential pests of peach trees, as well as hyperparasite species and parasites of beneficial predatory insects were registered. The stages for timely application of biorational means for useful fauna in the peach orchard agrocenosis during the vegetation period were established. Rezumat. Aplicarea mijloacelor bioraţionale precum culturile nectarifere (Eruca sativa, Fagopyrum esculentum, Phacelia tanacetifolia, Satureja hortensis, Lobulalaria maritima, Dracocephalum moldavica şi iarba de gazon, compoziţiile proteico-glucidice şi metilsalicilatul ca factori de influenţă asupra faunei benefice în agrocenoza culturii de piersic au contribuit la atracţia şi localizarea a 26 specii de Encyrtidae, care se atribuie la 19 genuri. Sunt nominalizate speciile capabile de a influenţa dinamica numerică a speciilor economic importante, aşa ca molia orientală (Grapholita molesta Busck, molia vărgată (Anarsia lineatella Z, păduchele din San Jose (Diaspidiotus perniciosus Comst., păduchele ţestos fals al mărului (Eulecanium coryli L.. Au fost semnalate specii de Encyrtidae ale căror gazde sunt dăunători potenţiali ai piersicului şi de asemenea specii hiperparazite şi paraziţi ai insectelor pr

  20. Transcriptome Characterization and Sequencing-Based Identification of Salt-Responsive Genes in Millettia pinnata, a Semi-Mangrove Plant

    OpenAIRE

    Huang, Jianzi; Lu, Xiang; Yan, Hao; Chen, Shouyi; Zhang, Wanke; Huang, Rongfeng; Zheng, Yizhi

    2012-01-01

    Semi-mangroves form a group of transitional species between glycophytes and halophytes, and hold unique potential for learning molecular mechanisms underlying plant salt tolerance. Millettia pinnata is a semi-mangrove plant that can survive a wide range of saline conditions in the absence of specialized morphological and physiological traits. By employing the Illumina sequencing platform, we generated ∼192 million short reads from four cDNA libraries of M. pinnata and processed them into 108 ...

  1. In planta Transformed Cumin (Cuminum cyminum L.) Plants, Overexpressing the SbNHX1 Gene Showed Enhanced Salt Endurance

    OpenAIRE

    Pandey, Sonika; Patel, Manish Kumar; Mishra, Avinash; Jha, Bhavanath

    2016-01-01

    Cumin is an annual, herbaceous, medicinal, aromatic, spice glycophyte that contains diverse applications as a food and flavoring additive, and therapeutic agents. An efficient, less time consuming, Agrobacterium-mediated, a tissue culture-independent in planta genetic transformation method was established for the first time using cumin seeds. The SbNHX1 gene, cloned from an extreme halophyte Salicornia brachiata was transformed in cumin using optimized in planta transformation method. The SbN...

  2. Aviation Fueling: A Cleaner, Greener Approach

    Science.gov (United States)

    2011-01-01

    Considered a noxious weed, it produces 5–10 kg-biomass/m2-yr (similar to macroalgae ), a source of pyrolysis fuels with beneficial water treatment International...donax) pro- duce 23–50 ton/acre. It tolerates some salinity and brackish waters and also overwhelms native vegetation. Seaweed, a macroalgae , has...halophytes, algae, cyanobacteria, and “weeds” using wastelands, waste water , and seawater— have the capacity to be drop-in fuel replacements for

  3. Studies on the Elemental and Chemical Constituent of Some Myanmar Indigenous Medicinal Plants used for the Treatment of Hypertension

    International Nuclear Information System (INIS)

    Myatt Hla Wai; Kyaw Naing; Hla Ngwe; Hnin Pwint Aung; Myint U; Maung Maung Htay

    2004-06-01

    Study of Myanmar indigenous medicinal plants used for the treatment of hypertension was conducted. The samples studied were Gant-ka-lar (Gisekia pharnaceoides), Dan-da-lun (Moringa oleifera), Egayit (Millingtonia hortensis), Sue-pan (Carthumas tinctarius), Kauk-yoe-new (Oxystelma esculentum), Shauk (Citrus medica), Kyet-lei-san (Vitex glabrata), Sin-ngo-myet (Eleusine indica). In all these samples, qualitative determination of potassium had been determined by High Purity Germanium gamma counter and quantitative determination had been accomplished by NaI (Tl) gamma scintillation counting and ''Aloka'' gross gamma counting methods. In addition, quantitative determination of the elements in these samples was carried out by Atomic Absorption Spectrophotometry and Flame photometry. Relative quantitative elemental analysis of these samples was carried out by using Energy Dispersive X-ray Fluorescence (EDXRF) spectrometry

  4. Improved methodologies for extraction of salt in halophytes

    Directory of Open Access Journals (Sweden)

    Tiago Morais

    2014-06-01

    This method yield rates in Salicornia appear to be higher than the expected based on previous publication. The data suggests other elements of interest may be differently distributed between the two genera. A nutritional profile, which we intend to do, may elucidate about the contents of vegetable salt.

  5. Antioxidative response mechanisms in halophytes: their role in ...

    Indian Academy of Sciences (India)

    changes in ionic and water balance cause molecular damage and growth arrest. ... An optimal supply of CO2 determines the availability of. NADP to leaves via the ...... plasts in the plant cell, but could also leak into the cytosol, resulting in ...

  6. Ecosystem Services and Community-Based Approaches to Wastewater and Saline Soils Reclamation in the Drylands of Uzbekistan

    Science.gov (United States)

    Toderich, Kristina; Khujanazarov, Timur; Aralova, Dildora; Shuyskaya, Elena; Gismatulina, Liliya; Boboev, Hasan

    2017-04-01

    The working hypothesis of this article support an indication of declining water quality, increasing soils salinity and higher production costs in the Bukhara oasis- a borderline lands between the sandy Kyzylkum Desert and irrigated zone in the lower stream of Zarafshan River Basin. The pollution of waters and soils with toxic metals is the major environmental problem in these agro-ecological zones. Conventional remediation approaches usually do not ensure adequate results. The mobility of toxic pollutants can be highly facilitated by the chemical properties of soils and the aridity of the climate. The impact of these factors of land degradation induces reduction in biodiversity and yields losses of agricultural crops and wild desert plant communities. A recent survey showed that the chemical composition of the drainage effluents is sulfate-chloride-hydrocarbonate - magnesium-sodium-calcium with high level of mineralization 4200 - 18800 ppm. Concentration of chloride and sulfate, detected both in drainage effluents and ground water, is 10 times higher than maximum allowable concentration (MAC); and traces of heavy metals, such as strontium, selenium, arsenic, lead, zinc, uranium are 2 times higher than MAC. Distribution of boron showed a strong correlation with those of arsenic and antimony. Aluminum has a significant correlation with arsenic and lead distribution. Antimony correlates significantly with zinc and arsenic, while copper and iron (Fe57) also well correlate with each other. Because these metals rarely exist in natural environment, it is presumed that they are caused both by the usage of some chemicals at the agricultural field in harvest season and by the discharge of some technogenic chemicals from industry. The desalinated/treated wastewater were used to irrigate high value crops and the waste brine is transformed into a resource that was used to grow aquatic species (fish, algae) and irrigate halophytic species with benefits for livestock, farmers and

  7. Hormonal dynamics during salt stress responses of salt-sensitive Arabidopsis thaliana and salt-tolerant Thellungiella salsuginea

    Czech Academy of Sciences Publication Activity Database

    Přerostová, Sylva; Dobrev, Petre; Gaudinová, Alena; Hošek, Petr; Soudek, Petr; Knirsch, Vojtěch; Vaňková, Radomíra

    2017-01-01

    Roč. 264, NOV (2017), s. 188-198 ISSN 0168-9452 R&D Projects: GA ČR(CZ) GA16-14649S; GA ČR GA17-04607S; GA MŠk LD15093 Grant - others:European Regional Development Fund(XE) CZ.2.16/3.1.00/24014 Institutional support: RVO:61389030 Keywords : Abscisic acid * Auxin * Cytokinin * Halophyte * Phytohormone * Salt stress Subject RIV: EF - Botanics OBOR OECD: Plant sciences, botany Impact factor: 3.437, year: 2016

  8. Secondary plant succession on disturbed sites at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Angerer, J.P.; Ostler, W.K.; Gabbert, W.D.; Schultz, B.W.

    1994-12-01

    This report presents the results of a study of secondary plant succession on disturbed sites created during initial site investigations in the late 1970s and early 1980s at Yucca Mountain, NV. Specific study objectives were to determine the rate and success of secondary plant succession, identify plant species found in disturbances that may be suitable for site-specific reclamation, and to identify environmental variables that influence succession on disturbed sites. During 1991 and 1992, fifty seven disturbed sites were located. Vegetation parameters, disturbance characteristics and environmental variables were measured at each site. Disturbed site vegetation parameters were compared to that of undisturbed sites to determine the status of disturbed site plant succession. Vegetation on disturbed sites, after an average of ten years, was different from undisturbed areas. Ambrosia dumosa, Chrysothamnus teretifolius, Hymenoclea salsola, Gutierrezia sarothrae, Atriplex confertifolia, Atriplex canescens, and Stephanomeria pauciflora were the most dominant species across all disturbed sites. With the exception of A. dumosa, these species were generally minor components of the undisturbed vegetation. Elevation, soil compaction, soil potassium, and amounts of sand and gravel in the soil were found to be significant environmental variables influencing the species composition and abundance of perennial plants on disturbed sites. The recovery rate for disturbed site secondary succession was estimated. Using a linear function (which would represent optimal conditions), the recovery rate for perennial plant cover, regardless of which species comprised the cover, was estimated to be 20 years. However, when a logarithmic function (which would represent probable conditions) was used, the recovery rate was estimated to be 845 years. Recommendations for future studies and site-specific reclamation of disturbances are presented.

  9. Secondary plant succession on disturbed sites at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Angerer, J.P.; Ostler, W.K.; Gabbert, W.D.; Schultz, B.W.

    1994-12-01

    This report presents the results of a study of secondary plant succession on disturbed sites created during initial site investigations in the late 1970s and early 1980s at Yucca Mountain, NV. Specific study objectives were to determine the rate and success of secondary plant succession, identify plant species found in disturbances that may be suitable for site-specific reclamation, and to identify environmental variables that influence succession on disturbed sites. During 1991 and 1992, fifty seven disturbed sites were located. Vegetation parameters, disturbance characteristics and environmental variables were measured at each site. Disturbed site vegetation parameters were compared to that of undisturbed sites to determine the status of disturbed site plant succession. Vegetation on disturbed sites, after an average of ten years, was different from undisturbed areas. Ambrosia dumosa, Chrysothamnus teretifolius, Hymenoclea salsola, Gutierrezia sarothrae, Atriplex confertifolia, Atriplex canescens, and Stephanomeria pauciflora were the most dominant species across all disturbed sites. With the exception of A. dumosa, these species were generally minor components of the undisturbed vegetation. Elevation, soil compaction, soil potassium, and amounts of sand and gravel in the soil were found to be significant environmental variables influencing the species composition and abundance of perennial plants on disturbed sites. The recovery rate for disturbed site secondary succession was estimated. Using a linear function (which would represent optimal conditions), the recovery rate for perennial plant cover, regardless of which species comprised the cover, was estimated to be 20 years. However, when a logarithmic function (which would represent probable conditions) was used, the recovery rate was estimated to be 845 years. Recommendations for future studies and site-specific reclamation of disturbances are presented

  10. Salicornia strobilacea (synonym of Halocnemum strobilaceum Grown Under Different Tidal Regimes Selects Rhizosphere Bacteria Capable of Promoting Plant Growth

    Directory of Open Access Journals (Sweden)

    Ramona Marasco

    2016-08-01

    Full Text Available Halophytes classified under the common name of salicornia colonize salty and coastal environments across tidal inundation gradients. To unravel the role of tide-related regimes on the structure and functionality of root associated bacteria, the rhizospheric soil of Salicornia strobilacea (synonym of Halocnemum strobilaceum plants was studied in a tidal zone of the coastline of Southern Tunisia. Although total counts of cultivable bacteria did not change in the rhizosphere of plants grown along a tidal gradient, significant differences were observed in the diversity of both the cultivable and uncultivable bacterial communities. This observation indicates that the tidal regime is contributing to the bacterial species selection in the rhizosphere. Despite the observed diversity in the bacterial community structure, the PGP potential of cultivable rhizospheric bacteria, assessed through in vitro and in vivo tests, was equally distributed along the tidal gradient. Root colonization tests with selected strains proved that halophyte rhizospheric bacteria (i stably colonize S. strobilacea rhizoplane and the plant shoot suggesting that they move from the root to the shoot and (ii are capable of improving plant growth. The versatility in the root colonization, the overall PGP traits and the in vivo plant growth promotion under saline condition suggest that such beneficial activities likely take place naturally under a range of tidal regimes.

  11. Salicornia strobilacea (Synonym of Halocnemum strobilaceum) Grown under Different Tidal Regimes Selects Rhizosphere Bacteria Capable of Promoting Plant Growth.

    Science.gov (United States)

    Marasco, Ramona; Mapelli, Francesca; Rolli, Eleonora; Mosqueira, Maria J; Fusi, Marco; Bariselli, Paola; Reddy, Muppala; Cherif, Ameur; Tsiamis, George; Borin, Sara; Daffonchio, Daniele

    2016-01-01

    Halophytes classified under the common name of salicornia colonize salty and coastal environments across tidal inundation gradients. To unravel the role of tide-related regimes on the structure and functionality of root associated bacteria, the rhizospheric soil of Salicornia strobilacea (synonym of Halocnemum strobilaceum) plants was studied in a tidal zone of the coastline of Southern Tunisia. Although total counts of cultivable bacteria did not change in the rhizosphere of plants grown along a tidal gradient, significant differences were observed in the diversity of both the cultivable and uncultivable bacterial communities. This observation indicates that the tidal regime is contributing to the bacterial species selection in the rhizosphere. Despite the observed diversity in the bacterial community structure, the plant growth promoting (PGP) potential of cultivable rhizospheric bacteria, assessed through in vitro and in vivo tests, was equally distributed along the tidal gradient. Root colonization tests with selected strains proved that halophyte rhizospheric bacteria (i) stably colonize S. strobilacea rhizoplane and the plant shoot suggesting that they move from the root to the shoot and (ii) are capable of improving plant growth. The versatility in the root colonization, the overall PGP traits and the in vivo plant growth promotion under saline condition suggest that such beneficial activities likely take place naturally under a range of tidal regimes.

  12. Impact of logging on a mangrove swamp in South Mexico: cost / benefit analysis

    Directory of Open Access Journals (Sweden)

    Cristian Tovilla Hernández

    2001-06-01

    Full Text Available Environmental changes caused by logging in a mangrove swamp were studied in Barra de Tecoanapa, Guerrero, Mexico. Original forest included Rhizophora mangle, Laguncularia racemosa, Avicennia germinans and halophytic vegetation, and produced wood (164.03 m3/ha and organic matter (3.9 g/m2/day. A total of 3.5 tons of wood per year were harvested from this area. Later, an average of 2 555 kg of maize per planting cycle were obtained (market value of 88 USD. Succession when the area was abandoned included strictly facultative and glycophyte halophytes (16 families, Cyperaceae and Poaceae were the best represented. After logging, temperatures increased 13 °C in the soil and 11°C in the air, whereas salinity reached 52 psu in the dry season. These modified soil color and sand content increased from 42.6 to 63.4%. Logging was deleterious to species, habitat, biogeochemical and biological cycles, organic matter production, seeds, young plants, genetic exchange conservation of soil and its fertility, coastal protection, and aesthetic value; 3 000 m2 had eroded as the river advanced towards the deforested area (the cost/benefit analysis showed a ratio of 246: 1. There was long-term economic loss for the community and only 30% of the site has recovered after five years.

  13. Salicornia strobilacea (Synonym of Halocnemum strobilaceum) Grown under Different Tidal Regimes Selects Rhizosphere Bacteria Capable of Promoting Plant Growth

    KAUST Repository

    Marasco, Ramona; Mapelli, Francesca; Rolli, Eleonora; Mosqueira, Maria J.; Fusi, Marco; Bariselli, Paola; Reddy, Muppala P.; Cherif, Ameur; Tsiamis, George; Borin, Sara; Daffonchio, Daniele

    2016-01-01

    Halophytes classified under the common name of salicornia colonize salty and coastal environments across tidal inundation gradients. To unravel the role of tide-related regimes on the structure and functionality of root associated bacteria, the rhizospheric soil of Salicornia strobilacea (synonym of Halocnemum strobilaceum) plants was studied in a tidal zone of the coastline of Southern Tunisia. Although total counts of cultivable bacteria did not change in the rhizosphere of plants grown along a tidal gradient, significant differences were observed in the diversity of both the cultivable and uncultivable bacterial communities. This observation indicates that the tidal regime is contributing to the bacterial species selection in the rhizosphere. Despite the observed diversity in the bacterial community structure, the plant growth promoting (PGP) potential of cultivable rhizospheric bacteria, assessed through in vitro and in vivo tests, was equally distributed along the tidal gradient. Root colonization tests with selected strains proved that halophyte rhizospheric bacteria (i) stably colonize S. strobilacea rhizoplane and the plant shoot suggesting that they move from the root to the shoot and (ii) are capable of improving plant growth. The versatility in the root colonization, the overall PGP traits and the in vivo plant growth promotion under saline condition suggest that such beneficial activities likely take place naturally under a range of tidal regimes.

  14. Salicornia strobilacea (Synonym of Halocnemum strobilaceum) Grown under Different Tidal Regimes Selects Rhizosphere Bacteria Capable of Promoting Plant Growth

    KAUST Repository

    Marasco, Ramona

    2016-08-22

    Halophytes classified under the common name of salicornia colonize salty and coastal environments across tidal inundation gradients. To unravel the role of tide-related regimes on the structure and functionality of root associated bacteria, the rhizospheric soil of Salicornia strobilacea (synonym of Halocnemum strobilaceum) plants was studied in a tidal zone of the coastline of Southern Tunisia. Although total counts of cultivable bacteria did not change in the rhizosphere of plants grown along a tidal gradient, significant differences were observed in the diversity of both the cultivable and uncultivable bacterial communities. This observation indicates that the tidal regime is contributing to the bacterial species selection in the rhizosphere. Despite the observed diversity in the bacterial community structure, the plant growth promoting (PGP) potential of cultivable rhizospheric bacteria, assessed through in vitro and in vivo tests, was equally distributed along the tidal gradient. Root colonization tests with selected strains proved that halophyte rhizospheric bacteria (i) stably colonize S. strobilacea rhizoplane and the plant shoot suggesting that they move from the root to the shoot and (ii) are capable of improving plant growth. The versatility in the root colonization, the overall PGP traits and the in vivo plant growth promotion under saline condition suggest that such beneficial activities likely take place naturally under a range of tidal regimes.

  15. Soil and fertilizer amendments and edge effects on the floral succession of pulverized fuel ash

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, P. [Roehampton University, London (United Kingdom). Whitelands College

    2009-01-15

    Plots of fresh pulverized fuel ash (PFA, an industrial waste) were inoculated with soils from existing PFA sites and fertilizers in a factorial design, then left unmanaged for 12 years during which time the floral development and soil chemistry were monitored annually. For the first 3 years, the site supported a sparse mix of chenopods (including the scarce Chenopodium glaucum) and halophytes. As salinity declined, ruderals, legumes, and grasses plus the fire-site moss Funaria hygrometrica colonized, followed by Festuca arundinacea grassland (NVC community MG12) and Hippophae rhamnoides scrub. Dactylorhiza incarnata (orchidacea) appeared after 7 years, but only in plots that had received soil from existing orchid colonies. Four years later, a larger second generation of Dactylorhiza appeared, but only in the central zone of the site where vegetation was thinnest. By year 12, the site was dominated by coarse grasses and scrub, with early successional species persisting only in the sparsely vegetated center, where nitrate levels were lowest. This edge effect is interpreted as centripetal encroachment, a process of potentially wider concern for the conservation of low-fertility habitat patches. Overall, seed bank inoculation seems to have introduced few but desirable species (D. incarnata, Pyrola rotundifolia, some halophytes, and annuals), whereas initial application of organic fertilizer had long-lasting ({ge} 10 years) effects on cover and soil composition.

  16. De novo sequencing, assembly, and analysis of Iris lactea var. chinensis roots' transcriptome in response to salt stress.

    Science.gov (United States)

    Gu, Chunsun; Xu, Sheng; Wang, Zhiquan; Liu, Liangqin; Zhang, Yongxia; Deng, Yanming; Huang, Suzhen

    2018-04-01

    As a halophyte, Iris lactea var. chinensis (I. lactea var. chinensis) is widely distributed and has good drought and heavy metal resistance. Moreover, it is an excellent ornamental plant. I. lactea var. chinensis has extensive application prospects owing to the global impacts of salinization. To better understand its molecular mechanism involved in salt resistance, the de novo sequencing, assembly, and analysis of I. lactea var. chinensis roots' transcriptome in response to salt-stress conditions was performed. On average, 74.17% of the clean reads were mapped to unigenes. A total of 121,093 unigenes were constructed and 56,398 (46.57%) were annotated. Among these, 13,522 differentially expressed genes (DEGs) were identified between salt-treated and control samples Compared to the transcriptional level of control, 7037 DEGs were up-regulated and 6539 down-regulated. In addition, 129 up-regulated and 1609 down-regulated genes were simultaneously detected in all three pairwise comparisons between control and salt-stressed libraries. At least 247 and 250 DEGs encoding transcription factors and transporter proteins were identified. Meanwhile, 130 DEGs regarding reactive oxygen species (ROS) scavenging system were also summarized. Based on real-time quantitative RT-PCR, we verified the changes in the expression patterns of 10 unigenes. Our study identified potential salt-responsive candidate genes and increased the understanding of halophyte responses to salinity stress. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  17. Tissue-specific and cation/anion-specific DNA methylation variations occurred in C. virgata in response to salinity stress.

    Directory of Open Access Journals (Sweden)

    Xiang Gao

    Full Text Available Salinity is a widespread environmental problem limiting productivity and growth of plants. Halophytes which can adapt and resist certain salt stress have various mechanisms to defend the higher salinity and alkalinity, and epigenetic mechanisms especially DNA methylation may play important roles in plant adaptability and plasticity. In this study, we aimed to investigate the different influences of various single salts (NaCl, Na2SO4, NaHCO3, Na2CO3 and their mixed salts on halophyte Chloris. virgata from the DNA methylation prospective, and discover the underlying relationships between specific DNA methylation variations and specific cations/anions through the methylation-sensitive amplification polymorphism analysis. The results showed that the effects on DNA methylation variations of single salts were ranked as follows: Na2CO3> NaHCO3> Na2SO4> NaCl, and their mixed salts exerted tissue-specific effects on C. virgata seedlings. Eight types of DNA methylation variations were detected and defined in C. virgata according to the specific cations/anions existed in stressful solutions; in addition, mix-specific and higher pH-specific bands were the main type in leaves and roots independently. These findings suggested that mixed salts were not the simple combination of single salts. Furthermore, not only single salts but also mixed salts showed tissue-specific and cations/anions-specific DNA methylation variations.

  18. Tissue-specific and cation/anion-specific DNA methylation variations occurred in C. virgata in response to salinity stress.

    Science.gov (United States)

    Gao, Xiang; Cao, Donghui; Liu, Jie; Wang, Xiaoping; Geng, Shujuan; Liu, Bao; Shi, Decheng

    2013-01-01

    Salinity is a widespread environmental problem limiting productivity and growth of plants. Halophytes which can adapt and resist certain salt stress have various mechanisms to defend the higher salinity and alkalinity, and epigenetic mechanisms especially DNA methylation may play important roles in plant adaptability and plasticity. In this study, we aimed to investigate the different influences of various single salts (NaCl, Na2SO4, NaHCO3, Na2CO3) and their mixed salts on halophyte Chloris. virgata from the DNA methylation prospective, and discover the underlying relationships between specific DNA methylation variations and specific cations/anions through the methylation-sensitive amplification polymorphism analysis. The results showed that the effects on DNA methylation variations of single salts were ranked as follows: Na2CO3> NaHCO3> Na2SO4> NaCl, and their mixed salts exerted tissue-specific effects on C. virgata seedlings. Eight types of DNA methylation variations were detected and defined in C. virgata according to the specific cations/anions existed in stressful solutions; in addition, mix-specific and higher pH-specific bands were the main type in leaves and roots independently. These findings suggested that mixed salts were not the simple combination of single salts. Furthermore, not only single salts but also mixed salts showed tissue-specific and cations/anions-specific DNA methylation variations.

  19. A high-quality genome assembly of quinoa provides insights into the molecular basis of salt bladder-based salinity tolerance and the exceptional nutritional value

    Science.gov (United States)

    Zou, Changsong; Chen, Aojun; Xiao, Lihong; Muller, Heike M; Ache, Peter; Haberer, Georg; Zhang, Meiling; Jia, Wei; Deng, Ping; Huang, Ru; Lang, Daniel; Li, Feng; Zhan, Dongliang; Wu, Xiangyun; Zhang, Hui; Bohm, Jennifer; Liu, Renyi; Shabala, Sergey; Hedrich, Rainer; Zhu, Jian-Kang; Zhang, Heng

    2017-01-01

    Chenopodium quinoa is a halophytic pseudocereal crop that is being cultivated in an ever-growing number of countries. Because quinoa is highly resistant to multiple abiotic stresses and its seed has a better nutritional value than any other major cereals, it is regarded as a future crop to ensure global food security. We generated a high-quality genome draft using an inbred line of the quinoa cultivar Real. The quinoa genome experienced one recent genome duplication about 4.3 million years ago, likely reflecting the genome fusion of two Chenopodium parents, in addition to the γ paleohexaploidization reported for most eudicots. The genome is highly repetitive (64.5% repeat content) and contains 54 438 protein-coding genes and 192 microRNA genes, with more than 99.3% having orthologous genes from glycophylic species. Stress tolerance in quinoa is associated with the expansion of genes involved in ion and nutrient transport, ABA homeostasis and signaling, and enhanced basal-level ABA responses. Epidermal salt bladder cells exhibit similar characteristics as trichomes, with a significantly higher expression of genes related to energy import and ABA biosynthesis compared with the leaf lamina. The quinoa genome sequence provides insights into its exceptional nutritional value and the evolution of halophytes, enabling the identification of genes involved in salinity tolerance, and providing the basis for molecular breeding in quinoa. PMID:28994416

  20. Mercury cycling and sequestration in salt marshes sediments: An ecosystem service provided by Juncus maritimus and Scirpus maritimus

    International Nuclear Information System (INIS)

    Marques, B.; Lillebo, A.I.; Pereira, E.; Duarte, A.C.

    2011-01-01

    In this study two time scales were looked at: a yearlong study was completed, and a 180-day decay experiment was done. Juncus maritimus and Scirpus maritimus have different life cycles, and this seems to have implications in the Hg-contaminated salt marsh sediment chemical environment, namely Eh and pH. In addition, the belowground biomass decomposition rates were faster for J. maritimus, as well as the biomass turnover rates. Results show that all these species-specific factors have implications in the mercury dynamics and sequestration. Meaning that J. maritimus belowground biomass has a sequestration capacity for mercury per square metre approximately 4-5 times higher than S. maritimus, i.e., in S. maritimus colonized areas Hg is more extensively exchange between belowground biomass and the rhizosediment. In conclusion, J. maritimus seems to provide a comparatively higher ecosystem service through phytostabilization (Hg complexation in the rhizosediment) and through phytoaccumulation (Hg sequestration in the belowground biomass). - Graphical abstract: Display Omitted Highlights: → Potentially halophytes auto-remediate systems by reducing Hg availability. → Species-specific factors have implications in the Hg dynamics and sequestration. → Ecosystem services are provided through phytostabilization and/or phytoaccumulation. → J. maritimus provide a comparatively higher ecosystem service. → In S. maritimus rhizosediment Hg is more extensively exchange with the halophyte. - Juncus maritimus provide an ecosystem service through Hg-phytostabilization and Hg-phytoaccumulation.

  1. Comparison of the genetic organization of the early salt-stress-response gene system in salt-tolerant Lophopyrum elongatum and salt-sensitive wheat

    OpenAIRE

    Dubcovsky, J; Galvez, AF; Dvořák, J

    1994-01-01

    Lophopyrum elongatum is a facultative halophyte related to wheat. Eleven unique clones corresponding to genes showing enhanced mRNA accumulation in the early stages of salt stress were previously isolated from a L. elongatum salt-stressed-root cDNA library. The chromosomal distribution of genes complementary to these clones in several genomes of the tribe Triticeae and their copy number in the L. elongatum and wheat genomes are reported. Genes complementary to clones pESI4, pESI14, pESI15, pE...

  2. Nutrient cycling in salt marshes: An ecosystem service to reduce eutrophication

    DEFF Research Database (Denmark)

    Lillebø, A. I.; Sousa, A. I.; Flindt, M. R.

    2013-01-01

    and sequestration in salt marshes. This chapter will thus emphasise that salt marsh halophytes have a crucial role on nutrient cycling and sequestration, providing ecological services that contribute to maintain the ecosystem health. © 2012 Nova Science Publishers, Inc. All rights reserved.......Salt marshes are classified as sensitive habitat under the Habitats Directive (92/43/EEC), which aims to promote the maintenance of biodiversity. Worldwide, the reduction of salt marsh areas, as a result of anthropogenic disturbance is of major concern, and several studies on the ecology...

  3. Potential for Conservation Agriculture in the Dry Marginal Zone of Central Syria: A Preliminary Assessment

    Directory of Open Access Journals (Sweden)

    Baqir Lalani

    2018-02-01

    Full Text Available This paper reports on early soil related outcomes from conservation agriculture (CA benchmark sites located within the marginal rainfed environment of agro-ecological zone 4 (annual rainfall: 200–250 mm in pre-conflict central Syria. The outcomes reported are specifically those that relate to beneficial soil quality and water retention attributes relative to conventional tillage-based soil management practices applied to the fodder barley–livestock system, the dominant system in the zone. On-farm operational research was established to examine the impact of a barley (Hordeum vulgare and vetch (Vicia sativa rotation intercropped with atriplex (Atriplex halimus and salsola (Salsola collina, under CA and conventional tillage agriculture, on the soil quality parameters and crop productivity. Preliminary results showed that CA had a positive effect on the soil quality parameters and crop performance. The soil moisture and hydraulic conductivity were higher under CA (p < 0.05, combined with improved productivity (grain and above-ground biomass under specific crop mixes. The results suggest that despite the marginal nature of the zone, the use of CA is a viable option for the future of farmers’ livelihoods within similar localities and agro-climates, given the benefits for soil moisture and grain and straw productivity. In addition, it is likely to positively impact those in marginal environments where both pastoralism and agro-pastoralism production systems co-exist and compete for crop biomass as a main source of livestock feed. The increase in grain and straw yields vis-à-vis improvements in biophysical parameters in the CA system relative to tillage agriculture does suggest, however, that the competition with livestock for biomass is likely to reduce over time, and farmers would be able to return increased levels of straw (as stubble and residue as mulch, given improved biomass yields.

  4. Nutritive value of some herbages for dromedary camel in Iran.

    Science.gov (United States)

    Towhidi, A

    2007-01-01

    To prepare standard tables of chemical composition of feedstuffs and to determine digestibility and palatability of different plant species in dromedary camel, this research was carried out by considering the most consuming herbages of Iranian desert rages. The plant species were included Atriplex lentiformis, Alhagi persarum, Seidlitzia rosmarinus, Saueda fruticosa, Haloxylon ammodendron, Tamarix kotschyi, Hammada salicornica, Salsola yazdiana, Salsola tomentosa, Tamarix aphylla and Artemisia sieberi. Thirty samples of the browsing parts were collected from the rangelands of Yazd province in autumn. Chemical composition of samples including Dry Matter (DM), Crude Protein (CP), Crude Fiber (CF), Neutral Detergent Fiber (NDF), Acid Detergent Fiber (ADF), Ether Extract (EE), Total Ash (TA), macro elements (Ca, P, Mg, K), micro elements (Fe, Mg, Cu, Zn)and gross energy (GE) were analyzed. The in vitro digestibility was determined by camel rumen liquor in Tilley and Terry method. Palatability of the plants were measured by three mature camels in cafeteria trials. The camels voluntarily fed 11 plant species during one hour for six days. Data were analyzed by GLM method in SAS software. The highest CP (18.3%) and the lowest NDF (40.4%) and ADF (35.4%) were related to Tamarix aphylla. The lowest CP (5.5%) and the highest NDF (72.8%) and ADF (59.6%) were related to Artemisia sieberi. The highest organic matter digestibility in dry matter was related to Haloxylon ammodendron. The results also indicated that Atriplex lentiformis, Alhagi persarum, Seidlitzia rosmarinus, Saueda fruticosa, Haloxylon ammodendron, Salsola tomentosa, Hammada salicornica, Tamarix kotschyi, Salsola yazdiana, Tamarix aphylla and Artemisia sieberi were more pleasure feed, respectively. It was not observed any correlation between %DOMD and chemical composition. Moreover, There was not a consistent relationship between the palatability of herbages with %DOMD or chemical composition.

  5. Pérdida de suelo, fósforo y materia orgánica por erosión hídrica en parcelas revegetadas con matorral autóctono bajo clima semiárido Soil, phosphorus and organic matter loss by water erosion in revege­tated plots with autoctonous shrubs under semi-arid climate

    Directory of Open Access Journals (Sweden)

    R. Bienes

    2010-01-01

    Full Text Available Se ensayan arbustos (Atriplex halimus (Ahy Thymus zygis (Tz en laderas del centro peninsular. Se estudia la erosión y la contaminación difusa, analizando el contenido de materia orgánica (MOy fósforo (P2O5 en suelo y sedimentos. En comparación con el control, Ah presentó un descenso significativo de escorrentía de un 47% y un 24% menos de erosión, pero Tz presentó un 12% más de escorren­tía y un 152% más de pérdida de suelo. Se evidencian cocientes de enriquecimiento de MO y P2O5 en sedimentos erosionados y relaciones entre la erosión y el conteni­do en MO y P, observándose ecuaciones de regresión con coeficientes de correla­ción elevados, R=0,91 y 0,87 respectiva­mente.Two treatments with shrubs (Atriplex halimus (Ah and Thymus Zygis (Tz were tested on hillsides from central Spain. It was studied the erosion and dif­fuse contamination by analyzing organic matter content (OM and phosphorus (P2O5 in soil and sediments. Compared with the control treatment, Ah presented a significant decrease of runoff and erosion, 47% and 24% lower respectively, but Tz showed 12% more runoff and 152% more erosion than control. Enrichment ratios of OM and P2O5 are evident in eroded sedi­ment and also a strong relation between erosion and OM and P2O5 content was found, showing regression equations with high correlation coefficients, R=0.87 and 0.91 respectively.

  6. New xenophytes from Gran Canaria (Canary Islands, Spain, with emphasis on naturalized and (potentially invasive species

    Directory of Open Access Journals (Sweden)

    Verloove, F.

    2013-12-01

    Full Text Available Trabajos recientes de campo en Gran Canaria han facilitado el descubrimiento de nuevas localidades para plantas vasculares no nativas. Agave attenuata, Antigonon leptopus, Atriplex nummularia, Cascabela thevetia, Cenchrus echinatus, Cuscuta campestris, Diplachne fusca subsp. uninervia, Diplotaxis tenuifolia, Dysphania anthelmintica (hasta ahora confundida con D. ambrosioides, Eclipta prostrata, Euphorbia pulcherrima, Fagopyrum esculentum, Gossypium barbadense, Lablab purpureus, Lemna minuta, Opuntia leucotricha, Passiflora edulis, Pennisetum glaucum, Phaseolus acutifolius, Pluchea carolinensis, Prosopis juliflora, Salvia microphylla, Schinus terebinthifolius, Senna spectabilis, Solanum chrysotrichum, Tecoma stans, Tipuana tipu, Urochloa mutica, U. plantaginea y Washingtonia se citan por primera vez para las Islas Canarias, mientras que Alopecurus myosuroides, Amaranthus blitoides, Bothriochloa ischaemum var. songarica, Cardamine flexuosa subsp. debilis, Heliotropium curassavicum, Leonotis nepetifolia, Medicago lupulina, Parkinsonia aculeata, Physalis peruviana, Phytolacca americana y Turnera ulmifolia son nuevas para la flora de la isla de Gran Canaria. Finalmente, se confirma la presencia de Paspalum vaginatum, P. distichum y Cortaderia selloana en Gran Canaria.Trabajos recientes de campo en Gran Canaria han facilitado el descubrimiento de nuevas localidades para plantas vasculares no nativas. Agave attenuata, Antigonon leptopus, Atriplex nummularia, Cascabela thevetia, Cenchrus echinatus, Cuscuta campestris, Diplachne fusca subsp. uninervia, Diplotaxis tenuifolia, Dysphania anthelmintica (hasta ahora confundida con D. ambrosioides, Eclipta prostrata, Euphorbia pulcherrima, Fagopyrum esculentum, Gossypium barbadense, Lablab purpureus, Lemna minuta, Opuntia leucotricha, Passiflora edulis, Pennisetum glaucum, Phaseolus acutifolius, Pluchea carolinensis, Prosopis juliflora, Salvia microphylla, Schinus terebinthifolius, Senna spectabilis, Solanum

  7. Halophyte filters as saline treatment wetlands; Applicators and constraints

    OpenAIRE

    Gaag, J.J.; Paulissen, M.P.C.P.; Slim, P.A.

    2010-01-01

    Purification of wastewater rich in nutrients and organic pollutants is essential for the protection of receiving waters and to enable water reuse. This report investigates the possibilities and constraints of constructed wetlands for treatment of slightly saline wastewater from aquaculture systems. As the body of literature for saline treatment wetlands is relatively small, the reports starts with a summary of processes in freshwater systems. It is then explained that these processes are also...

  8. ANTIMICROBIAL ACTIVITY OF OIL-BEARING PLANTS LAMIACEAE LINDL. TOWARDS ESCHERICHIA COLI

    Directory of Open Access Journals (Sweden)

    L.A. Kotyuk

    2016-03-01

    Full Text Available The paper relates to study of biological activity of 40% ethanol extracts of Dracocephalum moldavica, Hyssopus officinalis, Satureja hortensis, Lophanthus anisatus and Monarda diduma, grown in Ukrainian Polissya, against a pathogenic agent Escherichia coli UCM – B (ATCC 25922. The research proves that ethanol extracts of H. officinalis, D. moldavica, S. hortensis, L. anisatus exert antimicrobial activity as the extracted substances provided a twofold increase in minimum bactericidal concentration (MBC values against E. coli. Likewise, a twofold increase was observed in minimum inhibitory concentration (MIC of L. anisatus ethanol extracts. As to M. diduma ethanol extracts, their inhibitory and bactericidal influence on E. coli was not registered. Oil-bearing plants (family Lamiaceae, grown in Zhytomyr Polissya, are characterized by antimicrobial properties, attributed to biologically active substances that are formed and accumulated in the plant material. The main components of hyssop essential oil are isopinocamphone (44.43%, pinocamphone (35.49%, myrtenol (5.26 %, germacrene D (3.15 %, pulegone (2.93 %, bicyclogermacrene (1.35 %. In mint anise essential oil prevailed pulegone (59.19%, izomenton (14.34%, bicyclogermacrene (3,21 %, β-kariofilen (2,99 %, menton (2.21 %, 1,6-germacradien-5-ol (1.5 %, isopulegone (1.4 %, in summer savory – carvacrol (89.07%, g-terpinene (3.53%, α-thujone (1.7 %, camphor (1.48 %. The dominant components of moldavian dragonhead essential oil were geranial (26.19% and neral (22.36%, 2-(1-hydroxy-1-isopropyl-cyklopentanon (8.29 % , 2,3-dehydro-1,8-cineole (6.87 %, 3-(1-hydroxy-1-isopropyl cyklopentanon (6,51 %, nerol (4.74 %, 3-methyl-2-cyclohexane 1-on (2.13 %. The paper draws attention to further more detailed study of ethanol extracts of hyssop, moldavian dragonhead, summer savory, mint anise with the aim of producing antibacterial herbal

  9. Millipedes and centipedes in German greenhouses (Myriapoda: Diplopoda, Chilopoda

    Directory of Open Access Journals (Sweden)

    Peter Decker

    2014-04-01

    Full Text Available A review is given of all the literature records of millipedes and centipedes that have been found in German greenhouses together with additional records for 29 such sites. Species lists are given for 46 greenhouses investigated throughout Germany. Thirty-five diplopod and 18 chilopod species were found to occur in greenhouses, of which 15 (3 Chilopoda, 12 Diplopoda are restricted to this type of habitat. First records for Germany include Anadenobolus monilicornis (Porat, 1876, Epinannolene cf. trinidadensis Chamberlin, 1918, Epinannolene sp., Mesoiulus gridellii Strasser, 1934, Leptogoniulus sorornus (Butler, 1876, Rhinotus purpureus (Pocock, 1894, Cryptops doriae Pocock, 1891, Lamyctes coeculus (Brölemann, 1889 and Tygarrup javanicus (Attems, 1907. The millipedes Oxidus gracilis (C. L. Koch, 1847 and Amphitomeus attemsi (Schubart, 1934 and the centipedes Lithobius forficatus (Linnaeus, 1758 and Cryptops hortensis (Donovan, 1810 are the species most frequently found in greenhouses.

  10. Carbon storage and sequestration by trees in VIT University campus

    Science.gov (United States)

    Saral, A. Mary; SteffySelcia, S.; Devi, Keerthana

    2017-11-01

    The present study addresses carbon storage and sequestration by trees grown in VIT University campus, Vellore. Approximately twenty trees were selected from Woodstockarea. The above ground biomass and below ground biomass were calculated. The above ground biomass includes non-destructive anddestructive sampling. The Non-destructive method includes the measurement of height of thetree and diameter of the tree. The height of the tree is calculated using Total Station instrument and diameter is calculated using measuring tape. In the destructive method the weight of samples (leaves) and sub-samples (fruits, flowers) of the tree were considered. To calculate the belowground biomass soil samples are taken and analyzed. The results obtained were used to predict the carbon storage. It was found that out of twenty tree samples Millingtonia hortensis which is commonly known as Cork tree possess maximum carbon storage (14.342kg/tree) and carbon sequestration (52.583kg/tree) respectively.

  11. Potency of Lobak Leaves (Raphanus sativus L. var. hortensis Back as Anticancer and Antimicrobial Candidates

    Directory of Open Access Journals (Sweden)

    ESTU RETNANINGTYAS

    2009-07-01

    Full Text Available One of vegetables can preventive cancer and have been used traditionally to cure infection, such as lobak (Raphanus sativus L.. Ineffectiveness antibiotics to against microbial infections was still problem until now. Types of antibiotics and anticancer agents from natural resources should be explored and developed. This study was aimed to know toxicity effect and antimicrobial activity of active fractions from lobak leaves. Toxicity study was conducted using Brine Shrimp Lethality Test (BST. Samples were prepared at the concentration of 100, 500, and 1000μg/mL. Antibacterial study against Staphylococcus aureus was conducted using agar-well diffusion method at concentration 30, 40, 50, 60, 70, 80, 100%. Ethyl acetate fraction from methanol extract is the most active that had larger clear zone in S. aureus culture (10,64 mm and insoluble ethyl acetate fraction from methanol extract is the most active against A. salina (84% death A. salina at 100 µg/mL. Bioactive compounds at active fraction were identified to contain polar compounds.

  12. Trends in savanna structure and composition along an aridity gradient in the Kalahari

    CSIR Research Space (South Africa)

    Scholes, RJ

    2002-06-01

    Full Text Available Rooyen 1998). Sa- line areas such as the vast Makgadigadi pan support halophytic shrubs and grasses or are bare. Non-saline pans, for example at Nxai pan, support sedge- and grasslands, sometimes with tree clumps on slightly more elevated ground... being larger than about 20 mm (major axis); fine-leafed is smaller than 20 mm, and usually less than 2 mm. Deciduous means that > 90% of all tree and shrub leaves are lost for at least three months, evergreen means that > 80% of tree leaf is retained...

  13. Euphorbia latex: a possible source of hydrocarbons and rubber

    Energy Technology Data Exchange (ETDEWEB)

    Viaud, P; Teisseire, D

    1975-01-01

    Illustrated descriptions are given of 36 plants of potential economic value in underdeveloped tropical countries, classified by use. The plants are either wild or cultivated on a fairly local scale. Accounts of limitations and special requirements and lists of references, research contacts and sources of germ plasm are included for each species. The following tree and shrub species are included: Cnidoscolus aconitifolius, C. chayamansa and hearts of several edible palm species including Euterpe edulis (vegetables); Durio species, Garcinia mangostana, Solanum quitoense, Bactris gaspiaes, Citrus grandis, Annona muricata and Pourouma cecropiaefolia (fruits); Orbignya martiana, Caryocar species, Jessenia polycarpa and Simmondsia chinensis (oil seeds); Acacia albida, Brosimum alicastrum, Cassia sturtii, Atriplex species and Prosopis tamarungo (forage (browse)); Mauritia flexuosa (fruit, wood, etc.); Euphorbia antisyphilitica (wax); and Parthenium argentatum (rubber).

  14. Maceration of Extra Virgin Olive Oil with Common Aromatic Plants Using Ultrasound-Assisted Extraction: An UV-Vis Spectroscopic Investigation

    Directory of Open Access Journals (Sweden)

    Ozren Jović

    2018-01-01

    Full Text Available Rosemary (Rosmarinus officinalis, garden sage (Salvia officinalis, summer savory (Satureja hortensis, laurel (Laurus nobilis, and other aromatic plants were put in olive oil and exposed to ultrasounds for different duration. Filtrated oils were dissolved in cyclohexane, and UV-Vis measurements were carried out. Absorbance values corresponding to chlorophylls, carotenoids, flavonoids (370 nm, and polyphenols (around 300 nm were measured. In addition, for some samples, total phenols were determined using Folin-Denis reagent and compared with the similar maceration procedure in water solvent (instead of olive oil. Maceration without ultrasound in olive oil for each plant was also compared with ultrasound-assisted extraction. The results show that significant amount of aromatic content can be extracted in olive oil by applying ultrasounds for only few minutes, especially for Salvia officinalis powder. The use of UV-Vis measurements is simple but enough to examine the extent of phenol content extraction through such maceration procedure.

  15. Distillation fraction-specific ecotoxicological evaluation of a paraffin-rich crude oil.

    Science.gov (United States)

    Erlacher, Elisabeth; Loibner, Andreas P; Kendler, Romana; Scherr, Kerstin E

    2013-03-01

    Crude oil is a complex mixture of petroleum hydrocarbons (PHC) with distinct chemical, physical and toxicological properties relevant for contaminated site risk assessment. Ecotoxicological effects of crude oil distillation fractions on luminescent bacteria (Vibrio fischeri), earthworms (Dendrobaena hortensis) and invertebrates (Heterocypris incongruens) were tested using two spiked soils and their elutriates. Fraction 2 (F2) had an equivalent carbon number (ECN) range of >10 to 16, and F3 from >16 to 39. F2 showed a substantially higher ecotoxicological effect than F3 for Vibrio and Dendrobaena. In contrast, severe inhibition of Heterocypris by the poorly soluble F3 is attributed to mechanical organ blockage. Immediate sequestration of PHC to the organic matter-rich soil effected reduced toxicity for all organisms. This study indicates that a more differentiated consideration (i) of PHC mixtures based on ECN range and (ii) of model soil properties employed for ecotoxicity testing should be included into PHC-contaminated site risk assessment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Chemical composition and antioxidant and anti-Listeria activities of essential oils obtained from some Egyptian plants.

    Science.gov (United States)

    Viuda-Martos, Manuel; El Gendy, Abd El-Nasser G S; Sendra, Esther; Fernández-López, Juana; Abd El Razik, K A; Omer, Elsayed A; Pérez-Alvarez, Jose A

    2010-08-25

    The aim of this work was to (i) determine the chemical composition of the essential oils of six spices widely cultivated in Egypt (Origanum syriacum, Majorana hortensis, Rosmarinus officinalis, Cymbopogon citratus, Thymus vulgaris, and Artemisia annua); (ii) determine the antioxidant activity of the Egyptian essential oils by means of five different antioxidant tests; and (iii) determine the effectiveness of these essential oils on the inhibition of Listeria innocua CECT 910. There is a great variability in the chemical composition of essential oils obtained from the six Egyptian aromatic plants. Overall, thyme (highest percentage of inhibition of DPPH radical: 89.40%) and oregano (highest percentage of inhibition of TBARS: 85.79) essential oils presented the best antioxidant profiles, whereas marjoram, lemongrass, and artemisia were highly effective in metal chelating but had a pro-oxidative behavior by Rancimat induction test. Lemongrass essential oil showed the highest antibacterial activity against L. innocua with an inhibition zone of 49.00 mm, followed in effectiveness by thyme, marjoram, and oregano.

  17. A survey of mosquitoes breeding in used tires in Spain for the detection of imported potential vector species.

    Science.gov (United States)

    Roiz, D; Eritja, R; Escosa, R; Lucientes, J; Marquès, E; Melero-Alcíbar, R; Ruiz, S; Molina, R

    2007-06-01

    The used tire trade has facilitated the introduction, spread, and establishment of the Asian tiger mosquito, Aedes albopictus, and other mosquito species in several countries of America, Africa, Oceania, and Europe. A strategy for detecting these imported mosquito vectors was developed in Spain during 2003-2004 by EVITAR (multidisciplinary network for the study of viruses transmitted by arthropods and rodents). A survey in 45 locations found no invasive species. Eight autochthonous species of mosquitoes were detected in used tires, including Culex pipiens, Cx. hortensis, Cx. modestus, Anopheles atroparvus, An. claviger, Culiseta longiareolata, Cs. annulata, and Aedes caspius. Dominant species were Cx. pipiens and Cs. longiareolata. Aedes caspius was found in only once, near its natural breeding habitat. Considering the recent discovery of an established population of Ae. albopictus in Catalonia, the increasing commerce of used tires in Spain for recycling, storage, and recapping might greatly contribute to the rapid spread of this species across the Iberian Peninsula.

  18. Highlighting the mechanisms by which proline can confer tolerance to salt stress in cakile maritima

    International Nuclear Information System (INIS)

    Messedi, D.; Farhani, F.; Hamed, K.B.; Trabelsi, N.; Ksouri, R.; Chedly Abdelly, C.; Athar, H.U.R.

    2016-01-01

    Cakile maritima is an oleaginous halophyte growing in the sandy dunes along the Tunisian coast. In order to investigate the role of proline in inducing high salinity tolerance (200 and 400 mM NaCl) in this halophyte, we studied several aspects of the salt responses of C. maritma under exogenous proline supply (20 mM). Salinity levels above 100 mM, reduced growth, photosynthetic activity, and quantum yield of photosystem II (FPSII), while increasing the non photochemical quenching (NPQ). Significant inhibition of the linear electron transport rate (ETR) was also observed in plants grown at 400 mM NaCl. In addition, polyphenol content, total antioxidant and DPPH scavenging activities increased due to increasing salinity stress, and the concentration of malondialdehyde (MDA) also increased. The application of proline counteracted all these adverse effects of salt stress in plants grown at 200 mM NaCl, while it improved some of these physiological attributes at 400 mM NaCl. In addition, contribution of Na+ for the osmotic adjustment decreased in the leaves of salt treated plants supplied with proline exogenously. Exogenous application of proline induced the accumulation of potassium, proline and soluble carbohydrates in salt stressed plants, particularly at 400 mM. This explained the reason of growth enhancement induced by proline application. All together, our Results showed that the beneficial effect of exogenous proline on the response of C. maritima to salinity was due to its role in the protection of chloroplast structures, antioxidant defenses and osmotic adjustment. (author)

  19. Chemical profiling of infusions and decoctions of Helichrysum italicum subsp. picardii by UHPLC-PDA-MS and in vitro biological activities comparatively with green tea (Camellia sinensis) and rooibos tisane (Aspalathus linearis).

    Science.gov (United States)

    Pereira, Catarina Guerreiro; Barreira, Luísa; Bijttebier, Sebastiaan; Pieters, Luc; Neves, Vanessa; Rodrigues, Maria João; Rivas, Ricardo; Varela, João; Custódio, Luísa

    2017-10-25

    Several medicinal plants are currently used by the food industry as functional additives, for example botanical extracts in herbal drinks. Moreover, the scientific community has recently begun focusing on halophytes as sources of functional beverages. Helichrysum italicum subsp. picardii (everlasting) is an aromatic halophyte common in southern Europe frequently used as spice and in traditional medicine. In this context, this work explored for the first time H. italicum subsp. picardii as a potential source of innovative herbal beverages with potential health promoting properties. For that purpose, infusions and decoctions were prepared from roots, vegetative aerial-organs (stems and leaves) and flowers and evaluated for in vitro antioxidant and anti-diabetic activities. Samples were also assessed for toxicity in different mammalian cell lines and chemically characterized by spectrophotometric methods and ultra-high performance liquid chromatography-photodiode array-mass-spectrometry (UHPLC-PDA-MS). Results were expressed relating to 'a cup-of-tea' and compared with those obtained with green tea (Camellia sinensis) and rooibos tisane (Aspalathus linearis). Tisanes from the everlasting's above-ground organs, particularly flowers, have high polyphenolic content and several phenolics were identified; the main compounds were chlorogenic and quinic acids, dicaffeoylquinic-acid isomers and gnaphaliin-A. The antioxidant activity of beverages from the everlasting's above-ground organs matched or surpassed that of green tea and rooibos. Its anti-diabetic activity was moderate and toxicity low. Overall, our results suggest that the everlasting is a potential source of innovative and functional herbal beverages. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. ABA, GA(3), and nitrate may control seed germination of Crithmum maritimum (Apiaceae) under saline conditions.

    Science.gov (United States)

    Atia, Abdallah; Debez, Ahmed; Barhoumi, Zouhaier; Smaoui, Abderrazak; Abdelly, Chedly

    2009-08-01

    Impaired germination is common among halophyte seeds exposed to salt stress, partly resulting from the salt-induced reduction of the growth regulator contents in seeds. Thus, the understanding of hormonal regulation during the germination process is a main key: (i) to overcome the mechanisms by which NaCl-salinity inhibit germination; and (ii) to improve the germination of these species when challenged with NaCl. In the present investigation, the effects of ABA, GA(3), NO(-)(3), and NH(+)(4) on the germination of the oilseed halophyte Crithmum maritimum (Apiaceae) were assessed under NaCl-salinity (up to 200 mM NaCl). Seeds were collected from Tabarka rocky coasts (N-W of Tunisia). The exogenous application of GA(3), nitrate (either as NaNO(3) or KNO(3)), and NH(4)Cl enhanced germination under NaCl salinity. The beneficial impact of KNO(3) on germination upon seed exposure to NaCl salinity was rather due to NO(-)(3) than to K(+), since KCl failed to significantly stimulate germination. Under optimal conditions for germination (0 mM NaCl), ABA inhibited germination over time in a dose dependent manner, but KNO(3) completely restored the germination parameters. Under NaCl salinity, the application of fluridone (FLU) an inhibitor of ABA biosynthesis, stimulated substantially seed germination. Taken together, our results point out that NO(-)(3) and GA(3) mitigate the NaCl-induced reduction of seed germination, and that NO(-)(3) counteracts the inhibitory effect of ABA on germination of C. maritimum.

  1. Expansion of southern distributional range of Ucides occidentalis (Decapoda: Ucididae and Cardisoma crassum (Decapoda: Gecarcinidae

    Directory of Open Access Journals (Sweden)

    Solange Alemán

    2017-04-01

    Full Text Available Is recorded the species of crabs brachyuran Ucides occidentalis (mangrove crab and Cardisoma crassum (Blue crab or without mouth in the mangroves of San Pedro (Piura, expanding its geographical distribution south of Tumbes, which was the known limit. The habitat of these species is characterized by the presence of two varieties of mangrove trees, Jeli white (Laguncularia racemosa and salty Jeli (Avicenia germinans and halophytic shrub called glass (Batis maritima, it observing that the depth of the burrows is shallow (< 60 cm. Biometric information and some biological aspects of the collected specimens are also presented.

  2. Seed oil content and fatty acid composition of annual halophyte ...

    African Journals Online (AJOL)

    ajl yemi

    2011-12-19

    Dec 19, 2011 ... 1State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of. Sciences, Urumqi 830011, China. 2Graduate University of ... of S. acuminata: brown with soft coarse seed coat and black with rigid smooth seed coat (Ding et al., 2010). Brown and black ...

  3. Seed oil content and fatty acid composition of annual halophyte ...

    African Journals Online (AJOL)

    Suaeda acuminata produces two morphologically distinct types of seeds on the same plant. This study was conducted to compare oil content and fatty acid composition of the two seed morphs. Though oil characteristics between dimorphic seeds showed statistically significant difference, these differences were relatively ...

  4. Effect Of GAMMA Radiation On Antimicrobial Activity And Chemical Constituents Of Marjoram (Majorana Hortensis Essential Oil

    International Nuclear Information System (INIS)

    GALAL, Y.G.M.; EL-GHANDOUR, I.A.; ABOU SEER, A.M.M.; DESOUKY, E.M.; ARAFA, R.A.

    2010-01-01

    Field experiment was set up to study the response of marjoram plant grown on sandy soil and inoculated with Bradyrhizobium sp. and/or B. polymixa in combination with organic fertilizers. The extracted oil was irradiated with gamma irradiation at doses of 10, 20, 30, 40 and 50 kGy. The chemical constituents of the essential oils were analyzed by GC-Ms techniques after exposure to gamma radiation. The gamma irradiated essential oils of marjoram were tested for their antimicrobial activities against some pathogenic microorganisms i.e. Klebsiella pneumoniae, Bacillus cereus, Staphylococcus aureus, Salmonella enteritidis, Pseudomonas citri, Fusarium oxysporum, Aspergillus niger, Trichoderma viride and Aspergillus flavus. Extracted oil was the best when soil was treated with faba bean straw and inoculated with B. polymixa + Bradyrhizobium sp. Similarly, the extracted oil from plant cultivated in soil treated with sheep manure in combination with B. polymixa recorded the highest value. Results also revealed that gamma irradiation doses increased the antimicrobial activity with different magnitudes. The essential oil extracted from herb exposed to 30 kGy was found to be the most active antimicrobial with slight increases in the main components.

  5. ANTIMICROBIAL ACTIVITY OF ESSENTIAL OILS OF PLANTS BELONGING TO LAMIACEAE JUSS. FAMILY

    Directory of Open Access Journals (Sweden)

    Shanayda M.I.

    2015-12-01

    Full Text Available Introduction. One of the important sources of therapeutic and prophylactic agents of modern medicines are essential oils of medicinal plants. Essential oils are the main group of biologically active substances of a number of plants belonging to Lamiaceae Juss. Family. Antibacterial activity of medicinal plants belonging to Lamiaceae Family many scientists associated with containing of essential oils. In this regard, considerable interest presents the comparative analysis of the antimicrobial properties of essential oils of Lamiaceae Family representatives. Material and methods.The antimicrobial activity of essential oils of investigated plants was studied with using in vitro condition. The essential oils derived from the aerial parts of cultivated plants of Ocimum, Hyssopus, Dracocephalum, Lophanthus, Monarda and Satureja genus harvested during flowering period (in terms of Ternopil region. The antimicrobial activity of essential oils studied plants was studied by serial dilution method and disk diffusion assay. It has been applied on standard microorganism test strains: Bacillus subtilis ATCC 6633, Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 6538, Pseudomonas aeruginosa ATCC 9027 and Candida albicans ATCC 885-653. Results and discussion. It was conducted a comparative study of the influence of some essential oils of cultivated plants belonging to Lamiaceae family on microorganisms in conditions in vitro. It was found that essential oils of the studied plants were most effective in the maximum concentration (1:10. Gram-positive cocci S. aureus and yeast C. albicans were the most sensitive to influence of investigated essential oils. It was analyzed the relationship of the biological activity with the component composition of essential oils of plants. Essential oils of L. anisatus, M. fistulosa and S. hortensis characterized by the dominance of aromatic compounds and had shown stronger antimicrobial activity than essential oils of

  6. Characterizing gene responses to drought stress in fourwing saltbush [Atriplex canescens (Pursh.) Nutt.)

    Science.gov (United States)

    Linda S. Adair; David L. Andrews; John Cairney; Edward A. Funkhouser; Ronald J. Newton; Earl F. Aldon

    1992-01-01

    New techniques in molecular biology can be used to characterize genes whose expression is induced by drought stress. These techniques can be used to understand responses of range plants to environmental stresses at the biochemical and molecular level. For example, they can be used to characterize genes that respond to drought stress conditions in the native shrub

  7. Transuranium element transport in agricultural systems (soil to food chain transfer of nuclear fuel cycle radionuclides). Annual progress report

    International Nuclear Information System (INIS)

    Wallace, A.

    1977-10-01

    Progress is reported on the following research projects: preparation of bibliography covering literature on plant uptake of transuranium elements; development of techniques for growth of agricultural crops in large containers that simulate field conditions; equipment for counting of alpha-emitting transuranium elements; studies on variability in concentration ratio of 241 Am under different environmental conditions; alpha radiation burn in bush beans exposed to 241 Am in solution; constancy of concentration ratio as a measure of plant uptake of 241 Am; growth of radishes in soil with and without DTPA, and radish peel as source of radionuclides; effects of varying levels of DTPA in loam soil on concentration ratio values; and a plant species (Atriplex hymenelytra--desert holly) with high C.R. values and search for other plants with high C.R. values

  8. New contributions to the knowledge of the alien flora in Baix Llobregat county (Catalonia, Spain

    Directory of Open Access Journals (Sweden)

    H. Álvarez

    2016-08-01

    Full Text Available We provide new records of 17 exotic plants in the Baix Llobregat region observed between the years 2011 and 2014. Two species are the first records for Europe: Acacia rostellifera Benth. and Trichloris crinita (Lag. Parodi; two are new plants for the Iberian Peninsula: Bouteloua dactyloides (Nutt. Columbus and Nassella tenuissima (Trin. Barkworth; three are recorded by their first time in Catalonia: Atriplex semibaccata R. Br., Oenothera speciosa Nutt. and Verbena incompta P. W. Michael; five correspond to first records in Baix Llobregat: Parkinsonia aculeata L., Phacelia tanacetifolia Benth., Physalis peruviana L., Salpichroa origanifolia (Lam. Baill. and Verbena brasiliensis Vell. The remaining species are very rare in the studied area: Abutilon grandifolium (Willd. Sweet, Asperugo procumbens L., Eclipta prostrata (L. L. and Oenothera indecora Cambess.

  9. Suitable woody species for a land application alternative to pulp and paper mill wastewater disposal

    International Nuclear Information System (INIS)

    Aw, M.; Wagner, M.R.

    1993-01-01

    Saline pulp and paper wastewater produced by Stone Container Corporation in Snowflake, Arizona was used to irrigate 32 different species/genotypes/hybrids of woody plants to test their suitability as an alternative treatment to the current wastewater disposal method. Suitability was measured in terms of survival and height growth. Among the 32 species, six were found to be a very good choice for wastewater treatment and biomass production. Their suitability is further justified by the fact that some have salt tolerance and others fix nitrogen. These species are Tamarix ramosissima, Atriplex canescens, Robinia pseudoacacia, Eleagnus angustifoliz, Ulmus pumila, and Populus deltoides x Populus nigra. Three other species are possible candidates. These include Caragana arborescens, Gleditsia triacanthos and Populus deltoides var. siouxland. In general, conifers performed poorly because of the harsh environment and other silvicultural problems

  10. Seasonal variation in natural abundance of δ13C and 15N in Salicornia brachiata Roxb. populations from a coastal area of India.

    Science.gov (United States)

    Chaudhary, Doongar R; Seo, Juyoung; Kang, Hojeong; Rathore, Aditya P; Jha, Bhavanath

    2018-05-01

    High and fluctuating salinity is characteristic for coastal salt marshes, which strongly affect the physiology of halophytes consequently resulting in changes in stable isotope distribution. The natural abundance of stable isotopes (δ 13 C and δ 15 N) of the halophyte plant Salicornia brachiata and physico-chemical characteristics of soils were analysed in order to investigate the relationship of stable isotope distribution in different populations in a growing period in the coastal area of Gujarat, India. Aboveground and belowground biomass of S. brachiata was collected from six different populations at five times (September 2014, November 2014, January 2015, March 2015 and May 2015). The δ 13 C values in aboveground (-30.8 to -23.6 ‰, average: -26.6 ± 0.4 ‰) and belowground biomass (-30.0 to -23.1 ‰, average: -26.3 ± 0.4 ‰) were similar. The δ 13 C values were positively correlated with soil salinity and Na concentration, and negatively correlated with soil mineral nitrogen. The δ 15 N values of aboveground (6.7-16.1 ‰, average: 9.6 ± 0.4 ‰) were comparatively higher than belowground biomass (5.4-13.2 ‰, average: 7.8 ± 0.3 ‰). The δ 15 N values were negatively correlated with soil available P. We conclude that the variation in δ 13 C values of S. brachiata was possibly caused by soil salinity (associated Na content) and N limitation which demonstrates the potential of δ 13 C as an indicator of stress in plants.

  11. Characterization of Salt Overly Sensitive 1 (SOS1) gene homoeologs in quinoa (Chenopodium quinoa Willd.).

    Science.gov (United States)

    Maughan, P J; Turner, T B; Coleman, C E; Elzinga, D B; Jellen, E N; Morales, J A; Udall, J A; Fairbanks, D J; Bonifacio, A

    2009-07-01

    Salt tolerance is an agronomically important trait that affects plant species around the globe. The Salt Overly Sensitive 1 (SOS1) gene encodes a plasma membrane Na+/H+ antiporter that plays an important role in germination and growth of plants in saline environments. Quinoa (Chenopodium quinoa Willd.) is a halophytic, allotetraploid grain crop of the family Amaranthaceae with impressive nutritional content and an increasing worldwide market. Many quinoa varieties have considerable salt tolerance, and research suggests quinoa may utilize novel mechanisms to confer salt tolerance. Here we report the cloning and characterization of two homoeologous SOS1 loci (cqSOS1A and cqSOS1B) from C. quinoa, including full-length cDNA sequences, genomic sequences, relative expression levels, fluorescent in situ hybridization (FISH) analysis, and a phylogenetic analysis of SOS1 genes from 13 plant taxa. The cqSOS1A and cqSOS1B genes each span 23 exons spread over 3477 bp and 3486 bp of coding sequence, respectively. These sequences share a high level of similarity with SOS1 homologs of other species and contain two conserved domains, a Nhap cation-antiporter domain and a cyclic-nucleotide binding domain. Genomic sequence analysis of two BAC clones (98 357 bp and 132 770 bp) containing the homoeologous SOS1 genes suggests possible conservation of synteny across the C. quinoa sub-genomes. This report represents the first molecular characterization of salt-tolerance genes in a halophytic species in the Amaranthaceae as well as the first comparative analysis of coding and non-coding DNA sequences of the two homoeologous genomes of C. quinoa.

  12. Oxidative stress protection and stomatal patterning as components of salinity tolerance mechanism in quinoa (Chenopodium quinoa).

    Science.gov (United States)

    Shabala, Lana; Mackay, Alex; Tian, Yu; Jacobsen, Sven-Erik; Zhou, Daowei; Shabala, Sergey

    2012-09-01

    Two components of salinity stress are a reduction in water availability to plants and the formation of reactive oxygen species. In this work, we have used quinoa (Chenopodium quinoa), a dicotyledonous C3 halophyte species displaying optimal growth at approximately 150 mM NaCl, to study mechanisms by which halophytes cope with the afore-mentioned components of salt stress. The relative contribution of organic and inorganic osmolytes in leaves of different physiological ages (e.g. positions on the stem) was quantified and linked with the osmoprotective function of organic osmolytes. We show that the extent of the oxidative stress (UV-B irradiation) damage to photosynthetic machinery in young leaves is much less when compared with old leaves, and attribute this difference to the difference in the size of the organic osmolyte pool (1.5-fold difference under control conditions; sixfold difference in plants grown at 400 mM NaCl). Consistent with this, salt-grown plants showed higher Fv/Fm values compared with control plants after UV-B exposure. Exogenous application of physiologically relevant concentrations of glycine betaine substantially mitigated oxidative stress damage to PSII, in a dose-dependent manner. We also show that salt-grown plants showed a significant (approximately 30%) reduction in stomatal density observed in all leaves. It is concluded that accumulation of organic osmolytes plays a dual role providing, in addition to osmotic adjustment, protection of photosynthetic machinery against oxidative stress in developing leaves. It is also suggested that salinity-induced reduction in stomatal density represents a fundamental mechanism by which plants optimize water use efficiency under saline conditions. Copyright © Physiologia Plantarum 2012.

  13. Utilization of saline water and land: Reclaiming lost resources

    International Nuclear Information System (INIS)

    Naqvi, Mujtaba

    2001-01-01

    There is an abundance of saline water on the globe. Large tracts of land are arid and/or salt-affected, and a large number of plant species are known to be salt-tolerant. It would seem obvious that salt tolerant plants (halophytes) have a role in utilizing the two wasted resources, saline water and wastelands. We will briefly describe how these resources can be fruitfully utilized and how the IAEA has helped several countries to demonstrate the possibility of cultivating salt tolerant plant species on arid saline wastelands for economic and environmental benefit. After some brief introductory remarks we will discuss the results of the project

  14. Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plants grown at various salinity level

    DEFF Research Database (Denmark)

    Hariadi, Yuda; Marandon, Karl; Tian, Yu

    2011-01-01

    or by the gradual increase of NaCl levels in the irrigation water. For both methods, the optimal plant growth and biomass was achieved between 100 mM and 200 mM NaCl, suggesting that quinoa possess a very efficient system to adjust osmotically for abrupt increases in NaCl stress. Up to 95% of osmotic adjustment......Cl-induced activation of H+-ATPase is needed to restore otherwise depolarized membrane potential and prevent further K+ leak from the cytosol. Taken together, this work emphasizes the role of inorganic ions for osmotic adjustment in halophytes and calls for more in-depth studies of the mechanisms of vacuolar Na...

  15. Inhibitory Activities of Antioxidant Flavonoids from Tamarix gallica on Amyloid Aggregation Related to Alzheimer's and Type 2 Diabetes Diseases.

    Science.gov (United States)

    Ben Hmidene, Asma; Hanaki, Mizuho; Murakami, Kazuma; Irie, Kazuhiro; Isoda, Hiroko; Shigemori, Hideyuki

    2017-01-01

    The prevention of amyloid aggregation is promising for the treatment of age-related diseases such as Alzheimer's (AD) and type 2 diabetes (T2D). Ten antioxidant flavonoids isolated from the medicinal halophyte Tamarix gallica were tested for their amyloid aggregation inhibition potential. Glucuronosylated flavonoids show relatively strong inhibitory activity of Amyloid β (Aβ) and human islet amyloid polypeptide (hIAPP) aggregation compared to their aglycone analogs. Structure-activity relationship of the flavonoids suggests that the catechol moiety is important for amyloid aggregation inhibition, while the methylation of the carboxyl group in the glucuronide moiety and of the hydroxyl group in the aglycone flavonoids decreased it.

  16. Antifungal activity of essential oils against selected terverticillate penicillia

    Directory of Open Access Journals (Sweden)

    Soňa Felšöciová

    2015-02-01

    Full Text Available The aim of this study was to screen 15 essential oils of selected plant species, viz. Lavandula angustifolia, Carum carvi, Pinus mungo var. pulmilio, Mentha piperita, Chamomilla recutita L., Pinus sylvestris, Satureia hortensis L., Origanum vulgare L., Pimpinella anisum, Rosmarinus officinalis L., Salvia officinalis L., Abietis albia etheroleum, Chamomilla recutita, L. Rausch, Thymus vulgaris L., Origanum vulgare L. for antifungal activity against five Penicillium species: Penicillium brevicompactum, Penicillium citrinum, Penicillium crustosum, Penicillium expansum and Penicillium griseofulvum. The method used for screening included the disc diffusion method. The study points out the wide spectrum of antifungal activity of essential oils against Penicillium fungi. There were five essential oils of the 15 mentioned above which showed a hopeful antifungal activity: Pimpinella anisum, Chamomilla recutita L., Thymus vulgaris, Origanum vulgare L. The most hopeful antifungal activity and killing effect against all tested penicillia was found to be Origanum vulgare L. and Pimpinella anisum. The lowest level of antifungal activity was demonstrated by the oils Pinus mungo var. pulmilio, Salvia officinalis L., Abietis albia etheroleum, Chamomilla recutita L. Rausch, Rosmarinus officinalis.

  17. Decontamination of tomato, red cabbage, carrot, fresh parsley and fresh green onion inoculated with Shigella sonnei and Shigella flexneri by some Essential oils (in vitro condition

    Directory of Open Access Journals (Sweden)

    Farhang Aliakbari

    2014-06-01

    Full Text Available Background: Essential oils and their major constituents are useful sources of antimicrobial compounds. There are a few reports on the decontamination and antimicrobial activity of essential oils towards Shigella spp.Materials and Methods: In this study, the antimicrobial and decontamination potentials of essential oils at different concentrations, belonging to plants such as Thymus vulgaris, Saturiea hortensis, Mentha polegium, Cuminum cyminum, Lavandula officinalis and Mentha viridis L. (spearmint, towards Shigella sonnei and Shigella  flexneri were investigated. The disk diffusion method demonstrated the antimicrobial potential of the essential oils.Results: The ability of essential oils to decontaminate vegetables such as, tomato, red cabbage, carrot, fresh parsley and fresh green onion that were previously inoculated with Shigella spp. was determined. Inhibitory effects of essential oils towards Shigella spp. were noted in the disk diffusion method. There was a reduction in Shigella population following inoculation of cultures with 0.5% and 0.1% (v/v essential oils.Conclusion: This study confirmed that essential oils have the potential to be used for decontamination of vegetables.

  18. Inhibitory Effects of Several Essential Oils towards Salmonella typhimurium, Salmonella paratyphi A and Salmonella paratyphi B

    Directory of Open Access Journals (Sweden)

    S.F. Mazhar

    2014-09-01

    Full Text Available Plant essential oils are natural products extracted from plants and because of their antimicrobial properties can be used as natural additives in foods. They are also useful for decontamination of food-borne pathogens and can be a safe additive in foods. The antimicrobial activities of essential oils belonging to Saturiea hortensis, Thymus vulgaris, Mentha polegium, Cuminum cyminum, Lavandula officinalis and Mentha viridis L. (spearmint were investigated at different concentrations (0.1, 0.3, 0.5, 1, 2, 5 and 10%v/v against Salmonella typhimurium, Salmonella paratyphi A and Salmonella paratyphi B by using the agar well diffusion method. Essential oils showed inhibitory effect on Salmonella spp. in the agar well diffusion assay. In addition, the capability of essential oils for decontamination of minced row beef, ground beef, minced raw chicken and minced raw fish inoculated with Salmonella spp. at 0.1 and 0.5%v/v were assessed. Reduction of the Salmonella spp. population was observed following the inoculation of the cultures with 0.1 and 0.5%v/v essential oils.

  19. Maritime Halophyte Species from Southern Portugal as Sources of Bioactive Molecules

    DEFF Research Database (Denmark)

    Rodrigues, Maria João; Gangadhar, Katkam N.; Vizetto-Duarte, Catarina

    2014-01-01

    -ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical was obtained in the ether extract of J. acutus (IC50 = 0.4 mg/mL) and H. portulacoides (IC50 = 0.9 mg/mL). The maximum total phenolic content (TPC) was found in the methanol extract of M. edule (147 mg gallic acid equivalents (GAE)/g) and in the ether extract of J......,1-diphenyl-2-picrylhydrazyl (DPPH) radical were the methanol extracts of M. edule (IC50 = 0.1 mg/mL) and J. acutus (IC50 = 0.4 mg/mL), and the ether extracts of J. acutus (IC50 = 0.2 mg/mL) and A. macrostachyum (IC50 = 0.3 mg/mL). The highest radical scavenging activity (RSA) against the 2,2'-azino-bis (3...... activity and selectivity was obtained with the ether extract of J. acutus. Juncunol was identified as the active compound and for the first time was shown to display selective in vitro cytotoxicity towards various human cancer cells....

  20. Influence of diets with silage from forage plants adapted to the semi-arid conditions on lamb quality and sensory attributes.

    Science.gov (United States)

    Campos, F S; Carvalho, G G P; Santos, E M; Araújo, G G L; Gois, G C; Rebouças, R A; Leão, A G; Santos, S A; Oliveira, J S; Leite, L C; Araújo, M L G M L; Cirne, L G A; Silva, R R; Carvalho, B M A

    2017-02-01

    Quality and sensory attributes of meat from 32 mixed-breed Santa Inês lambs fed diets composed of four silages with old man saltbush (Atriplex nummularia Lind), buffelgrass (Cenchrus ciliaris), Gliricidia (Gliricidia sepium), and Pornunça (Manihot sp.) were evaluated. Meat from lambs fed diet containing old man saltbush silage (Pcooking loss. Of the sensory attributes evaluated in the Longissimus lumborum muscle of the lambs, color and juiciness did not differ (P>0.05). However, the silages led to differences (Plambs that consumed old man saltbush silage and lower in the meat from those fed buffelgrass silage. Diets formulated with buffelgrass silage for sheep reduce meat production. Based on the results for carcass weight and meat quality, old man saltbush and pornunça are better silages for finishing sheep. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Competition from native hydrophytes reduces establishment and growth of invasive dense-flowered cordgrass (Spartina densiflora

    Directory of Open Access Journals (Sweden)

    Ahmed M. Abbas

    2015-10-01

    Full Text Available Experimental studies to determine the nature of ecological interactions between invasive and native species are necessary for conserving and restoring native species in impacted habitats. Theory predicts that species boundaries along environmental gradients are determined by physical factors in stressful environments and by competitive ability in benign environments, but little is known about the mechanisms by which hydrophytes exclude halophytes and the life history stage at which these mechanisms are able to operate. The ongoing invasion of the South American Spartina densiflora in European marshes is causing concern about potential impacts to native plants along the marsh salinity gradient, offering an opportunity to evaluate the mechanisms by which native hydrophytes may limit, or even prevent, the expansion of invasive halophytes. Our study compared S. densiflora seedling establishment with and without competition with Phragmites australis and Typha domingensis, two hydrophytes differing in clonal architecture. We hypothesized that seedlings of the stress tolerant S. densiflora would be out-competed by stands of P. australis and T. domingensis. Growth, survivorship, biomass patterns and foliar nutrient content were recorded in a common garden experiment to determine the effect of mature P. australis and T. domingensis on the growth and colonization of S. densiflora under fresh water conditions where invasion events are likely to occur. Mature P. australis stands prevented establishment of S. densiflora seedlings and T. domingensis reduced S. densiflora establishment by 38%. Seedlings grown with P. australis produced fewer than five short shoots and all plants died after ca. 2 yrs. Our results showed that direct competition, most likely for subterranean resources, was responsible for decreased growth rate and survivorship of S. densiflora. The presence of healthy stands of P. australis, and to some extent T. domingensis, along river channels

  2. Tissue- and environmental response-specific expression of 10 PP2C transcripts in Mesembryanthemum crystallinum.

    Science.gov (United States)

    Miyazaki, S; Koga, R; Bohnert, H J; Fukuhara, T

    1999-03-01

    Ten transcripts (Mpc1-10) homologous to protein phosphatases of the 2C family have been isolated from the halophyte Mesembryanthemum crystallinum (common ice plant). Transcripts range in size from 1.6 to 2.6 kb, and encode proteins whose catalytic domains are between 24% and 62% identical to that of the Arabidopsis PP2C, ABI1. Transcript expression is tissue specific. Two isoforms are present only in roots (Mpc1 and Mpc5), three in young leaves (Mpc6, 8 and 9), two in old leaves (Mpc6 and Mpc8), and two in post-flowering leaves (Mpc8 and Mpc9). Mpc2 is strongly expressed in roots and also in seeds, meristematic tissues and mature flowers. Mpc3 is specific for leaf meristems, and Mpc4 is found in root and leaf meristems. Mpc7 is restricted to meristematic tissues. Mpc10 is only present in mature flowers. Mpc2 (in roots and leaves), Mpc5 (in roots) and Mpc8 (weakly in leaves) are induced by salinity stress and drought conditions with different kinetics in different tissues, but other Mpcs are downregulated by stress. Cold stress (4 degrees C) leads to a decline in Mpc5 and Mp6, but low temperature provoked a long-term (days) increase in Mpc2 levels in leaves and a transient increase (less than 24 h) in roots. Four full-length transcripts have been obtained. In each case, after over-expression in E. coli, the isolated proteins exhibited (Mg2+-dependent, okadeic acid-insensitive) protein phosphatase activity, although activity against 32P-phosphocasein varied among different PP2Cs. Determination of tissue developmental and stress response specificity of PP2C will facilitate functional studies of signal-transducing enzymes in this halophytic organism.

  3. Responses of rice to salinity and exogenous glycinebetaine by using positron emitting tracer imaging system

    International Nuclear Information System (INIS)

    Le Xuan Tham; Vo Huy Dang; Noriko, S.

    2002-01-01

    Effect of salinity stress (NaCl) and glycinebetaine on typical non-halophyte plants - rice (Oryza sativa L.) was examined for the growth, net photosynthesis and transpiration functions of seedlings. Using 22 Na, the inhibition of net uptake and translocation of sodium of seedlings stressed at 0.15% NaCl in solution and previously treated with exogenous glycinebetaine was observed by positron-emitting tracer imaging system, namely PETIS for diagnosis of early responses of plants to salt stress. Effects of exogenous glycinebetaine on rice plants stressed with salinity via osmotic protection and particularly stabilization of membrane permeability to inhibit Na uptake and translocation were discussed in connection with promising potentials of PETIS for researches on plants. (Author)

  4. Genotypic difference in salinity tolerance in quinoa is determined by differential control of xylem Na+ loading and stomatal density

    DEFF Research Database (Denmark)

    Shabala, Sergey; Hariadi, Yuda; Jacobsen, Sven-Erik

    2013-01-01

    old seedlings. Six weeks after the treatment commenced, leaf sap Na and K content and osmolality, stomatal density, chlorophyll fluorescence characteristics, and xylem sap Na and K composition were measured. Responses to salinity differed greatly among the varieties. All cultivars had substantially...... increased K+ concentrations in the leaf sap, but the most tolerant cultivars had lower xylem Na+ content at the time of sampling. Most tolerant cultivars had lowest leaf sap osmolality. All varieties reduced stomata density when grown under saline conditions. All varieties clustered into two groups...... to the xylem, and reduced stomata density are important physiological traits contributing to genotypic differences in salinity tolerance in quinoa, a halophyte species from Chenopodium family....

  5. The changes in contents of Salt Marsh Species and the importance of Edaphic Physiochemical Factors

    International Nuclear Information System (INIS)

    Kutbay, Hamdi G.; Demir, M.

    2001-01-01

    The changes in nutrient contents of some halophytic plants which occurred in a salt marsh located in the vicinity of Bafra town, on the north coast of Turkey during the growing seasons were investigated. Contents of So4, Cl, Na, K, Ca and Mg changed during the growing season in most species. High correlation coefficients were obtained between plant ion and soil ion contents. It has been found that the most prevalent ion was Na in the plant and soil samples. It was also shown that species diversity was quite low in the study area, and species diversity was highly correlated with so4/Cl ratio, electrical conductivity and pH. (author)

  6. MORPHOMETRIC CHARACTERISTICS OF TROPICAL SHALLOW RESERVOIR USED FOR AQUACULTURE AND AGRICULTURE IN THE MEXICAN PLATEAU

    Directory of Open Access Journals (Sweden)

    Aldama GR

    2013-01-01

    Full Text Available Morphometric characteristics of a tropical shallow reservoir situated in the Southern Mexican Highlands were studied. Seventeen morphometric parameters were measured. Results of the morphometric parameters showed that this reservoir presented a soft and roughness bottom, with an ellipsoid form and a concave depression that allow the mix up of water and sediments, causing turbidity and broken thermal gradients; its slight slopes allowed the colonization of submerged macrophyte and halophyte plants and they improve the incidence of sunlight on water surface increasing evaporation and primary productivity. Tropical shallow reservoirs have fluctuations in area and volume according to the amount of rainfall, the effect of evaporation, the temperature levels, lost of volume due to irrigation, and other causes.

  7. Analysis of Roman glass from Albania by PIXE–PIGE method

    International Nuclear Information System (INIS)

    Šmit, Ž.; Tartari, F.; Stamati, F.; Vevecka Priftaj, A.; Istenič, J.

    2013-01-01

    A series of 31 Roman glasses dated to the 1st–4th c. AD from the present Albania was analyzed by the combined PIXE–PIGE method. The analysis shows typical natron-based glass of the Roman period, though statistical treatment using principal component analysis and bivariate plots reveals four distinct groups, which are qualified by increased levels of potassium, magnesium and titanium–manganese–iron oxides, respectively. MgO content may exceed 2% and reach the level commonly accepted for halophytic plant-ash glass. The groups are formed on account of mineral impurities in the sand, which gives support to the thesis of multiple production centers of raw glass in the imperial age

  8. Rehabilitation of river sediments contaminated by heavy metals from tanning industries using the phytoextraction technique

    Science.gov (United States)

    Beltrá Castillo, Juan Carlos; García Orenes, Fuensanta; Mora Navarro, José; Murcia Navarro, Francisco Jose; Zornoza Belmonte, Raúl; Faz Cano, Ángel; Gómez-Garrido, Melisa

    2017-04-01

    Leather tanning is an industrial sector of great tradition in Spain that has progressively evolved until it has reached a high degree of technification in the present. However, in its early days, the leather tanning industry has always been considered a dirty and polluting activity, mainly due to the water spills that ended up in the river channels. The Guadalentin Valley between Lorca and Murcia (SE Spain) is characterised by intensive crop and pig production, and an extensive agroalimentary and leather tannery industry. These anthropogenic sources have released salts and metals such as copper (Cu), zinc (Zn) and chromium (Cr) into Guadalentin river. Up to 2003, wastewater was discharged directly to the dry river, immediately upstream of the urban nucleus of Lorca, without any previous treatment. It contained high concentrations of inorganic salts and heavy metals (Cu, Zn and Cr). Spills, in some events, had a flow of 10 000 m3 d-1, with concentration of Cr over 500 mg L-1. Phytoremediation is a sustainable alternative that allows the environmental rehabilitation of fluvial dry sediments through the transfer of heavy metals from the contaminated soils to the native vegetation present. Atriplex halimus, salsola oppositifolia, suaeda vera and tamarix africana were the most representative autochthonous phytoextractor species that were planted to study the degree of decontamination of dry river sediments before planting and 12 months after planting. The sediments characterization was done by a sampling grid of 40 000 m2 (500 m x 8 m) where samples were taken at 3 depths (0-20 cm, 20-50 cm and 5-100 cm) every 50 m. A vegetation study was carried out by random plots of 10 m x 10 m. The results indicated that after 12 months the vegetation cover increased between 35% and 70%. The degree of contamination of Cu, Zn and Cr of the river dry sediments decreased slightly, being the atriplex halimus the plant specie that presented the highest value of the bioaccumulation factor

  9. Land use and habitat conditions across the southwestern Wyoming sagebrush steppe: development impacts, management effectiveness and the distribution of invasive plants

    Science.gov (United States)

    Manier, Daniel J.; Aldridge, Cameron L.; Anderson, Patrick; Chong, Geneva; Homer, Collin G.; O'Donnell, Michael S.; Schell, Spencer

    2011-01-01

    For the past several years, USGS has taken a multi-faceted approach to investigating the condition and trends in sagebrush steppe ecosystems. This recent effort builds upon decades of work in semi-arid ecosystems providing a specific, applied focus on the cumulative impacts of expanding human activities across these landscapes. Here, we discuss several on-going projects contributing to these efforts: (1) mapping and monitoring the distribution and condition of shrub steppe communities with local detail at a regional scale, (2) assessing the relationships between specific, land-use features (for example, roads, transmission lines, industrial pads) and invasive plants, including their potential (environmentally defined) distribution across the region, and (3) monitoring the effects of habitat treatments on the ecosystem, including wildlife use and invasive plant abundance. This research is focused on the northern sagebrush steppe, primarily in Wyoming, but also extending into Montana, Colorado, Utah and Idaho. The study area includes a range of sagebrush types (including, Artemisia tridentata ssp. tridentata, Artemisia tridentata ssp. wyomingensis, Artemisia tridentata ssp. vaseyana, Artemisia nova) and other semi-arid shrubland types (for example, Sarcobatus vermiculatus, Atriplex confertifolia, Atriplex gardneri), impacted by extensive interface between steppe ecosystems and industrial energy activities resulting in a revealing multiple-variable analysis. We use a combination of remote sensing (AWiFS (1 Any reference to platforms, data sources, equipment, software, patented or trade-marked methods is for information purposes only. It does not represent endorsement of the U.S.D.I., U.S.G.S. or the authors), Landsat and Quickbird platforms), Geographic Information System (GIS) design and data management, and field-based, replicated sampling to generate multiple scales of data representing the distribution of shrub communities for the habitat inventory. Invasive plant

  10. Assessment of impacts and evaluation of restoration methods on areas affected by a well blowout, Naval Petroleum Reserve No. 1, California

    Energy Technology Data Exchange (ETDEWEB)

    Warrick, G.D.; Kato, T.T.; Phillips, M.V. [and others

    1996-12-01

    In June 1994, an oil well on Naval Petroleum Reserve No. 1 blew-out and crude oil was deposited downwind. After the well was capped, information was collected to characterize the release and to assess effects to wildlife and plants. Oil residue was found up to 13.7 km from the well site, but deposition was relatively light and the oil quickly dried to form a thin crust on the soil surface. Elevated levels of hydrocarbons were found in livers collected from Heermann`s kangaroo rats (Dipodomys heermanni) from the oiled area but polycyclic aromatic hydrocarbons (known carcinogens or mutagens) were not detected in the livers. Restoration techniques (surface modification and bioremediation) and natural recovery were evaluated within three portions of the oiled area. Herbaceous cover and production, and survival and vigor of desert saltbush (Atriplex polycarpa) were also monitored within each trapping grid.

  11. Effects of long-term salinity on the growth of the halophyte Spartina ...

    African Journals Online (AJOL)

    use

    2011-12-07

    Dec 7, 2011 ... studies of the salinity tolerance of salt marsh plants are very important and ... In April 2009, seeds were rinsed with fresh water to remove salts, sown into ..... EP, Guntenspergen GP, Brown JJ, Nelson SG (2006). Salt tolerance.

  12. Effects of long-term salinity on the growth of the halophyte Spartina ...

    African Journals Online (AJOL)

    use

    2011-12-07

    Dec 7, 2011 ... randomized design in a glass-covered greenhouse with natural temperature and light. The interior of the greenhouse ceiling was draped with 30% shade ... Scientific, Great Amwell, Herts, UK) in the growth chamber. Statistical ...

  13. APPLIED PHYTO-REMEDIATION TECHNIQUES USING HALOPHYTES FOR OIL AND BRINE SPILL SCARS

    Energy Technology Data Exchange (ETDEWEB)

    M.L. Korphage; Bruce G. Langhus; Scott Campbell

    2003-03-01

    Produced salt water from historical oil and gas production was often managed with inadequate care and unfortunate consequences. In Kansas, the production practices in the 1930's and 1940's--before statewide anti-pollution laws--were such that fluids were often produced to surface impoundments where the oil would segregate from the salt water. The oil was pumped off the pits and the salt water was able to infiltrate into the subsurface soil zones and underlying bedrock. Over the years, oil producing practices were changed so that segregation of fluids was accomplished in steel tanks and salt water was isolated from the natural environment. But before that could happen, significant areas of the state were scarred by salt water. These areas are now in need of economical remediation. Remediation of salt scarred land can be facilitated with soil amendments, land management, and selection of appropriate salt tolerant plants. Current research on the salt scars around the old Leon Waterflood, in Butler County, Kansas show the relative efficiency of remediation options. Based upon these research findings, it is possible to recommend cost efficient remediation techniques for slight, medium, and heavy salt water damaged soil. Slight salt damage includes soils with Electrical Conductivity (EC) values of 4.0 mS/cm or less. Operators can treat these soils with sufficient amounts of gypsum, install irrigation systems, and till the soil. Appropriate plants can be introduced via transplants or seeded. Medium salt damage includes soils with EC values between 4.0 and 16 mS/cm. Operators will add amendments of gypsum, till the soil, and arrange for irrigation. Some particularly salt tolerant plants can be added but most planting ought to be reserved until the second season of remediation. Severe salt damage includes soil with EC values in excess of 16 mS/cm. Operators will add at least part of the gypsum required, till the soil, and arrange for irrigation. The following seasons more gypsum will be added and as the soil EC is reduced, plants can be introduced. If rapid remediation is required, a sufficient volume of topsoil, or sand, or manure can be added to dilute the local salinity, the bulk amendments tilled into the surface with added gypsum, and appropriate plants added. In this case, irrigation will be particularly important. The expense of the more rapid remediation will be much higher.

  14. Analysis of glass from the post-Roman settlement Tonovcov grad (Slovenia) by PIXE–PIGE and LA-ICP-MS

    Energy Technology Data Exchange (ETDEWEB)

    Šmit, Ž., E-mail: ziga.smit@fmf.uni-lj.si [Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, SI-1000 Ljubljana (Slovenia); Jožef Stefan Institute, Jamova 39, SI-1001 Ljubljana (Slovenia); Milavec, T. [Department of Archaeology, Faculty of Arts, University of Ljubljana, Zavetiška 5, SI-1000 Ljubljana (Slovenia); Fajfar, H. [Jožef Stefan Institute, Jamova 39, SI-1001 Ljubljana (Slovenia); Rehren, Th. [UCL Qatar, Education City, P.O. Box 23689, Doha (Qatar); Lankton, J.W. [UCL Institute of Archaeology, 31-34 Gordon Square, London WC1H 0PY (United Kingdom); Gratuze, B. [IRAMAT-Centre Ernest-Babelon, CNRS Université d’Orléans, 3D rue de la Ferollerie, 45071 Orléans Cedex 2 (France)

    2013-09-15

    The combined PIXE–PIGE method was used for the analysis of 43 glass fragments from the archaeological site Tonovcov grad in western Slovenia, with 10 of these additionally being analysed by LA-ICP-MS. The glass objects were attributed to the Late Antique production of the 4th–7th c. AD, with two examples of early Roman glass and three glass beads, one of them presumably of oriental origin. The analysis showed typical natron-type glass, produced in the Levantine region around the river Belus, and a few examples of HIMT glass, which could be recognized also in several other recycled objects. Only one glass bead, found in Early Medieval context, was made of the ash of halophytic plants.

  15. Biofuels as an Alternative Energy Source for Aviation-A Survey

    Science.gov (United States)

    McDowellBomani, Bilal M.; Bulzan, Dan L.; Centeno-Gomez, Diana I.; Hendricks, Robert C.

    2009-01-01

    The use of biofuels has been gaining in popularity over the past few years because of their ability to reduce the dependence on fossil fuels. As a renewable energy source, biofuels can be a viable option for sustaining long-term energy needs if they are managed efficiently. We investigate past, present, and possible future biofuel alternatives currently being researched and applied around the world. More specifically, we investigate the use of ethanol, cellulosic ethanol, biodiesel (palm oil, algae, and halophytes), and synthetic fuel blends that can potentially be used as fuels for aviation and nonaerospace applications. We also investigate the processing of biomass via gasification, hydrolysis, and anaerobic digestion as a way to extract fuel oil from alternative biofuels sources.

  16. Arbuscular mycorrhizal fungi (AMF on a sandbank plant formation: ecology and potential for hydrocarbon oil mycorrhizoremediation

    Directory of Open Access Journals (Sweden)

    Ocimar Ferreira de Andrade

    2016-04-01

    Full Text Available The sources of contamination related to the exploration, production, storage, transport, distribution and disposal of petroleum, and its products, carry risks that threaten fragile coastal environments, little studied and, thus, in need of attention from the scientific community. On the other hand, symbiont mechanisms essential for the very existence of many plant species, and their relation to contaminated soils, remain unknown. Despite the identification of several species of AMF halophytes soil communities in sandbanks, one can infer their bioremediation potential from studies in other types of soil, which, however, report the same genera of fungi as participants in mycorrhizoremediation processes of polluted soil. This study focuses on the application of biotechnology using Arbuscular Mycorrhizal Fungi (AMF in soils impacted by petroleum hydrocarbons.

  17. Quality of aged shoulder from lambs fed with different oldman saltbush hay levels (Atriplex nummularia

    Directory of Open Access Journals (Sweden)

    Tharcilla Isabella Rodrigues Costa Alvarenga

    2014-12-01

    Full Text Available This study assessed the effects of different levels of oldman saltbush hay and ageing time on the physical characteristics of Santa Inês lamb meat. Sixty shoulders from 32 male lambs fed with 30, 40, 50 or 60% oldman saltbush hay for 60 days were vacuum-packaged and stored in a refrigerator at 0 ± 1°C for 0, 7 or 14 days of ageing. The shear force, cooking loss and water holding capacity were 3.06kgf cm-2, 37.28% and 76.71%, respectively, and there were no significant changed by studied factors (P>0.05

  18. Pseudomoniasis phytotherapy: a review on most important Iranian medicinal plants effective on Pseudomonas aeruginosa.

    Science.gov (United States)

    Bahmani, Mahmoud; Rafieian-Kopaei, Mahmoud; Hassanzadazar, Hassan; Taherikalani, Morovat

    2016-10-01

    Pseudomonas aeruginosa is a Gram-negative, aerobic bacterium found in water and soil. It is a normal flora in skin and gastrointestinal tract of human beings. P. aeruginosa as an opportunistic pathogen involved in nosocomial infections having multiple pathogenic factors and shows high rate of resistance to different antibiotics. The aim of this study was to identify the most important native medicinal plants of Iran effective on P. aeruginosa. All required information was obtained by searching keywords such as P. aeruginosa , medicinal plant extracts or essential oils in published articles in authentic scientific databases such as Science Direct, Wiley-Blackwell, Springer, Google scholar, Scientific Information Database (SID) and Magiran. According to the literature review, our results showed 12 different native medicinal plants were effective against P. aeruginosa in Iran including Eucalyptus camadulensis, Marticaria chamomilla, Ferula gummosa Boiss, Lawsonia inermis, Ocimumgra tissimum, Allium sativum, Satureja hortensis L, Satureja bachtiarica Bunge, Satureja khuzestanica (Jamzad), Thymus daenensis Celak, Thymus carmanicus Jalals and Camellia sinensis. Phytochemical analysis has shown that bioactive compounds of medicinal plants with their antioxidant and antimicrobial properties can be good alternatives for the synthetic medicines in food and drug industry.

  19. Antimicrobial Activity and Chemical Composition of Three Essential Oils Extracted from Mediterranean Aromatic Plants.

    Science.gov (United States)

    Elshafie, Hazem S; Sakr, Shimaa; Mang, Stefania M; Belviso, Sandra; De Feo, Vincenzo; Camele, Ippolito

    2016-11-01

    There is a growing interest in essential oils (EOs) as possible alternatives for traditional chemical pesticides. This study was carried out to characterize the chemical composition of the three EOs extracted from Verbena officinalis, Majorana hortensis, and Salvia officinalis using gas chromatography (GC) and GC-mass spectrometry (GC-MS) and to evaluate in vitro their efficacy against some phyto or human pathogens. The antifungal activity was investigated against Colletotrichum acutatum and Botrytis cinerea in comparison with Azoxystrobin as a large spectrum fungicide. Antibacterial activity was evaluated against Bacillus megaterium, Bacillus mojavensis, and Clavibacter michiganensis (G+ve) and Escherichia coli, Xanthomonas campestris, Pseudomonas savastanoi, and P. syringae pv. phaseolicola (G-ve) compared to a synthetic antibiotic tetracycline. Minimum inhibitory concentration was evaluated against the above tested fungi using 96-well microplate method. Results showed that the chemical structure of the three studied EOs was mainly composed of monoterpene compounds and all oils belong to the chemotype carvacrol/thymol. Results of GC analysis identified 64 compounds, which were identified based on their mass to charge ratio. Furthermore, the different concentrations of studied EOs inhibited the growth of tested microorganism in a dose-dependent manner.

  20. Molecular detection of six (endo-) symbiotic bacteria in Belgian mosquitoes: first step towards the selection of appropriate paratransgenesis candidates.

    Science.gov (United States)

    Raharimalala, Fara Nantenaina; Boukraa, S; Bawin, T; Boyer, S; Francis, F

    2016-04-01

    Actually, the use of symbiotic bacteria is one of alternative solution to avoid vector resistance to pesticides. In Belgium, among 31 identified mosquito species, 10 were considered as potential vectors. Given to introduction risks of arbovirosis, the purpose of this study was to investigate the presence of symbiosis bacteria in potential mosquito vectors. Eleven species caught from 12 sites in Belgium were used: Culex pipiens s.l., Culex torrentium, Culex hortensis, Anopheles claviger, Anopheles maculipennis s.l., Anopheles plumbeus, Culiseta annulata, Ochlerotatus geniculatus, Ochlerotatus dorsalis, Aedes albopictus, and Coquillettidia richiardii. Six genera of symbiotic bacteria were screened: Wolbachia sp., Comamonas sp, Delftia sp., Pseudomonas sp., Acinetobacter sp., and Asaia sp. A total of 173 mosquito individuals (144 larvae and 29 adults) were used for the polymerase chain reaction screening. Wolbachia was not found in any Anopheles species nor Cx. torrentium. A total absence of Comamonas and Delftia was observed in all species. Acinetobacter, Pseudomonas, and Asaia were found in most of species with a high prevalence for Pseudomonas. These results were discussed to develop potential strategy and exploit the variable occurrence of symbiotic bacteria to focus on them to propose biological ways of mosquito control.

  1. Antifungal activity of some essential oils against toxigenic Aspergillus species.

    Science.gov (United States)

    Alizadeh, Alireza; Zamani, Elham; Sharaifi, Rohollah; Javan-Nikkhah, Mohammad; Nazari, Somayeh

    2010-01-01

    Increasing attentions have been paid on the application of essential oils and plant extracts for control of postharvest pathogens due to their natural origin and less appearance of resistance in fungi pathogens. Some Aspergillus species are toxigenic and responsible for many cases of food and feed contamination. Some Toxins that produce with some Aspergillus species are known to be potent hepatocarcinogens in animals and humans. The present work evaluated the parameters of antifungal activity of the essential oils of Zataria multiflora, Thymus migricus, Satureja hortensis, Foeniculum vulgare, Carum capticum and thiabendazol fungicide on survival and growth of different species of Aspergillus. Aerial part and seeds of plant species were collected then dried and its essential oils isolated by means of hydrodistillation. Antifungal activity was evaluated in vitro by poisonous medium technique with PDA medium at six concentrations. Results showed that all essential oils could inhibit the growth of Aspergillus species. The essential oil with the best effect and lowest EC50 and MIC (Minimum Inhibitory Concentration) was Z. multiflora (223 microl/l and 650 microl/l, respectively). The chemical composition of the Z. multiflora essential oil was analyzed by GC-MS.

  2. Structure of Agaricus spp. fucogalactans and their anti-inflammatory and antinociceptive properties.

    Science.gov (United States)

    Komura, Dirce L; Carbonero, Elaine R; Gracher, Ana Helena P; Baggio, Cristiane H; Freitas, Cristina S; Marcon, Rodrigo; Santos, Adair R S; Gorin, Philip A J; Iacomini, Marcello

    2010-08-01

    Fucogalactans from Agaricus brasiliensis (EPF-Ab) and A. bisporus var. hortensis (EPF-Ah) were prepared via by aqueous extraction and a purification procedure. EPF-Ab had M(w) 19.4 x 10(3)g/mol and EPF-Ah M(w) 31.1 x 10(3)g/mol. EPF-Ab had a (1-->6)-linked alpha-D-Galp main-chain partially substituted in O-2 by non-reducing end-units of alpha-L-Fucp. EPF-Ah had a similar main-chain with O-2 substitution, but was partially methylated at HO-3, as well as having 2.5% non-reducing end-units of beta-D-Gal. In mice, EPF-Ab gave 39% antinociceptive inhibition (ID(50)>100mg/kg) and no anti-inflammatory activity. EPF-Ah also gave an inhibition of 39% at ID(50) 0.33 mg/kg and also inhibited by 61% (ID(50) 5.0mg/kg) total cell migration and by 32% peritoneal capillary permeability, which is related to the anti-inflammatory effect. The small differences in chemical structure in these polysaccharides thus modified their biological activities. (c) 2010. Published by Elsevier Ltd.

  3. Forage production and N2 fixation in mixed cropping of saltbush and shrubby medic grown on a salt affected soil

    International Nuclear Information System (INIS)

    Kurdali, F.

    2008-11-01

    Two experiments were conducted to evaluate dry matter, nitrogen yield, N 2 fixation (Ndfa) and soil N uptake in saltbush (Atriplex halimus) and shrubby medic (Medicago arborea) grown either solely or in mixture on a salt affected soil, using 15 N tracer techniques. In a pot experiment, the combined dry matter yield of both species was considerably higher than that of solely grown shrubs. The inclusion of saltbush in the mixed cropping system decreased soil N uptake by shrubby medic and enhanced %Ndfa without affecting amounts of N 2 fixed. Under field conditions, estimated values of %Ndfa via δ 15 N natural abundance were relatively similar to those of the pot experiment using 15 N enrichment method. It can be concluded that the use of mixed cropping system of shrubby medic and saltbush could be a promising bio-saline agricultural approach to utilize salt affected soils in terms of forage yield and N 2 -fixation. (Author)

  4. Interrelations between segetal and ruderal flora in the Olsztyn Lake District

    Directory of Open Access Journals (Sweden)

    Tadeusz Korniak

    2013-12-01

    Full Text Available The paper presents differences and similarities between segetal and ruderal flora in the Olsztyn Lake District. The investigation was conducted in rural areas and in areas of small towns. 415 taxa of vascular plants were noted altogether in the flora examined. The segetal flora includes 259 species, and the ruderal flora - 334 ones. A comparison between species of those two florae (table l, figure l, 81 species appear in segetal habitats, and 156 in ruderal habitats. Common species, for those two comparsing florae (segetal and ruderal were 178. The following plants were classified as frequent or common in ruderal habitats of the Olsztyn Lake District, having (under certain conditions a significant influence on the weed infestation of cultivated fields: Amaranthus retroflexus, Artemisia vulgaris, Atriplex patula, Chamomilla suaveolens, Cirsium arvense, Conyza canadensis, Descurainia sophia, Galinsoga ciliata, Galinsoga parviflora, Geranium pusillum, Lapsana communis, Melandrium album, Poa annua, Polygonum aviculare, Rumex crispus, Sisymbrium officinale, Sonchus arvensis, Sonchus asper, Sonchus oleraceus, Tussil farfara.

  5. Isolation of Pseudobutyrivibrio ruminis and Pseudobutyrivibrio xylanivorans from rumen of Creole goats fed native forage diet.

    Science.gov (United States)

    Grilli, D J; Cerón, M E; Paez, S; Egea, V; Schnittger, L; Cravero, S; Escudero, M Sosa; Allegretti, L; Arenas, G N

    2013-09-01

    We isolated and identified functional groups of bacteria in the rumen of Creole goats involved in ruminal fermentation of native forage shrubs. The functional bacterial groups were evaluated by comparing the total viable, total anaerobic, cellulolytic, hemicellulolytic, and amylolytic bacterial counts in the samples taken from fistulated goats fed native forage diet (Atriplex lampa and Prosopis flexuosa). Alfalfa hay and corn were used as control diet. The roll tubes method increased the possibility of isolating and 16S rDNA gene sequencing allowed definitive identification of bacterial species involved in the ruminal fermentation. The starch and fiber contents of the diets influenced the number of total anaerobic bacteria and fibrolytic and amylolytic functional groups. Pseudobutyrivibrio ruminis and Pseudobutyrivibrio xylanivorans were the main species isolated and identified. The identification of bacterial strains involved in the rumen fermentation helps to explain the ability of these animals to digest fiber plant cell wall contained in native forage species.

  6. Overexpression of a Plasma Membrane-Localized SbSRP-Like Protein Enhances Salinity and Osmotic Stress Tolerance in Transgenic Tobacco

    Directory of Open Access Journals (Sweden)

    Avinash Mishra

    2017-04-01

    Full Text Available An obligate halophyte, Salicornia brachiata grows in salt marshes and is considered to be a potential resource of salt- and drought-responsive genes. It is important to develop an understanding of the mechanisms behind enhanced salt tolerance. To increase this understanding, a novel SbSRP gene was cloned, characterized, over-expressed, and functionally validated in the model plant Nicotiana tabacum. The genome of the halophyte S. brachiata contains two homologs of an intronless SbSRP gene of 1,262 bp in length that encodes for a stress-related protein. An in vivo localization study confirmed that SbSRP is localized on the plasma membrane. Transgenic tobacco plants (T1 that constitutively over-express the SbSRP gene showed improved salinity and osmotic stress tolerance. In comparison to Wild Type (WT and Vector Control (VC plants, transgenic lines showed elevated relative water and chlorophyll content, lower malondialdehyde content, lower electrolyte leakage and higher accumulation of proline, free amino acids, sugars, polyphenols, and starch under abiotic stress treatments. Furthermore, a lower build-up of H2O2 content and superoxide-radicals was found in transgenic lines compared to WT and VC plants under stress conditions. Transcript expression of Nt-APX (ascorbate peroxidase, Nt-CAT (catalase, Nt-SOD (superoxide dismutase, Nt-DREB (dehydration responsive element binding factor, and Nt-AP2 (apetala2 genes was higher in transgenic lines under stress compared to WT and VC plants. The results suggested that overexpression of membrane-localized SbSRP mitigates salt and osmotic stress in the transgenic tobacco plant. It was hypothesized that SbSRP can be a transporter protein to transmit the environmental stimuli downward through the plasma membrane. However, a detailed study is required to ascertain its exact role in the abiotic stress tolerance mechanism. Overall, SbSRP is a potential candidate to be used for engineering salt and osmotic

  7. Distribution of oil from the Gulf War spill within intertidal habitats - one year later

    International Nuclear Information System (INIS)

    Hayes, M.O.; Michel, J.; Montelo, T.M.; Al-Mansi, A.M.; Jensen, J.R.; Narumalani, S.; Aurand, D.V.; Al-Momen, A.H.; Thayer, G.W.

    1993-01-01

    Results of a land-based intertidal survey of the impacts of the Gulf War oil spill on the Saudi Arabian coast, carried out from 1 March to 4 April 1992 in conjunction with Leg II of the NOAA ship Mt. Mitchell's ROPME Sea cruise, show that there is a striking correlation between the near shore geomorphology and the persistence of intertidal oil. Significant quantities of oil (measured in millions of gallons) remained in the sediments of the sheltered tidal flat/marsh areas, and significant erosion of oiled sediments has occurred along many of the outer exposed areas. A massive asphalt pavement, tens of meters wide and over 20 kilometers long, which is believed to have formed as a result of the Nowruz spill of 1983, occurs along the outer coast of the Abu Ali headland. Along certain other exposed outer sand beaches, conditions are conducive to the formation and preservation of a similar asphalt pavement as a result of the Gulf War spill. The most severely impacted areas studied were several halophyte marsh algal mat complexes and mudflats at the heads of sheltered bays, where all the halophytes were dead and there was no sign of living epibiota in the mid to upper intertidal areas. Before the spill, burrowing infauna, such as crabs and polychaetes, occurred in large numbers in these sheltered areas. The previously occupied burrows were heavily oiled, with some containing liquid black oil to depths of over 40 cm. The deep penetration of oil into the burrows and probable slow weathering rates of the oil could result in many years of pollution of these sheltered habitats. Depths of penetration of oil into bubble sand exceeding 40 cm were found at several localities. This deep oil will also remain in the sediment for many years, because of the slow erosion rates that occur in these sheltered environments. Many unoiled portions were rich in epifaunal and infaunal populations of invertebrates and plants. Shorebirds were observed feeding in these unoiled areas

  8. Distribution and Invasion Potential of Limonium ramosissimum subsp. provinciale in San Francisco Estuary Salt Marshes

    Directory of Open Access Journals (Sweden)

    Gavin Archbald

    2014-06-01

    Full Text Available Non-native sea lavenders (Limonium spp. are invasive in salt marshes of southern California and were first documented in the San Francisco Estuary (the estuary in 2007. In this study, we mapped distributions of L. ramosissimum subsp. provinciale (LIRA and L. duriusculum within the estuary and investigated how the invasion potential of the more common species, LIRA, varies with elevation and edaphic conditions. We contacted colleagues and conducted field searches to find and then map sea lavender populations. In addition, we measured LIRA’s elevational range at three salt marshes. Across this range we measured (1 soil properties: salinity, moisture, bulk density, and texture; and (2 indicators of invasion potential: LIRA size, seed production, percent cover, spread (over 1 year, recruitment, and competition with native halophytes (over 6 months. We found LIRA in 15,144 m2 of upper salt marsh habitat in central and south San Francisco bays and L. duriusculum in 511 m2 in Richardson and San Pablo bays. LIRA was distributed from mean high water (MHW to 0.42 m above mean higher high water (MHHW. In both spring and summer, soil moisture and salinity were lowest at higher elevations within LIRA’s range, which corresponded with greater rosette size, inflorescence and seed production (up to 17,400 seeds per plant, percent cover, and recruitment. LIRA cover increased on average by 11% in 1 year across marshes and elevations. Cover of the native halophytes Salicornia pacifica, Jaumea carnosa, and Distichlis spicata declined significantly at all elevations if LIRA were present in plots (over a 6-month, fall–winter period. Results suggest LIRA’s invasion potential is highest above MHHW where salinity and moisture are lower, but that LIRA competes with native plants from MHW to above MHHW. We recommend removal efforts with emphasis on the salt marsh-terrestrial ecotone where LIRA seed output is highest.

  9. A phytogeographic survey of Southern Benin

    Directory of Open Access Journals (Sweden)

    G. Paradis

    1983-11-01

    Full Text Available Southern Benin has a dry subequatoriai climate with a rainfall gradient from 850 mm in the west to 1 500 mm in the east, the geomorphology is varied and the vegetation has been subjected to strong human influence. There are numerous plant formations, namely: 1, forest islands which are probably relics of the primitive vegetation and include (a dense semi-deciduous forests of several types, (b swamp forests of two types, (c periodically flooded forest of two types, (d Lophira lanceolata  (Hutchinson & Dalziel, 1954-72 woodlands and (e mangrove swamps; 2, formations which are probably derived and include (a thickets of several types, (b tree savannas and shrub savannas, (c grassy savannas and prairies varying according to soil characteristics and (d halophytic grasslands; and 3, floating vegetation on fresh-water lakes.

  10. Forested wetland habitat

    Science.gov (United States)

    Duberstein, Jamie A.; Krauss, Ken W.; Kennish, Michael J.

    2015-01-01

    A forested wetland (swamp) is a forest where soils are saturated or flooded for at least a portion of the growing season, and vegetation, dominated by trees, is adapted to tolerate flooded conditions. A tidal freshwater forested wetland is a forested wetland that experiences frequent but short-term surface flooding via tidal action, with average salinity of soil porewater less than 0.5 g/l. It is known locally as tidal várzea in the Amazon delta, Brazil. A tidal saltwater forested wetland (mangrove forest) is a forested wetland that experiences frequent but short-term surface flooding via tidal action, with average salinity often exceeding 3 g/l and reaching levels that can exceed seawater. Mangrove ecosystems are composed of facultative halophytes that generally experience better growth at moderate salinity concentrations.

  11. Using local biodiversity to prevent pollution transfers to environmental components of a Mediterranean semi-arid ecosystem

    Science.gov (United States)

    Heckenroth, Alma; Rabier, Jacques; Laffont-Schwob, Isabelle

    2014-05-01

    In arid and semi-arid Mediterranean coastal areas, metals and metalloids (MM) pollution coming from unreclaimed brownfields has increased the negative environmental stresses leading to ecosystems degradations as soil erosion and losses of organic matter and biodiversity. On these sites, maintaining or restoring a local vegetation cover is considered as a key step to stop the degradation cycle. Furthermore, in a context of high pollution occurring in natural areas, phytoremediation is considered as an attractive alternative to conventional soil remediation techniques, the first reducing pollution transfers, improving the soil quality. In protected or natural areas, it is also important to perceive then design phytoremediation as a way to assist ecosystems recovery, using the restoration ecology concepts. However, only few works in the literature deal with the potential use of native Mediterranean plant species for phytoremediation. On the South-East coast of Marseille (France), the activity of the former smelting factory of l'Escalette, ceased since 1925. However, its brownfield is still a source of pollution by trace metals and metalloids for abiotic and biotic components of the surrounding massif. This massif hosts a rich biodiversity with rare and protected plant species despite the metallic pollution and this area has been included in the recently created first peri-urban French National Park of Calanques. In this context, an integrated research project is being conducted with local actors and stakeholders, from the selection of native plant species, assessment and optimization of phytostabilization capacities of selected species, to the development of ecological engineering techniques well adapted to local constraints and phytostabilization field trials. The first part of this study has been conducted on two areas, corresponding to different pollution pattern, plant communities and environmental drivers: a halophytic area, characterized by typical coastal

  12. Tolerance of combined submergence and salinity in the halophytic stem-succulent Tecticornia pergranulata

    DEFF Research Database (Denmark)

    Colmer, T D; Vos, H; Pedersen, Ole

    2009-01-01

    pergranulata subsp. pergranulata (syn. Halosarcia pergranulata subsp. pergranulata). Growth and total sugars in succulent stems were assessed as a function of time after submergence. Underwater net photosynthesis, dark respiration, total sugars, glycinebetaine, Na(+), Cl(-) and K(+), in succulent stems, were...... assessed in a NaCl dose-response experiment. KEY RESULTS: Submerged plants ceased to grow, and tissue sugars declined. Photosynthesis by succulent stems was reduced markedly when underwater, as compared with in air. Capacity for underwater net photosynthesis (P(N)) was not affected by 10-400 mM Na......Cl, but it was reduced by 30 % at 800 mM. Dark respiration, underwater, increased in succulent stems at 200-800 mM NaCl, as compared with those at 10 mM NaCl. On an ethanol-insoluble dry mass basis, K(+) concentration in succulent stems of submerged plants was equal to that in drained controls, across all Na...

  13. The Arabidopsis-related halophyte Thellungiella halophila: boron tolerance via boron complexation with metabolites?

    Science.gov (United States)

    Lamdan, Netta Li; Attia, Ziv; Moran, Nava; Moshelion, Menachem

    2012-04-01

    Tolerance to boron (B) is still not completely understood. We tested here the hypothesis that Thellungiella halophila, an Arabidopsis thaliana-related 'extremophile' plant, with abundance of B in its natural environment, is tolerant to B, and examined the potential mechanisms of this tolerance. With 1-10 mm B applied ([B](ext)) to Thellungiella and Arabidopsis grown in hydroponics, the steady-state accumulated B concentration ([B](int)) in the root was below [B](ext), and was similar in both, suggesting both extrude B actively. Whether grown in soil or hydroponically, the shoot [B](int) was higher in Arabidopsis than in Thellungiella, suggesting more effective net B exclusion by Thellungiella root. Arabidopsis exhibited toxicity symptoms including reduced shoot fresh weight (FW), but Thellungiella was not affected, even at similar levels of shoot-accumulated [B](int) (about 10 to 40 mm B in 'shoot water'), suggesting additional B tolerance mechanism in Thellungiella shoot. At [B](ext) = 5 mm, the summed shoot concentration of the potentially B-binding polyhydroxyl metabolites (malic acid, fructose, glucose, sucrose and citric acid) in Arabidopsis was below [B](int) , but in Thellungiella it was over twofold higher than [B](int) , and therefore likely to allow appreciable 1:2 boron-metabolite complexation in the shoot. This, we suggest, is an important component of Thellungiella B tolerance mechanism. © 2011 Blackwell Publishing Ltd.

  14. How much genetic variation is stored in the seed bank? A study of Atriplex tatarica (Chenopodiaceae)

    Czech Academy of Sciences Publication Activity Database

    Mandák, Bohumil; Bímová, Kateřina; Mahelka, Václav; Plačková, Ivana

    2006-01-01

    Roč. 15, - (2006), s. 2653-2663 ISSN 0962-1083 R&D Projects: GA AV ČR IAA6005206 Institutional research plan: CEZ:AV0Z60050516 Keywords : seed bank * population genetic structure * competition Subject RIV: EF - Botanics Impact factor: 4.825, year: 2006

  15. The gastropod shell has been co-opted to kill parasitic nematodes.

    Science.gov (United States)

    Rae, R

    2017-07-06

    Exoskeletons have evolved 18 times independently over 550 MYA and are essential for the success of the Gastropoda. The gastropod shell shows a vast array of different sizes, shapes and structures, and is made of conchiolin and calcium carbonate, which provides protection from predators and extreme environmental conditions. Here, I report that the gastropod shell has another function and has been co-opted as a defense system to encase and kill parasitic nematodes. Upon infection, cells on the inner layer of the shell adhere to the nematode cuticle, swarm over its body and fuse it to the inside of the shell. Shells of wild Cepaea nemoralis, C. hortensis and Cornu aspersum from around the U.K. are heavily infected with several nematode species including Caenorhabditis elegans. By examining conchology collections I show that nematodes are permanently fixed in shells for hundreds of years and that nematode encapsulation is a pleisomorphic trait, prevalent in both the achatinoid and non-achatinoid clades of the Stylommatophora (and slugs and shelled slugs), which diverged 90-130 MYA. Taken together, these results show that the shell also evolved to kill parasitic nematodes and this is the only example of an exoskeleton that has been co-opted as an immune system.

  16. Chemical Investigation and Hypotensive Activity study on some Myanmar Indigenous Medicinal Plants used in the Treatement of Hypertension

    International Nuclear Information System (INIS)

    Myatt Hla Wai; Kyaw Naing; Daw Hla Ngwe; Nu Nu Aye; Myint U; Maung Maung Htay

    2005-09-01

    Study of Myanmar indigenous medicinal plants used in the treatment of hypertension was conducted. The samples studied were Gant-ka-lar (Gisekia pharnaceoides), Dant-da-lun (Moringa oleifera), Egayit (Millingtonia hortensis), Sue-pan (Carthamus tinctarius), Kauk-yoe-nwe (Oxystelma esculentum), Shauk (Citrus medica) Kyet-lei-san (Vitex glabrata), and Sin-ngo-myet (Eleusine indica). In all these samples, determination of potassium had been conducted through its natural K activity by high purity germanium gamma counter and by NaI (Tl) selective channel and 'Aloka' gross gamma scintillation counters. Quantitative determination of the two elements (Na, K) and nine elements (Mg, Ca, Cr, Fe, Cu, Zn, As, Cd, Pb) in these samples were carried out by flame photometry and atomic absorption spectrophotometry (AAS), respectively. In addition, elemental analysis for these samples was conducted by using energy dispersive X-ray fluorescence (EDXRF) spectrometry. Moreover, organic compounds present in water extracts of Gant-ka-lar and Dant-da-lun were studied by phytochemical investigation. The hypotensive activities of different water extracts of Gant-ka-lar and Dant-da-lun were studied by using tail cuff method employing ''Wistar-kyoto'' rats. It was found that gant-Ka-Lar to be most effective in the treatment of hypertension

  17. An attempt of postharvest orange fruit rot control using essential oils from Mediterranean plants.

    Science.gov (United States)

    Camele, Ippolito; De Feo, Vincenzo; Altieri, Luciana; Mancini, Emilia; De Martino, Laura; Luigi Rana, Gian

    2010-12-01

    Twelve essential oils from Mediterranean aromatic plants were tested at different doses against four fungi known as causal agents of post-harvest orange fruit rot: Botrytis cinerea, Penicillium italicum, Phytophthora citrophthora, and Rhizopus stolonifer. Essential oils were obtained from Hyssopus officinalis, Lavandula angustifolia, Majorana hortensis, Melissa officinalis, Ocimum basilicum, Origanum vulgare, Salvia officinalis, and Thymus vulgaris (Family Lamiaceae), Verbena officinalis (Family Verbenaceae), and Pimpinella anisum, Foeniculum vulgare, and Carum carvi (Family Apiaceae). Because preliminary in vitro experiments showed that only the oils from V. officinalis, T. vulgaris, and O. vulgare exhibited some fungistatic activity against the above-named fungi, these three essential oils were used in successive in vivo tests carried out to protect healthy "Washington navel" orange fruits from artificial infection by the same micromycetes. The essential oil of T. vulgaris, at a 2,000 ppm dose, controlled fruit rot by B. cinerea, P. citrophthora, and R. stolonifer but was ineffective against P. italicum. Essential oils of V. officinalis and O. vulgare inhibited infection by the first two fungi and only by P. citrophthora, respectively. This finding represents an important result, with the goal of using the essential oils as natural preservatives for food products, due to their positive effect on their safety and shelf life.

  18. Analysing how plants in coastal wetlands respond to varying tidal regimes throughout their life cycles.

    Science.gov (United States)

    Xie, Tian; Cui, Baoshan; Li, Shanze

    2017-10-15

    Important to conserve plant species in coastal wetlands throughout their life cycle. All life stages in these habitats are exposed to varying tidal cycles. It is necessary to investigate all life stages as to how they respond to varying tidal regimes. We examine three wetlands containing populations of an endangered halophyte species, each subjected to different tidal regimes: (1). wetlands completely closed to tidal cycles; (2). wetlands directly exposed to tidal cycles (3). wetlands exposed to a partially closed tidal regime. Our results showed that the most threatened stage varied between wetlands subjected to these varying tidal regimes. We hypothesis that populations of this species have adapted to these different tidal regimes. Such information is useful in developing management options for coastal wetlands and modifying future barriers restricting tidal flushing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. No Evidence for Differential Biomass and Mineral Content in Adult Plants Grown from Dimorphic Suaeda Aralocaspica Seeds

    International Nuclear Information System (INIS)

    Wang, L.; Wang, H. L.; Tian, C. Y.; Huang, Z. Y.

    2016-01-01

    The production of two or more seed types by a single plant is known as seed heteromorphism. There have been many comparisons of seed traits or growth between plants grown from heteromorphic seeds. However, information is scarce regarding the mineral contents of adult plants from heteromorphic seeds. We herein present biomass and mineral profiles of adult plants grown from dimorphic seeds (non-dormant brown seeds and black seeds with non-deep physiological dormancy) of the annual desert halophyte Suaeda aralocaspica at different nutrient and salinity levels. Although nutrient and salinity treatments affected dry weight and mineral content, there were no significant differences among S. aralocaspica seed-dimorphic plants under the same experimental conditions. This study is one of the few to compare the physiological responses between seed-heteromorphic plants, and reveals that mineral status corresponds with growth performance in these plants. (author)

  20. Analysis of early medieval glass beads - Glass in the transition period

    Energy Technology Data Exchange (ETDEWEB)

    Smit, Ziga, E-mail: ziga.smit@ijs.si [Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, SI-1000 Ljubljana (Slovenia); Jozef Stefan Institute, Jamova 39, P.O.B. 3000, SI-1001 Ljubljana (Slovenia); Knific, Timotej [National Museum of Slovenia, Presernova 20, SI-1000 Ljubljana (Slovenia); Jezersek, David [Jozef Stefan Institute, Jamova 39, P.O.B. 3000, SI-1001 Ljubljana (Slovenia); Istenic, Janka [National Museum of Slovenia, Presernova 20, SI-1000 Ljubljana (Slovenia)

    2012-05-01

    Glass beads from graves excavated in Slovenia and dated archaeologically to the 7th-10th century AD were analysed by the combined PIXE-PIGE method. The results indicate two groups of glass; natron glass made in the Roman tradition and glass made with alkalis from the ash of halophytic plants, which gradually replaced natron glass after c. 800 AD. The alkalis used in the second group of glass seem to be in close relation to a variant of the Venetian white glass that appeared several centuries later. The origin of this glass may be traced to glass production in Mesopotamia and around the Aral Sea. All the mosaic beads with eye decoration, as well as most of the drawn-segmented and drawn-cut beads analysed, are of plant-ash glass, which confirms their supposed oriental origin.

  1. The effect of organic and biofertilizers on some quantitative characteristics and essential oil content of summer savory (Satureja hortensis L.

    Directory of Open Access Journals (Sweden)

    P. Rezvani Moghaddam

    2016-05-01

    Full Text Available Plant growth promoting bacteria with various mechanisms such as an increase in uptake and availability of nutrients can improve plant growth. In order to evaluate the effects of biofertilizers and Vermicompost on quantitative characteristics and essential oil content of vegetative parts of summer savory, a field experiment was conducted during growing season of 2008- 2009 at Agriculture Research Station, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran. A randomized complete block design with three replications was used. Treatments included: Nitragin, Nitragin+Vermicompost, Nitragin+Nitroxin, Nitragin+Phosphate solublizing bacteria, Nitragin+Phosphate solublizing bacteria+Vermicompost, Nitragin+Phosphate solublizing bacteria+Nitroxin, Nitragin+Nitroxin+Vermicompost and control. Plants were harvested twice at 10% flowering stag. The result showed that biofertilizers and Vermicompost had significant effects (p≤0.01 on plant height, percentage of leaf and stem, biological yield and essential oil contents of leaves in both harvests. The combination of Nitragin + Nitroxin and Vermicompost and control treatments had the highest and the lowest plant height, percentage of stem and leaf, and biological yield. It seems that seed inoculation with biofertilizers enhanced root development and hence availability of moisture and nutrients, particularly nitrogen and phosphorus. Therefore, summer savory inoculation with biofertilizers could improve some quantitative and essential oil contents.

  2. Medicinal plants and secondary metabolites for diabetes mellitus control

    Directory of Open Access Journals (Sweden)

    Mahmoud Bahmani

    2014-09-01

    Full Text Available Diabetes mellitus is one of the most common and complex problems of modern societies which has caused many economic and social problems. Because diabetes has no definite treatment, the use of traditional medicine seems to be an appropriate solution to control and manage it. Studies revealed that Vaccinium Arctostaphylos L., Securigera securidaca L., Gymnema sylvestre L., Atriplex halimus L., Camellia sinensis L., Ginkgo biloba L., Mamordica charantia L., Citrullus colocynthis (L. Schrad., Allium cepa L., Allium sativum L., Silybum marianum (L., Gaertn and Trigonella foenum graecum L. are effective against diabetes. Flavonoids, quercin, metformin, quinolizidine, anthocyanin, catechin and flavone, phenylpropanoids, lipoic acid and coumarin metabolites were introduced major impact on diabetes. With regard to the study of plants and their metabolites and the mechanisms of their influence, it is clear that these plants have the potential to reduce blood sugar and diabetes and be considered as candidates for preparing new drugs. Combination of plants extracts or their components may also have synergistic effects to better act on diabetes.

  3. Antiviral activity of some Tunisian medicinal plants against Herpes simplex virus type 1.

    Science.gov (United States)

    Sassi, A Ben; Harzallah-Skhiri, F; Bourgougnon, N; Aouni, M

    2008-01-10

    Fifteen species of Tunisian traditional medicinal plants, belonging to 10 families, were selected for this study. They were Inula viscosa (L.) Ait and Reichardia tingitana (L.) Roth ssp. discolor (Pom.) Batt. (Asteraceae), Mesembryanthemum cristallinum L. and M. nodiflorum L. (Aizoaceae), Arthrocnemum indicum (Willd.) Moq., Atriplex inflata Muell., A. parvifolia Lowe var. ifiniensis (Caball) Maire, and Salicornia fruticosa L. (Chenopodiaceae), Cistus monspeliensis L. (Cistaceae), Juniperus phoenicea L. (Cupressaceae), Erica multiflora L. (Ericaceae), Frankenia pulverulenta L. (Frankeniaceae), Hypericum crispum L. (Hypericaceae), Plantago coronopus L. ssp. eu-coronopus Pilger var. vulgaris G.G. (Plantaginaceae) and Zygophyllum album L. (Zygophyllaceae). Fifty extracts prepared from those plants were screened in order to assay their antiviral activity against Herpes simplex virus type 1 (HSV-1), using neutral red incorporation. Extracts from eight plants among these 15 showed some degree of antiviral activity, while the methanolic extract of E. multiflora was highly active with EC(50) of 132.6 microg mL(-1). These results corroborate that medicinal plants from Tunisia can be a rich source of potential antiviral compounds.

  4. Desert Perennial Shrubs Shape the Microbial-Community Miscellany in Laimosphere and Phyllosphere Space.

    Science.gov (United States)

    Martirosyan, Varsik; Unc, Adrian; Miller, Gad; Doniger, Tirza; Wachtel, Chaim; Steinberger, Yosef

    2016-10-01

    Microbial function, composition, and distribution play a fundamental role in ecosystem ecology. The interaction between desert plants and their associated microbes is expected to greatly affect their response to changes in this harsh environment. Using comparative analyses, we studied the impact of three desert shrubs, Atriplex halimus (A), Artemisia herba-alba (AHA), and Hammada scoparia (HS), on soil- and leaf-associated microbial communities. DNA extracted from the leaf surface and soil samples collected beneath the shrubs were used to study associated microbial diversity using a sequencing survey of variable regions of bacterial 16S rRNA and fungal ribosomal internal transcribed spacer (ITS1). We found that the composition of bacterial and fungal orders is plant-type-specific, indicating that each plant type provides a suitable and unique microenvironment. The different adaptive ecophysiological properties of the three plant species and the differential effect on their associated microbial composition point to the role of adaptation in the shaping of microbial diversity. Overall, our findings suggest a link between plant ecophysiological adaptation as a "temporary host" and the biotic-community parameters in extreme xeric environments.

  5. How does population genetic diversity change over time? An experimental seed bank study of Atriplex tatarica (Chenopodiaceae)

    Czech Academy of Sciences Publication Activity Database

    Mandák, Bohumil; Plačková, Ivana

    2009-01-01

    Roč. 204, č. 2 (2009), s. 423-433 ISSN 0367-2530 R&D Projects: GA AV ČR IAA6005206; GA AV ČR IAA600050707 Institutional research plan: CEZ:AV0Z60050516 Keywords : seed banks * succession * competition Subject RIV: EF - Botanics Impact factor: 1.439, year: 2009

  6. Designing viable cropping options for salt-affected lands

    Science.gov (United States)

    Shabala, Sergey; Meinke, Holger

    2017-04-01

    Salinity cost agricultural sector over 27Bln pa in lost opportunities and is an issue that crosses all spatial and temporal scales - from individual fields, farms, catchments, landscapes to national and global levels. Salinity manifests itself in many forms and often leads to further soil degradation such as erosion, nutrient and soil organic matter depletion, and a loss of (soil) biodiversity. Salinity may also cause major disturbance to ecosystems due to its impact on resources (e.g. pollution of aquifers). In extreme cases it can turn previously highly productive areas into wastelands. An increasing global population and unprecedented urban sprawls are now putting additional pressures on our soil and water resources, particularly in regions where urbanisation directly competes with agriculture for access to land and water. And although everyone agrees that avoiding soil salinity in the first instance would be the most effective way of combating it, reality is that the amount of saline land and water resources is rapidly increasing, and will continue to increase, especially in developing countries. Purposefully designing our cropping systems that can cope with various levels of salinity could be one answer to this increasing problem. In this work we review some of the key cropping options that can be deployed to either avoid, reduce or remediate salt-affected lands. We argue that for these measures to be most effective an ongoing science - policy - society dialogue is required to ensure that policy frameworks that govern land and water management are conducive to reducing salinity or even assist in restoring affected areas. We first consider several case studies highlighting the extent of the problem using ongoing salinity hotspots around the globe. We then look at halophytes as a possible biological tools to remediate already saline sols, and discuss prospects of mixed (halophytes and glycophytes) cropping solutions for various agricultural systems at different

  7. Insecticidal Activities of Tunisian Halophytic Plant Extracts against Larvae and Adults of Tribolium confusum

    Directory of Open Access Journals (Sweden)

    Mighri, Z.

    2007-01-01

    Full Text Available Salt marsh plants were tested for their insecticidal activities against adults and larvae of Tribolium confusum. Sixteen aerial part extracts of Frankenia laevis, Statice echioides, Suaeda fructicosa and Tamarix boveana were obtained using organic solvents of increasing polarity and tested for their insect growth, antifeedant and toxicity effects. Responses varied with plant material, extract type, insect stage and exposition time. Larval growth inhibition was significantly induced by chloroformic, ethyl acetate extracts of F. laevis, S. echioides and T. boveana, and petroleum ether extract of F. laevis. On the other hand, all extracts of S. fructicosa and the methanolic ones of the four plants tested didn't show any significant activity. In addition, ethyl acetate extracts of F. laevis, S. echioides and T. boveana and petroleum ether extract of F. laevis presented antifeedant property. S. fructicosa seemed to be, however, slightly attractive to the flour beetle. For all extracts, mortality was higher for larvae than adults. By using ethyl acetate extracts of F. laevis, S. echioides and T. boveana, and petroleum ether extract of F. laevis, mortality reached respectively 97, 87, 97 and 80%, when applied at a dose of 1%, mixed with the insect diet.

  8. The Mechanisms of Salinity Tolerance in the Xero-halophyte Blue Panicgrass (Panicum antidotale Retz

    Directory of Open Access Journals (Sweden)

    Hamid R. ESHGHIZADEH

    2012-05-01

    Full Text Available Identifying the physiological traits associated with salt tolerance is important in optimal management of biosaline systems and optimum utilization of saline water resources in dry and saline areas. Therefore, some indices of photosynthetic activity, dry matter production and accumulation of sodium and potassium ions in Blue panicgrass (Panicum antidotale Retz were evaluated in five levels of salinity treatment (0, 70, 140, 210 and 280 mM NaCl solution under greenhouse conditions. The results showed that at 28 and 35 days after salt stress, plant leaf area reduced in the highest salinity treatment, 93 and 96% respectively, compared with control. Leaf stomatal conductance, CO2 fixation and quantum efficiency of photosystem II were decreased by increasing salinity. It caused also a reduction in chlorophyll content (Chl a, Chl b in leaves of Blue panicgrass. Content of carotenoids showed binary patterns to different salinity levels, slightly increased in 70-140 mM NaCl and decreased again in 210-280 mM, respectively. Increasing levels of salinity, increased sodium content in both roots and shoots but the shoots potassium content decreased. Decline in photosynthesis indices caused the reduction of root and shoot dry weight. This decrease resulted from lower leaf area (r=0.91**, lower stomatal conductance (r=0.78**, lower CO2 fixed in photosynthesis (r=0.63**, lower quantum efficiency of photosystem II (r=0.54** and lower Chl a (r=0.45**, respectively. Data analysis base on using stepwise regression introduced leaf area (?=0.560, chlorophyll a content (?=0.245 and shoot potassium content (?= 0.264 as main effective components of salinity tolerance in Blue panicgrass.

  9. Leaf anatomical traits determine the 18O enrichment of leaf water in coastal halophytes

    Science.gov (United States)

    Liang, J.; Lin, G., Sr.; Sternberg, L. O.

    2017-12-01

    Foliar anatomical adaptations to high-salinity environment in mangroves may be recorded by leaf water isotopes. Recent studies observed that a few mangrove species have lower 18O enrichment of leaf water (ΔL) relative to source water than the adjacent terrestrial trees, but what factors actually control this phenomenon is still disputable at present. To resolve this issue, we collected 15 species of true mangrove plants, 14 species of adjacent freshwater trees and 4 species of semi-mangrove plants at five study sites on the southeastern coast of China. Leaf stomatal density and pore size, water content, ΔL and other related leaf physiological traits were determined for the selected leaves of these plants. Our results confirmed that ΔL values of mangroves were generally 3 4 ‰ lower than those of the adjacent freshwater or semi-mangrove species. Higher leaf water per area (LWC) and lower leaf stomatal density (LS) of mangroves played co-dominant roles in lowering ΔL through elongating effective leaf mixing length by about 20%. The Péclet model incorporated by LWC and LS performed well in predicting ΔL. The demonstrated general law between leaf anatomy and ΔL in this paper based on a large pool of species bridges the gap between leaf functional traits and metabolic proxies derived ΔL, which will have considerable potential applications in vegetation succession and reconstruction of paleoclimate research.

  10. Additions to the flora of Tenerife (Canary Islands, Spain

    Directory of Open Access Journals (Sweden)

    Verloove, F.

    2011-12-01

    Full Text Available Additions to the flora of Tenerife (Canary Islands, Spain.- Recent fieldwork in Tenerife, especially in September 2010, yielded several interesting new records of non-native vascular plants. Bothriochloa ischaemum var. songarica, “Asian” Cardamine flexuosa, Cestrum parqui, Digitaria violascens, Ficus lyrata, Ficus rubiginosa, Hoffmannseggia glauca, Hyparrhenia rufa subsp. altissima, Jacaranda mimosifolia, Merremia tuberosa, Passiflora morifolia, Phytolacca dioica, Schefflera actinophylla and Solanum abutiloides are reported for the first time from the Canary Islands, while Eragrostis barrelieri var. pygmaea, Ficus microcarpa, Ipomoea purpurea, Leucaena leucocephala subsp. glabrata, Sechium edule, Tradescantia zebrina and Turnera ulmifolia are new to the flora of the island of Tenerife. New records of Acacia cyclops, Atriplex suberecta, Heliotropium curassavicum, Paspalum dilatatum, P. notatum, Pluchea ovalis, Pulicaria paludosa, Sclerophylax spinescens and Solanum villosum subsp. miniatum confirm their recent expansion on the island of Tenerife. New records are provided for the recently described Sporobolus copei . Finally, Paspalum vaginatum (hitherto possibly confused with P. distichum and Potentilla indica are confirmed from the island of Tenerife.

    Adiciones para la flora de Tenerife (Islas Canarias, España.- Algunos recientes trabajos de campo en Tenerife, especialmente en Septiembre de 2010, trajeron consigo varias nuevas e interesantes adiciones de plantas vasculares no autóctonas. Bothriochloa ischaemum var. songarica, Cardamine flexuosa “Asiática”, Cestrum parqui, Digitaria violascens, Ficus lyrata, Ficus rubiginosa, Hoffmannseggia glauca, Hyparrhenia rufa subsp. altissima, Jacaranda mimosifolia, Merremia tuberosa, Passiflora morifolia, Phytolacca dioica, Schefflera actinophylla y

  11. Plant cell-wall hydrolyzing enzymes from indigenously isolated fungi grown on conventional and novel natural substrates

    International Nuclear Information System (INIS)

    Kumari, D.; Sohail, M.; Jahangeer, S.; Abideen, Z.; Khan, M.A.

    2017-01-01

    Fungi elaborate a variety of plant-hydrolyzing enzymes including cellulases, xylanases, pectinases and amylases. Although these enzymes have potential biotechnological applications, their production at industrial level is limited because of higher costs of the purified substrates. Hence, the present study was aimed to explore the novel, natural and cheaper substrates for enzyme production. Indigenously isolated fungal strains of Aspergillus sp. were grown on banana-peels, grapefruit-peels, pomegranate-peels, sugarcane bagasse, Eucalyptus camaldulensis-leaves and shoots of two halophytic plants including Halopyrum mucronatum and Desmostachya bipinnata under solid-state fermentation (SSF) and submerged fermentation (Smf) conditions. The crude enzyme preparation was screened for cellulase (endoglucanase, beta-glucosidase and filter-paperase), hemicellulase (xylanase), pectinase and amylase production. The results revealed that among all investigated enzymes, the xylanase titers were highest using D. bipinnata- shoots and H. mucronatum- shoots as substrates under solid state fermentation conditions, suggesting their exploitation at commercial scale. (author)

  12. West Nile Virus in Mosquitoes of Iranian Wetlands.

    Science.gov (United States)

    Bagheri, Masoomeh; Terenius, Olle; Oshaghi, Mohammad Ali; Motazakker, Morteza; Asgari, Sassan; Dabiri, Farrokh; Vatandoost, Hassan; Mohammadi Bavani, Mulood; Chavshin, Ali Reza

    2015-12-01

    The West Nile virus (WNV) transmission cycle includes a wide range of migratory wetland birds as reservoirs, mosquitoes as biological vectors, and equines and humans as dead-end hosts. Despite the presence of potential vector species, there is no information about the existence of WNV in mosquito vectors in Iran. The Iranian West Azerbaijan Province is located in the northwestern part of Iran and has borders with Turkey, Iraq, Armenia, and the Republic of Azerbaijan. The current study was conducted to identify the wetland mosquitoes of the West Azerbaijan Province and their infection with WNV. In this study, 2143 specimens were collected, comprising 1541 adults and 602 larvae. Six species belonging to four genera were collected and identified: Anopheles maculipennis sensu lato (s.l.), Culex (Cx.) hortensis, Cx. pipiens s.l., Cx. theileri, Culiseta longiareolata, and Aedes (Ae.) (Ochlerotatus) caspius. In total, 45 pools of mosquitoes were examined. Two of the adult pools collected from the same location showed the presence of WNV in Ae. (Och.) caspius, from Sangar, Makoo County, as confirmed by PCR and sequencing. Due to the discovery of WNV in the mosquito population of the region, and the presence of wetlands and significant populations of migratory birds, the health sector should carefully monitor the factors involved in the cycle of this disease.

  13. Occurrence of Stachybotrys chartarum chemotype S in dried culinary herbs.

    Science.gov (United States)

    Biermaier, Barbara; Gottschalk, Christoph; Schwaiger, Karin; Gareis, Manfred

    2015-02-01

    Stachybotrys (S.) chartarum is an omnipresent cellulolytic mould which produces secondary metabolites, such as the highly toxic macrocyclic trichothecenes. While it is known to occur in animal feed like hay and straw as well as in water-damaged indoor environments, there is little knowledge about the occurrence of S. chartarum and its secondary metabolites in food. The objective of the present study was to examine selected dried culinary herbs for the presence of S. chartarum chemotype S, to assess the potential risk of a contamination of foods with macrocyclic trichothecenes. In total, 50 Stachybotrys isolates from different types of culinary herbs (n=100) such as marjoram (Origanum majorana Linné (L.)), oregano (Origanum vulgare L.), thyme (Thymus vulgaris L.), and savory (Satureja hortensis L.) were examined by MTT-cell culture test (effect-based bioassay), ELISA, and by liquid chromatography tandem mass spectrometry (LC-MS/MS). Selected toxic and non-toxic isolates (n=15) were genetically characterized by PCR and sequencing. Five isolates (10%) were highly toxic in the MTT-cell culture test, and the production of macrocyclic trichothecenes was proven by ELISA and LC-MS/MS. These five isolates were genetically confirmed as S. chartarum chemotype S. To the best of our knowledge, this is the first report about a contamination of dried culinary herbs with toxigenic S. chartarum.

  14. Incorporation of essential oil in alginate microparticles by multiple emulsion/ionic gelation process.

    Science.gov (United States)

    Hosseini, Seyede Marzieh; Hosseini, Hedayat; Mohammadifar, Mohammad Amin; Mortazavian, Amir Mohammad; Mohammadi, Abdorreza; Khosravi-Darani, Kianoosh; Shojaee-Aliabadi, Saeedeh; Dehghan, Solmaz; Khaksar, Ramin

    2013-11-01

    In this study, an o/w/o multiple emulsion/ionic gelation method was developed for production of alginate microparticles loaded with Satureja hortensis essential oil (SEO). It was found that the essential oil concentration has significant influence on encapsulation efficiency (EE), loading capacity (LC) and size of microparticles. The values of EE, LC and particle mean diameter were about 52-66%, 20-26%, and 47-117 μm, respectively, when the initial SEO content was 1-3% (v/v) .The essential oil-loaded microparticles were porous, as displayed by scanning electron micrograph. The presence of SEO in alginate microparticles was confirmed by Fourier transform-infrared (FT-IR) spectroscopy and differential scanning calorimetry (DSC) analyses. SEO-loaded microparticles showed good antioxidant (with DPPH radical scavenging activity of 40.7-73.5%) and antibacterial properties; this effect was greatly improved when the concentration of SEO was 3% (v/v). S. aureus was found to be the most sensitive bacterium to SEO and showed a highest inhibition zone of 304.37 mm(2) in the microparticles incorporated with 3% (v/v) SEO. In vitro release studies showed an initial burst release and followed by a slow release. In addition, the release of SEO from the microparticles followed Fickian diffusion with acceptable release. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Distillation fraction-specific ecotoxicological evaluation of a paraffin-rich crude oil

    International Nuclear Information System (INIS)

    Erlacher, Elisabeth; Loibner, Andreas P.; Kendler, Romana; Scherr, Kerstin E.

    2013-01-01

    Crude oil is a complex mixture of petroleum hydrocarbons (PHC) with distinct chemical, physical and toxicological properties relevant for contaminated site risk assessment. Ecotoxicological effects of crude oil distillation fractions on luminescent bacteria (Vibrio fischeri), earthworms (Dendrobaena hortensis) and invertebrates (Heterocypris incongruens) were tested using two spiked soils and their elutriates. Fraction 2 (F2) had an equivalent carbon number (ECN) range of >10 to 16, and F3 from >16 to 39. F2 showed a substantially higher ecotoxicological effect than F3 for Vibrio and Dendrobaena. In contrast, severe inhibition of Heterocypris by the poorly soluble F3 is attributed to mechanical organ blockage. Immediate sequestration of PHC to the organic matter-rich soil effected reduced toxicity for all organisms. This study indicates that a more differentiated consideration (i) of PHC mixtures based on ECN range and (ii) of model soil properties employed for ecotoxicity testing should be included into PHC-contaminated site risk assessment. -- Highlights: ► Crude oil distillates show distinctly different effects on receptor organisms. ► Toxicity of the higher boiling point Fraction is attributed to physical effects. ► TPH sorption to the organic-matter rich soil occurred immediately after spiking. -- A differentiated consideration of the prevailing crude oil distillation fractions and of model soil properties employed for ecotoxicity testing should be included into the risk assessment of crude oil contaminated sites

  16. A Review Study on the Effect of Iranian Herbal Medicines on Opioid Withdrawal Syndrome.

    Science.gov (United States)

    Ebrahimie, Marzieh; Bahmani, Mahmoud; Shirzad, Hedayatollah; Rafieian-Kopaei, Mahmoud; Saki, Kourosh

    2015-10-01

    Addiction is a chronic and recurring disease that recurrence phenomenon is the most important challenge in treatment of this disease. Recent experiences have shown that synthetic drugs have undesirable side effects. Recent studies on medicinal plants have shown that they might be effective in treatment of different stages of addiction with lower side effects and costs. The aim of this study was to review the effects of medicinal plants in the treatment of morphine addiction in experimental animals. In this review article, by using keywords of morphine, withdrawal, and plants or herbal medicine in databases of indexing cites, desired articles were obtained since 1994. Inclusion criteria for selecting articles were the articles related to application of medicinal plants in decreasing symptoms resulting from morphine withdrawal were selected. Results of this study on experimental studies have shown that medicinal plants such as Trachyspermum copticum L and Melissa officinalis decrease the symptoms of withdrawal syndrome in a dose-dependent. Also, medicinal plants like Avena sativa, Hypericum perforatu, Passiflora incarnate, Valeriana officinalis, Satureja hortensis L, and Mentha piperita can have effects on behavior, emotions, and other problems of addicts, decreasing withdrawal symptoms. Results of this study showed that medicinal plants can be effective in controlling deprivation, decreasing dependency creation, and possibly DETOXIFICATION: of opioid addicts. © The Author(s) 2015.

  17. Fauna and Larval Habitats of Mosquitoes (Diptera: Culicidae of West Azerbaijan Province, Northwestern Iran.

    Directory of Open Access Journals (Sweden)

    Farahnaz Khoshdel-Nezamiha

    2014-12-01

    Full Text Available Several important diseases are transmitted by mosquitoes. Despite of the potential of the occurrence of some mosquito-borne diseases such as West Nile, dirofilariasis and malaria in the region, there is no recent study of mosquitoes in West Azerbaijan Province. The aim of this investigation was to study the fauna, composition and distribution of mosquitoes and the characteristics of their larval habitats in this province.Larvae and adult collections were carried out from different habitats using the standard methods in twenty five localities of seven counties across West Azerbaijan Province.Overall, 1569 mosquitoes including 1336 larvae and 233 adults were collected from 25 localities. The details of geographical properties were recorded. Five genera along with 12 species were collected and identified including: Anopheles claviger, An. maculipennis s.l., An. superpictus, Culex pipiens, Cx. theileri, Cx. modestus, Cx. hortensis, Cx. mimeticus, Culiseta Longiareolata, Ochlerotatus caspius s.l., Oc. geniculatus and Uranotaenia unguiculata. This is the first record of Oc. geniculatus in the province.Due to the geographical location of the West Azerbaijan Province, it comprises different climatic condition which provides suitable environment for the establishment of various species of mosquitoes. The solidarity geographical, cultural and territorial exchanges complicate the situation of the province and its vectors as a threat for future and probable epidemics of mosquito-borne diseases.

  18. Chemical studies on the polysaccharides of Salicornia brachiata.

    Science.gov (United States)

    Sanandiya, Naresh D; Siddhanta, A K

    2014-11-04

    A group of 12 polysaccharide extracts were prepared from the tips, stem and roots of an Indian halophyte Salicornia brachiata Roxb. obtained by sequential extractions with cold water (CW), hot water (HW), aqueous ammonium oxalate (OX) and aqueous sodium hydroxide (ALK) solutions. Monosaccharide composition analysis revealed that all the polysaccharide extract samples consisted primarily of rhamnose, arabinose, mannose, galactose, glucose, whereas ribose and xylose were present only in some of the extracts. All the extracts exhibited low apparent viscosity (1.47-2.02 cP) and sulphate and contained no prominent toxic metal ions. Fucose was detected only in OX extract of the roots. These polysaccharides were found to be heterogeneous and highly branched (glycoside linkage analysis, size-exclusion chromatography, (13)C-NMR, FT-IR, circular dichroism and optical rotation data). Physico-chemical analyses of these polysaccharides including uronic acid, sulphate and protein contents were also carried out. This constitutes the first report on the profiling of Salicornia polysaccharides. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Germination responses of limonium insigne (coss.) kuntze to salinity and temperature

    International Nuclear Information System (INIS)

    Isabel, C.; Fernandez, D.; Luque, E.G.; Mercado, F.G.

    2015-01-01

    Limonium insigne (Plumbaginaceae) is a perennial halophyte endemic to the SE of the Iberian Peninsula. Experiments were conducted to determine the effects of different salinities (0, 100, 200 and 400 mM NaCl) on the seed germination of L. insigne under different temperature regimes (20/10, 25/15, 30/20 and 35/25 degree C), both in a 14 h light and 10 h dark photoperiod. Seed germination of L. insigne was affected significantly by salinity levels, temperature and their interaction. Maximum germination was observed in the least saline media (100 mM NaCl) and distilled water (0 mM NaCl) at 20/10 degree C temperature. No seeds germinated at concentrations higher than 200 mM NaCl at the highest temperature (35/25 degree C). The increase in salinity delayed the beginning and ending of germination, reduced final germination percentage and increased mean time to germination. The rate of germination decreased with an increase in salinity and temperature. (author)

  20. Ecological Performances of Plant Species of Halophilous Hydromorphic Ecosystems

    Directory of Open Access Journals (Sweden)

    Maria Speranza

    2015-12-01

    Full Text Available Coastal wetlands are very special environments, characterized by soils permanently or seasonally saturated by salt or brackish water. They host microorganisms and plants able to adapt to anoxic conditions. This paper proposes a review of recent scientific papers dealing with the study of coastal wetlands from different points of view. Some studies examine the species composition and the pattern of the spatial distribution of plant communities, depending on the depth of the salt water table, as well as on other related factors. A significant number of studies analyse instead the coastal wetlands in their ability for the phytoremediation (phytostabilisation and/or phytoextraction and highlight the importance of interactions between the rhizosphere of the halophytes and the physical environment. Finally, more recent studies consider the plant species of the coastal wetlands as a source of useful products (food, feed, oils and expose the results of promising researches on their cultivation.

  1. Salicornia europaea L. Na⁺/H⁺ antiporter gene improves salt tolerance in transgenic alfalfa (Medicago sativa L.).

    Science.gov (United States)

    Zhang, L Q; Niu, Y D; Huridu, H; Hao, J F; Qi, Z; Hasi, A

    2014-07-24

    In order to obtain a salt-tolerant perennial alfalfa (Medicago sativa L.), we transferred the halophyte Salicornia europaea L. Na(+)/H(+) antiporter gene, SeNHX1, to alfalfa by using the Agrobacterium-mediated transformation method. The transformants were confirmed by both PCR and RT-PCR analyses. Of 197 plants that were obtained after transformation, 36 were positive by PCR analysis using 2 primer pairs for the CaMV35S-SeNHX1 and SeNHX1-Nos fragments; 6 plants survived in a greenhouse. RT-PCR analysis revealed that SeNHX1 was expressed in 5 plants. The resultant transgenic alfalfa had better salt tolerance. After stress treatment for 21 days with 0.6% NaCl, the chlorophyll and MDA contents in transgenic plants were lower, but proline content and SOD, POD, and CAT activities were higher than those in wild-type plants. These results suggest that the salt tolerance of transgenic alfalfa was improved by the overexpression of the SeNHX1 gene.

  2. Seawater/Saline Agriculture for Energy, Warming, Water, Rainfall, Land, Food and Minerals

    Science.gov (United States)

    Bushnell, Dennis

    2006-01-01

    The combination of the incipient demise of cheap oil and increasing evidence of Global Warming due to anthropogenic fossil carbon release has reinvigorated the need for and efforts on Renewable energy sources, especially for transportation applications. Biomass/Bio-diesel appears to have many benefits compared to Hydrogen, the only other major renewable transportation fuel candidate. Biomass Production is currently limited by available arable land and fresh water. Halophyte Plants and seawater irrigation proffer a wholly new biomass production mantra using wastelands and very plentiful seawater. Such an approach addresses many-to-most of the major emerging Societal Problems including Land, Water, Food, Warming and Energy. For many reasons, including seawater agriculture, portions of the Sahara appear to be viable candidates for future Biomass Production. The apparent nonlinearity between vegetation cover and atmospheric conditions over North Africa necessitates serious coupled boundary layer Meteorology and Global Circulation Modeling to ensure that this form of Terra Forming is Favorable and to avoid adverse Unintended Consequences.

  3. Extraction of inland Nypa fruticans (Nipa Palm) using Support Vector Machine

    Science.gov (United States)

    Alberto, R. T.; Serrano, S. C.; Damian, G. B.; Camaso, E. E.; Biagtan, A. R.; Panuyas, N. Z.; Quibuyen, J. S.

    2017-09-01

    Mangroves are considered as one of the major habitats in coastal ecosystem, providing a lot of economic and ecological services in human society. Nypa fruticans (Nipa palm) is one of the important species of mangroves because of its versatility and uniqueness as halophytic palm. However, nipas are not only adaptable in saline areas, they can also managed to thrive away from the coastline depending on the favorable soil types available in the area. Because of this, mapping of this species are not limited alone in the near shore areas, but in areas where this species are present as well. The extraction process of Nypa fruticans were carried out using the available LiDAR data. Support Vector Machine (SVM) classification process was used to extract nipas in inland areas. The SVM classification process in mapping Nypa fruticans produced high accuracy of 95+%. The Support Vector Machine classification process to extract inland nipas was proven to be effective by utilizing different terrain derivatives from LiDAR data.

  4. Anticancer drugs from marine flora: an overview.

    Science.gov (United States)

    Sithranga Boopathy, N; Kathiresan, K

    2010-01-01

    Marine floras, such as bacteria, actinobacteria, cyanobacteria, fungi, microalgae, seaweeds, mangroves, and other halophytes are extremely important oceanic resources, constituting over 90% of the oceanic biomass. They are taxonomically diverse, largely productive, biologically active, and chemically unique offering a great scope for discovery of new anticancer drugs. The marine floras are rich in medicinally potent chemicals predominantly belonging to polyphenols and sulphated polysaccharides. The chemicals have displayed an array of pharmacological properties especially antioxidant, immunostimulatory, and antitumour activities. The phytochemicals possibly activate macrophages, induce apoptosis, and prevent oxidative damage of DNA, thereby controlling carcinogenesis. In spite of vast resources enriched with chemicals, the marine floras are largely unexplored for anticancer lead compounds. Hence, this paper reviews the works so far conducted on this aspect with a view to provide a baseline information for promoting the marine flora-based anticancer research in the present context of increasing cancer incidence, deprived of the cheaper, safer, and potent medicines to challenge the dreadful human disease.

  5. Anticancer Drugs from Marine Flora: An Overview

    Directory of Open Access Journals (Sweden)

    N. Sithranga Boopathy

    2010-01-01

    Full Text Available Marine floras, such as bacteria, actinobacteria, cyanobacteria, fungi, microalgae, seaweeds, mangroves, and other halophytes are extremely important oceanic resources, constituting over 90% of the oceanic biomass. They are taxonomically diverse, largely productive, biologically active, and chemically unique offering a great scope for discovery of new anticancer drugs. The marine floras are rich in medicinally potent chemicals predominantly belonging to polyphenols and sulphated polysaccharides. The chemicals have displayed an array of pharmacological properties especially antioxidant, immunostimulatory, and antitumour activities. The phytochemicals possibly activate macrophages, induce apoptosis, and prevent oxidative damage of DNA, thereby controlling carcinogenesis. In spite of vast resources enriched with chemicals, the marine floras are largely unexplored for anticancer lead compounds. Hence, this paper reviews the works so far conducted on this aspect with a view to provide a baseline information for promoting the marine flora-based anticancer research in the present context of increasing cancer incidence, deprived of the cheaper, safer, and potent medicines to challenge the dreadful human disease.

  6. Bacillus pumilus ES4: candidate plant growth-promoting bacterium to enhance establishment of plants in mine tailings

    Science.gov (United States)

    de-Bashan, Luz E.; Hernandez, Juan-Pablo; Bashan, Yoav; Maier, Raina

    2014-01-01

    Three plant growth-promoting bacteria (PGPB; Bacillus pumilus ES4, B. pumilus RIZO1, and Azospirillum brasilense Cd) were tested for their ability to enhance plant growth and development of the native Sonoran Desert shrub quailbush (Atriplex lentiformis) and for their effect on the native bacterial community in moderately acidic, high-metal content (AHMT) and in neutral, low metal content natural tailings (NLMT) in controlled greenhouse experiments. Inoculation of quailbush with all three PGPB significantly enhanced plant growth parameters, such as germination, root length, dry weight of shoots and roots, and root/shoot ratio in both types of tailings. The effect of inoculation on the indigenous bacterial community by the most successful PGPB Bacillus pumilus ES4 was evaluated by denaturating gradient gel electrophoresis (PCR-DGGE) fingerprinting and root colonization was followed by specific fluorescent in situ hybridization (FISH). Inoculation with this strain significantly changed the bacterial community over a period of 60 days. FISH analysis showed that the preferred site of colonization was the root tips and root elongation area. This study shows that inoculation of native perennial plants with PGPB can be used for developing technologies for phytostabilizing mine tailings. PMID:25009362

  7. Soil microbiota of Area 13 of the Nevada Test Site

    International Nuclear Information System (INIS)

    Au, F.H.F.; Leavitt, V.D.

    1985-01-01

    The influence of two desert plants, Atriplex canescens and Eurotia lanata, on kind and abundance of soil microbiota was determined in soil samples collected from Area 13 of the Nevada Test Site. This study was part of a larger research program to elucidate the role of soil microorganisms on the biological availability and the mobility of soil-deposited plutonium. The fungi identified in the soil samples included Aspergillus, Penicillium, Rhizopus, Stachybotrys, stysanus, Circinella, Cheaetomium, and Fusarium. The numbers of bacteria and fungi were generally highest at the 2.5- to 5.0-cm soil depth at both the mound and the interspace sampling sites. The highest numbers of fungi were found around the mound. The relative abundance of Aspergillus increased with increasing distance from the plants, whereas that of Penicillium decreased. Dematiaceae and chaetomium, both cellulose decomposers, were highest in the 0- to 2.5-cm soil segment. The abundance and distribution of soil microorganisms capable of incorporating plutonium (and probably other radionuclides as well) around the plants investigated indicate that this may be a factor in the bioavailability and movement of plutonium in the edaphic system. 17 references, 1 figure, 27 tables

  8. Use of hold-gro erosion control fabric in the establishment of plant species on coal mine soil.

    Science.gov (United States)

    Day, A D; Ludeke, K L

    1986-09-01

    Experiments were conducted on the Black Mesa Coal Mine, Kayenta, Arizona in 1977 and 1978 to study the effectiveness of Hold-Gro Erosion Control Fabric (a product from the Gulf States Paper Corporation, Tuscaloosa, Alabama) in the establishment of plants on coal mine soil following the surface mining of coal. Four plant species were planted: (1) spring barley (Horduem vulgare L.), an annual grass (2) crested wheatgrass (Agropyron cristatum L.), a perennial grass (3) alfalfa (lucerne) (Medicago sativa L.), a perennial legume and (4) fourwing saltbush (Atriplex canescens Pursh.), a perennial shrub. Seeds of each plant species were planted in reclaimed coal mine soil in the spring of the year by both broadcast seeding (conventional culture) and the incorporation of seeds in Hold-Gro Erosion Control Fabric. Average numbers of seedlings established and percent ground cover for all species studied were higher in areas where conventional culture was used than they were in areas where seeds were incorporated in Hold-Gro Erosion Control Fabric. The incorporation of seeds in Hold-Gro Erosion Control Fabric in the establishment of plant species on coal mine soil was not an effective cultural practice in the southwestern United States.

  9. Use of Hold-Gro Erosion Control Fabric in the establishment of plant species on coal mine soil

    Energy Technology Data Exchange (ETDEWEB)

    Day, A.D.; Ludeke, K.L.

    1986-09-01

    Experiments were conducted on the Black Mesa Coal Mine, Kayenta, Arizona in 1977 and 1978 to study the effectiveness of Hold-Gro Erosion Control Fabric (a product from the Gulf States Paper Corporation, Tuscaloosa, Alabama) in the establishment of plants on coal mine soil following the surface mining of coal. Four plant species were planted: spring barley (Horduem vulgare L.), an annual grass; crested wheatgrass (Agropyron cristatum L.), a perennial grass; alfalfa (lucerne) (Medicago sativa L.), a perennial legume; and fourwing saltbush (Atriplex canescens Pursh.), a perennial shrub. Seeds of each plant species were planted in reclaimed coal mine soil in the spring of the year by both broadcast seeding (conventional culture) and the incorporation of seeds in Hold-Gro Erosion Control Fabric. Average numbers of seedlings established and percent ground cover for all species studied were higher in areas where conventional culture was used than they were in areas where seeds were incorporated in Hold-Gro Erosion Control Fabric. The incorporation of seeds in Hold-Gro Erosion Control Fabric in the establishment of plant species on coal mine soil was not an effective cultural practice in the southwestern United States. 11 refs.

  10. Physiological and Biochemical Responses of a Medicinal Halophyte Limonium Bicolor (Bag.) Kuntze to Salt-Stress

    International Nuclear Information System (INIS)

    Wang, L.; Li, W.; Yang, H.; Wu, W.; Ma, L.; Huang, T.; Wang, X.

    2016-01-01

    Limonium bicolor (Bag.) Kuntze is a perennial herb belonging to the Plumbaginaceae family. It is a typical recretohalophyte as well as a medicinal plant, distributing at saline soil areas in coastal areas and grasslands. In this paper,physiological mechanisms of L. bicolor to defend salt stress and effects of salinity on medicinal ingredients were investigated. The effects of different NaCl concentrations on the number of salt glands, Na/sup +/ content, dry weight and water content in tissues, gas exchange parameters involving net CO/sub 2/ assimilation rate, stomatal conductance, intercellular CO/sub 2/ concentration and transpiration rate, malondialdehyde content and electrolyte leakage, activities of superoxide dismutase, peroxidase and catalase and accumulations of secondary metabolites such as total phenolic, total flavonoid, gallic acid and myricetrin of leaves were determined. The results show that 100 and 200 mM NaCl induced facilitated effects in L. bicolor reflected in the increase in dry weight, tissue water content, net CO/sub 2/ assimilation rate, the number of salt glands, activity of superoxide dismutase, and content of gallic acid and myricetrin. The 300 mM NaCl treatment resulted in obviously decline in gas exchange parameters, and significant increases in Na/sup +/ levels, malondialdehyde level and electrolyte leakage. It was suggested that increased salt tolerance of L. bicolor was due to the corresponding resistance mechanisms involving an increased number of salt glands, enhanced activities of antioxidant enzymes, and an accelerated accumulation of secondary metabolites. What's more, the results on effects of salinity on medicinal ingredients in L. bicolor under different salt concentrations could provide theoretical basis for the standardization cultivation technique of L. bicolor. (author)

  11. The Life Cycle of Entzia, an Agglutinated Foraminifer from the Salt Marshes in Transylvania

    Science.gov (United States)

    Kaminski, Michael; Telespan, Andreea; Balc, Ramona; Filipescu, Sorin; Varga, Ildiko; Görög, Agnes

    2013-04-01

    The small salt marshes associated with Miocene salt domes in Transylvania are host to a variety of marine organisms, including communities of halophytic plants as well as an agglutinated foraminifer that is normally found in coastal salt marshes worldwide. Originally described as the species Entzia tetrastoma by Daday (1884), the foraminifer is more widely known by the name Jadammina macrescens (Brady, 1870). Because the genus name Entzia has priority over Jadammina, the valid name of this taxon is Entzia macrescens (Brady, 1870). In 2007, we discovered a living population of Entzia inhabiting a small salt marsh just outside the town of Turda in central Transylvania, only a kilometer from the famous Maria Theresa Salt Mine. This is the first discovery of a living population of Entzia in Transylvania since the species was originally described in 1884. To determine whether or not the specimens we found represent a breeding population, samples were collected from the marsh on a monthly basis over the span of a year. This species can be found among the roots of the halophytic plants, in the uppermost one or two centimeters of the mud. Sediment samples were preserved in Vodka with Rose Bengal to distinguish living and dead specimens, and examined quantitatively. To document the life cycle of the species the following metrics were carried out: test size, abundance, number of chambers, ratio between live and dead specimens, and the diameter of the proloculus. An increase in the mean diameter of specimens was found from October to December. However the mean diameter decreased again in January, which suggests that asexual reproduction had apparently taken place. Small specimens again appeared in March, when sexual reproduction is presumed to have taken place. The median proloculus diameter was smallest in April and May, but the monthly changes in mean proloculus size within the population over the span of a year are not significant. However, specimens with largest

  12. Ability of salt marsh plants for TBT remediation in sediments.

    Science.gov (United States)

    Carvalho, Pedro N; Basto, M Clara P; Silva, Manuela F G M; Machado, Ana; Bordalo, A A; Vasconcelos, M Teresa S D

    2010-07-01

    The capability of Halimione portulacoides, Spartina maritima, and Sarcocornia fruticosa (halophytes very commonly found in salt marshes from Mediterranean areas) for enhancing remediation of tributyltin (TBT) from estuarine sediments was investigated, using different experimental conditions. The influence of H. portulacoides on degradation of the butyltin compounds was assessed in two different ways: (1) a 9-month ex situ study carried out in a site of Sado River estuary, center of Portugal, which used polluted sediments collected at other nonvegetated site from the same estuary; and (2) a 12-month laboratorial study, using both plant and sediment collected at a relatively clean site of Cávado River estuary, north of Portugal, the sediment being doped with TBT, DBT, and MBT at the beginning of the experiment. The role of both S. fruticosa and S. maritima on TBT remediation in sediments was evaluated in situ, in salt marshes from Marim channel of Ria Formosa lagoon, south of Portugal, which has large areas colonized by each one of these two plants. For estimation of microbial abundance, total cell counts of sediment samples were enumerated by the DAPI direct count method. Butyltin analyses in sediment were performed using a method previously validated, which consisted of headspace solid-phase micro-extraction combined with gas chromatography-mass spectrometry after in situ ethylation (with tetraethylborate). Sediments colonized both ex situ and at lab by H. portulacoides displayed TBT levels about 30% lower than those for nonvegetated sediments with identical initial composition, after 9-12 months of plant exposure. In addition, H. portulacoides showed to be able of stimulating bacterial growth in the plant rhizosphere, which probably included degraders of TBT. In the in situ study, which compared the levels of TBT, DBT, and MBT in nonvegetated sediment and in sediments colonized by either S. maritima or S. fruticosa from the same area, TBT and DBT were only

  13. Effect of Ethanol and Essential Oils on Extending Vase-life of Carnation Cut Flower (Dianthus caryophyllus cv. �Yellow Candy�

    Directory of Open Access Journals (Sweden)

    Hassan BAYAT

    2011-11-01

    Full Text Available The aim of the present study was to evaluate the effects of ethanol and essential oils of three medicinal plants namely Thyme (Thymus vulgaris L., Summer savory (Satureja hortensis L. and Ajwain (Carum copticum L. on extending carnation (Dianthus caryophyllus vase-life. For this purpose three individual trials were conducted using a completely randomized block design with three replications. In the first trial, the effect of 4% ethanol (v/v as a continuous or pulse treatment was determined. The results showed that although both application methods increased vase-life and marketability of carnation, it was statistically non significant. In the second trial, the effects of selected essential oils at the concentration of 100, 150 and 200 ppm were investigated. All essential oils prolonged carnation vase-life. Summer savory essential oil (100 ppm showed the highest effect (increasing 4.4 days in comparison to the control. In the third trial, the interaction between ethanol and the essential oils was studied. Results showed there is no significant difference between application of essential oils alone and in combination with ethanol. The highest fresh weight was observed in cut flowers treated with Summer savory essential oil at 100 ppm after 6 days which was double compared to the control. According to the results of this research it is concluded that essential oils, (natural, safe and biodegradable compounds as novel alternative materials are suitable for prolongation of carnation vase-life.

  14. Spring Bird Migration Phenology in Eilat, Israel

    Directory of Open Access Journals (Sweden)

    Reuven Yosef

    2009-12-01

    Full Text Available Analysis of the mean date of first captures and median arrival dates of spring migration for 34 species of birds at Eilat, Israel, revealed that the earlier a species migrates through Eilat, the greater is the inter-annual variation in the total time of its passage. Birds arrive during spring migration in Eilat in four structured and independent waves. The annual fluctuation in the initial arrival dates (initial capture dates and median dates (median date of all captures, not including recaptures, did not depend on the length of the migratory route. This implies that migrants crossing the Sahara desert depart from their winter quarters on different Julian days in different years. We suggest that negative correlations between the median date of the spring migration of early and late migrants depends upon the easterly (Hamsin wind period. Moreover, we believe that the phenology of all birds during spring migration in Eilat is possibly also determined by external factors such as weather conditions on the African continent or global climatic processes in the Northern hemisphere. Orphean Warblers (Sylvia hortensis show a strong positive correlation (rs=-0.502 of initial capture date with calendar years, whereas other species such as Barred Warbler (S. nisoria; rs = -0.391 and Spotted Flycatcher (Muscicapa striata; rs = -0.398 display an insignificant trend. The Dead Sea Sparrow (Passer moabiticus and Red-Backed Shrike (Lanius collurio are positively correlated regarding initial arrival date and medians of spring migration.

  15. A nematode that can manipulate the behaviour of slugs.

    Science.gov (United States)

    Morris, Alex; Green, Michael; Martin, Hayley; Crossland, Katie; Swaney, William T; Williamson, Sally M; Rae, Robbie

    2018-06-01

    The ability of parasites to manipulate the behaviour of their hosts has evolved multiple times, and has a clear fitness benefit to the parasite in terms of facilitating growth, reproduction and transfer to suitable hosts. The mechanisms by which these behavioural changes are induced are poorly understood, but in many cases parasite manipulation of serotonergic signalling in the host brain is implicated. Here we report that Phasmarhabditis hermaphrodita, a parasite of terrestrial gastropod molluscs, can alter the behaviour of slugs. Uninfected slugs (Deroceras panormitanum, Arion subfuscus and Arion hortensis) avoid areas where P. hermaphrodita is present, but slugs infected with P. hermaphrodita are more likely to be found where the nematodes are present. This ability is specific to P. hermaphrodita and other nematodes (Steinernema carpocapsae and Heterorhabditis bacteriophora) do not induce this behavioural change. To investigate how P. hermaphrodita changes slug behaviour we exposed slugs to fluoxetine (a selective serotonin reuptake inhibitor) and cyproheptadine (a serotonin receptor antagonist). Uninfected slugs fed fluoxetine no longer avoided areas where P. hermaphrodita was present; and conversely, infected slugs fed cyproheptadine showed no increased attraction to areas with nematodes. These findings suggest that a possible mechanism by which P. hermaphrodita is able to manipulate parasite avoidance behaviour in host slugs is by manipulating serotonergic signalling in the brain, and that increased serotonin levels are potentially associated with a reduction in parasite avoidance. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Selective-placement burial of drilling fluids: 1. Effects on soil chemical properties

    International Nuclear Information System (INIS)

    McFarland, M.L.; Hartmann, S.; Ueckert, D.N.; Hons, F.M.

    1992-01-01

    Burial of spent drilling fluids used in petroleum and natural gas exploration was evaluated for reducing soil contamination caused by conventional, surface disposal of these wastes on arid and semiarid rangelands. Simulated reserve pits at two locations provided burial depths of 30, 90 (with and without a 30-cm capillary barrier of coarse limestone), and 150 cm below the surface, with sequential replacement of stockpiled subsoil and topsoil. The drilling fluids contained extremely high concentrations of soluble salts, with Na and Cl being the dominant soluble ions. Upward migration of contaminants was evaluated over a 20-month period. Soluble salts migrated upward 15 to 30 cm into the overlying soil, and salt movement appeared to be governed to a greater extent by diffusive rather than convective flow mechanisms. Capillary barriers of coarse limestone effectively reduced salt movement at one of the two sites. Sodium, Ca, and Cl were the dominant mobile ions. Exchangeable Na percentages did not increase in soil increments > 15 cm above buried drilling wastes. Barium, Cr, Cu, Ni, and Zn in drilling fluids did not migrate into overlying soil. Movement of contaminants was similar where fourwing saltbush [Atriplex canescens (Pursh) Nutt.], a deep-rooted shrub, and buffalograss [Buchloe dactyloides (Nutt.) Engelm], a shallow-rooted grass, were used for revegetation

  17. Новые данные по числам хромосом некоторых сосудистых растений из Израиля и России

    Directory of Open Access Journals (Sweden)

    M. N. Lomonosova

    2015-07-01

    Full Text Available Приведены числа хромосом для 10 видов из семейств Amaranthaceae s. str., Asteraceae, Caryophyllaceae, Chenopodiaceae и Frankeniaceae. Для Atriplex intracontinentalis Sukhor. (2n = 18, Corispermum filifolium C.A. Meyer ex Becker (2n = 18 и Frankenia tuvinica Lomon. (2n = 20 числа хромосом не были известны ранее. Впервые на материале из Израиля указаны числа хромосом для Amaranthus albus L. (2n = 32, Dyssodia tenuiloba (DC R.B. Rob. (2n = 24, Lactuca viminea (L. J. et C. Presl (2n = 18, Tragopogon coelesyriacus Boiss. (2n = 12, Chenopodium opulifolium Schrad. ex W.D.J. Koch et Ziz (2n = 54 и Chenopodium missouriense Aellen (2n = 54.

  18. Total and bioavailable arsenic concentration in arid soils and its uptake by native plants from the pre-Andean zones in Chile.

    Science.gov (United States)

    Díaz, O; Tapia, Y; Pastene, R; Montes, S; Núñez, N; Vélez, D; Montoro, R

    2011-06-01

    Arsenic is the most important contaminant of the environment in northern Chile. Soil samples and plant organs from three native plant species, Pluchea absinthioides, Atriplex atacamensis and Lupinus microcarpus, were collected from arid zones in order to determine the total and bioavailable arsenic concentrations in soils and to assess the bioconcentration factor (BCF) and transport index (Ti) of arsenic in the plants. Total arsenic concentrations in soils (pH 8.3-8.5) where A. atacamensis and P. absinthioides were collected, reached levels considered to be contaminated (54.3 ± 15.4 and 52.9 ± 9.9 mg kg⁻¹, respectively), and these values were approximately ten times higher than in soils (pH 7.6) where L. microcarpus was collected. Bioavailable arsenic ranged from 0.18 to 0.42% of total arsenic concentration. In the three plant species, arsenic concentration in leaves were significantly (p ≤ 0.05) higher than in roots. L. microcarpus showed the highest arsenic concentration in its leaves (9.7 ± 1.6 mg kg⁻¹) and higher values of BCF (1.8) and Ti (6.1), indicating that this species has a greater capacity to accumulate and translocate the metalloid to the leaf than do the other species.

  19. Plant species effects on soil nutrients and chemistry in arid ecological zones.

    Science.gov (United States)

    Johnson, Brittany G; Verburg, Paul S J; Arnone, John A

    2016-09-01

    The presence of vegetation strongly influences ecosystem function by controlling the distribution and transformation of nutrients across the landscape. The magnitude of vegetation effects on soil chemistry is largely dependent on the plant species and the background soil chemical properties of the site, but has not been well quantified along vegetation transects in the Great Basin. We studied the effects of plant canopy cover on soil chemistry within five different ecological zones, subalpine, montane, pinyon-juniper, sage/Mojave transition, and desert shrub, in the Great Basin of Nevada all with similar underlying geology. Although plant species differed in their effects on soil chemistry, the desert shrubs Sarcobatus vermiculatus, Atriplex spp., Coleogyne ramosissima, and Larrea tridentata typically exerted the most influence on soil chemistry, especially amounts of K(+) and total nitrogen, beneath their canopies. However, the extent to which vegetation affected soil nutrient status in any given location was not only highly dependent on the species present, and presumably the nutrient requirements and cycling patterns of the plant species, but also on the background soil characteristics (e.g., parent material, weathering rates, leaching) where plant species occurred. The results of this study indicate that the presence or absence of a plant species, especially desert shrubs, could significantly alter soil chemistry and subsequently ecosystem biogeochemistry and function.

  20. Plant occurrence on burning coal waste – a case study from the Katowice-Wełnowiec dump, Poland

    Directory of Open Access Journals (Sweden)

    Ciesielczuk Justyna

    2015-06-01

    Full Text Available Coal-waste dumps superimposed on former rubbish dump frequently undergo selfheating and selfignition of organic matter dispersed in the waste. The special conditions for plant growth generated as a result have been investigated since 2008 on the municipal dump reclaimed with coal wastes in Katowice-Wełnowiec, Poland. The plants observed most frequently where heating has occurred are Sisymbrium loeselii, Artemisia vulgaris, Sonchus arvensis, Chenopodium album, Achillea millefolium, Cirsium arvense, Amaranthus retroflexus, Atriplex nitens and Solanum nigrum. Some new, rare species such as Portulaca oleracea, first noticed in 2011, may be added. Most of encroaching species are annual, alien archeophytes and neophytes. Native species are mainly perennials. The majority of these species show a tendency to form specimens of huge size (gigantism. The abundance of emitted CO2 and nitrogen compounds is the likely cause of this. Additionally, the plants growing there are not attacked by insects. The heating of the ground liquidates the natural seed bank. After cooling, these places are seeded by species providing seeds at that very moment (pioneer species. Heated places on the dumps allow plant growth even in the middle of winter. As the seasonal vegetation cycle is disturbed, plants may be found seeding, blooming and fruiting at the same time.

  1. The secret gardener: vegetation and the emergence of biogeomorphic patterns in tidal environments.

    Science.gov (United States)

    Da Lio, Cristina; D'Alpaos, Andrea; Marani, Marco

    2013-01-01

    The presence and continued existence of tidal morphologies, and in particular of salt marshes, is intimately connected with biological activity, especially with the presence of halophytic vegetation. Here, we review recent contributions to tidal biogeomorphology and identify the presence of multiple competing stable states arising from a two-way feedback between biomass productivity and topographic elevation. Hence, through the analysis of previous and new results on spatially extended biogeomorphological systems, we show that multiple stable states constitute a unifying framework explaining emerging patterns in tidal environments from the local to the system scale. Furthermore, in contrast with traditional views we propose that biota in tidal environments is not just passively adapting to morphological features prescribed by sediment transport, but rather it is 'The Secret Gardener', fundamentally constructing the tidal landscape. The proposed framework allows to identify the observable signature of the biogeomorphic feedbacks underlying tidal landscapes and to explore the response and resilience of tidal biogeomorphic patterns to variations in the forcings, such as the rate of relative sea-level rise.

  2. Succulent species differ substantially in their tolerance and phytoextraction potential when grown in the presence of Cd, Cr, Cu, Mn, Ni, Pb, and Zn.

    Science.gov (United States)

    Zhang, Chengjun; Sale, Peter W G; Clark, Gary J; Liu, Wuxing; Doronila, Augustine I; Kolev, Spas D; Tang, Caixian

    2015-12-01

    Plants for the phytoextraction of heavy metals should have the ability to accumulate high concentrations of such metals and exhibit multiple tolerance traits to cope with adverse conditions such as coexistence of multiple heavy metals, high salinity, and drought which are the characteristics of many contaminated soils. This study compared 14 succulent species for their phytoextraction potential of Cd, Cr, Cu, Mn, Ni, Pb, and Zn. There were species variations in metal tolerance and accumulation. Among the 14 succulent species, an Australian native halophyte Carpobrotus rossii exhibited the highest relative growth rate (20.6-26.6 mg plant(-1) day(-1)) and highest tolerance index (78-93%), whilst Sedum "Autumn Joy" had the lowest relative growth rate (8.3-13.6 mg plant(-1) day(-1)), and Crassula multicava showed the lowest tolerance indices (phytoextraction of these heavy metals than other species. These findings suggest that Carpobrotus rossii is a promising candidate for phytoextraction of multiple heavy metals, and the aquatic or semiterrestrial Crassula helmsii is suitable for phytoextraction of Cd and Zn from polluted waters or wetlands.

  3. [Different NaCl-dependence of the circadian CO2-gas-exchange of some halophil growing coastal plants].

    Science.gov (United States)

    Treichel, Siegfried; Bauer, Peter

    1974-03-01

    CO 2 -exchange, diurnal changes in malate- and ion concentrations of the halophytes Carpobrotus edulis, Crithmum maritimum, Mesembryanthemum nodiflorum, Salicornia fruticosa, Suaeda maritima, and Trifolium fragiferum were investigated after culture at different NaCl concentrations. In Carp. edulis and Mes. nodiflorum the diurnal rhythm of CO 2 -exchange is in accordance with that of crassulacean acid metabolism (CAM), in Sal. fruticosa, Crithm. maritimum, Suaeda maritima, and Trif. fragiferum with that of Benson-Calvin metabolism (C 3 ). Malate concentration and CO 2 uptake in the sap latter group are not influenced. On the other hand, Carp. edulis and Mes. nodiflorum show an accumulation of malate during the night, which can be interpreted as a further indication of CAM.The two species most resistant to NaCl, Carp. edulis and Sal. fruticosa, greatly differ very much in their NaCl content. NaCl concentration in Salicornia is four times higher than in Carpobrotus.The different metabolic properties studied might be of ecological importance for the plants in their natural habitats. The effect of NaCl on metabolic processes is discussed.

  4. Leaf structural adaptations of two Limonium miller (Plumbaginales, Plumbaginaceae taxa

    Directory of Open Access Journals (Sweden)

    Zorić Lana N.

    2013-01-01

    Full Text Available Limonium gmelinii (Willd. O. Kuntze 1891 subsp. hungaricum (Klokov Soó is Pannonian endemic subspecies that inhabits continental halobiomes, while Limonium anfractum (Salmon Salmon 1924 is one of the indicators of halophyte vegetation of marine rocks and its distribution is restricted to the southern parts of Mediterranean Sea coast. In this work, micromorphological and anatomical characters of leaves of these two Limonium taxa were analyzed, in order to examine their adaptations to specific environmental conditions on saline habitats. The results showed that both taxa exhibited strong xeromorphic adaptations that reflected in flat cell walls of epidermal cells, thick cuticle, high palisade/spongy tissue ratio, high index of palisade cells, the presence of sclereid idioblasts in leaf mesophyll and mechanical tissue by phloem and xylem. Both taxa are crynohalophytes and have salt glands on adaxial and abaxial epidermis for excretion of surplus salt. Relatively high dimensions of mesophyll cells, absence of non-glandular hairs and unprotected stomata slightly increased above the level of epidermal cells, are also adaptations to increased salinity. [Projekat Ministarstva nauke Republike Srbije, br. 173002

  5. Saline Agriculture in the 21st Century: Using Salt Contaminated Resources to Cope Food Requirements

    Directory of Open Access Journals (Sweden)

    Bruno Ladeiro

    2012-01-01

    Full Text Available With the continue increase of the world population the requirements for food, freshwater, and fuel are bigger every day. This way an urgent necessity to develop, create, and practice a new type of agriculture, which has to be environmentally sustainable and adequate to the soils, is arising. Among the stresses in plant agriculture worldwide, the increase of soil salinity is considered the major stress. This is particularly emerging in developing countries that present the highest population growth rates, and often the high rates of soil degradation. Therefore, salt-tolerant plants provide a sensible alternative for many developing countries. These plants have the capacity to grow using land and water unsuitable for conventional crops producing food, fuel, fodder, fibber, resin, essential oils, and pharmaceutical products. In addition to their production capabilities they can be used simultaneously for landscape reintegration and soil rehabilitation. This review will cover important subjects concerning saline agriculture and the crop potential of halophytes to use salt-contaminated resources to manage food requirements.

  6. Adaptabilité des espèces du genre Atriplex aux conditions de salinité et d'aridité

    OpenAIRE

    Belkheiri, Oumelkheir

    2009-01-01

    Plants have had to cope with periodic, unpredictable environmental stresses during growth and development. Surviving such stresses over a long evolutionary scale led plants to acquire mechanisms allowing them to sensitively perceive stresses and regulate their physiology accordingly. In the arid and semi arid regions of the world, shrubs surviving in saline soils have been the subject of considerable research. They have been evaluated as alternative sources of forage for liv...

  7. Heavy metals in the soils and plants from a typical restored coal-mining area of Huainan coalfield, China.

    Science.gov (United States)

    Niu, Siping; Gao, Liangmin; Zhao, Junjie

    2017-09-03

    This study was conducted to pursue the heavy metals in the soil and plants of a typical restored coal-mining area, China. The average concentrations of Cu, Zn, Cr, Ni, and Pb in soil were 26.4, 76.1, 188.6, 34.3, and 50.2 mg kg -1 , respectively, implying a significant accumulation of Cr, Ni, and Pb compared with the background values. Contamination factor indicates that the soil underwent none to medium pollution by Cu and Zn, medium to strong by Cr, none to strong by Pb, and medium pollution by Ni while the pollution load index means that the soil was subjected to intermediate contamination. Based on the critical threshold values to protect the plants, the investigated metals were unable to affect the plants. One-way ANOVA analysis shows that Cu, Zn, and Pb in plants varied with plant tissues. Cu-Cr, Cu-Ni, Zn-Ni, Zn-Pb, Cr-Ni, and Ni-Pb pairs had significant positive correlation both in soil and in plants due to the similar soil characteristics and plant physiologies. Correspondence analysis indicates that Pb was more likely to be accumulative in stems and leaves. In addition, the levels of Cu and Cr in plant followed an order of roots > stems > leaves; Zn and Ni leaves ≥ stems > roots; and Pb followed stems ≥ leaves > roots. Generally, this study suggests that the plants like Ligustrum lucidum Aiton and Weigela hortensis, which are capable of accumulating Cr, Ni, and Pb, should be the predominant species in the studied area.

  8. Antifungal activity of essential oils against selected terverticillate penicillia

    Directory of Open Access Journals (Sweden)

    Soňa Felšöciová

    2015-02-01

    Full Text Available The aim of this study was to screen 15 essential oils of selected plant species, viz. [i]Lavandula angustifolia[/i], [i]Carum carvi[/i], [i]Pinus mungo var. pulmilio[/i], [i]Mentha piperita[/i], [i]Chamomilla recutita[/i] L.,[i] Pinus sylvestris[/i], [i]Satureia hortensis[/i] L., [i]Origanum vulgare[/i] L., [i]Pimpinella anisum[/i], [i]Rosmarinus officinali[/i]s L., [i]Salvia officinalis[/i] L., [i]Abietis albia etheroleum[/i], [i]Chamomilla recutita[/i] L. [i]Rausch[/i], [i]Thymus vulgaris[/i] L., [i]Origanum vulgare[/i] L. for antifungal activity against five [i]Penicillium[/i] species: [i]Penicillium brevicompactum[/i], [i]Penicillium citrinum[/i], [i]Penicillium crustosum[/i], [i]Penicillium expansum[/i] and [i]Penicillium griseofulvum[/i]. The method used for screening included the disc diffusion method. The study points out the wide spectrum of antifungal activity of essential oils against [i]Penicillium[/i] fungi. There were five essential oils of the 15 mentioned above which showed a hopeful antifungal activity: [i]Pimpinella anisum[/i], [i]Chamomilla recutita[/i] L., [i]Thymus vulgaris[/i], [i]Origanum vulgare[/i] L. The most hopeful antifungal activity and killing effect against all tested penicillia was found to be [i]Origanum vulgare[/i] L. and [i]Pimpinella anisum[/i]. The lowest level of antifungal activity was demonstrated by the oils [i]Pinus mungo var. pulmilio[/i], [i]Salvia officinalis[/i] L., [i]Abietis albia etheroleum[/i], [i]Chamomilla recutita[/i] L.[i] Rausch[/i], [i]Rosmarinus officinalis[/i].

  9. Surveying the Effect of the Phenol Compounds on Antibacterial Activity of Herbal Extracts: In vitro Assessment of Herbal Extracts in Fasa-Fars Province

    Directory of Open Access Journals (Sweden)

    Elahe Ahmadi

    2016-09-01

    Full Text Available Background & Objectives: Due to increase in  bacterial drug resistance, discovering new antibacterial compounds is really important. The objective of this study is to evaluate the phenol compounds effect on antibacterial activity of herbal extracts of Fasa-Fars province in vitro. Materials & Methods: The antibacterial activity of 26 plants was studied by disk diffusion, well, and MIC methods in compare with 13 standard antibiotics against S. aureus and E. coli as control bacteria. Measurement of phenol compounds were performed by Seevers and Daly colorimetric methods using Folin-ciocalteu indicator. Results: Inhibition zone of bacterial growth  against S. aureus in well and disk methods were 32 and 22 mm in using Zataria multiflora, respectively .And there were 23 and 16 mm against E. coli in Zataria multiflora, respectively. Less effects and inhibition zones, less than 15mm on both strains, were seen in using  Saturina hortensis, Cinamomum zeylanicum, ­Artemisia absinthium, ­Urtica dioica, Carum carvi L. cyminum Cuminum, Achillea fragrantissimia, Marticaria chamomilla, Zingiber officinale, Origanum majorana, and Plantago psyllium. Most effective MIC results, 7.8 µg/ml, were related to the extracts of Zataria multiflora, Carum copticum L. Rosmarinus officinalis L., and Laurus nobilis L. Phenol compound amounts were approximately between 66.51±1.9 and 233.15±5.1 mg/gr extract in Zataria multiflora and Plantago psyllium, respectively. Conclusion: Results of antibacterial activity of extracts and relation with phenol compound amounts indicate the antibacterial effect of phenol compounds in herbal extracts.

  10. The Investigation of Decontamination Effects of Ozone Gas on Microbial Load and Essential Oil of Several Medicinal Plants

    Directory of Open Access Journals (Sweden)

    Razieh VALI ASILL

    2013-02-01

    Full Text Available Today, Ozone as a disinfectant method, without putting on the harmful effects on human and plant products, it is alternative common methods for disinfection of plant material. The research as a factorial experiment was conducted on the basis of randomized complete block design with three replications and the effects of Ozone gas on decreasing the microbial load of some important medicinal plants include: Peppermint (Mentha piperita, Summer savory (Satureja hortensis, Indian valerian(Valeriana wallichii, Meliss (Melissa officinalis and Iranian thyme (Zataria multiflora were investigated. Medicinal plants leaves were treated with Ozone gas concentration 0.3, 0.6 and 0.9 ml/L at times of 10 and 30 then total count, coliform and mold and yeast of the samples were studied. The result showed that Ozone gas decreases microbial load of medicinal plants samples. But Ozone gas and Ozone gas in medicinal plants interaction effect had no effect on essential oil content. The lowest and the highest of microbial load were detected in samples treated with concentration of 0.9 ml/L of Ozone gas and control respectively. The highest and the lowest of microbial load were observed in Iranian thyme and Indian valerian respectively. Also result showed that Ozone gas treatment for 30 min had the greatest of effect in reducing the microbial load and 0.9 ml/L Ozone gas concentration had the lowest of microbial load. Results of this survey reflect that the use of Ozone as a method of disinfection for medicinal plants is a decontamination.

  11. Word-wide meta-analysis of Quercus forests ectomycorrhizal fungal diversity reveals southwestern Mexico as a hotspot.

    Science.gov (United States)

    García-Guzmán, Olimpia Mariana; Garibay-Orijel, Roberto; Hernández, Edith; Arellano-Torres, Elsa; Oyama, Ken

    2017-11-01

    Quercus is the most diverse genus of ectomycorrhizal (ECM) host plants; it is distributed in the Northern and Southern Hemispheres, from temperate to tropical regions. However, their ECM communities have been scarcely studied in comparison to those of conifers. The objectives of this study were to determine the richness of ECM fungi associated with oak forests in the Cuitzeo basin in southwestern Mexico; and to determine the level of richness, potential endemism and species similarity among ECM fungal communities associated with natural oak forests worldwide through a meta-analysis. The ITS DNA sequences of ECM root tips from 14 studies were included in the meta-analysis. In total, 1065 species of ECM fungi have been documented worldwide; however, 812 species have been only found at one site. Oak forests in Europe contain 416 species, Mexico 307, USA 285, and China 151. Species with wider distributions are Sebacinaceae sp. SH197130, Amanita subjunquillea, Cenococcum geophilum, Cortinarius decipiens, Russula hortensis, R. risigallina, R. subrubescens, Sebacinaceae sp. SH214607, Tomentella ferruginea, and T. lapida. The meta-analysis revealed (1) that Mexico is not only a hotspot for oak species but also for their ECM mycobionts. (2) There is a particularly high diversity of ECM Pezizales in oak seasonal forests from western USA to southwestern Mexico. (3) The oak forests in southwestern Mexico have the largest number of potential endemic species. (4) Globally, there is a high turnover of ECM fungal species associated with oaks, which indicates high levels of alpha and beta diversity in these communities.

  12. Dietary supplementation of extracts from a halophyte affects the level of the circulating enzymes in irradiated rats

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. G.; Lee, B. H. [KAERI, Taejon (Korea, Republic of); Kim, J. H.; Youn, Y. D. [Hanyang Univ., Seoul (Korea, Republic of)

    2003-10-01

    Extracts from Salicornia herbacea with two extraction methods (using water or ethanol) were examined for their potential as a radioprotector. This plant accumulates a great amount of salt , Mg, Ca, Fe, and K and thus contains high levels of mineral in its body. It is famous as a remedial material for the constipation and glycosuria in folk medicine. The present study was designed to explore the in vivo antioxidant effects of water - and ethanol- extracts of S. herbacea. Both extracts of the plants were tested for their free radical scavenging activity with the DPPH assay. For the in vivo studies, male F344 rats (3 week- old) received po administration of both extracts 0.5 mg/ml during 5 days before whole- body irradiation. Six hours after irradiation, we measured the body and organ weight and collected blood. The levels of serum aspartate aminotransferase (AST), alanine aminotransferase (ALT) and lactate dehydrogenase (LDH), alkaline phosphatase (ALP) showed a similar pattern six hours after irradiation. In case of the water extract - dietary group after irradiation, the levels of all enzymes had a tendency to decrease toward to the base level. Therefore, the results reflects the antioxidant activity of S. herbacea extracts and its potential to protect against radiation damage.

  13. Salinicola tamaricis sp. nov., a heavy-metal-tolerant, endophytic bacterium isolated from the halophyte Tamarix chinensis Lour.

    Science.gov (United States)

    Zhao, Guo-Yan; Zhao, Li-Ya; Xia, Zhi-Jie; Zhu, Jin-Lei; Liu, Di; Liu, Chun-Yue; Chen, Xiu-Lan; Zhang, Yu-Zhong; Zhang, Xi-Ying; Dai, Mei-Xue

    2017-06-01

    A Gram-stain-negative, rod-shaped bacterium, strain F01T, was isolated from leaves of Tamarix chinensis Lour. The isolate grew optimally at 30 °C, at pH 7.0 and with 5.0 % (w/v) NaCl, and showed a high tolerance to manganese, lead, nickel, ferrous ions and copper ions. The major fatty acids were C18 : 1ω7c and C16 : 0, and the predominant respiratory quinone was Q-9. Polar lipids were dominated by diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, unidentified aminoglycolipids and phospholipids. The DNA G+C content was 65.8 %. Based on multilocus phylogenetic analysis, strain F01T belonged to the genus Salinicola, with highest 16S rRNA gene sequence similarity to Salinicola peritrichatus CGMCC 1.12381T (97.7 %). The level of DNA-DNA hybridization between strain F01T and closely related Salinicola strains was well below 70 %. According to the phenotypic, genetic and chemotaxonomic data, strain F01T is considered to represent a novel species in the genus Salinicola, for which the name Salinicola tamaricis sp. nov. is proposed. The type strain is F01T (=CCTCC AB 2015304T=KCTC 42855T).

  14. Alien plant species list and distribution for Camdeboo National Park, Eastern Cape Province, South Africa

    Directory of Open Access Journals (Sweden)

    Mmoto L. Masubelele

    2009-09-01

    Full Text Available Protected areas globally are threatened by the potential negative impacts that invasive alien plants pose, and Camdeboo National Park (CNP, South Africa, is no exception. Alien plants have been recorded in the CNP since 1981, before it was proclaimed a national park by South African National Parks in 2005. This is the first publication of a list of alien plants in and around the CNP. Distribution maps of some of the first recorded alien plant species are also presented and discussed. To date, 39 species of alien plants have been recorded, of which 13 are invasive and one is a transformer weed. The majority of alien plant species in the park are herbaceous (39% and succulent (24% species. The most widespread alien plant species in the CNP are Atriplex inflata (= A. lindleyi subsp. inflata, Salsola tragus (= S. australis and cacti species, especially Opuntia ficus-indica. Eradication and control measures that have been used for specific problematic alien plant species are described. Conservation implications: This article represents the first step in managing invasive alien plants and includes the collation of a species list and basic information on their distribution in and around the protected area. This is important for enabling effective monitoring of both new introductions and the distribution of species already present. We present the first species list and distribution information for Camdeboo National Park.

  15. Saltmarsh creek bank stability: Biostabilisation and consolidation with depth

    Science.gov (United States)

    Chen, Y.; Thompson, C. E. L.; Collins, M. B.

    2012-03-01

    The stability of cohesive sediments of a saltmarsh in Southern England was measured in the field and the laboratory using a Cohesive Strength Meter (CSM) and a shear vane apparatus. Cores and sediment samples were collected from two tidal creek banks, covered by Atriplex portulacoides (Sea Purslane) and Juncus maritimus (Sea Rush), respectively. The objectives of the study were to examine the variation of sediment stability throughout banks with cantilevers present and investigate the influence of roots and downcore consolidation on bank stability. Data on erosion threshold and shear strength were interpreted with reference to bank depth, sediment properties and biological influences. The higher average erosion threshold was from the Sea Purslane bank whilst the Sea Rush bank showed higher average vane shear strength. The vertical variation in core sediment stability was mainly affected by roots and downcore consolidation with depth. The data obtained from the bank faces revealed that vertical variations in both erosion threshold and vane shear strength were affected primarily by roots and algae. A quantitative estimate of the relative contributions of roots and downcore consolidation to bank sediment stability was undertaken using the bank stability data and sediment density data. This showed that roots contributed more to the Sea Purslane bank stability than downcore consolidation, whilst downcore consolidation has more pronounced effects on the Sea Rush bank stability.

  16. Influence of shrub cover vegetal and slope length on soil bulk density; Influencia de la cubierta vegetal arbustiva y la longitud de la ladera sobre la densidad aparente del suelo

    Energy Technology Data Exchange (ETDEWEB)

    Bienes, R.; Jimenez, R.; Ruiz, M.; Garcia-Estringana, P.; Marques, M. J.

    2009-07-01

    In arid and semiarid environments of the Mediterranean climate, the shrub species play an important role in the revegetation of abandoned lands, which enables to control the soil losses, organic material and water. In this article are compared the results obtained under different revegetation in abandoned lands in the central area of Spain. In these revegetation has been used two native shrubs: A triplex halimus (Ah) and Retama sphaerocarpa (Rs), and were analyzed the influence of these revegetation in the contents of organic material of soil and apparent density in 5 years time after planting. As control, have been considered the pieces of ground with spontaneous vegetation abandoned in the same date that the shrubs revegetation. Atriplex halimus gives to the soil a covering capable to intercept a big amount of water drops absorbing a great amount part of the kinetic energy of the rain, while provides a microclimates as a result of be able to soften the wind, the temperature and the evaporation-transpiration, which makes it efficient to control the erosion and the desertification (Le Houerou, 2000). Retama sphaerocarpa was chosen because it is a native shrub very characteristic, and, due to its symbiosis with the Bradyrhizobium, enriches the soil in nitrogen, which is taken by the nitrophilous species enhancing the spontaneous vegetal covering. (Author) 9 refs.

  17. Rooting depths of plants on low-level waste disposal sites

    International Nuclear Information System (INIS)

    Foxx, T.S.; Tierney, G.D.; Williams, J.M.

    1984-11-01

    In 1981-1982 an extensive bibliographic study was done to reference rooting depths of native plants in the United States. The data base presently contains 1034 different rooting citations with approximately 12,000 data elements. For this report, data were analyzed for rooting depths related to species found on low-level waste (LLW) sites at Los Alamos National Laboratory. Average rooting depth and rooting frequencies were determined and related to present LLW maintenance. The data base was searched for information on rooting depths of 53 species found on LLW sites at Los Alamos National Laboratory. The study indicates 12 out of 13 grasses found on LLW sites root below 91 cm. June grass [Koeleria cristata (L.) Pers.] (76 cm) was the shallowest rooting grass and side-oats grama [Bouteloua curtipendula (Michx.) Torr.] was the deepest rooting grass (396 cm). Forbs were more variable in rooting depths. Indian paintbrush (Castelleja spp.) (30 cm) was the shallowest rooting forb and alfalfa (Medicago sativa L.) was the deepest (>3900 cm). Trees and shrubs commonly rooted below 457 cm. The shallowest rooting tree was elm (Ulmus pumila L.) (127 cm) and the deepest was one-seed juniper [Juniperus monosperma (Engelm) Sarg.] (>6000 cm). Apache plume [Fallugia paradoxa (D. Don) Endl.] rooted to 140 cm, whereas fourwing saltbush [Atriplex canecens (Pursh) Nutt.] rooted to 762 cm

  18. Selective-placement burial of drilling fluids: 2. Effects on buffalograss and fourwing saltbrush

    International Nuclear Information System (INIS)

    McFarland, M.L.; Hartmann, S.; Ueckert, D.N.; Hons, F.M.

    1992-01-01

    Surface disposal of spent drilling fluids used in petroleum and natural gas exploration causes surface soil contamination that severely inhibits secondary plant succession and artificial revegetation efforts. Selective-placement burial was evaluated at two locations in western Texas for on-site disposal of drilling fluids in arid and semiarid regions. Establishment, yield, and chemical composition of fourwing saltbrush [Atriplex canescens (Pursh Nutt.)] and buffalograss [Buchloe dactyloides (Nutt.) Engelm.] transplants on undisturbed soils and on plots with spent drilling fluids and cuttings buried 30, 90 (with and without a 30-cm coarse limestone capillary barrier) and 150 cm were compared. Survival of both species was 97 to 100% 17 months after planting on plots with buried drilling wastes. Canopy cover and aboveground biomass of fourwing saltbrush were greater over buried drilling wastes than on untreated plots, whereas canopy cover and aboveground biomass of buffalograss were not affected by the treatments. Significant increases in Na, M, and Mg concentrations in buffalograss after 17 months on plots with drilling fluids buried 30 cm deep at one location indicated plant uptake of some drilling fluid constituents. Elevated Zn concentrations in fourwing saltbush indicated that a portion of the Zn in the drilling fluids was available for plant uptake, while no evidence of plant accumulation of Ba, Cr, Cu, or Ni from drilling fluids was detected

  19. Influence of shrub cover vegetal and slope length on soil bulk density

    International Nuclear Information System (INIS)

    Bienes, R.; Jimenez, R.; Ruiz, M.; Garcia-Estringana, P.; Marques, M. J.

    2009-01-01

    In arid and semiarid environments of the Mediterranean climate, the shrub species play an important role in the revegetation of abandoned lands, which enables to control the soil losses, organic material and water. In this article are compared the results obtained under different revegetation in abandoned lands in the central area of Spain. In these revegetation has been used two native shrubs: A triplex halimus (Ah) and Retama sphaerocarpa (Rs), and were analyzed the influence of these revegetation in the contents of organic material of soil and apparent density in 5 years time after planting. As control, have been considered the pieces of ground with spontaneous vegetation abandoned in the same date that the shrubs revegetation. Atriplex halimus gives to the soil a covering capable to intercept a big amount of water drops absorbing a great amount part of the kinetic energy of the rain, while provides a microclimates as a result of be able to soften the wind, the temperature and the evaporation-transpiration, which makes it efficient to control the erosion and the desertification (Le Houerou, 2000). Retama sphaerocarpa was chosen because it is a native shrub very characteristic, and, due to its symbiosis with the Bradyrhizobium, enriches the soil in nitrogen, which is taken by the nitrophilous species enhancing the spontaneous vegetal covering. (Author) 9 refs.

  20. Forage uptake of uranium series radionuclides in the vicinity of the anaconda uranium mill

    International Nuclear Information System (INIS)

    Rayno, D.R.; Momeni, M.H.; Sabau, C.

    1980-01-01

    Radiochemical analysis was performed on samples of soil and eight species of common vegetation growing on the Anaconda uranium mill site, located in New Mexico. The concentrations of the long-lived radionuclides U-238, U-234, Th-230, Ra-226, and Pb-210 in these forage plants were determined. The sampling procedures and analytical laboratory methods used are described. The highest radionuclide concentration found in a forage species was 130 pCi of Ra-226 per gram dry weight for grass growing on the main tailings pile at Anaconda, where the surface soil activity of Ra-226 was 236 pCi/g. A comparison of shoots activity with that of roots and soil was used to determine a distribution index and uptake coefficient for each species. The distribution index, the ratio of root activity to shoot activity, ranged from 0.30 (Th-230) in galleta grass (Hilaria jamesii) to 38.0 (Ra-226) in Indian ricegrass (Oryzopsis hymenoides). In nearly all instances, the roots contained higher radionuclide concentrations. The uptake coefficient, the ratio of vegetation activity to soil activity, ranged from 0.69 (U-238) in Indian ricegrass roots to 0.01 (U-238) in four-wing saltbush (Atriplex canescans) shoots. The range of radionuclide concentrations in plants growing on the Anaconda mill site is compared to that in vegetation from a control site 20 km away

  1. Relationships between nuclear magnetic resonance parameters used to characterize weathering spilled oil and soil toxicity in central Patagonia.

    Science.gov (United States)

    Ríos, Stella Maris; Barquin, Mercedes; Katusich, Ofelia; Nudelman, Norma

    2014-01-01

    Oil spill in the Central Patagonian zone was studied to evaluate if any relationship exists between the parameters used to characterize weathering spilled oil and soil toxicity for two plant species and to evaluate if the phytotoxicity to local species would be a good index for the soil contamination. Nuclear magnetic resonance (NMR) structural indexes and column chromatography compositional indexes were determined to characterize the oil spill in the soil samples. Bioassays were also carried out using Lactuca sativa L (reference) and Atriplex lampa (native species) as test organisms. Measurements of the total petroleum hydrocarbon (TPH) and the electrical conductivity (EC) of the soil were carried out to evaluate the effect on the bioassays. The principal components analysis of the parameters determined by NMR, compositional indexes, EC, TPH, and toxicology data shows that the first three principal components accounted for the 78% of the total variance (40%, 25%, and 13% for the first, second, and third PC, respectively). A good agreement was found between information obtained by compositional indexes and NMR structural indexes. Soil toxicity increases with the increase of EC and TPH. Other factors, such as, the presence of branched and aromatic hydrocarbons is also significant. The statistical evaluation showed that the Euclidean distances (3D) between the background and each one of the samples might be a better indicator of the soil contamination, compared with chemical criterion of TPH.

  2. Mangrove Cultivation For Dealing With Coastal Abrasion Case Study Of Karangsong

    Science.gov (United States)

    Fatimatuzzahroh, Feti; Hadi, Sudharto P.; Purnaweni, Hartuti

    2018-02-01

    Coastal abrasion is consequence from destructive waves and sea current. One of cause is human intervention. The effort to solve of abrasion is by mangrove cultivation. Mangroves are halophyte plant that can restrain the sea wave. Mangrove cultivation required participation community that give awareness the importance of mangrove in coastal sustainability. Mangroves in coastal Karangsong, Indramayu west java, in 2007 was through abrasion approximately 127.30 ha. Mangrove cultivation in Karangsong has been replanting since 1998 to 2003, but there was no maintenance and management. In 2007 until 2015 Karangsong replanting mangroves and has been succeed. Karangsong became the center of mangrove study for west java area in 2015. This achievement is result of cooperation between community, NGO, and local government. In addition, this effort made not only overcome the abrasion problem but also give community awareness about the importance of mangrove cultivation in preventing coastal abrasion throughout community development. This paper reviews abrasion in Karangsong and the impact for local community and empowerment in mangrove cultivation. To achieve the success mangrove cultivation required community development approach from planning process, planting, maintenance and management.

  3. OPCIONES DE MANEJO SOSTENIBLE DEL SUELO EN ZONAS ARIDAS: APROVECHAMIENTO DE LA HALÓFITA Salicornia bigelovii (Torr. Y USO DE BIOFERTILIZANTES EN LA AGRICULTURA MODERNA

    Directory of Open Access Journals (Sweden)

    Edgar Omar Rueda Puente

    2010-12-01

    Full Text Available The study and development of plant resources in arid-saline environments is increasing. Salicornia bigelovii is a halophyte of great interest. However, the productivity of these plants is limited by nitrogen availability. An alternative to chemical fertilizers are the plant growth promoting bacteria and mycorrhizae. In the present study was evaluated the effect of Glomus intraradices, three strains of rhizobacteria (Klebsiella pneumoniae, Bacillus amyloliquefaciens and Azospirillum halopraeferens and two soil types (clayey and sandy on Salicornia under greenhouse conditions. The inoculation of bacteria under conditions of sandy soil significantly stimulated growth and nutritional factor of Salicornia (NPK. Synergism was observed between G. intraradices and rhizobacteria. When inoculated bacteria in individually form, behaved with significant differences. There was synergism between G. intraradices and Klebsiella pneumoniae and A. halopraeferens in the uptake of N, the opposite happened with G. intraradices and Bacillus amyloliquefaciens with high significant values in the absorption of P and K. The soil was a determining factor in behavior and expression of the benefit of the microorganisms. Rhizobacteria and mycorrhiza in the study have potential for use as growth promoters in salicornia.

  4. Large-scale risk assessment of polycyclic aromatic hydrocarbons in shoreline sediments from Saudi Arabia: environmental legacy after twelve years of the Gulf war oil spill.

    Science.gov (United States)

    Bejarano, Adriana C; Michel, Jacqueline

    2010-05-01

    A large-scale assessment of polycyclic aromatic hydrocarbons (PAHs) from the 1991 Gulf War oil spill was performed for 2002-2003 sediment samples (n = 1679) collected from habitats along the shoreline of Saudi Arabia. Benthic sediment toxicity was characterized using the Equilibrium Partitioning Sediment Benchmark Toxic Unit approach for 43 PAHs (ESBTU(FCV,43)). Samples were assigned to risk categories according to ESBTU(FCV,43) values: no-risk (1 - 2 - 3 - 5). Sixty seven percent of samples had ESBTU(FCV,43) > 1 indicating potential adverse ecological effects. Sediments from the 0-30 cm layer from tidal flats, and the >30 - oiled halophytes and mangroves had high frequency of high-risk samples. No-risk samples were characterized by chrysene enrichment and depletion of lighter molecular weight PAHs, while high-risk samples showed little oil weathering and PAH patterns similar to 1993 samples. North of Safaniya sediments were not likely to pose adverse ecological effects contrary to sediments south of Tanaqib. Landscape and geomorphology has played a role on the distribution and persistence in sediments of oil from the Gulf War. Copyright 2009 Elsevier Ltd. All rights reserved.

  5. Bioprospecting of Marine Macrophytes Using MS-Based Lipidomics as a New Approach.

    Science.gov (United States)

    Maciel, Elisabete; Costa Leal, Miguel; Lillebø, Ana Isabel; Domingues, Pedro; Domingues, Maria Rosário; Calado, Ricardo

    2016-03-08

    The marine environment supports a remarkable diversity of organisms which are a potential source of natural products with biological activities. These organisms include a wide variety of marine plants (from micro- to macrophytes), which have been used in the food and pharmaceutical industry. However, the biochemistry and biological activities of many of these macrophytes (namely macroalgae and halophytes, including seagrasses) are still far from being fully explored. Most popular bioactive components include polysaccharides, peptides, phenolics and fatty acids (FAs). Polar lipids (glycolipids, phospholipids and betaine lipids) are emerging as novel value-added bioactive phytochemicals, rich in n-3 FA, with high nutritional value and health beneficial effects for the prevention of chronic diseases. Polar lipids account various combinations of polar groups, fatty acyl chains and backbone structures. The polar lipidome of macrophytes is remarkably diverse, and its screening represents a significant analytical challenge. Modern research platforms, particularly mass spectrometry (MS)-based lipidomic approaches, have been recently used to address this challenge and are here reviewed. The application of lipidomics to address lipid composition of marine macrophytes will contribute to the stimulation of further research on this group and foster the exploration of novel applications.

  6. Chemical Processing of Non-Crop Plants for Jet Fuel Blends Production

    Science.gov (United States)

    Kulis, M. J.; Hepp, A. F.; McDowell, M.; Ribita, D.

    2009-01-01

    The use of Biofuels has been gaining in popularity over the past few years due to their ability to reduce the dependence on fossil fuels. Biofuels as a renewable energy source can be a viable option for sustaining long-term energy needs if they are managed efficiently. We describe our initial efforts to exploit algae, halophytes and other non-crop plants to produce synthetics for fuel blends that can potentially be used as fuels for aviation and non-aerospace applications. Our efforts have been dedicated to crafting efficient extraction and refining processes in order to extract constituents from the plant materials with the ultimate goal of determining the feasibility of producing biomass-based jet fuel from the refined extract. Two extraction methods have been developed based on communition processes, and liquid-solid extraction techniques. Refining procedures such as chlorophyll removal and transesterification of triglycerides have been performed. Gas chromatography in tandem with mass spectroscopy is currently being utilized in order to qualitatively determine the individual components of the refined extract. We also briefly discuss and compare alternative methods to extract fuel-blending agents from alternative biofuels sources.

  7. Ectopic over-expression of peroxisomal ascorbate peroxidase (SbpAPX) gene confers salt stress tolerance in transgenic peanut (Arachis hypogaea).

    Science.gov (United States)

    Singh, Natwar; Mishra, Avinash; Jha, Bhavanath

    2014-08-15

    Peroxisomal ascorbate peroxidase gene (SbpAPX) of an extreme halophyte Salicornia brachiata imparts abiotic stress endurance and plays a key role in the protection against oxidative stress. The cloned SbpAPX gene was transformed to local variety of peanut and about 100 transgenic plants were developed using optimized in vitro regeneration and Agrobacterium mediated genetic transformation method. The T0 transgenic plants were confirmed for the gene integration; grown under controlled condition in containment green house facility; seeds were harvested and T1 plants were raised. Transgenic plants (T1) were further confirmed by PCR using gene specific primers and histochemical GUS assay. About 40 transgenic plants (T1) were selected randomly and subjected for salt stress tolerance study. Transgenic plants remained green however non-transgenic plants showed bleaching and yellowish leaves under salt stress conditions. Under stress condition, transgenic plants continued normal growth and completed their life cycle. Transgenic peanut plants exhibited adequate tolerance under salt stress condition and thus could be explored for the cultivation in salt affected areas for the sustainable agriculture. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Bioprospecting of Marine Macrophytes Using MS-Based Lipidomics as a New Approach

    Directory of Open Access Journals (Sweden)

    Elisabete Maciel

    2016-03-01

    Full Text Available The marine environment supports a remarkable diversity of organisms which are a potential source of natural products with biological activities. These organisms include a wide variety of marine plants (from micro- to macrophytes, which have been used in the food and pharmaceutical industry. However, the biochemistry and biological activities of many of these macrophytes (namely macroalgae and halophytes, including seagrasses are still far from being fully explored. Most popular bioactive components include polysaccharides, peptides, phenolics and fatty acids (FAs. Polar lipids (glycolipids, phospholipids and betaine lipids are emerging as novel value-added bioactive phytochemicals, rich in n-3 FA, with high nutritional value and health beneficial effects for the prevention of chronic diseases. Polar lipids account various combinations of polar groups, fatty acyl chains and backbone structures. The polar lipidome of macrophytes is remarkably diverse, and its screening represents a significant analytical challenge. Modern research platforms, particularly mass spectrometry (MS-based lipidomic approaches, have been recently used to address this challenge and are here reviewed. The application of lipidomics to address lipid composition of marine macrophytes will contribute to the stimulation of further research on this group and foster the exploration of novel applications.

  9. Evaluation of base, optimum and ceiling temperature for (Kochia scoparia L. Schard with application of Five-Parameters-Beta Model

    Directory of Open Access Journals (Sweden)

    S. Sabouri Rad

    2016-05-01

    Full Text Available Kochia (Kochia scoparia L. Schard is an annual, halophyte and drought resistant plant, that it can be irrigated with saline water and a valuable source for forage under drought and saline ecosystems. In order to evaluate germination characteristics of kochia, an experiment was conducted at Physiology laboratory of Ferdowsi University of Mashhad, Iran, during 2009. This experiment was conducted in a completely randomized design with four replications. Germination was evaluated at 5, 10, 15, 20, 25, 30, 35 and 40°C under dark germinator with 50-60 percentage relative humidity. The results showed that the highest germination percentage was obtained at 20-30°C and the lowest obtained at 40°C. The longest and the shortest period to 20 and 50 germination percentage were recorded to 5-10°C and 20-30°C, respectively. The longest and the shortest period to 80 percentage germination were belonging to 15 and 30°C, respectively. Based on Five Parameters Beta model, base, optimum and ceiling temperatures for kochia estimated 3.4, 25 and 43.3°C, respectively. However, seed of this plant is able to germinate in wide temperature range.

  10. Volatile organic chemicals of a shore-dwelling cyanobacterial mat community.

    Science.gov (United States)

    Evans, W G

    1994-02-01

    The main components of a cyanobacterial mat community of a hypersaline lake shore consist of edaphic, mat-forming strains (ecophenes), and littoral strains ofOscillatoria animalis Agardh andO. subbrevis Schmidle, other microorganisms associated with these cyanobacteria, several species ofBembidion (Carabidae: Coleoptera), and two halophytic flowering plants:Puccinellia nuttalliana (salt meadow grass) andSalicornia europaea rubra (samphire). The volatile organic compounds of this community are a blend of those emitted by each of these components such as the C17 alka(e)nes, geosmin, 2-methylisoborneol,β-cyclocitral,β-ionone, dimethyl sulfide, and dimethyl trisulfide of cyanobacteria and associated microorganisms; alcohols, esters, and aldehydes usually associated with flowering plants; and possibly some insect-derived esters, particularly isopropyl tetradecanoate. The dominant compounds were: C11, C13, C15, and C17 alka(e)nes, methyl esters of C16 and C18:2 acids, isopropyl tetradecanoate, heptanal, 3-octanone and 2-nonanone, the acyclic terpene linalool, and the alcohols 1-heptanol, 1-hexanol, 1-octanol, 3-hexen-1-ol, and 2-octen-1-ol. It is concluded that this community may be distinguished from related communities by its repertoire of volatile organic compounds.

  11. Real-time mapping of salt glands on the leaf surface of Cynodon dactylon L. using scanning electrochemical microscopy.

    Science.gov (United States)

    Parthasarathy, Meera; Pemaiah, Brindha; Natesan, Ravichandran; Padmavathy, Saralla R; Pachiappan, Jayaraman

    2015-02-01

    Salt glands are specialized organelles present in the leaf tissues of halophytes, which impart salt-tolerance capability to the plant species. These glands are usually identified only by their morphology using conventional staining procedures coupled with optical microscopy. In this work, we have employed scanning electrochemical microscopy to identify the salt glands not only by their morphology but also by their salt excretion behavior. Bermuda grass (Cynodon dactylon L.) species was chosen for the study as they are known to be salt-tolerant and contain salt glands on leaf surfaces. Scanning electrochemical microscopy performed in sodium chloride medium in the presence and absence of potassium ferrocyanide as redox mediator, reveals the identity of salt glands. More insight into the ion expulsion behavior of these glands was obtained by mapping lateral and vertical variations in ion concentrations using surface impedance measurements which indicated five times higher resistance over the salt glands compared to the surrounding tissues and bulk solution. The protocol could be used to understand the developmental processes in plants grown in different soil/water conditions in order to improve salt tolerance of food crops by genetic engineering and hence improve their agricultural productivity.

  12. VEGETATION CHANGES OF SUNDARBANS BASED ON LANDSAT IMAGERY ANALYSIS BETWEEN 1975 AND 2006

    Directory of Open Access Journals (Sweden)

    MD. TARIQUL ISLAM

    2014-06-01

    Full Text Available The Sundarbans in Bangladesh and India is the largest single block of tidal halophytic mangrove forest in the world. This forest is threatened by effect of climate change and manmade activities. The aim of this paper is to show changes in vegetation cover of Sundarbans since 1975 using Landsat imagery. Normalized Difference Vegetation Index is applied to quantify and qualify density of vegetation on a patch of land. Estimated land area (excluded water body of this forest is 66% in Bangladesh, and 34% in India, respectively. Net erosion since 1975 to 2006 is ~5.9%. In vicinity of human settlement, areal changes are not observed since 1975. The mangrove forest is decreased by 19.3% due severe tropical cyclone in 1977 and 1988. Moreover, the dense forest is damaged by about 50%. However, more than 25 years is taken by Sundarbans to recover from damage by a severe tropical cyclone. The biodiversity of Sundarbans depends to fresh water flow through it. Therefore, the future of Sundarbans depends to the impact of climate change which has further effect to increasing intensity and frequency of severe tropical cyclone and salinity in water channels in Sundarbans.

  13. On the salty side of life: molecular, physiological and anatomical adaptation and acclimation of trees to extreme habitats.

    Science.gov (United States)

    Polle, Andrea; Chen, Shaoliang

    2015-09-01

    Saline and sodic soils that cannot be used for agriculture occur worldwide. Cultivating stress-tolerant trees to obtain biomass from salinized areas has been suggested. Various tree species of economic importance for fruit, fibre and timber production exhibit high salinity tolerance. Little is known about the mechanisms enabling tree crops to cope with high salinity for extended periods. Here, the molecular, physiological and anatomical adjustments underlying salt tolerance in glycophytic and halophytic model tree species, such as Populus euphratica in terrestrial habitats, and mangrove species along coastlines are reviewed. Key mechanisms that have been identified as mediating salt tolerance are discussed at scales from the genetic to the morphological level, including leaf succulence and structural adjustments of wood anatomy. The genetic and transcriptomic bases for physiological salt acclimation are salt sensing and signalling networks that activate target genes; the target genes keep reactive oxygen species under control, maintain the ion balance and restore water status. Evolutionary adaptation includes gene duplication in these pathways. Strategies for and limitations to tree improvement, particularly transgenic approaches for increasing salt tolerance by transforming trees with single and multiple candidate genes, are discussed. © 2014 John Wiley & Sons Ltd.

  14. Man and climate in the Maya lowlands

    Science.gov (United States)

    Leyden, Barbara W.

    1987-11-01

    A 15-m sedimentary core from Lake Salpeten provides the first complete Holocene sequence for the lowlying Peten District, Guatemala. Today, Lake Salpeten is a brackish, calcium sulfate lake near saturation surrounded by tropical semievergreen forest. The basal pollen record depicts sparse juniper scrub surrounding a lake basin that held ephermal pools and halophytic marshes. The lake rapidly deepened to > 27 m in the early Holocene and may have been meromictic, because nearly 2 m of gypsum "mush" was deposited. Mesic forests were quickly established and persisted until the Maya entered the district 3000 yr ago and caused extensive deforestation. Any climatic information contained in the pollen record of the Maya period is thus masked, but a regional pollen sequence linked to the archaeological record is substantiated because environmental disturbance was pervasive. Local intensification of occupation and population growth are seen as an increased deposition of pollen of agricultural weeds and colluviation into the lake, while the Classic Maya collapse is marked by a temporary decline in Compositae pollen. Effects of perturbations induced by the Maya persist in the pollen and limnetic record 400 yr after the Spanish conquest.

  15. Uptake of trace elements and radionuclides from uranium mill tailings by four-wing saltbush (Atriplex canescens) and alkali sacaton (Sporobolus airoides)

    International Nuclear Information System (INIS)

    Dreesen, D.R.; Marple, M.L.

    1979-01-01

    A greenhouse experiment was performed to determine the uptake of trace elements and radionuclides from uranium mill tailings by native plant species. Four-wing saltbush and alkali sacaton were grown in alkaline tailings covered with soil and in soil alone as controls. The tailings material was highly enriched in Ra-226, Mo, U, Se, V, and As compared with three local soils. The shrub grown in tailings had elevated concentrations of Mo, Se, Ra-226, U, As, and Na compared with the controls. Alkali sacaton contained high concentrations of Mo, Se, Ra-226, and Ni when grown on tailings. Molybdenum and selenium concentrations in plants grown in tailings are above levels reported to be toxic to grazing animals. These results indicate that the bioavailability of Mo and Se in alkaline environments makes these elements among the most hazardous contaminants present in uranium mill wastes

  16. The Effect of Different Rates of Municipal Compost and N Fertilizer on the Essential Oil and some Vegetative Characteristics of Summer Savoury (Satureja hortensis L.

    Directory of Open Access Journals (Sweden)

    Sh Zare

    2013-08-01

    Full Text Available To evaluate the effect of different levels of nitrogen fertilizer and municipal compost on the essential yeild of savory pot experiment in 2009 was carried out in the Darab region. Different doses of compost was in four levels, including: zero C0:, 10C1:, 20C2: and 30C3: tons per hectare and nitrogen fertilizer include: zero N0:, 30N1:, 60 N2: and 90N3: kg of pure nitrogen from urea per hectare. Analysis of variance showed that the consumption of different amounts of nitrogen, compost and interaction between them on dry matter yield and height, percentage and yield of essential oil of savory, is statistically significant. Comparison of mean showed that treatment 90 kg N/ha along with 30 tons of municipal compost consumption per hectare (N3C3 with an average 50/8 g dry weight in pot greatest and treatments without N and compost (N0C0 and non-N with 10 and 20 tons of compost ha (N0C1 and N0C2 were mean 23/69, 23/42 and 24/63 g dry weight, the lowest plant dry weight were allocated to pot. N fertilizer and compost on the number of lateral branches per plant and nitrogen application on mean stem diameter was significant. N3 with an average 24/75 lateral branches and C3 with a mean 22/19 lateral branches, were the highest number of lateral branches per plant. N2C3 with mean of 2/13 percent of most essential oil produced. The most essential yield of the combination treatment N3C3, respectively. Generally produce more essential oil percent and to have more dry matter level N2C3 be seems appropriate.

  17. Copper distribution in leaves and roots of plants growing on a copper mine-tailing storage facility in northern Chile Distribución de cobre en hojas y raíces de plantas que crecen sobre relaves mineros de cobre en el norte de Chile

    Directory of Open Access Journals (Sweden)

    CLAUDIA ORTIZ-CALDERÓN

    2008-12-01

    Full Text Available In a copper mine-tailing afforested we characterized the physicochemical properties of the substrate at vegetated and non-vegetated patches. We studied the accumulation of copper in roots and leaves of the species present at the site, to evaluate their phytoextraction and/or phytostabilization potential. The non-vegetated mine-tailing substrate showed a high contení of metals, mainly copper (> 2.5 g kg-1, a pH 7.4, high contení of salts and 5.0 % organic matler. Vegelaled palches al íhe lailing showed similar characlerislics of pH, salís and organic maller conlenl, and showed a lolal copper concenlralion lower íhan íhe conlenl found ai íhe non-vegelaled patches. Nine plant species present at the site were screened for copper accumulation and distribulion in rools and leaves, and polenlial for copper phyloexlraclion or phyloslabilizalion was suggesled. The nalive species Schinus polygamus and Atriplex deserticola, accumulaled over 1.2 g kg-1 copper in íheir leaves, showing íhal íhey are pseudomelallophyles for íhe melal. Five of íhe nine plañí species sludied were considered suilable for phyloexlraclion procedures and four were apt for phytostabilization of copper polluted sites. By making a screening of species growing on a copper polluted site, we were able to select plants adapted lo semi-arid environmental conditions and suitable for mine-tailings remediation purposes.En un tranque de relaves previamente forestado, se realizó una caracterización fisicoquímica del sustralo en sectores vegetados y no vegetados. Se esludió la acumulación de cobre en raíces y hojas de las especies présenles en el sitio de trabajo, con el objeto de evaluar su potencial fitoextractor y fitoestabilizador. El sustrato del sector no vegetado presentó un pH 7,4; altos contenidos de sales y 5,0 % de materia orgánica, además de un alto contenido de metales pesados, principalmente cobre (> 2,5 g kg-1. Los sectores vegetados del tranque de relaves

  18. How can we take advantage of halophyte properties to cope with heavy metal toxicity in salt-affected areas?

    Czech Academy of Sciences Publication Activity Database

    Lutts, S.; Lefevre, Isabelle

    2015-01-01

    Roč. 115, č. 3 (2015), s. 509-528 ISSN 0305-7364 Institutional support: RVO:60077344 Keywords : Antioxidants * glycinebetaine * metal distribution * osmoprotectants Subject RIV: BO - Biophysics Impact factor: 3.982, year: 2015

  19. Study of the combined effect of spices and marination on beef meat vacuum packaged

    Directory of Open Access Journals (Sweden)

    DANIELA ISTRATI

    2011-12-01

    Full Text Available Fresh beef slices were marinated by immersion in marinades based on dry red wine, lime-tree honey, salt, spices and seasoning plants as thyme (Thymus vulgaris, marjoram (Majorana hortensis, garlic (Allium sativum and horseradish (Armoracia rusticana. Control samples were represented by raw meat without marination treatment but stored in the same conditions as marinated samples. After marination, meat pieces were packed under vacuum and stored at refrigeration temperature of 4°C for 12 days. The influence of the combined effect of spices and marination on beef stability was evaluated by monitoring pH evolution, degree of lipid oxidation and by microbiological analysis. For control samples, a mean increase of 0.47 log CFU/g of total mesophilic aerobic bacteria was observed during the 48 h of storage, but for the samples marinated with the addition of spices was observed a decrease of 0.57 log CFU/g. The growth of LAB in control samples was generally limited and did not exceed 5 log CFU/g. During storage at 4°C, marination with the addition in the base marinade (wine, honey, garlic, pepper and salt of thyme, marjoram and horseradish separately inhibited the growth of LAB while marination with the addition in the base marinade of thyme, marjoram and horseradish together resulted in significantly lower levels of LAB. All marination treatments resulted in significantly lower TBA and POV values at the end of storage compared to the control. Marination with dry red wine, lime-tree honey, thyme marjoram, garlic, and horseradish can evidently control total mesophilic aerobic bacteria, lactic acid bacteria and oxidation of beef meat.

  20. Species composition, co-occurrence, association and affinity indices of mosquito larvae (Diptera: Culicidae) in Mazandaran Province, northern Iran.

    Science.gov (United States)

    Nikookar, Seyed Hassan; Azari-Hamidian, Shahyad; Fazeli-Dinan, Mahmoud; Nasab, Seyed Nouraddin Mousavi; Aarabi, Mohsen; Ziapour, Seyyed Payman; Enayati, Ahmadali

    2016-05-01

    Although considerable progress has been made in the past years in management of mosquito borne diseases such as malaria, dengue, yellow fever and West Nile fever through research in biology and ecology of the vectors, these diseases are still major threats to human health. Therefore, more research is required for better management of the diseases. This investigation provides information on the composition, co-occurrence, association and affinity indices of mosquito larvae in Mazandaran Province, northern Iran. In a large scale field study, mosquito larvae were collected from 120 sentinel sites in 16 counties in Mazandaran Province, using standard 350 ml dipper. Sampling took place monthly from May to December 2014. Collected larvae were mounted on glass slides using de Faure's medium and were diagnosed using morphological characters. Totally, 19,840 larvae were collected including three genera and 16 species from 120 larval habitats, as follows: Anopheles claviger, Anopheles hyrcanus, Anopheles maculipennis s.l., Anopheles marteri, Anopheles plumbeus, Anopheles pseudopictus, Culex pipiens, Culex tritaeniorhynchus, Culex torrentium, Culex perexiguus, Culex territans, Culex mimeticus, Culex hortensis, Culiseta annulata, Culiseta longiareolata, and Culiseta morsitans. Predominant species were Cx. pipiens and An. maculipennis s.l. which show the highest co-occurrence. The pair of species An. hyrcanus/An. pseudopictus showed significant affinity and association. High co-occurrence of the predominant species Cx. pipiens and An. maculipennis s.l. in the study area is of considerable importance in terms of vector ecology. It was also revealed that An. pseudopictus/An. hyrcanus often occur sympatrically indicating their common habitat requirements. The information may be equally important when vector control measures are considered. Copyright © 2016 Elsevier B.V. All rights reserved.