WorldWideScience

Sample records for halogen tungsten lamps

  1. Ultraviolet radiation and blue-light emissions from spotlights incorporating tungsten halogen lamps

    CERN Document Server

    MacKinlay, Alistair F; Whillock, M J

    1989-01-01

    This report summarises measurements of the ultraviolet radiation and blue-light emissions from eleven 'desk-top' tungsten halogen (quartz) lamps and one 'floor-standing' tungsten halogen (quartz) lamp available in the UK. Values of occupational hazard weighted and erythemally weighted ultraviolet radiation irradiance and measurements and relevant calculations of blue-light hazards are presented. It is concluded that the safety design of some desk-top tungsten halogen lamps is inadequate to prevent unnecessary exposure of the skin to potentially harmful ultraviolet radiation. It is recommended that all tungsten halogen lamps should have sufficient filtration to reduce their ultraviolet emissions to an acceptably low level. As long as the comfort aversion responses of the eye are respected, direct viewing of the lamps examined should not constitute a retinal hazard.

  2. Ultraviolet radiation and blue-light emissions from spotlights incorporating tungsten halogen lamps

    International Nuclear Information System (INIS)

    McKinlay, A.F.; Whillock, M.J.; Meulemans, C.C.E.

    1989-07-01

    This report summarises measurements of the ultraviolet radiation and blue-light emissions from eleven 'desk-top' tungsten halogen (quartz) lamps and one 'floor-standing' tungsten halogen (quartz) lamp available in the UK. Values of occupational hazard weighted and erythemally weighted ultraviolet radiation irradiance and measurements and relevant calculations of blue-light hazards are presented. It is concluded that the safety design of some desk-top tungsten halogen lamps is inadequate to prevent unnecessary exposure of the skin to potentially harmful ultraviolet radiation. It is recommended that all tungsten halogen lamps should have sufficient filtration to reduce their ultraviolet emissions to an acceptably low level. As long as the comfort aversion responses of the eye are respected, direct viewing of the lamps examined should not constitute a retinal hazard. (author)

  3. Induction and prevention of micronuclei and chromosomal aberrations in cultured human lymphocytes exposed to the light of halogen tungsten lamps.

    Science.gov (United States)

    D'Agostini, F; Caimo, A; De Filippi, S; De Flora, S

    1999-07-01

    Previous studies have shown that the light emitted by halogen tungsten lamps contains UV radiation in the UV-A, UV-B and UV-C regions, induces mutations and irreparable DNA damage in bacteria, enhances the frequency of micronuclei in cultured human lymphocytes and is potently carcinogenic to the skin of hairless mice. The present study showed that the light emitted by an uncovered, traditional halogen lamp induces a significant, dose-related and time-related increase not only in micronuclei but also in chromosome-type aberrations, such as breaks, and even more in chromatid-type aberrations, such as isochromatid breaks, exchanges and isochromatid/chromatid interchanges, all including gaps or not, in cultured human lymphocytes. All these genotoxic effects were completely prevented by shielding the same lamp with a silica glass cover, blocking UV radiation. A new model of halogen lamp, having the quartz bulb treated in order to reduce the output of UV radiation, was considerably less genotoxic than the uncovered halogen lamp, yet induction of chromosomal alterations was observed at high illuminance levels.

  4. White light emitting diode as potential replacement of tungsten-halogen lamp for visible spectroscopy system: a case study in the measurement of mango qualities

    Science.gov (United States)

    Chiong, W. L.; Omar, A. F.

    2017-07-01

    Non-destructive technique based on visible (VIS) spectroscopy using light emitting diode (LED) as lighting was used for evaluation of the internal quality of mango fruit. The objective of this study was to investigate feasibility of white LED as lighting in spectroscopic instrumentation to predict the acidity and soluble solids content of intact Sala Mango. The reflectance spectra of the mango samples were obtained and measured in the visible range (400-700 nm) using VIS spectroscopy illuminated under different white LEDs and tungsten-halogen lamp (pro lamp). Regression models were developed by multiple linear regression to establish the relationship between spectra and internal quality. Direct calibration transfer procedure was then applied between master and slave lighting to check on the acidity prediction results after transfer. Determination of mango acidity under white LED lighting was successfully performed through VIS spectroscopy using multiple linear regression but otherwise for soluble solids content. Satisfactory results were obtained for calibration transfer between LEDs with different correlated colour temperature indicated this technique was successfully used in spectroscopy measurement between two similar light sources in prediction of internal quality of mango.

  5. White light emitting diode as potential replacement of tungsten-halogen lamp for visible spectroscopy system: a case study in the measurement of mango qualities

    International Nuclear Information System (INIS)

    Chiong, W.L.; Omar, A.F.

    2017-01-01

    Non-destructive technique based on visible (VIS) spectroscopy using light emitting diode (LED) as lighting was used for evaluation of the internal quality of mango fruit. The objective of this study was to investigate feasibility of white LED as lighting in spectroscopic instrumentation to predict the acidity and soluble solids content of intact Sala Mango. The reflectance spectra of the mango samples were obtained and measured in the visible range (400–700 nm) using VIS spectroscopy illuminated under different white LEDs and tungsten-halogen lamp (pro lamp). Regression models were developed by multiple linear regression to establish the relationship between spectra and internal quality. Direct calibration transfer procedure was then applied between master and slave lighting to check on the acidity prediction results after transfer. Determination of mango acidity under white LED lighting was successfully performed through VIS spectroscopy using multiple linear regression but otherwise for soluble solids content. Satisfactory results were obtained for calibration transfer between LEDs with different correlated colour temperature indicated this technique was successfully used in spectroscopy measurement between two similar light sources in prediction of internal quality of mango.

  6. Construction of Tungsten Halogen, Pulsed LED, and Combined Tungsten Halogen-LED Solar Simulators for Solar Cell I-V Characterization and Electrical Parameters Determination

    Directory of Open Access Journals (Sweden)

    Anon Namin

    2012-01-01

    Full Text Available I-V characterization of solar cells is generally done under natural sunlight or solar simulators operating in either a continuous mode or a pulse mode. Simulators are classified on three features of irradiance, namely, spectral match with respect to air mass 1.5, spatial uniformity, and temporal stability. Commercial solar simulators use Xenon lamps and halogen lamps, whereas LED-based solar simulators are being developed. In this work, we build and test seven simulators for solar cell characterization, namely, one tungsten halogen simulator, four monochromatic (red, green, blue, and white LED simulators, one multicolor LED simulator, and one tungsten halogen-blue LED simulator. The seven simulators provide testing at nonstandard test condition. High irradiance from simulators is obtained by employing elevated supply voltage to tungsten halogen lamps and high pulsing voltages to LEDs. This new approach leads to higher irradiance not previously obtained from tungsten halogen lamps and LEDs. From I-V curves, electrical parameters of solar cell are made and corrected based on methods recommended in the IEC 60891 Standards. Corrected values obtained from non-STC measurements are in good agreement with those obtained from Class AAA solar simulator.

  7. [Near infrared light irradiator using halogen lamp].

    Science.gov (United States)

    Ide, Yasuo

    2012-07-01

    The practical electric light bulb was invented by Thomas Alva Edison in 1879. Halogen lamp is the toughest and brightest electric light bulb. With light filter, it is used as a source of near infrared light. Super Lizer and Alphabeam are made as near infrared light irradiator using halogen lamp. The light emmited by Super Lizer is linear polarized near infrared light. The wave length is from 600 to 1,600 nm and strongest at about 1,000 nm. Concerning Super Lizer, there is evidence of analgesic effects and normalization of the sympathetic nervous system. Super Lizer has four types of probes. SG type is used for stellate ganglion irradiation. B type is used for narrow area irradiation. C and D types are for broad area irradiation. The output of Alphabeam is not polarized. The wave length is from 700 to 1,600 nm and the strongest length is about 1,000nm. Standard attachment is used for spot irradiation. Small attachment is used for stellate ganglion irradiation. Wide attachment is used for broad area irradiation. The effects of Alphabeam are thought to be similar to that of Super Lizer.

  8. Fluorescence cell imaging and manipulation using conventional halogen lamp microscopy.

    Directory of Open Access Journals (Sweden)

    Kazuo Yamagata

    Full Text Available Technologies for vitally labeling cells with fluorescent dyes have advanced remarkably. However, to excite fluorescent dyes currently requires powerful illumination, which can cause phototoxic damage to the cells and increases the cost of microscopy. We have developed a filter system to excite fluorescent dyes using a conventional transmission microscope equipped with a halogen lamp. This method allows us to observe previously invisible cell organelles, such as the metaphase spindle of oocytes, without causing phototoxicity. Cells remain healthy even after intensive manipulation under fluorescence observation, such as during bovine, porcine and mouse somatic cell cloning using nuclear transfer. This method does not require expensive epifluorescence equipment and so could help to reduce the science gap between developed and developing countries.

  9. TEGDMA and UDMA monomers released from composite dental material polymerized with diode and halogen lamps.

    Science.gov (United States)

    Wacławczyk, Agnieszka; Postek-Stefańska, Lidia; Pietraszewska, Daria; Birkner, Ewa; Zalejska-Fiolka, Jolanta; Wysoczańska-Jankowicz, Iwona

    2018-03-20

    More than 35 substances released from composite fillings have been identified. Among these, basic monomers and the so-called co-monomers are most often reported. The substances released from polymer-based materials demonstrate allergenic, cytotoxic, genotoxic, mutagenic, embryotoxic, teratogenic, and estrogenic properties. The aim of this study was to measure the amounts of triethylene glycol dimethacrylate (TEGDMA) and urethane dimethacrylate (UDMA) monomers released from composite dental fillings to citrate-phosphate buffer with the pH of 4, 6, 8 after 24 h and 6 months from the polymerization. Ten samples for each polymerization method had been made from the composite material (Filtek Supreme XT, 3M ESPE, St. Paul, USA), which underwent polymerization using the following lamps: halogen lamp (Translux CL, Heraeus Kulzer, Hanau, Germany) (sample H) and diode lamp (Elipar Freelight 2, 3M ESPE), with soft start function (group DS) and without that function (group DWS). It has been demonstrated that the type of light-curing units has a significant impact on the amount of TEGDMA and UDMA released. The amount of UDMA and TEGDMA monomers released from composite fillings differed significantly depending on the source of polymerization applied, as well as the pH of the solution and sample storage time. Elution of the monomers from composite material polymerized using halogen lamp was significantly greater as compared to curing with diode lamps.

  10. Verification of the light intensity from halogens curing lamps in comparison with the manufacturer's specifications

    International Nuclear Information System (INIS)

    Morales Ramirez, Elvis

    2011-01-01

    The light intensity emitted from halogens curing lamps is measured to determine if photoactivation units utilized in the Caja Costarricense de Seguro Social are complied with the manufacturer's specifications of the lamp and the resin. The light intensity mW/cm 2 from halogens curing lamps operated by odontologist of the Caja Costarricense de Seguro Social is compared with the manufacturer's specifications of the lamp. The light intensity is compared with the manufacturer's specifications of the resin. The results obtained are analyzed to specify that lamp or lamps have presented light intensities lower to indication of the manufacturer. A list of recommendations is performed for each Servicio de Odontologia of the Caja Costarricense de Seguro Social of the Region Central Sur of the results reported [es

  11. Optimization of the GaAs et GaAs/Si annealing using halogen lamp flashes

    International Nuclear Information System (INIS)

    Blanck, H.

    1989-01-01

    The aim of the work is to check whether the flash annealing of GaAs and GaAs/Si, using halogen lamps, allows an improvement in the results obtained by usual methods. The electrical activation, defects behavior and results uniformity are studied. The results on the activation and diffusion of implanted impurities are shown to be equivalent to those obtained with classical annealing methods. However, residual impurities (or defects) diffusion phenomena are restrained by the flash annealing technique. The Hall effect cartographic measurements showed an improvement of the uniformity of the implanted coating surface resistance. Flash annealing is a suitable method for the Si activation in GaAs. It allows an improvement of the GaAs results obtained with standard techniques, as well as the formation, by means of ion implantation, of active zones in the GaAs/Si layers [fr

  12. Tritium decontamination from co-deposited layer on tungsten substrate by ultra violet lamp and laser

    International Nuclear Information System (INIS)

    Oya, Yasuhisa; Tadokoro, Takahiro; Shu, Wataru; Hayashi, Takumi; O'hira, Shigeru; Nishi, Masataka

    2001-01-01

    Tritium decontamination using ultra violet (UV) lamp and laser was performed. Simulated co-deposited layer on tungsten substrate was deposited by C 2 H 2 or C 2 D 2 glow discharge. The co-deposited layer was irradiated to UV lights from a xenon excimer lamp (172 nm) or ArF excimer laser (193 nm) and the in-situ decontamination behavior was evaluated by a mass spectrometer. After the UV irradiation, the hydrogen concentration in the co-deposited layer was evaluated by elastic recoil detection analysis (ERDA) and the depth profile was analyzed by secondary ion mass spectrometry (SIMS). For the co-deposited layer formed by C 2 D 2 glow discharge, it was found that M/e 3 (HD) gas was released mainly during the UV lamp irradiation while both M/e 3 (HD) and M/e 4 (D 2 ) gases were detected during the UV laser irradiation. Though the co-deposited layer was not removed by UV lamp irradiation, almost all the co-deposited layer was removed by UV laser irradiation within 1 min. The ratio of hydrogen against carbon in the co-deposited layer was estimated to be 0.53 by ERDA and the number of photon needed for removing 1 μm thick co-deposited layer was calculated to be 3.7x10 18 cm -2 for the UV laser by SIMS measurement. It is concluded that C-H (C-D) bond on the co-deposited layer were dissociated by irradiation of UV lamp while the co-deposited layer itself was removed by the UV laser irradiation. (author)

  13. Temperature rise induced by some light emitting diode and quartz-tungsten-halogen curing units.

    Science.gov (United States)

    Asmussen, Erik; Peutzfeldt, Anne

    2005-02-01

    Because of the risk of thermal damage to the pulp, the temperature rise induced by light-curing units should not be too high. LED (light emitting diode) curing units have the main part of their irradiation in the blue range and have been reported to generate less heat than QTH (quartz-tungsten-halogen) curing units. This study had two aims: first, to measure the temperature rise induced by ten LED and three QTH curing units; and, second, to relate the measured temperature rise to the power density of the curing units. The light-induced temperature rise was measured by means of a thermocouple embedded in a small cylinder of resin composite. The power density was measured by using a dental radiometer. For LED units, the temperature rise increased with increasing power density, in a statistically significant manner. Two of the three QTH curing units investigated resulted in a higher temperature rise than LED curing units of the same power density. Previous findings, that LED curing units induce less temperature rise than QTH units, does not hold true in general.

  14. Flash lamp annealing of tungsten surfaces marks a new way to optimized slow positron yields

    Science.gov (United States)

    Anwand, W.; Johnson, J. M.; Butterling, M.; Wagner, A.; Skorupa, W.; Brauer, G.

    2013-06-01

    Tungsten in the form of a mono-crystalline foil with an optimum thickness of about 2 μm is often used as a positron moderator in mono-energetic positron beams with 22Na positron sources. The efficiency of such a moderator strongly depends on its prior heat treatment, i.e. an annealing procedure with considerable difficulty at temperatures of about 2000 °C under vacuum conditions. Flash lamp annealing (FLA) has been tested as new method to quickly anneal W foils in order to produce easy manageable, low-cost moderators with a high efficiency. With FLA, just the surface of a W foil is heated above the melting point (3422°C) within 1 to 3 ms, i.e. without melting the whole foil volume. In this way, a surface cleaning is reached connected with a considerable increase in the positron diffusion length. Conventional polycrystalline W foils of 9 μm ± 25% thickness, heat treated by FLA, were characterized and tested as positron moderators. First promising tests result in a moderator efficiency of ~3*10-4 and clearly demonstrate that FLA is also applicable to tungsten meshes.

  15. Polychromatic solid-state lamps versus tungsten radiator: hue changes of Munsell samples

    International Nuclear Information System (INIS)

    Stanikunas, R; Vaitkevicius, H; Svegzda, A; Viliunas, V; Bliznikas, Z; Breive, K; Vaicekauskas, R; Novickovas, A; Kurilcik, G; Zukauskas, A; Gaska, R; Shur, M S

    2005-01-01

    Colour-perception differences under illumination by two quadrichromatic solid-state sources of light have been studied with respect to a tungsten radiator with the same correlated colour temperature (2600 K). A virtual RYgCB source (illuminant), which contains red, yellow-green, cyan and blue components with the line width typical of AlGaInP and AlInGaN light-emitting diodes (LEDs), was fully optimized for the highest value of the general colour-rendering index (CRI) (R a = 98.3). An implemented RAGB source (lamp) contained commercially available red, amber, green and blue LEDs (R a 79.4). Colorimetric calculations in the Commission Internationale de l'Eclairage 1976 (u',v') colour plane for 40 Munsell colour samples (value 6, chroma/6, hue increment 2.5) revealed the differences in hue discrimination and distortion for both sources in the yellow-green and blue-cyan ranges. These differences were not revealed by the standard analysis of the special CRIs and were lower for the RYgCB illuminant, which contained primary LEDs in the sensitive ranges. A psychophysical experiment on seven subjects was performed using the RAGB lamp stabilized against thermal and ageing drifts. Despite different colour-perception abilities of the subjects under investigation, the experiment confirmed the calculation results. Methods of obtaining composite white light with high subjective ratings are discussed, based on the obtained data

  16. University of Maryland Wall Washer Retrofit - LED Modules Replace Halogen Lamps in a Performing Arts Center

    Energy Technology Data Exchange (ETDEWEB)

    Wilkerson, Andrea M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Abell, Thomas C. [Univ. of Maryland, College Park, MD (United States); Perrin, Tess E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-08-03

    The University of Maryland (UMD) began retrofitting halogen wall washers in the Clarice Smith Performing Arts Center (CSPAC) in April 2014. The U.S. Department of Energy (DOE) Solid-State Lighting (SSL) GATEWAY program documented this process through the final installation in March 2015, summarized in this report. The wall washers illuminate hallways lining the atrium, providing task illuminance for transitioning between spaces and visual interest to the atrium boundaries. The main goals of the retrofit were to maintain the visual appearance of the space while reducing maintenance costs – energy savings was considered an additional benefit by UMD Facilities Management. UMD Facilities Management is pleased with the results of this retrofit, and continues to initiate LED retrofit projects across the UMD campus.

  17. Knoop hardness of ten resin composites irradiated with high-power LED and quartz-tungsten-halogen lights.

    Science.gov (United States)

    Price, Richard B T; Felix, Corey A; Andreou, Pantelis

    2005-05-01

    This study compared a high-power light-emitting-diode (LED) curing light (FreeLight 2, 3M ESPE) with a quartz-tungsten-halogen (QTH) light (TriLight, 3M ESPE) to determine which was the better at photo-polymerising 10 resin composites. Class I preparations were prepared 4-mm deep into human teeth and filled with 10 different composites. The composites were irradiated for 50% or 100% of their recommended times using the LED light, and for 100% of their recommended times with the QTH light on either the high or medium power setting. Fifteen minutes later, the Knoop hardness of the composites was measured to a depth of 3.5 mm from the surface. When irradiated by the LED light for their recommended curing times, the Knoop hardness of all 10 composites stayed above 80% of the maximum hardness of the composite to a depth of at least 1.5 mm; three composites maintained a Knoop hardness that was more than 80% of their maximum hardness to a depth of 3.5 mm. Repeated measurements analysis of variance indicated that all the two-way and three-way interactions between the curing light, depth, and composite were significant (p hardness values. The LED light, used for the composite manufacturer's recommended time, was ranked the best at curing the composites to a depth of 3mm (p power setting.

  18. A new non-vital tooth bleaching method using titanium dioxide and 3.5% hydrogen peroxide with a 405-nm diode laser or a halogen lamp

    International Nuclear Information System (INIS)

    Suemori, T; Kato, J; Nakazawa, T; Akashi, G; Hirai, Y

    2008-01-01

    To establish a safer and more effective bleaching method for discolored pulpless teeth, we examined bleaching from the pulpal dentin side using a 3.5% hydrogen peroxide solution containing titanium dioxide. The twenty bovine blood-stained discolored enamel-dentin plates of 1.0 mm enamel thickness and 2.0 mm dentin thickness were used. The bleaching agent was applied to the dentin side that was then irradiated with a 405-nm diode laser (800 mW/cm 2 ) or a halogen lamp (720 mW/cm 2 ) for 15 minutes. The bleaching effect was assessed by spectrophotometric measurement of the color of the specimens from the dentin and enamel side for every 5 minutes, and then dentin or enamel surface was examined with a scanning electron microscope. The 3.5% hydrogen peroxide solution containing titanium dioxide proved to have a strong bleaching effect. The color difference after laser irradiation was higher than that after halogen lamp irradiation, however, there was no significant difference between them. No changes in the enamel surface morphology were found and open dentinal tubules with no smear layer were clearly observed at the pulpal dentin surface in both groups

  19. Tungsten

    International Nuclear Information System (INIS)

    Eschnauer, H.

    1978-01-01

    There is no substitute for tungsten in its main field of application so that the demand will not decrease, but there is a need for further important applications. If small variations are left out of account, a small but steady increase in the annual tungsten consumption can be expected. The amount of tungsten available will increase due to the exploritation of new deposits and the extension of existing mines. This tendency will probably be increased by the world-wide prospection. It is hard to make an assessment of the amount of tungsten are obtained in the People's Republic of china, the purchases of Eastern countries in the West, and the sales policy of the USA; pice forecasts are therefore hard to make. A rather interesting subject with regard to the tungsten cycle as a whole is the reprocessing of tungsten-containing wastes. (orig.) [de

  20. Characterization of tungsten silicides formed by rapid thermal annealing

    International Nuclear Information System (INIS)

    Siegal, M.; Santiago, J.J.; VanDerSpiegel, J.

    1986-01-01

    Tungsten silicide samples were formed by sputter depositing 80 nm W metal onto (100) oriented, 5 ohm-cm Si wafers. After deposition, the samples were fast radiatively processed in an RTA system using quartz-halogen tungsten lamps as radiation sources for time intervals ranging from 20 to 60s under high vacuum. Films processed at 22-25 W/cm 2 radiation with the film side of the samples oriented away from the lamps result in films which are metallic or cloudy in color, and have mixed composition as evidenced by x-ray diffraction (W, W 5 Si 3 and WSi 2 ). Films processed with the film side oriented toward the lamps show the occurrence of a phase transformation clearly nucleated at the film edge

  1. Microwave discharge electrodeless lamps (MDEL). III. A novel tungsten-triggered MDEL device emitting VUV and UVC radiation for use in wastewater treatment.

    Science.gov (United States)

    Horikoshi, Satoshi; Miura, Takashi; Kajitani, Masatsugu; Serpone, Nick

    2008-03-01

    Exposure to low doses of the xenoestrogen bisphenol A (BPA) and to the hormonal 2,4-dichlorophenoxyacetic acid (2,4-D) herbicide, an environmental endocrine disruptor, can have serious health consequences such as the induction of mammary gland ductal hyperplasias and carcinoma (LaChapelle et al., Reprod. Toxicol., 2007, 23, 20; Murray et al., Reprod. Toxicol., 2007, 23, 383). To the extent that these toxins are present in wastewaters (Donald et al., Sci. Total Environ. 1999, 231, 173; Brotons et al., Environ. Health Perspect. 1994, 103, 608; Olea et al., Environ. Health Perspect. 1996, 104, 298; Biles et al., J. Agric. Food Chem. 1997, 45, 3541; Markey et al., J. Steroid Biochem. Mol. Biol., 2003, 83, 235), we examined their oxidative destruction in aqueous media by a novel light source. A tungsten-triggered microwave discharge electrodeless lamp (W-MDEL) was fabricated for possible use in wastewater treatment using vacuum UV-transparent quartz in which a tungsten trigger, also embedded in quartz, was attached to the MDEL to aid in the self-ignition of the lamp on irradiation at low microwave power levels. The quantity of mercury gas in the W-MDEL was optimized by monitoring the continuous radiation and peak intensities of the emitted light in the vacuum UV (VUV) and UVC regions. The usefulness of the W-MDEL device was assessed through the degradation of 2,4-D and BPA in air-equilibrated aqueous media and in oxygen-saturated aqueous media. Enhanced degradation of these two xenoestrogenic toxins was achieved by increasing the number of W-MDEL devices while keeping constant the microwave radiation feeding each W-MDEL lamp. This novel lamp provides an additional light source in the photooxidation of environmental contaminants without the need for a metal-oxide photocatalyst. Under our conditions, process dynamics using the W-MDEL light source are greater than with the more conventional photochemical methods that employ low-pressure Hg arc electrode lamps in synthetic

  2. Li–N doped and codoped TiO{sub 2} thin films deposited by dip-coating: Characterization and photocatalytic activity under halogen lamp

    Energy Technology Data Exchange (ETDEWEB)

    Hamden, Z. [University of Sfax-Faculty of Science-Laboratory CI, Sfax (Tunisia); Boufi, S. [University of Sfax-Faculty of Science-LMSE, Sfax (Tunisia); Conceição, D.S.; Ferraria, A.M.; Botelho do Rego, A.M.; Ferreira, D.P.; Vieira Ferreira, L.F. [Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology, IST, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Bouattour, S., E-mail: soraa.boufi@yahoo.com [University of Sfax-Faculty of Science-Laboratory CI, Sfax (Tunisia)

    2014-09-30

    Graphical abstract: - Highlights: • Li and N have a synergetic effect on photocatalytic efficiency of codoped TiO{sub 2} under halogen lamp. • (Li, N) dopants decrease the recombination rate of photogenerated e–h. • (Li, N) dopants induce an increase of the energy gap, E{sub g}. • A decrease of crystallinity of the thin films seems to occur for high loadings of co-doping. - Abstract: Li-, N-doped and codoped TiO{sub 2} powders and thin films, deposited on glass substrate using dip-coating method and Ti(OBu){sub 4} as precursor, were prepared and their structural properties were investigated using grazing angle X-ray diffraction (GXRD), Raman spectroscopy, time resolved luminescence, X-ray photoelectron spectroscopy (XPS), ground state diffuse reflectance absorption and scanning electron microscopy (SEM). Unlike the powder samples, thin films with the same composition and calcination temperature exhibited lower crystallinity degree along with the prevalence of the anatase phase. Ground state diffuse reflectance absorption studies carried on the nanopowders have shown that both the Li and N dopants led to an increase of the band gap. XPS studies revealed differences in the binding energy of N in the presence and in the absence of Li, which was explained in terms of a modification in the chemical environment of N when Li is introduced. The photocatalytic activity of the ensuing film toward the degradation of aromatic amine pollutant revealed a huge enhancement upon doping with N or codoping with N and Li. This behavior is probably provide by a charge-transfer-complex mechanism in which neither the photocatalyst nor the organic compounds absorbs visible light by itself. The improvement in the photocatalytic properties occurred simultaneously with the increase of the lifetime of the charge carriers whenever N and Li were introduced at a level 2%.

  3. Contributed Review: Absolute spectral radiance calibration of fiber-optic shock-temperature pyrometers using a coiled-coil irradiance standard lamp

    Energy Technology Data Exchange (ETDEWEB)

    Fat’yanov, O. V., E-mail: fatyan1@gps.caltech.edu; Asimow, P. D., E-mail: asimow@gps.caltech.edu [Division of Geological and Planetary Sciences 252-21, California Institute of Technology, Pasadena, California 91125 (United States)

    2015-10-15

    We describe an accurate and precise calibration procedure for multichannel optical pyrometers such as the 6-channel, 3-ns temporal resolution instrument used in the Caltech experimental geophysics laboratory. We begin with a review of calibration sources for shock temperatures in the 3000-30 000 K range. High-power, coiled tungsten halogen standards of spectral irradiance appear to be the only practical alternative to NIST-traceable tungsten ribbon lamps, which are no longer available with large enough calibrated area. However, non-uniform radiance complicates the use of such coiled lamps for reliable and reproducible calibration of pyrometers that employ imaging or relay optics. Careful analysis of documented methods of shock pyrometer calibration to coiled irradiance standard lamps shows that only one technique, not directly applicable in our case, is free of major radiometric errors. We provide a detailed description of the modified Caltech pyrometer instrument and a procedure for its absolute spectral radiance calibration, accurate to ±5%. We employ a designated central area of a 0.7× demagnified image of a coiled-coil tungsten halogen lamp filament, cross-calibrated against a NIST-traceable tungsten ribbon lamp. We give the results of the cross-calibration along with descriptions of the optical arrangement, data acquisition, and processing. We describe a procedure to characterize the difference between the static and dynamic response of amplified photodetectors, allowing time-dependent photodiode correction factors for spectral radiance histories from shock experiments. We validate correct operation of the modified Caltech pyrometer with actual shock temperature experiments on single-crystal NaCl and MgO and obtain very good agreement with the literature data for these substances. We conclude with a summary of the most essential requirements for error-free calibration of a fiber-optic shock-temperature pyrometer using a high-power coiled tungsten halogen

  4. Tungsten Filament Fire

    Science.gov (United States)

    Ruiz, Michael J.; Perkins, James

    2016-01-01

    We safely remove the outer glass bulb from an incandescent lamp and burn up the tungsten filament after the glass is removed. This demonstration dramatically illustrates the necessity of a vacuum or inert gas for the environment surrounding the tungsten filament inside the bulb. Our approach has added historical importance since the incandescent…

  5. Materials for incandescent and fluorescent lamps

    DEFF Research Database (Denmark)

    Thorsen, Knud Aage

    1996-01-01

    The article gives an overview of the materials systems used for incandescent lamps as well as a brief introduction to the systems used for fluorescent lamps. The materials used for incandescent lamps are doped tungsten used for the filaments, metals and alloys used for terminal and support posts......, lead wires and internal reflectors and screens as well as glasses for the envelope. The physics of bulbs and changes in bulbs during use are elucidated. The cost and energy savings and environmental benefits by replacement of incandescent lamps by fluorescent lamps are presented....

  6. Downsizing of single crystalline high aspect ratio tungsten nanowires

    International Nuclear Information System (INIS)

    Milenkovic, Srdjan; Drensler, Stefanie; Hassel, Achim Walter

    2015-01-01

    Directional solidification of eutectic NiAl-W alloys offers an intuitive method to produce tungsten nanowires. Through the use of two different methods, the well-established Bridgman method and a newer type floating zone method, the direct influence of process parameters, like the withdrawal rate and the temperature gradient, onto the sample microstructure were studied. The sharp temperature gradient, built up using a four mirror system focusing the light emitted by halogen lamps inside the optical floating zone furnace allows producing nanowires with a diameter as small as 75 nm. Differences in the solid/liquid interface morphology depending on the solidification method used are discussed. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. CALiPER Retail Lamps Study 3.2: Lumen and Chromaticity Maintenance of LED A Lamps Operated in Steady-State Conditions

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-12-31

    This CALiPER report examines lumen depreciation and color shift of 17 different A lamps in steady-state conditions (15 LED, 1 CFL, 1 halogen). The goal of this investigation was to examine the long-term performance of complete LED lamps relative to benchmark halogen and CFL lamps—in this case, A lamps emitting approximately 800 lumens operated continuously at a relatively high ambient temperature of 45°C.

  8. Reduction of blue tungsten oxide

    International Nuclear Information System (INIS)

    Wilken, T.; Wert, C.; Woodhouse, J.; Morcom, W.

    1975-01-01

    A significant portion of commercial tungsten is produced by hydrogen reduction of oxides. Although several modes of reduction are possible, hydrogen reduction is used where high purity tungsten is required and where the addition of other elements or compounds is desired for modification of the metal, as is done for filaments in the lamp industry. Although several investigations of the reduction of oxides have been reported (1 to 5), few principles have been developed which can aid in assessment of current commercial practice. The reduction process was examined under conditions approximating commercial practice. The specific objectives were to determine the effects of dopants, of water vapor in the reducing atmosphere, and of reduction temperature upon: (1) the rate of the reaction by which blue tungsten oxide is reduced to tungsten metal, (2) the intermediate oxides associated with reduction, and (3) the morphology of the resulting tungsten powder

  9. Marker lamps

    International Nuclear Information System (INIS)

    Watkins, D.V.

    1980-01-01

    A marker lamp is described which consists of a block of transparent plastics material encapsulated in which is a radioactive light source. These lights comprise a small sealed glass capsule, the hollow inside surface of which is coated with phosphor and which contains tritium or similar radioactive gas. The use of such lamps for identification marking of routes, for example roads, and for identification of underwater oil pipelines is envisaged. (U.K.)

  10. The high pressure xenon lamp as a source of radiation

    International Nuclear Information System (INIS)

    Heerdt, J.A. ter.

    1979-01-01

    An account is given of an investigation into the radiation properties of a commercially available high pressure xenon lamp (type XBO 900 W) in the spectral range 0.3 to 3 μm. The purpose of the study was to find out whether such a lamp can serve as a (secondary) standard of radiation in spectroscopic and radiometric measurements. The main advantades of the xenon lamp over other secondary standards such as the tungsten strip lamp and the anode of a carbon arc lamp are the high temperature of its discharge and the resulting strong radiation over a broad spectral range. (Auth.)

  11. Halogenated fatty acids

    DEFF Research Database (Denmark)

    Mu, Huiling; Sundin, Peter; Wesén, Clas

    1997-01-01

    Halogenated fatty acids are the major contributors to organohalogen compounds in lipids of marine mammals, fish, and bivalves. For the initial characterization of these recently noticed compounds, a determination of the halogen concentration has usually been combined with some lipid isolation......), atomic emission spectrometry, and mass spectrometry. For most environmental samples, chlorinated FAMEs must be enriched prior to GC. ELCD is a useful detection method for indicating halogenated FAMEs in the chromatograms, and tentative identification of the halogenated species can be obtained...

  12. Application Summary Report 22: LED MR16 Lamps

    Energy Technology Data Exchange (ETDEWEB)

    Royer, Michael P.

    2014-07-23

    This report analyzes the independently tested photometric performance of 27 LED MR16 lamps. It describes initial performance based on light output, efficacy, distribution, color quality, electrical characteristics, and form factor, with comparisons to a selection of benchmark halogen MR16s and ENERGY STAR qualification thresholds. Three types of products were targeted. First, CALiPER sought 3000 K lamps with the highest rated lumen output (i.e., at least 500 lm) or a claim of equivalency to a 50 W halogen MR16 or higher. The test results indicate that while the initial performance of LED MR16s has improved across the board, market-available products still do not produce the lumen output and center beam intensity of typical 50 W halogen MR16 lamps. In fact, most of the 18 lamps in this category had lower lumen output and center beam intensity than a typical 35 W halogen MR16 lamp. Second, CALiPER sought lamps with a CRI of 90 or greater. Only four manufacturers were identified with a product in this category. CALiPER testing confirmed the performance of these lamps, which are a good option for applications where high color fidelity is needed. A vast majority of the LED MR16 lamps have a CRI in the low 80s; this is generally acceptable for ambient lighting, but may not always be acceptable for focal lighting. For typical LED packages, there is a fundamental tradeoff between CRI and efficacy, but the lamps in the high-CRI group in this report still offer comparable performance to the rest of the Series 22 products in other performance areas. Finally, CALiPER sought lamps with a narrow distribution, denoted as a beam angle less than 15°. Five such lamps were purchased. Notably, no lamp was identified as having high lumen output (500 lumens or greater), high CRI (90 or greater), a narrow distribution (15° or less), and an efficacy greater than 60 lm/W. This would be an important achievement for LED MR16s especially if output could reach approximately 700 800 lumens

  13. Effect of photocuring lamp type in the polymerization of various resins

    International Nuclear Information System (INIS)

    Lafuente, David; Blanco, Rosa; Brenes, Andrea

    2005-01-01

    Four different curing lamps were evaluated, a halogen and three LED technology with that are photocured five different resins. These four lamps have evaluated the surface hardness of the resin samples as a way of measuring the degree of polymerization. Comparing the Knoop surface hardness of the resin samples was found that the halogen light produced a greater surface hardness in all evaluated resins. (author) [es

  14. Influence of electrode, buffer gas and control gear on metal halide lamp performance

    International Nuclear Information System (INIS)

    Lamouri, A; Naruka, A; Sulcs, J; Varanasi, C V; Brumleve, T R

    2005-01-01

    In this paper the influence of electrode composition, buffer gas fill pressure and control gear on the performance of metal halide lamps is investigated. It is shown that pure tungsten electrodes improve lumen maintenance and reduce voltage rise over lamp life. An optimum buffer gas fill pressure condition is discovered which allows for reduced electrode erosion during lamp starting as well as under normal operating conditions. Use of electronic control gear is shown to improve the performance of metal halide lamps

  15. CALiPER Retail Lamps Study 3

    Energy Technology Data Exchange (ETDEWEB)

    Royer, Michael P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Beeson, Tracy A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-02-01

    The CALiPER program first began investigating LED lamps sold at retail stores in 2010, purchasing 33 products from eight retailers and covering six product categories. The findings revealed a fragmented marketplace, with large disparities in performance of different products, accuracy of manufacturer claims, and offerings from different retail outlets. Although there were some good products, looking back many would not be considered viable competitors to other available options, with too little lumen output, not high enough efficacy, or poor color quality. CALiPER took another look in late 2011purchasing 38 products of five different types from nine retailers and the improvement was marked. Performance was up; retailer claims were more accurate; and the price per lumen and price per unit efficacy were down, although the price per product had not changed much. Nonetheless, there was still plenty of room for improvement, with the performance of LED lamps not yet reaching that of well-established classes of conventional lamps (e.g., 75 W incandescent A19 lamps). Since the second retail lamp study was published in early 2012, there has been substantial progress in all aspects of LED lamps available from retailers. To document this progress, CALiPER again purchased a sample of lamps from retail stores 46 products in total, focusing on A19, PAR30, and MR16 lamps but instead of a random sample, sought to select products to answer specific hypotheses about performance. These hypotheses focused on expanding ranges of LED equivalency, the accuracy of lifetime claims, efficacy and price trends, as well as changes to product designs. Among other results, key findings include: There are now very good LED options to compete with 60 W, 75 W, and 100 W incandescent A19 lamps, and 75 W halogen PAR30 lamps. MR16 lamps have shown less progress, but there are now acceptable alternatives to 35 W, 12 V halogen MR16 lamps and 50 W, 120 V halogen MR16 lamps for some applications. Other

  16. Retail Lamps Study 3.1: Dimming, Flicker, and Power Quality Characteristics of LED A Lamps

    Energy Technology Data Exchange (ETDEWEB)

    Royer, Michael P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poplawski, Michael E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Brown, Charles C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-12-01

    To date, all three reports in the retail lamps series have focused on basic performance parameters, such as lumen output, efficacy, and color quality. This report goes a step further, examining the photoelectric characteristics (i.e., dimming and flicker) of a subset of lamps from CALiPER Retails Lamps Study 3. Specifically, this report focuses on the dimming, power quality, and flicker characteristics of 14 LED A lamps, as controlled by four different retail-available dimmers. The results demonstrate notable variation across the various lamps, but little variation between the four dimmers. Overall, the LED lamps: ~tended to have higher relative light output compared to the incandescent and halogen benchmark at the same dimmer output signal (RMS voltage). The lamps’ dimming curves (i.e., the relationship between control signal and relative light output) ranged from linear to very similar to the square-law curve typical of an incandescent lamp. ~generally exhibited symmetrical behavior—the same dimming curve—when measured proceeding from maximum to minimum or minimum to maximum control signal. ~mostly dimmed below 10% of full light output, with some exceptions for specific lamp and dimmer combinations ~exhibited a range of flicker characteristics, with many comparing favorably to the level typical of a magnetically-ballasted fluorescent lamp through at least a majority of the dimming range. ~ always exceeded the relative (normalized) efficacy over the dimming range of the benchmark lamps, which rapidly decline in efficacy when they are dimmed. This report generally does not attempt to rank the performance of one product compared to another, but instead focuses on the collective performance of the group versus conventional incandescent or halogen lamps, the performance of which is likely to be the baseline for a majority of consumers. Undoubtedly, some LED lamps perform better—or more similar to conventional lamps—than others. Some perform desirably for one

  17. Lumen and Chromaticity Maintenance of LED PAR38 Lamps Operated in Steady-State Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Royer, Michael P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-12-01

    The lumen depreciation and color shift of 38 different lamps (32 LED, 2 CFL, 1 ceramic metal halide [CMH], 3 halogen) were monitored in a specially developed automated long-term test apparatus (ALTA2) for nearly 14,000 hours. Five samples of each lamp model were tested, with measurements recorded on a weekly basis. The lamps were operated continuously at a target ambient temperature between 44°C and 45°C.

  18. Wood's lamp examination

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003386.htm Wood lamp examination To use the sharing features on this page, please enable JavaScript. A Wood lamp examination is a test that uses ultraviolet ( ...

  19. Wood's lamp illumination (image)

    Science.gov (United States)

    A Wood's lamp emits ultraviolet light and can be a diagnostic aid in determining if someone has a fungal ... is an infection on the area where the Wood's lamp is illuminating, the area will fluoresce. Normally ...

  20. Organic halogens in landfill leachates

    DEFF Research Database (Denmark)

    Grøn, C.; Christensen, J. B.; Jensen, Dorthe Lærke

    2000-01-01

    Using a group parameter, total organic halogens (TOX), high TOX concentrations were found in leachates and leachate contaminated groundwaters at two Danish mixed sanitary and hazardous waste sites. With commonly used screening procedures for organic contaminants, the individual halogenated organi...

  1. Apparatus for washing out halogens

    Energy Technology Data Exchange (ETDEWEB)

    Pier, M; Hahn, J; Kroenig, W

    1941-03-26

    An apparatus is described for washing out of halogens and the like or liquid halogen compounds from the products, which are formed on pressure hydrogenation or splitting of carbon-containing material in the presence of halogens or halogen compounds, consisting of a washing apparatus installed between the reaction vessel and the hot separator, which is inclined in relatively small space for steam regulation and contains, with the steam, arranged baffles, especially spirals.

  2. Biogeochemistry of Halogenated Hydrocarbons

    Science.gov (United States)

    Adriaens, P.; Gruden, C.; McCormick, M. L.

    2003-12-01

    Halogenated hydrocarbons originate from both natural and industrial sources. Whereas direct anthropogenic emissions to the atmosphere and biosphere are often easy to assess, particularly when they are tied to major industrial activities, the attribution of emissions to other human activities (e.g., biomass burning), diffuse sources (e.g., atmospheric discharge, run off), and natural production (e.g., soils, fungi, algae, microorganisms) are difficult to quantify. The widespread occurrence of both alkyl and aryl halides in groundwater, surface water, soils, and various trophic food chains, even those not affected by known point sources, suggests a substantial biogeochemical cycling of these compounds (Wania and Mackay, 1996; Adriaens et al., 1999; Gruden et al., 2003). The transport and reactive fate mechanisms controlling their reactivity are compounded by the differences in sources of alkyl-, aryl-, and complex organic halides, and the largely unknown impact of biogenic processes, such as enzymatically mediated halogenation of organic matter, fungal production of halogenated hydrocarbons, and microbial or abiotic transformation reactions (e.g., Asplund and Grimvall, 1991; Gribble, 1996; Watling and Harper, 1998; Oberg, 2002). The largest source may be the natural halogenation processes in the terrestrial environment, as the quantities detected often exceed the amount that can be explained by human activities in the surrounding areas ( Oberg, 1998). Since biogeochemical processes result in the distribution of a wide range of halogenated hydrocarbon profiles, altered chemical structures, and isomer distributions in natural systems, source apportionment (or environmental forensics) can often only be resolved using multivariate statistical methods (e.g., Goovaerts, 1998; Barabas et al., 2003; Murphy and Morrison, 2002).This chapter will describe the widespread occurrence of halogenated hydrocarbons, interpret their distribution and biogeochemical cycling in light of

  3. Tropospheric Halogen Chemistry

    Science.gov (United States)

    von Glasow, R.; Crutzen, P. J.

    2003-12-01

    Halogens are very reactive chemicals that are known to play an important role in anthropogenic stratospheric ozone depletion chemistry, first recognized by Molina and Rowland (1974). However, they also affect the chemistry of the troposphere. They are of special interest because they are involved in many reaction cycles that can affect the oxidation power of the atmosphere indirectly by influencing the main oxidants O3 and its photolysis product OH and directly, e.g., by reactions of the Cl radical with hydrocarbons (e.g., CH4).Already by the middle of the nineteenth century, Marchand (1852) reported the presence of bromine and iodine in rain and other natural waters. He also mentions the benefits of iodine in drinking water through the prevention of goitres and cretinism. In a prophetic monograph "Air and Rain: The Beginnings of a Chemical Climatology," Smith (1872) describes measurements of chloride in rain water, which he states to originate partly from the oceans by a process that he compares with the bursting of "soap bubbles" which produces "small vehicles" that transfer small spray droplets of seawater to the air. From deviations of the sulfate-to-chloride ratio in coastal rain compared to seawater, Smith concluded that chemical processes occur once the particles are airborne.For almost a century thereafter, however, atmospheric halogens received little attention. One exception was the work by Cauer (1939), who reported that iodine pollution has been significant in Western and Central Europe due to the inefficient burning of seaweed, causing mean gas phase atmospheric concentrations as high as or greater than 0.5 μg m-3. In his classical textbook Air Chemistry and Radioactivity, Junge (1963) devoted less than three pages to halogen gas phase chemistry, discussing chlorine and iodine. As reviewed by Eriksson (1959a, b), the main atmospheric source of halogens is sea salt, derived from the bursting of bubbles of air which are produced by ocean waves and other

  4. Discharge lamp technologies

    Science.gov (United States)

    Dakin, James

    1994-01-01

    This talk is an overview of discharge lamp technology commonly employed in general lighting, with emphasis on issues pertinent to lighting for plant growth. Since the audience is primarily from the plant growth community, and this begins the light source part of the program, we will start with a brief description of the discharge lamps. Challenges of economics and of thermal management make lamp efficiency a prime concern in controlled environment agriculture, so we will emphasize science considerations relating to discharge lamp efficiency. We will then look at the spectra and ratings of some representative lighting products, and conclude with a discussion of technological advances.

  5. On electrode erosion in fluorescent lamps during instant start

    Energy Technology Data Exchange (ETDEWEB)

    Hadrath, S.

    2006-09-15

    A fluorescent lamp driven with an 'instant start electronic control gear' starts in a glow mode. In the glow mode, which lasts typically for tens of milliseconds, the cathode fall exceeds hundreds of volts. This causes high energy ion bombardment of the electrode which heats the electrode, and induces a transition from glow to arc mode. In the arc mode the electrode emits thermionically and the cathode fall drops to the 12 - 15 V range. Unfortunately, the high energy ion bombardment during the glow mode leads also to intense sputtering of electrode material, including tungsten as well as emitter. Thus, instant started fluorescent lamps often suffer from early failures due to coil fracture. Therefore, the investigation of tungsten erosion during instant start is necessary and was the main goal of this work. The density of neutral atomic tungsten is determined by laser-induced fluorescence (LIF) and optical emission spectroscopy measurements (OES). Investigations are performed on a low-pressure argon dc discharge and on commercial fluorescent lamps. To include the entire temperature profile along the electrode the diffuse and spot operation modes of the dc lamp are studied experimentally and theoretically. The measured dependencies of the cathode temperature along the coil on the discharge and heating parameters are compared with the calculated results. For the first time the tungsten erosion during instant start of commercial fluorescent lamps was experimentally investigated in this work. The erosion process could be related to sputtering. A reconstruction of the temporal evolution of the absolute tungsten population density of the ground state during the glow mode was presented. The sputtered tungsten density increases immediately with the ignition, reaches a maximum where the discharge contracts at the end of the glow mode, and decreases some milliseconds before the glow-to-arc transition takes place. The maximum tungsten density was observed within a

  6. Lamp for sunshine simulation

    DEFF Research Database (Denmark)

    2016-01-01

    A lamp system is provided, comprising a lamp with a lamp housing accommodating a plurality of light sources for emission of visible light, including blue light, a time keeping unit, a light sensor for sensing intensity of light incident upon it, and a light controller configured for controlling...... the plurality of light sources in response to the intensity of light sensed by the light sensor and the time provided by the time keeping unit, characterized in that the lamp emits blue light for a selected time period, wherein the blue light has a luminous flux ranging from 50 lux to 200 lux and, preferably......, an irradiance that is larger than 5 mW/nm/m2 in a selected wavelength range, such as in the wavelength range from 440 nm to 500 nm, as measured at a distance of 3 metres from the lamp....

  7. CALiPER Application Summary Report 22: LED MR16 Lamps

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2014-09-01

    An initial sample of 27 LED MR16 lamps and 8 halogen benchmarks underwent photometric testing according to IES LM-79-08. CALiPER Application Summary Report 22 focuses on the initial performance based on light output, efficacy, distribution, color quality, electrical characteristics, and form factor, with comparisons to the benchmarks and ENERGY STAR qualification thresholds.

  8. 49 CFR 393.24 - Requirements for head lamps, auxiliary driving lamps and front fog lamps.

    Science.gov (United States)

    2010-10-01

    ... Devices, and Electrical Wiring § 393.24 Requirements for head lamps, auxiliary driving lamps and front fog lamps. (a) Headlamps. Every bus, truck and truck tractor shall be equipped with headlamps as required by...

  9. Capacitive discharge exciplex lamps

    Energy Technology Data Exchange (ETDEWEB)

    Sosnin, E A; Erofeev, M V; Tarasenko, V F [High Current Electronics Institute, 2/3, Akademichesky Ave., Tomsk 634055 (Russian Federation)

    2005-09-07

    Simple-geometry exciplex lamps of a novel type excited by a capacitive discharge (CD-excilamps) have been investigated. An efficient radiation has been obtained on KrBr*, KrCl*, XeBr*, XeCl* molecules and I* atom. The highest values of efficiency of various working molecules are approximately 10-18%. The lifetime of the operating gas mixture in KrCl*, XeCl*, I* and XeBr* exciplex lamps excited by a CD is above 1000 h. Owing to the above-mentioned characteristics, the exciplex lamps excited by a CD are supposed to be very promising for various applications.

  10. Capacitive discharge exciplex lamps

    International Nuclear Information System (INIS)

    Sosnin, E A; Erofeev, M V; Tarasenko, V F

    2005-01-01

    Simple-geometry exciplex lamps of a novel type excited by a capacitive discharge (CD-excilamps) have been investigated. An efficient radiation has been obtained on KrBr*, KrCl*, XeBr*, XeCl* molecules and I* atom. The highest values of efficiency of various working molecules are approximately 10-18%. The lifetime of the operating gas mixture in KrCl*, XeCl*, I* and XeBr* exciplex lamps excited by a CD is above 1000 h. Owing to the above-mentioned characteristics, the exciplex lamps excited by a CD are supposed to be very promising for various applications

  11. Halogenated arsenenes as Dirac materials

    International Nuclear Information System (INIS)

    Tang, Wencheng; Sun, Minglei; Ren, Qingqiang; Wang, Sake; Yu, Jin

    2016-01-01

    Highlights: • We have revealed the presence of Dirac cone in fully-halogenated arsenene compounds. • All fully-halogenated arsenene except As_2I_2 would spontaneously form and stable in defending the thermal fluctuation in room temperature. - Abstract: Arsenene is the graphene-like arsenic nanosheet, which has been predicted very recently [S. Zhang, Z. Yan, Y. Li, Z. Chen, and H. Zeng, Angewandte Chemie, 127 (2015) 3155–3158]. Using first-principles calculations, we systematically investigate the structures and electronic properties of fully-halogenated arsenenes. Formation energy analysis reveals that all the fully-halogenated arsenenes except iodinated arsenene are energetically favorable and could be synthesized. We have revealed the presence of Dirac cone in fully-halogenated arsenene compounds. They may have great potential applications in next generation of high-performance devices.

  12. Hollow-Core Fiber Lamp

    Science.gov (United States)

    Yi, Lin (Inventor); Tjoelker, Robert L. (Inventor); Burt, Eric A. (Inventor); Huang, Shouhua (Inventor)

    2016-01-01

    Hollow-core capillary discharge lamps on the millimeter or sub-millimeter scale are provided. The hollow-core capillary discharge lamps achieve an increased light intensity ratio between 194 millimeters (useful) and 254 millimeters (useless) light than conventional lamps. The capillary discharge lamps may include a cone to increase light output. Hollow-core photonic crystal fiber (HCPCF) may also be used.

  13. Raman lidar characterization using a reference lamp

    Science.gov (United States)

    Landulfo, Eduardo; da Costa, Renata F.; Rodrigues, Patricia F.; da Silva Lopes, Fábio J.

    2014-10-01

    The determination of the amount of water vapor in the atmosphere using lidar is a calibration dependent technique. Different collocated instruments are used for this purpose, like radiossoundings and microwave radiometers. When there are no collocated instruments available, an independente lamp mapping calibration technique can be used. Aiming to stabilish an independ technique for the calibration of the six channels Nd-YAG Raman lidar system located at the Center for Lasers and Applications (CLA), S˜ao Paulo, Brazil, an optical characterization of the system was first performed using a reference tungsten lamp. This characterization is useful to identify any possible distortions in the interference filters, telescope mirror and stray light contamination. In this paper we show three lamp mapping caracterizations (01/16/2014, 01/22/2014, 04/09/2014). The first day is used to demostrate how the tecnique is useful to detect stray light, the second one how it is sensible to the position of the filters and the third one demostrates a well optimized optical system.

  14. Tungsten and tungsten alloys by powder metallurgy

    International Nuclear Information System (INIS)

    Belhadjhamida, A.; German, R.M.

    1991-01-01

    Tungsten has a historical link with powder metallurgy and there is continued progress in expanding the available compositions and processing options. This paper starts with an introduction to the history of tungsten powder metallurgy and use this as a basis for analyzing some of the current trends. The literature base in tungsten processing is expanding and includes new alloys, microstructures, and processing routes. A few examples will be emphasize here to produce a frame work for this program, including description of sintering mechanisms for tungsten, liquid phase sintering advances, hot consolidation fundamentals, and options for complex shaping using powder injection modeling. For this base, subsequent presentations will expand on these fundamental advances

  15. Lamps recycling aiming at the environment preservation

    International Nuclear Information System (INIS)

    Yamachita, Roberto Akira; Gama, Paulo Henrique R. Pereira; Haddad, Jamil; Santos, Afonso H. Moreira; Guardia, Eduardo C.

    1999-01-01

    The article discusses the following issues of lamps recycling in Brazil: mercury lamps recycling, recycling potential, energy conservation and environmental impacts, enterprises lamps recycling, and incentives policy

  16. Discharge lamp technologies

    Energy Technology Data Exchange (ETDEWEB)

    Dakin, J. [GE Lighting, Cleveland, OH (United States)

    1994-12-31

    This talk is an overview of discharge lamp technology commonly employed in general lighting, with emphasis on issues pertinent to lighting for plant growth. Since the audience is primarily from the plant growth community, and this begins the light source part of the program, we will start with a brief description of the discharge lamps. Challenges of economics and of thermal management make lamp efficiency a prime concern in controlled environment agriculture, so we will emphasize science considerations relating to discharge lamp efficiency. We will then look at the spectra and ratings of some representative lighting products, and conclude with a discussion of technological advance. A general overview of discharge lighting technology can be found in the book of Waymouth (1971). A recent review of low pressure lighting discharge science is found in Dakin (1991). The pioneering paper of Reiling (1964) provides a good introduction to metal halide discharges. Particularly relevant to lighting for plant growth, a recent and thorough treatment of high pressure Na lamps is found in the book by deGroot and vanVliet (1986). Broad practical aspects of lighting application are thoroughly covered in the IES Lighting Handbook edited by Kaufman (1984).

  17. Tungsten Alloy Outgassing Measurements

    CERN Document Server

    Rutherfoord, John P; Shaver, L

    1999-01-01

    Tungsten alloys have not seen extensive use in liquid argon calorimeters so far. Because the manufacturing process for tungsten is different from the more common metals used in liquid argon there is concern that tungsten could poison the argon thereby creating difficulties for precision calorimetry. In this paper we report measurements of outgassing from the tungsten alloy slugs proposed for use in the ATLAS FCal module and estimate limits on potential poisoning with reasonable assumptions. This estimate gives an upper limit poisoning rate of tungsten slugs.

  18. Fluorescent discharge lamp

    Science.gov (United States)

    Mukai, E.; Otsuka, H.; Nomi, K.; Honmo, I.

    1982-01-01

    A rapidly illuminating fluorescent lamp 1,200 mm long and 32.5 mm in diameter with an interior conducting strip which is compatible with conventional fixtures and ballasts is described. The fluorescent lamp is composed of a linear glass tube, electrodes sealed at both ends, mercury and raregas sealed in the glass tube, a fluorescent substance clad on the inner walls of the glass tube, and a clad conducting strip extending the entire length of the glass tube in the axial direction on the inner surface of the tube.

  19. Lamps and lighting

    CERN Document Server

    Cayless, MA; Marsden, A M

    2012-01-01

    This book is a comprehensive guide to the theory and practice of lighting. Covering the physics of light production, light sources, circuits and a wide variety of lighting applications, it is both suitable as a detailed textbook and as thoroughly practical guide for practising lighting engineers. This fourth edition of Lamps and Lighting has been completely updated with new chapters on the latest lamp technology and applications. The editors ahve called upon a wide range of expertise and as a result many sections have been broadened to include both European and US practice.The book begins with

  20. High-frequency cold ignition of fluorescent lamps

    International Nuclear Information System (INIS)

    Haverlag, M.; Sormani, J.; Heuvelmans, J.; Geven, A.; Kaldenhoven, L.; Heijne, G.; Kraus, A.

    2002-01-01

    Experimental and theoretical investigations have been performed on the ignition process of low-pressure mercury-noble gas fluorescent lamps operating on a 50 kHz electronic driver circuit. In case the electrodes of the lamp are not heated prior to the ignition process, the ignition process can, under certain conditions, lead to premature fracture of the coiled-coil electrode, which means that the lamp ceases to operate before the emitter is consumed completely. Experimental studies of this process have shown that the erosion process responsible for this premature end-of-life consists of localized sputtering of the tungsten electrode by energetic ions from the glow discharge that is present during the ignition process. In order to understand the basic process that leads to localized sputtering of the electrodes in a glow discharge, a simple glow-discharge fluid model, in combination with a finite-element model of the heat transport in the electrode, has been built. The model shows that thermionic emission can supply a significant fraction of the electrons already at temperatures far below the normal operating temperature in fluorescent lamps. This thermionic emission is responsible for a contraction process. After the beginning of the discharge contraction it takes typically a few milliseconds before the glow-to-arc transition is observed in the lamp voltage and the normal electrode operating temperature is reached. During this time localized sputtering takes place, which eventually leads to coil fracture. (author)

  1. CALiPER Report 22.1: Photoelectric Performance of LED MR16 Lamps

    Energy Technology Data Exchange (ETDEWEB)

    Royer, Michael P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poplawski, Michael E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Brown, Charles C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Merzouk, Massine B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-09-01

    This report is a follow-up to CALiPER Application Summary Report 22, which investigated the photometric performance of LED MR16 lamps. The initial report found that many of the LED MR16 lamps did not perform as required by ENERGY STAR based on their equivalency claims, although they generally did provide substantial efficacy advantages compared to halogen MR16 lamps. All testing was completed using laboratory power supplies, with all but one product tested at 12 V AC. In contrast, this report examined the photoelectric performance of the same set of lamps, using commercially available transformers and dimmers as well as laboratory power supplies providing both AC and DC power.

  2. A new Cassegrain calibration lamp unit for the Blanco Telescope

    Science.gov (United States)

    Points, S. D.; James, D. J.; Tighe, R.; Montané, A.; David, N.; Martínez, M.

    2016-08-01

    The f/8 RC-Cassegrain Focus of the Blanco Telescope at Cerro Tololo Inter-American Observatory, hosts two new instruments: COSMOS, a multi-object spectrograph in the visible wavelength range (350 - 1030nm), and ARCoIRIS, a NIR cross-dispersed spectrograph featuring 6 spectral orders spanning 0.8 - 2.45μm. Here we describe a calibration lamp unit designed to deliver the required illumination at the telescope focal plane for both instruments. These requirements are: (1) an f/8 beam of light covering a spot of 92mm diameter (or 10 arcmin) for a wavelength range of 0.35μm through 2.5μm and (2) no saturation of flat-field calibrations for the minimal exposure times permitted by each instrument, and (3) few saturated spectral lines when using the wavelength calibration lamps for the instruments. To meet these requirements this unit contains an adjustable quartz halogen lamp for flat-field calibrations, and one hollow cathode lamp and four penray lamps for wavelength calibrations. The wavelength calibration lamps are selected to provide optimal spectral coverage for the instrument mounted and can be used individually or in sets. The device designed is based on an 8-inch diameter integrating sphere, the output of which is optimized to match the f/8 calibration input delivery system which is a refractive system based on fused-silica lenses. We describe the optical design, the opto-mechanical design, the electronic control and give results of the performance of the system.

  3. Evidence for Interfacial Halogen Bonding.

    Science.gov (United States)

    Swords, Wesley B; Simon, Sarah J C; Parlane, Fraser G L; Dean, Rebecca K; Kellett, Cameron W; Hu, Ke; Meyer, Gerald J; Berlinguette, Curtis P

    2016-05-10

    A homologous series of donor-π-acceptor dyes was synthesized, differing only in the identity of the halogen substituents about the triphenylamine (TPA; donor) portion of each molecule. Each Dye-X (X=F, Cl, Br, and I) was immobilized on a TiO2 surface to investigate how the halogen substituents affect the reaction between the light-induced charge-separated state, TiO2 (e(-) )/Dye-X(+) , with iodide in solution. Transient absorption spectroscopy showed progressively faster reactivity towards nucleophilic iodide with more polarizable halogen substituents: Dye-F < Dye-Cl < Dye-Br < Dye-I. Given that all other structural and electronic properties for the series are held at parity, with the exception of an increasingly larger electropositive σ-hole on the heavier halogens, the differences in dye regeneration kinetics for Dye-Cl, Dye-Br, and Dye-I are ascribed to the extent of halogen bonding with the nucleophilic solution species. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Risk assessment for halogenated solvents

    International Nuclear Information System (INIS)

    Travis, C.C.

    1988-01-01

    A recent development in the cancer risk area is the advent of biologically based pharmacokinetic and pharmacodynamic models. These models allow for the incorporation of biological and mechanistic data into the risk assessment process. These advances will not only improve the risk assessment process for halogenated solvents but will stimulate and guide basic research in the biological area

  5. Halogen bonding in solution: thermodynamics and applications.

    Science.gov (United States)

    Beale, Thomas M; Chudzinski, Michael G; Sarwar, Mohammed G; Taylor, Mark S

    2013-02-21

    Halogen bonds are noncovalent interactions in which covalently bound halogens act as electrophilic species. The utility of halogen bonding for controlling self-assembly in the solid state is evident from a broad spectrum of applications in crystal engineering and materials science. Until recently, it has been less clear whether, and to what extent, halogen bonding could be employed to influence conformation, binding or reactivity in the solution phase. This tutorial review summarizes and interprets solution-phase thermodynamic data for halogen bonding interactions obtained over the past six decades and highlights emerging applications in molecular recognition, medicinal chemistry and catalysis.

  6. The chemistry of artificial lighting devices lamps, phosphors and cathode ray tubes

    CERN Document Server

    Ropp, Richard C

    2013-01-01

    Both the early use of artificial lighting and current manufacturing methods concerning incandescent and fluorescent lamps are covered in this book. The protocols for manufacture of fluorescent lamp phosphors and those used in cathode ray tubes are also treated in some detail. This text surveys the amazing, vast array of artificial lighting devices known to date in terms of how they arose and are, or have been used by mankind. A complete description of the formulations and methodology for manufacturing all known phosphors is given. The book will serve as a repository of such phosphor manufacturing methods, including that of cathode ray tube phosphors. Methods of manufacture of lamp parts are also presented, including that of tungsten wire. The original approaches used are described as well as improvements in technology. These will serve as comparative methods for present day manufacture of these components. A history of the lamp industry is presented. Several methods are given which may serve as a source for f...

  7. Deuterium trapping in tungsten

    Science.gov (United States)

    Poon, Michael

    Tungsten is one of the primary material candidates being investigated for use in the first-wall of a magnetic confinement fusion reactor. An ion accelerator was used to simulate the type of ion interaction that may occur at a plasma-facing material. Thermal desorption spectroscopy (TDS) was the primary tool used to analyze the effects of the irradiation. Secondary ion mass spectroscopy (SIMS) was used to determine the distribution of trapped D in the tungsten specimen. The tritium migration analysis program (TMAP) was used to simulate thermal desorption profiles from the D depth distributions. Fitting of the simulated thermal desorption profiles with the measured TDS results provided values of the D trap energies. Deuterium trapping in single crystal tungsten was studied as a function of the incident ion fluence, ion flux, irradiation temperature, irradiation history, and surface impurity levels during irradiation. The results show that deuterium was trapped at vacancies and voids. Two deuterium atoms could be trapped at a tungsten vacancy, with trapping energies of 1.4 eV and 1.2 eV for the first and second D atoms, respectively. In a tungsten void, D is trapped as atoms adsorbed on the inner walls of the void with a trap energy of 2.1 eV, or as D2 molecules inside the void with a trap energy of 1.2 eV. Deuterium trapping in polycrystalline tungsten was also studied as a function of the incident fluence, irradiation temperature, and irradiation history. Deuterium trapping in polycrystalline tungsten also occurs primarily at vacancies and voids with the same trap energies as in single crystal tungsten; however, the presence of grain boundaries promotes the formation of large surface blisters with high fluence irradiations at 500 K. In general, D trapping is greater in polycrystalline tungsten than in single crystal tungsten. To simulate mixed materials comprising of carbon (C) and tungsten, tungsten specimens were pre-irradiated with carbon ions prior to D

  8. Deuterium trapping in tungsten

    International Nuclear Information System (INIS)

    Poon, M.

    2004-01-01

    Tungsten is one of the primary material candidates being investigated for use in the first-wall of a magnetic confinement fusion reactor. An ion accelerator was used to simulate the type of ion interaction that may occur at a plasma-facing material. Thermal desorption spectroscopy (TDS) was the primary tool used to analyze the effects of the irradiation Secondary ion mass spectroscopy (SIMS) was used to determine the distribution of trapped D in the tungsten specimen. The tritium migration analysis program (TMAP) was used to simulate thermal desorption profiles from the D depth distributions. Fitting of the simulated thermal desorption profiles with the measured TDS results provided values of the D trap energies. . Deuterium trapping in single crystal tungsten was studied as a function of the incident ion fluence, ion flux, irradiation temperature, irradiation history, and surface impurity levels during irradiation The results show that deuterium was trapped at vacancies and voids. Two deuterium atoms could be trapped at a tungsten vacancy, with trapping energies of 1.4 eV and 1.2 eV for the first and second D atoms, respectively. In a tungsten void, D is trapped as atoms adsorbed on the inner walls of the void with a trap energy of 2.1 eV, or as D 2 molecules inside the void with a trap energy of 1.2 eV. . Deuterium trapping in polycrystalline tungsten was also studied as a function of the incident fluence, irradiation temperature, and irradiation history. Deuterium trapping in polycrystalline tungsten also occurs primarily at vacancies and voids with the same trap energies as in single crystal tungsten; however, the presence of grain boundaries promotes the formation of large surface blisters with high fluence irradiations at 500 K. In general, D trapping is greater in polycrystalline tungsten than in single crystal tungsten. To simulate mixed materials comprising of carbon (C) and tungsten, tungsten specimens were pre-irradiated with carbon ions prior to D

  9. Deuterium trapping in tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Poon, M

    2004-07-01

    Tungsten is one of the primary material candidates being investigated for use in the first-wall of a magnetic confinement fusion reactor. An ion accelerator was used to simulate the type of ion interaction that may occur at a plasma-facing material. Thermal desorption spectroscopy (TDS) was the primary tool used to analyze the effects of the irradiation Secondary ion mass spectroscopy (SIMS) was used to determine the distribution of trapped D in the tungsten specimen. The tritium migration analysis program (TMAP) was used to simulate thermal desorption profiles from the D depth distributions. Fitting of the simulated thermal desorption profiles with the measured TDS results provided values of the D trap energies. . Deuterium trapping in single crystal tungsten was studied as a function of the incident ion fluence, ion flux, irradiation temperature, irradiation history, and surface impurity levels during irradiation The results show that deuterium was trapped at vacancies and voids. Two deuterium atoms could be trapped at a tungsten vacancy, with trapping energies of 1.4 eV and 1.2 eV for the first and second D atoms, respectively. In a tungsten void, D is trapped as atoms adsorbed on the inner walls of the void with a trap energy of 2.1 eV, or as D{sub 2} molecules inside the void with a trap energy of 1.2 eV. . Deuterium trapping in polycrystalline tungsten was also studied as a function of the incident fluence, irradiation temperature, and irradiation history. Deuterium trapping in polycrystalline tungsten also occurs primarily at vacancies and voids with the same trap energies as in single crystal tungsten; however, the presence of grain boundaries promotes the formation of large surface blisters with high fluence irradiations at 500 K. In general, D trapping is greater in polycrystalline tungsten than in single crystal tungsten. To simulate mixed materials comprising of carbon (C) and tungsten, tungsten specimens were pre-irradiated with carbon ions prior to D

  10. Textbook tests with tungsten

    CERN Multimedia

    Barbara Warmbein

    2010-01-01

    CERN's linear collider detector group joins forces with CALICE in building the world's first tungsten hadronic calorimeter.   Hadronic calorimeter prototype made of tungsten for the linear collider detector being equipped with CALICE scintillators. In a hall for test beam experiments at CERN, next to the CLOUD climate experiment and an irradiation facility, sits a detector prototype that is in many ways a first. It's the first ever hadronic sandwich calorimeter (HCal) prototype made of tungsten. It's the first prototype for a detector for the Compact Linear Collider Study CLIC, developed by the linear collider detector R&D group (LCD group) at CERN. And it's the first piece of hardware that results directly from the cooperation between CLIC and ILC detector study groups. Now its makers are keen to see first particle showers in their detector. The tungsten calorimeter has just moved from a workshop at CERN, where it was assembled from finely polished tungsten squares and triangles, into the ...

  11. Dissociative Photoionization of 1-Halogenated Silacyclohexanes: Silicon Traps the Halogen.

    Science.gov (United States)

    Bodi, Andras; Sigurdardottir, Katrin Lilja; Kvaran, Ágúst; Bjornsson, Ragnar; Arnason, Ingvar

    2016-11-23

    The threshold photoelectron spectra and threshold photoionization mass spectra of 1-halogenated-1-silacyclohexanes, for the halogens X = F, Cl, Br, and I, have been obtained using synchrotron vacuum ultraviolet radiation and photoelectron photoion coincidence spectroscopy. As confirmed by a similar ionization onset and density functional theory molecular orbitals, the ionization to the ground state is dominated by electron removal from the silacyclohexane ring for X = F, Cl, and Br, and from the halogen lone pair for X = I. The breakdown diagrams show that the dissociative photoionization mechanism is also different for X = I. Whereas the parent ions decay by ethylene loss for X = F to Br in the low-energy regime, the iodine atom is lost for X = I. The first step is followed by a sequential ethylene loss at higher internal energies in each of the compounds. It is argued that the tendency of silicon to lower bond angles stabilizes the complex cation in which C 2 H 4 is η 2 -coordinated to it, and which precedes ethylene loss. Together with the relatively strong silicon-halogen bonds and the increased inductive effect of the silacyclohexane ring in stabilizing the cation, this explains the main differences observed in the fragmentation of the halogenated silacyclohexane and halogenated cyclohexane ions. The breakdown diagrams have been modeled taking into account slow dissociations at threshold and the resulting kinetic shift. The 0 K appearance energies have been obtained to within 0.08 eV for the ethylene loss for X = F to Br (10.56, 10.51, and 10.51 eV, respectively), the iodine atom loss for X = I (10.11 eV), the sequential ethylene loss for X = F to I (12.29, 12.01, 11.94, and 11.86 eV, respectively), and the minor channels of H loss for X = F (10.56 eV) and propylene loss in X = Cl (also at 10.56 eV). The appearance energies for the major channels likely correspond to the dissociative photoionization reaction energy.

  12. Change of the arc attachment mode and its effect on the lifetime in automotive high intensity discharge lamps

    Science.gov (United States)

    Alexejev, Alexander; Flesch, Peter; Mentel, Jürgen; Awakowicz, Peter

    2016-10-01

    In modern cars, the new generation Hg-free high intensity discharge (HID) lamps, the so called xenon lamps, take an important role. The long lifetime of these lamps is achieved by doping the tungsten electrodes with thorium. Thorium forms a dipole layer on the electrode surface, thus reducing the work function of tungsten. However, thoriating the electrodes is also an issue of trade and transport regulation, so a substitute is looked into. This work shows the influence of the arc attachment mode on the lifetime of the lamps. The mode of the arc attachment changes during the run-up phase of automotive HID lamps after a characteristic time period depending, i.e., on the filling of the lamps, which is dominated by scandium. It will be shown that this characteristic time period for the change of the attachment mode determines the long term performance of Hg-free xenon lamps. Measurements attributing the mode change to the scandium density in the filling are presented. The emitter effect of scandium will be suggested to be the reason of the mode change.

  13. Design of Elliptic Reflective LED Surgical Shadowless Lamps Using Mathematical Optical Tracing Algorithms

    Directory of Open Access Journals (Sweden)

    Cheng-Tang Pan

    2014-01-01

    Full Text Available Traditional surgical shadowless halogen lamps are generally designed as projection type with many light bulbs, which can produce not only mercury pollution but also heat radiation that are serious problems to patient. The study utilized Runge-Kutta methods and mathematical algorithms to design and optimize the freeform lens. The LED (light-emitting diode was adopted to replace the traditional halogen lamp. A uniform lens was designed and fabricated based on the energy conservation. At first, the light field of LED is concentrated through the freeform lens to improve the optical efficiency. Second, the three-shell elliptic curves are applied to the reflective surgical shadowless lamps, where only few LED chips are needed. Light rays emitting from different directions to the target plane can achieve the goal of shadowless. In this study, the LED’s luminance flux is 1,895 lm. The shadow dilution on the target plane is 54%. Ec (central illuminance is 114,900 lux, and the d50/d10 is 57% which is higher than the regulation by 7%, whereas the power consumption is only 20 W. The energy of reflective surgical shadowless lamps can save more than 50%, compared with the traditional projective one.

  14. Inductive tuners for microwave driven discharge lamps

    Science.gov (United States)

    Simpson, James E.

    1999-01-01

    An RF powered electrodeless lamp utilizing an inductive tuner in the waveguide which couples the RF power to the lamp cavity, for reducing reflected RF power and causing the lamp to operate efficiently.

  15. Plasma etching of patterned tungsten

    International Nuclear Information System (INIS)

    Franssila, S.

    1993-01-01

    Plasma etching of tungsten is discussed from the viewpoint of thin film structure and integrated circuit process engineering. The emphasis is on patterned tungsten etching for silicon device and X-ray mask fabrication. After introducing tungsten etch chemistries and mechanisms, microstructural aspects of tungsten films (crystal structure, grain size, film density, defects, impurities) in relation to etching are discussed. Approaches to etch process optimization are presented, and the current state-of-the-art of patterned tungsten etching is reviewed. (orig.)

  16. Computer simulations for thorium doped tungsten crystals

    Energy Technology Data Exchange (ETDEWEB)

    Eberhard, Bernd

    2009-07-17

    Tungsten has the highest melting point among all metals in the periodic table of elements. Furthermore, its equilibrium vapor pressure is by far the lowest at the temperature given. Thoria, ThO{sub 2}, as a particle dopant, results in a high temperature creep resistant material. Moreover, thorium covered tungsten surfaces show a drastically reduced electronic work function. This results in a tremendous reduction of tip temperatures of cathodes in discharge lamps, and, therefore, in dramatically reduced tungsten vapor pressures. Thorium sublimates at temperatures below those of a typical operating cathode. For proper operation, a diffusional flow of thorium atoms towards the surface has to be maintained. This atomic flux responds very sensitively on the local microstructure, as grain boundaries as well as dislocation cores offer ''short circuit paths'' for thorium atoms. In this work, we address some open issues of thoriated tungsten. A molecular dynamics scheme (MD) is used to derive static as well as dynamic material properties which have their common origin in the atomistic behavior of tungsten and thorium atoms. The interatomic interactions between thorium and tungsten atoms are described within the embedded atom model (EAM). So far, in literature no W-Th interaction potentials on this basis are described. As there is no alloying system known between thorium and tungsten, we have determined material data for the fitting of these potentials using ab-initio methods. This is accomplished using the full potential augmented plane wave method (FLAPW), to get hypothetical, i.e. not occurring in nature, ''alloy'' data of W-Th. In order to circumvent the limitations of classical (NVE) MD schemes, we eventually couple our model systems to external heat baths or volume reservoirs (NVT, NPT). For the NPT ensemble, we implemented a generalization of the variable cell method in combination with the Langevin piston, which results in a

  17. Computer simulations for thorium doped tungsten crystals

    International Nuclear Information System (INIS)

    Eberhard, Bernd

    2009-01-01

    Tungsten has the highest melting point among all metals in the periodic table of elements. Furthermore, its equilibrium vapor pressure is by far the lowest at the temperature given. Thoria, ThO 2 , as a particle dopant, results in a high temperature creep resistant material. Moreover, thorium covered tungsten surfaces show a drastically reduced electronic work function. This results in a tremendous reduction of tip temperatures of cathodes in discharge lamps, and, therefore, in dramatically reduced tungsten vapor pressures. Thorium sublimates at temperatures below those of a typical operating cathode. For proper operation, a diffusional flow of thorium atoms towards the surface has to be maintained. This atomic flux responds very sensitively on the local microstructure, as grain boundaries as well as dislocation cores offer ''short circuit paths'' for thorium atoms. In this work, we address some open issues of thoriated tungsten. A molecular dynamics scheme (MD) is used to derive static as well as dynamic material properties which have their common origin in the atomistic behavior of tungsten and thorium atoms. The interatomic interactions between thorium and tungsten atoms are described within the embedded atom model (EAM). So far, in literature no W-Th interaction potentials on this basis are described. As there is no alloying system known between thorium and tungsten, we have determined material data for the fitting of these potentials using ab-initio methods. This is accomplished using the full potential augmented plane wave method (FLAPW), to get hypothetical, i.e. not occurring in nature, ''alloy'' data of W-Th. In order to circumvent the limitations of classical (NVE) MD schemes, we eventually couple our model systems to external heat baths or volume reservoirs (NVT, NPT). For the NPT ensemble, we implemented a generalization of the variable cell method in combination with the Langevin piston, which results in a set of Langevin equations, i.e. stochastic

  18. Transparent ceramic lamp envelope materials

    Energy Technology Data Exchange (ETDEWEB)

    Wei, G C [OSRAM SYLVANIA, 71 Cherry Hill Drive, Beverly, MA 01915 (United States)

    2005-09-07

    Transparent ceramic materials with optical qualities comparable to single crystals of similar compositions have been developed in recent years, as a result of the improved understanding of powder-processing-fabrication- sintering-property inter-relationships. These high-temperature materials with a range of thermal and mechanical properties are candidate envelopes for focused-beam, short-arc lamps containing various fills operating at temperatures higher than quartz. This paper reviews the composition, structure and properties of transparent ceramic lamp envelope materials including sapphire, small-grained polycrystalline alumina, aluminium oxynitride, yttrium aluminate garnet, magnesium aluminate spinel and yttria-lanthana. A satisfactory thermal shock resistance is required for the ceramic tube to withstand the rapid heating and cooling cycles encountered in lamps. Thermophysical properties, along with the geometry, size and thickness of a transparent ceramic tube, are important parameters in the assessment of its resistance to fracture arising from thermal stresses in lamps during service. The corrosive nature of lamp-fill liquid and vapour at high temperatures requires that all lamp components be carefully chosen to meet the target life. The wide range of new transparent ceramics represents flexibility in pushing the limit of envelope materials for improved beamer lamps.

  19. Cellular effects of halogen blue light from dental curing unit

    International Nuclear Information System (INIS)

    Trosic, I.; Pavicic, I.; Jukic, S.

    2008-01-01

    Full text: Halogen curing lights are the most frequently used polymerization source in dental offices. Light-cured bonding systems have become increasingly popular among clinicians because they offer a number of advantages over self-cured adhesives. The effort to increase polymerization quality releases the commercially available high power light density dental curing units. Emitted visible blue light belongs to the range of nonionizing radiation. Common concern in both, patients and dentist grows with regard to the unfavorable effects on the pulp tissue. The aim of study was to evaluate the time and dose dependence effect of halogen light curing unit (Elipar TriLight, ESPE Dental AG, Germany) at the disposed condition modes in vitro. A quartz-tungsten-halogen light source emits radiation of the wavelengths between 400 and 515 nm. This halogen blue light source operates in the three illumination modes, medium (M), exponential (E) and standard (S), and five illumination times. The total irradiance or the light intensity was measured by the light intensity control area on the control panel of device and mean light intensity given by manufacturer was 800 m W/cm 2 . Continuous culture of V79 cells was illuminated in triplicate. The influence of medium mode (M), exponential (E) and standard (S) illumination during 20, 40 and 80 sec on the cell viability, colony forming ability and proliferation of V79 cell culture was investigated. Trypan blue exclusion test was used to determine cell viability, both, in the treated and control cell samples. Colony forming ability was assessed for each exposure time and mode by colony count on post-exposure day 7. Cell proliferation was determined by cell counts for each time and mode of exposure during five post-exposure days. Statistical difference were determined at p<0.05 (Statistica 7.0, StatSoft Inc., USA). Viability of cells was not affected by blue light in view of exposure time and modes. Regardless to exposure or illumination

  20. METHOD FOR PRODUCING ISOTOPIC METHANES AND PARTIALLY HALOGENATED DERIVATIVES THEROF

    Science.gov (United States)

    Frazer, J.W.

    1959-08-18

    A method is given for producing isotopic methanes and/ or partially halogenated derivatives. Lithium hydride, deuteride, or tritide is reacted with a halogenated methane or with a halogenated methane in combination with free halogen. The process is conveniently carried out by passing a halogenated methane preferably at low pressures or in an admixture with an inert gas through a fixed bed of finely divided lithium hydride heated initially to temperatures of 100 to 200 deg C depending upon the halogenated methane used.

  1. Phase out of incandescent lamps

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Since early 2007 almost all OECD and many non-OECD governments have announced policies aimed at phasing-out incandescent lighting within their jurisdictions. This study considers the implications of these policy developments in terms of demand for regulatory compliant lamps and the capacity and motivation of the lamp industry to produce efficient lighting products in sufficient volume to meet future demand. To assess these issues, it reviews the historic international screw-based lamp market, describes the status of international phase-out policies and presents projections of anticipated market responses to regulatory requirements to determine future demand for CFLs.

  2. The cataphoretic emitter effect exhibited in high intensity discharge lamp electrodes

    Science.gov (United States)

    Mentel, Juergen

    2018-01-01

    A mono-layer of atoms, electropositive with respect to the substrate atoms, forms a dipole layer, reducing its work function. Such a layer is generated by diffusion of emitter material from the interior of the substrate, by vapour deposition or by deposition of emitter material onto arc electrodes by cataphoresis. This cataphoretic emitter effect is investigated within metal halide lamps with transparent YAG ceramic burners, and within model lamps. Within the YAG lamps, arcs are operated with switched-dc current between rod shaped tungsten electrodes in high pressure Hg vapour seeded with metal iodides. Within the model lamps, dc arcs are operated between rod-shaped tungsten electrodes—one doped—in atmospheric pressure Ar. Electrode temperatures are determined by 1λ -pyrometry, combined with simulation of the electrode heat balance. Plasma temperatures, atom and ion densities of emitter material are determined by emission and absorption spectroscopy. Phase resolved measurements in YAG lamps seeded with CeI3, CsI, DyI3, TmI3 and LaI3 show, within the cathodic half period, a reduction of the electrode temperature and an enhanced metal ion density in front of the electrode, and an opposite behavior after phase reversal. With increasing operating frequency, the state of the cathode overlaps onto the anodic phase—except for Cs, being low in adsorption energy. Generally, the phase averaged electrode tip temperature is reduced by seeding a lamp with emitter material; its height depends on admixtures. Measurements at tungsten electrodes doped with ThO2, La2O3 and Ce2O3 within the model lamp show that evaporated emitter material is redeposited by an emitter ion current onto the electrode surface. It reduces the work function of tungsten cathodes above the evaporation temperature of the emitter material, too; and also of cold anodes, indicating a field reversal in front of them. The formation of an emitter spot at low cathode temperature and high emitter material

  3. CALiPER Retail Lamps Study RRL3.2 Lumen and Chromaticity Maintenance of LED A lamps Operated in Steady-State Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Royer, Michael P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McCullough, Jeffrey J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tucker, Joseph C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-12-01

    The lumen depreciation and color shift of 17 different A lamps (15 LED, 1 CFL, 1 halogen) was monitored in the automated long-term test apparatus (ALTA) for more than 7,500 hours. Ten samples of each lamp model were tested, with measurements recorded on a weekly basis. The lamps were operated continuously at an ambient temperature of 45°C (-1°C). Importantly, the steady-state test conditions were not optimized for inducing catastrophic failure for any of the lamp technologies—to which thermal cycling is a strong contributor— and are not typical of normal use patterns—which usually include off periods where the lamp cools down. Further, the test conditions differ from those used in standardized long-term test methods (i.e., IES LM-80, IES LM-84), so the results should not be directly compared. On the other hand, the test conditions are similar to those used by ENERGY STAR (when elevated temperature testing is called for). Likewise, the conditions and assumptions used by manufacturers to generated lifetime claims may vary; the CALiPER long-term data is informative, but cannot necessarily be used to discredit manufacturer claims. The test method used for this investigation should be interpreted as one more focused on the long-term effects of elevated temperature operation, at an ambient temperature that is not uncommon in luminaires. On average, the lumen maintenance of the LED lamps monitored in the ALTA was better than benchmark lamps, but there was considerable variation from lamp model to lamp model. While three lamp models had average lumen maintenance above 99% at the end of the study period, two products had average lumen maintenance below 65%, constituting a parametric failure. These two products, along with a third, also exhibited substantial color shift, another form of parametric failure. While none of the LED lamps exhibited catastrophic failure—and all of the benchmarks did—the early degradation of performance is concerning, especially with a

  4. Halogenated hydrocarbons - an environmental problem

    Energy Technology Data Exchange (ETDEWEB)

    Schoeler, H F; Thofern, E

    1984-01-01

    The paper provides a survey of the incidence of highly volatile halogenated hydrocarbons in ground, surface and drinking water as well as in the snows of Western Germany. Almost the entire production of chlorinated solvents is released into the environment. The absorption media are mostly soil, water and atmosphere. Whereas in the atmosphere elimination reactions take place, solvents that have passed the soil get into the ground water owing to their persistence and can cause considerable pollutions of drinking water. Moreover haloforms may occur in drinking water, which are produced during chlorine disinfection of pre-treated water.

  5. Anu Lamp / [vestelnud Kalju Orro

    Index Scriptorium Estoniae

    Lamp, Anu, 1958-

    2007-01-01

    Lavakunstikooli sisseastumisest, õppimisest, õpetajatest ja õpetamisest. Anu Lamp õppis Lavakunstikoolis 10. lennus (1978-1982). Osalenud samas lavakõne õppejõuna 18.-23. lennu ja erialaõppejõuna 20. lennu töös

  6. Organic halogen compounds in the environment

    International Nuclear Information System (INIS)

    1979-07-01

    There are 20 research reports on selected problems concerning the analysis, the occurence, and the behaviour of a wide spectrum of organic halogen compounds. The work was carried out in the framework of the project 'Organic Halogen Compounds in the Environment', financed by the BMFT, between 1975 and 1978. (orig.) [de

  7. CALiPER Report 20.2: Dimming, Flicker, and Power Quality Characteristics of LED PAR38 Lamps

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2014-03-31

    This report focuses on the flicker and power quality performance of the Series 20 lamps at full output and various dimmed levels. All of the Series 20 PAR38 lamps that manufacturers claimed to be dimmable (including all halogen lamps) were evaluated individually (one lamp at a time) both on a switch and under the control of a phase-cut dimmer designed for use with "all classes of bulbs." Measurements of luminous flux, flicker, and power quality were taken at 10 target dimmed settings and compared with operation on a switch. Because only a single unit of each product was evaluated on a single dimmer that may or may not have been recommended by its manufacturer, this report focuses on the performance of the products relative to each other, rather than the best-case performance of each lamp or variation in performance delivered from each lamp. Despite these limitations, the results suggest that LED performance is improving, and performance trends are beginning to emerge, perhaps due in part to the identification of preferred LED driver strategies for lamp products.

  8. Model of discharge lamps with magnetic ballast

    OpenAIRE

    Molina, Julio; Sainz Sapera, Luis; Mesas García, Juan José; Bergas Jané, Joan Gabriel

    2013-01-01

    Magnetic ballast discharge lamp modeling has been extensively studied because these lamps can be an important source of harmonics. Discharge lamp models usually represent the arc voltage by a square waveform. However, this waveform can be far from actual arc voltages, which affects the accuracy of the lamp models. This paper investigates the actual arc voltage behavior of discharge lamps from laboratory measurements and proposes a novel characterization of these voltages to reformulate the co...

  9. Radiative properties of ceramic metal-halide high intensity discharge lamps containing additives in argon plasma

    Science.gov (United States)

    Cressault, Yann; Teulet, Philippe; Zissis, Georges

    2016-07-01

    The lighting represents a consumption of about 19% of the world electricity production. We are thus searching new effective and environment-friendlier light sources. The ceramic metal-halide high intensity lamps (C-MHL) are one of the options for illuminating very high area. The new C-MHL lamps contain additives species that reduce mercury inside and lead to a richer spectrum in specific spectral intervals, a better colour temperature or colour rendering index. This work is particularly focused on the power radiated by these lamps, estimated using the net emission coefficient, and depending on several additives (calcium, sodium, tungsten, dysprosium, and thallium or strontium iodides). The results show the strong influence of the additives on the power radiated despite of their small quantity in the mixtures and the increase of visible radiation portion in presence of dysprosium.

  10. Tungsten behaviour under anodic polarization

    International Nuclear Information System (INIS)

    Vas'ko, A.T.; Patsyuk, F.N.

    1980-01-01

    Electrochemical investigations have been carried out to identify the state of elements of the tungsten galvanic coating. Active zones on anode polarization curves in the hydrogen region of galvanic tungsten are established. The difference in the behaviour of monocrystal and galvanic tungsten electrodes is shown to be connected with the oxidation of hydrogen in the galvanic sediment

  11. Halogen bond: a long overlooked interaction.

    Science.gov (United States)

    Cavallo, Gabriella; Metrangolo, Pierangelo; Pilati, Tullio; Resnati, Giuseppe; Terraneo, Giancarlo

    2015-01-01

    Because of their high electronegativity, halogen atoms are typically considered, in most of their derivatives, as sites of high electron density and it is commonly accepted that they can form attractive interactions by functioning as the electron donor site (nucleophilic site). This is the case when they work as hydrogen bond acceptor sites. However, the electron density in covalently bound halogens is anisotropically distributed. There is a region of higher electron density, accounting for the ability of halogens to function as electron donor sites in attractive interactions, and a region of lower electron density where the electrostatic potential is frequently positive (mainly in the heavier halogens). This latter region is responsible for the ability of halogen atoms to function as the electron-acceptor site (electrophilic site) in attractive interactions formed with a variety of lone pair-possessing atoms, anions, and π-systems. This ability is quite general and is shown by a wide diversity of halogenated compounds (e.g., organohalogen derivatives and dihalogens). According to the definition proposed by the International Union of Pure and Applied Chemistry, any attractive interactions wherein the halogen atom is the electrophile is named halogen bond (XB). In this chapter, it is discussed how the practice and the concept of XB developed and a brief history of the interaction is presented. Papers (either from the primary or secondary literature) which have reported major experimental findings in the field or which have given important theoretical contributions for the development of the concept are recollected in order to trace how a unifying and comprehensive categorization emerged encompassing all interactions wherein halogen atoms function as the electrophilic site.

  12. Electrocatalysis on tungsten carbide

    International Nuclear Information System (INIS)

    Fleischmann, R.

    1975-01-01

    General concepts of electrocatalysis, the importance of the equilibrium rest potential and its standardization on polished WC-electrodes, the influence of oxygen in the catalysts upon the oxidation of hydrogen, and the attained results of the hydrogen oxidation on tungsten carbide are treated. (HK) [de

  13. OPAL Silicon Tungsten Luminometer

    CERN Multimedia

    OPAL was one of the four experiments installed at the LEP particle accelerator from 1989 - 2000. The Silicon Tungsten Luminometer was part of OPAL's calorimeter which was used to measure the energy of particles. Most particles end their journey in calorimeters. These detectors measure the energy deposited when particles are slowed down and stopped.

  14. Gluing for Raman lidar systems using the lamp mapping technique.

    Science.gov (United States)

    Walker, Monique; Venable, Demetrius; Whiteman, David N

    2014-12-20

    In the context of combined analog and photon counting (PC) data acquisition in a Lidar system, glue coefficients are defined as constants used for converting an analog signal into a virtual PC signal. The coefficients are typically calculated using Lidar profile data taken under clear, nighttime conditions since, in the presence of clouds or high solar background, it is difficult to obtain accurate glue coefficients from Lidar backscattered data. Here we introduce a new method in which we use the lamp mapping technique (LMT) to determine glue coefficients in a manner that does not require atmospheric profiles to be acquired and permits accurate glue coefficients to be calculated when adequate Lidar profile data are not available. The LMT involves scanning a halogen lamp over the aperture of a Lidar receiver telescope such that the optical efficiency of the entire detection system is characterized. The studies shown here involve two Raman lidar systems; the first from Howard University and the second from NASA/Goddard Space Flight Center. The glue coefficients determined using the LMT and the Lidar backscattered method agreed within 1.2% for the water vapor channel and within 2.5% for the nitrogen channel for both Lidar systems. We believe this to be the first instance of the use of laboratory techniques for determining the glue coefficients for Lidar data analysis.

  15. Organic halogens in spruce forest throughfall

    DEFF Research Database (Denmark)

    Öberg, G.; Johansen, C.; Grøn, C.

    1998-01-01

    . No relationship between the position of the collectors and the forest edge or dominating wind-direction was found, suggesting that dry deposition was not a major source. The concentration of organic halogens was related to that of organic carbon and decreased from the tree-trunk and outwards. In addition......, the concentrations were higher during the growing season than during the dormant season. This indicates that the major part of the organic carbon and organic halogens in spruce forest throughfall originates from canopy leachates or other internal sources. (C) 1998 Elsevier Science Ltd.......Deposition of dissolved organic halogens by throughfall was determined in a small spruce forest site in Denmark (56 degrees 28'N, 8 degrees 24'E). The mean annual deposition of dissolved organic halogens was 377 g ha(-1)yr(-1), and larger than the general deposition by precipitation...

  16. The halogen bond: Nature and applications

    Science.gov (United States)

    Costa, Paulo J.

    2017-10-01

    The halogen bond, corresponding to an attractive interaction between an electrophilic region in a halogen (X) and a nucleophile (B) yielding a R-X⋯B contact, found applications in many fields such as supramolecular chemistry, crystal engineering, medicinal chemistry, and chemical biology. Their large range of applications also led to an increased interest in their study using computational methods aiming not only at understanding the phenomena at a fundamental level, but also to help in the interpretation of results and guide the experimental work. Herein, a succinct overview of the recent theoretical and experimental developments is given starting by discussing the nature of the halogen bond and the latest theoretical insights on this topic. Then, the effects of the surrounding environment on halogen bonds are presented followed by a presentation of the available method benchmarks. Finally, recent experimental applications where the contribution of computational chemistry was fundamental are discussed, thus highlighting the synergy between the lab and modeling techniques.

  17. Photofragmentation spectra of halogenated methanes in the VUV photon energy range

    Energy Technology Data Exchange (ETDEWEB)

    Cartoni, Antonella, E-mail: antonella.cartoni@uniroma1.it [Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, P.le Aldo Moro 5, Roma 00185 (Italy); Bolognesi, Paola; Fainelli, Ettore; Avaldi, Lorenzo [CNR-IMIP, Area della Ricerca di Roma 1, Monterotondo Scalo (Rm) 00015 (Italy)

    2014-05-14

    In this paper an investigation of the photofragmentation of dihalomethanes CH{sub 2}X{sub 2} (X = F, Cl, Br, I) and chlorinated methanes (CH{sub n}Cl{sub 4−n} with n = 0–3) with VUV helium, neon, and argon discharge lamps is reported and the role played by the different halogen atoms is discussed. Halogenated methanes are a class of molecules used in several fields of chemistry and the study of their physical and chemical proprieties is of fundamental interest. In particular their photodissociation and photoionization are of great importance since the decomposition of these compounds in the atmosphere strongly affects the environment. The results of the present work show that the halogen-loss is the predominant fragmentation channel for these molecules in the VUV photon energy range and confirm their role as reservoir of chlorine, bromine, and iodine atoms in the atmosphere. Moreover, the results highlight the peculiar feature of CH{sub 2}F{sub 2} as a source of both fluorine and hydrogen atoms and the characteristic formation of I{sub 2}{sup +} and CH{sub 2}{sup +} ions from the photofragmentation of the CH{sub 2}I{sub 2} molecule.

  18. Evaluation of wear rate of dental composites polymerized by halogen or LED light curing units

    Directory of Open Access Journals (Sweden)

    Alaghehmand H.

    2006-08-01

    Full Text Available Background and Aim: Sufficient polymerization is a critical factor to obtain optimum physical properties and clinical efficacy of resin restorations. The aim of this study was to evaluate wear rates of composite resins polymerized by two different systems Light Emitting Diodes (LED to and Halogen lamps. Materials and Methods: In this laboratory study, 20 specimens of A3 Tetric Ceram composite were placed in brass molds of 2*10*10 mm dimensions and cured for 40 seconds with 1 mm distance from surface. 10 specimens were cured with LED and the other 10 were cured with Halogen unit. A device with the ability to apply force was developed in order to test the wear of composites. After storage in distilled water for 10 days, the specimens were placed in the wear testing machine. A chrome cobalt stylus with 1.12 mm diameter was applied against the specimens surfaces with a load of 2 kg. The weight of each samples before and after 5000, 10000, 20000, 40000, 80000 and 120000 cycles was measured using an electronic balance with precision of 10-4 grams. Data were analyzed using t test and paired t test. P0.05. Conclusion: Based on the results of this study, LED and halogen light curing units resulted in a similar wear rate in composite resin restorations.

  19. FIELD SCREENING FOR HALOGENATED VOLATILE ORGANIC COMPOUNDS

    Energy Technology Data Exchange (ETDEWEB)

    John F. Schabron; Joseph F. Rovani Jr.; Theresa M. Bomstad

    2002-06-01

    Western Research Institute (WRI) initiated exploratory work towards the development of new field screening methodology and a test kit to measure halogenated volatile organic compounds (VOCs) in the field. Heated diode and corona discharge sensors are commonly used to detect leaks of refrigerants from air conditioners, freezers, and refrigerators. They are both selective to the presence of carbon-halogen bonds. Commercially available heated diode and corona discharge leak detectors were procured and evaluated for halogenated VOC response. The units were modified to provide a digital readout of signal related to VOC concentration. Sensor response was evaluated with carbon tetrachloride and tetrachloroethylene (perchloroethylene, PCE), which represent halogenated VOCs with and without double bonds. The response characteristics were determined for the VOCs directly in headspace in Tedlar bag containers. Quantitation limits in air were estimated. Potential interferences from volatile hydrocarbons, such as toluene and heptane, were evaluated. The effect of humidity was studied also. The performance of the new devices was evaluated in the laboratory by spiking soil samples and monitoring headspace for halogenated VOCs. A draft concept of the steps for a new analytical method was outlined. The results of the first year effort show that both devices show potential utility for future analytical method development work towards the goal of developing a portable test kit for screening halogenated VOCs in the field.

  20. High-pressure sodium lamp

    NARCIS (Netherlands)

    1996-01-01

    A high pressure sodium lamp of the invention is provided with a discharge vessel (20) which is enclosed with intervening space (1) by an outer bulb (10), which space contains a gas-fill with at least 70 mol. % nitrogen gas. Electrodes (30a, 30b) are positioned in the discharge vessel (20) and are

  1. AC ignition of HID lamps

    NARCIS (Netherlands)

    Sobota, A.; Kanters, J.H.M.; Manders, F.; Veldhuizen, van E.M.; Haverlag, M.

    2010-01-01

    Our aim was to examine the starting behaviour of mid-pressure argon discharges in pin-pin (point-to-point) geometry, typically used in HID lamps. We focused our work on AC ignition of 300 and 700 mbar Ar discharges in Philips 70W standard burners. Frequency was varied between 200 kHz and 1 MHz. In

  2. UV lamp for photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Cardoso, M.J.B.; Landers, R.; Sundaram, V.S.

    1983-01-01

    An UV lamp and a differential pumping system which enables to couple the lamp to an ultra-high vacuum chamber (10 -9 torr) without using windows, are described. The differential between the pressure inside the discharge chamber and the one in de UHV region, which is of 10 8 -10 9 , is achieved with two pumping states separated by pyrex capillaries having an internal diameter of 0.6 mm. In the first stage, a mechanical pump (10 -3 torr) is used; in the second stage, a diffusor pump with a cryogenic trap (N 2 liq - 10 -7 torr) is employed. The lamp produces, when used with high purity He, narrow lines almost clear at 21.2 eV and 40.8 eV, depending on the discharge chamber pressure, thus eliminating the need of a monochromator. As a high voltage source (3 KV), a commercial unit with a good current control was used, ensuring UV beam stability - an essential characteristic for this lamp if it is employed for photoelectron excitation of crystalline samples. (C.L.B.) [pt

  3. Materials Survey: Tungsten

    Science.gov (United States)

    1956-12-01

    Columbia, from which tungsten production is planned approximately 60 miles east fromSkagway, were estimated at the end of 1951 to be Alaska. Reserves...of the principal mines inimportant producers. 1952 halted expansion programs planned by Production in Argentina reached a maxi- Patiffo Mines and...government.Concentrates International Mining Co. (W. R. Grace & from small producers are collected and Co.), La Paz; Chojlla Mine; type ore-- marketed by Banco Minero

  4. 30 CFR 57.17010 - Electric lamps.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electric lamps. 57.17010 Section 57.17010 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE....17010 Electric lamps. Individual electric lamps shall be carried for illumination by all persons...

  5. 49 CFR 234.221 - Lamp voltage.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Lamp voltage. 234.221 Section 234.221 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION..., Inspection, and Testing Maintenance Standards § 234.221 Lamp voltage. The voltage at each lamp shall be...

  6. Spectroscopy on metal-halide lamps under varying gravity conditions

    NARCIS (Netherlands)

    Flikweert, A.J.

    2008-01-01

    Worldwide, 20% of all electricity is used for lighting. For this reason, efficient lamps are economically and ecologically important. High intensity discharge (HID) lamps are efficient lamps. The most common HID lamp these days is the metal-halide (MH) lamp. MH lamps have a good colour rendering

  7. Helium bubble bursting in tungsten

    International Nuclear Information System (INIS)

    Sefta, Faiza; Juslin, Niklas; Wirth, Brian D.

    2013-01-01

    Molecular dynamics simulations have been used to systematically study the pressure evolution and bursting behavior of sub-surface helium bubbles and the resulting tungsten surface morphology. This study specifically investigates how bubble shape and size, temperature, tungsten surface orientation, and ligament thickness above the bubble influence bubble stability and surface evolution. The tungsten surface is roughened by a combination of adatom “islands,” craters, and pinholes. The present study provides insight into the mechanisms and conditions leading to various tungsten topology changes, which we believe are the initial stages of surface evolution leading to the formation of nanoscale fuzz

  8. Investigation of structure in the modular light pipe component for LED automotive lamp

    Science.gov (United States)

    Chen, Hsi-Chao; Zhou, Yang; Huang, Chien-Sheng; Jhong, Wan-Ling; Cheng, Bo-Wei; Jhang, Jhe-Ming

    2014-09-01

    Light-Emitting Diodes (LEDs) have the advantages of small length, long lifetime, fast response time (μs), low voltage, good mechanical properties and environmental protection. Furthermore, LEDs could replace the halogen lamps to avoid the mercury pollution and economize the use of energy. Therefore, the LEDs could instead of the traditional lamp in the future and became an important light source. The proposal of this study was to investigate the effects of the structure and length of the reflector component for a LED automotive lamp. The novel LED automotive lamp was assembled by several different modularization columnar. The optimized design of the different structure and the length to the reflector was simulated by software TracePro. The design result must met the vehicle regulation of United Nations Economic Commission for Europe (UNECE) such as ECE-R19 etc. The structure of the light pipe could be designed by two steps structure. Then constitute the proper structure and choose different power LED to meet the luminous intensity of the vehicle regulation. The simulation result shows the proper structure and length has the best total luminous flux and a high luminous efficiency for the system. Also, the stray light could meet the vehicle regulation of ECE R19. Finally, the experimental result of the selected structure and length of the light pipe could match the simulation result above 80%.

  9. Fabry-Perot measurements of barium temperature in fluorescent lamps

    International Nuclear Information System (INIS)

    Hadrath, S; Garner, R

    2010-01-01

    A scanning Fabry-Perot interferometer (FPI) is used to determine the temperature of barium atoms that are liberated from the electrodes of fluorescent lamps during their steady-state operation. Barium, a constituent of the work function lowering emitter material that is placed on the tungsten coil that forms the electrode, is liberated primarily by evaporation from the hot (∼1300 K) thermionic electrode. However, there may be situations or modes of operation in which barium is, in addition, sputtered, a condition which may lead to increased end-darkening, shortened life and increased mercury consumption in the lamp. Using the FPI diagnostic, the occurrence of sputtering is inferred when barium temperatures are much greater than the electrode temperature. The FPI diagnostic senses resonance radiation (λ = 553 nm) emitted by barium atoms excited in the low pressure discharge environment, and infers temperature from the Doppler broadened linewidth. The diagnostic has proven to be successful in a number of situations. Measurements have been made on rare gas discharges and on Hg-argon discharges for different discharge currents, gas pressures and auxiliary coil currents. Measurements are phase resolved for ac-driven discharges.

  10. Valuation of the light intensity from curing lamps of the students of odontology of the Universidad de Costa Rica during 2011, with respect to the manufacturer's specifications

    International Nuclear Information System (INIS)

    Solano Badilla, Lucrecia

    2011-01-01

    The behavior of the light intensity from halogens curing lamps used by students at the Facultad de Odontologia of the Universidad de Costa Rica (UCR) is studied with respect to the manufacturer's specifications of the lamp and the resin. The distribution of the type of curing lamp per student is described, as well as some characteristics of them. The light intensity mW/cm 2 of the curing lamps operated by students at the Facultad de Odontologia is compared with the manufacturer's specifications of the lamp. The light intensity mW/cm 2 is compared with the manufacturer's specifications of the resin utilized, by brand, by students of the Facultad de Odontologia of the UCR for their photopolymerization [es

  11. Harmonics Monitoring Survey on LED Lamps

    Directory of Open Access Journals (Sweden)

    Abdelrahman Ahmed Akila

    2017-03-01

    Full Text Available Light Emitting Diode (LED lamps are being increasingly used in many applications. These LED lamps operate using a driver, which is a switching device. Hence, LED lamps will be a source of harmonics in the power system. These harmonics if not well treated, may cause severe performance and operational problems. In this paper, harmonics (amplitude and phase angles generated by both LED lamps and conventional fluorescent lamps will be studied practically. Then they will be analyzed and evaluated. Compared to each other harmonics generated by both LED and conventional florescent lamps, self mitigation may occur based on the phase angle of these harmonics. All data will be measured using power analyzer and will be done on a sample of actual lamps.

  12. Self diffusion in tungsten

    International Nuclear Information System (INIS)

    Mundy, J.N.; Rothman, S.J.; Lam, N.Q.; Nowicki, L.J.; Hoff, H.A.

    1978-01-01

    The lack of understanding of self-diffusion in Group VI metals together with the wide scatter in the measured values of tungsten self-diffusion has prompted the present measurements to be made over a wide temperature range (1/2Tsub(m) to Tsub(m)). The diffusion coefficients have been measured in the temperature range 1430-2630 0 C. The present measurements show non-linear Arrhenius behavior but a reliable two-exponential fit of the data should await further measurements. (Auth.)

  13. Gas tungsten arc welder

    International Nuclear Information System (INIS)

    Christiansen, D.W.; Brown, W.F.

    1984-01-01

    A welder for automated closure of fuel pins by a gas tungsten arc process in which a rotating length of cladding is positioned adjacent a welding electrode in a sealed enclosure. An independently movable grinder, co-axial with the electrode, is provided in the enclosure for refurbishing the used electrode between welds. The specification also discloses means for loading of the cladding with fuel pellets and for placement of reflectors, gas capsules and end caps. Gravity feed conveyor and inerting means are also described. (author)

  14. Studies on halogen quenching through the Stern-Volmer plot

    International Nuclear Information System (INIS)

    Takiue, Makoto; Ishikawa, Hiroaki.

    1978-01-01

    The quenching effect for halogenated benzenes, methanes and ethanes have been investigated. The halogen quenching was accurately measured using the internal conversion electrons emitted from 113 Sn-sup(113m)In. From the quenching constants determined by the Stern-Volmer plots with respect to various halogen quenchers, the following results have been obtained. (1) The quenching constants increase with the number of halogen substituents, so as linearly in halogenated benzenes and exponentially in halogenated methanes and ethanes. Even the isomers of halogenides have different quenching constants. (2) There is a linearity between logarithm of the quenching constant and a polarographic half-wave reduction potential. (3) Electron excitation provides larger quenching constants than UV excitation for halogenated methanes. Based on these results, the mechanism of halogen quenching have been discussed in connection with the exciplex formation. (auth.)

  15. SYNTHESIS AND CHARACTERIZATION OF NEW HALOGENATED CURCUMINOIDS

    Directory of Open Access Journals (Sweden)

    Eugenio Torres

    2013-12-01

    Full Text Available In this work a novel procedure of synthesis of compounds analogues to curcumin with halogens atoms in its structure is described, which can increase its solubility and biological activity. Four halogenated curcuminoids were obtained with great pharmacological interest, none of them reported in literature before. Synthesis was carried out by means of the aldol condensation assisted by microwaves of halogenated aromatic aldehydes and acetylacetona, using morpholine as basic catalyst, in absence of solvent, and the reaction just needed 1 min. The products were purified by treatment of the reaction mixture with methanol under ultrasound irradiation, followed by chromatographic column. All obtained compounds were characterized by infrared spectroscopy, nuclear magnetic resonance, quantitative elementary analysis and high resolution mass spectrometry. The RMN-1H data demonstrate in all structures of synthesized curcuminoids the enol form is the most favored.

  16. Halogens in chondritic meteorites and terrestrial accretion

    Science.gov (United States)

    Clay, Patricia L.; Burgess, Ray; Busemann, Henner; Ruzié-Hamilton, Lorraine; Joachim, Bastian; Day, James M. D.; Ballentine, Christopher J.

    2017-11-01

    Volatile element delivery and retention played a fundamental part in Earth’s formation and subsequent chemical differentiation. The heavy halogens—chlorine (Cl), bromine (Br) and iodine (I)—are key tracers of accretionary processes owing to their high volatility and incompatibility, but have low abundances in most geological and planetary materials. However, noble gas proxy isotopes produced during neutron irradiation provide a high-sensitivity tool for the determination of heavy halogen abundances. Using such isotopes, here we show that Cl, Br and I abundances in carbonaceous, enstatite, Rumuruti and primitive ordinary chondrites are about 6 times, 9 times and 15-37 times lower, respectively, than previously reported and usually accepted estimates. This is independent of the oxidation state or petrological type of the chondrites. The ratios Br/Cl and I/Cl in all studied chondrites show a limited range, indistinguishable from bulk silicate Earth estimates. Our results demonstrate that the halogen depletion of bulk silicate Earth relative to primitive meteorites is consistent with the depletion of lithophile elements of similar volatility. These results for carbonaceous chondrites reveal that late accretion, constrained to a maximum of 0.5 ± 0.2 per cent of Earth’s silicate mass, cannot solely account for present-day terrestrial halogen inventories. It is estimated that 80-90 per cent of heavy halogens are concentrated in Earth’s surface reservoirs and have not undergone the extreme early loss observed in atmosphere-forming elements. Therefore, in addition to late-stage terrestrial accretion of halogens and mantle degassing, which has removed less than half of Earth’s dissolved mantle gases, the efficient extraction of halogen-rich fluids from the solid Earth during the earliest stages of terrestrial differentiation is also required to explain the presence of these heavy halogens at the surface. The hydropilic nature of halogens, whereby they track

  17. Thermal behavior of halogenated imidebismaleimide resins

    International Nuclear Information System (INIS)

    Mohammad, A.; Al-Halim, N.Z.

    1995-01-01

    Several new poly-halogenated malecimides, bismaleimides and therir copoly resins were synthessised thermally from their corresponding amic acids. The synthesis was accomplished by two way method (amic acid-polimide) instead of the well-known three way method (amic acid-imide-polyimide). Thermal characterization of monomers and their cured resins was achieved using differential thermal analysis (DTA), dynamic thermogravimetric analysis (TGA) and isothermal gravimetric analysis (IGA). The effect of halogen substituent, especially in the ortho postion, is clear in the imidization proces, while polymerization proceeds almost equally in all systems. Thermal properties of homo and copolymers were correlated with their chemical structures. (author). 15 refs., 4

  18. Is halogen content the most important factor in the removal of halogenated trace organics by MBR treatment?

    Science.gov (United States)

    Hai, Faisal I; Tadkaew, Nichanan; McDonald, James A; Khan, Stuart J; Nghiem, Long D

    2011-05-01

    This study investigated the relationship between physicochemical properties (namely halogen content and hydrophobicity) of halogenated trace organics and their removal efficiencies by a laboratory scale membrane bioreactor (MBR) under stable operating conditions. The reported results demonstrated a combined effect of halogen content and hydrophobicity on the removal. Compounds with high halogen content (>0.3) were well removed (>85%) when they possessed high hydrophobicity (Log D>3.2), while those with lower Log D values were also well removed if they had low halogen content (BIOWIN index (which is based on only biodegradation) or a more specific index such as the halogen content (which captures a chemical aspect) appeared insufficient to predict the removal efficiency of halogenated compounds in MBR. Experimental data confirmed that the ratio of halogen content and Log D, which incorporates two important physico-chemical properties, is comparatively more suitable. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Passivation of quartz for halogen-containing light sources

    Science.gov (United States)

    Falkenstein, Zoran

    1999-01-01

    Lifetime of halogen containing VUV, UV, visible or IR light sources can be extended by passivating the quartz or glass gas containers with halogens prior to filling the quartz with the halogen and rare gas mixtures used to produce the light.

  20. Collisional and radiative processes in fluorescent lamps

    International Nuclear Information System (INIS)

    Lister, Graeme G.

    2003-01-01

    Since electrode life is the major limiting factor in operating fluorescent lamps, many lighting companies have introduced 'electrodeless' fluorescent lamps, using inductively coupled discharges. These lamps often operate at much higher power loadings than standard lamps and numerical models have not been successful in reproducing experimental measurements in the parameter ranges of interest. A comprehensive research program was undertaken to study the fundamental physical processes of these discharges, co-funded by the Electric Power Research Institute (EPRI) and OSRAM SYLVANIA under the name of ALITE. The program included experiments and modeling of radiation transport, computations of electron-atom and atom-atom cross sections and the first comprehensive power balance studies of a highly loaded fluorescent lamp. Results from the program and their importance to the understanding of the physics of fluorescent lamps are discussed, with particular emphasis on the important collisional and radiative processes. Comparisons between results of experimental measurements and numerical models are presented

  1. Lamp with a truncated reflector cup

    Science.gov (United States)

    Li, Ming; Allen, Steven C.; Bazydola, Sarah; Ghiu, Camil-Daniel

    2013-10-15

    A lamp assembly, and method for making same. The lamp assembly includes first and second truncated reflector cups. The lamp assembly also includes at least one base plate disposed between the first and second truncated reflector cups, and a light engine disposed on a top surface of the at least one base plate. The light engine is configured to emit light to be reflected by one of the first and second truncated reflector cups.

  2. Retention of Halogens in Waste Glass

    Energy Technology Data Exchange (ETDEWEB)

    Hrma, Pavel R.

    2010-05-01

    In spite of their potential roles as melting rate accelerators and foam breakers, halogens are generally viewed as troublesome components for glass processing. Of five halogens, F, Cl, Br, I, and At, all but At may occur in nuclear waste. A nuclear waste feed may contain up to 10 g of F, 4 g of Cl, and ≤100 mg of Br and I per kg of glass. The main concern is halogen volatility, producing hazardous fumes and particulates, and the radioactive iodine 129 isotope of 1.7x10^7-year half life. Because F and Cl are soluble in oxide glasses and tend to precipitate on cooling, they can be retained in the waste glass in the form of dissolved constituents or as dispersed crystalline inclusions. This report compiles known halogen-retention data in both high-level waste (HLW) and low-activity waste (LAW) glasses. Because of its radioactivity, the main focus is on I. Available data on F and Cl were compiled for comparison. Though Br is present in nuclear wastes, it is usually ignored; no data on Br retention were found.

  3. Lamp-Ballast Compatibility Index for Efficient Ceramic Metal Halide Lamp Operation

    OpenAIRE

    Sourish Chatterjee

    2013-01-01

    Development of energy efficient products and exploration of energy saving potential are major challenges for present day’s technology. Ceramic Metal Halide lamp is the latest improved version of metal halide lamp that finds its wide applications in indoor commercial lighting especially in retail shop lighting. This lamp shows better performance in terms of higher lumen per watt and colour constancy in comparison to conventional metal halide lamp. The inherent negative incremental impedance of...

  4. VIRTIS-M flight lamps

    International Nuclear Information System (INIS)

    Melchiorri, R.; Piccioni, G.; Mazzoni, A.

    2003-01-01

    VIRTIS-M is a visible-infrared (VIS-IR) image spectrometer designed for the Rosetta mission; it intends to provide detailed informations on the physical, chemical, and mineralogical nature of comets and asteroids. The in-flight performances of VIRTIS-M are expected to be influenced by various disturbances, like the initial strong vibrations of the rocket, the long duration of the experiment (from 2003 to 2010), as well as other possible environmental changes; therefore, an in-flight recalibration procedure is mandatory. Quite often in such kinds of missions, a light emission diode (LED) is employed to calibrate the on-board spectrometers by taking advantage of the relative small dimensions, stability, and hardness of these sources. VIRTIS-M is the first image spectrometer that will use a new generation of lamps for internal calibrations. These new lamps are characterized by a wide spectral range with a blackbody-like emission with an effective temperature of about (2400-2600 K), thereby covering the whole VIRTIS-M's spectral range (0.2-5 μm); i.e., they offer the possibility of a wider spectral calibration in comparison with the quasimonochromatic LED emission. A precise spectral calibration is achieved by adding special filters for visible and infrared ranges in front of the window source, containing many narrow absorption lines. In the present article, we describe the calibration and tests of some flight prototypes of these lamps (VIS and IR), realized by the Officine Galileo and calibrated by the Consiglio Nazionale delle Ricerche-Istituto di Astrofisica Spaziale e Fisica Cosmica

  5. Tungsten and optics

    International Nuclear Information System (INIS)

    Reglero, V.; Velasco, T.; Rodrigo, J.; Gasent, L.J.; Alamo, J.; Chato, R.; Ruiz Urien, I.; Santos, I.; Zarauz, J.

    2001-01-01

    High energy astronomy research requires accurate location to perform multiwavelength studies of the cosmic gamma-ray emitters. New technologies have been developed to achieve this goal, the use of large spatial signal multiplexing systems (Masks). The optical system based on the use of coded Masks together with solid stated pixelated planes provide a point source location capability of 1 arc min, that is 3600 times better than of the last NASA CGRO mission. Different materials were considered to modulate the high energy signals, tungsten was selected for implementing the codes due to both its high density and large atomic number that provide the required stooping power. An overview of the programme carried out to design and manufacture the coded Masks is provided. (nevyjel)

  6. 49 CFR 393.25 - Requirements for lamps other than head lamps.

    Science.gov (United States)

    2010-10-01

    ... listed in paragraph (c) of this section. If motor vehicle equipment (e.g., mirrors, snow plows, wrecker...: J586—Stop Lamps for Use on Motor Vehicles Less Than 2032 mm in Overall Width, March 2000; J2261 Stop Lamps and Front- and Rear-Turn Signal Lamps for Use on Motor Vehicles 2032 mm or More in Overall Width...

  7. TIG (Tungsten Inert Gas) welding

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    After having recalled the Tungsten Inert Gas process principle and the different alternative TIG processes, the author explains the advantages and limits of this process. The applications and recent developments are given. (O.M.)

  8. Discharge lamp with reflective jacket

    Science.gov (United States)

    MacLennan, Donald A.; Turner, Brian P.; Kipling, Kent

    2001-01-01

    A discharge lamp includes an envelope, a fill which emits light when excited disposed in the envelope, a source of excitation power coupled to the fill to excite the fill and cause the fill to emit light, and a reflector disposed around the envelope and defining an opening, the reflector being configured to reflect some of the light emitted by the fill back into the fill while allowing some light to exit through the opening. The reflector may be made from a material having a similar thermal index of expansion as compared to the envelope and which is closely spaced to the envelope. The envelope material may be quartz and the reflector material may be either silica or alumina. The reflector may be formed as a jacket having a rigid structure which does not adhere to the envelope. The lamp may further include an optical clement spaced from the envelope and configured to reflect an unwanted component of light which exited the envelope back into the envelope through the opening in the reflector. Light which can be beneficially recaptured includes selected wavelength regions, a selected polarization, and selected angular components.

  9. The gas phase emitter effect of lanthanum within ceramic metal halide lamps and its dependence on the La vapor pressure and operating frequency

    Energy Technology Data Exchange (ETDEWEB)

    Ruhrmann, C.; Hoebing, T.; Bergner, A.; Groeger, S.; Awakowicz, P.; Mentel, J. [Electrical Engineering and Plasma Technology, Ruhr University Bochum, D-44780 Bochum (Germany); Denissen, C.; Suijker, J. [Philips Lighting, Category Professional Lamps, P.O. Box 80020, NL-5600JM Eindhoven (Netherlands)

    2015-08-07

    The gas phase emitter effect increases the lamp lifetime by lowering the work function and, with it, the temperature of the tungsten electrodes of metal halide lamps especially for lamps in ceramic vessels due to their high rare earth pressures. It is generated by a monolayer on the electrode surface of electropositive atoms of certain emitter elements, which are inserted into the lamp bulb by metal iodide salts. They are vaporized, dissociated, ionized, and deposited by an emitter ion current onto the electrode surface within the cathodic phase of lamp operation with a switched-dc or ac-current. The gas phase emitter effect of La and the influence of Na on the emitter effect of La are studied by spatially and phase-resolved pyrometric measurements of the electrode tip temperature, La atom, and ion densities by optical emission spectroscopy as well as optical broadband absorption spectroscopy and arc attachment images by short time photography. An addition of Na to the lamp filling increases the La vapor pressure within the lamp considerably, resulting in an improved gas phase emitter effect of La. Furthermore, the La vapor pressure is raised by a heating of the cold spot. In this way, conditions depending on the La vapor pressure and operating frequency are identified, at which the temperature of the electrodes becomes a minimum.

  10. Tungsten--carbide critical assembly

    International Nuclear Information System (INIS)

    Hansen, G.E.; Paxton, H.C.

    1975-06-01

    The tungsten--carbide critical assembly mainly consists of three close-fitting spherical shells: a highly enriched uranium shell on the inside, a tungsten--carbide shell surrounding it, and a steel shell on the outside. Ideal critical specifications indicate a rather low computed value of k/sub eff/. Observed and calculated fission-rate distributions for 235 U, 238 U, and 237 Np are compared, and calculated leakage neutrons per fission in various energy groups are given. (U.S.)

  11. Micro creep mechanisms of tungsten

    International Nuclear Information System (INIS)

    Levoy, R.; Hugon, I.; Burlet, H.; Baillin, X.; Guetaz, L.

    2000-01-01

    Due to its high melting point (3410 deg C), tungsten offers good mechanical properties at elevated temperatures for several applications in non-oxidizing environment. The creep behavior of tungsten is well known between 1200 and 2500 deg C and 10 -3 to 10 -1 strain. However, in some applications when dimensional stability of components is required, these strains are excessive and it is necessary to know the creep behavior of the material for micro-strains (between 10 -4 and 10 -6 ). Methods and devices used to measure creep micro-strains are presented, and creep equations (Norton and Chaboche laws) were developed for wrought, annealed and recrystallized tungsten. The main results obtained on tungsten under low stresses are: stress exponent 1, symmetry of micro-strains in creep-tension and creep-compression, inverse creep (threshold stress), etc. TEM, SEM and EBSD studies allow interpretation of the micro-creep mechanism of tungsten under low stresses and low temperature (∼0.3 K) like the Harper-Dorn creep. In Harper-Dorn creep, micro-strains are associated with the density and the distribution of dislocations existing in the crystals before creep. At 975 deg C, the initial dislocation structure moves differently whether or not a stress is applied. To improve the micro-creep behavior of tungsten, a heat treatment is proposed to create the optimum dislocation structure. (authors)

  12. Diode-laser-illuminated automotive lamp systems

    Science.gov (United States)

    Marinelli, Michael A.; Remillard, Jeffrey T.

    1998-05-01

    We have utilized the high brightness of state-of-the-art diode laser sources, and a variety of emerging optical technologies to develop a new class of thin, uniquely styled automotive brake and signal lamps. Using optics based on thin (5 mm) plastic sheets, these lamps provide appearance and functional advantages not attainable with traditional automotive lighting systems. The light is coupled into the sheets using a 1 mm diameter glass fiber, and manipulated using refraction and reflection from edges, surfaces, and shaped cut-outs. Light can be extracted with an efficiency of approximately 50% and formed into a luminance distribution that meets the Society of Automotive Engineers (SAE) photometric requirements. Prototype lamps using these optics have been constructed and are less than one inch in thickness. Thin lamps reduce sheet metal costs, complexity, material usage, weight, and allow for increased trunk volume. In addition, these optics enhance lamp design flexibility. When the lamps are not energized, they can appear body colored, and when lighted, the brightness distribution across the lamp can be uniform or structured. A diode laser based brake lamp consumes seven times less electrical power than one using an incandescent source and has instant on capability. Also, diode lasers have the potential to be 10-year/150,000 mile light sources.

  13. Tungsten wire and tubing joined by nickel brazing

    Science.gov (United States)

    1965-01-01

    Thin tungsten wire and tungsten tubing are brazed together using a contacting coil of nickel wire heated to its melting point in an inert-gas atmosphere. This method is also effective for brazing tungsten to tungsten-rhenium parts.

  14. Dispenser printed electroluminescent lamps on textiles for smart fabric applications

    Science.gov (United States)

    de Vos, Marc; Torah, Russel; Tudor, John

    2016-04-01

    Flexible electroluminescent (EL) lamps are fabricated onto woven textiles using a novel dispenser printing process. Dispenser printing utilizes pressurized air to deposit ink onto a substrate through a syringe and nozzle. This work demonstrates the first use of this technology to fabricate EL lamps. The luminance of the dispenser printed EL lamps is compared to screen-printed EL lamps, both printed on textile, and also commercial EL lamps on polyurethane film. The dispenser printed lamps are shown to have a 1.5 times higher luminance than the best performing commercially available lamp, and have a comparable performance to the screen-printed lamps.

  15. Dispenser printed electroluminescent lamps on textiles for smart fabric applications

    International Nuclear Information System (INIS)

    De Vos, Marc; Torah, Russel; Tudor, John

    2016-01-01

    Flexible electroluminescent (EL) lamps are fabricated onto woven textiles using a novel dispenser printing process. Dispenser printing utilizes pressurized air to deposit ink onto a substrate through a syringe and nozzle. This work demonstrates the first use of this technology to fabricate EL lamps. The luminance of the dispenser printed EL lamps is compared to screen-printed EL lamps, both printed on textile, and also commercial EL lamps on polyurethane film. The dispenser printed lamps are shown to have a 1.5 times higher luminance than the best performing commercially available lamp, and have a comparable performance to the screen-printed lamps. (paper)

  16. Boiling points of halogenated ethanes: an explanatory model implicating weak intermolecular hydrogen-halogen bonding.

    Science.gov (United States)

    Beauchamp, Guy

    2008-10-23

    This study explores via structural clues the influence of weak intermolecular hydrogen-halogen bonds on the boiling point of halogenated ethanes. The plot of boiling points of 86 halogenated ethanes versus the molar refraction (linked to polarizability) reveals a series of straight lines, each corresponding to one of nine possible arrangements of hydrogen and halogen atoms on the two-carbon skeleton. A multiple linear regression model of the boiling points could be designed based on molar refraction and subgroup structure as independent variables (R(2) = 0.995, standard error of boiling point 4.2 degrees C). The model is discussed in view of the fact that molar refraction can account for approximately 83.0% of the observed variation in boiling point, while 16.5% could be ascribed to weak C-X...H-C intermolecular interactions. The difference in the observed boiling point of molecules having similar molar refraction values but differing in hydrogen-halogen intermolecular bonds can reach as much as 90 degrees C.

  17. Further development of the tungsten-fibre reinforced tungsten composite

    Energy Technology Data Exchange (ETDEWEB)

    Gietl, Hanns; Hoeschen, Till; Riesch, Johann [Max-Planck-Institut fuer Plasmaphysik, 85748 Garching (Germany); Aumann, Martin; Coenen, Jan [Forschungszentrum Juelich, IEK4, 52425 Juelich (Germany); Huber, Philipp [Lehrstuhl fuer Textilmaschinenbau und Institut fuer Textiltechnik (ITA), 52062 Aachen (Germany); Neu, Rudolf [Max-Planck-Institut fuer Plasmaphysik, 85748 Garching (Germany); Technische Universitaet Muenchen, 85748 Garching (Germany)

    2016-07-01

    For the use in a fusion device tungsten has a unique property combination. The brittleness below the ductile-to-brittle transition temperature and the embrittlement during operation e.g. by overheating, neutron irradiation are the main drawbacks for the use of pure tungsten. Tungsten fibre-reinforced tungsten composites utilize extrinsic mechanisms to improve the toughness. After proofing that this idea works in principle the next step is the conceptual proof for the applicability in fusion reactors. This will be done by producing mock-ups and testing them in cyclic high heat load tests. For this step all constituents of the composite, which are fibre, matrix and interface, and all process steps need to be investigated. Tungsten fibres are investigated by means of tension tests to find the optimum diameter and pretreatment. New interface concepts are investigated to meet the requirements in a fusion reactor, e.g. high thermal conductivity, low activation. In addition weaving processes are evaluated for their use in the fibre preform production. This development is accompanied by an extensive investigation of the materials properties e.g. single fibre tension tests.

  18. Process for removal of hydrogen halides or halogens from incinerator gas

    Science.gov (United States)

    Huang, H.S.; Sather, N.F.

    1987-08-21

    A process for reducing the amount of halogens and halogen acids in high temperature combustion gas and through their removal, the formation of halogenated organics at lower temperatures, with the reduction being carried out electrochemically by contacting the combustion gas with the negative electrode of an electrochemical cell and with the halogen and/or halogen acid being recovered at the positive electrode.

  19. Toughness enhancement of tungsten reinforced with short tungsten fibres

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Y. [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Zhang, L.H. [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China, Hefei 230026 (China); Fang, Q.F., E-mail: qffang@issp.ac.cn [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China, Hefei 230026 (China); Zhang, T.; Wang, X.P.; Hao, T.; Liu, C.S. [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2017-04-06

    The feasibility and toughening efficiency of the short tungsten fibre reinforcement on tungsten were investigated in W{sub f}/W composites fabricated by powder metallurgy method of spark plasma sintering. Fibres in the composites presented a Z-free laminar structure. Partial recrystallization of fibre grains occurred but fibre crack or damage was not detected. Fracture energy of W{sub f}/W composites was estimated in tensile tests, and the results indicated great toughness improvement over pure tungsten in virtue of frictional pullout and plastic deformation of fibres, and matrix-fibres interfacial debonding since 873 K. The specimen with mass fraction of 10% and fibre diameter of 100 µm exhibits the largest elongation of 9±1.1% and the highest ultimate strength of 482±13 MPa at 873 K.

  20. Molecular activation analysis for organo-halogen contaminants in yogurt

    International Nuclear Information System (INIS)

    Zhang Hong; Chai Zhifang

    2004-01-01

    The concentrations of total halogen (TX), extractable organo-halogen (EOX), extractable persistent organo-halogen (EPOX), organo-chlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in 18 different yogurt specimens of 14 brands from Beijing, Tianjin, Shanghai, Guangzhou and Shijiazhuang were determined by epithermal neutron activation analysis (ENAA), molecular activation analysis (MAA) and GC-Mass Spectrometry (GC-MS), respectively. The results indicated that the halogen in yogurt mainly existed as inorganic species and non-extractable organo-halogen compounds. About 1/3 to 1/4 of EOX was EPOX. Further, EOCl and EPOCl were the main organo-halogen species in yogurt. The average concentration of the unknown organo-chlorine was 96% of the EPOCl. HCHs and DDTs were still the main contaminants of OCPs in the yogurt of interest. Also, PCB202, PCB103 and PCB208 were the main contaminants of PCBs. (authors)

  1. Computational Tools To Model Halogen Bonds in Medicinal Chemistry.

    Science.gov (United States)

    Ford, Melissa Coates; Ho, P Shing

    2016-03-10

    The use of halogens in therapeutics dates back to the earliest days of medicine when seaweed was used as a source of iodine to treat goiters. The incorporation of halogens to improve the potency of drugs is now fairly standard in medicinal chemistry. In the past decade, halogens have been recognized as direct participants in defining the affinity of inhibitors through a noncovalent interaction called the halogen bond or X-bond. Incorporating X-bonding into structure-based drug design requires computational models for the anisotropic distribution of charge and the nonspherical shape of halogens, which lead to their highly directional geometries and stabilizing energies. We review here current successes and challenges in developing computational methods to introduce X-bonding into lead compound discovery and optimization during drug development. This fast-growing field will push further development of more accurate and efficient computational tools to accelerate the exploitation of halogens in medicinal chemistry.

  2. New Type of Halogen Bond: Multivalent Halogen Interacting with π- and σ-Electrons

    Directory of Open Access Journals (Sweden)

    Sławomir J. Grabowski

    2017-12-01

    Full Text Available MP2/aug-cc-pVTZ calculations were performed for complexes of BrF3 and BrF5 acting as Lewis acids through the bromine centre, with species playing a role of Lewis base: dihydrogen, acetylene, ethylene, and benzene. The molecular hydrogen donates electrons by its σ-bond, while in remaining moieties—in complexes of hydrocarbons; such an electron transfer follows from π-electrons. The complexes are linked by a kind of the halogen bond that is analyzed for the first time in this study, i.e., it is the link between the multivalent halogen and π or σ-electrons. The nature of such a halogen bond is discussed, as well as various dependencies and correlations are presented. Different approaches are applied here, the Quantum Theory of Atoms in Molecules, Natural Bond Orbital method, the decomposition of the energy of interaction, the analysis of electrostatic potentials, etc.

  3. Geometric Modelling of Octagonal Lamp Poles

    Science.gov (United States)

    Chan, T. O.; Lichti, D. D.

    2014-06-01

    Lamp poles are one of the most abundant highway and community components in modern cities. Their supporting parts are primarily tapered octagonal cones specifically designed for wind resistance. The geometry and the positions of the lamp poles are important information for various applications. For example, they are important to monitoring deformation of aged lamp poles, maintaining an efficient highway GIS system, and also facilitating possible feature-based calibration of mobile LiDAR systems. In this paper, we present a novel geometric model for octagonal lamp poles. The model consists of seven parameters in which a rotation about the z-axis is included, and points are constrained by the trigonometric property of 2D octagons after applying the rotations. For the geometric fitting of the lamp pole point cloud captured by a terrestrial LiDAR, accurate initial parameter values are essential. They can be estimated by first fitting the points to a circular cone model and this is followed by some basic point cloud processing techniques. The model was verified by fitting both simulated and real data. The real data includes several lamp pole point clouds captured by: (1) Faro Focus 3D and (2) Velodyne HDL-32E. The fitting results using the proposed model are promising, and up to 2.9 mm improvement in fitting accuracy was realized for the real lamp pole point clouds compared to using the conventional circular cone model. The overall result suggests that the proposed model is appropriate and rigorous.

  4. UHP lamp systems for projection applications

    International Nuclear Information System (INIS)

    Derra, Guenther; Moench, Holger; Fischer, Ernst; Giese, Hermann; Hechtfischer, Ulrich; Heusler, Gero; Koerber, Achim; Niemann, Ulrich; Noertemann, Folke-Charlotte; Pekarski, Pavel; Pollmann-Retsch, Jens; Ritz, Arnd; Weichmann, Ulrich

    2005-01-01

    Projection systems have found widespread use in conference rooms and other professional applications during the last decade and are now entering the home TV market at a considerable pace. Projectors as small as about one litre are able to deliver several thousand screen lumens and are, with a system efficacy of over 10 lm W -1 , the most efficient display systems realized today. Short arc lamps are a key component for projection systems of the highest efficiency for small-size projection displays. The introduction of the ultra high performance (UHP) lamp system by Philips in 1995 can be identified as one of the key enablers of the commercial success of projection systems. The UHP lamp concept features outstanding arc luminance, a well suited spectrum, long life and excellent lumen maintenance. For the first time it combines a very high pressure mercury discharge lamp with extremely short and stable arc gap with a regenerative chemical cycle keeping the discharge walls free from blackening, leading to lifetimes of over 10 000 h. Since the introduction of the UHP lamp system, many important new technology improvements have been realized: burner designs for higher lamp power, advanced ignition systems, miniaturized electronic drivers and innovative reflector concepts. These achievements enabled the impressive increase of projector light output, a remarkable reduction in projector size and even higher optical efficiency in projection systems during the last years. In this paper the concept of the UHP lamp system is described, followed by a discussion of the technological evolution the UHP lamp has undergone so far. Last, but not least, the important improvements of the UHP lamp system including the electronic driver and the reflector are discussed. (review article)

  5. A pulse generator for xenon lamps

    CERN Document Server

    Janata, E

    2002-01-01

    A pulse generator is described, which enhances the analyzing light emitted from a xenon lamp as used in kinetic photospectrometry experiments. The lamp current is increased to 600 A for a duration of 3 ms; the current is constant within +-0.2% during a time interval of 2 ms. Because of instabilities of the lamp arc during pulsing, the use of the enhanced light source is limited to measuring times up to 500 mu s. The enhancement in light intensity depends on the wavelength and amounts to more than 400-fold in the UV-region.

  6. Surface energy anisotropy of tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, R; Grenga, H E [Georgia Inst. of Tech., Atlanta (USA). School of Chemical Engineering

    1976-10-01

    Field-ion microscopy was used to study the faceting behavior and/or surface energy anisotropy of tungsten in vacuum and in hydrogen. In vacuum below 1700 K the activation energy for (110) facet growth agreed with values previously reported for surface diffusion on tungsten. The observed anisotropy values at 0.5 Tsub(m), where Tsub(m) is the absolute melting temperature of tungsten (approximately 3680 K), were different from those previously reported at higher temperatures and more nearly agreed with broken bond calculations based on Mie potential using m=5, n=8, and a 1.5% lattice expansion. Hydrogen appeared to have a negligible effect on surface energy anisotropy, but did preferentially increase surface diffusion rates on (310) regions.

  7. Fractographic peculiarities of cermet tungsten fracture

    International Nuclear Information System (INIS)

    Stepanenko, V.A.; Babak, A.V.; Uskov, E.I.

    1982-01-01

    Effect of test temperature on fracture peculiarities of cermets tungsten with initial cellular structure of deformation is shown. Tungsten crack resistance increases at temperatures to Tsub(x) (ductile-brittle transition temperature) and decreases at temperatures above Tsub(x). The degree of ceramics tungsten plasticity realization depends on its crack resistance

  8. Recrystallization and embrittlement of sintered tungsten

    International Nuclear Information System (INIS)

    Bega, N.D.; Babak, A.V.; Uskov, E.I.

    1982-01-01

    The recrystallization of sintered tungsten with a cellular structure of deformation is studied as related to its embrittlement. It is stated that in case of preliminary recrystallization the sintered tungsten crack resistance does not depend on the testing temperature. The tungsten crack resistance is shown to lower with an increase of the structure tendency to primary recrystallization [ru

  9. Determination of HID electrode falls in a model lamp I: Pyrometric measurements

    International Nuclear Information System (INIS)

    Dabringhausen, L.; Nandelstaedt, D.; Luhmann, J.; Mentel, J.

    2002-01-01

    To verify models describing the near-electrode regions electrodes of pure and doped tungsten for high intensity discharge lamps are investigated in a special model lamp. It can be operated with arc currents of 1 A to 10 A, DC or AC with arbitrary waveforms up to a few kHz. Argon and xenon, at pressures from 0.1 MPa to 1 MPa, are used as fill gases. A large variety of electrodes can be inserted. To perform spatially resolved measurements they are displaced reproducibly within the discharge tube during lamp operation. Spatially resolved pyrometric measurements of the electrode surface temperature in the case of DC operation are presented. From the temperature distribution the power loss of the electrodes by thermal radiation and heat conduction is determined. It increases almost linearly with the arc current at the anode and less than linear at the cathode. A relation is deduced between the cathode fall and the power fed into the cathode setting up the power balance of the cathodic current transfer zone. The resulting cathode falls show a strong dependence on the electrode diameter. Electrical measurements of separate cathode and anode falls are given in a subsequent paper. The outcomes of both methods and of modelling are compared in a third paper. (author)

  10. Gleeble Testing of Tungsten Samples

    Science.gov (United States)

    2013-02-01

    temperature on an Instron load frame with a 222.41 kN (50 kip) load cell . The samples were compressed at the same strain rate as on the Gleeble...ID % RE Initial Density (cm 3 ) Density after Compression (cm 3 ) % Change in Density Test Temperature NT1 0 18.08 18.27 1.06 1000 NT3 0...4.1 Nano-Tungsten The results for the compression of the nano-tungsten samples are shown in tables 2 and 3 and figure 5. During testing, sample NT1

  11. Method of synthesizing tungsten nanoparticles

    Science.gov (United States)

    Thoma, Steven G; Anderson, Travis M

    2013-02-12

    A method to synthesize tungsten nanoparticles has been developed that enables synthesis of nanometer-scale, monodisperse particles that can be stabilized only by tetrahydrofuran. The method can be used at room temperature, is scalable, and the product concentrated by standard means. Since no additives or stabilizing surfactants are required, this method is particularly well suited for producing tungsten nanoparticles for dispersion in polymers. If complete dispersion is achieved due to the size of the nanoparticles, then the optical properties of the polymer can be largely maintained.

  12. LED lamp power management system and method

    Science.gov (United States)

    Gaines, James; Clauberg, Bernd; Van Erp, Josephus A. M.

    2013-03-19

    An LED lamp power management system and method including an LED lamp having an LED controller 58; a plurality of LED channels 60 operably connected to the LED controller 58, each of the plurality of LED channels 60 having a channel switch 62 in series with at least one shunted LED circuit 83, the shunted LED circuit 83 having a shunt switch 68 in parallel with an LED source 80. The LED controller 58 reduces power loss in one of the channel switch 62 and the shunt switch 68 when LED lamp electronics power loss (P.sub.loss) exceeds an LED lamp electronics power loss limit (P.sub.lim); and each of the channel switches 62 receives a channel switch control signal 63 from the LED controller 58 and each of the shunt switches 68 receives a shunt switch control signal 69 from the LED controller 58.

  13. Reduction of tensile residual stresses during the drawing process of tungsten wires

    International Nuclear Information System (INIS)

    Rodriguez Ripoll, Manel; Weygand, Sabine M.; Riedel, Hermann

    2010-01-01

    Tungsten wires are commonly used in the lighting industry as filaments for lamps. During the drawing process, the inhomogeneous deformation imparted by the drawing die causes tensile residual stresses at the wire surface in circumferential direction. These stresses have a detrimental effect for the wire because they are responsible for driving longitudinal cracks, known as splits. This work proposes two methods for reducing the residual stresses during wire drawing, namely applying an advanced die geometry and performing an inexpensive post-drawing treatment based on targeted bending operations. These two methods are analyzed with finite element simulations using material parameters obtained by mechanical tests on tungsten wires at different temperatures as input data. The computed results predict a substantial reduction of the circumferential residual stresses, thus reducing the risk of splitting.

  14. Luminescence Studies on Lamp Phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Nagpal, J.S.; Godbole, S.V.; Varadharajan, G.; Page, A.G

    1998-07-01

    Photoluminescence and thermoluminescence of cerium magnesium aluminate CeMgAl{sub 11}O{sub 17}(Eu,Tb) and calcium halophosphate Ca{sub 5}(PO{sub 4}){sub 3}(F,Cl):Mn,Sb, two fluorescent materials currently in use for the commercial production of lamps in India, have been studied for possible applications in radiation and ultraviolet dosimetry. Cerium magnesium aluminate is highly sensitive to the visible spectral region. It has a linear response to 254 nm UV radiation over a wide range. Its UV sensitivity is significantly higher as compared to that of other known phosphors; however, its UV response is rate-dependent and may not play a significant role in UV dosimetry. Photoluminescence of CeMg aluminate is characteristic of Eu{sup 2+} and Tb{sup 3+} dopants, whereas the thermoluminescence emission of the UV irradiated powder at room temperature is dominated by Eu{sup 2+} dopant. Calcium halophosphate is insensitive to room lights, has a linear gamma response over 0.2-10{sup 2} Gy and may be useful in the case of radiation accidents. (author)

  15. Luminescence Studies on Lamp Phosphors

    International Nuclear Information System (INIS)

    Nagpal, J.S.; Godbole, S.V.; Varadharajan, G.; Page, A.G.

    1998-01-01

    Photoluminescence and thermoluminescence of cerium magnesium aluminate CeMgAl 11 O 17 (Eu,Tb) and calcium halophosphate Ca 5 (PO 4 ) 3 (F,Cl):Mn,Sb, two fluorescent materials currently in use for the commercial production of lamps in India, have been studied for possible applications in radiation and ultraviolet dosimetry. Cerium magnesium aluminate is highly sensitive to the visible spectral region. It has a linear response to 254 nm UV radiation over a wide range. Its UV sensitivity is significantly higher as compared to that of other known phosphors; however, its UV response is rate-dependent and may not play a significant role in UV dosimetry. Photoluminescence of CeMg aluminate is characteristic of Eu 2+ and Tb 3+ dopants, whereas the thermoluminescence emission of the UV irradiated powder at room temperature is dominated by Eu 2+ dopant. Calcium halophosphate is insensitive to room lights, has a linear gamma response over 0.2-10 2 Gy and may be useful in the case of radiation accidents. (author)

  16. Hydrogen retention properties of polycrystalline tungsten and helium irradiated tungsten

    International Nuclear Information System (INIS)

    Hino, T.; Koyama, K.; Yamauchi, Y.; Hirohata, Y.

    1998-01-01

    The hydrogen retention properties of a polycrystalline tungsten and tungsten irradiated by helium ions with an energy of 5 keV were examined by using an ECR ion irradiation apparatus and a technique of thermal desorption spectroscopy, TDS. The polycrystalline tungsten was irradiated at RT with energetic hydrogen ions, with a flux of 10 15 H cm -2 and an energy of 1.7 keV up to a fluence of 5 x 10 18 H cm -2 . Subsequently, the amount of retained hydrogen was measured by TDS. The heating temperature was increased from RT to 1000 C, and the heating rate was 50 C min -1 . Below 1000 C, two distinct hydrogen desorption peaks were observed at 200 C and 400 C. The retained amount of hydrogen was observed to be five times smaller than that of graphite, but the concentration in the implantation layer was comparable with that of graphite. Also, the polycrystalline tungsten was irradiated with 5 keV helium ions up to a fluence of 1.4 x 10 18 He cm -2 , and then re-irradiated with 1.7 keV hydrogen ions. The amount of retained hydrogen in this later experiment was close to the value in the case without prior helium ion irradiation. However, the amount of hydrogen which desorbed around the low temperature peak, 200 C, was largely enhanced. The desorption amount at 200 C saturated for the helium fluence of more than 5 x 10 17 He cm -2 . The present data shows that the trapping state of hydrogen is largely changed by the helium ion irradiation. Additionally, 5 keV helium ion irradiation was conducted on a sample pre-implanted with hydrogen ions to simulate a helium ion impact desorption of hydrogen retained in tungsten. The amount of the hydrogen was reduced as much as 50%. (orig.)

  17. Mercury and halogens in coal: Chapter 2

    Science.gov (United States)

    Kolker, Allan; Quick, Jeffrey C.; Granite, Evan J.; Pennline, Henry W.; Senior, Constance L.

    2014-01-01

    Apart from mercury itself, coal rank and halogen content are among the most important factors inherent in coal that determine the proportion of mercury captured by conventional controls during coal combustion. This chapter reviews how mercury in coal occurs, gives available concentration data for mercury in U.S. and international commercial coals, and provides an overview of the natural variation in halogens that influence mercury capture. Three databases, the U.S. Geological Survey coal quality (USGS COALQUAL) database for in-ground coals, and the 1999 and 2010 U.S. Environmental Protection Agency (EPA) Information Collection Request (ICR) databases for coals delivered to power stations, provide extensive results for mercury and other parameters that are compared in this chapter. In addition to the United States, detailed characterization of mercury is available on a nationwide basis for China, whose mean values in recent compilations are very similar to the United States in-ground mean of 0.17 ppm mercury. Available data for the next five largest producers (India, Australia, South Africa, the Russian Federation, and Indonesia) are more limited and with the possible exceptions of Australia and the Russian Federation, do not allow nationwide means for mercury in coal to be calculated. Chlorine in coal varies as a function of rank and correspondingly, depth of burial. As discussed elsewhere in this volume, on a proportional basis, bromine is more effective than chlorine in promoting mercury oxidation in flue gas and capture by conventional controls. The ratio of bromine to chlorine in coal is indicative of the proportion of halogens present in formation waters within a coal basin. This ratio is relatively constant except in coals that have interacted with deep-basin brines that have reached halite saturation, enriching residual fluids in bromine. Results presented here help optimize mercury capture by conventional controls and provide a starting point for

  18. FIELD SCREENING FOR HALOGENATED VOLATILE ORGANIC COMPOUNDS

    Energy Technology Data Exchange (ETDEWEB)

    John F. Schabron; Joseph F. Rovani, Jr.; Theresa M. Bomstad

    2003-07-01

    Western Research Institute (WRI) is continuing work toward the development of new screening methodology and a test kit to measure halogenated volatile organic compounds (VOCs) in the field. Heated diode and corona discharge sensors are commonly used to detect leaks of refrigerants from air conditioners, freezers, and refrigerators. They are both selective to the presence of halogens. In prior work, the devices were tested for response to carbon tetrachloride, heptane, toluene, and water vapors. In the current work, sensor response was evaluated with sixteen halogenated VOCs relative to carbon tetrachloride. The results show that the response of the various chlorinated VOCs is within an order of magnitude of the response to carbon tetrachloride for each of the sensors. Thus, for field screening a single response factor can be used. Both types of leak detectors are being further modified to provide an on-board LCD signal readout, which is related to VOC concentration. The units will be fully portable and will operate with 115-V line or battery power. Signal background, noise level, and response data on the Bacharach heated diode detector and the TIF corona discharge detector show that when the response curves are plotted against the log of concentration, the plot is linear to the upper limit for the particular unit, with some curvature at lower levels. When response is plotted directly against concentration, the response is linear at the low end and is curved at the high end. The dynamic ranges for carbon tetrachloride of the two devices from the lower detection limit (S/N=2) to signal saturation are 4-850 vapor parts per million (vppm) for the corona discharge unit and 0.01-70 vppm for the heated diode unit. Additional circuit modifications are being made to lower the detection limit and increase the dynamic response range of the corona discharge unit. The results indicate that both devices show potential utility for future analytical method development work toward

  19. Laboratory Investigations of Stratospheric Halogen Chemistry

    Science.gov (United States)

    Wine, Paul H.; Nicovich, J. Michael; Stickel, Robert E.; Hynes, Anthony J.

    1997-01-01

    A final report for the NASA-supported project on laboratory investigations of stratospheric halogen chemistry is presented. In recent years, this project has focused on three areas of research: (1) kinetic, mechanistic, and thermochemical studies of reactions which produce weakly bound chemical species of atmospheric interest; (2) development of flash photolysis schemes for studying radical-radical reactions of stratospheric interest; and (3) photochemistry studies of interest for understanding stratospheric chemistry. The first section of this paper contains a discussion of work which has not yet been published. All subsequent chapters contain reprints of published papers that acknowledge support from this grant.

  20. Boiling Heat Transfer to Halogenated Hydrocarbon Refrigerants

    Science.gov (United States)

    Yoshida, Suguru; Fujita, Yasunobu

    The current state of knowledge on heat transfer to boiling refrigerants (halogenated hydrocarbons) in a pool and flowing inside a horizontal tube is reviewed with an emphasis on information relevant to the design of refrigerant evaporators, and some recommendations are made for future research. The review covers two-phase flow pattern, heat transfer characteristics, correlation of heat transfer coefficient, influence of oil, heat transfer augmentation, boiling from tube-bundle, influence of return bend, burnout heat flux, film boiling, dryout and post-dryout heat transfer.

  1. Halogenation processes of secondary organic aerosol and implications on halogen release mechanisms

    Directory of Open Access Journals (Sweden)

    J. Ofner

    2012-07-01

    Full Text Available Reactive halogen species (RHS, such as X·, X2 and HOX containing X = chlorine and/or bromine, are released by various sources like photo-activated sea-salt aerosol or from salt pans, and salt lakes. Despite many studies of RHS reactions, the potential of RHS reacting with secondary organic aerosol (SOA and organic aerosol derived from biomass-burning (BBOA has been neglected. Such reactions can constitute sources of gaseous organohalogen compounds or halogenated organic matter in the tropospheric boundary layer and can influence physicochemical properties of atmospheric aerosols.

    Model SOA from α-pinene, catechol, and guaiacol was used to study heterogeneous interactions with RHS. Particles were exposed to molecular chlorine and bromine in an aerosol smog-chamber in the presence of UV/VIS irradiation and to RHS, released from simulated natural halogen sources like salt pans. Subsequently, the aerosol was characterized in detail using a variety of physicochemical and spectroscopic methods. Fundamental features were correlated with heterogeneous halogenation, which results in new functional groups (FTIR spectroscopy, changes UV/VIS absorption, chemical composition (ultrahigh resolution mass spectroscopy (ICR-FT/MS, or aerosol size distribution. However, the halogen release mechanisms were also found to be affected by the presence of organic aerosol. Those interaction processes, changing chemical and physical properties of the aerosol are likely to influence e.g. the ability of the aerosol to act as cloud condensation nuclei, its potential to adsorb other gases with low-volatility, or its contribution to radiative forcing and ultimately the Earth's radiation balance.

  2. HYDROGEN VACANCY INTERACTION IN TUNGSTEN

    NARCIS (Netherlands)

    FRANSENS, [No Value; ELKERIEM, MSA; PLEITER, F

    1991-01-01

    Hydrogen-vacancy interaction in tungsten was investigated by means of the perturbed angular correlation technique, using the isotope In-111 as a probe. Hydrogen trapping at an In-111-vacancy cluster manifests itself as a change of the local electric field gradient, which gives rise to an observable

  3. Fabrication of tungsten wire needles

    International Nuclear Information System (INIS)

    Roder, A.

    1983-02-01

    Fine point needles for field emissoin are conventionally produced by electrolytically or chemically etching tungsten wire. Points formed in this manner have a typical tip radius of about 0.5 microns and a cone angle of some 30 degrees. The construction of needle matrix detector chambers has created a need for tungsten needles whose specifications are: 20 mil tungsten wire, 1.5 inch total length, 3 mm-long taper (resulting in a cone angle of about 5 degrees), and 25 micron-radius point (similar to that found on sewing needles). In the process described here for producing such needles, tungsten wire, immersed in a NaOH solution and in the presence of an electrode, is connected first to an ac voltage and then to a dc supply, to form a taper and a point on the end of the wire immersed in the solution. The process parameters described here are for needles that will meet the above specifications. Possible variations will be discussed under each approprite heading

  4. Scientific conferences: A big hello to halogen bonding

    Science.gov (United States)

    Erdelyi, Mate

    2014-09-01

    Halogen bonding connects a wide range of subjects -- from materials science to structural biology, from computation to crystal engineering, and from synthesis to spectroscopy. The 1st International Symposium on Halogen Bonding explored the state of the art in this fast-growing field of research.

  5. 40 CFR 721.8900 - Substituted halogenated pyridinol, alkali salt.

    Science.gov (United States)

    2010-07-01

    ..., alkali salt. 721.8900 Section 721.8900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.8900 Substituted halogenated pyridinol, alkali salt. (a) Chemical... as substituted halogenated pyridinols, alkali salts (PMNs P-88-1271 and P-88-1272) are subject to...

  6. Optimized positioning of autonomous surgical lamps

    Science.gov (United States)

    Teuber, Jörn; Weller, Rene; Kikinis, Ron; Oldhafer, Karl-Jürgen; Lipp, Michael J.; Zachmann, Gabriel

    2017-03-01

    We consider the problem of finding automatically optimal positions of surgical lamps throughout the whole surgical procedure, where we assume that future lamps could be robotized. We propose a two-tiered optimization technique for the real-time autonomous positioning of those robotized surgical lamps. Typically, finding optimal positions for surgical lamps is a multi-dimensional problem with several, in part conflicting, objectives, such as optimal lighting conditions at every point in time while minimizing the movement of the lamps in order to avoid distractions of the surgeon. Consequently, we use multi-objective optimization (MOO) to find optimal positions in real-time during the entire surgery. Due to the conflicting objectives, there is usually not a single optimal solution for such kinds of problems, but a set of solutions that realizes a Pareto-front. When our algorithm selects a solution from this set it additionally has to consider the individual preferences of the surgeon. This is a highly non-trivial task because the relationship between the solution and the parameters is not obvious. We have developed a novel meta-optimization that considers exactly this challenge. It delivers an easy to understand set of presets for the parameters and allows a balance between the lamp movement and lamp obstruction. This metaoptimization can be pre-computed for different kinds of operations and it then used by our online optimization for the selection of the appropriate Pareto solution. Both optimization approaches use data obtained by a depth camera that captures the surgical site but also the environment around the operating table. We have evaluated our algorithms with data recorded during a real open abdominal surgery. It is available for use for scientific purposes. The results show that our meta-optimization produces viable parameter sets for different parts of an intervention even when trained on a small portion of it.

  7. Tensile behaviour of drawn tungsten wire used in tungsten fibre-reinforced tungsten composites

    International Nuclear Information System (INIS)

    Riesch, J; Feichtmayer, A; Fuhr, M; Gietl, H; Höschen, T; Neu, R; Almanstötter, J; Coenen, J W; Linsmeier, Ch

    2017-01-01

    In tungsten fibre-reinforced tungsten composites (W f /W) the brittleness problem of tungsten is solved by utilizing extrinsic toughening mechanisms. The properties of the composite are very much related to the properties of the drawn tungsten wire used as fibre reinforcements. Its high strength and capability of ductile deformation are ideal properties facilitating toughening of W f /W. Tensile tests have been used for determining mechanical properties and study the deformation and the fracture behaviour of the wire. Tests of as-fabricated and straightened drawn wires with a diameter between 16 and 150 μ m as well as wire electrochemically thinned to a diameter of 5 μ m have been performed. Engineering stress–strain curves and a microscopic analysis are presented with the focus on the ultimate strength. All fibres show a comparable stress–strain behaviour comprising necking followed by a ductile fracture. A reduction of the diameter by drawing leads to an increase of strength up to 4500 MPa as a consequence of a grain boundary hardening mechanism. Heat treatment during straightening decreases the strength whereas electrochemical thinning has no significant impact on the mechanical behaviour. (paper)

  8. Max Tech and Beyond: Fluorescent Lamps

    Energy Technology Data Exchange (ETDEWEB)

    Scholand, Michael

    2012-04-01

    Fluorescent lamps are the most widely used artificial light source today, responsible for approximately 70% of the lumens delivered to our living spaces globally. The technology was originally commercialized in the 1930's, and manufacturers have been steadily improving the efficacy of these lamps over the years through modifications to the phosphors, cathodes, fill-gas, operating frequency, tube diameter and other design attributes. The most efficient commercially available fluorescent lamp is the 25 Watt T5 lamp. This lamp operates at 114-116 lumens per watt while also providing good color rendering and more than 20,000 hours of operating life. Industry experts interviewed indicated that while this lamp is the most efficient in the market today, there is still a further 10 to 14% of potential improvements that may be introduced to the market over the next 2 to 5 years. These improvements include further developments in phosphors, fill-gas, cathode coatings and ultraviolet (UV) reflective glass coatings. The commercialization of these technology improvements will combine to bring about efficacy improvements that will push the technology up to a maximum 125 to 130 lumens per watt. One critical issue raised by researchers that may present a barrier to the realization of these improvements is the fact that technology investment in fluorescent lamps is being reduced in order to prioritize research into light emitting diodes (LEDs) and ceramic metal halide high intensity discharge (HID) lamps. Thus, it is uncertain whether these potential efficacy improvements will be developed, patented and commercialized. The emphasis for premium efficacy will continue to focus on T5 lamps, which are expected to continue to be marketed along with the T8 lamp. Industry experts highlighted the fact that an advantage of the T5 lamp is the fact that it is 40% smaller and yet provides an equivalent lumen output to that of a T8 or T12 lamp. Due to its smaller form factor, the T5 lamp

  9. Tungsten oxide nanowires grown on amorphous-like tungsten films

    International Nuclear Information System (INIS)

    Dellasega, D; Pezzoli, A; Russo, V; Passoni, M; Pietralunga, S M; Nasi, L; Conti, C; Vahid, M J; Tagliaferri, A

    2015-01-01

    Tungsten oxide nanowires have been synthesized by vacuum annealing in the range 500–710 °C from amorphous-like tungsten films, deposited on a Si(100) substrate by pulsed laser deposition (PLD) in the presence of a He background pressure. The oxygen required for the nanowires formation is already adsorbed in the W matrix before annealing, its amount depending on deposition parameters. Nanowire crystalline phase and stoichiometry depend on annealing temperature, ranging from W_1_8O_4_9-Magneli phase to monoclinic WO_3. Sufficiently long annealing induces the formation of micrometer-long nanowires, up to 3.6 μm with an aspect ratio up to 90. Oxide nanowire growth appears to be triggered by the crystallization of the underlying amorphous W film, promoting their synthesis at low temperatures. (paper)

  10. Thermodynamics of the hydrogen-carbon-oxygen-tungsten system, as applied to the manufacture of tungsten and tungsten carbide

    International Nuclear Information System (INIS)

    Schwenke, G.K.

    2001-01-01

    The thermodynamics of the quaternary hydrogen-carbon oxygen-tungsten system and its binary and ternary sub-systems are reviewed. Published thermodynamic data are evaluated, and expression for free energies of formation are chosen. These expressions are integrated with and equilibrium-calculating algorithm, producing a powerful tool for understanding and improving the manufacture of tungsten and tungsten carbide. Three examples are presented: reduction/carburization of tungstic oxide with hydrogen, carbon, and methane. (author)

  11. Spectrographic determination of traces of halogens; Dosage de traces d'halogenes par la methode spectrographique

    Energy Technology Data Exchange (ETDEWEB)

    Melamed, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    Hollow cathode source is employed for determining traces of halogens (fluorine - chlorine) in the uranium oxide U{sub 3}O{sub 8} qualitatively, detection of at least 40 ppm of fluorine, as alkali fluoride and 125 ppm of chlorine, is possible. (author) [French] Un tube a decharge a cathode creuse a ete utilise pour la determination spectrographique des halogenes (fluor - chlore) presentes a l'etat de traces dans un oxyde d'uranium U{sub 3}O{sub 8}. On a pu deceler qualitativement des teneurs de 40 ppm de fluor sous forme de fluorures alcalins. En ce qui concerne le chlore, la plus faible teneur decelee a ete de 125 ppm. (auteur)

  12. Enzymatic Halogenation and Dehalogenation Reactions: Pervasive and Mechanistically Diverse.

    Science.gov (United States)

    Agarwal, Vinayak; Miles, Zachary D; Winter, Jaclyn M; Eustáquio, Alessandra S; El Gamal, Abrahim A; Moore, Bradley S

    2017-04-26

    Naturally produced halogenated compounds are ubiquitous across all domains of life where they perform a multitude of biological functions and adopt a diversity of chemical structures. Accordingly, a diverse collection of enzyme catalysts to install and remove halogens from organic scaffolds has evolved in nature. Accounting for the different chemical properties of the four halogen atoms (fluorine, chlorine, bromine, and iodine) and the diversity and chemical reactivity of their organic substrates, enzymes performing biosynthetic and degradative halogenation chemistry utilize numerous mechanistic strategies involving oxidation, reduction, and substitution. Biosynthetic halogenation reactions range from simple aromatic substitutions to stereoselective C-H functionalizations on remote carbon centers and can initiate the formation of simple to complex ring structures. Dehalogenating enzymes, on the other hand, are best known for removing halogen atoms from man-made organohalogens, yet also function naturally, albeit rarely, in metabolic pathways. This review details the scope and mechanism of nature's halogenation and dehalogenation enzymatic strategies, highlights gaps in our understanding, and posits where new advances in the field might arise in the near future.

  13. Independent Evolution of Six Families of Halogenating Enzymes.

    Science.gov (United States)

    Xu, Gangming; Wang, Bin-Gui

    2016-01-01

    Halogenated natural products are widespread in the environment, and the halogen atoms are typically vital to their bioactivities. Thus far, six families of halogenating enzymes have been identified: cofactor-free haloperoxidases (HPO), vanadium-dependent haloperoxidases (V-HPO), heme iron-dependent haloperoxidases (HI-HPO), non-heme iron-dependent halogenases (NI-HG), flavin-dependent halogenases (F-HG), and S-adenosyl-L-methionine (SAM)-dependent halogenases (S-HG). However, these halogenating enzymes with similar biological functions but distinct structures might have evolved independently. Phylogenetic and structural analyses suggest that the HPO, V-HPO, HI-HPO, NI-HG, F-HG, and S-HG enzyme families may have evolutionary relationships to the α/β hydrolases, acid phosphatases, peroxidases, chemotaxis phosphatases, oxidoreductases, and SAM hydroxide adenosyltransferases, respectively. These halogenating enzymes have established sequence homology, structural conservation, and mechanistic features within each family. Understanding the distinct evolutionary history of these halogenating enzymes will provide further insights into the study of their catalytic mechanisms and halogenation specificity.

  14. Experimental and computational evidence of halogen bonds involving astatine

    Science.gov (United States)

    Guo, Ning; Maurice, Rémi; Teze, David; Graton, Jérôme; Champion, Julie; Montavon, Gilles; Galland, Nicolas

    2018-03-01

    The importance of halogen bonds—highly directional interactions between an electron-deficient σ-hole moiety in a halogenated compound and an acceptor such as a Lewis base—is being increasingly recognized in a wide variety of fields from biomedicinal chemistry to materials science. The heaviest halogens are known to form stronger halogen bonds, implying that if this trend continues down the periodic table, astatine should exhibit the highest halogen-bond donating ability. This may be mitigated, however, by the relativistic effects undergone by heavy elements, as illustrated by the metallic character of astatine. Here, the occurrence of halogen-bonding interactions involving astatine is experimentally evidenced. The complexation constants of astatine monoiodide with a series of organic ligands in cyclohexane solution were derived from distribution coefficient measurements and supported by relativistic quantum mechanical calculations. Taken together, the results show that astatine indeed behaves as a halogen-bond donor—a stronger one than iodine—owing to its much more electrophilic σ-hole.

  15. Tungsten foil laminate for structural divertor applications – Joining of tungsten foils

    Energy Technology Data Exchange (ETDEWEB)

    Reiser, Jens, E-mail: jens.reiser@kit.edu [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM-AWP) (Germany); Rieth, Michael; Möslang, Anton; Dafferner, Bernhard; Hoffmann, Jan [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM-AWP) (Germany); Mrotzek, Tobias; Hoffmann, Andreas [PLANSEE SE, Reutte (Austria); Armstrong, D.E.J.; Yi, Xiaoou [University of Oxford, Department of Materials (United Kingdom)

    2013-05-15

    This paper is the fourth in our series on tungsten laminates. The aim of this paper is to discuss laminate synthesis, meaning the joining of tungsten foils. It is obvious that the properties of the tungsten laminate strongly depend on the combination of (i) interlayer and (ii) joining technology, as this combination defines (i) the condition of the tungsten foil after joining (as-received or recrystallised) as well as (ii) the characteristics of the interface between the tungsten foil and the interlayer (wettability or diffusion leading to a solid solution or the formation of intermetallics). From the example of tungsten laminates joined by brazing with (i) an eutectic silver copper brazing filler, (ii) copper, (iii) titanium, and (iv) zirconium, the microstructure will be discussed, with special focus on the interface. Based on our assumptions of the mechanism of the extraordinary ductility of tungsten foil we present three syntheses strategies and make recommendations for the synthesis of high temperature tungsten laminates.

  16. Tungsten foil laminate for structural divertor applications - Joining of tungsten foils

    Science.gov (United States)

    Reiser, Jens; Rieth, Michael; Möslang, Anton; Dafferner, Bernhard; Hoffmann, Jan; Mrotzek, Tobias; Hoffmann, Andreas; Armstrong, D. E. J.; Yi, Xiaoou

    2013-05-01

    This paper is the fourth in our series on tungsten laminates. The aim of this paper is to discuss laminate synthesis, meaning the joining of tungsten foils. It is obvious that the properties of the tungsten laminate strongly depend on the combination of (i) interlayer and (ii) joining technology, as this combination defines (i) the condition of the tungsten foil after joining (as-received or recrystallised) as well as (ii) the characteristics of the interface between the tungsten foil and the interlayer (wettability or diffusion leading to a solid solution or the formation of intermetallics). From the example of tungsten laminates joined by brazing with (i) an eutectic silver copper brazing filler, (ii) copper, (iii) titanium, and (iv) zirconium, the microstructure will be discussed, with special focus on the interface. Based on our assumptions of the mechanism of the extraordinary ductility of tungsten foil we present three syntheses strategies and make recommendations for the synthesis of high temperature tungsten laminates.

  17. Optical radiation emissions from compact fluorescent lamps

    International Nuclear Information System (INIS)

    Khazova, M.; O'Hagan, J.B.

    2008-01-01

    There is a drive to energy efficiency to mitigate climate change. To meet this challenge, the UK Government has proposed phasing out incandescent lamps by the end of 2011 and replacing them with energy efficient fluorescent lighting, including compact fluorescent lamps (CFLs) with integrated ballasts. This paper presents a summary of an assessment conducted by the Health Protection Agency in March 2008 to evaluate the optical radiation emissions of CFLs currently available in the UK consumer market. The study concluded that the UV emissions from a significant percentage of the tested CFLs with single envelopes may result in foreseeable overexposure of the skin when these lamps are used in desk or task lighting applications. The optical output of all tested CFLs, in addition to high-frequency modulation, had a 100-Hz envelope with modulation in excess of 15%. This degree of modulation may be linked to a number of adverse effects. (authors)

  18. Ozone Depletion in Tropospheric Volcanic Plumes: From Halogen-Poor to Halogen-Rich Emissions

    Directory of Open Access Journals (Sweden)

    Tjarda J. Roberts

    2018-02-01

    Full Text Available Volcanic halogen emissions to the troposphere undergo a rapid plume chemistry that destroys ozone. Quantifying the impact of volcanic halogens on tropospheric ozone is challenging, only a few observations exist. This study presents measurements of ozone in volcanic plumes from Kīlauea (HI, USA, a low halogen emitter. The results are combined with published data from high halogen emitters (Mt Etna, Italy; Mt Redoubt, AK, USA to identify controls on plume processes. Ozone was measured during periods of relatively sustained Kīlauea plume exposure, using an Aeroqual instrument deployed alongside Multi-Gas SO2 and H2S sensors. Interferences were accounted for in data post-processing. The volcanic H2S/SO2 molar ratio was quantified as 0.03. At Halema‘uma‘u crater-rim, ozone was close to ambient in the emission plume (at 10 ppmv SO2. Measurements in grounding plume (at 5 ppmv SO2 about 10 km downwind of Pu‘u ‘Ō‘ō showed just slight ozone depletion. These Kīlauea observations contrast with substantial ozone depletion reported at Mt Etna and Mt Redoubt. Analysis of the combined data from these three volcanoes identifies the emitted Br/S as a strong but non-linear control on the rate of ozone depletion. Model simulations of the volcanic plume chemistry highlight that the proportion of HBr converted into reactive bromine is a key control on the efficiency of ozone depletion. This underlines the importance of chemistry in the very near-source plume on the fate and atmospheric impacts of volcanic emissions to the troposphere.

  19. LED and Halogen Light Transmission through a CAD/CAM Lithium Disilicate Glass-Ceramic.

    Science.gov (United States)

    Pereira, Carolina Nemesio de Barros; De Magalhães, Cláudia Silami; Daleprane, Bruno; Peixoto, Rogéli Tibúrcio Ribeiro da Cunha; Ferreira, Raquel da Conceição; Cury, Luiz Alberto; Moreira, Allyson Nogueira

    2015-01-01

    The effect of thickness, shade and translucency of CAD/CAM lithium disilicate glass-ceramic on light transmission of light-emitting diode (LED) and quartz-tungsten-halogen units (QTH) were evaluated. Ceramic IPS e.max CAD shades A1, A2, A3, A3.5, high (HT) and low (LT) translucency were cut (1, 2, 3, 4 and 5 mm). Light sources emission spectra were determined. Light intensity incident and transmitted through each ceramic sample was measured to determine light transmission percentage (TP). Statistical analysis used a linear regression model. There was significant interaction between light source and ceramic translucency (p=0.008) and strong negative correlation (R=-0.845, pceramic thickness and TP. Increasing one unit in thickness led to 3.17 reduction in TP. There was no significant difference in TP (p=0.124) between shades A1 (ß1=0) and A2 (ß1=-0.45) but significant reduction occurred for A3 (ß1=-0.83) and A3.5 (ß1=-2.18). The interaction QTH/HT provided higher TP (ß1=0) than LED/HT (ß1=-2.92), QTH/LT (ß1=-3.75) and LED/LT (ß1=-5.58). Light transmission was more effective using halogen source and high-translucency ceramics, decreased as the ceramic thickness increased and was higher for the lighter shades, A1 and A2. From the regression model (R2=0.85), an equation was obtained to estimate TP value using each variable ß1 found. A maximum TP of 25% for QTH and 20% for LED was found, suggesting that ceramic light attenuation could compromise light cured and dual cure resin cements polymerization.

  20. Development and characterisation of a tungsten-fibre reinforced tungsten composite

    International Nuclear Information System (INIS)

    Riesch, Johann

    2012-01-01

    In tungsten-fibre reinforced tungsten, tungsten wire is combined with a tungsten matrix. The outstanding ductility of the fibres and extrinsic mechanisms of energy dissipation lead to an intense toughening. With extensive analytical and experimental investigations a manufacturing method based on chemical vapour infiltration is developed and first material is produced. The toughening mechanisms are shown by means of sophisticated mechanical experiments i.a. X-ray microtomography.

  1. Potentiometric determination of the tungsten content of tantalum-tungsten alloys with chromium II

    International Nuclear Information System (INIS)

    Gavra, Z.; Ronen, S.; Levin, R.

    1977-05-01

    A method was developed for the potentiometric determination of the tungsten content of tantalum-tungsten alloys of different compositions. These were dissolved under conditions that enabled the tungsten content to be determined with chromium (II). Phosphoric acid was selected as a suitable complexing agent for the prevention of the precipitation of tungsten and tantalum compounds. The use of chromium (II) required an oxygen-tight system and therefore the work was carried out in suitable vessels for storage and tritation

  2. Structural study of some halogen oxyfluorides

    International Nuclear Information System (INIS)

    Tantot, Georges.

    1976-12-01

    Some halogen oxyfluorides are studied from a structural point of view by vibrational spectroscopy and nuclear magnetic resonance. Force constant and molecular orbital calculations are added to the experimental data. The pyramidal shape of ClO 2 F under its three physical states is confirmed. In the gas and liquid phases an intermolecular association is observed. A similar interaction takes place in ClOF 3 . ClO 3 F has only a solid state transition above 10K. The structures of ClO 2 F and KBrO 2 F 2 are partly determined. The theoretical calculations are well correlated with the experimental data. They suggest a major influence of the ligands [fr

  3. Integrity Monitoring of Mercury Discharge Lamps

    Science.gov (United States)

    Tjoelker, Robert L.

    2010-01-01

    Mercury discharge lamps are critical in many trapped ion frequency standard applications. An integrity monitoring system can be implemented using end-of-life signatures observed in operational mercury discharge lamps, making it possible to forecast imminent failure and to take action to mitigate the consequences (such as switching to a redundant system). Mercury lamps are used as a source of 194-nm ultraviolet radiation for optical pumping and state selection of mercury trapped ion frequency standards. Lamps are typically fabricated using 202Hg distilled into high-purity quartz, or other 194-nm transmitting material (e.g., sapphire). A buffer gas is also placed into the bulb, typically a noble gas such as argon, neon, or krypton. The bulbs are driven by strong RF fields oscillating at .200 MHz. The lamp output may age over time by two internal mechanisms: (1) the darkening of the bulb that attenuates light transmission and (2) the loss of mercury due to migration or chemical interactions with the bulb surface. During fabrication, excess mercury is placed into a bulb, so that the loss rate is compensated with new mercury emanating from a cool tip or adjacent reservoir. The light output is nearly constant or varies slightly at a constant rate for many months/years until the mercury source is depleted. At this point, the vapor pressure abruptly falls and the total light output and atomic clock SNR (signal-to-noise ratio) decrease. After several days to weeks, the light levels decrease to a point where the atomic clock SNR is no longer sufficient to stay in lock, or the lamp self-extinguishes. This signature has been observed in four separate end-of-life lamp failures while operating in the Deep Space Network (DSN). A simple integrator circuit can observe and document steady-state lamp behavior. When the light levels drop over a predetermined time interval by a specified amount (e.g., 20 percent), an alarm is set. For critical operational applications, such as the DSN

  4. Excimer lamp pumped by a triggered discharge

    Energy Technology Data Exchange (ETDEWEB)

    Baldacchini, G.; Bollanti, S.; Di Lazzaro, P.; Flora, F.; Giordano, G.; Letardi, T.; Renieri, A.; Schina, G. [ENEA, Centro Ricerche Frascati, Rome (Italy). Dip. Innovazione; Clementi, G.; Muzzi, F.; Zheng, C.E. [EL.EN. (Electronic Engineering), Florence (Italy)

    1996-11-01

    Radiation characteristics and discharge performances of an excimer lamp are described. The discharge of the HCl/Xe gas mixture at an atmospheric pressure, occurring near the quartz tube wall, is initiated by a trigger wire. A maximum total UV energy of about 0.4 J in a (0.8-0.9) {mu}s pulse, radiated from a 10 cm discharge length, is obtained with a total discharge input energy of 8 J. Excimer lamps are the preferred choice for medical and material processing irradiations, when the monochromaticity or coherence of UV light is not required, due to their low cost, reliability and easy maintenance.

  5. Tungsten Speciation in Firing Range Soils

    Science.gov (United States)

    2011-01-01

    satisfactorily, such as: which tungsten mineral phase is present in soil and to what extent is adsorption important in regu- lating soil solution concentrations... soil solution rather than discrete mineral phases. Information provided in this report will assist the following organizations in future decision...the soil solution ERDC TR-11-1 43 must affect tungsten speciation in other ways. The precipitation of soil minerals also would limit tungsten

  6. Spectral emissivity of tungsten: analytic expressions for the 340-nm to 2.6-μm spectral region

    International Nuclear Information System (INIS)

    Pon, R.M.; Hessler, J.P.

    1984-01-01

    To correct emission spectra a standard radiance source is often used to determine the spectral responsivity of the detection system. In the near-UV, visible, and near-IR spectral regions the most common radiance standard is a tungsten strip lamp calibrated by a standards laboratory. For day-to-day experiments where slightly less accuracy is acceptable, a less expensive uncalibrated lamp is useful. In this case, the radiant temperature T/sub r/ of the lamp is measured with an optical pyrometer, generally at a single wavelength such as 650 nm, and the source spectral radiance L(λ) is calculated from L(λ) = tau(λ)epsilon(λ,T)L/sub B/(λ,T). The transmittance of the source is tau(λ), the spectral emissivity is epsilon(λ,T), and L/sub B/(λ,T) is the spectral distribution of blackbody radiation, Planck's radiation law. To obtain the true temperature T, Wien's approximation is employed. To conveniently calibrate a system, especially one which utilizes a microcomputer, it is advantageous to have analytic expressions for the spectral emissivity of tungsten. Although Larrabee has published such expressions, they are limited to the 450-800-nm spectral region. To obtain analytic expressions from 340 nm to 2.6 μm they have used the measurements of DeVos. Although DeVos's results differ by 2% from those of Larrabee, this difference is assumed to be acceptable

  7. Laboratory Evaluation of LED T8 Replacement Lamp Products

    Energy Technology Data Exchange (ETDEWEB)

    Richman, Eric E.; Kinzey, Bruce R.; Miller, Naomi J.

    2011-05-23

    A report on a lab setting analysis involving LED lamps intended to directly replace T8 fluorescent lamps (4') showing light output, power, and economic comparisons with other fluorescent options.

  8. 21 CFR 866.2600 - Wood's fluorescent lamp.

    Science.gov (United States)

    2010-04-01

    ...) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2600 Wood's fluorescent lamp. (a) Identification. A Wood's fluorescent lamp is a device intended for medical purposes to detect...

  9. Circular, explosion-proof lamp provides uniform illumination

    Science.gov (United States)

    1966-01-01

    Circular explosion-proof fluorescent lamp is fitted around a TV camera lens to provide shadowless illumination with a low radiant heat flux. The lamp is mounted in a transparent acrylic housing sealed with clear silicone rubber.

  10. CALiPER Report 20.1: Subjective Evaluation of Beam Quality, Shadow Quality, and Color Quality for LED PAR38 Lamps

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2013-11-07

    This report focuses on human-evaluated characteristics, including beam quality, shadow quality, and color quality. Using a questionnaire that included rank-ordering, opinions on 27 of the Report 20 PAR38 lamps were gathered during a demonstration event for members of the local Illuminating Engineering Society (IES) chapter. This was not a rigorous scientific experiment, and the data should not be extrapolated beyond the scope of the demonstration. The results suggest that many of the LED products compared favorably to halogen PAR38 benchmarks in all attributes considered. LED lamps using a single-emitter design were generally preferred for their beam quality and shadow quality, and the IES members' ranking of color quality did not always match the rank according to the color rendering index (CRI).

  11. DOE CALiPER Program, Report 20.1 Subjective Evaluation of Beam Quality, Shadow Quality, and Color Quality for LED PAR38 Lamps

    Energy Technology Data Exchange (ETDEWEB)

    Royer, Michael P.; Poplawski, Michael E.; Miller, Naomi J.

    2013-10-01

    This report focuses on human-evaluated characteristics, including beam quality, shadow quality, and color quality. Using a questionnaire that included rank ordering, opinions on 27 of the Report 20 PAR38 lamps were gathered during a demonstration event for members of the local Illuminating Engineering Society (IES) chapter. This was not a rigorous scientific experiment, and the data should not be extrapolated beyond the scope of the demonstration. The results suggest that many of the LED products compared favorably to halogen PAR38 benchmarks in all attributes considered. LED lamps using a single-emitter design were generally preferred for their beam quality and shadow quality, and the IES members ranking of color quality did not always match the rank according to the color rendering index (CRI).

  12. Toward hydrogen detection at room temperature with printed ZnO nanoceramics films activated with halogen lighting

    Science.gov (United States)

    Nguyen, Van Son; Jubera, Véronique; Garcia, Alain; Debéda, Hélène

    2015-12-01

    Though semiconducting properties of ZnO have been extensively investigated under hazardous gases, research is still necessary for low-cost sensors working at room temperature. Study of printed ZnO nanopowders-based sensors has been undertaken for hydrogen detection. A ZnO paste made with commercial nanopowders is deposited onto interdigitated Pt electrodes and sintered at 400 °C. The ZnO layer structure and morphology are first examined by XRD, SEM, AFM and emission/excitation spectra prior to the study of the effect of UV-light on the electrical conduction of the semiconductor oxide. The response to hydrogen exposure is subsequently examined, showing that low UV-light provided by halogen lighting enhances the gas response and allows detection at room temperature with gas responses similar to those obtained in dark conditions at 150 °C. A gas response of 44% (relative change in current) under 300 ppm is obtained at room temperature. Moreover, it is demonstrated that very low UV-light power (15 μW/mm2) provided by the halogen lamp is sufficient to give sensitivities as high as those for much higher powers obtained with a UV LED (7.7 mW/mm2). These results are comparable to those obtained by others for 1D or 2D ZnO nanostructures working at room temperature or at temperatures up to 250 °C.

  13. UARS Halogen Occultation Experiment (HALOE) Level 2 V001

    Data.gov (United States)

    National Aeronautics and Space Administration — The HALOE home page on the WWW is http://haloe.gats-inc.com/home/index.php The Halogen Occultation Experiment (HALOE) on NASA's Upper Atmosphere Research Satellite...

  14. New design for a microwave discharge lamp.

    Science.gov (United States)

    Glangetas, A

    1980-03-01

    A simple discharge lamp with a microwave cavity fitting inside provides an intense source of VUV resonance radiation for photochemical work inside a vacuum chamber. Good coupling and minimum reabsorption result in better efficiency ( greater, similar1%) and more intense output power (up to 2.5x10(16) quanta s(-1)) than have been achieved previously.

  15. Scanning For Hotspots In Lamp Filaments

    Science.gov (United States)

    Powers, Charles E.; Van Sant, Tim; Leidecker, Henning

    1993-01-01

    Scanning photometer designed for use in investigation of failures of incandescent lamp filaments. Maps brightness as function of position along each filament to identify bright (hot) spots, occurring at notches and signifying incipient breaks or rewelds. Also used to measure nonuniformity in outputs of such linear devices as light-emitting diodes, and to measure diffraction patterns of lenses.

  16. Breakdown characteristics of xenon HID Lamps

    Science.gov (United States)

    Babaeva, Natalia; Sato, Ayumu; Brates, Nanu; Noro, Koji; Kushner, Mark

    2009-10-01

    The breakdown characteristics of mercury free xenon high intensity discharge (HID) lamps exhibit a large statistical time lag often having a large scatter in breakdown voltages. In this paper, we report on results from a computational investigation of the processes which determine the ignition voltages for positive and negative pulses in commercial HID lamps having fill pressures of up to 20 atm. Steep voltage rise results in higher avalanche electron densities and earlier breakdown times. Circuit characteristics also play a role. Large ballast resistors may limit current to the degree that breakdown is quenched. The breakdown voltage critically depends on cathode charge injection by electric field emission (or other mechanisms) which in large part controls the statistical time lag for breakdown. For symmetric lamps, ionization waves (IWs) simultaneously develop from the bottom and top electrodes. Breakdown typically occurs when the top and bottom IWs converge. Condensed salt layers having small conductivities on the inner walls of HID lamps and on the electrodes can influence the ignition behavior. With these layers, IWs tend to propagate along the inner wall and exhibit a different structure depending on the polarity.

  17. 100 years of Wood's lamp revised

    NARCIS (Netherlands)

    Klatte, J. L.; van der Beek, N.; Kemperman, P. M. J. H.

    2015-01-01

    The Wood's lamp is a diagnostic tool in dermatology. Unfortunately, this useful tool is often overlooked in the busy and hectic outdoor dermatology clinic. To emphasize its value in modern dermatology, we present an updated review of the principles and applications and shed new light on its proper

  18. 21 CFR 878.4635 - Ultraviolet lamp for tanning.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultraviolet lamp for tanning. 878.4635 Section 878... tanning. (a) Identification. An ultraviolet lamp for tanning is a device that is a lamp (including a fixture) intended to provide ultraviolet radiation to tan the skin. See § 1040.20 of this chapter. (b...

  19. Demixing in a metal halide lamp, results from modelling

    NARCIS (Netherlands)

    Beks, M.L.; Hartgers, A.; Mullen, van der J.J.A.M.

    2006-01-01

    Convection and diffusion in the discharge region of a metal halide lamp is studied using a computer model built with the plasma modeling package Plasimo. A model lamp contg. mercury and sodium iodide is studied. The effects of the total lamp pressure on the degree of segregation of the light

  20. Influence of Voltage on Main Characteristics of Electric Lighting Lamps

    Directory of Open Access Journals (Sweden)

    V. B. Kozlovskaya

    2009-01-01

    Full Text Available An analysis and systemization of data on influence of voltage value on main lighting engineering, electric and economic characteristics of incandescent lamps, gaseous-discharge lamps of low and high pressure have been made in the paper.Analytical and graphical dependences have been obtained that ensure to evaluate quantitative changes of corresponding lamp characteristics at voltage deviation from nominal value.

  1. Electrodeless discharge lamp is easily started, has high stability

    Science.gov (United States)

    Bell, W. E.; Bloom, A. L.

    1966-01-01

    Electrodeless discharge borosilicate glass lamp is used in various high-resolution optical systems. It is partially charged with krypton, contains small amounts of rubidium, and is enclosed in a hermetically sealed envelope that maintains the lamp at an optimum temperature during discharge. The lamp is quickly started by its excitation coil.

  2. Definition of a high intensity metal halide discharge reference lamp

    NARCIS (Netherlands)

    Stoffels, W.W.; Baede, A.H.F.M.; Mullen, van der J.J.A.M.; Haverlag, M.; Zissis, G.

    2006-01-01

    The design of a ref. metal halide discharge lamp is presented. This lamp is meant as a common study object for researchers working on metal halide discharge lamps, who by using the same design will be able to compare results between research groups, diagnostic techniques and numerical models. The

  3. 30 CFR 57.12035 - Weatherproof lamp sockets.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Weatherproof lamp sockets. 57.12035 Section 57.12035 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Surface and Underground § 57.12035 Weatherproof lamp sockets. Lamp sockets shall be of a weatherproof type...

  4. 30 CFR 56.12035 - Weatherproof lamp sockets.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Weatherproof lamp sockets. 56.12035 Section 56.12035 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL....12035 Weatherproof lamp sockets. Lamp sockets shall be of a weatherproof type where they are exposed to...

  5. Analysis of the performance of domestic lighting lamps

    International Nuclear Information System (INIS)

    Aman, M.M.; Jasmon, G.B.; Mokhlis, H.; Bakar, A.H.A.

    2013-01-01

    The power crisis problem is getting worse in the developing countries. Measures are being taken to overcome the power shortage problem by efficiently utilizing the available power. Replacement of high-power consumption lamps with energy efficient lamps is also among these steps. This paper presents a detailed comparative analysis between domestic lighting lamps (DLLs) use for producing artificial light. DLLs include incandescent lamp (IL), fluorescent lamp (FL) and compact fluorescent lamp (CFL). Light emitting diodes (LED) based lamp technology is relatively new in comparison with conventional incandescent and discharge lamps. However, the present study will also cover the LED lamps. Power quality based experiments have been conducted on DLLs in Power System Laboratory and power consumption based calculations are carried out using the lighting design software DIALux. The result shows that with the current technology, the use of FL and LED lamp is beneficial for utility as well as for consumer. However, with the current pace in the development of LED technology, it is possible LED lamps will lead the lighting market in the near future. The paper has also presented the uncertainties that exist in lighting market and proposed the guidelines that will help in making future energy policy. - Highlights: ► Performances of domestic lighting lamps are compared. ► Power quality and power consumption based case study results are presented. ► For future energy policies, recommendations are also given.

  6. 30 CFR 75.1703 - Portable electric lamps.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Portable electric lamps. 75.1703 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1703 Portable electric lamps. [Statutory Provisions] Persons underground shall use only permissible electric lamps approved by the...

  7. 47 CFR 17.54 - Rated lamp voltage.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Rated lamp voltage. 17.54 Section 17.54... voltage. To insure the necessary lumen output by obstruction lights, the rated voltage of incandescent lamps used shall correspond to be within 3 percent higher than the voltage across the lamp socket during...

  8. Mechanism of the electrochemical hydrogen reaction on smooth tungsten carbide and tungsten electrodes

    International Nuclear Information System (INIS)

    Wiesener, K.; Winkler, E.; Schneider, W.

    1985-01-01

    The course of the electrochemical hydrogen reaction on smooth tungsten-carbide electrodes in hydrogen saturated 2.25 M H 2 SO 4 follows a electrochemical sorption-desorption mechanism in the potential range of -0.4 to +0.1 V. At potentials greater than +0.1 V the hydrogen oxidation is controlled by a preliminary chemical sorption step. Concluding from the similar behaviour of tungsten-carbide and tungsten electrodes after cathodic pretreatment, different tungsten oxides should be involved in the course of the hydrogen reaction on tungsten carbide electrodes. (author)

  9. Halogenation dictates the architecture of amyloid peptide nanostructures.

    Science.gov (United States)

    Pizzi, Andrea; Pigliacelli, Claudia; Gori, Alessandro; Nonappa; Ikkala, Olli; Demitri, Nicola; Terraneo, Giancarlo; Castelletto, Valeria; Hamley, Ian W; Baldelli Bombelli, Francesca; Metrangolo, Pierangelo

    2017-07-20

    Amyloid peptides yield a plethora of interesting nanostructures though difficult to control. Here we report that depending on the number, position, and nature of the halogen atoms introduced into either one or both phenylalanine benzene rings of the amyloid β peptide-derived core-sequence KLVFF, four different architectures were obtained in a controlled manner. Our findings demonstrate that halogenation may develop as a general strategy to engineer amyloidal peptide self-assembly and obtain new amyloidal nanostructures.

  10. Development of quantitative atomic modeling for tungsten transport study Using LHD plasma with tungsten pellet injection

    International Nuclear Information System (INIS)

    Murakami, I.; Sakaue, H.A.; Suzuki, C.; Kato, D.; Goto, M.; Tamura, N.; Sudo, S.; Morita, S.

    2014-10-01

    Quantitative tungsten study with reliable atomic modeling is important for successful achievement of ITER and fusion reactors. We have developed tungsten atomic modeling for understanding the tungsten behavior in fusion plasmas. The modeling is applied to the analysis of tungsten spectra observed from currentless plasmas of the Large Helical Device (LHD) with tungsten pellet injection. We found that extreme ultraviolet (EUV) lines of W 24+ to W 33+ ions are very sensitive to electron temperature (Te) and useful to examine the tungsten behavior in edge plasmas. Based on the first quantitative analysis of measured spatial profile of W 44+ ion, the tungsten concentration is determined to be n(W 44+ )/n e = 1.4x10 -4 and the total radiation loss is estimated as ∼4 MW, of which the value is roughly half the total NBI power. (author)

  11. High-energy, high-rate consolidation of tungsten and tungsten-based composite powders

    Energy Technology Data Exchange (ETDEWEB)

    Raghunathan, S.K.; Persad, C.; Bourell, D.L.; Marcus, H.L. (Center for Materials Science and Engineering, Univ. of Texas, Austin (USA))

    1991-01-20

    Tungsten and tungsten-based heavy alloys are well known for their superior mechanical properties at elevated temperatures. However, unalloyed tungsten is difficult to consolidate owing to its very high melting temperature (3683 K). The additions of small amounts of low-melting elements such as iron, nickel, cobalt and copper, facilitate the powder processing of dense heavy alloys at moderate temperatures. Energetic high-current pulses have been used recently for powder consolidation. In this paper, the use of a homopolar generator as a power source to consolidate selected tungsten and tungsten-based alloys is examined. Various materials were consolidated including unalloyed tungsten, W-Nb, W-Ni, and tungsten heavy alloy with boron carbide. The effect of process parameters such as pressure and specific energy input on the consolidation of different alloy systems is described in terms of microstructure and property relationships. (orig.).

  12. CALiPER Retail Lamps Study 3.1: Dimming, Flicker, and Power Quality Characteristics of LED A Lamps

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-12-31

    This CALiPER report examines the characteristics of a subset of lamps from CALiPER Retail Lamps Study 3 in more detail. Specifically, it focuses on the dimming, power quality, and flicker characteristics of 14 LED A lamps, as controlled by four different retail-available dimmers.

  13. Analytical characteristics of a continuum-source tungsten coil atomic absorption spectrometer.

    Science.gov (United States)

    Rust, Jennifer A; Nóbrega, Joaquim A; Calloway, Clifton P; Jones, Bradley T

    2005-08-01

    A continuum-source tungsten coil electrothermal atomic absorption spectrometer has been assembled, evaluated, and employed in four different applications. The instrument consists of a xenon arc lamp light source, a tungsten coil atomizer, a Czerny-Turner high resolution monochromator, and a linear photodiode array detector. This instrument provides simultaneous multi-element analyses across a 4 nm spectral window with a resolution of 0.024 nm. Such a device might be useful in many different types of analyses. To demonstrate this broad appeal, four very different applications have been evaluated. First of all, the temperature of the gas phase was measured during the atomization cycle of the tungsten coil, using tin as a thermometric element. Secondly, a summation approach for two absorption lines for aluminum falling within the same spectral window (305.5-309.5 nm) was evaluated. This approach improves the sensitivity without requiring any additional preconcentration steps. The third application describes a background subtraction technique, as it is applied to the analysis of an oil emulsion sample. Finally, interference effects caused by Na on the atomization of Pb were studied. The simultaneous measurements of Pb and Na suggests that negative interference arises at least partially from competition between Pb and Na atoms for H2 in the gas phase.

  14. Quenching and recovery experiments on tungsten

    International Nuclear Information System (INIS)

    Rasch, K.D.; Siegel, R.W.; Schultz, H.

    1976-01-01

    A short summary is given of new results concerning transmission electron microscopy and resistivity measurements on quenched tungsten. These results give evidence for the first time that the quenching and annealing of high purity tungsten leads to vacancy--defect clustering resulting in small voids observable in the electron microscope. 21 references

  15. Evaluation of heat transfer coefficient of tungsten filaments at low pressures and high temperatures

    International Nuclear Information System (INIS)

    Chondrakis, N.G.; Topalis, F.V.

    2011-01-01

    The paper presents an experimental method for the evaluation of the heat transfer coefficient of tungsten filaments at low pressures and high temperatures. For this purpose an electrode of a T5 fluorescent lamp was tested under low pressures with simultaneous heating in order to simulate the starting conditions in the lamp. It was placed in a sealed vessel in which the pressure was varied from 1 kM (kilo micron) to 760 kM. The voltage applied to the electrode was in the order of the filament's voltage of the lamp at the normal operation with the ballast during the preheating process. The operating frequency ranged from DC to 50 kHz. The experiment targeted on estimating the temperature of the electrode at the end of the first and the ninth second after initiating the heating process. Next, the heat transfer coefficient was calculated at the specific experimental conditions. A mathematical model based on the results was developed that estimates the heat transfer coefficient. The experiments under different pressures confirm that the filament's temperature strongly depends on the pressure.

  16. Tungsten deposition by hydrogen-atom reaction with tungsten hexafluoride

    International Nuclear Information System (INIS)

    Lee, W.W.

    1991-01-01

    Using gaseous hydrogen atoms with WF 6 , tungsten atoms can be produced in a gas-phase reaction. The atoms then deposit in a near-room temperature process, which results in the formation of tungsten films. The W atoms (10 10 -10 11 /cm 3 ) were measured in situ by atomic absorption spectroscopy during the CVD process. Deposited W films were characterized by Auger electron spectroscopy, Rutherford backscattering, and X-ray diffraction. The surface morphology of the deposited films and filled holes was studied using scanning electron microscopy. The deposited films were highly adherent to different substrates, such as Si, SiO 2 , Ti/Si, TiN/Si and Teflon. The reaction mechanism and kinetics were studied. The experimental results indicated that this method has three advantages compared to conventional CVD or PECVD: (1) film growth occurs at low temperatures; (2) deposition takes place in a plasma-free environment; and (3) a low level of impurities results in high-quality adherent films

  17. [Remote Slit Lamp Microscope Consultation System Based on Web].

    Science.gov (United States)

    Chen, Junfa; Zhuo, Yong; Liu, Zuguo; Chen, Yanping

    2015-11-01

    To realize the remote operation of the slit lamp microscope for department of ophthalmology consultation, and visual display the real-time status of remote slit lamp microscope, a remote slit lamp microscope consultation system based on B/S structure is designed and implemented. Through framing the slit lamp microscope on the website system, the realtime acquisition and transmission of remote control and image data is realized. The three dimensional model of the slit lamp microscope is established and rendered on the web by using WebGL technology. The practical application results can well show the real-time interactive of the remote consultation system.

  18. Lamp reliability studies for improved satellite rubidium frequency standard

    Science.gov (United States)

    Frueholz, R. P.; Wun-Fogle, M.; Eckert, H. U.; Volk, C. H.; Jones, P. F.

    1982-01-01

    In response to the premature failure of Rb lamps used in Rb atomic clocks onboard NAVSTAR GPS satellites experimental and theoretical investigations into their failure mechanism were initiated. The primary goal of these studies is the development of an accelerated life test for future GPS lamps. The primary failure mechanism was identified as consumption of the lamp's Rb charge via direct interaction between Rb and the lamp's glass surface. The most effective parameters to accelerate the interaction between the Rb and the glass are felt to be RF excitation power and lamp temperature. Differential scanning calorimetry is used to monitor the consumption of Rb within a lamp as a function of operation time. This technique yielded base line Rb consumption data for GPS lamps operating under normal conditions.

  19. Negative Halogen Ions for Fusion Applications

    International Nuclear Information System (INIS)

    Grisham, L.R.; Kwan, J.W.; Hahto, S.K.; Hahto, S.T.; Leung, K.N.; Westenskow, G.

    2006-01-01

    Over the past quarter century, advances in hydrogen negative ion sources have extended the usable range of hydrogen isotope neutral beams to energies suitable for large magnetically confined fusion devices. Recently, drawing upon this experience, negative halogen ions have been proposed as an alternative to positive ions for heavy ion fusion drivers in inertial confinement fusion, because electron accumulation would be prevented in negative ion beams, and if desired, the beams could be photo-detached to neutrals. This paper reports the results of an experiment comparing the current density and beam emittance of Cl+ and Cl- extracted from substantially ion-ion plasmas with that of Ar+ extracted from an ordinary electron-ion plasma, all using the same source, extractor, and emittance scanner. At similar discharge conditions, the Cl- current was typically 85-90% of the positive chlorine current, with an e-/ Cl- ratio as low as seven without grid magnets. The Cl- was as much as 76% of the Ar+ current from a discharge with the same RF drive. The minimum normalized beam emittance and inferred ion temperatures of Cl+, Cl-, and Ar+ were all similar, so the current density and optical quality of Cl- appear as suitable for heavy ion fusion driver applications as a positive noble gas ion of similar mass. Since F, I, and Br should all behave similarly in an ion source, they should also be suitable as driver beams

  20. The interaction of mercury with halogenated graphene

    Science.gov (United States)

    Kirchofer, Abigail; Sasmaz, Erdem; Wilcox, Jennifer

    2011-03-01

    The interaction of mercury with halogenated graphene was studied using plane-wave density functional theory. Various configurations of H, Hg, O and Br or Cl on the zigzag edge sites of graphene were investigated. Although Hg-Br (or -Cl) complexes were found to be stable on the surface, the most stable configurations found were those with Hg adjacent to O. The surface atoms Hg, O, and Br tend to repel each other during geometric optimization, moving towards an H atom nearest-neighbor where possible. The strength of the Hg-graphene interaction is very sensitive to the local environment. The Hg-graphene binding energy is strongest when the Hg is located next to a surface O but not immediately next to a bound Br. DOS analysis revealed that Hg adsorption involves a gain in Hg 6 p-states and a loss in Hg 5 s electron density, resulting in an oxidized surface-bound Hg complex. DOS analysis suggests that Br strengthens the Hg-graphene interaction by modifying the surface carbon electron density; however, when Br is adjacent to Hg, a direct Hg-Br interaction weakens the Hg-C bond. These investigations provide insight into the mechanism associated with enhanced Hg adsorption on Br-functionalized carbon materials for Hg emissions reductions from coal-fired power plant applications. The authors acknowledge the financial support by Electric Power Research Institute (EPRI).

  1. The DAMPE silicon tungsten tracker

    CERN Document Server

    Gallo, Valentina; Asfandiyarov, R; Azzarello, P; Bernardini, P; Bertucci, B; Bolognini, A; Cadoux, F; Caprai, M; Domenjoz, M; Dong, Y; Duranti, M; Fan, R; Franco, M; Fusco, P; Gargano, F; Gong, K; Guo, D; Husi, C; Ionica, M; Lacalamita, N; Loparco, F; Marsella, G; Mazziotta, M N; Mongelli, M; Nardinocchi, A; Nicola, L; Pelleriti, G; Peng, W; Pohl, M; Postolache, V; Qiao, R; Surdo, A; Tykhonov, A; Vitillo, S; Wang, H; Weber, M; Wu, D; Wu, X; Zhang, F; De Mitri, I; La Marra, D

    2017-01-01

    The DArk Matter Particle Explorer (DAMPE) satellite has been successfully launched on the 17th December 2015. It is a powerful space detector designed for the identification of possible Dark Matter signatures thanks to its capability to detect electrons and photons with an unprecedented energy resolution in an energy range going from few GeV up to 10 TeV. Moreover, the DAMPE satellite will contribute to a better understanding of the propagation mechanisms of high energy cosmic rays measuring the nuclei flux up to 100 TeV. DAMPE is composed of four sub-detectors: a plastic strip scintillator, a silicon-tungsten tracker-converter (STK), a BGO imaging calorimeter and a neutron detector. The STK is made of twelve layers of single-sided AC-coupled silicon micro-strip detectors for a total silicon area of about 7 $m^2$ . To promote the conversion of incident photons into electron-positron pairs, tungsten foils are inserted into the supporting structure. In this document, a detailed description of the STK constructi...

  2. Reorientation measurements on tungsten isotopes

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, J J; Saladin, J X; Baktash, C; Alessi, J G [Pittsburgh Univ., Pa. (USA)

    1977-11-14

    In a particle-..gamma.. coincidence experiment, a thick tungsten target, of natural isotopic abundance, was bombarded with ..cap alpha.. and /sup 16/O beams. From analysis of the deexcitation ..gamma..-rays following Coulomb excitation, the spectroscopic quadrupole moment of the second 2/sup +/ state (the 2/sup +/' state) was determined for /sup 186/W and /sup 184/W. In a separate Coulomb excitation experiment a thin, isotopically enriched /sup 186/W target was bombarded with /sup 16/O ions. From analysis of projectiles scattered elastically and inelastically the quadrupole moment of the 2/sup +/' state of /sup 186/W was extracted. The results of the two experiments are in good agreement. The quadrupole moment of the 2/sup +/' state is found to be opposite in sign to that of the first 2/sup +/ state for both isotopes studied. However, its magnitude decreases rapidly in going from /sup 186/W to /sup 184/W, in contrast to the predictions of the rotation-vibration of asymmetric rotor models. The microscopic theory of Kumar and Baranger does predict the experimental trend, qualitatively. Thus the present results are interpreted as being evidence of strong coupling between ..beta.. and ..gamma.. degrees of freedom in the tungsten isotopes, which, according to the theory of Kumar and Baranger, is the source of the reduced value of the quadrupole moment.

  3. Development of tungsten fibre-reinforced tungsten composites towards their use in DEMO—potassium doped tungsten wire

    Science.gov (United States)

    Riesch, J.; Han, Y.; Almanstötter, J.; Coenen, J. W.; Höschen, T.; Jasper, B.; Zhao, P.; Linsmeier, Ch; Neu, R.

    2016-02-01

    For the next step fusion reactor the use of tungsten is inevitable to suppress erosion and allow operation at elevated temperature and high heat loads. Tungsten fibre-reinforced composites overcome the intrinsic brittleness of tungsten and its susceptibility to operation embrittlement and thus allow its use as a structural as well as an armour material. That this concept works in principle has been shown in recent years. In this contribution we present a development approach towards its use in a future fusion reactor. A multilayer approach is needed addressing all composite constituents and manufacturing steps. A huge potential lies in the optimization of the tungsten wire used as fibre. We discuss this aspect and present studies on potassium doped tungsten wire in detail. This wire, utilized in the illumination industry, could be a replacement for the so far used pure tungsten wire due to its superior high temperature properties. In tensile tests the wire showed high strength and ductility up to an annealing temperature of 2200 K. The results show that the use of doped tungsten wire could increase the allowed fabrication temperature and the overall working temperature of the composite itself.

  4. Development of tungsten fibre-reinforced tungsten composites towards their use in DEMO—potassium doped tungsten wire

    International Nuclear Information System (INIS)

    Riesch, J; Han, Y; Höschen, T; Zhao, P; Neu, R; Almanstötter, J; Coenen, J W; Jasper, B; Linsmeier, Ch

    2016-01-01

    For the next step fusion reactor the use of tungsten is inevitable to suppress erosion and allow operation at elevated temperature and high heat loads. Tungsten fibre-reinforced composites overcome the intrinsic brittleness of tungsten and its susceptibility to operation embrittlement and thus allow its use as a structural as well as an armour material. That this concept works in principle has been shown in recent years. In this contribution we present a development approach towards its use in a future fusion reactor. A multilayer approach is needed addressing all composite constituents and manufacturing steps. A huge potential lies in the optimization of the tungsten wire used as fibre. We discuss this aspect and present studies on potassium doped tungsten wire in detail. This wire, utilized in the illumination industry, could be a replacement for the so far used pure tungsten wire due to its superior high temperature properties. In tensile tests the wire showed high strength and ductility up to an annealing temperature of 2200 K. The results show that the use of doped tungsten wire could increase the allowed fabrication temperature and the overall working temperature of the composite itself. (paper)

  5. Development of quantitative atomic modeling for tungsten transport study using LHD plasma with tungsten pellet injection

    Science.gov (United States)

    Murakami, I.; Sakaue, H. A.; Suzuki, C.; Kato, D.; Goto, M.; Tamura, N.; Sudo, S.; Morita, S.

    2015-09-01

    Quantitative tungsten study with reliable atomic modeling is important for successful achievement of ITER and fusion reactors. We have developed tungsten atomic modeling for understanding the tungsten behavior in fusion plasmas. The modeling is applied to the analysis of tungsten spectra observed from plasmas of the large helical device (LHD) with tungsten pellet injection. We found that extreme ultraviolet (EUV) emission of W24+ to W33+ ions at 1.5-3.5 nm are sensitive to electron temperature and useful to examine the tungsten behavior in edge plasmas. We can reproduce measured EUV spectra at 1.5-3.5 nm by calculated spectra with the tungsten atomic model and obtain charge state distributions of tungsten ions in LHD plasmas at different temperatures around 1 keV. Our model is applied to calculate the unresolved transition array (UTA) seen at 4.5-7 nm tungsten spectra. We analyze the effect of configuration interaction on population kinetics related to the UTA structure in detail and find the importance of two-electron-one-photon transitions between 4p54dn+1- 4p64dn-14f. Radiation power rate of tungsten due to line emissions is also estimated with the model and is consistent with other models within factor 2.

  6. Micro-powder injection moulding of tungsten

    International Nuclear Information System (INIS)

    Zeep, B.

    2007-12-01

    For He-cooled Divertors as integral components of future fusion power plants, about 300000 complex shaped tungsten components are to be fabricated. Tungsten is the favoured material because of its excellent properties (high melting point, high hardness, high sputtering resistance, high thermal conductivity). However, the material's properties cause major problems for large scale production of complex shaped components. Due to the resistance of tungsten to mechanical machining, new fabrication technologies have to be developed. Powder injection moulding as a well established shaping technology for a large scale production of complex or even micro structured parts might be a suitable method to produce tungsten components for fusion applications but is not yet commercially available. The present thesis is dealing with the development of a powder injection moulding process for micro structured tungsten components. To develop a suitable feedstock, the powder particle properties, the binder formulation and the solid load were optimised. To meet the requirements for a replication of micro patterned cavities, a special target was to define the smallest powder particle size applicable for micro-powder injection moulding. To investigate the injection moulding performance of the developed feedstocks, experiments were successfully carried out applying diverse cavities with structural details in micro dimension. For debinding of the green bodies, a combination of solvent debinding and thermal debinding has been adopted for injection moulded tungsten components. To develop a suitable debinding strategy, a variation of the solvent debinding time, the heating rate and the binder formulation was performed. For investigating the thermal consolidation behaviour of tungsten components, sinter experiments were carried out applying tungsten powders suitable for micro-powder injection moulding. First mechanical tests of the sintered samples showed promising material properties such as a

  7. LED lamp color control system and method

    Science.gov (United States)

    Gaines, James; Clauberg, Bernd; Van Erp, Josephus A.M.

    2013-02-05

    An LED lamp color control system and method including an LED lamp having an LED controller 58; and a plurality of LED channels 60 operably connected to the LED controller 58, each of the plurality of LED channels 60 having a channel switch 62 in series with at least one shunted LED circuit 83, the shunted LED circuit 83 having a shunt switch 68 in parallel with an LED source 80. The LED controller 58 determines whether the LED source 80 is in a feedback controllable range, stores measured optical flux for the LED source 80 when the LED source 80 is in the feedback controllable range, and bypasses storing the measured optical flux when the LED source 80 is not in the feedback controllable range.

  8. CALiPER Retail Lamps Study 3

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-02-01

    This is a special CALiPER report on LED lamps available through the retail marketplace and targeted toward general consumers. It follows similar reports published in 2011 and 2012 (products purchased in 2010 and 2011), and is intended as a continuation that identifies long-term trends. For this report, products were selected to investigate specific hypotheses, rather than represent a sample of the increasingly large retail LED market.

  9. UVR: sun, lamps, pigmentation and vitamin D

    DEFF Research Database (Denmark)

    Lerche, C M; Philipsen, P A; Wulf, H C

    2017-01-01

    Exposure to ultraviolet radiation (UVR) has important and significant consequences on human health. Recently, there has been renewed interest in the beneficial effects of UVR. This perspective gives an introduction to the solar spectrum, UV lamps, UV dosimetry, skin pigment and vitamin D....... The health benefits of UVR exposure through vitamin D production or non-vitamin D pathways will be discussed in this themed issue in the following articles....

  10. An investigation of tungsten by neutron activation techniques

    International Nuclear Information System (INIS)

    Svetsreni, R.

    1978-01-01

    This investigation used neutron from Plutonium-Beryllium source (5 curie) to analyse the amount of tungsten in tungsten oxide which was extracted from tungsten ores, slag and tungsten alloy of tungsten iron and carbon. The technique of neutron activation analysis with NaI(Tl) gamma detector 3'' x 3'' and 1024 multichannel analyzer. The dilution technique was used by mixing Fe 2 O 3 or pure sand into the sample before irradiation. In this study self shielding effect in the analysis of tungsten was solved and the detection limit of the tungsten in the sample was about 0.5%

  11. Environmental fate of tungsten from military use

    International Nuclear Information System (INIS)

    Clausen, Jay L.; Korte, Nic

    2009-01-01

    This manuscript describes the distribution, fate and transport of tungsten used in training rounds at three small arms ranges at Camp Edwards on the Massachusetts Military Reservation (MMR), USA. Practice with tungsten/nylon rounds began in 2000 subsequent to a 1997 US Environmental Protection Agency ban on training with lead. Training with the tungsten rounds was halted in 2005 because of concerns regarding tungsten's environmental mobility and potential toxicity. This study, therefore, examines how tungsten partitions in the environment when fired on a small arms training range. Soil sampling revealed surface soil concentrations, highest at the berm face, up to 2080 mg/kg. Concentrations decreased rapidly with depth-at least by an order of magnitude by 25 cm. Nonetheless, tungsten concentrations remained above background to at least 150 cm. Pore-water samples from lysimeters installed in berm areas revealed a range of concentrations (< 1-400 mg/L) elevated with respect to background although there was no discernable trend with depth. Groundwater monitoring well samples collected approximately 30 m below ground surface showed tungsten (0.001-0.56 mg/L) attributable to range use

  12. Environmental fate of tungsten from military use

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, Jay L. [Research and Development Center, Cold Regions Research and Engineering Laboratory, 72 Lyme Road, Hanover, New Hampshire, 03755 (United States)], E-mail: Jay.L.Clausen@erdc.usace.army.mil; Korte, Nic [1946 Clover Ct., Grand Junction, Colorado, 81506 (United States)

    2009-04-01

    This manuscript describes the distribution, fate and transport of tungsten used in training rounds at three small arms ranges at Camp Edwards on the Massachusetts Military Reservation (MMR), USA. Practice with tungsten/nylon rounds began in 2000 subsequent to a 1997 US Environmental Protection Agency ban on training with lead. Training with the tungsten rounds was halted in 2005 because of concerns regarding tungsten's environmental mobility and potential toxicity. This study, therefore, examines how tungsten partitions in the environment when fired on a small arms training range. Soil sampling revealed surface soil concentrations, highest at the berm face, up to 2080 mg/kg. Concentrations decreased rapidly with depth-at least by an order of magnitude by 25 cm. Nonetheless, tungsten concentrations remained above background to at least 150 cm. Pore-water samples from lysimeters installed in berm areas revealed a range of concentrations (< 1-400 mg/L) elevated with respect to background although there was no discernable trend with depth. Groundwater monitoring well samples collected approximately 30 m below ground surface showed tungsten (0.001-0.56 mg/L) attributable to range use.

  13. Combustion of powdery tungsten in pyrotechnic mixtures

    International Nuclear Information System (INIS)

    Ivanov, G.V.; Reshetov, A.A.; Viktorenko, A.M.; Surkov, V.G.; Karmadonov, L.N.

    1982-01-01

    The basic regularities of tungsten burning (powder 2-5 μm) with oxidizers most typical for pyrotechnics: nitrates, lead and barium peroxides (powder, 2-8 μm) and potassium perchlorate (powder, 2-8 μm) are studied. Dependences of burning rate as a function of pressure and ratio of components are established. It is supposed that tungsten burning in mixtures with the mentioned nitrates is a complex and multistage process the rate of which is determined by tungsten dissolution in nitrate melts. Analysis of burning products using available methods is complex

  14. Characterization of porous tungsten by microhardness

    International Nuclear Information System (INIS)

    Selcuk, C.; Wood, J.V.; Morley, N.; Bentham, R.

    2001-01-01

    One of the applications of tungsten is as high current density dispenser cathode in the form of porous tungsten. It is used as a cathode after being impregnated with an electron emissive material so pore distribution in the part is the most important parameter for its function as a uniform and controlled porosity will lead to a better performance. In this study, application of microhardness as a characterization method for uniformity of the pore distribution and homogeneity of the structure is introduced. Optical microscopy and SEM is used to relate the results and porous tungsten structure for a better understanding of the method applied. (author)

  15. Rational design of organic semiconductors for texture control and self-patterning on halogenated surfaces

    KAUST Repository

    Ward, Jeremy W.; Li, Ruipeng; Obaid, Abdulmalik; Payne, Marcia M.; Smilgies, Detlef Matthias; Anthony, John Edward; Amassian, Aram; Jurchescu, Oana D.

    2014-01-01

    new materials. Here, the influence of the interactions at the interface between a halogenated organic semiconductor (OSC) thin film and a halogenated self-assembled monolayer on the formation of the crystalline texture directly affecting

  16. Determination of halogens by flame emission of metal halogenides

    International Nuclear Information System (INIS)

    Henrion, G.; Marquardt, D.; Stoecker, B.

    1979-01-01

    The A-B systems InF, InCl, InBr, and InI have been excited by laminar H 2 -N 2 flames in order to dermine individual halogens or their mixtures qualitatively or quantitatively. In optimizing the fuel gas composition two different behavior patterns have been found for band intensities, which are correlated with binding energies of InX (X = halogen). The low temperature of the flame leads to complicated matrix effects which first of all result from effects on excitation and from competitive reactions. In general, cations cause a decreased intensity. Therefore, salts have to be converted into hydrohalide acids by ion exchange. Qualitative determinations of individual halogens are possible at a 500 to 50,000fold excess of the others, whereas quantitative determinations can be performed at a 100 to 5,000fold excess in 10 -4 molar solutions with errors of 2 to 10 per cent. (author)

  17. Investigating the gas phase emitter effect of caesium and cerium in ceramic metal halide lamps in dependence on the operating frequency

    Energy Technology Data Exchange (ETDEWEB)

    Ruhrmann, C; Westermeier, M; Bergner, A; Awakowicz, P; Mentel, J [Ruhr University Bochum, Electrical Engineering and Plasma Technology, D-44780 Bochum (Germany); Luijks, G M J F, E-mail: juergen.mentel@ruhr-uni-bochum.de [Philips Lighting, GBU HID, PO box 80020, 5600JM Eindhoven (Netherlands)

    2011-09-07

    The work function and with it the temperature of tungsten electrodes in HID lamps can be lowered and the lifetime of lamps increased by the gas phase emitter effect. A determination of the emitter effect of Cs and Ce is performed by phase resolved measurements of the electrode tip temperature T{sub tip}({psi}), plasma temperature T{sub pl}({psi}) and particle densities N({psi}) by means of pyrometric, optical emission and broadband absorption spectroscopy in dependence on the operating frequency. The investigated HID lamps are ceramic metal halide lamps with transparent discharge vessels made of YAG, filled with a buffer gas consisting of Ar, Kr and predominantly Hg and seeded with CsI or CeI{sub 3}. In the YAG lamp seeded with CsI and CeI{sub 3} as well as in a YAG lamp seeded with DyI{sub 3} (corresponding results can be found in a preceding paper) a gas phase emitter effect is observed in the cathodic phase due to a Cs, Ce or Dy ion current. In the YAG lamp seeded with CsI the phase averaged coverage of the electrode surface with emitter atoms decreases and the electrode temperature rises with increasing frequency, whereas the emitter effect of Ce and Dy is extended to the anodic phase, which leads to a decreased average temperature T{sub tip}({psi}) with increasing frequency. This different behaviour of the averaged values of T{sub tip}({psi}) for increasing frequency is caused by the differing adsorption energies E{sub a} of the respective emitter materials. In spite of the influence of E{sub a} on the coverage of the electrode with emitter atoms, the cathodic gas phase emitter effect produces in the YAG lamps seeded with CsI, CeI{sub 3} and DyI{sub 3} a general reduction in the electrode tip temperature T{sub tip}({psi}) in comparison with a YAG lamp with Hg filling only.

  18. The electrodeposition of niobium on tungsten

    International Nuclear Information System (INIS)

    Taylor, R.G.

    1977-03-01

    The electrodeposition of niobium on a tungsten substrate has been demonstrated by electrolysis of an alkali metal fluoride melt. The deposit produced was non-porous, coherent and formed a good bond to the substrate. (author)

  19. Modeling of hydrogen desorption from tungsten surface

    Energy Technology Data Exchange (ETDEWEB)

    Guterl, J., E-mail: jguterl@ucsd.edu [University of California, San Diego, La Jolla, CA 92093 (United States); Smirnov, R.D. [University of California, San Diego, La Jolla, CA 92093 (United States); Krasheninnikov, S.I. [University of California, San Diego, La Jolla, CA 92093 (United States); Nuclear Research National University MEPhI, Moscow 115409 (Russian Federation); Uberuaga, B.; Voter, A.F.; Perez, D. [Los Alamos National Laboratory, Los Alamos, NM 8754 (United States)

    2015-08-15

    Hydrogen retention in metallic plasma-facing components is among key-issues for future fusion devices. For tungsten, which has been chosen as divertor material in ITER, hydrogen desorption parameters experimentally measured for fusion-related conditions show large discrepancies. In this paper, we therefore investigate hydrogen recombination and desorption on tungsten surfaces using molecular dynamics simulations and accelerated molecular dynamics simulations to analyze adsorption states, diffusion, hydrogen recombination into molecules, and clustering of hydrogen on tungsten surfaces. The quality of tungsten hydrogen interatomic potential is discussed in the light of MD simulations results, showing that three body interactions in current interatomic potential do not allow to reproduce hydrogen molecular recombination and desorption. Effects of surface hydrogen clustering on hydrogen desorption are analyzed by introducing a kinetic model describing the competition between surface diffusion, clustering and recombination. Different desorption regimes are identified and reproduce some aspects of desorption regimes experimentally observed.

  20. SINTERED REFRACTORY TUNGSTEN ALLOYS. Gesinterte hochschmelzende wolframlegierungen

    Energy Technology Data Exchange (ETDEWEB)

    Kieffer, R.; Sedlatschek, K.; Braun, H.

    1971-12-15

    Dependence of the melting point of the refractory metals on their positions in the periodic system - alloys of tungsten with other refractory metals - sintering of the alloys - processing of the alloys - technological properties.

  1. A solid tungsten divertor for ASDEX Upgrade

    International Nuclear Information System (INIS)

    Herrmann, A; Greuner, H; Jaksic, N; Böswirth, B; Maier, H; Neu, R; Vorbrugg, S

    2011-01-01

    The conceptual design of a solid tungsten divertor for ASDEX Upgrade (AUG) is presented. The Div-III design is compatible with the existing divertor structure. It re-establishes the energy and heat receiving capability of a graphite divertor and overcomes the limitations of tungsten coatings. In addition, a solid tungsten divertor allows us to investigate erosion and bulk deuterium retention as well as test castellation and target tilting. The design criteria as well as calculations of forces due to halo and eddy currents are presented. The thermal properties of the proposed sandwich structure are calculated with finite element method models. After extensive testing of a target tile in the high heat flux test facility GLADIS, two solid tungsten tiles were installed in AUG for in-situ testing.

  2. Viscoelastic model of tungsten 'fuzz' growth

    International Nuclear Information System (INIS)

    Krasheninnikov, S I

    2011-01-01

    A viscoelastic model of fuzz growth is presented. The model describes the main features of tungsten fuzz observed in experiments. It gives estimates of fuzz growth rate and temperature range close to experimental ones.

  3. Tungsten: A Preliminary Environmental Risk Assessment

    Science.gov (United States)

    2011-05-01

    Tungsten Effects on Soil Microbial Communities BUILDING STRONG® Actinobacteria Bacteroidetes Firmicutes alpha-Proteobacteria beta-Proteobacteria gamma...Persistence of Actinobacteria & gamma- Proteobacteria • Actinobacteria – includes the actinomycetes  γ-Proteobacteria – includes a variety of microbes

  4. Copper-catalyzed recycling of halogen activating groups via 1,3-halogen migration.

    Science.gov (United States)

    Grigg, R David; Van Hoveln, Ryan; Schomaker, Jennifer M

    2012-10-03

    A Cu(I)-catalyzed 1,3-halogen migration reaction effectively recycles an activating group by transferring bromine or iodine from a sp(2) to a benzylic carbon with concomitant borylation of the Ar-X bond. The resulting benzyl halide can be reacted in the same vessel under a variety of conditions to form an additional carbon-heteroatom bond. Cross-over experiments using an isotopically enriched bromide source support intramolecular transfer of Br. The reaction is postulated to proceed via a Markovnikov hydrocupration of the o-halostyrene, oxidative addition of the resulting Cu(I) complex into the Ar-X bond, reductive elimination of the new sp(3) C-X bond, and final borylation of an Ar-Cu(I) species to turn over the catalytic cycle.

  5. Light and Light Sources High-Intensity Discharge Lamps

    CERN Document Server

    Flesch, Peter G

    2006-01-01

    Light and Light Sources gives an introduction to the working principles of high-intensity discharge (HID) lamps and points out challenges and problems associated with the development and operation of HID lamps. The state-of-the-art in electrode and plasma diagnostics as well as numerical methods used for the understanding of HID lamps are described. This volume addresses students as well as scientists and researchers at universities and in industry.

  6. Symmetric and asymmetric halogen-containing metallocarboranylporphyrins and uses thereof

    Science.gov (United States)

    Miura, Michiko; Wu, Haitao

    2013-05-21

    The present invention is directed to low toxicity boronated compounds and methods for their use in the treatment, visualization, and diagnosis of tumors. More specifically, the present invention is directed to low toxicity halogenated, carborane-containing 5,10,15,20-tetraphenylporphyrin compounds and methods for their use particularly in boron neutron capture therapy (BNCT) and photodynamic therapy (PDT) for the treatment of tumors of the brain, head and neck, and surrounding tissue. The invention is also directed to using these halogenated, carborane-containing tetraphenylporphyrin compounds in methods of tumor imaging and/or diagnosis such as MRI, SPECT, or PET.

  7. Halogens determination in vegetable NBS standard reference materials

    International Nuclear Information System (INIS)

    Stella, R.; Genova, N.; Di Casa, M.

    1977-01-01

    Levels of all four halogens in Orchard Leaves, Pine Needles and Tomato Leaves NBS reference standards were determined. For fluorine a spiking isotope dilution method was used followed by HF absorption on glass beads. Instrumental nuclear activation analysis was adopted for chlorine and bromine determination. Radiochemical separation by a distillation procedure was necessary for iodine nuclear activation analysis after irradiation. Activation parameters of Cl, Br and I are reported. Results of five determinations for each halogen in Orchard Leaves, Pine Needles and Tomato Leaves NBS Standard Materials and Standard deviations of the mean are reported. (T.I.)

  8. Tungsten metallizing alumina--yttria ceramics

    International Nuclear Information System (INIS)

    Cowan, R.E.; Stoddard, S.D.

    1977-03-01

    The ease with which high-alumina bodies may be metallized with tungsten is improved by additions of yttria to the alumina. Mechanisms of this bonding process were studied by use of optical and electron microscopy, electron microprobe, and tensile tests. Variables studied included yttria content of the body and the firing temperature during metallizing. The study showed that a reaction between the tungsten and the yttrogarnet grain boundary phase markedly improved adherence

  9. Strain aging in tungsten heavy alloys

    International Nuclear Information System (INIS)

    Dowding, R.J.; Tauer, K.J.

    1991-01-01

    This paper reports on tungsten heavy alloys which are two-phase mixtures of body center cubic (BCC) tungsten surrounded by a face center cubic (FCC) matrix. The matrix is most often composed of nickel and iron in a ratio of 70:30 but, occasionally, the matrix may also contain cobalt or copper. Nickel, however, is always the primary matrix component. The tungsten heavy alloy is fabricated through powder metallurgy techniques. Elemental powders are blended, pressed to shape, and sintered. Depending upon the tungsten content, the sintering temperatures are usually in the range of 1450 degrees C to 1525 degrees C. These temperatures are high enough that, as a result, the matrix is at the liquid phase and the process is known as liquid phase sintering. At the liquid phase temperature, the matrix becomes saturated with tungsten, but this does not change the FCC character of the matrix. The sintering is usually done in a hydrogen atmosphere furnace in order to reduce the oxides on the tungsten powder surfaces and create clean, active surfaces which will enhance the adherence between the tungsten and the matrix. The hydrogen atmosphere also creates the presence of excess dissolved hydrogen in the alloy. It has been shown that the hydrogen degrades the toughness and ductility of the heavy alloy. A post-sintering vacuum heat treatment is generally required to insure that there is no residual hydrogen present. The as-sintered tensile strength of a 90% tungsten, 7% nickel, 3% iron alloy (90W) is in the range of 800 to 940 MPa and can be increased significantly by cold working, usually rolling or swaging. Swaging to reductions in area of 20% can result in tensile strengths of 1250 MPa or more. As the strength increases, the elongation, which may have been 30% or more, decreases to less than 5%

  10. Problems of tungsten crack resistance optimization

    International Nuclear Information System (INIS)

    Babak, A.V.; Uskov, E.I.

    1986-01-01

    Technically pure and precipitation-hardening tungsten is studied for its crack resistance in the initial and hardened states at the temperatures of 20...2000 deg C. Results of the study are presented. It is shown that hardening of tungsten base alloys in oil from the temperature corresponding to the upper boundary of the temperature region of ductile-brittle transition increases a crack propagation resistance of the studied materias at elevated and high temperatures

  11. 40 CFR 721.5452 - Alkali metal salt of halogenated organoborate (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkali metal salt of halogenated... Specific Chemical Substances § 721.5452 Alkali metal salt of halogenated organoborate (generic). (a... generically as alkali metal salt of halogenated organoborate (PMN P-00-0638) is subject to reporting under...

  12. Tungsten foil laminate for structural divertor applications – Analyses and characterisation of tungsten foil

    International Nuclear Information System (INIS)

    Reiser, Jens; Rieth, Michael; Dafferner, Bernhard; Hoffmann, Andreas; Yi Xiaoou; Armstrong, David E.J.

    2012-01-01

    It has been attempted for several years to synthesise a tungsten material with a low brittle-to-ductile transition temperature and a high fracture toughness that can be used for structural parts. It was shown in our previous work that tungsten foil is ductile at room temperature and that this ductility can be transformed to bulk by synthesising a tungsten laminate. In this work we want to focus on tungsten foil and assess the microstructure as well as the mechanical properties of the foil. The assessment of the microstructure of 0.1 mm tungsten foil will be performed using electron microscopy. It will be shown that the grains of the tungsten foil have a dimension of 0.5 μm × 3 μm × 15 μm and a clear texture in (1 0 0) 〈0 1 1〉. This texture becomes even more pronounced by annealing. Three-point-bending tests with tungsten foil, as-received, will define the barriers: ductile at room temperature and brittle in liquid nitrogen (−196 °C). This shows that the ductility is a thermally activated process. Recrystallised tungsten foil (annealed for 1 h/2700 °C) shows ductile material behaviour at 200 °C. The paper closes with a discussion on the reasons of the ductility of 0.1 mm tungsten foil. These might be the ultra fine grained (UFG) microstructure or, in other words, a nano microstructure (see tungsten foil as-received), the high amount of mobile edge dislocations, and/or the foil effect, which means that dislocations can move to the surface and are annihilated (see tungsten foil recrystallised).

  13. Substitution of thoriated tungsten electrodes in Switzerland

    International Nuclear Information System (INIS)

    Kunz, H.; Piller, G.

    2006-01-01

    Thoriated tungsten electrodes are frequently used for inert gas welding (TIG/WIG). The use of these electrodes can lead to doses which are well above the limit for the general population (1mSv/year). This has been shown by different investigations, for example from the ''Berufsgenossenschaft''. With these findings in mind, the regulatory authorities (Swiss Federal Office of Public Health (SFOPH) and Swiss National Accident Insurance Association (Suva)) started in 1999 to examine the justification of thoriated tungsten electrodes and a possible substitution with products containing no radioactive material. Up to this time, the use of thoriated tungsten electrodes could be justified since no thorium-free products leading to comparable results were available on the market. This was also the reason why the SFOPH approved several types of these electrodes. Discussions with formation centers for welding and inquiries made at welding shops, trading companies and producers showed that in the mean-time thorium-free products with comparable welding specifications and results became available on the market. Since the 1 January 2004, thoriated tungsten electrodes can only be used if the user has obtained the corresponding license from the SFOPH. The use of thoriated tungsten electrodes is thus not completely forbidden, but very strict conditions have to be fulfilled. Up to now and due to the involvement of the relevant partners, the substitution process has not met any problem. Neither trading companies nor users made any opposition and no request for obtaining a license for thoriated tungsten electrodes was made. (orig.)

  14. 10 CFR 431.322 - Definitions concerning metal halide lamp ballasts and fixtures.

    Science.gov (United States)

    2010-01-01

    ... high intensity discharge fixture, the efficiency of a lamp and ballast combination, expressed as a... lamps. Metal halide lamp means a high intensity discharge lamp in which the major portion of the light... 10 Energy 3 2010-01-01 2010-01-01 false Definitions concerning metal halide lamp ballasts and...

  15. Sa uurisid ekspressionismi 1960ndatel ja 70ndatel... / Ene Lamp

    Index Scriptorium Estoniae

    Lamp, Ene

    2005-01-01

    2004. a. ilmunud raamatu "Ekspressionism" eest Eesti Kultuurkapitali suure kunstipreemia (100000 kr.) saanud Ene Lamp ekspressionismi tähenduse muutumiset, ekspressionismi rollist eesti kunstis, oma tulevikuplaanidest

  16. Promoting Literacy and Protection with Solar Lamps in Yemen

    Directory of Open Access Journals (Sweden)

    Jerry Farrell

    2014-04-01

    Full Text Available By distributing solar lamps to vulnerable rural women in Yemen, we promoted enrollment in literacy programs, as well as reading among their children. We saw a number of secondary benefits as well: safer households where dangerous kerosene lamps were used less frequently in the evening; a number of livelihood activities - cooking, husbandry, handicrafts - continued safely into evening hours; children found it easier to work on their homework using the solar powered lamps; and children found it easier and safer to walk in dark, rural streets in the evening with the solar lamps slung around their necks.

  17. Pulsed operation of high-pressure-sodium discharge lamps

    International Nuclear Information System (INIS)

    Guenther, K.; Kloss, H.G.; Lehmann, T.; Radtke, R.; Serick, F.

    1990-01-01

    Results of spectral and photometric measurements are presented for pulsed operated high-pressure-sodium lamps. Choosing for the colour temperature a value of 3000 K, the output spectrum was optimized with respect to colour rendition and lamp efficacy taking the pulse parameters, the sodium mole fraction, and the cold spot temperature as quantities to be varied. For the nominal rating of 70 W a maximum lamp efficacy of 70 lm/W and a colour rendering index of 40 can be obtained. Further improvements of the colour rendition require an enhanced sodium vapour pressure which can be achieved by operating the lamp at rised cold spot temperature. (orig.)

  18. Pulsed operation of high-pressure-sodium discharge lamps

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, K; Kloss, H G; Lehmann, T [Zentrum fuer Forschung und Technologie, Berlin (Germany, F.R.); Radtke, R; Serick, F [Zentralinstitut fuer Elektronenphysik, Berlin (Germany, F.R.)

    1990-01-01

    Results of spectral and photometric measurements are presented for pulsed operated high-pressure-sodium lamps. Choosing for the colour temperature a value of 3000 K, the output spectrum was optimized with respect to colour rendition and lamp efficacy taking the pulse parameters, the sodium mole fraction, and the cold spot temperature as quantities to be varied. For the nominal rating of 70 W a maximum lamp efficacy of 70 lm/W and a colour rendering index of 40 can be obtained. Further improvements of the colour rendition require an enhanced sodium vapour pressure which can be achieved by operating the lamp at rised cold spot temperature. (orig.).

  19. Mercury mass measurement in fluorescent lamps via neutron activation analysis

    International Nuclear Information System (INIS)

    Viererbl, L.; Vinš, M.; Lahodová, Z.; Fuksa, A.; Kučera, J.; Koleška, M.; Voljanskij, A.

    2015-01-01

    Mercury is an essential component of fluorescent lamps. Not all fluorescent lamps are recycled, resulting in contamination of the environment with toxic mercury, making measurement of the mercury mass used in fluorescent lamps important. Mercury mass measurement of lamps via instrumental neutron activation analysis (NAA) was tested under various conditions in the LVR-15 research reactor. Fluorescent lamps were irradiated in different positions in vertical irradiation channels and a horizontal channel in neutron fields with total fluence rates from 3×10 8 cm −2 s −1 to 10 14 cm −2 s −1 . The 202 Hg(n,γ) 203 Hg nuclear reaction was used for mercury mass evaluation. Activities of 203 Hg and others induced radionuclides were measured via gamma spectrometry with an HPGe detector at various times after irradiation. Standards containing an Hg 2 Cl 2 compound were used to determine mercury mass. Problems arise from the presence of elements with a large effective cross section in luminescent material (europium, antimony and gadolinium) and glass (boron). The paper describes optimization of the NAA procedure in the LVR-15 research reactor with particular attention to influence of neutron self-absorption in fluorescent lamps. - Highlights: • Mercury is an essential component of fluorescent lamps. • Fluorescent lamps were irradiated in neutron fields in research reactor. • 203 Hg induced radionuclide activity was measured using gamma spectrometry. • Mercury mass in fluorescent lamps can be measured by neutron activation analysis.

  20. Heat transfer assembly for a fluorescent lamp and fixture

    Science.gov (United States)

    Siminovitch, M.J.; Rubenstein, F.M.; Whitman, R.E.

    1992-12-29

    In a lighting fixture including a lamp and a housing, a heat transfer structure is disclosed for reducing the minimum lamp wall temperature of a fluorescent light bulb. The heat transfer structure, constructed of thermally conductive material, extends from inside the housing to outside the housing, transferring heat energy generated from a fluorescent light bulb to outside the housing where the heat energy is dissipated to the ambient air outside the housing. Also disclosed is a method for reducing minimum lamp wall temperatures. Further disclosed is an improved lighting fixture including a lamp, a housing and the aforementioned heat transfer structure. 11 figs.

  1. Tungsten Targets the Tumor Microenvironment to Enhance Breast Cancer Metastasis

    Science.gov (United States)

    Bolt, Alicia M.; Sabourin, Valérie; Molina, Manuel Flores; Police, Alice M.; Negro Silva, Luis Fernando; Plourde, Dany; Lemaire, Maryse; Ursini-Siegel, Josie; Mann, Koren K.

    2015-01-01

    The number of individuals exposed to high levels of tungsten is increasing, yet there is limited knowledge of the potential human health risks. Recently, a cohort of breast cancer patients was left with tungsten in their breasts following testing of a tungsten-based shield during intraoperative radiotherapy. While monitoring tungsten levels in the blood and urine of these patients, we utilized the 66Cl4 cell model, in vitro and in mice to study the effects of tungsten exposure on mammary tumor growth and metastasis. We still detect tungsten in the urine of patients’ years after surgery (mean urinary tungsten concentration at least 20 months post-surgery = 1.76 ng/ml), even in those who have opted for mastectomy, indicating that tungsten does not remain in the breast. In addition, standard chelation therapy was ineffective at mobilizing tungsten. In the mouse model, tungsten slightly delayed primary tumor growth, but significantly enhanced lung metastasis. In vitro, tungsten did not enhance 66Cl4 proliferation or invasion, suggesting that tungsten was not directly acting on 66Cl4 primary tumor cells to enhance invasion. In contrast, tungsten changed the tumor microenvironment, enhancing parameters known to be important for cell invasion and metastasis including activated fibroblasts, matrix metalloproteinases, and myeloid-derived suppressor cells. We show, for the first time, that tungsten enhances metastasis in an animal model of breast cancer by targeting the microenvironment. Importantly, all these tumor microenvironmental changes are associated with a poor prognosis in humans. PMID:25324207

  2. Modelling the Dynamic Interaction Power System Lamp - Application to High Pressure Mercury Gas Discharge Lamps

    Directory of Open Access Journals (Sweden)

    ZIANE, M.

    2007-11-01

    Full Text Available The aim of this paper is to study the dynamic behaviour of a plant constituted by an electrical power system and a gas discharge lamp, this latter, increasingly used in street lighting, remains a nonlinear load element. Various approaches are used to represent it, one is the approximation of the discharge represented by a hot "channel", which verifies the assumption of local thermodynamic equilibrium [LTE] or the polynomial form of the conductance variation. A calculation procedure, based on "channel" approximation of the high pressure mercury (HPM gas-discharge lamp, is developed to determine the physical and electric magnitudes, which characterize the dynamic behavior of the couple "lamp-electrical power system". The evolution of the lamp properties when principal parameters of the discharge (pressure of mercury, voltage supply, frequency are varying were studied and analyzed. We show the concordance between simulation, calculations and measurements for electric, energetic or irradiative characteristics. The model reproduces well the evolution of properties of the supply when principal parameters of the discharge vary.

  3. Stable high brightness radio frequency driven micro-discharge lamps at 193 (ArF*) and 157 nm ( F2*)

    International Nuclear Information System (INIS)

    Salvermoser, M; Murnick, D E

    2004-01-01

    A stable discharge between two pin electrodes separated by several hundred micrometres in a high pressure rare gas (∼900 mbar) halogen (∼1 mbar) mixture is shown to yield continuous wave (CW) ultra violet (UV) and vacuum UV light sources. Lamps operating at 193 (ArF*) and 157 nm F 2 *) have been demonstrated. Total CW output power in the UV was measured to be 30 for ArF* and 20 mW for F 2 *. The brightness of the light sources is estimated to be of the order of several W cm -2 sr -1 . With direct current excitation, electrode lifetimes are limited to a few minutes due to fluorine salt deposits. However, using a radio frequency (RF) field to drive the discharge, the lifetime of the lamps increased to hundreds of hours. A one-dimensional model of the RF micro-discharge explaining the increase in electrode lifetime is presented. The technology described can be adapted to many other wavelengths and promises even higher powers in future

  4. Transition from metal-ligand bonding to halogen bonding involving a metal as halogen acceptor a study of Cu, Ag, Au, Pt, and Hg complexes

    Science.gov (United States)

    Oliveira, Vytor; Cremer, Dieter

    2017-08-01

    Utilizing all-electron Dirac-exact relativistic calculations with the Normalized Elimination of the Small Component (NESC) method and the local vibrational mode approach, the transition from metal-halide to metal halogen bonding is determined for Au-complexes interacting with halogen-donors. The local stretching force constants of the metal-halogen interactions reveal a smooth transition from weak non-covalent halogen bonding to non-classical 3-center-4-electron bonding and finally covalent metal-halide bonding. The strongest halogen bonds are found for dialkylaurates interacting with Cl2 or FCl. Differing trends in the intrinsic halogen-metal bond strength, the binding energy, and the electrostatic potential are explained.

  5. Electronic Transitions of Tungsten Monosulfide

    Science.gov (United States)

    Tsang, L. F.; Chan, Man-Chor; Zou, Wenli; Cheung, Allan S. C.

    2017-06-01

    Electronic transition spectrum of the tungsten monosulfide (WS) molecule in the near infrared region between 725 nm and 885 nm has been recorded using laser ablation/reaction free-jet expansion and laser induced fluorescence spectroscopy. The WS molecule was produced by reacting laser - ablated tungsten atoms with 1% CS_{2} seeded in argon. Fifteen vibrational bands with resolved rotational structure have been recorded and analyzed, which were organized into seven electronic transition systems. The ground state has been identified to be the X^{3}Σ^{-}(0^{+}) state, and the determined vibrational frequency, ΔG_{1/2} and bond length, r_{0}, are respectively 556.7 cm^{-1} and 2.0676 Å. In addition, vibrational bands belong to another transition system involving lower state with Ω = 1 component have also been analyzed. Least-squares fit of the measured line positions yielded molecular constants for the electronic states involved. The low-lying Λ-S states and Ω sub-states of WS have been calculated using state-averaged complete active space self-consistent field (SA-CASSCF) and followed by MRCISD+Q (internally contracted multi-reference configuration interaction with singles and doubles plus Davidson's cluster correction). The active space consists of 10 electrons in 9 orbitals corresponding to the W 5d6s and S 3p shells. The lower molecular orbitals from W 5s5p and S 3s are inactive but are also correlated, and relativistic effective core potential (RECPs) are adopted to replace the core orbitals with 60 (W) and 10 (S) core electrons, respectively. Spin-orbit coupling (SOC) is calculated via the state-interaction (SI) approach with RECP spin-orbit operators using SA-CASSCF wavefunctions, where the diagonal elements in the SOC matrix are replaced by the corresponding MRCISD+Q energies calculated above. Spectroscopic constants and potential energy curves of the ground and many low-lying Λ-S states and Ω sub-states of the WS molecule are obtained. The calculated

  6. Photodecomposition Profile of Curcumin in the Existence of Tungsten Trioxide Particles

    Science.gov (United States)

    Nandiyanto, A. B. D.; Zaen, R.; Oktiani, R.; Abdullah, A. G.

    2018-02-01

    The purpose of this study was to investigate the stability of curcumin solution in the existence of tungsten trioxide (WO3) particles under light illumination. In the experimental method, curcumin extracted from Indonesian local turmeric was added with WO3 microparticles and put into the photoreactor system. The photostability performance of curcumin was conducted for 22 hours using 100 W of Neon Lamp. The results showed that the curcumin solution was relatively stable. When curcumin without existence of WO3 was irradiated, no change in the curcumin concentration was found. However, when curcumin solution was mixed with WO3 particles, decreases in the concentration of curcumin was found. The concentration of curcumin with WO3 after light irradiation was about 73.58%. Based on the results, we concluded that the curcumin is relatively stable against light. However, its lightirradiation stability decreases with additional inorganic material.

  7. Development of halogen-free cables for nuclear power plants

    International Nuclear Information System (INIS)

    Yamamoto, Mitsuo; Ito, Kazumi; Yaji, Takeo; Yoshida, Shin; Sakurai, Takako; Matsushita, Shigetoshi.

    1990-01-01

    On the occasion where serious fire accidents were experienced in the past, the need for making flame-retardant wire and cable incombustible took place and has since been generalizing. Various sorts of flame-retardant cables have already been developed and been actually used. From the viewpoint of avoiding the interference with the evacuation and fire-fighting activity in case of fire or the secondary accidents such as corrosion of the distributing panel, etc., the demand for non-halogen flame-retardant cable has rapidly been increasing in recent years in some fields of general industries, because this specific cable would generate the least amount of toxic smoke or corrosive gas even when it should burn. Similar demand has been increasing also for the cable used for nuclear power plants. In this field, earnest desire has been made for the development of non-halogen flame-retardant cable having specific environmental resistance specially required at nuclear power plants in addition to the properties and capacities required in general industries. The authors have continued examinations on the anti-environmental properties of the materials for cable such as long heat resistance, radiation resistance, steam resistance and succeeded in completing various sorts of non-halogen flame-retardant cable for nuclear power plants. In this report, we will introduce various features of the cable we have developed this time as well as the long-term reliability of non-halogen flame-retardant materials. (author)

  8. Development of non-halogen cables for nuclear power stations

    Energy Technology Data Exchange (ETDEWEB)

    Yagyu, Hideki; Yamamoto, Yasuaki; Onishi, Takao (Hitachi Cable, Ltd., Tokyo (Japan))

    1983-12-01

    The non-halogen fire-resistant cables for nuclear power stations which never generate halogen gas, have been developed. The cables comprise the insulator of EP rubber and the sheath of polyolefine containing non-halogen inorganic fire-retardant. The results of the environmental test and fire-resistance test are described. In the environmental test, the cables were subjected to the heating, gamma-irradiation and steam exposure successively, according to IEEE specification 323,383, and subsequently the change in the appearance, tensile strength and electrical performance of the cables was measured. In the fire-resistance test, the vertical tray fire test according to the IEEE specification 383 was adopted, and other tests including the vertical fire test on insulator cores, oxygen index, the generation of corrosive gas, copper mirror corrosion test, gas toxicity test and optical smoke density test were carried out. It became clear that the cables did not generate halogen gas on burning, and brought about reduced toxicity, corrosion and smoke, and that the safety against fire is greatly improved by using the cables.

  9. Polar Flattening and the Strength of Halogen Bonding

    Czech Academy of Sciences Publication Activity Database

    Sedlák, Robert; Kolář, Michal H.; Hobza, Pavel

    2015-01-01

    Roč. 11, č. 10 (2015), s. 4727-4732 ISSN 1549-9618 R&D Projects: GA ČR GBP208/12/G016 Institutional support: RVO:61388963 Keywords : density functional theory * interaction energies * halogen bonding Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.301, year: 2015

  10. Is there theoretical evidence for mutual influence between halogen

    Indian Academy of Sciences (India)

    Based on many-body analysis, two and three-body terms of interaction energies have a positive contribution to the total interaction energy. It was found that the amount of charge transfer in the triads is higher than that in the corresponding dyads. AIM analyses showed that the halogen and pnicogen-hydride bonds in the ...

  11. Halogen-Mediated Conversion of Hydrocarbons to Commodities.

    Science.gov (United States)

    Lin, Ronghe; Amrute, Amol P; Pérez-Ramírez, Javier

    2017-03-08

    Halogen chemistry plays a central role in the industrial manufacture of various important chemicals, pharmaceuticals, and polymers. It involves the reaction of halogens or halides with hydrocarbons, leading to intermediate compounds which are readily converted to valuable commodities. These transformations, predominantly mediated by heterogeneous catalysts, have long been successfully applied in the production of polymers. Recent discoveries of abundant conventional and unconventional natural gas reserves have revitalized strong interest in these processes as the most cost-effective gas-to-liquid technologies. This review provides an in-depth analysis of the fundamental understanding and applied relevance of halogen chemistry in polymer industries (polyvinyl chloride, polyurethanes, and polycarbonates) and in the activation of light hydrocarbons. The reactions of particular interest include halogenation and oxyhalogenation of alkanes and alkenes, dehydrogenation of alkanes, conversion of alkyl halides, and oxidation of hydrogen halides, with emphasis on the catalyst, reactor, and process design. Perspectives on the challenges and directions for future development in this exciting field are provided.

  12. Benchmark Calculations of Noncovalent Interactions of Halogenated Molecules

    Czech Academy of Sciences Publication Activity Database

    Řezáč, Jan; Riley, Kevin Eugene; Hobza, Pavel

    2012-01-01

    Roč. 8, č. 11 (2012), s. 4285-4292 ISSN 1549-9618 R&D Projects: GA ČR GBP208/12/G016 Institutional support: RVO:61388963 Keywords : halogenated molecules * noncovalent interactions * benchmark calculations Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.389, year: 2012

  13. Development of non-halogen cables for nuclear power stations

    International Nuclear Information System (INIS)

    Yagyu, Hideki; Yamamoto, Yasuaki; Onishi, Takao

    1983-01-01

    The non-halogen fire-resistant cables for nuclear power stations which never generate halogen gas, have been developed. The cables comprise the insulator of EP rubber and the sheath of polyolefine containing non-halogen inorganic fire-retardant. The results of the environmental test and fire-resistance test are described. In the environmental test, the cables were subjected to the heating, gamma-irradiation and steam exposure successively, according to IEEE specification 323,383, and subsequently the change in the appearance, tensile strength and electrical performance of the cables was measured. In the fire-resistance test, the vertical tray fire test according to the IEEE specification 383 was adopted, and other tests including the vertical fire test on insulator cores, oxygen index, the generation of corrosive gas, copper mirror corrosion test, gas toxicity test and optical smoke density test were carried out. It became clear that the cables did not generate halogen gas on burning, and brought about reduced toxicity, corrosion and smoke, and that the safety against fire is greatly improved by using the cables. (Yoshitake, I.)

  14. Reactor as furnace and reactor as lamp

    International Nuclear Information System (INIS)

    Goldanskii, V.I.

    1992-01-01

    There are presented general characteristics of the following ways of transforming of nuclear energy released in reactors into chemical : ordinary way (i.e. trough the heat, mechanical energy and electricity); chemonuclear synthesis ; use of high-temperature fuel elements (reactor as furnace); use of the mixed nγ-radiation of reactors; use of the radiation loops; radiation - photochemical synthesis (reactor as lamp). Advantage and disadvantages of all above variants are compared. The yield of the primary product of fixation of nitrogen (nitric oxide NO) in reactor with the high-temperature (above ca. 1900degC) fuel elements (reactor-furnace) can exceed W ∼ 200 kg per gram of burned uranium. For the latter variant (reactor-lamp) the yield of chemical products can reach W ∼ 60 kg. per gram of uranium. Such values of W are close to or even strongly exceed the yields of chemical products for other abovementioned variants and - what is particularly important - are not connected to the necessity of archscrupulous removal of radioactive contamination of products. (author)

  15. High temperature diffusion of hafnium in tungsten and a tungsten-hafnium carbide alloy

    International Nuclear Information System (INIS)

    Ozaki, Y.; Zee, R.H.

    1994-01-01

    Refractory metals and ceramics are used extensively in energy systems due to their high temperature properties. This is particularly important in direct conversion systems where thermal to electric conversion efficiency is a direct function of temperature. Tungsten, which has the highest melting temperature among elemental metals, does not possess sufficient creep resistance at temperature above 1,600 K. Different dispersion strengthened tungsten alloys have been developed to extend the usefulness of tungsten to higher temperatures. One of these alloys, tungsten with 0.4 mole percent of finely dispersed HfC particles (W-HfC), has the optimum properties for high temperature applications. Hafnium carbide is used as the strengthening agent due to its high chemical stability and its compatibility with tungsten. The presence of HfC particles retards the rate of grain growth as well as restricting dislocation motion. Both of which are beneficial for creep resistance. The long term behavior of this alloy depends largely on the evolution of its microstructure which is governed by the diffusion of its constituents. Data on the diffusion of carbon in tungsten and tungsten self-diffusion are available, but no direct measurements have been made on the diffusion of hafnium in tungsten. The only diffusion data available are estimated from a coarsening study and these data are highly unreliable. In this study, the diffusion behavior of hafnium in pure tungsten and in a W-HfC alloy was directly measured by means of Secondary Ion Mass Spectroscopy (SIMS). The selection of the W-HfC alloy is due to its importance in high temperature engineering applications, and its higher recrystallization temperature. The presence of HfC particles in tungsten restricts grain growth resulting in better high temperature creep resistance. The higher recrystallization temperature allows measurements to be made over a wider range of temperatures at a relatively constant grain size

  16. Manganese Catalyzed C–H Halogenation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei; Groves, John T.

    2015-06-16

    The remarkable aliphatic C–H hydroxylations catalyzed by the heme-containing enzyme, cytochrome P450, have attracted sustained attention for more than four decades. The effectiveness of P450 enzymes as highly selective biocatalysts for a wide range of oxygenation reactions of complex substrates has driven chemists to develop synthetic metalloporphyrin model compounds that mimic P450 reactivity. Among various known metalloporphyrins, manganese derivatives have received considerable attention since they have been shown to be versatile and powerful mediators for alkane hydroxylation and olefin epoxidation. Mechanistic studies have shown that the key intermediates of the manganese porphyrin-catalyzed oxygenation reactions include oxo- and dioxomanganese(V) species that transfer an oxygen atom to the substrate through a hydrogen abstraction/oxygen recombination pathway known as the oxygen rebound mechanism. Application of manganese porphyrins has been largely restricted to catalysis of oxygenation reactions until recently, however, due to ultrafast oxygen transfer rates. In this Account, we discuss recently developed carbon–halogen bond formation, including fluorination reactions catalyzed by manganese porphyrins and related salen species. We found that biphasic sodium hypochlorite/manganese porphyrin systems can efficiently and selectively convert even unactivated aliphatic C–H bonds to C–Cl bonds. An understanding of this novel reactivity derived from results obtained for the oxidation of the mechanistically diagnostic substrate and radical clock, norcarane. Significantly, the oxygen rebound rate in Mn-mediated hydroxylation is highly correlated with the nature of the trans-axial ligands bound to the manganese center (L–MnV$=$O). Based on the ability of fluoride ion to decelerate the oxygen rebound step, we envisaged that a relatively long-lived substrate radical could be trapped by a Mn–F fluorine source, effecting carbon–fluorine bond

  17. Photodegradation of Dechlorane Plus in n-nonane under the irradiation of xenon lamp

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Siwen; Huang, Jun; Yang, Yang; Yu, Gang, E-mail: yg-den@tsinghua.edu.cn; Deng, Shubo; Wang, Bin

    2013-09-15

    Highlights: • Photodegradation of isomers of Dechlorane Plus (DP) as a potential persistent organic pollutant were studied. • UV-C was found to be the main contributor to DP photodegradation. • DP degradation followed the pseudo first-order kinetics. • Sequential dechlorination was found as the degradation mechanism. -- Abstract: Photodegradation has been regarded as the main mechanism for the removal of many halogenated organic pollutants in the environment. The photodegradation of Dechlorane Plus (DP), an emerging contaminant taken worldwide concerns in recent years, was investigated under the irradiation of a xenon lamp. Rapid photodegradation was found under the irradiation of 200–750 nm light, while the degradation became much slower when the range of light wavelength changed to 280–750 nm. DP degradation followed the pseudo first-order kinetics. The quantum yields of 200–280 nm (UV-C) were about 2–3 orders of magnitude higher than 280–320 nm, and no yields can be detected in 320–750 nm range, in an agreement with the changing photodegradation rates with wavelength. The photodegradation products were identified as lower chlorinated DPs, implicating a mechanism of reductive dechlorination. No photoisomerization or solvent adducts were observed, and the difference of photodegradation rate between syn- and anti-DP isomers was negligible.

  18. Process for reducing halogen impurities in oil products

    Energy Technology Data Exchange (ETDEWEB)

    Basler, F.

    1990-08-14

    Oil products, in particular waste oils, may be efficiently reprocessed according to an economic and technically simple method for removing impurities, notably halogens. In this method, the oil product is treated at temperatures up to about 150{degree}C with an effective amount of an aqueous solution of at least one compound selected from the group consisting of a strong acid, a salt of a weak base and a strong acid and precursors thereof. The oil product obtained in this step is treated at increased temperatures with at least one halogen binding agent. The water and/or solids from the product so treated are separated out. The process of the invention can be carried out in a conventional stripping apparatus. The strong acid used in the first step is preferably selected from sulfurous acid, phosphoric acid, phosphorous acid, and phosphonic acid. The salt of the weak base and strong acid is preferably ammonium sulfate, ammonium bisulfate, ammonium sulfite, diammonium hydrogen phosphate, ammonium dihydrogen phosphate, ammonium phosphite, and ammonium phosphonic acid. The second step of the method is preferably a coagulation step in which organic halogen compounds break down into hydrogen halides which are neutralized by the added halogen binding agents. The preferred halogen binding agents are ammonia and/or an organic base. The coagulation is preferably carried out in heat exchangers so that the oil is heated in 3 stages and the oil from each stage is passed through a cascade tower. In the third step, additives may be used to enhance separation of the oil. Experiments are described to illustrate the method of the invention. 1 tab.

  19. Demixing in a metal halide lamp, results from modeling

    NARCIS (Netherlands)

    Beks, M.L.; Hartgers, A.; Mullen, van der J.J.A.M.; Veldhuizen, van E.M.

    2005-01-01

    Metal Halide (MH) lamps are high pressure discharge devices, containing a complex chemical mixture, to emit light on a broad spectrum while maintaining good efficacies. Lamps of this type were first exhibited by General Electric at the 1964 World Fair in New York [1]. They typically consist of an

  20. 49 CFR 393.11 - Lamps and reflective devices.

    Science.gov (United States)

    2010-10-01

    ... dolly obscures the turn signals at the rear of the towing vehicle. Footnote—6Pole trailers shall be... signals and the two rear signals to flash simultaneously as a vehicular traffic signal warning, required... vehicle, exclusive of the signal lamps, marker lamps, outside rearview mirrors, flexible fender extensions...

  1. High power solid state retrofit lamp thermal characterization and modeling

    NARCIS (Netherlands)

    Jakovenko, J.; Formánek, J.; Vladimír, J.; Husák, M.; Werkhoven, R.J.

    2012-01-01

    Thermal and thermo-mechanical modeling and characterization of solid state lightening (SSL) retrofit LED Lamp are presented in this paper. Paramount Importance is to design SSL lamps for reliability, in which thermal and thermo-mechanical aspects are key points. The main goal is to get a precise 3D

  2. Fluorescent lamp with static magnetic field generating means

    Science.gov (United States)

    Moskowitz, P.E.; Maya, J.

    1987-09-08

    A fluorescent lamp wherein magnetic field generating means (e.g., permanent magnets) are utilized to generate a static magnetic field across the respective electrode structures of the lamp such that maximum field strength is located at the electrode's filament. An increase in efficacy during operation has been observed. 2 figs.

  3. Design of LED lamps | Ashryatov | Journal of Fundamental and ...

    African Journals Online (AJOL)

    Design of LED lamps. ... In this paper, we study the effect of LED high brightness on the brightness of a luminaire. The nomenclature of diffusers used in the production of ... The variant of the lighting system energy efficiency increase with luminaires and linear fluorescent lamps is considered. In the proposed variant, the ...

  4. Luminous flux and colour maintenance investigation of integrated LED lamps

    DEFF Research Database (Denmark)

    Corell, Dennis Dan; Thorseth, Anders; Dam-Hansen, Carsten

    2014-01-01

    This article will present an investigation of the luminous flux and colour maintenance of white LED based retrofit lamps. The study includes 23 different types of integrated LED lamps, covering 18 directional and 5 non-directional. Luminous flux and colour data for operation up to 20000 h has been...

  5. Thermal simulation and validation of 8W LED lamp

    NARCIS (Netherlands)

    Jakovenko, J.; Werkhoven, R.J.; Formánek, J.; Kunen, J.M.G.; Bolt, P.J.; Kulha, P.

    2011-01-01

    This work deals with thermal simulation and characterization of solid state lightening (SSL) LED Lamp in order to get precise 3D thermal models for further lamp thermal optimization. Simulations are performed with ANSYS-CFX and CoventorWare software tools. The simulated thermal distribution has been

  6. A new LED lamp for the collection of nocturnal Lepidoptera and a spectral comparison of light-trapping lamps

    Directory of Open Access Journals (Sweden)

    Gunnar Brehm

    2017-04-01

    Full Text Available Most nocturnal Lepidoptera can be attracted to artificial light sources, particularly to those that emit a high proportion of ultraviolet radiation. Here, I describe a newly developed LED lamp set for the use in the field that is lightweight, handy, robust, and energy efficient. The emitted electromagnetic spectrum corresponds to the peak sensitivity in most Lepidoptera eye receptors (ultraviolet, blue and green. Power LEDs with peaks at 368 nm (ultraviolet, 450 nm (blue, 530 nm (green, and 550 nm (cool white are used. I compared the irradiance (Ee of many commonly used light-trapping lamps at a distance of 50 cm. Between wavelengths of 300 and 1000 nm, irradiance from the new lamp was 1.43 W m-2. The new lamp proved to be the most energy efficient, and it emitted more radiation in the range between 300 and 400 nm than any other lamp tested. Cold cathodes are the second most energy-efficient lamps. Irradiation from fluorescent actinic tubes is higher than from fluorescent blacklight-blue tubes. High-wattage incandescent lamps and self-ballasted mercury vapour lamps have highest irradiance, but they mainly emit in the long wave spectrum. The use of gauze and sheets decreases the proportion of UV radiation and increases the share of blue light, probably due to optical brighteners. Compared with sunlight, UV irradiance is low at a distance of 50 cm from the lamp, but (safety glasses as well as keeping sufficient distance from the lamp are recommended. In field tests, the new LED lamp attracted large numbers of Lepidoptera in both the Italian Alps and in the Peruvian Andes.

  7. E. S. R. studies of halogenated pyrimidines in. gamma. -irradiated alkaline glasses. [Halogenated uracil bases; bromouridine; bromodeoxyuridine

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, L D; Zimbrick, J D [Kansas Univ., Lawrence (USA)

    1975-11-01

    The reactions of mobile electrons (e/sup -//sub m/) and oxygen radical anions (O./sup -/) with halogenated bases and nucleosides have been studied in ..gamma..-irradiated alkaline glasses by e.s.r. and specific halogen-ion electrode techniques. It was shown that electrons react with halogenated uracil bases (XUr where X = Cl, Br, I but not F) by dissociative electron attachment to form uracil-5-yl radicals (U.) and halogen anions. The relative rates of reaction of e/sup -//sub m/ with XUr decreased in the sequence BrUr > ClUr > FUr > IUr. Thermal annealing studies carried out on U. in H/sub 2/O and D/sub 2/O matrices supported the hypothesis that U. in H/sub 2/O hydrates across the 5-6 double bond in the temperature region 135/sup 0/ to 155/sup 0/ K, and deuterates to a much smaller extent in D/sub 2/O at temperatures above 155/sup 0/ K. Studies on bromouridine and bromodeoxyuridine suggested that e/sup -/sub(m) reacts with the base moieties to form U. type radicals which abstract H. from the sugar moieties of adjacent nucleosides.

  8. Tanning lamps ultraviolet emissions and compliance with technical standards

    International Nuclear Information System (INIS)

    Bonino, A.; Facta, S.; Saudino, S.; Anglesio, L.; D'Amore, G.

    2009-01-01

    In this work the compliance of tanning lamps with technical standards EN 60335-2-27 'Household and similar electrical appliances-Safety. Part 2: Particular requirements for appliances for skin exposure to ultraviolet and infrared radiation' was analysed. Results of this analysis showed that none of the examined technical documentation produced by the lamps manufacturers is fully compliant with the standard technique. Furthermore data reported in the same manuals, such as effective radiant exposure or irradiance, would indicate that these sources may be the cause of undue exposure to ultraviolet (UV) radiation. For this reason a measurement campaign on UV lamps used in tanning salons was organised. The first results of these measurements seem to confirm the doubts raised from the analysis of the lamp manuals: the use of a tanning lamp can lead to UV radiation exposure levels higher than reference maximum values recommended by EN 60335-2-27. (authors)

  9. Ignition of mercury-free high intensity discharge lamps

    International Nuclear Information System (INIS)

    Czichy, M; Mentel, J; Awakowicz, P; Hartmann, T

    2008-01-01

    To achieve a better understanding of the ignition behaviour of D4 lamps for automotive headlights the ignition of mercury-free metal iodide test lamps characterized by a high xenon pressure, a small electrode distance and small electrode-wall distances is investigated. The ignition of these lamps is dominated by a high voltage requirement. Nevertheless lamps are found that show a surprisingly low ignition voltage. Electrical measurements and simultaneous optical observations of the ultra-fast streamer processes show that the breakdown takes place in two different modes. One of the ignition modes which requires a high ignition voltage is characterized by a breakdown in the volume between the electrode tips. The other mode is characterized by streamer discharges along the wall. In this case the cathode, its base and the wall around is involved in the ignition process and the lamp breaks down at low voltages

  10. Phase-resolved response of a metal-halide lamp

    International Nuclear Information System (INIS)

    Flikweert, A J; Beks, M L; Nimalasuriya, T; Kroesen, G M W; Van der Mullen, J J A M; Stoffels, W W

    2009-01-01

    The metal-halide (MH) lamp sometimes shows unwanted colour segregation, caused by a combination of convection and diffusion. In the past we investigated the lamp, running on a switched dc ballast of 120 Hz, using a dc approximation for the distribution of the radiating species. Here we present phase-resolved intensity measurements to verify this approximation. The MH lamp contains Hg as buffer gas and DyI 3 as salt additive; we measure the light emitted by Dy and by Hg atoms. An intensity fluctuation of ∼25% close to the electrodes is found only. The observed fluctuations are explained by the cataphoresis effect and temperature fluctuations; the time scales are in the same order. Furthermore, measurements at higher gravity in a centrifuge (up to 10g) show that the effect becomes smaller at increasing gravity levels. From these results it is concluded that a dc approximation, which is generally assumed by lamp developers, is allowed for this MH lamp.

  11. Processes and Technologies for the Recycling of Spent Fluorescent Lamps

    Directory of Open Access Journals (Sweden)

    Kujawski Wojciech

    2014-09-01

    Full Text Available The growing industrial application of rare earth metals led to great interest in the new technologies for the recycling and recovery of REEs from diverse sources. This work reviews the various methods for the recycling of spent fluorescent lamps. The spent fluorescent lamps are potential source of important rare earth elements (REEs such as: yttrium, terbium, europium, lanthanum and cerium. The characteristics of REEs properties and construction of typical fl uorescent lamps is described. The work compares also current technologies which can be utilized for an efficient recovery of REEs from phosphors powders coming from spent fluorescent lamps. The work is especially focused on the hydrometallurgical and pyrometallurgical processes. It was concluded that hydrometallurgical processes are especially useful for the recovery of REEs from spent fluorescent lamps. Moreover, the methods used for recycling of REEs are identical or very similar to those utilized for the raw ores processing.

  12. Tungsten or Wolfram: Friend or Foe?

    Science.gov (United States)

    Zoroddu, Maria A; Medici, Serenella; Peana, Massimiliano; Nurchi, Valeria M; Lachowicz, Joanna I; Laulicht-Glickc, Freda; Costa, Max

    2018-01-01

    Tungsten or wolfram was regarded for many years as an enemy within the tin smelting and mining industry, because it conferred impurity or dirtiness in tin mining. However, later it was considered an amazing metal for its strength and flexibility, together with its diamond like hardness and its melting point which is the highest of any metal. It was first believed to be relatively inert and an only slightly toxic metal. Since early 2000, the risk exerted by tungsten alloys, its dusts and particulates to induce cancer and several other adverse effects in animals as well as humans has been highlighted from in vitro and in vivo experiments. Thus, it becomes necessary to take a careful look at all the most recent data reported in the scientific literature, covering the years 2001-2016. In fact, the findings indicate that much more attention should be devoted to thoroughly investigate the toxic effects of tungsten and the involved mechanisms of tungsten metal or tungsten metal ions. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Surface morphologies of He-implanted tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Bannister, M.E., E-mail: bannisterme@ornl.gov [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6371 (United States); Meyer, F.W.; Hijazi, H. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6371 (United States); Unocic, K.A.; Garrison, L.M.; Parish, C.M. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    2016-09-01

    Surface morphologies of tungsten surfaces, both polycrystalline and single-crystal [1 1 0], were investigated using SEM and FIB/SEM techniques after implantations at elevated surfaces temperatures (1200–1300 K) using well-characterized, mono-energetic He ion beams with a wide range of ion energies (218 eV–250 keV). Nanofuzz was observed on polycrystalline tungsten (PCW) following implantation of 100-keV He ions at a flux threshold of 0.9 × 10{sup 16} cm{sup −2} s{sup −1}, but not following 200-keV implantations with similar fluxes. No nanofuzz formation was observed on single-crystal [1 1 0] tungsten (SCW), despite fluxes exceeding those demonstrated previously to produce nanofuzz on polycrystalline tungsten. Pre-damaging the single-crystal tungsten with implanted C impurity interstitials did not significantly affect the surface morphologies resulting from the high-flux He ion implantations. The main factor leading to the different observed surface structures for the pristine and C-implanted single-crystal W samples appeared to be the peak He ion flux characterizing the different exposures. It was speculated that nanofuzz formation was not observed for any SCW target exposures because of increased incubation fluences required for such targets.

  14. Loss of shear strength in polycrystalline tungsten under shock compression

    International Nuclear Information System (INIS)

    Dandekar, D.P.

    1976-01-01

    A reexamination of existing data on shock compression of polycrystalline tungsten at room temperature indicates that tungsten may be an exception to the common belief that metals do not behave like elastic-isotropic solids under shock compression

  15. Effect of high intensity vs. soft-start halogen irradiation on light-cured resin-based composites. Part I. Temperature rise and polymerization shrinkage.

    Science.gov (United States)

    Hofmann, Norbert; Markert, Tanja; Hugo, Burkard; Klaiber, Bernd

    2003-12-01

    To determine polymerization shrinkage kinetics and temperature rise of light-cured resin-based composites after high intensity vs. soft-start quartz tungsten halogen irradiation. Shrinkage kinetics was evaluated using the "deflecting disk technique", modified for simultaneous measurement of temperature within the resin-based composite using a thermocouple. Additional irradiations after 60 and 65 minutes allowed the determination of temperature rises caused by radiation or by reaction heat. Four hybrids (Filtek Z250, Herculite, Solitaire 2, Tetric Ceram), an inhomogeneously filled hybrid (InTen-S) and a microfill (Filtek A110, formerly Silux Plus) were cured using the quartz tungsten halogen units Astralis 10 and Optilux 501 in the high intensity (A10 HiPo: 10 seconds at 1300 mW/cm2; OL Boost: 10 seconds at 1140 mW/cm2) or soft-start modes (A10 Pulse: increase to 700 mW/cm2 within 10 seconds, three periods of 2 seconds at 1300 mW/cm2 alternating with two periods of 2 seconds at 700 mW/cm2; OL Ramp: exponential increase within 10 seconds, followed by 10 seconds at 1140 mW/cm2). The soft-start protocols produced less contraction, and polymerization shrinkage started later and progressed slower (or: more slowly), compared to high intensity irradiation [correction]. The lowest shrinkage was observed for InTen-S, followed by Filtek Z250 and A110, whereas Solitaire 2, Herculite and Tetric Ceram scored highest for this parameter. Temperature rise was caused more or less equally by radiation and by reaction heat and reached values of up to 28.9 degrees C relative to a baseline of 37 degrees C. For some combinations of curing modes and resin-based composites, less heat was generated by the soft-start protocols and by Optilux 501.

  16. Investigation of electron emission properties of Ba-activated tungsten cathodes

    International Nuclear Information System (INIS)

    Beck, I; Josepovits, V K; Sneider, J; Toth, Z

    2005-01-01

    In this work we investigated the electron emission properties of high-pressure discharge lamp cathode tips. The work function (Φ) of the cathode tip was measured by using the Kelvin probe method and by work function spectroscopy (WFS). The Kelvin probe method was used to measure the average work function of tips under atmospheric pressure in air. By WFS we could measure the local work function value of tips in the selected spots under ultra high vacuum conditions. The chemical composition analysis was carried out in the same chamber by Auger electron spectroscopy. The focus of this study is to investigate the influence of sintering temperature of cathodes (1500-1700 deg. C) and lamp operation time (0-12 000 h) on the work function. The comparison of the work function of both cathodes as a function of operation time originating from the two different ends of the ceramic tube is also considered. In order to understand the structure of the layers on the cathode tips we also give results obtained on a flat tungsten foil covered with Ba-containing emission material. The flat samples were measured using x-ray photoelectron spectroscopy and WFS

  17. Fabrication and evaluation of chemically vapor deposited tungsten heat pipe.

    Science.gov (United States)

    Bacigalupi, R. J.

    1972-01-01

    A network of lithium-filled tungsten heat pipes is being considered as a method of heat extraction from high temperature nuclear reactors. The need for material purity and shape versatility in these applications dictates the use of chemically vapor deposited (CVD) tungsten. Adaptability of CVD tungsten to complex heat pipe designs is shown. Deposition and welding techniques are described. Operation of two lithium-filled CVD tungsten heat pipes above 1800 K is discussed.

  18. Uranium vapor generator: pulsed hollow cathode lamp

    International Nuclear Information System (INIS)

    Carleer, M.; Gagne, J.; Leblanc, B.; Demers, Y.; Mongeau, B.

    1979-01-01

    The production of uranium vapors has been studied in the 5 L 0 6 ground state using a pulsed hollow cathode lamp. The evolution of the 238 U ( 5 L 0 6 ) concentration with time has been studied with Xe and Ar as buffer gases. A density of 2.7 x 10 13 atoms cm -3 was obtained with Xe as a buffer gas. In addition, those measurements, obtained from the absorption of a laser beam tuned to the 5758.143 A ( 5 L 0 6 -17,361 7 L 6 ) transition, allowed the determination of the transition probability A=2.1 x 10 5 sec -1 and of the branching ratio BR=0.08 for this transition

  19. Element 74, the Wolfram Versus Tungsten Controversy

    Energy Technology Data Exchange (ETDEWEB)

    Holden,N.E.

    2008-08-11

    Two and a quarter centuries ago, a heavy mineral ore was found which was thought to contain a new chemical element called heavy stone (or tungsten in Swedish). A few years later, the metal was separated from its oxide and the new element (Z=74) was called wolfram. Over the years since that time, both the names wolfram and tungsten were attached to this element in various countries. Sixty years ago, IUPAC chose wolfram as the official name for the element. A few years later, under pressure from the press in the USA, the alternative name tungsten was also allowed by IUPAC. Now the original, official name 'wolfram' has been deleted by IUPAC as one of the two alternate names for the element. The history of this controversy is described here.

  20. Study of tungsten based positron moderators

    Energy Technology Data Exchange (ETDEWEB)

    Lucio, O.G. de; Pérez, M.; Mendoza, U.; Morales, J.G.; Cruz, J.C. [Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000 México DF (Mexico); DuBois, R.D. [Missouri University of Science and Technology, Rolla, MO 65409 (United States)

    2015-07-01

    Positrons and how they interact with matter has a growing interest in many fields. Most of their uses require the production of slow positron beams with a well-defined energy, but since these particles are usually generated by means of a radioactive source, they are fast and with a broad distribution of energies. For this reason it is necessary to moderate them to lower energies via inelastic collisions. Then, they can be accelerated to the desired energies. This requires the use of a moderator. Tungsten is one of the most commonly used moderator materials because of its reasonable efficiency and relatively low cost. In this work we present different methods of producing transmission tungsten-based moderators, with particular interest in a combination of tungsten thin foils and grids. We also show results about the characterization of these moderators by ion beam analysis and microscopy techniques along with their relative moderation efficiencies.

  1. Electron work function of stepped tungsten surfaces

    International Nuclear Information System (INIS)

    Krahl-Urban, B.

    1976-03-01

    The electron work function of tungsten (110) vicinal faces was measured with the aid of thermionic emission, and its dependence on the crystallographic orientation and the surface structure was investigated. The thermionic measurements were evaluated with the aid of the Richardson plot. The real temperature of the emitting tungsten faces was determined with an accuracy of +- 0.5% in the range between 2,200 and 2,800 K. The vicinal faces under investigation have been prepared with an orientation exactness of +- 15'. In the tungsten (110) vicinal faces under investigation, a strong dependence of the temperature coefficient d PHI/dT of the work function on the crystallographic orientation was found. A strong influence of the edge structure as well as of the step density on the temperature coefficient was observed. (orig./HPOE) [de

  2. Characterization of plasma coated tungsten heavy alloy

    International Nuclear Information System (INIS)

    Bose, A.; Kapoor, D.; Lankford, J. Jr.; Nicholls, A.E.

    1996-01-01

    The detrimental environmental impact of Depleted Uranium-based penetrators have led to tremendous development efforts in the area of tungsten heavy alloy based penetrators. One line of investigation involves the coating of tungsten heavy alloys with materials that are prone to shear localization. Plasma spraying of Inconel 718 and 4340 steel have been used to deposit dense coatings on tungsten heavy alloy substrates. The aim of the investigation was to characterize the coating primarily in terms of its microstructure and a special push-out test. The paper describes the results of the push-out tests and analyzes some of the possible failure mechanisms by carrying out microstructural characterization of the failed rings obtained from the push out tests

  3. RF induction plasma spheroidization of tungsten powders

    International Nuclear Information System (INIS)

    Gu Zhogntao; Ye Gaoying; Liu Chuandong; Tong Honghui

    2009-01-01

    Irregularly-shaped tungsten powders (average granular sizes of 512 μm) have been spheroidized by radio frequency (RF)induction plasma. The effects of feed rate, mode of material dispersion, particle size on spheroidization efficiency are investigated. Experimental results show that the spheroidization efficiency decreases rapidly when the feed rate increases to more than 95 g/min. Only 30% spheroidization efficiency is gained at the feed rate of 135.75 g/min. The spheroidization efficiency is also affected by the flow rate of carrier gas. When the flow rate of carrier gas is 0.12 m 3 /h, the dispersion effect is the best, and the spheroidization efficiency is almost 100%. The apparent density of tungsten powders increases a bit with the increase of spheroidization efficiency. And the particle size uniformity of spheroidized tungsten powders is in accordance with that of original powders. (authors)

  4. Study of tungsten based positron moderators

    International Nuclear Information System (INIS)

    Lucio, O.G. de; Pérez, M.; Mendoza, U.; Morales, J.G.; Cruz, J.C.; DuBois, R.D.

    2015-01-01

    Positrons and how they interact with matter has a growing interest in many fields. Most of their uses require the production of slow positron beams with a well-defined energy, but since these particles are usually generated by means of a radioactive source, they are fast and with a broad distribution of energies. For this reason it is necessary to moderate them to lower energies via inelastic collisions. Then, they can be accelerated to the desired energies. This requires the use of a moderator. Tungsten is one of the most commonly used moderator materials because of its reasonable efficiency and relatively low cost. In this work we present different methods of producing transmission tungsten-based moderators, with particular interest in a combination of tungsten thin foils and grids. We also show results about the characterization of these moderators by ion beam analysis and microscopy techniques along with their relative moderation efficiencies

  5. Modelling the Dynamic Interaction Power System Lamp - Application to High Pressure Mercury Gas Discharge Lamps

    OpenAIRE

    ZIANE, M.; MEDLES, K.; ADJOUDJ, M.; MILOUA, F.; DAMELINCOURT, J. J.; TILMATINE, A.

    2007-01-01

    The aim of this paper is to study the dynamic behaviour of a plant constituted by an electrical power system and a gas discharge lamp, this latter, increasingly used in street lighting, remains a nonlinear load element. Various approaches are used to represent it, one is the approximation of the discharge represented by a hot "channel", which verifies the assumption of local thermodynamic equilibrium [LTE] or the polynomial form of the conductance variation. A calculation procedure, based on ...

  6. Impact of residual by-products from tungsten film deposition on process integration due to nonuniformity of the tungsten film

    CERN Document Server

    Sidhwa, A; Gandy, T; Melosky, S; Brown, W; Ang, S; Naseem, H; Ulrich, R

    2002-01-01

    The effects of residual by products from a tungsten film deposition process and their impact on process integration due to the nonuniformity of the tungsten film were investigated in this work. The tungsten film deposition process involves three steps: nucleation, stabilization, and tungsten bulk fill. Six experiments were conducted in search for a solution to the problem. The resulting data suggest that excess nitrogen left in the chamber following the tungsten nucleation step, along with residual by products, causes a shift in the tungsten film uniformity during the tungsten bulk fill process. Data reveal that, due to the residual by products, an abnormal grain growth occurs causing a variation in the tungsten thickness across the wafer during the bulk fill step. Although several possible solutions were revealed by the experiments, potential integration problems limited the acceptable solutions to one. The solution chosen was the introduction of a 10 s pumpdown immediately following the nucleation step. Thi...

  7. Process for recovering tungsten from alkaline leaching solution of tungsten ores

    International Nuclear Information System (INIS)

    Onozaki, S.; Nemoto, S.; Hazeyama, T.

    1976-01-01

    This invention relates to a process for recovering tungsten from an alkaline leaching solution of tungsten ores. This invention comprises adjusting the pH of an alkaline leaching solution which is obtained by lixiviating ore containing tungsten with an alkaline solution to 7--8 with acid to oxidize molybdic acid ions in the solution, adding a sulfide donor, then precipitating molybdenum sulfide compounds by adjusting the pH value of the solution to 2--3. Tungstic acid ions are recovered as calcium tungstate by the addition of a calcium ion donor after the molybdenum sulfide compounds are separated

  8. Color in 'tungsten trioxide' thin films

    International Nuclear Information System (INIS)

    Gerard, P.; Deneuville, A.; Hollinger, G.; Duc, Tran Minh

    1977-01-01

    We show that evaporated tungsten trioxide amorphous layers commonly used in electrochromic displays actually have the composition WO_2_._7H_y (0.2< y<0.5). We emphasize that coloration of virgin transparent films can be obtained without injection of any external ion into the layer, and further that around a critical substoichiometry by sputtering, namely, WO_2_._5, one can prepare blue virgin layers without any hydrogen. The effect of substoichiometry on the valence of tungsten atoms has been followed by XPS measurements of sputtered layers.

  9. Color in ''tungsten trioxide'' thin films

    International Nuclear Information System (INIS)

    Gerard, P.; Deneuville, A.; Hollinger, G.; Tran Minh Duc

    1977-01-01

    We show that evaporated tungsten trioxide amorphous layers commonly used in electrochromic displays actually have the composition WO/sub 2.7/H/sub y/ (0.2< y<0.5). We emphasize that coloration of virgin transparent films can be obtained without injection of any external ion into the layer, and further that around a critical substoichiometry by sputtering, namely, WO/sub 2.5/, one can prepare blue virgin layers without any hydrogen. The effect of substoichiometry on the valence of tungsten atoms has been followed by XPS measurements of sputtered layers

  10. THE APPARATUS FOR ALIGNMENT OF THE PHOTOMETRIC LAMP FILAMENT

    Directory of Open Access Journals (Sweden)

    V. A. Dlugunovich

    2015-01-01

    Full Text Available During photometric measurements involving the use of photometric lamps it is necessary that the filament of lamp takes a strictly predetermined position with respect to the photodetector and the optical axis of the photometric setup. The errors in positioning of alignment filament with respect to the optical axis of the measuring system lead to increase the uncertainty of measurement of the photometric characteristics of the light sources. A typical method for alignment of filament of photometric lamps is based on the use a diopter tubes (telescopes. Using this method, the mounting of filament to the required position is carried out by successive approximations, which requires special concentration and a lot of time. The aim of this work is to develop an apparatus for alignment which allows simultaneous alignment of the filament of lamps in two mutually perpendicular planes. The method and apparatus for alignment of the photometric lamp filament during measurements of the photometric characteristics of light sources based on two digital video cameras is described in this paper. The apparatus allows to simultaneously displaying the image of lamps filament on the computer screen in two mutually perpendicular planes. The apparatus eliminates a large number of functional units requiring elementwise alignment and reduces the time required to carry out the alignment. The apparatus also provides the imaging of lamps filament with opaque coated on the bulb. The apparatus is used at the National standard of light intensity and illuminance units of the Republic of Belarus. 

  11. Microplasma light tiles: thin sheet lamps for general illumination

    Energy Technology Data Exchange (ETDEWEB)

    Eden, J G; Park, S-J [Laboratory for Optical Physics and Engineering, Department of Electrical and Computer Engineering, University of Illinois, Urbana, IL 61801 (United States); Herring, C M; Bulson, J M [Eden Park Illumination, 903 North Country Fair Drive, Champaign, IL 61821 (United States)

    2011-06-08

    Flat, thin and lightweight lamps providing spatially uniform and dimmable illumination from active areas as large as 400 cm{sup 2} are being developed for general illumination and specialty applications. Comprising an array of low-temperature, nonequilibrium microplasmas driven by a dielectric barrier structure and operating at pressures of typically 400-700 Torr, these lamps have a packaged thickness <4 mm and yet produce luminance values beyond 26 000 cd m{sup -2} with a luminous efficacy approaching 30 lm W{sup -1}. Third generation lamps, presently in limited production, offer a correlated colour temperature in the 3000-4100 K interval and a colour rendering index of 80. Current lamps employ Xe{sub 2} ({lambda} {approx} 172 nm) as the primary emitter photoexciting a mixture of phosphors, and the pressure dependence of the wavelength-integrated fluorescence from the electronically excited dimer has been investigated with a vacuum ultraviolet spectrometer. In contrast to other promising lighting technologies, the decline in luminous efficacy of microplasma lamps with increasing power delivered to the lamp is small. For a 6 x 6 inch{sup 2} ({approx}225 cm{sup 2}) lamp, efficacy falls <16% when the radiant output (luminance) is raised from 2000 cd m{sup -2} to > 10 000 cd m{sup -2}.

  12. Tritium Decay Helium-3 Effects in Tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Merrill, B. J. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-06-01

    A critical challenge for long-term operation of ITER and beyond to a Demonstration reactor (DEMO) and future fusion reactor will be the development of plasma-facing components (PFCs) that demonstrate erosion resistance to steady-state/transient heat fluxes and intense neutral/ion particle fluxes under the extreme fusion nuclear environment, while at the same time minimizing in-vessel tritium inventories and permeation fluxes into the PFC’s coolant. Tritium will diffuse in bulk tungsten at elevated temperatures, and can be trapped in radiation-induced trap site (up to 1 at. % T/W) in tungsten [1,2]. Tritium decay into helium-3 may also play a major role in microstructural evolution (e.g. helium embrittlement) in tungsten due to relatively low helium-4 production (e.g. He/dpa ratio of 0.4-0.7 appm [3]) in tungsten. Tritium-decay helium-3 effect on tungsten is hardly understood, and its database is very limited. Two tungsten samples (99.99 at. % purity from A.L.M.T. Co., Japan) were exposed to high flux (ion flux of 1.0x1022 m-2s-1 and ion fluence of 1.0x1026 m-2) 0.5%T2/D2 plasma at two different temperatures (200, and 500°C) in Tritium Plasma Experiment (TPE) at Idaho National Laboratory. Tritium implanted samples were stored at ambient temperature in air for more than 3 years to investigate tritium decay helium-3 effect in tungsten. The tritium distributions on plasma-exposed was monitored by a tritium imaging plate technique during storage period [4]. Thermal desorption spectroscopy was performed with a ramp rate of 10°C/min up to 900°C to outgas residual deuterium and tritium but keep helium-3 in tungsten. These helium-3 implanted samples were exposed to deuterium plasma in TPE to investigate helium-3 effect on deuterium behavior in tungsten. The results show that tritium surface concentration in 200°C sample decreased to 30 %, but tritium surface concentration in 500°C sample did not alter over the 3 years storage period, indicating possible tritium

  13. An ion quencher operated lamp for multiplexed fluorescent bioassays.

    Science.gov (United States)

    Qing, Taiping; Sun, Huanhuan; He, Xiaoxiao; Huang, Xiaoqin; He, Dinggeng; Bu, Hongchang; Qiao, Zhenzhen; Wang, Kemin

    2018-02-01

    A novel and adjustable lamp based on competitive interaction among dsDNA-SYBR Green I (SGI), ion quencher, and analyte was designed for bioanalysis. The "filament" and switch of the lamp could be customized by employing different dsDNA and ion quencher. The poly(AT/TA) dsDNA was successfully screened as the most effective filament of the lamp. Two common ions, Hg 2+ and Fe 3+ , were selected as the model switch, and the corresponding ligand molecules cysteine (Cys) and pyrophosphate ions (PPi) were selected as the targets. When the fluorescence-quenched dsDNA/SGI-ion complex was introduced into a target-containing system, ions could be bound by competitive molecules and separate from the complex, thereby lighting the lamp. However, no light was observed if the biomolecule could not snatch the metal ions from the complex. Under the optimal conditions, sensitive and selective detection of Cys and PPi was achieved by the lamp, with practical applications in fetal bovine serum and human urine. This ion quencher regulated lamp for fluorescent bioassays is simple in design, fast in operation, and is more convenient than other methods. Significantly, as many molecules could form stable complexes with metal ions selectively, this ion quencher operated lamp has potential for the detection of a wide spectrum of analytes. Graphical abstract A novel and adjustable lamp on the basis of competitive interaction among dsDNA-SYBR Green I, ions quencher and analyte was designed for bioanalysis. The filament and switch of lamp could be customized by employing different dsDNA and ions quencher.

  14. Ab initio and DFT benchmarking of tungsten nanoclusters and tungsten hydrides

    International Nuclear Information System (INIS)

    Skoviera, J.; Novotny, M.; Cernusak, I.; Oda, T.; Louis, F.

    2015-01-01

    We present several benchmark calculations comparing wave-function based methods and density functional theory for model systems containing tungsten. They include W 4 cluster as well as W 2 , WH and WH 2 molecules. (authors)

  15. Flue gas corrosion through halogen compounds in fuel gas

    Energy Technology Data Exchange (ETDEWEB)

    Eisenmann, R

    1987-04-01

    The halogens of chlorine and fluorine greatly influence the corrosion speed of metal materials. If small quantities of chlorinated and/or fluorinated hydrocarbons are present in fuel gas like in landfill gas, they must not result in enhanced corrosion of gas appliances. Data from literature and the initial results of tests run by the author indicate that quantities at about 10 mg/cbm (in terms of chlorine) can be assumed not to cause any noticeable acceleration of corrosion speed.

  16. Competition between Halogen, Hydrogen and Dihydrogen Bonding in Brominated Carboranes

    Czech Academy of Sciences Publication Activity Database

    Fanfrlík, Jindřich; Holub, Josef; Růžičková, Z.; Řezáč, Jan; Lane, P. D.; Wann, D. A.; Hnyk, Drahomír; Růžička, A.; Hobza, Pavel

    2016-01-01

    Roč. 17, č. 21 (2016), s. 3373-3376 ISSN 1439-4235 R&D Projects: GA ČR(CZ) GBP208/12/G016; GA ČR(CZ) GA15-05677S Institutional support: RVO:61388963 ; RVO:61388980 Keywords : bromine * carboranes * halogen bonds * sigma holes * X-ray crystal structure Subject RIV: CF - Physical ; Theoretical Chemistry; CA - Inorganic Chemistry (UACH-T) Impact factor: 3.075, year: 2016

  17. Natural elimination of volatile halogenated hydrocarbons from the environment

    Energy Technology Data Exchange (ETDEWEB)

    Harress, H.M.; Grathwohl, P.; Torunski, H.

    1987-01-01

    Recently carried out field investigations of groundwater contaminations with volatile halogenated hydrocarbons have shown evidence of natural elimination of these hazardous substances. This elimination effects is rare and observed in connection with special geological conditions. With regard to some contaminated sites, the following mechanisms for this behaviour are discussed: 1. Stripping by naturally ascending gases. 2. Sorption on soil organic matter. 3. Biodegradation. The so far compiled knowledge allowed to develop further research programmes, which are pursued in various projects.

  18. Allergic contact dermatitis due to highly reactive halogenated compounds

    Energy Technology Data Exchange (ETDEWEB)

    Pickering, F C; Ive, F A

    1983-11-01

    Ten cases of dermatitis in a fine organic chemicals plant are reported. These cases were all due to exposure to chemical compounds with reactive bromine or chlorine atoms. This type of chemical is always extremely irritant, but evidence is put forward to suggest that these cases were the result of allergic sensitization. Chemicals with reactive halogen atoms should always be handled with extreme care and patch testing should be approached with caution.

  19. Substructure and electrical resistivity analyses of pure tungsten sheet

    International Nuclear Information System (INIS)

    Trybus, C.L.; Sellers, C.H.; Anderl, R.A.

    1991-01-01

    The substructure of pure tungsten sheet (0.025 mm thick) is examined and quantified by transmission electron microscopy (TEM). Dislocation populations and arrangements are evaluated for as-worked and various annealed conditions of the tungsten sheet. The worked (rolled) tungsten substructure was nonhomogeneous, consisting of areas of very high and low dislocation densities. These results are correlated to resistivity measurements of the tungsten sheet following thermal cycling to 1200 degrees C to determine the substructural changes as a function of temperature. The comparison between the two characterization techniques is used to examine the relationship between structural and electronic properties in tungsten. 15 refs., 6 figs., 2 tabs

  20. Structure-Energy Relationships of Halogen Bonds in Proteins.

    Science.gov (United States)

    Scholfield, Matthew R; Ford, Melissa Coates; Carlsson, Anna-Carin C; Butta, Hawera; Mehl, Ryan A; Ho, P Shing

    2017-06-06

    The structures and stabilities of proteins are defined by a series of weak noncovalent electrostatic, van der Waals, and hydrogen bond (HB) interactions. In this study, we have designed and engineered halogen bonds (XBs) site-specifically to study their structure-energy relationship in a model protein, T4 lysozyme. The evidence for XBs is the displacement of the aromatic side chain toward an oxygen acceptor, at distances that are equal to or less than the sums of their respective van der Waals radii, when the hydroxyl substituent of the wild-type tyrosine is replaced by a halogen. In addition, thermal melting studies show that the iodine XB rescues the stabilization energy from an otherwise destabilizing substitution (at an equivalent noninteracting site), indicating that the interaction is also present in solution. Quantum chemical calculations show that the XB complements an HB at this site and that solvent structure must also be considered in trying to design molecular interactions such as XBs into biological systems. A bromine substitution also shows displacement of the side chain, but the distances and geometries do not indicate formation of an XB. Thus, we have dissected the contributions from various noncovalent interactions of halogens introduced into proteins, to drive the application of XBs, particularly in biomolecular design.

  1. First principles study of halogens adsorption on intermetallic surfaces

    International Nuclear Information System (INIS)

    Zhu, Quanxi; Wang, Shao-qing

    2016-01-01

    Graphical abstract: - Highlights: • The linear relation between adsorbates induced work function change and dipole moment change also exists for intermetallic surfaces. • It is just a common linear relationship rather than a directly proportion. • A new weight parameter β is proposed to describe different factors effect on work function shift. - Abstract: Halides are often present at electrochemical environment, they can directly influence the electrode potential or zero charge potential through the induced work-function change. In this work, we focused in particular on the halogen-induced work function change as a function of the coverage of fluorine, chlorine, bromine and iodine on Al_2Au and Al_2Pt (110) surfaces. Results show that the real relation between work function change and dipole moment change for halogens adsorption on intermetallic surfaces is just a common linear relationship rather than a directly proportion. Besides, the different slopes between fitted lines and the theoretical slope employed in pure metal surfaces demonstrating that the halogens adsorption on intermetallic surfaces are more complicated. We also present a weight parameter β to describe different factors effect on work function shift and finally qualify which factor dominates the shift direction.

  2. Development of no halogen incombustible cables for atomic energy

    International Nuclear Information System (INIS)

    Ishii, Nobumasa; Kimura, Hitoshi; Fujimura, Shun-ichi

    1990-01-01

    In upgrading light water reactor technology, it is important to improve the reliability of machinery and equipment, to make regular inspection efficient, to extend the period of continuous operation, to optimize operation cycle and to improve the maintainability of plant facilities. For the cables for nuclear power stations, high incombustibility is required, and at present halogen system incombustible materials are used. Recently the development of no halogen incombustible cables has been advanced, with which the generation of corrosive gas and smoke at the time of fires is slight. In this study, the application of such no halogen incombustible cables to nuclear power stations and the improvement of reliability of the cables were investigated. The cables to be developed are those for electric power, control and instrumentation in BWR plants and insulated electric wires. The required characteristics are incombustibility, no generation of smoke and corrosive gas at the time of fires, radiation resistance and steam resistance in LOCA. The selection of base polymers, metal hydrates and radiation protectors, the evaluation of radiation resistance and steam resistance, the examination of the corrosive and poisonous properties of generated gas and smoke generation and so on are reported. The development was successful. (K.I.)

  3. Molecular complexes of tungsten oxotetrachloride with azomethins

    International Nuclear Information System (INIS)

    Abramenko, Yu.V.; Garnovskij, A.D.; Abramenko, V.A.; Medvedeva, T.E.

    1992-01-01

    Series of new molecular complexes of tungsten oxotetrachloride with benza- and salicylalimines of equimolar compositions obtained. Substances are studied using element analysis, IR spectroscopy and conductometry. Octahedral structure of complexes with central atom coordination of benzalaniline molecules via azomethin nitrogen atom, and salicylalimines - via carbonyl oxygen atom of quinoid tantometric form of ligand is assumed

  4. Deuterium transport and trapping in polycrystalline tungsten

    International Nuclear Information System (INIS)

    Anderl, R.A.; Holland, D.F.; Longhurst, G.R.; Pawelko, R.J.; Trybus, C.L.; Sellers, C.H.

    1992-01-01

    This paper reports that deuterium permeation studies for polycrystalline tungsten foil have been conducted to provide data for estimating tritium transport and trapping in tungsten-clad divertors proposed for advanced fusion-reactor concepts. Based on a detailed transmission electron microscopy (TEM) microstructural characterization of the specimen material and on analyses of permeation data measured at temperatures ranging form 610 to 823 K for unannealed and annealed tungsten foil (25 μm thick), the authors note the following key results: deuterium transport in tungsten foil is dominated by extensive trapping that varies inversely with prior anneal temperatures of the foil material, the reduction in the trapped fraction correlates with a corresponding elimination of a high density of dislocations in cell-wall structures introduced during the foil fabrication process, trapping behavior in these foils can be modelled using trap energies between 1.3 eV and 1.5 eV and trap densities ranging from 1 x 10 -5 atom fraction

  5. Analytical methods for the determination of tungsten

    International Nuclear Information System (INIS)

    Topping, J.J.

    1978-01-01

    Methods developed and employed in the recent literature (1969 to 1975) for the detection and determination of tungsten in a wide variety of matrices are reviewed. This paper is a supplement to the books, monographs and review papers which deal with the earlier literature. (author)

  6. Distribution of induced activity in tungsten targets

    International Nuclear Information System (INIS)

    Donahue, R.J.; Nelson, W.R.

    1988-09-01

    Estimates are made of the induced activity created during high-energy electron showers in tungsten, using the EGS4 code. Photon track lengths, neutron yields and spatial profiles of the induced activity are presented. 8 refs., 9 figs., 1 tab

  7. Development of tungsten collimators for industrial radiography

    International Nuclear Information System (INIS)

    Varkey, P.A.; Verma, P.B.; Jayakumar, T.K.; Mammachan, M.K.

    2001-01-01

    Collimators are essential components of industrial radiography set up as it provides radiation safety to persons involved in the radiography work. A collimator with optimum design features also helps in reducing the scattered radiation which in turn results in radiographs having better sensitivity. This papers describes the salient design features of the tungsten collimators developed by the BRIT, for industrial radiography. (author)

  8. OPAL Example Segment of Silicon Tungsten Luminometer

    CERN Multimedia

    OPAL was one of the four experiments installed at the LEP particle accelerator from 1989 - 2000. The Silicon Tungsten Luminometer was part of OPAL's calorimeter which was used to measure the energy of particles. Most particles end their journey in calorimeters. These detectors measure the energy deposited when particles are slowed down and stopped.

  9. Joining of Tungsten Armor Using Functional Gradients

    International Nuclear Information System (INIS)

    John Scott O'Dell

    2006-01-01

    The joining of low thermal expansion armor materials such as tungsten to high thermal expansion heat sink materials has been a major problem in plasma facing component (PFC) development. Conventional planar bonding techniques have been unable to withstand the high thermal induced stresses resulting from fabrication and high heat flux testing. During this investigation, innovative functional gradient joints produced using vacuum plasma spray forming techniques have been developed for joining tungsten armor to copper alloy heat sinks. A model was developed to select the optimum gradient architecture. Based on the modeling effort, a 2mm copper rich gradient was selected. Vacuum plasma pray parameters and procedures were then developed to produce the functional gradient joint. Using these techniques, dual cooling channel, medium scale mockups (32mm wide x 400mm length) were produced with vacuum plasma spray formed tungsten armor. The thickness of the tungsten armor was up to 5mm thick. No evidence of debonding at the interface between the heat sink and the vacuum plasma sprayed material was observed.

  10. Tungsten and refractory metals 3, proceedings

    International Nuclear Information System (INIS)

    Bose, A.; Dowding, R.J.

    1996-01-01

    The Third International Conference on Tungsten and Refractory Metals was held in Greater Washington DC at the McLean Hilton, McLean Virginia, on November 15--16, 1995. This meeting was the third in a series of conferences held in the Washington DC area. The first meeting was in 1992 and was entitled ''International Conference on Tungsten and Tungsten Alloys.'' In 1994, the scope of the meeting was expanded to include other refractory metals such as molybdenum, iridium, rhenium, tantalum and niobium. The tremendous success of that meeting was the primary motivation for this Conference. The broader scope (the inclusion of other refractory metals and alloys) of the Conference was kept intact for this meeting. In fact, it was felt that the developments in the technology of these materials required a common forum for the interchange of current research information. The papers presented in this meeting examined the rapid advancements in the technology of refractory metals, with special emphasis on the processing, structure, and properties. Among the properties there was emphasis on both quasi-static and dynamic rates. Another topic that received considerable interest was the area of refractory carbides and tungsten-copper composites. One day of concurrent session was necessary to accommodate all of the presentations

  11. CALICE silicon-tungsten electromagnetic calorimeter

    Indian Academy of Sciences (India)

    A highly granular electromagnetic calorimeter prototype based on tungsten absorber and sampling units equipped with silicon pads as sensitive devices for signal collection is under construction. The full prototype will have in total 30 layers and be read out by about 10000 Si cells of 1 × 1 cm2. A first module consisting of 14 ...

  12. Consolidation of tungsten disilicide by plasma spraying

    Czech Academy of Sciences Publication Activity Database

    Brožek, Vlastimil; Ctibor, Pavel; Matějíček, Jiří; Rohan, Pavel; Janča, J.

    2007-01-01

    Roč. 52, č. 3 (2007), s. 311-320 ISSN 0001-7043 R&D Projects: GA ČR(CZ) GA104/05/0540 Institutional research plan: CEZ:AV0Z20430508 Keywords : Water stabilized plasma * tungsten disilicide * plasma deposition * thermal spray coatings Subject RIV: JJ - Other Materials

  13. Electrospark doping of steel with tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Denisova, Yulia, E-mail: yukolubaeva@mail.ru; Shugurov, Vladimir, E-mail: shugurov@opee.hcei.tsc.ru [Institute of High-Current Electronics of the Siberian Branch of the Russian Academy of Sciences, 634055, Russia, Tomsk, 2/3 Akademicheskiy Ave (Russian Federation); Petrikova, Elizaveta, E-mail: elizmarkova@yahoo.com [Institute of High-Current Electronics of the Siberian Branch of the Russian Academy of Sciences, 634055, Russia, Tomsk, 2/3 Akademicheskiy Ave (Russian Federation); National Research Tomsk State University, 36 Lenin Str. Tomsk, 634050 (Russian Federation); Seksenalina, Malika, E-mail: sportmiss@bk.ru [National Research Tomsk Polytechnic University, 30 Lenin Str. Tomsk, 634050 (Russian Federation); Ivanova, Olga, E-mail: ivaov@mail.ru; Ikonnikova, Irina, E-mail: irinaikonnikova@yandex.ru [Tomsk State University of Architecture and Building, 2 Solyanaya Sq. Tomsk, 634003 (Russian Federation); Kunitsyna, Tatyana, E-mail: kma11061990@mail.ru; Vlasov, Victor, E-mail: rector@tsuab.ru [National Research Tomsk Polytechnic University, 30 Lenin Str. Tomsk, 634050 (Russian Federation); Tomsk State University of Architecture and Building, 2 Solyanaya Sq. Tomsk, 634003 (Russian Federation); Klopotov, Anatoliy, E-mail: klopotovaa@tsuab.ru [National Research Tomsk State University, 36 Lenin Str. Tomsk, 634050 (Russian Federation); Tomsk State University of Architecture and Building, 2 Solyanaya Sq. Tomsk, 634003 (Russian Federation); Ivanov, Yuriy, E-mail: yufi55@mail.ru [Institute of High-Current Electronics of the Siberian Branch of the Russian Academy of Sciences, 634055, Russia, Tomsk, 2/3 Akademicheskiy Ave (Russian Federation); National Research Tomsk State University, 36 Lenin Str. Tomsk, 634050 (Russian Federation); National Research Tomsk Polytechnic University, 30 Lenin Str. Tomsk, 634050 (Russian Federation)

    2016-01-15

    The paper is devoted to the numerical modeling of thermal processes and the analysis of the structure and properties of the surface layer of carbon steel subjected to electrospark doping with tungsten. The problem of finding the temperature field in the system film (tungsten) / substrate (iron) is reduced to the solution of the heat conductivity equation. A one-dimensional case of heating and cooling of a plate with the thickness d has been considered. Calculations of temperature fields formed in the system film / substrate synthesized using methods of electrospark doping have been carried out as a part of one-dimensional approximation. Calculations have been performed to select the mode of the subsequent treatment of the system film / substrate with a high-intensity pulsed electron beam. Authors revealed the conditions of irradiation allowing implementing processes of steel doping with tungsten. A thermodynamic analysis of phase transformations taking place during doping of iron with tungsten in equilibrium conditions has been performed. The studies have been carried out on the surface layer of the substrate modified using the method of electrospark doping. The results showed the formation in the surface layer of a structure with a highly developed relief and increased strength properties.

  14. Technique for investigation on tungsten crack resistance

    International Nuclear Information System (INIS)

    Uskov, E.I.; Babak, A.V.

    1983-01-01

    The possibility of using the linear destruction mechanic for the estimation of tungsten crack resistance in a wide range of temperatures has been studied and grounded. Values critical of stress intensity factors in the 20-2000 deg C temperature range are given

  15. Electrospark doping of steel with tungsten

    International Nuclear Information System (INIS)

    Denisova, Yulia; Shugurov, Vladimir; Petrikova, Elizaveta; Seksenalina, Malika; Ivanova, Olga; Ikonnikova, Irina; Kunitsyna, Tatyana; Vlasov, Victor; Klopotov, Anatoliy; Ivanov, Yuriy

    2016-01-01

    The paper is devoted to the numerical modeling of thermal processes and the analysis of the structure and properties of the surface layer of carbon steel subjected to electrospark doping with tungsten. The problem of finding the temperature field in the system film (tungsten) / substrate (iron) is reduced to the solution of the heat conductivity equation. A one-dimensional case of heating and cooling of a plate with the thickness d has been considered. Calculations of temperature fields formed in the system film / substrate synthesized using methods of electrospark doping have been carried out as a part of one-dimensional approximation. Calculations have been performed to select the mode of the subsequent treatment of the system film / substrate with a high-intensity pulsed electron beam. Authors revealed the conditions of irradiation allowing implementing processes of steel doping with tungsten. A thermodynamic analysis of phase transformations taking place during doping of iron with tungsten in equilibrium conditions has been performed. The studies have been carried out on the surface layer of the substrate modified using the method of electrospark doping. The results showed the formation in the surface layer of a structure with a highly developed relief and increased strength properties

  16. Superhard Rhenium/Tungsten Diboride Solid Solutions.

    Science.gov (United States)

    Lech, Andrew T; Turner, Christopher L; Lei, Jialin; Mohammadi, Reza; Tolbert, Sarah H; Kaner, Richard B

    2016-11-02

    Rhenium diboride (ReB 2 ), containing corrugated layers of covalently bonded boron, is a superhard metallic compound with a microhardness reaching as high as 40.5 GPa (under an applied load of 0.49 N). Tungsten diboride (WB 2 ), which takes a structural hybrid between that of ReB 2 and AlB 2 , where half of the boron layers are planar (as in AlB 2 ) and half are corrugated (as in ReB 2 ), has been shown not to be superhard. Here, we demonstrate that the ReB 2 -type structure can be maintained for solid solutions of tungsten in ReB 2 with tungsten content up to a surprisingly large limit of nearly 50 atom %. The lattice parameters for the solid solutions linearly increase along both the a- and c-axes with increasing tungsten content, as evaluated by powder X-ray and neutron diffraction. From micro- and nanoindentation hardness testing, all of the compositions within the range of 0-48 atom % W are superhard, and the bulk modulus of the 48 atom % solid solution is nearly identical to that of pure ReB 2 . These results further indicate that ReB 2 -structured compounds are superhard, as has been predicted from first-principles calculations, and may warrant further studies into additional solid solutions or ternary compounds taking this structure type.

  17. Kinetics of low pressure chemical vapor deposition of tungsten silicide from dichlorocilane reduction of tungsten hexafluoride

    International Nuclear Information System (INIS)

    Srinivas, D.; Raupp, G.B.; Hillman, J.

    1990-01-01

    The authors report on experiments to determine the intrinsic surface reaction rate dependences and film properties' dependence on local reactant partial pressures and wafer temperature in low pressure chemical vapor deposition (LPCVD) of tungsten silicide from dichlorosilane reduction of tungsten hexafluoride. Films were deposited in a commercial-scale Spectrum CVD cold wall single wafer reactor under near differential, gradientless conditions. Over the range of process conditions investigated, deposition rate was found to be first order in dichlorosillane and negative second order in tungsten hexafluoride partial pressure. The apparent activation energy in the surface reaction limited regime was found to be 70-120 kcal/mol. The silicon to tungsten ratio of as deposited silicide films ranged from 1.1 to 2.4, and increased with increasing temperature and dichlorosillane partial pressure, and decreased with increasing tungsten hexafluoride pressure. These results suggest that the apparent silicide deposition rate and composition are controlled by the relative rates of at least two competing reactions which deposit stoichiometric tungsten silicides and/or silicon

  18. Halogens are key cofactors in building of collagen IV scaffolds outside the cell.

    Science.gov (United States)

    Brown, Kyle L; Hudson, Billy G; Voziyan, Paul A

    2018-05-01

    The purpose of this review is to highlight recent advances in understanding the molecular assembly of basement membranes, as exemplified by the glomerular basement membrane (GBM) of the kidney filtration apparatus. In particular, an essential role of halogens in the basement membrane formation has been discovered. Extracellular chloride triggers a molecular switch within non collagenous domains of collagen IV that induces protomer oligomerization and scaffold assembly outside the cell. Moreover, bromide is an essential cofactor in enzymatic cross-linking that reinforces the stability of scaffolds. Halogenation and halogen-induced oxidation of the collagen IV scaffold in disease states damage scaffold function. Halogens play an essential role in the formation of collagen IV scaffolds of basement membranes. Pathogenic damage of these scaffolds by halogenation and halogen-induced oxidation is a potential target for therapeutic interventions.

  19. Electrokinetic treatment of firing ranges containing tungsten-contaminated soils

    International Nuclear Information System (INIS)

    Braida, Washington; Christodoulatos, Christos; Ogundipe, Adebayo; Dermatas, Dimitris; O'Connor, Gregory

    2007-01-01

    Tungsten-based alloys and composites are being used and new formulations are being considered for use in the manufacturing of different types of ammunition. The use of tungsten heavy alloys (WHA) in new munitions systems and tungsten composites in small caliber ammunition could potentially release substantial amounts of this element into the environment. Although tungsten is widely used in industrial and military applications, tungsten's potential environmental and health impacts have not been thoroughly addressed. This necessitates the research and development of remedial technologies to contain and/or remove tungsten from soils that may serve as a source for water contamination. The current work investigates the feasibility of using electrokinetics for the remediation of tungsten-contaminated soils in the presence of other heavy metals of concern such as Cu and Pb with aim to removing W from the soil while stabilizing in situ, Pb and Cu

  20. ITER tungsten divertor design development and qualification program

    Energy Technology Data Exchange (ETDEWEB)

    Hirai, T., E-mail: takeshi.hirai@iter.org [ITER Organization, Route de Vinon sur Verdon, F-13115 Saint Paul lez Durance (France); Escourbiac, F.; Carpentier-Chouchana, S.; Fedosov, A.; Ferrand, L.; Jokinen, T.; Komarov, V.; Kukushkin, A.; Merola, M.; Mitteau, R.; Pitts, R.A.; Shu, W.; Sugihara, M. [ITER Organization, Route de Vinon sur Verdon, F-13115 Saint Paul lez Durance (France); Riccardi, B. [F4E, c/ Josep Pla, n.2, Torres Diagonal Litoral, Edificio B3, E-08019 Barcelona (Spain); Suzuki, S. [JAEA, Fusion Research and Development Directorate JAEA, 801-1 Mukouyama, Naka, Ibaragi 311-0193 (Japan); Villari, R. [Associazione EURATOM-ENEA sulla Fusione, Via Enrico Fermi 45, I-00044 Frascati, Rome (Italy)

    2013-10-15

    Highlights: • Detailed design development plan for the ITER tungsten divertor. • Latest status of the ITER tungsten divertor design. • Brief overview of qualification program for the ITER tungsten divertor and status of R and D activity. -- Abstract: In November 2011, the ITER Council has endorsed the recommendation that a period of up to 2 years be set to develop a full-tungsten divertor design and accelerate technology qualification in view of a possible decision to start operation with a divertor having a full-tungsten plasma-facing surface. To ensure a solid foundation for such a decision, a full tungsten divertor design, together with a demonstration of the necessary high performance tungsten monoblock technology should be completed within the required timescale. The status of both the design and technology R and D activity is summarized in this paper.

  1. A Survey of Electron Impact Cross-Sections for Halogens and Halogen Compounds of Interest to Plasma Processing

    Science.gov (United States)

    Sharma, S. P.; Rao, M. V. V. S.; Arnold, James O. (Technical Monitor)

    1998-01-01

    Published electron impact cross section data on halogens Cl2, F2, and halogen containing compounds such as Cx Fy, HCl, Cx Cly Fz are reviewed and critically evaluated based on the information provided by various researchers. The present work reports data on electron impact excitation, ionization, dissociation, electron attachment, electron detachment, and photo detachment. Elastic scattering cross sections and data on bulk properties such as diffusion coefficients in various background gases are also evaluated. Since some of the cross sectional data is derived from indirect measurements such as drift velocity, care has been taken to reconcile the differences among the reported data with due attention to the measurement technique. In conclusion, the processes with no or very limited amount of data and questionable set of data are identified and recommendation for further research direction is made.

  2. 78 FR 51463 - Energy Conservation Program: Energy Conservation Standards for Metal Halide Lamp Fixtures

    Science.gov (United States)

    2013-08-20

    ... merging the metal halide lamp fixture and the high-intensity discharge (HID) lamp rulemakings. This NOPR... Conservation Program: Energy Conservation Standards for Metal Halide Lamp Fixtures; Proposed Rule #0;#0;Federal...: Energy Conservation Standards for Metal Halide Lamp Fixtures AGENCY: Office of Energy Efficiency and...

  3. In-situ measurements of material thermal parameters for accurate LED lamp thermal modelling

    NARCIS (Netherlands)

    Vellvehi, M.; Perpina, X.; Jorda, X.; Werkhoven, R.J.; Kunen, J.M.G.; Jakovenko, J.; Bancken, P.; Bolt, P.J.

    2013-01-01

    This work deals with the extraction of key thermal parameters for accurate thermal modelling of LED lamps: air exchange coefficient around the lamp, emissivity and thermal conductivity of all lamp parts. As a case study, an 8W retrofit lamp is presented. To assess simulation results, temperature is

  4. Scanning tunneling microscopy measurements of the spin Hall effect in tungsten films by using iron-coated tungsten tips

    Directory of Open Access Journals (Sweden)

    Ting Xie

    2018-05-01

    Full Text Available Scanning tunneling microscopy experiments using iron-coated tungsten tips and current-carrying tungsten films have been conducted. An asymmetry of the tunneling current with respect to the change of the direction of the bias current through a tungsten film has been observed. It is argued that this asymmetry is a manifestation of the spin Hall effect in the current-carrying tungsten film. Nanoscale variations of this asymmetry across the tungsten film have been studied by using the scanning tunneling microscopy technique.

  5. Scanning tunneling microscopy measurements of the spin Hall effect in tungsten films by using iron-coated tungsten tips

    Science.gov (United States)

    Xie, Ting; Dreyer, Michael; Bowen, David; Hinkel, Dan; Butera, R. E.; Krafft, Charles; Mayergoyz, Isaak

    2018-05-01

    Scanning tunneling microscopy experiments using iron-coated tungsten tips and current-carrying tungsten films have been conducted. An asymmetry of the tunneling current with respect to the change of the direction of the bias current through a tungsten film has been observed. It is argued that this asymmetry is a manifestation of the spin Hall effect in the current-carrying tungsten film. Nanoscale variations of this asymmetry across the tungsten film have been studied by using the scanning tunneling microscopy technique.

  6. Halogen bond tunability II: the varying roles of electrostatic and dispersion contributions to attraction in halogen bonds

    Czech Academy of Sciences Publication Activity Database

    Riley, Kevin Eugene; Murray, J. S.; Fanfrlík, Jindřich; Řezáč, Jan; Solá, R. J.; Concha, M. C.; Ramos, F. M.; Politzer, P.

    2013-01-01

    Roč. 19, č. 11 (2013), s. 4651-4659 ISSN 1610-2940 R&D Projects: GA ČR GBP208/12/G016 Grant - others:Operational Program Research and Development for Innovations(XE) CZ.1.05/2.1.00/03.0058 Institutional support: RVO:61388963 Keywords : dispersion * electrostatics * halogen bonding * noncovalent interactions Subject RIV: CE - Biochemistry Impact factor: 1.867, year: 2013

  7. Trends in tungsten coil atomic spectrometry

    Science.gov (United States)

    Donati, George L.

    Renewed interest in electrothermal atomic spectrometric methods based on tungsten coil atomizers is a consequence of a world wide increasing demand for fast, inexpensive, sensitive, and portable analytical methods for trace analysis. In this work, tungsten coil atomic absorption spectrometry (WCAAS) and tungsten coil atomic emission spectrometry (WCAES) are used to determine several different metals and even a non-metal at low levels in different samples. Improvements in instrumentation and new strategies to reduce matrix effects and background signals are presented. Investigation of the main factors affecting both WCAAS and WCAES analytical signals points to the importance of a reducing, high temperature gas phase in the processes leading to atomic cloud generation. Some more refractory elements such as V and Ti were determined for the first time by double tungsten coil atomic emission spectrometry (DWCAES). The higher temperatures provided by two atomizers in DWCAES also allowed the detection of Ag, Cu and Sn emission signals for the first time. Simultaneous determination of several elements by WCAES in relatively complex sample matrices was possible after a simple acid extraction. The results show the potential of this method as an alternative to more traditional, expensive methods for fast, more effective analyses and applications in the field. The development of a new metallic atomization cell is also presented. Lower limits of detection in both WCAAS and WCAES determinations were obtained due to factors such as better control of background signal, smaller, more isothermal system, with atomic cloud concentration at the optical path for a longer period of time. Tungsten coil-based methods are especially well suited to applications requiring low sample volume, low cost, sensitivity and portability. Both WCAAS and WCAES have great commercial potential in fields as diverse as archeology and industrial quality control. They are simple, inexpensive, effective

  8. Investigation of acoustic resonances in high-power lamps

    International Nuclear Information System (INIS)

    Kettlitz, M; Zalach, J; Rarbach, J

    2011-01-01

    High-power, medium-pressure, mercury-containing lamps are used as UV sources for many industrial applications. Lamps investigated in this paper are driven with an electronic ballast with a non-sinusoidal current waveform at a fixed frequency of 20 kHz and a maximum power output of 35 kW. Instabilities can occur if the input power is reduced below 50%. The reason is identified as acoustic resonances in the lamp. Comparison of calculated and measured resonance frequencies shows a good agreement and explains the observed lamp behaviour. This has led to the development of a new ballast prototype which is able to avoid instabilities by changing the driving frequency dependent on the applied power.

  9. Anti-glare LED lamps with adjustable illumination light field.

    Science.gov (United States)

    Chen, Yung-Sheng; Lin, Chung-Yi; Yeh, Chun-Ming; Kuo, Chie-Tong; Hsu, Chih-Wei; Wang, Hsiang-Chen

    2014-03-10

    We introduce a type of LED light-gauge steel frame lamp with an adjustable illumination light field that does not require a diffusion plate. Base on the Monte Carlo ray tracing method, this lamp has a good glare rating (GR) of 17.5 at 3050 lm. Compared with the traditional LED light-gauge steel frame lamp (without diffusion plate), the new type has low GR. The adjustability of the illumination light field could improve the zebra effect caused by the inadequate illumination light field of the lamp. Meanwhile, we adopt the retinal image analysis to discuss the influence of GR on vision. High GR could reflect stray light on the retinal image, which will reduce vision clarity and hasten the feeling of eye fatigue.

  10. LOOP mediated isothermal AMPlification (LAMP) in diagnosis of ...

    African Journals Online (AJOL)

    2012-02-28

    Feb 28, 2012 ... Due to disadvantages of known ... advantages, as compared to traditional diagnostic methods like ... Products of LAMP reaction are DNA fragments with stemloop ..... "Differentiation of Cryptococcus neoformans varieties and.

  11. Evaluation and improvement of LAMP assays for detection of ...

    African Journals Online (AJOL)

    ... principle of the reaction per- formed by a DNA polymerase with strand displacement ... target sequence in the later stage of the LAMP reaction. Under an isothermal ..... Mutation detec- tion and single-molecule counting using isothermal roll-.

  12. Metal-halide lamp design: atomic and molecular data needed

    International Nuclear Information System (INIS)

    Lapatovich, Walter P

    2009-01-01

    Metal-halide lamps are a subset of high intensity discharge (HID) lamps so named because of their high radiance. These lamps are low temperature (∼0.5 eV), weakly ionized plasmas sustained in refractory but light transmissive envelopes by the passage of electric current through atomic and molecular vapors. For commercial applications, the conversion of electric power to light must occur with good efficiency and with sufficient spectral content throughout the visible (380-780 nm) to permit the light so generated to render colors comparable to natural sunlight. This is achieved by adding multiple metals to a basic mercury discharge. Because the vapor pressure of most metals is very much lower than mercury itself, metal-halide salts of the desired metals, having higher vapor pressures, are used to introduce the material into the basic discharge. The metal compounds are usually polyatomic iodides, which vaporize and subsequently dissociate as they diffuse into the bulk plasma. Metals with multiple visible transitions are necessary to achieve high photometric efficiency (efficacy) and good color. Compounds of Sc, Dy, Ho, Tm, Ce, Pr, Yb and Nd are commonly used. The electrons, atoms and radicals are in local thermodynamic equilibrium (LTE), but not with the radiation field. Strong thermal (10 6 K m -1 ) and density gradients are sustained in the discharge. Atomic radiation produced in the high-temperature core transits through colder gas regions where it interacts with cold atoms and un-dissociated molecules before exiting the lamp. Power balance and spectral output of the lamp are directly affected by the strength of atomic transitions. Attempts to simulate the radiative output of functional metal-halide lamps have been successful only in very simple cases. More data (e.g. the atomic transition probabilities of Ce i) are necessary to improve lamp performance, to select appropriate radiators and in scaling the lamp geometry to various wattages for specific applications.

  13. Determination of line broadening constants in high pressure discharge lamps

    International Nuclear Information System (INIS)

    Weiss, M; Schubert, H; Meier, S; Born, M; Reiter, D; Stroesser, M

    2005-01-01

    A numerical model of the radiative transfer in high pressure metal halide discharge lamps is used to determine line broadening parameters for atomic scandium lines. The determined broadening constants are in qualitative agreement with theoretical estimates in many cases, but significant deviations exist. The data obtained from this paper can, therefore, be used to further improve modelling of radiative contributions to the energy balance in such types of discharge lamps

  14. A gas discharge lamp for the extreme ultraviolet.

    Science.gov (United States)

    Nicholson, A J

    1970-05-01

    A gas discharge lamp is described suitable for producing the many-lined spectrum of hydrogen (85-160 nm) and the Hopfield continuum in helium (60-100 nm). It was designed for use with a window-less monochromator to study photoionization and operates at pressures below 50 Torr. The hydrogen lamp has a mode of operation which concentrates the discharge into the monochromator entrance slit.

  15. Slit-lamp photography and videography with high magnifications

    Science.gov (United States)

    Yuan, Jin; Jiang, Hong; Mao, Xinjie; Ke, Bilian; Yan, Wentao; Liu, Che; Cintrón-Colón, Hector R; Perez, Victor L; Wang, Jianhua

    2015-01-01

    Purpose To demonstrate the use of the slit-lamp photography and videography with extremely high magnifications for visualizing structures of the anterior segment of the eye. Methods A Canon 60D digital camera with Movie Crop Function was adapted into a Nikon FS-2 slit-lamp to capture still images and video clips of the structures of the anterior segment of the eye. Images obtained using the slit-lamp were tested for spatial resolution. The cornea of human eyes was imaged with the slit-lamp and the structures were compared with the pictures captured using the ultra-high resolution optical coherence tomography (UHR-OCT). The central thickness of the corneal epithelium and total cornea was obtained using the slit-lamp and the results were compared with the thickness obtained using UHR-OCT. Results High-quality ocular images and higher spatial resolutions were obtained by using the slit-lamp with extremely high magnifications and Movie Crop Function, rather than the traditional slit-lamp. The structures and characteristics of the cornea, such as the normal epithelium, abnormal epithelium of corneal intraepithelial neoplasia, LASIK interface, and contact lenses, were clearly visualized using this device. These features were confirmed by comparing the obtained images with those acquired using UHR-OCT. Moreover, the tear film debris on the ocular surface and the corneal nerve in the anterior corneal stroma were also visualized. The thicknesses of the corneal epithelium and total cornea were similar to that measured using UHR-OCT (P photography and videography with extremely high magnifications allows better visualization of the anterior segment structures of the eye, especially of the epithelium, when compared with the traditional slit-lamp. PMID:26020484

  16. Halonium Ions as Halogen Bond Donors in the Solid State [XL2]Y Complexes.

    Science.gov (United States)

    Rissanen, Kari; Haukka, Matti

    2015-01-01

    The utilization of halogen bonding interactions is one of the most rapidly developing areas of supramolecular chemistry. While the other weak non-covalent interactions and their influence on the structure and chemistry of various molecules, complexes, and materials have been investigated extensively, the understanding, utilizations, and true nature of halogen bonding are still relatively unexplored. Thus its final impact in chemistry in general and in materials science has not yet been fully established. Because of the polarized nature of a Z-X bond (Z=electron-withdrawing atom or moiety and X=halogen atom), such a moiety can act as halogen bond donor when the halogen is polarized enough by the atom/moiety Z. The most studied and utilized halogen bond donor molecules are the perfluorohalocarbons, where Z is a perfluorinated aryl or alkyl moiety and X is either iodine or bromine. Complementing the contemporary halogen bonding research, this chapter reviews the solid state structural chemistry of the most extremely polarized halogen atoms, viz. halonium ions, X+, and discussed them as halogen bond donors in the solid state [XL2]Y complexes (X=halonium ion, Y=any anion).

  17. Gas-driven permeation of deuterium through tungsten and tungsten alloys

    Energy Technology Data Exchange (ETDEWEB)

    Buchenauer, Dean A., E-mail: dabuche@sandia.gov [Sandia National Laboratories, Energy Innovation Department, Livermore, CA 94550 (United States); Karnesky, Richard A. [Sandia National Laboratories, Energy Innovation Department, Livermore, CA 94550 (United States); Fang, Zhigang Zak; Ren, Chai [University of Utah, Department of Metallurgical Engineering, Salt Lake City, UT 84112 (United States); Oya, Yasuhisa [Shizuoka University, Graduate School of Science, Shizuoka (Japan); Otsuka, Teppei [Kyushu University, Department of Advanced Energy Engineering Science, Fukuoka (Japan); Yamauchi, Yuji [Hokkaido University, Third Division of Quantum Science and Engineering, Faculty of Engineering, Sapporo (Japan); Whaley, Josh A. [Sandia National Laboratories, Energy Innovation Department, Livermore, CA 94550 (United States)

    2016-11-01

    Highlights: • We have designed and performed initial studies on a high temperature gas-driven permeation cell capable of operating at temperatures up to 1150 °C and at pressures between 0.1–1 atm. • Permeation measurements on ITER grade tungsten compare well with past studies by Frauenfelder and Zahkarov in the temperature range from 500 to 1000 °C. • First permeation measurements on Ti dispersoid-strengthened ultra-fine grained tungsten show higher permeation at 500 °C, but very similar permeation with ITER tungsten at 1000 °C. Diffusion along grain boundaries may be playing a role for this type of material. - Abstract: To address the transport and trapping of hydrogen isotopes, several permeation experiments are being pursued at both Sandia National Laboratories (deuterium gas-driven permeation) and Idaho National Laboratories (tritium gas- and plasma-driven tritium permeation). These experiments are in part a collaboration between the US and Japan to study the performance of tungsten at divertor relevant temperatures (PHENIX). Here we report on the development of a high temperature (≤1150 °C) gas-driven permeation cell and initial measurements of deuterium permeation in several types of tungsten: high purity tungsten foil, ITER-grade tungsten (grains oriented through the membrane), and dispersoid-strengthened ultra-fine grain (UFG) tungsten being developed in the US. Experiments were performed at 500–1000 °C and 0.1–1.0 atm D{sub 2} pressure. Permeation through ITER-grade tungsten was similar to earlier W experiments by Frauenfelder (1968–69) and Zaharakov (1973). Data from the UFG alloy indicates marginally higher permeability (< 10×) at lower temperatures, but the permeability converges to that of the ITER tungsten at 1000 °C. The permeation cell uses only ceramic and graphite materials in the hot zone to reduce the possibility for oxidation of the sample membrane. Sealing pressure is applied externally, thereby allowing for elevation

  18. Deuterium lamps as transfer standards for spectral radiance measurements

    International Nuclear Information System (INIS)

    Key, P.J.; Nettleton, D.H.

    1985-01-01

    This report describes the work carried out at NPL and PTB to improve the performance of a low pressure deuterium discharge lamp, so that it can be used as a transfer standard in the spectral range 120 to 350 nm. To this end it was necessary: - to replace the original quartz windows by magnesium fluoride single crystal plates, which were cut perpendicular to the c-axis of the crystal and which had to be free of impurities, - to construct the lamps in that way that the directional uniformity of the emitted radiation is within the demands, - to age the lamps and to preselect only those of which the irradiance was stable within ± 1% during a thirty minute period after warm-up, - to improve the commercially available electrical power supply to meet the operational needs of the lamps. Thus, the deuterium lamps drifted by about 3% over a period of 100 h at all wavelengths except at 250 nm, where the ageing increased to 4.5%. A liquid nitrogen trap has been developed which can be installed between the vacuum system and the lamp. This reduced to about 2% the decrease of the window's transmission during the first hour of operation, caused by the deposition of oil from the vacuum system

  19. The instantaneous light-intensity function of a fluorescent lamp

    Energy Technology Data Exchange (ETDEWEB)

    Gluskin, Emanuel [Holon Institute of Technology, 52 Golomb St., Holon 58102 (Israel): Electrical Engineering Department, Ben-Gurion University, Beer-Sheva 84105 (Israel)]. E-mail: gluskin@ee.bgu.ac.il; Topalis, Frangiskos V. [Technical University of Athens, School of Electrical and Computer Engineering, 9 Iroon Politechniou St., 15780 Athens (Greece); Kateri, Ifigenia [Technical University of Athens, School of Electrical and Computer Engineering, 9 Iroon Politechniou St., 15780 Athens (Greece); Bisketzis, Nikolas [Technical University of Athens, School of Electrical and Computer Engineering, 9 Iroon Politechniou St., 15780 Athens (Greece)

    2006-05-08

    Using some simple physics and 'system' considerations, the instantaneous light intensity function {psi}(t) of a fluorescent lamp fed via a regular ballast from the 50-60 Hz line is argued to be {psi}(t)={psi}{sub min}+bp(t), where p(t) is the instantaneous power function of the lamp, and b is a constant, and experiment confirms this formula well. The main frequency of {psi}(t), the very significant singularity of its waveform, and the relative intensity of the ripple, i.e., the depth of the modulation, are the focus. The results are important for research into the vision problem that some humans (autistic, but others, too) experience regarding fluorescent light. The inertia of the processes in the lamp which are responsible for the light emission, provides some nonzero emission at the instants when p(t) has zeros. The smaller the volume of the tube and the mass of the gas are, the more weakly the inertia of the processes is expressed, and the relatively smaller is {psi}{sub min}. However, it should be very difficult to theoretically obtain {psi}(t), in particular {psi}{sub min}, from the very complicated physics of the low-pressure discharge in the tube. We conclude that {psi}{sub min} has to be connected with the (also easily measured) lamp's inductance. The work should attract more attention of the physicists to the properties of the common fluorescent lamps. escent lamps.

  20. Case Study on Justification: High Intensity Discharge Lamps. Annex II

    International Nuclear Information System (INIS)

    2016-01-01

    High intensity discharge lamps produce bright white light of a high intensity in an energy efficient manner. These lamps are typically used in large numbers in public and professional settings such as shops, warehouses, hotels and offices. They are also used in outdoor applications to illuminate streets, buildings, statues, flags and gardens and further as architectural lighting. They also have applications associated with film projection in cinemas, manufacture of semiconductors, fluorescence endoscopy and microscopy, schlieren photography, hologram projection, ultraviolet curing, sky beamers and car headlights. Some types of high intensity discharge lamp, as well as certain other consumer products for lighting, contain radioactive substances for functional reasons. The radionuclides that are typically incorporated into high intensity discharge lamps are 85 Kr and 232 Th. Given the wide range of uses, specific decisions on justification may be required for different applications. A small number of safety assessments for high intensity discharge lamps have been carried out and published. No published decisions at the national level specifically addressing the justification of the use of high intensity discharge lamps have been identified

  1. Development and commercialisation of rechargeable wooden LED lamps

    Directory of Open Access Journals (Sweden)

    Bradley Schultz

    2013-02-01

    Full Text Available The focus of this project was to work with local staff at Kathmandu Alternative Power and Energy Group to commercialise a product which would generate recurring income for the organisation, to enable staff to learn the process of commercialisation and to provide employment and skills in the local community. Rechargeable Light Emitting Diode (LED lamps were deemed suitable for these aims, as they are a simple product, yet one that is urgently required in Nepal due to the prevalence of ‘load-shedding’ – scheduled electrical blackouts. After reviewing the market, it was found that it would be impossible to compete with the price of cheap imported Chinese rechargeable LED lamps, so an alternative approach was taken. This involved sourcing wooden off-cuts from a local furniture factory and transforming them into attractive desk lamps, with the target market being affluent Nepalis, ex-pats living in Nepal and tourists. Successful initial sales were achieved through a Kathmandu-based ex-pat email group, hotel-markets and souvenir stores. KAPEG staff have continued the project, producing variations on the initial design including Himalayan rock salt lamps, employing local people to manufacture lamps and selling them at markets in Kathmandu. Staffing and marketing challenges remain to ensure the lamp manufacture and sales continue.

  2. Mercury mass measurement in fluorescent lamps via neutron activation analysis

    Science.gov (United States)

    Viererbl, L.; Vinš, M.; Lahodová, Z.; Fuksa, A.; Kučera, J.; Koleška, M.; Voljanskij, A.

    2015-11-01

    Mercury is an essential component of fluorescent lamps. Not all fluorescent lamps are recycled, resulting in contamination of the environment with toxic mercury, making measurement of the mercury mass used in fluorescent lamps important. Mercury mass measurement of lamps via instrumental neutron activation analysis (NAA) was tested under various conditions in the LVR-15 research reactor. Fluorescent lamps were irradiated in different positions in vertical irradiation channels and a horizontal channel in neutron fields with total fluence rates from 3×108 cm-2 s-1 to 1014 cm-2 s-1. The 202Hg(n,γ)203Hg nuclear reaction was used for mercury mass evaluation. Activities of 203Hg and others induced radionuclides were measured via gamma spectrometry with an HPGe detector at various times after irradiation. Standards containing an Hg2Cl2 compound were used to determine mercury mass. Problems arise from the presence of elements with a large effective cross section in luminescent material (europium, antimony and gadolinium) and glass (boron). The paper describes optimization of the NAA procedure in the LVR-15 research reactor with particular attention to influence of neutron self-absorption in fluorescent lamps.

  3. Removal of Intermediate Aromatic Halogenated DBPs by Activated Carbon Adsorption: A New Approach to Controlling Halogenated DBPs in Chlorinated Drinking Water.

    Science.gov (United States)

    Jiang, Jingyi; Zhang, Xiangru; Zhu, Xiaohu; Li, Yu

    2017-03-21

    During chlorine disinfection of drinking water, chlorine may react with natural organic matter (NOM) and bromide ion in raw water to generate halogenated disinfection byproducts (DBPs). To mitigate adverse effects from DBP exposure, granular activated carbon (GAC) adsorption has been considered as one of the best available technologies for removing NOM (DBP precursor) in drinking water treatment. Recently, we have found that many aromatic halogenated DBPs form in chlorination, and they act as intermediate DBPs to decompose and form commonly known DBPs including trihalomethanes and haloacetic acids. In this work, we proposed a new approach to controlling drinking water halogenated DBPs by GAC adsorption of intermediate aromatic halogenated DBPs during chlorination, rather than by GAC adsorption of NOM prior to chlorination (i.e., traditional approach). Rapid small-scale column tests were used to simulate GAC adsorption in the new and traditional approaches. Significant reductions of aromatic halogenated DBPs were observed in the effluents with the new approach; the removals of total organic halogen, trihalomethanes, and haloacetic acids by the new approach always exceeded those by the traditional approach; and the effluents with the new approach were considerably less developmentally toxic than those with the traditional approach. Our findings indicate that the new approach is substantially more effective in controlling halogenated DBPs than the traditional approach.

  4. Study on residential appliances energy efficiency standards Refrigerators, air-conditioners, incandescent lamps, fluorescent lamps, color TVs

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.G.; Cho, S.K.; Choi, S.H.; Jung, B.M.; Han, S.B.; Kim, K.D. [Korea Inst. of Energy Research, Taejon (Korea, Republic of)

    1995-12-01

    The energy efficiency standards and rating act, as amended by the rational energy utilization act, provides energy efficiency standards and ratings for 6 types of consumer products(refrigerators, air-conditioners, fluorescent lamps, incandescent lamps, ballasts and cars) authorizes the Ministry of Trade, Industry and Energy(MOTIE) to prescribe amended or new energy efficiency standards and rating standards. This study was initiated by the KIER in 1992. KIER`s assessment of the standards is designed to evaluate their statistical and engineering analysis according to Korean(Industrial) Standards(KS). And to make distinction between the poor efficiency and good efficiency models, 5 grades are classified depending on their tested energy efficiency. This year, based on our analysis, MOTIE mandated updated standards for refrigerators, air-conditioners, incandescent lamps, and fluorescent lamps. Also the objective of this study is to set the energy efficiency standards and to grade for color TV sets. (author). 37 refs., 89 figs., 85 tabs.

  5. Irradiation effects in tungsten-copper laminate composite

    Energy Technology Data Exchange (ETDEWEB)

    Garrison, L.M., E-mail: garrisonlm@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Katoh, Y. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Snead, L.L. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Byun, T.S. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Reiser, J.; Rieth, M. [Karlsruhe Institute of Technology, Karlsruhe (Germany)

    2016-12-01

    Tungsten-copper laminate composite has shown promise as a structural plasma-facing component as compared to tungsten rod or plate. The present study evaluated the tungsten-copper composite after irradiation in the High Flux Isotope Reactor (HFIR) at temperatures of 410–780 °C and fast neutron fluences of 0.02–9.0 × 10{sup 25} n/m{sup 2}, E > 0.1 MeV, 0.0039–1.76 displacements per atom (dpa) in tungsten. Tensile tests were performed on the composites, and the fracture surfaces were analyzed with scanning electron microscopy. Before irradiation, the tungsten layers had brittle cleavage failure, but the overall composite had 15.5% elongation at 22 °C. After only 0.0039 dpa this was reduced to 7.7% elongation, and no ductility was observed after 0.2 dpa at all irradiation temperatures when tensile tested at 22 °C. For elevated temperature tensile tests after irradiation, the composite only had ductile failure at temperatures where the tungsten was delaminating or ductile. - Highlights: • Fusion reactors need a tough, ductile tungsten plasma-facing material. • The unirradiated tungsten-copper laminate is more ductile than tungsten alone. • After neutron irradiation, the composite has significantly less ductility. • The tungsten behavior appears to dominate the overall composite behavior.

  6. Structure of tungsten electrodeposited from oxide chloride-fluoride molten salts

    International Nuclear Information System (INIS)

    Pavlovskij, V.A.; Reznichenko, V.A.

    1998-01-01

    Investigation results on the influence of electrolysis parameters and electrolyte composition on tungsten cathode deposit structure are presented. The electrolysis was performed in NaCl-NaF-WO 3 molten salts using tungsten and tungsten coated molybdenum cathodes. Morphological and metallographic studies of tungsten crystals were carrier out. Tungsten deposits were obtained in the form of crystalline conglomerates, sponge and high dispersity powder

  7. Detection and reduction of tungsten contamination in ion implantation processes

    International Nuclear Information System (INIS)

    Polignano, M.L.; Galbiati, A.; Grasso, S.; Mica, I.; Barbarossa, F.; Magni, D.

    2016-01-01

    In this paper, we review the results of some studies addressing the problem of tungsten contamination in implantation processes. For some tests, the implanter was contaminated by implantation of wafers with an exposed tungsten layer, resulting in critical contamination conditions. First, DLTS (deep level transient spectroscopy) measurements were calibrated to measure tungsten contamination in ion-implanted samples. DLTS measurements of tungsten-implanted samples showed that the tungsten concentration increases linearly with the dose up to a rather low dose (5 x 10 10 cm -2 ). Tungsten deactivation was observed when the dose was further increased. Under these conditions, ToF-SIMS revealed tungsten at the wafer surface, showing that deactivation was due to surface segregation. DLTS calibration could therefore be obtained in the linear dose regime only. This calibration was used to evaluate the tungsten contamination in arsenic implantations. Ordinary operating conditions and critical contamination conditions of the equipment were compared. A moderate tungsten contamination was observed in samples implanted under ordinary operating conditions. This contamination was easily suppressed by a thin screen oxide. On the contrary, implantations in critical conditions of the equipment resulted in a relevant tungsten contamination, which could be reduced but not suppressed even by a relatively thick screen oxide (up to 150 Aa). A decontamination process consisting of high dose implantations of dummy wafers was tested for its efficiency to remove tungsten and titanium contamination. This process was found to be much more effective for titanium than for tungsten. Finally, DLTS proved to be much more sensitive that TXRF (total reflection X-ray fluorescence) in detecting tungsten contamination. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Detection and reduction of tungsten contamination in ion implantation processes

    Energy Technology Data Exchange (ETDEWEB)

    Polignano, M.L.; Galbiati, A.; Grasso, S.; Mica, I.; Barbarossa, F.; Magni, D. [STMicroelectronics, Agrate Brianza (Italy)

    2016-12-15

    In this paper, we review the results of some studies addressing the problem of tungsten contamination in implantation processes. For some tests, the implanter was contaminated by implantation of wafers with an exposed tungsten layer, resulting in critical contamination conditions. First, DLTS (deep level transient spectroscopy) measurements were calibrated to measure tungsten contamination in ion-implanted samples. DLTS measurements of tungsten-implanted samples showed that the tungsten concentration increases linearly with the dose up to a rather low dose (5 x 10{sup 10} cm{sup -2}). Tungsten deactivation was observed when the dose was further increased. Under these conditions, ToF-SIMS revealed tungsten at the wafer surface, showing that deactivation was due to surface segregation. DLTS calibration could therefore be obtained in the linear dose regime only. This calibration was used to evaluate the tungsten contamination in arsenic implantations. Ordinary operating conditions and critical contamination conditions of the equipment were compared. A moderate tungsten contamination was observed in samples implanted under ordinary operating conditions. This contamination was easily suppressed by a thin screen oxide. On the contrary, implantations in critical conditions of the equipment resulted in a relevant tungsten contamination, which could be reduced but not suppressed even by a relatively thick screen oxide (up to 150 Aa). A decontamination process consisting of high dose implantations of dummy wafers was tested for its efficiency to remove tungsten and titanium contamination. This process was found to be much more effective for titanium than for tungsten. Finally, DLTS proved to be much more sensitive that TXRF (total reflection X-ray fluorescence) in detecting tungsten contamination. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Lysosome-Associated Membrane Proteins (LAMP Maintain Pancreatic Acinar Cell Homeostasis: LAMP-2–Deficient Mice Develop PancreatitisSummary

    Directory of Open Access Journals (Sweden)

    Olga A. Mareninova

    2015-11-01

    Full Text Available Background & Aims: The pathogenic mechanism of pancreatitis is poorly understood. Recent evidence implicates defective autophagy in pancreatitis responses; however, the pathways mediating impaired autophagy in pancreas remain largely unknown. Here, we investigate the role of lysosome associated membrane proteins (LAMPs in pancreatitis. Methods: We analyzed changes in LAMPs in experimental models and human pancreatitis, and the underlying mechanisms: LAMP deglycosylation and degradation. LAMP cleavage by cathepsin B (CatB was analyzed by mass spectrometry. We used mice deficient in LAMP-2 to assess its role in pancreatitis. Results: Pancreatic levels of LAMP-1 and LAMP-2 greatly decrease across various pancreatitis models and in human disease. Pancreatitis does not trigger the LAMPs’ bulk deglycosylation but induces their degradation via CatB-mediated cleavage of the LAMP molecule close to the boundary between luminal and transmembrane domains. LAMP-2 null mice spontaneously develop pancreatitis that begins with acinar cell vacuolization due to impaired autophagic flux, and progresses to severe pancreas damage characterized by trypsinogen activation, macrophage-driven inflammation, and acinar cell death. LAMP-2 deficiency causes a decrease in pancreatic digestive enzymes content, and stimulates the basal and inhibits cholecystokinin-induced amylase secretion by acinar cells. The effects of LAMP-2 knockout and acute cerulein pancreatitis overlap, which corroborates the pathogenic role of LAMP decrease in experimental pancreatitis models. Conclusions: The results indicate a critical role for LAMPs, particularly LAMP-2, in maintaining pancreatic acinar cell homeostasis and provide evidence that defective lysosomal function, resulting in impaired autophagy, leads to pancreatitis. Mice with LAMP-2 deficiency present a novel genetic model of human pancreatitis caused by lysosomal/autophagic dysfunction. Keywords: Amylase Secretion, Autophagy

  10. Bromate formation from the oxidation of bromide in the UV/chlorine process with low pressure and medium pressure UV lamps.

    Science.gov (United States)

    Fang, Jingyun; Zhao, Quan; Fan, Chihhao; Shang, Chii; Fu, Yun; Zhang, Xiangru

    2017-09-01

    When a bromide-containing water is treated by the ultraviolet (UV)/chlorine process, hydroxyl radicals (HO) and halogen radicals such as Cl or Br are formed due to the UV photolysis of free halogens. These reactive species may induce the formation of bromate, which is a probable human carcinogen. Bromate formation in the UV/chlorine process using low pressure (LP) and medium pressure (MP) lamps in the presence of bromide was investigated in the present study. The UV/chlorine process significantly enhanced bromate formation as compared to dark chlorination. The bromate formation was elevated with increasing UV fluence, bromide concentration, and pH values under both LP and MP UV irradiations. It was significantly enhanced at pH 9 compared to those at pH 6 and 7 with MP UV irradiation, while it was slightly enhanced at pH 9 with LP UV. The formation by UV/chlorine process started with the formation of free bromine (HOBr/OBr - ) through the reaction of chlorine and bromide, followed by a subsequent oxidation of free bromine and formation of BrO and bromate by reacting with radicals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Comparison of direct and alternating current vacuum ultraviolet lamps in atmospheric pressure photoionization.

    Science.gov (United States)

    Vaikkinen, Anu; Haapala, Markus; Kersten, Hendrik; Benter, Thorsten; Kostiainen, Risto; Kauppila, Tiina J

    2012-02-07

    A direct current induced vacuum ultraviolet (dc-VUV) krypton discharge lamp and an alternating current, radio frequency (rf) induced VUV lamp that are essentially similar to lamps in commercial atmospheric pressure photoionization (APPI) ion sources were compared. The emission distributions along the diameter of the lamp exit window were measured, and they showed that the beam of the rf lamp is much wider than that of the dc lamp. Thus, the rf lamp has larger efficient ionization area, and it also emits more photons than the dc lamp. The ionization efficiencies of the lamps were compared using identical spray geometries with both lamps in microchip APPI mass spectrometry (μAPPI-MS) and desorption atmospheric pressure photoionization-mass spectrometry (DAPPI-MS). A comprehensive view on the ionization was gained by studying six different μAPPI solvent compositions, five DAPPI spray solvents, and completely solvent-free DAPPI. The observed reactant ions for each solvent composition were very similar with both lamps except for toluene, which showed a higher amount of solvent originating oxidation products with the rf lamp than with the dc lamp in μAPPI. Moreover, the same analyte ions were detected with both lamps, and thus, the ionization mechanisms with both lamps are similar. The rf lamp showed a higher ionization efficiency than the dc lamp in all experiments. The difference between the lamp ionization efficiencies was greatest when high ionization energy (IE) solvent compositions (IEs above 10 eV), i.e., hexane, methanol, and methanol/water, (1:1 v:v) were used. The higher ionization efficiency of the rf lamp is likely due to the larger area of high intensity light emission, and the resulting larger efficient ionization area and higher amount of photons emitted. These result in higher solvent reactant ion production, which in turn enables more efficient analyte ion production. © 2012 American Chemical Society

  12. The influence of Fe content on spreading ability of tungsten heavy alloys matrix on tungsten surface

    Directory of Open Access Journals (Sweden)

    A. Krzyńska

    2011-07-01

    Full Text Available The results of experimental study of tungsten spreading ability with W-Ni-Co-Fe matrix are presented. The aim of these investigations was to see how Fe concentration in W – Ni – Co matrix influences the wettability of tungsten grains during liquid phase sintering. Four green compact specimens containing 50%W, 10%Co and Ni + Fe = 40% but with different Ni to Fe ratio were prepared. The cylindrical specimen 5mm diameter and 5mm height were put on clean pure tungsten substrate and then 20 minutes heated at 1520oC in hydrogen atmosphere. After heating the specimens were carefully measured and then the specimens for structure observations were prepared. It was concluded, that increase of Fe content decrease the melting temperature of W – Ni – Co alloy. The melting point decrease caused by Fe content increase substantially the spreading ability of tungsten substrate with W – Ni – Co alloy. Metallography investigations showed some microstructure changes in “reaction zone” identified in tungsten substrate – (WNi40-xCo10Fex interface. The results of the study confirmed our earlier observations that even relative small Fe addition promotes Weight Heavy Alloys (WHA liquid phase sintering.

  13. Characterization of a Cobalt-Tungsten Interconnect

    DEFF Research Database (Denmark)

    Harthøj, Anders; Holt, Tobias; Caspersen, Michael

    2012-01-01

    is to act both as a diffusion barrier for chromium and provide better protection against high temperature oxidation than a pure cobalt coating. This work presents a characterization of a cobalt-tungsten alloy coating electrodeposited on the ferritic steel Crofer 22 H which subsequently was oxidized in air......A ferritic steel interconnect for a solid oxide fuel cell must be coated in order to prevent chromium evaporation from the steel substrate. The Technical University of Denmark and Topsoe Fuel Cell have developed an interconnect coating based on a cobalt-tungsten alloy. The purpose of the coating...... for 300 h at 800 °C. The coating was characterized with Glow Discharge Optical Spectroscopy (GDOES), Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD). The oxidation properties were evaluated by measuring weight change of coated samples of Crofer 22 H and Crofer 22 APU as a function...

  14. Laser induced white lighting of tungsten filament

    Science.gov (United States)

    Strek, W.; Tomala, R.; Lukaszewicz, M.

    2018-04-01

    The sustained bright white light emission of thin tungsten filament was induced under irradiation with focused beam of CW infrared laser diode. The broadband emission centered at 600 nm has demonstrated the threshold behavior on excitation power. Its intensity increased non-linearly with excitation power. The emission occurred only from the spot of focused beam of excitation laser diode. The white lighting was accompanied by efficient photocurrent flow and photoelectron emission which both increased non-linearly with laser irradiation power.

  15. Spectroscopic modeling for tungsten EUV spectra

    International Nuclear Information System (INIS)

    Murakami, Izumi; Kato, Daiji; Sakaue, Hiroyuki A.; Suzuki, Chihiro; Morita, Shigeru; Goto, Motoshi; Sasaki, Akira; Nakamura, Nobuyuki; Yamamoto, Norimasa; Koike, Fumihiro

    2014-01-01

    We have constructed an atomic model for tungsten extreme ultraviolet (EUV) spectra to reconstruct characteristic spectral feature of unresolved transition array (UTA) observed at 4-7 nm for tungsten ions. In the tungsten atomic modeling, we considered fine-structure levels with the quantum principal number n up to 6 as the atomic structure and calculated the electron-impact collision cross sections by relativistic distorted-wave method, using HULLAC atomic code. We measured tungsten EUV spectra in Large Helical Device (LHD) and Compact Electron Beam Ion Trap device (CoBIT) and compared them with the model calculation. The model successfully explain series of emission peaks at 1.5-3.5 nm as n=5-4 and 6-4 transitions of W"2"4"+ - W"3"2"+ measured in CoBIT and LHD and the charge state distributions were estimated for LHD plasma. The UTA feature observed at 4-7 nm was also successfully reconstructed with our model. The peak at ∼5 nm is produced mainly by many 4f-4d transition of W"2"2"+ - W"3"5"+ ions, and the second peak at ∼6 nm is produced by 4f-4d transition of W"2"5"+ - W"2"8"+ ions, and 4d-4p inner-shell transitions, 4p"54d"n"+"1 - 4p"64d"n, of W"2"9"+ - W"3"5"+ ions. These 4d-4p inner-shell transitions become strong since we included higher excited states such as 4p"54d"n4f state, which ADAS atomic data set does not include for spectroscopic modeling with fine structure levels. (author)

  16. EBIT spectroscopy of Pm-like tungsten

    International Nuclear Information System (INIS)

    Hutton, R.; Zou, Y.; Reyna Almandos, J.; Biedermann, C.; Radtke, R.; Greier, A.; Neu, R.

    2003-01-01

    Methods of VUV electron beam ion trap (EBIT) spectroscopy are applied to the study of Pm-like tungsten (W 13+ ). These data show that theory appears well capable of dealing with these multi-electron (61) ions, at least for high ionization stages. A comparison of other spectroscopic methods applied to the study of other ions of the Pm I sequence is also given, and finally a search for the Pm-like W lines at the ASDEX Upgrade Tokamak is mentioned

  17. The tungsten powder study of the dispenser cathode

    International Nuclear Information System (INIS)

    Bao Jixiu; Wan Baofei

    2006-01-01

    The intercorrelation of tungsten powder properties, such as grain size, distribution and morphology, and porous matrix parameters with electron emission capability and longevity of Ba dispenser cathodes has been investigated for the different grain morphologies. It is shown that a fully cleaning step of the tungsten powder is so necessary that the tungsten powder will be reduction of oxide in hydrogen atmosphere above 700 deg. C. The porosity of the tungsten matrix distributes more even and the closed pore is fewer, the average granule size of the tungsten powder distributes more convergent. The porosity of the tungsten matrix and the evaporation of the activator are bigger and the pulse of the cathode is smaller when the granularity is bigger by the analysis of the electronic microscope and diode experiment

  18. The tungsten powder study of the dispenser cathode

    Science.gov (United States)

    Bao, Ji-xiu; Wan, Bao-fei

    2006-06-01

    The intercorrelation of tungsten powder properties, such as grain size, distribution and morphology, and porous matrix parameters with electron emission capability and longevity of Ba dispenser cathodes has been investigated for the different grain morphologies. It is shown that a fully cleaning step of the tungsten powder is so necessary that the tungsten powder will be reduction of oxide in hydrogen atmosphere above 700 °C. The porosity of the tungsten matrix distributes more even and the closed pore is fewer, the average granule size of the tungsten powder distributes more convergent. The porosity of the tungsten matrix and the evaporation of the activator are bigger and the pulse of the cathode is smaller when the granularity is bigger by the analysis of the electronic microscope and diode experiment.

  19. Synthesis and electrical characterization of tungsten oxide nanowires

    Institute of Scientific and Technical Information of China (English)

    Huang Rui; Zhu Jing; Yu Rong

    2009-01-01

    Tungsten oxide nanowires of diameters ranging from 7 to 200 nm are prepared on a tungsten rod substrate by using the chemical vapour deposition (CVD) method with vapour-solid (VS) mechanism. Tin powders are used to control oxygen concentration in the furnace, thereby assisting the growth of the tungsten oxide nanowires. The grown tungsten oxide nanowires are determined to be of crystalline W18O49. Ⅰ-Ⅴ curves are measured by an in situ transmission electron microscope (TEM) to investigate the electrical properties of the nanowires. All of the Ⅰ-Ⅴ curves observed are symmetric, which reveals that the tungsten oxide nanowires are semiconducting. Quantitative analyses of the experimental I V curves by using a metal-semiconductor-metal (MSM) model give some intrinsic parameters of the tungsten oxide nanowires, such as the carrier concentration, the carrier mobility and the conductivity.

  20. Process for separation of tungsten and molybdenum by extraction

    International Nuclear Information System (INIS)

    Zelikman, A.N.; Voldman, G.M.; Rumyantsev, V.K.; Ziberov, G.N.; Kagermanian, V.S.

    1976-01-01

    A process for the separation of tungsten and molybdenum by extraction involves the addition of HCl or HNO 3 to an aqueous solution containing tungsten and molybdenum to obtain a pH from 0.5 to 4.3, and introduction of a stabilizer comprising water-soluble phosphorus salts and a complexing agent, hydrogen peroxide, in an amount from 1.5 to 2 mole per 1 g-atom of the total content of tungsten and molybdenum. Then molybdenum is selectively extracted from the resulting aqueous solution with tri-n-butylphosphate with equal volumetric proportioning of the aqueous and organic solutions. Re-extraction of molybdenum and partially tungsten is carried out from the organic extracting agent with an alkali or soda solution. The process makes possible the preparation of tungsten solution containing no more than 0.001 g/l of molybdenum, and an increase in the degree of extraction of tungsten and molybdenum

  1. Separation of tungsten and rhenium on alumina

    Directory of Open Access Journals (Sweden)

    MILOVAN SM. STOILJKOVIC

    2004-09-01

    Full Text Available The conditions for the efficient separation of tungsten(VI and rhenium (VII on alumina were established. The distribution coefficients Kd for tungstate and perrhenate anions, as well as the separation factors a (a = KdWO42-/Kd ReO4- were determined using hydrochloric or nitric acid as the aqueous media. A solution of sodium chloride in the pH range 2–6 was also examined. Under all the tested experimental conditions, alumina is a much better adsorbent for tungsten than for rhenium. The obtained results indicated that the best separation of these two elements is achieved when 0.01– 0.1 mol dm-3 HCl or 1.0 mol dm-3 HNO3 are used as the aqueous media. If NaCl is used as the aqueous phase, the best separation is achieved with 0.20 mol dm-3 NaCl, pH 4–6. Under these experimental conditions, the breakthrough and saturation capacities of alumina for tungsten at pH 4 are 17 and 26 mg W/g Al2O3, respectively. With increasing pH, these values decrease. Thus, at pH 6 they are only 4 and 13 mg W/g Al2O3, respectively.

  2. Controlled nanostructuration of polycrystalline tungsten thin films

    Energy Technology Data Exchange (ETDEWEB)

    Girault, B. [Institut P' (UPR 3346 CNRS), Universite de Poitiers, ENSMA, Bd Pierre et Marie Curie, 86962 Futuroscope Cedex (France); Institut de Recherche en Genie Civil et Mecanique (UMR CNRS 6183), LUNAM Universite, Universite de Nantes, Centrale Nantes, CRTT, 37 Bd de l' Universite, BP 406, 44602 Saint-Nazaire Cedex (France); Eyidi, D.; Goudeau, P.; Guerin, P.; Bourhis, E. Le; Renault, P.-O. [Institut P' (UPR 3346 CNRS), Universite de Poitiers, ENSMA, Bd Pierre et Marie Curie, 86962 Futuroscope Cedex (France); Sauvage, T. [CEMHTI/CNRS (UPR 3079 CNRS), Universite d' Orleans, 3A rue de la Ferollerie, 45071 Orleans Cedex 2 (France)

    2013-05-07

    Nanostructured tungsten thin films have been obtained by ion beam sputtering technique stopping periodically the growing. The total thickness was maintained constant while nanostructure control was obtained using different stopping periods in order to induce film stratification. The effect of tungsten sublayers' thicknesses on film composition, residual stresses, and crystalline texture evolution has been established. Our study reveals that tungsten crystallizes in both stable {alpha}- and metastable {beta}-phases and that volume proportions evolve with deposited sublayers' thicknesses. {alpha}-W phase shows original fiber texture development with two major preferential crystallographic orientations, namely, {alpha}-W<110> and unexpectedly {alpha}-W<111> texture components. The partial pressure of oxygen and presence of carbon have been identified as critical parameters for the growth of metastable {beta}-W phase. Moreover, the texture development of {alpha}-W phase with two texture components is shown to be the result of a competition between crystallographic planes energy minimization and crystallographic orientation channeling effect maximization. Controlled grain size can be achieved for the {alpha}-W phase structure over 3 nm stratification step. Below, the {beta}-W phase structure becomes predominant.

  3. Separation of Rhenium (VII) from Tungsten (VI)

    International Nuclear Information System (INIS)

    Vucina, J.; Lukic, D.; Stoiljkovic, M.; Milosevic, M.; Orlic, M.

    2004-01-01

    Examined were the conditions for an effective separation of tungsten (VI) and rhenium (VII) on alumina if the solution of 0.20 mol dm -3 NaCl, ph=2.6 is used as the aqueous phase. Under the given experimental conditions alumina was found to be much better adsorbent for tungsten than for rhenium. The breakthrough and saturation capacities of alumina at pH=2 are 24 and 78 mg W/g Al 2 O 3 , respectively. With the increase of pH these values decrease. So, at pH=6 they are only 4 and 13 mg W/g Al 2 O 3 respectively. The elution volume for rhenium for the given column dimensions and quantity of the adsorbent is about 16 ml. These results were confirmed by the experiments of the radiological separations. Tungsten-187 remains firmly bound to the alumina. The radionuclide purity of the eluted 186'188 Re at pH=2 is very high. (authors)

  4. Concentration dependent hydrogen diffusion in tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Ahlgren, T., E-mail: tommy.ahlgren@helsinki.fi; Bukonte, L.

    2016-10-15

    The diffusion of hydrogen in tungsten is studied as a function of temperature, hydrogen concentration and pressure using Molecular Dynamics technique. A new analysis method to determine diffusion coefficients that accounts for the random oscillation of atoms around the equilibrium position is presented. The results indicate that the hydrogen migration barrier of 0.25 eV should be used instead of the presently recommended value of 0.39 eV. This conclusion is supported by both experiments and density functional theory calculations. Moreover, the migration volume at the saddle point for H in W is found to be positive: ΔV{sub m} ≈ 0.488 Å{sup 3}, leading to a decrease in the diffusivity at high pressures. At high H concentrations, a dramatic reduction in the diffusion coefficient is observed, due to site blocking and the repulsive H-H interaction. The results of this study indicates that high flux hydrogen irradiation leads to much higher H concentrations in tungsten than expected. - Highlights: • The recommended value of 0.39 eV for the H in W migration barrier should be changed to 0.25 eV. • The random oscillation of atoms around the equilibrium position can be dealt with in diffusion simulations. • Hydrogen diffusion in tungsten is highly concentration dependent.

  5. Tuning the viscosity of halogen free bulk heterojunction inks for inkjet printed organic solar cells

    NARCIS (Netherlands)

    Lamont, C.A.; Eggenhuisen, T.M.; Coenen, M.J.J.; Slaats, T.W.L.; Andriessen, R.; Groen, P.

    2015-01-01

    For the solution processing of organic photovoltaics on an industrial scale, the exclusion of halogenated solvents is a necessity. However, the limited solubility of most semiconducting polymer/fullerene blends in non-halogenated solvents results in ink formulations with low viscosities which poses

  6. Impact of enhanced ozone deposition and halogen chemistry on tropospheric ozone over the Northern Hemisphere

    Science.gov (United States)

    Fate of ozone in marine environments has been receiving increased attention due to the tightening of ambient air quality standards. The role of deposition and halogen chemistry is examined through incorporation of an enhanced ozone deposition algorithm and inclusion of halogen ch...

  7. Tungsten/copper composite deposits produced by a cold spray

    International Nuclear Information System (INIS)

    Kang, Hyun-Ki; Kang, Suk Bong

    2003-01-01

    An agglomerated tungsten/copper composite powder was both cold sprayed and plasma sprayed onto a mild steel substrate for electronic package applications. Most pores resulting from the spraying were found in the vicinity of the tungsten-rich regions of the final product. The levels of porosity varied with the amount of tungsten present. No copper oxidation was found at the cold-sprayed deposit, but relatively high copper oxidation was observed at the plasma-sprayed deposit

  8. Tungsten-induced carcinogenesis in human bronchial epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Laulicht, Freda; Brocato, Jason; Cartularo, Laura; Vaughan, Joshua; Wu, Feng; Kluz, Thomas; Sun, Hong [Department of Environmental Medicine, New York University Langone Medical Center, Tuxedo, NY 10987 (United States); Oksuz, Betul Akgol [Genome Technology Center, New York University Langone Medical Center, New York, NY 10016 (United States); Shen, Steven [Center for Health Informatics and Bioinformatics, New York University Langone Medical Center, New York, NY 10016 (United States); Peana, Massimiliano; Medici, Serenella; Zoroddu, Maria Antonietta [Department of Chemistry and Pharmacy, University of Sassari, Sassari (Italy); Costa, Max, E-mail: Max.Costa@nyumc.org [Department of Environmental Medicine, New York University Langone Medical Center, Tuxedo, NY 10987 (United States)

    2015-10-01

    Metals such as arsenic, cadmium, beryllium, and nickel are known human carcinogens; however, other transition metals, such as tungsten (W), remain relatively uninvestigated with regard to their potential carcinogenic activity. Tungsten production for industrial and military applications has almost doubled over the past decade and continues to increase. Here, for the first time, we demonstrate tungsten's ability to induce carcinogenic related endpoints including cell transformation, increased migration, xenograft growth in nude mice, and the activation of multiple cancer-related pathways in transformed clones as determined by RNA sequencing. Human bronchial epithelial cell line (Beas-2B) exposed to tungsten developed carcinogenic properties. In a soft agar assay, tungsten-treated cells formed more colonies than controls and the tungsten-transformed clones formed tumors in nude mice. RNA-sequencing data revealed that the tungsten-transformed clones altered the expression of many cancer-associated genes when compared to control clones. Genes involved in lung cancer, leukemia, and general cancer genes were deregulated by tungsten. Taken together, our data show the carcinogenic potential of tungsten. Further tests are needed, including in vivo and human studies, in order to validate tungsten as a carcinogen to humans. - Highlights: • Tungsten (W) induces cell transformation and increases migration in vitro. • W increases xenograft growth in nude mice. • W altered the expression of cancer-related genes such as those involved in leukemia. • Some of the dysregulated leukemia genes include, CD74, CTGF, MST4, and HOXB5. • For the first time, data is presented that demonstrates tungsten's carcinogenic potential.

  9. Physics of mercury-free high-pressure discharge lamps

    International Nuclear Information System (INIS)

    Born, M

    2002-01-01

    This paper gives a summary of recent results about the replacement of mercury in high-pressure discharge lamps by metallic zinc. Actually, this topic is of high relevance for the lighting industry due to the need of more environmentally friendly products. The work presented here is supported by the German government under contract no 13N8072 and 13N8264. Due to upcoming European legislations which are expected for the year 2003, the replacement of mercury in lighting products is a high priority task. For example, mercury-free headlight discharge lamps are requested by the automotive industry. Pure zinc/argon discharges as well as lamps including zinc or mercury and metal halide additives are investigated. Experimental data are compared with model calculations of the energy balance involving the transport of heat and radiation. Since the excitation energies of relevant zinc transitions are lower than for mercury, axis temperatures of pure zinc lamps are about 300 K below the value of mercury arcs. In addition, the thermal conductivity of zinc including the contribution of radiation diffusion is larger than compared to mercury. From lamp voltage measurements it is found that the cross section for elastical electron scattering by zinc atoms is about the same than for mercury. When adding metal halides to a pure zinc discharge with argon as a starting gas, i.e. NaI, TlI, DyI 3 , axis temperatures decrease to about 5100 K due to strong radiation cooling. In order to obtain sufficiently large lamp voltages, wall temperatures of more than 1300 K are adjusted by means of polycrystalline aluminaoxide (Al 2 O 3 ) as a wall material. Electric field strengths of 6.0 and 8.6 V mm -1 are measured for metal halide lamps containing zinc or mercury, respectively. The light technical data of the discharges are very close, since mercury and zinc do not contribute significantly to the radiation in the visible range. Efficacies of up to 93 and 100 lm W -1 are found in metal halide

  10. Surface composition of carburized tungsten trioxide and its catalytic activity

    International Nuclear Information System (INIS)

    Nakazawa, M.; Okamoto, H.

    1985-01-01

    The surface composition and electronic structure of carburized tungsten trioxide are investigated using x-ray photoelectron spectroscopy (XPS). The relationship between the surface composition and the catalytic activity for methanol electro-oxidation is clarified. The tungsten carbide concentration in the surface layer increases with the carburization time. The formation of tungsten carbide enhances the catalytic activity. On the other hand, the presence of free carbon or tungsten trioxide in the surface layer reduces the activity remarkably. It is also shown that, the higher the electronic density of states near the Fermi level, the higher the catalytic activity

  11. Radiative capture of slow electrons by tungsten surface

    International Nuclear Information System (INIS)

    Artamonov, O.M.; Belkina, G.M.; Samarin, S.N.; Yakovlev, I.I.

    1987-01-01

    Isochromatic spectra of radiation capture of slow electrons by the surface of mono- and polycrystal tungsten recorded on 322 and 405 nm wave lengths are presented. The effect of oxygen adsorption on isochromates of the (110) face of tungsten monocrystal is investigated. The obtained isochromatic spectra are compared with energy band structure of tungsten. Based on the analysis of the obtained experimental results it is assumed that optical transition to the final state at the energy of 7.3 eV relatively to Fermi level is conditioned by surface states of the tungsten face (110)

  12. Selective gettering of hydrogen in high pressure metal iodide lamps

    International Nuclear Information System (INIS)

    Kuus, G.

    1976-01-01

    One of the main problems in the manufacture of high pressure gas discharge lamps is the elimination of gaseous impurities from their arc tubes. Long degassing processes of all the lamp components are necessary in order to produce lamps with a low ignition voltage and good maintenance of the radiation properties. The investigation described deals with a selective getter place in the arc tube which can replace the long degassing process. The getter consists of a piece of yttrium encapsulated in thin tantalum foil. By this way it is possible to use the gettering action of tantalum and yttrium without having reaction between the metal iodide of the arc tube and yttrium. Yttrium is used because this metal can adsorb a large quantity of hydrogen even at a temperature of 1000 0 C. Hydrogen forms the main gaseous impurity in the high pressure metal iodide lamp. For this reason the adsorption properties like adsorption rate and capacity of the tantalum--yttrium getter for hydrogen are examined, and the results obtained from lamp experiments are given

  13. Compact fluorescent lamp phosphors in accidental radiation monitoring

    International Nuclear Information System (INIS)

    Murthy, K. V. R.; Pallavi, S. P.; Ghildiyal, R.; Parmar, M. C.; Patel, Y. S.; Ravi Kumar, V.; Sai Prasad, A. S.; Natarajan, V.; Page, A. G.

    2006-01-01

    The application of lamp phosphors for accidental dosimetry is a new concept. Since the materials used in fluorescent lamps are good photo luminescent materials, if one can either use the inherent defects present in the phosphor or add suitable modifiers to induce thermoluminescence (TL) in these phosphors, then the device (fluorescent lamp) can be used as an accidental dosemeter. In continuation of our search for a suitable phosphor material, which can serve both as an efficient lamp phosphor and as a good radiation monitoring device, detailed examination has been carried out on cerium and terbium-doped lanthanum phosphate material. A 90 Sr beta source with 50 mCi strength (1.85 GBq) was used as the irradiation source for TL studies. The TL response as a function of dose received was examined for all phosphors used and it was observed that the intensity of the TL peak vs. dose received was a linear function in the dose range 0.1-200 Gy in each case. Incidentally LaPO 4 :Ce,Tb is a component of the compact fluorescent lamp marketed recently as an energy bright light source. Besides having very good luminescence efficiency, good dosimetric properties of these phosphors render them useful for their use in accidental dosimetry also. (authors)

  14. Selective C-H Halogenation with a Highly Fluorinated Manganese Porphyrin.

    Science.gov (United States)

    Li, Gang; Dilger, Andrew K; Cheng, Peter T; Ewing, William R; Groves, John T

    2018-01-26

    The selective C-H functionalization of aliphatic molecules remains a challenge in organic synthesis. While radical chain halogenation reactions provide efficient access to many halogenated molecules, the use of typical protocols for the selective halogenation of electron-deficient and strained aliphatic molecules is rare. Herein, we report selective C-H chlorination and fluorination reactions promoted by an electron-deficient manganese pentafluorophenyl porphyrin catalyst, Mn(TPFPP)Cl. This catalyst displays superior properties for the aliphatic halogenation of recalcitrant, electron-deficient, and strained substrates with unique regio- and stereoselectivity. UV/Vis analysis during the course of the reaction indicated that an oxo-Mn V species is responsible for hydrogen-atom abstraction. The observed stereoselectivity results from steric interactions between the bulky porphyrin ligand and the intermediate substrate radical in the halogen rebound step. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Special features of self-compensation of halogen donor action in lead telluride

    International Nuclear Information System (INIS)

    Kajdanov, V.I.; Nemov, S.A.; Ravich, Yu.I.; Dereza, A.Yu.

    1985-01-01

    Specific features of self-compensation of halogen donor action in lead telluride are investigasted. Lead telluride samples with chlorine additions (with tellurium excess) and, besides, with bromine- and iodine additions were studied in order to reveal general regularities in alloyind with all halogen donor impurities. Experimental dependences of the difference between the electron and hole concentrations (n-p) in PbTe as a function of an amount of introduced halogen impurities (Ni) are presented for samples with a maximum compensation at 295 K. General features of the n-p=f(Ni) dependence are presented for all halogens. The hypothesis on the kinetic mechanism of increasing the efficiency of self-compensation of halogen donor action in lead telluride is suggested

  16. On tungsten technologies and qualification for DEMO

    International Nuclear Information System (INIS)

    Laan, J. van der; Hegeman, H.; Wouters, O.; Luzginova, N.; Jonker, B.; Van der Marck, S.; Opschoor, J.; Wang, J.; Dowling, G.; Stuivenga, M.; Carton, E.

    2009-01-01

    Tungsten alloys are considered prime candidates for the in-vessel components directly facing the plasma. For example, in the HEMJ helium cooled divertor design tiles may be operated at temperatures up to 1700 deg. C, supported by a structure partially consisting of tungsten at temperatures from 600 to 1000 deg. C, and connected to a HT steel structure. The tungsten armoured primary wall is operated at 500-900 deg. C. Irradiation doses will be few tens dpa at minimum, but FPR requirements for plants availability will stretch these targets. Recently injection moulding technology was developed for pure tungsten and representative parts were manufactured for ITER monobloc divertors and DEMO HEMJ thimbles. The major advantages for this technology are the efficient use of material feedstock/resources and the intrinsic possibility to produce near-finished product, avoiding machining processes that are costly and may introduce surface defects deteriorating the component in service performance. It is well suited for mass-manufacturing of components as well known in e.g. lighting industries. To further qualify this material technology various specimen types were produced with processing parameters identical to the components, and tested successfully, showing the high potential for implementation in (fusion) devices. Furthermore, the engineering approach can clearly be tailored away from conventional design and manufacturing technologies based on bulk materials. The technology is suitable for shaping of new W-alloys and W-ODS variants as well. Basically this technology allows a particular qualification trajectory. There is no need to produce large batches of material during the material development and optimization stage. For the verification of irradiation behaviour in the specific neutron spectra, there is a further attractive feature to use e.g. isotope tailored powders to adjust to available irradiation facilities like MTR's. In addition the ingrowth of transmutation

  17. Retention efficiencies of halogenated and non-halogenated hydrocarbons in selected wetland ecosystem in Lake Victoria Basin

    Directory of Open Access Journals (Sweden)

    Shadrack Mule

    2015-06-01

    Full Text Available The determination of retention efficiencies of halogenated and non-halogenated hydrocarbon in selected wetland ecosystems in Lake Victoria basin was carried out. Qualitative and quantitative determination of the presence of residual hydrocarbons in Kigwal/Kimondi, Nyando and Nzoia wetland ecosystems using Gas Chromatography - Mass Spectrometer (GC-MS instrument indicated the presence of residual organochlorines, organophosphorus, carbamates and synthetic pyrethroid hydrocarbons in water, sediment and plant materials. In order to compare the retention efficiencies of the wetlands, the wetland ecosystems were divided into three different sections, namely: inlet, mid and outlet. Calculations of mass balances of residual halogenated and non-halogenated hydrocarbons at the respective sections was done taking into account the partition of the studied compounds in samples of water, sediments and papyrus reed plant materials and analyzed using validated Gas Chromatography - Mass Spectrometer (GC-MS method. From the analysis, several residual hydrocarbons namely: bendiocarb, benzene hexachloride (BHC, carbaryl, cypermethrin, decis, deltamethrin, diazinon, dieldrin, DDT, DDD, DDE, malathion, propoxur, sumithion, 5-phenylrhodanine, 1,3,5-trichlorobenzene, 1-(2-phenoxybenzylhydrazine were detected and quantified. The levels of the selected residual hydrocarbons in water samples were used to calculate the retention efficiencies of a specific hydrocarbon and the values recorded. Generally, River Nyando wetland recorded mean percentage retention efficiencies of 76 and 94% for dry and rainy seasons respectively; Kigwal/Kimondi wetland had seasonal mean percentage retention efficiencies of 63 to 78%. River Nzoia also had calculated seasonal mean percentage retention efficiencies of between 56 to 88%. Dry season had lower mean percentages retention efficiencies as compared to rainy season in the three wetlands of interest during the period of study. The study

  18. Long-term Studies of Marine Halogen Release

    Science.gov (United States)

    Tschritter, J.; Holla, R.; Frieß, U.; Platt, U.

    2009-04-01

    Institute of Enviromental Physics, Heidelberg, Germany. Long term measurements of atmospheric trace gases using multi-axis DOAS instruments are pursued at the new SOLAS observatory on the island of Sao Vicente, (Cape Verde). This research is part of the SOPRAN (Surface Ocean Processes in the ANthropocene) project (Fördernummer:03F0462F). Reactive halogen species (RHS) such as bromine- and iodine- containing species play major roles in the chemistry of ozone in both the troposphere and lower stratosphere and thus possibly influence the ozone budget on a global scale. In addition iodine-species emitted from the ocean surface have been shown to be responsible for the production of new atmospheric particles in the marine boundary layer. This may have an effect on cloud formation and radiation transfer on local and global scales. Long term measurements of RHS abundances will help to identify their key regions and processes for formation. A new long term Multi-MAX-DOAS instrument has been installed at the SOLAS observatory on the island of Sao Vicente, (Cape Verde). The main focus of these unique measurements is the investigation of reactive halogen chemistry in the subtropical marine boundary layer based on measurements of BrO, IO, and possibly OIO. Because of its wide spectral range also the use for O4-retrievals to gain aerosol profiles is possible. IO has been detected with mixing ratios up to 1.3 ppt. For BrO an upper limit of 2 ppt could be determined.

  19. The Effects of Lamp Spectral Distribution on Sky Glow over Observatories

    Science.gov (United States)

    2015-01-01

    overhead sky glow as a function of distance up to 300 km, from a variety of lamp types, including common gas discharge lamps and several types of LED...distance up to 300 km, from a variety of lamp types, in- cluding common gas discharge lamps and several types of LED lamps . We conclude for both...MAR 2015 2. REPORT TYPE 3. DATES COVERED 00-00-2015 to 00-00-2015 4. TITLE AND SUBTITLE The Effects of Lamp Spectral Distribution on Sky Glow

  20. Fracture and Residual Characterization of Tungsten Carbide Cobalt Coatings on High Strength Steel

    National Research Council Canada - National Science Library

    Parker, Donald S

    2003-01-01

    Tungsten carbide cobalt coatings applied via high velocity oxygen fuel thermal spray deposition are essentially anisotropic composite structures with aggregates of tungsten carbide particles bonded...

  1. Radiation safety aspects of fluorescent lamp starters incorporating radiation source

    Energy Technology Data Exchange (ETDEWEB)

    Sadagopan, Geetha [Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Trombay, Mumbai (India); Shukla, V.K. [Environmental Assessment Division, Bhabha Atomic Research Centre, Trombay, Mumbai (India)

    2000-05-01

    A fluorescent lamp starter is a switch applies the voltage to the fluorescent tube after sufficient preheating to allow the tube to conduct an electric current. Radioactive substances used in the starters are {sup 85}Kr, {sup 147}Pm, {sup 3}H and {sup 232}Th. In India, fluorescent lamp starters are classified as consumer products and users are outside regulatory control. However, regulatory control is exercised over the manufacturers at the production stage. Tritium activity measured in the lamp starters ranged from 400-4500 Bq with a mean activity of 1.78 kBq. Thorium activity measured varied from 0.44-3.3 mg. The results of radiation safety assessment of the workplace and radioactivity estimation in the starters are discussed in this paper. (author)

  2. Radiation safety aspects of fluorescent lamp starters incorporating radiation source

    International Nuclear Information System (INIS)

    Sadagopan, Geetha; Shukla, V.K.

    2000-01-01

    A fluorescent lamp starter is a switch applies the voltage to the fluorescent tube after sufficient preheating to allow the tube to conduct an electric current. Radioactive substances used in the starters are 85 Kr, 147 Pm, 3 H and 232 Th. In India, fluorescent lamp starters are classified as consumer products and users are outside regulatory control. However, regulatory control is exercised over the manufacturers at the production stage. Tritium activity measured in the lamp starters ranged from 400-4500 Bq with a mean activity of 1.78 kBq. Thorium activity measured varied from 0.44-3.3 mg. The results of radiation safety assessment of the workplace and radioactivity estimation in the starters are discussed in this paper. (author)

  3. (meth)acrylates on in situ visible light polymerization of ...

    Indian Academy of Sciences (India)

    60

    ... faster to be cured using a visible light source with a Tungsten-Halogen lamp ... ranging from 350 to 1100 nm, which even covers some UV and near IR region. .... incorporation of the acid-containing and/or acrylate-containing monomer led to.

  4. Slit lamps and lenses: a potential source of nosocomial infections?

    Science.gov (United States)

    Sobolewska, Bianka; Buhl, Michael; Liese, Jan; Ziemssen, Focke

    2018-01-30

    The aim of the study was to evaluate the bacterial contamination level of contact surfaces on slit lamps and the grip areas of lenses. Within unannounced audits, two regions of the slit lamps (headrest and joystick), indirect ophthalmoscopy devices, and ultrasound probes were obtained with rayon-tipped swab. Non-contact lenses used for indirect fundoscopy were pressed on RODAC (Replicate Organism Detection and Counting) plates. One hundred and eighty-one surfaces were sampled. The total number of colony-forming units was assessed and bacterial species were identified. Spa-typing and antimicrobial susceptibility testing were performed from Staphylococcus aureus isolates. Among the total bacterial isolates from ophthalmological equipment (lenses: 51 of 78, slit lamps: 43 of 88, ophthalmoscopy helmets: 3 of 8, ultrasound probes: 2 of 7), coagulase-negative staphylococci (CNS) was most frequently found, followed by Micrococcus spp. (lenses vs. slit lamps: P lenses (76%) was significantly higher than that of slit lamps (54%) (P lenses from residents vs. from consultants (78% vs. 35%, P = 0.01). A total of seven different spa-types of S. aureus were isolated. No correlation was found between S. aureus contamination of different ophthalmological equipments (Spearman's rank correlation coefficient, ρ = 0.04, P = 0.75). Methicillin-resistant S. aureus was not detected. Bacterial species of the normal skin flora were isolated from the ophthalmological equipment. The bacterial contamination of the portable devices was significantly higher than that of slit lamps. Therefore, proper hygiene of the mobile instruments should be monitored in order to prevent transmission of bacteria in residents and consultants.

  5. Investigating antennas as ignition aid for automotive HID lamps

    International Nuclear Information System (INIS)

    Bergner, A; Engelhardt, M; Bienholz, S; Ruhrmann, C; Hoebing, T; Groeger, S; Mentel, J; Awakowicz, P

    2015-01-01

    This paper considers the ignition of mercury-free high-intensity discharge (HID) lamps for car headlights. Due to safety reasons, these lamps need to have a fast run-up phase which is ensured, amongst other things, by a high Xe pressure of roughly 15 bar (cold) in the discharge vessel. The high Xe pressure causes an increased ignition voltage compared with former mercury-containing automotive HID lamps or low-pressure lamps used for general-lighting applications. The increase in ignition voltage can be limited if the electric field in front of the electrodes is raised by an uplifting of the electrical conductivity along the outer wall of the inner bulb either by a conductive layer on its surface or by a dielectric barrier discharge (DBD) within the outer bulb. This paper considers on the one hand conventional antennas deposited by physical vapour deposition (PVD) and on the other hand a combination of these antennas with a DBD within the outer-bulb operated in 100 mbar Ar as ignition aids. In both cases the antenna potential and antenna width are varied. Additionally, the effects of antenna thickness and antenna material are investigated. The ignition voltage, ignition current and light emission during ignition are measured on a nanosecond timescale. Furthermore, for the very first time, the ignition process is recorded in four consecutive intensified charge-coupled device images using a high-speed camera system with a time resolution in the range of nanoseconds. It was found that antennas strongly reduce the ignition voltage of automotive HID lamps. Active antennas reduce the ignition voltage significantly more than passive antennas, proportional to the conductance of the antenna. Combining conventional antennas with an outer-bulb discharge reduces the ignition voltage from 19 kV without any ignition aid to the intrinsic ignition voltage of the lamp below 10 kV, in the best case. (paper)

  6. TELEGRAPHS TO INCANDESCENT LAMPS: A SEQUENTIAL PROCESS OF INNOVATION

    Directory of Open Access Journals (Sweden)

    Laurence J. Malone

    2000-01-01

    Full Text Available This paper outlines a sequential process of technological innovation in the emergence of the electrical industry in the United States from 1830 to 1880. Successive inventions that realize the commercial possibilities of electricity provided the foundation for an industry where technical knowledge, invention and diffusion were ultimately consolidated within the managerial structure of new firms. The genesis of the industry is traced, sequentially, through the development of the telegraph, arc light and incandescent lamp. Exploring the origins of the telegraph and incandescent lamp reveals a process where a series of inventions and firms result from successful efforts touse scientific principles to create new commodities and markets.

  7. Very high efficacy electrodeless high intensity discharge lamps

    Science.gov (United States)

    Johnson, Peter D.

    1987-01-01

    An electrodeless arc lamp comprises an outer jacket hermetically sealing and thermally protecting an arc tube inside which has an upwardly convex bottom center section. The absence of chemically reactive electrode material makes it possible to use metal halides other than iodides. The tube contains chlorides, bromides or a mixture thereof of scandium and sodium in a nearly equimolar relationship in addition to mercury and an inert gas. Good color balance can be obtained at reduced reservoir temperature and with less power loss. Reduction in wall temperature makes it possible to attain longer lamp life.

  8. Inventing around Edison’s Incandescent Lamp Patent

    DEFF Research Database (Denmark)

    Howells, John; Katznelson, Ron D.

    ’s ‘898 patent. Third, by analysis of forward citation to these patents we show that regardless of these inventions’ commercial viability in the incandescent lamp market, some became important prior art for new technological fields and some laid the groundwork for the later successful substitute...... for Edison’s carbon filament. Fourthly, we show that the recent view that Edison’s patent gave the patent holder General Electric (GE) a dominant position in the incandescent lamp market is incorrect: we show that besides commercially-successful invention around the claims of this patent, data for GE...

  9. Inventing around Edison’s incandescent lamp patent

    DEFF Research Database (Denmark)

    Howells, John; Ron D, Katznelson

    ’s ‘898 patent. Third, by analysis of forward citation to these patents we show that regardless of these inventions’ commercial viability in the incandescent lamp market, some became important prior art for new technological fields and some laid the groundwork for the later successful substitute...... for Edison’s carbon filament. Fourthly, we show that the recent view that Edison’s patent gave the patent holder General Electric (GE) a dominant position in the incandescent lamp market is incorrect: we show that besides commercially-successful invention around the claims of this patent, data for GE...

  10. Physical aspects of mercury-free high pressure discharge lamps

    International Nuclear Information System (INIS)

    Born, M.

    2002-01-01

    This paper gives a summary of recent results about the replacement of mercury in high pressure discharge lamps by metallic zinc. Actually, this topic is of high relevance for the lighting industry due to the need of more environmentally friendly products. The work presented here is supported by the German government under contract no. 13N8072. Pure zinc/argon discharges as well as lamps including zinc or mercury and metal halide additives are investigated. Experimental data are compared with model calculations of the energy balance involving the transport of heat and radiation. Since the excitation energies of relevant zinc transistions are lower than for mercury, axis temperatures of pure zinc lamps are about 300 K below the value of mercury arcs. In addition, the thermal conductivity of zinc including the contribution of radiation diffusion is larger than compared to mercury. From lamp voltage measurements it is found that the cross section for elastical electron scattering by zinc atoms is about the same as for mercury. When adding metal halides to a pure zinc discharge with argon as a starting gas, i.e. NaI, TlI, DyI3, axis temperatures decrease to about 5100 K due to strong radiation cooling. In order to obtain sufficiently large lamp voltages, wall temperatures of more than 1300 K are adjusted by means of polycrystalline aluminaoxide (Al2O3) as a wall material. Electrical field strenghts of 6.0 V/mm and 8.6 V/mm are measured for metal halide lamps containing zinc or mercury, respectively. The light technical data of the discharges are very close, since mercury and zinc do not contribute significantly to the radiation in the visible range. Efficacies of up to 93 lm/W and 100 lm/W are found in metal halide lamps with zinc and mercury, respectively. Consequently, zinc turns out to be an attractive replacer for mercury in this type of lamp not only from an environmental point of view

  11. Comparative Investigation of Tungsten Fibre Nets Reinforced Tungsten Composite Fabricated by Three Different Methods

    Directory of Open Access Journals (Sweden)

    Linhui Zhang

    2017-07-01

    Full Text Available Tungsten fibre nets reinforced tungsten composites (Wf/W containing four net layers were fabricated by spark plasma sintering (SPS, hot pressing (HP and cold rolling after HP (HPCR, with the weight fraction of fibres being 17.4%, 10.5% and 10.5%, respectively. The relative density of the HPCRed samples is the highest (99.8% while that of the HPed composites is the lowest (95.1%. Optical and scanning electron microscopy and electron back scattering diffraction were exploited to characterize the microstructure, while tensile and hardness tests were used to evaluate the mechanical properties of the samples. It was found that partial recrystallization of fibres occurred after the sintering at 1800 °C. The SPSed and HPed Wf/W composites begin to exhibit plastic deformation at 600 °C with tensile strength (TS of 536 and 425 MPa and total elongation at break (TE of 11.6% and 23.0%, respectively, while the HPCRed Wf/W composites exhibit plastic deformation at around 400 °C. The TS and TE of the HPCRed Wf/W composites at 400 °C are 784 MPa and 8.4%, respectively. The enhanced mechanical performance of the Wf/W composites over the pure tungsten can be attributed to the necking, cracking, and debonding of the tungsten fibres.

  12. Tritium decay helium-3 effects in tungsten

    Directory of Open Access Journals (Sweden)

    M. Shimada

    2017-08-01

    Full Text Available Tritium (T implanted by plasmas diffuses into bulk material, especially rapidly at elevated temperatures, and becomes trapped in neutron radiation-induced defects in materials that act as trapping sites for the tritium. The trapped tritium atoms will decay to produce helium-3 (3He atoms at a half-life of 12.3 years. 3He has a large cross section for absorbing thermal neutrons, which after absorbing a neutron produces hydrogen (H and tritium ions with a combined kinetic energy of 0.76 MeV through the 3He(n,HT nuclear reaction. The purpose of this paper is to quantify the 3He produced in tungsten by tritium decay compared to the neutron-induced helium-4 (4He produced in tungsten. This is important given the fact that helium in materials not only creates microstructural damage in the bulk of the material but alters surface morphology of the material effecting plasma-surface interaction process (e.g. material evolution, erosion and tritium behavior of plasma-facing component materials. Effects of tritium decay 3He in tungsten are investigated here with a simple model that predicts quantity of 3He produced in a fusion DEMO FW based on a neutron energy spectrum found in literature. This study reveals that: (1 helium-3 concentration was equilibrated to ∼6% of initial/trapped tritium concentration, (2 tritium concentration remained approximately constant (94% of initial tritium concentration, and (3 displacement damage from 3He(n,HT nuclear reaction became >1 dpa/year in DEMO FW.

  13. Behavior of tungsten carbide in water stabilized plasma

    Czech Academy of Sciences Publication Activity Database

    Brožek, Vlastimil; Matějíček, Jiří; Neufuss, Karel

    2007-01-01

    Roč. 7, č. 4 (2007), s. 213-220 ISSN 1335-8987 R&D Projects: GA ČR(CZ) GA104/05/0540 Institutional research plan: CEZ:AV0Z20430508 Keywords : water stabilized plasma * tungsten carbide * tungsten hemicarbide * decarburization Subject RIV: BL - Plasma and Gas Discharge Physics

  14. Hydrogen permeation properties of plasma-sprayed tungsten

    International Nuclear Information System (INIS)

    Anderl, R.A.; Pawelko, R.J.; Hankins, M.R.; Longhurst, G.R.; Neiser, R.A.

    1994-01-01

    Tungsten has been proposed as a plasma-facing component material for advanced fusion facilities. This paper reports on laboratory-scale studies that were done to assess the hydrogen permeation properties of plasma-sprayed tungsten for such applications. The work entailed deuterium permeation measurements for plasma-sprayed (PS) tungsten coatings, sputter-deposited (SP) tungsten coatings, and steel substrate material using a mass-analyzed, 3 keV D + 3 ion beam with fluxes of similar 6.5x10 19 D/m 2 s. Extensive characterization analyses for the plasma-sprayed tungsten coatings were made using Auger spectrometry and scanning electron microscopy (SEM). Observed permeation rates through composite PS-tungsten/steel specimens were several orders of magnitude below the permeation levels observed for SP-tungsten/steel composite specimens and pure steel specimens. Characterization analyses indicated that the plasma-sprayed tungsten coating had a nonhomogeneous microstructure that consisted of splats with columnar solidification, partially-melted particles with grain boundaries, and void regions. Reduced permeation levels can be attributed to the complex microstructure and a substantial surface-connected porosity. ((orig.))

  15. Hydrogen permeation properties of plasma-sprayed tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Anderl, R.A. (Idaho National Engineering Lab., EG and G Idaho Inc., Idaho Falls, ID (United States)); Pawelko, R.J. (Idaho National Engineering Lab., EG and G Idaho Inc., Idaho Falls, ID (United States)); Hankins, M.R. (Idaho National Engineering Lab., EG and G Idaho Inc., Idaho Falls, ID (United States)); Longhurst, G.R. (Idaho National Engineering Lab., EG and G Idaho Inc., Idaho Falls, ID (United States)); Neiser, R.A. (Sandia National Laboratories, Albuquerque, NM 87185 (United States))

    1994-09-01

    Tungsten has been proposed as a plasma-facing component material for advanced fusion facilities. This paper reports on laboratory-scale studies that were done to assess the hydrogen permeation properties of plasma-sprayed tungsten for such applications. The work entailed deuterium permeation measurements for plasma-sprayed (PS) tungsten coatings, sputter-deposited (SP) tungsten coatings, and steel substrate material using a mass-analyzed, 3 keV D[sup +][sub 3] ion beam with fluxes of similar 6.5x10[sup 19] D/m[sup 2] s. Extensive characterization analyses for the plasma-sprayed tungsten coatings were made using Auger spectrometry and scanning electron microscopy (SEM). Observed permeation rates through composite PS-tungsten/steel specimens were several orders of magnitude below the permeation levels observed for SP-tungsten/steel composite specimens and pure steel specimens. Characterization analyses indicated that the plasma-sprayed tungsten coating had a nonhomogeneous microstructure that consisted of splats with columnar solidification, partially-melted particles with grain boundaries, and void regions. Reduced permeation levels can be attributed to the complex microstructure and a substantial surface-connected porosity. ((orig.))

  16. Hydrogen permeation properties of plasma-sprayed tungsten*1

    Science.gov (United States)

    Anderl, R. A.; Pawelko, R. J.; Hankins, M. R.; Longhurst, G. R.; Neiser, R. A.

    1994-09-01

    Tungsten has been proposed as a plasma-facing component material for advanced fusion facilities. This paper reports on laboratory-scale studies that were done to assess the hydrogen permeation properties of plasma-sprayed tungsten for such applications. The work entailed deuterium permeation measurements for plasma-sprayed (PS) tungsten coatings, sputter-deposited (SP) tungsten coatings, and steel substrate material using a mass-analyzed, 3 keV D 3+ ion beam with fluxes of ˜6.5 × 10 19 D/m 2 s. Extensive characterization analyses for the plasma-sprayed tungsten coatings were made using Auger spectrometry and scanning electron microscopy (SEM). Observed permeation rates through composite PS-tungsten/steel specimens were several orders of magnitude below the permeation levels observed for SP-tungsten/steel composite specimens and pure steel specimens. Characterization analyses indicated that the plasma-sprayed tungsten coating had a nonhomogeneous microstructure that consisted of splats with columnar solidification, partially-melted particles with grain boundaries, and void regions. Reduced permeation levels can be attributed to the complex microstructure and a substantial surface-connected porosity.

  17. Charge-density-wave instabilities expected in monophosphate tungsten bronzes

    International Nuclear Information System (INIS)

    Canadell, E.; Whangbo, M.

    1991-01-01

    On the basis of tight-binding band calculations, we examined the electronic structures of the tungsten oxide layers found in the monophosphate tungsten bronze (MPTB) phases. The Fermi surfaces of these MPTB phases consist of five well-nested one- and two-dimensional pieces. We calculated the nesting vectors of these Fermi surfaces and discussed the expected charge-density-wave instabilities

  18. Vapor-transport of tungsten and its geologic application

    Energy Technology Data Exchange (ETDEWEB)

    Shibue, Y [Hyogo Univ. of Teacher Education, Hyogo (Japan)

    1988-11-10

    The volatility of tungsten in a hydrous system at elevated temperatures and pressures was examined, and a tentative model for the enrichment of tungsten in hydrothermal solutions for the deposits related to granitic activities was proposed. To produce vapor-saturated solution, 17 or 15ml of 20wt% NaCl solution was introduced into an autoclave. Ca(OH){sub 2} for tungsten and H{sub 2}WO{sub 4} for base metals were used as vapor-captures, and run products were identified by X-ray powder diffractometry. The results suggested that the ratio of tungsten to base metals was higher in a vapor phase than in a liquid phase, and more enrichment of tungsten in the vapor phase occurred at higher temperature and pressure under the coexistence of the vapor and liquid phase. The tentative model emphasizing the vapor-transport of tungsten could explain the presence of tungsten deposits without large mineralization of base metals. Geological schematic model for the generation of the hydrothermal solution enriched in tungsten compared with base metals was illustrated based on above mentioned results. 21 refs., 3 figs.

  19. Chromium and molybdenum diffusion in tungsten single crystals

    International Nuclear Information System (INIS)

    Klotsman, S.M.; Koloskov, V.M.; Osetrov, S.V.; Polikarpova, I.P.; Tatarinova, G.N.; Timofeev, A.N.

    1989-01-01

    Consideration is given to results of measuring temperature dependences of diffusion coefficients of homovalent impurities of chromium and molybdenum in tungsten single crystals. It is concluded that the difference of activation energies of selfdiffusion and impurity diffusion in the system 'tungsten-homovalent impurity' is conditioned by interaction of screened potentials of impurity and vacancy with Lazarus-Le Claire model

  20. Stress in tungsten carbide-diamond like carbon multilayer coatings

    NARCIS (Netherlands)

    Pujada, B.R.; Tichelaar, F.D.; Janssen, G.C.A.M.

    2007-01-01

    Tungsten carbide-diamond like carbon (WC-DLC) multilayer coatings have been prepared by sputter deposition from a tungsten-carbide target and periodic switching on and off of the reactive acetylene gas flow. The stress in the resulting WC-DLC multilayers has been studied by substrate curvature.

  1. Processing of tungsten scrap into powders by electroerosion disintegration

    International Nuclear Information System (INIS)

    Fominskii, L.P.; Leuchuk, M.V.; Myuller, A.S.; Tarabrina, V.P.

    1985-01-01

    Utilization of tungsten and tungsten alloy swarf and other waste and also of rejected and worn parts is a matter of great importance in view of the shortage of this metal. The authors examine the electroerosion (EE) disintegration of tungsten in water as a means of utilizing swarf and other loose waste. Unlike chemical methods, EE disintegration ensures ecological purity since there are no effluent waters or toxic discharges. Swarf and trimmings of rods of diameters up to 20 mm obtained after the lathe-turning of tungsten bars sintered from PVN and PVV tungsten powders were disintegrated in water at room temperature between tungsten electrodes. The phase composition of the powder was studied using FeK /SUB alpha/ radiation, by x-ray diffraction methods in a DRON-2 diffractometer with a graphite monochromator on the secondary beam. When tungsten is heated to boiling during EE disintegration, the impurities present in it can evaporate and burn out. Thus, tungsten powder produced by EE disintegration can be purer than the starting metal

  2. Thermal Spray Coating of Tungsten for Tokamak Device

    International Nuclear Information System (INIS)

    Jiang Xianliang; Gitzhofer, F; Boulos, M I

    2006-01-01

    Thermal spray, such as direct current (d.c.) plasma spray or radio frequency induced plasma spray, was used to deposit tungsten coatings on the copper electrodes of a tokamak device. The tungsten coating on the outer surface of one copper electrode was formed directly through d.c. plasma spraying of fine tungsten powder. The tungsten coating/lining on the inner surface of another copper electrode could be formed indirectly through induced plasma spraying of coarse tungsten powder. Scanning electron microscopy (SEM) was used to examine the cross section and the interface of the tungsten coating. Energy Dispersive Analysis of X-ray (EDAX) was used to analyze the metallic elements attached to a separated interface. The influence of the particle size of the tungsten powder on the density, cracking behavior and adhesion of the coating is discussed. It is found that the coarse tungsten powder with the particle size of 45 ∼ 75 μm can be melted and the coating can be formed only by using induced plasma. The coating deposited from the coarse powder has much higher cohesive strength, adhesive strength and crack resistance than the coating made from the fine powder with a particle size of 5 μm

  3. Tungsten Deposition on Graphite using Plasma Enhanced Chemical Vapour Deposition

    International Nuclear Information System (INIS)

    Sharma, Uttam; Chauhan, Sachin S; Sharma, Jayshree; Sanyasi, A K; Ghosh, J; Choudhary, K K; Ghosh, S K

    2016-01-01

    The tokamak concept is the frontrunner for achieving controlled thermonuclear reaction on earth, an environment friendly way to solve future energy crisis. Although much progress has been made in controlling the heated fusion plasmas (temperature ∼ 150 million degrees) in tokamaks, technological issues related to plasma wall interaction topic still need focused attention. In future, reactor grade tokamak operational scenarios, the reactor wall and target plates are expected to experience a heat load of 10 MW/m 2 and even more during the unfortunate events of ELM's and disruptions. Tungsten remains a suitable choice for the wall and target plates. It can withstand high temperatures, its ductile to brittle temperature is fairly low and it has low sputtering yield and low fuel retention capabilities. However, it is difficult to machine tungsten and hence usages of tungsten coated surfaces are mostly desirable. To produce tungsten coated graphite tiles for the above-mentioned purpose, a coating reactor has been designed, developed and made operational at the SVITS, Indore. Tungsten coating on graphite has been attempted and successfully carried out by using radio frequency induced plasma enhanced chemical vapour deposition (rf -PECVD) for the first time in India. Tungsten hexa-fluoride has been used as a pre-cursor gas. Energy Dispersive X-ray spectroscopy (EDS) clearly showed the presence of tungsten coating on the graphite samples. This paper presents the details of successful operation and achievement of tungsten coating in the reactor at SVITS. (paper)

  4. Fracture peculiarities in ceramic tungsten at different temperatures in vacuum

    International Nuclear Information System (INIS)

    Uskov, E.I.; Babak, A.V.

    1981-01-01

    Stress-strain diagrams and results of metallographic analyses are presented for the ceramic tungsten samples tested for fracture toughness under conditions of eccentric tension at different temperatures (20...1600 deg C) in vacuum. The tungsten fracture is shown to be of brittle nature within the whole temperature range studied, but the fracture process has its own peculiarities at different test temperatures

  5. LAVA: An Open-Source Approach To Designing LAMP (Loop-Mediated Isothermal Amplification DNA Signatures

    Directory of Open Access Journals (Sweden)

    Gardner Shea N

    2011-06-01

    Full Text Available Abstract Background We developed an extendable open-source Loop-mediated isothermal AMPlification (LAMP signature design program called LAVA (LAMP Assay Versatile Analysis. LAVA was created in response to limitations of existing LAMP signature programs. Results LAVA identifies combinations of six primer regions for basic LAMP signatures, or combinations of eight primer regions for LAMP signatures with loop primers, which can be used as LAMP signatures. The identified primers are conserved among target organism sequences. Primer combinations are optimized based on lengths, melting temperatures, and spacing among primer sites. We compare LAMP signature candidates for Staphylococcus aureus created both by LAVA and by PrimerExplorer. We also include signatures from a sample run targeting all strains of Mycobacterium tuberculosis. Conclusions We have designed and demonstrated new software for identifying signature candidates appropriate for LAMP assays. The software is available for download at http://lava-dna.googlecode.com/.

  6. Participation of the Halogens in Photochemical Reactions in Natural and Treated Waters

    Directory of Open Access Journals (Sweden)

    Yi Yang

    2017-10-01

    Full Text Available Halide ions are ubiquitous in natural waters and wastewaters. Halogens play an important and complex role in environmental photochemical processes and in reactions taking place during photochemical water treatment. While inert to solar wavelengths, halides can be converted into radical and non-radical reactive halogen species (RHS by sensitized photolysis and by reactions with secondary reactive oxygen species (ROS produced through sunlight-initiated reactions in water and atmospheric aerosols, such as hydroxyl radical, ozone, and nitrate radical. In photochemical advanced oxidation processes for water treatment, RHS can be generated by UV photolysis and by reactions of halides with hydroxyl radicals, sulfate radicals, ozone, and other ROS. RHS are reactive toward organic compounds, and some reactions lead to incorporation of halogen into byproducts. Recent studies indicate that halides, or the RHS derived from them, affect the concentrations of photogenerated reactive oxygen species (ROS and other reactive species; influence the photobleaching of dissolved natural organic matter (DOM; alter the rates and products of pollutant transformations; lead to covalent incorporation of halogen into small natural molecules, DOM, and pollutants; and give rise to certain halogen oxides of concern as water contaminants. The complex and colorful chemistry of halogen in waters will be summarized in detail and the implications of this chemistry for global biogeochemical cycling of halogen, contaminant fate in natural waters, and water purification technologies will be discussed.

  7. Influence of Halogen Substituents on the Catalytic Oxidation of 2,4,6-Halogenated Phenols by Fe(III-Tetrakis(p-hydroxyphenyl porphyrins and Potassium Monopersulfate

    Directory of Open Access Journals (Sweden)

    Seiya Nagao

    2011-12-01

    Full Text Available The influence of halogen substituents on the catalytic oxidation of 2,4,6-trihalogenated phenols (TrXPs by iron(III-porphyrin/KHSO5 catalytic systems was investigated. Iron(III-5,10,15,20-tetrakis(p-hydroxyphenylporphyrin (FeTHP and its supported variants were employed, where the supported catalysts were synthesized by introducing FeTHP into hydroquinone-derived humic acids via formaldehyde poly-condensation. F (TrFP, Cl (TrCP, Br (TrBP and I (TrIP were examined as halogen substituents for TrXPs. Although the supported catalysts significantly enhanced the degradation and dehalogenation of TrFP and TrCP, the oxidation of TrBP and TrIP was not enhanced, compared to the FeTHP catalytic system. These results indicate that the degree of oxidation of TrXPs is strongly dependent on the types of halogen substituent. The order of dehalogenation levels for halogen substituents in TrXPs was F > Cl > Br > I, consistent with their order of electronegativity. The electronegativity of a halogen substituent affects the nucleophilicity of the carbon to which it is attached. The levels of oxidation products in the reaction mixtures were analyzed by GC/MS after extraction with n-hexane. The most abundant dimer product from TrFP via 2,6-difluoroquinone is consistent with a scenario where TrXP, with a more electronegative halogen substituent, is readily oxidized, while less electronegative halogen substituents are oxidized less readily by iron(III-porphyrin/KHSO5 catalytic systems.

  8. Low temperature photoresponse of monolayer tungsten disulphide

    Directory of Open Access Journals (Sweden)

    Bingchen Cao

    2014-11-01

    Full Text Available High photoresponse can be achieved in monolayers of transition metal dichalcogenides. However, the response times are inconveniently limited by defects. Here, we report low temperature photoresponse of monolayer tungsten disulphide prepared by exfoliation and chemical vapour deposition (CVD method. The exfoliated device exhibits n-type behaviour; while the CVD device exhibits intrinsic behaviour. In off state, the CVD device has four times larger ratio of photoresponse for laser on/off and photoresponse decay–rise times are 0.1 s (limited by our setup, while the exfoliated device has few seconds. These findings are discussed in terms of charge trapping and localization.

  9. Spectrophotometric determination of tungsten with salicylic acid

    International Nuclear Information System (INIS)

    Goncalves, Z.C.

    1976-10-01

    The method comprises the complexation of tungsten with salicylic acid in concentrated sulphuric acid yielding a reddish color. The maximum absorbance of the complex lies within 410-420 nm, 420 nm being the chosen wavelenght. The final concentration of salicylic acid is 0,080 g/ml. The sensitivity is 0,13 μg W(%T) -1 ml -1 . Titanium, vanadium, rhenium, niobium and molybdenum interferes and must be separated, titanium being the strongest interferent. The separation procedures, advantages of the process, stoichiometric relations and equilibrium constant are discussed. (Author) [pt

  10. Titanium tungsten coatings for bioelectrochemical applications

    DEFF Research Database (Denmark)

    Wierzbicki, Rafal; Amato, Letizia; Łopacińska, J.

    2011-01-01

    This paper presents an assessment of titanium tungsten (TiW) coatings and their applicability as components of biosensing systems. The focus is put on using TiW as an electromechanical interface layer between carbon nanotube (CNT) forests and silicon nanograss (SiNG) cell scaffolds. Cytotoxicity......, applicability to plasma-enhanced chemical vapor deposition (PECVD) of aligned CNT forests, and electrochemical performance are investigated. Experiments include culturing of NIH3T3 mouse embryonic fibroblast cells on TiW coated silicon scaffolds, CNT growth on TiW substrates with nickel catalyst, and cyclic...

  11. High Heat Load Properties of Ultra Fine Grain Tungsten

    International Nuclear Information System (INIS)

    Zhou, Z.; Du, J.; Ge, C.; Linke, J.; Pintsuk, G.; Song, S.X.

    2007-01-01

    Full text of publication follows: Tungsten is increasingly considered as a promising candidate armour materials facing the plasma in tokamaks for medium to high heat flux components (EAST, ASDEX, ITER). Fabrication tungsten with ultra fine grain size is considered as an effective way to ameliorate some disadvantages of tungsten, such as its brittleness at room temperature. But the research data on the performance of ultra fine grain tungsten is still very limit. In this work, high heat load properties of pure ultra-fine grain tungsten have been studied. The ultra fine grain tungsten samples with average grain size of 0.2 μm, 1 μm and 3 μm were fabricated by resistance sintering under ultra high pressure. The annealing experiments for the investigation of the material resistance against grain growth have been done by annealing samples in a vacuum furnace at different temperature holding for 2 hours respectively. It is found that recrystallization and grain growth occur at heating temperature of 1250 deg. c. The finer the initial grain sizes of tungsten, the smaller its grain growth grain. The effects of transient high thermal loads (off normal events like disruptions) on tungsten surface morphology have been performed in electron beam test facility JUDITH. The thermal loads tests have been carried out with 4 ms pulses at different power density of 0.22, 0.33, 0.44, 0.55 and 0.88 GW/m 2 respectively. Horizontal cracks formed for all tungsten samples at 0.44 GW/m 2 . Particle erosions occurred for tungsten with 3 μm size at 0.33 GW/m 2 and for tungsten with 0.2 and 1 μm size at 0.55 GW/m 2 . The weight loss of tungsten with 0.2, 1 and 3 μm size are 2,0.1,0.6 mg respectively at 0.88 GW/m 2 . The effects of a large number of very short transient repetitive thermal loads (ELM-like) on tungsten surface morphology also have been performed by using a fundamental wave of a YAG laser. It is found that tungsten with 0.2 μm size has the best performance. (authors)

  12. High Heat Load Properties of Ultra Fine Grain Tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Z.; Du, J.; Ge, C. [Lab. of Special Ceramic and P/M, University of Science and Technology, 100083 Beijing (China); Linke, J.; Pintsuk, G. [FZJ-Forschungszentrum Juelich GmbH, Association Euratom-FZJ, Institut fur Plasmaphysik, Postfach 1913, D-52425 Juelich (Germany); Song, S.X. [Research Center on Fusion Materials (RCFM), University of Science and Technology Beijing (USTB), 100083 Beijing (China)

    2007-07-01

    Full text of publication follows: Tungsten is increasingly considered as a promising candidate armour materials facing the plasma in tokamaks for medium to high heat flux components (EAST, ASDEX, ITER). Fabrication tungsten with ultra fine grain size is considered as an effective way to ameliorate some disadvantages of tungsten, such as its brittleness at room temperature. But the research data on the performance of ultra fine grain tungsten is still very limit. In this work, high heat load properties of pure ultra-fine grain tungsten have been studied. The ultra fine grain tungsten samples with average grain size of 0.2 {mu}m, 1 {mu}m and 3 {mu}m were fabricated by resistance sintering under ultra high pressure. The annealing experiments for the investigation of the material resistance against grain growth have been done by annealing samples in a vacuum furnace at different temperature holding for 2 hours respectively. It is found that recrystallization and grain growth occur at heating temperature of 1250 deg. c. The finer the initial grain sizes of tungsten, the smaller its grain growth grain. The effects of transient high thermal loads (off normal events like disruptions) on tungsten surface morphology have been performed in electron beam test facility JUDITH. The thermal loads tests have been carried out with 4 ms pulses at different power density of 0.22, 0.33, 0.44, 0.55 and 0.88 GW/m{sup 2} respectively. Horizontal cracks formed for all tungsten samples at 0.44 GW/m{sup 2}. Particle erosions occurred for tungsten with 3 {mu}m size at 0.33 GW/m{sup 2} and for tungsten with 0.2 and 1 {mu}m size at 0.55 GW/m{sup 2}. The weight loss of tungsten with 0.2, 1 and 3 {mu}m size are 2,0.1,0.6 mg respectively at 0.88 GW/m{sup 2}. The effects of a large number of very short transient repetitive thermal loads (ELM-like) on tungsten surface morphology also have been performed by using a fundamental wave of a YAG laser. It is found that tungsten with 0.2 {mu}m size has

  13. The unique role of halogen substituents in the design of modern agrochemicals.

    Science.gov (United States)

    Jeschke, Peter

    2010-01-01

    The past 30 years have witnessed a period of significant expansion in the use of halogenated compounds in the field of agrochemical research and development. The introduction of halogens into active ingredients has become an important concept in the quest for a modern agrochemical with optimal efficacy, environmental safety, user friendliness and economic viability. Outstanding progress has been made, especially in synthetic methods for particular halogen-substituted key intermediates that were previously prohibitively expensive. Interestingly, there has been a rise in the number of commercial products containing 'mixed' halogens, e.g. one or more fluorine, chlorine, bromine or iodine atoms in addition to one or more further halogen atoms. Extrapolation of the current trend indicates that a definite growth is to be expected in fluorine-substituted agrochemicals throughout the twenty-first century. A number of these recently developed agrochemical candidates containing halogen substituents represent novel classes of chemical compounds with new modes of action. However, the complex structure-activity relationships associated with biologically active molecules mean that the introduction of halogens can lead to either an increase or a decrease in the efficacy of a compound, depending on its changed mode of action, physicochemical properties, target interaction or metabolic susceptibility and transformation. In spite of modern design concepts, it is still difficult to predict the sites in a molecule at which halogen substitution will result in optimal desired effects. This review describes comprehensively the successful utilisation of halogens and their unique role in the design of modern agrochemicals, exemplified by various commercial products from Bayer CropScience coming from different agrochemical areas.

  14. Adhesion of non-selective CVD tungsten to silicon dioxide

    International Nuclear Information System (INIS)

    Woodruff, D.W.; Wilson, R.H.; Sanchez-Martinez, R.A.

    1986-01-01

    Adhesion of non-selective, CVD tungsten to silicon dioxide is a critical issue in the development of tungsten as a metalization for VLSI circuitry. Without special adhesion promoters, tungsten deposited from WF/sub 6/ and H/sub 2/ has typically failed a standard tape test over all types of silicon oxides and nitrides. The reasons for failure of thin films, and CVD tungsten in particular are explored along with standard techniques for improving adhesion of thin films. Experiments are reported which include a number of sputtered metals as adhesion promoters, as well as chemical and plasma treatment of the oxide surface. Sputtered molybdenum is clearly the superior adhesion promoting layer from these tests. Traditional adhesion layers such as chromium or titanium failed as adhesion layers for CVD tungsten possibly due to chemical reactions between the WF/sub 6/ and Cr or Ti

  15. Corrosion of high-density sintered tungsten alloys. Part 2

    International Nuclear Information System (INIS)

    Batten, J.J.; Moore, B.T.

    1988-12-01

    The behaviour of four high-density sintered tungsten alloys has been evluated and compared with that of pure tungsten. Rates of corrosion during the cyclic humidity and the salt mist tests were ascertained from weight loss measurements. Insight into the corrosion mechanism was gained from the nature of the corrosion products and an examination of the corroded surfaces. In the tests, the alloy 95% W, 2.5% Ni, 1.5% Fe was the most corrosion resistant. The data showed that copper as an alloying element accelerates corrosion of tungsten alloys. Both attack on the tungsten particles and the binder phase were observed together with tungsten grain loss. 6 refs., 3 tabs.,

  16. New doped tungsten cathodes. Applications to power grid tubes

    International Nuclear Information System (INIS)

    Cachard, J. de; Cadoret, K; Martinez, L.; Veillet, D.; Millot, F.

    2001-01-01

    Thermionic emission behavior of tungsten/tungsten carbide modified with rare earth (La, Ce, Y) oxides is examined on account of suitability to deliver important current densities in a thermo-emissive set up and for long lifetime. Work functions of potential cathodes have been determined from Richardson plots for La 2 O 3 doped tungsten and for tungsten covered with variable compositions rare earth tungstates. The role of platinum layers covering the cathode was also examined. Given all cathodes containing mainly lanthanum oxides were good emitters, emphasis was put on service lifetime. Comparisons of lifetime in tungsten doped with rare earth oxides and with rare earth tungstates show that microstructure of the operating cathodes may play the major role in the research of very long lifetime cathodes. Based on these results, tests still running show lifetime compatible with power grid tubes applications. (author)

  17. Formation of carbon containing layers on tungsten test limiters

    International Nuclear Information System (INIS)

    Rubel, M.; Philipps, V.; Huber, A.; Tanabe, T.

    1999-01-01

    Tungsten test limiters of mushroom shape and a plasma facing area of approximately 100 cm 2 were exposed at the TEXTOR-94 tokamak to a number of deuterium fuelled discharges performed under various operation conditions. Two types of limiters were tested: a sole tungsten limiter and a twin limiter consisting of two halves, one made of tungsten and another of graphite. The exposed surfaces were examined with ion beam analysis methods and laser profilometry. The formation of some deposition zones was observed near the edges of the limiters. The deuterium-to-carbon concentration ratio was in the range from 0.04 to 0.11 and around 0.2 for the sole tungsten and the twin limiter, respectively. Significant amounts of the co-deposited tungsten and silicon atoms were found on the graphite part of the twin limiter indicating the formation of mixed W-C-Si compounds. (orig.)

  18. The gate oxide integrity of CVD tungsten polycide

    International Nuclear Information System (INIS)

    Wu, N.W.; Su, W.D.; Chang, S.W.; Tseng, M.F.

    1988-01-01

    CVD tungsten polycide has been demonstrated as a good gate material in recent very large scale integration (VLSI) technology. CVD tungsten silicide offers advantages of low resistivity, high temperature stability and good step coverage. On the other hand, the polysilicon underlayer preserves most characteristics of the polysilicon gate and acts as a stress buffer layer to absorb part of the thermal stress origin from the large thermal expansion coefficient of tungsten silicide. Nevertheless, the gate oxide of CVD tungsten polycide is less stable or reliable than that of polysilicon gate. In this paper, the gate oxide integrity of CVD tungsten polycide with various thickness combinations and different thermal processes have been analyzed by several electrical measurements including breakdown yield, breakdown fluence, room temperature TDDB, I-V characteristics, electron traps and interface state density

  19. Solvent extraction in analytical chemistry of tungsten (Review)

    International Nuclear Information System (INIS)

    Ivanov, V.M.; Busev, A.I.; Sokolova, T.A.

    1975-01-01

    The use of extraction for isolating and concentrating tungsten with subsequent determination by various methods is considered. For tungsten extractants of all types are employed: neutral, basic and acidic. Neutral extractants are used for isolating and concentrating tungsten, basic and acidic ones are employed, as a rule, for the isolation and subsequent determination of tungsten. This type of extractants is highly promising, since, selectively extracting tungsten, they allow its simultaneous determination. Neutral extractants are oxygen-containing solvents, TBP; basic extractants are aniline, pyridine, 1-naphthylamine, trialkylbenzylammoniumanitrate. As acidic reagents use is made of 8-oxyquinoline and its derivatives, oximes and hydroxamic acids, β-diketones, carbaminates. In the extraction radioactive isotope 185 W is employed

  20. Lysosome associated membrane proteins maintain pancreatic acinar cell homeostasis: LAMP-2 deficient mice develop pancreatitis.

    Science.gov (United States)

    Mareninova, Olga A; Sendler, Matthias; Malla, Sudarshan Ravi; Yakubov, Iskandar; French, Samuel W; Tokhtaeva, Elmira; Vagin, Olga; Oorschot, Viola; Lüllmann-Rauch, Renate; Blanz, Judith; Dawson, David; Klumperman, Judith; Lerch, Markus M; Mayerle, Julia; Gukovsky, Ilya; Gukovskaya, Anna S

    2015-11-01

    The pathogenic mechanism of pancreatitis is poorly understood. Recent evidence implicates defective autophagy in pancreatitis responses; however, the pathways mediating impaired autophagy in pancreas remain largely unknown. Here, we investigate the role of lysosome associated membrane proteins (LAMPs) in pancreatitis. We analyzed changes in LAMPs in experimental models and human pancreatitis, and the underlying mechanisms: LAMP de-glycosylation and degradation. LAMP cleavage by cathepsin B (CatB) was analyzed by mass spectrometry. We used mice deficient in LAMP-2 to assess its role in pancreatitis. Pancreatic levels of LAMP-1 and LAMP-2 greatly decrease across various pancreatitis models and in human disease. Pancreatitis does not trigger LAMPs' bulk de-glycosylation, but induces their degradation via CatB-mediated cleavage of LAMP molecule close to the boundary between luminal and transmembrane domains. LAMP-2 null mice spontaneously develop pancreatitis that begins with acinar cell vacuolization due to impaired autophagic flux, and progresses to severe pancreas damage characterized by trypsinogen activation, macrophage-driven inflammation, and acinar cell death. LAMP-2 deficiency causes a decrease in pancreatic digestive enzymes content, stimulates the basal and inhibits CCK-induced amylase secretion by acinar cells. The effects of LAMP-2 knockout and acute cerulein pancreatitis overlap, which corroborates the pathogenic role of LAMP decrease in experimental pancreatitis models. The results indicate a critical role for LAMPs, particularly LAMP-2, in maintaining pancreatic acinar cell homeostasis, and provide evidence that defective lysosomal function, resulting in impaired autophagy, leads to pancreatitis. Mice with LAMP-2 deficiency present a novel genetic model of human pancreatitis caused by lysosomal/autophagic dysfunction.

  1. Digital solar edge tracker for the Halogen Occultation Experiment

    Science.gov (United States)

    Mauldin, L. E., III; Moore, A. S.; Stump, C. W.; Mayo, L. S.

    1987-01-01

    The optical and electronic design of the Halogen Occultation Experiment (Haloe) elevation sun sensor is described. The Haloe instrument is a gas-correlation radiometer now being developed at NASA Langley for the Upper Atmosphere Research Satellite. The system uses a Galilean telescope to form a solar image on a linear silicon photodiode array. The array is a self-scanned monolithic CCD. The addresses of both solar edges imaged on the array are used by the control/pointing system to scan the Haloe science instantaneous field of view (IFOV) across the vertical solar diameter during instrument calibration and then to maintain the science IFOV 4 arcmin below the top edge during the science data occultation event. Vertical resolution of 16 arcsec and a radiometric dynamic range of 100 are achieved at the 700-nm operating wavelength. The design provides for loss of individual photodiode elements without loss of angular tracking capability.

  2. Microwave assisted pyrolysis of halogenated plastics recovered from waste computers.

    Science.gov (United States)

    Rosi, Luca; Bartoli, Mattia; Frediani, Marco

    2018-03-01

    Microwave Assisted Pyrolysis (MAP) of the plastic fraction of Waste from Electric and Electronic Equipment (WEEE) from end-life computers was run with different absorbers and set-ups in a multimode batch reactor. A large amount of various different liquid fractions (up to 76.6wt%) were formed together with a remarkable reduction of the solid residue (up to 14.2wt%). The liquid fractions were characterized using the following different techniques: FT-IR ATR, 1 H NMR and a quantitative GC-MS analysis. The liquid fractions showed low density and viscosity, together with a high concentration of useful chemicals such as styrene (up to 117.7mg/mL), xylenes (up to 25.6mg/mL for p-xylene) whereas halogenated compounds were absent or present in a very low amounts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Use of pyrrole black in zinc-halogen batteries

    Energy Technology Data Exchange (ETDEWEB)

    Mengoli, G.; Musiani, M.M.; Tomat, R.; Valcher, S.; Pletcher, D.

    1985-09-01

    The storage of Br/sub 2//Br/sup -/ and I/sub 2//I/sup -/ couples in a conducting polymer matrix, polypyrrole coated on a reticulated vitreous carbon disc, is described and the application of these positive electrodes in zinc-halogen model batteries is discussed. The cell based on the polypyrrole bromine adduct shows the higher open circuit voltage which, however, depends on the state of charge. Such cells self discharge thus limiting their usefulness. In the case of the iodine cell the self discharge is due to loss of iodine from the polymer to the bulk solution, but with the bromine cell the cause is oxidative bromination and depolymerization of the polypyrrole. 22 references, 6 figures, 2 tables.

  4. Retention of Halogenated Solutes on Stationary Phases Containing Heavy Atoms

    Directory of Open Access Journals (Sweden)

    Toshio Miwa

    2013-05-01

    Full Text Available To examine the effects of weak intermolecular interactions on solid-phase extraction (SPE and chromatographic separation, we synthesized some novel stationary phases with a heavy atom effect layer by immobilizing halogenated aromatic rings and hydroxyl groups onto the surface of a hydrophilic base polymer. Using SPE cartridges packed with the functionalized materials, we found that the heavy atom stationary phases could selectively retain halophenols in organic solvents, such as 1-propanol which blocks the hydrogen bonding, or acetonitrile which blocks the p-p interaction. The extraction efficiency of the materials toward the halophenols depended on the dipole moments of phenoxy groups present as functional groups. On the other hand, the extraction efficiency of solutes toward the functional group depended on their molar refractions, i.e., induced dipole moments. The retention of the solutes to the stationary phase ultimately depended on not only strong intermolecular interactions, but also the effects of weak interactions such as the dispersion force.

  5. Iron Coordination and Halogen-Bonding Assisted Iodosylbenzene Activation

    DEFF Research Database (Denmark)

    Wegeberg, Christina; Poulsen de Sousa, David; McKenzie, Christine

    catalytic mixtures using soluble terminal oxygen transfer agents. Isolation of a reactive iron-terminal oxidant adduct, an unique Fe(III)-OIPh complex, is facilitated by strong stabilizing supramolecular halogen-bonding. L3-edge XANES suggests +1.6 for the average oxidation state for the iodine atom3......The iron complex of the hexadentate ligand N,N,N'-tris(2-pyridylmethyl)ethylendiamine-N'-acetate (tpena) efficiently catalyzes selective oxidations of electron-rich olefins and sulfides by insoluble iodosylbenzene (PhIO). Surprisingly, these reactions are faster and more selective than homogenous...... in the iron(III)-coordinated PhIO. This represents a reduction of iodine relative to the original “hypervalent” (+3) PhIO. The equivalent of electron density must be removed from the {(tpena)Fe(III)O} moiety, however Mössbauer spectroscopy shows that the iron atom is not high valent....

  6. Halogenated furanones inhibit quorum sensing through accelerated LuxR turnover

    DEFF Research Database (Denmark)

    Manefield, M.; Rasmussen, Thomas Bovbjerg; Henzter, M.

    2002-01-01

    fischeri overproduced in Escherichia coli. Whilst a stable interaction between the algal metabolite and the bacterial protein was not found, it was noted by Western analysis that the half-life of the protein is reduced up to 100-fold in the presence of halogenated furanones. This suggests that halogenated...... that the reduction in LuxR concentration is the mechanism by which furanones control expression of AHL-dependent phenotypes. The mode of action by which halogenated furanones reduce cellular concentrations of the LuxR protein remains to be characterized....

  7. Competition of hydrogen bonds and halogen bonds in complexes of hypohalous acids with nitrogenated bases.

    Science.gov (United States)

    Alkorta, Ibon; Blanco, Fernando; Solimannejad, Mohammad; Elguero, Jose

    2008-10-30

    A theoretical study of the complexes formed by hypohalous acids (HOX, X = F, Cl, Br, I, and At) with three nitrogenated bases (NH 3, N 2, and NCH) has been carried out by means of ab initio methods, up to MP2/aug-cc-pVTZ computational method. In general, two minima complexes are found, one with an OH...N hydrogen bond and the other one with a X...N halogen bond. While the first one is more stable for the smallest halogen derivatives, the two complexes present similar stabilities for the iodine case and the halogen-bonded structure is the most stable one for the hypoastatous acid complexes.

  8. Keeleuuendusest sündis diplomilavastus / Anu Lamp

    Index Scriptorium Estoniae

    Lamp, Anu, 1958-

    2006-01-01

    24. märtsil esietendus teatris NO99 lavakunstikooli 22. lennu viimane diplomilavastus "Keeleuuenduse lõpmatu kurv". Lavastaja Anu Lamp räägib, kuidas sündis ja kuidas materjal Johannes Aaviku keeleuuendusest lavale jõudis

  9. Direct-current converter for gas-discharge lamps

    Science.gov (United States)

    Lutus, P.

    1980-01-01

    Metal/halide and similar gas-discharge lamps are powered from low-voltage dc source using small efficient converter. Converter is useful whenever 60-cycle ac power is not available or where space and weight allocations are limited. Possible applications are offshore platforms, mobile homes, and emergency lighting. Design innovations give supply high reliability and efficiency up to 75 percent.

  10. Thomson scattering measurements on an atmospheric Ar dc discharge lamp

    NARCIS (Netherlands)

    Zhu, Xiao-Yan; Redwitz, M.; Kieft, E.R.; Sande, van de M.J.; Mullen, van der J.J.A.M.

    2004-01-01

    Thomson scattering (TS) experiments have been performed in the region near the electrodes of a dc powered model lamp filled with 1-2 bar argon gas. In order to suppress the false stray light and Rayleigh scattered photons, a triple grating spectrograph was used. In this way the electron density and

  11. Nonlinear behavior in high-intensity discharge lamps

    Science.gov (United States)

    Baumann, Bernd; Schwieger, Joerg; Wolff, Marcus; Manders, Freddy; Suijker, Jos

    2016-06-01

    The light flicker problem of high intensity discharge lamps is studied numerically and experimentally. It is shown that in some respects the systems behave very similar to the forced Duffing oscillator with a softening spring. In particular, the jump phenomenon and hysteresis are observed in the simulations and in the experiments.

  12. Anu Lamp õpetab presidendile kõnekunsti peensusi / Kadri Paas

    Index Scriptorium Estoniae

    Paas, Kadri, 1982-

    2007-01-01

    Näitleja Anu Lamp õpetab president Toomas Hendrik Ilvesele kaheksa akadeemilise tunni jooksul kõnelemisoskust. Vt. samas: Martti Kass. Presidendi hiiglaslik vastuvõtutelk võtab ilmet. Tartus hakati Vanemuise teatri külje alla hiigeltelki püstitama. Telgis surub president Toomas Hendrik Ilves 24. veebruaril 2007 kutsutud külaliste kätt

  13. Modeling of Kr-Xe discharge of excimer lamp

    Directory of Open Access Journals (Sweden)

    Belasri A.

    2013-03-01

    Full Text Available This paper reports the numerical simulation of Dielectric Barrier Discharge (DBD for Kr-Xe excilamp. The model of the discharge consists of three main modules: a plasma chemistry module, a circuit module and a Boltzmann equation module. The results predict the optimal operating conditions and describe the electrical and chemical properties of the KrXe* excimer lamp.

  14. CALiPER Special Summary Report: Retail Replacement Lamp Testing

    Energy Technology Data Exchange (ETDEWEB)

    None

    2011-04-01

    CALiPER testing has evaluated many products for commercial lighting markets and found some excellent performers. However, many of these are not available on the retail market. This special testing was undertaken to identify and test solid-state lighting (SSL) replacement lamp products that are available to the general public through retail stores and websites.

  15. Loop-mediated isothermal amplification (LAMP) based detection of ...

    African Journals Online (AJOL)

    SAM

    2014-05-07

    May 7, 2014 ... 2 months for growing in a culture. Therefore, to control .... The LAMP reaction is carried out in a 25 µL reaction mixture containing ..... J. Fish Dis. 32(6):491-497. Goto M, Honda E, Ogura A, Nomoto A, Hanaki K (2009). Colorimetric detection of loop-mediated isothermal amplification reaction by using hydroxy ...

  16. Application of loop-mediated isothermal amplification (LAMP) of the ...

    African Journals Online (AJOL)

    Administrator

    2011-05-23

    May 23, 2011 ... evaluate the RIME - LAMP for the detection of T. evansi in naturally infected camels in Sudan. MATERIALS AND METHODS. Study design. Cross sectional ... from each camel using 5 ml disposable syringe. Three drops of the fresh collected blood were immediately placed in FTA card. (Whatman classic ...

  17. Mercury mass measurement in fluorescent lamps via neutron activation analysis

    Czech Academy of Sciences Publication Activity Database

    Viererbl, L.; Vinš, M.; Lahodová, Z.; Fuksa, A.; Kučera, Jan; Koleska, M.; Voljanskij, A.

    2015-01-01

    Roč. 116, NOV (2015), s. 56-59 ISSN 0969-806X R&D Projects: GA TA ČR TA01010237; GA MŠk LM2011019 Institutional support: RVO:61389005 Keywords : fluorescent lamp * mercury measurement * neutron activation analysis * research reactor Subject RIV: BG - Nuclear , Atomic and Molecular Physics, Colliders Impact factor: 1.207, year: 2015

  18. 21 CFR 878.4630 - Ultraviolet lamp for dermatologic disorders.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultraviolet lamp for dermatologic disorders. 878.4630 Section 878.4630 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... disorders is a device (including a fixture) intended to provide ultraviolet radiation of the body to...

  19. LOOP mediated isothermal AMPlification (LAMP) in diagnosis of ...

    African Journals Online (AJOL)

    We collected a quantity of 35 serum samples of HIVpositive patients and a number of 107 cerebrospinal fluid (CSF) samples of patients who had shown symptoms of meningitis. We designed target specific primers for PCR and LAMP techniques to trace C. neoformans and C. gattii. From the total 142 clinical specimens, five ...

  20. Nonlinear behavior in high-intensity discharge lamps

    NARCIS (Netherlands)

    Baumann, Bernd; Schwieger, Joerg; Wolff, Marcus; Manders, Freddy; Suijker, Jos

    2016-01-01

    The light flicker problem of high intensity discharge lamps is studied numerically and experimentally. It is shown that in some respects the systems behave very similar to the forced Duffing oscillator with a softening spring. In particular, the jump phenomenon and hysteresis are observed in the

  1. Harmonics Study of Common Low Wattage LED Lamps

    Directory of Open Access Journals (Sweden)

    Ioan Dragoş Deaconu

    2017-11-01

    Full Text Available This article presents experimental data on Light Emitting Diode (LED lamps of low wattage that are commonly found both in commercial and residential applications. A comparison with the existing regulations is performed. The measurements are performed using power and energy quality analyzer intended also for avionic and military systems.

  2. Optimized elemental analysis of fluorescence lamp shredder waste.

    Science.gov (United States)

    Hobohm, Julia; Kuchta, Kerstin; Krüger, Oliver; van Wasen, Sebastian; Adam, Christian

    2016-01-15

    Fluorescence lamps contain considerable amounts of rare earth elements (REE). Several recycling procedures for REE recovery from spent lamps have been established. However, despite their economic importance, the respective recycling is scarce so far, with an REE recovery rate of less than 1%. A reliable analysis of REE and other relevant metals like Yttrium is crucial for a thorough and complete recovery process. This applies both to the solid matter and aqueous phase, since most of the recycling processes include wet-chemical steps. We tested seven different reagent mixtures for microwave-assisted digestion of fluorescent lamp shredder, including hydrofluoric acid, perchloric acid, and hydrogen peroxide. We determined the concentrations of 25 of the most relevant rare earth and other trace elements (Al, P, Ti, V, Cr, Fe, Ni, Cu, Ga, Ge, As, Y, Ag, Cd, Sn, Sb, La, Ce, Eu, Gd, Tb, W, Au, Hg, and Pb) in the respective dilutions. Two independent digestions, one a mixture of perchlorid/nitric/hydrofluoric acid and the other aqua regia, showed the highest concentrations of 23 of these elements, excluding only Sn and Tb. The REE concentrations in the tested lamp shredder sample (stated in g/kg) were 10.2 (Y), 12.1 (La), 7.77 (Ce), 6.91 (Eu), 1.90 (Gd), and 4.11 (Tb). Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Structures and anti-inflammatory properties of 4-halogenated -mofebutazones

    Science.gov (United States)

    Reichelt, Hendrik; Paradies, Henrich H.

    2018-02-01

    The crystal structures of the 4-halogenated (hal: F, Cl, Br)-4-butyl-1-phenyl-1,3-pyrolidine-dione (mofebutazone) are determined, and compared with their solution structures. The racemic 4-halogenated mofebutazone approximants crystallize in a monoclinic space group with four molecules in the unit cell. The 4-hal-mofebutazone molecules reveal strong hydrogen bonding between the hydrogen atom located at the N-2 nitrogen atom and a carbonyl oxygen atom of an adjacent 4-hal-mofebutazone molecule. The hydrogen bond angle for 4-Br-mifebutazone N (2)sbnd H (1)⋯O (1) is 173(3) °, so that the hydrogen bond is essentially linear indicating an infinite chain hydrogen bond network. The 3d and 2d structures are stabilized by π-π and σ-π interactions, short intermolecular distances, and apolar forces between adjacently stacked phenyl rings. Small-angle-X-ray scattering (SAXS) experiments and osmometric measurements reveal the presence of dimers for the 4-hal-mofebutazone molecules. Molecular simulations indicate similar solution structure factors for the 4-hal-mofebutazones solutions, S(Q), and in the solid state. There is a strong indication that the [1,1,0], [1,0,0], and [1,0,0] periodicities of the 4-Brsbnd , 4-Clsbnd and 4-F-mofebutazone in the crystalline solid state were also present in the solution phase. The biochemical and cellular activities of the different 4-hal-mofebutazones were monitored by the magnitude of their inhibition of the PGE2 biosynthesis through the cyclo-oxygenase (COX-1) in macrophages, and on the inhibition of LTD4 (5-lipoxygenase) in polymorphonuclear leukocytes.

  4. Evaluation on Glare from Vehicle Lamps and Effectiveness of Road Components as Glare Barriers

    NARCIS (Netherlands)

    Mangkuto, R.A.; Paripurna, A.; Soelami, F.X.N.

    2009-01-01

    Vehicle lamps are vital components which are required to ensure the driver’s safety, particularly at nighttime. However, vehicle lamps may cause glare which can reduce visibility and create discomfort. The objectives of this research are to evaluate glare from car headlamp and motorcycle lamps; and

  5. On the square arc voltage waveform model in magnetic discharge lamp studies

    OpenAIRE

    Molina, Julio; Sainz Sapera, Luis; Mesas García, Juan José

    2011-01-01

    The current number of magnetic and electronic ballast discharge lamps in power distribution systems is increasing because they perform better than incandescent lamps. This paper studies the magnetic discharge lamp modeling. In particular, the arc voltage waveform is analyzed and the limitations of the square waveform model are revealed from experimental measurements.

  6. 76 FR 70547 - Energy Conservation Program: Energy Conservation Standards for Fluorescent Lamp Ballasts

    Science.gov (United States)

    2011-11-14

    ... the term ``fluorescent lamp,'' which EPCA defines as ``a low pressure mercury electric-discharge... discharge into light,'' and as including the four enumerated types of fluorescent lamps for which EPCA... Conservation Program: Energy Conservation Standards for Fluorescent Lamp Ballasts; Final Rule #0;#0;Federal...

  7. BAD-LAMP defines a subset of early endocytic organelles in subpopulations of cortical projection neurons.

    Science.gov (United States)

    David, Alexandre; Tiveron, Marie-Catherine; Defays, Axel; Beclin, Christophe; Camosseto, Voahirana; Gatti, Evelina; Cremer, Harold; Pierre, Philippe

    2007-01-15

    The brain-associated LAMP-like molecule (BAD-LAMP) is a new member of the family of lysosome associated membrane proteins (LAMPs). In contrast to other LAMPs, which show a widespread expression, BAD-LAMP expression in mice is confined to the postnatal brain and therein to neuronal subpopulations in layers II/III and V of the neocortex. Onset of expression strictly parallels cortical synaptogenesis. In cortical neurons, the protein is found in defined clustered vesicles, which accumulate along neurites where it localizes with phosphorylated epitopes of neurofilament H. In primary neurons, BAD-LAMP is endocytosed, but is not found in classical lysosomal/endosomal compartments. Modification of BAD-LAMP by addition of GFP revealed a cryptic lysosomal retention motif, suggesting that the cytoplasmic tail of BAD-LAMP is actively interacting with, or modified by, molecules that promote its sorting away from lysosomes. Analysis of BAD-LAMP endocytosis in transfected HeLa cells provided evidence that the protein recycles to the plasma membrane through a dynamin/AP2-dependent mechanism. Thus, BAD-LAMP is an unconventional LAMP-like molecule and defines a new endocytic compartment in specific subtypes of cortical projection neurons. The striking correlation between the appearance of BAD-LAMP and cortical synatogenesis points towards a physiological role of this vesicular determinant for neuronal function.

  8. Energy Efficiency Comparison between Compact Fluorescent Lamp and Common Light Bulb

    Science.gov (United States)

    Tanushevsk, Atanas; Rendevski, Stojan

    2016-01-01

    For acquainting the students of applied physics and students of teaching physics with the concept of energy efficiency, electrical and spectral characteristics of two widely used lamps--integrated fluorescence lamp and common light bulb have been investigated. Characterization of the lamps has been done by measuring the spectral irradiance and…

  9. Axial segregation in high intensity discharge lamps measured by laser absorption spectroscopy

    NARCIS (Netherlands)

    Flikweert, A.J.; Nimalasuriya, T.; Groothuis, C.H.J.M.; Kroesen, G.M.W.; Stoffels, W.W.

    2005-01-01

    High intensity discharge lamps have a high efficiency. These lamps contain rare-earth additives (in our case dysprosium iodide) which radiate very efficiently. A problem is color separation in the lamp because of axial segregation of the rare-earth additives, caused by diffusion and convection. Here

  10. 77 FR 21038 - Energy Conservation Program: Test Procedures for Light-Emitting Diode Lamps

    Science.gov (United States)

    2012-04-09

    ... available most commonly in the market. If the LED lamp is not rated for 120 volts, DOE proposes that it..., are available in the market. If such lamps are available, DOE requests comment about whether such... lamp to determine the rated lifetime and the final method in Table III.1 test the LED source to...

  11. The effect of operating lamps on the protected area of a unidirectional down flow (UDF) system

    NARCIS (Netherlands)

    Traversari, A.A.L.; Bottenheft, C.; Louman, R.; Heumen, S.P.M. van; Böggeman, J.

    2016-01-01

    Background: Operating lamps are often seen as the most disruptive factors within the protective area in the operating theater (OT). The effect of the operation lamps (with different shapes) should be demonstrated in an OT by trial, since research on the effects of the lamps is still limited.

  12. 30 CFR 75.518-2 - Incandescent lamps, overload and short circuit protection.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Incandescent lamps, overload and short circuit...-General § 75.518-2 Incandescent lamps, overload and short circuit protection. Incandescent lamps installed... or direct current feeder circuits, need not be provided with separate short circuit or overload...

  13. Transport phenomena in metal-halide lamps : a poly-diagnostic study

    NARCIS (Netherlands)

    Nimalasuriya, T.

    2007-01-01

    Worldwide about 20% of all electricity is used for lighting. It is therefore of great interest to develop a lamp that has high e±cacy, good colour rendering and long lifetime. The metal-halide lamp is a gas discharge lamp that meets all these demands. Unfortunately there are still issues with this

  14. 21 CFR 1040.30 - High-intensity mercury vapor discharge lamps.

    Science.gov (United States)

    2010-04-01

    ... use. (4) Outer envelope means the lamp element, usually glass, surrounding a high-pressure arc... than a few minutes unless adequate shielding or other safety precautions are used. Lamps that will... unless adequate shielding or other safety precautions are used. Lamps that will automatically extinguish...

  15. Polaron interaction energies in reduced tungsten trioxide

    International Nuclear Information System (INIS)

    Iguchi, E.; Salje, E.; Tilley, R.J.D.

    1981-01-01

    Consideration of the properties of reduced tungsten trioxide suggest that the mobile charge carriers are polarons. As it is uncertain how the presence of polarons will influence the microstructures of the crystallographic shear (CS) planes present in reduced tungsten trioxide we have calculated both the polaron-CS plane and polaron-polaron interaction energy for a variety of circumstances. Three CS plane geometries were considered, (102), (103), and (001) CS plane arrays, and the nominal compositions of the crystals ranged from WO 2 70 to WO 3 0 . The polarons were assumed to have radii from 0.6 to 1.0 nm and the polaron-CS plane electrostatic interaction was assumed to be screened. The results suggest that for the most part the total interaction energy is small and is unlikely to be of major importance in controlling the microstructures found in CS planes. However, at very high polaron densities the interaction energy could be appreciable and may have some influence on the existence range of CS phases

  16. Proton beam induced dynamics of tungsten granules

    Science.gov (United States)

    Caretta, O.; Loveridge, P.; O'Dell, J.; Davenne, T.; Fitton, M.; Atherton, A.; Densham, C.; Charitonidis, N.; Efthymiopoulos, I.; Fabich, A.; Guinchard, M.; Lacny, L. J.; Lindstrom, B.

    2018-03-01

    This paper reports the results from single-pulse experiments of a 440 GeV /c proton beam interacting with granular tungsten samples in both vacuum and helium environments. Remote high-speed photography and laser Doppler vibrometry were used to observe the effect of the beam on the sample grains. The majority of the results were derived from a trough containing ˜45 μ m diameter spheres (not compacted) reset between experiments to maintain the same initial conditions. Experiments were also carried out on other open and contained samples for the purposes of comparison both with the 45 μ m grain results and with a previous experiment carried out with sub-250 μ m mixed crystalline tungsten powder in helium [Phys. Rev. ST Accel. Beams 17, 101005 (2014), 10.1103/PhysRevSTAB.17.101005]. The experiments demonstrate that a greater dynamic response is produced in a vacuum than in a helium environment and in smaller grains compared with larger grains. The examination of the dynamics of the grains after a beam impact leads to the hypothesis that the grain response is primarily the result of a charge interaction of the proton beam with the granular medium.

  17. Tungsten - Yttrium Based Nuclear Structural Materials

    Science.gov (United States)

    Ramana, Chintalapalle; Chessa, Jack; Martinenz, Gustavo

    2013-04-01

    The challenging problem currently facing the nuclear science community in this 21st century is design and development of novel structural materials, which will have an impact on the next-generation nuclear reactors. The materials available at present include reduced activation ferritic/martensitic steels, dispersion strengthened reduced activation ferritic steels, and vanadium- or tungsten-based alloys. These materials exhibit one or more specific problems, which are either intrinsic or caused by reactors. This work is focussed towards tungsten-yttrium (W-Y) based alloys and oxide ceramics, which can be utilized in nuclear applications. The goal is to derive a fundamental scientific understanding of W-Y-based materials. In collaboration with University of Califonia -- Davis, the project is designated to demonstrate the W-Y based alloys, ceramics and composites with enhanced physical, mechanical, thermo-chemical properties and higher radiation resistance. Efforts are focussed on understanding the microstructure, manipulating materials behavior under charged-particle and neutron irradiation, and create a knowledge database of defects, elemental diffusion/segregation, and defect trapping along grain boundaries and interfaces. Preliminary results will be discussed.

  18. Serrated flow behavior in tungsten heavy alloy

    Energy Technology Data Exchange (ETDEWEB)

    Das, Jiten, E-mail: das.jiten@gmail.com; Sankaranarayana, M.; Nandy, T.K.

    2015-10-14

    Flow behavior of a tungsten heavy alloy of composition, 90.5 wt% W–7.1 wt% Ni–1.65 wt% Fe–0.5 wt% Co–0.25 wt% Mo was investigated in a temperature range of 223–973 K and strain rate range of 10{sup −5}–10{sup −2} s{sup −1}. In the temperature range of 773–873 K, the stress strain curves were characterized by jerky flow pointing towards Dynamic Strain Ageing (DSA)/Portevin Le-Chatelier's (PLC) effect. Characteristics of DSA were analyzed in detail. Based on the value of activation energy determined from the critical strain method, diffusion of interstitials (carbon, oxygen, nitrogen and hydrogen) were thought to be responsible for the DSA effect. The results were discussed in relation to information existing in this area in tungsten heavy alloys. The study of fracture surface of tensile tested samples (in the range of 823–973 K) showed that the fractographic features, mostly intergranular, predominantly govern the overall ductility of the alloy and do not change except for surface oxidation at relatively higher temperatures.

  19. Proton beam induced dynamics of tungsten granules

    Directory of Open Access Journals (Sweden)

    O. Caretta

    2018-03-01

    Full Text Available This paper reports the results from single-pulse experiments of a 440  GeV/c proton beam interacting with granular tungsten samples in both vacuum and helium environments. Remote high-speed photography and laser Doppler vibrometry were used to observe the effect of the beam on the sample grains. The majority of the results were derived from a trough containing ∼45  μm diameter spheres (not compacted reset between experiments to maintain the same initial conditions. Experiments were also carried out on other open and contained samples for the purposes of comparison both with the 45  μm grain results and with a previous experiment carried out with sub-250  μm mixed crystalline tungsten powder in helium [Phys. Rev. ST Accel. Beams 17, 101005 (2014PRABFM1098-440210.1103/PhysRevSTAB.17.101005]. The experiments demonstrate that a greater dynamic response is produced in a vacuum than in a helium environment and in smaller grains compared with larger grains. The examination of the dynamics of the grains after a beam impact leads to the hypothesis that the grain response is primarily the result of a charge interaction of the proton beam with the granular medium.

  20. Tensile properties of irradiated TZM and tungsten

    International Nuclear Information System (INIS)

    Steichen, J.M.

    1975-04-01

    The effect of neutron irradiation on the elevated temperature tensile properties of TZM and tungsten has been experimentally determined. Specimens were irradiated at a temperature of approximately 720 0 F to fluences of 0.4 and 0.9 x 10 22 n/cm 2 (E greater than 0.1 MeV). Test parameters for both control and irradiated specimens included strain rates from 3 x 10 -4 to 1 s -1 and temperatures from 72 to 1700 0 F. The results of these tests were correlated with a rate-temperature parameter (T ln A/epsilon) to provide a concise description of material behavior over the range of deformation conditions of this study. The yield strength of the subject materials was significantly increased by decreasing temperature, increasing strain rate, and increasing fluence. Ductility was significantly reduced at any temperature or strain rate by increasing fluence. Cleavage fractures occurred in both unirradiated and irradiated specimens when the yield strength was elevated to the effective cleavage stress by temperature and/or strain rate. Neutron irradiation for the conditions of this study increased the ductile-to-brittle transition temperature of tungsten by approximately 300 0 F and TZM by approximately 420 0 F. (U.S.)

  1. Deuterium desorption from tungsten using laser heating

    Directory of Open Access Journals (Sweden)

    J.H. Yu

    2017-08-01

    Full Text Available Retention and desorption of hydrogenic species need to be accurately modeled to predict the tritium inventory of next generation fusion devices, which is needed both for tritium fuel recovery and for tritium safety concerns. In this paper, experiments on thermal desorption of deuterium from intrinsic polycrystalline tungsten defects using laser heating are compared to TMAP-7 modeling. The samples during deuterium plasma exposure were at a temperature of 373K for this benchmark study with ion fluence of 0.7–1.0 ×1024Dm−2. Following plasma exposure, a fiber laser (λ= 1100nm heated the samples to peak surface temperatures ranging from ∼500 to 1400K with pulse widths from 10ms to 1s, and 1 to 10 pulses applied to each sample. The remaining deuterium retention was measured using temperature programmed desorption (TPD. Results show that > 95% of deuterium is desorbed when the peak surface temperature reached ∼950K for > 1s. TMAP-7 is used to predict deuterium desorption from tungsten for a range of surface temperatures and heating durations, and is compared to previous work on desorption from beryllium codeposits.

  2. Tungsten tetraboride, an inexpensive superhard material

    Science.gov (United States)

    Mohammadi, Reza; Lech, Andrew T.; Xie, Miao; Weaver, Beth E.; Yeung, Michael T.; Tolbert, Sarah H.; Kaner, Richard B.

    2011-01-01

    Tungsten tetraboride (WB4) is an interesting candidate as a less expensive member of the growing group of superhard transition metal borides. WB4 was successfully synthesized by arc melting from the elements. Characterization using powder X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDX) indicates that the as-synthesized material is phase pure. The zero-pressure bulk modulus, as measured by high-pressure X-ray diffraction for WB4, is 339 GPa. Mechanical testing using microindentation gives a Vickers hardness of 43.3 ± 2.9 GPa under an applied load of 0.49 N. Various ratios of rhenium were added to WB4 in an attempt to increase hardness. With the addition of 1 at.% Re, the Vickers hardness increased to approximately 50 GPa at 0.49 N. Powders of tungsten tetraboride with and without 1 at.% Re addition are thermally stable up to approximately 400 °C in air as measured by thermal gravimetric analysis. PMID:21690363

  3. Automatic Lamp and Fan Control Based on Microcontroller

    Science.gov (United States)

    Widyaningrum, V. T.; Pramudita, Y. D.

    2018-01-01

    In general, automation can be described as a process following pre-determined sequential steps with a little or without any human exertion. Automation is provided with the use of various sensors suitable to observe the production processes, actuators and different techniques and devices. In this research, the automation system developed is an automatic lamp and an automatic fan on the smart home. Both of these systems will be processed using an Arduino Mega 2560 microcontroller. A microcontroller is used to obtain values of physical conditions through sensors connected to it. In the automatic lamp system required sensors to detect the light of the LDR (Light Dependent Resistor) sensor. While the automatic fan system required sensors to detect the temperature of the DHT11 sensor. In tests that have been done lamps and fans can work properly. The lamp can turn on automatically when the light begins to darken, and the lamp can also turn off automatically when the light begins to bright again. In addition, it can concluded also that the readings of LDR sensors are placed outside the room is different from the readings of LDR sensors placed in the room. This is because the light intensity received by the existing LDR sensor in the room is blocked by the wall of the house or by other objects. Then for the fan, it can also turn on automatically when the temperature is greater than 25°C, and the fan speed can also be adjusted. The fan may also turn off automatically when the temperature is less than equal to 25°C.

  4. Color Degradation of Textiles with Natural Dyes and of Blue Scale Standards Exposed to White LED Lamps:Evaluation of White LED Lamps for Effectiveness as Museum Lighting

    Science.gov (United States)

    Ishii, Mie; Moriyama, Takayoshi; Toda, Masahiro; Kohmoto, Kohtaro; Saito, Masako

    White light-emitting diodes (LED) are well suited for museum lighting because they emit neither UV nor IR radiation, which damage artifacts. The color degradation of natural dyes and blue scale standards (JIS L 0841) by white LED lamps are examined, and the performance of white LED lamps for museum lighting is evaluated. Blue scale standard grades 1-6 and silk fabrics dyed with 22 types of natural dyes classified as mid to highly responsive in a CIE technical report (CIE157:2004) were exposed to five types of white LED lamps using different luminescence methods and color temperatures. Color changes were measured at each 15000 lx·hr (500 lx at fabric surface × 300 hr) interval ten times. The accumulated exposure totaled 150000 lx·hr. The data on conventional white LED lamps and previously reported white fluorescent (W) and museum fluorescent (NU) lamps was evaluated. All the white LED lamps showed lower fading rates compared with a W lamp on a blue scale grade 1. The fading rate of natural dyes in total was the same between an NU lamp (3000 K) and a white LED lamp (2869 K). However, yellow natural dyes showed higher fading rates with the white LED lamp. This tendency is due to the high power characteristic of the LED lamp around 400-500 nm, which possibly contributes to the photo-fading action on the dyes. The most faded yellow dyes were Ukon (Curcuma longa L.) and Kihada (Phellodendron amurense Rupr.), and these are frequently used in historic artifacts such as kimono, wood-block prints, and scrolls. From a conservation point of view, we need to continue research on white LED lamps for use in museum lighting.

  5. Halogenated organic compounds in archived whale oil: A pre-industrial record

    International Nuclear Information System (INIS)

    Teuten, Emma L.; Reddy, Christopher M.

    2007-01-01

    To provide additional evidence that several halogenated organic compounds (HOCs) found in environmental samples are natural and not industrially produced, we analyzed an archived whale oil sample collected in 1921 from the last voyage of the whaling ship Charles W. Morgan. This sample, which pre-dates large-scale industrial manufacture of HOCs, contained two methoxylated polybrominated diphenyl ethers (MeO-PBDEs), five halogenated methyl bipyrroles (MBPs), one halogenated dimethyl bipyrrole (DMBP), and tentatively one dimethoxylated polybrominated biphenyl (diMeO-PBB). This result indicates, at least in part, a natural source of the latter compounds. - Nine halogenated organic compounds have been detected in archived whale oil from the early 1920s

  6. Halogenated organic compounds in archived whale oil: A pre-industrial record

    Energy Technology Data Exchange (ETDEWEB)

    Teuten, Emma L. [Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, 360 Woods Hole Road, Woods Hole, MA 02543 (United States)]. E-mail: emma.teuten@plymouth.ac.uk; Reddy, Christopher M. [Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, 360 Woods Hole Road, Woods Hole, MA 02543 (United States)]. E-mail: creddy@whoi.edu

    2007-02-15

    To provide additional evidence that several halogenated organic compounds (HOCs) found in environmental samples are natural and not industrially produced, we analyzed an archived whale oil sample collected in 1921 from the last voyage of the whaling ship Charles W. Morgan. This sample, which pre-dates large-scale industrial manufacture of HOCs, contained two methoxylated polybrominated diphenyl ethers (MeO-PBDEs), five halogenated methyl bipyrroles (MBPs), one halogenated dimethyl bipyrrole (DMBP), and tentatively one dimethoxylated polybrominated biphenyl (diMeO-PBB). This result indicates, at least in part, a natural source of the latter compounds. - Nine halogenated organic compounds have been detected in archived whale oil from the early 1920s.

  7. PATTERN RECOGNITION STUDIES OF HALOGENATED ORGANIC COMPOUNDS USING CONDUCTING POLYMER SENSOR ARRAYS. (R825323)

    Science.gov (United States)

    Direct measurement of volatile and semivolatile halogenated organic compounds of environmental interest was carried out using arrays of conducting polymer sensors. Mathematical expressions of the sensor arrays using microscopic polymer network model is described. A classical, non...

  8. Tungsten transport in the plasma edge at ASDEX upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Janzer, Michael Arthur

    2015-04-30

    The Plasma Facing Components (PFC) will play a crucial role in future deuterium-tritium magnetically confined fusion power plants, since they will be subject to high energy and particle loads, but at the same time have to ensure long lifetimes and a low tritium retention. These requirements will most probably necessitate the use of high-Z materials such as tungsten for the wall materials, since their erosion properties are very benign and, unlike carbon, capture only little tritium. The drawback with high-Z materials is, that they emit strong line radiation in the core plasma, which acts as a powerful energy loss mechanism. Thus, the concentration of these high-Z materials has to be controlled and kept at low levels in order to achieve a burning plasma. Understanding the transport processes in the plasma edge is essential for applying the proper impurity control mechanisms. This control can be exerted either by enhancing the outflux, e.g. by Edge Localized Modes (ELM), since they are known to expel impurities from the main plasma, or by reducing the influx, e.g. minimizing the tungsten erosion or increasing the shielding effect of the Scrape Off Layer (SOL). ASDEX Upgrade (AUG) has been successfully operating with a full tungsten wall for several years now and offers the possibility to investigate these edge transport processes for tungsten. This study focused on the disentanglement of the frequency of type-I ELMs and the main chamber gas injection rate, two parameters which are usually linked in H-mode discharges. Such a separation allowed for the first time the direct assessment of the impact of each parameter on the tungsten concentration. The control of the ELM frequency was performed by adjusting the shape of the plasma, i.e. the upper triangularity. The radial tungsten transport was investigated by implementing a modulated tungsten source. To create this modulated source, the linear dependence of the tungsten erosion rate at the Ion Cyclotron Resonance

  9. Operation of ASDEX Upgrade with tungsten coated walls

    International Nuclear Information System (INIS)

    Rohde, V.

    2002-01-01

    An alternative for low-Z materials in the main chamber of a future fusion device are high-Z materials, but the maximal tolerable concentration in the plasma core is restricted. A step by step approach to employ tungsten at the central column of ASDEX Upgrade was started in 1999. Meanwhile almost the whole central column is covered with tiles, which were coated by PVD with tungsten. Up to now 9000 s of plasma discharge covering all relevant scenarios were performed. Routine operation of ASDEX Upgrade was not affected by the tungsten. Typical concentrations below 10 -5 were found. The tungsten concentration is mostly connected to the transport into the core plasma, not to the tungsten erosion. It can be demonstrated, that additional central heating can eliminate the tungsten accumulation. These experiments demonstrate the compatibility of fusion plasmas with W plasma facing components under reactor relevant conditions. The erosion pattern found by post mortem analysis indicates that the main effect is ion sputtering. The main erosion of tungsten seems to occur during plasma ramp-up and ramp-down. (author)

  10. Advanced smart tungsten alloys for a future fusion power plant

    Science.gov (United States)

    Litnovsky, A.; Wegener, T.; Klein, F.; Linsmeier, Ch; Rasinski, M.; Kreter, A.; Tan, X.; Schmitz, J.; Mao, Y.; Coenen, J. W.; Bram, M.; Gonzalez-Julian, J.

    2017-06-01

    The severe particle, radiation and neutron environment in a future fusion power plant requires the development of advanced plasma-facing materials. At the same time, the highest level of safety needs to be ensured. The so-called loss-of-coolant accident combined with air ingress in the vacuum vessel represents a severe safety challenge. In the absence of a coolant the temperature of the tungsten first wall may reach 1200 °C. At such a temperature, the neutron-activated radioactive tungsten forms volatile oxide which can be mobilized into atmosphere. Smart tungsten alloys are being developed to address this safety issue. Smart alloys should combine an acceptable plasma performance with the suppressed oxidation during an accident. New thin film tungsten-chromium-yttrium smart alloys feature an impressive 105 fold suppression of oxidation compared to that of pure tungsten at temperatures of up to 1000 °C. Oxidation behavior at temperatures up to 1200 °C, and reactivity of alloys in humid atmosphere along with a manufacturing of reactor-relevant bulk samples, impose an additional challenge in smart alloy development. First exposures of smart alloys in steady-state deuterium plasma were made. Smart tungsten-chroimium-titanium alloys demonstrated a sputtering resistance which is similar to that of pure tungsten. Expected preferential sputtering of alloying elements by plasma ions was confirmed experimentally. The subsequent isothermal oxidation of exposed samples did not reveal any influence of plasma exposure on the passivation of alloys.

  11. High Purity Tungsten Spherical Particle Preparation From WC-Co Spent Hard Scrap

    Directory of Open Access Journals (Sweden)

    Han Chulwoong

    2015-06-01

    Full Text Available Tungsten carbide-cobalt hard metal scrap was recycled to obtain high purity spherical tungsten powder by a combined hydrometallurgy and physical metallurgy pathway. Selective leaching of tungsten element from hard metal scrap occurs at solid / liquid interface and therefore enlargement of effective surface area is advantageous. Linear oxidation behavior of Tungsten carbide-cobalt and the oxidized scrap is friable to be pulverized by milling process. In this regard, isothermally oxidized Tungsten carbide-cobalt hard metal scrap was mechanically broken into particles and then tungsten trioxide particle was recovered by hydrometallurgical method. Recovered tungsten trioxide was reduced to tungsten particle in a hydrogen environment. After that, tungsten particle was melted and solidified to make a spherical one by RF (Ratio Frequency thermal plasma process. Well spherical tungsten micro-particle was successfully obtained from spent scrap. In addition to the morphological change, thermal plasma process showed an advantage for the purification of feedstock particle.

  12. Characterizing risk factors for pediatric lamp oil product exposures.

    Science.gov (United States)

    Sheikh, S; Chang, A; Kieszak, S; Law, R; Bennett, H K W; Ernst, E; Bond, G R; Spiller, H A; Schurz-Rogers, H; Chu, A; Bronstein, A C; Schier, J G

    2013-11-01

    Poisonings from lamp oil ingestion continue to occur worldwide among the pediatric population despite preventive measures such as restricted sale of colored and scented lamp oils. This suggests that optimal prevention practices for unintentional pediatric exposures to lamp oil have yet to be identified and/or properly implemented. To characterize demographic, health data, and potential risk factors associated with reported exposures to lamp oil by callers to poison centers (PCs) in the US and discuss their public health implications. This was a two part study in which the first part included characterizing all exposures to a lamp oil product reported to the National Poison Data System (NPDS) with regard to demographics, exposure, health, and outcome data from 1/1/2000 to 12/31/2010. Regional penetrance was calculated using NPDS data by grouping states into four regions and dividing the number of exposure calls by pediatric population per region (from the 2000 US census). Temporal analyses were performed on NPDS data by comparing number of exposures by season and around the July 4th holiday. Poisson regression was used to model the count of exposures for these analyses. In the second part of this project, in order to identify risk factors we conducted a telephone-based survey to the parents of children from five PCs in five different states. The 10 most recent lamp oil product exposure calls for each poison center were systematically selected for inclusion. Calls in which a parent or guardian witnessed a pediatric lamp oil product ingestion were eligible for inclusion. Data on demographics, exposure information, behavioral traits, and health were collected. A descriptive analysis was performed and Fisher's exact test was used to evaluate associations between variables. All analyses were conducted using SAS v9.3. Among NPDS data, 2 years was the most common patient age reported and states in the Midwestern region had the highest numbers of exposure calls compared to

  13. Tungsten carbide and tungsten-molybdenum carbides as automobile exhaust catalysts

    International Nuclear Information System (INIS)

    Leclercq, L.; Daubrege, F.; Gengembre, L.; Leclercq, G.; Prigent, M.

    1987-01-01

    Several catalyst samples of tungsten carbide and W, Mo mixed carbides with different Mo/W atom ratios, have been prepared to test their ability to remove carbon monoxide, nitric oxide and propane from a synthetic exhaust gas simulating automobile emissions. Surface characterization of the catalysts has been performed by X-ray photoelectron spectroscopy (XPS) and selective chemisorption of hydrogen and carbon monoxide. Tungsten carbide exhibits good activity for CO and NO conversion, compared to a standard three-way catalyst based on Pt and Rh. However, this W carbide is ineffective in the oxidation of propane. The Mo,W mixed carbides are markedly different having only a very low activity. 9 refs.; 10 figs.; 5 tabs

  14. Microstructural study of tungsten influence on Co-Cr alloys

    International Nuclear Information System (INIS)

    Karaali, A.; Mirouh, K.; Hamamda, S.; Guiraldenq, P.

    2005-01-01

    Alloying elements, such as W, Mo, Mn,..., are of a great importance in the preoxidation of dental alloys and, consequently, on the ceramic/metal bond quality. This study deals with the effect of tungsten addition on the microstructural state of Co-Cr dental alloys, before the ceramisation process. These materials were prepared by unidirectional solidification. Their characterization has been carried out, using transmission electron microscopy (TEM) and X-ray diffraction. It shows that the addition of tungsten up to 8 wt.% induces structural transformations, which are believed to be linked to the added amount of tungsten

  15. Tungsten as First Wall Material in Fusion Devices

    International Nuclear Information System (INIS)

    Kaufmann, M.

    2006-01-01

    In the PLT tokamak with a tungsten limiter strong cooling of the central plasma was observed. Since then mostly graphite has been used as limiter or target plate material. Only a few tokamaks (limiter: FTU, TEXTOR; divertor: Alcator C-Mod, ASDEX Upgrade) gained experience with high-Z-materials. With the observed strong co- deposition of tritium together with carbon in JET and as a result of design studies of fusion reactors, it became clear that in the long run tungsten is the favourite for the first-wall material. Tungsten as a plasma facing material requires intensive research in all areas, i.e. in plasma physics, plasma wall-interaction and material development. Tungsten as an impurity in the confined plasma reveals considerable differences to carbon. Strong radiation at high temperatures, in connection with mostly a pronounced inward drift forms a particular challenge. Turbulent transport plays a beneficial role in this regard. The inward drift is an additional problem in the pedestal region of H-mode plasmas in ITER-like configurations. The erosion by low energy hydrogen atoms is in contrast to carbon small. However, erosion by fast particles from heating measures and impurity ions, accelerated in the sheath potential, play an important role in the case of tungsten. Radiation by carbon in the plasma boundary reduces the load to the target plates. Neon or Argon as substitutes will increase the erosion of tungsten. So far experiments have demonstrated that in most scenarios the tungsten content in the central plasma can be kept sufficiently small. The material development is directed to the specific needs of existing or future devices. In ASDEX Upgrade, which will soon be a divertor experiment with a complete tungsten first-wall, graphite tiles are coated with tungsten layers. In ITER, the solid tungsten armour of the target plates has to be castellated because of its difference in thermal expansion compared to the cooling structure. In a reactor the technical

  16. Dense Pure Tungsten Fabricated by Selective Laser Melting

    Directory of Open Access Journals (Sweden)

    Dianzheng Wang

    2017-04-01

    Full Text Available Additive manufacturing using tungsten, a brittle material, is difficult because of its high melting point, thermal conductivity, and oxidation tendency. In this study, pure tungsten parts with densities of up to 18.53 g/cm3 (i.e., 96.0% of the theoretical density were fabricated by selective laser melting. In order to minimize balling effects, the raw polyhedral tungsten powders underwent a spheroidization process before laser consolidation. Compared with polyhedral powders, the spherical powders showed increased laser absorptivity and packing density, which helped in the formation of a continuous molten track and promoted densification.

  17. Crack resistance of tungsten strengthened by dispersed refractory oxides

    International Nuclear Information System (INIS)

    Babak, A.V.; Uskov, E.I.

    1984-01-01

    Investigation results are presented for crack resistance of commercial tungsten, obtained during specimen testing at temperatures of 20 deg C to Tsub(cr) (upper boundary of temperature range of ductile-brittle transition). Comparison of s-n diagrams and temperature dependences of crack resistance are conducted for commercial tungsten and tungsten strengthened by refractory oxides. It is shown that dispersion hardening increases crack resistance in the temperature range of 20 to 2000 deg C but the upper boundary of ductile-brittle shifts to the side of higher temperatures

  18. An effective approach to synthesize monolayer tungsten disulphide crystals using tungsten halide precursor

    Energy Technology Data Exchange (ETDEWEB)

    Thangaraja, Amutha; Shinde, Sachin M.; Kalita, Golap, E-mail: kalita.golap@nitech.ac.jp; Tanemura, Masaki [Department of Frontier Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan)

    2016-02-01

    The synthesis of large-area monolayer tungsten disulphide (WS{sub 2}) single crystal is critical for realistic application in electronic and optical devices. Here, we demonstrate an effective approach to synthesize monolayer WS{sub 2} crystals using tungsten hexachloride (WCl{sub 6}) as a solid precursor in atmospheric chemical vapor deposition process. In this technique, 0.05M solution of WCl{sub 6} in ethanol was drop-casted on SiO{sub 2}/Si substrate to create an even distribution of the precursor, which was reduced and sulfurized at 750 °C in Ar atmosphere. We observed growth of triangular, star-shaped, as well as dendritic WS{sub 2} crystals on the substrate. The crystal geometry evolves with the shape and size of the nuclei as observed from the dendritic structures. These results show that controlling the initial nucleation and growth process, large WS{sub 2} single crystalline monolayer can be grown using the WCl{sub 6} precursor. Our finding shows an easier and effective approach to grow WS{sub 2} monolayer using tungsten halide solution-casting, rather than evaporating the precursor for gas phase reaction.

  19. An effective approach to synthesize monolayer tungsten disulphide crystals using tungsten halide precursor

    International Nuclear Information System (INIS)

    Thangaraja, Amutha; Shinde, Sachin M.; Kalita, Golap; Tanemura, Masaki

    2016-01-01

    The synthesis of large-area monolayer tungsten disulphide (WS 2 ) single crystal is critical for realistic application in electronic and optical devices. Here, we demonstrate an effective approach to synthesize monolayer WS 2 crystals using tungsten hexachloride (WCl 6 ) as a solid precursor in atmospheric chemical vapor deposition process. In this technique, 0.05M solution of WCl 6 in ethanol was drop-casted on SiO 2 /Si substrate to create an even distribution of the precursor, which was reduced and sulfurized at 750 °C in Ar atmosphere. We observed growth of triangular, star-shaped, as well as dendritic WS 2 crystals on the substrate. The crystal geometry evolves with the shape and size of the nuclei as observed from the dendritic structures. These results show that controlling the initial nucleation and growth process, large WS 2 single crystalline monolayer can be grown using the WCl 6 precursor. Our finding shows an easier and effective approach to grow WS 2 monolayer using tungsten halide solution-casting, rather than evaporating the precursor for gas phase reaction

  20. First-principles studies on the effects of halogen adsorption on monolayer antimony.

    Science.gov (United States)

    Yeoh, Keat Hoe; Yoon, Tiem Leong; Ong, Duu Sheng; Lim, Thong Leng; Zuntu Abdullahi, Yusuf

    2017-09-27

    Using first-principles calculations, we carry out systematic studies on the electronic, magnetic and structural properties of halogenated β-phase antimonene. We consider two different levels of halogen adatom coverage i.e. Θ = 1/8 and Θ = 1/18. It is found that F, Cl and Br adatoms act as acceptors whereas the I adatom acts as a donor. For a high coverage of Θ = 1/8, halogenated β-phase antimonene exhibits metallic characteristics. With a lower coverage of Θ = 1/18, through the adsorption of F, Cl and Br the semiconducting unstrained antimonene becomes metallic. In contrast, I-adsorbed antimonene remains semiconducting but exhibits magnetic behavior. We further investigate the effects of bi-axial strain on the halogenated β-phase antimonene. It is found that bi-axial strain can only induce ferromagnetism on the halogenated antimonene at Θ = 1/18. However, the ferromagnetism is suppressed when the applied strain is high. We uncover that the emergence of strain-dependent magnetism is attributed to the presence of localized states in the bandgap resulting from collective effects of bi-axial strain and the adsorption of halogen atoms.