WorldWideScience

Sample records for halogenating reaction activity

  1. High energy halogen atom reactions activated by nuclear transformations. Progress report, February 15-December 31, 1984

    International Nuclear Information System (INIS)

    1985-01-01

    Energetic halogen atoms or ions, activated by various nuclear transformations are studied in gas, high pressure and condensed phase saturated and unsaturated hydrocarbons, halomethanes, and liquid and solid aqueous solutions of biomolecular and organic solutes in order to understand better the mechanisms and dynamics of high energy monovalent species. The experimental program and its goals remain the same, consisting of four interrelated areas: (1) The stereochemistry of energetic 18 F, /sup 34m/Cl, and 38 Cl substitution reactions with chiral molecules in the gas and condensed phase is studied. (2) The gas to condensed state transition in halogen high energy chemistry, involving energetic chlorine, bromine, and iodine reactions in halomethanes, saturated and unsaturated hydrocarbons and aqueous solutions of biomolecules and alkyl halides is being investigated in more detail. Current attention is given to defining the nature of the enhancement yields in the condensed phase. Specifically, energetic halogen reactions in liquid and frozen aqueous solutions or organic and biomolecular solutes are studied. (3) Reactions of bromine and iodine activated by isomeric transition with halogenated biomolecular and organic solutes in liquid and frozen aqueous solutions are being studied in an attempt to learn more about the activation events in the condensed phase. (4) The applications of hot chemistry techniques and theory to neutron activation analysis of biological systems are being continued. Current attention is given to developing procedures for trace molecular determinations in biological systems. The applications of hot halogen atoms as site indicators in liquid and frozen aqueous solutions of halogenated bases and nucleosides are currently being developed. 14 references

  2. Halogen atom reactions activated by nuclear transformations. Progress report, February 15, 1975--February 14, 1976

    International Nuclear Information System (INIS)

    Rack, E.P.

    1976-02-01

    High energy reactions of halogen atoms or ions, activated by nuclear transformations, are being studied in gaseous, high pressure, and condensed phase saturated and unsaturated hydrocarbons, halomethanes, and other organic systems. Experimental and theoretical data are presented in the following areas: systematics of iodine hot atom reactions in halomethanes, reactions and systematics of iodine reactions with pentene and butene isomers, radiative neutron capture activated reactions of iodine with acetylene, gas to liquid to solid transition in hot atom chemistry, kinetic theory applications of hot atom reactions and the mathematical development of caging reactions, solvent dependence of the stereochemistry of the 38 Cl for Cl substitution following 37 Cl(n,γ) 38 Cl in liquid meso and dl-(CHFCl) 2 . A technique was also developed for the radioassay of Al in urine specimens

  3. Halogenating reaction activity of aromatic organic compounds during disinfection of drinking water

    International Nuclear Information System (INIS)

    Guo Gaimei; Chen Xiaodong

    2009-01-01

    The halogenating reactions of five aromatic organic compounds (AOCs) with aqueous chlorine (HOCl/OCl - ) and aqueous bromine (HOBr/OBr - ) were studied with an aim to compare the formation properties of haloacetic acids (HAAs) for the corresponding chlorination or bromination reactions of AOCs, respectively. The experiment results indicated that the HAAs substitution efficiency for the bromination reactions of AOCs was greater than that for the chlorination reactions, and the formation of HAAs had a strong dependence on the chemical structure of AOCs. The chlorination or bromination reaction activities for the AOCs with electron donating functional groups were higher than that for them with electron withdrawing functional groups. The kinetic experiments indicated that the reactions of aqueous bromine with phenol were faster than those of aqueous chlorine with phenol and the halogen consumption exhibited rapid initial and slower consumption stages for the reactions of phenol with aqueous chlorine and bromine, respectively. In addition, the HAAs production for the chlorination reaction of phenol decreased with the increase of pH. These conclusions could provide the valuable information for the effective control of the disinfection by-products during drinking water treatment operation

  4. High energy halogen atom reactions activated by nuclear transformations

    International Nuclear Information System (INIS)

    Rack, E.P.

    1990-05-01

    This program, which has been supported for twenty-four years by the Us Atomic Energy Commission and its successor agencies, has produced significant advances in the understanding of the mechanisms of chemical activation by nuclear processes; the stereochemistry of radioactivity for solution of specific problems. This program was contributed to the training of approximately seventy scientists at various levels. This final report includes a review of the areas of research and chronological tabulation of the publications

  5. High energy halogen atom reactions activated by nuclear transformations. Progress report, February 15, 1980-February 14, 1981

    International Nuclear Information System (INIS)

    1981-02-01

    The stereochemistry of high energy 18 F, /sup 34m/Cl, and 76 Br substitution reactions involving enantiomeric molecules in the gas and condensed phase is studied. The gas to condensed state transition in halogen high energy chemistry, involving chlorine, bromine, and iodine activated by the (n,γ) and (I.T.) processes in halomethanes, saturated and unsaturated hydrocarbons is being investigated in more detail. Special attention is given to defining the nature of the enhancement yields in the condensed phase. High energy halogen reactions in liquid and frozen aqueous solutions of organic and biomolecular solutes are studied in an attempt to learn more about these reactions. The applications of high energy chemistry techniques and theory to neutron activation analysis of biological systems are being continued. Special attention is given to developing procedures for trace molecular determinations in biological systems. The applications of hot halogen atoms as indicators of solute-solute interactions in liquid and frozen aqueous solutions of halogenated bases and nucleosides are being developed. Experiments are designed to explain the mechanisms of the radioprotection offered biomolecular solutes trapped within the frozen ice lattice. Reactions of bromine and iodine activated by isomeric transition with halogenated biomolecular solutes in liquid and frozen aqueous solutions are studied. The high energy reactions of iodine with the isomers of pentene have been studied in low pressure gaseous systems employing additives and rare gas moderators and liquid systems. Reactivity of excited complex formation and structural effects of electrophilic iodine attack on the pi-bond systems are studied

  6. High energy halogen atom reactions activated by nuclear transformations. Progress report, February 15, 1980-February 14, 1981

    Energy Technology Data Exchange (ETDEWEB)

    1981-02-01

    The stereochemistry of high energy /sup 18/F, /sup 34m/Cl, and /sup 76/Br substitution reactions involving enantiomeric molecules in the gas and condensed phase is studied. The gas to condensed state transition in halogen high energy chemistry, involving chlorine, bromine, and iodine activated by the (n,..gamma..) and (I.T.) processes in halomethanes, saturated and unsaturated hydrocarbons is being investigated in more detail. Special attention is given to defining the nature of the enhancement yields in the condensed phase. High energy halogen reactions in liquid and frozen aqueous solutions of organic and biomolecular solutes are studied in an attempt to learn more about these reactions. The applications of high energy chemistry techniques and theory to neutron activation analysis of biological systems are being continued. Special attention is given to developing procedures for trace molecular determinations in biological systems. The applications of hot halogen atoms as indicators of solute-solute interactions in liquid and frozen aqueous solutions of halogenated bases and nucleosides are being developed. Experiments are designed to explain the mechanisms of the radioprotection offered biomolecular solutes trapped within the frozen ice lattice. Reactions of bromine and iodine activated by isomeric transition with halogenated biomolecular solutes in liquid and frozen aqueous solutions are studied. The high energy reactions of iodine with the isomers of pentene have been studied in low pressure gaseous systems employing additives and rare gas moderators and liquid systems. Reactivity of excited complex formation and structural effects of electrophilic iodine attack on the pi-bond systems are studied.

  7. High energy halogen atom reactions activated by nuclear transformations. Progress report, February 15, 1979-February 14, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Rack, E.P.

    1980-02-01

    The program consists of six interrelated areas: (1) Reactions of iodine with alkenes and alkynes activated by radiative neutron capture and isomeric transition in low pressure gaseous systems employing additives and rare gas moderators, high pressure, and liquid systems. Special attention was given to the reactivity of excited complex formation and structural effects of electrophilic iodine attack on various pi-bond systems. (2) The gas-to-condensed phase transition in halogen high energy chemistry. Current interest involves the study of caging effects of an ice lattice on recombination reactions involving neutron-irradiated frozen aqueous solutions of halogenated organic and biochemical solutes in order to learn more about kinetic energy effects, halogen size, solute molecule size, steric effects and hydrogen bonding within an ice lattice cage. (3) Systematics of halogen hot atom reactions. The reactions of /sup 80m/Br, /sup 80/Br, /sup 82m/Br + /sup 82/Br, /sup 82/Br, /sup 82/Br, /sup 128/I, /sup 130/I, and /sup 130m/I + /sup 130/I activated by radiative neutron capture or isomeric transition in hydrocarbons and halo-substituted alkanes in low pressure and high pressure gaseous systems employing additives and rare gas moderators are currently being studied. (4) Mathematical and computer simulation studies of caging events within an ice lattice are being investigated. (5) At Brookhaven National Laboratory, cyclotron-produced chlorine and fluorine hot atoms substitution reactions with molecules possessing a single chiral center are under investigation to determine the role of hot atom kinetic energy, halogen atom, enantioner structure, steric effects and phase on the extent of substitution by retention of configuration or by Walden inversion. (6) The applications of high energy techniques and concepts to neutron activation analysis for trace element determinations in biological systems was continued.

  8. Temperature dependent halogen activation by N2O5 reactions on halide-doped ice surfaces

    Directory of Open Access Journals (Sweden)

    J. A. Thornton

    2012-06-01

    Full Text Available We examined the reaction of N2O5 on frozen halide salt solutions as a function of temperature and composition using a coated wall flow tube technique coupled to a chemical ionization mass spectrometer (CIMS. The molar yield of photo-labile halogen compounds was near unity for almost all conditions studied, with the observed reaction products being nitryl chloride (ClNO2 and/or molecular bromine (Br2. The relative yield of ClNO2 and Br2 depended on the ratio of bromide to chloride ions in the solutions used to form the ice. At a bromide to chloride ion molar ratio greater than 1/30 in the starting solution, Br2 was the dominant product otherwise ClNO2 was primarily produced on these near pH-neutral brines. We demonstrate that the competition between chlorine and bromine activation is a function of the ice/brine temperature presumably due to the preferential precipitation of NaCl hydrates from the brine below 250 K. Our results provide new experimental confirmation that the chemical environment of the brine layer changes with temperature and that these changes can directly affect multiphase chemistry. These findings have implications for modeling air-snow-ice interactions in polar regions and likely in polluted mid-latitude regions during winter as well.

  9. High energy halogen atom reactions activated by nuclear transformations. Progress report, February 15, 1979-February 14, 1980

    International Nuclear Information System (INIS)

    Rack, E.P.

    1980-02-01

    The program consists of six interrelated areas: (1) Reactions of iodine with alkenes and alkynes activated by radiative neutron capture and isomeric transition in low pressure gaseous systems employing additives and rare gas moderators, high pressure, and liquid systems. Special attention was given to the reactivity of excited complex formation and structural effects of electrophilic iodine attack on various pi-bond systems. (2) The gas-to-condensed phase transition in halogen high energy chemistry. Current interest involves the study of caging effects of an ice lattice on recombination reactions involving neutron-irradiated frozen aqueous solutions of halogenated organic and biochemical solutes in order to learn more about kinetic energy effects, halogen size, solute molecule size, steric effects and hydrogen bonding within an ice lattice cage. (3) Systematics of halogen hot atom reactions. The reactions of /sup 80m/Br, 80 Br, /sup 82m/Br + 82 Br, 82 Br, 82 Br, 128 I, 130 I, and /sup 130m/I + 130 I activated by radiative neutron capture or isomeric transition in hydrocarbons and halo-substituted alkanes in low pressure and high pressure gaseous systems employing additives and rare gas moderators are currently being studied. (4) Mathematical and computer simulation studies of caging events within an ice lattice are being investigated. (5) At Brookhaven National Laboratory, cyclotron-produced chlorine and fluorine hot atoms substitution reactions with molecules possessing a single chiral center are under investigation. (6) The applications of high energy techniques and concepts to neutron activation analysis for trace elements and trace molecule determinations in biological systems was continued

  10. High energy halogen atom reactions activated by nuclear transformations. Progress report, February 15, 1978--February 14, 1979

    International Nuclear Information System (INIS)

    Rack, E.P.

    1979-02-01

    High energy reactions of halogen atoms or ions, activated by nuclear transformations, were studied in gaseous, high pressure and condensed phase saturated and unsaturated hydrocarbons, halomethanes and other organic systems in order to better understand the mechanisms and dynamics of high energy monovalent species. The experimental and theoretical program consists of six interrelated areas: (1) the reactions of iodine with alkenes and alkynes activated by radiative neutron capture and isomeric transition in low pressure gaseous systems employing additives and rare gas moderators, high pressure and liquid systems; (2) the gas to condensed state transition in halogen high chemistry, involving bromine activated by the (n,γ) and (I.T.) processes in ethane was investigated in more detail; (3) systematics of halogen hot atom reactions. The reactions of 80 Br/sup m/, 80 Br, 82 Br/sup m/ + 82 Br, 82 Br, 128 I, 130 I, and 130 I/sup m/ + 130 I activated by radiative neutron capture or isomeric transition in hydrocarbons and halo-substituted alkanes in low pressure and high pressure gaseous systems employing additives and rare gas moderators; (4) kinetic theory applications of high energy reactions and mathematical development of caging mechanisms were developed; (5) the sterochemistry of 38 Cl substitution reactions involving diastereomeric 1,2-dichloro-1,2-difluorethane in liquid mixtures was completed, suggesting that the stereochemical course of the substitution process is controlled by the properties of the solvent molecules; and (6) the applications of high energy chemistry techniques and theory to neutron activation analysis of biological systems was continued, especially involving aluminum and vanadium trace determinations

  11. Enzymatic Halogenation and Dehalogenation Reactions: Pervasive and Mechanistically Diverse.

    Science.gov (United States)

    Agarwal, Vinayak; Miles, Zachary D; Winter, Jaclyn M; Eustáquio, Alessandra S; El Gamal, Abrahim A; Moore, Bradley S

    2017-04-26

    Naturally produced halogenated compounds are ubiquitous across all domains of life where they perform a multitude of biological functions and adopt a diversity of chemical structures. Accordingly, a diverse collection of enzyme catalysts to install and remove halogens from organic scaffolds has evolved in nature. Accounting for the different chemical properties of the four halogen atoms (fluorine, chlorine, bromine, and iodine) and the diversity and chemical reactivity of their organic substrates, enzymes performing biosynthetic and degradative halogenation chemistry utilize numerous mechanistic strategies involving oxidation, reduction, and substitution. Biosynthetic halogenation reactions range from simple aromatic substitutions to stereoselective C-H functionalizations on remote carbon centers and can initiate the formation of simple to complex ring structures. Dehalogenating enzymes, on the other hand, are best known for removing halogen atoms from man-made organohalogens, yet also function naturally, albeit rarely, in metabolic pathways. This review details the scope and mechanism of nature's halogenation and dehalogenation enzymatic strategies, highlights gaps in our understanding, and posits where new advances in the field might arise in the near future.

  12. Sonogashira–Hagihara reactions of halogenated glycals

    Directory of Open Access Journals (Sweden)

    Dennis C. Koester

    2012-05-01

    Full Text Available Herein, we report on our findings of the Sonogashira–Hagihara reaction with 1-iodinated and 2-brominated glycals using several aromatic and aliphatic alkynes. This Pd-catalyzed cross-coupling reaction presents a facile access to alkynyl C-glycosides and sets the stage for a reductive/oxidative refunctionalization of the enyne moiety to regenerate either C-glycosidic structures or pyran derivatives with a substituent in position 2.

  13. Copper-catalyzed recycling of halogen activating groups via 1,3-halogen migration.

    Science.gov (United States)

    Grigg, R David; Van Hoveln, Ryan; Schomaker, Jennifer M

    2012-10-03

    A Cu(I)-catalyzed 1,3-halogen migration reaction effectively recycles an activating group by transferring bromine or iodine from a sp(2) to a benzylic carbon with concomitant borylation of the Ar-X bond. The resulting benzyl halide can be reacted in the same vessel under a variety of conditions to form an additional carbon-heteroatom bond. Cross-over experiments using an isotopically enriched bromide source support intramolecular transfer of Br. The reaction is postulated to proceed via a Markovnikov hydrocupration of the o-halostyrene, oxidative addition of the resulting Cu(I) complex into the Ar-X bond, reductive elimination of the new sp(3) C-X bond, and final borylation of an Ar-Cu(I) species to turn over the catalytic cycle.

  14. Molecular activation analysis for organo-halogen contaminants in yogurt

    International Nuclear Information System (INIS)

    Zhang Hong; Chai Zhifang

    2004-01-01

    The concentrations of total halogen (TX), extractable organo-halogen (EOX), extractable persistent organo-halogen (EPOX), organo-chlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in 18 different yogurt specimens of 14 brands from Beijing, Tianjin, Shanghai, Guangzhou and Shijiazhuang were determined by epithermal neutron activation analysis (ENAA), molecular activation analysis (MAA) and GC-Mass Spectrometry (GC-MS), respectively. The results indicated that the halogen in yogurt mainly existed as inorganic species and non-extractable organo-halogen compounds. About 1/3 to 1/4 of EOX was EPOX. Further, EOCl and EPOCl were the main organo-halogen species in yogurt. The average concentration of the unknown organo-chlorine was 96% of the EPOCl. HCHs and DDTs were still the main contaminants of OCPs in the yogurt of interest. Also, PCB202, PCB103 and PCB208 were the main contaminants of PCBs. (authors)

  15. Participation of the Halogens in Photochemical Reactions in Natural and Treated Waters

    Directory of Open Access Journals (Sweden)

    Yi Yang

    2017-10-01

    Full Text Available Halide ions are ubiquitous in natural waters and wastewaters. Halogens play an important and complex role in environmental photochemical processes and in reactions taking place during photochemical water treatment. While inert to solar wavelengths, halides can be converted into radical and non-radical reactive halogen species (RHS by sensitized photolysis and by reactions with secondary reactive oxygen species (ROS produced through sunlight-initiated reactions in water and atmospheric aerosols, such as hydroxyl radical, ozone, and nitrate radical. In photochemical advanced oxidation processes for water treatment, RHS can be generated by UV photolysis and by reactions of halides with hydroxyl radicals, sulfate radicals, ozone, and other ROS. RHS are reactive toward organic compounds, and some reactions lead to incorporation of halogen into byproducts. Recent studies indicate that halides, or the RHS derived from them, affect the concentrations of photogenerated reactive oxygen species (ROS and other reactive species; influence the photobleaching of dissolved natural organic matter (DOM; alter the rates and products of pollutant transformations; lead to covalent incorporation of halogen into small natural molecules, DOM, and pollutants; and give rise to certain halogen oxides of concern as water contaminants. The complex and colorful chemistry of halogen in waters will be summarized in detail and the implications of this chemistry for global biogeochemical cycling of halogen, contaminant fate in natural waters, and water purification technologies will be discussed.

  16. Gas to liquid to solid transition in halogen hot atom chemistry. II. Systematics of bromine reactions activated by radiative neutron capture and isomeric transition with halomethanes

    International Nuclear Information System (INIS)

    Berg, M.E.; Grauer, W.M.; Helton, R.W.; Rack, E.P.

    1975-01-01

    Bromine reactions activated by 79 Br(n,γ) 80 Br, 81 Br(n,γ)/sup 82m/Br + 82 Br, and /sup 82m/Br(I.T.) 82 Br nuclear transformations were studied in halomethanes as functions of mole fraction of Br 2 , phase, density, and intermolecular distance. Gas phase systematics coupled with the density and mole fraction of Br 2 studies demonstrate the existence of systematic trends in the condensed phases as evidenced by the Richardson--Wolfgang effect. A definitive difference due to activation that is independent of system and suggests the importance of caging at higher densities is shown by the variation of total and individual organic product yields with density. The study of total organic product yield vs. intermolecular distance provides both a means of separating cage and molecular reactions and suggests the importance of molecular properties in the caging event. (U.S.)

  17. Analysis of Halogen-Mercury Reactions in Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Paula Buitrago; Geoffrey Silcox; Constance Senior; Brydger Van Otten

    2010-01-01

    Oxidized mercury species may be formed in combustion systems through gas-phase reactions between elemental mercury and halogens, such as chorine or bromine. This study examines how bromine species affect mercury oxidation in the gas phase and examines the effects of mixtures of bromine and chlorine on extents of oxidation. Experiments were conducted in a bench-scale, laminar flow, methane-fired (300 W), quartz-lined reactor in which gas composition (HCl, HBr, NO{sub x}, SO{sub 2}) and temperature profile were varied. In the experiments, the post-combustion gases were quenched from flame temperatures to about 350 C, and then speciated mercury was measured using a wet conditioning system and continuous emissions monitor (CEM). Supporting kinetic calculations were performed and compared with measured levels of oxidation. A significant portion of this report is devoted to sample conditioning as part of the mercury analysis system. In combustion systems with significant amounts of Br{sub 2} in the flue gas, the impinger solutions used to speciate mercury may be biased and care must be taken in interpreting mercury oxidation results. The stannous chloride solution used in the CEM conditioning system to convert all mercury to total mercury did not provide complete conversion of oxidized mercury to elemental, when bromine was added to the combustion system, resulting in a low bias for the total mercury measurement. The use of a hydroxylamine hydrochloride and sodium hydroxide solution instead of stannous chloride showed a significant improvement in the measurement of total mercury. Bromine was shown to be much more effective in the post-flame, homogeneous oxidation of mercury than chlorine, on an equivalent molar basis. Addition of NO to the flame (up to 400 ppmv) had no impact on mercury oxidation by chlorine or bromine. Addition of SO{sub 2} had no effect on mercury oxidation by chlorine at SO{sub 2} concentrations below about 400 ppmv; some increase in mercury oxidation

  18. Iron Mineral Catalyzed C-H Activation As a Potential Pathway for Halogenation Processes

    Science.gov (United States)

    Tubbesing, C.; Schoeler, H. F.; Benzing, K.; Krause, T.; Lippe, S.; Rudloff, M.

    2014-12-01

    Due to increasing drinking water demand of mankind and an expected climate change the impact of salt lakes and salt deserts will increase within the next decades. Furthermore, a rising sea level influences coastal areas like salt marshes and abets processes which will lead to elevated organohalogen formation. An additional increase of the global warming potential, of particle formation and stratospheric ozone depletion is expected. Understanding these multifaceted processes is essential for mankind to be prepared for these alterations of the atmosphere. For example, Keppler et al. (2000) described the production of volatile halogenated organic compounds via oxidation of organic matter driven by ferric iron. However, the formation of long-chained alkyl halides in salt lakes is yet undisclosed. Despite the relative "inertness" of alkanes a direct halogenation of these compounds might be envisaged. In 2005 Vaillancourt et al. discovered a nonheme iron enzyme which is able to halogenate organic compounds via generating the high valent ferryl cation as reaction center. Based on various publications about C-H activation (Bergman, 2007) we postulate a halogenation process in which an iron containing minerals catalyse the C-H bond cleavage of organic compounds in soils. The generated organic radicals are highly reactive towards halides connected to the iron complex. We suggest that next to diagenetically altered iron containing enzymes, minerals such as oxides, hydroxides and sulfides are involved in abiotic halogenation processes. We applied the amino acid methionine as organic model compound and soluble iron species as reactants. All samples were incubated in aqueous phases containing various NaCl concentrations. As a result various halogenated ethanes and ethenes were identified as reaction products. References Bergman, R. G. (2007) Nature, 446(7134) 391-393 Keppler, F., et al. (2000) Nature, 403(6767) 298-301 Vaillancourt, F. H., et al. (2005) Nature, 436(7054) 1191-1194

  19. Recoil halogen reactions in liquid and frozen aqueous solutions of biomolecules

    International Nuclear Information System (INIS)

    Arsenault, L.J.; Blotcky, A.J.; Firouzbakht, M.L.; Rack, E.P.; Nebraska Univ., Omaha

    1982-01-01

    Reactions of recoil 38 Cl, 80 Br and 128 I have been studied in crystalline systems of 5-halouracil, 5-halo-2'-deoxyuridine and 5-halouridine as well as liquid and frozen aqueous solutions of these halogenated biomolecules. In all systems expect crystalline 5-iuodouracil the major product was the radio-labelled halide ion. There was no evidence for other halogen inorganic species. The major labelled organic product was the parent molecule. A recoil atom tracer technique was developed to acquire site information of the biomolecule solutes in the liquid and frozen aqueous systems. For all liquid and frozen aqueous systems, the halogenated biomolecules tended to aggregate. For liquid systems, the tendency for aggregation diminished as the solute concentration approached zero, where the probable state of the solute approached a monomolecular dispersion. Unlike the liquid state, the frozen ice lattice demonstated a ''caging effect'' for the solute aggregates which resulted in constant product yields over the whole concentration range. (orig.)

  20. Chiral halogenated Schiff base compounds: green synthesis, anticancer activity and DNA-binding study

    Science.gov (United States)

    Ariyaeifar, Mahnaz; Amiri Rudbari, Hadi; Sahihi, Mehdi; Kazemi, Zahra; Kajani, Abolghasem Abbasi; Zali-Boeini, Hassan; Kordestani, Nazanin; Bruno, Giuseppe; Gharaghani, Sajjad

    2018-06-01

    Eight enantiomerically pure halogenated Schiff base compounds were synthesized by reaction of halogenated salicylaldehydes with 3-Amino-1,2-propanediol (R or S) in water as green solvent at ambient temperature. All compounds were characterized by elemental analyses, NMR (1H and 13C), circular dichroism (CD) and FT-IR spectroscopy. FS-DNA binding studies of these compounds carried out by fluorescence quenching and UV-vis spectroscopy. The obtained results revealed that the ligands bind to DNA as: (Rsbnd ClBr) > (Rsbnd Cl2) > (Rsbnd Br2) > (Rsbnd I2) and (Ssbnd ClBr) > (Ssbnd Cl2) > (Ssbnd Br2) > (Ssbnd I2), indicating the effect of halogen on binding constant. In addition, DNA-binding constant of the Ssbnd and R-enantiomers are different from each other. The ligands can form halogen bonds with DNA that were confirmed by molecular docking. This method was also measured the bond distances and bond angles. The study of obtained data can have concluded that binding affinity of the ligands to DNA depends on strength of halogen bonds. The potential anticancer activity of ligands were also evaluated on MCF-7 and HeLa cancer cell lines by using MTT assay. The results showed that the anticancer activity and FS-DNA interaction is significantly dependent on the stereoisomers of Schiff base compounds as R-enantiomers displayed significantly higher activity than S-enantiomers. The molecular docking was also used to illustrate the specific DNA-binding of synthesized compounds and groove binding mode of DNA interaction was proposed for them. In addition, molecular docking results indicated that there are three types of bonds (Hsbnd and X-bond and hX-bond) between synthesized compounds and base pairs of DNA.

  1. Molecular Beam Chemistry: Reactions of Oxygen Atoms with Halogen Molecules.

    Science.gov (United States)

    1982-10-15

    nonlinear one has s = 3, r = 1, and n = 3/2. In the "loose" complex the bending modes go over to free rotation of the product diatomit molecule; thus s...contains no adjustable parameters. All observable properties *l of the reaction may be predicted including product velocity and angular dis- tributions...example, P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill Book Co., New York, 1969). 65. Equation (3) is strictly

  2. The Suzuki-Miyaura Cross-Coupling Reaction of Halogenated Aminopyrazoles: Method Development, Scope, and Mechanism of Dehalogenation Side Reaction.

    Science.gov (United States)

    Jedinák, Lukáš; Zátopková, Renáta; Zemánková, Hana; Šustková, Alena; Cankař, Petr

    2017-01-06

    The efficient Suzuki-Miyaura cross-coupling reaction of halogenated aminopyrazoles and their amides or ureas with a range of aryl, heteroaryl, and styryl boronic acids or esters has been developed. The method allowed incorporation of problematic substrates: aminopyrazoles bearing protected or unprotected pyrazole NH, as well as the free amino or N-amide group. Direct comparison of the chloro, bromo, and iodopyrazoles in the Suzuki-Miyaura reaction revealed that Br and Cl derivatives were superior to iodopyrazoles, as a result of reduced propensity to dehalogenation. Moreover, the mechanism and factors affecting the undesired dehalogenation side reaction were revealed.

  3. Iron Coordination and Halogen-Bonding Assisted Iodosylbenzene Activation

    DEFF Research Database (Denmark)

    Wegeberg, Christina; Poulsen de Sousa, David; McKenzie, Christine

    catalytic mixtures using soluble terminal oxygen transfer agents. Isolation of a reactive iron-terminal oxidant adduct, an unique Fe(III)-OIPh complex, is facilitated by strong stabilizing supramolecular halogen-bonding. L3-edge XANES suggests +1.6 for the average oxidation state for the iodine atom3......The iron complex of the hexadentate ligand N,N,N'-tris(2-pyridylmethyl)ethylendiamine-N'-acetate (tpena) efficiently catalyzes selective oxidations of electron-rich olefins and sulfides by insoluble iodosylbenzene (PhIO). Surprisingly, these reactions are faster and more selective than homogenous...... in the iron(III)-coordinated PhIO. This represents a reduction of iodine relative to the original “hypervalent” (+3) PhIO. The equivalent of electron density must be removed from the {(tpena)Fe(III)O} moiety, however Mössbauer spectroscopy shows that the iron atom is not high valent....

  4. Synthesis of Isotactic-block-Syndiotactic Poly(methyl Methacrylate via Stereospecific Living Anionic Polymerizations in Combination with Metal-Halogen Exchange, Halogenation, and Click Reactions

    Directory of Open Access Journals (Sweden)

    Naoya Usuki

    2017-12-01

    Full Text Available Isotactic (it- and syndiotactic (st- poly(methyl methacrylates (PMMAs form unique crystalline stereocomplexes, which are attractive from both fundamental and application viewpoints. This study is directed at the efficient synthesis of it- and st-stereoblock (it-b-st- PMMAs via stereospecific living anionic polymerizations in combination with metal-halogen exchange, halogenation, and click reactions. The azide-capped it-PMMA was prepared by living anionic polymerization of MMA, which was initiated with t-BuMgBr in toluene at –78 °C, and was followed by termination using CCl4 as the halogenating agent in the presence of a strong Lewis base and subsequent azidation with NaN3. The alkyne-capped st-PMMA was obtained by living anionic polymerization of MMA, which was initiated via an in situ metal-halogen exchange reaction between 1,1-diphenylhexyl lithium and an α-bromoester bearing a pendent silyl-protected alkyne group. Finally, copper-catalyzed alkyne-azide cycloaddition (CuAAC between these complimentary pairs of polymers resulted in a high yield of it-b-st-PMMAs, with controlled molecular weights and narrow molecular weight distributions. The stereocomplexation was evaluated in CH3CN and was affected by the block lengths and ratios.

  5. Removal of Intermediate Aromatic Halogenated DBPs by Activated Carbon Adsorption: A New Approach to Controlling Halogenated DBPs in Chlorinated Drinking Water.

    Science.gov (United States)

    Jiang, Jingyi; Zhang, Xiangru; Zhu, Xiaohu; Li, Yu

    2017-03-21

    During chlorine disinfection of drinking water, chlorine may react with natural organic matter (NOM) and bromide ion in raw water to generate halogenated disinfection byproducts (DBPs). To mitigate adverse effects from DBP exposure, granular activated carbon (GAC) adsorption has been considered as one of the best available technologies for removing NOM (DBP precursor) in drinking water treatment. Recently, we have found that many aromatic halogenated DBPs form in chlorination, and they act as intermediate DBPs to decompose and form commonly known DBPs including trihalomethanes and haloacetic acids. In this work, we proposed a new approach to controlling drinking water halogenated DBPs by GAC adsorption of intermediate aromatic halogenated DBPs during chlorination, rather than by GAC adsorption of NOM prior to chlorination (i.e., traditional approach). Rapid small-scale column tests were used to simulate GAC adsorption in the new and traditional approaches. Significant reductions of aromatic halogenated DBPs were observed in the effluents with the new approach; the removals of total organic halogen, trihalomethanes, and haloacetic acids by the new approach always exceeded those by the traditional approach; and the effluents with the new approach were considerably less developmentally toxic than those with the traditional approach. Our findings indicate that the new approach is substantially more effective in controlling halogenated DBPs than the traditional approach.

  6. Biogeochemistry of Halogenated Hydrocarbons

    Science.gov (United States)

    Adriaens, P.; Gruden, C.; McCormick, M. L.

    2003-12-01

    Halogenated hydrocarbons originate from both natural and industrial sources. Whereas direct anthropogenic emissions to the atmosphere and biosphere are often easy to assess, particularly when they are tied to major industrial activities, the attribution of emissions to other human activities (e.g., biomass burning), diffuse sources (e.g., atmospheric discharge, run off), and natural production (e.g., soils, fungi, algae, microorganisms) are difficult to quantify. The widespread occurrence of both alkyl and aryl halides in groundwater, surface water, soils, and various trophic food chains, even those not affected by known point sources, suggests a substantial biogeochemical cycling of these compounds (Wania and Mackay, 1996; Adriaens et al., 1999; Gruden et al., 2003). The transport and reactive fate mechanisms controlling their reactivity are compounded by the differences in sources of alkyl-, aryl-, and complex organic halides, and the largely unknown impact of biogenic processes, such as enzymatically mediated halogenation of organic matter, fungal production of halogenated hydrocarbons, and microbial or abiotic transformation reactions (e.g., Asplund and Grimvall, 1991; Gribble, 1996; Watling and Harper, 1998; Oberg, 2002). The largest source may be the natural halogenation processes in the terrestrial environment, as the quantities detected often exceed the amount that can be explained by human activities in the surrounding areas ( Oberg, 1998). Since biogeochemical processes result in the distribution of a wide range of halogenated hydrocarbon profiles, altered chemical structures, and isomer distributions in natural systems, source apportionment (or environmental forensics) can often only be resolved using multivariate statistical methods (e.g., Goovaerts, 1998; Barabas et al., 2003; Murphy and Morrison, 2002).This chapter will describe the widespread occurrence of halogenated hydrocarbons, interpret their distribution and biogeochemical cycling in light of

  7. Photochemistry of xenon-halogen Van der Waals complexes (X2 = Cl2, Br2, I2): evidence for the intermediate states in the (Xe-X2)*→ XeX* + X reaction

    International Nuclear Information System (INIS)

    Boivineau, Michel

    1987-01-01

    This research thesis addresses the reactivity of excited states of xenon-halogen Van der Waals complexes (Cl 2 , Br 2 , I 2 ) submitted to a multi-photonic excitation. The objective of this study is, by means of a specific experimental approach, to highlight the R*+ X 2 *- to better understand the reaction mechanism, and to study the reactivity of rare gas/halogen systems depending on the halogen nature. After having reported a bibliographical study on each studied system, the author describes the experimental system, reports and discusses experimental results obtained on the different complex systems (chlorine-, bromine- or iodine-based). He finally comments a possible and original application of these works in the development of an excimer laser with a new active medium (the rare gas/halogen Van der Waals complex) which would allow a continuous operation and an easy discharge production [fr

  8. Insights into the Halogen Oxidative Addition Reaction to Dinuclear Gold(I) Di(NHC) Complexes

    KAUST Repository

    Baron, Marco

    2016-06-14

    Gold(I) dicarbene complexes [Au2(MeIm-Y-ImMe)2](PF6)2(Y=CH2(1), (CH2)2(2), (CH2)4(4), MeIm=1-methylimidazol-2-ylidene) react with iodine to give the mixed-valence complex [Au(MeIm-CH2-ImMe)2AuI2](PF6)2(1 aI) and the gold(III) complexes [Au2I4(MeIm-Y-ImMe)2](PF6)2(2 cIand 4 cI). Reaction of complexes 1 and 2 with an excess of ICl allows the isolation of the tetrachloro gold(III) complexes [Au2Cl4(MeIm-CH2-ImMe)2](PF6)2(1 cCl) and [Au2Cl4(MeIm-(CH2)2-ImMe)2](Cl)2(2 cCl-Cl) (as main product); remarkably in the case of complex 2, the X-ray molecular structure of the crystals also shows the presence of I-Au-Cl mixed-sphere coordination. The same type of coordination has been observed in the main product of the reaction of complexes 3 or 4 with ICl. The study of the reactivity towards the oxidative addition of halogens to a large series of dinuclear bis(dicarbene) gold(I) complexes has been extended and reviewed. The complexes react with Cl2, Br2and I2to give the successive formation of the mixed-valence gold(I)/gold(III) n aXand gold(III) n cX(excluding compound 1 cI) complexes. However, complex 3 affords with Cl2and Br2the gold(II) complex 3 bX[Au2X2(MeIm-(CH2)3-ImMe)2](PF6)2(X=Cl, Br), which is the predominant species over compound 3 cXeven in the presence of free halogen. The observed different relative stabilities of the oxidised complexes of compounds 1 and 3 have also been confirmed by DFT calculations. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Neutron activation analysis for study of distribution patterns of organo-halogen pollutants in apple

    International Nuclear Information System (INIS)

    Zhang Hong; Luo Jialing; Sun Huibin; Chai Zhifang; Chinese Academy of Sciences, Beijing

    2007-01-01

    The distribution characteristics of organo-halogens in apple and their sources were studied by neutron activation analysis combined with statistical analysis. The results indicated that concentrations of organo-halogens in apple were in the order of organo-chlorine >> organo-bromine > organo-iodine, and concentrations of the organo-chlorine in four parts of apple were in the order of seed >> peel >> endocarp ≥ pulp. Also, the organo-chlorine, -bromine and-iodine in apple were found to have different sources. The latter two were mainly from naturally synthetic products by plant itself, while the former was mainly from anthropogenic pollutants. (authors)

  10. Reactivity of N-heterocyclic carbene-pyridine palladacyclopentadiene complexes toward halogen addition. The unpredictable course of the reaction.

    Science.gov (United States)

    Visentin, Fabiano; Santo, Claudio; Scattolin, Thomas; Demitri, Nicola; Canovese, Luciano

    2017-08-08

    As an extension of a previously published work we have reacted some palladacyclopentadiene complexes stabilized by bidentate N-heterocyclic carbene-pyridine or monodentate N-heterocyclic carbene-pyridine and isocyanide ligands with the halogens I 2 and Br 2 . All the bidentate and monodentate complexes react with halogens to give at first the expected σ-coordinated butadienyl fragment. However, two of the less hindered NHC carbene-pyridine bidentate butadienyl iodo derivatives undergo a further rearrangement and novel Pd(ii) complexes characterized by a ten term coordinative ring were isolated and characterized. In the most favorable case we were able to carry out the kinetics of rearrangement and measure its reaction rate. Moreover, we have surmised a plausible mechanism on the basis of a dedicated computational approach and in one case the surprising structure characterized by the ten term coordinative ring was resolved by X-ray diffraction.

  11. Mutagenic activity of halogenated propanes and propenes: effect of bromine and chlorine positioning.

    Science.gov (United States)

    Låg, M; Omichinski, J G; Dybing, E; Nelson, S D; Søderlund, E J

    1994-10-01

    A series of halogenated propanes and propenes were studied for mutagenic effects in Salmonella typhimurium TA100 in the absence or presence of NADPH plus liver microsomes from phenobarbital-induced rats as an exogenous metabolism system. The cytotoxic and mutagenic effects of the halogenated propane 1,2-dibromo-3-chloropropane (DBCP) has previously been studied in our laboratories. These studies showed that metabolic activation of DBCP was required to exert its detrimental effects. All of the trihalogenated propane analogues were mutagenic when the microsomal activation system was included. The highest mutagenic activity was obtained with 1,2,3-tribromopropane, with approximately 50-fold higher activity than the least mutagenic trihalogenated propane, 1,2,3-trichloropropane. The order of mutagenicity was as follows: 1,2,3-tribromopropane > or = 1,2-dibromo- 3-chloropropane > 1,3-dibromo-2-chloropropane > or = 1,3-dichloro-2-bromopropane > 1-bromo-2,3-dichloropropane > 1,2,3-trichloropropane. Compared to DBCP, the dihalogenated propanes were substantially less mutagenic. Only 1,2-dibromopropane was mutagenic and its mutagenic potential was approximately 1/30 of that of DBCP. In contrast to DBCP, 1,2-dibromopropane showed similar mutagenic activity with and without the addition of an activation system. The halogenated propenes 2,3-dibromopropene and 2-bromo-3-chloropropene were mutagenic to the bacteria both in the absence and presence of the activation system, whereas 2,3-dichloropropene did not show any mutagenic effect. The large differences in mutagenic potential between the various halogenated propanes and propenes are proposed to be due to the formation of different possible proximate and ultimate mutagenic metabolites resulting from the microsomal metabolism of the various halogenated propanes and propenes, and to differences in the rate of formation of the metabolites. Pathways are proposed for the formation of genotoxic metabolites of di- and trihalogenated

  12. Tropospheric Halogen Chemistry

    Science.gov (United States)

    von Glasow, R.; Crutzen, P. J.

    2003-12-01

    processes. Early work by Cauer (1951) had shown that Cl/Na and Cl/Mg ratios were lower in air than in seawater, indicating loss of chlorine by "acid displacement" from sea salt by the strong acids, H2SO4 (Eriksson (1959a, b) and HNO3 (Robbins et al., 1959). Already the first measurements of bromine in aerosols by Duce et al. (1963) showed that bromine, like chlorine, was lost from the sea salt particles, whereas iodine was strongly enriched ( Duce et al., 1965). Research since the early 1980s has shown that photochemical processes are actively involved.Interest in the chemistry of atmospheric halogens took a steep upward surge after it was postulated that the release of industrially produced halocarbons, in particular the chlorofluorocarbons (CFCs), CFCl3, and CF2Cl2, could cause severe depletions in stratospheric ozone (Molina and Rowland, 1974) by the reactions involving the CFC photolytic product radicals, Cl and ClO, as catalysts. The first stratospheric measurements of ClO did indeed show its presence in significant quantities in the stratosphere so that by the end of the 1970s USA, Canada, and the Scandinavian countries issued laws against the use of CFC gases as propellants in spray cans. In the mid-1980s the springtime stratospheric ozone hole over Antarctica was discovered by Farman et al. (1985), involving heterogeneous reactions on polar stratospheric clouds that lead to chlorine activation ( Solomon et al., 1986). Ten years later, in 1996, a complete phaseout ofthe production of the CFCs and a number of other chlorine- or bromine-containing chemicals came into effect for all nations in the developed world. In this contribution we will, however, concentrate on the impact of reactive chlorine, bromine, and iodine on tropospheric ozone chemistry.Halogens have the potential to be important in many facets of tropospheric chemistry. A multitude of gas phase reactions and gas-particle interactions occur that include coupling with the sulfur cycle and reactions with

  13. Apparatus for washing out halogens

    Energy Technology Data Exchange (ETDEWEB)

    Pier, M; Hahn, J; Kroenig, W

    1941-03-26

    An apparatus is described for washing out of halogens and the like or liquid halogen compounds from the products, which are formed on pressure hydrogenation or splitting of carbon-containing material in the presence of halogens or halogen compounds, consisting of a washing apparatus installed between the reaction vessel and the hot separator, which is inclined in relatively small space for steam regulation and contains, with the steam, arranged baffles, especially spirals.

  14. Kinetic model for predicting the concentrations of active halogen species in chlorinated saline cooling waters

    International Nuclear Information System (INIS)

    Lietzke, M.H.; Haag, W.R.

    1979-01-01

    A kinetic model for predicting the composition of chlorinated water discharged from power plants using fresh water for cooling was previously reported. The model has now been extended to be applicable to power plants located on estuaries or on the seacoast where saline water is used for cooling purposes. When chloride is added to seawater to prevent biofouling in cooling systems, bromine is liberated. Since this reaction proceeds at a finite rate there is a competition between the bromine (i.e., hypobromous acid) and the added chlorine (i.e., hypochlorous acid) for halogenation of any amine species present in the water. Hence not only chloramines but also bromamines and bromochloramines will be formed, with the relative concentrations a function of the pH, temperature, and salinity of the water. The kinetic model takes into account the chemical reactions leading to the formation and disappearance of the more important halamines and hypohalous acids likely to be encountered in chlorinated saline water

  15. SYNTHESIS AND CHARACTERIZATION OF NEW HALOGENATED CURCUMINOIDS

    Directory of Open Access Journals (Sweden)

    Eugenio Torres

    2013-12-01

    Full Text Available In this work a novel procedure of synthesis of compounds analogues to curcumin with halogens atoms in its structure is described, which can increase its solubility and biological activity. Four halogenated curcuminoids were obtained with great pharmacological interest, none of them reported in literature before. Synthesis was carried out by means of the aldol condensation assisted by microwaves of halogenated aromatic aldehydes and acetylacetona, using morpholine as basic catalyst, in absence of solvent, and the reaction just needed 1 min. The products were purified by treatment of the reaction mixture with methanol under ultrasound irradiation, followed by chromatographic column. All obtained compounds were characterized by infrared spectroscopy, nuclear magnetic resonance, quantitative elementary analysis and high resolution mass spectrometry. The RMN-1H data demonstrate in all structures of synthesized curcuminoids the enol form is the most favored.

  16. Tannins and Tannin-Related Derivatives Enhance the (Pseudo-)Halogenating Activity of Lactoperoxidase.

    Science.gov (United States)

    Gau, Jana; Prévost, Martine; Van Antwerpen, Pierre; Sarosi, Menyhárt-Botond; Rodewald, Steffen; Arnhold, Jürgen; Flemmig, Jörg

    2017-05-26

    Several hydrolyzable tannins, proanthocyanidins, tannin derivatives, and a tannin-rich plant extract of tormentil rhizome were tested for their potential to regenerate the (pseudo-)halogenating activity, i.e., the oxidation of SCN - to hypothiocyanite - OSCN, of lactoperoxidase (LPO) after hydrogen peroxide-mediated enzyme inactivation. Measurements were performed using 5-thio-2-nitrobenzoic acid in the presence of tannins and related substances in order to determine kinetic parameters and to trace the LPO-mediated - OSCN formation. The results were combined with docking studies and molecular orbital analysis. The - OSCN-regenerating effect of tannin derivatives relates well with their binding properties toward LPO as well as their occupied molecular orbitals. Especially simple compounds like ellagic acid or methyl gallate and the complex plant extract were found as potent enzyme-regenerating compounds. As the (pseudo-)halogenating activity of LPO contributes to the maintenance of oral bacterial homeostasis, the results provide new insights into the antibacterial mode of action of tannins and related compounds. Furthermore, chemical properties of the tested compounds that are important for efficient enzyme-substrate interaction and regeneration of the - OSCN formation by LPO were identified.

  17. A study of the atmospherically important reactions between dimethyl selenide (DMSe) and molecular halogens (X2 = Cl2, Br2, and I2) with ab initio calculations.

    Science.gov (United States)

    Rhyman, Lydia; Armata, Nerina; Ramasami, Ponnadurai; Dyke, John M

    2012-06-14

    The atmospherically relevant reactions between dimethyl selenide (DMSe) and the molecular halogens (X(2) = Cl(2), Br(2), and I(2)) have been studied with ab initio calculations at the MP2/aug-cc-pVDZ level of theory. Geometry optimization calculations showed that the reactions proceed from the reagents to the products (CH(3)SeCH(2)X + HX) via three minima, a van der Waals adduct (DMSe:X(2)), a covalently bound intermediate (DMSeX(2)), and a product-like complex (CH(3)SeCH(2)X:HX). The computed potential energy surfaces are used to predict what molecular species are likely to be observed in spectroscopic experiments such as gas-phase photoelectron spectroscopy and infrared matrix isolation spectroscopy. It is concluded that, for the reactions of DMSe with Cl(2) and Br(2), the covalent intermediate should be seen in spectroscopic experiments, whereas, in the DMSe + I(2) reaction, the van der Waals adduct DMSe:I(2) should be observed. Comparison is made with previous related calculations and experiments on dimethyl sulfide (DMS) with molecular halogens. The relevance of the results to atmospheric chemistry is discussed. The DMSeX(2) and DMSe:X(2) intermediates are likely to be reservoirs of molecular halogens in the atmosphere which will lead on photolysis to ozone depletion.

  18. Chain reaction on de-halogenation of 1,2-dibromotetrafluoroethane and 1,1,2-trichlorotrifluoroethane induced by irradiation in alcohols

    International Nuclear Information System (INIS)

    Nakagawa, Seiko

    2015-01-01

    Methanol and 2-propanol solutions of 1,2-dibromotetrafluoroethane and 1,1,2-trichlorotrifluoroethane were irradiated with γ-rays after perfect de-oxygenation. The product, formed by the substitution of one of the bromine or chlorine atoms with a hydrogen atom, was observed by radiation-induced degradation and the product was also de-halogenated. The G-value of de-halogenation was more than a thousand times higher than G(e solv − ) and increased with the decreasing dose rate, meaning that a chain reaction is involved in the process. The efficiency of the degradation in 2-propanol was several times higher than that in methanol. It is concluded that the charge transfer from an alcohol radical will be the trigger of the chain reaction the same as in the degradation of hexachloroethane in alcohol solutions (Sawai et al., 1978). - Highlights: • Halone2402 and Furon113 were de-halogenated by radiation-induced chain reaction in pure alcohol. • The efficiency of the degradation in 2-propanol was several times higher than that in methanol. • The charge transfer from an alcohol radical will be the trigger of the chain reaction

  19. Halogen determination in Arctic aerosols by neutron activation analysis with Compton suppression methods

    International Nuclear Information System (INIS)

    Landsberger, S.; Basunia, M.S.; Iskander, F.

    2001-01-01

    The study of halogens particularly bromine and chlorine in Arctic aerosols has received a great deal of attention in the past decade in ozone depletion during polar sunrise studies. Iodine has also been studied as part of geochemical cycling. It was shown that all three of the above elements can be determined simultaneously with very low detection limits using epithermal NAA in conjunction with Compton suppression methods. Besides lowering the background considerably, Compton suppression can eliminate or minimize the overlapping peak of the 620 keV photopeak arising form the 1642 keV double escape peak of 38 Cl interfering with the 616.9 keV photopeak of 79 Br(n,γ) 80 Br reaction. Iodine is ideally determined by epithermal NAA because of its very good resonance integral cross-section. Although chlorine is usually determined using thermal neutrons via the 37 Cl(n,γ) 38 Cl reactions, epithermal NAA is still feasible for the Arctic aerosol, since it has a major sea-salt component. (author)

  20. Marine Gradients of Halogens in Moss Studied by Epithermal Neutron Activation Analysis

    CERN Document Server

    Frontasyeva, M V

    2002-01-01

    Epithermal neutron activation analysis is known to be a powerful technique for the simultaneous study of chlorine, bromine and iodine in environmental samples. In this paper it is shown to be useful to elucidate marine gradients of these elements. Examples are from a transect study in northern Norway where samples of the feather moss Hylocomium splendens were collected at distances 0-300 km from the coastline. All three elements decreased exponentially as a function of distance from the ocean in the moss samples, strongly indicating that atmospheric supply from the marine environment is the predominant source of these elements to the terrestrial ecosystem. These results are compared with similar data for surface soils along the same gradients. Comparison is also made with previous data for halogens in moss in Norway obtained by conventional NAA and covering similar transects in other geographical regions. The Cl/Br and Br/I ratios in moss showed a regular change distance from the ocean in all transects, and h...

  1. Probing the Influence of the Conjugated Structure and Halogen Atoms of Poly-Iron-Phthalocyanine on the Oxygen Reduction Reaction by X-ray Absorption Spectroscopy and Density Functional Theory

    International Nuclear Information System (INIS)

    Peng, Yingxiang; Cui, Lufang; Yang, Shifeng; Fu, Jingjing; Zheng, Lirong; Liao, Yi; Li, Kai; Zuo, Xia; Xia, Dingguo

    2015-01-01

    Metal-phthalocyanine (MPc) macrocyclic catalysts have been perceived as promising alternatives to Pt and Pt-based catalysts for the oxygen reduction reaction (ORR). However, the effect of different MPc molecular structures on the ORR has rarely been reported in depth. Herein, iron-phthalocyanine polymers (poly-FePcs) and multi-walled carbon nanotubes (MWCNTs) composites with different structures were synthesized using microwave method. The relationship between their molecular structure and electrocatalytic activity was fully revealed by density functional theory (DFT) and X-ray fine absorption spectroscopy (XAFS). DFT calculations revealed that the introduction of halogen atoms can increase the ion potential (IP) and the dioxo-binding energy () of the poly-FePcs. Meanwhile, their conjugated structure not only facilitates electronic transmission, but also significantly increases . XAFS analysis indicated that the poly-FePc/MWCNTs composites had a square planar structure and a smaller of phthalocyanine ring (Fe-N 4 structure) skeleton structure radius when a larger conjugated structure or introduced halogen atoms was present. The experimental results suggest that the these changes in properties arising from the different structures of the MPc macrocyclic compounds led to a huge effect on their ORR electrochemical activities, and provide a guide to obtaining promising electrochemical catalysts

  2. The adsorption and reaction of halogenated volatile organic compounds (VOC's) on metal oxides. 1998 annual progress report

    International Nuclear Information System (INIS)

    Goodman, D.W.; Haw, J.F.; Lunsford, J.

    1998-01-01

    'The goal of the research is to elucidate the properties of the materials responsible for the activation of halocarbons and the nature of the intermediates formed in the dissociative adsorption of this class of compounds. This information is essential for interpreting and predicting stoichiometric and catalytic pathways for the safe destruction of halocarbon pollutants. The specific objectives are: (1) to study the adsorption and reactivity of chloromethanes and chloroethanes on metal oxides; (2) to identify the reaction intermediates using spectroscopic methods; and (3) to develop kinetic models for the reaction of these halocarbons with oxide surfaces. This report summarizes work after 20 months of a 36-month project. Emphasis has been placed understanding the surfaces phases, as well as the bulk phases that are present during the reactions of chlorinated hydrocarbons with strongly basic metal oxides. Most of the research has been carried out with carbon tetrachloride.'

  3. Nonthmicin, a Polyether Polyketide Bearing a Halogen-Modified Tetronate with Neuroprotective and Antiinvasive Activity from Actinomadura sp.

    Science.gov (United States)

    Igarashi, Yasuhiro; Matsuoka, Noriaki; In, Yasuko; Kataura, Tetsushi; Tashiro, Etsu; Saiki, Ikuo; Sudoh, Yuri; Duangmal, Kannika; Thamchaipenet, Arinthip

    2017-03-17

    Nonthmicin (1), a new polyether polyketide bearing a chlorinated tetronic acid, was isolated from the culture extract of a soil-derived Actinomadura strain. The structure of 1 was elucidated by interpretation of NMR and MS spectroscopic data, and the absolute configuration of 1 was proposed on the basis of the crystal structure of its dechloro congener ecteinamycin (2) also isolated from the same strain. Tetronic acids modified by halogenation have never been reported from natural products. Compounds 1 and 2 were found to have neuroprotective activity and antimetastatic properties at submicromolar concentrations in addition to antibacterial activity.

  4. Halogenation processes of secondary organic aerosol and implications on halogen release mechanisms

    Directory of Open Access Journals (Sweden)

    J. Ofner

    2012-07-01

    Full Text Available Reactive halogen species (RHS, such as X·, X2 and HOX containing X = chlorine and/or bromine, are released by various sources like photo-activated sea-salt aerosol or from salt pans, and salt lakes. Despite many studies of RHS reactions, the potential of RHS reacting with secondary organic aerosol (SOA and organic aerosol derived from biomass-burning (BBOA has been neglected. Such reactions can constitute sources of gaseous organohalogen compounds or halogenated organic matter in the tropospheric boundary layer and can influence physicochemical properties of atmospheric aerosols.

    Model SOA from α-pinene, catechol, and guaiacol was used to study heterogeneous interactions with RHS. Particles were exposed to molecular chlorine and bromine in an aerosol smog-chamber in the presence of UV/VIS irradiation and to RHS, released from simulated natural halogen sources like salt pans. Subsequently, the aerosol was characterized in detail using a variety of physicochemical and spectroscopic methods. Fundamental features were correlated with heterogeneous halogenation, which results in new functional groups (FTIR spectroscopy, changes UV/VIS absorption, chemical composition (ultrahigh resolution mass spectroscopy (ICR-FT/MS, or aerosol size distribution. However, the halogen release mechanisms were also found to be affected by the presence of organic aerosol. Those interaction processes, changing chemical and physical properties of the aerosol are likely to influence e.g. the ability of the aerosol to act as cloud condensation nuclei, its potential to adsorb other gases with low-volatility, or its contribution to radiative forcing and ultimately the Earth's radiation balance.

  5. Hybrid capacitors utilizing halogen-based redox reactions at interface between carbon positive electrode and aqueous electrolytes

    Science.gov (United States)

    Yamazaki, Shigeaki; Ito, Tatsuya; Murakumo, Yuka; Naitou, Masashi; Shimooka, Toshiharu; Yamagata, Masaki; Ishikawa, Masashi

    2016-09-01

    We propose novel hybrid capacitors (HCs) with electrolyte-involved redox reactions of bromide or iodide species by pretreatment of an activated carbon positive electrode. The treatment is simple; impregnation of pores at an activated carbon fiber cloth (ACFC) as a positive electrode with bromine- or iodine-containing water before cell assembly. The treated positive electrode is applied to a HC cell with a non-treated negative electrode of ACFC and its electrochemical performance is investigated by galvanostatic cycling and leakage current tests. Few studies on such "electrolytic" charge storage systems have provided acceptable capacitor performance because of inevitable self-discharge caused by diffusion of charged species form an electrode to the other one through an electrolyte. Nevertheless, our electrolyte-redox-based HCs show excellent performance without undesirable diffusion of charged species. Moreover, the present HC utilizing a bromide redox system fulfills a practical cell voltage of 1.8 V in spite of an aqueous electrolyte system. This high voltage provides excellent energy density, which is 5 times higher than that in a conventional aqueous electric double-layer capacitor (EDLC), and 1.2 times higher even than that in a 2.7 V-class non-aqueous EDLC, while keeping high charge-discharge rate capability.

  6. Study on the dynamics of halogen elements in the agro-environment and these element`s deficiency, toxicity and environmental hazards by the application of the neutron activation analysis method

    Energy Technology Data Exchange (ETDEWEB)

    Yuita, Kouichi [National Inst. of Agro-Environmental Sciences, Tsukuba, Ibaraki (Japan)

    1998-03-01

    A neutron activation analysis method is an accurate and highly sensitive method for analyzing halogen elements (iodine, bromine and chlorine) except fluorine. It is unsubstitutable and valuable method especially for iodine (including radioactive {sup 129}I) and bromine which are present at lower levels. Halogen elements have high chemical and physiological activities and move widely in the environment. As a result, deficiency and an excess of halogen elements in plants and animals have occurred and artificial halogen compounds have caused environmental pollution in wide areas. We efficiently utilized the neutron activation analysis method and an activable tracer method to obtain valuable findings which contribute to the clarification of and measures against these actual problems and which are also concerned with the occurrence, distribution and migration of halogen elements in the environment, especially agricultural and forestry ecosystems in space and in time. (author)

  7. Impact of wastewater infrastructure upgrades on the urban water cycle: Reduction in halogenated reaction byproducts following conversion from chlorine gas to ultraviolet light disinfection

    International Nuclear Information System (INIS)

    Barber, Larry B.; Hladik, Michelle L.; Vajda, Alan M.; Fitzgerald, Kevin C.; Douville, Chris

    2015-01-01

    proportions of nitrogenous, brominated, and iodinated HDBPs than the chlorinated tap water. Conversion of the WWTF to UV disinfection reduced the loading of HDBPs to the receiving stream by > 90%. - Highlights: • Infrastructure upgrades provide opportunities for water quality improvements. • Halogenated disinfection byproducts were removed by activated sludge wastewater treatment. • Chlorine disinfected effluents contain complex mixtures of halogenated byproducts. • Conversion from chlorine to ultraviolet light disinfection eliminated byproduct formation. • Most disinfection byproducts are attenuated by in-stream processes but some were produced

  8. Impact of wastewater infrastructure upgrades on the urban water cycle: Reduction in halogenated reaction byproducts following conversion from chlorine gas to ultraviolet light disinfection

    Energy Technology Data Exchange (ETDEWEB)

    Barber, Larry B. [U.S. Geological Survey, 3215 Marine St., Boulder, CO 80303 (United States); Hladik, Michelle L. [U.S. Geological Survey, 6000 J Street Placer Hall, Sacramento, CA 95819 (United States); Vajda, Alan M. [University of Colorado, Department of Integrative Biology, CB 171, Denver, CO 80217 (United States); Fitzgerald, Kevin C. [U.S. Geological Survey, 3215 Marine St., Boulder, CO 80303 (United States); AECOM, 500 West Jefferson St., Ste. 1600, Louisville, KY 40202 (United States); Douville, Chris [City of Boulder, 4049 75th Street, Boulder, CO 80301 (United States)

    2015-10-01

    greater relative proportions of nitrogenous, brominated, and iodinated HDBPs than the chlorinated tap water. Conversion of the WWTF to UV disinfection reduced the loading of HDBPs to the receiving stream by > 90%. - Highlights: • Infrastructure upgrades provide opportunities for water quality improvements. • Halogenated disinfection byproducts were removed by activated sludge wastewater treatment. • Chlorine disinfected effluents contain complex mixtures of halogenated byproducts. • Conversion from chlorine to ultraviolet light disinfection eliminated byproduct formation. • Most disinfection byproducts are attenuated by in-stream processes but some were produced.

  9. Evidence for Interfacial Halogen Bonding.

    Science.gov (United States)

    Swords, Wesley B; Simon, Sarah J C; Parlane, Fraser G L; Dean, Rebecca K; Kellett, Cameron W; Hu, Ke; Meyer, Gerald J; Berlinguette, Curtis P

    2016-05-10

    A homologous series of donor-π-acceptor dyes was synthesized, differing only in the identity of the halogen substituents about the triphenylamine (TPA; donor) portion of each molecule. Each Dye-X (X=F, Cl, Br, and I) was immobilized on a TiO2 surface to investigate how the halogen substituents affect the reaction between the light-induced charge-separated state, TiO2 (e(-) )/Dye-X(+) , with iodide in solution. Transient absorption spectroscopy showed progressively faster reactivity towards nucleophilic iodide with more polarizable halogen substituents: Dye-F < Dye-Cl < Dye-Br < Dye-I. Given that all other structural and electronic properties for the series are held at parity, with the exception of an increasingly larger electropositive σ-hole on the heavier halogens, the differences in dye regeneration kinetics for Dye-Cl, Dye-Br, and Dye-I are ascribed to the extent of halogen bonding with the nucleophilic solution species. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Halogen-Mediated Conversion of Hydrocarbons to Commodities.

    Science.gov (United States)

    Lin, Ronghe; Amrute, Amol P; Pérez-Ramírez, Javier

    2017-03-08

    Halogen chemistry plays a central role in the industrial manufacture of various important chemicals, pharmaceuticals, and polymers. It involves the reaction of halogens or halides with hydrocarbons, leading to intermediate compounds which are readily converted to valuable commodities. These transformations, predominantly mediated by heterogeneous catalysts, have long been successfully applied in the production of polymers. Recent discoveries of abundant conventional and unconventional natural gas reserves have revitalized strong interest in these processes as the most cost-effective gas-to-liquid technologies. This review provides an in-depth analysis of the fundamental understanding and applied relevance of halogen chemistry in polymer industries (polyvinyl chloride, polyurethanes, and polycarbonates) and in the activation of light hydrocarbons. The reactions of particular interest include halogenation and oxyhalogenation of alkanes and alkenes, dehydrogenation of alkanes, conversion of alkyl halides, and oxidation of hydrogen halides, with emphasis on the catalyst, reactor, and process design. Perspectives on the challenges and directions for future development in this exciting field are provided.

  11. Halogenated fatty acids

    DEFF Research Database (Denmark)

    Mu, Huiling; Sundin, Peter; Wesén, Clas

    1997-01-01

    Halogenated fatty acids are the major contributors to organohalogen compounds in lipids of marine mammals, fish, and bivalves. For the initial characterization of these recently noticed compounds, a determination of the halogen concentration has usually been combined with some lipid isolation......), atomic emission spectrometry, and mass spectrometry. For most environmental samples, chlorinated FAMEs must be enriched prior to GC. ELCD is a useful detection method for indicating halogenated FAMEs in the chromatograms, and tentative identification of the halogenated species can be obtained...

  12. Insights into the catalytic activity of [Pd(NHC)(cin)Cl] (NHC = IPr, IPrCl, IPrBr) complexes in the Suzuki-Miyaura reaction

    KAUST Repository

    Nolan, Steven Patrick; Izquierdo, Frederic; Zinser, Caroline; Minenkov, Yury; Cordes, David; Slawin, Alexandra; Cavallo, Luigi; Nahra, Fady; Cazin, Catherine

    2017-01-01

    The influence of C4,5-halogenation on palladium N-heterocyclic carbene complexes and their activity in the Suzuki-Miyaura reaction have been investigated. Two [Pd(NHC)(cin)Cl] complexes bearing IPrCl and IPrBr ligands were synthesized. After

  13. Haloperoxidase-like activity in spruce forest soil. A source of volatile halogenated organic compounds?

    DEFF Research Database (Denmark)

    Laturnus, F.; Mehrtens, G.; Grøn, C.

    1995-01-01

    Haloperoxidase-like activity was monitored in samples from a podzol soil in an uncontaminated spruce forest at Klosterhede, Denmark. Activity for the oxidation of chloride and bromide was found. The pH optima for chlorination and bromination ranged between pH 2.5 and 4: Very high activity, up to 4...

  14. Metal-Mediated Halogen Exchange in Aryl and Vinyl Halides: a Review

    Science.gov (United States)

    Evano, Gwilherm; Nitelet, Antoine; Thilmany, Pierre; Dewez, Damien F.

    2018-04-01

    Halogenated arenes and alkenes are of prime importance in many areas of science, especially in the pharmaceutical, agrochemical and chemical industries. While the simplest ones are commercially available, some of them are still hardly accessible depending on their substitution patterns and the nature of the halogen atom. Reactions enabling the selective and efficient replacement of the halogen atom of an aryl or alkenyl halide by another one, lighter or heavier, are therefore of major importance since they can be used for example to turn a less reactive aryl/alkenyl chloride into the more reactive iodinated derivatives or, in a reversed sense, to block an undesired reactivity, for late-stage modifications or for the introduction of a radionuclide. If some halogen exchange reactions are possible with activated substrates, they usually require catalysis with metal complexes. Remarkably efficient processes have been developed for metal-mediated halogen exchange in aryl and vinyl halides: they are overviewed, in a comprehensive manner, in this review article.

  15. Glutathione transferase mimics : Micellar catalysis of an enzymic reaction

    NARCIS (Netherlands)

    Lindkvist, Björn; Weinander, Rolf; Engman, Lars; Koetse, Marc; Engberts, Jan B.F.N.; Morgenstern, Ralf

    1997-01-01

    Substances that mimic the enzyme action of glutathione transferases (which serve in detoxification) are described. These micellar catalysts enhance the reaction rate between thiols and activated halogenated nitroarenes as well as alpha,beta-unsaturated carbonyls. The nucleophilic aromatic

  16. Dissociative Photoionization of 1-Halogenated Silacyclohexanes: Silicon Traps the Halogen.

    Science.gov (United States)

    Bodi, Andras; Sigurdardottir, Katrin Lilja; Kvaran, Ágúst; Bjornsson, Ragnar; Arnason, Ingvar

    2016-11-23

    The threshold photoelectron spectra and threshold photoionization mass spectra of 1-halogenated-1-silacyclohexanes, for the halogens X = F, Cl, Br, and I, have been obtained using synchrotron vacuum ultraviolet radiation and photoelectron photoion coincidence spectroscopy. As confirmed by a similar ionization onset and density functional theory molecular orbitals, the ionization to the ground state is dominated by electron removal from the silacyclohexane ring for X = F, Cl, and Br, and from the halogen lone pair for X = I. The breakdown diagrams show that the dissociative photoionization mechanism is also different for X = I. Whereas the parent ions decay by ethylene loss for X = F to Br in the low-energy regime, the iodine atom is lost for X = I. The first step is followed by a sequential ethylene loss at higher internal energies in each of the compounds. It is argued that the tendency of silicon to lower bond angles stabilizes the complex cation in which C 2 H 4 is η 2 -coordinated to it, and which precedes ethylene loss. Together with the relatively strong silicon-halogen bonds and the increased inductive effect of the silacyclohexane ring in stabilizing the cation, this explains the main differences observed in the fragmentation of the halogenated silacyclohexane and halogenated cyclohexane ions. The breakdown diagrams have been modeled taking into account slow dissociations at threshold and the resulting kinetic shift. The 0 K appearance energies have been obtained to within 0.08 eV for the ethylene loss for X = F to Br (10.56, 10.51, and 10.51 eV, respectively), the iodine atom loss for X = I (10.11 eV), the sequential ethylene loss for X = F to I (12.29, 12.01, 11.94, and 11.86 eV, respectively), and the minor channels of H loss for X = F (10.56 eV) and propylene loss in X = Cl (also at 10.56 eV). The appearance energies for the major channels likely correspond to the dissociative photoionization reaction energy.

  17. Synthesis and antifungal activity of halogenated aromatic bis-γ-lactones analogous to avenaciolide

    Directory of Open Access Journals (Sweden)

    Pedro A. Castelo-Branco

    2012-01-01

    Full Text Available Here we describe the total syntheses and characterization by elemental analyses, infrared and NMR spectroscopy of three new compounds analogous to avenaciolide, a bis-γ-lactone isolated from Aspergillus avenaceus that possesses antifungal activity, where the octyl group of the natural product was replaced by aromatic groups containing chlorine and fluorine atoms. The effects of the avenaciolide, the novel compounds and their synthetic precursors on mycelia development and conidia germination of Colletotrichum gloeosporioides and Fusarium solani were evaluated in vitro. The title compounds were almost as active as avenaciolide. The absolute structures of the chlorinated analogs were determined by X-ray diffraction analysis.

  18. Rapid determination of halogenes in milk by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Alfassi, Z.B.; Lavi, N.

    1985-01-01

    The absolute concetrations of iodine, bromine and chlorine in milk were determined by epithermal neutron activation followed by high resolution gamma-ray spectrometry. Two kinds of milk commonly consumed in Israel were investigated. The concentration of iodine, bromine and chlorine were found to be 0.18-0.30 μg/ml, 2.02-2.85 μg/ml and 0.65 mg/ml, respectively. The method is fast, selective, accurate and highly sensitive. (author)

  19. Cycloaddition of CO 2 to challenging N -tosyl aziridines using a halogen-free niobium complex: Catalytic activity and mechanistic insights

    KAUST Repository

    Arayachukiat, Sunatda

    2017-11-06

    An efficient and facile approach to the regioselective synthesis of N-tosyloxazolidinones from the corresponding N-tosylaziridines and CO2 was developed using dual catalytic systems involving an early transition metal coordination compound as a Lewis acid and a nucleophilic cocatalyst. Among the screened Lewis acids, halogen-free niobium pentaethoxide (Nb(OEt)5) displayed the best catalytic activity when used in the presence of tetrabutylammonium iodide (TBAI). Systematic DFT calculations, supported by catalytic experiments, demonstrate that CO2 insertion is the rate determining step for this process and it is highly dependent on the steric hindrance at the niobium center.

  20. Cycloaddition of CO 2 to challenging N -tosyl aziridines using a halogen-free niobium complex: Catalytic activity and mechanistic insights

    KAUST Repository

    Arayachukiat, Sunatda; Yingcharoen, Prapussorn; Vummaleti, Sai V. C.; Cavallo, Luigi; Poater, Albert; D’ Elia, Valerio

    2017-01-01

    An efficient and facile approach to the regioselective synthesis of N-tosyloxazolidinones from the corresponding N-tosylaziridines and CO2 was developed using dual catalytic systems involving an early transition metal coordination compound as a Lewis acid and a nucleophilic cocatalyst. Among the screened Lewis acids, halogen-free niobium pentaethoxide (Nb(OEt)5) displayed the best catalytic activity when used in the presence of tetrabutylammonium iodide (TBAI). Systematic DFT calculations, supported by catalytic experiments, demonstrate that CO2 insertion is the rate determining step for this process and it is highly dependent on the steric hindrance at the niobium center.

  1. Halogenated hydrocarbons - an environmental problem

    Energy Technology Data Exchange (ETDEWEB)

    Schoeler, H F; Thofern, E

    1984-01-01

    The paper provides a survey of the incidence of highly volatile halogenated hydrocarbons in ground, surface and drinking water as well as in the snows of Western Germany. Almost the entire production of chlorinated solvents is released into the environment. The absorption media are mostly soil, water and atmosphere. Whereas in the atmosphere elimination reactions take place, solvents that have passed the soil get into the ground water owing to their persistence and can cause considerable pollutions of drinking water. Moreover haloforms may occur in drinking water, which are produced during chlorine disinfection of pre-treated water.

  2. Quantitative structure-activity relationships for toxicity and genotoxicity of halogenated aliphatic compounds: wing spot test of Drosophila melanogaster.

    Science.gov (United States)

    Chroust, Karel; Pavlová, Martina; Prokop, Zbynek; Mendel, Jan; Bozková, Katerina; Kubát, Zdenek; Zajícková, Veronika; Damborský, Jiri

    2007-02-01

    Halogenated aliphatic compounds were evaluated for toxic and genotoxic effects in the somatic mutation and recombination test employing Drosophila melanogaster. The tested chemicals included chlorinated, brominated and iodinated; mono-, di- and tri-substituted; saturated and unsaturated alkanes: 1,2-dibromoethane, 1-bromo-2-chloroethane, 1-iodopropane, 2,3-dichloropropene, 3-bromo-1-propene, epibromohydrin, 2-iodobutane, 3-chloro-2-methylpropene, 1,2,3-trichloropropane, 1,2-dichloroethane, 1,2-dichlorobutane, 1-chloro-2-methylpropane, 1,3-dichloropropane, 1,2-dichloropropane, 2-chloroethymethylether, 1-bromo-2-methylpropane and 1-chloropentane. N-methyl-N-nitrosourea served as the positive and distilled water as the negative control. The set of chemicals for the toxicological testing was selected by the use of statistical experiment design. Group of unsaturated aliphatic hydrocarbons were generally more toxic than saturated analogues. The genotoxic effect was observed with 14 compounds in the wing spot test, while 3 substances did not show any genotoxicity by using the wing spot test at 50% lethal concentration. The highest number of wing spots was observed in genotoxicity assay with 1-bromo-2-chloroethane, 1,2-dichloroethane, 1,2-dibromoethane and 1-iodopropane. Nucleophilic superdelocalizability calculated by quantum mechanics appears to be a good parameter for prediction of both toxicity and genotoxicity effects of halogenated aliphatic compounds.

  3. Toward hydrogen detection at room temperature with printed ZnO nanoceramics films activated with halogen lighting

    Science.gov (United States)

    Nguyen, Van Son; Jubera, Véronique; Garcia, Alain; Debéda, Hélène

    2015-12-01

    Though semiconducting properties of ZnO have been extensively investigated under hazardous gases, research is still necessary for low-cost sensors working at room temperature. Study of printed ZnO nanopowders-based sensors has been undertaken for hydrogen detection. A ZnO paste made with commercial nanopowders is deposited onto interdigitated Pt electrodes and sintered at 400 °C. The ZnO layer structure and morphology are first examined by XRD, SEM, AFM and emission/excitation spectra prior to the study of the effect of UV-light on the electrical conduction of the semiconductor oxide. The response to hydrogen exposure is subsequently examined, showing that low UV-light provided by halogen lighting enhances the gas response and allows detection at room temperature with gas responses similar to those obtained in dark conditions at 150 °C. A gas response of 44% (relative change in current) under 300 ppm is obtained at room temperature. Moreover, it is demonstrated that very low UV-light power (15 μW/mm2) provided by the halogen lamp is sufficient to give sensitivities as high as those for much higher powers obtained with a UV LED (7.7 mW/mm2). These results are comparable to those obtained by others for 1D or 2D ZnO nanostructures working at room temperature or at temperatures up to 250 °C.

  4. Organic halogens in landfill leachates

    DEFF Research Database (Denmark)

    Grøn, C.; Christensen, J. B.; Jensen, Dorthe Lærke

    2000-01-01

    Using a group parameter, total organic halogens (TOX), high TOX concentrations were found in leachates and leachate contaminated groundwaters at two Danish mixed sanitary and hazardous waste sites. With commonly used screening procedures for organic contaminants, the individual halogenated organi...

  5. Halogen degassing during ascent and eruption of water-poor basaltic magma

    Science.gov (United States)

    Edmonds, M.; Gerlach, T.M.; Herd, Richard A.

    2009-01-01

    A study of volcanic gas composition and matrix glass volatile concentrations has allowed a model for halogen degassing to be formulated for K??lauea Volcano, Hawai'i. Volcanic gases emitted during 2004-2005 were characterised by a molar SO2/HCl of 10-64, with a mean of 33; and a molar HF/HCl of 0-5, with a mean of 1.0 (from approximately 2500 measurements). The HF/HCl ratio was more variable than the SO2/HCl ratio, and the two correlate weakly. Variations in ratio took place over rapid timescales (seconds). Matrix glasses of Pele's tears erupted in 2006 have a mean S, Cl and F content of 67, 85 and 173??ppm respectively, but are associated with a large range in S/F. A model is developed that describes the open system degassing of halogens from parental magmas, using the glass data from this study, previously published results and parameterisation of sulphur degassing from previous work. The results illustrate that halogen degassing takes place at pressures of < 1??MPa, equivalent to < ~ 35??m in the conduit. Fluid-melt partition coefficients for Cl and F are low (< 1.5); F only degasses appreciably at < 0.1??MPa above atmospheric pressure, virtually at the top of the magma column. This model reproduces the volcanic gas data and other observations of volcanic activity well and is consistent with other studies of halogen degassing from basaltic magmas. The model suggests that variation in volcanic gas halogen ratios is caused by exsolution and gas-melt separation at low pressures in the conduit. There is no evidence that either diffusive fractionation or near-vent chemical reactions involving halogens is important in the system, although these processes cannot be ruled out. The fluxes of HCl and HF from K??lauea during 2004-5 were ~ 25 and 12??t/d respectively. ?? 2008 Elsevier B.V.

  6. Reaction kinetics, reaction products and compressive strength of ternary activators activated slag designed by Taguchi method

    NARCIS (Netherlands)

    Yuan, B.; Yu, Q.L.; Brouwers, H.J.H.

    2015-01-01

    This study investigates the reaction kinetics, the reaction products and the compressive strength of slag activated by ternary activators, namely waterglass, sodium hydroxide and sodium carbonate. Nine mixtures are designed by the Taguchi method considering the factors of sodium carbonate content

  7. Impact of wastewater infrastructure upgrades on the urban water cycle: Reduction in halogenated reaction byproducts following conversion from chlorine gas to ultraviolet light disinfection

    Science.gov (United States)

    Barber, Larry B.; Hladik, Michelle; Vajda, Alan M.; Fitzgerald, Kevin C.; Douville, Chris

    2015-01-01

    The municipal wastewater treatment facility (WWTF) infrastructure of the United States is being upgraded to expand capacity and improve treatment, which provides opportunities to assess the impact of full-scale operational changes on water quality. Many WWTFs disinfect their effluent prior to discharge using chlorine gas, which reacts with natural and synthetic organic matter to form halogenated disinfection byproducts (HDBPs). Because HDBPs are ubiquitous in chlorine-disinfected drinking water and have adverse human health implications, their concentrations are regulated in potable water supplies. Less is known about the formation and occurrence of HDBPs in disinfected WWTF effluents that are discharged to surface waters and become part of the de facto wastewater reuse cycle. This study investigated HDBPs in the urban water cycle from the stream source of the chlorinated municipal tap water that comprises the WWTF inflow, to the final WWTF effluent disinfection process before discharge back to the stream. The impact of conversion from chlorine-gas to low-pressure ultraviolet light (UV) disinfection at a full-scale (68,000 m3 d−1 design flow) WWTF on HDBP concentrations in the final effluent was assessed, as was transport and attenuation in the receiving stream. Nutrients and trace elements (boron, copper, and uranium) were used to characterize the different urban source waters, and indicated that the pre-upgrade and post-upgrade water chemistry was similar and insensitive to the disinfection process. Chlorinated tap water during the pre-upgrade and post-upgrade samplings contained 11 (mean total concentration = 2.7 μg L−1; n=5) and 10 HDBPs (mean total concentration = 4.5 μg L−1), respectively. Under chlorine-gas disinfection conditions 13 HDBPs (mean total concentration = 1.4 μg L−1) were detected in the WWTF effluent, whereas under UV disinfection conditions, only one HDBP was detected. The chlorinated WWTF effluent had greater relative

  8. Effect of Ozonation and Biological Activated Carbon Treatment of Wastewater Effluents on Formation of N-nitrosamines and Halogenated Disinfection Byproducts.

    Science.gov (United States)

    Chuang, Yi-Hsueh; Mitch, William A

    2017-02-21

    Ozonation followed by biological activated carbon (O 3 /BAC) is being considered as a key component of reverse osmosis-free advanced treatment trains for potable wastewater reuse. Using a laboratory-scale O 3 /BAC system treating two nitrified wastewater effluents, this study characterized the effect of different ozone dosages (0-1.0 mg O 3 /mg dissolved organic carbon) and BAC empty bed contact times (EBCT; 15-60 min) on the formation after chlorination or chloramination of 35 regulated and unregulated halogenated disinfection byproducts (DBPs), 8 N-nitrosamines, and bromate. DBP concentrations were remarkably similar between the two wastewaters across O 3 /BAC conditions. Ozonation increased bromate, TCNM, and N-nitrosodimethylamine, but ozonation was less significant for other DBPs. DBP formation generally decreased significantly with BAC treatment at 15 min EBCT, but little further reduction was observed at higher EBCT where low dissolved oxygen concentrations may have limited biological activity. The O 3 /BAC-treated wastewaters met regulatory levels for trihalomethanes (THMs), haloacetic acids (HAAs), and bromate, although N-nitrosodimethylamine exceeded the California Notification Level in one case. Regulated THMs and HAAs dominated by mass. When DBP concentrations were weighted by measures of their toxic potencies, unregulated haloacetonitriles, haloacetaldehydes, and haloacetamides dominated. Assuming toxicity is additive, the calculated DBP-associated toxicity of the O 3 /BAC-treated chloraminated effluents were comparable or slightly higher than those calculated in a recent evaluation of Full Advanced Treatment trains incorporating reverse osmosis.

  9. Gas to liquid to solid transition in halogen hot atom chemistry. 6. Product formation routes and chemical selectivity of high energy iodine reactions with butyne isomers

    International Nuclear Information System (INIS)

    Garmestani, S.K.; Firouzbakht, M.L.; Rack, E.P.

    1979-01-01

    Reactions of recoil produced iodine-128 with isomers of butyne were studied in gaseous, high pressure, and condensed phase conditions, with rare gas additives and in the presence and absence of radical scavengers (I 2 and O 2 ). It was found that recoil iodine-128 reactions were initiated by thermal electronically excited I + species for both 1-butyne and 2-butyne systems. While the diverse and complex nature of the reactions cannot be explained by simple chemical parameters, comparisons among the alkyne systems demonstrate preferential attack of iodine at the triple bond resulting, mainly, in electronically excited intermediates. A comparison of the various product formation routes results in the characterization of general traits common to the alkynes. 6 figures, 4 tables

  10. Retention of Halogens in Waste Glass

    Energy Technology Data Exchange (ETDEWEB)

    Hrma, Pavel R.

    2010-05-01

    In spite of their potential roles as melting rate accelerators and foam breakers, halogens are generally viewed as troublesome components for glass processing. Of five halogens, F, Cl, Br, I, and At, all but At may occur in nuclear waste. A nuclear waste feed may contain up to 10 g of F, 4 g of Cl, and ≤100 mg of Br and I per kg of glass. The main concern is halogen volatility, producing hazardous fumes and particulates, and the radioactive iodine 129 isotope of 1.7x10^7-year half life. Because F and Cl are soluble in oxide glasses and tend to precipitate on cooling, they can be retained in the waste glass in the form of dissolved constituents or as dispersed crystalline inclusions. This report compiles known halogen-retention data in both high-level waste (HLW) and low-activity waste (LAW) glasses. Because of its radioactivity, the main focus is on I. Available data on F and Cl were compiled for comparison. Though Br is present in nuclear wastes, it is usually ignored; no data on Br retention were found.

  11. Some symmetrical halogen and methoxy exchange reactions in aromatic systems; Quelques reactions symetriques d'echanges d'halogenes et de groupes methoxyles dans les composes aromatiques; Simmetricheskie reaktsii s galoidnym i metoksidnym obmenom v aromaticheskikh sistemakh; Algunas reacciones simetricas de intercambio de halogenos y grupos metoxilo en compuestos aromaticos

    Energy Technology Data Exchange (ETDEWEB)

    Broadbank, R W.C.; Harhash, A H.E.; Kanchanalai, S [Leicester College of Technology and Commerce, Leicester (United Kingdom)

    1962-03-15

    Isotope tracers are essential in the study of the kinetics of symmetrical nucleophilic substitution reactions at an aromatic carbon atom. The iodine exchange between iodo-nitro-aromatic compounds and iodide ions in acetone or methanol solution has been studied both qualitatively and quantitatively by labelling the iodide ions with iodine-131. The reaction mixture is sampled at convenient time intervals, the two reactants separated by toluene-water extraction, and the progress of the reaction ascertained by beta-counting with a liquid Geiger counter. Measurements have been extended to 'carrier-free' concentrations of iodide ions. The preparation of certain nitro-methoxy-aromatic compounds, labelled with carbon-14 in the methoxy group, is described. Symmetrical methoxy exchange reactions of these compounds with methoxide ions, in methanol solution, have been studied. After separation of the reactants (from samples of the reaction mixture taken at convenient time intervals) by toluene-water extraction, the aromatic compounds are recovered and then specific activities determined by beta-scintillation counting with a plastic phosphor. In the discussion of the experimental data, special attention is paid to the effect of ionic strength on the specific rate of the reaction. Comparison is made with ionic strength effects observed in symmetrical biomolecular nucleophilic reactions at a saturated (aliphatic) carbon atom, and reference is made to certain other aromatic nucleophilic substitution reactions. (author) [French] Les indicateurs radioactifs sont indispensables pour l'etude cinetique des reactions symetriques de substitution nucleophilique dans l'atome carbone de aromatique. L'echange d'iode entre des composes iodo-nitro-aromatiques et des ions iodure dissous dans de l'acetone ou du methanol a ete etudie a la fois quantitativement et qualitativement par marquage des ions iodure a l'iode-131. Le melange reactif a ete echantillonne a des intervalles appropries, les

  12. Laboratory Investigations of Stratospheric Halogen Chemistry

    Science.gov (United States)

    Wine, Paul H.; Nicovich, J. Michael; Stickel, Robert E.; Hynes, Anthony J.

    1997-01-01

    A final report for the NASA-supported project on laboratory investigations of stratospheric halogen chemistry is presented. In recent years, this project has focused on three areas of research: (1) kinetic, mechanistic, and thermochemical studies of reactions which produce weakly bound chemical species of atmospheric interest; (2) development of flash photolysis schemes for studying radical-radical reactions of stratospheric interest; and (3) photochemistry studies of interest for understanding stratospheric chemistry. The first section of this paper contains a discussion of work which has not yet been published. All subsequent chapters contain reprints of published papers that acknowledge support from this grant.

  13. A box model study on photochemical interactions between VOCs and reactive halogen species in the marine boundary layer

    Directory of Open Access Journals (Sweden)

    K. Toyota

    2004-01-01

    Full Text Available A new chemical scheme is developed for the multiphase photochemical box model SEAMAC (size-SEgregated Aerosol model for Marine Air Chemistry to investigate photochemical interactions between volatile organic compounds (VOCs and reactive halogen species in the marine boundary layer (MBL. Based primarily on critically evaluated kinetic and photochemical rate parameters as well as a protocol for chemical mechanism development, the new scheme has achieved a near-explicit description of oxidative degradation of up to C3-hydrocarbons (CH4, C2H6, C3H8, C2H4, C3H6, and C2H2 initiated by reactions with OH radicals, Cl- and Br-atoms, and O3. Rate constants and product yields for reactions involving halogen species are taken from the literature where available, but the majority of them need to be estimated. In particular, addition reactions of halogen atoms with alkenes will result in forming halogenated organic intermediates, whose photochemical loss rates are carefully evaluated in the present work. Model calculations with the new chemical scheme reveal that the oceanic emissions of acetaldehyde (CH3CHO and alkenes (especially C3H6 are important factors for regulating reactive halogen chemistry in the MBL by promoting the conversion of Br atoms into HBr or more stable brominated intermediates in the organic form. The latter include brominated hydroperoxides, bromoacetaldehyde, and bromoacetone, which sequester bromine from a reactive inorganic pool. The total mixing ratio of brominated organic species thus produced is likely to reach 10-20% or more of that of inorganic gaseous bromine species over wide regions over the ocean. The reaction between Br atoms and C2H2 is shown to be unimportant for determining the degree of bromine activation in the remote MBL. These results imply that reactive halogen chemistry can mediate a link between the oceanic emissions of VOCs and the behaviors of compounds that are sensitive to halogen chemistry such as dimethyl

  14. Selective C-H Halogenation with a Highly Fluorinated Manganese Porphyrin.

    Science.gov (United States)

    Li, Gang; Dilger, Andrew K; Cheng, Peter T; Ewing, William R; Groves, John T

    2018-01-26

    The selective C-H functionalization of aliphatic molecules remains a challenge in organic synthesis. While radical chain halogenation reactions provide efficient access to many halogenated molecules, the use of typical protocols for the selective halogenation of electron-deficient and strained aliphatic molecules is rare. Herein, we report selective C-H chlorination and fluorination reactions promoted by an electron-deficient manganese pentafluorophenyl porphyrin catalyst, Mn(TPFPP)Cl. This catalyst displays superior properties for the aliphatic halogenation of recalcitrant, electron-deficient, and strained substrates with unique regio- and stereoselectivity. UV/Vis analysis during the course of the reaction indicated that an oxo-Mn V species is responsible for hydrogen-atom abstraction. The observed stereoselectivity results from steric interactions between the bulky porphyrin ligand and the intermediate substrate radical in the halogen rebound step. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Halogenated arsenenes as Dirac materials

    International Nuclear Information System (INIS)

    Tang, Wencheng; Sun, Minglei; Ren, Qingqiang; Wang, Sake; Yu, Jin

    2016-01-01

    Highlights: • We have revealed the presence of Dirac cone in fully-halogenated arsenene compounds. • All fully-halogenated arsenene except As_2I_2 would spontaneously form and stable in defending the thermal fluctuation in room temperature. - Abstract: Arsenene is the graphene-like arsenic nanosheet, which has been predicted very recently [S. Zhang, Z. Yan, Y. Li, Z. Chen, and H. Zeng, Angewandte Chemie, 127 (2015) 3155–3158]. Using first-principles calculations, we systematically investigate the structures and electronic properties of fully-halogenated arsenenes. Formation energy analysis reveals that all the fully-halogenated arsenenes except iodinated arsenene are energetically favorable and could be synthesized. We have revealed the presence of Dirac cone in fully-halogenated arsenene compounds. They may have great potential applications in next generation of high-performance devices.

  16. Li–N doped and codoped TiO{sub 2} thin films deposited by dip-coating: Characterization and photocatalytic activity under halogen lamp

    Energy Technology Data Exchange (ETDEWEB)

    Hamden, Z. [University of Sfax-Faculty of Science-Laboratory CI, Sfax (Tunisia); Boufi, S. [University of Sfax-Faculty of Science-LMSE, Sfax (Tunisia); Conceição, D.S.; Ferraria, A.M.; Botelho do Rego, A.M.; Ferreira, D.P.; Vieira Ferreira, L.F. [Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology, IST, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Bouattour, S., E-mail: soraa.boufi@yahoo.com [University of Sfax-Faculty of Science-Laboratory CI, Sfax (Tunisia)

    2014-09-30

    Graphical abstract: - Highlights: • Li and N have a synergetic effect on photocatalytic efficiency of codoped TiO{sub 2} under halogen lamp. • (Li, N) dopants decrease the recombination rate of photogenerated e–h. • (Li, N) dopants induce an increase of the energy gap, E{sub g}. • A decrease of crystallinity of the thin films seems to occur for high loadings of co-doping. - Abstract: Li-, N-doped and codoped TiO{sub 2} powders and thin films, deposited on glass substrate using dip-coating method and Ti(OBu){sub 4} as precursor, were prepared and their structural properties were investigated using grazing angle X-ray diffraction (GXRD), Raman spectroscopy, time resolved luminescence, X-ray photoelectron spectroscopy (XPS), ground state diffuse reflectance absorption and scanning electron microscopy (SEM). Unlike the powder samples, thin films with the same composition and calcination temperature exhibited lower crystallinity degree along with the prevalence of the anatase phase. Ground state diffuse reflectance absorption studies carried on the nanopowders have shown that both the Li and N dopants led to an increase of the band gap. XPS studies revealed differences in the binding energy of N in the presence and in the absence of Li, which was explained in terms of a modification in the chemical environment of N when Li is introduced. The photocatalytic activity of the ensuing film toward the degradation of aromatic amine pollutant revealed a huge enhancement upon doping with N or codoping with N and Li. This behavior is probably provide by a charge-transfer-complex mechanism in which neither the photocatalyst nor the organic compounds absorbs visible light by itself. The improvement in the photocatalytic properties occurred simultaneously with the increase of the lifetime of the charge carriers whenever N and Li were introduced at a level 2%.

  17. Quantitative structure activity relationships for the biotransformation and toxicity of halogenated benzene - derivatives : implications for enzyme catalysis and reaction mechanisms

    NARCIS (Netherlands)

    Cnubben, N.H.P.

    1996-01-01


    Organisms are frequently exposed to low molecular weight xenobiotic compounds. An advanced enzymatic machinery modifies these compounds into more hydrophilic metabolites which are subsequently excreted from the body. This process of biotransformation aims to detoxify bodyforeign

  18. Enhancing Activity for the Oxygen Evolution Reaction

    DEFF Research Database (Denmark)

    Frydendal, Rasmus; Busch, Michael; Halck, Niels Bendtsen

    2014-01-01

    Electrochemical production of hydrogen, facilitated in electrolyzers, holds great promise for energy storage and solar fuel production. A bottleneck in the process is the catalysis of the oxygen evolution reaction, involving the transfer of four electrons. The challenge is that the binding energies...... of all reaction intermediates cannot be optimized individually. However, experimental investigations have shown that drastic improvements can be realized for manganese and cobalt-based oxides if gold is added to the surface or used as substrate. We propose an explanation for these enhancements based...... that the oxygen evolution reaction overpotential decreases by 100–300 mV for manganese oxides and 100 mV for cobalt oxides....

  19. The Halogenated Metabolism of Brown Algae (Phaeophyta, Its Biological Importance and Its Environmental Significance

    Directory of Open Access Journals (Sweden)

    Stéphane La Barre

    2010-03-01

    Full Text Available Brown algae represent a major component of littoral and sublittoral zones in temperate and subtropical ecosystems. An essential adaptive feature of this independent eukaryotic lineage is the ability to couple oxidative reactions resulting from exposure to sunlight and air with the halogenations of various substrates, thereby addressing various biotic and abiotic stresses i.e., defense against predators, tissue repair, holdfast adhesion, and protection against reactive species generated by oxidative processes. Whereas marine organisms mainly make use of bromine to increase the biological activity of secondary metabolites, some orders of brown algae such as Laminariales have also developed a striking capability to accumulate and to use iodine in physiological adaptations to stress. We review selected aspects of the halogenated metabolism of macrophytic brown algae in the light of the most recent results, which point toward novel functions for iodide accumulation in kelps and the importance of bromination in cell wall modifications and adhesion properties of brown algal propagules. The importance of halogen speciation processes ranges from microbiology to biogeochemistry, through enzymology, cellular biology and ecotoxicology.

  20. Insights into the catalytic activity of [Pd(NHC)(cin)Cl] (NHC = IPr, IPrCl, IPrBr) complexes in the Suzuki-Miyaura reaction

    KAUST Repository

    Nolan, Steven Patrick

    2017-09-06

    The influence of C4,5-halogenation on palladium N-heterocyclic carbene complexes and their activity in the Suzuki-Miyaura reaction have been investigated. Two [Pd(NHC)(cin)Cl] complexes bearing IPrCl and IPrBr ligands were synthesized. After determining electronic and steric properties of these ligands, their properties were compared to those of [Pd(IPr)(cin)Cl]. The three palladium complexes were studied using DFT calculations to delineate their behaviour in the activation step leading to the putative 12-electron active catalyst. Experimentally, their catalytic activity in the Suzuki-Miyaura reaction involving a wide range of coupling partners (30 entries) at low catalyst loading was studied.

  1. Determination of halogens by flame emission of metal halogenides

    International Nuclear Information System (INIS)

    Henrion, G.; Marquardt, D.; Stoecker, B.

    1979-01-01

    The A-B systems InF, InCl, InBr, and InI have been excited by laminar H 2 -N 2 flames in order to dermine individual halogens or their mixtures qualitatively or quantitatively. In optimizing the fuel gas composition two different behavior patterns have been found for band intensities, which are correlated with binding energies of InX (X = halogen). The low temperature of the flame leads to complicated matrix effects which first of all result from effects on excitation and from competitive reactions. In general, cations cause a decreased intensity. Therefore, salts have to be converted into hydrohalide acids by ion exchange. Qualitative determinations of individual halogens are possible at a 500 to 50,000fold excess of the others, whereas quantitative determinations can be performed at a 100 to 5,000fold excess in 10 -4 molar solutions with errors of 2 to 10 per cent. (author)

  2. "JCE" Classroom Activity #111: Redox Reactions in Three Representations

    Science.gov (United States)

    Nieves, Edgardo L. Ortiz; Barreto, Reizelie; Medina, Zuleika

    2012-01-01

    This activity introduces students to the concept of reduction-oxidation (redox) reactions. To help students obtain a thorough understanding of redox reactions, the concept is explored at three levels: macroscopic, submicroscopic, and symbolic. In this activity, students perform hands-on investigations of the three levels as they work at different…

  3. Halogens determination in vegetable NBS standard reference materials

    International Nuclear Information System (INIS)

    Stella, R.; Genova, N.; Di Casa, M.

    1977-01-01

    Levels of all four halogens in Orchard Leaves, Pine Needles and Tomato Leaves NBS reference standards were determined. For fluorine a spiking isotope dilution method was used followed by HF absorption on glass beads. Instrumental nuclear activation analysis was adopted for chlorine and bromine determination. Radiochemical separation by a distillation procedure was necessary for iodine nuclear activation analysis after irradiation. Activation parameters of Cl, Br and I are reported. Results of five determinations for each halogen in Orchard Leaves, Pine Needles and Tomato Leaves NBS Standard Materials and Standard deviations of the mean are reported. (T.I.)

  4. Manganese Catalyzed C–H Halogenation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei; Groves, John T.

    2015-06-16

    The remarkable aliphatic C–H hydroxylations catalyzed by the heme-containing enzyme, cytochrome P450, have attracted sustained attention for more than four decades. The effectiveness of P450 enzymes as highly selective biocatalysts for a wide range of oxygenation reactions of complex substrates has driven chemists to develop synthetic metalloporphyrin model compounds that mimic P450 reactivity. Among various known metalloporphyrins, manganese derivatives have received considerable attention since they have been shown to be versatile and powerful mediators for alkane hydroxylation and olefin epoxidation. Mechanistic studies have shown that the key intermediates of the manganese porphyrin-catalyzed oxygenation reactions include oxo- and dioxomanganese(V) species that transfer an oxygen atom to the substrate through a hydrogen abstraction/oxygen recombination pathway known as the oxygen rebound mechanism. Application of manganese porphyrins has been largely restricted to catalysis of oxygenation reactions until recently, however, due to ultrafast oxygen transfer rates. In this Account, we discuss recently developed carbon–halogen bond formation, including fluorination reactions catalyzed by manganese porphyrins and related salen species. We found that biphasic sodium hypochlorite/manganese porphyrin systems can efficiently and selectively convert even unactivated aliphatic C–H bonds to C–Cl bonds. An understanding of this novel reactivity derived from results obtained for the oxidation of the mechanistically diagnostic substrate and radical clock, norcarane. Significantly, the oxygen rebound rate in Mn-mediated hydroxylation is highly correlated with the nature of the trans-axial ligands bound to the manganese center (L–MnV$=$O). Based on the ability of fluoride ion to decelerate the oxygen rebound step, we envisaged that a relatively long-lived substrate radical could be trapped by a Mn–F fluorine source, effecting carbon–fluorine bond

  5. Activation barriers for series of exothermic homologous reactions. VI. Reactions of lanthanide and transition metal atoms.

    Science.gov (United States)

    Blue, Alan S.; Fontijn, Arthur

    2001-09-01

    Semiempirical configuration interaction (SECI) theory to predict activation barriers, E, as given by k(T)=ATn exp(-E(RT), has been applied to homologous series of lanthanide (LN) and transition metal (TM) atom oxidation reactions. This was achieved by considering as homologous series reactions of elements differing only by the number of electrons in one subshell. Comparison between SECI and experimental results leads to an average deviation for the LN+N2O reactions of 0.66 kJ mol-1, and up to 5.5 kJ mol-1 for other series. Thirty-one activation barriers are reported.

  6. E. S. R. studies of halogenated pyrimidines in. gamma. -irradiated alkaline glasses. [Halogenated uracil bases; bromouridine; bromodeoxyuridine

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, L D; Zimbrick, J D [Kansas Univ., Lawrence (USA)

    1975-11-01

    The reactions of mobile electrons (e/sup -//sub m/) and oxygen radical anions (O./sup -/) with halogenated bases and nucleosides have been studied in ..gamma..-irradiated alkaline glasses by e.s.r. and specific halogen-ion electrode techniques. It was shown that electrons react with halogenated uracil bases (XUr where X = Cl, Br, I but not F) by dissociative electron attachment to form uracil-5-yl radicals (U.) and halogen anions. The relative rates of reaction of e/sup -//sub m/ with XUr decreased in the sequence BrUr > ClUr > FUr > IUr. Thermal annealing studies carried out on U. in H/sub 2/O and D/sub 2/O matrices supported the hypothesis that U. in H/sub 2/O hydrates across the 5-6 double bond in the temperature region 135/sup 0/ to 155/sup 0/ K, and deuterates to a much smaller extent in D/sub 2/O at temperatures above 155/sup 0/ K. Studies on bromouridine and bromodeoxyuridine suggested that e/sup -/sub(m) reacts with the base moieties to form U. type radicals which abstract H. from the sugar moieties of adjacent nucleosides.

  7. Risk assessment for halogenated solvents

    International Nuclear Information System (INIS)

    Travis, C.C.

    1988-01-01

    A recent development in the cancer risk area is the advent of biologically based pharmacokinetic and pharmacodynamic models. These models allow for the incorporation of biological and mechanistic data into the risk assessment process. These advances will not only improve the risk assessment process for halogenated solvents but will stimulate and guide basic research in the biological area

  8. Halogen bonding in solution: thermodynamics and applications.

    Science.gov (United States)

    Beale, Thomas M; Chudzinski, Michael G; Sarwar, Mohammed G; Taylor, Mark S

    2013-02-21

    Halogen bonds are noncovalent interactions in which covalently bound halogens act as electrophilic species. The utility of halogen bonding for controlling self-assembly in the solid state is evident from a broad spectrum of applications in crystal engineering and materials science. Until recently, it has been less clear whether, and to what extent, halogen bonding could be employed to influence conformation, binding or reactivity in the solution phase. This tutorial review summarizes and interprets solution-phase thermodynamic data for halogen bonding interactions obtained over the past six decades and highlights emerging applications in molecular recognition, medicinal chemistry and catalysis.

  9. Surface-Activated Coupling Reactions Confined on a Surface.

    Science.gov (United States)

    Dong, Lei; Liu, Pei Nian; Lin, Nian

    2015-10-20

    Chemical reactions may take place in a pure phase of gas or liquid or at the interface of two phases (gas-solid or liquid-solid). Recently, the emerging field of "surface-confined coupling reactions" has attracted intensive attention. In this process, reactants, intermediates, and products of a coupling reaction are adsorbed on a solid-vacuum or a solid-liquid interface. The solid surface restricts all reaction steps on the interface, in other words, the reaction takes place within a lower-dimensional, for example, two-dimensional, space. Surface atoms that are fixed in the surface and adatoms that move on the surface often activate the surface-confined coupling reactions. The synergy of surface morphology and activity allow some reactions that are inefficient or prohibited in the gas or liquid phase to proceed efficiently when the reactions are confined on a surface. Over the past decade, dozens of well-known "textbook" coupling reactions have been shown to proceed as surface-confined coupling reactions. In most cases, the surface-confined coupling reactions were discovered by trial and error, and the reaction pathways are largely unknown. It is thus highly desirable to unravel the mechanisms, mechanisms of surface activation in particular, of the surface-confined coupling reactions. Because the reactions take place on surfaces, advanced surface science techniques can be applied to study the surface-confined coupling reactions. Among them, scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS) are the two most extensively used experimental tools. The former resolves submolecular structures of individual reactants, intermediates, and products in real space, while the latter monitors the chemical states during the reactions in real time. Combination of the two methods provides unprecedented spatial and temporal information on the reaction pathways. The experimental findings are complemented by theoretical modeling. In particular, density

  10. Analysis by nuclear reactions and activations. A current bibliography

    International Nuclear Information System (INIS)

    Bujdoso, E.

    2001-01-01

    A current bibliography based on INIS Atomindex with 78 references on Analysis by nuclear reactions and activations has been prepared for year 1998. References are arranged by first authors' name. (N.T.)

  11. Stereo and regioselectivity in ''Activated'' tritium reactions

    International Nuclear Information System (INIS)

    Ehrenkaufer, R.L.E.; Hembree, W.C.; Wolf, A.P.

    1988-01-01

    To investigate the stereo and positional selectivity of the microwave discharge activation (MDA) method, the tritium labeling of several amino acids was undertaken. The labeling of L-valine and the diastereomeric pair L-isoleucine and L-alloisoleucine showed less than statistical labeling at the α-amino C-H position mostly with retention of configuration. Labeling predominated at the single β C-H tertiary (methyne) position. The labeling of L-valine and L-proline with and without positive charge on the α-amino group resulted in large increases in specific activity (greater than 10-fold) when positive charge was removed by labeling them as their sodium carboxylate salts. Tritium NMR of L-proline labeled both as its zwitterion and sodium salt showed also large differences in the tritium distribution within the molecule. The distribution preferences in each of the charge states are suggestive of labeling by an electrophilic like tritium species(s). 16 refs., 5 tabs

  12. Direct activation of allylic alcohols in palladium catalyzed coupling reactions

    NARCIS (Netherlands)

    Gümrükçü, Y.

    2014-01-01

    The direct use of allylic alcohols in substitution reactions without pre-activation of the hydroxyl-group into a better leaving group or the use of additional stoichiometric in situ activators remains challenging due to the poor leaving group ability of the hydroxyl-group. Hence, it is important to

  13. Activation barriers for series of exothermic homologous reactions. V. Boron group diatomic species reactions

    Science.gov (United States)

    Blue, Alan S.; Belyung, David P.; Fontijn, Arthur

    1997-09-01

    Semiempirical configuration interaction (SECI) theory is used to predict activation barriers E, as defined by k(T)=ATn exp(-E/RT). Previously SECI has been applied to homologous series of oxidation reactions of s1, s2, and s2p1 metal atoms. Here it is extended to oxidation reactions of diatomic molecules containing one s2p1 atom. E values are calculated for the reactions of BH, BF, BCl, AlF, AlCl, AlBr, GaF, GaI, InCl, InBr, InI, TlF, TlCl, TlBr, and TlI with O2, CO2, SO2, or N2O. These values correlate with the sums of the ionization potentials and Σ-Π promotion energies of the former minus the electron affinities of the latter. In the earlier work n was chosen somewhat arbitrarily, which affected the absolute values of E. Here it is shown that examination of available experimental and theoretical results allows determination of the best values of n. Using this approach yields n=1.9 for the present series. For the seven reactions which have been studied experimentally, the average deviation of the SECI activation barrier prediction from experiment is 4.0 kJ mol-1. Energy barriers are calculated for another 52 reactions.

  14. Highly Stable and Active Catalyst for Sabatier Reactions

    Science.gov (United States)

    Hu, Jianli; Brooks, Kriston P.

    2012-01-01

    Highly active Ru/TiO2 catalysts for Sabatier reaction have been developed. The catalysts have shown to be stable under repeated shutting down/startup conditions. When the Ru/TiO2 catalyst is coated on the engineered substrate Fe-CrAlY felt, activity enhancement is more than doubled when compared with an identically prepared engineered catalyst made from commercial Degussa catalyst. Also, bimetallic Ru-Rh/TiO2 catalysts show high activity at high throughput.

  15. Rearrangements in the halogenation of tetraalkylethylenes with N-halosuccinimides and tert-butyl hypochlorite

    NARCIS (Netherlands)

    Meijer, E.W.; Kellogg, R.M.; Wynberg, H.

    1982-01-01

    The reaction of N-halosuccinimides and Me3COCl with tetraalkylethylenes involves halo-cation addn. to the double bond in a fast reaction, followed by abstraction of an allylic proton, resulting in a double bond shift. Homoallylic halogenation occurs in tetraalkylethylenes which can not undergo a

  16. The unique role of halogen substituents in the design of modern agrochemicals.

    Science.gov (United States)

    Jeschke, Peter

    2010-01-01

    The past 30 years have witnessed a period of significant expansion in the use of halogenated compounds in the field of agrochemical research and development. The introduction of halogens into active ingredients has become an important concept in the quest for a modern agrochemical with optimal efficacy, environmental safety, user friendliness and economic viability. Outstanding progress has been made, especially in synthetic methods for particular halogen-substituted key intermediates that were previously prohibitively expensive. Interestingly, there has been a rise in the number of commercial products containing 'mixed' halogens, e.g. one or more fluorine, chlorine, bromine or iodine atoms in addition to one or more further halogen atoms. Extrapolation of the current trend indicates that a definite growth is to be expected in fluorine-substituted agrochemicals throughout the twenty-first century. A number of these recently developed agrochemical candidates containing halogen substituents represent novel classes of chemical compounds with new modes of action. However, the complex structure-activity relationships associated with biologically active molecules mean that the introduction of halogens can lead to either an increase or a decrease in the efficacy of a compound, depending on its changed mode of action, physicochemical properties, target interaction or metabolic susceptibility and transformation. In spite of modern design concepts, it is still difficult to predict the sites in a molecule at which halogen substitution will result in optimal desired effects. This review describes comprehensively the successful utilisation of halogens and their unique role in the design of modern agrochemicals, exemplified by various commercial products from Bayer CropScience coming from different agrochemical areas.

  17. METHOD FOR PRODUCING ISOTOPIC METHANES AND PARTIALLY HALOGENATED DERIVATIVES THEROF

    Science.gov (United States)

    Frazer, J.W.

    1959-08-18

    A method is given for producing isotopic methanes and/ or partially halogenated derivatives. Lithium hydride, deuteride, or tritide is reacted with a halogenated methane or with a halogenated methane in combination with free halogen. The process is conveniently carried out by passing a halogenated methane preferably at low pressures or in an admixture with an inert gas through a fixed bed of finely divided lithium hydride heated initially to temperatures of 100 to 200 deg C depending upon the halogenated methane used.

  18. Nucleophilic ring opening reactions of aziridines.

    Science.gov (United States)

    Akhtar, Rabia; Naqvi, Syed Ali Raza; Zahoor, Ameer Fawad; Saleem, Sameera

    2018-05-04

    Aziridine ring opening reactions have gained tremendous importance in the synthesis of nitrogen containing biologically active molecules. During recent years, a great effort has been put forward by scientists toward unique bond construction methodologies via ring opening of aziridines. In this regard, a wide range of chiral metal- and organo-catalyzed desymmetrization reactions of aziridines have been reported with carbon, sulfur, oxygen, nitrogen, halogen, and other nucleophiles. In this review, an outline of methodologies adopted by a number of scientists during 2013-2017 for aziridine ring opening reactions as well as their synthetic applications is described.

  19. Development of halogen-free cables for nuclear power plants

    International Nuclear Information System (INIS)

    Yamamoto, Mitsuo; Ito, Kazumi; Yaji, Takeo; Yoshida, Shin; Sakurai, Takako; Matsushita, Shigetoshi.

    1990-01-01

    On the occasion where serious fire accidents were experienced in the past, the need for making flame-retardant wire and cable incombustible took place and has since been generalizing. Various sorts of flame-retardant cables have already been developed and been actually used. From the viewpoint of avoiding the interference with the evacuation and fire-fighting activity in case of fire or the secondary accidents such as corrosion of the distributing panel, etc., the demand for non-halogen flame-retardant cable has rapidly been increasing in recent years in some fields of general industries, because this specific cable would generate the least amount of toxic smoke or corrosive gas even when it should burn. Similar demand has been increasing also for the cable used for nuclear power plants. In this field, earnest desire has been made for the development of non-halogen flame-retardant cable having specific environmental resistance specially required at nuclear power plants in addition to the properties and capacities required in general industries. The authors have continued examinations on the anti-environmental properties of the materials for cable such as long heat resistance, radiation resistance, steam resistance and succeeded in completing various sorts of non-halogen flame-retardant cable for nuclear power plants. In this report, we will introduce various features of the cable we have developed this time as well as the long-term reliability of non-halogen flame-retardant materials. (author)

  20. Organic halogen compounds in the environment

    International Nuclear Information System (INIS)

    1979-07-01

    There are 20 research reports on selected problems concerning the analysis, the occurence, and the behaviour of a wide spectrum of organic halogen compounds. The work was carried out in the framework of the project 'Organic Halogen Compounds in the Environment', financed by the BMFT, between 1975 and 1978. (orig.) [de

  1. Self-activated, self-limiting reactions on Si surfaces

    DEFF Research Database (Denmark)

    Morgen, Per; Hvam, Jeanette; Bahari, Ali

    The direct thermally activated reactions of oxygen and ammonia with Si surfaces in furnaces have been used for a very long time in the semiconductor industry for the growth of thick oxides and nitride layers respectively. The oxidation mechanism was described in the Deal-Grove model as a diffusion...... mechanism for the direct growth of ultrathin films (0-3 nm) of oxides and nitrides under ultrahigh vacuum conditions. Neutral oxygen and a microwave excited nitrogen plasma interact directly with Si surfaces kept at different temperatures during the reaction. The gas pressures are around 10-6 Torr...... energy of an oxide system, which happened for an ordered structure, at a thickness of 0.7-0.8 nm. Thus this thin oxide structure has definite crystalline features. We have closely monitored the reaction kinetics with normal x-ray induced photoelectron spectroscopies, and also the structure, composition...

  2. Influence of Halogen Substituents on the Catalytic Oxidation of 2,4,6-Halogenated Phenols by Fe(III-Tetrakis(p-hydroxyphenyl porphyrins and Potassium Monopersulfate

    Directory of Open Access Journals (Sweden)

    Seiya Nagao

    2011-12-01

    Full Text Available The influence of halogen substituents on the catalytic oxidation of 2,4,6-trihalogenated phenols (TrXPs by iron(III-porphyrin/KHSO5 catalytic systems was investigated. Iron(III-5,10,15,20-tetrakis(p-hydroxyphenylporphyrin (FeTHP and its supported variants were employed, where the supported catalysts were synthesized by introducing FeTHP into hydroquinone-derived humic acids via formaldehyde poly-condensation. F (TrFP, Cl (TrCP, Br (TrBP and I (TrIP were examined as halogen substituents for TrXPs. Although the supported catalysts significantly enhanced the degradation and dehalogenation of TrFP and TrCP, the oxidation of TrBP and TrIP was not enhanced, compared to the FeTHP catalytic system. These results indicate that the degree of oxidation of TrXPs is strongly dependent on the types of halogen substituent. The order of dehalogenation levels for halogen substituents in TrXPs was F > Cl > Br > I, consistent with their order of electronegativity. The electronegativity of a halogen substituent affects the nucleophilicity of the carbon to which it is attached. The levels of oxidation products in the reaction mixtures were analyzed by GC/MS after extraction with n-hexane. The most abundant dimer product from TrFP via 2,6-difluoroquinone is consistent with a scenario where TrXP, with a more electronegative halogen substituent, is readily oxidized, while less electronegative halogen substituents are oxidized less readily by iron(III-porphyrin/KHSO5 catalytic systems.

  3. Audience reaction movie trailers and the Paranormal Activity franchise

    OpenAIRE

    Alexander Swanson

    2015-01-01

    This article addresses the concept and growing practice of audience reaction movie trailers, specifically for films in the horror genre. Popularized by the Paranormal Activity series of films, these trailers primarily utilize green night-vision video footage of a movie theater audience reacting to the film being advertised, yet also consist of webcam recordings of screaming fans, documentary-style B-roll footage of audiences filing into preview screenings with high levels of anticipation, and...

  4. Mechanistic studies of copper(I)-catalyzed 1,3-halogen migration.

    Science.gov (United States)

    Van Hoveln, Ryan; Hudson, Brandi M; Wedler, Henry B; Bates, Desiree M; Le Gros, Gabriel; Tantillo, Dean J; Schomaker, Jennifer M

    2015-04-29

    An ongoing challenge in modern catalysis is to identify and understand new modes of reactivity promoted by earth-abundant and inexpensive first-row transition metals. Herein, we report a mechanistic study of an unusual copper(I)-catalyzed 1,3-migration of 2-bromostyrenes that reincorporates the bromine activating group into the final product with concomitant borylation of the aryl halide bond. A combination of experimental and computational studies indicated this reaction does not involve any oxidation state changes at copper; rather, migration occurs through a series of formal sigmatropic shifts. Insight provided from these studies will be used to expand the utility of aryl copper species in synthesis and develop new ligands for enantioselective copper-catalyzed halogenation.

  5. Halogen bond: a long overlooked interaction.

    Science.gov (United States)

    Cavallo, Gabriella; Metrangolo, Pierangelo; Pilati, Tullio; Resnati, Giuseppe; Terraneo, Giancarlo

    2015-01-01

    Because of their high electronegativity, halogen atoms are typically considered, in most of their derivatives, as sites of high electron density and it is commonly accepted that they can form attractive interactions by functioning as the electron donor site (nucleophilic site). This is the case when they work as hydrogen bond acceptor sites. However, the electron density in covalently bound halogens is anisotropically distributed. There is a region of higher electron density, accounting for the ability of halogens to function as electron donor sites in attractive interactions, and a region of lower electron density where the electrostatic potential is frequently positive (mainly in the heavier halogens). This latter region is responsible for the ability of halogen atoms to function as the electron-acceptor site (electrophilic site) in attractive interactions formed with a variety of lone pair-possessing atoms, anions, and π-systems. This ability is quite general and is shown by a wide diversity of halogenated compounds (e.g., organohalogen derivatives and dihalogens). According to the definition proposed by the International Union of Pure and Applied Chemistry, any attractive interactions wherein the halogen atom is the electrophile is named halogen bond (XB). In this chapter, it is discussed how the practice and the concept of XB developed and a brief history of the interaction is presented. Papers (either from the primary or secondary literature) which have reported major experimental findings in the field or which have given important theoretical contributions for the development of the concept are recollected in order to trace how a unifying and comprehensive categorization emerged encompassing all interactions wherein halogen atoms function as the electrophilic site.

  6. Formation of trihalomethanes from the halogenation of 1,3-dihydroxybenzenes in dilute aqueous solution: synthesis of 2-13C-resorcinol and its reaction with chlorine and bromine

    International Nuclear Information System (INIS)

    Boyce, S.D.; Barefoot, A.C.; Britton, D.R.; Hornig, J.F.

    1983-01-01

    As part of this study, the reaction of bromine with resorcinol and structurally related substrates to produce bromoform was examined. Preliminary results suggest that the chlorination and bromination of dihydroxybenzenes proceeded by similar reaction pathways. This chapter describes the successful synthesis of 2- 13 C-1, 3-dihydroxybenzene. Treatment of the isotopically labelled substrate with chlorine and bromine in dilute aqueous solution has elucidated many important details of the sequence of reactions leading to the production of chloroform (CHCl 3 ) and bromoform (CHBr 3 ). The 13 C-enriched products and intermediates formed during these reactions were identified by gas chromatography/mass spectrometry

  7. Weak Activity of Haloalkane Dehalogenase LinB with 1,2,3-Trichloropropane Revealed by X-Ray Crystallography and Microcalorimetry▿

    OpenAIRE

    Monincová, Marta; Prokop, Zbyněk; Vévodová, Jitka; Nagata, Yuji; Damborský, Jiří

    2007-01-01

    1,2,3-Trichloropropane (TCP) is a highly toxic and recalcitrant compound. Haloalkane dehalogenases are bacterial enzymes that catalyze the cleavage of a carbon-halogen bond in a wide range of organic halogenated compounds. Haloalkane dehalogenase LinB from Sphingobium japonicum UT26 has, for a long time, been considered inactive with TCP, since the reaction cannot be easily detected by conventional analytical methods. Here we demonstrate detection of the weak activity (kcat = 0.005 s−1) of Li...

  8. Organic halogens in spruce forest throughfall

    DEFF Research Database (Denmark)

    Öberg, G.; Johansen, C.; Grøn, C.

    1998-01-01

    . No relationship between the position of the collectors and the forest edge or dominating wind-direction was found, suggesting that dry deposition was not a major source. The concentration of organic halogens was related to that of organic carbon and decreased from the tree-trunk and outwards. In addition......, the concentrations were higher during the growing season than during the dormant season. This indicates that the major part of the organic carbon and organic halogens in spruce forest throughfall originates from canopy leachates or other internal sources. (C) 1998 Elsevier Science Ltd.......Deposition of dissolved organic halogens by throughfall was determined in a small spruce forest site in Denmark (56 degrees 28'N, 8 degrees 24'E). The mean annual deposition of dissolved organic halogens was 377 g ha(-1)yr(-1), and larger than the general deposition by precipitation...

  9. The halogen bond: Nature and applications

    Science.gov (United States)

    Costa, Paulo J.

    2017-10-01

    The halogen bond, corresponding to an attractive interaction between an electrophilic region in a halogen (X) and a nucleophile (B) yielding a R-X⋯B contact, found applications in many fields such as supramolecular chemistry, crystal engineering, medicinal chemistry, and chemical biology. Their large range of applications also led to an increased interest in their study using computational methods aiming not only at understanding the phenomena at a fundamental level, but also to help in the interpretation of results and guide the experimental work. Herein, a succinct overview of the recent theoretical and experimental developments is given starting by discussing the nature of the halogen bond and the latest theoretical insights on this topic. Then, the effects of the surrounding environment on halogen bonds are presented followed by a presentation of the available method benchmarks. Finally, recent experimental applications where the contribution of computational chemistry was fundamental are discussed, thus highlighting the synergy between the lab and modeling techniques.

  10. Catalytic activity of catalysts for steam reforming reaction. Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, Hirofumi; Inagaki, Yoshiyuki [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    2003-05-01

    Japan Atomic Energy Research Institute has been developing a hydrogen production system by means of steam reforming of methane (chemical reation: CH{sub 4} + H{sub 2}O = CO + 3H{sub 2}) coupling with High Temperature Engineering Test Reactor (HTTR) to demonstrate effectiveness of high-temperature nuclear heat utilization. Prior to construction of HTTR hydrogen production system, a mock-up test facility with a full-scale reaction tube was constructed to investigate transient behavior of the hydrogen production system an establish system controllability. In order to predict transient behavior and hydrogen productivity of the hydrogen production system, it is important to estimate the reaction characteristics under the same temperature and pressure conditions as those of HTTR hydrogen production system. For the purpose of investigate an apparent activation energy of catalysts, catalytic activity test using small apparatus was carried out under the condition of methane flow rate from 1.18 x 10{sup -3} to 3.19 x 10{sup -3} mol/s, temperature from 500 to 900degC, pressure from 1.1 to 4.1MPa, and mol ratio of steam to methane from 2.5 to 3.5. It was confirmed that apparent activation energies of two kinds of Ni catalysts which are to be used in the mock-up test were 51.7 and 57.4kJ/mol, respectively, and reaction rate constants were propositional to the value from P{sup -0.15} to P{sup -0.33}. (author)

  11. Impact of enhanced ozone deposition and halogen chemistry on model performance

    Science.gov (United States)

    In this study, an enhanced ozone deposition scheme due to the interaction of iodide in sea-water and atmospheric ozone and the detailed chemical reactions of organic and inorganic halogen species are incorporated into the hemispheric Community Multiscale Air Quality model. Prelim...

  12. Phosphorylated lignin as a halogen-free flame retardant additive for epoxy composites

    Science.gov (United States)

    Gamini P. Mendis; Sydney G. Weiss; Matthew Korey; Charles R. Boardman; Mark Dietenberger; Jeffrey P. Youngblood; John A. Howarter

    2016-01-01

    Sustainable, non-halogenated flame retardants are desired for a variety of industry applications. Lignin, as an industrially processed wood derivative, has been examined as a potential sustainable flame retardant additive to polymer systems. Here, the lignin is phosphorylated using a pyridine-catalysed esterification reaction with diphenyl phosphoryl chloride to...

  13. Actinic-radiation curable polymers prepared from a reactive polymer, halogenated cyclic anhydride and glycidyl ester

    International Nuclear Information System (INIS)

    Pastor, S.D.

    1979-01-01

    A novel class of photosensitive polymers are disclosed which are prepared by the reaction, preferably in the presence of a catalyst, of a reactive polymer, a halogenated cyclic anhydride and glycidyl ester of an alpha, beta-unsaturated carboxylic acid. These polymers are capable of undergoing vinyl-type polymerization when exposed to actinic radiation

  14. Chalcogenide metal centers for oxygen reduction reaction: Activity and tolerance

    International Nuclear Information System (INIS)

    Feng Yongjun; Gago, Aldo; Timperman, Laure; Alonso-Vante, Nicolas

    2011-01-01

    This mini-review summarizes materials design methods, oxygen reduction kinetics, tolerance to small organic molecules and fuel cell performance of chalcogenide metal catalysts, particularly, ruthenium (Ru x Se y ) and non-precious transition metals (M x X y : M = Co, Fe and Ni; X = Se and S). These non-platinum catalysts are potential alternatives to Pt-based catalysts because of their comparable catalytic activity (Ru x Se y ), low cost, high abundance and, in particular, a high tolerance to small organic molecules. Developing trends of synthesis methods, mechanism of oxygen reduction reaction and applications in direct alcohol fuel cells as well as the substrate effect are highlighted.

  15. FIELD SCREENING FOR HALOGENATED VOLATILE ORGANIC COMPOUNDS

    Energy Technology Data Exchange (ETDEWEB)

    John F. Schabron; Joseph F. Rovani Jr.; Theresa M. Bomstad

    2002-06-01

    Western Research Institute (WRI) initiated exploratory work towards the development of new field screening methodology and a test kit to measure halogenated volatile organic compounds (VOCs) in the field. Heated diode and corona discharge sensors are commonly used to detect leaks of refrigerants from air conditioners, freezers, and refrigerators. They are both selective to the presence of carbon-halogen bonds. Commercially available heated diode and corona discharge leak detectors were procured and evaluated for halogenated VOC response. The units were modified to provide a digital readout of signal related to VOC concentration. Sensor response was evaluated with carbon tetrachloride and tetrachloroethylene (perchloroethylene, PCE), which represent halogenated VOCs with and without double bonds. The response characteristics were determined for the VOCs directly in headspace in Tedlar bag containers. Quantitation limits in air were estimated. Potential interferences from volatile hydrocarbons, such as toluene and heptane, were evaluated. The effect of humidity was studied also. The performance of the new devices was evaluated in the laboratory by spiking soil samples and monitoring headspace for halogenated VOCs. A draft concept of the steps for a new analytical method was outlined. The results of the first year effort show that both devices show potential utility for future analytical method development work towards the goal of developing a portable test kit for screening halogenated VOCs in the field.

  16. Development and application of compact denuder sampling techniques with in situ derivatization followed by gas chromatography-mass spectrometry for halogen speciation in volcanic plumes

    Science.gov (United States)

    Rüdiger, Julian; Bobrowski, Nicole; Hoffmann, Thorsten

    2015-04-01

    Volcanoes are a large source for several reactive atmospheric trace gases including sulphur and halogen containing species. The detailed knowledge of volcanic plume chemistry can give insights into subsurface processes and can be considered as a useful geochemical tool for monitoring of volcanic activity, especially halogen to sulphur ratios (e.g. Bobrowski and Giuffrida, 2012; Donovan et al., 2014). The reactive bromine species bromine monoxide (BrO) is of particular interest, because BrO as well as SO2 are readily measurable by UV spectrometers at a safe distance. Furthermore it is formed in the plume by a multiphase reaction mechanism under depletion of ozone in the plume. The abundance of BrO changes as a function of the reaction time and therefore distance from the vent as well as the spatial position in the plume. Due to the lack of analytical approaches for the accurate speciation of certain halogens (HBr, Br2, Br, BrCl, HOBr etc.) there are still uncertainties about the magnitude of volcanic halogen emissions and in particular their specificationtheir species and therefore also in the understanding of the bromine chemistry in volcanic plumes (Bobrowski et al., 2007). In this study, the first application of a 1,3,5-trimethoxybenzene (1,3,5-TMB)-coated gas diffusion denuder (Huang and Hoffmann, 2008) on volcanic gases proved to be suitable to collect selectively gaseous bromine species with oxidation states of +1 or 0 (Br2 and BrO(H)), while being ignorant to HBr (OS -1). The reaction of 1,3,5-TMB with bromine gives 1-bromo-2,4,6-trimethoxybenzene (1-bromo-2,4,6-TMB) - other halogens give corresponding products. The diffusion denuder technique allows sampling of gaseous compounds exclusively without collecting particulate matter. Choosing a flow rate of 500 mL-min-1 and a denuder length of 0.5 m a nearly quantitative collection efficiency was achieved. Solvent elution of the derivatized analytes and subsequent analysis with gas chromatography

  17. Consumer Activities and Reactions to Social Network Marketing

    Directory of Open Access Journals (Sweden)

    Bistra Vassileva

    2017-06-01

    Full Text Available The purpose of this paper is to understand consumer behavioural models with respect to their reactions to social network marketing. Theoretical background is focused on online and social network usage, motivations and behaviour. The research goal is to explore consumer reactions to the exposure of social network marketing based on the following criteria: level of brand engagement, word-of-mouth (WOM referral behaviour, and purchase intentions. Consumers are investigated based on their attitudes toward social network marketing and basic socio-demographic covariates using data from a sample size of 700 Bulgarian respondents (age group 21–54 years, Internet users, urban inhabitants. Factor and cluster analyses are applied. It is found that consumers are willing to receive information about brands and companies through social networks. They like to talk in social networks about these brands and companies and to share information as well (factor 2, brand engagement. Internet users are willing to share information received through social network advertising (factor 1, wom referral behaviour but they would not buy a certain brand as a result of brand communication activities in social networks (factor 3, purchase intention. Several practical implications regarding marketing activities through social networks are drawn.

  18. Halogen poisoning effect of Pt-TiO{sub 2} for formaldehyde catalytic oxidation performance at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiaofeng; Cheng, Bei [State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology, Luoshi Road 122#, Wuhan 430070 (China); Yu, Jiaguo, E-mail: jiaguoyu@yahoo.com [State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology, Luoshi Road 122#, Wuhan 430070 (China); Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Ho, Wingkei, E-mail: keithho@ied.edu.hk [Department of Science and Environmental Studies and Centre for Education in Environmental Sustainability, The Hong Kong Institute of Education, Tai Po, N.T. Hong Kong (China)

    2016-02-28

    Graphical abstract: - Highlights: • The Pt-TiO{sub 2} catalyst is deactivated by adsorption of halogen ions. • The halogen poison is mainly attributed to the active site blocking of the Pt surface. • Halogen ions and Pt form Pt−X coordination bonds. • Large halogen diameter exhibits severe poisoning effect. - Abstract: Catalytic decomposition of formaldehyde (HCHO) at room temperature is an important method for HCHO removal. Pt-based catalysts are the optimal catalyst for HCHO decomposition at room temperature. However, the stability of this catalyst remains unexplored. In this study, Pt-TiO{sub 2} (Pt-P25) catalysts with and without adsorbed halogen ions (including F{sup −}, Cl{sup −}, Br{sup −}, and I{sup −}) were prepared through impregnation and ion modification. Pt-TiO{sub 2} samples with adsorbed halogen ions exhibited reduced catalytic activity for formaldehyde decomposition at room temperature compared with the Pt-TiO{sub 2} sample; the catalytic activity followed the order of F-Pt-P25, Cl-Pt-P25, Br-Pt-P25, and I-Pt-P25. Characterization results (including XRD, TEM, HRTEM, BET, XPS, and metal dispersion) showed that the adsorbed halogen ions can poison Pt nanoparticles (NPs), thereby reducing the HCHO oxidation activity of Pt-TiO{sub 2}. The poison mechanism is due to the strong adsorption of halogen ions on the surface of Pt NPs. The adsorbed ions form coordination bonds with surface Pt atoms by transferring surplus electrons into the unoccupied 5d orbit of the Pt atom, thereby inhibiting oxygen adsorption and activation of the Pt NP surface. Moreover, deactivation rate increases with increasing diameter of halogen ions. This study provides new insights into the fabrication of high-performance Pt-based catalysts for indoor air purification.

  19. Halogens in pore water of peat bogs – the role of peat decomposition and dissolved organic matter

    Directory of Open Access Journals (Sweden)

    H. Biester

    2006-01-01

    Full Text Available Halogens are strongly enriched in peat and peatlands and such they are one of their largest active terrestrial reservoir. The enrichment of halogens in peat is mainly attributed to the formation of organohalogens and climatically controlled humification processes. However, little is known about release of halogens from the peat substrate and the distribution of halogens in the peat pore water. In this study we have investigated the distribution of chlorine, bromine and iodine in pore water of three pristine peat bogs located in the Magellanic Moorlands, southern Chile. Peat pore waters were collected using a sipping technique, which allows in situ sampling down to a depth greater than 6m. Halogens and halogen species in pore water were determined by ion-chromatography (IC (chlorine and IC-ICP-MS (bromine and iodine. Results show that halogen concentrations in pore water are 15–30 times higher than in rainwater. Mean concentrations of chlorine, bromine and iodine in pore water were 7–15 mg l−1, 56–123 μg l−1, and 10–20 μg l−1, which correspond to mean proportions of 10–15%, 1–2.3% and 0.5–2.2% of total concentrations in peat, respectively. Organobromine and organoiodine were the predominant species in pore waters, whereas chlorine in pore water was mostly chloride. Advection and diffusion of halogens were found to be generally low and halogen concentrations appear to reflect release from the peat substrate. Release of bromine and iodine from peat depend on the degree of peat degradation, whereas this relationship is weak for chlorine. Relatively higher release of bromine and iodine was observed in less degraded peat sections, where the release of dissolved organic carbon (DOC was also the most intensive. It has been concluded that the release of halogenated dissolved organic matter (DOM is the predominant mechanism of iodine and bromine release from peat.

  20. Porous platinum mesoflowers with enhanced activity for methanol oxidation reaction

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang Lina; Wang Wenjin; Hong Feng [School of Science, MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Xi' an Jiaotong University, Xi' an 710049 (China); Yang Shengchun, E-mail: ysch1209@mail.xjtu.edu.cn [School of Science, MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Xi' an Jiaotong University, Xi' an 710049 (China); You Hongjun, E-mail: hjyou@mail.xjtu.edu.cn [School of Science, MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Xi' an Jiaotong University, Xi' an 710049 (China); Fang Jixiang; Ding Bingjun [School of Science, MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Xi' an Jiaotong University, Xi' an 710049 (China)

    2012-07-15

    Porous Pt and Pt-Ag alloy mesoflowers (MFs) with about 2 {mu}m in diameter and high porosity were synthesized using Ag mesoflowers as sacrificial template by galvanic reaction. The silver content in Pt-Ag alloys can be facilely controlled by nitric acid treatment. And the pure Pt MFs can be obtained by selective removal of silver element from Pt{sub 72}Ag{sub 28} MFs electrochemically. Both Pt{sub 45}Ag{sub 55}, Pt{sub 72}Ag{sub 28} and pure Pt show a high catalytic performance in methanol oxidation reaction (MOR). Especially, pure Pt MFs exhibited a 2 to 3 times current density enhancement in MOR compared with the commercial used Pt black, which can be attributed to their porous nanostructure with 3-dimentional nature and small crystal sizes. - Graphical Abstract: The CVs of MOR on Pt (red) and Pt black (green) catalysts in 0.1 M HClO{sub 4} and 0.5 M CH{sub 3}OH for specific mass current. The insert shows the SEM images of two porous Pt MFs. Platinum mesoflowers (MFs) with about 2 {mu}m in diameter and high porosity were synthesised with Ag mesoflowers as sacrificial template by galvanic replacement. The porous Pt MFs exhibited a more than 3 times enhancement in electrocatalytic performance for methanol oxidation reaction compared the commercial used Pt black. Highlights: Black-Right-Pointing-Pointer Porous Pt and Pt-Ag mesoflowers (MFs) were synthesized using Ag MFs sacrifical template. Black-Right-Pointing-Pointer Pt MFs presents an improved catalytic activity in MOR compared with Pt black. Black-Right-Pointing-Pointer We provided a facile approach for the development of high performance Pt electrocatalysts for fuel cells.

  1. Audience reaction movie trailers and the Paranormal Activity franchise

    Directory of Open Access Journals (Sweden)

    Alexander Swanson

    2015-03-01

    Full Text Available This article addresses the concept and growing practice of audience reaction movie trailers, specifically for films in the horror genre. Popularized by the Paranormal Activity series of films, these trailers primarily utilize green night-vision video footage of a movie theater audience reacting to the film being advertised, yet also consist of webcam recordings of screaming fans, documentary-style B-roll footage of audiences filing into preview screenings with high levels of anticipation, and close-up shots of spectator facial expressions, accompanied by no footage whatsoever from the film being advertised. In analyzing these audience-centric promotional paratexts, my aim is to reveal them as attempting to sell and legitimize the experiential, communal, and social qualities of the theatrical movie viewing experience while at the same time calling for increased fan investment in both physical and online spaces. Through the analysis of audience reaction trailers, this article hopes to both join and engender conversations about horror fan participation, the nature of anticipatory texts as manipulative, and the current state of horror gimmickry in the form of the promotional paratext.

  2. Recent development of active nanoparticle catalysts for fuel cell reactions

    Energy Technology Data Exchange (ETDEWEB)

    Mazumder, Vismadeb; Lee, Youngmin; Sun, Shouheng [Department of Chemistry Brown University Providence, RI (United States)

    2010-04-23

    This review focuses on the recent advances in the synthesis of nanoparticle (NP) catalysts of Pt-, Pd- and Au-based NPs as well as composite NPs. First, new developments in the synthesis of single-component Pt, Pd and Au NPs are summarized. Then the chemistry used to make alloy and composite NP catalysts aiming to enhance their activity and durability for fuel cell reactions is outlined. The review next introduces the exciting new research push in developing CoN/C and FeN/C as non-Pt catalysts. Examples of size-, shape- and composition-dependent catalyses for oxygen reduction at cathode and formic acid oxidation at anode are highlighted to illustrate the potentials of the newly developed NP catalysts for fuel cell applications. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  3. Reaction

    African Journals Online (AJOL)

    abp

    19 oct. 2017 ... Reaction to Mohamed Said Nakhli et al. concerning the article: "When the axillary block remains the only alternative in a 5 year old child". .... Bertini L1, Savoia G, De Nicola A, Ivani G, Gravino E, Albani A et al ... 2010;7(2):101-.

  4. syk kinase activation by a src kinase-initiated activation loop phosphorylation chain reaction

    Science.gov (United States)

    El-Hillal, O.; Kurosaki, T.; Yamamura, H.; Kinet, J.-P.; Scharenberg, A. M.

    1997-01-01

    Activation of the syk tyrosine kinase occurs almost immediately following engagement of many types of antigen receptors, including Fc receptors, but the mechanism through which syk is activated is currently unclear. Here we demonstrate that Fc receptor-induced syk activation occurs as the result of phosphorylation of the syk activation loop by both src family kinases and other molecules of activated syk, suggesting that syk activation occurs as the result of a src kinase-initiated activation loop phosphorylation chain reaction. This type of activation mechanism predicts that syk activation would exhibit exponential kinetics, providing a potential explanation for its rapid and robust activation by even weak antigen receptor stimuli. We propose that a similar mechanism may be responsible for generating rapid activation of other cytoplasmic tyrosine kinases, such as those of the Bruton tyrosine kinase/tec family, as well. PMID:9050880

  5. Studies on halogen quenching through the Stern-Volmer plot

    International Nuclear Information System (INIS)

    Takiue, Makoto; Ishikawa, Hiroaki.

    1978-01-01

    The quenching effect for halogenated benzenes, methanes and ethanes have been investigated. The halogen quenching was accurately measured using the internal conversion electrons emitted from 113 Sn-sup(113m)In. From the quenching constants determined by the Stern-Volmer plots with respect to various halogen quenchers, the following results have been obtained. (1) The quenching constants increase with the number of halogen substituents, so as linearly in halogenated benzenes and exponentially in halogenated methanes and ethanes. Even the isomers of halogenides have different quenching constants. (2) There is a linearity between logarithm of the quenching constant and a polarographic half-wave reduction potential. (3) Electron excitation provides larger quenching constants than UV excitation for halogenated methanes. Based on these results, the mechanism of halogen quenching have been discussed in connection with the exciplex formation. (auth.)

  6. Singlet oxygen production by combining erythrosine and halogen light for photodynamic inactivation of Streptococcus mutans.

    Science.gov (United States)

    Fracalossi, Camila; Nagata, Juliana Yuri; Pellosi, Diogo Silva; Terada, Raquel Sano Suga; Hioka, Noboru; Baesso, Mauro Luciano; Sato, Francielle; Rosalen, Pedro Luiz; Caetano, Wilker; Fujimaki, Mitsue

    2016-09-01

    Photodynamic inactivation of microorganisms is based on a photosensitizing substance which, in the presence of light and molecular oxygen, produces singlet oxygen, a toxic agent to microorganisms and tumor cells. This study aimed to evaluate singlet oxygen quantum yield of erythrosine solutions illuminated with a halogen light source in comparison to a LED array (control), and the photodynamic effect of erythrosine dye in association with the halogen light source on Streptococcus mutans. Singlet oxygen quantum yield of erythrosine solutions was quantified using uric acid as a chemical-probe in an aqueous solution. The in vitro effect of the photodynamic antimicrobial activity of erythrosine in association with the halogen photopolimerizing light on Streptococcus mutans (UA 159) was assessed during one minute. Bacterial cultures treated with erythrosine alone served as negative control. Singlet oxygen with 24% and 2.8% degradation of uric acid in one minute and a quantum yield of 0.59 and 0.63 was obtained for the erythrosine samples illuminated with the halogen light and the LED array, respectively. The bacterial cultures with erythrosine illuminated with the halogen light presented a decreased number of CFU mL(-1) in comparison with the negative control, with minimal inhibitory concentrations between 0.312 and 0.156mgmL(-1). The photodynamic response of erythrosine induced by the halogen light was capable of killing S. mutans. Clinical trials should be conducted to better ascertain the use of erythrosine in association with halogen light source for the treatment of dental caries. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Halogens in chondritic meteorites and terrestrial accretion

    Science.gov (United States)

    Clay, Patricia L.; Burgess, Ray; Busemann, Henner; Ruzié-Hamilton, Lorraine; Joachim, Bastian; Day, James M. D.; Ballentine, Christopher J.

    2017-11-01

    Volatile element delivery and retention played a fundamental part in Earth’s formation and subsequent chemical differentiation. The heavy halogens—chlorine (Cl), bromine (Br) and iodine (I)—are key tracers of accretionary processes owing to their high volatility and incompatibility, but have low abundances in most geological and planetary materials. However, noble gas proxy isotopes produced during neutron irradiation provide a high-sensitivity tool for the determination of heavy halogen abundances. Using such isotopes, here we show that Cl, Br and I abundances in carbonaceous, enstatite, Rumuruti and primitive ordinary chondrites are about 6 times, 9 times and 15-37 times lower, respectively, than previously reported and usually accepted estimates. This is independent of the oxidation state or petrological type of the chondrites. The ratios Br/Cl and I/Cl in all studied chondrites show a limited range, indistinguishable from bulk silicate Earth estimates. Our results demonstrate that the halogen depletion of bulk silicate Earth relative to primitive meteorites is consistent with the depletion of lithophile elements of similar volatility. These results for carbonaceous chondrites reveal that late accretion, constrained to a maximum of 0.5 ± 0.2 per cent of Earth’s silicate mass, cannot solely account for present-day terrestrial halogen inventories. It is estimated that 80-90 per cent of heavy halogens are concentrated in Earth’s surface reservoirs and have not undergone the extreme early loss observed in atmosphere-forming elements. Therefore, in addition to late-stage terrestrial accretion of halogens and mantle degassing, which has removed less than half of Earth’s dissolved mantle gases, the efficient extraction of halogen-rich fluids from the solid Earth during the earliest stages of terrestrial differentiation is also required to explain the presence of these heavy halogens at the surface. The hydropilic nature of halogens, whereby they track

  8. Thermal behavior of halogenated imidebismaleimide resins

    International Nuclear Information System (INIS)

    Mohammad, A.; Al-Halim, N.Z.

    1995-01-01

    Several new poly-halogenated malecimides, bismaleimides and therir copoly resins were synthessised thermally from their corresponding amic acids. The synthesis was accomplished by two way method (amic acid-polimide) instead of the well-known three way method (amic acid-imide-polyimide). Thermal characterization of monomers and their cured resins was achieved using differential thermal analysis (DTA), dynamic thermogravimetric analysis (TGA) and isothermal gravimetric analysis (IGA). The effect of halogen substituent, especially in the ortho postion, is clear in the imidization proces, while polymerization proceeds almost equally in all systems. Thermal properties of homo and copolymers were correlated with their chemical structures. (author). 15 refs., 4

  9. Is halogen content the most important factor in the removal of halogenated trace organics by MBR treatment?

    Science.gov (United States)

    Hai, Faisal I; Tadkaew, Nichanan; McDonald, James A; Khan, Stuart J; Nghiem, Long D

    2011-05-01

    This study investigated the relationship between physicochemical properties (namely halogen content and hydrophobicity) of halogenated trace organics and their removal efficiencies by a laboratory scale membrane bioreactor (MBR) under stable operating conditions. The reported results demonstrated a combined effect of halogen content and hydrophobicity on the removal. Compounds with high halogen content (>0.3) were well removed (>85%) when they possessed high hydrophobicity (Log D>3.2), while those with lower Log D values were also well removed if they had low halogen content (BIOWIN index (which is based on only biodegradation) or a more specific index such as the halogen content (which captures a chemical aspect) appeared insufficient to predict the removal efficiency of halogenated compounds in MBR. Experimental data confirmed that the ratio of halogen content and Log D, which incorporates two important physico-chemical properties, is comparatively more suitable. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Passivation of quartz for halogen-containing light sources

    Science.gov (United States)

    Falkenstein, Zoran

    1999-01-01

    Lifetime of halogen containing VUV, UV, visible or IR light sources can be extended by passivating the quartz or glass gas containers with halogens prior to filling the quartz with the halogen and rare gas mixtures used to produce the light.

  11. SYNTHESIS AND STUDY OF HALOGENATED BENZYLAMIDES OF SOME ISOCYCLIC AND HETEROCYCLIC ACIDS AS POTENTIAL ANTICONVULSANTS.

    Science.gov (United States)

    Strupińska, Marzanna; Rostafińska-Suchar, Grażyna; Pirianowicz-Chaber, Elżbieta; Grabczuk, Mateusz; Józwenko, Magdalena; Kowalczyk, Hubert; Szuba, Joanna; Wójcicka, Monika; Chen, Tracy; Mazurek, Aleksander P

    2015-01-01

    A series of potential anticonvulsants have been synthesized. There are eight fluorobenzylamides and three chlorobenzylamides of isocyclic or heterocyclic acids. Two not halogenated benzylamides were also synthesized to compare the effect of halogenation. The aim of the research performed was to evaluate whether halogenation of the mother structure is able to improve its anticonvulsant activity. The compounds were tested in Anticonvulsant Screening Project (ASP) of Antiepileptic Drug Development Program (ADDP) of NIH. Compound 1 showed MES ED50 = 80.32 mg/kg, PI = 3.16. Compound 7 showed CKM ED50 = 56.72 mg/kg. Compound 8 showed MES ED50 = 34.23 mg/kg and scPTZ ED50 > 300 mg/kg, PI = 8.53.Compound 13 showed 6Hz ED50 = 78.96, PI = 3.37. The results indicate that fluorination does not improve activity, whereas chlorination in our experiment even reduces it.

  12. Study of the halogenation of EuBa[sub 2]Cu[sub 3]O[sub 6]. Etude de l'halogenation de EuBa[sub 2]Cu[sub 3]O[sub 6

    Energy Technology Data Exchange (ETDEWEB)

    Kabeya, D.T. (Rennes-1 Univ., 35 (France). Lab. de Chimie du Solide et Inorganique Moleculaire); Mokhtari, M. (Rennes-1 Univ., 35 (France). Lab. de Chimie du Solide et Inorganique Moleculaire); Perrin, C. (Rennes-1 Univ., 35 (France). Lab. de Chimie du Solide et Inorganique Moleculaire); Sergent, M. (Rennes-1 Univ., 35 (France). Lab. de Chimie du Solide et Inorganique Moleculaire); Grushko, Yu. (Russian Academy of Sciences, Gatchina (Russian Federation). Nuclear Physics Inst.); Kokovina, L. (Russian Academy of Sciences, Gatchina (Russian Federation). Nuclear Physics Inst.); Rozhniakova, N. (Russian Academy of Sciences, Gatchina (Russian Federation). Nuclear Physics Inst.)

    1994-11-01

    Sintered samples of EuBa[sub 2]Cu[sub 3]O[sub 6] have been halogenated at low temperature (t<300 C) by treatments under NF[sub 3] or CCl[sub 4] flow diluted in nitrogen, or by reaction with iodine in sealed tubes. Such mild conditions of synthesis allowed to avoid the decomposition of the material during the reactions. The incorporation of the halogen in the sample has been evidenced by the weight gain, by the evolution of the unit-cell parameters and by SEM and EDS analyses. After fluorination and chlorination, the samples become superconducting, but no superconducting behaviour is observed after iodination. These results are compared to the ones previously obtained during the halogenation of YBa[sub 2]Cu[sub 3]O[sub 6]. (orig.).

  13. Development of various reaction abilities and their relationships with favorite play activities in preschool children.

    Science.gov (United States)

    Miyaguchi, Kazuyoshi; Demura, Shinich; Sugiura, Hiroki; Uchiyama, Masanobu; Noda, Masahiro

    2013-10-01

    This study examines the development of various reaction movements in preschool children and the relationship between reaction times and favorite play activities. The subjects were 167 healthy preschool children aged 4-6 (96 boys and 71 girls). This study focused on the reaction times of the upper limbs (reaction 1: release; reaction 2: press) and the whole body (reaction 3: forward jump). The activities frequently played in preschools are largely divided into dynamic play activities (tag, soccer, gymnastics set, dodge ball, and jump rope) and static play activities (drawing, playing house, reading, playing with sand, and building blocks). The subjects chose 3 of 10 cards picturing their favorite play activities, depicting 10 different activities. All intraclass correlation coefficients of measured reaction times were high (0.73-0.79). In addition, each reaction time shortened with age. Reaction 1 showed a significant and low correlation with reaction 3 (r = 0.37). The effect size of the whole body reaction time was the largest. Whole body reaction movement, which is largely affected by the exercise output function, develops remarkably in childhood. Children who liked "tag" were faster in all reaction times. The children who chose "soccer" were faster in reactions 2 and 3. In contrast, children who liked "playing house" tended to have slower reaction times. Dynamic activities, such as tag and soccer, promote development of reaction speed and agility in movements involving the whole body. Preschool teachers and physical educators should re-examine the effect of tag and use it periodically as one of the exercise programs to avoid unexpected falls and injuries in everyday life.

  14. Catalytic activation of molecular hydrogen in alkyne hydrogenation reactions by lanthanide metal vapor reaction products

    International Nuclear Information System (INIS)

    Evans, W.J.; Bloom, I.; Engerer, S.C.

    1983-01-01

    A rotary metal vapor was used in the synthesis of Lu, Er, Nd, Sm, Yb, and La alkyne, diene, and phosphine complexes. A typical catalytic hydrogenation experiment is described. The lanthanide metal vapor product is dissolved in tetrahydrofuran or toluene and placed in a pressure reaction vessel 3-hexyne (or another substrate) is added, the chamber attached to a high vacuum line, cooled to -196 0 C, evacuated, warmed to ambient temperature and hydrogen is added. The solution is stirred magnetically while the pressure in monitored. The reaction products were analyzed by gas chromatography. Rates and products of various systems are listed. This preliminary survey indicates that catalytic reaction chemistry is available to these metals in a wide range of coordination environments. Attempts to characterize these compounds are hampered by their paramagnetic nature and their tendency to polymerize

  15. On the ultrafast charge migration and subsequent charge directed reactivity in Cl⋯N halogen-bonded clusters following vertical ionization

    International Nuclear Information System (INIS)

    Chandra, Sankhabrata; Bhattacharya, Atanu; Periyasamy, Ganga

    2015-01-01

    In this article, we have presented ultrafast charge transfer dynamics through halogen bonds following vertical ionization of representative halogen bonded clusters. Subsequent hole directed reactivity of the radical cations of halogen bonded clusters is also discussed. Furthermore, we have examined effect of the halogen bond strength on the electron-electron correlation- and relaxation-driven charge migration in halogen bonded complexes. For this study, we have selected A-Cl (A represents F, OH, CN, NH 2 , CF 3 , and COOH substituents) molecules paired with NH 3 (referred as ACl:NH 3 complex): these complexes exhibit halogen bonds. To the best of our knowledge, this is the first report on purely electron correlation- and relaxation-driven ultrafast (attosecond) charge migration dynamics through halogen bonds. Both density functional theory and complete active space self-consistent field theory with 6-31 + G(d, p) basis set are employed for this work. Upon vertical ionization of NCCl⋯NH 3 complex, the hole is predicted to migrate from the NH 3 -end to the ClCN-end of the NCCl⋯NH 3 complex in approximately 0.5 fs on the D 0 cationic surface. This hole migration leads to structural rearrangement of the halogen bonded complex, yielding hydrogen bonding interaction stronger than the halogen bonding interaction on the same cationic surface. Other halogen bonded complexes, such as H 2 NCl:NH 3 , F 3 CCl:NH 3 , and HOOCCl:NH 3 , exhibit similar charge migration following vertical ionization. On the contrary, FCl:NH 3 and HOCl:NH 3 complexes do not exhibit any charge migration following vertical ionization to the D 0 cation state, pointing to interesting halogen bond strength-dependent charge migration

  16. On the ultrafast charge migration and subsequent charge directed reactivity in Cl⋯N halogen-bonded clusters following vertical ionization

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, Sankhabrata; Bhattacharya, Atanu, E-mail: atanub@ipc.iisc.ernet.in [Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore (India); Periyasamy, Ganga [Department of Chemistry, Central College Campus, Bangalore University, Bangalore (India)

    2015-06-28

    In this article, we have presented ultrafast charge transfer dynamics through halogen bonds following vertical ionization of representative halogen bonded clusters. Subsequent hole directed reactivity of the radical cations of halogen bonded clusters is also discussed. Furthermore, we have examined effect of the halogen bond strength on the electron-electron correlation- and relaxation-driven charge migration in halogen bonded complexes. For this study, we have selected A-Cl (A represents F, OH, CN, NH{sub 2}, CF{sub 3}, and COOH substituents) molecules paired with NH{sub 3} (referred as ACl:NH{sub 3} complex): these complexes exhibit halogen bonds. To the best of our knowledge, this is the first report on purely electron correlation- and relaxation-driven ultrafast (attosecond) charge migration dynamics through halogen bonds. Both density functional theory and complete active space self-consistent field theory with 6-31 + G(d, p) basis set are employed for this work. Upon vertical ionization of NCCl⋯NH{sub 3} complex, the hole is predicted to migrate from the NH{sub 3}-end to the ClCN-end of the NCCl⋯NH{sub 3} complex in approximately 0.5 fs on the D{sub 0} cationic surface. This hole migration leads to structural rearrangement of the halogen bonded complex, yielding hydrogen bonding interaction stronger than the halogen bonding interaction on the same cationic surface. Other halogen bonded complexes, such as H{sub 2}NCl:NH{sub 3}, F{sub 3}CCl:NH{sub 3}, and HOOCCl:NH{sub 3}, exhibit similar charge migration following vertical ionization. On the contrary, FCl:NH{sub 3} and HOCl:NH{sub 3} complexes do not exhibit any charge migration following vertical ionization to the D{sub 0} cation state, pointing to interesting halogen bond strength-dependent charge migration.

  17. Retention efficiencies of halogenated and non-halogenated hydrocarbons in selected wetland ecosystem in Lake Victoria Basin

    Directory of Open Access Journals (Sweden)

    Shadrack Mule

    2015-06-01

    Full Text Available The determination of retention efficiencies of halogenated and non-halogenated hydrocarbon in selected wetland ecosystems in Lake Victoria basin was carried out. Qualitative and quantitative determination of the presence of residual hydrocarbons in Kigwal/Kimondi, Nyando and Nzoia wetland ecosystems using Gas Chromatography - Mass Spectrometer (GC-MS instrument indicated the presence of residual organochlorines, organophosphorus, carbamates and synthetic pyrethroid hydrocarbons in water, sediment and plant materials. In order to compare the retention efficiencies of the wetlands, the wetland ecosystems were divided into three different sections, namely: inlet, mid and outlet. Calculations of mass balances of residual halogenated and non-halogenated hydrocarbons at the respective sections was done taking into account the partition of the studied compounds in samples of water, sediments and papyrus reed plant materials and analyzed using validated Gas Chromatography - Mass Spectrometer (GC-MS method. From the analysis, several residual hydrocarbons namely: bendiocarb, benzene hexachloride (BHC, carbaryl, cypermethrin, decis, deltamethrin, diazinon, dieldrin, DDT, DDD, DDE, malathion, propoxur, sumithion, 5-phenylrhodanine, 1,3,5-trichlorobenzene, 1-(2-phenoxybenzylhydrazine were detected and quantified. The levels of the selected residual hydrocarbons in water samples were used to calculate the retention efficiencies of a specific hydrocarbon and the values recorded. Generally, River Nyando wetland recorded mean percentage retention efficiencies of 76 and 94% for dry and rainy seasons respectively; Kigwal/Kimondi wetland had seasonal mean percentage retention efficiencies of 63 to 78%. River Nzoia also had calculated seasonal mean percentage retention efficiencies of between 56 to 88%. Dry season had lower mean percentages retention efficiencies as compared to rainy season in the three wetlands of interest during the period of study. The study

  18. Consumer Activities and Reactions to Social Network Marketing

    OpenAIRE

    Bistra Vassileva

    2017-01-01

    The purpose of this paper is to understand consumer behavioural models with respect to their reactions to social network marketing. Theoretical background is focused on online and social network usage, motivations and behaviour. The research goal is to explore consumer reactions to the exposure of social network marketing based on the following criteria: level of brand engagement, word-of-mouth (WOM) referral behaviour, and purchase intentions. Consumers are investigated ...

  19. Analyzing Reaction Rates with the Distortion/Interaction-Activation Strain Model

    NARCIS (Netherlands)

    Bickelhaupt, F. Matthias; Houk, Kendall N.

    2017-01-01

    The activation strain or distortion/interaction model is a tool to analyze activation barriers that determine reaction rates. For bimolecular reactions, the activation energies are the sum of the energies to distort the reactants into geometries they have in transition states plus the interaction

  20. A systematic structural study of halogen bonding versus hydrogen bonding within competitive supramolecular systems

    Directory of Open Access Journals (Sweden)

    Christer B. Aakeröy

    2015-09-01

    Full Text Available As halogen bonds gain prevalence in supramolecular synthesis and materials chemistry, it has become necessary to examine more closely how such interactions compete with or complement hydrogen bonds whenever both are present within the same system. As hydrogen and halogen bonds have several fundamental features in common, it is often difficult to predict which will be the primary interaction in a supramolecular system, especially as they have comparable strength and geometric requirements. To address this challenge, a series of molecules containing both hydrogen- and halogen-bond donors were co-crystallized with various monotopic, ditopic symmetric and ditopic asymmetric acceptor molecules. The outcome of each reaction was examined using IR spectroscopy and, whenever possible, single-crystal X-ray diffraction. 24 crystal structures were obtained and subsequently analyzed, and the synthon preferences of the competing hydrogen- and halogen-bond donors were rationalized against a background of calculated molecular electrostatic potential values. It has been shown that readily accessible electrostatic potentials can offer useful practical guidelines for predicting the most likely primary synthons in these co-crystals as long as the potential differences are weighted appropriately.

  1. Enrichment: CRISLA [chemical reaction by isotope selective activation] aims to reduce costs

    International Nuclear Information System (INIS)

    Eerkens, J.W.

    1989-01-01

    Every year, more than $3 billion is spent on enriching uranium. CRISLA (Chemical Reaction by Isotope Selective Activation) uses a laser-catalyzed chemical reaction which, its proponents claim, could substantially reduce these costs. In CRISLA, an infrared CO laser illuminates the intracavity reaction cell (IC) at a frequency tuned to excite primarily UF 6 . When UF 6 and co-reactant RX are passed through the IC, the tuned laser photons preferentially enhance the reaction of UF 6 with RX ten-thousand-fold over the thermal reaction rate. Thus the laser serves as an activator and the chemical energy for separation is largely chemical. (author)

  2. Estrogenicity of halogenated bisphenol A: in vitro and in silico investigations.

    Science.gov (United States)

    Zhang, Jie; Li, Tiezhu; Wang, Tuoyi; Yuan, Cuiping; Zhong, Shuning; Guan, Tianzhu; Li, Zhuolin; Wang, Yongzhi; Yu, Hansong; Luo, Quan; Wang, Yongjun; Zhang, Tiehua

    2018-03-01

    The binding interactions of bisphenol A (BPA) and its halogenated derivatives (halogenated BPAs) to human estrogen receptor α ligand binding domain (hERα-LBD) was investigated using a combined in vitro and in silico approach. First, the recombinant hERα-LBD was prepared as a soluble protein in Escherichia coli BL21(DE3)pLysS. A native fluorescent phytoestrogen, coumestrol, was employed as tracer for the fluorescence polarization assay. The results of the in vitro binding assay showed that bisphenol compounds could bind to hERα-LBD as the affinity ligands. All the tested halogenated BPAs exhibited weaker receptor binding than BPA, which might be explained by the steric effect of substituents. Molecular docking studies elucidated that the halogenated BPAs adopted different conformations in the flexible hydrophobic ligand binding pocket (LBP), which is mainly dependent on their distinct halogenation patterns. The compounds with halogen substituents on the phenolic rings and on the bridging alkyl moiety acted as agonists and antagonists for hERα, respectively. Interestingly, all the compounds in the agonist conformation of hERα formed a hydrogen bond with His524, while the compounds in the antagonist conformation formed a hydrogen bond with Thr347. These docking results suggested a pivotal role of His524/Thr347 in maintaining the hERα structure in the biologically active agonist/antagonist conformation. Comparison of the calculated binding energies vs. experimental binding affinities yielded a good correlation, which might be applicable for the structure-based design of novel bisphenol compounds with reduced toxicities and for environmental risk assessment. In addition, based on hERα-LBD as a recognition element, the proposed fluorescence polarization assay may offer an alternative to chromatographic techniques for the multi-residue determination of bisphenol compounds.

  3. Thermodynamics parameters for binding of halogenated benzotriazole inhibitors of human protein kinase CK2α.

    Science.gov (United States)

    Winiewska, Maria; Kucińska, Katarzyna; Makowska, Małgorzata; Poznański, Jarosław; Shugar, David

    2015-10-01

    The interaction of human CK2α (hCK2α) with nine halogenated benzotriazoles, TBBt and its analogues representing all possible patterns of halogenation on the benzene ring of benzotriazole, was studied by biophysical methods. Thermal stability of protein-ligand complexes, monitored by calorimetric (DSC) and optical (DSF) methods, showed that the increase in the mid-point temperature for unfolding of protein-ligand complexes (i.e. potency of ligand binding to hCK2α) follow the inhibitory activities determined by biochemical assays. The dissociation constant for the ATP-hCK2α complex was estimated with the aid of microscale thermophoresis (MST) as 4.3±1.8 μM, and MST-derived dissociation constants determined for halogenated benzotriazoles, when converted according to known ATP concentrations, perfectly reconstruct IC50 values determined by the biochemical assays. Ligand-dependent quenching of tyrosine fluorescence, together with molecular modeling and DSC-derived heats of unfolding, support the hypothesis that halogenated benzotriazoles bind in at least two alternative orientations, and those that are efficient hCK2α inhibitors bind in the orientation which TBBt adopts in its complex with maize CK2α. DSC-derived apparent heat for ligand binding (ΔΔHbind) is driven by intermolecular electrostatic interactions between Lys68 and the triazole ring of the ligand, as indicated by a good correlation between ΔΔHbind and ligand pKa. Overall results, additionally supported by molecular modeling, confirm that a balance of hydrophobic and electrostatic interactions contribute predominantly (~40 kJ/mol), relative to possible intermolecular halogen/hydrogen bonding (less than 10 kJ/mol), in binding of halogenated benzotriazoles to the ATP-binding site of hCK2α. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Activated by Combined Magnrtic Field Gravitropic Reaction Reply on Nanodose of Biologicaly Active Compounds

    Science.gov (United States)

    Sheykina, Nadezhda; Bogatina, Nina

    The new science direction nanotechnologies initiated a big jump in the pharmacology and medicine. This leads to the big development of homeopathy. The most interest appeared while investigating of the reaction of biological object on the nano dose of iologically substances. The changing of concentration (in nmol/l) of biologically active material is also possible during weak energy action. For instance, weak combined magnetic field may change a little the concentration of ions that are oriented parallel to the external magnetic field and, by the analogy with said above, lead to the similar effects. Simple estimations give the value for the threshold to the magnetic field by two orders smaller than the geomagnetic field. By this investigation we wanted to understand whether the analogy in the action of nano dose of biologically active substances and weak combined magnetic field presents and whether the action of one of these factors may be replaced by other one. The effect of one of biologically active substances NPA (Naphtyl-Phtalame Acid) solution with the concentration 0.01 mol/l on the gravitropic reaction of cress roots was investigated. It was shown that its effect was the inhibition of cress roots gravitropic reaction. The same inhibition was achieved by the combined magnetic field action on the cress roots, germinated in water. The alternative component of the combined magnetic field coincided formally with the cyclotron frequency of NPA ions. So the analogy in the action of nano dose of biologically active substances and weak combined magnetic field was shown. The combined magnetic field using allows to decrease sufficiently the dose of biologically active substances. This fact can be of great importance in pharmacy and medicine.

  5. Role of the Ah locus in suppression of cytotoxic T lymphocyte activity by halogenated aromatic hydrocarbons (PCBs and TCDD): Structure-activity relationships and effects in C57Bl/6 mice congenic at the Ah locus

    International Nuclear Information System (INIS)

    Kerkvliet, N.I.; Baecher-Steppan, L.; Smith, B.B.; Youngberg, J.A.; Henderson, M.C.; Buhler, D.R.

    1990-01-01

    Previous studies have shown that the generation of cytotoxic T lymphocytes (CTL) following allogeneic tumor challenge is suppressed in Ah-responsive C57Bl/6 mice treated with a single oral dose of the toxic, Ah receptor-binding 3,4,5,3',4',5'-hexachlorobiphenyl (HxCB). The present studies have examined the specific role of the Ah receptor in this immunotoxic response by utilizing HxCB isomers of known, varied affinity for the Ah receptor as well as by comparing effects of high-affinity Ah receptor ligands (3,4,5,3',4',5'-HxCB and 2,3,7,8-tetrachlorodibenzo-p-dioxin [TCDD]) on the CTL response of mice that differ only at the Ah locus, that is, Ah-responsive (Ahbb) and Ah-nonresponsive (Ahdd) congenic C57Bl/6 mice. Correlative changes in thymic weight, serum corticosterone (CS) levels, and spleen cellularity were also measured. The potency of HxCB congeners (3,4,5,3',4',5'-; 2,3,4,5,3',4'-; 2,4,5,2',4',5'-) and 2,3,7,8-TCDD to suppress the CTL response, to reduce spleen cellularity, to cause thymic atrophy, and to elevate serum CS levels was directly correlated with the binding affinity of the congener for the Ah receptor. Furthermore, these parameters of immunotoxicity in Ahdd C57Bl/6 mice were significantly more resistant to alterations induced by either 3,4,5,3',4',5'-HxCB or 2,3,7,8-TCDD as compared to Ahbb C57Bl/6 mice. These results strongly support an Ah receptor-dependent immunotoxic mechanism in suppression of the CTL response following acute exposure to halogenated aromatic hydrocarbons

  6. Boiling points of halogenated ethanes: an explanatory model implicating weak intermolecular hydrogen-halogen bonding.

    Science.gov (United States)

    Beauchamp, Guy

    2008-10-23

    This study explores via structural clues the influence of weak intermolecular hydrogen-halogen bonds on the boiling point of halogenated ethanes. The plot of boiling points of 86 halogenated ethanes versus the molar refraction (linked to polarizability) reveals a series of straight lines, each corresponding to one of nine possible arrangements of hydrogen and halogen atoms on the two-carbon skeleton. A multiple linear regression model of the boiling points could be designed based on molar refraction and subgroup structure as independent variables (R(2) = 0.995, standard error of boiling point 4.2 degrees C). The model is discussed in view of the fact that molar refraction can account for approximately 83.0% of the observed variation in boiling point, while 16.5% could be ascribed to weak C-X...H-C intermolecular interactions. The difference in the observed boiling point of molecules having similar molar refraction values but differing in hydrogen-halogen intermolecular bonds can reach as much as 90 degrees C.

  7. Process for removal of hydrogen halides or halogens from incinerator gas

    Science.gov (United States)

    Huang, H.S.; Sather, N.F.

    1987-08-21

    A process for reducing the amount of halogens and halogen acids in high temperature combustion gas and through their removal, the formation of halogenated organics at lower temperatures, with the reduction being carried out electrochemically by contacting the combustion gas with the negative electrode of an electrochemical cell and with the halogen and/or halogen acid being recovered at the positive electrode.

  8. Statistical analysis of activation and reaction energies with quasi-variational coupled-cluster theory

    Science.gov (United States)

    Black, Joshua A.; Knowles, Peter J.

    2018-06-01

    The performance of quasi-variational coupled-cluster (QV) theory applied to the calculation of activation and reaction energies has been investigated. A statistical analysis of results obtained for six different sets of reactions has been carried out, and the results have been compared to those from standard single-reference methods. In general, the QV methods lead to increased activation energies and larger absolute reaction energies compared to those obtained with traditional coupled-cluster theory.

  9. Reaction mechanisms of CO2 activation and catalytic reduction

    International Nuclear Information System (INIS)

    Wolff, Niklas von

    2016-01-01

    The use of CO 2 as a C1 chemical feedstock for the fine chemical industry is interesting both economically and ecologically, as CO 2 is non-toxic, abundant and cheap. Nevertheless, transformations of CO 2 into value-added products is hampered by its high thermodynamic stability and its inertness toward reduction. In order to design new catalysts able to overcome this kinetic challenge, a profound understanding of the reaction mechanisms at play in CO 2 reduction is needed. Using novel N/Si+ frustrated Lewis pairs (FLPs), the influence of CO 2 adducts and different hydro-borane reducing agents on the reaction mechanism in the catalytic hydroboration of CO 2 were investigated, both by DFT calculations and experiments. In a second step, the reaction mechanism of a novel reaction for the creation of C-C bonds from CO 2 and pyridyl-silanes (C 5 H 4 N-SiMe 3 ) was analyzed by DFT calculations. It was shown that CO 2 plays a double role in this transformation, acting both as a catalyst and a C1-building block. The fine understanding of this transformation then led to the development of a novel approach for the synthesis of sulfones and sulfonamides. Starting from SO 2 and aromatic silanes/amine silanes, these products were obtained in a single step under metal-free conditions. Noteworthy, sulfones and sulfonamides are common motifs in organic chemistry and found in a variety of highly important drugs. Finally, this concept was extended to aromatic halides as coupling partners, and it was thus shown for the first time that a sulfonylative Hiyama reaction is a possible approach to the synthesis of sulfones. (author) [fr

  10. Halogen speciation in volcanic plumes - Development of compact denuder sampling techniques with in-situ derivatization followed by gas chromatography-mass spectrometry and their application at Mt. Etna, Mt. Nyiragongo and Mt. Nyamulagira in 2015.

    Science.gov (United States)

    Rüdiger, Julian; Bobrowski, Nicole; Hoffmann, Thorsten

    2016-04-01

    Volcanoes are a large source for several reactive atmospheric trace gases including sulfur and halogen containing species. The detailed knowledge of volcanic plume chemistry can give insights into subsurface processes and can be considered as a useful geochemical tool for monitoring of volcanic activity, especially halogen to sulfur ratios (e.g. Bobrowski and Giuffrida, 2012; Donovan et al., 2014). The reactive bromine species bromine monoxide (BrO) is of particular interest, because BrO as well as SO2 are readily measurable by UV spectrometer at a safe distance. Furthermore it is formed in the plume by a multiphase reaction mechanism under depletion of ozone in the plume. The abundance of BrO changes as a function of the reaction time and therefore distance from the vent as well as the spatial position in the plume. The precursor substance for the formation of BrO is HBr with Br2as an intermediate product. The reaction of HBr to BrO involves heterogeneous reactions involving aerosol particles, while Br2 reacts directly with O3 to form BrO in a UV radiation induced mechanism. Due to the lack of analytical approaches for the species analysis of halogens (HBr, Br2, Br, BrCl, HOBr) there are still uncertainties about the magnitude of volcanic halogen emissions and in particular their speciation and therefore also in the understanding of the bromine chemistry in volcanic plumes (Bobrowski et al., 2007). In this study a gas diffusion denuder sampling method using a 1,3,5-trimethoxybenzene (1,3,5-TMB) coating for the derivatization of reactive halogen species (Rüdiger et al., 2015) was characterized by reaction chamber experiments. The coating proved to be suitable to collect selectively gaseous bromine species with oxidation states of +1 or 0 (such as Br2, BrCl, BrO(H) and BrONO2), while being ignorant to HBr (OS -1). The reaction of 1,3,5-TMB with reactive bromine species gives 1-bromo-2,4,6-trimethoxybenzene (1-bromo-2,4,6-TMB) - other halogens give corresponding

  11. Proliferative activity as a prognostic factor of a human tumor radiation reactions

    International Nuclear Information System (INIS)

    Karakulov, R.K.; Pelevina, I.I.

    1986-01-01

    The following questions are considered: 1) whether cell proliferation initial parameters can serve for predicting the tumor radial reaction; 2) whether proliferative activity change can be a criterion for estimating the treatment efficiency; 3) acquisition of data on biological peculiarities of different types of tumors. Connection between proliferative activity drop and clinical reaction under tumor radiotherapy is ascertained

  12. Reactions of 3-Formylchromone with Active Methylene and Methyl Compounds and Some Subsequent Reactions of the Resulting Condensation Products

    Directory of Open Access Journals (Sweden)

    M. Lácova

    2005-08-01

    Full Text Available This review presents a survey of the condensations of 3-formylchromone with various active methylene and methyl compounds, e.g. malonic or barbituric acid derivatives, five-membered heterocycles, etc. The utilisation of the condensation products for the synthesis of different heterocyclic systems, which is based on the ability of the γ-pyrone ring to be opened by the nucleophilic attack is also reviewed. Finally, the applications of microwave irradiation as an unconventional method of reaction activation in the synthesis of condensation products is described and the biological activity of some chromone derivatives is noted.

  13. Alkali silica reaction (ASR) in cement free alkali activated sustainable concrete.

    Science.gov (United States)

    2016-12-19

    This report summarizes the findings of an experimental evaluation into alkali silica : reaction (ASR) in cement free alkali-activated slag and fly ash binder concrete. The : susceptibility of alkali-activated fly ash and slag concrete binders to dele...

  14. Late-stage diversification of biologically active pyridazinones via a direct C-H functionalization strategy.

    Science.gov (United States)

    Li, Wei; Fan, Zhoulong; Geng, Kaijun; Xu, Youjun; Zhang, Ao

    2015-01-14

    Divergent C-H functionalization reactions (arylation, carboxylation, olefination, thiolation, acetoxylation, halogenation, naphthylation) using a pyridazinone moiety as an internal directing group were successfully established. This approach offers a late-stage, ortho-selective diversification of a biologically active pyridazinone scaffold. Seven series of novel pyridazinone analogues were synthesized conveniently as the synthetic precursors of potential sortase A (SrtA) inhibitors.

  15. Health Activities Project (HAP): Action/Reaction Module.

    Science.gov (United States)

    Buller, Dave; And Others

    Contained within this Health Activities Project (HAP) learning packet are activities for children in grades 5-8. Design of the activities centers around the idea that students can control their own health and safety. Within this module are teacher and student folios describing activities in timing, improving, and practicing to improve reaction…

  16. Computational Tools To Model Halogen Bonds in Medicinal Chemistry.

    Science.gov (United States)

    Ford, Melissa Coates; Ho, P Shing

    2016-03-10

    The use of halogens in therapeutics dates back to the earliest days of medicine when seaweed was used as a source of iodine to treat goiters. The incorporation of halogens to improve the potency of drugs is now fairly standard in medicinal chemistry. In the past decade, halogens have been recognized as direct participants in defining the affinity of inhibitors through a noncovalent interaction called the halogen bond or X-bond. Incorporating X-bonding into structure-based drug design requires computational models for the anisotropic distribution of charge and the nonspherical shape of halogens, which lead to their highly directional geometries and stabilizing energies. We review here current successes and challenges in developing computational methods to introduce X-bonding into lead compound discovery and optimization during drug development. This fast-growing field will push further development of more accurate and efficient computational tools to accelerate the exploitation of halogens in medicinal chemistry.

  17. New Type of Halogen Bond: Multivalent Halogen Interacting with π- and σ-Electrons

    Directory of Open Access Journals (Sweden)

    Sławomir J. Grabowski

    2017-12-01

    Full Text Available MP2/aug-cc-pVTZ calculations were performed for complexes of BrF3 and BrF5 acting as Lewis acids through the bromine centre, with species playing a role of Lewis base: dihydrogen, acetylene, ethylene, and benzene. The molecular hydrogen donates electrons by its σ-bond, while in remaining moieties—in complexes of hydrocarbons; such an electron transfer follows from π-electrons. The complexes are linked by a kind of the halogen bond that is analyzed for the first time in this study, i.e., it is the link between the multivalent halogen and π or σ-electrons. The nature of such a halogen bond is discussed, as well as various dependencies and correlations are presented. Different approaches are applied here, the Quantum Theory of Atoms in Molecules, Natural Bond Orbital method, the decomposition of the energy of interaction, the analysis of electrostatic potentials, etc.

  18. Improvement of ACE inhibitory activity of casein hydrolysate by Maillard reaction with xylose.

    Science.gov (United States)

    Hong, Xu; Meng, Jun; Lu, Rong-Rong

    2015-01-01

    The Maillard reaction is widely used to improve the functional properties or biological activities of food. The purpose of this study was to investigate the effect of the Maillard reaction on angiotensin I converting enzyme (ACE) inhibitory activity in a casein hydrolysate-xylose system. Two-step hydrolysis was used to prepare casein ACE inhibitory peptides. Maillard reaction products (MRPs) were prepared by heating hydrolyzed casein with xylose at pH 8.0, 110 °C for up to 16 h. The results showed that the content of free amino group decreased (P Maillard reaction (P reaction in the MRPs. The study shows that the Maillard reaction under appropriate conditions can improve the ACE inhibitory activity of casein hydrolysate effectively. © 2014 Society of Chemical Industry.

  19. Carbonylation as a key reaction in anaerobic acetone activation by Desulfococcus biacutus.

    Science.gov (United States)

    Gutiérrez Acosta, Olga B; Hardt, Norman; Schink, Bernhard

    2013-10-01

    Acetone is activated by aerobic and nitrate-reducing bacteria via an ATP-dependent carboxylation reaction to form acetoacetate as the first reaction product. In the activation of acetone by sulfate-reducing bacteria, acetoacetate has not been found to be an intermediate. Here, we present evidence of a carbonylation reaction as the initial step in the activation of acetone by the strictly anaerobic sulfate reducer Desulfococcus biacutus. In cell suspension experiments, CO was found to be a far better cosubstrate for acetone activation than CO2. The hypothetical reaction product, acetoacetaldehyde, is extremely reactive and could not be identified as a free intermediate. However, acetoacetaldehyde dinitrophenylhydrazone was detected by mass spectrometry in cell extract experiments as a reaction product of acetone, CO, and dinitrophenylhydrazine. In a similar assay, 2-amino-4-methylpyrimidine was formed as the product of a reaction between acetoacetaldehyde and guanidine. The reaction depended on ATP as a cosubstrate. Moreover, the specific activity of aldehyde dehydrogenase (coenzyme A [CoA] acylating) tested with the putative physiological substrate was found to be 153 ± 36 mU mg(-1) protein, and its activity was specifically induced in extracts of acetone-grown cells. Moreover, acetoacetyl-CoA was detected (by mass spectrometry) after the carbonylation reaction as the subsequent intermediate after acetoacetaldehyde was formed. These results together provide evidence that acetoacetaldehyde is an intermediate in the activation of acetone by sulfate-reducing bacteria.

  20. Radiolysis of aqueous solutions of nucleosides halogenated at the sugar moiety

    Energy Technology Data Exchange (ETDEWEB)

    Hissung, A; Isildar, M; von Sonntag, C [Max-Planck-Institut fuer Kohlenforschung, Muelheim an der Ruhr (Germany, F.R.). Inst. fuer Strahlenforschung; Witzel, H [Biochemisches Institut der Westfaelischen Wilhelms-Universitaet, Muenster, West Germany

    1981-02-01

    The pulse radiolysis of aqueous solutions of nucleosides halogenated at the sugar moiety (2'-bromo-2'-deoxyuridine 4, 3'-deoxy-3'-iodothymidine 5, 5'-deoxy-5'-iodouridine 6) has been studied. G(Hal) were determined by conductometry varying the experimental conditions (pH, saturation with Ar, N/sub 2/O or air, addition of t-butanol). The results indicate that solvated electrons both add to the nucleobases and eliminate halogen ions from the halogenated sugar moiety. In the case of 4(and possibly of 5) the radical anion of the base transfers (k approximately 10/sup 5/s/sup -1/) an electron to the sugar-bound halogen atom thus cleaving the C-Hal bond. In competition with this reaction there is a protonation of the radical anion of the base by protons and by water. For the latter reaction constant of k = 5 x 10/sup 3/ M/sup -1/s/sup -1/ was estimated. Compound 4 has also been investigated by product analysis after 60-Co-..gamma..-irradiation. In aerated solutions erythrose is formed with a G-value of 0.12. Its precursor radical is the 2'-radical generated from 4 by dissociative electron capture which reacts with O/sub 2/ to the corresponding peroxyl radical. Erythrose is formed after a sequence of reactions, one of which involves the scission of the C-1'-C-2'bond. Under this condition G(HBr) as measured by pulse radiolysis is 0.8. Thus erythrose is formed in 15 per cent yield with respect to its precursor radical. This result is of importance in assessing the precursor radical of a similar product observed in irradiated DNA.

  1. Radiolysis of aqueous solutions of nucleosides halogenated at the sugar moiety

    International Nuclear Information System (INIS)

    Hissung, A.; Isildar, M.; Sonntag, C. von; Witzel, H.

    1981-01-01

    The pulse radiolysis of aqueous solutions of nucleosides halogenated at the sugar moiety (2'-bromo-2'-deoxyuridine 4, 3'-deoxy-3'-iodothymidine 5, 5'-deoxy-5'-iodouridine 6) has been studied. G(Hal) were determined by conductometry varying the experimental conditions (pH, saturation with Ar, N 2 O or air, addition of t-butanol). The results indicate that solvated electrons both add to the nucleobases and eliminate halogen ions from the halogenated sugar moiety. In the case of 4(and possibly of 5) the radical anion of the base transfers (k approximately 10 5 s -1 ) an electron to the sugar-bound halogen atom thus cleaving the C-Hal bond. In competition with this reaction there is a protonation of the radical anion of the base by protons and by water. For the latter reaction constant of k = 5 x 10 3 M -1 s -1 was estimated. Compound 4 has also been investigated by product analysis after 60-Co-γ-irradiation. In aerated solutions erythrose is formed with a G-value of 0.12. Its precursor radical is the 2'-radical generated from 4 by dissociative electron capture which reacts with O 2 to the corresponding peroxyl radical. Erythrose is formed after a sequence of reactions, one of which involves the scission of the C-1'-C-2'bond. Under this condition G(HBr) as measured by pulse radiolysis is 0.8. Thus erythrose is formed in 15 per cent yield with respect to its precursor radical. This result is of importance in assessing the precursor radical of a similar product observed in irradiated DNA. (author)

  2. The dual effects of Maillard reaction and enzymatic hydrolysis on the antioxidant activity of milk proteins.

    Science.gov (United States)

    Oh, N S; Lee, H A; Lee, J Y; Joung, J Y; Lee, K B; Kim, Y; Lee, K W; Kim, S H

    2013-08-01

    The objective of this study was to determine the enhanced effects on the biological characteristics and antioxidant activity of milk proteins by the combination of the Maillard reaction and enzymatic hydrolysis. Maillard reaction products were obtained from milk protein preparations, such as whey protein concentrates and sodium caseinate with lactose, by heating at 55°C for 7 d in sodium phosphate buffer (pH 7.4). The Maillard reaction products, along with untreated milk proteins as controls, were hydrolyzed for 0 to 3h with commercial proteases Alcalase, Neutrase, Protamex, and Flavorzyme (Novozymes, Bagsværd, Denmark). The antioxidant activity of hydrolyzed Maillard reaction products was determined by reaction with 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt, their 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity, and the ability to reduce ferric ions. Further characteristics were evaluated by the o-phthaldialdehyde method and sodium dodecyl sulfate-PAGE. The degree of hydrolysis gradually increased in a time-dependent manner, with the Alcalase-treated Maillard reaction products being the most highly hydrolyzed. Radical scavenging activities and reducing ability of hydrolyzed Maillard reaction products increased with increasing hydrolysis time. The combined products of enzymatic hydrolysis and Maillard reaction showed significantly greater antioxidant activity than did hydrolysates or Maillard reaction products alone. The hydrolyzed Maillard reaction products generated by Alcalase showed significantly higher antioxidant activity when compared with the other protease products and the antioxidant activity was higher for the whey protein concentrate groups than for the sodium caseinate groups. These findings indicate that Maillard reaction products, coupled with enzymatic hydrolysis, could act as potential antioxidants in the pharmaceutical, food, and dairy industries. Copyright © 2013 American Dairy Science Association

  3. The Effect of Sports and Physical Activity on Elderly Reaction Time and Response Time

    Directory of Open Access Journals (Sweden)

    Abdolrahman Khezri

    2014-07-01

    Full Text Available Objectives: Physical activities ameliorate elderly motor and cognitive performance. The aim of this research is to study the effect of sport and physical activity on elderly reaction time and response time. Methods & Materials: The research method is causal-comparative and its statistical population consists of 60 active and non-active old males over 60 years residing at Mahabad city. Reaction time was measured by reaction timer apparatus, made in Takei Company (YB1000 model. Response time was measured via Nelson’s Choice- Response Movement Test. At first, reaction time and then response time was measured. For data analysis, descriptive statistic, K-S Test and One Sample T Test were used Results K-S Test show that research data was parametric. According to the results of this research, physical activity affected reaction time and response time. Results: of T test show that reaction time (P=0.000 and response time (P=0.000 of active group was statistically shorter than non- active group. Conclusion: The result of current study demonstrate that sport and physical activity, decrease reaction and response time via psychomotor and physiological positive changes.

  4. Four groups of new aromatic halogenated disinfection byproducts: effect of bromide concentration on their formation and speciation in chlorinated drinking water.

    Science.gov (United States)

    Pan, Yang; Zhang, Xiangru

    2013-02-05

    Bromide is naturally present in source waters worldwide. Chlorination of drinking water can generate a variety of chlorinated and brominated disinfection byproducts (DBPs). Although substantial efforts have been made to examine the effect of bromide concentration on the formation and speciation of halogenated DBPs, almost all previous studies have focused on trihalomethanes and haloacetic acids. Given that about 50% of total organic halogen formed in chlorination remains unknown, it is still unclear how bromide concentration affects the formation and speciation of the new/unknown halogenated DBPs. In this study, chlorinated drinking water samples with different bromide concentrations were prepared, and a novel approach-precursor ion scan using ultra performance liquid chromatography/electrospray ionization-triple quadrupole mass spectrometry-was adopted for the detection and identification of polar halogenated DBPs in these water samples. With this approach, 11 new putative aromatic halogenated DBPs were identified, and they were classified into four groups: dihalo-4-hydroxybenzaldehydes, dihalo-4-hydroxybenzoic acids, dihalo-salicylic acids, and trihalo-phenols. A mechanism for the formation of the four groups of new aromatic halogenated DBPs was proposed. It was found that increasing the bromide concentration shifted the entire polar halogenated DBPs as well as the four groups of new DBPs from being less brominated to being more brominated; these new aromatic halogenated DBPs might be important intermediate DBPs formed in drinking water chlorination. Moreover, the speciation of the four groups of new DBPs was modeled: the speciation patterns of the four groups of new DBPs well matched those determined from the model equations, and the reactivity differences between HOBr and HOCl in reactions forming the four groups of new DBPs were larger than those in reactions forming trihalomethanes and haloacetic acids.

  5. Enabling nucleophilic substitution reactions of activated alkyl fluorides through hydrogen bonding.

    Science.gov (United States)

    Champagne, Pier Alexandre; Pomarole, Julien; Thérien, Marie-Ève; Benhassine, Yasmine; Beaulieu, Samuel; Legault, Claude Y; Paquin, Jean-François

    2013-05-03

    It was discovered that the presence of water as a cosolvent enables the reaction of activated alkyl fluorides for bimolecular nucleophilic substitution reactions. DFT calculations show that activation proceeds through stabilization of the transition structure by a stronger F···H2O interaction and diminishing C-F bond elongation, and not simple transition state electrostatic stabilization. Overall, the findings put forward a distinct strategy for C-F bond activation through H-bonding.

  6. N-Chloro and N-bromosaccharins: valuable reagents for halogenation of electron rich aromatics and cohalogenation of alkenes

    Directory of Open Access Journals (Sweden)

    Souza Soraia P. L. de

    2003-01-01

    Full Text Available N-Chloro- and N-bromosaccharins react with electron rich aromatic compounds (anisole, acetanilide, N,N-dimethylaniline producing halogenated compounds. The reaction with N-bromosaccharin gives para- substituted compounds only, whereas N-chlorosaccharin produces orto and para mixtures (para isomer predominantly, ca. 4-5 : 1. The reactions of the N-halosaccharins with alkenes (cyclohexene, styrene, a-methylstyrene, and 1-hexene give the corresponding halohydrins.

  7. High-temperature peaks of thermostimulated luminescence in the ammonium halogens

    International Nuclear Information System (INIS)

    Kim, L.M.; Musenova, Eh.K.; Mukhamedrakhimov, K.U.

    2003-01-01

    The ammonium halogen crystals (AHC) are the close analogs of the alkali halogen crystals by the type of chemical bonds and crystal lattice structure. The ammonium halogen after irradiation by X-rays within 80-300 K range have two peaks of thermo-stimulation luminescence. Its maximums in dependence of anions type are in the 110-120 K and 170-180 K ranges. The first range is related with activation of auto-localized holes migration, and the second one - with the NH 3 + defects decay. Experimentally is established, that the pure ammonium halogens have memory about the previous irradiation at heating up to 300 K. After repeat irradiation the recombination luminescence high-temperature peak's shoulder is appearing. The second luminescence peak's shoulder revealing does not depend on the impurity center nature. It is known, that in the AHC there is the next thermo-stimulation luminescence peak within 340-360 K. The thermal annealing of this peak leads to the memory effect disappearance. So, the observing phenomenon is related with own defect of the matrix in the cation sublattice. Experimentally is established, that at a room temperature the AHC memorizing about previous irradiation during 20 h

  8. Halogenation of Hydraulic Fracturing Additives in the Shale Well Parameter Space

    Science.gov (United States)

    Sumner, A. J.; Plata, D.

    2017-12-01

    Horizontal Drilling and Hydraulic fracturing (HDHF) involves the deep-well injection of a `fracking fluid' composed of diverse and numerous chemical additives designed to facilitate the release and collection of natural gas from shale plays. The potential impacts of HDHF operations on water resources and ecosystems are numerous, and analyses of flowback samples revealed organic compounds from both geogenic and anthropogenic sources. Furthermore, halogenated chemicals were also detected, and these compounds are rarely disclosed, suggesting the in situ halogenation of reactive additives. To test this transformation hypothesis, we designed and operated a novel high pressure and temperature reactor system to simulate the shale well parameter space and investigate the chemical reactivity of twelve commonly disclosed and functionally diverse HDHF additives. Early results revealed an unanticipated halogenation pathway of α-β unsaturated aldehyde, Cinnamaldehyde, in the presence of oxidant and concentrated brine. Ongoing experiments over a range of parameters informed a proposed mechanism, demonstrating the role of various shale-well specific parameters in enabling the demonstrated halogenation pathway. Ultimately, these results will inform a host of potentially unintended interactions of HDHF additives during the extreme conditions down-bore of a shale well during HDHF activities.

  9. Mercury and halogens in coal: Chapter 2

    Science.gov (United States)

    Kolker, Allan; Quick, Jeffrey C.; Granite, Evan J.; Pennline, Henry W.; Senior, Constance L.

    2014-01-01

    Apart from mercury itself, coal rank and halogen content are among the most important factors inherent in coal that determine the proportion of mercury captured by conventional controls during coal combustion. This chapter reviews how mercury in coal occurs, gives available concentration data for mercury in U.S. and international commercial coals, and provides an overview of the natural variation in halogens that influence mercury capture. Three databases, the U.S. Geological Survey coal quality (USGS COALQUAL) database for in-ground coals, and the 1999 and 2010 U.S. Environmental Protection Agency (EPA) Information Collection Request (ICR) databases for coals delivered to power stations, provide extensive results for mercury and other parameters that are compared in this chapter. In addition to the United States, detailed characterization of mercury is available on a nationwide basis for China, whose mean values in recent compilations are very similar to the United States in-ground mean of 0.17 ppm mercury. Available data for the next five largest producers (India, Australia, South Africa, the Russian Federation, and Indonesia) are more limited and with the possible exceptions of Australia and the Russian Federation, do not allow nationwide means for mercury in coal to be calculated. Chlorine in coal varies as a function of rank and correspondingly, depth of burial. As discussed elsewhere in this volume, on a proportional basis, bromine is more effective than chlorine in promoting mercury oxidation in flue gas and capture by conventional controls. The ratio of bromine to chlorine in coal is indicative of the proportion of halogens present in formation waters within a coal basin. This ratio is relatively constant except in coals that have interacted with deep-basin brines that have reached halite saturation, enriching residual fluids in bromine. Results presented here help optimize mercury capture by conventional controls and provide a starting point for

  10. Pneumatic tool torque reaction: reaction forces, displacement, muscle activity and discomfort in the hand-arm system.

    Science.gov (United States)

    Kihlberg, S; Kjellberg, A; Lindbeck, L

    1993-06-01

    Reaction forces, hand-arm displacement, muscle activity and discomfort ratings were studied during the securing of threaded fasteners with three angle nutrunners with different shut-off mechanisms, but with the same spindle torque (72-74 Nm). The three tools were tested according to the method specified in ISO 6544. One of the tools had an almost instantaneous shut-off. Another had a more slowly declining torque curve. For the third tool the maximum torque was maintained for a while before shut-off. Twelve male subjects participated in the study. A force platform measured the reaction force between the subject and the floor. The option of the hand-arm system and the shoulder was measured with an optoelectronic measuring system. The muscle activity (EMG) in six muscles in the arm and shoulder was measured with surface electrodes. Significant differences in the arm movements and ground reaction forces were found between the three tools. The smallest values were found with the fast shut-off tool while the delayed shut-off tool caused the largest values. The EMG measures gave inconsistent response patterns. Discomfort ratings were highly correlated with the time for which the tool torque exceeded 90% of peak preset torque, but the time for which the tool torque exceeded 90% of peak calculated by the method specified in ISO 6544. Nutrunners with a shut-off mechanism that causes a slowly decreasing torque or a torque that is maintained for a while before shut-off should be avoided. If no substitutes are available, then a torque reaction bar should be mounted on the tool.

  11. Review of activities concerning sodium water reaction in LMFBR

    International Nuclear Information System (INIS)

    Rajput, A.K.

    1984-01-01

    This paper presents a review of activities concerning safety engineering programme for steam generators of FBT reactor in India. Leak rate and its effect and leak detection system are briefly discussed

  12. FIELD SCREENING FOR HALOGENATED VOLATILE ORGANIC COMPOUNDS

    Energy Technology Data Exchange (ETDEWEB)

    John F. Schabron; Joseph F. Rovani, Jr.; Theresa M. Bomstad

    2003-07-01

    Western Research Institute (WRI) is continuing work toward the development of new screening methodology and a test kit to measure halogenated volatile organic compounds (VOCs) in the field. Heated diode and corona discharge sensors are commonly used to detect leaks of refrigerants from air conditioners, freezers, and refrigerators. They are both selective to the presence of halogens. In prior work, the devices were tested for response to carbon tetrachloride, heptane, toluene, and water vapors. In the current work, sensor response was evaluated with sixteen halogenated VOCs relative to carbon tetrachloride. The results show that the response of the various chlorinated VOCs is within an order of magnitude of the response to carbon tetrachloride for each of the sensors. Thus, for field screening a single response factor can be used. Both types of leak detectors are being further modified to provide an on-board LCD signal readout, which is related to VOC concentration. The units will be fully portable and will operate with 115-V line or battery power. Signal background, noise level, and response data on the Bacharach heated diode detector and the TIF corona discharge detector show that when the response curves are plotted against the log of concentration, the plot is linear to the upper limit for the particular unit, with some curvature at lower levels. When response is plotted directly against concentration, the response is linear at the low end and is curved at the high end. The dynamic ranges for carbon tetrachloride of the two devices from the lower detection limit (S/N=2) to signal saturation are 4-850 vapor parts per million (vppm) for the corona discharge unit and 0.01-70 vppm for the heated diode unit. Additional circuit modifications are being made to lower the detection limit and increase the dynamic response range of the corona discharge unit. The results indicate that both devices show potential utility for future analytical method development work toward

  13. Boiling Heat Transfer to Halogenated Hydrocarbon Refrigerants

    Science.gov (United States)

    Yoshida, Suguru; Fujita, Yasunobu

    The current state of knowledge on heat transfer to boiling refrigerants (halogenated hydrocarbons) in a pool and flowing inside a horizontal tube is reviewed with an emphasis on information relevant to the design of refrigerant evaporators, and some recommendations are made for future research. The review covers two-phase flow pattern, heat transfer characteristics, correlation of heat transfer coefficient, influence of oil, heat transfer augmentation, boiling from tube-bundle, influence of return bend, burnout heat flux, film boiling, dryout and post-dryout heat transfer.

  14. Scientific conferences: A big hello to halogen bonding

    Science.gov (United States)

    Erdelyi, Mate

    2014-09-01

    Halogen bonding connects a wide range of subjects -- from materials science to structural biology, from computation to crystal engineering, and from synthesis to spectroscopy. The 1st International Symposium on Halogen Bonding explored the state of the art in this fast-growing field of research.

  15. 40 CFR 721.8900 - Substituted halogenated pyridinol, alkali salt.

    Science.gov (United States)

    2010-07-01

    ..., alkali salt. 721.8900 Section 721.8900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.8900 Substituted halogenated pyridinol, alkali salt. (a) Chemical... as substituted halogenated pyridinols, alkali salts (PMNs P-88-1271 and P-88-1272) are subject to...

  16. Reconciliation of Halogen-Induced Ozone Loss with the Total-Column Ozone Record

    Science.gov (United States)

    Shepherd, T. G.; Plummer, D. A.; Scinocca, J. F.; Hegglin, M. I.; Fioletov, V. E.; Reader, M. C.; Remsberg, E.; von Clarmann, T.; Wang, H. J.

    2014-01-01

    The observed depletion of the ozone layer from the 1980s onwards is attributed to halogen source gases emitted by human activities. However, the precision of this attribution is complicated by year-to-year variations in meteorology, that is, dynamical variability, and by changes in tropospheric ozone concentrations. As such, key aspects of the total-column ozone record, which combines changes in both tropospheric and stratospheric ozone, remain unexplained, such as the apparent absence of a decline in total-column ozone levels before 1980, and of any long-term decline in total-column ozone levels in the tropics. Here we use a chemistry-climate model to estimate changes in halogen-induced ozone loss between 1960 and 2010; the model is constrained by observed meteorology to remove the eects of dynamical variability, and driven by emissions of tropospheric ozone precursors to separate out changes in tropospheric ozone. We show that halogen-induced ozone loss closely followed stratospheric halogen loading over the studied period. Pronounced enhancements in ozone loss were apparent in both hemispheres following the volcanic eruptions of El Chichon and, in particular, Mount Pinatubo, which significantly enhanced stratospheric aerosol loads. We further show that approximately 40% of the long-term non-volcanic ozone loss occurred before 1980, and that long-term ozone loss also occurred in the tropical stratosphere. Finally, we show that halogeninduced ozone loss has declined by over 10% since stratospheric halogen loading peaked in the late 1990s, indicating that the recovery of the ozone layer is well underway.

  17. Chromatographic resolution of closely related species in pharmaceutical chemistry: dehalogenation impurities and mixtures of halogen isomers.

    Science.gov (United States)

    Regalado, Erik L; Zhuang, Ping; Chen, Yadan; Makarov, Alexey A; Schafer, Wes A; McGachy, Neil; Welch, Christopher J

    2014-01-07

    In recent years, the use of halogen-containing molecules has proliferated in the pharmaceutical industry, where the incorporation of halogens, especially fluorine, has become vitally important for blocking metabolism and enhancing the biological activity of pharmaceuticals. The chromatographic separation of halogen-containing pharmaceuticals from associated isomers or dehalogenation impurities can sometimes be quite difficult. In an attempt to identify the best current tools available for addressing this important problem, a survey of the suitability of four chromatographic method development platforms (ultra high-performance liquid chromatography (UHPLC), core shell HPLC, achiral supercritical fluid chromatography (SFC) and chiral SFC) for separating closely related mixtures of halogen-containing pharmaceuticals and their dehalogenated isosteres is described. Of the 132 column and mobile phase combinations examined for each mixture, a small subset of conditions were found to afford the best overall performance, with a single UHPLC method (2.1 × 50 mm, 1.9 μm Hypersil Gold PFP, acetonitrile/methanol based aqueous eluents containing either phosphoric or perchloric acid with 150 mM sodium perchlorate) affording excellent separation for all samples. Similarly, a survey of several families of closely related halogen-containing small molecules representing the diversity of impurities that can sometimes be found in purchased starting materials for synthesis revealed chiral SFC (Chiralcel OJ-3 and Chiralpak IB, isopropanol or ethanol with 25 mM isobutylamine/carbon dioxide) as well as the UHPLC (2.1 × 50 mm, 1.8 μm ZORBAX RRHD Eclipse Plus C18 and the Gold PFP, acetonitrile/methanol based aqueous eluents containing phosphoric acid) as preferred methods.

  18. Generalization of the Activated Complex Theory of Reaction Rates. I. Quantum Mechanical Treatment

    Science.gov (United States)

    Marcus, R. A.

    1964-01-01

    In its usual form activated complex theory assumes a quasi-equilibrium between reactants and activated complex, a separable reaction coordinate, a Cartesian reaction coordinate, and an absence of interaction of rotation with internal motion in the complex. In the present paper a rate expression is derived without introducing the Cartesian assumption. The expression bears a formal resemblance to the usual one and reduces to it when the added assumptions of the latter are introduced.

  19. [Near infrared light irradiator using halogen lamp].

    Science.gov (United States)

    Ide, Yasuo

    2012-07-01

    The practical electric light bulb was invented by Thomas Alva Edison in 1879. Halogen lamp is the toughest and brightest electric light bulb. With light filter, it is used as a source of near infrared light. Super Lizer and Alphabeam are made as near infrared light irradiator using halogen lamp. The light emmited by Super Lizer is linear polarized near infrared light. The wave length is from 600 to 1,600 nm and strongest at about 1,000 nm. Concerning Super Lizer, there is evidence of analgesic effects and normalization of the sympathetic nervous system. Super Lizer has four types of probes. SG type is used for stellate ganglion irradiation. B type is used for narrow area irradiation. C and D types are for broad area irradiation. The output of Alphabeam is not polarized. The wave length is from 700 to 1,600 nm and the strongest length is about 1,000nm. Standard attachment is used for spot irradiation. Small attachment is used for stellate ganglion irradiation. Wide attachment is used for broad area irradiation. The effects of Alphabeam are thought to be similar to that of Super Lizer.

  20. Model study of multiphase DMS oxidation with a focus on halogens

    Directory of Open Access Journals (Sweden)

    R. von Glasow

    2004-01-01

    Full Text Available We studied the oxidation of dimethylsulfide (DMS in the marine boundary layer (MBL with a one-dimensional numerical model and focused on the influence of halogens. Our model runs show that there is still significant uncertainty about the end products of the DMS addition pathway, which is especially caused by uncertainty in the product yield of the reaction of the intermediate product methyl sulfinic acid (MSIA with OH. BrO strongly increases the importance of the addition branch in the oxidation of DMS even when present at mixing ratios smaller than 0.5pmol mol-1. The inclusion of halogen chemistry leads to higher DMS oxidation rates and smaller DMS to SO2 conversion efficiencies. The DMS to SO2 conversion efficiency is also drastically reduced under cloudy conditions. In cloud-free model runs between 5 and 15% of the oxidized DMS reacts further to particulate sulfur, in cloudy runs this fraction is almost 100%. Sulfate production by HOClaq and HOBraq is important in cloud droplets even for small Br- deficits and related small gas phase halogen concentrations. In general, more particulate sulfur is formed when halogen chemistry is included. A possible enrichment of HCO3- in fresh sea salt aerosol would increase pH values enough to make the reaction of S(IV* (=SO2,aq+HSO3-+SO32- with O3 dominant for sulfate production. It leads to a shift from methyl sulfonic acid (MSA to non-sea salt sulfate (nss-SO42- production but increases the total nss-SO42- only somewhat because almost all available sulfur is already oxidized to particulate sulfur in the base scenario. We discuss how realistic this is for the MBL. We found the reaction MSAaq+OH to contribute about 10% to the production of nss-SO42- in clouds. It is unimportant for cloud-free model runs. Overall we find that the presence of halogens leads to processes that decrease the albedo of stratiform clouds in the MBL.

  1. Aligned carbon nanotube with electro-catalytic activity for oxygen reduction reaction

    Science.gov (United States)

    Liu, Di-Jia; Yang, Junbing; Wang, Xiaoping

    2010-08-03

    A catalyst for an electro-chemical oxygen reduction reaction (ORR) of a bundle of longitudinally aligned carbon nanotubes having a catalytically active transition metal incorporated longitudinally in said nanotubes. A method of making an electro-chemical catalyst for an oxygen reduction reaction (ORR) having a bundle of longitudinally aligned carbon nanotubes with a catalytically active transition metal incorporated throughout the nanotubes, where a substrate is in a first reaction zone, and a combination selected from one or more of a hydrocarbon and an organometallic compound containing an catalytically active transition metal and a nitrogen containing compound and an inert gas and a reducing gas is introduced into the first reaction zone which is maintained at a first reaction temperature for a time sufficient to vaporize material therein. The vaporized material is then introduced to a second reaction zone maintained at a second reaction temperature for a time sufficient to grow longitudinally aligned carbon nanotubes over the substrate with a catalytically active transition metal incorporated throughout the nanotubes.

  2. Structures and anti-inflammatory properties of 4-halogenated -mofebutazones

    Science.gov (United States)

    Reichelt, Hendrik; Paradies, Henrich H.

    2018-02-01

    The crystal structures of the 4-halogenated (hal: F, Cl, Br)-4-butyl-1-phenyl-1,3-pyrolidine-dione (mofebutazone) are determined, and compared with their solution structures. The racemic 4-halogenated mofebutazone approximants crystallize in a monoclinic space group with four molecules in the unit cell. The 4-hal-mofebutazone molecules reveal strong hydrogen bonding between the hydrogen atom located at the N-2 nitrogen atom and a carbonyl oxygen atom of an adjacent 4-hal-mofebutazone molecule. The hydrogen bond angle for 4-Br-mifebutazone N (2)sbnd H (1)⋯O (1) is 173(3) °, so that the hydrogen bond is essentially linear indicating an infinite chain hydrogen bond network. The 3d and 2d structures are stabilized by π-π and σ-π interactions, short intermolecular distances, and apolar forces between adjacently stacked phenyl rings. Small-angle-X-ray scattering (SAXS) experiments and osmometric measurements reveal the presence of dimers for the 4-hal-mofebutazone molecules. Molecular simulations indicate similar solution structure factors for the 4-hal-mofebutazones solutions, S(Q), and in the solid state. There is a strong indication that the [1,1,0], [1,0,0], and [1,0,0] periodicities of the 4-Brsbnd , 4-Clsbnd and 4-F-mofebutazone in the crystalline solid state were also present in the solution phase. The biochemical and cellular activities of the different 4-hal-mofebutazones were monitored by the magnitude of their inhibition of the PGE2 biosynthesis through the cyclo-oxygenase (COX-1) in macrophages, and on the inhibition of LTD4 (5-lipoxygenase) in polymorphonuclear leukocytes.

  3. Protection of halogenated DNA from strand breakage and sister-chromatid exchange induced by the topoisomerase I inhibitor camptothecin

    International Nuclear Information System (INIS)

    Orta, Manuel Luis; Mateos, Santiago; Cantero, Gloria; Wolff, Lisa J.; Cortes, Felipe

    2008-01-01

    The fundamental nuclear enzyme DNA topoisomerase I (topo I), cleaves the double-stranded DNA molecule at preferred sequences within its recognition/binding sites. We have recently reported that when cells incorporate halogenated nucleosides analogues of thymidine into DNA, it interferes with normal chromosome segregation, as shown by an extraordinarily high yield of endoreduplication, and results in a protection against DNA breakage induced by the topo II poison m-AMSA [F. Cortes, N. Pastor, S. Mateos, I. Dominguez, The nature of DNA plays a role in chromosome segregation: endoreduplication in halogen-substituted chromosomes, DNA Repair 2 (2003) 719-726; G. Cantero, S. Mateos, N. Pastor; F. Cortes, Halogen substitution of DNA protects from poisoning of topoisomerase II that results in DNA double-strand breaks (DSBs), DNA Repair 5 (2006) 667-674]. In the present investigation, we have assessed whether the presence of halogenated nucleosides in DNA diminishes the frequency of interaction of topo I with DNA and thus the frequency with which the stabilisation of cleavage complexes by the topo I poison camptothecin (CPT) takes place, in such a way that it protects from chromosome breakage and sister-chromatid exchange. This protective effect is shown to parallel a loss in halogen-substituted cells of the otherwise CPT-increased catalytic activity bound to DNA

  4. Activation of generalised inflammatory reaction following electrical cardioversion.

    Science.gov (United States)

    Gajek, Jacek; Zyśko, Dorota; Mysiak, Andrzej; Mazurek, Walentyna

    2004-09-01

    Restoration of sinus rhythm in patients with atrial fibrillation (AF) is associated with an increased risk of thrombo-embolic complications due to delayed return of the left atrial and left atrial appendage systolic function. Direct current cardioversion (DC), used for AF termination, may cause myocardial injury and subsequent activation of inflammatory response. A C-reactive protein (CRP) is a non-specific marker of inflammation. To examine the effects of external DC of AF or atrial flutter (AFlut) on inflammatory processes. The study group consisted of 35 patients (20 females and 15 males, mean age 67.9+/-9.7 years, range 46-83 years) with paroxysmal or persistent AF/AFlut who underwent elective DC. CRP plasma concentration was measured before and 24 hours after DC. The mean total DC energy was 431.2 J. CRP plasma concentration increased significantly following DC - from 3.9+/-3.4 ng/ml before DC to 7.2+/-6.7 ng/ml after DC (p<0.0001). CRP level correlated with body mass index (r=0.34, p<0.05), however, this correlation became non-significant after inclusion of the presence of diabetes into the statistical model. There was also a positive correlation between CRP values before and after DC (r=0.72, p<0.0001). No correlation between CRP and gender, total power of DC nor the number of DC shocks was detected. External DC of AF/Aflut causes activation of inflammatory processes measured as a significant increase in the CRP plasma concentration.

  5. Development of an enzymatic fiber-optic biosensor for detection of halogenated hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Bidmanova, Sarka; Chaloupkova, Radka; Damborsky, Jiri; Prokop, Zbynek [Masaryk University, Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment, Faculty of Science, Brno (Czech Republic)

    2010-11-15

    An enzyme-based biosensor was developed by co-immobilization of purified enzyme haloalkane dehalogenase (EC 3.8.1.5) and a fluorescence pH indicator on the tip of an optical fiber. Haloalkane dehalogenase catalyzes hydrolytic dehalogenation of halogenated aliphatic hydrocarbons, which is accompanied by a pH change influencing the fluorescence of the indicator. The pH sensitivity of several fluorescent dyes was evaluated. The selected indicator 5(6)-carboxyfluorescein was conjugated with bovine serum albumin and its reaction was tested under different immobilization conditions. The biosensor was prepared by cross-linking of the conjugate in tandem with haloalkane dehalogenase using glutaraldehyde vapor. The biosensor, stored for 24 h in 50 mM phosphate buffer (pH 7.5) prior to measurement, was used after 15 min of equilibration, the halogenated compound was added, and the response was monitored for 30 min. Calibration of the biosensor with 1,2-dibromoethane and 3-chloro-2-(chloromethyl)-1-propene showed an excellent linear dependence, with detection limits of 0.133 and 0.014 mM, respectively. This biosensor provides a new tool for continuous in situ monitoring of halogenated environmental pollutants. (orig.)

  6. A simple and automated sample preparation system for subsequent halogens determination: Combustion followed by pyrohydrolysis.

    Science.gov (United States)

    Pereira, L S F; Pedrotti, M F; Vecchia, P Dalla; Pereira, J S F; Flores, E M M

    2018-06-20

    A simple and automated system based on combustion followed by a pyrohydrolysis reaction was proposed for further halogens determination. This system was applied for digestion of soils containing high (90%) and also low (10%) organic matter content for further halogens determination. The following parameters were evaluated: sample mass, use of microcrystalline cellulose and heating time. For analytes absorption, a diluted alkaline solution (6 mL of 25 mmol L -1  NH 4 OH) was used in all experiments. Up to 400 mg of soil with high organic matter content and 100 mg of soil with low organic matter content (mixed with 400 mg of cellulose) could be completely digested using the proposed system. Quantitative results for all halogens were obtained using less than 12 min of sample preparation step (about 1.8 min for sample combustion and 10 min for pyrohydrolysis). The accuracy was evaluated using a certified reference material of coal and spiked samples. No statistical difference was observed between the certified values and results obtained by the proposed method. Additionally, the recoveries obtained using spiked samples were in the range of 98-103% with relative standard deviation values lower than 5%. The limits of quantification obtained for F, Cl, Br and I for soil with high (400 mg of soil) and low (100 mg of soil) organic matter were in the range of 0.01-2 μg g -1 and 0.07-59 μg g -1 , respectively. The proposed system was considered as a simple and suitable alternative for soils digestion for further halogens determination by ion chromatography and inductively coupled plasma mass spectrometry techniques. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Spectrographic determination of traces of halogens; Dosage de traces d'halogenes par la methode spectrographique

    Energy Technology Data Exchange (ETDEWEB)

    Melamed, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    Hollow cathode source is employed for determining traces of halogens (fluorine - chlorine) in the uranium oxide U{sub 3}O{sub 8} qualitatively, detection of at least 40 ppm of fluorine, as alkali fluoride and 125 ppm of chlorine, is possible. (author) [French] Un tube a decharge a cathode creuse a ete utilise pour la determination spectrographique des halogenes (fluor - chlore) presentes a l'etat de traces dans un oxyde d'uranium U{sub 3}O{sub 8}. On a pu deceler qualitativement des teneurs de 40 ppm de fluor sous forme de fluorures alcalins. En ce qui concerne le chlore, la plus faible teneur decelee a ete de 125 ppm. (auteur)

  8. Independent Evolution of Six Families of Halogenating Enzymes.

    Science.gov (United States)

    Xu, Gangming; Wang, Bin-Gui

    2016-01-01

    Halogenated natural products are widespread in the environment, and the halogen atoms are typically vital to their bioactivities. Thus far, six families of halogenating enzymes have been identified: cofactor-free haloperoxidases (HPO), vanadium-dependent haloperoxidases (V-HPO), heme iron-dependent haloperoxidases (HI-HPO), non-heme iron-dependent halogenases (NI-HG), flavin-dependent halogenases (F-HG), and S-adenosyl-L-methionine (SAM)-dependent halogenases (S-HG). However, these halogenating enzymes with similar biological functions but distinct structures might have evolved independently. Phylogenetic and structural analyses suggest that the HPO, V-HPO, HI-HPO, NI-HG, F-HG, and S-HG enzyme families may have evolutionary relationships to the α/β hydrolases, acid phosphatases, peroxidases, chemotaxis phosphatases, oxidoreductases, and SAM hydroxide adenosyltransferases, respectively. These halogenating enzymes have established sequence homology, structural conservation, and mechanistic features within each family. Understanding the distinct evolutionary history of these halogenating enzymes will provide further insights into the study of their catalytic mechanisms and halogenation specificity.

  9. Experimental and computational evidence of halogen bonds involving astatine

    Science.gov (United States)

    Guo, Ning; Maurice, Rémi; Teze, David; Graton, Jérôme; Champion, Julie; Montavon, Gilles; Galland, Nicolas

    2018-03-01

    The importance of halogen bonds—highly directional interactions between an electron-deficient σ-hole moiety in a halogenated compound and an acceptor such as a Lewis base—is being increasingly recognized in a wide variety of fields from biomedicinal chemistry to materials science. The heaviest halogens are known to form stronger halogen bonds, implying that if this trend continues down the periodic table, astatine should exhibit the highest halogen-bond donating ability. This may be mitigated, however, by the relativistic effects undergone by heavy elements, as illustrated by the metallic character of astatine. Here, the occurrence of halogen-bonding interactions involving astatine is experimentally evidenced. The complexation constants of astatine monoiodide with a series of organic ligands in cyclohexane solution were derived from distribution coefficient measurements and supported by relativistic quantum mechanical calculations. Taken together, the results show that astatine indeed behaves as a halogen-bond donor—a stronger one than iodine—owing to its much more electrophilic σ-hole.

  10. 13C separation by IRMPD of halogenated difluoromethanes

    International Nuclear Information System (INIS)

    Ma Peihua; Chen Guancheng; Wu Bin; Liu Julin; Jing Yan; Chu Minxiong; Arai, Shigeyoshi.

    1995-01-01

    Isotopically-selective consecutive two-stage infrared multiphoton dissociation (IRMPD) of halogenated difluoromethanes in the presence of scavengers produces carbon-13 over 95 %. The reaction mechanism for the IRMPD of mixture of CHClF 2 and HI can be explained by a series of first-order dissociation reactions and followed radical-scavenger reactions occurred in a continuous irradiation procedure. Furthermore, 13 C enrichment at laboratory scaling-up level by the 13 C selective IRMPD of CHClF 2 /Br 2 mixture has been investigated in a flow reactor. The 13 C production rates, 13 C atomic fractions in the CBr 2 F 2 products and 13 C depletions in the CHClF 2 reactants at different flow rates and laser repetition frequencies were examined to optimize the parameters suitable for large-scale production of carbon isotope. The data obtained from the flow tests demonstrated a 40 mg h -1 production rate for CB 2 F 2 at 65 % carbon-13 by using a 40 W (4J, 10 Hz) laser beam focused with a lens of focal length 120 cm. If a reliable TEA CO 2 laser can be operated with 100 W (10 J, 10 Hz) output, the production rate of CBr 2 F 2 for carbon-13 at 60 % can attain 200 mg h -1 . The measurements of spatial profile of focused laser beam imply a 2 g h -1 production rate for the 60 % carbon-13 product for an incident power of 200 W (20 J, 10 Hz). (author)

  11. Ozone Depletion in Tropospheric Volcanic Plumes: From Halogen-Poor to Halogen-Rich Emissions

    Directory of Open Access Journals (Sweden)

    Tjarda J. Roberts

    2018-02-01

    Full Text Available Volcanic halogen emissions to the troposphere undergo a rapid plume chemistry that destroys ozone. Quantifying the impact of volcanic halogens on tropospheric ozone is challenging, only a few observations exist. This study presents measurements of ozone in volcanic plumes from Kīlauea (HI, USA, a low halogen emitter. The results are combined with published data from high halogen emitters (Mt Etna, Italy; Mt Redoubt, AK, USA to identify controls on plume processes. Ozone was measured during periods of relatively sustained Kīlauea plume exposure, using an Aeroqual instrument deployed alongside Multi-Gas SO2 and H2S sensors. Interferences were accounted for in data post-processing. The volcanic H2S/SO2 molar ratio was quantified as 0.03. At Halema‘uma‘u crater-rim, ozone was close to ambient in the emission plume (at 10 ppmv SO2. Measurements in grounding plume (at 5 ppmv SO2 about 10 km downwind of Pu‘u ‘Ō‘ō showed just slight ozone depletion. These Kīlauea observations contrast with substantial ozone depletion reported at Mt Etna and Mt Redoubt. Analysis of the combined data from these three volcanoes identifies the emitted Br/S as a strong but non-linear control on the rate of ozone depletion. Model simulations of the volcanic plume chemistry highlight that the proportion of HBr converted into reactive bromine is a key control on the efficiency of ozone depletion. This underlines the importance of chemistry in the very near-source plume on the fate and atmospheric impacts of volcanic emissions to the troposphere.

  12. Complement activation in leprosy: a retrospective study shows elevated circulating terminal complement complex in reactional leprosy.

    Science.gov (United States)

    Bahia El Idrissi, N; Hakobyan, S; Ramaglia, V; Geluk, A; Morgan, B Paul; Das, P Kumar; Baas, F

    2016-06-01

    Mycobacterium leprae infection gives rise to the immunologically and histopathologically classified spectrum of leprosy. At present, several tools for the stratification of patients are based on acquired immunity markers. However, the role of innate immunity, particularly the complement system, is largely unexplored. The present retrospective study was undertaken to explore whether the systemic levels of complement activation components and regulators can stratify leprosy patients, particularly in reference to the reactional state of the disease. Serum samples from two cohorts were analysed. The cohort from Bangladesh included multi-bacillary (MB) patients with (n = 12) or without (n = 46) reaction (R) at intake and endemic controls (n = 20). The cohort from Ethiopia included pauci-bacillary (PB) (n = 7) and MB (n = 23) patients without reaction and MB (n = 15) patients with reaction. The results showed that the activation products terminal complement complex (TCC) (P ≤ 0·01), C4d (P ≤ 0·05) and iC3b (P ≤ 0·05) were specifically elevated in Bangladeshi patients with reaction at intake compared to endemic controls. In addition, levels of the regulator clusterin (P ≤ 0·001 without R; P < 0·05 with R) were also elevated in MB patients, irrespective of a reaction. Similar analysis of the Ethiopian cohort confirmed that, irrespective of a reaction, serum TCC levels were increased significantly in patients with reactions compared to patients without reactions (P ≤ 0·05). Our findings suggests that serum TCC levels may prove to be a valuable tool in diagnosing patients at risk of developing reactions. © 2016 British Society for Immunology.

  13. Effect of halogenated benzenes on acetanilide esterase, acetanilide hydroxylase and procaine esterase in rats.

    Science.gov (United States)

    Carlson, G P; Dziezak, J D; Johnson, K M

    1979-07-01

    1,2,4-Trichlorobenzene, 1,3,5-trichlorobenzene, hexachlorobenzene, 1,2,4-tribromobenzene, 1,3,5-tribromobenzene and hexabromobenzene were compared for their abilities to induce acetanilide esterase, acentailide hydroxylase and procaine esterase. Except for hexabromobenzene all induced acetanilide esterase whereas the hydroxylation of acetanilide was seen only with the fully halogenated benzenes and with 1,3,5-tribromobenzene. Hepatic procaine esterase activity was increased by the three chlorinated benzenes and 1,2,4-tribromobenzene.

  14. Structural study of some halogen oxyfluorides

    International Nuclear Information System (INIS)

    Tantot, Georges.

    1976-12-01

    Some halogen oxyfluorides are studied from a structural point of view by vibrational spectroscopy and nuclear magnetic resonance. Force constant and molecular orbital calculations are added to the experimental data. The pyramidal shape of ClO 2 F under its three physical states is confirmed. In the gas and liquid phases an intermolecular association is observed. A similar interaction takes place in ClOF 3 . ClO 3 F has only a solid state transition above 10K. The structures of ClO 2 F and KBrO 2 F 2 are partly determined. The theoretical calculations are well correlated with the experimental data. They suggest a major influence of the ligands [fr

  15. Microwave activation of palladium nanoparticles for enhanced ethanol electrocatalytic oxidation reaction in alkaline medium

    CSIR Research Space (South Africa)

    Rohwer, MB

    2015-02-01

    Full Text Available in alkaline medium (in terms of high mass activity stability and fast reaction kinetics). The remarkable microwave-induced properties on the Pd catalyst promise to revolutionize the use of microwave for catalyst activation for enhanced heterogeneous catalysis...

  16. Organocatalytic Michael and Friedel–Crafts reactions in enantioselective synthesis of biologically active compounds

    International Nuclear Information System (INIS)

    Maltsev, O V; Beletskaya, Irina P; Zlotin, Sergei G

    2011-01-01

    Recent applications of organocatalytic Michael and Friedel–Crafts reactions in enantioselective synthesis of biologically active compounds: natural products, pharmaceutical agents and plant protection agents are reviewed. The key mechanisms of stereoinduction, types of organocatalysts and reagents used in these reactions are considered. The material is classified according to the type of newly formed bonds incorporating the asymmetric carbon atom, and the information for the most numerous C–C coupling reactions is systematized according to the natures of the electrophile and the nucleophile. The bibliography includes 433 references.

  17. Evaluation of reactor induced (n,p) reactions for activation analysis of titanium in geological materials

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa Garcia, R; Cohen, I M [Comision Nacional de Energia Atomica, Buenos Aires (Argentina)

    1984-05-01

    The possibilities of reactor induced (n,p) reactions as a tool for neutron activation analysis of titanium in geological samples are discussed. The interference of calcium and scandium is experimentally evaluated. Results for Ti, Ca and Sc in GSP-1 and PCC-1 standard rocks are presented. Based on the experimental values, it is concluded that the /sup 47/Ti(n,p)/sup 47/Sc reaction is the most favourable for titanium determination. 11 refs.

  18. Synthesis and electrocatalytic activity towards oxygen reduction reaction of gold-nanostars

    OpenAIRE

    Oyunbileg G; Batnyagt G; Enkhsaruul B; T Takeguchi

    2018-01-01

    The oxygen reduction reaction (ORR) is a characteristic reaction which determines the performance of fuel cells which convert a chemical energy into an electrical energy. Aims of this study are to synthesize Au-based nanostars (AuNSs) and determine their preliminary electro-catalytic activities towards ORR by a rotating-disk electrode method in alkaline electrolyte. The images obtained from a scanning electron microscope (SEM) and a transmission electron microscope (TEM) analyses confirm the ...

  19. Study of reactions induced by the halo nucleus 11Li with the active target MAYA

    International Nuclear Information System (INIS)

    Roger, Th.

    2009-09-01

    Active targets are perfect tools for the study of nuclear reactions induced by very low intensity radioactive ion beams. They also enable the simultaneous study of direct and compound nuclear reactions. The active target MAYA, built at GANIL, has been used to study the reactions induced by a 4.3*A MeV 11 Li beam at the ISAC2 accelerator TRIUMF (Canada). The angular distributions for the elastic scattering and the one and two neutron transfer reaction have been reconstructed. The elastic scattering angular distribution indicates a strong enhancement of the flux absorption with respect to the neighbouring nuclei. From a coupled channel analysis of the two neutron transfer reaction for different three body models, the information on the structure of the halo of the Borromean nucleus 11 Li have been extracted. Meanwhile, the energy dependence of the elastic scattering reaction has been studied, using the active target MAYA as a thick target. The resulting spectrum shows a resonance around 3 MeV centre of mass. This resonance could be an isobaric analog state of 12 Li, observed in 12 Be. R matrix calculations have been performed in order to extract the parameters (spin and parity) of this state. (author)

  20. Negative ion formation in dissociative electron attachment to selected halogen derivatives of propane

    Science.gov (United States)

    Barszczewska, W.; Kocísek, J.; Skalný, J.; Matejcík, V.; Matejcík, S.

    2008-11-01

    Dissociative electron attachment (DEA) to halogenated derivatives of propane: 1-bromo-3-chloropropane, 2-bromo-1-chloropropane, 3-bromo-1,1,1-trichloropropane and 1,3-dibromo-1,1-difluoropropane was studied in the gas phase at ambient temperature using a high resolution crossed electron/molecule beams technique. The negative ions formed via DEA reaction were identified using mass spectrometric technique and the anion yields were measured in the electron energy range from 0 to 10 eV. The absolute partial cross sections for DEA to the molecules were estimated using the relative flow technique.

  1. The kinetics of reductive dehalogenation of a set of halogenated aliphatic hydrocarbons in anaerobic sediment slurries.

    Science.gov (United States)

    Peijnenburg, W; Eriksson, L; de Groot, A; Sjöström, M; Verboom, H

    1998-01-01

    Disappearance rate constants are reported for the reductive transformation of 17 halogenated aliphatic hydrocarbons in anaerobic sediment-water samples. Statistical experimental design in combination with multivariate chemical characterization of their chemical properties was used to select the compounds. Degradation followed pseudo first-order kinetics through at least two half-lives for 15 of the 17 compounds. Of all the compounds investigated, 1,2,3-trichloropropane and dichloromethane were unique in that they were dehalogenated according to zero-order kinetics. Reductive dehalogenation was the sole transformation reaction taking place.

  2. Mid-latitude Ozone Depletion Events Caused by Halogens from the Great Salt Lake in Utah

    Science.gov (United States)

    Fibiger, D. L.; Goldberger, L.; Womack, C.; McDuffie, E. E.; Dube, W. P.; Franchin, A.; Middlebrook, A. M.; Thornton, J. A.; Brown, S. S.

    2017-12-01

    Halogens are highly reactive chemicals and play an important role in atmospheric chemistry. They can be involved in many cycles which influence the oxidizing capacity of the atmosphere, including through destruction of ozone (O3). While the influence of halogens on O3 is well documented in the arctic, there are very few observations of O3 depletion driven by halogens in the mid-latitudes. To date, the most comprehensive study observed co-occurring plumes of BrO and depleted O3 near the Dead Sea in 1997. During the Utah Wintertime Fine Particulate Study (UWFPS) in winter 2017, simultaneous measurements of a comprehensive suite of halogen measurements by I- chemical ionization mass spectrometry and O3 from cavity ring-down spectroscopy, both at 1-second time resolution, were taken on a NOAA Twin Otter Aircraft over the Great Salt Lake and in the surrounding valleys. Many O3 depletion events were observed over the lake with O3 values sometimes below the instrument detection limit of 0.5 ppbv. Corresponding increases in BrO and/or ClO were observed. Many of these events were caused by extremely high levels of halogens (up to 1 ppmv Cl2) emitted from the U.S. Magnesium plant on the edge of the lake. The O3 depletion caused by U.S. Magnesium was usually isolated to a distinct vertical layer, but in other cases O3 depletion was vertically mixed and the origin of halogen activation was not immediately clear. The most complete O3 depletion was observed over the lake, but there were smaller events of a few ppbv observed in the adjacent valleys, including the highly populated Salt Lake Valley, with corresponding plumes of BrO and ClO, due to transport from the lake. Additionally, meteorology played a role in the observed O3 depletion. The strongest O3 depletion was observed during inversion events, when there is a low boundary layer and little mixing out of the air above the lake. During non-inversion conditions, only small depletions were observed, covering a much smaller

  3. Oxygen Reduction Reaction Activity of Platinum Thin Films with Different Densities

    Energy Technology Data Exchange (ETDEWEB)

    Ergul, Busra; Begum, Mahbuba; Kariuki, Nancy; Myers, Deborah J.; Karabacak, Tansel

    2017-08-24

    Platinum thin films with different densities were grown on glassy carbon electrodes by high pressure sputtering deposition and evaluated as oxygen reduction reaction catalysts for polymer electrolyte fuel cells using cyclic voltammetry and rotating disk electrode techniques in aqueous perchloric acid electrolyte. The electrochemically active surface area, ORR mass activity (MA) and specific activity (SA) of the thin film electrodes were obtained. MA and SA were found to be higher for low-density films than for high-density film.

  4. Mesoporous Ruthenium/Ruthenium Oxide Thin Films: Active Electrocatalysts for the Oxygen Evolution Reaction

    DEFF Research Database (Denmark)

    Kibsgaard, Jakob; Hellstern, Thomas R.; Choi, Shin-Jung

    2017-01-01

    We report the first synthesis of a fully contiguous large area supported thin film of highly ordered mesoporous Ru and RuO2 and investigate the electrocatalytic properties towards the oxygen evolution reaction (OER). We find that the nanoscale porous network of these catalysts provides significant...... enhancements in geometric OER activity without any loss in specific activity. This work demonstrates a strategy for engineering materials at the nanoscale that can simultaneously decrease precious metal loading and increase electrode activity....

  5. UARS Halogen Occultation Experiment (HALOE) Level 2 V001

    Data.gov (United States)

    National Aeronautics and Space Administration — The HALOE home page on the WWW is http://haloe.gats-inc.com/home/index.php The Halogen Occultation Experiment (HALOE) on NASA's Upper Atmosphere Research Satellite...

  6. Thermally activated reaction–diffusion-controlled chemical bulk reactions of gases and solids

    Directory of Open Access Journals (Sweden)

    S. Möller

    2015-01-01

    Full Text Available The chemical kinetics of the reaction of thin films with reactive gases is investigated. The removal of thin films using thermally activated solid–gas to gas reactions is a method to in-situ control deposition inventory in vacuum and plasma vessels. Significant scatter of experimental deposit removal rates at apparently similar conditions was observed in the past, highlighting the need for understanding the underlying processes. A model based on the presence of reactive gas in the films bulk and chemical kinetics is presented. The model describes the diffusion of reactive gas into the film and its chemical interaction with film constituents in the bulk using a stationary reaction–diffusion equation. This yields the reactive gas concentration and reaction rates. Diffusion and reaction rate limitations are depicted in parameter studies. Comparison with literature data on tokamak co-deposit removal results in good agreement of removal rates as a function of pressure, film thickness and temperature.

  7. Halogenation dictates the architecture of amyloid peptide nanostructures.

    Science.gov (United States)

    Pizzi, Andrea; Pigliacelli, Claudia; Gori, Alessandro; Nonappa; Ikkala, Olli; Demitri, Nicola; Terraneo, Giancarlo; Castelletto, Valeria; Hamley, Ian W; Baldelli Bombelli, Francesca; Metrangolo, Pierangelo

    2017-07-20

    Amyloid peptides yield a plethora of interesting nanostructures though difficult to control. Here we report that depending on the number, position, and nature of the halogen atoms introduced into either one or both phenylalanine benzene rings of the amyloid β peptide-derived core-sequence KLVFF, four different architectures were obtained in a controlled manner. Our findings demonstrate that halogenation may develop as a general strategy to engineer amyloidal peptide self-assembly and obtain new amyloidal nanostructures.

  8. Synthesis and physical and chemical properties of poly-hydro-aluminates and poly-halogen-aluminates metals of II A group

    International Nuclear Information System (INIS)

    Khudoydodov, B.O.

    1990-01-01

    The purpose of the present work is investigation of conditions and mechanism of passing of formation reactions of aluminum hydrides, poly-hydride-aluminates and poly-halogen-aluminates of alkaline-earth metals and magnesium and studying of their physical and chemical properties

  9. Demonstration of physical phenomenas and scavenging activity from d-psicose and methionine maillard reaction products

    Directory of Open Access Journals (Sweden)

    Arum Tiyas Suminar

    2017-01-01

    Full Text Available Maillard reaction has been well understood as a non-enzymatic reaction between reducing sugars and amino acids to generate the Maillard reaction products (MRPs. This study is aimed to demonstrate the browning intensity, color development, spectra measurements, scavenging activity, and the correlation between browning intensity and scavenging activity of the MRPs generated from D-Psicose and Methionine (Psi-Met at 50℃. The browning intensity of MRPs was investigated based on the absorbance using spectrophotometer at 420 nm, the color development was observed using digital colorimeter to gained L*a*b* value then calculated as browning index, the spectra development was analyzed using spectrophotometer at 190 - 750 nm, and the scavenging activity was determined with ABTS method using spectrophotometer at 734 nm. The browning intensity, color development, and scavenging activity were improved along with the increase in heating process. Based on spectra analysis, MRPs from Psi-Met was initially detected at 21 h and Psi at 24 h of heating treatment, which indicating that Psi-Met have faster and better reaction than Psi during heating process. Positive non-linear and significant correlation between browning intensity and scavenging activity were assigned. This finding may provide beneficial information of D-psicose and MRPs to the next scientific research and to the food industries which applies MRPs in their products.

  10. Ground reaction forces, kinematics, and muscle activations during the windmill softball pitch.

    Science.gov (United States)

    Oliver, Gretchen D; Plummer, Hillary

    2011-07-01

    The aims of the present study were to examine quantitatively ground reaction forces, kinematics, and muscle activations during the windmill softball pitch, and to determine relationships between knee valgus and muscle activations, ball velocity and muscle activation as well as ball velocity and ground reaction forces. It was hypothesized that there would be an inverse relationship between degree of knee valgus and muscle activation, a direct relationship between ground reaction forces and ball velocity, and non-stride leg muscle activations and ball velocity. Ten female windmill softball pitchers (age 17.6 ± 3.47 years, stature 1.67 ± 0.07 m, weight 67.4 ± 12.2 kg) participated. Dependent variables were ball velocity, surface electromyographic (sEMG), kinematic, and kinetic data while the participant was the independent variable. Stride foot contact reported peak vertical forces of 179% body weight. There were positive relationships between ball velocity and ground reaction force (r = 0.758, n = 10, P = 0.029) as well as ball velocity and non-stride leg gluteus maximus (r = 0.851, n = 10, P = 0.007) and medius (r = 0.760, n = 10, P = 0.029) muscle activity, while there was no notable relationship between knee valgus and muscle activation. As the windmill softball pitcher increased ball velocity, her vertical ground reaction forces also increased. Proper conditioning of the lumbopelvic-hip complex, including the gluteals, is essential for injury prevention. From the data presented, it is evident that bilateral strength and conditioning of the gluteal muscle group is salient in the windmill softball pitch as an attempt to decrease incidence of injury.

  11. Quantum Chemical Examination of the Sequential Halogen Incorporation Scheme for the Modeling of Speciation of I/Br/Cl-Containing Trihalomethanes.

    Science.gov (United States)

    Zhang, Chenyang; Li, Maodong; Han, Xuze; Yan, Mingquan

    2018-02-20

    The recently developed three-step ternary halogenation model interprets the incorporation of chlorine, bromine, and iodine ions into natural organic matter (NOM) and formation of iodine-, bromine-, and chlorine-containing trihalomethanes (THMs) based on the competition of iodine, bromine, and chlorine species at each node of the halogenation sequence. This competition is accounted for using the dimensionless ratios (denoted as γ) of kinetic rates of reactions of the initial attack sites or halogenated intermediates with chlorine, bromine, and iodine ions. However, correlations between the model predictions made and mechanistic aspects of the incorporation of halogen species need to be ascertained in more detail. In this study, quantum chemistry calculations were first used to probe the formation mechanism of 10 species of Cl-/Br-/I- THMs. The HOMO energy (E HOMO ) of each mono-, bi-, or trihalomethanes were calculated by B3LYP method in Gaussian 09 software. Linear correlations were found to exist between the logarithms of experimentally determined kinetic preference coefficients γ reported in prior research and, on the other hand, differences of E HOMO values between brominated/iodinated and chlorinated halomethanes. One notable exception from this trend was that observed for the incorporation of iodine into mono- and di-iodinated intermediates. These observations confirm the three-step halogen incorporation sequence and the factor γ in the statistical model. The combined use of quantum chemistry calculations and the ternary sequential halogenation model provides a new insight into the microscopic nature of NOM-halogen interactions and the trends seen in the behavior of γ factors incorporated in the THM speciation models.

  12. A novel reaction catalysed by active carbons production of dichloromethane from phosgene and formaldehyde

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, T A; Stacey, M H

    1984-08-01

    A variety of Activated charcoals have been found to catalyse a reaction between phosgene and formaldehyde. In a continuous flow fluidized bed reactor, the reaction rate reaches a broad maximum near 170/sup 0/C where the selectivity is consistent with the stoichiometry. The reaction proceeds via a strongly adsorbed intermediate which has been identified as chloromethyl chloroformate. This ester is an adduct of formaldehyde and phosgen and forms rapidly above 100/sup 0/C in co-adsorption/desorption experiments. It decomposes rapidly 170/sup 0/C without significant desorption of the intact molecule to give the observed products dichloromethane and carbon dioxide. Under steady-state conditions the rate-determining step is the formation of this ester so that it is normally only present on the surface at low coverages; hence it is not observable in the gas phase. The catalysis is probably due to the presence of polar acid or base sites on the surface of the activated charcoals.

  13. Electronic interactions decreasing the activation barrier for the hydrogen electro-oxidation reaction

    International Nuclear Information System (INIS)

    Santos, Elizabeth; Schmickler, Wolfgang

    2008-01-01

    A unified model for electrochemical electron transfer reactions which explicitly accounts for the electronic structure of the electrode recently proposed by us is applied to the hydrogen oxidation reaction at different metal electrocatalysts. We focus on the changes produced in the transition state (saddle point) as a consequence of the interactions with d-bands. We discuss different empirical correlations between properties of the metal and catalytic activity proposed in the past. We show which role is played by the band structure of the different metals and its interaction with the molecule for decreasing the activation barrier. Finally, we demonstrate why some metals are better electrocatalysts for the hydrogen electro-oxidation reaction than others

  14. Preparation, Characterization, and Catalytic Activity of MoCo/USY Catalyst on Hydrodeoxygenation Reaction of Anisole

    Science.gov (United States)

    Nugrahaningtyas, K. D.; Suharbiansah, R. S. R.; Rahmawati, F.

    2018-03-01

    This research aims to prepare, characterize, and study the catalytic activity of Molybdenum (Mo) and Cobalt (Co) metal with supporting material Ultra Stable Y-Zeolite (USY), to produce catalysts with activity in hydrotreatment reaction and in order to eliminate impurities compounds that containing unwanted groups heteroatoms. The bimetallic catalysts MoCo/USY were prepared by wet impregnation method with weight variation of Co metal 0%, 2%, 4%, 6%, 8%, and Mo metal 8% (w/w), respectively. Activation method of the catalyst included calcination, oxidation, reduction and the crystallinity was characterized using X-ray diffraction (XRD), the acidity of the catalyst was analyzed using Fourier Transform Infrared Spectroscopy (FT-IR) and gravimetry method, minerals present in the catalyst was analyzed using X-Ray Fluorescence (XRF), and surface of the catalyst was analyzed using Surface Area Analyzer (SAA). Catalytic activity test (benzene yield product) of MoCo/USY on hydrodeoxigenation reaction of anisole aimed to determine the effect of Mo-Co/USY for catalytic activity in the reaction hydrodeoxigenation (HDO) anisole. Based on characterization and test of catalytic activity, it is known that catalytic of MoCo/USY 2% (catalyst B) shows best activities with acidity of 10.209 mmol/g, specific area of catalyst of 426.295 m2/g, pore average of 14.135 Å, total pore volume 0.318 cc/g, and total yield of HDO products 6.06%.

  15. The hydration of slag, part 1: reaction models for alkali-activated slag

    NARCIS (Netherlands)

    Chen, Wei; Brouwers, H.J.H.

    2007-01-01

    Reaction models are proposed to quantify the hydration products and to determine the composition of C–S–H from alkali-activated slags (AAS). Products of the slag hydration are first summarized from observations in literature. The main hydration products include C–S–H, hydrotalcite, hydrogarnet, AFm

  16. Deeper Insight into the Diels-Alder Reaction through the Activation Strain Model

    NARCIS (Netherlands)

    Fernandez, Israel; Bickelhaupt, F. Matthias

    2016-01-01

    In this Focus Review, we present the application of the so-called Activation Strain Model of chemical reactivity to the Diels–Alder cycloaddition reaction. To this end, representative recent examples have been selected to illustrate the power of this new computational approach to gain a deeper

  17. Deeper Insight into the Diels-Alder Reaction through the Activation Strain Model

    NARCIS (Netherlands)

    Fernandez, I.; Bickelhaupt, F.M.

    2016-01-01

    The Diels–Alder (DA) cycloaddition reaction has the ability to significantly increase molecular complexity regioselectively and stereospecifically in a single synthetic step. In this review it is discussed how the activation strain model of chemical reactivity reveals the physical factors that

  18. Synthesis of E-Diiodoalkenes: 1,2-diaminobenzene Activated Reaction of Alkvnes With iodine

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Article history:ReceivedReceived in revised formAcceptedAvailable online 1,2-diaminobenzene was found to active the reaction of iodine with terminal alkynes and E-diiodoalkenes were obtained in good to excellent yields.2009 Elsevier Ltd. All rights reserved.

  19. Pi-activated alcohols: an emerging class of alkylating agents for catalytic Friedel-Crafts reactions.

    Science.gov (United States)

    Bandini, Marco; Tragni, Michele

    2009-04-21

    The direct functionalization of aromatic compounds, via Friedel-Crafts alkylation reactions with alcohols, is one of the cornerstones in organic chemistry. The present emerging area deals with the recent advances in the use of pi-activated alcohols in the catalytic and stereoselective construction of benzylic stereocenters.

  20. MSU SINP CDFE nuclear data activities in the nuclear reaction data centres network

    International Nuclear Information System (INIS)

    Boboshin, I.N.; Varlamov, V.V.; Komarov, S.Yu.; Peskov, N.N.; Semin, S.B.; Stepanov, M.E.; Chesnokov, V.V.

    2002-01-01

    This paper is the progress report of the Centre for Photonuclear Experiments Data, Moscow. It is a short review of the works carried out by the CDFE concerning the IAEA nuclear reaction data centers network activities from May 2001 until May 2002. and the description of the main results obtained. (a.n.)

  1. Generalization of the Activated Complex Theory of Reaction Rates. II. Classical Mechanical Treatment

    Science.gov (United States)

    Marcus, R. A.

    1964-01-01

    In its usual classical form activated complex theory assumes a particular expression for the kinetic energy of the reacting system -- one associated with a rectilinear motion along the reaction coordinate. The derivation of the rate expression given in the present paper is based on the general kinetic energy expression.

  2. Activation pathways taking place at molecular copper precatalysts for the oxygen evolution reaction

    NARCIS (Netherlands)

    van der Ham, C.J.M.; Işık, F.; Verhoeven, T.W.G.M.; Niemantsverdriet, J.W.; Hetterscheid, D.G.H.

    2017-01-01

    The activation processes of [CuII(bdmpza)2] in the water oxidation reaction were investigated using cyclic voltammetry and chronoamperometry. Two different paths wherein CuO is formed were distinguished. [CuII(bdmpza)2] can be oxidized at high potentials to form CuO, which was observed by a slight

  3. Cerebral activation related to implicit sequence learning in a Double Serial Reaction Time task

    NARCIS (Netherlands)

    van der Graaf, FHCE; Maguire, RP; Leenders, KL; de Jong, BM

    2006-01-01

    Using functional magnetic resonance imaging (fMRI), we examined the distribution of cerebral activations related to implicitly learning a series of fixed stimulus-response combinations. In a novel - bimanual - variant of the Serial Reaction Time task (SRT), simultaneous finger movements of the two

  4. Measurement of activation cross sections for quasi-monoenergetic neutron induced reactions of {sup 89}Y

    Energy Technology Data Exchange (ETDEWEB)

    Zaman, Muhammad; Kim, Guinyun; Kim, Kwangsoo; Nadeem, Muhammad [Kyungpook National University, Department of Physics and Center for High Energy Physics, Daegu (Korea, Republic of); Naik, Haladhara [Kyungpook National University, Department of Physics and Center for High Energy Physics, Daegu (Korea, Republic of); Bhabha Atomic Research Centre, Radiochemistry Division, Mumbai (India); Lee, Manwoo [Dongnam Inst. of Radiological and Medical Sciences, Research Center, Busan (Korea, Republic of)

    2017-09-15

    The neutron induced cross sections of the {sup 89}Y(n, 2n){sup 88}Y, {sup 89}Y(n, 3n){sup 87}Y and {sup 89}Y(n, 4n){sup 86}Y reactions were measured in the neutron energy range of 15.2 to 37.2 MeV by using an activation and off-line γ-ray spectrometric technique. The quasi-monoenergetic neutrons used for the above reactions are based on a {sup 9}Be(p, n) reaction. Simulations of the neutron spectra from the Be target were done using the MCNPX 2.6.0 program. Theoretical calculations were performed for the {sup 89}Y(n, 2n){sup 88}Y, {sup 89}Y(n, 3n){sup 87}Y and {sup 89}Y(n, 4n){sup 86}Y reaction cross sections using nuclear model code Talys 1.8. The measured and calculated cross sections were compared with the literature data given in EXFOR and the TENDL-2015 data libraries. The present data of the {sup 89}Y(n, xn) reaction were also compared with the similar data of the {sup 89}Y(γ, xn) reaction to examine the effect of the entrance channel parameters as well as the role of projectiles and ejectiles. (orig.)

  5. Antibacterial Characteristics and Activity of Water-Soluble Chitosan Derivatives Prepared by the Maillard Reaction

    Directory of Open Access Journals (Sweden)

    Ying-Chien Chung

    2011-10-01

    Full Text Available The antibacterial activity of water-soluble chitosan derivatives prepared by Maillard reactions against Staphylococcus aureus, Listeria monocytogenes, Bacillus cereus, Escherichia coli, Shigella dysenteriae, and Salmonella typhimurium was examined. Relatively high antibacterial activity against various microorganisms was noted for the chitosan-glucosamine derivative as compared to the acid-soluble chitosan. In addition, it was found that the susceptibility of the test organisms to the water-soluble chitosan derivative was higher in deionized water than in saline solution. Metal ions were also found to reduce the antibacterial activity of the water-soluble chitosan derivative on S. aureus. The marked increase in glucose level, protein content and lactate dehydrogenase (LDH activity was observed in the cell supernatant of S. aureus exposed to the water-soluble chitosan derivative in deionized water. The results suggest that the water-soluble chitosan produced by Maillard reaction may be a promising commercial substitute for acid-soluble chitosan.

  6. Organohalide respiration in pristine environments: implications for the natural halogen cycle.

    Science.gov (United States)

    Atashgahi, Siavash; Häggblom, Max M; Smidt, Hauke

    2018-03-01

    Halogenated organic compounds, also termed organohalogens, were initially considered to be of almost exclusively anthropogenic origin. However, over 5000 naturally synthesized organohalogens are known today. This has also fuelled the hypothesis that the natural and ancient origin of organohalogens could have primed development of metabolic machineries for their degradation, especially in microorganisms. Among these, a special group of anaerobic microorganisms was discovered that could conserve energy by reducing organohalogens as terminal electron acceptor in a process termed organohalide respiration. Originally discovered in a quest for biodegradation of anthropogenic organohalogens, these organohalide-respiring bacteria (OHRB) were soon found to reside in pristine environments, such as the deep subseafloor and Arctic tundra soil with limited/no connections to anthropogenic activities. As such, accumulating evidence suggests an important role of OHRB in local natural halogen cycles, presumably taking advantage of natural organohalogens. In this minireview, we integrate current knowledge regarding the natural origin and occurrence of industrially important organohalogens and the evolution and spread of OHRB, and describe potential implications for natural halogen and carbon cycles. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  7. Incidence of transfusion reactions: a multi-center study utilizing systematic active surveillance and expert adjudication

    Science.gov (United States)

    Hendrickson, Jeanne E.; Roubinian, Nareg H.; Chowdhury, Dhuly; Brambilla, Don; Murphy, Edward L.; Wu, Yanyun; Ness, Paul M.; Gehrie, Eric A.; Snyder, Edward L.; Hauser, R. George; Gottschall, Jerome L.; Kleinman, Steve; Kakaiya, Ram; Strauss, Ronald G.

    2017-01-01

    Background Prevalence estimates of serious hazards of transfusion vary widely. We hypothesized that the current reporting infrastructure in the United States fails to capture many transfusion reactions, and undertook a multi-center study utilizing active surveillance, data review, and adjudication to test this hypothesis. Study Design and Methods A retrospective record review was completed for a random sample of 17% of all inpatient transfusion episodes over 6 months at 4 academic tertiary care hospitals, with an episode defined as all blood products released to a patient in 6 hours. Data were recorded by trained clinical research nurses, and serious reactions were adjudicated by a panel of transfusion medicine experts. Results Of 4857 transfusion episodes investigated, 1.1% were associated with a serious reaction. Transfusion associated circulatory overload (TACO) was the most frequent serious reaction noted, being identified in 1% of transfusion episodes. Despite clinical notes describing a potential transfusion association in 59% of these cases, only 5.1% were reported to the transfusion service. Suspected transfusion related acute lung injury (TRALI/possible TRALI), anaphylactic, and hypotensive reactions were noted in 0.08%, 0.02%, and 0.02% of transfusion episodes. Minor reactions, including febrile non-hemolytic and allergic, were noted in 0.62% and 0.29% of transfusion episodes, with 30–50% reported to the transfusion service. Conclusion Underreporting of cardiopulmonary transfusion reactions is striking among academic, tertiary care hospitals. Complete and accurate reporting is essential to identify, define, establish pathogenesis, and mitigate/treat transfusion reactions. A better understanding of the failure to report may improve the accuracy of passive reporting systems. PMID:27460200

  8. Study of the influence of decay data in activation reaction cross section

    International Nuclear Information System (INIS)

    Huang Xiaolong; Lu Hanlin

    2002-01-01

    The effect of the decay data on the measured activation cross section is investigated carefully and testified by several examples. These decay data include the half-life of the product, γ branching ratio of the product and decay scheme. Present work shows that these effects must be considered carefully when evaluating the activation reaction cross section. Sometimes they are main reason for causing the discrepancies among the experimental data

  9. Negative Halogen Ions for Fusion Applications

    International Nuclear Information System (INIS)

    Grisham, L.R.; Kwan, J.W.; Hahto, S.K.; Hahto, S.T.; Leung, K.N.; Westenskow, G.

    2006-01-01

    Over the past quarter century, advances in hydrogen negative ion sources have extended the usable range of hydrogen isotope neutral beams to energies suitable for large magnetically confined fusion devices. Recently, drawing upon this experience, negative halogen ions have been proposed as an alternative to positive ions for heavy ion fusion drivers in inertial confinement fusion, because electron accumulation would be prevented in negative ion beams, and if desired, the beams could be photo-detached to neutrals. This paper reports the results of an experiment comparing the current density and beam emittance of Cl+ and Cl- extracted from substantially ion-ion plasmas with that of Ar+ extracted from an ordinary electron-ion plasma, all using the same source, extractor, and emittance scanner. At similar discharge conditions, the Cl- current was typically 85-90% of the positive chlorine current, with an e-/ Cl- ratio as low as seven without grid magnets. The Cl- was as much as 76% of the Ar+ current from a discharge with the same RF drive. The minimum normalized beam emittance and inferred ion temperatures of Cl+, Cl-, and Ar+ were all similar, so the current density and optical quality of Cl- appear as suitable for heavy ion fusion driver applications as a positive noble gas ion of similar mass. Since F, I, and Br should all behave similarly in an ion source, they should also be suitable as driver beams

  10. The interaction of mercury with halogenated graphene

    Science.gov (United States)

    Kirchofer, Abigail; Sasmaz, Erdem; Wilcox, Jennifer

    2011-03-01

    The interaction of mercury with halogenated graphene was studied using plane-wave density functional theory. Various configurations of H, Hg, O and Br or Cl on the zigzag edge sites of graphene were investigated. Although Hg-Br (or -Cl) complexes were found to be stable on the surface, the most stable configurations found were those with Hg adjacent to O. The surface atoms Hg, O, and Br tend to repel each other during geometric optimization, moving towards an H atom nearest-neighbor where possible. The strength of the Hg-graphene interaction is very sensitive to the local environment. The Hg-graphene binding energy is strongest when the Hg is located next to a surface O but not immediately next to a bound Br. DOS analysis revealed that Hg adsorption involves a gain in Hg 6 p-states and a loss in Hg 5 s electron density, resulting in an oxidized surface-bound Hg complex. DOS analysis suggests that Br strengthens the Hg-graphene interaction by modifying the surface carbon electron density; however, when Br is adjacent to Hg, a direct Hg-Br interaction weakens the Hg-C bond. These investigations provide insight into the mechanism associated with enhanced Hg adsorption on Br-functionalized carbon materials for Hg emissions reductions from coal-fired power plant applications. The authors acknowledge the financial support by Electric Power Research Institute (EPRI).

  11. Activity of molybdenum-containing oxide catalysts in the reaction of ethane oxidation

    International Nuclear Information System (INIS)

    Konovalov, V.I.; Ehpova, T.I.; Shchukin, V.P.; Averbukh, A.Ya.

    1977-01-01

    Investigation results concerning the catalytic activity of molybdenum-containing catalysts in ethane oxidation reaction are presented. It has been found that the greatest activity in the temperature range from 450 to 600 deg C is exhibited by cobalt-molybdenum catalyst; at 600 deg C bismuth-molybdenum catalyst is the most active. Nickel-molybdenum catalyst is selective and active with respect to ethylene. Iron- and manganese-molybdenum catalysts do not show high ethane oxidation rates and their selectivity is insignificant

  12. Effect of Heterogeneous Chemical Reactions on the Köhler Activation of Aqueous Organic Aerosols.

    Science.gov (United States)

    Djikaev, Yuri S; Ruckenstein, Eli

    2018-05-03

    We study some thermodynamic aspects of the activation of aqueous organic aerosols into cloud droplets considering the aerosols to consist of liquid solution of water and hydrophilic and hydrophobic organic compounds, taking into account the presence of reactive species in the air. The hydrophobic (surfactant) organic molecules on the surface of such an aerosol can be processed by chemical reactions with some atmospheric species; this affects the hygroscopicity of the aerosol and hence its ability to become a cloud droplet either via nucleation or via Köhler activation. The most probable pathway of such processing involves atmospheric hydroxyl radicals that abstract hydrogen atoms from hydrophobic organic molecules located on the aerosol surface (first step), the resulting radicals being quickly oxidized by ubiquitous atmospheric oxygen molecules to produce surface-bound peroxyl radicals (second step). These two reactions play a crucial role in the enhancement of the Köhler activation of the aerosol and its evolution into a cloud droplet. Taking them and a third reaction (next in the multistep chain of relevant heterogeneous reactions) into account, one can derive an explicit expression for the free energy of formation of a four-component aqueous droplet on a ternary aqueous organic aerosol as a function of four independent variables of state of a droplet. The results of numerical calculations suggest that the formation of cloud droplets on such (aqueous hydrophilic/hydrophobic organic) aerosols is most likely to occur as a Köhler activation-like process rather than via nucleation. The model allows one to determine the threshold parameters of the system necessary for the Köhler activation of such aerosols, which are predicted to be very sensitive to the equilibrium constant of the chain of three heterogeneous reactions involved in the chemical aging of aerosols.

  13. Electro-catalytic activity of Ni–Co-based catalysts for oxygen evolution reaction

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Hua [School of Urban Rail Transportation, Soochow University, Suzhou 215006 (China); Li, Zhihu [College of Physics, Optoelectronics and Energy, Soochow University, Moye Rd. 688, Suzhou 215006 (China); Xu, Yanhui, E-mail: xuyanhui@suda.edu.cn [College of Physics, Optoelectronics and Energy, Soochow University, Moye Rd. 688, Suzhou 215006 (China)

    2015-04-15

    Graphical abstract: The electro-catalytic activity of different electro-catalysts with a porous electrode structure was compared considering the real electrode area that was evaluated by cyclic measurement. - Highlights: • Ni–Co-based electro-catalysts for OER have been studied and compared. • The real electrode area is calculated and used for assessing the electro-catalysts. • Exchange current and reaction rate constant are estimated. • Ni is more useful for OER reaction than Co. - Abstract: In the present work, Ni–Co-based electrocatalysts (Ni/Co = 0:6, 1:5, 2:4, 3:3, 4:2, 5:1 and 6:0) have been studied for oxygen evolution reaction. The phase structure has been analyzed by X-ray diffraction technique. Based on the XRD and SEM results, it is believed that the synthesized products are poorly crystallized. To exclude the disturbance of electrode preparation technology on the evaluation of electro-catalytic activity, the real electrode surface area is calculated based on the cyclic voltammetry data, assumed that the specific surface capacitance is 60 μF cm{sup −2} for metal oxide electrode. The real electrode area data are used to calculate the current density. The reaction rate constant of OER at different electrodes is also estimated based on basic reaction kinetic equations. It is found that the exchange current is 0.05–0.47 mA cm{sup −2} (the real surface area), and the reaction rate constant has an order of magnitude of 10{sup −7}–10{sup −6} cm s{sup −1}. The influence of the electrode potential on OER rate has been also studied by electrochemical impedance spectroscopy (EIS) technique. Our investigation has shown that the nickel element has more contribution than the cobalt; the nickel oxide has the best electro-catalytic activity toward OER.

  14. Deeper Insight into the Diels-Alder Reaction through the Activation Strain Model.

    Science.gov (United States)

    Fernández, Israel; Bickelhaupt, F Matthias

    2016-12-06

    In this Focus Review, we present the application of the so-called Activation Strain Model of chemical reactivity to the Diels-Alder cycloaddition reaction. To this end, representative recent examples have been selected to illustrate the power of this new computational approach to gain a deeper quantitative understanding of this fundamental process in chemistry. We cover a wide range of issues, such as, the "endo-rule", reactivity trends emerging from systematic variation in the reactants' strain, and cycloaddition reactions involving relevant species in material science, that is, fullerenes, polycyclic aromatic hydrocarbons and nanotubes. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Controllable synthesis of Bi{sub 2}WO{sub 6} nanoplate self-assembled hierarchical erythrocyte microspheres via a one-pot hydrothermal reaction with enhanced visible light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhenya; Huang, Lin; Xie, Yanyu; Lin, Zheguan; Fan, Yunyan; Liu, Dan; Chen, Lu; Zhang, Zizhong, E-mail: z.zhang@fzu.edu.cn; Wang, Xuxu

    2017-05-01

    Highlights: • Bi{sub 2}WO{sub 6} hierarchical erythrocyte structure was designed by F{sup −}-assisted one-pot reaction. • Erythrocyte structure enhanced the visible-light photocatalytic activity of Bi{sub 2}WO{sub 6}. • Superoxide radical anions and h{sup +} were the main active species for RhB degradation. - Abstract: This work provides a simple approach of the F{sup −}-assisted one-pot hydrothermal reaction to successfully synthesize Bi{sub 2}WO{sub 6} hierarchical erythrocyte microspheres. The importance role of F{sup −} was systematically investigated by comparing different type of halogen ions, hydrothermal temperature and time. The possible growth mechanism of Bi{sub 2}WO{sub 6} hierarchical structures was proposed. The hierarchical erythrocytes were formed through the well-ordered and oriented self-assembly of thin Bi{sub 2}WO{sub 6} nanoplate primary subunits. F{sup −} ions were absorbed on Bi{sub 2}WO{sub 6} nanoplate surface to suppress the nanoplate stack but to induce a self-assembly through the edge interaction of Bi{sub 2}WO{sub 6} nanoplates into erythrocyte-like hierarchical microspheres superstructures. This erythrocyte structure narrowed the band gap energy and enhanced the visible-light photocatalytic activity of Bi{sub 2}WO{sub 6}. Moreover, superoxide radical anions and h{sup +} were revealed as the main active species responding for the RhB degradation on Bi{sub 2}WO{sub 6} under visible light irradiation.

  16. Activation cross section of 63Cu(n,α)60Co reaction

    International Nuclear Information System (INIS)

    Lu Hanlin; Zhao Wenrong; Yu Weixiang; Yuan Xialin

    1990-01-01

    The mechanical properties of copper during the irradiation with intensive neutron fluence rate are significant for the safe operation of D-T fusion power reactors. The cross sections measured by activation method show a large discrepancy from 36 to 54 mb in 14 MeV region. The cross sections of 69 Cu(n, α) 60 Co reaction were measured by activation method. Two irradiations were carried out at the Cockcroft-wallon and Van de Graaff accelerators of CIAE using T(d, n) 4 He reaction to produce neutrons. The activities of 24 Na and 60 Co γ-rays for monitor and sample foils were determined absolutely by a calibrated Ge(Li) detector system with an accuracy better than 1%. The present results are compared with the others

  17. Directing reaction pathways by catalyst active-site selection using self-assembled monolayers.

    Science.gov (United States)

    Pang, Simon H; Schoenbaum, Carolyn A; Schwartz, Daniel K; Medlin, J Will

    2013-01-01

    One key route for controlling reaction selectivity in heterogeneous catalysis is to prepare catalysts that exhibit only specific types of sites required for desired product formation. Here we show that alkanethiolate self-assembled monolayers with varying surface densities can be used to tune selectivity to desired hydrogenation and hydrodeoxygenation products during the reaction of furfural on supported palladium catalysts. Vibrational spectroscopic studies demonstrate that the selectivity improvement is achieved by controlling the availability of specific sites for the hydrogenation of furfural on supported palladium catalysts through the selection of an appropriate alkanethiolate. Increasing self-assembled monolayer density by controlling the steric bulk of the organic tail ligand restricts adsorption on terrace sites and dramatically increases selectivity to desired products furfuryl alcohol and methylfuran. This technique of active-site selection simultaneously serves both to enhance selectivity and provide insight into the reaction mechanism.

  18. Hydrogen desorption reactions of Li-N-H hydrogen storage system: Estimation of activation free energy

    International Nuclear Information System (INIS)

    Matsumoto, Mitsuru; Haga, Tetsuya; Kawai, Yasuaki; Kojima, Yoshitsugu

    2007-01-01

    The dehydrogenation reactions of the mixtures of lithium amide (LiNH 2 ) and lithium hydride (LiH) were studied under an Ar atmosphere by means of temperature programmed desorption (TPD) technique. The dehydrogenation reaction of the LiNH 2 /LiH mixture was accelerated by addition of 1 mol% Ti(III) species (k = 3.1 x 10 -4 s -1 at 493 K), and prolonged ball-milling time (16 h) further enhanced reaction rate (k = 1.1 x 10 -3 s -1 at 493 K). For the hydrogen desorption reaction of Ti(III) doped samples, the activation energies estimated by Kissinger plot (95 kJ mol -1 ) and Arrhenius plot (110 kJ mol -1 ) were in reasonable agreement. The LiNH 2 /LiH mixture without Ti(III) species, exhibited slower hydrogen desorption process and the kinetic traces deviated from single exponential behavior. The results indicated the Ti(III) additives change the hydrogen desorption reaction mechanism of the LiNH 2 /LiH mixture

  19. Active specific immunotherapy using the immune reaction of a low-dose irradiated tumor tissue

    International Nuclear Information System (INIS)

    Ogawa, Y.; Imanaka, K.; Ashida, C.; Takashima, H.; Imajo, Y.; Kimura, S.

    1983-01-01

    Active specific immunotherapy using the immune reaction of a low-dose irradiated tumor tissue was studied on the transplanted MM46 tumor of female C3H/He mice after radiotherapy. MM46 tumor cells were inoculated into the right hind paws of mice. On the 5th day, irradiation with the dose irradiated tumor tissue (2000 rad on the fifth day), were injected into the left hind paws of the tumor-bearing mice. Effectiveness of this active specific immunotherapy against tumor was evaluated by the regression of tumor and survival rate of mice. Tumor was markedly regressed and survival rate was significantly increased by the active specific immunitherapy

  20. Factors responsible for activity of catalysts of different chemical types in the reaction of hydrogen oxidation

    International Nuclear Information System (INIS)

    Il'chenko, N.I.; Dolgikh, L.Yu.

    1985-01-01

    Reasons of differences in the kinetics and mechanism of the H 2 oxidation on optimum metallic (Pt), carbide (WC) and oxide (Co 3 O 4 ) catalysts are discussed. These differences lead to unequal specific activity. It is shown that the catalytic activity of the catalysts in question increases with respect to reactions of isotopic exchange and hydrogen oxidation with an increasing electron-donating ability of anat of the transition metal M on which H 2 is adsorbed. The possibility is considered of increasing the transition metal activity by introduction of additions to increase the electron-donating ability of M

  1. Some Investigations of the Reaction of Activated Charcoal with Fluorine and Uranium Hexafluoride

    Energy Technology Data Exchange (ETDEWEB)

    Del Cul, G.D.; Fiedor, J.N.; Simmons, D.W.; Toth, L.M.; Trowbridge, L.D.; Williams

    1998-09-01

    The Molten Salt Reactor Experiment (MSRE) at Oak Ridge National Laboratory has been shut down since 1969, when the fuel salt was drained from the core into two Hastelloy N drain tanks at the reactor site. Over time, fluorine (F{sub 2}) and uranium hexafluoride (UF{sub 6}) moved from the salt through the gas piping to a charcoal bed, where they reacted with the activated charcoal. Some of the immediate concerns related to the migration of F{sub 2} and UF{sub 6} to the charcoal bed were the possibility of explosive reactions between the charcoal and F{sub 2}, the existence of conditions that could induce a criticality accident, and the removal and recovery of the fissile uranium from the charcoal. This report addresses the reactions and reactivity of species produced by the reaction of fluorine and activated charcoal and between charcoal and F{sub 2}-UF{sub 6} gas mixtures in order to support remediation of the MSRE auxiliary charcoal bed (ACB) and the recovery of the fissile uranium. The chemical identity, stoichiometry, thermochemistry, and potential for explosive decomposition of the primary reaction product, fluorinated charcoal, was determined.

  2. Some Investigations of the Reaction of Activated Charcoal with Fluorine and Uranium Hexafluoride

    International Nuclear Information System (INIS)

    Del Cul, G.D.; Fiedor, J.N.; Simmons, D.W.; Toth, L.M.; Trowbridge, L.D.; Williams

    1998-01-01

    The Molten Salt Reactor Experiment (MSRE) at Oak Ridge National Laboratory has been shut down since 1969, when the fuel salt was drained from the core into two Hastelloy N drain tanks at the reactor site. Over time, fluorine (F 2 ) and uranium hexafluoride (UF 6 ) moved from the salt through the gas piping to a charcoal bed, where they reacted with the activated charcoal. Some of the immediate concerns related to the migration of F 2 and UF 6 to the charcoal bed were the possibility of explosive reactions between the charcoal and F 2 , the existence of conditions that could induce a criticality accident, and the removal and recovery of the fissile uranium from the charcoal. This report addresses the reactions and reactivity of species produced by the reaction of fluorine and activated charcoal and between charcoal and F 2 -UF 6 gas mixtures in order to support remediation of the MSRE auxiliary charcoal bed (ACB) and the recovery of the fissile uranium. The chemical identity, stoichiometry, thermochemistry, and potential for explosive decomposition of the primary reaction product, fluorinated charcoal, was determined

  3. Person-based differences in pay reactions: A compensation-activation theory and integrative conceptual review.

    Science.gov (United States)

    Fulmer, Ingrid Smithey; Shaw, Jason D

    2018-06-07

    Compensation research has focused traditionally on how pay design characteristics (e.g., pay level, individual or group incentives) relate to average employee outcomes and, in toto, on how these outcomes affect organizational performance. Recently, scholars have begun to pay more attention to how individuals vary in the strength of their reactions to pay. Empirical research in several disciplines examines how the interplay of pay systems and person-based characteristics (psychological individual differences, demographics, and relative performance or position in a group) relate to important work-related outcomes. We develop a compensation-activation theory that frames compensation design characteristics as workplace "situations" providing cues that activate individuals' corresponding fundamental social motives made salient due to chronic or transient person-based characteristics. Where activation occurs, stronger-than-average responses to the compensation "situation" are expected. Using the theory as a lens, we synthesize and reinterpret existing research on person-based reactions to pay characteristics, including sorting, incentive/motivational effects, and effects on collective pay system reactions and unit/organizational outcomes. We conclude with a research agenda aimed at refining compensation-activation theory and advancing the study of compensation as it affects individual and organizational outcomes. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  4. Evaluated kinetic and photochemical data for atmospheric chemistry: Supplement VIII, halogen species evaluation for atmospheric chemistry

    International Nuclear Information System (INIS)

    Atkinson, R.; Baulch, D.L.; Cox, R.A.; Hampson, R.F. Jr.; Kerr, J.A.; Rossi, M.J.; Troe, J.

    2000-01-01

    This paper updates and extends part of the previous data base of critical evaluations of the kinetics and photochemistry of gas-phase chemical reactions of neutral species involved in atmospheric chemistry [J. Phys. Chem. Ref. Data 9, 295 (1980); 11, 327 (1982); 13, 1259 (1984); 18, 881 (1989); 21, 1125 (1992); 26, 521 (1997); 26, 1329 (1997); 28, 191 (1999)]. The present evaluation is limited to the inorganic halogen family of atmospherically important reactions. The work has been carried out by the authors under the auspices of the IUPAC Subcommittee on Gas Phase Kinetic Data Evaluation for Atmospheric Chemistry. Data sheets have been prepared for 102 thermal and photochemical reactions, containing summaries of the available experimental data with notes giving details of the experimental procedures. For each thermal reaction, a preferred value of the rate coefficient at 298 K is given together with a temperature dependence where possible. The selection of the preferred value is discussed and estimates of the accuracies of the rate coefficients and temperature coefficients have been made for each reaction. For each photochemical reaction the data sheets list the preferred values of the photoabsorption cross sections and the quantum yields of the photochemical reactions together with comments on how they were selected. The data sheets are intended to provide the basic physical chemical data needed as input for calculations that model atmospheric chemistry. A table summarizing the preferred rate data is provided, together with an appendix listing the available values of enthalpies of formation of the reactant and product species

  5. Structure, activity, and stability of platinum alloys as catalysts for the oxygen reduction reaction

    DEFF Research Database (Denmark)

    Vej-Hansen, Ulrik Grønbjerg

    In this thesis I present our work on theoretical modelling of platinum alloys as catalysts for the Oxygen Reduction Reaction (ORR). The losses associated with the kinetics of the ORR is the main bottleneck in low-temperature fuel cells for transport applications, and more active catalysts...... are essential for wide-spread use of this technology. platinum alloys have shown great promise as more active catalysts, which are still stable under reaction conditions. We have investigated these systems on multiple scales, using either Density Functional Theory (DFT) or Effective Medium Theory (EMT......), depending on the length and time scales involved. Using DFT, we show how diffusion barriers in transition metal alloys in the L12 structure depend on the alloying energy, supporting the assumption that an intrinsically more stable alloy is also more stable towards diffusion-related degradation...

  6. Reaction of active uranium and thorium with aromatic carbonyls and pinacols in hydrocarbon solvents

    International Nuclear Information System (INIS)

    Kahn, B.E.; Rieke, R.D.

    1988-01-01

    Highly reactive uranium and thorium metal powders have been prepared by reduction of the anhydrous metal(IV) chlorides in hydrocarbon solvents. The reduction employs the crystalline hydrocarbon-soluble reducing agent [(TMEDA)Li] 2 [Nap] (TMEDA = N,N,N',N'-tetramethylethylenediamine, Nap = naphthalene). The resulting active metal powders have been shown to be extremely reactive with oxygen-containing compounds and have been used in the reductive coupling of aromatic ketones giving tetra-arylethylenes. Reactions with pinacols have given some mechanistic insight into the ketone coupling reaction. These finely divided metal powders activate very weakly acidic C-H bonds forming metal hydrides, which can be transferred to organic substrates

  7. Experimental studies on excitation functions of the proton-induced activation reactions on silver

    International Nuclear Information System (INIS)

    Uddin, M.S.; Hagiwara, M.; Baba, M.; Tarkanyi, F.; Ditroi, F.

    2005-01-01

    Excitation functions were measured for the production of 106m,105 Ag, 103,101,100 Pd, 105,102,101m,100,99 Rh and 97 Ru via proton-induced activation reactions on natural silver using a stacked foil technique in the energy range 11-80 MeV. The residual activity measurements were carried out nondestructively by the high-resolution HPGe γ-ray spectroscopy. Thick target integral yields were deduced using the measured cross-sections from the respective threshold energies of the investigated reactions up to 80 MeV. The present work gives new results for the investigated radionuclides. The data in MENDL-2P deduced with the theoretical model code ALICE-IPPE are consistent in shape with the measured values, but show disagreement in magnitude

  8. Rational design of organic semiconductors for texture control and self-patterning on halogenated surfaces

    KAUST Repository

    Ward, Jeremy W.; Li, Ruipeng; Obaid, Abdulmalik; Payne, Marcia M.; Smilgies, Detlef Matthias; Anthony, John Edward; Amassian, Aram; Jurchescu, Oana D.

    2014-01-01

    new materials. Here, the influence of the interactions at the interface between a halogenated organic semiconductor (OSC) thin film and a halogenated self-assembled monolayer on the formation of the crystalline texture directly affecting

  9. Synthesis of highly active and dual-functional electrocatalysts for methanol oxidation and oxygen reduction reactions

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Qi; Zhang, Geng; Xu, Guangran; Li, Yingjun [College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021 (China); Liu, Baocang [College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021 (China); Inner Mongolia Key Lab of Nanoscience and Nanotechnology, Inner Mongolia University, Hohhot 010021 (China); Gong, Xia [College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021 (China); Zheng, Dafang [State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012 (China); Zhang, Jun [College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021 (China); Inner Mongolia Key Lab of Nanoscience and Nanotechnology, Inner Mongolia University, Hohhot 010021 (China); Wang, Qin, E-mail: qinwang@imu.edu.cn [College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021 (China); Inner Mongolia Key Lab of Nanoscience and Nanotechnology, Inner Mongolia University, Hohhot 010021 (China)

    2016-12-15

    Graphical abstract: Ternary RuMPt (M = Fe, Co, Ni, and Cu) nanodendrities (NDs) catalysts, are successfully synthesized by using a facile method. The as-obtained ternary catalysts manifest superior catalytic activity and stability both in terms of surface and mass specific activities toward the methanol oxidation and oxygen reduction reactions, as compared to the binary catalysts and the commercial Pt/C catalysts. - Highlights: • Ternary RuMPt catalysts are synthesized by using a facile method. • The catalysts manifest superior catalytic activity towards the MOR and ORR. • High activities are attributed to enhanced electron density and synergistic effects. - Abstract: The promising Pt-based ternary catalyst is crucial for polymer electrolyte membrane fuel cells (PEMFCs) due to improving catalytic activity and durability for both methanol oxidation reaction and oxygen reduction reaction. In this work, a facile strategy is used for the synthesis ternary RuMPt (M = Fe, Co, Ni, and Cu) nanodendrities catalysts. The ternary RuMPt alloys exhibit enhanced specific and mass activity, positive half-wave potential, and long-term stability, compared with binary Pt-based alloy and the commercial Pt/C catalyst, which is attributed to the high electron density and upshifting of the d-band center for Pt atoms, and synergistic catalytic effects among Pt, M, and Ru atoms by introducing a transition metal. Impressively, the ternary RuCoPt catalyst exhibits superior mass activity (801.59 mA mg{sup −1}) and positive half-wave potential (0.857 V vs. RHE) towards MOR and ORR, respectively. Thus, the RuMPt nanocomposite is a very promising material to be used as dual electrocatalyst in the application of PEMFCs.

  10. Synthesis and electrocatalytic activity towards oxygen reduction reaction of gold-nanostars

    Directory of Open Access Journals (Sweden)

    Oyunbileg G

    2018-02-01

    Full Text Available The oxygen reduction reaction (ORR is a characteristic reaction which determines the performance of fuel cells which convert a chemical energy into an electrical energy. Aims of this study are to synthesize Au-based nanostars (AuNSs and determine their preliminary electro-catalytic activities towards ORR by a rotating-disk electrode method in alkaline electrolyte. The images obtained from a scanning electron microscope (SEM and a transmission electron microscope (TEM analyses confirm the formation of the star-shaped nanoparticles. Among the investigated nanostar catalysts, an AuNS5 with smaller size and a few branches showed the higher electrocatalytic activity towards ORR than other catalysts with a bigger size. In addition, the electron numbers transferred for all the catalysts are approximately two. The present study results infer that the size of the Au-based nanostars may influence greatly on their catalytic activity. The present study results show that the further improvement is needed for Au-based nanostar catalysts towards the ORR reaction.

  11. Simultaneous demonstration of gelatinolytic activity, morphology, and immunohistochemical reaction using zymography film.

    Science.gov (United States)

    Kanomata, Naoki; Hasebe, Takahiro; Moriya, Takuya; Ochiai, Atsushi

    2013-12-01

    In situ zymography has been used to assess gelatinolytic activity, which is mainly due to matrix metalloproteinases (MMPs) in cancer tissues. MMPs play an important role in cancer invasion and metastasis. Film in situ zymography (FIZ) enables the in situ evaluation of gelatinolytic activity with high reproducibility. In this article, we report a study of FIZ, in a case of breast cancer with an invasive carcinoma component showing clear gelatinolytic activity, and in a non-invasive carcinoma component showing little gelatinolytic activity. Immunohistochemistry on FIZ was also performed. The simultaneous detection of gelatinolytic activity and immunohistochemical reaction was established in a single film. Immunohistochemistry on FIZ may have good potential for the investigation of cancer microenvironment.

  12. Symmetric and asymmetric halogen-containing metallocarboranylporphyrins and uses thereof

    Science.gov (United States)

    Miura, Michiko; Wu, Haitao

    2013-05-21

    The present invention is directed to low toxicity boronated compounds and methods for their use in the treatment, visualization, and diagnosis of tumors. More specifically, the present invention is directed to low toxicity halogenated, carborane-containing 5,10,15,20-tetraphenylporphyrin compounds and methods for their use particularly in boron neutron capture therapy (BNCT) and photodynamic therapy (PDT) for the treatment of tumors of the brain, head and neck, and surrounding tissue. The invention is also directed to using these halogenated, carborane-containing tetraphenylporphyrin compounds in methods of tumor imaging and/or diagnosis such as MRI, SPECT, or PET.

  13. Trans-methylation reactions in plants: focus on the activated methyl cycle.

    Science.gov (United States)

    Rahikainen, Moona; Alegre, Sara; Trotta, Andrea; Pascual, Jesús; Kangasjärvi, Saijaliisa

    2018-02-01

    Trans-methylation reactions are vital in basic metabolism, epigenetic regulation, RNA metabolism, and posttranslational control of protein function and therefore fundamental in determining the physiological processes in all living organisms. The plant kingdom is additionally characterized by the production of secondary metabolites that undergo specific hydroxylation, oxidation and methylation reactions to obtain a wide array of different chemical structures. Increasing research efforts have started to reveal the enzymatic pathways underlying the biosynthesis of complex metabolites in plants. Further engineering of these enzymatic machineries offers significant possibilities in the development of bio-based technologies, but necessitates deep understanding of their potential metabolic and regulatory interactions. Trans-methylation reactions are tightly coupled with the so-called activated methyl cycle (AMC), an essential metabolic circuit that maintains the trans-methylation capacity in all living cells. Tight regulation of the AMC is crucial in ensuring accurate trans-methylation reactions in different subcellular compartments, cell types, developmental stages and environmental conditions. This review addresses the organization and posttranslational regulation of the AMC and elaborates its critical role in determining metabolic regulation through modulation of methyl utilization in stress-exposed plants. © 2017 Scandinavian Plant Physiology Society.

  14. Negativization rates of IgE radioimmunoassay and basophil activation test in immediate reactions to penicillins.

    Science.gov (United States)

    Fernández, T D; Torres, M J; Blanca-López, N; Rodríguez-Bada, J L; Gomez, E; Canto, G; Mayorga, C; Blanca, M

    2009-02-01

    Skin test sensitivity in patients with immediate allergy to penicillins tends to decrease over time, but no information is available concerning in vitro tests. We analysed the negativization rates of two in vitro methods that determine specific immunoglobulin E (IgE) antibodies, the basophil activation test using flow cytometry (BAT) and the radioallergosorbent test (RAST), in immediate allergic reactions to penicillins. Forty-one patients with immediate allergic reactions to amoxicillin were followed up over a 4-year period. BAT and RAST were performed at 6-month intervals. Patients were randomized into groups: Group I, skin tests carried out at regular intervals; Group II, skin tests made only at the beginning of the study. Differences were observed between RAST and BAT (P testing influenced the rate of negativization of the RAST assay, contributing to maintenance of in vitro sensitivity. Because of the loss of sensitivity over time, the determination of specific IgE antibodies to penicillins in patients with immediate allergic reactions must be done as soon as possible after the reaction.

  15. 40 CFR 721.5452 - Alkali metal salt of halogenated organoborate (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkali metal salt of halogenated... Specific Chemical Substances § 721.5452 Alkali metal salt of halogenated organoborate (generic). (a... generically as alkali metal salt of halogenated organoborate (PMN P-00-0638) is subject to reporting under...

  16. KOH-activated multi-walled carbon nanotubes as platinum supports for oxygen reduction reaction

    Science.gov (United States)

    He, Chaoxiong; Song, Shuqin; Liu, Jinchao; Maragou, Vasiliki; Tsiakaras, Panagiotis

    In the present investigation, multi-walled carbon nanotubes (MWCNTs) thermally treated by KOH were adopted as the platinum supporting material for the oxygen reduction reaction electrocatalysts. FTIR and Raman spectra were used to investigate the surface state of MWCNTs treated by KOH at different temperatures (700, 800, and 900 °C) and showed MWCNTs can be successfully functionalized. The structural properties of KOH-activated MWCNTs supported Pt were determined by X-ray diffraction (XRD) and transmission electron microscopy (TEM), and their electrochemical performance was evaluated by the aid of cyclic voltammetry (CV) and rotating disk electrode (RDE) voltammetry. According to the experimental findings of the present work, the surrface of MWCNTs can be successfully functionalized with oxygen-containing groups after activation by KOH, favoring the good dispersion of Pt nanoparticles with narrow size distribution. The as-prepared Pt catalysts supported on KOH treated MWCNTs at higher temperature, possess higher electrochemical surface area and exhibit desirable activity towards oxygen reduction reaction (ORR). More precisely, it has been found that the electrochemical active area of Pt/MWCNTs-900 is approximately two times higher than that of Pt/MWCNTs. It can be concluded that KOH activation is an effective way to decorate MWCNTs' surface with oxygen-containing groups and bigger surface area, which makes them more suitable as electrocatalyst support materials.

  17. Increase of rutin antioxidant activity by generating Maillard reaction products with lysine.

    Science.gov (United States)

    Zhang, Ru; Zhang, Bian-Ling; He, Ting; Yi, Ting; Yang, Ji-Ping; He, Bin

    2016-06-01

    Rutin exists in medicinal herbs, fruits, vegetables, and a number of plant-derived sources. Dietary sources containing rutin are considered beneficial because of their potential protective roles in multiple diseases related to oxidative stresses. In the present study, the change and antioxidation activity of rutin in Maillard reaction with lysine through a heating process were investigated. There is release of glucose and rhamnose that interact with lysine to give Maillard reaction products (MRPs), while rutin is converted to less-polar quercetin and a small quantity of isoquercitrin. Because of their high cell-membrane permeability, the rutin-lysine MRPs increase the free radical-scavenging activity in HepG2 cells, showing cellular antioxidant activity against Cu(2+)-induced oxidative stress higher than that of rutin. Furthermore, the MRPs significantly increased the Cu/Zn SOD (superoxide dismutase) activity and Cu/Zn SOD gene expression of HepG2 cells, consequently enhancing antioxidation activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Enzyme Stability and Activity in Non-Aqueous Reaction Systems: A Mini Review

    Directory of Open Access Journals (Sweden)

    Shihui Wang

    2016-02-01

    Full Text Available Enormous interest in biocatalysis in non-aqueous phase has recently been triggered due to the merits of good enantioselectivity, reverse thermodynamic equilibrium, and no water-dependent side reactions. It has been demonstrated that enzyme has high activity and stability in non-aqueous media, and the variation of enzyme activity is attributed to its conformational modifications. This review comprehensively addresses the stability and activity of the intact enzymes in various non-aqueous systems, such as organic solvents, ionic liquids, sub-/super-critical fluids and their combined mixtures. It has been revealed that critical factors such as Log P, functional groups and the molecular structures of the solvents define the microenvironment surrounding the enzyme molecule and affect enzyme tertiary and secondary structure, influencing enzyme catalytic properties. Therefore, it is of high importance for biocatalysis in non-aqueous media to elucidate the links between the microenvironment surrounding enzyme surface and its stability and activity. In fact, a better understanding of the correlation between different non-aqueous environments and enzyme structure, stability and activity can contribute to identifying the most suitable reaction medium for a given biotransformation.

  19. Aerobic composting of waste activated sludge: Kinetic analysis for microbiological reaction and oxygen consumption

    International Nuclear Information System (INIS)

    Yamada, Y.; Kawase, Y.

    2006-01-01

    In order to examine the optimal design and operating parameters, kinetics for microbiological reaction and oxygen consumption in composting of waste activated sludge were quantitatively examined. A series of experiments was conducted to discuss the optimal operating parameters for aerobic composting of waste activated sludge obtained from Kawagoe City Wastewater Treatment Plant (Saitama, Japan) using 4 and 20 L laboratory scale bioreactors. Aeration rate, compositions of compost mixture and height of compost pile were investigated as main design and operating parameters. The optimal aerobic composting of waste activated sludge was found at the aeration rate of 2.0 L/min/kg (initial composting mixture dry weight). A compost pile up to 0.5 m could be operated effectively. A simple model for composting of waste activated sludge in a composting reactor was developed by assuming that a solid phase of compost mixture is well mixed and the kinetics for microbiological reaction is represented by a Monod-type equation. The model predictions could fit the experimental data for decomposition of waste activated sludge with an average deviation of 2.14%. Oxygen consumption during composting was also examined using a simplified model in which the oxygen consumption was represented by a Monod-type equation and the axial distribution of oxygen concentration in the composting pile was described by a plug-flow model. The predictions could satisfactorily simulate the experiment results for the average maximum oxygen consumption rate during aerobic composting with an average deviation of 7.4%

  20. Activity and selectivity of three molybdenum catalysts for coal liquefaction reactions

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, C.W.; Pellegrino, J.L.

    The activity and selectivity of three different molybdenum catalysts for reactions occurring in coal liquefaction, specifically for hydrogenation (HYD), hydrodeoxygenation (HDO), hydrodenitrogenation (HDN), hydrodesulfurization (HDS), and hydrocracking (HYC), have been examined. The three molybdenum catalysts used were molybdenum napthenate, molybdenum on ..gamma..-alumina, and a precipitated, disordered MoS/sub 2/. Molybdenum naphthenate was most selective for HYD and HDN. All three catalysts exhibited approximately equal activity for HDS and HDO and little selectivity for HYC of alkyl bridge structures. The activity and selectivity of the three molybdenum catalysts for producing hydrocarbons and removing heteroatoms from coal during liquefaction were determined and compared. Molybdenum naphthenate was the most active catalyst for hydrocarbon production and removal of nitrogen- and oxygen-containing species during coal liquefaction. 31 refs., 4 figs., 7 tabs.

  1. Origins of the Unfavorable Activation and Reaction Energies of 1-Azadiene Heterocycles Compared to 2-Azadiene Heterocycles in Diels-Alder Reactions.

    Science.gov (United States)

    Fell, Jason S; Martin, Blanton N; Houk, K N

    2017-02-17

    The reactivities of butadiene, cyclopentadiene, furan, thiophene, pyrrole, and their 1-aza- and 2-aza-derivatives in Diels-Alder reactions with ethylene and fumaronitrile were investigated with density functional theory (M06-2X/6-311G(d,p)). The activation free energies for the Diels-Alder reactions of cyclic 1-azadienes are 10-14 kcal mol -1 higher than those of cyclic 2-azadienes, and the reaction free energies are 17-20 kcal mol -1 more endergonic. The distortion/interaction model shows that the increased activation energies of cyclic 1-azadienes originate from increased transition state distortion energies and unfavorable interaction energies, arising from addition to the nitrogen terminus of the C═N bond.

  2. Structural and surface changes of cobalt modified manganese oxide during activation and ethanol steam reforming reaction

    Science.gov (United States)

    Gac, Wojciech; Greluk, Magdalena; Słowik, Grzegorz; Turczyniak-Surdacka, Sylwia

    2018-05-01

    Surface and structural changes of unmodified manganese and cobalt-manganese oxide during activation and ethanol steam reforming reaction conditions (ESR) were studied by means of X-ray diffraction, X-ray photoelectron spectroscopy, temperature-programmed reduction/oxidation (TPR/TPO) and transmission electron microscopy. It was shown that synthesis of cobalt manganese oxide by the redox precipitation method led to the formation of strongly dispersed cobalt ionic species within cryptomelane-based manganese oxide structure. Development of large cube-like MnO nanoparticles with spherical cobalt metallic crystallites decorated by manganese oxide on the high oxidation state and potassium species was observed during reduction. Cobalt manganese catalyst showed high initial activity and selectivity to H2 and CO2 in ethanol stem reforming reaction in the range of 390-480 °C. The drop of ethanol conversion and changes of selectivity with the time-on-stream were observed. An increase of reaction temperature led to intensification of deactivation phenomena. TEM studies evidenced coexistence of Co and CoOx nanoparticles formed under ethanol steam reforming conditions, partially covered by filamentous and encapsulating carbonaceous deposits.

  3. Method for Determining the Activation Energy Distribution Function of Complex Reactions by Sieving and Thermogravimetric Measurements.

    Science.gov (United States)

    Bufalo, Gennaro; Ambrosone, Luigi

    2016-01-14

    A method for studying the kinetics of thermal degradation of complex compounds is suggested. Although the method is applicable to any matrix whose grain size can be measured, herein we focus our investigation on thermogravimetric analysis, under a nitrogen atmosphere, of ground soft wheat and ground maize. The thermogravimetric curves reveal that there are two well-distinct jumps of mass loss. They correspond to volatilization, which is in the temperature range 298-433 K, and decomposition regions go from 450 to 1073 K. Thermal degradation is schematized as a reaction in the solid state whose kinetics is analyzed separately in each of the two regions. By means of a sieving analysis different size fractions of the material are separated and studied. A quasi-Newton fitting algorithm is used to obtain the grain size distribution as best fit to experimental data. The individual fractions are thermogravimetrically analyzed for deriving the functional relationship between activation energy of the degradation reactions and the particle size. Such functional relationship turns out to be crucial to evaluate the moments of the activation energy distribution, which is unknown in terms of the distribution calculated by sieve analysis. From the knowledge of moments one can reconstruct the reaction conversion. The method is applied first to the volatilization region, then to the decomposition region. The comparison with the experimental data reveals that the method reproduces the experimental conversion with an accuracy of 5-10% in the volatilization region and of 3-5% in the decomposition region.

  4. A halogen-free synthesis of gold nanoparticles using gold(III) oxide

    International Nuclear Information System (INIS)

    Sashuk, Volodymyr; Rogaczewski, Konrad

    2016-01-01

    Gold nanoparticles are one of the most used nanomaterials. They are usually synthesized by the reduction of gold(III) chloride. However, the presence of halide ions in the reaction mixture is not always welcome. In some cases, these ions have detrimental influence on the morphology and structure of resulting nanoparticles. Here, we present a simple and halogen-free procedure to prepare gold nanoparticles by reduction of gold(III) oxide in neat oleylamine. The method provides the particles with an average size below 10 nm and dispersity of tens of percent. The process of nanoparticle formation was monitored using UV–Vis spectroscopy. The structure and chemical composition of the nanoparticles was determined by SEM, XPS and EDX. We also proposed the mechanism of reduction of gold(III) oxide based on MS, IR and NMR data. Importantly, the synthetic protocol is general and applicable for the preparation of other coinage metal nanoparticles from the corresponding metal oxides. For instance, we demonstrated that the absence of halogen enables efficient alloying of metals when preparing gold–silver bimetallic nanoparticles.

  5. Electrodeposition of Amorphous Molybdenum Chalcogenides from Ionic Liquids and Their Activity for the Hydrogen Evolution Reaction.

    Science.gov (United States)

    Redman, Daniel W; Rose, Michael J; Stevenson, Keith J

    2017-09-19

    This work reports on the general electrodeposition mechanism of tetrachalcogenmetallates from 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Both tetrathio- and tetraselenomolybdate underwent anodic electrodeposition and cathodic corrosion reactions as determined by UV-vis spectroelectrochemistry. Electrodeposition was carried out by cycling the potential between the anodic and cathodic regimes. This resulted in a film of densely packed nanoparticles of amorphous MoS x or MoSe x as determined by SEM, Raman, and XPS. The films were shown to have high activity for the hydrogen evolution reaction. The onset potential (J = 1 mA/cm 2 ) of the MoS x film was E = -0.208 V vs RHE, and that of MoSe x was E = -0.230 V vs RHE. The Tafel slope of MoS x was 42 mV/decade, and that of MoSe x was 59 mV/decade.

  6. Ion channel activity of membrane vesicles released from sea urchin sperm during the acrosome reaction

    International Nuclear Information System (INIS)

    Schulz, Joseph R.; Vega-Beltran, Jose L. de la; Beltran, Carmen; Vacquier, Victor D.; Darszon, Alberto

    2004-01-01

    The sperm acrosome reaction (AR) involves ion channel activation. In sea urchin sperm, the AR requires Ca 2+ and Na + influx and K + and H + efflux. During the AR, the plasma membrane fuses with the acrosomal vesicle membrane forming hybrid membrane vesicles that are released from sperm into the medium. This paper reports the isolation and preliminary characterization of these acrosome reaction vesicles (ARVs), using synaptosome-associated protein of 25 kDa (SNAP-25) as a marker. Isolated ARVs have a unique protein composition. The exocytosis regulatory proteins vesicle-associated membrane protein and SNAP-25 are inside ARVs, as judged by protease protection experiments, and membrane associated based on Triton X-114 partitioning. ARVs fused with planar bilayers display three main types of single channel activity. The most frequently recorded channel is cationic, weakly voltage dependent and has a low open probability that increases with negative potentials. This channel is activated by cAMP, blocked by Ba 2+ , and has a PK + /PNa + selectivity of 4.5. ARVs represent a novel membrane preparation suitable to deepen our understanding of ion channel activity in the AR and during fertilization

  7. Catalytic activity of pyrite for coal liquefaction reaction; Tennen pyrite no shokubai seino ni kansuru kento

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, K.; Kozu, M.; Okada, T.; Kobayashi, M. [Nippon Coal Oil Co. Ltd., Tokyo (Japan)

    1996-10-28

    Since natural pyrite is easy to obtain and cheap as coal liquefaction catalyst, it is to be used for the 150 t/d scale NEDOL process bituminous coal liquefaction pilot plant. NEDO and NCOL have investigated the improvement of catalytic activity of pulverized natural pyrite for enhancing performance and economy of the NEDOL process. In this study, coal liquefaction tests were conducted using natural pyrite catalyst pulverized by dry-type bowl mill under nitrogen atmosphere. Mechanism of catalytic reaction of the natural pyrite was discussed from relations between properties of the catalyst and liquefaction product. The natural pyrite provided an activity to transfer gaseous hydrogen into the liquefaction product. It was considered that pulverized pyrite promotes the hydrogenation reaction of asphaltene because pulverization increases its contact rate with reactant and the amount of active points on its surface. It was inferred that catalytic activity of pyrite is affected greatly by the chemical state of Fe and S on its surface. 3 refs., 4 figs., 1 tab.

  8. Transition from metal-ligand bonding to halogen bonding involving a metal as halogen acceptor a study of Cu, Ag, Au, Pt, and Hg complexes

    Science.gov (United States)

    Oliveira, Vytor; Cremer, Dieter

    2017-08-01

    Utilizing all-electron Dirac-exact relativistic calculations with the Normalized Elimination of the Small Component (NESC) method and the local vibrational mode approach, the transition from metal-halide to metal halogen bonding is determined for Au-complexes interacting with halogen-donors. The local stretching force constants of the metal-halogen interactions reveal a smooth transition from weak non-covalent halogen bonding to non-classical 3-center-4-electron bonding and finally covalent metal-halide bonding. The strongest halogen bonds are found for dialkylaurates interacting with Cl2 or FCl. Differing trends in the intrinsic halogen-metal bond strength, the binding energy, and the electrostatic potential are explained.

  9. Identifying the Active Surfaces of Electrochemically Tuned LiCoO2 for Oxygen Evolution Reaction

    International Nuclear Information System (INIS)

    Lu, Zhiyi; Chen, Guangxu; Li, Yanbin; Wang, Haotian; Xie, Jin

    2017-01-01

    Identification of active sites for catalytic processes has both fundamental and technological implications for rational design of future catalysts. Herein, we study the active surfaces of layered lithium cobalt oxide (LCO) for the oxygen evolution reaction (OER) using the enhancement effect of electrochemical delithiation (De-LCO). Our theoretical results indicate that the most stable (0001) surface has a very large overpotential for OER independent of lithium content. In contrast, edge sites such as the nonpolar (1120) and polar (0112) surfaces are predicted to be highly active and dependent on (de)lithiation. The effect of lithium extraction from LCO on the surfaces and their OER activities can be understood by the increase of Co 4+ sites relative to Co 3+ and by the shift of active oxygen 2p states. Experimentally, it is demonstrated that LCO nanosheets, which dominantly expose the (0001) surface show negligible OER enhancement upon delithiation. However, a noticeable increase in OER activity (~0.1 V in overpotential shift at 10 mA cm –2 ) is observed for the LCO nanoparticles, where the basal plane is greatly diminished to expose the edge sites, consistent with the theoretical simulations. In addition, we find that the OER activity of De-LCO nanosheets can be improved if we adopt an acid etching method on LCO to create more active edge sites, which in turn provides a strong evidence for the theoretical indication.

  10. Development of non-halogen cables for nuclear power stations

    Energy Technology Data Exchange (ETDEWEB)

    Yagyu, Hideki; Yamamoto, Yasuaki; Onishi, Takao (Hitachi Cable, Ltd., Tokyo (Japan))

    1983-12-01

    The non-halogen fire-resistant cables for nuclear power stations which never generate halogen gas, have been developed. The cables comprise the insulator of EP rubber and the sheath of polyolefine containing non-halogen inorganic fire-retardant. The results of the environmental test and fire-resistance test are described. In the environmental test, the cables were subjected to the heating, gamma-irradiation and steam exposure successively, according to IEEE specification 323,383, and subsequently the change in the appearance, tensile strength and electrical performance of the cables was measured. In the fire-resistance test, the vertical tray fire test according to the IEEE specification 383 was adopted, and other tests including the vertical fire test on insulator cores, oxygen index, the generation of corrosive gas, copper mirror corrosion test, gas toxicity test and optical smoke density test were carried out. It became clear that the cables did not generate halogen gas on burning, and brought about reduced toxicity, corrosion and smoke, and that the safety against fire is greatly improved by using the cables.

  11. Polar Flattening and the Strength of Halogen Bonding

    Czech Academy of Sciences Publication Activity Database

    Sedlák, Robert; Kolář, Michal H.; Hobza, Pavel

    2015-01-01

    Roč. 11, č. 10 (2015), s. 4727-4732 ISSN 1549-9618 R&D Projects: GA ČR GBP208/12/G016 Institutional support: RVO:61388963 Keywords : density functional theory * interaction energies * halogen bonding Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.301, year: 2015

  12. Is there theoretical evidence for mutual influence between halogen

    Indian Academy of Sciences (India)

    Based on many-body analysis, two and three-body terms of interaction energies have a positive contribution to the total interaction energy. It was found that the amount of charge transfer in the triads is higher than that in the corresponding dyads. AIM analyses showed that the halogen and pnicogen-hydride bonds in the ...

  13. Benchmark Calculations of Noncovalent Interactions of Halogenated Molecules

    Czech Academy of Sciences Publication Activity Database

    Řezáč, Jan; Riley, Kevin Eugene; Hobza, Pavel

    2012-01-01

    Roč. 8, č. 11 (2012), s. 4285-4292 ISSN 1549-9618 R&D Projects: GA ČR GBP208/12/G016 Institutional support: RVO:61388963 Keywords : halogenated molecules * noncovalent interactions * benchmark calculations Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.389, year: 2012

  14. Development of non-halogen cables for nuclear power stations

    International Nuclear Information System (INIS)

    Yagyu, Hideki; Yamamoto, Yasuaki; Onishi, Takao

    1983-01-01

    The non-halogen fire-resistant cables for nuclear power stations which never generate halogen gas, have been developed. The cables comprise the insulator of EP rubber and the sheath of polyolefine containing non-halogen inorganic fire-retardant. The results of the environmental test and fire-resistance test are described. In the environmental test, the cables were subjected to the heating, gamma-irradiation and steam exposure successively, according to IEEE specification 323,383, and subsequently the change in the appearance, tensile strength and electrical performance of the cables was measured. In the fire-resistance test, the vertical tray fire test according to the IEEE specification 383 was adopted, and other tests including the vertical fire test on insulator cores, oxygen index, the generation of corrosive gas, copper mirror corrosion test, gas toxicity test and optical smoke density test were carried out. It became clear that the cables did not generate halogen gas on burning, and brought about reduced toxicity, corrosion and smoke, and that the safety against fire is greatly improved by using the cables. (Yoshitake, I.)

  15. Development and application of a sampling method for the determination of reactive halogen species in volcanic gas emissions

    Science.gov (United States)

    Rüdiger, Julian; Bobrowski, Nicole; Liotta, Marcello; Hoffmann, Thorsten

    2017-04-01

    Volcanoes are a potential large source of several reactive atmospheric trace gases including sulfur and halogen containing species. Besides the importance for atmospheric chemistry, the detailed knowledge of halogen chemistry in volcanic plumes can help to get insights into subsurface processes. In this study a gas diffusion denuder sampling method, using a 1,3,5-trimethoxybenzene (1,3,5-TMB) coating for the derivatization of reactive halogen species (RHS), was characterized by dilution chamber experiments. The coating proved to be suitable to collect selectively gaseous bromine species with oxidation states (OS) of +1 or 0 (such as Br2, BrCl, BrO(H) and BrONO2), while being ignorant to HBr (OS -1). The reaction of 1,3,5-TMB with reactive bromine species gives 1-bromo-2,4,6-trimethoxybenzene (1-bromo-2,4,6-TMB) - other halogens give corresponding products. Solvent elution of the derivatized analytes and subsequent analysis with gas chromatography mass spectrometry gives detection limits of 10 ng or less for Br2, Cl2, and I2. In 2015 the method was applied on volcanic gas plumes at Mt. Etna (Italy) giving reactive bromine mixing ratios from 0.8 ppbv to 7.0 ppbv. Total bromine mixing ratios of 4.7 ppbv to 27.5 ppbv were obtained by simultaneous alkaline trap sampling (by a Raschig-tube) followed by analysis with ion chromatography and inductively coupled plasma mass spectrometry. This leads to the first results of in-situ measured reactive bromine to total bromine ratios, spanning a range between 12±1 % and 36±2 %. Our finding is in an agreement with previous model studies, which imply values < 44 % for plume ages < 1 minute, which is consistent with the assumed plume age at the sampling sites.

  16. Simultaneous determination of radioactive halogen isotopes and 99Tc

    International Nuclear Information System (INIS)

    Kabai, E.; Vajda, N.; Gaca, P.

    2003-01-01

    The purpose of this study was to develop a simplified method for simultaneous determination of radiologically important halogen isotopes and 99 Tc from different types of samples like environmental, biological and waste samples. Due to their long half-lives (longer than 10 5 years) they play important role in the nuclear cycle, especially in environmental monitoring and protection. For a rapid response in the evaluation of 129 I, 36 Cl and 99 Tc contamination levels of these samples it is advantageous to combine the existing individual methods. According to the present procedure, iodine, chlorine and technetium are separated selectively from the same sample aliquot followed by the β spectrometry of the purified fractions. Increased sensitivities can be achieved by neutron activation (NA) especially in the case of 129 I. Our work intends to solve the problem by combining the well-known hot acidic distillation method for iodine separation with the organic extraction process characteristic for technetium separation. The major objective of the work was to separate the disturbing halides from iodine. For this purpose a selective oxidant was applied. For the sample destruction and fractionated distillation an air flow-through installation was used with hot concentrated sulphuric and nitric acids. The trap for iodine contained 3 M NaOH solution. After iodine separation the trap was exchanged for a new one containing the same solution for trapping chlorine or bromine with an addition of 0.01 M KMnO 4 solution as an oxidative agent. As expected, the main part of technetium was contained in the acidic residue after distillation. Tc purification was performed by organic extraction with TBP and TEVA column. (author)

  17. Linear free energy relationships between aqueous phase hydroxyl radical reaction rate constants and free energy of activation.

    Science.gov (United States)

    Minakata, Daisuke; Crittenden, John

    2011-04-15

    The hydroxyl radical (HO(•)) is a strong oxidant that reacts with electron-rich sites on organic compounds and initiates complex radical chain reactions in aqueous phase advanced oxidation processes (AOPs). Computer based kinetic modeling requires a reaction pathway generator and predictions of associated reaction rate constants. Previously, we reported a reaction pathway generator that can enumerate the most important elementary reactions for aliphatic compounds. For the reaction rate constant predictor, we develop linear free energy relationships (LFERs) between aqueous phase literature-reported HO(•) reaction rate constants and theoretically calculated free energies of activation for H-atom abstraction from a C-H bond and HO(•) addition to alkenes. The theoretical method uses ab initio quantum mechanical calculations, Gaussian 1-3, for gas phase reactions and a solvation method, COSMO-RS theory, to estimate the impact of water. Theoretically calculated free energies of activation are found to be within approximately ±3 kcal/mol of experimental values. Considering errors that arise from quantum mechanical calculations and experiments, this should be within the acceptable errors. The established LFERs are used to predict the HO(•) reaction rate constants within a factor of 5 from the experimental values. This approach may be applied to other reaction mechanisms to establish a library of rate constant predictions for kinetic modeling of AOPs.

  18. Boosting the Performance of the Nickel Anode in the Oxygen Evolution Reaction by Simple Electrochemical Activation

    KAUST Repository

    Shinagawa, Tatsuya

    2017-03-27

    The development of cost-effective and active water-splitting electrocatalysts that work at mild pH is an essential step towards the realization of sustainable energy and material circulation in our society. Its success requires a drastic improvement in the kinetics of the anodic half-reaction of the oxygen evolution reaction (OER), which determines the overall system efficiency to a large extent. A simple electrochemical protocol has been developed to activate Ni electrodes, by which a stable NiOOH phase was formed, which could weakly bind to alkali-metal cations. The electrochemically activated (ECA) Ni electrode reached a current of 10 mA at <1.40 V vs. the reversible hydrogen electrode (RHE) at practical operation temperatures (>75 °C) and a mild pH of ca. 10 with excellent stability (>24 h), greatly surpassing that of the state-of-the-art NiFeOx electrodes under analogous conditions. Water electrolysis was demonstrated with ECA-Ni and NiMo, which required an iR-free overall voltage of only 1.44 V to reach 10 mA cmgeo(-2) .

  19. Boosting the performance of the nickel anode in the oxygen evolution reaction by simple electrochemical activation

    Energy Technology Data Exchange (ETDEWEB)

    Shinagawa, Tatsuya; Ng, Marcus Tze-Kiat; Takanabe, Kazuhiro [King Abdullah Univ. of Science and Technology (KAUST), KAUST Catalysis Center (KCC) and Physical Sciences and Engineering Div. PSE, Thuwal (Saudi Arabia)

    2017-04-24

    The development of cost-effective and active water-splitting electrocatalysts that work at mild pH is an essential step towards the realization of sustainable energy and material circulation in our society. Its success requires a drastic improvement in the kinetics of the anodic half-reaction of the oxygen evolution reaction (OER), which determines the overall system efficiency to a large extent. A simple electrochemical protocol has been developed to activate Ni electrodes, by which a stable NiOOH phase was formed, which could weakly bind to alkali-metal cations. The electrochemically activated (ECA) Ni electrode reached a current of 10 mA at <1.40 V vs. the reversible hydrogen electrode (RHE) at practical operation temperatures (>75 C) and a mild pH of ca. 10 with excellent stability (>24 h), greatly surpassing that of the state-of-the-art NiFeO{sub x} electrodes under analogous conditions. Water electrolysis was demonstrated with ECA-Ni and NiMo, which required an iR-free overall voltage of only 1.44 V to reach 10 mA cm{sub geo}{sup -2}. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Applications of the photo-nuclear reaction data for activation analysis

    International Nuclear Information System (INIS)

    Odsuren, M.; Khuukhenkhuu, G.; Turbold, A.; Davaa, S.; Baatarkhuu, D.

    2015-01-01

    In the relative method of activation analysis by continuum wide spectrum gamma-rays the same isotope is usually used for standard reference element and sample material in connection with different dependence of the reaction cross sections on the irradiation beam energy. But, in practice suitable isotopes for reference element are not always available. So, in this paper, we suggest a new method for photo-activation analysis in which is used the correction factor. This factor takes into account the difference in the photo-nuclear reaction cross section dependence on the gamma-ray energy for standard reference isotope and sample elements. The correction factor is determined by three methods of experimental, theoretical and TALYS evaluation. Pure metal foils of Au, Cu and Mo were irradiated by bremsstrahlung gamma-rays on the electron cyclic accelerator Microtron MT-22 at the Nuclear Research Center, National University of Mongolia. Gamma spectra of the activated metal foils were measured by HP-Ge detector to obtain element contents in the samples. It was shown that experimental results with correction factors are satisfactorily in agreement with real values of the element contents in the samples

  1. Synthesis and catalytic activity of N-heterocyclic silylene (NHSi) cobalt hydride for Kumada coupling reactions.

    Science.gov (United States)

    Qi, Xinghao; Sun, Hongjian; Li, Xiaoyan; Fuhr, Olaf; Fenske, Dieter

    2018-02-20

    The electron-rich silylene Co(i) chloride 5 was obtained through the reaction of CoCl(PMe 3 ) 3 with chlorosilylene. Complex 5 reacted with 1,3-siladiazole HSiMe(NCH 2 PPh 2 ) 2 C 6 H 4 to give the silylene Co(iii) hydride 6 through chelate-assisted Si-H activation. To the best of our knowledge, complex 6 is the first example of Co(iii) hydride supported by N-heterocyclic silylene. Complexes 5 and 6 were fully characterized by spectroscopic methods and X-ray diffraction analysis. Complex 6 was used as an efficient precatalyst for Kumada cross-coupling reactions. Compared with the related complex 3 supported by only trimethylphosphine, complex 6 as a catalyst supported by both chlorosilylene and trimethylphosphine exhibits a more efficient performance for the Kumada cross-coupling reactions. A novel catalytic radical mechanism was suggested and experimentally verified. As an intermediate silylene cobalt(ii) chloride 6d was isolated and structurally characterized.

  2. Factors Controlling the Redox Activity of Oxygen in Perovskites: From Theory to Application for Catalytic Reactions

    Directory of Open Access Journals (Sweden)

    Chunzhen Yang

    2017-05-01

    Full Text Available Triggering the redox reaction of oxygens has become essential for the development of (electro catalytic properties of transition metal oxides, especially for perovskite materials that have been envisaged for a variety of applications such as the oxygen evolution or reduction reactions (OER and ORR, respectively, CO or hydrocarbons oxidation, NO reduction and others. While the formation of ligand hole for perovskites is well-known for solid state physicists and/or chemists and has been widely studied for the understanding of important electronic properties such as superconductivity, insulator-metal transitions, magnetoresistance, ferroelectrics, redox properties etc., oxygen electrocatalysis in aqueous media at low temperature barely scratches the surface of the concept of oxygen ions oxidation. In this review, we briefly explain the electronic structure of perovskite materials and go through a few important parameters such as the ionization potential, Madelung potential, and charge transfer energy that govern the oxidation of oxygen ions. We then describe the surface reactivity that can be induced by the redox activity of the oxygen network and the formation of highly reactive surface oxygen species before describing their participation in catalytic reactions and providing mechanistic insights and strategies for designing new (electro catalysts. Finally, we give a brief overview of the different techniques that can be employed to detect the formation of such transient oxygen species.

  3. Activation measurements of α-induced reactions at sub-Coulomb energies

    Energy Technology Data Exchange (ETDEWEB)

    Scholz, Philipp; Dewald, Alfred; Heinze, Stefan; Mayer, Jan; Mueller-Gatermann, Claus; Netterdon, Lars; Zilges, Andreas [Institute for Nuclear Physics, University of Cologne (Germany); Endres, Anne [Institute for Applied Physics, Goethe University Frankfurt am Main (Germany)

    2015-07-01

    Network calculations of the γ process rely almost completely on theoretically predicted reaction rates within the scope of the Hauser-Feshbach Statistical Model. Especially the prediction of cross sections for (γ,α)-reactions at energies within or close to the astrophysically relevant energy window remains a problem due to the uncertainties in the underlying α-optical-model potentials. Although experimental values far above the Coulomb-barrier are well reproduced, commonly used α-optical potentials often fail to describe the trend at energies comparable to those at astrophysical sites of the γ process. Improvements of the adopted optical-model potentials are hampered by the lack of experimental cross sections at sub-Coulomb energies. In order to enlarge the experimental data base, cross sections of the {sup 187}Re(α,n) and {sup 108}Cd(α,n) reactions were investigated using the activation technique with the Cologne Clover Counting Setup. Besides recent experimental results, future plans for more sensitive cross-section studies applying Accelerator Mass Spectrometry using CologneAMS are presented.

  4. Process for reducing halogen impurities in oil products

    Energy Technology Data Exchange (ETDEWEB)

    Basler, F.

    1990-08-14

    Oil products, in particular waste oils, may be efficiently reprocessed according to an economic and technically simple method for removing impurities, notably halogens. In this method, the oil product is treated at temperatures up to about 150{degree}C with an effective amount of an aqueous solution of at least one compound selected from the group consisting of a strong acid, a salt of a weak base and a strong acid and precursors thereof. The oil product obtained in this step is treated at increased temperatures with at least one halogen binding agent. The water and/or solids from the product so treated are separated out. The process of the invention can be carried out in a conventional stripping apparatus. The strong acid used in the first step is preferably selected from sulfurous acid, phosphoric acid, phosphorous acid, and phosphonic acid. The salt of the weak base and strong acid is preferably ammonium sulfate, ammonium bisulfate, ammonium sulfite, diammonium hydrogen phosphate, ammonium dihydrogen phosphate, ammonium phosphite, and ammonium phosphonic acid. The second step of the method is preferably a coagulation step in which organic halogen compounds break down into hydrogen halides which are neutralized by the added halogen binding agents. The preferred halogen binding agents are ammonia and/or an organic base. The coagulation is preferably carried out in heat exchangers so that the oil is heated in 3 stages and the oil from each stage is passed through a cascade tower. In the third step, additives may be used to enhance separation of the oil. Experiments are described to illustrate the method of the invention. 1 tab.

  5. Cross-section studies of relativistic deuteron reactions obtained by activation method

    CERN Document Server

    Wagner, V; Svoboda, O; Vrzalová, J; Majerle, M; Krása, A; Chudoba, P; Honusek, M; Kugler, A; Adam, J; Baldin, A; Furman, W; Kadykov, M; Khushvaktov, J; Sol-nyskhin, A; Tsoupko-Sitnikov, V; Závorka, L; Tyutyunnikov, S; Vladimirova, N

    2014-01-01

    The cross-sections of relativistic deuteron reactions on natural copper were studied in detail by means of activation method. The copper foils were irradiated during experiments with the big Quinta uranium target at Joint Institute for Nuclear Research (JINR) in Dubna, Russia. The deuteron beams with energies ranging from 1 GeV up to 8 GeV were produced by JINR Nuclotron. Residual nuclides were identified by the gamma spectrometry. Lack of such experimental cross-section values prevents the usage of copper foils from beam integral monitoring.

  6. Selective molecular recognition, C-H bond activation, and catalysis in nanoscale reaction vessels

    Energy Technology Data Exchange (ETDEWEB)

    Fiedler, Dorothea; Leung, Dennis H.; Raymond, Kenneth N.; Bergman, Robert G.

    2004-11-27

    Supramolecular chemistry represents a way to mimic enzyme reactivity by using specially designed container molecules. We have shown that a chiral self-assembled M{sub 4}L{sub 6} supramolecular tetrahedron can encapsulate a variety of cationic guests, with varying degrees of stereoselectivity. Reactive iridium guests can be encapsulated and the C-H bond activation of aldehydes occurs, with the host cavity controlling the ability of substrates to interact with the metal center based upon size and shape. In addition, the host container can act as a catalyst by itself. By restricting reaction space and preorganizing the substrates into reactive conformations, it accelerates the sigmatropic rearrangement of enammonium cations.

  7. Studies of photonuclear reactions and photon activation analysis in the giant dipole resonance region using microtrons

    International Nuclear Information System (INIS)

    Tran Duc Thiep; Nguyen Van Do; Nguyen Khac Thi; Truong Thi An; Nguyen Ngoc Son

    2004-01-01

    Microtrons are accelerators of electrons and are simultaneous source of Bremsstrahlung photon flux and fission neutrons. In 1982, a microtron of seventeen trajectories Microtron MT - 17 was put into operation at the National Institute of Physics of Vietnam. Though very modest, microtrons are very useful for developing countries such as Vietnam in both fundamental and applied physics research. During the recent years by using the above mentioned MT - 17 and microtrons from other institutes we have carried out different investigation. In this report we present some results obtained in the studies of photonuclear reactions and photon activation analysis in the giant dipole resonance region. (author)

  8. Characterization and development of an active scintillating target for nuclear reaction studies on actinides

    Energy Technology Data Exchange (ETDEWEB)

    Belier, Gilbert, E-mail: gilbert.belier@cea.fr [CEA, DAM, DIF, DPTA, Centre du Grand Rue, 91297 Arpajon (France); Aupiais, Jean; Varignon, Cyril; Vayre, Sylvain [CEA, DAM, DIF, DPTA, Centre du Grand Rue, 91297 Arpajon (France)

    2012-02-01

    This article presents the development of a new kind of active actinide target, based on organic liquid scintillators containing the dissolved isotope. Amongst many advantages one can mention the very high detection efficiency, the Pulse Shape Discrimination capability, the fast response allowing high count rates and good time resolution and the ease of fabrication. The response of this target to fission fragments has been studied. The discrimination of alpha, fission and proton recoil events is demonstrated. The alpha decay and fission detection efficiencies are simulated and compared to measurements. Finally the use of such a target in the context of fast neutron induced reactions is discussed.

  9. Characterization and development of an active scintillating target for nuclear reaction studies on actinides

    International Nuclear Information System (INIS)

    Belier, Gilbert; Aupiais, Jean; Varignon, Cyril; Vayre, Sylvain

    2012-01-01

    This article presents the development of a new kind of active actinide target, based on organic liquid scintillators containing the dissolved isotope. Amongst many advantages one can mention the very high detection efficiency, the Pulse Shape Discrimination capability, the fast response allowing high count rates and good time resolution and the ease of fabrication. The response of this target to fission fragments has been studied. The discrimination of alpha, fission and proton recoil events is demonstrated. The alpha decay and fission detection efficiencies are simulated and compared to measurements. Finally the use of such a target in the context of fast neutron induced reactions is discussed.

  10. A Ligand Structure-Activity Study of DNA-Based Catalytic Asymmetric Hydration and Diels-Alder Reactions

    NARCIS (Netherlands)

    Rosati, F.; Roelfes, J.G.

    A structure-activity relationship study of the first generation ligands for the DNA-based asymmetric hydration of enones and Diels-Alder reaction in water is reported. The design of the ligand was optimized resulting in a maximum ee of 83% in the hydration reaction and 75% in the Diels-Alder

  11. Reaction rate studies of glucose-6-phosphate dehydrogenase activity in sections of rat liver using four tetrazolium salts

    NARCIS (Netherlands)

    Butcher, R. G.; van Noorden, C. J.

    1985-01-01

    The reaction rate of glucose-6-phosphate dehydrogenase activity in liver sections from fed and starved rats has been monitored by the continuous measurement at 37 degrees C of the reaction product as it is formed using scanning and integrating microdensitometry. Control media lacked either substrate

  12. Pinostrobin Derivatives from PrenylationReaction and their Antibacterial Activity against Clinical Bacteria

    Science.gov (United States)

    Marliyana, S. D.; Mujahidin, D.; Syah, Y. M.

    2018-04-01

    Kaempferia pandurata (syn. Boesenbergia rotunda, B. pandurata (Roxb.)Schltr), locally known as "TemuKunci"in Indonesia, is one of the medicinal plants of the family Zingiberaceae. Phytochemical studies on the rhizome of K. pandurata showed the presence of flavonoid derivative, namely flavanones, which constitute as the main components of this plant. Bioactivity studies on this species exhibited various biological activities, such as antibacteria, anti-inflammatory, antitumor, antidiarrhea, antidisentri, anti-HIV, antioxidant, antipyretic, analgesic and insecticides. Among the biological activities, the antibacterial activity results are important as an attempt to answer the emergence of resistance of some bacteria against existing drugs, as well as the emergence of a number of outbreaks of disease caused by bacteria. Therefore, a search to find new compounds that are potential as an antibacterial is an urgent matter. The present study was aimed at the chemical transformation of pinostrobin (1) from K. pandurata rhizome and an antibacterial activity.The chemical transformation was performed through a prenylation reaction of pinostrobin (1) which is the main component of K. pandurata rhizome. The prenylation reaction was carried out by reacting pinostrobin (1) with prenyl bromide and potassium carbonat (K2CO3). The purification of product was done using the radial chromatography with mix solvent n-hexane and ethyl acetate (97.5:2.5; 9.5:0.5; 9.0:1.0.; 8.0:2.0). The purity test of isolated compound was analysedby TLC using different types of eluent. The identification of compounds was determined based on NMR data and mass spectra analysis. Five compounds were obtained from the prenylation reaction, i.e. monooxyprenylated pinostrobin (2), monooxyprenylated chalcone (3), diprenylated chalcone (4), triprenylated chalcone (5), and triprenylated cyclohexene chalcone (6). These compounds were tested for antibacterial activities against four clinical bacteria, namely

  13. Linking precious metal enrichment and halogen cycling in mafic magmatic systems: insights from the Rum layered intrusion, NW Scotland

    Science.gov (United States)

    Kelly, A. P.; O'Driscoll, B.; Clay, P. L.; Burgess, R.

    2017-12-01

    Layered intrusions host the world's largest known concentrations of the platinum-group elements (PGE). Emphasis has been attached to the role of halogen-bearing fluids in concentrating the precious metals, but whether this occurs at the magmatic stage, or via subsequent metasomatism, is actively debated. One obstacle to progress has been the analytical difficulty of measuring low abundances of the halogens in the cumulate products of layered intrusions. To elucidate the importance of the halogens in facilitating PGE-mineralisation, as well as fingerprint halogen provenance and assess the importance of halogen cycling in mafic magma systems more generally, a suite of samples encompassing different stages of activity of the Palaeogene Rum layered intrusion was investigated. Halogen abundances were measured by neutron irradiation noble gas mass spectrometric analysis, permitting the detection of relatively low (ppm-ppb) abundances of Cl, Br and I in mg-sized samples. The samples include PGE-enriched chromite seams, various cumulates (e.g., peridotites), picrites (approximating the Rum parental magma), and pegmatites representing volatile-rich melts that circulated the intrusion at a late-stage in its solidification history. The new data reveal that PGE-bearing chromite seams contain relatively low Cl concentrations (2-3 ppm), with high molar ratios of Br/Cl and I/Cl (0.005 and 0.009, respectively). The picrites and cumulates have Br/Cl and I/Cl ratios close to sub-continental lithospheric mantle values of approximately 0.0013 and 0.00002, respectively, and thus likely reflect the Rum magma source region. A positive correlation between Cl and Br signifies comparable partitioning behaviour in all samples. However, I is more variable, displaying a positive correlation with Cl for more primitive samples (e.g. picrite and peridotite), and seemingly decoupling from Br and Cl in chromite seams and pegmatites. The relative enrichment of I over Cl in the chromite seams points

  14. The Atmospherically Important Reaction of Hydroxyl Radicals with Methyl Nitrate: A Theoretical Study Involving the Calculation of Reaction Mechanisms, Enthalpies, Activation Energies, and Rate Coefficients.

    Science.gov (United States)

    Ng, Maggie; Mok, Daniel K W; Lee, Edmond P F; Dyke, John M

    2017-09-07

    A theoretical study, involving the calculation of reaction enthalpies, activation energies, mechanisms, and rate coefficients, was made of the reaction of hydroxyl radicals with methyl nitrate, an important process for methyl nitrate removal in the earth's atmosphere. Four reaction channels were considered: formation of H 2 O + CH 2 ONO 2 , CH 3 OOH + NO 2 , CH 3 OH + NO 3 , and CH 3 O + HNO 3 . For all channels, geometry optimization and frequency calculations were performed at the M06-2X/6-31+G** level, while relative energies were improved at the UCCSD(T*)-F12/CBS level. The major channel is found to be the H abstraction channel, to give the products H 2 O + CH 2 ONO 2 . The reaction enthalpy (ΔH 298 K RX ) of this channel is computed as -17.90 kcal mol -1 . Although the other reaction channels are also exothermic, their reaction barriers are high (>24 kcal mol -1 ), and therefore these reactions do not contribute to the overall rate coefficient in the temperature range considered (200-400 K). Pathways via three transition states were identified for the H abstraction channel. Rate coefficients were calculated for these pathways at various levels of variational transition state theory including tunneling. The results obtained are used to distinguish between two sets of experimental rate coefficients, measured in the temperature range of 200-400 K, one of which is approximately an order of magnitude greater than the other. This comparison, as well as the temperature dependence of the computed rate coefficients, shows that the lower experimental values are favored. The implications of the results to atmospheric chemistry are discussed.

  15. ACT-XN: Revised version of an activation calculation code for fusion reactor analysis. Supplement of the function for the sequential reaction activation by charged particles

    International Nuclear Information System (INIS)

    Yamauchi, Michinori; Sato, Satoshi; Nishitani, Takeo; Konno, Chikara; Hori, Jun-ichi; Kawasaki, Hiromitsu

    2007-09-01

    The ACT-XN is a revised version of the ACT4 code, which was developed in the Japan Atomic Energy Research Institute (JAERI) to calculate the transmutation, induced activity, decay heat, delayed gamma-ray source etc. for fusion devices. The ACT4 code cannot deal with the sequential reactions of charged particles generated by primary neutron reactions. In the design of present experimental reactors, the activation due to sequential reactions may not be of great concern as it is usually buried under the activity by primary neutron reactions. However, low activation material is one of the important factors for constructing high power fusion reactors in future, and unexpected activation may be produced through sequential reactions. Therefore, in the present work, the ACT4 code was newly supplemented with the calculation functions for the sequential reactions and renamed the ACT-XN. The ACT-XN code is equipped with functions to calculate effective cross sections for sequential reactions and input them in transmutation matrix. The FISPACT data were adopted for (x,n) reaction cross sections, charged particles emission spectra and stopping powers. The nuclear reaction chain data library were revised to cope with the (x,n) reactions. The charged particles are specified as p, d, t, 3 He(h) and α. The code was applied to the analysis of FNS experiment for LiF and Demo-reactor design with FLiBe, and confirmed that it reproduce the experimental values within 15-30% discrepancies. In addition, a notice was presented that the dose rate due to sequential reaction cannot always be neglected after a certain period cooling for some of the low activation material. (author)

  16. Size-selective electrocatalytic activity of (Pt)n/MoS2for oxygen reduction reaction

    DEFF Research Database (Denmark)

    Bothra, Pallavi; Pandey, Mohnish; Pati, Swapan K.

    2016-01-01

    In the present work, we have investigated the electrocatalytic activity of the oxygen reduction reaction (ORR), O2 + 4H+ + 4e− → 2H2O, for (Pt)n clusters (n = 1, 2, 3, 5, 7, 10 and 12) adsorbed on semiconducting (2H) and metallic (1T) MoS2 monolayers using first principles density functional theory....... We have considered four elementary reactions involved in ORR within a unified electrochemical thermodynamic framework and the corresponding Gibbs adsorption free energies of the key intermediates (*OOH, *O, *OH) associated with each step have been calculated. The results indicate that the reduction...... of adsorbed hydroxyl (*OH) to water (*OH + H+ + e− → H2O) is the bottleneck step in the ORR process. The adsorption free energy of *OH (ΔG*OH) is found to be the thermodynamic descriptor for the present systems. Eventually, the ORR activity has been described as a function of ΔG*OH and a volcano plot...

  17. EFFECT OF FLUORINE AND CHLORINE IONS ON THE REACTION SINTERING OF MECHANICALLY ACTIVATED ZIRCON-ALUMINA MIXTURE

    Directory of Open Access Journals (Sweden)

    R. Zamani Foroshani

    2015-09-01

    Full Text Available The aim of this work was to study the effect of fluorine and chlorine ions on the formation of mullite during the reaction sintering of mechanically activated zircon-alumina powder mixture. The results showed that mechanical activation of zirconalumina powder mixture for 20 h led to grain refinement and partial amorphization. In the presence of fluorine and chlorine ions, complete formation of mullite in the mechanically activated sample occurred after 2 h of reaction sintering at 1300oC and 1400oC, respectively. In the sample lacking fluorine and chlorine ions, mullitization was not completed even after 2 h of reaction sintering at 1400oC. It was concluded that presence of fluorine and chlorine ions enhance the dissociation of zircon and formation of mullite during the reaction sintering of mechanically activated zircon-alumina mixture.

  18. Particle size dependence on oxygen reduction reaction activity of electrodeposited TaOx catalysts in acidic media

    KAUST Repository

    Seo, J.; Cha, Dong Kyu; Takanabe, Kazuhiro; Kubota, J.; Domen, K.

    2013-01-01

    The size dependence of the oxygen reduction reaction activity was studied for TaOx nanoparticles electrodeposited on carbon black for application to polymer electrolyte fuel cells (PEFCs). Compared with a commercial Ta2O5 material, the ultrafine

  19. Simple synthesis of multi-halogen pyrazino [1,2-a]indole-1,8(2H,5aH)-dione

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Rui Xia; Zhao, Yu Cheng; Kong, Ling Bin; Yan, Sheng Jiao; Lin, Jun [Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry Education, School of Chemical Science and Technology, Yunnan University, Kunming (China)

    2016-10-15

    A concise and efficient one-pot synthesis of multi-halogen pyrazino[1,2-a]indole-1,8(2H,5aH)-dione (MHPID) derivatives by the reaction of an enamino ester with multi-halogen benzoquinone derivatives is described. MHPIDs 3a–3d were obtained with good yields (78–83%) by refluxing enamino esters 1a and 1b and tetrahalogen-1,4-benzoquinones 2a and 2b for 24 h without the use of catalysts. Compounds 3e–3p were also obtained with excellent yields (69–92%) via the reaction of the phenyl-substituted enamino esters 1c–1h with tetrahalogen-1,4-benzoquinones 2a and 2b in CH3CN catalyzed by Cs2CO3. These two protocols are efficient and effective for the synthesis of MHPIDs.

  20. Catalytic Activities of Noble Metal Phosphides for Hydrogenation and Hydrodesulfurization Reactions

    Directory of Open Access Journals (Sweden)

    Yasuharu Kanda

    2018-04-01

    Full Text Available In this work, the development of a highly active noble metal phosphide (NMXPY-based hydrodesulfurization (HDS catalyst with a high hydrogenating ability for heavy oils was studied. NMXPY catalysts were obtained by reduction of P-added noble metals (NM-P, NM: Rh, Pd, Ru supported on SiO2. The order of activities for the hydrogenation of biphenyl was Rh-P > NiMoS > Pd-P > Ru-P. This order was almost the same as that of the catalytic activities for the HDS of dibenzothiophene. In the HDS of 4,6-dimethyldibenzothiophene (4,6-DMDBT, the HDS activity of the Rh-P catalyst increased with increasing reaction temperature, but the maximum HDS activity for the NiMoS catalyst was observed at 270 °C. The Rh-P catalyst yielded fully hydrogenated products with high selectivity compared with the NiMoS catalyst. Furthermore, XRD analysis of the spent Rh-P catalysts revealed that the Rh2P phase possessed high sulfur tolerance and resistance to sintering.

  1. Sensitive electrochemical assaying of DNA methyltransferase activity based on mimic-hybridization chain reaction amplified strategy.

    Science.gov (United States)

    Zhang, Linqun; Liu, Yuanjian; Li, Ying; Zhao, Yuewu; Wei, Wei; Liu, Songqin

    2016-08-24

    A mimic-hybridization chain reaction (mimic-HCR) amplified strategy was proposed for sensitive electrochemically detection of DNA methylation and methyltransferase (MTase) activity In the presence of methylated DNA, DNA-gold nanoparticles (DNA-AuNPs) were captured on the electrode by sandwich-type assembly. It then triggered mimic-HCR of two hairpin probes to produce many long double-helix chains for numerous hexaammineruthenium (III) chloride ([Ru(NH3)6](3+), RuHex) inserting. As a result, the signal for electrochemically detection of DNA MTase activity could be amplified. If DNA was non-methylated, however, the sandwich-type assembly would not form because the short double-stranded DNAs (dsDNA) on the Au electrode could be cleaved and digested by restriction endonuclease HpaII (HapII) and exonuclease III (Exo III), resulting in the signal decrement. Based on this, an electrochemical approach for detection of M.SssI MTase activity with high sensitivity was developed. The linear range for M.SssI MTase activity was from 0.05 U mL(-1) to 10 U mL(-1), with a detection limit down to 0.03 U mL(-1). Moreover, this detecting strategy held great promise as an easy-to-use and highly sensitive method for other MTase activity and inhibition detection by exchanging the corresponding DNA sequence. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Influence of refreshment/activation cycles and temperature rise on the reaction rate of sodium hypochlorite with bovine dentine during ultrasonic activated irrigation.

    Science.gov (United States)

    Macedo, R G; Verhaagen, B; Wesselink, P R; Versluis, M; van der Sluis, L W M

    2014-02-01

    To evaluate the effect of multiple refreshment/activation cycles and temperature on the reaction rate of sodium hypochlorite (NaOCl) with bovine dentine during ultrasonic activated irrigation (UAI) under laboratory conditions. The root canal walls of 24 standardized root canals in bovine incisors were exposed to a standardized volume of NaOCl at different temperatures (24 °C and 38 °C) and exposure times (20, 60 and 180 s). The irrigant was refreshed and ultrasonically activated four times for 20 s followed by a 40 s rest interval, with no refreshment and no activation as the controls. The reaction rate was determined by measuring the amount of active chlorine in the NaOCl solution before and after being exposed to dentine during the specific experimental conditions. Calorimetry was used to measure the electrical-to-sonochemical conversion efficiency during ultrasonic activation. Refreshment, activation and exposure time all increased the reaction rate of NaOCl (P reaction rate of NaOCl (P > 0.125). The reaction rate of NaOCl with dentine is enhanced by refreshment, ultrasonic activation and exposure time. Temperature rise of irrigant during ultrasonic activation was not sufficient to alter the reaction rate. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  3. Synthesis and evaluation of antimicrobial activity of halogenated furans and analogue compounds to nostoclides; Sintese e avaliacao da atividade antimicrobiana de furanonas halogenadas e de compostos analogos aos nostoclideos

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Luiz C.A.; Maltha, Celia R.A.; Demuner, Antonio J.; Pinheiro, Patricia F.; Varejao, Jodieh O.S.; Montanari, Ricardo M., E-mail: lcab@ufv.b [Universidade Federal de Vicosa (UFV), MG (Brazil). Dept. de Quimica; Andrade, Nelio J. [Universidade Federal de Vicosa (UFV), MG (Brazil). Dept. de Ciencia e Tecnologia de Alimentos

    2010-07-01

    Considering the broad spectrum of biological activity of gamma-butyrolactone derivatives, we presented the synthesis of 3,4-dihalo-5-arylidenefuran-2(5H)-ones (17-21) and analogues (24-28) of the natural product nostoclide (7,8). Furanones 17-21 were synthesized from the condensation of aromatic aldehydes with lactones 14 and 15, that were obtained from mucobromic and mucochloric acids. Lactone 15 was converted into the intermediate 23 in 36% overall yield. Compound 23 was then transformed into the nostoclide analogues 24-28. Some of the compounds prepared showed antimicrobial activities against Escherichia coli, Staphylococcus aureus and Bacillus cereus comparable to commercial antibiotics. (author)

  4. Cross section measurement and integral test for several activation reactions using T + d and thick-Li + d sources

    International Nuclear Information System (INIS)

    Dumais, J.R.; Tanaka, S.; Odano, N.; Iwasaki, S.; Sugiyama, K.

    1988-01-01

    Recent activities on the area of the cross section measurement for several activation reactions at Department of Nucl. Eng., Tohoku Univ. are described. The first subject is the cross section measurement for (n,2n) reaction on aluminum using the RTNS-II neutron source. Cross sections with rather small error band were obtained for the incident neutron energies from 14 to 14.7 MeV. The second one is the status of the program for the integral experiments on several reactions using the thick Li + d source at Tohoku Fast Neutron Lab. The experimental results showed the usefullness of the source as a tool for the cross section assessment. (author)

  5. Design, synthesis, and structure-activity relationship study of halogen containing 2-benzylidene-1-indanone derivatives for inhibition of LPS-stimulated ROS production in RAW 264.7 macrophages.

    Science.gov (United States)

    Shrestha, Aarajana; Jin Oh, Hye; Kim, Mi Jin; Pun, Nirmala Tilija; Magar, Til Bahadur Thapa; Bist, Ganesh; Choi, Hongseok; Park, Pil-Hoon; Lee, Eung-Seok

    2017-06-16

    As a continuous effort to discover new potential anti-inflammatory agents, we systematically designed and synthesized sixty-one 2-benzylidene-1-indanone derivatives with structural modification of chalcone, and evaluated their inhibitory activity on LPS-stimulated ROS production in RAW 264.7 macrophages. Systematic structure-activity relationship study revealed that hydroxyl group in C-5, C-6, or C-7 position of indanone moiety, and ortho-, meta-, or para-fluorine, trifluoromethyl, trifluoromethoxy, and bromine functionalities in phenyl ring are important for inhibition of ROS production in LPS-stimulated RAW 264.7 macrophages. Among all the tested compounds, 6-hydroxy-2-(2-(trifluoromethoxy) benzylidene)-2,3-dihydro-1H-inden-1-one (compound 44) showed the strongest inhibitory activity of ROS production. Further studies on the mode of action revealed that compound 44 potently suppressed LPS-stimulated ROS production via modulation of NADPH oxidase. The findings of this work could be useful to design 2-benzylidene-indanone based lead compounds as novel anti-inflammatory agents. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. Optimization of the GaAs et GaAs/Si annealing using halogen lamp flashes

    International Nuclear Information System (INIS)

    Blanck, H.

    1989-01-01

    The aim of the work is to check whether the flash annealing of GaAs and GaAs/Si, using halogen lamps, allows an improvement in the results obtained by usual methods. The electrical activation, defects behavior and results uniformity are studied. The results on the activation and diffusion of implanted impurities are shown to be equivalent to those obtained with classical annealing methods. However, residual impurities (or defects) diffusion phenomena are restrained by the flash annealing technique. The Hall effect cartographic measurements showed an improvement of the uniformity of the implanted coating surface resistance. Flash annealing is a suitable method for the Si activation in GaAs. It allows an improvement of the GaAs results obtained with standard techniques, as well as the formation, by means of ion implantation, of active zones in the GaAs/Si layers [fr

  7. Temperature dependence of bromine activation due to reaction of bromide with ozone in a proxy for organic aerosols and its importance for chemistry in surface snow.

    Science.gov (United States)

    Edebeli, Jacinta; Ammann, Markus; Gilgen, Anina; Trachsel, Jürg; Avak, Sven; Eichler, Anja; Schneebeli, Martin; Bartels-Rausch, Thorsten

    2017-04-01

    Tropospheric ozone depletion events (ODEs) via halogen activation are observed in both cold and warm climates [1-3]. Very recently, it was suggested that this multiphase halogen activation chemistry dominates in the tropical and subtropical upper troposphere [4]. These occurrences beg the question of temperature dependence of halogen activation in sea-salt aerosol, which are often mixtures of sea-salt and organic molecules [3, 5]. With the application of flow-tubes, the aim of this study is to investigate the temperature dependence of bromine activation via ozone interaction in a bromide containing film as a proxy for mixed organic - sea-salt aersol. Citric acid is used in this study as a hygroscopically characterized matrix and a proxy for oxidized organics, which is of relevance to atmospheric chemistry. Here, we present reactive ozone uptake measured between 258 and 289 K. The data show high reproducibility. With available knowledge, we have reproduced the measured uptake with modelled bulk uptake while accounting for temperature dependence of the substrate's properties as diffusivity, viscosity, and gas solubility. This work is part of a cross-disciplinary project with the aim to investigate the impact of metamorphism on impurity location in aging snow and its consequences for chemical reactivity. Metamorphism drastically shapes the structure and physical properties of snow, which has impacts on heat transfer, albedo, and avalanche formation. Such changes can be driven by water vapour fluxes in dry metamorphism with a mass turnover of as much as 60% per day - much greater than previously thought [6]. The consequences for atmospheric science are a current question of research [7]. Here, we show first results of a joint experiment to probe the re-distribution of impurities during snow metamorphism in artificial snow combined with an investigation of the samples structural changes. Future work is planned with the goal to investigate to which extend the observed re

  8. Exquisite Modulation of the Active Site of Methanocaldococcus jannaschii Adenylosuccinate Synthetase in Forward Reaction Complexes.

    Science.gov (United States)

    Karnawat, Vishakha; Mehrotra, Sonali; Balaram, Hemalatha; Puranik, Mrinalini

    2016-05-03

    In enzymes that conduct complex reactions involving several substrates and chemical transformations, the active site must reorganize at each step to complement the transition state of that chemical step. Adenylosuccinate synthetase (ADSS) utilizes a molecule each of guanosine 5'-monophosphate (GTP) and aspartate to convert inosine 5'-monophosphate (IMP) into succinyl adenosine 5'-monophosphate (sAMP) through several kinetic intermediates. Here we followed catalysis by ADSS through high-resolution vibrational spectral fingerprints of each substrate and intermediate involved in the forward reaction. Vibrational spectra show differential ligand distortion at each step of catalysis, and band positions of substrates are influenced by binding of cosubstrates. We found that the bound IMP is distorted toward its N1-deprotonated form even in the absence of any other ligands. Several specific interactions between GTP and active-site amino acid residues result in large Raman shifts and contribute substantially to intrinsic binding energy. When both IMP and GTP are simultaneously bound to ADSS, IMP is converted into an intermediate 6-phosphoryl inosine 5'-monophosphate (6-pIMP). The 6-pIMP·ADSS complex was found to be stable upon binding of the third ligand, hadacidin (HDA), an analogue of l-aspartate. We find that in the absence of HDA, 6-pIMP is quickly released from ADSS, is unstable in solution, and converts back into IMP. HDA allosterically stabilizes ADSS through local conformational rearrangements. We captured this complex and determined the spectra and structure of 6-pIMP in its enzyme-bound state. These results provide important insights into the exquisite tuning of active-site interactions with changing substrate at each kinetic step of catalysis.

  9. Improving the catalytic activity of amorphous molybdenum sulfide for hydrogen evolution reaction using polydihydroxyphenylalanine modified MWCNTs

    Science.gov (United States)

    Li, Maoguo; Yu, Muping; Li, Xiang

    2018-05-01

    Molybdenum sulfides are promising electrocatalysts for hydrogen evolution reaction (HER) in acid medium due to their unique properties. In order to improve their HER activity, different strategies have been developed. In this study, amorphous molybdenum sulfide was prepared by a simple wet chemical method and its HER activity was further improved by using polydihydroxyphenylalanine (PDOPA) modified MWCNTs as supports. It was found that the PDOPA can effectively improve the hydrophilic properties of multiwalled carbon nanotubes (MWCNTs) and amorphous MoSx can uniformly grow on the surface of PDOPA@MWCNTs. Compared with MoSx and MoSx/MWCNTs, MoSx/PDOPA@MWCNTs show obviously enhanced HER activities due to the superior electrical conductivity and more exposed active sites. In addition, the effect of the ratio of MoSx and PDOPA@MWCNTs and the loading amount of catalysts on the electrodes are also investigated in detail. At the optimum conditions, MoSx/PDOPA@MWCNTs display an overpotential of 198 mV at 10 mA/cm2, a Tafel slope of 53 mV/dec and a good long-term stability in 0.5 M H2SO4, which make them promising candidates for HER application.

  10. Directed surfaces structures and interfaces for enhanced electrocatalyst activity, selectivity, and stability for energy conversion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Jaramillo, Thomas F. [Stanford Univ., CA (United States). Dept. of Chemical Engineering. Shriram Center

    2016-04-20

    In this project, we have employed a systematic approach to develop active, selective, and stable catalyst materials for important electrochemical reactions involving energy conversion. In particular, we have focused our attention on developing active catalyst materials for the hydrogen evolution reaction (HER), oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). HER: We have synthesized and investigated several highly active and acid stable non-precious metal HER catalysts, including: [Mo3S13]2- nanoclusters (Nature Chemistry, 2014) and molybdenum phosphosulfide (MoP|S) (Angewandte Chemie, 2014). We have also aimed to engineer these catalyst formulations in a membrane electrode assembly (MEA) for fundamental studies of water electrolysis at high current densities, approximately 1 A/cm2 (ChemSusChem, 2015). We furthermore investigated transition metal phosphide (TMP) catalysts for HER by a combined experimental–theoretical approach (Energy & Environmental Science, 2015). By synthesizing different TMPs and comparing experimentally determined HER activities with the hydrogen adsorption free energies, ΔGH, calculated by density functional theory, we showed that the TMPs follow a volcano relationship for the HER. Using our combined experimental–theoretical model, we predicted that the mixed metal TMP, Fe0.5Co0.5P, should have a near-optimal ΔGH. We synthesized several mixtures of Co and Fe phosphides alloys and confirmed that Fe0.5Co0.5P exhibits the highest HER activity of the investigated TMPs (Energy & Environmental Science, 2015). The understanding gained as to how to improve catalytic activity for the HER, particularly for non-precious metal materials, is important to DOE targets for sustainable H2 production. OER: We have developed a SrIrO3/IrOx catalyst for acidic conditions (submitted, 2016). The Sr

  11. Iron-Induced Activation of Ordered Mesoporous Nickel Cobalt Oxide Electrocatalyst for the Oxygen Evolution Reaction.

    Science.gov (United States)

    Deng, Xiaohui; Öztürk, Secil; Weidenthaler, Claudia; Tüysüz, Harun

    2017-06-28

    Herein, ordered mesoporous nickel cobalt oxides prepared by the nanocasting route are reported as highly active oxygen evolution reaction (OER) catalysts. By using the ordered mesoporous structure as a model system and afterward elevating the optimal catalysts composition, it is shown that, with a simple electrochemical activation step, the performance of nickel cobalt oxide can be significantly enhanced. The electrochemical impedance spectroscopy results indicated that charge transfer resistance increases for Co 3 O 4 spinel after an activation process, while this value drops for NiO and especially for CoNi mixed oxide significantly, which confirms the improvement of oxygen evolution kinetics. The catalyst with the optimal composition (Co/Ni 4/1) reaches a current density of 10 mA/cm 2 with an overpotential of a mere 336 mV and a Tafel slope of 36 mV/dec, outperforming benchmarked and other reported Ni/Co-based OER electrocatalysts. The catalyst also demonstrates outstanding durability for 14 h and maintained the ordered mesoporous structure. The cyclic voltammograms along with the electrochemical measurements in Fe-free KOH electrolyte suggest that the activity boost is attributed to the generation of surface Ni(OH) 2 species that incorporate Fe impurities from the electrolyte. The incorporation of Fe into the structure is also confirmed by inductively coupled plasma optical emission spectrometry.

  12. Effect of one step KOH activation and CaO modified carbon in transesterification reaction

    Science.gov (United States)

    Yacob, Abd Rahim; Zaki, Muhammad Azam Muhammad

    2017-11-01

    In this work, one step activation was introduced using potassium hydroxide (KOH) and calcium oxide (CaO) modified palm kernel shells. Various concentration of calcium oxide was used as catalyst while maintaining the same concentration of potassium hydroxide to activate and impregnate the palm kernel shell before calcined at 500°C for 5 hours. All the prepared samples were characterized using Fourier Transform Infrared (FTIR) and Field Emission Scanning Electron Microscope (FESEM). FTIR analysis of raw palm kernel shell showed the presence of various functional groups. However, after activation, most of the functional groups were eliminated. The basic strength of the prepared samples were determined using back titration method. The samples were then used as base heterogeneous catalyst for the transesterification reaction of rice bran oil with methanol. Analysis of the products were performed using Gas Chromatography Flame Ionization Detector (GC-FID) to calculate the percentage conversion of the biodiesel products. This study shows, as the percentage of one step activation potassium and calcium oxide doped carbon increases thus, the basic strength also increases followed by the increase in biodiesel production. Optimization study shows that the optimum biodiesel production was at 8 wt% catalyst loading, 9:1 methanol: oil molar ratio at 65°C and 6 hours which gives a conversion up to 95%.

  13. Evidence for the Active Phase of Heterogeneous Catalysts through In Situ Reaction Product Imaging and Multiscale Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Matera, S.; Blomberg, S.; Hoffmann, M. J.; Zetterberg, J.; Gustafson, J.; Lundgren, E.; Reuter, K.

    2015-06-17

    We use multiscale modeling to analyze laser-induced fluorescence (LIF) measurements of the CO oxidation reaction over Pd(100) at near-ambient reaction conditions. Integrating density functional theory-based kinetic Monte Carlo simulations of the active catalyst into fluid-dynamical simulations of the mass transport inside the reactor chamber, we calculate the reaction product concentration directly above the catalyst surface. Comparing corresponding data calculated for different surface models against the measured LIF signals, we can discriminate the one that predominantly actuates the experimentally measured catalytic activity. For the probed CO oxidation reaction conditions, the experimental activity is due to pristine Pd(100) possibly coexisting with other (oxidic) domains on the surface.

  14. Palladium- and copper-mediated N-aryl bond formation reactions for the synthesis of biological active compounds

    Directory of Open Access Journals (Sweden)

    Burkhard Koenig

    2011-01-01

    Full Text Available N-Arylated aliphatic and aromatic amines are important substituents in many biologically active compounds. In the last few years, transition-metal-mediated N-aryl bond formation has become a standard procedure for the introduction of amines into aromatic systems. While N-arylation of simple aromatic halides by simple amines works with many of the described methods in high yield, the reactions may require detailed optimization if applied to the synthesis of complex molecules with additional functional groups, such as natural products or drugs. We discuss and compare in this review the three main N-arylation methods in their application to the synthesis of biologically active compounds: Palladium-catalysed Buchwald–Hartwig-type reactions, copper-mediated Ullmann-type and Chan–Lam-type N-arylation reactions. The discussed examples show that palladium-catalysed reactions are favoured for large-scale applications and tolerate sterically demanding substituents on the coupling partners better than Chan–Lam reactions. Chan–Lam N-arylations are particularly mild and do not require additional ligands, which facilitates the work-up. However, reaction times can be very long. Ullmann- and Buchwald–Hartwig-type methods have been used in intramolecular reactions, giving access to complex ring structures. All three N-arylation methods have specific advantages and disadvantages that should be considered when selecting the reaction conditions for a desired C–N bond formation in the course of a total synthesis or drug synthesis.

  15. Investigation of the Maillard Reaction between Polysaccharides and Proteins from Longan Pulp and the Improvement in Activities.

    Science.gov (United States)

    Han, Miao-Miao; Yi, Yang; Wang, Hong-Xun; Huang, Fei

    2017-06-05

    The purpose of this study was to investigate the Maillard reaction between polysaccharides and proteins from longan pulp and the effects of reaction on their in vitro activities. The polysaccharide-protein mixtures of fresh longan pulp (LPPMs) were co-prepared by an alkali extraction-acid precipitation method. They were then dry-heated under controlled conditions for monitoring the characterization of the Maillard reaction by the measurement of the free amino group content, ultraviolet-visible spectrum, Fourier transform infrared spectrum and molecular weight distribution. All the physicochemical analyses indicated the development of the Maillard reaction between polysaccharides and proteins. The in vitro activity evaluation indicated that the Maillard reaction could effectively enhance the antioxidant, antitumor and immunostimulating activities of LPPMs. The enhancement of 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity and ferric reducing antioxidant power displayed both a positive correlation with the reaction time ( p Maillard-type intermacromolecular interaction is suggested to be an effective and controllable method for improving the functional activities of polysaccharides and proteins from longan pulp.

  16. Screening of catalytic oxygen reduction reaction activity of metal-doped graphene by density functional theory

    International Nuclear Information System (INIS)

    Chen, Xin; Chen, Shuangjing; Wang, Jinyu

    2016-01-01

    Highlights: • The screened M-G structures are very thermodynamically stable, and the stability is even higher than that of the corresponding bulk metal surfaces. • The binding energies of ORR intermediates suggest that they are not linear dependence, which are different form the cases found on some metal-based catalysts. • The Au-, Co-, and Ag-G structures could be used as the ORR catalysts. - Abstract: Graphene doping is a promising direction for developing effective oxygen reduction reaction (ORR) catalysts. In this paper, we computationally investigated the ORR performance of 10 kinds of metal-doped graphene (M-G) catalysts, namely, Al-, Si-, Mn-, Fe-, Co-, Ni-, Pd-, Ag-, Pt-, and Au-G. The results shown that the binding energies of the metal atoms incorporated into the graphene vacancy are higher than their bulk cohesive energies, indicating the formed M-G catalysts are even more stable than the corresponding bulk metal surfaces, and thus avoid the metals dissolution in the reaction environment. We demonstrated that the linear relation among the binding energies of the ORR intermediates that found on metal-based materials does not hold for the M-G catalysts, therefore a single binding energy of intermediate alone is not sufficient to evaluate the ORR activity of an arbitrary catalyst. By analysis of the detailed ORR processes, we predicted that the Au-, Co-, and Ag-G materials can be used as the ORR catalysts.

  17. Electrocatalytic activity of cobalt phosphide-modified graphite felt toward VO2+/VO2+ redox reaction

    Science.gov (United States)

    Ge, Zhijun; Wang, Ling; He, Zhangxing; Li, Yuehua; Jiang, Yingqiao; Meng, Wei; Dai, Lei

    2018-04-01

    A novel strategy for improving the electro-catalytic properties of graphite felt (GF) electrode in vanadium redox flow battery (VRFB) is designed by depositing cobalt phosphide (CoP) onto GF surface. The CoP powder is synthesized by direct carbonization of Co-based zeolitic imidazolate framework (ZIF-67) followed by phosphidation. Cyclic voltammetry results confirm that the CoP-modified graphite felt (GF-CoP) electrode has excellent reversibility and electro-catalytic activity to the VO2+/VO2+ cathodic reaction compared with the pristine GF electrode. The cell using GF-CoP electrode shows apparently higher discharge capacity over that based on GF electrode. The cell using GF-CoP electrode has the capacity of 67.2 mA h at 100 mA cm-2, 32.7 mA h larger than that using GF electrode. Compared with cell using GF electrode, the voltage efficiency of the cell based on GF-CoP electrode increases by 5.9% and energy efficiency by 5.4% at a current density of 100 mA cm-2. The cell using GF-CoP electrode can reach 94.31% capacity retention after 50 cycles at a current density of 30 mA cm-2. The results show that the CoP can effectively promote the VO2+/VO2+ redox reaction, implying that metal phosphides are a new kind of potential catalytic materials for VRFB.

  18. Dynamics of activity free radical oxidation reactions in students with cerebral palsy results over the course of the educational process

    Directory of Open Access Journals (Sweden)

    Makarova E.V.

    2012-12-01

    Full Text Available The dynamics of changes activity of reactions is studied freely radical oxidize for students with the consequences of child's cerebral paralysis. 20 students took part in an experiment. Found that the course of study they have more active free radical oxidation reactions and decreases the activity of antiradical protection. Given the use of additional physical activity in aerobic training indicators intracellular antioxidant defense system increased, decreased content of reaction products of lipid peroxidation. However, increased rates of maximum oxygen consumption and increased tolerance of students with cerebral palsy to the consequences of physical activity. It is set that the pathological changes of metabolism for students ground the necessity of application of the differentiated physical loadings. The optimum forms of physical rehabilitation of the aerobic training is the dosed walking, medical swimming, dosed after distance, sometimes and by the corner of getting up pedestrian ascents. Loading is increased due to a volume, but not intensity of exercises.

  19. Nucleophilic Aromatic Substitution Between Halogenated Benzene Dopants and Nucleophiles in Atmospheric Pressure Photoionization.

    Science.gov (United States)

    Kauppila, Tiina J; Haack, Alexander; Kroll, Kai; Kersten, Hendrik; Benter, Thorsten

    2016-03-01

    In a preceding work with dopant assisted-atmospheric pressure photoionization (DA-APPI), an abundant ion at [M + 77](+) was observed in the spectra of pyridine and quinoline with chlorobenzene dopant. This contribution aims to reveal the identity and route of formation of this species, and to systematically investigate structurally related analytes and dopants. Compounds containing N-, O-, and S-lone pairs were investigated with APPI in the presence of fluoro-, chloro-, bromo-, and iodobenzene dopants. Computational calculations on a density functional theory (DFT) level were carried out to study the reaction mechanism for pyridine and the different halobenzenes. The experimental and computational results indicated that the [M + 77](+) ion was formed by nucleophilic aromatic ipso-substitution between the halobenzene radical cation and nucleophilic analytes. The reaction was most efficient for N-heteroaromatic compounds, and it was weakened by sterical effects and enhanced by resonance stabilization. The reaction was most efficient with chloro-, bromo-, and iodobenzenes, whereas with fluorobenzene the reaction was scarcely observed. The calculated Gibbs free energies for the reaction between pyridine and the halobenzenes were shown to increase in the order I < Br < Cl < F. The reaction was found endergonic for fluorobenzene due to the strong C-F bonding, and exergonic for the other halobenzenes. For fluoro- and chlorobenzenes the reaction was shown to proceed through an intermediate state corresponding to [M + dopant](+), which was highly stable for fluorobenzene. For the bulkier bromine and iodine, this intermediate did not exist, but the halogens were shown to detach already during the approach by the nucleophile.

  20. SABER: a computational method for identifying active sites for new reactions.

    Science.gov (United States)

    Nosrati, Geoffrey R; Houk, K N

    2012-05-01

    A software suite, SABER (Selection of Active/Binding sites for Enzyme Redesign), has been developed for the analysis of atomic geometries in protein structures, using a geometric hashing algorithm (Barker and Thornton, Bioinformatics 2003;19:1644-1649). SABER is used to explore the Protein Data Bank (PDB) to locate proteins with a specific 3D arrangement of catalytic groups to identify active sites that might be redesigned to catalyze new reactions. As a proof-of-principle test, SABER was used to identify enzymes that have the same catalytic group arrangement present in o-succinyl benzoate synthase (OSBS). Among the highest-scoring scaffolds identified by the SABER search for enzymes with the same catalytic group arrangement as OSBS were L-Ala D/L-Glu epimerase (AEE) and muconate lactonizing enzyme II (MLE), both of which have been redesigned to become effective OSBS catalysts, demonstrated by experiments. Next, we used SABER to search for naturally existing active sites in the PDB with catalytic groups similar to those present in the designed Kemp elimination enzyme KE07. From over 2000 geometric matches to the KE07 active site, SABER identified 23 matches that corresponded to residues from known active sites. The best of these matches, with a 0.28 Å catalytic atom RMSD to KE07, was then redesigned to be compatible with the Kemp elimination using RosettaDesign. We also used SABER to search for potential Kemp eliminases using a theozyme predicted to provide a greater rate acceleration than the active site of KE07, and used Rosetta to create a design based on the proteins identified. Copyright © 2012 The Protein Society.

  1. Flue gas corrosion through halogen compounds in fuel gas

    Energy Technology Data Exchange (ETDEWEB)

    Eisenmann, R

    1987-04-01

    The halogens of chlorine and fluorine greatly influence the corrosion speed of metal materials. If small quantities of chlorinated and/or fluorinated hydrocarbons are present in fuel gas like in landfill gas, they must not result in enhanced corrosion of gas appliances. Data from literature and the initial results of tests run by the author indicate that quantities at about 10 mg/cbm (in terms of chlorine) can be assumed not to cause any noticeable acceleration of corrosion speed.

  2. Competition between Halogen, Hydrogen and Dihydrogen Bonding in Brominated Carboranes

    Czech Academy of Sciences Publication Activity Database

    Fanfrlík, Jindřich; Holub, Josef; Růžičková, Z.; Řezáč, Jan; Lane, P. D.; Wann, D. A.; Hnyk, Drahomír; Růžička, A.; Hobza, Pavel

    2016-01-01

    Roč. 17, č. 21 (2016), s. 3373-3376 ISSN 1439-4235 R&D Projects: GA ČR(CZ) GBP208/12/G016; GA ČR(CZ) GA15-05677S Institutional support: RVO:61388963 ; RVO:61388980 Keywords : bromine * carboranes * halogen bonds * sigma holes * X-ray crystal structure Subject RIV: CF - Physical ; Theoretical Chemistry; CA - Inorganic Chemistry (UACH-T) Impact factor: 3.075, year: 2016

  3. Natural elimination of volatile halogenated hydrocarbons from the environment

    Energy Technology Data Exchange (ETDEWEB)

    Harress, H.M.; Grathwohl, P.; Torunski, H.

    1987-01-01

    Recently carried out field investigations of groundwater contaminations with volatile halogenated hydrocarbons have shown evidence of natural elimination of these hazardous substances. This elimination effects is rare and observed in connection with special geological conditions. With regard to some contaminated sites, the following mechanisms for this behaviour are discussed: 1. Stripping by naturally ascending gases. 2. Sorption on soil organic matter. 3. Biodegradation. The so far compiled knowledge allowed to develop further research programmes, which are pursued in various projects.

  4. Allergic contact dermatitis due to highly reactive halogenated compounds

    Energy Technology Data Exchange (ETDEWEB)

    Pickering, F C; Ive, F A

    1983-11-01

    Ten cases of dermatitis in a fine organic chemicals plant are reported. These cases were all due to exposure to chemical compounds with reactive bromine or chlorine atoms. This type of chemical is always extremely irritant, but evidence is put forward to suggest that these cases were the result of allergic sensitization. Chemicals with reactive halogen atoms should always be handled with extreme care and patch testing should be approached with caution.

  5. Non-Fermi Liquids as Highly Active Oxygen Evolution Reaction Catalysts.

    Science.gov (United States)

    Hirai, Shigeto; Yagi, Shunsuke; Chen, Wei-Tin; Chou, Fang-Cheng; Okazaki, Noriyasu; Ohno, Tomoya; Suzuki, Hisao; Matsuda, Takeshi

    2017-10-01

    The oxygen evolution reaction (OER) plays a key role in emerging energy conversion technologies such as rechargeable metal-air batteries, and direct solar water splitting. Herein, a remarkably low overpotential of ≈150 mV at 10 mA cm -2 disk in alkaline solutions using one of the non-Fermi liquids, Hg 2 Ru 2 O 7 , is reported. Hg 2 Ru 2 O 7 displays a rapid increase in current density and excellent durability as an OER catalyst. This outstanding catalytic performance is realized through the coexistence of localized d-bands with the metallic state that is unique to non-Fermi liquids. The findings indicate that non-Fermi liquids could greatly improve the design of highly active OER catalysts.

  6. [Delayed reactions of active avoidance in white rats under conditions of an alternative choice].

    Science.gov (United States)

    Ioseliani, T K; Sikharulidze, N I; Kadagishvili, A Ia; Mitashvili, E G

    1995-01-01

    It was shown that if the rats had been learned and then tested using conventional pain punishment of erroneous choice they were able to solve the problem of alternative choice only in the period of immediate action of conditioned stimuli. If the pain punishment for erroneously chosen compartment had not been applied in animal learning and testing, rats successfully solved the problem of alternative choice even after 5-second delay. Introduction of pain punishment led to the frustration of earlier elaborated delayed avoidance reactions. Analysis of the obtained results allows us to argue that the apparent incapability of white rats for solving the problems of delayed avoidance is caused by simultaneous action of two different mechanisms, i.e., those of the active and passive avoidance rather than short-term memory deficit.

  7. ESR studies of Bunsen-type methane-air flames. II. The effects of the addition of halogenated compounds to the secondary air on the hydrogen atoms in the flame

    Energy Technology Data Exchange (ETDEWEB)

    Noda, S; Fujimoto, S; Claesson, O; Yoshida, H

    1983-09-01

    Hydrogen atoms in a methane-air Bunsen-type flame were detected by the flame-in-cavity ESR method. The addition of a halogenated compound to the secondary air reduced the H-atom concentration linearly with an increase in additive concentration. These 8 halogenated compounds examined showed increased effectiveness in scavenging H atoms in this order: hydrochloric acid < dichlorodifluoromethane < chloroform < methyl chloride < methylene chloride < trichlorofluoromethane < carbon tetrachlorie < methyl bromide. The chemical effects of these additives on the combustion reactions agree well with the inhibitor indices for these compounds. 14 references, 3 figures.

  8. Optimization of on-line hydrogen stable isotope ratio measurements of halogen- and sulfur-bearing organic compounds using elemental analyzer–chromium/high-temperature conversion isotope ratio mass spectrometry (EA-Cr/HTC-IRMS)

    Science.gov (United States)

    Gehre, Matthias; Renpenning, Julian; Geilmann, Heike; Qi, Haiping; Coplen, Tyler B.; Kümmel, Steffen; Ivdra, Natalija; Brand, Willi A.; Schimmelmann, Arndt

    2017-01-01

    Rationale: Accurate hydrogen isotopic analysis of halogen- and sulfur-bearing organics has not been possible with traditional high-temperature conversion (HTC) because the formation of hydrogen-bearing reaction products other than molecular hydrogen (H2) is responsible for non-quantitative H2 yields and possible hydrogen isotopic fractionation. Our previously introduced, new chromium-based EA-Cr/HTC-IRMS (Elemental Analyzer–Chromium/High-Temperature Conversion Isotope Ratio Mass Spectrometry) technique focused primarily on nitrogen-bearing compounds. Several technical and analytical issues concerning halogen- and sulfur-bearing samples, however, remained unresolved and required further refinement of the reactor systems.

  9. Structure-Energy Relationships of Halogen Bonds in Proteins.

    Science.gov (United States)

    Scholfield, Matthew R; Ford, Melissa Coates; Carlsson, Anna-Carin C; Butta, Hawera; Mehl, Ryan A; Ho, P Shing

    2017-06-06

    The structures and stabilities of proteins are defined by a series of weak noncovalent electrostatic, van der Waals, and hydrogen bond (HB) interactions. In this study, we have designed and engineered halogen bonds (XBs) site-specifically to study their structure-energy relationship in a model protein, T4 lysozyme. The evidence for XBs is the displacement of the aromatic side chain toward an oxygen acceptor, at distances that are equal to or less than the sums of their respective van der Waals radii, when the hydroxyl substituent of the wild-type tyrosine is replaced by a halogen. In addition, thermal melting studies show that the iodine XB rescues the stabilization energy from an otherwise destabilizing substitution (at an equivalent noninteracting site), indicating that the interaction is also present in solution. Quantum chemical calculations show that the XB complements an HB at this site and that solvent structure must also be considered in trying to design molecular interactions such as XBs into biological systems. A bromine substitution also shows displacement of the side chain, but the distances and geometries do not indicate formation of an XB. Thus, we have dissected the contributions from various noncovalent interactions of halogens introduced into proteins, to drive the application of XBs, particularly in biomolecular design.

  10. First principles study of halogens adsorption on intermetallic surfaces

    International Nuclear Information System (INIS)

    Zhu, Quanxi; Wang, Shao-qing

    2016-01-01

    Graphical abstract: - Highlights: • The linear relation between adsorbates induced work function change and dipole moment change also exists for intermetallic surfaces. • It is just a common linear relationship rather than a directly proportion. • A new weight parameter β is proposed to describe different factors effect on work function shift. - Abstract: Halides are often present at electrochemical environment, they can directly influence the electrode potential or zero charge potential through the induced work-function change. In this work, we focused in particular on the halogen-induced work function change as a function of the coverage of fluorine, chlorine, bromine and iodine on Al_2Au and Al_2Pt (110) surfaces. Results show that the real relation between work function change and dipole moment change for halogens adsorption on intermetallic surfaces is just a common linear relationship rather than a directly proportion. Besides, the different slopes between fitted lines and the theoretical slope employed in pure metal surfaces demonstrating that the halogens adsorption on intermetallic surfaces are more complicated. We also present a weight parameter β to describe different factors effect on work function shift and finally qualify which factor dominates the shift direction.

  11. Development of no halogen incombustible cables for atomic energy

    International Nuclear Information System (INIS)

    Ishii, Nobumasa; Kimura, Hitoshi; Fujimura, Shun-ichi

    1990-01-01

    In upgrading light water reactor technology, it is important to improve the reliability of machinery and equipment, to make regular inspection efficient, to extend the period of continuous operation, to optimize operation cycle and to improve the maintainability of plant facilities. For the cables for nuclear power stations, high incombustibility is required, and at present halogen system incombustible materials are used. Recently the development of no halogen incombustible cables has been advanced, with which the generation of corrosive gas and smoke at the time of fires is slight. In this study, the application of such no halogen incombustible cables to nuclear power stations and the improvement of reliability of the cables were investigated. The cables to be developed are those for electric power, control and instrumentation in BWR plants and insulated electric wires. The required characteristics are incombustibility, no generation of smoke and corrosive gas at the time of fires, radiation resistance and steam resistance in LOCA. The selection of base polymers, metal hydrates and radiation protectors, the evaluation of radiation resistance and steam resistance, the examination of the corrosive and poisonous properties of generated gas and smoke generation and so on are reported. The development was successful. (K.I.)

  12. Reaction pathway and oxidation mechanisms of dibutyl phthalate by persulfate activated with zero-valent iron

    Energy Technology Data Exchange (ETDEWEB)

    Li, Huanxuan [School of Environment and Energy, South China University of Technology, Guangzhou 510006 (China); The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China, Guangzhou 510640 (China); Wan, Jinquan, E-mail: ppjqwan@scut.edu.cn [School of Environment and Energy, South China University of Technology, Guangzhou 510006 (China); The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China, Guangzhou 510640 (China); State Key Lab Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640 (China); Ma, Yongwen [School of Environment and Energy, South China University of Technology, Guangzhou 510006 (China); The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China, Guangzhou 510640 (China); State Key Lab Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640 (China); Wang, Yan [School of Environment and Energy, South China University of Technology, Guangzhou 510006 (China); The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China, Guangzhou 510640 (China)

    2016-08-15

    This study investigated reaction pathway and oxidation mechanisms of dibutyl phthalate (DBP) by persulfate (PS) activated with zero-valent iron (ZVI). The DBP degradation was studied at three pH values (acidic, neutral and basic) in the presence of different organic scavengers. Using a chemical probe method, both sulfate radical (SO{sub 4}·{sup −}) and hydroxyl radical (·OH) were found to be primary oxidants at pH 3.0 and pH 7.0, respectively while ·OH was the major specie to oxidize DBP at pH 11.0. A similar result was found in an experiment of Electron Spin Resonance spin-trapping where in addition to ·OH, superoxide radical (O{sub 2}·{sup −}) was detected at pH 11.0. The transformation of degradation products including dimethyl phthalate (DMP), diethyl phthalate (DEP), phthalic anhydride, and acetophenone exhibited diverse variation during the reaction processes. The phthalic anhydride concentration appeared to be maximum at all pHs. Another eleven intermediate products were also found at pH 3.0 by GC–MS and HPLC analysis, and their degradation mechanisms and pathways were proposed. It was suggested that dealkylation, hydroxylation, decarboxylation and hydrogen extraction were the dominant degradation mechanisms of DBP at pH 3.0. - Highlights: • Both SO{sub 4}{sup −}· and ·OH were found to be the major active species at pH 3.0 and pH 7.0. • ·OH and ·O2– were the primary oxidants pH 11.0. • The intermediate products were investigated as well as the degradation pathway. • Dealkylation, hydroxylation, decarboxylation, H-extraction were the major mechanisms.

  13. Enhanced electrocatalytic activity of MoSx on TCNQ-treated electrode for hydrogen evolution reaction

    KAUST Repository

    Chang, Yunghuang

    2014-10-22

    Molybdenum sulfide has recently attracted much attention because of its low cost and excellent catalytical effects in the application of hydrogen evolution reaction (HER). To improve the HER efficiency, many researchers have extensively explored various avenues such as material modification, forming hybrid structures or modifying geometric morphology. In this work, we reported a significant enhancement in the electrocatalytic activity of the MoSx via growing on Tetracyanoquinodimethane (TCNQ) treated carbon cloth, where the MoSx was synthesized by thermolysis from the ammonium tetrathiomolybdate ((NH4)2MoS4) precursor at 170 °C. The pyridinic N- and graphitic N-like species on the surface of carbon cloth arising from the TCNQ treatment facilitate the formation of Mo5+ and S2 2- species in the MoSx, especially with S2 2- serving as an active site for HER. In addition, the smaller particle size of the MoSx grown on TCNQ-treated carbon cloth reveals a high ratio of edge sites relative to basal plane sites, indicating the richer effective reaction sites and superior electrocatalytic characteristics. Hence, we reported a high hydrogen evolution rate for MoSx on TCNQ-treated carbon cloth of 6408 mL g-1 cm-2 h-1 (286 mmol g-1 cm-2 h-1) at an overpotential of V = 0.2 V. This study provides the fundamental concepts useful in the design and preparation of transition metal dichalcogenide catalysts, beneficial in the development in clean energy.

  14. [High activity antiretroviral therapy change associated to adverse drug reactions in a specialized center in Venezuela].

    Science.gov (United States)

    Subiela, José D; Dapena, Elida

    2016-03-01

    Adverse drug reactions (ADRs) represent the first cause of change of the first-line highly active antiretroviral therapy (HAART) regimen, therefore, they constitute the main limiting factor in the long-term follow up of HIV patients in treatment. A retrospective study was carried out in a specialized center in Lara State, Venezuela, including 99 patients over 18 years of age who had change of first-line HAART regimen due to ADRs, between 2010 and 2013. The aims of this research were to describe the sociodemographic and clinical variables, frequency of ADRs related to change of HAART, duration of the first-line HAART regimen, to determine the drugs associated with ARVs and to identify the risk factors. The ADRs constituted 47.5% of all causes of change of first-line HAART regimen, the median duration was 1.08±0.28 years. The most frequent ADRs were anemia (34.3%), hypersensitivity reactions (20.2%) and gastrointestinal intolerance (13.1%). The most frequent ARV regimen type was the protease inhibitors-based regimen (59.6%), but zidovudine was the ARV most linked to ADRs (41.4%). The regression analysis showed increased risk of ADRs in singles and students in the univariate analysis and heterosexuals and homosexuals in multivariate analysis; and decreased risk in active workers. The present work shows the high prevalence of ADRs in the studied population and represents the first case-based study that describes the pharmacoepidemiology of a cohort of HIV-positive patients treated in Venezuela.

  15. The effect of toxic carbon source on the reaction of activated sludge in the batch reactor.

    Science.gov (United States)

    Wu, Changyong; Zhou, Yuexi; Zhang, Siyu; Xu, Min; Song, Jiamei

    2018-03-01

    The toxic carbon source can cause higher residual effluent dissolved organic carbon than easily biodegraded carbon source in activated sludge process. In this study, an integrated activated sludge model is developed as the tool to understand the mechanism of toxic carbon source (phenol) on the reaction, regarding the carbon flows during the aeration period in the batch reactor. To estimate the toxic function of phenol, the microbial cells death rate (k death ) is introduced into the model. The integrated model was calibrated and validated by the experimental data and it was found the model simulations matched the all experimental measurements. In the steady state, the toxicity of phenol can result in higher microbial cells death rate (0.1637 h -1 vs 0.0028 h -1 ) and decay rate coefficient of biomass (0.0115 h -1 vs 0.0107 h -1 ) than acetate. In addition, the utilization-associated products (UAP) and extracellular polymeric substances (EPS) formation coefficients of phenol are higher than that of acetate, indicating that more carbon flows into the extracellular components, such as soluble microbial products (SMP), when degrading toxic organics. In the non-steady state of feeding phenol, the yield coefficient for growth and maximum specific growth rate are very low in the first few days (1-10 d), while the decay rate coefficient of biomass and microbial cells death rate are relatively high. The model provides insights into the difference of the dynamic reaction with different carbon sources in the batch reactor. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Activity and selectivity regulation of synthesis gas reaction over supported ruthenium catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, K; Nobusawa, T; Fukushima, T; Tominaga, H

    1985-01-01

    The catalytic activities of supported ruthenium for synthesis-gas conversion to hydrocarbons was found to be in the following order: TiOS > Nb2O3 > ZrO2 > SiO2 > Ta2O5 > Al2O3 > V2O5 > MoO3 > WO3 > MnO2 > ZnO. Turnover frequencies of the supported ruthenium increased with decrease in dispersion of the metal particles for every carrier material. Even the activities per unit weight of metals were higher for low-dispersion ruthenium of Al2O3, TiO2, and ZrO2. The chain-growth probability of a hydrocarbon product, which is characterized by the Schulz-Flory distribution, increased markedly with decrease in the metal dispersion irrespective of the carrier material. The catalytic activity of ruthenium particles with a dispersed ruthenium increased almost linearly with an increase in reaction pressure (up to at least 2.0 MPa). 23 references, 10 figures, 3 tables.

  17. Unveiling the high-activity origin of single-atom iron catalysts for oxygen reduction reaction.

    Science.gov (United States)

    Yang, Liu; Cheng, Daojian; Xu, Haoxiang; Zeng, Xiaofei; Wan, Xin; Shui, Jianglan; Xiang, Zhonghua; Cao, Dapeng

    2018-06-26

    It is still a grand challenge to develop a highly efficient nonprecious-metal electrocatalyst to replace the Pt-based catalysts for oxygen reduction reaction (ORR). Here, we propose a surfactant-assisted method to synthesize single-atom iron catalysts (SA-Fe/NG). The half-wave potential of SA-Fe/NG is only 30 mV less than 20% Pt/C in acidic medium, while it is 30 mV superior to 20% Pt/C in alkaline medium. Moreover, SA-Fe/NG shows extremely high stability with only 12 mV and 15 mV negative shifts after 5,000 cycles in acidic and alkaline media, respectively. Impressively, the SA-Fe/NG-based acidic proton exchange membrane fuel cell (PEMFC) exhibits a high power density of 823 mW cm -2 Combining experimental results and density-functional theory (DFT) calculations, we further reveal that the origin of high-ORR activity of SA-Fe/NG is from the Fe-pyrrolic-N species, because such molecular incorporation is the key, leading to the active site increase in an order of magnitude which successfully clarifies the bottleneck puzzle of why a small amount of iron in the SA-Fe catalysts can exhibit extremely superior ORR activity.

  18. Taste-Active Maillard Reaction Products in Roasted Garlic (Allium sativum).

    Science.gov (United States)

    Wakamatsu, Junichiro; Stark, Timo D; Hofmann, Thomas

    2016-07-27

    In order to gain first insight into candidate Maillard reaction products formed upon thermal processing of garlic, mixtures of glucose and S-allyl-l-cysteine, the major sulfur-containing amino acid in garlic, were low-moisture heated, and nine major reaction products were isolated. LC-TOF-MS, 1D/2D NMR, and CD spectroscopy led to their identification as acortatarin A (1), pollenopyrroside A (2), epi-acortatarin A (3), xylapyrroside A (4), 5-hydroxymethyl-1-[(5-hydroxymethyl-2-furanyl)methyl]-1H-pyrrole-2-carbalde-hyde (5), 3-(allylthio)-2-(2-formyl-5-hydroxymethyl-1H-pyrrol-1-yl)propanoic acid (6), (4S)-4-(allylthiomethyl)-3,4-dihydro-3-oxo-1H-pyrrolo[2,1-c][1,4]oxazine-6-carbaldehyde (7), (2R)-3-(allylthio)-2-[(4R)-4-(allylthiomethyl)-6-formyl-3-oxo-3,4-dihydropyrrolo-[1,2-a]pyrazin-2(1H)-yl]propanoic acid (8), and (2R)-3-(allylthio)-2-((4S)-4-(allylthiomethyl)-6-formyl-3-oxo-3,4-dihydropyrrolo-[1,2-a]pyrazin-2(1H)-yl)propanoic acid (9). Among the Maillard reaction products identified, compounds 5-9 have not previously been published. The thermal generation of the literature known spiroalkaloids 1-4 is reported for the first time. Sensory analysis revealed a bitter taste with thresholds between 0.5 and 785 μmol/kg for 1-5 and 7-9. Compound 6 did not show any intrinsic taste (water) but exhibited a strong mouthfullness (kokumi) enhancing activity above 186 μmol/kg. LC-MS/MS analysis showed 1-9 to be generated upon pan-frying of garlic with the highest concentration of 793.7 μmol/kg found for 6, thus exceeding its kokumi threshold by a factor of 4 and giving evidence for its potential taste modulation activity in processed garlic preparations.

  19. Activation cross-section data for -particle-induced nuclear reactions ...

    Indian Academy of Sciences (India)

    B M ALI

    2018-02-20

    particle-induced nuclear reactions on natural vanadium up to 20 MeV. It should be mentioned that this study represents a part of (a supplement) systematical study of charged particles-induced nuclear reactions. Earlier studies were.

  20. Halogens are key cofactors in building of collagen IV scaffolds outside the cell.

    Science.gov (United States)

    Brown, Kyle L; Hudson, Billy G; Voziyan, Paul A

    2018-05-01

    The purpose of this review is to highlight recent advances in understanding the molecular assembly of basement membranes, as exemplified by the glomerular basement membrane (GBM) of the kidney filtration apparatus. In particular, an essential role of halogens in the basement membrane formation has been discovered. Extracellular chloride triggers a molecular switch within non collagenous domains of collagen IV that induces protomer oligomerization and scaffold assembly outside the cell. Moreover, bromide is an essential cofactor in enzymatic cross-linking that reinforces the stability of scaffolds. Halogenation and halogen-induced oxidation of the collagen IV scaffold in disease states damage scaffold function. Halogens play an essential role in the formation of collagen IV scaffolds of basement membranes. Pathogenic damage of these scaffolds by halogenation and halogen-induced oxidation is a potential target for therapeutic interventions.

  1. Control of aliphatic halogenated DBP precursors with multiple drinking water treatment processes: Formation potential and integrated toxicity.

    Science.gov (United States)

    Zhang, Yimeng; Chu, Wenhai; Yao, Dechang; Yin, Daqiang

    2017-08-01

    The comprehensive control efficiency for the formation potentials (FPs) of a range of regulated and unregulated halogenated disinfection by-products (DBPs) (including carbonaceous DBPs (C-DBPs), nitrogenous DBPs (N-DBPs), and iodinated DBPs (I-DBPs)) with the multiple drinking water treatment processes, including pre-ozonation, conventional treatment (coagulation-sedimentation, pre-sand filtration), ozone-biological activated carbon (O 3 -BAC) advanced treatment, and post-sand filtration, was investigated. The potential toxic risks of DBPs by combing their FPs and toxicity values were also evaluated. The results showed that the multiple drinking water treatment processes had superior performance in removing organic/inorganic precursors and reducing the formation of a range of halogenated DBPs. Therein, ozonation significantly removed bromide and iodide, and thus reduced the formation of brominated and iodinated DBPs. The removal of organic carbon and nitrogen precursors by the conventional treatment processes was substantially improved by O 3 -BAC advanced treatment, and thus prevented the formation of chlorinated C-DBPs and N-DBPs. However, BAC filtration leads to the increased formation of brominated C-DBPs and N-DBPs due to the increase of bromide/DOC and bromide/DON. After the whole multiple treatment processes, the rank order for integrated toxic risk values caused by these halogenated DBPs was haloacetonitriles (HANs)≫haloacetamides (HAMs)>haloacetic acids (HAAs)>trihalomethanes (THMs)>halonitromethanes (HNMs)≫I-DBPs (I-HAMs and I-THMs). I-DBPs failed to cause high integrated toxic risk because of their very low FPs. The significant higher integrated toxic risk value caused by HANs than other halogenated DBPs cannot be ignored. Copyright © 2017. Published by Elsevier B.V.

  2. A Survey of Electron Impact Cross-Sections for Halogens and Halogen Compounds of Interest to Plasma Processing

    Science.gov (United States)

    Sharma, S. P.; Rao, M. V. V. S.; Arnold, James O. (Technical Monitor)

    1998-01-01

    Published electron impact cross section data on halogens Cl2, F2, and halogen containing compounds such as Cx Fy, HCl, Cx Cly Fz are reviewed and critically evaluated based on the information provided by various researchers. The present work reports data on electron impact excitation, ionization, dissociation, electron attachment, electron detachment, and photo detachment. Elastic scattering cross sections and data on bulk properties such as diffusion coefficients in various background gases are also evaluated. Since some of the cross sectional data is derived from indirect measurements such as drift velocity, care has been taken to reconcile the differences among the reported data with due attention to the measurement technique. In conclusion, the processes with no or very limited amount of data and questionable set of data are identified and recommendation for further research direction is made.

  3. Improving the electrocatalytic performance of carbon nanotubes for VO"2"+/VO_2"+ redox reaction by KOH activation

    International Nuclear Information System (INIS)

    Dai, Lei; Jiang, Yingqiao; Meng, Wei; Zhou, Huizhu; Wang, Ling; He, Zhangxing

    2017-01-01

    Highlights: • KOH-activated carbon nanotubes (CNTs) was investigated as superior catalyst for VO"2"+/VO_2"+ redox reaction for vanadium redox flow battery (VRFB) for the first time. • KOH activation for CNTs can result in the chemical etching of surface and improved wettability, accelerating the mass transfer of vanadium ions. • KOH activation can introduce many oxygen-containing groups as active sites on the surface of CNTs. • KOH-activated CNTs as positive catalyst could increase the comprehensive energy storage performance of VRFB. - Abstract: In this paper, carbon nanotubes (CNTs) was activated by KOH treatment at high temperature and investigated as catalyst for VO"2"+/VO_2"+ redox reaction for vanadium redox flow battery (VRFB). X-ray photoelectron spectroscopy results suggest that the oxygen-containing groups can be introduced on CNTs by KOH activation. The mass transfer of vanadium ions can be accelerated by chemical etching by KOH activation and improved wettability due to the introduction of hydrophilic groups. The electrochemical properties of VO"2"+/VO_2"+ redox reaction can be enhanced by introduced oxygen-containing groups as active sites. The sample treated at 900 °C with KOH/CNTs mass ratio of 3:1 (CNTs-3) exhibits the highest electrocatalytic activity for VO"2"+/VO_2"+ redox reaction. The cell using CNTs-3 as positive catalyst demonstrates the smallest electrochemical polarization, the highest capacity and efficiency among the samples. Using KOH-activated CNTs-3 can increase the average energy efficiency of the cell by 4.4%. This work suggests that KOH-activated CNTs is a low-cost, efficient and promising catalyst for VO"2"+/VO_2"+ redox reaction for VRFB system.

  4. Novel enhancement of thin-form-factor galvanic cells: Probing halogenated organic oxidizers and metal anodes

    Energy Technology Data Exchange (ETDEWEB)

    Cardenas-Valencia, Andres M.; Adornato, Lori; Short, R. Timothy; Langebrake, Larry [SRI International, Engineering and Systems Division, Marine Technology Program, 140 Seventh Avenue South, St Petersburg, FL 33701 (United States)

    2008-09-15

    The work reported herein demonstrates a novel method to improve the overall performance of thin-form-factor galvanic cells, fabricated via micro-electromechanical systems (MEMS) processes. Use of solid, low cost, cyclic-halogenated, organic catholyte materials permits water activation of cells consisting of metal anode and catalytic platinum positive electrodes. Similar cells, employing aluminum and zinc anodes, have been activated using sodium hypochlorite (NaClO) solutions, i.e. bleach, in the past. The oxidizers chosen for this study (bromo-, chloro- and iodo-succinimides, and sodium dichloroisocyanuric acid) supply the cathode's oxy-halogenated ions when in contact with water. Zinc, magnesium and aluminum anodes are utilized to fabricate galvanic cells. A comparison between these anodes, coupled with various oxidizers, is included herein. Results using aluminum anode cells show that, even though the utilization efficiency of the catholyte reagents is low (faradic efficiencies between 16 and 19%), the performance of the new water-activated cells (6 cm x 6 cm x 0.25 cm) is superior when compared to those activated with bleach. For instance, operational lives of 6 h (activation with 10% NaClO solution) increase to more than 30 h using the new approach, with a 100-ohm-load. It is also shown that specific energies of 90-110 Wh kg{sup -1} (calculated to include both reagent and packaging mass) could be obtained using the described approach with current draws between 10 and 20 mA. The specific energies obtained suggest that novel MEMS-type cells could have much broader application than low-current, bleach-activated cells. (author)

  5. Mechanically activated SHS reaction in the Fe-Al system: in-situ time resolved diffraction using synchrotron radiation

    International Nuclear Information System (INIS)

    Gaffet, E.; Charlot, F.; Klein, D.; Bernard, F.; Niepce, J.C.

    1998-01-01

    The mechanical activation self propagating high temperature synthesis (M.A.S.H.S.) processing is a new way to produce nanocrystalline iron aluminide intermetallic compounds. This process is maily the combination of two steps; in the one hand, a mechanical activation where the Fe - Al powder mixture was milled during a short time at given energy and frequency of shocks and in the other hand, a self propagating high temperature synthesis (S.H.S.) reaction, for which the exothermicity of the Fe + Al reaction is used. This fast propagated MASHS reaction has been in-situ investigated using the time resolved X-ray diffraction (TRXRD) using a X-ray synchrotron beam and an infrared thermography camera, allowing the coupling of the materials structure and the temperature field. The effects of the initial mean compositions, of the milling conditions as well as of the compaction parameters on the MASHS reaction are reported. (orig.)

  6. Activation cross section and isomeric cross section ratios for the (n ,2 n ) reaction on 153Eu

    Science.gov (United States)

    Luo, Junhua; Jiang, Li; Li, Suyuan

    2017-10-01

    The 153Eu(n ,2 n ) m1,m2,g152Eu cross section was measured by means of the activation technique at three neutron energies in the range 13-15 MeV. The quasimonoenergetic neutron beam was formed via the 3H(d ,n ) 4He reaction, in the Pd-300 Neutron Generator at the Chinese Academy of Engineering Physics (CAEP). The activities induced in the reaction products were measured using high-resolution γ-ray spectroscopy. The cross section of the population of the second high-spin (8-) isomeric state was measured along with the reaction cross section populating both the ground (3-) and the first isomeric state (0-). Cross sections were also evaluated theoretically using the numerical code TALYS-1.8, with different level density options at neutron energies varying from the reaction threshold to 20 MeV. Results are discussed and compared with the corresponding literature.

  7. Halogen bond tunability II: the varying roles of electrostatic and dispersion contributions to attraction in halogen bonds

    Czech Academy of Sciences Publication Activity Database

    Riley, Kevin Eugene; Murray, J. S.; Fanfrlík, Jindřich; Řezáč, Jan; Solá, R. J.; Concha, M. C.; Ramos, F. M.; Politzer, P.

    2013-01-01

    Roč. 19, č. 11 (2013), s. 4651-4659 ISSN 1610-2940 R&D Projects: GA ČR GBP208/12/G016 Grant - others:Operational Program Research and Development for Innovations(XE) CZ.1.05/2.1.00/03.0058 Institutional support: RVO:61388963 Keywords : dispersion * electrostatics * halogen bonding * noncovalent interactions Subject RIV: CE - Biochemistry Impact factor: 1.867, year: 2013

  8. Interfacial reactions between sapphire and Ag–Cu–Ti-based active braze alloys

    International Nuclear Information System (INIS)

    Ali, Majed; Knowles, Kevin M.; Mallinson, Phillip M.; Fernie, John A.

    2016-01-01

    The interfacial reactions between two commercially available Ag–Cu–Ti-based active braze alloys and sapphire have been studied. In separate experiments, Ag–35.3Cu–1.8Ti wt.% and Ag–26.7Cu–4.5Ti wt.% alloys have been sandwiched between pieces of R-plane orientated sapphire and heated in argon to temperatures between 750 and 900 °C for 1 min. The phases at the Ag–Cu–Ti/sapphire interfaces have been studied using selected area electron diffraction, energy dispersive X-ray spectroscopy and electron energy loss spectroscopy. Gradual and subtle changes at the Ag–Cu–Ti/sapphire interfaces were observed as a function of temperature, along with the formation of a transient phase that permitted wetting of the sapphire. Unequivocal evidence is shown that when the active braze alloys melt, titanium first migrates to the sapphire and reacts to dissolve up to ∼33 at.% oxygen, forming a nanometre-size polycrystalline layer with a chemical composition of Ti 2 O 1–x (x ≪ 1). Ti 3 Cu 3 O particles subsequently nucleate behind the Ti 2 O 1–x layer and grow to become a continuous micrometre-size layer, replacing the Ti 2 O 1–x layer. Finally at 845 °C, a nanometre-size γ-TiO layer forms on the sapphire to leave a typical interfacial structure of Ag–Cu/Ti 3 Cu 3 O/γ-TiO/sapphire consistent with that seen in samples of polycrystalline alumina joined to itself with these active braze alloys. These experimental observations have been used to establish a definitive bonding mechanism for the joining of sapphire with Ag–Cu alloys activated by small amounts of titanium.

  9. Halonium Ions as Halogen Bond Donors in the Solid State [XL2]Y Complexes.

    Science.gov (United States)

    Rissanen, Kari; Haukka, Matti

    2015-01-01

    The utilization of halogen bonding interactions is one of the most rapidly developing areas of supramolecular chemistry. While the other weak non-covalent interactions and their influence on the structure and chemistry of various molecules, complexes, and materials have been investigated extensively, the understanding, utilizations, and true nature of halogen bonding are still relatively unexplored. Thus its final impact in chemistry in general and in materials science has not yet been fully established. Because of the polarized nature of a Z-X bond (Z=electron-withdrawing atom or moiety and X=halogen atom), such a moiety can act as halogen bond donor when the halogen is polarized enough by the atom/moiety Z. The most studied and utilized halogen bond donor molecules are the perfluorohalocarbons, where Z is a perfluorinated aryl or alkyl moiety and X is either iodine or bromine. Complementing the contemporary halogen bonding research, this chapter reviews the solid state structural chemistry of the most extremely polarized halogen atoms, viz. halonium ions, X+, and discussed them as halogen bond donors in the solid state [XL2]Y complexes (X=halonium ion, Y=any anion).

  10. Manganese-Oxygen Intermediates in O-O Bond Activation and Hydrogen-Atom Transfer Reactions.

    Science.gov (United States)

    Rice, Derek B; Massie, Allyssa A; Jackson, Timothy A

    2017-11-21

    Biological systems capitalize on the redox versatility of manganese to perform reactions involving dioxygen and its derivatives superoxide, hydrogen peroxide, and water. The reactions of manganese enzymes influence both human health and the global energy cycle. Important examples include the detoxification of reactive oxygen species by manganese superoxide dismutase, biosynthesis by manganese ribonucleotide reductase and manganese lipoxygenase, and water splitting by the oxygen-evolving complex of photosystem II. Although these enzymes perform very different reactions and employ structurally distinct active sites, manganese intermediates with peroxo, hydroxo, and oxo ligation are commonly proposed in catalytic mechanisms. These intermediates are also postulated in mechanisms of synthetic manganese oxidation catalysts, which are of interest due to the earth abundance of manganese. In this Account, we describe our recent efforts toward understanding O-O bond activation pathways of Mn III -peroxo adducts and hydrogen-atom transfer reactivity of Mn IV -oxo and Mn III -hydroxo complexes. In biological and synthetic catalysts, peroxomanganese intermediates are commonly proposed to decay by either Mn-O or O-O cleavage pathways, although it is often unclear how the local coordination environment influences the decay mechanism. To address this matter, we generated a variety of Mn III -peroxo adducts with varied ligand environments. Using parallel-mode EPR and Mn K-edge X-ray absorption techniques, the decay pathway of one Mn III -peroxo complex bearing a bulky macrocylic ligand was investigated. Unlike many Mn III -peroxo model complexes that decay to oxo-bridged-Mn III Mn IV dimers, decay of this Mn III -peroxo adduct yielded mononuclear Mn III -hydroxo and Mn IV -oxo products, potentially resulting from O-O bond activation of the Mn III -peroxo unit. These results highlight the role of ligand sterics in promoting the formation of mononuclear products and mark an important

  11. Exploration of the Role of Heat Activation in Enhancing Serpentine Carbon Sequestration Reactions

    International Nuclear Information System (INIS)

    McKelvy, M.J.; Chizmeshya, A.V.G.; Diefenbacher, J.; Bearat, H.; Wolf, G.

    2005-01-01

    As compared with other candidate carbon sequestration technologies, mineral carbonation offers the unique advantage of permanent disposal via geologically stable and environmentally benign carbonates. The primary challenge is the development of an economically viable process. Enhancing feedstock carbonation reactivity is key. Heat activation dramatically enhances aqueous serpentine carbonation reactivity. Although the present process is too expensive to implement, the materials characteristics and mechanisms that enhance carbonation are of keen interest for further reducing cost. Simultaneous thermogravimetric and differential thermal analysis (TGA/DTA) of the serpentine mineral lizardite was used to isolate a series of heat-activated materials as a function of residual hydroxide content at progressively higher temperatures. Their structure and composition are evaluated via TGA/DTA, X-ray powder diffraction (including phase analysis), and infrared analysis. The meta-serpentine materials that were observed to form ranged from those with longer range ordering, consistent with diffuse stage-2 like interlamellar order, to an amorphous component that preferentially forms at higher temperatures. The aqueous carbonation reaction process was investigated for representative materials via in situ synchrotron X-ray diffraction. Magnesite was observed to form directly at 15 MPa CO 2 and at temperatures ranging from 100 to 125 C. Carbonation reactivity is generally correlated with the extent of meta-serpentine formation and structural disorder.

  12. Effect of support on the activity of MoVCeZr catalyst for propane ammoxidation reaction

    International Nuclear Information System (INIS)

    Anita Ramli; Farinaa Md Jamil; Ishak Ahmad

    2010-01-01

    Mixed metal oxide catalysts based on Mo-V have been known as the most active and selective in the ammoxidation of propane to ACN. A series of MoVCeZr (5 % wt/ wt) supported with MOR, TiO 2 and MgO have been prepared by incipient wetness impregnation method for propane ammoxidation reaction to ACN. The catalyst was calcined in a two step calcination process in static air between 350 - 600 degree Celsius for 10 hour. The surface area and pore size of these catalysts were measured using physical adsorption of nitrogen following Brunauer, Emmet and Teller (BET) equation. The textural and morphological of these catalysts were determined using Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD). The activities of all catalysts were tested using a fixed-bed reactor with online gas chromatography (GC) at 420 degree Celsius and atmospheric pressure in the presence of 0.5 ml catalyst with composition consisting of 5.8:7:17.4 (propane: ammonia: air) and helium as carrier to give a total flow of 120 ml. Result shows that MoVCeZr support gives a better conversion due to the surface area and pore size characteristic of the catalyst. (author)

  13. Reaction of misonidazole with DNA radicals and its effect on the template activity of DNA

    International Nuclear Information System (INIS)

    Endoh, Daiji; Kuwabara, Mikinori; Sato, Fumiaki; Yoshii, Giichi.

    1985-01-01

    After calf thymus DNA was gamma-irradiated in the solid state in vacuo and subsequently dissolved in aqueous solution containing misonidazole (3 mM) under hypoxic condition, the frequency of single-strand breaks and alkali-labile sites in DNA and the amount of misonidazole bound to DNA were measured. The presence of misonidazole converted the precursor radicals, which otherwise results in single-strand breaks, to alkali-labile sites, and the amount of alkali-labile sites increased linearly with increasing radiation dose. The amount of misonidazole bound to DNA also increased linearly with increasing radiation dose. The biological meaning of the changes in the frequency of single-strand breaks and alkali-labile sites by the reaction of misonidazole with DNA radicals and of binding misonidazole with DNA was examined using a model system to measure the template activity of DNA for RNA synthesis in vitro. The conversion of DNA radicals to alkali-labile sites protected the radiation-induced decrease in the template activity of DNA, while the adduct formation of misonidazole had no effect on it. (author)

  14. The Synthesis and Electrocatalytic Activities of Molybdenum Sulfide for Hydrogen Evolution Reaction

    KAUST Repository

    Li, Zhengxing

    2014-07-01

    In the context of the future hydrogen economy, effective production of hydrogen (H2) from readily available and sustainable resources is of crucial importance. Hydrogen generation via water splitting by solar energy or electricity has attracted great attention in recent years. In comparison with photocatalytic water-splitting directly using solar light, which is ideal but the relevant technologies are not yet mature, electrolysis of water with catalyst is more practical at the current stage. The Pt-group noble metals are the most effective electrocatalysts for hydrogen evolution reaction (HER) from water, but their high costs limit their applications. Due to the earth-abundance and low price, MoS2 is expected to be a good alternative of the Pt-group metals for HER. Plenty of researches have been conducted for improving the HER activities of MoS2 by optimizing its synthesis method. However, it remains challenging to prepare MoS2 catalysts with high and controllable activity, and more investigations are still needed to better understand the structure-performance correlation in this system. In this thesis, we report a new strategy for fabricating MoS2 eletrocatalysts which gives rise to much improved HER performance and allows us to tune the electrocatalytic activity by varying the preparation conditions. Specifically, we sulfurized molybdenum oxide on the surface of a Ti foil electrode via a facile chemical vapor deposition (CVD) method, and directly used the electrode for HER testing. Depending on the CVD temperature, the MoO2-MoS2 nanocomposites show different HER activities. Under the optimal synthesis condition (400ºC), the resulting catalyst exhibited excellent HER activity: an onset potential (overpotential) of 0.095 V versus RHE and the Tafel slope of 40 mv/dec. Such a performance exceeds those of most reported MoS2 based HER electrocatalysts. We demonstrated that the CVD temperature has significant influence on the catalysts in crystallinity degree, particle

  15. Weak activity of haloalkane dehalogenase LinB with 1,2,3-trichloropropane revealed by X-Ray crystallography and microcalorimetry.

    Science.gov (United States)

    Monincová, Marta; Prokop, Zbynek; Vévodová, Jitka; Nagata, Yuji; Damborsky, Jirí

    2007-03-01

    1,2,3-Trichloropropane (TCP) is a highly toxic and recalcitrant compound. Haloalkane dehalogenases are bacterial enzymes that catalyze the cleavage of a carbon-halogen bond in a wide range of organic halogenated compounds. Haloalkane dehalogenase LinB from Sphingobium japonicum UT26 has, for a long time, been considered inactive with TCP, since the reaction cannot be easily detected by conventional analytical methods. Here we demonstrate detection of the weak activity (k(cat) = 0.005 s(-1)) of LinB with TCP using X-ray crystallography and microcalorimetry. This observation makes LinB a useful starting material for the development of a new biocatalyst toward TCP by protein engineering. Microcalorimetry is proposed to be a universal method for the detection of weak enzymatic activities. Detection of these activities is becoming increasingly important for engineering novel biocatalysts using the scaffolds of proteins with promiscuous activities.

  16. Weak Activity of Haloalkane Dehalogenase LinB with 1,2,3-Trichloropropane Revealed by X-Ray Crystallography and Microcalorimetry▿

    Science.gov (United States)

    Monincová, Marta; Prokop, Zbyněk; Vévodová, Jitka; Nagata, Yuji; Damborský, Jiří

    2007-01-01

    1,2,3-Trichloropropane (TCP) is a highly toxic and recalcitrant compound. Haloalkane dehalogenases are bacterial enzymes that catalyze the cleavage of a carbon-halogen bond in a wide range of organic halogenated compounds. Haloalkane dehalogenase LinB from Sphingobium japonicum UT26 has, for a long time, been considered inactive with TCP, since the reaction cannot be easily detected by conventional analytical methods. Here we demonstrate detection of the weak activity (kcat = 0.005 s−1) of LinB with TCP using X-ray crystallography and microcalorimetry. This observation makes LinB a useful starting material for the development of a new biocatalyst toward TCP by protein engineering. Microcalorimetry is proposed to be a universal method for the detection of weak enzymatic activities. Detection of these activities is becoming increasingly important for engineering novel biocatalysts using the scaffolds of proteins with promiscuous activities. PMID:17259360

  17. Strength of figure-ground activity in monkey primary visual cortex predicts saccadic reaction time in a delayed detection task.

    Science.gov (United States)

    Supèr, Hans; Lamme, Victor A F

    2007-06-01

    When and where are decisions made? In the visual system a saccade, which is a fast shift of gaze toward a target in the visual scene, is the behavioral outcome of a decision. Current neurophysiological data and reaction time models show that saccadic reaction times are determined by a build-up of activity in motor-related structures, such as the frontal eye fields. These structures depend on the sensory evidence of the stimulus. Here we use a delayed figure-ground detection task to show that late modulated activity in the visual cortex (V1) predicts saccadic reaction time. This predictive activity is part of the process of figure-ground segregation and is specific for the saccade target location. These observations indicate that sensory signals are directly involved in the decision of when and where to look.

  18. Cationic Pd(II-catalyzed C–H activation/cross-coupling reactions at room temperature: synthetic and mechanistic studies

    Directory of Open Access Journals (Sweden)

    Takashi Nishikata

    2016-05-01

    Full Text Available Cationic palladium(II complexes have been found to be highly reactive towards aromatic C–H activation of arylureas at room temperature. A commercially available catalyst [Pd(MeCN4](BF42 or a nitrile-free cationic palladium(II complex generated in situ from the reaction of Pd(OAc2 and HBF4, effectively catalyzes C–H activation/cross-coupling reactions between aryl iodides, arylboronic acids and acrylates under milder conditions than those previously reported. The nature of the directing group was found to be critical for achieving room temperature conditions, with the urea moiety the most effective in promoting facile coupling reactions at an ortho C–H position. This methodology has been utilized in a streamlined and efficient synthesis of boscalid, an agent produced on the kiloton scale annually and used to control a range of plant pathogens in broadacre and horticultural crops. Mechanistic investigations led to a proposed catalytic cycle involving three steps: (1 C–H activation to generate a cationic palladacycle; (2 reaction of the cationic palladacycle with an aryl iodide, arylboronic acid or acrylate, and (3 regeneration of the active cationic palladium catalyst. The reaction between a cationic palladium(II complex and arylurea allowed the formation and isolation of the corresponding palladacycle intermediate, characterized by X-ray analysis. Roles of various additives in the stepwise process have also been studied.

  19. Digallane with redox-active diimine ligand: dualism of electron-transfer reactions.

    Science.gov (United States)

    Fedushkin, Igor L; Skatova, Alexandra A; Dodonov, Vladimir A; Chudakova, Valentina A; Bazyakina, Natalia L; Piskunov, Alexander V; Demeshko, Serhiy V; Fukin, Georgy K

    2014-05-19

    The reactivity of digallane (dpp-Bian)Ga-Ga(dpp-Bian) (1), which consists of redox-active ligand 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene (dpp-Bian), has been studied. The reaction of 1 with I2 proceeds via one-electron oxidation of each of two dpp-Bian ligands to a radical-anionic state and affords complex (dpp-Bian)IGa-GaI(dpp-Bian) (2). Dissolution of complex 2 in pyridine (Py) gives monomeric compound (dpp-Bian)GaI(Py) (3) as a result of a solvent-induced intramolecular electron transfer from the metal-metal bond to the dpp-Bian ligands. Treatment of compound 3 with B(C6F5)3 leads to removal of pyridine and restores compound 2. The reaction of compound 1 with 3,6-di-tert-butyl-ortho-benzoquinone (3,6-Q) proceeds with oxidation of all the redox-active centers in 1 (the Ga-Ga bond and two dpp-Bian dianions) and results in mononuclear catecholate (dpp-Bian)Ga(Cat) (4) (Cat = [3,6-Q](2-)). Treatment of 4 with AgBF4 gives a mixture of [(dpp-Bian)2Ag][BF4] (5) and (dpp-Bian)GaF(Cat) (6), which both consist of neutral dpp-Bian ligands. The reduction of benzylideneacetone (BA) with 1 generates the BA radical-anions, which dimerize, affording (dpp-Bian)Ga-(BA-BA)-Ga(dpp-Bian) (7). In this case the Ga-Ga bond remains unchanged. Within 10 min at 95 °C in solution compound 7 undergoes transformation to paramagnetic complex (dpp-Bian)Ga(BA-BA) (8) and metal-free compound C36H40N2 (9). The latter is a product of intramolecular addition of the C-H bond of one of the iPr groups to the C═N bond in dpp-Bian. Diamagnetic compounds 3, 5, 6, and 9 have been characterized by NMR spectroscopy, and paramagnetic complexes 2, 4, 7, and 8 by ESR spectroscopy. Molecular structures of 2-7 and 9 have been established by single-crystal X-ray analysis.

  20. Activation energies as the validity criterion of a model for complex reactions that can be in oscillatory states

    Directory of Open Access Journals (Sweden)

    Anić S.

    2007-01-01

    Full Text Available Modeling of any complex reaction system is a difficult task. If the system under examination can be in various oscillatory dynamic states, the apparent activation energies corresponding to different pathways may be of crucial importance for this purpose. In that case the activation energies can be determined by means of the main characteristics of an oscillatory process such as pre-oscillatory period, duration of the oscillatory period, the period from the beginning of the process to the end of the last oscillation, number of oscillations and others. All is illustrated on the Bray-Liebhafsky oscillatory reaction.

  1. Esterification of Glycerol with Acetic Acid over Highly Active and Stable Alumina-based Catalysts: A Reaction Kinetics Study

    OpenAIRE

    Rane, S. A.; Pudi, S. M.; Biswas, P.

    2016-01-01

    The catalytic activity of Cu- or Ni monometallic and Cu-Ni bimetallic (Cu/Ni ratio = 3, 1, 0.33) catalysts supported on γ-Al2O3 and SO42–/γ-Al2O3 catalysts were evaluated for esterification of glycerol. The reactions were performed in a batch reactor under reflux at standard reaction conditions: temperature 110 °C, atmospheric pressure, glycerol to acetic acid molar ratio 1:9, and catalyst loading 0.25 g. The best catalytic activity was observed over 2 M SO42–/γ-Al2O3 catalyst, which showed t...

  2. Friedel-Crafts reaction of benzyl fluorides: selective activation of C-F bonds as enabled by hydrogen bonding.

    Science.gov (United States)

    Champagne, Pier Alexandre; Benhassine, Yasmine; Desroches, Justine; Paquin, Jean-François

    2014-12-08

    A Friedel-Crafts benzylation of arenes with benzyl fluorides has been developed. The reaction produces 1,1-diaryl alkanes in good yield under mild conditions without the need for a transition metal or a strong Lewis acid. A mechanism involving activation of the C-F bond through hydrogen bonding is proposed. This mode of activation enables the selective reaction of benzylic C-F bonds in the presence of other benzylic leaving groups. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Application of Molecular Topology for the Prediction of Reaction Yields and Anti-Inflammatory Activity of Heterocyclic Amidine Derivatives

    Directory of Open Access Journals (Sweden)

    Ramón García-Domenech

    2011-02-01

    Full Text Available Topological-mathematical models based on multiple linear regression analyses have been built to predict the reaction yields and the anti-inflammatory activity of a set of heterocylic amidine derivatives, synthesized under environmental friendly conditions, using microwave irradiation. Two models with three variables each were selected. The models were validated by cross-validation and randomization tests. The final outcome demonstrates a good agreement between the predicted and experimental results, confirming the robustness of the method. These models also enabled the screening of virtual libraries for new amidine derivatives predicted to show higher values of reaction yields and anti-inflammatory activity.

  4. New halogenated phenylcoumarins as tyrosinase inhibitors.

    Science.gov (United States)

    Matos, Maria João; Santana, Lourdes; Uriarte, Eugenio; Delogu, Giovanna; Corda, Marcella; Fadda, Maria Benedetta; Era, Benedetta; Fais, Antonella

    2011-06-01

    With the aim to find out structural features for the tyrosinase inhibitory activity, in the present communication we report the synthesis and pharmacological evaluation of a new series of phenylcoumarin derivatives with different number of hydroxyl or ether groups and bromo substituent in the scaffold. The synthesized compounds 5-12 were evaluated as mushroom tyrosinase inhibitors showing, two of them, lower IC(50) than the umbelliferone. Compound 12 (IC(50)=215 μM) is the best tyrosinase inhibitor of this series. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Influence of refreshment/activation cycles and temperature rise on the reaction rate of sodium hypochlorite with bovine dentine during ultrasonic activated irrigation

    NARCIS (Netherlands)

    Macedo, R.G.; Verhaagen, B.; Wesselink, P.R.; Versluis, Michel; van der Sluis, L.W.M.

    2014-01-01

    Aim To evaluate the effect of multiple refreshment/activation cycles and temperature on the reaction rate of sodium hypochlorite (NaOCl) with bovine dentine during ultrasonic activated irrigation (UAI) under laboratory conditions. Methodology The root canal walls of 24 standardized root canals in

  6. Acute effects of exercise and active video games on adults' reaction time and perceived exertion.

    Science.gov (United States)

    Guzmán, José F; López-García, Jesús

    2016-11-01

    The purpose of the present study was to examine the acute effects of resting, aerobic exercise practised alone, and aerobic exercise with active video games (AVG), on complex reaction time (CRT) and the post-exercise acute rate of perceived exertion (RPE) in young healthy adults. The experimental group was composed of 92 healthy young adults, 78 males and 13 females (age M = 21.9 ± 2.7 years) who completed two sessions, A and B. In session A, participants rode 30 min on an ergometer, while in session B they exercised for 30 min on an ergometer while playing an AVG on a Wii. The control group was composed of 30 young adults, 26 males and 4 females (age M = 21.4 ± 2.9 years) who rested for 30 min. In each session, a CRT task was performed before and after exercising or resting, and post-exercise global RPE was noted. Repeated measures general linear model (GLM) and Wilcoxon tests were performed. (1) Both aerobic exercise alone and aerobic exercise combined with AVG improved CRT, while resting did not; (2) aerobic exercise combined with AVG did not improve CRT more than aerobic exercise only; and (3) RPE was lower after aerobic exercise combined with AVG compared with aerobic exercise only. In young adults, exercise produces acute benefits on CRT, and practising exercise with AVG helps to decrease RPE.

  7. Investigation of activation cross-sections of alpha-induced nuclear reactions on natural cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Khandaker, Mayeen Uddin [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Department of Physics, University of Malaya, 50603 Kuala Lumpur (Malaysia); Kim, Kwangsoo [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Lee, Manwoo [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Research Center, Dongnam Institute of Radiological and Medical Science, Busan 619-953 (Korea, Republic of); Kim, Guinyun, E-mail: gnkim@knu.ac.kr [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of)

    2014-08-15

    We measured production cross-sections of Sn, In, and Cd radionuclides from alpha-induced reactions on {sup nat}Cd from their respective threshold to 45 MeV by using a stacked-foil activation technique at the MC-50 cyclotron of the Korea Institute of Radiological and Medical Sciences. The results were compared with the earlier measurements as well as with the theoretical values obtained from the TENDL-2012 library based on the TALYS 1.4 code. Our measurements for the {sup 110,113g,117m}Sn, {sup 108m,108g,109g,110m,110g,111g,113m,114m,115m,116m,117m,117g}In, and {sup 111m,115g}Cd radionuclides in the energy region from the threshold energy to 45 MeV are in general good agreement with the other experimental data and calculated results. The integral yields for thick target were also deduced using the measured cross-sections and the stopping power of natural cadmium target and found in agreement with the directly measured yields available in the literature. The measured cross-sections find importance in various practical applications including nuclear medicine and improvement of nuclear model calculations.

  8. Postural vascular response in human skin: passive and active reactions to alteration of transmural pressure.

    Science.gov (United States)

    Jepsen, H; Gaehtgens, P

    1993-09-01

    Laser-Doppler (LD) fluxmetry was performed in the palmar finger skin of healthy subjects to study the mechanisms contributing to the postural vascular response. Local transmural pressure in the skin blood vessels of the region studied was altered for 1 min in two experimental series either by passive movement of the arm to different vertical hand positions relative to heart level or by application of external pressure (-120-180 mmHg) to the finger. Heart and respiratory rate, arterial blood pressure, and LD flux in the contralateral finger (kept at heart level) were measured. The measurements suggest a compound reaction of local (myogenic) and systemic (neurogenic) mechanisms: the local regulatory component appears as a graded active vascular response elicited by passive vessel distension or compression. A systemic component, associated with a single deep inspiration, is frequently observed during the actual movement of the arm. In addition, prolonged holding of the test hand in a given vertical position also elicits a delayed vascular response in the control hand at heart level, which may be generated by volume receptors in the intrathoracic low-pressure system.

  9. Synergetic pretreatment of waste activated sludge by hydrodynamic cavitation combined with Fenton reaction for enhanced dewatering.

    Science.gov (United States)

    Cai, Meiqiang; Hu, Jianqiang; Lian, Guanghu; Xiao, Ruiyang; Song, Zhijun; Jin, Micong; Dong, Chunying; Wang, Quanyuan; Luo, Dewen; Wei, Zongsu

    2018-04-01

    The dewatering of waste activated sludge by integrated hydrodynamic cavitation (HC) and Fenton reaction was explored in this study. We first investigated the effects of initial pH, sludge concentration, flow rate, and H 2 O 2 concentration on the sludge dewaterability represented by water content, capillary suction time and specific resistance to filtration. The results of dewatering tests showed that acidic pH and low sludge concentration were favorable to improve dewatering performance in the HC/Fenton system, whereas optimal flow rate and H 2 O 2 concentration applied depended on the system operation. To reveal the synergism of HC/Fenton treatment, a suite of analysis were implemented: three-dimensional excitation emission matrix (3-DEEM) spectra of extracellular polymeric substances (EPS) such as proteins and polysaccharides, zeta potential and particle size of sludge flocs, and SEM/TEM imaging of sludge morphology. The characterization results indicate a three-step mechanism, namely HC fracture of different EPS in sludge flocs, Fenton oxidation of the released EPS, and Fe(III) re-flocculation, that is responsible for the synergistically enhanced sludge dewatering. Results of current study provide a basis to improve our understanding on the sludge dewatering performance by HC/Fenton treatment and possible scale-up of the technology for use in wastewater treatment plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Measurements of activation reaction rate distributions on a mercury target bombarded with high-energy protons at AGS

    Energy Technology Data Exchange (ETDEWEB)

    Takada, Hiroshi; Kasugai, Yoshimi; Nakashima, Hiroshi; Ikeda, Yujiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Ino, Takashi; Kawai, Masayoshi [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan); Jerde, Eric; Glasgow, David [Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    2000-02-01

    A neutronics experiment was carried out using a thick mercury target at the Alternating Gradient Synchrotron (AGS) facility of Brookhaven National Laboratory in a framework of the ASTE (AGS Spallation Target Experiment) collaboration. Reaction rate distributions around the target were measured by the activation technique at incident proton energies of 1.6, 12 and 24 GeV. Various activation detectors such as the {sup 115}In(n,n'){sup 115m}In, {sup 93}Nb(n,2n){sup 92m}Nb, and {sup 209}Bi(n,xn) reactions with threshold energies ranging from 0.3 to 70.5 MeV were employed to obtain the reaction rate data for estimating spallation source neutron characteristics of the mercury target. It was found from the measured {sup 115}In(n,n'){sup 115m}In reaction rate distribution that the number of leakage neutrons becomes maximum at about 11 cm from the top of hemisphere of the mercury target for the 1.6-GeV proton incidence and the peak position moves towards forward direction with increase of the incident proton energy. The similar result was observed in the reaction rate distributions of other activation detectors. The experimental procedures and a full set of experimental data in numerical form are summarized in this report. (author)

  11. Measurements of activation reaction rate distributions on a mercury target bombarded with high-energy protons at AGS

    International Nuclear Information System (INIS)

    Takada, Hiroshi; Kasugai, Yoshimi; Nakashima, Hiroshi; Ikeda, Yujiro; Jerde, Eric; Glasgow, David

    2000-02-01

    A neutronics experiment was carried out using a thick mercury target at the Alternating Gradient Synchrotron (AGS) facility of Brookhaven National Laboratory in a framework of the ASTE (AGS Spallation Target Experiment) collaboration. Reaction rate distributions around the target were measured by the activation technique at incident proton energies of 1.6, 12 and 24 GeV. Various activation detectors such as the 115 In(n,n') 115m In, 93 Nb(n,2n) 92m Nb, and 209 Bi(n,xn) reactions with threshold energies ranging from 0.3 to 70.5 MeV were employed to obtain the reaction rate data for estimating spallation source neutron characteristics of the mercury target. It was found from the measured 115 In(n,n') 115m In reaction rate distribution that the number of leakage neutrons becomes maximum at about 11 cm from the top of hemisphere of the mercury target for the 1.6-GeV proton incidence and the peak position moves towards forward direction with increase of the incident proton energy. The similar result was observed in the reaction rate distributions of other activation detectors. The experimental procedures and a full set of experimental data in numerical form are summarized in this report. (author)

  12. Reaction kinetics aspect of U3O8 kernel with gas H2 on the characteristics of activation energy, reaction rate constant and O/U ratio of UO2 kernel

    International Nuclear Information System (INIS)

    Damunir

    2007-01-01

    The reaction kinetics aspect of U 3 O 8 kernel with gas H 2 on the characteristics of activation energy, reaction rate constant and O/U ratio of UO 2 kernel had been studied. U 3 O 8 kernel was reacted with gas H 2 in a reduction furnace at varied reaction time and temperature. The reaction temperature was varied at 600, 700, 750 and 850 °C with a pressure of 50 mmHg for 3 hours in gas N 2 atmosphere. The reation time was varied at 1, 2, 3 and 4 hours at a temperature of 750 °C using similar conditions. The reaction product was UO 2 kernel. The reaction kinetic aspect between U 3 O 8 and gas H 2 comprised the minimum activation energy (ΔE), the reaction rate constant and the O/U ratio of UO 2 kernel. The minimum activation energy was determined from a straight line slope of equation ln [{D b . R o {(1 - (1 - X b ) ⅓ } / (b.t.Cg)] = -3.9406 x 10 3 / T + 4.044. By multiplying with the straight line slope -3.9406 x 10 3 , the ideal gas constant (R) 1.985 cal/mol and the molarity difference of reaction coefficient 2, a minimum activation energy of 15.644 kcal/mol was obtained. The reaction rate constant was determined from first-order chemical reaction control and Arrhenius equation. The O/U ratio of UO 2 kernel was obtained using gravimetric method. The analysis result of reaction rate constant with chemical reaction control equation yielded reaction rate constants of 0.745 - 1.671 s -1 and the Arrhenius equation at temperatures of 650 - 850 °C yielded reaction rate constants of 0.637 - 2.914 s -1 . The O/U ratios of UO 2 kernel at the respective reaction rate constants were 2.013 - 2.014 and the O/U ratios at reaction time 1 - 4 hours were 2.04 - 2.011. The experiment results indicated that the minimum activation energy influenced the rate constant of first-order reaction and the O/U ratio of UO 2 kernel. The optimum condition was obtained at reaction rate constant of 1.43 s -1 , O/U ratio of UO 2 kernel of 2.01 at temperature of 750 °C and reaction time of 3

  13. Optimization of the THP-1 activation assay to detect pharmaceuticals with potential to cause immune mediated drug reactions.

    Science.gov (United States)

    Corti, Daniele; Galbiati, Valentina; Gatti, Nicolò; Marinovich, Marina; Galli, Corrado L; Corsini, Emanuela

    2015-10-01

    Despite important impacts of systemic hypersensitivity induced by pharmaceuticals, for such endpoint no reliable preclinical approaches are available. We previously established an in vitro test to identify contact and respiratory allergens based on interleukin-8 (IL-8) production in THP-1 cells. Here, we challenged it for identification of pharmaceuticals associated with systemic hypersensitivity reactions, with the idea that drug sensitizers share common mechanisms of cell activation. Cells were exposed to drugs associated with systemic hypersensitivity reactions (streptozotocin, sulfamethoxazole, neomycin, probenecid, clonidine, procainamide, ofloxacin, methyl salicylate), while metformin was used as negative drug. Differently to chemicals, drugs tested were well tolerated, except clonidine and probenecid, with no signs of cytotoxicity up to 1-2mg/ml. THP-1 activation assay was adjusted, and conditions, that allow identification of all sensitizing drugs tested, were established. Next, using streptozotocin and selective inhibitors of PKC-β and p38 MAPK, two pathways involved in chemical allergen-induced cell activation, we tested the hypothesis that similar pathways were also involved in drug-induced IL-8 production and CD86 upregulation. Results indicated that drugs and chemical allergens share similar activation pathways. Finally, we made a structure-activity hypothesis related to hypersensitivity reactions, trying to individuate structural requisite that can be involved in immune mediated adverse reactions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Study of activation cross-sections of deuteron induced reactions on rhodium up to 40 MeV

    International Nuclear Information System (INIS)

    Ditroi, F.; Tarkanyi, F.; Takacs, S.; Hermanne, A.; Yamazaki, H.; Baba, M.; Mohammadi, A.; Ignatyuk, A.V.

    2011-01-01

    Highlights: → Excitation function measurement of deuteron induced reactions on rhodium up to 40 MeV. → Model code calculations with EMPIRE, ALICE and TALYS. → Integral production yield calculation. → Thin layer activation (TLA) with the produced isotopes. - Abstract: In the frame of a systematic study of the activation cross-sections of deuteron induced nuclear reactions, excitation functions of the 103 Rh(d,x) 100,101,103 Pd, 100g,101m,101g,102m,102g Rh and 103g Ru reactions were determined up to 40 MeV. Cross-sections were measured with the activation method using a stacked foil irradiation technique. Excitation functions of the contributing reactions were calculated using the ALICE-IPPE, EMPIRE-II and TALYS codes. From the measured cross-section data integral production yields were calculated and compared with experimental integral yield data reported in the literature. From the measured cross-sections and previous data, activation curves were deduced to support thin layer activation (TLA) on rhodium and Rh containing alloys.

  15. Synthesis, reactions and biological activity of some new bis-heterocyclic ring compounds containing sulphur atom

    Science.gov (United States)

    2013-01-01

    Background The derivatives of thieno[2,3-b]thiophene belong to a significant category of heterocyclic compounds, which have shown a wide spectrum of medical and industrial application. Results A new building block with two electrophilic center of thieno[2,3-b]thiophene derivatives 2 has been reported by one-pot reaction of diketone derivative 1 with Br2/AcOH in excellent yield. A variety of heteroaromatics having bis(1H-imidazo[1,2a] benzimidazole), bis(1H-imidazo[1,2-b][1,2,4]triazole)-3-methyl-4-phenylthieno[2,3-b]thiophene derivatives, dioxazolo-, dithiazolo-, and 1H-imidazolo-3-methyl-4-phenylthieno[2,3-b]thiophene derivatives as well pyrrolo, thiazolo -3-methyl-4-phenylthieno[2,3-b]thiophene derivatives have been designed, synthesized, characterized, and evaluated for their biological activity. Compounds 3–9 showed good bioassay result. These new derivatives were evaluated for anti-cancer activity against PC-3 cell lines, in vitro antioxidant potential and β-glucuronidase and α-glucosidase inhibitory activities. Compound 3 (IC50 = 56.26 ± 3.18 μM) showed a potent DPPH radical scavenging antioxidant activity and found to be more active than standard N-acetylcystein (IC50 = 105.9 ± 1.1 μM). Compounds 8a (IC50 = 13.2 ± 0.34 μM) and 8b (IC50 = 14.1 ± 0.28 μM) found as potent inhibitor of α-glucusidase several fold more active than the standard acarbose (IC50 = 841 ± 1.73 μM). Most promising results were obtained in β-glucuronidase enzyme inhibition assay. Compounds 5 (IC50 = 0.13 ± 0.019 μM), 6 (IC50 = 19.9 ± 0.285 μM), 8a (IC50 = 1.2 ± 0.0785 μM) and 9 (IC50 = 0.003 ± 0.09 μM) showed a potent inhibition of β-glucuronidase. Compound 9 was found to be several hundred fold more active than standard D-Saccharic acid 1,4-lactone (IC50 = 45.75 ± 2.16 μM). Conclusions Synthesis, characterization, and in vitro biological activity of a series of

  16. Metal Fluorides, Metal Chlorides and Halogenated Metal Oxides as Lewis Acidic Heterogeneous Catalysts. Providing Some Context for Nanostructured Metal Fluorides.

    Science.gov (United States)

    Lennon, David; Winfield, John M

    2017-01-28

    Aspects of the chemistry of selected metal fluorides, which are pertinent to their real or potential use as Lewis acidic, heterogeneous catalysts, are reviewed. Particular attention is paid to β-aluminum trifluoride, aluminum chlorofluoride and aluminas γ and η, whose surfaces become partially fluorinated or chlorinated, through pre-treatment with halogenating reagents or during a catalytic reaction. In these cases, direct comparisons with nanostructured metal fluorides are possible. In the second part of the review, attention is directed to iron(III) and copper(II) metal chlorides, whose Lewis acidity and potential redox function have had important catalytic implications in large-scale chlorohydrocarbons chemistry. Recent work, which highlights the complexity of reactions that can occur in the presence of supported copper(II) chloride as an oxychlorination catalyst, is featured. Although direct comparisons with nanostructured fluorides are not currently possible, the work could be relevant to possible future catalytic developments in nanostructured materials.

  17. Reaction invariant-based reduction of the activated sludge model ASM1 for batch applications

    DEFF Research Database (Denmark)

    Santa Cruz, Judith A.; Mussati, Sergio F.; Scenna, Nicolás J.

    2016-01-01

    In any system, there are some properties, quantities or relationships that remain unchanged despite the applied transformations (system invariants). For a batch reaction system with n linearly independent reactions and m components (n

  18. Ene-ene-yne Reactions: Activation Strain Analysis and Role of Aromaticity

    NARCIS (Netherlands)

    Fernandez, I.; Bickelhaupt, F.M.; Cossío, F.P.

    2014-01-01

    The trend in reactivity of the thermal cycloisomerization reactions of 1,3-hexadien-5-ynes, A=B-C=D-E≡F, were explored and analyzed by using density functional theory at the M06-2X/def2-TZVPP level. These reactions proceed through formally aromatic transition states to form a bent-allene

  19. Cellular effects of halogen blue light from dental curing unit

    International Nuclear Information System (INIS)

    Trosic, I.; Pavicic, I.; Jukic, S.

    2008-01-01

    Full text: Halogen curing lights are the most frequently used polymerization source in dental offices. Light-cured bonding systems have become increasingly popular among clinicians because they offer a number of advantages over self-cured adhesives. The effort to increase polymerization quality releases the commercially available high power light density dental curing units. Emitted visible blue light belongs to the range of nonionizing radiation. Common concern in both, patients and dentist grows with regard to the unfavorable effects on the pulp tissue. The aim of study was to evaluate the time and dose dependence effect of halogen light curing unit (Elipar TriLight, ESPE Dental AG, Germany) at the disposed condition modes in vitro. A quartz-tungsten-halogen light source emits radiation of the wavelengths between 400 and 515 nm. This halogen blue light source operates in the three illumination modes, medium (M), exponential (E) and standard (S), and five illumination times. The total irradiance or the light intensity was measured by the light intensity control area on the control panel of device and mean light intensity given by manufacturer was 800 m W/cm 2 . Continuous culture of V79 cells was illuminated in triplicate. The influence of medium mode (M), exponential (E) and standard (S) illumination during 20, 40 and 80 sec on the cell viability, colony forming ability and proliferation of V79 cell culture was investigated. Trypan blue exclusion test was used to determine cell viability, both, in the treated and control cell samples. Colony forming ability was assessed for each exposure time and mode by colony count on post-exposure day 7. Cell proliferation was determined by cell counts for each time and mode of exposure during five post-exposure days. Statistical difference were determined at p<0.05 (Statistica 7.0, StatSoft Inc., USA). Viability of cells was not affected by blue light in view of exposure time and modes. Regardless to exposure or illumination

  20. Specific inflammatory response of Anemonia sulcata (Cnidaria) after bacterial injection causes tissue reaction and enzymatic activity alteration.

    Science.gov (United States)

    Trapani, M R; Parisi, M G; Parrinello, D; Sanfratello, M A; Benenati, G; Palla, F; Cammarata, M

    2016-03-01

    The evolution of multicellular organisms was marked by adaptations to protect against pathogens. The mechanisms for discriminating the ''self'' from ''non-self" have evolved into a long history of cellular and molecular strategies, from damage repair to the co-evolution of host-pathogen interactions. We investigated the inflammatory response in Anemonia sulcata (Cnidaria: Anthozoa) following injection of substances that varied in type and dimension, and observed clear, strong and specific reactions, especially after injection of Escherichia coli and Vibrio alginolyticus. Moreover, we analyzed enzymatic activity of protease, phosphatase and esterase, showing how the injection of different bacterial strains alters the expression of these enzymes and suggesting a correlation between the appearance of the inflammatory reaction and the modification of enzymatic activities. Our study shows for the first time, a specific reaction and enzymatic responses following injection of bacteria in a cnidarian. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Tuning the viscosity of halogen free bulk heterojunction inks for inkjet printed organic solar cells

    NARCIS (Netherlands)

    Lamont, C.A.; Eggenhuisen, T.M.; Coenen, M.J.J.; Slaats, T.W.L.; Andriessen, R.; Groen, P.

    2015-01-01

    For the solution processing of organic photovoltaics on an industrial scale, the exclusion of halogenated solvents is a necessity. However, the limited solubility of most semiconducting polymer/fullerene blends in non-halogenated solvents results in ink formulations with low viscosities which poses

  2. Impact of enhanced ozone deposition and halogen chemistry on tropospheric ozone over the Northern Hemisphere

    Science.gov (United States)

    Fate of ozone in marine environments has been receiving increased attention due to the tightening of ambient air quality standards. The role of deposition and halogen chemistry is examined through incorporation of an enhanced ozone deposition algorithm and inclusion of halogen ch...

  3. Basic aspects of photocatalytic detoxification of organic halogens by TiO2 nanocrystallites. Photolytic and radiolytic investigations

    International Nuclear Information System (INIS)

    Rabani, J.

    1998-01-01

    Various forms of TiO 2 (nanocrystallites in colloid solutions, powders and layers) are considered as promising photocatalysts for detoxification of persistent organic chemicals which are present as pollutants in waste water effluents from industrial manufacturers and even from regular households. Such pollutants penetrate and reach water sources and must be removed or destroyed in order to prevent damage to people or to the environment. Some of the toxins, such as organic halogenated compounds is difficult to remove by moderate chemical redox reactions, but can be mineralized by a free radical mechanism. Pilot plants for detoxification of industrial wastes on TiO 2 surface are currently being tested in several countries. In view of this recent development it is of particular interest to investigate yields of the reactive intermediates and reaction mechanisms of reactions of representative organic substrates. Such work is presently going on in many laboratories. In the present contribution we focus on the nature of the primary oxidizing species and the possible ways to increase photolytic yields, with particular attention to chain reactions in organic halogen compounds. Although the work concerns photocatalysis, radiation chemistry may provide useful results regarding kinetic parameters and comparative tests. Thus, comparison between photocatalytic (TiO 2 ), radiolytic and chemical hydroxylations of phenol provides evidence that the reactive hydroxylation agent is an OH· radical adsorbed to the TiO 2 surface. The initial photochemical products are conduction band electrons and valence band holes in the TiO 2 nanocrystallites, which become 'trapped' within less than 30 ps. (author)

  4. An In Vitro Model for Studying Neutrophil Activation During Cardiopulmonary Bypass by Using a Polymerase Chain Reaction Thermocycler

    NARCIS (Netherlands)

    Tang, Min; Zhao, Xiao-Gang; Gu, Y. John; Chen, Chang-Zhi

    The accurate temperature control of a polymerase chain reaction (PCR) thermocycler was exploited in developing an in vitro model to study neutrophil activation during cardiopulmonary bypass. Neutrophils from 12 volunteers underwent temperature changes in a PCR thermocycler (37 degrees C for 30

  5. Synthesis and Biological Activity of Some 3,5-Diaryl-1-Benzothiazolopyrazoline Derivatives: Reaction of Chalcones with 2-Hyrazinobenzothiazoles

    Directory of Open Access Journals (Sweden)

    Vandana Sharma

    2009-01-01

    Full Text Available A series of 3,5-diaryl-1-benzothiazolopyrazoline derivatives were synthesized by the reaction of appropriately substituted chalcones and 2-hydrazinobenzothiazole in ethanol. The synthesized heterocycles have been characterized on the basis of their chemical properties and spectroscopic data. These compounds were tested for biological activity against a variety of test organisms.

  6. Synthesis and Biological Activity of Some 3, 5-Diarylisoxazoline Derivatives: Reaction of Substituted Chalcones with Hydroxylamine Hydrochloride

    Directory of Open Access Journals (Sweden)

    Vandana Sharma

    2010-01-01

    Full Text Available A series of 3-aryl-5-styrylisoxazoline/ 3,5-diarylisoxazoline derivatives were synthesized by the reaction of appropriately substituted chalcones and hydroxylamine hydrochloride in presence of alkali in ethanol. The synthesized heterocycles have been characterized on the basis of their chemical properties and spectroscopic data. These compounds were tested for biological activity against a variety of test organisms

  7. Reactions of 4-nitro-1,2,3-triazole with alkylating agents and compounds with activated multiple bonds

    Energy Technology Data Exchange (ETDEWEB)

    Vereshchagin, L.I.; Kuznetsova, N.I.; Kirillova, L.P.; Shcherbakov, V.V.; Sukhanov, G.T.; Gareev, G.A.

    1987-01-01

    When 4-nitro-1,2,3-triazole is alkylated, a mixture of N1- and N2-isomers is formed, with the latter usually predominating. The same behavior is also observed in addition reactions of 4-nitrotriazole to activated multiple bonds.

  8. Particle size dependence on oxygen reduction reaction activity of electrodeposited TaOx catalysts in acidic media

    KAUST Repository

    Seo, J.

    2013-11-13

    The size dependence of the oxygen reduction reaction activity was studied for TaOx nanoparticles electrodeposited on carbon black for application to polymer electrolyte fuel cells (PEFCs). Compared with a commercial Ta2O5 material, the ultrafine oxide nanoparticles exhibited a distinctively high onset potential different from that of the bulky oxide particles.

  9. Special features of self-compensation of halogen donor action in lead telluride

    International Nuclear Information System (INIS)

    Kajdanov, V.I.; Nemov, S.A.; Ravich, Yu.I.; Dereza, A.Yu.

    1985-01-01

    Specific features of self-compensation of halogen donor action in lead telluride are investigasted. Lead telluride samples with chlorine additions (with tellurium excess) and, besides, with bromine- and iodine additions were studied in order to reveal general regularities in alloyind with all halogen donor impurities. Experimental dependences of the difference between the electron and hole concentrations (n-p) in PbTe as a function of an amount of introduced halogen impurities (Ni) are presented for samples with a maximum compensation at 295 K. General features of the n-p=f(Ni) dependence are presented for all halogens. The hypothesis on the kinetic mechanism of increasing the efficiency of self-compensation of halogen donor action in lead telluride is suggested

  10. Activation cross-sections of deuteron induced nuclear reactions on neodymium up to 50 MeV

    International Nuclear Information System (INIS)

    Tárkányi, F.; Takács, S.; Ditrói, F.; Hermanne, A.; Yamazaki, H.; Baba, M.; Mohammadi, A.; Ignatyuk, A.V.

    2014-01-01

    Highlights: • Experimental excitation function of deuteron induced reactions on natural Nd. • Model code calculations with EMPIRE-D, ALICE-D and TALYS (TENDL-2012). • Physical yield calculation and comparison. • Discussion of medical and industrial applications. - Abstract: In the frame of a systematic study of activation cross sections of deuteron induced nuclear reactions on rare earths, the reactions on neodymium for production of therapeutic radionuclides were measured for the first time. The excitation functions of the nat Nd(d,x) 151,150,149,148m,148g,146,144,143 Pm, 149,147,139m Nd, 142 Pr and 139g Ce nuclear reactions were assessed by using the stacked foil activation technique and high resolution γ-spectrometry. The experimental excitation functions were compared to the theoretical predictions calculated with the modified model codes ALICE-IPPE-D and EMPIRE-II-D and with the data in the TENDL-2012 library based on latest version of the TALYS code. The application of the data in the field of medical isotope production and nuclear reaction theory is discussed

  11. Emission of Volatile OrganoHalogens by Southern African Solar Salt Works

    Science.gov (United States)

    Kotte, Karsten; Weissflog, Ludwig; Lange, Christian Albert; Huber, Stefan; Pienaar, Jacobus J.

    2010-05-01

    Volatile organic compounds containing halogens - especially chlorine - have been considered for a long time of industrial origin only, and it was assumed that the production and emission of these compounds can easily be controlled by humans in case they will cause a threat for life on Earth. Since the middle of the 80ies of the last century it became clear that the biologically active organohalogens isolated by chemists are purposefully produced by nature as antibiotics or as antifeedant etc. To date more than 3800 organohalogens are known to be naturally produced by bio-geochemical processes. The global budgets of many such species are poorly understood and only now with the emergence of better analytical techniques being discovered. For example the compound chloromethane nature's production (5 GT) outdates the anthropogenic production (50 KT) by a factor of 100. Thus organohalogens are an interesting recent case in point since they can influence the ozone budget of the boundary layer, play a role in the production of aerosols and the climate change discussion. An intriguing observation is that most of the atmospheric CH3Cl and CH3Br are of terrestrial rather than of marine origin and that a number of halogenated small organic molecules are produced in soils. The high concentrations of halides in salt soils point to a possibly higher importance of natural halogenation processes as a source of volatile organohalogens. Terrestrial biota, such as fungi, plants, animals and insects, as well as marine algea, bacteria and archaea are known or suspected to be de-novo producers of volatile organohalogens. In recent years we revealed the possibility for VOX to form actively in water and bottom sediments of hyper-saline environments in the course of studying aridization processes during climatic warming. Due to the nature of their production process solar salt works, as to be found along-side the Southern African coast line but also upcountry, combine a variety of semi- and

  12. Promotional effect of phosphorus doping on the activity of the Fe-N/C catalyst for the oxygen reduction reaction

    DEFF Research Database (Denmark)

    Hu, Yang; Zhu, Jianbin; Lv, Qing

    2015-01-01

    Cost-effective, active and stable electrocatalysts for the oxygen reduction reaction (ORR) are highly desirable for the wide-spread adoption of technologies such as fuel cells and metal-air batteries. Among the already reported non-precious metal catalysts, carbon-supported transition metal...... to that for the undoped Fe-N/C catalyst. The activity and durability of the catalysts are demonstrated in direct methanol fuel cells....

  13. The Reduction Reaction of Dissolved Oxygen in Water by Hydrazine over Platinum Catalyst Supported on Activated Carbon Fiber

    Energy Technology Data Exchange (ETDEWEB)

    Park, K.K.; Moon, J.S. [Korea Electric Power Research Institute, Taejon (Korea)

    1999-07-01

    The reduction reaction of dissolved oxygen (DO) by hydrazine was investigated on activated carbon fiber (ACF) and Pt/ACF catalysts using a batch reactor with an external circulating loop. The ACF itself showed catalytic activity and this was further improved by supporting platinum on ACF. The catalytic role platinum is ascribed to its acceleration of hydrazine decomposition, based on electric potential and current measurements as well as the kinetic study. (author). 15 refs., 13 figs.

  14. Electrocatalytic Activity of Carbonized Nanostructured Polyanilines for Oxidation Reactions: Sensing of Nitrite Ions and Ascorbic Acid

    International Nuclear Information System (INIS)

    Micić, Darko; Šljukić, Biljana; Zujovic, Zoran; Travas-Sejdic, Jadranka; Ćirić-Marjanović, Gordana

    2014-01-01

    Highlights: • Carbonized PANIs prepared from various nanostructured PANI precursors • Electroanalytical performances of carbonized PANIs evaluated using voltammetry • Study of carbonized PANIs physico-chemical properties related to electroactivity • The lowest over-potential for NO 2 − oxidation at c-PANI (+0.87 V vs. SCE) • The lowest over-potential for ascorbic acid oxidation at both c-PANI and c-PANI-SSA - Abstract: A comparative study of the electrocatalytic activity of nitrogen-containing carbon nanomaterials, prepared by the carbonization of nanostructured polyaniline (PANI) salts, for the electrooxidation reactions is presented. Nanostructured PANI salts were synthesized by the oxidative polymerization of aniline with ammonium peroxydisulfate in an aqueous solution in the presence of 5-sulfosalicylic acid (PANI-SSA), 3,5-dinitrosalicylic acid (PANI-DNSA) as well as without added acid (PANI), and subsequently carbonized to c-PANI-SSA, c-PANI-DNSA and c-PANI, respectively. Glassy carbon tip was modified with nanostructured c-PANIs and used for the investigation of sensing of nitrite and ascorbic acid in aqueous solutions as model analytes by linear sweep voltammetry. All three types of the investigated c-PANIs gave excellent response to the nitrite ions and ascorbic acid electrooxidation. The lowest peak potential for nitrite ion oxidation exhibited c-PANI (+0.87 V vs. SCE), and for ascorbic acid oxidation both c-PANI and c-PANI-SSA (ca. + 0.13 V vs. SCE). Electrochemical data were correlated with structural and textural data obtained by Raman spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, elemental and nitrogen sorption analysis

  15. Long-term Studies of Marine Halogen Release

    Science.gov (United States)

    Tschritter, J.; Holla, R.; Frieß, U.; Platt, U.

    2009-04-01

    Institute of Enviromental Physics, Heidelberg, Germany. Long term measurements of atmospheric trace gases using multi-axis DOAS instruments are pursued at the new SOLAS observatory on the island of Sao Vicente, (Cape Verde). This research is part of the SOPRAN (Surface Ocean Processes in the ANthropocene) project (Fördernummer:03F0462F). Reactive halogen species (RHS) such as bromine- and iodine- containing species play major roles in the chemistry of ozone in both the troposphere and lower stratosphere and thus possibly influence the ozone budget on a global scale. In addition iodine-species emitted from the ocean surface have been shown to be responsible for the production of new atmospheric particles in the marine boundary layer. This may have an effect on cloud formation and radiation transfer on local and global scales. Long term measurements of RHS abundances will help to identify their key regions and processes for formation. A new long term Multi-MAX-DOAS instrument has been installed at the SOLAS observatory on the island of Sao Vicente, (Cape Verde). The main focus of these unique measurements is the investigation of reactive halogen chemistry in the subtropical marine boundary layer based on measurements of BrO, IO, and possibly OIO. Because of its wide spectral range also the use for O4-retrievals to gain aerosol profiles is possible. IO has been detected with mixing ratios up to 1.3 ppt. For BrO an upper limit of 2 ppt could be determined.

  16. Chemical modification of a bitumen and its non-fuel uses. [Reactions of tar sand asphaltenes in synthesis of non-fuel products

    Energy Technology Data Exchange (ETDEWEB)

    Moschopedis, S.E.; Speight, J.G.

    1974-01-01

    Simple reactions are described whereby tar sand bitumen can be converted to a whole range of materials. Examples are given to illustrate the non-fuel uses of the products. The following reactions of Athabasca asphaltenes are considered: oxidation, halogenation, sulfonation and sulfomethylation, phosphorylation, hydrogenation, reactions with S and O, reactions with metal salts, and miscellaneous chemical conversions. (JGB)

  17. Transition metal catalyzed carbonylation reactions carbonylative activation of C-X bonds

    CERN Document Server

    Beller, Matthias

    2014-01-01

    This book provides students and researchers in organic synthesis with a detailed discussion of carbonylation from the basics through to applications. It discusses the past, present and future of carbonylation reactions.

  18. Reactions of charged and neutral recoil particles following nuclear transformations. Progress report No. 11, September 1976--August 1977

    International Nuclear Information System (INIS)

    Ache, H.J.

    1977-09-01

    The status of the following programs is reported: study of the stereochemistry of halogen atom reactions produced via (n,γ) nuclear reactions with diastereomeric molecules in the condensed phase; decay-induced labelling of compounds of biochemical interest; reactions of energetic tritium species in graphite; and positron lifetime measurements in γ-irradiated organic solids

  19. Optimal control of a Cope rearrangement by coupling the reaction path to a dissipative bath or a second active mode

    International Nuclear Information System (INIS)

    Chenel, A.; Meier, C.; Dive, G.; Desouter-Lecomte, M.

    2015-01-01

    We compare the strategy found by the optimal control theory in a complex molecular system according to the active subspace coupled to the field. The model is the isomerization during a Cope rearrangement of Thiele’s ester that is the most stable dimer obtained by the dimerization of methyl-cyclopentadienenylcarboxylate. The crudest partitioning consists in retaining in the active space only the reaction coordinate, coupled to a dissipative bath of harmonic oscillators which are not coupled to the field. The control then fights against dissipation by accelerating the passage across the transition region which is very wide and flat in a Cope reaction. This mechanism has been observed in our previous simulations [Chenel et al., J. Phys. Chem. A 116, 11273 (2012)]. We compare here, the response of the control field when the reaction path is coupled to a second active mode. Constraints on the integrated intensity and on the maximum amplitude of the fields are imposed limiting the control landscape. Then, optimum field from one-dimensional simulation cannot provide a very high yield. Better guess fields based on the two-dimensional model allow the control to exploit different mechanisms providing a high control yield. By coupling the reaction surface to a bath, we confirm the link between the robustness of the field against dissipation and the time spent in the delocalized states above the transition barrier

  20. Emerging halogenated flame retardants and hexabromocyclododecanes in food samples from an e-waste processing area in Vietnam.

    Science.gov (United States)

    Tao, Fang; Matsukami, Hidenori; Suzuki, Go; Tue, Nguyen Minh; Viet, Pham Hung; Takigami, Hidetaka; Harrad, Stuart

    2016-03-01

    This study reports concentrations of selected emerging halogenated flame retardants (HFRs) and hexabromocyclododecanes (HBCDs) in foodstuffs sourced from an e-waste processing area in Vietnam and two reference sites in Vietnam and Japan. Concentrations of all target HFRs in e-waste-impacted samples in this study exceed significantly (p e-waste processing activities exert a substantial impact on local environmental contamination and human dietary exposure. Significant linear positive correlations in concentrations of syn-Dechlorane Plus (DP) and anti-DP were found between soils and those in co-located chicken samples (p e-waste processing sites and non-e-waste processing areas elsewhere.

  1. Trace elements in land plants: concentration ranges and accumulators of rare earths, Ba, Ra, Mn, Fe, Co and heavy halogens

    International Nuclear Information System (INIS)

    Koyama, M.; Shirakawa, M.; Takada, J.; Katayama, Y.; Matsubara, T.

    1987-01-01

    More than 2000 samples of land plant leaves, mostly of tree, were analyzed by neutron activation analysis in order to find out macroscopic relations between distributions of chemical elements in plants and soil characteristics. The distributions of the elements in plants were also examined from the view point of botanical taxonomy or phylogeny. New species which accumulate Co, rare earths, Ba, Ra, heavy halogens and some other elements were found. Capability or potentiality for accumulating elements could be related to higher ranks of taxonomy, that is, genus or family. The nature of soil is also found to have profound effects on the extent of accumulation of elements in plants. (author)

  2. INAA applied to halogen (Br and I) stability in long-term storage of lyophilized biological materials

    International Nuclear Information System (INIS)

    Zaichick, V.; Zaichick, S.

    2000-01-01

    Instrumental neutron activation analysis (INAA) was used to determine the Br and I concentration in the same ten lyophilized and homogenized human thyroid samples prior and after a 20-year storage at room temperature. It was found that long-term storage had no effect on the iodine content. At the same time, the bromine content was about 2-fold lower (p<0.01). It was assumed that possible losses of other halogens can occur under long-term storage of lyophilized biological materials at room temperature. (author)

  3. Activation cross-sections of deuteron induced nuclear reactions on manganese up to 40 MeV

    International Nuclear Information System (INIS)

    Ditroi, F.; Tarkanyi, F.; Takacs, S.; Hermanne, A.; Yamazaki, H.; Baba, M.; Mohammadi, A.; Ignatyuk, A.V.

    2011-01-01

    In the frame of a systematic study on activation cross-sections of deuteron induced reactions experimental excitation functions on 55 Mn were measured with the activation method using the stacked foil irradiation technique up to 40 MeV. By using high resolution γ-ray spectrometry, cross-section data for the production of 56,54,52 Mn and 51 Cr were determined. Comparison with the earlier published data and with the results predicted by the ALICE-IPPE and EMPIRE-II theoretical codes - improved for more reliable calculations for d-induced reactions - and with data in the TENDL 2010 libraries are also included. Thick target yields were calculated from a fit to our experimental excitation curves and implications for practical applications in industrial (Thin Layer Activation) accelerator technology are discussed.

  4. Odors generated from the Maillard reaction affect autonomic nervous activity and decrease blood pressure through the olfactory system.

    Science.gov (United States)

    Zhou, Lanxi; Ohata, Motoko; Owashi, Chisato; Nagai, Katsuya; Yokoyama, Issei; Arihara, Keizo

    2018-02-01

    Systolic blood pressure (SBP) of rats decreases significantly following exposure to the odor generated from the Maillard reaction of protein digests with xylose. This study identified active odorants that affect blood pressure and demonstrated the mechanism of action. Among the four potent odorants that contribute most to the odor of the Maillard reaction sample, 2,5-dimethyl-4-hydroxy-3(2H)-furanone (DMHF) and 5-methyl-2-pyrazinemethanol (MPM) decreased SBP significantly. The earliest decrease in blood pressure was observed 5 min after exposure to DMHF. Application of zinc sulfate to the nasal cavity eliminated the effect. Furthermore, gastric vagal (parasympathetic) nerve activity was elevated and renal sympathetic nerve activity was lowered after exposure to DMHF. It is indicated that DMHF affects blood pressure through the olfactory system, and the mechanism for the effect of DMHF on blood pressure involves the autonomic nervous system. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  5. Formation of bromate and halogenated disinfection byproducts during chlorination of bromide-containing waters in the presence of dissolved organic matter and CuO

    KAUST Repository

    Liu, Chao; Croue, Jean-Philippe

    2015-01-01

    Previous studies showed that significant bromate (BrO3-) can be formed via the CuO-catalyzed disproportionation of hypobromous acid (HOBr) pathway. In this study, the influence of CuO on the formation of BrO3- and halogenated disinfection byproducts (DBPs) (e.g., trihalomethanes, THMs and haloacetic acids, HAAs) during chlorination of six dissolved organic matter (DOM) isolates was investigated. Only in the presence of slow reacting DOM (from treated Colorado River water, i.e., CRW-BF-HPO), significant BrO3- formation is observed, which competes with bromination of DOM (i.e., THM and HAA formation). Reactions between HOBr and 12 model compounds in the presence of CuO indicates that CuO-catalyzed HOBr disproportionation is completely inhibited by fast reacting phenols, while it predominates in the presence of practically unreactive compounds (acetone, butanol, propionic, and butyric acids). In the presence of slow reacting di- and tri-carboxylic acids (oxalic, malonic, succinic, and citric acids), BrO3- formation varies, depending on its competition with bromoform and dibromoacetic acid formation (i.e., bromination pathway). The latter pathway can be enhanced by CuO due to the activation of HOBr. Therefore, increasing CuO dose (0-0.2 g L-1) in a reaction system containing chlorine, bromide, and CRW-BF-HPO enhances the formation of BrO3-, total THMs and HAAs. Factors including pH and initial reactant concentrations influence the DBP formation. These novel findings have implications for elevated DBP formation during transportation of chlorinated waters in copper-containing distribution systems.

  6. Formation of bromate and halogenated disinfection byproducts during chlorination of bromide-containing waters in the presence of dissolved organic matter and CuO

    KAUST Repository

    Liu, Chao

    2015-12-02

    Previous studies showed that significant bromate (BrO3-) can be formed via the CuO-catalyzed disproportionation of hypobromous acid (HOBr) pathway. In this study, the influence of CuO on the formation of BrO3- and halogenated disinfection byproducts (DBPs) (e.g., trihalomethanes, THMs and haloacetic acids, HAAs) during chlorination of six dissolved organic matter (DOM) isolates was investigated. Only in the presence of slow reacting DOM (from treated Colorado River water, i.e., CRW-BF-HPO), significant BrO3- formation is observed, which competes with bromination of DOM (i.e., THM and HAA formation). Reactions between HOBr and 12 model compounds in the presence of CuO indicates that CuO-catalyzed HOBr disproportionation is completely inhibited by fast reacting phenols, while it predominates in the presence of practically unreactive compounds (acetone, butanol, propionic, and butyric acids). In the presence of slow reacting di- and tri-carboxylic acids (oxalic, malonic, succinic, and citric acids), BrO3- formation varies, depending on its competition with bromoform and dibromoacetic acid formation (i.e., bromination pathway). The latter pathway can be enhanced by CuO due to the activation of HOBr. Therefore, increasing CuO dose (0-0.2 g L-1) in a reaction system containing chlorine, bromide, and CRW-BF-HPO enhances the formation of BrO3-, total THMs and HAAs. Factors including pH and initial reactant concentrations influence the DBP formation. These novel findings have implications for elevated DBP formation during transportation of chlorinated waters in copper-containing distribution systems.

  7. Halogen species record Antarctic sea ice extent over glacial–interglacial periods

    Directory of Open Access Journals (Sweden)

    A. Spolaor

    2013-07-01

    Full Text Available Sea ice is an integral part of the earth's climate system because it affects planetary albedo, sea-surface salinity, and the atmosphere–ocean exchange of reactive gases and aerosols. Bromine and iodine chemistry is active at polar sea ice margins with the occurrence of bromine explosions and the biological production of organoiodine from sea ice algae. Satellite measurements demonstrate that concentrations of bromine oxide (BrO and iodine oxide (IO decrease over sea ice toward the Antarctic interior. Here we present speciation measurements of bromine and iodine in the TALDICE (TALos Dome Ice CorE ice core (159°11' E, 72°49' S; 2315 m a.s.l. spanning the last 215 ky. The Talos Dome ice core is located 250 km inland and is sensitive to marine air masses intruding onto the Antarctic Plateau. Talos Dome bromide (Br− is positively correlated with temperature and negatively correlated with sodium (Na. Based on the Br−/Na seawater ratio, bromide is depleted in the ice during glacial periods and enriched during interglacial periods. Total iodine, consisting of iodide (I− and iodate (IO3−, peaks during glacials with lower values during interglacial periods. Although IO3− is considered the most stable iodine species in the atmosphere it was only observed in the TALDICE record during glacial maxima. Sea ice dynamics are arguably the primary driver of halogen fluxes over glacial–interglacial timescales, by altering the distance between the sea ice edge and the Antarctic plateau and by altering the surface area of sea ice available to algal colonization. Based on our results we propose the use of both halogens for examining Antarctic variability of past sea ice extent.

  8. Study of photo-activated electron transfer reactions in the first excited singlet state by picosecond and nanosecond laser spectroscopy

    International Nuclear Information System (INIS)

    Doizi, Denis

    1983-01-01

    Picosecond laser spectroscopy has been used to study two photo-activated electron transfer reactions: - a bimolecular electron transfer reaction between a sensitizer, DODCI, and an electron acceptor, methylviologen. The two radical ions created with an electron transfer efficiency γ ≅ 0.07 have been identified in picosecond and nanosecond laser absorption spectroscopy by adding selective solutes such as para-benzoquinone (an electron acceptor) or L(+) ascorbic acid (an electron donor). - an intramolecular electron transfer reaction in a triad molecule consisting of a tetra-aryl-porphyrin covalently linked to both a carotenoid and a quinone. The photoinduced charge separation occurs within 30 ps and leads, with a yield of 25 pc, to the formation of a zwitterion whose half-life is 2.5 μs. The experimental results obtained in these two studies show an effective decrease in the recombination rate of the two radical ions created in the encounter pair. (author) [fr

  9. Extension of activation cross section data of deuteron induced nuclear reactions on rhodium up to 50 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Hermanne, A. [Cyclotron Laboratory, Vrije Universiteit Brussel, Brussels (Belgium); Tárkányi, F.; Takács, S.; Ditrói, F. [Institute of Nuclear Research of the Hungarian Academy of Sciences, Debrecen (Hungary)

    2015-11-01

    In the frame of the systematical study of light ion induced nuclear reactions activation cross sections for deuteron induced reactions on monoisotopic {sup 103}Rh were extended to 50 MeV incident energy. Excitation functions were measured in the 49.8–36.6 MeV energy range for the {sup 103}Rh(d,xn){sup 100,101}Pd, {sup 103}Rh(d,pxn){sup 99m,99g,100,101m,101g,102m,102g}Rh and {sup 103}Rh(d,x){sup 97,103}Ru reactions by using the stacked foil irradiation technique and off-line high resolution γ-ray spectrometry. The experimental results are compared to our previous results and to the theoretical predictions in the TENDL-2014 library (TALYS 1.6 code).

  10. Antioxidant activity and sensory characteristics of Maillard reaction products derived from different peptide fractions of soybean meal hydrolysate.

    Science.gov (United States)

    Yu, Min; He, Shudong; Tang, Mingming; Zhang, Zuoyong; Zhu, Yongsheng; Sun, Hanju

    2018-03-15

    Four peptide fractions PF1 (>5;kDa), PF2 (3-5;kDa), PF3 (1-3;kDa), PF4 (Maillard reaction products (MRPF1, MRPF2, MRPF3 and MRPF4) were evaluated, respectively. Peptides with low molecular weight showed higher contribution to the changes of pH, colour and browning intensity during Maillard reaction. The DPPH radical-scavenging activity of PF4 was significantly improved after Maillard reaction. Aroma volatiles and PLSR analysis suggested MRPF3 had the best sensory characteristics with higher contents of umami amino acids and lower of bitter amino acids, therefore it could be deduced that the umami and meaty characteristics were correlated with the peptides of 1-3;kDa. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Verification of dosimetry cross sections above 10 MeV based on measurement of activation reaction rates in fission neutron field

    International Nuclear Information System (INIS)

    Odano, Naoteru; Miura, Toshimasa; Yamaji, Akio.

    1996-01-01

    To validate the dosimetry cross sections in fast neutron energy range, activation reaction rates were measured for 5 types of dosimetry cross sections which have sensitivity in the energy rage above 10 MeV utilizing JRR-4 reactor of JAERI. The measured reaction rates were compared with the calculations reaction rates by a continuous energy monte carlo code MVP. The calculated reaction rates were based on two dosimetry files, JENDL Dosimetry File and IRDF-90.2. (author)

  12. Supervisors' attitudes and skills for active listening with regard to working conditions and psychological stress reactions among subordinate workers.

    Science.gov (United States)

    Mineyama, Sachiko; Tsutsumi, Akizumi; Takao, Soshi; Nishiuchi, Kyoko; Kawakami, Norito

    2007-03-01

    We investigated whether supervisors' listening attitudes and skills were related to working conditions and psychological stress reactions among their subordinates. The subjects included 41 male supervisors and their immediate subordinates (n=203). The supervisors completed a short version of the Active Listening Attitude Scale (ALAS) consisting of two subscales: Listening Attitude and Listening Skill for Active Listening. The subordinates rated working conditions and their psychological stress reactions using selected scales of the Job Content Questionnaire and the Brief Job Stress Questionnaire. Those subordinates who worked under supervisors with a higher score of Listening Attitude and Listening Skill reported a more favorable psychological stress reaction than those who worked under supervisors with a lower score of Listening Attitude and Listening Skill. Those subordinates who worked under supervisors with a higher score of Listening Skill reported higher worksite support than those who worked under supervisors with a lower score of Listening Skill. Those subordinates who worked under supervisors with a higher score of Listening Attitude reported higher job control than those who worked under supervisors with a lower score of Listening Attitude. A supervisor's listening attitude and skill appeared to affect psychological stress reactions predominantly among male subordinates than among female subordinates. Psychological stress reactions were lower among younger subordinates who worked under supervisors with high listening skill, while no statistically difference was observed among older subordinates. These findings suggest that a supervisor's listening attitude and skill have an effect on working conditions and psychological stress reactions among subordinates and that the effects vary according to the subordinates' sex and age.

  13. Reactions of charged and neutral recoil particles following nuclear transformations. Progress report No. 10

    International Nuclear Information System (INIS)

    Ache, H.J.

    1976-09-01

    The status of the following programs is reported: study of the stereochemistry of halogen atom reactions produced via (n,γ) nuclear reactions with diastereomeric molecules in the condensed phase; decay-induced labelling of compounds of biochemical interest; and chemistry of positronium

  14. Decomposition of halogenated organic chemicals in ionic liquid by ionizing radiation

    International Nuclear Information System (INIS)

    Kimura, A.; Taguchi, M.; Kojima, T.; Nagaishi, R.; Hiratsuka, H.

    2006-01-01

    Introduction: Halogenated organic chemicals such as polychlorodibenzo-p-dioxin, polychlorobiphenyls and hexachlorobenzene are widely spread in water environment. These pollutants are persistent against advanced oxidation treatments such as ozone/UV, ozone/hydrogen peroxide, ionizing radiation and photocatalysts. The ionizing radiation, however, can also produce homogeneously and quantitatively reducing species in water. On the other hand, room temperature ionic liquids (RTILs) have unique properties such as nonflammable, high polarity, low melting point, hydrophobicity and wide electrochemical window. The combined method of reduction by ionizing radiation and RTILs is investigated as a new environmental conservation technology. Experimental: Chlorophenol (CP) is selected as model chemicals having the main frame of halogenated organic chemicals. Each o - , m - and p-CP were irradiated with 60 Co γ-ray in each diethylmethyl(2-methoxy-ethyl)ammonium bis(trifluoromethylsulfonyl)imide (DEMMA- TFSI), diethylmethyl(2-methoxyethyl)-ammonium tetrafluoroborate (DEMMA-BF4), methanol and ethanol as solvent. Decomposition of CP and formation of irradiation products were studied using HPLC, LC-MS and ion chromatography. Results and discussion: Concentration of CP in each solution decreased as a function of dose. G-value was estimated from the slope at the primary stage of the decomposition curve. The G(-CP) and G(Phenol) were shown in Table 1. G(-CP) in the aliphatic alcohols was 0.21 to 0.37, which is lower than G-value of reducing species in the alcohols, e.g. G=1.0 to 1.5 for solvated electron. Since the rate constant for reaction of CP with hydrated electron is 1.3 x 10 9 mol -1 ·dm 3 ·s -1 , the reverse reaction is considered to attribute. G(-CP) in DEMMA-TFSI or DEMMA-BF4 was about 2 to 3 times higher than that in each alcohol. Lifetime of the reducing species in RTILs would be longer than that in each alcohol. G(-CP) in DEMMA-TFSI decreased by adding acetone or oxygen

  15. Modeling of catalytically active metal complex species and intermediates in reactions of organic halides electroreduction.

    Science.gov (United States)

    Lytvynenko, Anton S; Kolotilov, Sergey V; Kiskin, Mikhail A; Eremenko, Igor L; Novotortsev, Vladimir M

    2015-02-28

    The results of quantum chemical modeling of organic and metal-containing intermediates that occur in electrocatalytic dehalogenation reactions of organic chlorides are presented. Modeling of processes that take place in successive steps of the electrochemical reduction of representative C1 and C2 chlorides - CHCl3 and Freon R113 (1,1,2-trifluoro-1,2,2-trichloroethane) - was carried out by density functional theory (DFT) and second-order Møller-Plesset perturbation theory (MP2). It was found that taking solvation into account using an implicit solvent model (conductor-like screening model, COSMO) or considering explicit solvent molecules gave similar results. In addition to modeling of simple non-catalytic dehalogenation, processes with a number of complexes and their reduced forms, some of which were catalytically active, were investigated by DFT. Complexes M(L1)2 (M = Fe, Co, Ni, Cu, Zn, L1H = Schiff base from 2-pyridinecarbaldehyde and the hydrazide of 4-pyridinecarboxylic acid), Ni(L2) (H2L2 is the Schiff base from salicylaldehyde and 1,2-ethylenediamine, known as salen) and Co(L3)2Cl2, representing a fragment of a redox-active coordination polymer [Co(L3)Cl2]n (L3 is the dithioamide of 1,3-benzenedicarboxylic acid), were considered. Gradual changes in electronic structure in a series of compounds M(L1)2 were observed, and correlations between [M(L1)2](0) spin-up and spin-down LUMO energies and the relative energies of the corresponding high-spin and low-spin reduced forms, as well as the shape of the orbitals, were proposed. These results can be helpful for determination of the nature of redox-processes in similar systems by DFT. No specific covalent interactions between [M(L1)2](-) and the R113 molecule (M = Fe, Co, Ni, Zn) were found, which indicates that M(L1)2 electrocatalysts act rather like electron transfer mediators via outer-shell electron transfer. A relaxed surface scan of the adducts {M(L1)2·R113}(-) (M = Ni or Co) versus the distance between the

  16. Effect of dual task activity on reaction time in males and females.

    Science.gov (United States)

    Kaur, Manjinder; Nagpal, Sangeeta; Singh, Harpreet; Suhalka, M L

    2014-01-01

    The present study was designed to compare the auditory and visual reaction time on an Audiovisual Reaction Time Machine with the concomitant use of mobile phones in 52 women and 30 men in the age group of 18-40 years. Males showed significantly (p multitasking, in hand held (24.38% & 18.70% respectively) and hands free modes (36.40% & 18.40% respectively) of the use of cell phone. VRT increased non significantly during multitasking in both the groups. However, the multitasking per se has detrimental effect on the reaction times in both the groups studied. Hence, it should best be avoided in crucial and high attention demanding tasks like driving.

  17. Fluorescent Carbon Dots Derived from Maillard Reaction Products: Their Properties, Biodistribution, Cytotoxicity, and Antioxidant Activity.

    Science.gov (United States)

    Li, Dongmei; Na, Xiaokang; Wang, Haitao; Xie, Yisha; Cong, Shuang; Song, Yukun; Xu, Xianbing; Zhu, Bei-Wei; Tan, Mingqian

    2018-02-14

    Food-borne nanoparticles have received great attention because of their unique physicochemical properties and potential health risk. In this study, carbon dots (CDs) formed during one of the most important chemical reactions in the food processing field, the Maillard reaction from the model system including glucose and lysine, were investigated. The CDs purified from Maillard reaction products emitted a strong blue fluorescence under ultraviolet light with a fluorescent quantum yield of 16.30%. In addition, they were roughly spherical, with sizes of around 4.3 nm, and mainly composed of carbon, oxygen, hydrogen, and nitrogen. Their surface groups such as hydroxyl, amino, and carboxyl groups were found to possibly enable CDs to scavenge DPPH and hydroxyl radicals. Furthermore, the cytotoxicity assessment of CDs showed that they could readily enter HepG2 cells while causing negligible cell death at low concentration. However, high CDs concentrations were highly cytotoxic and led to cell death via interference of the glycolytic pathway.

  18. Endoscopy and homogeneous-heterogeneous reactions in MHD radiative peristaltic activity of Ree-Eyring fluid

    Science.gov (United States)

    Hayat, Tasawar; Akram, Javaria; Alsaedi, Ahmed; Zahir, Hina

    2018-03-01

    Endoscopic and homogeneous-heterogeneous reactions in MHD peristalsis of Ree-Eyring fluid are addressed. Mathematical modeling and analysis have been performed by utilizing cylindrical coordinates. Nonlinear thermal radiation is present. Impact of slip boundary conditions on temperature and velocity on outer tube are taken into consideration. Lubrication approach is employed. The nonlinear system is executed numerically for solutions of velocity, temperature and concentration. Graphical results are obtained to predict physical interpretation of various embedded parameters. It is noted that homogeneous and heterogeneous reactions affect the concentration alternatively. Moreover Brinkman number rises the temperature and heat transfer coefficient whereas thermal slip drops temperature and heat transfer rate.

  19. Optimised formation of blue Maillard reaction products of xylose and glycine model systems and associated antioxidant activity.

    Science.gov (United States)

    Yin, Zi; Sun, Qian; Zhang, Xi; Jing, Hao

    2014-05-01

    A blue colour can be formed in the xylose (Xyl) and glycine (Gly) Maillard reaction (MR) model system. However, there are fewer studies on the reaction conditions for the blue Maillard reaction products (MRPs). The objective of this study is to investigate characteristic colour formation and antioxidant activities in four different MR model systems and to determine the optimum reaction conditions for the blue colour formation in a Xyl-Gly MR model system, using the random centroid optimisation program. The blue colour with an absorbance peak at 630 nm appeared before browning in the Xyl-Gly MR model system, while no blue colour formation but only browning was observed in the xylose-alanine, xylose-aspartic acid and glucose-glycine MR model systems. The Xyl-Gly MR model system also showed higher antioxidant activity than the other three model systems. The optimum conditions for blue colour formation were as follows: xylose and glycine ratio 1:0.16 (M:M), 0.20 mol L⁻¹ NaHCO₃, 406.1 mL L⁻¹ ethanol, initial pH 8.63, 33.7°C for 22.06 h, which gave a much brighter blue colour and a higher peak at 630 nm. A characteristic blue colour could be formed in the Xyl-Gly MR model system and the optimum conditions for the blue colour formation were proposed and confirmed. © 2013 Society of Chemical Industry.

  20. Chloroperoxidase-Mediated Halogenation of Selected Pharmaceutical Micropollutants

    Directory of Open Access Journals (Sweden)

    José Luis García-Zamora

    2018-01-01

    Full Text Available The oxidation of eight pharmaceutical micropollutants by chloroperoxidase derived from Caldaromyces fumago using hydrogen peroxide as an electron acceptor is reported. All the tested compounds, namely trazadone, sulfamethoxazole, naproxen, tetracycline, estradiol, ketoconazole, ketorolac, and diclofenac, were found to be substrates for oxidation by chloroperoxidase. The respective oxidation products were identified by electrospray ionization–mass spectrometry. All the products contain at least one chloride atom in their structure after the enzymatic oxidation. Degradability experiments indicated that most of the reaction products are more biodegradable than the corresponding unmodified compounds. The enzyme was found to be catalytically active in effluent from a water treatment facility, transforming the micropollutants with high reaction rates and conversions. The enzyme was immobilized in chitosan macrospheres, which allowed the catalyst to be recycled for up to three treatment cycles in simulated samples of treated residual water. The conversion was high in the first two cycles; however, in the third, a 50% reduction in the capacity of the enzyme to oxidize ketorolac was observed. Additionally, immobilization improved the performance of the enzyme over a wider pH range, achieving the conversion of ketorolac at pH 5, while the free enzyme was not active at this pH. Overall, the results of this study suggest that chloroperoxidase represents a powerful potential catalyst in terms of its catalytic activity for the transformation of pharmaceutical micropollutants.

  1. Cross-section studies of relativistic deuteron reactions on copper by activation method

    Czech Academy of Sciences Publication Activity Database

    Suchopár, Martin; Wagner, Vladimír; Svoboda, Ondřej; Vrzalová, Jitka; Chudoba, Petr; Kugler, Andrej; Adam, Jindřich; Závorka, L.; Baldine, A.; Furman, W.; Kadykov, M. G.; Khushvaktov, J.; Solnyshkin, A. A.; Tsoupko-Sitnikov, V. V.; Tyutyunnikov, S. I.

    2015-01-01

    Roč. 344, FEB (2015), s. 63-69 ISSN 0168-583X R&D Projects: GA MŠk LG14004 Institutional support: RVO:61389005 Keywords : relativistic deuteron reactions * cross-sections * copper Subject RIV: BG - Nuclear , Atomic and Molecular Physics, Colliders Impact factor: 1.389, year: 2015

  2. Influence of limestone powder on the reaction kinetics and mechanical properties of sodium carbonate activated slag

    NARCIS (Netherlands)

    Yuan, B.; Yu, Q.; Brouwers, H.J.H.

    2016-01-01

    The effects of limestone powder (LP) on the performance of Portland cement based composites have been extensively studied, considering that LP not only acts as nuclei sites, but that it is also chemically involved in the hydration process, which improves the reaction degree at the early age. In high

  3. Patterns of adverse drug reaction signals in NAFDAC Pharmacovigilance activities from September to November, 2014.

    Science.gov (United States)

    Awodele, Olufunsho; Ibrahim, Ali; Orhii, Paul

    2016-03-16

    Adverse drug reaction signals are reported information on possible causal relationships between an adverse event and a drug. The National Pharmacovigilance Centre (NPC) in Nigeria has over 3,000 reported adverse drug reaction cases which have been adequately entered into the ADR data bank. Data mining of ADR reports from September to November, 2014 were carried out in this present study with the intention to describe the pattern of ADRs and generate possible signals. A total of about 100 reported cases with arrays of adverse drug reactions were reported between September and November, 2014 and the data were analyzed using SPSS version 17. Efavirenz/Tenofovir/Lamivudine combination was the highest reported drugs (24.2%) while efavirenz alone was reported in 8 times (8.8%) and HIV (63.3%) was the highest reported indication of drug use. Efavirenz caused central nervous system adverse reactions as revealed in the ADRs analyses. Zidovudine/Lamivudine/Nevirapine combination in concomitant use with Cotrimoxazole were reported 8 times with generalized maculopapular rashes on the trunk with some area of hyper pigmentation with intense itching documented twice and big/swollen rashes all over the faces. Zidovudine was also reported four times to cause severe anaemia. More surveillance is advocated so as to ascertain the consistency of the observed ADRs and thereafter establish appropriate signals.

  4. Digital solar edge tracker for the Halogen Occultation Experiment

    Science.gov (United States)

    Mauldin, L. E., III; Moore, A. S.; Stump, C. W.; Mayo, L. S.

    1987-01-01

    The optical and electronic design of the Halogen Occultation Experiment (Haloe) elevation sun sensor is described. The Haloe instrument is a gas-correlation radiometer now being developed at NASA Langley for the Upper Atmosphere Research Satellite. The system uses a Galilean telescope to form a solar image on a linear silicon photodiode array. The array is a self-scanned monolithic CCD. The addresses of both solar edges imaged on the array are used by the control/pointing system to scan the Haloe science instantaneous field of view (IFOV) across the vertical solar diameter during instrument calibration and then to maintain the science IFOV 4 arcmin below the top edge during the science data occultation event. Vertical resolution of 16 arcsec and a radiometric dynamic range of 100 are achieved at the 700-nm operating wavelength. The design provides for loss of individual photodiode elements without loss of angular tracking capability.

  5. Microwave assisted pyrolysis of halogenated plastics recovered from waste computers.

    Science.gov (United States)

    Rosi, Luca; Bartoli, Mattia; Frediani, Marco

    2018-03-01

    Microwave Assisted Pyrolysis (MAP) of the plastic fraction of Waste from Electric and Electronic Equipment (WEEE) from end-life computers was run with different absorbers and set-ups in a multimode batch reactor. A large amount of various different liquid fractions (up to 76.6wt%) were formed together with a remarkable reduction of the solid residue (up to 14.2wt%). The liquid fractions were characterized using the following different techniques: FT-IR ATR, 1 H NMR and a quantitative GC-MS analysis. The liquid fractions showed low density and viscosity, together with a high concentration of useful chemicals such as styrene (up to 117.7mg/mL), xylenes (up to 25.6mg/mL for p-xylene) whereas halogenated compounds were absent or present in a very low amounts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Use of pyrrole black in zinc-halogen batteries

    Energy Technology Data Exchange (ETDEWEB)

    Mengoli, G.; Musiani, M.M.; Tomat, R.; Valcher, S.; Pletcher, D.

    1985-09-01

    The storage of Br/sub 2//Br/sup -/ and I/sub 2//I/sup -/ couples in a conducting polymer matrix, polypyrrole coated on a reticulated vitreous carbon disc, is described and the application of these positive electrodes in zinc-halogen model batteries is discussed. The cell based on the polypyrrole bromine adduct shows the higher open circuit voltage which, however, depends on the state of charge. Such cells self discharge thus limiting their usefulness. In the case of the iodine cell the self discharge is due to loss of iodine from the polymer to the bulk solution, but with the bromine cell the cause is oxidative bromination and depolymerization of the polypyrrole. 22 references, 6 figures, 2 tables.

  7. Retention of Halogenated Solutes on Stationary Phases Containing Heavy Atoms

    Directory of Open Access Journals (Sweden)

    Toshio Miwa

    2013-05-01

    Full Text Available To examine the effects of weak intermolecular interactions on solid-phase extraction (SPE and chromatographic separation, we synthesized some novel stationary phases with a heavy atom effect layer by immobilizing halogenated aromatic rings and hydroxyl groups onto the surface of a hydrophilic base polymer. Using SPE cartridges packed with the functionalized materials, we found that the heavy atom stationary phases could selectively retain halophenols in organic solvents, such as 1-propanol which blocks the hydrogen bonding, or acetonitrile which blocks the p-p interaction. The extraction efficiency of the materials toward the halophenols depended on the dipole moments of phenoxy groups present as functional groups. On the other hand, the extraction efficiency of solutes toward the functional group depended on their molar refractions, i.e., induced dipole moments. The retention of the solutes to the stationary phase ultimately depended on not only strong intermolecular interactions, but also the effects of weak interactions such as the dispersion force.

  8. Fluorescence cell imaging and manipulation using conventional halogen lamp microscopy.

    Directory of Open Access Journals (Sweden)

    Kazuo Yamagata

    Full Text Available Technologies for vitally labeling cells with fluorescent dyes have advanced remarkably. However, to excite fluorescent dyes currently requires powerful illumination, which can cause phototoxic damage to the cells and increases the cost of microscopy. We have developed a filter system to excite fluorescent dyes using a conventional transmission microscope equipped with a halogen lamp. This method allows us to observe previously invisible cell organelles, such as the metaphase spindle of oocytes, without causing phototoxicity. Cells remain healthy even after intensive manipulation under fluorescence observation, such as during bovine, porcine and mouse somatic cell cloning using nuclear transfer. This method does not require expensive epifluorescence equipment and so could help to reduce the science gap between developed and developing countries.

  9. Activation cross-section measurements of some proton induced reactions on Ni, Co and Mo for proton activation analysis (PAA) purposes

    International Nuclear Information System (INIS)

    Alharbi, A.A.; Alzahrani, J.; Azzam, A.; Nuclear Research Center, Cairo

    2011-01-01

    The experimental proton induced reaction cross sections on some elements of the Havar alloy were measured using the activation method and the well established stacked-foil technique combined with high resolution gamma-ray spectroscopy. They included the reactions nat Ni(p,x) 57 Ni, nat Co(p,x) 58(m+g) Co and nat Mo(p,x) 94g,95g,96(m+g) Tc, the aim being to obtain reliable data in the proton energy range up to 26 MeV for some important reactions to be used in the proton activation analysis of steel or other alloys. Irradiations were performed using the CS-30 Cyclotron at KFSH and RC, Riyadh, Saudi Arabia. The activity measurements were carried out in PNU laboratories, Riyadh, Saudi Arabia. The experimental excitation functions for the investigated reactions were constructed and compared with the performed computed theoretical nuclear model calculations using two different codes: ALICE-IPPE and TALYS. A comparison between our measured cross-section values and the available published data is also presented, with a view to checking the consistency of the reported experimental work from various laboratories.

  10. Halogenated furanones inhibit quorum sensing through accelerated LuxR turnover

    DEFF Research Database (Denmark)

    Manefield, M.; Rasmussen, Thomas Bovbjerg; Henzter, M.

    2002-01-01

    fischeri overproduced in Escherichia coli. Whilst a stable interaction between the algal metabolite and the bacterial protein was not found, it was noted by Western analysis that the half-life of the protein is reduced up to 100-fold in the presence of halogenated furanones. This suggests that halogenated...... that the reduction in LuxR concentration is the mechanism by which furanones control expression of AHL-dependent phenotypes. The mode of action by which halogenated furanones reduce cellular concentrations of the LuxR protein remains to be characterized....

  11. Competition of hydrogen bonds and halogen bonds in complexes of hypohalous acids with nitrogenated bases.

    Science.gov (United States)

    Alkorta, Ibon; Blanco, Fernando; Solimannejad, Mohammad; Elguero, Jose

    2008-10-30

    A theoretical study of the complexes formed by hypohalous acids (HOX, X = F, Cl, Br, I, and At) with three nitrogenated bases (NH 3, N 2, and NCH) has been carried out by means of ab initio methods, up to MP2/aug-cc-pVTZ computational method. In general, two minima complexes are found, one with an OH...N hydrogen bond and the other one with a X...N halogen bond. While the first one is more stable for the smallest halogen derivatives, the two complexes present similar stabilities for the iodine case and the halogen-bonded structure is the most stable one for the hypoastatous acid complexes.

  12. High-flux white neutron source based on p(35)-Be reactions for activation experiments at NPI

    Czech Academy of Sciences Publication Activity Database

    Štefánik, Milan; Bém, Pavel; Götz, Miloslav; Katovsky, K.; Majerle, Mitja; Novák, Jan; Šimečková, Eva

    2014-01-01

    Roč. 104, NOV (2014), s. 306-309 ISSN 0969-806X. [1st International Conference on Dosimetry and its Applications (ICDA). Prague, 23.6.2013-28.6.2013] R&D Projects: GA MŠk(XE) LM2011019 Institutional support: RVO:61389005 Keywords : neutron generator * accelerator * dosimetry foils activation method * neutron spectrometry * Gamma-spectrometry * reaction rate Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.380, year: 2014

  13. Rhodium(III)-catalyzed three-component reaction of imines, alkynes, and aldehydes through C-H activation.

    Science.gov (United States)

    Huang, Ji-Rong; Song, Qiang; Zhu, Yu-Qin; Qin, Liu; Qian, Zhi-Yong; Dong, Lin

    2014-12-15

    An efficient rhodium(III)-catalyzed tandem three-component reaction of imines, alkynes and aldehydes through CH activation has been developed. High stereo- and regioselectivity, as well as good yields were obtained in most cases. The simple and atom-economical approach offers a broad scope of substrates, providing polycyclic skeletons with potential biological properties. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Peripheral Blood Leukocytes and Serum Nested Polymerase Chain Reaction Are Complementary Methods for Monitoring Active Cytomegalovirus Infection in Transplant Patients

    Directory of Open Access Journals (Sweden)

    PD Andrade

    2013-01-01

    Full Text Available BACKGROUND: Human cytomegalovirus is an important cause of morbidity and mortality in immunocompromised patients. Qualitative polymerase chain reaction (PCR has proven to be a sensitive and effective technique in defining active cytomegalovirus infection, in addition to having low cost and being a useful test for situations in which there is no need for quantification. Real-time PCR has the advantage of quantification; however, the high cost of this methodology makes it impractical for routine use.

  15. Rate Constants and Activation Energies for Gas-Phase Reactions of Three Cyclic Volatile Methyl Siloxanes with the Hydroxyl Radical.

    Science.gov (United States)

    Safron, Andreas; Strandell, Michael; Kierkegaard, Amelie; Macleod, Matthew

    2015-07-01

    Reaction with hydroxyl radicals (OH) is the major pathway for removal of cyclic volatile methyl siloxanes (cVMS) from air. We present new measurements of second-order rate constants for reactions of the cVMS octamethylcyclotetrasiloxane (D 4 ), decamethylcyclopentasiloxane (D 5 ), and dodecamethylcyclohexasiloxane (D 6 ) with OH determined at temperatures between 313 and 353 K. Our measurements were made using the method of relative rates with cyclohexane as a reference substance and were conducted in a 140-mL gas-phase reaction chamber with online mass spectrometry analysis. When extrapolated to 298 K, our measured reaction rate constants of D 4 and D 5 with the OH radical are 1.9 × 10 -12 (95% confidence interval (CI): (1.7-2.2) × 10 -12 ) and 2.6 × 10 -12 (CI: (2.3-2.9) × 10 -12 ) cm 3 molecule -1 s -1 , respectively, which are 1.9× and 1.7× faster than previous measurements. Our measured rate constant for D 6 is 2.8 × 10 -12 (CI: (2.5-3.2) × 10 -12 ) cm 3 molecule -1 s -1 and to our knowledge there are no comparable laboratory measurements in the literature. Reaction rates for D 5 were 33% higher than for D 4 (CI: 30-37%), whereas the rates for D 6 were only 8% higher than for D 5 (CI: 5-10%). The activation energies of the reactions of D 4 , D 5 , and D 6 with OH were not statistically different and had a value of 4300 ± 2800 J/mol.

  16. Rate Constants and Activation Energies for Gas‐Phase Reactions of Three Cyclic Volatile Methyl Siloxanes with the Hydroxyl Radical

    Science.gov (United States)

    Safron, Andreas; Strandell, Michael; Kierkegaard, Amelie

    2015-01-01

    ABSTRACT Reaction with hydroxyl radicals (OH) is the major pathway for removal of cyclic volatile methyl siloxanes (cVMS) from air. We present new measurements of second‐order rate constants for reactions of the cVMS octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) with OH determined at temperatures between 313 and 353 K. Our measurements were made using the method of relative rates with cyclohexane as a reference substance and were conducted in a 140‐mL gas‐phase reaction chamber with online mass spectrometry analysis. When extrapolated to 298 K, our measured reaction rate constants of D4 and D5 with the OH radical are 1.9 × 10−12 (95% confidence interval (CI): (1.7–2.2) × 10−12) and 2.6 × 10−12 (CI: (2.3–2.9) × 10−12) cm3 molecule−1 s−1, respectively, which are 1.9× and 1.7× faster than previous measurements. Our measured rate constant for D6 is 2.8 × 10−12 (CI: (2.5–3.2) × 10−12) cm3 molecule−1 s−1 and to our knowledge there are no comparable laboratory measurements in the literature. Reaction rates for D5 were 33% higher than for D4 (CI: 30–37%), whereas the rates for D6 were only 8% higher than for D5 (CI: 5–10%). The activation energies of the reactions of D4, D5, and D6 with OH were not statistically different and had a value of 4300 ± 2800 J/mol. PMID:27708500

  17. Surface morphology and electronic structure of halogen etched InAs (1 1 1)

    Energy Technology Data Exchange (ETDEWEB)

    Eassa, N., E-mail: nashwa.eassa@nmmu.ac.za [Department of Physics, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa); Murape, D.M. [Department of Physics, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa); Betz, R. [Department of Chemistry, Nelson Mandela Metropolitan University (South Africa); Neethling, J.H.; Venter, A.; Botha, J.R. [Department of Physics, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa)

    2012-05-15

    The reaction of halogen-based etchants with n-InAs (1 1 1)A and the resulting surface morphology and surface electronic structure are investigated using field emission scanning electron microscopy and Raman spectroscopy. Using the intensity ratio of the unscreened longitudinal optical (LO) phonon to the transverse optical (TO) phonon in the Raman spectrum, a significant reduction in band bending is deduced after exposure of the InAs surface to HCl:H{sub 2}O, Br-methanol and I-ethanol for moderate times and concentrations. These procedures also lead to smooth and defect-free InAs surfaces. The improvements in surface properties are reversed, however, if the concentrations of the etchants are increased or the etch time is too long. In the worst cases, pit formation and inverted pyramids with {l_brace}1 1 1{r_brace} side facets are observed. The influence of the etchant concentration and etch time on the morphological and electronic properties of the etched surfaces is reported.

  18. Surface morphology and electronic structure of halogen etched InAs (1 1 1)

    International Nuclear Information System (INIS)

    Eassa, N.; Murape, D.M.; Betz, R.; Neethling, J.H.; Venter, A.; Botha, J.R.

    2012-01-01

    The reaction of halogen-based etchants with n-InAs (1 1 1)A and the resulting surface morphology and surface electronic structure are investigated using field emission scanning electron microscopy and Raman spectroscopy. Using the intensity ratio of the unscreened longitudinal optical (LO) phonon to the transverse optical (TO) phonon in the Raman spectrum, a significant reduction in band bending is deduced after exposure of the InAs surface to HCl:H 2 O, Br–methanol and I–ethanol for moderate times and concentrations. These procedures also lead to smooth and defect-free InAs surfaces. The improvements in surface properties are reversed, however, if the concentrations of the etchants are increased or the etch time is too long. In the worst cases, pit formation and inverted pyramids with {1 1 1} side facets are observed. The influence of the etchant concentration and etch time on the morphological and electronic properties of the etched surfaces is reported.

  19. Catalytic Activity of μ-Carbido-Dimeric Iron(IV) Octapropylporphyrazinate in the 3,5,7,2',4'-Pentahydroxyflavone Oxidation Reaction with tert-Butyl Hydroperoxide

    Science.gov (United States)

    Tyurin, D. V.; Zaitseva, S. V.; Kudrik, E. V.

    2018-05-01

    It is found for the first time that μ-carbido-dimeric iron(IV) octapropylporphyrazinate displays catalytic activity in the oxidation reaction of natural flavonol morin with tert-butyl hydroperoxide, with the catalyst being stable under conditions of the reaction. The kinetics of this reaction are studied. It is shown the reaction proceeds via tentative formation of a complex between the catalyst and the oxidant, followed by O‒O bond homolytic cleavage. The kinetics of the reaction is described in the coordinates of the Michaelis-Menten equation. A linear dependence of the apparent reaction rate constant on the concentration of the catalyst is observed, testifying to its participation in the limiting reaction step. The equilibrium constants and rates of interaction are found. A mechanism is proposed for the reaction on the basis of the experimental data.

  20. Construction of Tungsten Halogen, Pulsed LED, and Combined Tungsten Halogen-LED Solar Simulators for Solar Cell I-V Characterization and Electrical Parameters Determination

    Directory of Open Access Journals (Sweden)

    Anon Namin

    2012-01-01

    Full Text Available I-V characterization of solar cells is generally done under natural sunlight or solar simulators operating in either a continuous mode or a pulse mode. Simulators are classified on three features of irradiance, namely, spectral match with respect to air mass 1.5, spatial uniformity, and temporal stability. Commercial solar simulators use Xenon lamps and halogen lamps, whereas LED-based solar simulators are being developed. In this work, we build and test seven simulators for solar cell characterization, namely, one tungsten halogen simulator, four monochromatic (red, green, blue, and white LED simulators, one multicolor LED simulator, and one tungsten halogen-blue LED simulator. The seven simulators provide testing at nonstandard test condition. High irradiance from simulators is obtained by employing elevated supply voltage to tungsten halogen lamps and high pulsing voltages to LEDs. This new approach leads to higher irradiance not previously obtained from tungsten halogen lamps and LEDs. From I-V curves, electrical parameters of solar cell are made and corrected based on methods recommended in the IEC 60891 Standards. Corrected values obtained from non-STC measurements are in good agreement with those obtained from Class AAA solar simulator.

  1. Diels-Alder reactions in confined spaces: the influence of catalyst structure and the nature of active sites for the retro-Diels-Alder reaction.

    Science.gov (United States)

    Cantín, Ángel; Gomez, M Victoria; de la Hoz, Antonio

    2016-01-01

    Diels-Alder cycloaddition between cyclopentadiene and p -benzoquinone has been studied in the confined space of a pure silica zeolite Beta and the impact on reaction rate due to the concentration effect within the pore and diffusion limitations are discussed. Introduction of Lewis or Brønsted acid sites on the walls of the zeolite strongly increases the reaction rate. However, contrary to what occurs with mesoporous molecular sieves (MCM-41), Beta zeolite does not catalyse the retro-Diels-Alder reaction, resulting in a highly selective catalyst for the cycloaddition reaction.

  2. Solidification of highly active fission products by a thermite reaction. Pt. 1

    International Nuclear Information System (INIS)

    Rudolph, G.; Hild, W.

    1976-07-01

    To solidify high-level fission products a process was developed according to which a high-melting ceramic product is obtained as a solidification matrix in a thermite reaction. With a constant content of fission product oxides reaction mixtures consisting of 35 to 55 wt.% of manganese dioxide, 24 to 32 wt.% of aluminum shot and 17 to 36 wt.% of sand give suitable products. In the thermite reactiom some components contained in the reactic mixture volatilize partly by evaporation (alkali oxides, manganese oxide, and others) and partly by the formation of volatile oxides having lower valencies (silicon and aluminum oxide). The smoke generated can be easily collected in filters made of glass wool fibers. (orig./HR) [de

  3. Effects of slip-induced changes in ankle movement on muscle activity and ground reaction forces during running acceleration

    DEFF Research Database (Denmark)

    Ketabi, Shahin; Kersting, Uwe G.

    2013-01-01

    Ground contact in running is always linked to a minimum amount of slipping, e.g., during the early contact phase when horizontal forces are high compared to vertical forces. Studies have shown altered muscular activation when expecting slips [2-4]. It is not known what the mechanical effect of su...... of such slip episodes are on joint loading or performance. The aim of the present study was to examine the effect of changes in ankle movement on ankle joint loading, muscle activity, and ground reaction forces during linear acceleration....

  4. Chemically activated formation of organic acids in reactions of the Criegee intermediate with aldehydes and ketones.

    Science.gov (United States)

    Jalan, Amrit; Allen, Joshua W; Green, William H

    2013-10-21

    Reactions of the Criegee intermediate (CI, ˙CH2OO˙) are important in atmospheric ozonolysis models. In this work, we compute the rates for reactions between ˙CH2OO˙ and HCHO, CH3CHO and CH3COCH3 leading to the formation of secondary ozonides (SOZ) and organic acids. Relative to infinitely separated reactants, the SOZ in all three cases is found to be 48-51 kcal mol(-1) lower in energy, formed via 1,3-cycloaddition of ˙CH2OO˙ across the C=O bond. The lowest energy pathway found for SOZ decomposition is intramolecular disproportionation of the singlet biradical intermediate formed from cleavage of the O-O bond to form hydroxyalkyl esters. These hydroxyalkyl esters undergo concerted decomposition providing a low energy pathway from SOZ to acids. Geometries and frequencies of all stationary points were obtained using the B3LYP/MG3S DFT model chemistry, and energies were refined using RCCSD(T)-F12a/cc-pVTZ-F12 single-point calculations. RRKM calculations were used to obtain microcanonical rate coefficients (k(E)) and the reservoir state method was used to obtain temperature and pressure dependent rate coefficients (k(T, P)) and product branching ratios. At atmospheric pressure, the yield of collisionally stabilized SOZ was found to increase in the order HCHO reactions were found to be the most sensitive parameters determining SOZ and organic acid yield.

  5. Interactions of nitrite with catalase: Enzyme activity and reaction kinetics studies.

    Science.gov (United States)

    Krych-Madej, Justyna; Gebicka, Lidia

    2017-06-01

    Catalase, a heme enzyme, which catalyzes decomposition of hydrogen peroxide to water and molecular oxygen, is one of the main enzymes of the antioxidant defense system of the cell. Nitrite, used as a food preservative has long been regarded as a harmful compound due to its ability to form carcinogenic nitrosamines. Recently, much evidence has been presented that nitrite plays a protective role as a nitric oxide donor under hypoxic conditions. In this work the effect of nitrite on the catalytic reactions of catalase was studied. Catalase was inhibited by nitrite, and this process was pH-dependent. IC 50 values varied from about 1μM at pH5.0 to about 150μM of nitrite at pH7.4. The presence of chloride significantly enhanced nitrite-induced catalase inhibition, in agreement with earlier observations. The kinetics of the reactions of nitrite with ferric catalase, its redox intermediate, Compound I, and catalase inactive form, Compound II, was also studied. Possible mechanisms of nitrite-induced catalase inhibition are analyzed and the biological consequences of the reactions of catalase with nitrite are discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Martian fluid and Martian weathering signatures identified in Nakhla, NWA 998 and MIL 03346 by halogen and noble gas analysis

    Science.gov (United States)

    Cartwright, J. A.; Gilmour, J. D.; Burgess, R.

    2013-03-01

    We report argon (Ar) noble gas, Ar-Ar ages and halogen abundances (Cl, Br, I) of Martian nakhlites Nakhla, NWA 998 and MIL 03346 to determine the presence of Martian hydrous fluids and weathering products. Neutron-irradiated samples were either crushed and step-heated (Nakhla only), or simply step-heated using a laser or furnace, and analysed for noble gases using an extension of the 40Ar-39Ar technique to determine halogen abundances. The data obtained provide the first isotopic evidence for a trapped fluid that is Cl-rich, has a strong correlation with 40ArXS (40ArXS = 40Armeasured - 40Arradiogenic) and displays 40ArXS/36Ar of ˜1000 - consistent with the Martian atmosphere. This component was released predominantly in the low temperature and crush experiments, which may suggest a fluid inclusion host. For the halogens, we observe similar Br/Cl and I/Cl ratios between the nakhlites and terrestrial reservoirs, which is surprising given the absence of crustal recycling, organic matter and frequent fluid activity on Mars. In particular, Br/Cl ratios in our Nakhla samples (especially olivine) are consistent with previously analysed Martian weathering products, and both low temperature and crush analyses show a similar trend to the evaporation of seawater. This may indicate that surface brines play an important role on Mars and on halogen assemblages within Martian meteorites and rocks. Elevated I/Cl ratios in the low temperature NWA 998 and MIL 03346 releases may relate to in situ terrestrial contamination, though we are unable to distinguish between low temperature terrestrial or Martian components. Whilst estimates of the amount of water present based on the 36Ar concentrations are too high to be explained by a fluid component alone, they are consistent with a mixed-phase inclusion (gas and fluid) or with shock-implanted Martian atmospheric argon. The observed fluid is dilute (low salinity, but high Br/Cl and I/Cl ratios), contains a Martian atmospheric component

  7. Toehold-mediated strand displacement reaction-dependent fluorescent strategy for sensitive detection of uracil-DNA glycosylase activity.

    Science.gov (United States)

    Wu, Yushu; Wang, Lei; Jiang, Wei

    2017-03-15

    Sensitive detection of uracil-DNA glycosylase (UDG) activity is beneficial for evaluating the repairing process of DNA lesions. Here, toehold-mediated strand displacement reaction (TSDR)-dependent fluorescent strategy was constructed for sensitive detection of UDG activity. A single-stranded DNA (ssDNA) probe with two uracil bases and a trigger sequence were designed. A hairpin probe with toehold domain was designed, and a reporter probe was also designed. Under the action of UDG, two uracil bases were removed from ssDNA probe, generating apurinic/apyrimidinic (AP) sites. Then, the AP sites could inhibit the TSDR between ssDNA probe and hairpin probe, leaving the trigger sequence in ssDNA probe still free. Subsequently, the trigger sequence was annealed with the reporter probe, initiating the polymerization and nicking amplification reaction. As a result, numerous G-quadruplex (G4) structures were formed, which could bind with N-methyl-mesoporphyrin IX (NMM) to generate enhanced fluorescent signal. In the absence of UDG, the ssDNA probe could hybridize with the toehold domain of the hairpin probe to initiate TSDR, blocking the trigger sequence, and then the subsequent amplification reaction would not occur. The proposed strategy was successfully implemented for detecting UDG activity with a detection limit of 2.7×10 -5 U/mL. Moreover, the strategy could distinguish UDG well from other interference enzymes. Furthermore, the strategy was also applied for detecting UDG activity in HeLa cells lysate with low effect of cellular components. These results indicated that the proposed strategy offered a promising tool for sensitive quantification of UDG activity in UDG-related function study and disease prognosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Halogenated organic compounds in archived whale oil: A pre-industrial record

    International Nuclear Information System (INIS)

    Teuten, Emma L.; Reddy, Christopher M.

    2007-01-01

    To provide additional evidence that several halogenated organic compounds (HOCs) found in environmental samples are natural and not industrially produced, we analyzed an archived whale oil sample collected in 1921 from the last voyage of the whaling ship Charles W. Morgan. This sample, which pre-dates large-scale industrial manufacture of HOCs, contained two methoxylated polybrominated diphenyl ethers (MeO-PBDEs), five halogenated methyl bipyrroles (MBPs), one halogenated dimethyl bipyrrole (DMBP), and tentatively one dimethoxylated polybrominated biphenyl (diMeO-PBB). This result indicates, at least in part, a natural source of the latter compounds. - Nine halogenated organic compounds have been detected in archived whale oil from the early 1920s

  9. Halogenated organic compounds in archived whale oil: A pre-industrial record

    Energy Technology Data Exchange (ETDEWEB)

    Teuten, Emma L. [Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, 360 Woods Hole Road, Woods Hole, MA 02543 (United States)]. E-mail: emma.teuten@plymouth.ac.uk; Reddy, Christopher M. [Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, 360 Woods Hole Road, Woods Hole, MA 02543 (United States)]. E-mail: creddy@whoi.edu

    2007-02-15

    To provide additional evidence that several halogenated organic compounds (HOCs) found in environmental samples are natural and not industrially produced, we analyzed an archived whale oil sample collected in 1921 from the last voyage of the whaling ship Charles W. Morgan. This sample, which pre-dates large-scale industrial manufacture of HOCs, contained two methoxylated polybrominated diphenyl ethers (MeO-PBDEs), five halogenated methyl bipyrroles (MBPs), one halogenated dimethyl bipyrrole (DMBP), and tentatively one dimethoxylated polybrominated biphenyl (diMeO-PBB). This result indicates, at least in part, a natural source of the latter compounds. - Nine halogenated organic compounds have been detected in archived whale oil from the early 1920s.

  10. PATTERN RECOGNITION STUDIES OF HALOGENATED ORGANIC COMPOUNDS USING CONDUCTING POLYMER SENSOR ARRAYS. (R825323)

    Science.gov (United States)

    Direct measurement of volatile and semivolatile halogenated organic compounds of environmental interest was carried out using arrays of conducting polymer sensors. Mathematical expressions of the sensor arrays using microscopic polymer network model is described. A classical, non...

  11. Ultraviolet radiation and blue-light emissions from spotlights incorporating tungsten halogen lamps

    CERN Document Server

    MacKinlay, Alistair F; Whillock, M J

    1989-01-01

    This report summarises measurements of the ultraviolet radiation and blue-light emissions from eleven 'desk-top' tungsten halogen (quartz) lamps and one 'floor-standing' tungsten halogen (quartz) lamp available in the UK. Values of occupational hazard weighted and erythemally weighted ultraviolet radiation irradiance and measurements and relevant calculations of blue-light hazards are presented. It is concluded that the safety design of some desk-top tungsten halogen lamps is inadequate to prevent unnecessary exposure of the skin to potentially harmful ultraviolet radiation. It is recommended that all tungsten halogen lamps should have sufficient filtration to reduce their ultraviolet emissions to an acceptably low level. As long as the comfort aversion responses of the eye are respected, direct viewing of the lamps examined should not constitute a retinal hazard.

  12. Ultraviolet radiation and blue-light emissions from spotlights incorporating tungsten halogen lamps

    International Nuclear Information System (INIS)

    McKinlay, A.F.; Whillock, M.J.; Meulemans, C.C.E.

    1989-07-01

    This report summarises measurements of the ultraviolet radiation and blue-light emissions from eleven 'desk-top' tungsten halogen (quartz) lamps and one 'floor-standing' tungsten halogen (quartz) lamp available in the UK. Values of occupational hazard weighted and erythemally weighted ultraviolet radiation irradiance and measurements and relevant calculations of blue-light hazards are presented. It is concluded that the safety design of some desk-top tungsten halogen lamps is inadequate to prevent unnecessary exposure of the skin to potentially harmful ultraviolet radiation. It is recommended that all tungsten halogen lamps should have sufficient filtration to reduce their ultraviolet emissions to an acceptably low level. As long as the comfort aversion responses of the eye are respected, direct viewing of the lamps examined should not constitute a retinal hazard. (author)

  13. ACTIVATION REACTION ON THE ELECTROENCEPHALOGRAM IN SUBSTANCE DEPENDENT PATIENTS: LINKS TO ADDICTION STUDIES AND PSYCHOLOGICAL FACTORS AND CHANGES IN NEUROFEEDBACK TRAINING

    Directory of Open Access Journals (Sweden)

    M. e Melnikov

    2014-01-01

    Full Text Available Depth of activation reaction (α-activity suppression during the eyes-opening task is considered to be an important quantitative characteristic of α-band brainwaves. Activation reaction was assessed from O1 and O2 leads in 31 male substance dependent subjects. In 7 cases it was measured twice: before and after α- or β-brainwave biofeedback training. The correlations were found between grade of α suppression in eyes-opening task and attitude towards disease and treatment, personality maturity, and level of pathological personality traits. Activation reaction was significantly improved by α-training and non-significantly diminished after β-1-training.

  14. Psychosocial versus physiological stress – meta-analyses on deactivations and activations of the neural correlates of stress reactions

    Science.gov (United States)

    Kogler, Lydia; Mueller, Veronika I.; Chang, Amy; Eickhoff, Simon B.; Fox, Peter T.; Gur, Ruben C.; Derntl, Birgit

    2015-01-01

    Stress is present in everyday life in various forms and situations. Two stressors frequently investigated are physiological and psychosocial stress. Besides similar subjective and hormonal responses, it has been suggested that they also share common neural substrates. The current study used activation-likelihood-estimation meta-analysis to test this assumption by integrating results of previous neuroimaging studies on stress processing. Reported results are cluster-level FWE corrected. The inferior frontal gyrus (IFG) and the anterior insula (AI) were the only regions that demonstrated overlapping activation for both stressors. Analysis of physiological stress showed consistent activation of cognitive and affective components of pain processing such as the insula, striatum, or the middle cingulate cortex. Contrarily, analysis across psychosocial stress revealed consistent activation of the right superior temporal gyrus and deactivation of the striatum. Notably, parts of the striatum appeared to be functionally specified: the dorsal striatum was activated in physiological stress, whereas the ventral striatum was deactivated in psychosocial stress. Additional functional connectivity and decoding analyses further characterized this functional heterogeneity and revealed higher associations of the dorsal striatum with motor regions and of the ventral striatum with reward processing. Based on our meta-analytic approach, activation of the IFG and the AI seems to indicate a global neural stress reaction. While physiological stress activates a motoric fight-or-flight reaction, during psychosocial stress attention is shifted towards emotion regulation and goal-directed behavior, and reward processing is reduced. Our results show the significance of differentiating physiological and psychosocial stress in neural engagement. Furthermore, the assessment of deactivations in addition to activations in stress research is highly recommended. PMID:26123376

  15. Spontaneous interfacial reaction between metallic copper and PBS to form cupric phosphate nanoflower and its enzyme hybrid with enhanced activity.

    Science.gov (United States)

    He, Guangli; Hu, Weihua; Li, Chang Ming

    2015-11-01

    We herein report the spontaneous interfacial reaction between copper foil with 0.01 M phosphate buffered saline (PBS) to form free-standing cupric phosphate (Cu3(PO4)2) nanoflowers at ambient temperature. The underlying chemistry was thoroughly investigated and it is found that the formation of nanoflower is synergistically caused by dissolved oxygen, chlorine ions and phosphate ions. Enzyme-Cu3(PO4)2 hybrid nanoflower was further prepared successfully by using an enzyme-dissolving PBS solution and the enzymes in the hybrid exhibit enhanced biological activity. This work provides a facile route for large-scale synthesis of hierarchical inorganic and functional protein-inorganic hybrid architectures via a simple one-step solution-immersion reaction without using either template or surfactant, thus offering great potential for biosensing application among others. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Twisted Amides: From Obscurity to Broadly Useful Transition-Metal-Catalyzed Reactions by N-C Amide Bond Activation.

    Science.gov (United States)

    Liu, Chengwei; Szostak, Michal

    2017-05-29

    The concept of using amide bond distortion to modulate amidic resonance has been known for more than 75 years. Two classic twisted amides (bridged lactams) ingeniously designed and synthesized by Kirby and Stoltz to feature fully perpendicular amide bonds, and as a consequence emanate amino-ketone-like reactivity, are now routinely recognized in all organic chemistry textbooks. However, only recently the use of amide bond twist (distortion) has advanced to the general organic chemistry mainstream enabling a host of highly attractive N-C amide bond cross-coupling reactions of broad synthetic relevance. In this Minireview, we discuss recent progress in this area and present a detailed overview of the prominent role of amide bond destabilization as a driving force in the development of transition-metal-catalyzed cross-coupling reactions by N-C bond activation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Remeasurement and compilation of excitation function of proton induced reactions on iron for activation techniques

    International Nuclear Information System (INIS)

    Takacs, S.; Vasvary, L.; Tarkanyi, F.

    1994-01-01

    Excitation functions of proton induced reactions on nat Fe(p, xn) 56 Co have been remeasured in the energy region up to 18 MeV using stacked foil technique and standard high resolution gamma-ray spectrometry at the Debrecen MGC-20E cyclotron. Compilation of the available data measured between 1959 and 1993 has been made. The corresponding excitation functions have been reviewed, critical comparison of all the available data was done to obtain the most accurate data set. The feasibility of the evaluated data set was checked by reproducing experimental calibration curves for TLA by calculation. (orig.)

  18. Investigation of Activation Cross-Sections of Alpha-Induced Nuclear Reactions on Natural Silver

    International Nuclear Information System (INIS)

    Shahid, Muhammad; Kim, Kwangsoo; Naik, Haladhara; Zaman, Muhammad; Kang, Sinchul; Huh, Changgi; Kim, Guinyun

    2015-01-01

    The purpose was to study the production route of some radioisotopes applicable in medicine and industry. The measured results were compared with literature data and theoretical values. The nat Ag(α,x) reaction has already been studied for different energy ranges. However, the literature data needed new data set to increase the reliability of the reported results. The current experimental work will be helpful to make the literature data more reliable and to modify the theoretical models. The literature data needed new data set to increase the reliability of the reported results. The current experimental work is helpful to make the literature data more reliable and to modify the theoretical models

  19. Halogenated 1-Hydroxynaphthalene-2-Carboxanilides Affecting Photosynthetic Electron Transport in Photosystem II

    Directory of Open Access Journals (Sweden)

    Tomas Gonec

    2017-10-01

    Full Text Available Series of seventeen new multihalogenated 1-hydroxynaphthalene-2-carboxanilides was prepared and characterized. All the compounds were tested for their activity related to the inhibition of photosynthetic electron transport (PET in spinach (Spinacia oleracea L. chloroplasts. 1-Hydroxy-N-phenylnaphthalene-2-carboxamides substituted in the anilide part by 3,5-dichloro-, 4-bromo-3-chloro-, 2,5-dibromo- and 3,4,5-trichloro atoms were the most potent PET inhibitors (IC50 = 5.2, 6.7, 7.6 and 8.0 µM, respectively. The inhibitory activity of these compounds depends on the position and the type of halogen substituents, i.e., on lipophilicity and electronic properties of individual substituents of the anilide part of the molecule. Interactions of the studied compounds with chlorophyll a and aromatic amino acids present in pigment-protein complexes mainly in PS II were documented by fluorescence spectroscopy. The section between P680 and plastoquinone QB in the PET chain occurring on the acceptor side of PS II can be suggested as the site of action of the compounds. The structure-activity relationships are discussed.

  20. Enhancement in the Catalytic Activity of Pd/USY in the Heck Reaction Induced by H2 Bubbling

    Directory of Open Access Journals (Sweden)

    Miki Niwa

    2010-12-01

    Full Text Available Pd was loaded on ultra stable Y (USY zeolites prepared by steaming NH4-Y zeolite under different conditions. Heck reactions were carried out over the prepared Pd/USY. We found that H2 bubbling was effective in improving not only the catalytic activity of Pd/USY, but also that of other supported Pd catalysts and Pd(OAc2. Moreover, the catalytic activity of Pd/USY could be optimized by choosing appropriate steaming conditions for the preparation of the USY zeolites; Pd loaded on USY prepared at 873 K with 100% H2O gave the highest activity (TOF = 61,000 h−1, which was higher than that of Pd loaded on other kinds of supports. The prepared Pd/USY catalysts were applicable to the Heck reactions using various kinds of substrates including bromo- and chloro-substituted aromatic and heteroaromatic compounds. Characterization of the acid properties of the USY zeolites revealed that the strong acid site (OHstrong generated as a result of steaming had a profound effect on the catalytic activity of Pd.

  1. Enhancement in the catalytic activity of Pd/USY in the heck reaction induced by H2 bubbling.

    Science.gov (United States)

    Okumura, Kazu; Tomiyama, Takuya; Moriyama, Sayaka; Nakamichi, Ayaka; Niwa, Miki

    2010-12-24

    Pd was loaded on ultra stable Y (USY) zeolites prepared by steaming NH(4)-Y zeolite under different conditions. Heck reactions were carried out over the prepared Pd/USY. We found that H₂ bubbling was effective in improving not only the catalytic activity of Pd/USY, but also that of other supported Pd catalysts and Pd(OAc)₂. Moreover, the catalytic activity of Pd/USY could be optimized by choosing appropriate steaming conditions for the preparation of the USY zeolites; Pd loaded on USY prepared at 873 K with 100% H₂O gave the highest activity (TOF = 61,000 h⁻¹), which was higher than that of Pd loaded on other kinds of supports. The prepared Pd/USY catalysts were applicable to the Heck reactions using various kinds of substrates including bromo- and chloro-substituted aromatic and heteroaromatic compounds. Characterization of the acid properties of the USY zeolites revealed that the strong acid site (OH(strong)) generated as a result of steaming had a profound effect on the catalytic activity of Pd.

  2. Hydrotreating NiMo/sepiolite catalysts: influence of catalyst preparation on activity for HDS, hydrogenation and chain isomerization reactions

    International Nuclear Information System (INIS)

    Melo, F.V.; Sanz, E.; Corma, A.; Mifsud, A.

    1987-01-01

    A series of NiMo catalysts supported on a sepiolite: a) in its natural state, b) modified by acid leaching, and c) modified by cation exchange, have been prepared. The preparation variables studied were: Method of metal deposition, amount of active phase, sepiolite pretreatment, and temperature and time of sulfurization. The catalytic activity for HDS, hydrogenation, and cracking-isomerization has been studied by feeding a thiophene-cyclohexene-cyclohexane mixture and carrying out the reaction in the following conditions: 300 0 and 400 0 C reaction temperature, 20 Kg.cm -2 total pressure, and 3 to 1 molar ratio of H 2 to hydrocarbons. An optimium for HDS and hydrogenation activity was found for a 12% wt MoO 3 , and 5% wt NiO, prepared by simultaneous impregnation by the pore volume method at Ph = 5.0. The optimum conditions with these catalysts are 400 0 C and 3 hours of sulfurization. An increase in the acidity of the support produces a decrease of HDS and hydrogenation and an increase of the cracking-isomerization activities. A good correlation between HDS and the concentration of an XNiO.MoO 3 phase is found. The XNiO.MoO 3 phase is completely sulfurized to a modified MoS 2 , while NiMoO 4 and MoO 3 are only slightly sulfurized. 31 refs.; 7 figs.; 1 table

  3. Catalytic Activity of Urchin-like Ni nanoparticles Prepared by Solvothermal Method for Hydrogen Evolution Reaction in Alkaline Solution

    International Nuclear Information System (INIS)

    Abbas, Syed Asad; Iqbal, Muhammad Ibrahim; Kim, Seong-Hoon; Jung, Kwang-Deog

    2017-01-01

    Highlights: • Urchin-like Ni is prepared in solvothermal reaction. • Urchin-like Ni is formed via Ni(OH) 2 aggregates in ethanol and oleylamine. • Exchange current density of urchin-like Ni is 0.191 mA cm −2 . • Urchin-like Ni exceeds the catalytic performance of commercial Pt/C in HER. - Abstract: Ni nanoparticles with different morphologies were synthesized for hydrogen evolution reaction (HER) in alkaline solution. Here, Ni(acac) 2 was converted into Ni metal nanoparticles in solvothermal reactions with simple alcohols and oleylamine (OAm). The morphology of the resulting Ni nanoparticles was dependent mainly on the OAm/Ni molar ratio in alcohol solvent. Aggregates of spherical Ni nanoparticles (NiEt-OAm1) were observed at the OAm/Ni molar ratio of 1.0, whereas two echinoid Ni nanoparticles (NiEt-OAm4 and NiEt-OAm6) could be prepared in ethanol at the OAm/Ni molar ratios of 4.0 and 6.0. Ni(OH) 2 formed in ethanol during a reaction time of 5 h was then reduced into echinoid Ni nanoparticles after 8 h. Echinoid Ni nanoparticles were formed by atomic addition on the tops of the multipod Ni particles formed via Ni(OH) 2 /NiO aggregates. Webbed feet-like particles (NiIPA-OAm4) with plate edges were also observed in isopropanol under the same reaction conditions. The catalytic activities of the prepared Ni nanoparticles for the hydrogen evolution reaction were evaluated in alkaline solution. The NiEt-OAm4 with urchin-like morphology was much more active than the NiIPA-OAm4 with webbed feet-like morphology. The exchange current density of Ni catalysts was increased with increasing the OAm/Ni molar ratio. The NiEt-OAm6 exhibited an exchange current of 0.191 mA cm −2 and the NiEt-OAm4 exceeded electrocatalytic performance of a commercial Pt catalysts (40% Pt on Vulcan XC 72) in a stability test for 100 kiloseconds at −1.5 V (vs. Hg/HgO) in 1.0 M NaOH due to its high stability.

  4. Effect of reaction parameters on photoluminescence and photocatalytic activity of zinc sulfide nanosphere synthesized by hydrothermal route

    Energy Technology Data Exchange (ETDEWEB)

    Chanu, T. Inakhunbi; Samanta, Dhrubajyoti [Centre for Material Science and Nanotechnology, Sikkim Manipal Institute of Technology, Sikkim Manipal University, Sikkim 737136 (India); Tiwari, Archana [Department of Physics, Sikkim University, 737102 Sikkim (India); Chatterjee, Somenath, E-mail: somenath@gmail.com [Centre for Material Science and Nanotechnology, Sikkim Manipal Institute of Technology, Sikkim Manipal University, Sikkim 737136 (India); Electronics & Communication Engineering Department, Sikkim Manipal Institute of Technology, Sikkim Manipal University, Sikkim 737136 (India)

    2017-01-01

    Highlights: • ZnS nanosphere synthesis in hydrothermal method with biomolecule as capping ligand. • Effect of reaction parameters to tune the size of ZnS nanoparticles. • Obtain multiple defect emission, which arises from interstitials/vacancies. • 87% degradation of Rh-B in the presence of ZnS nanoparticles under solar radiation. - Abstract: Zinc Sulfide (ZnS) nanospheres have been synthesized using amino acid, L-Histidine as a capping agent by hydrothermal method. The as prepared ZnS have been characterised using X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), High Resolution Transmission Electron Microscopy (HRTEM), Photoluminescence (PL), Fourier Transform Infra-Red spectroscopy (FTIR), UV–vis absorption spectroscopy and X-ray Photo Electron Spectroscopy (XPS). Effect of reaction parameters on particle size has been investigated. The morphology and size of the ZnS can be tuned based on the reaction parameters. ZnS nanosphere with a particle size of 5 nm is obtained when the reaction parameters are kept at 120 °C for 3 h. The PL of ZnS shows multiple defect emissions arising from interstitials/vacancies. Particle size of ZnS nanoparticles plays an important role in determining the photo catalytic activity. A chronological study on synthesis of ZnS nanosphere and its photo catalytic activity under the sunlight are discussed here, which reveals the photo degradation of Rhodamine B (RhB) upto 87% as observed with ZnS nanosphere having a particle size of 5 nm.

  5. First-principles studies on the effects of halogen adsorption on monolayer antimony.

    Science.gov (United States)

    Yeoh, Keat Hoe; Yoon, Tiem Leong; Ong, Duu Sheng; Lim, Thong Leng; Zuntu Abdullahi, Yusuf

    2017-09-27

    Using first-principles calculations, we carry out systematic studies on the electronic, magnetic and structural properties of halogenated β-phase antimonene. We consider two different levels of halogen adatom coverage i.e. Θ = 1/8 and Θ = 1/18. It is found that F, Cl and Br adatoms act as acceptors whereas the I adatom acts as a donor. For a high coverage of Θ = 1/8, halogenated β-phase antimonene exhibits metallic characteristics. With a lower coverage of Θ = 1/18, through the adsorption of F, Cl and Br the semiconducting unstrained antimonene becomes metallic. In contrast, I-adsorbed antimonene remains semiconducting but exhibits magnetic behavior. We further investigate the effects of bi-axial strain on the halogenated β-phase antimonene. It is found that bi-axial strain can only induce ferromagnetism on the halogenated antimonene at Θ = 1/18. However, the ferromagnetism is suppressed when the applied strain is high. We uncover that the emergence of strain-dependent magnetism is attributed to the presence of localized states in the bandgap resulting from collective effects of bi-axial strain and the adsorption of halogen atoms.

  6. Induction of bacterial antibiotic resistance by mutagenic halogenated nitrogenous disinfection byproducts

    International Nuclear Information System (INIS)

    Lv, Lu; Yu, Xin; Xu, Qian; Ye, Chengsong

    2015-01-01

    Halogenated nitrogenous disinfection byproducts (N-DBPs) raise concerns regarding their mutagenicity and carcinogenicity threatening public health. However, environmental consequence of their mutagenicity has received less attention. In this study, the effect of halogenated N-DBPs on bacterial antibiotic resistance (BAR) was investigated. After exposure to bromoacetamide (BAcAm), trichloroacetonitrile (TCAN) or tribromonitromethane (TBNM), the resistance of Pseudomonas aeruginosa PAO1 to both individual and multiple antibiotics (ciprofloxacin, gentamicin, polymyxin B, rifampin, tetracycline, ciprofloxacin + gentamicin and ciprofloxacin + tetracycline) was increased, which was predominantly ascribed to the overexpression of efflux pumps. The mechanism of this effect was demonstrated to be mutagenesis through sequencing and analyzing antibiotic resistance genes. The same induction phenomena also appeared in Escherichia coli, suggesting this effect may be universal to waterborne pathogens. Therefore, more attention should be given to halogenated N-DBPs, as they could increase not only genotoxicological risks but also epidemiological risks of drinking water. - Highlights: • The halogenated N-DBPs could induce bacterial antibiotic resistance. • Both individual and multiple resistances could be induced. • Efflux mechanism played an important role in the induced antibiotic resistance. • The halogenated N-DBPs induced bacterial antibiotic resistance via mutagenesis. • Effects of N-DBPs on antibiotic resistance may be universal to waterborne pathogens. - Halogenated N-DBPs could increase antibiotic resistance, even multidrug resistance via mutagenesis, contributing to the enrichment of antibiotic resistant bacteria in drinking water

  7. Evaluation of remaining behavior of halogen on the fabrication of MOX pellet containing Am

    International Nuclear Information System (INIS)

    Ozaki, Yoko; Osaka, Masahiko; Obayashi, Hiroshi; Tanaka, Kenya

    2004-11-01

    It is important to limit the content of halogen elements, namely fluorine and chlorine that are sources of making cladding material corrode, in nuclear fuel from the viewpoint of quality assurance. The halogen content should be more carefully limited in the MOX fuel containing Americium (Am-MOX), which is fabricated in the Alpha-Gamma Facility (AGF) for irradiation testing to be conducted in the experimental fast reactor JOYO, because fluorine may remain in the sintered pellets owing to a formation of AmF 3 known to have a low vapor pressure and may exceeds the limit of 25 ppm. In this study, a series of experimental determination of halogen element in Am-MOX were performed by a combination method of pyrolysis and ion-chromatography for the purpose of an evaluation of behavior of remaining halogen through the sintering process. Oxygen potential, temperature and time were changed as experimental parameters and their effects on the remaining behavior of halogen were examined. It was confirmed that good pellets, which contained small amount of halogen, could be obtained by the sintering for 3 hour at 1700degC in the oxygen potential range from -520 to -390 kJ/mol. In order to analysis of fluorine chemical form in green pellet, thermal analysis was performed. AmF 3 and PuF 3 have been confirmed to remain in the green pellet. (author)

  8. Synergistically enhanced activity of nitrogen-doped carbon dots/graphene composites for oxygen reduction reaction

    Science.gov (United States)

    Liu, Hui; Zhao, Qingshan; Liu, Jingyan; Ma, Xiao; Rao, Yuan; Shao, Xiaodong; Li, Zhongtao; Wu, Wenting; Ning, Hui; Wu, Mingbo

    2017-11-01

    With rapid dissociative adsorption of oxygen, nitrogen-doped carbon nanomaterials have been demonstrated to be efficient alternative catalysts for oxygen reduction reaction (ORR) in fuel cells. Herein, we developed a mild hydrothermal strategy to construct nitrogen-doped carbon dots/graphene (NCDs-NG) composites towards ORR. Carbon dots (CDs) were derived from petroleum coke via acid oxidation while graphene oxide (GO) was obtained from graphite by modified Hummer's method. Graphene was employed as a conductive substrate to disperse CDs during hydrothermal reducing reaction while ammonia was utilized as N source to dope both graphene and CDs. The synergistic effects, i.e. CDs as pillars for graphene and catalytic sites for ORR, the high conductivity of graphene, the quick O2 adsorption on doped pyridinic nitrogen endow the NCDs-NG composites with enhanced ORR catalytic performance in alkaline electrolyte. The onset potential of -95 mV and kinetic current density of 12.7 mA cm-2 at -0.7 V (vs. Ag/AgCl) can be compared to those of the commercial 20 wt% Pt/C catalyst. The electron transfer number is about 3.9, revealing a four-electron pathway for ORR. The optimal NCDs-NG catalyst shows superior durability and methanol tolerance than 20 wt% Pt/C. This work demonstrates a feasible and effective strategy to prepare metal-free efficient ORR electrocatalysts for fuel cell applications.

  9. Catalytic activity of calcium-based mixed metal oxides nanocatalysts in transesterification reaction of palm oil

    Science.gov (United States)

    Hassan, Noraakinah; Ismail, Kamariah Noor; Hamid, Ku Halim Ku; Hadi, Abdul

    2017-12-01

    Nowadays, biodiesel has become the forefront development as an alternative diesel fuel derived from biological sources such as oils of plant and fats. Presently, the conventional transesterification of vegetable oil to biodiesel gives rise to some technological problem. In this sense, heterogeneous nanocatalysts of calcium-based mixed metal oxides were synthesized through sol-gel method. It was found that significant increase of biodiesel yield, 91.75 % was obtained catalyzed by CaO-NbO2 from palm oil compared to pure CaO of 53.99 % under transesterification conditions (methanol/oil ratio 10:1, reaction time 3 h, catalyst concentration 4 wt%, reaction temperature 60 °C, and mixing speed of 600 rpm). The phase structure and crystallinity as well as the texture properties of the prepared catalysts were characterized by X-ray Diffraction (XRD) and the textural properties were characterized by N2 adsorption-desorption analysis. Sol-gel method has been known as versatile method in controlling the structural and chemical properties of the catalyst. Calcium-based mixed oxide synthesized from sol-gel method was found to exist as smaller crystallite size with high surface area.

  10. Reaction of pyridine-N-oxides with halogens; Vzaimodejstvie piridin-N-oksidov s galogenami

    Energy Technology Data Exchange (ETDEWEB)

    Kanibolotskij, A L; Mikhzajlov, V A; Savelova, V A [AN Ukrainskoj SSR, Donetsk (Ukraine). Inst. Fiziko-Organicheskoj Khimii i Uglekhimii

    1994-12-31

    By the methods of conductometry, NMR and IR spectroscopy it has been ascertained that interaction of pyridine-N-oxides with bromine, iodine and interhalides (ICl and IBr) gives rise to the formation of crystal complexes of 1:1 composition. The complexes mentioned are of presumably ionic structure: [RC{sub 5}H{sub 4}N-O...X...O-NC{sub 5}H{sub 4}R]{sup +}[Y-X-Y]{sup -},where X,Y = Cl,Br,I.

  11. Insights into the Halogen Oxidative Addition Reaction to Dinuclear Gold(I) Di(NHC) Complexes

    KAUST Repository

    Baron, Marco; Tubaro, Cristina; Basato, Marino; Isse, Abdirisak Ahmed; Gennaro, Armando; Cavallo, Luigi; Graiff, Claudia; Dolmella, Alessandro; Falivene, Laura; Caporaso, Lucia

    2016-01-01

    Gold(I) dicarbene complexes [Au2(MeIm-Y-ImMe)2](PF6)2(Y=CH2(1), (CH2)2(2), (CH2)4(4), MeIm=1-methylimidazol-2-ylidene) react with iodine to give the mixed-valence complex [Au(MeIm-CH2-ImMe)2AuI2](PF6)2(1 aI) and the gold(III) complexes [Au2I4(Me

  12. Analytic study of the chain dark decomposition reaction of iodides - atomic iodine donors - in the active medium of a pulsed chemical oxygen-iodine laser: 1. Criteria for the development of the branching chain dark decomposition reaction of iodides

    International Nuclear Information System (INIS)

    Andreeva, Tamara L; Kuznetsova, S V; Maslov, Aleksandr I; Sorokin, Vadim N

    2009-01-01

    The scheme of chemical processes proceeding in the active medium of a pulsed chemical oxygen-iodine laser (COIL) is analysed. Based on the analysis performed, the complete system of differential equations corresponding to this scheme is replaced by a simplified system of equations describing in dimensionless variables the chain dark decomposition of iodides - atomic iodine donors, in the COIL active medium. The procedure solving this system is described, the basic parameters determining the development of the chain reaction are found and its specific time intervals are determined. The initial stage of the reaction is analysed and criteria for the development of the branching chain decomposition reaction of iodide in the COIL active medium are determined. (active media)

  13. Active site diversification of P450cam with indole generates catalysts for benzylic oxidation reactions

    Directory of Open Access Journals (Sweden)

    Paul P. Kelly

    2015-09-01

    Full Text Available Cytochrome P450 monooxygenases are useful biocatalysts for C–H activation, and there is a need to expand the range of these enzymes beyond what is naturally available. A panel of 93 variants of active self-sufficient P450cam[Tyr96Phe]-RhFRed fusion enzymes with a broad diversity in active site amino acids was developed by screening a large mutant library of 16,500 clones using a simple, highly sensitive colony-based colorimetric screen against indole. These mutants showed distinct fingerprints of activity not only when screened in oxidations of substituted indoles but also for unrelated oxidations such as benzylic hydroxylations.

  14. Deactivation of solid catalysts in liquid media: the case of leaching of active sites in biomass conversion reactions

    DEFF Research Database (Denmark)

    Sádaba, Irantzu; Lopez Granados, Manuel; Riisager, Anders

    2015-01-01

    This review is aimed to be a brief tutorial covering the deactivation of solid catalysts in the liquid phase, with specific focus on leaching, which can be especially helpful to researchers not familiarized with catalytic processes in the liquid phase. Leaching refers to the loss of active species....... However, as a consequence of the development of new processes for biorefineries, an increasing number of reactions deal with liquid media, and thus, the stability and reusability of a solid catalyst in this situation represent a huge challenge that requires specific attention. Leaching of active phases...... is particularly problematic because of its irreversibility and it can be one of the main causes of catalyst deactivation in liquid media, threatening the sustainability of the process. This tutorial review presents a survey of the main aspects concerning the deactivation due to leaching of active species from...

  15. Pt monolayer shell on hollow Pd core electrocatalysts: Scale up synthesis, structure, and activity for the oxygen reduction reaction

    Directory of Open Access Journals (Sweden)

    Vukmirovic Miomir B.

    2013-01-01

    Full Text Available We report on synthesis, characterization and the oxygen reduction reaction (ORR kinetics of Pt monolayer shell on Pd(hollow, or Pd-Au(hollow core electrocatalysts. Comparison between the ORR catalytic activity of the electrocatalysts with hollow cores and those of Pt solid and Pt hollow nanoparticles has been obtained using the rotating disk electrode technique. Hollow nanoparticles were made using Ni or Cu nanoparticles as sacrificial templates. The Pt ORR specific and mass activities of the electrocatalysts with hollow cores were found considerably higher than those of the electrocatalysts with the solid cores. We attribute this enhanced Pt activity to the smooth surface morphology and hollow-induced lattice contraction, in addition to the mass-saving geometry of hollow particles.

  16. The Synthesis and Electrocatalytic Activities of Molybdenum Sulfide for Hydrogen Evolution Reaction

    KAUST Repository

    Li, Zhengxing

    2014-01-01

    of the Pt-group metals for HER. Plenty of researches have been conducted for improving the HER activities of MoS2 by optimizing its synthesis method. However, it remains challenging to prepare MoS2 catalysts with high and controllable activity, and more

  17. Asymmetric Benzylic Allylic Alkylation Reaction of 3-Furfural Derivatives by Dearomatizative Dienamine Activation.

    Science.gov (United States)

    He, Xiao-Long; Zhao, Hui-Ru; Duan, Chuan-Qi; Han, Xu; Du, Wei; Chen, Ying-Chun

    2018-04-20

    The dearomatizative dienamine-type ortho-quinodimethane species are smoothly generated between 2-alkyl-3-furfurals and chiral secondary amine catalysts, which undergo asymmetric benzylic allylic alkylation reactions with 2-nitroallylic acetates efficiently. A spectrum of densely functionalized 3-furfural derivatives are delivered in moderate to high yields with good to excellent diastereo- and enantioselectivity (up to 98 % yield, >19:1 d.r., >99 % ee). The latent transformations allow the facile production of some enantioenriched architectures, such as 1,1,2,2-tetraarylethanes and triarylmethanes, which are not easily available from other protocols. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Morphological transformation during activation and reaction of an iron Fischer-Tropsch catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, N.B.; Kohler, S.; Harrington, M. [Sandia National Lab., Albuquerque, NM (United States)] [and others

    1995-12-31

    The purpose of this project is to support the development of slurry-phase bubble column processes being studied at the La Porte Alternative Fuel Development Unit. This paper describes the aspects of Sandia`s recent work regarding the advancement and understanding of the iron catalyst used in the slurry phase process. A number of techniques were used to understand the chemical and physical effects of pretreatment and reaction on the attrition and carbon deposition characteristics of iron catalysts. Unless otherwise stated, the data discussed was derived form experiments carried out on the catalyst chosen for the summer 1994 Fischer-Tropsch run at LaPorte, UCI 1185-78-370, (an L 3950 type) that is 88% Fe{sub 2}O{sub 3}, 11% CuO, and 0.052%K{sub 2}O.

  19. Measurements of activation reaction rates in transverse shielding concrete exposed to the secondary particle field produced by intermediate energy heavy ions on an iron target

    International Nuclear Information System (INIS)

    Ogawa, T.; Morev, M.N.; Iimoto, T.; Kosako, T.

    2012-01-01

    Reaction rate distributions were measured inside a 60-cm thick concrete pile placed at the lateral position of a thick (stopping length) iron target that was bombarded with heavy ions, 400 MeV/u C and 800 MeV/u Si. Foils of aluminum and gold, as well as gold, tungsten and manganese covered with cadmium were inserted at various locations in the concrete pile to serve as activation detectors. Features of reaction rate distribution, such as the shape of the reaction rate profile, contribution of the neutrons from intra-nuclear cascade and that from evaporation to the activation reactions are determined by the analysis of measured reaction rates. The measured reaction rates were compared with those calculated with radiation transport simulation codes, FLUKA and PHITS, to verify their capability to predict induced activity. The simulated reaction rates agree with the experimental results within a factor of three in general. However, systematic discrepancies between simulated reaction rates and measured reaction rates attributed to the neutron source terms are observed.

  20. Neutronics and activation of the preliminary reaction chamber of HiPER reactor based in a SCLL blanket

    Energy Technology Data Exchange (ETDEWEB)

    Juárez, Rafael, E-mail: rafael.juarez@upm.es [Instituto de Fusión Nuclear, UPM, Madrid (Spain); Escuela Técnica Superior de Ingenieros Industriales, UNED, Madrid (Spain); Sanz, Javier; Lopez-Revelles, A.J. [Escuela Técnica Superior de Ingenieros Industriales, UNED, Madrid (Spain); Perlado, José Manuel [Instituto de Fusión Nuclear, UPM, Madrid (Spain)

    2013-10-15

    Highlights: • Neutronic study of a proposal of a reaction chamber for HiPER reactor. • Two options for the blanket size, thin and thick, are studied and compared. • The thin blanket performs better than the thick blanket. • The proposed Vacuum Vessel is unviable as lifetime component in both cases. • Likely solutions for the Vacuum Vessel lifetime extension are explored. -- Abstract: The HiPER reactor design is exploring different reaction chambers. In this study, we tackle the neutronics and activation studies of a preliminary reaction chamber based in the following technologies: unprotected dry wall for the First Wall, self-cooled lead lithium blanket, and independent low activation steel Vacuum Vessel. The most critical free parameter in this stage is the blanket thickness, as a function of the {sup 6}Li enrichment. After a parametric study, we select for study both a “thin” and “thick” blanket, with “high” and “low” {sup 6}Li enrichment respectively, to reach a TBR = 1.1. To help to make a choice, we compute, for both blanket options, in addition to the TBR, the energy amplification factor, the tritium partial pressure, the {sup 203}Hg and {sup 210}Po total activity in the LiPb loop, and the Vacuum Vessel thickness required to guarantee the reweldability during its lifetime. The thin blanket shows a superior performance in the safety related issues and structural viability, but it operates at higher {sup 6}Li enrichment. It is selected for further improvements. The Vacuum Vessel shows to be unviable in both cases, with the thickness varying between 39 and 52 cm. Further chamber modifications, such as the introduction of a neutron reflector, are required to exploit the benefits of the thin blanket with a reasonable Vacuum Vessel.

  1. Influence of Micropore and Mesoporous in Activated Carbon Air-cathode Catalysts on Oxygen Reduction Reaction in Microbial Fuel Cells

    International Nuclear Information System (INIS)

    Liu, Yi; Li, Kexun; Ge, Baochao; Pu, Liangtao; Liu, Ziqi

    2016-01-01

    In this study, carbon samples with different micropore and mesoporous structures are prepared as air-cathode catalyst layer to explore the role of pore structure on oxygen reduction reaction. The results of linear sweep voltammetry and power density show that the commercially-produced activated carbon (CAC) has the best electrochemical performance, and carbon samples with only micropore or mesoporous show lower performance than CAC. Nitrogen adsorption-desorption isotherms analysis confirm that CAC has highest surface area (1616 m 2 g −1 ) and a certain amount of micropore and mesoporous. According to Tafel plot and rotating disk electrode, CAC behaves the highest kinetic activity and electron transfer number, leading to the improvement of oxygen reduction reaction. The air permeability test proves that mesoporous structure enhance oxygen permeation. Carbon materials are also analyzed by In situ Fourier Transform Infrared Spectroscopy and H 2 temperature programmed reduction, which indicate that micropore provide active sites for catalysis. In a word, micropore and mesoporous together would improve the electrochemical performance of carbon materials.

  2. Ex Vivo Antioxidant Activity of Selected Medicinal Plants against Fenton Reaction-Mediated Oxidation of Biological Lipid Substrates

    Directory of Open Access Journals (Sweden)

    Namratha Pai Kotebagilu

    2015-01-01

    Full Text Available Free radical-mediated oxidation is often linked to various degenerative diseases. Biological substrates with lipids as major components are susceptible to oxygen-derived lipid peroxidation due to their composition. Lipid peroxide products act as biomarkers in evaluating the antioxidant potential of various plants and functional foods. The study focused on evaluation of the antioxidant potential of two extracts (methanol and 80% methanol of four medicinal plants, Andrographis paniculata, Costus speciosus, Canthium parviflorum, and Abrus precatorius, against Fenton reaction-mediated oxidation of three biological lipid substrates; cholesterol, low-density lipoprotein, and brain homogenate. The antioxidant activity of the extracts was measured by thiobarbituric acid reactive substances method. Also, the correlation between the polyphenol, flavonoid content, and the antioxidant activity in biological substrates was analyzed. Results indicated highest antioxidant potential by 80% methanol extract of Canthium parviflorum (97.55%, methanol extract of Andrographis paniculata (72.15%, and methanol extract of Canthium parviflorum (49.55% in cholesterol, low-density lipoprotein, and brain, respectively. The polyphenol and flavonoid contents of methanol extract of Andrographis paniculata in cholesterol (r=0.816 and low-density lipoprotein (r=0.948 and Costus speciosus in brain (r=0.977, polyphenols, and r=0.949, flavonoids correlated well with the antioxidant activity. The findings prove the antioxidant potential of the selected medicinal plants against Fenton reaction in biological lipid substrates.

  3. Highly active and non-corrosive catalytic systems for the coupling reactions of ethylene oxide and CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shuyao; Jin, So Jeong; Kim, Young Jin; Lee, Je Seung; Kim, Hoon Sik [Dept. of Chemistry and Research Institute of Basic Sciences, Kyung Hee University, Seoul (Korea, Republic of); Hong, Jongki; Lee, Won Woong [College of Pharmacy, Kyung Hee University, Seoul (Korea, Republic of); Ryu, Jung Bok [R and D Center, Chuncheon (Korea, Republic of)

    2017-02-15

    Lithium halide-based molten salts (LiX-[BMIm]Br) synthesized from the reactions of lithium halides (LiX, X = Cl or Br) with 1-butyl-3-methylimidazolium bromide ([BMIm]Br), and their catalytic performances and corrosivities were tested for the coupling reactions of ethylene oxide with carbon dioxide to produce ethylene carbonate. The activity of a molten salt was influenced with the change of halide ion. At a fixed molar amount of LiX, the activity of LiX-[BMIm]Br increased with increasing molar ratio of LiX/[BMIm]Br up to 1–1.25, and then decreased thereafter. Fast atom bombardment mass spectral analysis of LiBr-[BMIm]Br, obtained by dissolving LiBr in [BMIm]Br in a 1:1 molar ratio, implies that [Li{sub a} X{sub a+1}]{sup −} are active species for the carboxylation of ethylene oxide with LiX-[BMIm]Br. The corrosion test toward carbon steel coupons demonstrates that all the Cl-containing molten salts are corrosive, whereas the salts without containing Cl{sup −} are non-corrosive under the carboxylation condition.

  4. Measurement of activation reaction rate distributions in a lead assembly bombarded with 500-MeV protons

    CERN Document Server

    Takada, H; Sasa, T; Tsujimoto, K; Yasuda, H

    2000-01-01

    Reaction rate distributions of various activation detectors such as the /sup nat/Ni(n, x)/sup 58/Co, /sup 197/Au(n,2n)/sup 196/Au, and /sup 197/Au(n,4n)/sup 194/Au reactions were measured to study the production and the transport of spallation neutrons in a lead assembly bombarded with protons of 500 MeV. The measured data were analyzed with the nucleon-meson transport code NMTC/JAERI combined with the MCNP4A code using the nuclide production cross sections based on the JENDL Dosimetry File and those calculated with the ALICE-F code. It was found that the NMTC/JAERI-MCNP4A calculations agreed well with the experiments for the low-energy-threshold reaction of /sup nat/Ni(n, x)/sup 58/Co. With the increase of threshold energy, however, the calculation underestimated the experiments, especially above 20 MeV. The reason for the disagreement can be attributed to the underestimation of the neutron yield in the tens of mega-electron-volt regions by the NMTC/JAERI code. (32 refs).

  5. Formation of Reactive Intermediates, Color, and Antioxidant Activity in the Maillard Reaction of Maltose in Comparison to d-Glucose.

    Science.gov (United States)

    Kanzler, Clemens; Schestkowa, Helena; Haase, Paul T; Kroh, Lothar W

    2017-10-11

    In this study, the Maillard reaction of maltose and d-glucose in the presence of l-alanine was investigated in aqueous solution at 130 °C and pH 5. The reactivity of both carbohydrates was compared in regards of their degradation, browning, and antioxidant activity. In order to identify relevant differences in the reaction pathways, the concentrations of selected intermediates such as 1,2-dicarbonyl compounds, furans, furanones, and pyranones were determined. It was found, that the degradation of maltose predominantly yields 1,2-dicarbonyls that still carry a glucosyl moiety and thus subsequent reactions to HMF, furfural, and 2-acetylfuran are favored due to the elimination of d-glucose, which is an excellent leaving group in aqueous solution. Consequently, higher amounts of these heterocycles are formed from maltose. 3-deoxyglucosone and 3-deoxygalactosone represent the only relevant C 6 -1,2-dicarbonyls in maltose incubations and are produced in nearly equimolar amounts during the first 60 min of heating as byproducts of the HMF formation.

  6. Characteristic antioxidant activity and comprehensive flavor compound profile of scallop (Chlamys farreri) mantle hydrolysates-ribose Maillard reaction products.

    Science.gov (United States)

    Han, Jia-Run; Yan, Jia-Nan; Sun, Shi-Guang; Tang, Yue; Shang, Wen-Hui; Li, Ao-Ting; Guo, Xiao-Kun; Du, Yi-Nan; Wu, Hai-Tao; Zhu, Bei-Wei; Xiong, Youling L

    2018-09-30

    The objective of the present study was to improve the utilization of scallop (Chlamys farreri) byproducts by using Maillard reaction. Scallop mantle hydrolysates (SMHs) were prepared using neutrase then reacted with ribose. Thirty-four peptides were identified from SMHs by UPLC-Q-TOF-MS, and the abundance of Asp and Lys suggested the strong Maillard reactivity. The formation of Schiff's base as well as modification of amide I, II and III bands in Maillard reaction products (MRPs) was confirmed by ultraviolet-visible, fluorescence, and Fourier transform infrared spectroscopy. Thirty volatile compounds were produced by the reaction of SMHs with ribose. Moreover, MRPs with enhanced radical scavenging and anti-linoleic acid peroxidation activities over SMHs promoted the survival and reduced the DNA damage of HepG2 cells treated with hydrogen peroxide. These results suggest that SMHs-ribose MRPs can be potentially used as food antioxidant for suppressing of lipid oxidation or protecting of cell from oxidative damage. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. I. Activation energies for the gas phase reactions of hydrogen atom with carbon monoxide and with ethylene. II. Rate constants for the reactions of benzyl cation with triethylphosphine and with triethylarsine in 1,2-dichloroethane

    International Nuclear Information System (INIS)

    Wang, H.Y.

    1976-01-01

    Two H-atom reactions H + CO + H 2 → HCO + H 2 and H + C 2 H 4 → C 2 H 5 * were separately studied from room temperature to about 100 0 C, and the activation energies for these two reactions were determined in this temperature range. For H + C 2 H 4 system, a small activation energy of 0.2 kcal/mole was obtained in the present narrow temperature range. The low activation energy indicates that the pre-exponential factor has a predominant contribution to the rate constant of this reaction and has about the same magnitude as that of the rate constant. For H + CO system, a fairly large activation energy of more than 7 kcal/mole was speculated in the potential energy surfaces of the system. The activation energy obtained in the present work, however, has a low value of about 2 kcal/mole. This low value reveals the low level of crossing of this reaction in the potential energy surface and thus indicates considerable complexity involved in the surface. Carbonium ions can be formed from chosen solutes in pulse-irradiated 1,2-dichloroethane (RCl) solutions. Upon irradiation, the electrons generated from the ionization of the solvent become localized on chloride ions as a result of their reaction with the neutral solvent molecules. The solvent counterion, RCl + , on the other hand, is free to exchange charge with the solute molecule. By choosing appropriate solutes, carbonium ion can be formed through a dissociative ionization process in the exchange. The benzyl cation was formed from its precursor compound dibenzylmercury and its reactions with two nucleophiles, triethylphosphine and triethylarsine, were separately studied. The formation and decay of benzyl cation were observed at 363 nm, the position of the maximum of its absorption band, and the second-order rate constants for the two reactions were determined at room temperature

  8. Reductive dehalogenation of disinfection byproducts by an activated carbon-based electrode system.

    Science.gov (United States)

    Li, Yuanqing; Kemper, Jerome M; Datuin, Gwen; Akey, Ann; Mitch, William A; Luthy, Richard G

    2016-07-01

    Low molecular weight, uncharged, halogenated disinfection byproducts (DBPs) are poorly removed by the reverse osmosis and advanced oxidation process treatment units often applied for further treatment of municipal wastewater for potable reuse. Granular activated carbon (GAC) treatment effectively sorbed 22 halogenated DBPs. Conversion of the GAC to a cathode within an electrolysis cell resulted in significant degradation of the 22 halogenated DBPs by reductive electrolysis at -1 V vs. Standard Hydrogen Electrode (SHE). The lowest removal efficiency over 6 h electrolysis was for trichloromethane (chloroform; 47%) but removal efficiencies were >90% for 13 of the 22 DBPs. In all cases, DBP degradation was higher than in electrolysis-free controls, and degradation was verified by the production of halides as reduction products. Activated carbons and charcoal were more effective than graphite for electrolysis, with graphite featuring poor sorption for the DBPs. A subset of halogenated DBPs (e.g., haloacetonitriles, chloropicrin) were degraded upon sorption to the GAC, even without electrolysis. Using chloropicrin as a model, experiments indicated that this loss was attributable to the partial reduction of sorbed chloropicrin from reducing equivalents in the GAC. Reducing equivalents depleted by these reactions could be restored when the GAC was treated by reductive electrolysis. GAC treatment of an advanced treatment train effluent for potable reuse effectively reduced the concentrations of chloroform, bromodichloromethane and dichloroacetonitrile measured in the column influent to below the method detection limits. Treatment of the GAC by reductive electrolysis at -1 V vs. SHE over 12 h resulted in significant degradation of the chloroform (63%), bromodichloromethane (96%) and dichloroacetonitrile (99%) accumulated on the GAC. The results suggest that DBPs in advanced treatment train effluents could be captured and degraded continuously by reductive electrolysis

  9. Operando investigation of Au-MnOx thin films with improved activity for the oxygen evolution reaction

    DEFF Research Database (Denmark)

    Frydendal, Rasmus; Seitz, Linsey C.; Sokaras, Dimosthenis

    2017-01-01

    The electrochemical splitting of water holds great potential as a method for producing clean fuels by storing electricity from intermittent energy sources. The efficiency of such a process would be greatly facilitated by incorporating more active catalysts based on abundant materials for the oxygen...... improvement over pure MnOx. These films are characterized with operando X-ray Absorption Spectroscopy, which reveal that Mn assumes a higher oxidation state under reaction conditions when Au is present. The magnitude of the enhancement is correlated to the size of the Au domains, where larger domains...

  10. All-oxide Raman-active traps for light and matter: probing redox homeostasis model reactions in aqueous environment.

    Science.gov (United States)

    Alessandri, Ivano; Depero, L E

    2014-04-09

    Core-shell colloidal crystals can act as very efficient traps for light and analytes. Here it is shown that Raman-active probes can be achieved using SiO2-TiO2 core-shell beads. These systems are successfully tested in monitoring of glutathione redox cycle at physiological concentration in aqueous environment, without need of any interfering enhancers. These materials represent a promising alternative to conventional, metal-based SERS probes for investigating chemical and biochemical reactions under real working conditions. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Thermodynamic parameters for binding of some halogenated inhibitors of human protein kinase CK2

    International Nuclear Information System (INIS)

    Winiewska, Maria; Makowska, Małgorzata; Maj, Piotr; Wielechowska, Monika; Bretner, Maria; Poznański, Jarosław; Shugar, David

    2015-01-01

    Highlights: • Two new compounds being potential human CK2a inhibitors are studied. • Their IC50 values were determined in vitro. • The heats of binding and kbind were estimated using DSC. • The increased stability of protein–ligand complexes was followed by fluorescence. • Methylated TBBt derivative (MeBr3Br) is almost as active as TBBt. - Abstract: The interaction of human CK2α with a series of tetrabromobenzotriazole (TBBt) and tetrabromobenzimidazole (TBBz) analogs, in which one of the bromine atoms proximal to the triazole/imidazole ring is replaced by a methyl group, was studied by biochemical (IC 50 ) and biophysical methods (thermal stability of protein–ligand complex monitored by DSC and fluorescence). Two newly synthesized tri-bromo derivatives display inhibitory activity comparable to that of the reference compounds, TBBt and TBBz, respectively. DSC analysis of the stability of protein–ligand complexes shows that the heat of ligand binding (H bind ) is driven by intermolecular electrostatic interactions involving the triazole/imidazole ring, as indicated by a strong correlation between H bind and ligand pK a . Screening, based on fluorescence-monitored thermal unfolding of protein–ligand complexes, gave comparable results, clearly identifying ligands that most strongly bind to the protein. Overall results, additionally supported by molecular modeling, confirm that a balance of hydrophobic and electrostatic interactions contribute predominantly, relative to possible intermolecular halogen bonding, in binding of the ligands to the CK2α ATP-binding site

  12. Discovery, SAR, and Radiolabeling of Halogenated Benzimidazole Carboxamide Antagonists as Useful Tools for (alpha)4(beta)1 Integrin Expressed on T- and B-cell Lymphomas

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, R D; Natarajan, A; Lau, E Y; Andrei, M; Solano, D M; Lightstone, F C; DeNardo, S J; Lam, K S; Kurth, M J

    2010-02-08

    The cell surface receptor {alpha}{sub 4}{beta}{sub 1} integrin is an attractive yet poorly understood target for selective diagnosis and treatment of T- and B-cell lymphomas. This report focuses on the rapid microwave preparation of medicinally pertinent benzimidazole heterocycles, structure-activity relationships (SAR) of novel halobenzimidazole carboxamide antagonists 3-6, and preliminary biological evaluation of radioiodinated agents 7, 8, and 18. The I-125 derivative 18 had good tumor uptake (12 {+-} 1% ID/g at 24 h; 4.5 {+-} 1% ID/g at 48 h) and tumor:kidney ratio ({approx}4:1 at 24 h; 2.5:1 at 48 h) in xenograft murine models of B-cell lymphoma. Molecular homology models of {alpha}{sub 4}{beta}{sub 1} integrin have predicted that docked halobenzimidazole carboxamides have the halogen atom in a suitable orientation for halogen-hydrogen bonding. These high affinity ({approx} pM binding) halogenated ligands are attractive tools for medicinal and biological use; the fluoro and iodo derivatives are potential radiodiagnostic ({sup 18}F) or radiotherapeutic ({sup 131}I) agents, whereas the chloro and bromo analogues could provide structural insight into integrin-ligand interactions through photoaffinity cross-linking/mass spectroscopy experiments, as well as co-crystallization X-ray studies.

  13. Halogen bonding: A new retention mechanism for the solid phase extraction of perfluorinated iodoalkanes

    International Nuclear Information System (INIS)

    Yan Xiaoqing; Shen Qianjin; Zhao Xiaoran; Gao Haiyue; Pang Xue; Jin Weijun

    2012-01-01

    Highlights: ► Halogen bonding (XB) is firstly utilised in solid phase extraction. ► The perfluorinated iodine alkanes can be extracted by C-I⋯Cl − halogen bonding. ► The C-I⋯Cl − halogen bond is well characterised by spectroscopy methods. ► The analytes with strong halogen-bonding abilities can be selectively extracted. - Abstract: For the first time, halogen-bonding interaction is utilised in the solid phase extraction of perfluorinated iodoalkane (PFI). Nine PFIs, as model analytes, were tested, and analyses by UV, 19 F NMR and Raman spectroscopies demonstrate that the PFIs are extracted by a strong anion exchange (SAX) sorbent from n-hexane due to the C-I⋯Cl − halogen-bonding interactions. The results also show that the adsorptivities of SAX for the diiodoperfluoro-alkanes (diiodo-PFIs) were much stronger than those for the perfluoroalkyl iodides (monoiodo-PFIs). Specifically, the recoveries for 1,6-diiodoperfluorohexane and 1,8-diiodoperfluorooctane were higher than 80% when 100 mL of sample spiked with a 5 ng mL −1 analyte mixture was extracted. Interestingly, SAX had no adsorption for hexafluorobenzene at all, which is known to be unable to form a halogen bond with Cl − . The analytical performance of the halogen bond-based SPE-GC–MS method for the diiodo-PFIs was also examined in soil samples. The sorbent SAX enabled the selective extraction of four diiodo-PFIs successfully from soil samples. The recoveries of the diiodo-PFIs extracted from 5 g soil sample at the 100 ng g −1 spike level were in the range of 73.2–93.8% except 26.8% for 1,2-diiodoperfluoroethane. The limit of detection varied from 0.02 to 0.04 ng g −1 in soil samples. Overall, this work reveals the great application potential of halogen bonding in the field of solid phase extraction to selectively extract compounds with strong halogen-bonding abilities.

  14. Calculation and evaluation of the activation cross sections for 187Re(n,2n)186m,gRe reactions

    International Nuclear Information System (INIS)

    Huang Xiaolong; Lu Hanlin; Zhou Chunmei

    1998-01-01

    The activation cross sections for 187 Re(n,2n) 186m,g Re reactions are calculated using UNF code. The calculations are in good agreement with the re-evaluated measured data. Finally the excitation function for 187 Re(n,2n) 186m,g Re reactions are evaluated and recommended based on present calculations and evaluated decay data

  15. Activation-energy for the reaction h+oh--]eaq- - kinetic determination of the enthalpy and entropy of solvation of the hydrated electron

    DEFF Research Database (Denmark)

    Hickle, B.; Sehested, Knud

    1985-01-01

    The reaction between atomic hydrogen and hydroxide ion in aqueous solutions H + OH- - eaq- + H20 has been studied by pulse radiolysis. The rate constant was measured at pH 11.7 and 12 by following the growth of the hydrated electron absorption at 600 nm. The activation energy of the reaction has...

  16. Synthesis, reactions, and antiarrhythmic activities of some novel pyrimidines and pyridines fused with thiophene moiety

    OpenAIRE

    AMR, Abdel-Galil El-Sayed; ABDEL-HAFEZ, Naglaa Abdel-Samei

    2009-01-01

    We report herein the synthesis and antiarrhythmic activities of some newly synthesized heterocyclic theino[2,3-c]pyrimidine and theino[2,3-c]pyridine derivatives fused with thiophene moiety. Initially the acute toxicity of the compounds was assayed via the determination of their LD50. The antiarrhythmic activities for the compounds were determined and all the tested compounds were found more potent than Procaine amide\\textregistered and Lidocaine\\textregistered as positive antiarrhyth...

  17. Synthesis, reactions, and antiarrhythmic activities of some novel pyrimidines and pyridines fused with thiophene moiety

    OpenAIRE

    AMR, Abdel-Galil El-Sayed; ABDEL-HAFEZ, Naglaa Abdel-Samei; MOHAMED, Salwa Fahem; ABDALLA, Mohamed Mostafa

    2014-01-01

    We report herein the synthesis and antiarrhythmic activities of some newly synthesized heterocyclic theino[2,3-c]pyrimidine and theino[2,3-c]pyridine derivatives fused with thiophene moiety. Initially the acute toxicity of the compounds was assayed via the determination of their LD50. The antiarrhythmic activities for the compounds were determined and all the tested compounds were found more potent than Procaine amide\\textregistered and Lidocaine\\textregistered as positive antiarrhyth...

  18. Alkali – activated binders: a review part 1. Historical background, terminology, reaction mechanisms and hydration products

    OpenAIRE

    Torgal, Fernando Pacheco; Gomes, J. P. Castro; Jalali, Said

    2008-01-01

    The disintegration of concrete structures made of ordinary Portland cement (OPC) is a worrying topic of increasing significance. The development of new binders with longer durability is therefore needed. Alkali-activated binders have emerged as an alternative to OPC binders, which seems to have superior durability and environmental impact. This paper reviews current knowledge about alkali-activated binders. The subjects of Part 1 in this paper are historical background, terminology a...

  19. Identification and quantification of the halogenated natural product BC-3

    Energy Technology Data Exchange (ETDEWEB)

    Melcher, J.; Olbrich, D.; Vetter, W. [Hohenheim Univ., Stuttgart (Germany). Inst. fuer Lebensmittelchemie; Marsh, G. [Stockholm Univ. (Sweden). Dept. of Environmental Chemistry; Gaus, C.; Mueller, J.F. [National Research Centre for Environmental Toxicology, Coopers Plains (Australia)

    2004-09-15

    Halogenated natural products (HNPs) of marine origin are increasingly recognized as critical residues in foodstuff (e. g. fish) and environmental samples (e. g. marine mammals and birds). Some of these HNPs (Q1, MHC-1, BC-2, and HDBPs including BC-10) were detected in diverse fish and marine mammal samples at concentrations sometimes exceeding those of PCBs, DDT, and other anthropogenic pollutants. Recent studies with marine mammal samples from Australia led to the detection of six abundant HNPs (Q1, BC-1, BC-2, BC-3, BC-10, and BC-11). In the meantime, Q1 was identified as heptachloro-1{sup '}-methyl-1,2{sup '}-bipyrrole, BC-2 as 4,6-dibromo-2-(2{sup '},4{sup '}-dibromo)phenoxyanisole, BC- 10 as 1,1{sup '}-dimethyl-3,3{sup '},4,4{sup '}-tetrabromo-5,5{sup '}-dichloro-2,2{sup '}-bipyrrole, and BC-11 as 3,5-dibromo- 2-(3{sup '},5{sup '}-dibromo,2{sup '}-methoxy)phenoxyanisole. However the identity of BC-1 and BC-3 remained unclear. The goal of the present study was the identification of BC-3. The tetrabromo compound BC-3 has previously been detected in marine mammals from four continents. Furthermore, we attempted establishing quantitative concentrations in diverse marine biota samples.

  20. Sea ice dynamics influence halogen deposition to Svalbard

    Directory of Open Access Journals (Sweden)

    A. Spolaor

    2013-10-01

    Full Text Available Sea ice is an important parameter in the climate system and its changes impact upon the polar albedo and atmospheric and oceanic circulation. Iodine (I and bromine (Br have been measured in a shallow firn core drilled at the summit of the Holtedahlfonna glacier (Northwest Spitsbergen, Svalbard. Changing I concentrations can be linked to the March–May maximum sea ice extension. Bromine enrichment, indexed to the Br / Na sea water mass ratio, appears to be influenced by changes in the seasonal sea ice area. I is emitted from marine biota and so the retreat of March–May sea ice coincides with enlargement of the open-ocean surface which enhances marine primary production and consequent I emission. The observed Br enrichment could be explained by greater Br emissions during the Br explosions that have been observed to occur mainly above first year sea ice during the early springtime. In this work we present the first comparison between halogens in surface snow and Arctic sea ice extension. Although further investigation is required to characterize potential depositional and post-depositional processes, these preliminary findings suggest that I and Br can be linked to variability in the spring maximum sea ice extension and seasonal sea ice surface area.