WorldWideScience

Sample records for halogen atom reactions

  1. A theoretical model on the formation mechanism and kinetics of highly toxic air pollutants from halogenated formaldehydes reacted with halogen atoms

    Science.gov (United States)

    Ji, Y. M.; Wang, H. H.; Gao, Y. P.; Li, G. Y.; An, T. C.

    2013-11-01

    The atmospheric reactions of halogenated formaldehydes with halogen atoms were investigated by high-accuracy molecular orbital calculation. Our studies showed that compared to X-addition pathway, the H-abstraction pathway was demonstrated to be more preferred to form halogenated formyl radicals and hydrogen halides (HX). In specific areas with abundant halogen atoms, such as the marine boundary layer (MBL), halogenated formyl radical was reacted easily with halogen atoms and finally transformed into HX and CO2 in the presence of water; otherwise, this radical was degraded to CO2, halogen gas, and halogenated oxide in the presence of O2 and halogen atoms. By using the canonical variational transition state theory, the kinetics calculations were performed within a wide atmospheric temperature range of 200-368 K, and theoretical values agreed well with the available experimental data. Under atmospheric conditions, rate constants decreased as altitude increased, and especially the rate constants of halogen atoms reacted with FCHO quickly reduced. The kinetic results showed that although the reactions of halogenated formaldehydes with F atoms occurred more easily than did those with Cl and Br atoms, the two latter reactions were still important atmospheric degradation process, especially in the MBL. The modified Arrhenius equations of rate constants within the atmospheric temperature range were fitted, which helped to understand the established atmospheric model and estimated the contribution of title reactions to atmospheric chemistry pollution.

  2. Radical and Atom Transfer Halogenation (RATH): A Facile Route for Chemical and Polymer Functionalization.

    Science.gov (United States)

    Han, Yi-Jen; Lin, Chia-Yu; Liang, Mong; Liu, Ying-Ling

    2016-05-01

    This work demonstrates a new halogenation reaction through sequential radical and halogen transfer reactions, named as "radical and atom transfer halogenation" (RATH). Both benzoxazine compounds and poly(2,6-dimethyl-1,4-phenylene oxide) have been demonstrated as active species for RATH. Consequently, the halogenated compound becomes an active initiator of atom transfer radical polymerization. Combination of RATH and sequential ATRP provides an convenient and effective approach to prepare reactive and crosslinkable polymers. The RATH reaction opens a new window both to chemical synthesis and molecular design and preparation of polymeric materials.

  3. Additive effects in halogen hot atom chemistry. I. Nuclear reaction (. gamma. ,n) in bromobenzene, fluorobenzene-amine systems

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y.; Fu, K.; Li, W.; Wang, T.

    1980-05-01

    (1) For observing the chemical effects of the nuclear reaction /sup 79/Br(..gamma..,n)/sup 78/Br in liquid bromobenzene, the nitrogen-containing compounds, such as aniline, diphenylamine, phenylhydrazine and pyridine, were used as additives respectively during irradiation. Similarly, aniline, diphenylamine, phenylhydrazine, dimethylaniline and pyridine were added in liquid fluorobenzene when the reaction /sup 19/F(..gamma..,n)/sup 18/F proceeded. The curves indicating the dependence of recoil atom retention to the additive mole concentration were plotted, and each curve typically showed the general characteristics of dropping sharply in low mol % of additive and gradually in high mol %. (2) The relative effectiveness of additives in depressing organic retention was revealed in the following order: phenylhydrazine > aniline greater than or equal to dimethylaniline > diphenylamine greater than or equal to pyridine. In our opinion the reactivity of nitrogen lone-pair electrons, which is influenced and bounded by the Pi-bond delocalization of the aromatic amine molecule, substantially determines this effectiveness order. (3) Adding the inert additive benzene or toluene to the fluorobenzene system, a linear dependence of retention to additive concentration was obtained. The contribution of the reactive functional group NHNH/sub 2/ of phenylhydrazine in reducing the retention chemically could be evaluated by the comparison of the benzene line with the phenylhydrazine curve.

  4. Determination of absolute configuration using heavy atom based co-crystallization method: Halogen atom effects

    Science.gov (United States)

    Wang, Jian-Rong; Fan, Xiaowu; Ding, Qiaoce; Mei, Xuefeng

    2016-09-01

    Heavy atom (chloride, bromide, and iodide) based co-crystals for determination of absolute configuration (AC) for chiral molecules were synthesized and evaluated. Co-crystals of cholestanol and L-ascorbic acid were analysed and the effects and potential benefits of varying the heavy atom are discussed. Changing the halogen atoms (chloride, bromide, or iodide) affects the co-crystal formation, X-ray absorption, and anomalous dispersion, and hence the ability to determine AC.

  5. 40 CFR 721.10145 - Modified reaction products of alkyl alcohol, halogenated alkane, substituted epoxide, and amino...

    Science.gov (United States)

    2010-07-01

    ... alcohol, halogenated alkane, substituted epoxide, and amino compound (generic). 721.10145 Section 721... Modified reaction products of alkyl alcohol, halogenated alkane, substituted epoxide, and amino compound... identified generically as modified reaction products of alkyl alcohol, halogenated alkane,...

  6. Retention of Halogenated Solutes on Stationary Phases Containing Heavy Atoms

    Directory of Open Access Journals (Sweden)

    Toshio Miwa

    2013-05-01

    Full Text Available To examine the effects of weak intermolecular interactions on solid-phase extraction (SPE and chromatographic separation, we synthesized some novel stationary phases with a heavy atom effect layer by immobilizing halogenated aromatic rings and hydroxyl groups onto the surface of a hydrophilic base polymer. Using SPE cartridges packed with the functionalized materials, we found that the heavy atom stationary phases could selectively retain halophenols in organic solvents, such as 1-propanol which blocks the hydrogen bonding, or acetonitrile which blocks the p-p interaction. The extraction efficiency of the materials toward the halophenols depended on the dipole moments of phenoxy groups present as functional groups. On the other hand, the extraction efficiency of solutes toward the functional group depended on their molar refractions, i.e., induced dipole moments. The retention of the solutes to the stationary phase ultimately depended on not only strong intermolecular interactions, but also the effects of weak interactions such as the dispersion force.

  7. Halogen-abstraction reactions from chloromethane and bromomethane molecules by alkaline-earth monocations.

    Science.gov (United States)

    Redondo, Pilar; Largo, Antonio; Rayón, Víctor Manuel; Molpeceres, Germán; Sordo, José Ángel; Barrientos, Carmen

    2014-08-14

    The reactions, in the gas phase, between alkali-earth monocations (Mg(+), Ca(+), Sr(+), Ba(+)) and CH3X (X = Cl, Br) have been theoretically studied. The stationary points on the potential energy surfaces were characterized at the Density Functional Theory level on the framework of the mPW1K functional with the QZVPP Ahlrichs's basis sets. A complementary kinetics study has also been performed using conventional/variational microcanonical transition state theory. In the reactions of Mg(+) with either chloro- or bromomethane the transition structure lies in energy clearly above the reactants rendering thermal activation of CH3Cl or CH3Br extremely improbable. The remaining reactions are exothermic and barrierless processes; thus carbon-halogen bonds in chloro- or bromomethane can be activated by calcium, strontium or barium monocations to obtain the metal halogen cation and the methyl radical. The Mulliken population analysis for the stationary points of the potential energy surfaces supports a "harpoon"-like mechanism for the halogen-atom abstraction processes. An analysis of the bonding situation for the stationary points on the potential energy surface has also been performed in the framework of the quantum theory of atoms in molecules.

  8. A DFT study of halogen atoms adsorbed on graphene layers

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, Paulo V C; De Brito Mota, F; De Castilho, Caio M C [Grupo de Fisica de Superfcies e Materiais, Instituto de Fisica, Universidade Federal da Bahia, Campus Universitario da Federacao/Ondina, 40170-115 Salvador, Bahia (Brazil); Mascarenhas, Artur J S, E-mail: caio@ufba.br [Instituto Nacional de Ciencia e Tecnologia em Energia e Ambiente-INCT-E and A, Universidade Federal da Bahia, 40170-280 Salvador, Bahia (Brazil)

    2010-12-03

    In this work, ab initio density functional theory calculations were performed in order to study the structural and electronic properties of halogens (X = fluorine, chlorine, bromine or iodine) that were deposited on both sides of graphene single layers (X-graphene). The adsorption of these atoms on only one side of the layer with hydrogen atoms adsorbed on the other was also considered (H,X-graphene). The results indicate that the F-C bond in the F-graphene system causes an sp{sup 2} to sp{sup 3} transition of the carbon orbitals, and similar effects seem to occur in the H,X-graphene systems. For the other cases, two configurations are found: bonded (B) and non-bonded (NB). For the B configuration, the structural arrangement of the atoms was similar to F-graphene and H-graphene (graphane), although the electronic structures present some differences. In the NB configuration, the interaction between the adsorbed atoms and the graphene layer seems to be essentially of the van der Waals type. In these cases, the original shape of the graphene layer presents only small deviations from the pristine form and the adsorbed atoms reach equilibrium far from the sheet. The F-graphene structure has a direct bandgap of approximately 3.16 eV at the {Gamma} point, which is a value that is close to the value of 3.50 eV that was found for graphane. The Cl-graphene (B configuration), H,F-graphene and H,Cl-graphene systems have smaller bandgap values. All of the other systems present metallic behaviours. Energy calculations indicate the possible stability of these X-graphene layers, although some considerations about the possibility of spontaneous formation have to be taken into account.

  9. Atomic forces between noble gas atoms, alkali ions, and halogen ions for surface interactions

    Science.gov (United States)

    Wilson, J. W.; Outlaw, R. A.; Heinbockel, J. H.

    1988-01-01

    The components of the physical forces between noble gas atoms, alkali ions, and halogen ions are analyzed and a data base developed from analysis of the two-body potential data, the alkali-halide molecular data, and the noble gas crystal and salt crystal data. A satisfactory global fit to this molecular and crystal data is then reproduced by the model to within several percent. Surface potentials are evaluated for noble gas atoms on noble gas surfaces and salt crystal surfaces with surface tension neglected. Within this context, the noble gas surface potentials on noble gas and salt crystals are considered to be accurate to within several percent.

  10. Complete reaction mechanisms of mercury oxidation on halogenated activated carbon.

    Science.gov (United States)

    Rungnim, Chompoonut; Promarak, Vinich; Hannongbua, Supa; Kungwan, Nawee; Namuangruk, Supawadee

    2016-06-05

    The reaction mechanisms of mercury (Hg) adsorption and oxidation on halogenated activated carbon (AC) have been completely studied for the first time using density functional theory (DFT) method. Two different halogenated AC models, namely X-AC and X-AC-X (X=Cl, Br, I), were adopted. The results revealed that HgX is found to be stable-state on the AC edge since its further desorption from the AC as HgX, or further oxidation to HgX2, are energetically unfavorable. Remarkably, the halide type does not significantly affect the Hg adsorption energy but it strongly affects the activation energy barrier of HgX formation, which obviously increases in the order HgIBr-AC>Cl-AC. Thus, the study of the complete reaction mechanism is essential because the adsorption energy can not be used as a guideline for the rational material design in the halide impregnated AC systems. The activation energy is an important descriptor for the predictions of sorbent reactivity to the Hg oxidation process.

  11. FY1995 study on the low energy reaction of Si surface with halogen atoms and positive and negative ions; 1995 nendo harogen genshi, sei/fu ion to Si hyomen hanno no teisonshoka kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    For the damageless fabrication of nanometer-electronics devices, low energy and damage-free surface reactions have been investigated as follows. (1) Negative ion etching of silicon has been investigated in SF{sub 6} and Cl{sub 2} plasma. (2) To establish the self-limiting reaction process which is necessary to realize the atomically layer-by-layer etching, the initial reaction of fluorine (F) atoms and F{sub 2} molecules with hydrogen (H)-terminated Si (111) has been studied. In both SF{sub 6} and Cl{sub 2} plasma etching, the etching reactivity of negative ions was proved to be higher than those of positive ions, since negative ions are atomical like the radical. A notch-free etching of n+ poly-silicon with 0.3{mu}m L and S pattern was successfully obtained by an alternative irradiation of positive and negative ions in SF{sub 6} plasma. For SiO{sub 2} and other oxide etching with negative ions the high rate was observed but not with high selectivity. Negative ion-assisted Si oxidation was found to be one order faster than radical and thermal oxidations. Based on the ATR and XPS measurements, F atom/H-terminated Si(111) surface reaction has been revealed. First F radicals penetrates just underneath of the Si-H bond, generating the B{sub 2} peak. Further exposure appear the B{sub 3} peak which arises from the bonding of a F atom with a Si-H bond at the five-coordination state. However, more exposure of F atoms caused higher order SiF{sub x}(x=l,2,3) products. Hence, F{sub 2} gas which was less reactive than F atoms was investigated. It was found out that the exposure of 5 % F{sub 2}/He to H-terminated Si (111) reached a plateau value at 5{sub x}10{sup 5} L where terminated H atoms quite disappeared. The SiF monolayer corresponded exactly to an atomic layer of Si(111) was formed. This indicates that the self-limiting process for the Si/F system has been realized first. (NEDO)

  12. "Textbook" adsorption at "nontextbook" adsorption sites: Halogen atoms on alkali halide surfaces

    OpenAIRE

    Li, B.; Michaelides, A.; Scheffler, M.

    2006-01-01

    Density-functional theory (DFT) and second order Møller-Plesset perturbation theory calculations indicate that halogen atoms bond preferentially to halide substrate atoms on a series of alkali halide surfaces, rather than to the alkali atoms as might be anticipated. An analysis of the electronic structures in each system reveals that this novel adsorption mode is stabilized by the formation of textbook two-center three-electron covalent bonds. The implications of these findings to, for exampl...

  13. Advances in Metal-Catalyzed Cross-Coupling Reactions of Halogenated Quinazolinones and Their Quinazoline Derivatives

    Directory of Open Access Journals (Sweden)

    Malose Jack Mphahlele

    2014-10-01

    Full Text Available Halogenated quinazolinones and quinazolines are versatile synthetic intermediates for the metal-catalyzed carbon–carbon bond formation reactions such as the Kumada, Stille, Negishi, Sonogashira, Suzuki-Miyaura and Heck cross-coupling reactions or carbon-heteroatom bond formation via the Buchwald-Hartwig cross-coupling to yield novel polysubstituted derivatives. This review presents an overview of the application of these methods on halogenated quinazolin-4-ones and their quinazolines to generate novel polysubstituted derivatives.

  14. Halogen bond preferences of thiocyanate ligand coordinated to Ru(II) via sulphur atom

    Science.gov (United States)

    Ding, Xin; Tuikka, Matti; Hirva, Pipsa; Haukka, Matti

    2017-09-01

    Halogen bonding between [Ru(bpy)(CO)2(S-SCN)2] (bpy = 2,2'-bipyridine), I2 was studied by co-crystallising the metal compound and diiodine from dichloromethane. The only observed crystalline product was found to be [Ru(bpy)(CO)2(S-SCN)2]ṡI2 with only one NCSṡṡṡI2 halogen bond between I2 and the metal coordinated S atom of one of the thiocyanate ligand. The dangling nitrogen atoms were not involved in halogen bonding. However, computational analysis suggests that there are no major energetic differences between the NCSṡṡṡI2 and SCNṡṡṡI2 bonding modes. The reason for the observed NCSṡṡṡI2 mode lies most probably in the more favourable packing effects rather than energetic preferences between NCSṡṡṡI2 and SCNṡṡṡI2 contacts.

  15. Analysis of the physical atomic forces between noble gas atoms, alkali ions and halogen ions

    Science.gov (United States)

    Wilson, J. W.; Heinbockel, J. H.; Outlaw, R. A.

    1986-01-01

    The physical forces between atoms and molecules are important in a number of processes of practical importance, including line broadening in radiative processes, gas and crystal properties, adhesion, and thin films. The components of the physical forces between noble gas atoms, alkali ions, and halogen ions are analyzed and a data base for the dispersion forces is developed from the literature based on evaluations with the harmonic oscillator dispersion model for higher order coefficients. The Zener model of the repulsive core is used in the context of the recent asymptotic wave functions of Handler and Smith; and an effective ionization potential within the Handler and Smith wave functions is defined to analyze the two body potential data of Waldman and Gordon, the alkali-halide molecular data, and the noble gas crystal and salt crystal data. A satisfactory global fit to this molecular and crystal data is then reproduced by the model to within several percent. Surface potentials are evaluated for noble gas atoms on noble gas and salt crystal surfaces with surface tension neglected. Within this context, the noble gas surface potentials on noble gas and salt crystals are considered to be accurate to within several percent.

  16. Analysis of Halogen-Mercury Reactions in Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Paula Buitrago; Geoffrey Silcox; Constance Senior; Brydger Van Otten

    2010-01-01

    Oxidized mercury species may be formed in combustion systems through gas-phase reactions between elemental mercury and halogens, such as chorine or bromine. This study examines how bromine species affect mercury oxidation in the gas phase and examines the effects of mixtures of bromine and chlorine on extents of oxidation. Experiments were conducted in a bench-scale, laminar flow, methane-fired (300 W), quartz-lined reactor in which gas composition (HCl, HBr, NO{sub x}, SO{sub 2}) and temperature profile were varied. In the experiments, the post-combustion gases were quenched from flame temperatures to about 350 C, and then speciated mercury was measured using a wet conditioning system and continuous emissions monitor (CEM). Supporting kinetic calculations were performed and compared with measured levels of oxidation. A significant portion of this report is devoted to sample conditioning as part of the mercury analysis system. In combustion systems with significant amounts of Br{sub 2} in the flue gas, the impinger solutions used to speciate mercury may be biased and care must be taken in interpreting mercury oxidation results. The stannous chloride solution used in the CEM conditioning system to convert all mercury to total mercury did not provide complete conversion of oxidized mercury to elemental, when bromine was added to the combustion system, resulting in a low bias for the total mercury measurement. The use of a hydroxylamine hydrochloride and sodium hydroxide solution instead of stannous chloride showed a significant improvement in the measurement of total mercury. Bromine was shown to be much more effective in the post-flame, homogeneous oxidation of mercury than chlorine, on an equivalent molar basis. Addition of NO to the flame (up to 400 ppmv) had no impact on mercury oxidation by chlorine or bromine. Addition of SO{sub 2} had no effect on mercury oxidation by chlorine at SO{sub 2} concentrations below about 400 ppmv; some increase in mercury oxidation

  17. Volatile organic compound ratios as probes of halogen atom chemistry in the Arctic

    Directory of Open Access Journals (Sweden)

    P. B. Shepson

    2008-03-01

    Full Text Available Volatile organic compound concentration ratios can be used as indicators of halogen chemistry that occurs during ozone depletion events in the Arctic during spring. Here we use a combination of modeling and measurements of [acetone]/[propanal] as an indicator of bromine chemistry, and [isobutane]/[n-butane] and [methyl ethyl ketone]/[n-butane] are used to study the extent of chlorine chemistry during four ozone depletion events during the Polar Sunrise Experiment of 1995. Using a 0-D photochemistry model in which the input of halogen atoms is controlled and varied, the approximate ratio of [Br]/[Cl] can be estimated for each ozone depletion event. It is concluded that there must be an additional source of propanal (likely from the snowpack to correctly simulate the VOC chemistry of the Arctic, and further evidence that the ratio of Br atoms to Cl atoms can vary greatly during ozone depletion events is presented.

  18. Volatile organic compound ratios as probes of halogen atom chemistry in the Arctic

    Directory of Open Access Journals (Sweden)

    A. E. Cavender

    2007-08-01

    Full Text Available Volatile organic compound concentration ratios can be used as indicators of halogen chemistry that occurs during ozone depletion events in the Arctic during spring. Here we use a combination of modeling and measurements of [acetone]/[propanal] as an indicator of bromine chemistry, and [isobutane]/[n-butane] and [methyl ethyl ketone]/[n-butane] are used to study the extent of chlorine chemistry during four ozone depletion events during the Polar Sunrise Experiment of 1995. Using a 0-D photochemistry model in which the input of halogen atoms is controlled and varied, the approximate ratio of [Br]/[Cl] can be estimated for each ozone depletion event. It is concluded that there must be an additional source of propanal (likely from the snowpack to correctly simulate the VOC chemistry of the Arctic, and that the ratio of Br atoms to Cl atoms can vary greatly during ozone depletion events.

  19. Engaging the Terminal: Promoting Halogen Bonding Interactions with Uranyl Oxo Atoms.

    Science.gov (United States)

    Carter, Korey P; Kalaj, Mark; Surbella, Robert G; Ducati, Lucas C; Autschbach, Jochen; Cahill, Christopher L

    2017-07-13

    Engaging the nominally terminal oxo atoms of the linear uranyl (UO2(2+) ) cation in non-covalent interactions represents both a significant challenge and opportunity within the field of actinide hybrid materials. An approach has been developed for promoting oxo atom participation in a range of non-covalent interactions, through judicious choice of electron donating equatorial ligands and appropriately polarizable halogen-donor atoms. As such, a family of uranyl hybrid materials was generated based on a combination of 2,5-dihalobenzoic acid and aromatic, chelating N-donor ligands. Delineation of criteria for oxo participation in halogen bonding interactions has been achieved by preparing materials containing 2,5-dichloro- (25diClBA) and 2,5-dibromobenzoic acid (25diBrBA) coupled with 2,2'-bipyridine (bipy) (1 and 2), 1,10-phenanthroline (phen) (3-5), 2,2':6',2''-terpyridine (terpy) (6-8), or 4'-chloro-2,2':6',2''-terpyridine (Cl-terpy) (9-10), which have been characterized through single crystal X-ray diffraction, Raman, Infrared (IR), and luminescence spectroscopy, as well as through density functional calculations of electrostatic potentials. Looking comprehensively, these results are compared with recently published analogues featuring 2,5-diiodobenzoic acid which indicate that although inclusion of a capping ligand in the uranyl first coordination sphere is important, it is the polarizability of the selected halogen atom that ultimately drives halogen bonding interactions with the uranyl oxo atoms. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. "Textbook" adsorption at "nontextbook" adsorption sites: halogen atoms on alkali halide surfaces.

    Science.gov (United States)

    Li, Bo; Michaelides, Angelos; Scheffler, Matthias

    2006-07-28

    Density-functional theory and second order Møller-Plesset perturbation theory calculations indicate that halogen atoms bond preferentially to halide substrate atoms on a series of alkali halide surfaces, rather than to the alkali atoms as might be anticipated. An analysis of the electronic structures in each system reveals that this novel adsorption mode is stabilized by the formation of textbook two-center three-electron covalent bonds. The implications of these findings to, for example, nanostructure crystal growth, are briefly discussed.

  1. Directional emission of nonthermal halogen atoms by electron bombardment of alkali halides

    Energy Technology Data Exchange (ETDEWEB)

    Postawa, Z.; Szymonski, M.

    1989-06-15

    We present the first experimental results on angle-resolved kinetic-energydistributions of halogen atoms desorbed from single crystals of alkali halidesbecause of electron bombardment. We found that the ejection of nonthermal Bratoms from the (100) surface of KBr is strongly forward peaked along thenormal. We suggest that this effect is caused by a thin damaged layer on thesurface due to a strong nonstoichiometry of the erosion process itself.

  2. Synthesis, Characterization, and Multimillion-Atom Simulation of Halogen-Based Energetic Materials for Agent Defeat

    Science.gov (United States)

    2013-04-01

    Kolesnikov NIST: Liu New Discoveries, Inventions, or Patent Disclosures K. O. Christe and G. Drake, “Energetic Ionic Liquids ,” US Patent 7,771,549, Aug...DTRA-TR-13-23 Synthesis, Characterization, and Multimillion-Atom Simulation of Halogen -Based Energetic Materials for Agent Defeat Approved for...second foot foot-pound-force gallon (U.S. liquid ) inch jerk joule/kilogram (J/kg) radiation dose absorbed kilotons kip (1000 lbf) kip/inch 2

  3. Survey of reproductive hazards among oil, chemical, and atomic workers exposed to halogenated hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Savitz, D.A.; Harley, B.; Krekel, S.; Marshall, J.; Bondy, J.; Orleans, M.

    1984-01-01

    Several halogenated hydrocarbons are suspected of causing adverse reproductive effects. Because of such concerns, the Oil, Chemical, and Atomic Workers International Union surveyed the reproductive histories of two groups of workers. One group worked at plants engaged in the production or use of halogenated hydrocarbons (exposed) whereas the others had no such opportunity for exposure (nonexposed). Although a low response rate precludes firm conclusions, the 1,280 completed questionnaires provide useful data for generating hypotheses in this developing field of interest. A history of diagnosed cancer was reported more frequently among exposed workers. The infant mortality rate was also significantly elevated among the offspring of exposed workers. No risk gradient was observed for episodes of infertility, fetal loss, congenital defects, or low-birthweight offspring. Concerns with nonresponse, exposure characterization, possible confounding factors, and limited statistical power are addressed. The results provide further suggestions which help to direct studies of occupational reproductive risks.

  4. Modified Toepler pump for small-scale halogen-deuterium exchange reactions

    Energy Technology Data Exchange (ETDEWEB)

    Bindal, R.D.

    1987-04-06

    A modified version of the Toepler pump/microhydrogenator apparatus for the preparation of tritium labelled oestrogenic compounds using deuterium gas for halogen-tritium exchange, is described. The modifications allow the transferred gas to maintain atmospheric pressure during the course of the reaction and it allows small volumes of gas uptake to be followed. (U.K.).

  5. Preparation of functionalized cyclic enol phosphates by halogen-magnesium exchange and directed deprotonation reactions.

    Science.gov (United States)

    Piller, Fabian M; Bresser, Tomke; Fischer, Markus K R; Knochel, Paul

    2010-07-02

    Cyclic enol phosphates were magnesiated by a halogen/magnesium exchange reaction or deprotonation using TMP-derived magnesium amide bases. The resulting magnesium reagents react readily with a wide range of electrophiles like allyl bromides and acid chlorides or can be used in Pd-catalyzed cross-coupling reactions. Several optically pure enol phosphates were prepared starting from readily available d-(+)-camphor derivatives.

  6. Base initiated halogen-exchange reactions between perhaloalkanes

    Institute of Scientific and Technical Information of China (English)

    傅伟敏; 李兴亚; 蒋锡夔

    1997-01-01

    Halophilic attacks on C-X bonds (X=Br,Cl) by a base can easily initiate mtermolecular bromme-chlonne exchange reactions either among bromine-or chlorine-containing perhaloalkane molecules of different compounds of among molecules of the same compound It provides a new and convenient method to synthesize perhaloal-kanes Apparently,it pertains to an amomc mechanism,i e.the reaction is initiated by halophilic attack on C-X bonds by the base,and an intermediate carbanion is formed.Distributions of the products depend on the equilibria involving all carbanion intermediates and perhaloalkane product molecules.

  7. Evaluated kinetic and photochemical data for atmospheric chemistry: Volume III ? gas phase reactions of inorganic halogens

    OpenAIRE

    Atkinson, R.; Baulch, D. L.; Cox, R A; J. N. Crowley; Hampson, R. F.; Hynes, R. G.; Jenkin, M. E.; M. J. Rossi; Troe, J.

    2007-01-01

    International audience; This article, the third in the series, presents kinetic and photochemical data evaluated by the IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry. It covers the gas phase and photochemical reactions of inorganic halogen species, which were last published in J. Phys. Chem. Ref. Data, in 2000 (Atkinson et al., 2000), were updated on the IUPAC website in 2003 and are updated again in the present evaluation. The article consists of a summary sheet...

  8. Effect of phenol and halogenated phenols on energy transfer reactions of rat liver mitochondria.

    Directory of Open Access Journals (Sweden)

    Izushi,Fumio

    1988-02-01

    Full Text Available The in vitro effects of phenol and p-halogenated phenols on mitochondrial energy transfer reactions were examined using isolated rat liver mitochondria. The relationship between physiochemical properties of phenolic compounds and their effects on mitochondria were studied. Phenol and p-halogenated phenols induced the release of K+ ions from mitochondria, suggesting a change in permeability to K+ ions. A decrease in the respiratory control index, an increase in K+ release and stimulation of latent ATPase activity were observed with these compounds in the descending order of p-iodophenol, p-bromophenol, p-chlorophenol, p-fluorophenol and phenol. The concentrations of the phenolic compounds resulting in fifty percent inhibition of the respiratory control index and those resulting in fifty percent release of K+ ions significantly correlated with Hammett's substituent constant (sigma and the hydrophobic binding constant (pi of the compounds.

  9. Reaction Kinetics in cw Rare-Gas Halogen Lamps

    Science.gov (United States)

    Salvermoser, M.; Murnick, D. E.; Ulrich, A.; Wieser, J.

    1999-10-01

    Pumping with a continuous low energy (excimer gas mixtures, the reaction kinetics leading to efficient vuv emission from ArF and F2 at 193nm and 157nm respectively has been studied. The scaling of the pumping power density with energy to the inverse 2.5 power and cube of the pressure allows a wide range of pumping rates to be considered. And, by studying the spectrum and yield as a function of pressure and gas mixture, optimum conditions for vuv emission can be determined and specific formation and quenching channels can be isolated. Energy transfer efficiency near 10% has been obtained at 193nm for neon-argon-fluorine (1:0.008:0.0004) mixtures and at 157nm for neon-fluorine (1:0.002) at two to three bar pressure. Lamps emitting tens of milliwatts light output from a 0.8mm diameter point have been stable for tens of hours. Scaling to at least 10W/cm^2str continuous output is possible.

  10. Determination of gaseous semi-and low-volatile organic halogen compounds by barrier-discharge atomic emission spectrometry

    Institute of Scientific and Technical Information of China (English)

    Yifei Sun; Nobuhisa Watanabe; Wei Wang; Tianle Zhu

    2013-01-01

    A group parameter approach using "total organic halogen" is effective for monitoring gaseous organic halogen compounds,including fluorine,chlorine,and bromine compounds,generated from combustion.We described the use of barrier-discharge radiofrequencyhelium-plasma/atomic emission spectrometry,for the detection of semi-and low-volatile organic halogen compounds (SLVOXs),which can be collected by CarbotrapTM adsorbents and analyzed using thermal desorption.The optimal carrier gas flow rates at the injection and desorption lines were established to be 100 mL/min.The detection range for SLVOXs in the gaseous samples was from 10 ng to tens of micrograms.Measuring F was more diflicult than measuring Cl or Br,because the wavelength ofF is dose to that of air.The barrierdischarge radiofrequency-helium-plasma/atomic emission spectrometry measured from 85% to 103% of the SLVOXs in the gas sample.It has been found that Carbotrap B is appropriate for high-boiling-point compounds,and Carbotrap C is suitable for the determination of organic halogen compounds with lower boiling points,in the range 200-230℃.Under optimal analysis conditions,a chlorinecontaining plastic was destroyed using different oxygen concentrations.Lower oxygen concentrations resulted in the production of lower amounts of organic halogen compounds.

  11. Review of Rate Constants and Exploration of Correlations of the Halogen Transfer Reaction of Tri-substituted Carbon-centered Radicals with Molecular Halogens

    Energy Technology Data Exchange (ETDEWEB)

    Poutsma, Marvin L [ORNL

    2012-01-01

    Rate constants for the reaction (R 3C + X2 R 3CX + X ; X = F, Cl, Br, and I) are reviewed. Because of curved Arrhenius plots and negative EX values, empirical structure-reactivity correlations are sought for log kX,298 rather than EX. The well-known poor correlation with measures of reaction enthalpy is demonstrated. The best quantitative predictor for R 3C is p, the sum of the Hammett p constants for the three substituents, R . Electronegative substituents with lone pairs, such as halogen or oxygen, thus appear to destabilize the formation of a polarized pre-reaction complex and/or TS ( +R---X---X -) by -inductive/field electron withdrawal while simultaneously stabilizing them by -resonance electron donation. The best quantitative predictor of the reactivity order of the halogens, I2 > Br2 >> Cl2 F2, is the polarizability of the halogen, (X-X). For the data set of 60 rate constants which span 6.5 orders of magnitude, a modestly successful correlation of log kX,298 is achieved with only two parameters, p and (X-X), with a mean unsigned deviation of 0.59 log units. How much of this residual variance is the result of inaccuracies in the data compared with over-simplification of the correlation approach remains to be seen.

  12. Solution phase synthesis of halogenated graphene and the electrocatalytic activity for oxygen reduction reaction

    Institute of Scientific and Technical Information of China (English)

    Kuang-Hsu Wu; Da-Wei Wang; Qingcong Zeng; Yang Li; Ian R. Gentle

    2014-01-01

    Metal-free carbon electrocatalyts for the oxygen reduction reaction (ORR) are attractive for their high activity and economic advantages. However, the origin of the activity has never been clearly elucidated in a systematic manner. Halogen group elements are good candidates for elucidating the effect, although it has been a difficult task due to safety issues. In this report, we demonstrate the synthesis of Cl-, Br-and I-doped reduced graphene oxide through two solution phase syntheses. We have evaluated the effectiveness of doping and performed electrochemical measurements of the ORR activity on these halogenated graphene materials. Our results suggest that the high electroneg-ativity of the dopant is not the key factor for high ORR activity;both Br-and I-doped graphene pro-moted ORR more efficiently than Cl-doped graphene. Furthermore, an unexpected sulfur-doping in acidic conditions suggests that a high level of sulfide can degrade the ORR activity of the graphene material.

  13. A new halogen-free chemical oscillator: the reaction between permanganate ion and ninhydrin in a continuously stirred tank reactor

    Science.gov (United States)

    Treindl, Ľudovít; Nagy, Arpád

    1987-07-01

    The reaction between permanganate ion and ninhydrin in the presence of phosphoric acid in aqueous solution shows sustained oscillations in a continuously stirred tank reactor (CSTR). It exhibits a kinetic bistability between an oscillatory and a stationary state. Our new oscillating system seems to be a second permanganate chemical oscillator, thus broadening the small group of non-halogen-based chemical oscillators.

  14. Substitution reactions at boron atoms in metallacarboranes

    Energy Technology Data Exchange (ETDEWEB)

    Bregadze, Vladimir I; Timofeev, Sergei V; Sivaev, Igor B; Lobanova, Irina A [A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow (Russian Federation)

    2004-05-31

    Data on substitution reactions at boron atoms in 10-12-vertex metallacarboranes, which are of fundamental and applied significance, are generalised. The possible mechanisms of substitution reactions and the influence of the metal fragment on substitution positions in the polyhedron are discussed.

  15. Heavy atom isotope effects on enzymatic reactions

    Science.gov (United States)

    Paneth, Piotr

    1994-05-01

    The theory of isotope effects, which has proved to be extremely useful in providing geometrical details of transition states in a variety of chemical reactions, has recently found an application in studies of enzyme-catalyzed reactions. These reactions are multistep in nature with few steps being partially rate-limiting, thus interpretation of these isotope effects is more complex. The theoretical framework of heavy-atom isotope effects on enzymatic reactions is critically analyzed on the basis of recent results of: carbon kinetic isotope effects on carbonic anhydrase and catalytic antibodies; multiple carbon, deuterium isotope effects on reactions catalyzed by formate decarboxylase; oxygen isotope effects on binding processes in reactions catalyzed by pyruvate kinase; and equilibrium oxygen isotope effect on binding an inhibitor to lactate dehydrogenase. The advantages and disadvantages of reaction complexity in learning details of formal and molecular mechanisms are discussed in the examples of reactions catalyzed by phosphoenolpyruvate carboxylase, orotidine decarboxylase and glutamine synthetase.

  16. Evaluated kinetic and photochemical data for atmospheric chemistry: Volume IV ? gas phase reactions of organic halogen species

    OpenAIRE

    2007-01-01

    International audience; This article, the fourth in the series, presents kinetic and photochemical data sheets evaluated by the IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry. It covers the gas phase and photochemical reactions of organic halogen species, which were last published in 1997, and were updated on the IUPAC website in 2006. The article consists of a summary sheet, containing the recommended kinetic parameters for the evaluated reactions, and four appen...

  17. Temperature dependent halogen activation by N2O5 reactions on halide-doped ice surfaces

    Directory of Open Access Journals (Sweden)

    J. A. Thornton

    2012-02-01

    Full Text Available We examined the reaction of N2O5 on frozen halide salt solutions as a function of temperature and composition using a coated wall flow tube technique coupled to a chemical ionization mass spectrometer (CIMS. The molar yield of photo-labile halogen compounds was near unity for almost all conditions studied, with the observed reaction products being nitryl chloride (ClNO2 and/or molecular bromine (Br2. The relative yield of ClNO2 and Br2 depended on the ratio of bromide to chloride ions in the solutions used to form the ice. At a bromide to chloride ion molar ratio greater than 1/30 in the starting solution, Br2 was the dominant product otherwise ClNO2 was primarily produced on these near pH-neutral brines. We demonstrate that the competition between chlorine and bromine activation is a function of the ice/brine temperature presumably due to the preferential precipitation of NaCl hydrates from the brine below 250 K. Our results provide new experimental confirmation that the chemical environment of the brine layer changes with temperature and that these changes can directly affect multiphase chemistry. These findings have implications for modeling air-snow-ice interactions in polar regions and likely in polluted mid-latitude regions during winter as well.

  18. Temperature dependent halogen activation by N2O5 reactions on halide-doped ice surfaces

    Directory of Open Access Journals (Sweden)

    J. A. Thornton

    2012-06-01

    Full Text Available We examined the reaction of N2O5 on frozen halide salt solutions as a function of temperature and composition using a coated wall flow tube technique coupled to a chemical ionization mass spectrometer (CIMS. The molar yield of photo-labile halogen compounds was near unity for almost all conditions studied, with the observed reaction products being nitryl chloride (ClNO2 and/or molecular bromine (Br2. The relative yield of ClNO2 and Br2 depended on the ratio of bromide to chloride ions in the solutions used to form the ice. At a bromide to chloride ion molar ratio greater than 1/30 in the starting solution, Br2 was the dominant product otherwise ClNO2 was primarily produced on these near pH-neutral brines. We demonstrate that the competition between chlorine and bromine activation is a function of the ice/brine temperature presumably due to the preferential precipitation of NaCl hydrates from the brine below 250 K. Our results provide new experimental confirmation that the chemical environment of the brine layer changes with temperature and that these changes can directly affect multiphase chemistry. These findings have implications for modeling air-snow-ice interactions in polar regions and likely in polluted mid-latitude regions during winter as well.

  19. Insights into the Halogen Oxidative Addition Reaction to Dinuclear Gold(I) Di(NHC) Complexes

    KAUST Repository

    Baron, Marco

    2016-06-14

    Gold(I) dicarbene complexes [Au2(MeIm-Y-ImMe)2](PF6)2(Y=CH2(1), (CH2)2(2), (CH2)4(4), MeIm=1-methylimidazol-2-ylidene) react with iodine to give the mixed-valence complex [Au(MeIm-CH2-ImMe)2AuI2](PF6)2(1 aI) and the gold(III) complexes [Au2I4(MeIm-Y-ImMe)2](PF6)2(2 cIand 4 cI). Reaction of complexes 1 and 2 with an excess of ICl allows the isolation of the tetrachloro gold(III) complexes [Au2Cl4(MeIm-CH2-ImMe)2](PF6)2(1 cCl) and [Au2Cl4(MeIm-(CH2)2-ImMe)2](Cl)2(2 cCl-Cl) (as main product); remarkably in the case of complex 2, the X-ray molecular structure of the crystals also shows the presence of I-Au-Cl mixed-sphere coordination. The same type of coordination has been observed in the main product of the reaction of complexes 3 or 4 with ICl. The study of the reactivity towards the oxidative addition of halogens to a large series of dinuclear bis(dicarbene) gold(I) complexes has been extended and reviewed. The complexes react with Cl2, Br2and I2to give the successive formation of the mixed-valence gold(I)/gold(III) n aXand gold(III) n cX(excluding compound 1 cI) complexes. However, complex 3 affords with Cl2and Br2the gold(II) complex 3 bX[Au2X2(MeIm-(CH2)3-ImMe)2](PF6)2(X=Cl, Br), which is the predominant species over compound 3 cXeven in the presence of free halogen. The observed different relative stabilities of the oxidised complexes of compounds 1 and 3 have also been confirmed by DFT calculations. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. The atomic and molecular reaction statics

    Institute of Scientific and Technical Information of China (English)

    ZHU; ZhengHe

    2007-01-01

    This work presents a new science called atomic and molecular reaction statics (AMRS). There are four parts for AMRS, i.e. the group theoretical derivation of molecular electronic states, the principle of microscopic reversibility, the principle of microscopic transitivity and the optimum energy process rule. AMRS has been developed for about twenty years.

  1. Atom addition reactions in interstellar ice analogues

    CERN Document Server

    Linnartz, Harold; Fedoseev, Gleb

    2015-01-01

    This review paper summarizes the state-of-the-art in laboratory based interstellar ice chemistry. The focus is on atom addition reactions, illustrating how water, carbon dioxide and methanol can form in the solid state at astronomically relevant temperatures, and also the formation of more complex species such as hydroxylamine, an important prebiotic molecule, and glycolaldehyde, the smallest sugar, is discussed. These reactions are particularly relevant during the dark ages of star and planet formation, i.e., when the role of UV light is restricted. A quantitative characterization of such processes is only possible through dedicated laboratory studies, i.e., under full control of a large set of parameters such as temperature, atom-flux, and ice morphology. The resulting numbers, physical and chemical constants, e.g., barrier heights, reaction rates and branching ratios, provide information on the molecular processes at work and are needed as input for astrochemical models, in order to bridge the timescales t...

  2. Dimethylselenide as a probe for reactions of halogenated alkoxyl radicals in aqueous solution. Degradation of dichloro- and dibromomethane.

    Science.gov (United States)

    Makogon, Oksana; Flyunt, Roman; Tobien, Thomas; Naumov, Sergej; Bonifacić, Marija

    2008-07-03

    Using pulse radiolysis and steady-state gamma-radiolysis techniques, it has been established that, in air-saturated aqueous solutions, peroxyl radicals CH 2HalOO (*) (Hal = halogen) derived from CH 2Cl 2 and CH 2Br 2 react with dimethyl selenide (Me 2Se), with k on the order of 7 x 10 (7) M (-1) s (-1), to form HCO 2H, CH 2O, CO 2, and CO as final products. An overall two-electron oxidation process leads directly to dimethyl selenoxide (Me 2SeO), along with oxyl radical CH 2HalO (*). The latter subsequently oxidizes another Me 2Se molecule by a much faster one-electron transfer mechanism, leading to the formation of equal yields of CH 2O and the dimer radical cation (Me 2Se) 2 (*+). In absolute terms, these yields amount to 18% and 28% of the CH 2ClO (*) and CH 2BrO (*) yields, respectively, at 1 mM Me 2Se. In competition, CH 2HalO (*) rearranges into (*)CH(OH)Hal. These C-centered radicals react further via two pathways: (a) Addition of an oxygen molecule leads to the corresponding peroxyl radicals, that is, species prone to decomposition into H (+)/O 2 (*-) and formylhalide, HC(O)Hal, which further degrades mostly to H (+)/Hal (-) and CO. (b) Elimination of HHal yields the formyl radical H-C(*)=O with a rate constant of about 6 x 10 (5) s (-1) for Hal = Cl. In an air-saturated solution, the predominant reaction pathway of the H-C(*)=O radical is addition of oxygen. The formylperoxyl radical HC(O)OO (*) thus formed reacts with Me 2Se via an overall two-electron transfer mechanism, giving additional Me 2SeO and formyloxyl radicals HC(O)O(*). The latter rearrange via a 1,2 H-atom shift into (*)C(O)OH, which reacts with O2 to give CO2 and O2(*)(-). The minor fraction of H-C(*)=O undergoes hydration, with an estimated rate constant of k approximately 2 x 10(5) s(-1). The resulting HC(*)(OH)2 radical, upon reaction with O2, yields HCO 2H and H (+)/O2(*-). Some of the conclusions about the reactions of halogenated alkoxyl radicals are supported by quantum chemical

  3. Kinetic and product studies of Criegee intermediate reactions with halogenated and non-halogenated carboxylic acids and their implications in the troposphere

    Science.gov (United States)

    Chhantyal-Pun, Rabi; Rotavera, Brandon; Eskola, Arkke; Taatjes, Craig; Percival, Carl; Shallcross, Dudley; Orr-Ewing, Andrew

    2016-04-01

    Criegee intermediates are important species formed during the ozonolysis of alkenes. Direct measurement and modelling studies have shown that reactions of stabilized Criegee intermediates with species like SO2 and NO2 may have a significant effect in tropospheric chemistry.[1, 2] Reaction rates of Criegee intermediates with simple carboxylic acids like HCOOH and CH3COOH have been shown to be near the collision limit and may be a significant sink for these otherwise stable species in the atmosphere.[3, 4] Results obtained from our time-resolved Cavity Ring-Down Spectroscopy (CRDS) apparatus[5] for reactions of the Criegee intermediates, CH2OO and (CH3)2COO with various halogenated (CF3COOH, CF3CF2COOH, CClF2COOH and CHCl2COOH) and non-halogenated (HCOOH and CH3COOH) carboxylic acids will be presented, together with Structure Activity Relationship (SAR) based on these observations. Structure characterization of the products from these reactions using the Multiplexed PhotoIonization Mass Spectrometry (MPIMS) apparatus[1,3] as well as implications for Secondary Organic Aerosol (SOA) formation, assessed using the global atmospheric model STOCHEM, will also be discussed. Bibliography 1. O. Welz, J. D. Savee, D. L. Osborn, S. S. Vasu, C. J. Percival, D. E. Shallcross and C. A. Taatjes, Science, 2012, 335, 204-207. 2. C. J. Percival, O. Welz, A. J. Eskola, J. D. Savee, D. L. Osborn, D. O. Topping, D. Lowe, S. R. Utembe, A. Bacak, G. McFiggans, M. C. Cooke, P. Xiao, A. T. Archibald, M. E. Jenkin, R. G. Derwent, I. Riipinen, D. W. K. Mok, E. P. F. Lee, J. M. Dyke, C. A. Taatjes and D. E. Shallcross, Faraday Discuss., 2013, 165, 45-73. 3. O. Welz, A. J. Eskola, L. Sheps, B. Rotavera, J. D. Savee, A. M. Scheer, D. L. Osborn, D. Lowe, A. M. Booth, P. Xiao, M. A. H. Khan, C. J. Percival, D. E. Shallcross and C. A. Taatjes, Angew. Chem. Int. Ed., 2014, 53, 4547-4550. 4. M. D. Hurley, M. P. S. Andersen, T. J. Wallington, D. A. Ellis, J. W. Martin and S. A. Mabury, J. Phys. Chem. A

  4. Effect of heavy atoms in bioluminescent reactions.

    Science.gov (United States)

    Kirillova, Tamara N; Kudryasheva, Nadezhda S

    2007-03-01

    Bioluminescent reactions of luminous organisms are excellent models for studying the effects of heavy atoms on enzymatic processes. The effects of potassium halides with halide anions of different atomic weight were compared in bioluminescent reactions of the firefly (Luciola mingrelica), a marine coelenterate (Obelia longissima), and a marine bacterium (Photobacterium leiognathi). Two mechanisms of the effects of the halides were examined-the physicochemical effect of the external heavy atom, based on spin-orbit interactions in electron-excited structures, and the biochemical effect, i.e. interactions with the enzymes resulting in changes of enzymatic activity. The physicochemical effect was evaluated by using photoexcitation of model fluorescent compounds (flavin mononucleotide, firefly luciferin, and coelenteramide) of similar structure to the bioluminescence emitters. The bioluminescent and photoluminescent inhibition coefficients were calculated and compared for the luminous organisms to evaluate the relative contributions of the two mechanisms. The biochemical mechanism was found to be dominant. Hence, the bioluminescent reactions can be used as assays to monitor enzyme inhibition, in metabolic processes, by Br or I-containing compounds.

  5. Classical helium atom with radiation reaction.

    Science.gov (United States)

    Camelio, G; Carati, A; Galgani, L

    2012-06-01

    We study a classical model of helium atom in which, in addition to the Coulomb forces, the radiation reaction forces are taken into account. This modification brings in the model a new qualitative feature of a global character. Indeed, as pointed out by Dirac, in any model of classical electrodynamics of point particles involving radiation reaction one has to eliminate, from the a priori conceivable solutions of the problem, those corresponding to the emission of an infinite amount of energy. We show that the Dirac prescription solves a problem of inconsistency plaguing all available models which neglect radiation reaction, namely, the fact that in all such models, most initial data lead to a spontaneous breakdown of the atom. A further modification is that the system thus acquires a peculiar form of dissipation. In particular, this makes attractive an invariant manifold of special physical interest, the zero-dipole manifold that corresponds to motions in which no energy is radiated away (in the dipole approximation). We finally study numerically the invariant measure naturally induced by the time-evolution on such a manifold, and this corresponds to studying the formation process of the atom. Indications are given that such a measure may be singular with respect to that of Lebesgue.

  6. Kinetic method for assaying the halogenating activity of myeloperoxidase based on reaction of celestine blue B with taurine halogenamines.

    Science.gov (United States)

    Sokolov, A V; Kostevich, V A; Kozlov, S O; Donskyi, I S; Vlasova, I I; Rudenko, A O; Zakharova, E T; Vasilyev, V B; Panasenko, O M

    2015-06-01

    Myeloperoxidase (MPO) is a challenging molecular target which, if put under control, may allow regulating the development of inflammatory reactions associated with oxidative/halogenative stress. In this paper, a new kinetic method for assaying the halogenating activity of MPO is described. The method is based on measuring the rate of iodide-catalyzed oxidation of celestine blue B (CB) by oxygen and taurine N-chloramine (bromamine). The latter is produced in a reaction of taurine with HOCl (HOBr). CB is not a substrate for the peroxidase activity of MPO and does not react with hydrogen peroxide and superoxide anion radical. Taurine N-chloramine (bromamine) reacts with CB in molar ratio of 1:2. Using the new method, we studied the dependence of MPO activity on concentration of substrates and inhibitors. The specificity of MPO inhibition by non-proteolyzed ceruloplasmin is characterized. The inhibition of taurine N-chloramine production by neutrophils and HL-60 cells in the presence of MPO-affecting substances is demonstrated. The new method allows determining the kinetic parameters of MPO halogenating activity and studying its inhibition by various substances, as well as screening for potential inhibitors of the enzyme.

  7. Reactions of butadiyne. 1: The reaction with hydrogen atoms

    Science.gov (United States)

    Schwanebeck, W.; Warnatz, J.

    1984-01-01

    The reaction of hydrogen (H) atoms with butadiene (C4H2) was studied at room temperature in a pressure range between w mbar and 10 mbar. The primary step was an addition of H to C4H2 which is in its high pressure range at p 1 mbar. Under these conditions the following addition of a second H atom lies in the transition region between low and high pressure range. Vibrationally excited C4H4 can be deactivated to form buten-(1)-yne-(3)(C4H4) or decomposes into two C2H2 molecules. The rate constant at room temperature for primary step is given. The second order rate constant for the consumption of buten-(1)-yne-(3) is an H atom excess at room temperature is given.

  8. Evaluated kinetic and photochemical data for atmospheric chemistry: Volume IV – gas phase reactions of organic halogen species

    Directory of Open Access Journals (Sweden)

    R. Atkinson

    2008-08-01

    Full Text Available This article, the fourth in the series, presents kinetic and photochemical data sheets evaluated by the IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry. It covers the gas phase and photochemical reactions of organic halogen species, which were last published in 1997, and were updated on the IUPAC website in 2006/07. The article consists of a summary sheet, containing the recommended kinetic parameters for the evaluated reactions, and four appendices containing the data sheets, which provide information upon which the recommendations are made.

  9. Reappraisal of nuclear quadrupole moments of atomic halogens via relativistic coupled cluster linear response theory for the ionization process.

    Science.gov (United States)

    Chaudhuri, Rajat K; Chattopadhyay, Sudip; Mahapatra, Uttam Sinha

    2013-11-27

    The coupled cluster based linear response theory (CCLRT) with four-component relativistic spinors is employed to compute the electric field gradients (EFG) of (35)Cl, (79)Br, and (127)I nuclei. The EFGs resulting from these calculations are combined with experimental nuclear quadrupole coupling constants (NQCC) to determine the nuclear quadrupole moments (NQM), Q of the halide nuclei. Our estimated NQMs [(35)Cl = -81.12 mb, (79)Br = 307.98 mb, and (127)I = -688.22 mb] agree well with the new atomic values [(35)Cl = -81.1(1.2), (79)Br = 302(5), and (127)I = -680(10) mb] obtained via Fock space multireference coupled cluster method with the Dirac-Coulomb-Breit Hamiltonian. Although our estimated Q((79)Br) value deviates from the accepted reference value of 313(3) mb, it agrees well with the recently recommended value, Q((79)Br) = 308.7(20) mb. Good agreement with current reference data indicates the accuracy of the proposed value for these halogen nuclei and lends credence to the results obtained via CCLRT approach. The electron affinities yielded by this method with no extra cost are also in good agreement with experimental values, which bolster our belief that the NQMs values for halogen nuclei derived here are reliable.

  10. Ultrafast photochemistry of polyatomic molecules containing labile halogen atoms in solution

    Science.gov (United States)

    Mereshchenko, Andrey S.

    Because breaking and making of chemical bonds lies at the heart of chemistry, this thesis focuses on dynamic studies of labile molecules in solutions using ultrafast transient absorption spectroscopy. Specifically, my interest is two-fold: (i) novel reaction intermediates of polyhalogenated carbon, boron and phosphorus compounds; (ii) photophysics and photochemistry of labile copper(II) halide complexes. Excitation of CH2Br2, CHBr3, BBr 3, and PBr3 into n(Br)sigma*(X-Br) states, where X=C, B, or P, leads to direct photoisomerization with formation of isomers having Br-Br bonds as well as rupture of one of X-Br bonds with the formation of a Br atom and a polyatomic radical fragment, which subsequently recombine to form similar isomer products. Nonpolar solvation stabilizes the isomers, consistent with intrinsic reaction coordinate calculations of the isomer ground state potential energy surfaces at the density functional level of theory, and consequently, the involvement of these highly energetic species on chemically-relevant time scales needs to be taken into account. Monochlorocomplexes in methanol solutions promoted to the ligand-to-metal charge transfer (LMCT) excited state predominantly undergo internal conversion via back electron transfer, giving rise to vibrationally hot ground-state parent complexes. Copper-chloride homolitical bond dissociation yielding the solvated copper(I) and Cl- atom/solvent CT complexes constitutes a minor pathway. Insights into ligand substitution mechanisms were acquired by monitoring the recovery of monochloro complexes at the expense of two unexcited dichloro- and unsubstituted forms of Cu(II) complexes also present in the solution. Detailed description of ultrafast excited-state dynamics of CuCl 42- complexes in acetonitrile upon excitation into all possible Ligand Field (LF) excited states and two most intense LMCT transitions is reported. The LF states were found to be nonreactive with lifetimes remarkably longer than those

  11. Atoms of multistationarity in chemical reaction networks

    CERN Document Server

    Joshi, Badal

    2011-01-01

    Chemical reaction networks taken with mass-action kinetics are dynamical systems that arise in chemical engineering and systems biology. Deciding whether a chemical reaction network admits multiple positive steady states is to determine existence of multiple positive solutions to a system of polynomials with unknown coefficients. In this work, we consider the question of whether the minimal (in a precise sense) networks, which we propose to call `atoms of multistationarity,' characterize the entire set of multistationary networks. We show that if a subnetwork admits multiple nondegenerate positive steady states, then these steady states can be extended to establish multistationarity of a larger network, provided that the two networks share the same stoichiometric subspace. Our result provides the mathematical foundation for a technique used by Siegal-Gaskins et al. of establishing bistability by way of `network ancestry.' Here, our main application is for enumerating small multistationary continuous-flow stir...

  12. Theoretical Investigation on the Substituent Effect of Halogen Atoms at the C8 Position of Adenine: Relative Stability, Vibrational Frequencies, and Raman Spectra of Tautomers.

    Science.gov (United States)

    Chen, Yan-Li; Wu, De-Yin; Tian, Zhong-Qun

    2016-06-16

    We have theoretically investigated the substituent effect of adenine at the C8 position with a substituent X = H, F, Cl, and Br by using the density functional theory (DFT) at the B3LYP/6-311+G(d, p) level. The aim is to study the substituent effect of halogen atoms on the relative stability, vibrational frequencies, and solvation effect of tautomers. Our calculated results show that for substituted adenine molecules the N9H8X tautomer to be the most stable structure in gas phase at the present theoretical level. Here N9H8X denotes the hydrogen atom binds to the N9 position of imidazole ring and X denotes H, F, Cl, and Br atoms. The influence of the induced attraction of the fluorine substituent is significantly larger than chlorine and bromine ones. The halogen substituent effect has a significant influence on changes of vibrational frequencies and Raman intensities.

  13. Evidence of Faradaic Reactions in Electrostatic Atomizers.

    Science.gov (United States)

    Sankaran, A; Staszel, C; Sahu, R P; Yarin, A L; Mashayek, F

    2017-02-14

    Any rational theory of electrostatic atomizers (EAs) would require a detailed understanding of the nature of the polarized layer near the electrode, since this is the source of the electric charge carried by the jets issued from the EAs. The polarized layer either is driven out as the electrically-driven Smoluchowski flow and/or entrained by the viscous shear imposed by the bulk flow. The standard Gouy-Chapman theory of polarized diffuse layers implies zero electric current passing across the layer, which is impossible to reconcile with the fact that there are leak currents in the EAs. Here, we show that the electric current through the EA is controlled by faradaic reactions at the electrodes. The experiments were conducted with stainless steel or brass pin-like cathodes and three different anode (the conical nozzle) materials, which were copper, stainless steel, and brass. The different electrode materials resulted in different spray, leakage, and total currents in all the cases. Accordingly, it is shown that the total electric current generated by EAs can be controlled by the cathode and anode materials, i.e., by faradaic reactions on them. This lays the foundation for a more detailed understanding and description of the operation of EAs.

  14. Accurate atom-mapping computation for biochemical reactions.

    Science.gov (United States)

    Latendresse, Mario; Malerich, Jeremiah P; Travers, Mike; Karp, Peter D

    2012-11-26

    The complete atom mapping of a chemical reaction is a bijection of the reactant atoms to the product atoms that specifies the terminus of each reactant atom. Atom mapping of biochemical reactions is useful for many applications of systems biology, in particular for metabolic engineering where synthesizing new biochemical pathways has to take into account for the number of carbon atoms from a source compound that are conserved in the synthesis of a target compound. Rapid, accurate computation of the atom mapping(s) of a biochemical reaction remains elusive despite significant work on this topic. In particular, past researchers did not validate the accuracy of mapping algorithms. We introduce a new method for computing atom mappings called the minimum weighted edit-distance (MWED) metric. The metric is based on bond propensity to react and computes biochemically valid atom mappings for a large percentage of biochemical reactions. MWED models can be formulated efficiently as Mixed-Integer Linear Programs (MILPs). We have demonstrated this approach on 7501 reactions of the MetaCyc database for which 87% of the models could be solved in less than 10 s. For 2.1% of the reactions, we found multiple optimal atom mappings. We show that the error rate is 0.9% (22 reactions) by comparing these atom mappings to 2446 atom mappings of the manually curated Kyoto Encyclopedia of Genes and Genomes (KEGG) RPAIR database. To our knowledge, our computational atom-mapping approach is the most accurate and among the fastest published to date. The atom-mapping data will be available in the MetaCyc database later in 2012; the atom-mapping software will be available within the Pathway Tools software later in 2012.

  15. Reaction studies of hot silicon, germanium and carbon atoms

    Energy Technology Data Exchange (ETDEWEB)

    Gaspar, P.P.

    1990-11-01

    The goal of this project was to increase the authors understanding of the interplay between the kinetic and electronic energy of free atoms and their chemical reactivity by answering the following questions: (1) what is the chemistry of high-energy carbon silicon and germanium atoms recoiling from nuclear transformations; (2) how do the reactions of recoiling carbon, silicon and germanium atoms take place - what are the operative reaction mechanisms; (3) how does the reactivity of free carbon, silicon and germanium atoms vary with energy and electronic state, and what are the differences in the chemistry of these three isoelectronic atoms This research program consisted of a coordinated set of experiments capable of achieving these goals by defining the structures, the kinetic and internal energy, and the charge states of the intermediates formed in the gas-phase reactions of recoiling silicon and germanium atoms with silane, germane, and unsaturated organic molecules, and of recoiling carbon atoms with aromatic molecules. The reactions of high energy silicon, germanium, and carbon atoms created by nuclear recoil were studied with substrates chosen so that their products illuminated the mechanism of the recoil reactions. Information about the energy and electronic state of the recoiling atoms at reaction was obtained from the variation in end product yields and the extent of decomposition and rearrangement of primary products (usually reactive intermediates) as a function of total pressure and the concentration of inert moderator molecules that remove kinetic energy from the recoiling atoms and can induce transitions between electronic spin states. 29 refs.

  16. Tandem halogenation/Michael-initiated ring-closing reaction of α,β-unsaturated nitriles and activated methylene compounds: one-pot diastereoselective synthesis of functionalized cyclopropanes.

    Science.gov (United States)

    Xin, Xiaoqing; Zhang, Qian; Liang, Yongjiu; Zhang, Rui; Dong, Dewen

    2014-04-21

    An efficient one-pot synthetic route to highly substituted cyclopropanes has been developed from readily available α,β-unsaturated nitriles and doubly activated methylene compounds under very mild conditions in a highly diastereoselective manner, which involves halogenation, Michael addition and intramolecular ring-closing reaction sequences.

  17. Stereodynamical Origin of Anti-Arrhenius Kinetics: Negative Activation Energy and Roaming for a Four-Atom Reaction.

    Science.gov (United States)

    Coutinho, Nayara D; Silva, Valter H C; de Oliveira, Heibbe C B; Camargo, Ademir J; Mundim, Kleber C; Aquilanti, Vincenzo

    2015-05-07

    The OH + HBr → H2O + Br reaction, prototypical of halogen-atom liberating processes relevant to mechanisms for atmospheric ozone destruction, attracted frequent attention of experimental chemical kinetics: the nature of the unusual reactivity drop from low to high temperatures eluded a variety of theoretical efforts, ranking this one among the most studied four-atom reactions. Here, inspired by oriented molecular-beams experiments, we develop a first-principles stereodynamical approach. Thermalized sets of trajectories, evolving on a multidimensional potential energy surface quantum mechanically generated on-the-fly, provide a map of most visited regions at each temperature. Visualizations of rearrangements of bonds along trajectories and of the role of specific angles of reactants' mutual approach elucidate the mechanistic change from the low kinetic energy regime (where incident reactants reorient to find the propitious alignment leading to reaction) to high temperature (where speed hinders adjustment of directionality and roaming delays reactivity).

  18. Synthesis, characterization and biological approach of metal chelates of some first row transition metal ions with halogenated bidentate coumarin Schiff bases containing N and O donor atoms.

    Science.gov (United States)

    Prabhakara, Chetan T; Patil, Sangamesh A; Toragalmath, Shivakumar S; Kinnal, Shivashankar M; Badami, Prema S

    2016-04-01

    The impregnation of halogen atoms in a molecule is an emerging trend in pharmaceutical chemistry. The presence of halogens (Cl, Br, I and F) increases the lipophilic nature of molecule and improves the penetration of lipid membrane. The presence of electronegative halogen atoms increases the bio- activity of core moiety. In the present study, Co(II), Ni(II) and Cu(II) complexes are synthesised using Schiff bases (HL(I) and HL(II)), derived from 8-formyl-7-hydroxy-4-methylcoumarin/3-chloro-8-formyl-7-hydroxy-4-methylcoumarin with 2,4-difluoroaniline/o-toluidine respectively. The synthesized compounds were characterized by spectral (IR, NMR, UV-visible, Mass, ESI-MS, ESR), thermal, fluorescence and molar conductivity studies. All the synthesized metal complexes are completely soluble in DMF and DMSO. The non-electrolytic nature of the metal complexes was confirmed by molar conductance studies. Elemental analysis study suggest [ML2(H2O)2] stoichiometry, here M=Co(II), Ni(II) and Cu(II), L=deprotonated ligand. The obtained IR data supports the binding of metal ion to Schiff base. Thermal study suggests the presence of coordinated water molecules. Electronic spectral results reveal six coordinated geometry for the synthesized metal complexes. The Schiff bases and their metal complexes were evaluated for antibacterial (Pseudomonas aureginosa and Proteus mirabilis), antifungal (Aspergillus niger and Rhizopus oryzae), anthelmintic (Pheretima posthuma) and DNA cleavage (Calf Thymus DNA) activities.

  19. Halogen versus halide electronic structure

    Institute of Scientific and Technical Information of China (English)

    Willem-Jan; van; Zeist; F.Matthias; Bickelhaupt

    2010-01-01

    Halide anions X-are known to show a decreasing proton affinity(PA),as X descends in the periodic table along series F,Cl,Br and I.But it is also well-known that,along this series,the halogen atom X becomes less electronegative(or more electropositive).This corresponds to an increasing energy of the valence np atomic orbital(AO) which,somewhat contradictorily,suggests that the electron donor capability and thus the PA of the halides should increase along the series F,Cl,Br,I.To reconcile these contradictory observations,we have carried out a detailed theoretical analysis of the electronic structure and bonding capability of the halide anions X-as well as the halogen radicals X-,using the molecular orbital(MO) models contained in Kohn-Sham density functional theory(DFT,at SAOP/TZ2P as well as OLYP/TZ2P levels) and ab initio theory(at the HF/TZ2P level).We also resolve an apparent intrinsic contradiction in Hartree-Fock theory between orbital-energy and PA trends.The results of our analyses are of direct relevance for understanding elementary organic reactions such as nucleophilic substitution(SN2) and base-induced elimination(E2) reactions.

  20. Halogens in the atmosphere

    Science.gov (United States)

    Cicerone, R. J.

    1981-01-01

    Atmospheric halogen measurement data are presented for: (1) inorganic and organic gaseous compounds of chlorine, fluorine, bromine and iodine; and (2) chloride, fluoride, bromide and iodine in particulate form and in precipitation. The roles that these data and other, unavailable data play in the determination of the global cycles of the halogens are discussed. It is found that the speciation of the halogen gases in the troposphere is uncertain, with the only inorganic species detected by species-specific methods being HC1 and SF6. It is shown that heterogeneous reactions, both gas-to-particle and particle-to-gas processes, precipitation removal, and sea-salt aerosol generation and fractionation processes, need quantitative investigation to allow progress in estimating halogen sources and sinks. Where practical, quantitative comparisons are made between measured and predicted concentrations.

  1. Halogens in the atmosphere

    Science.gov (United States)

    Cicerone, R. J.

    1981-01-01

    Atmospheric halogen measurement data are presented for: (1) inorganic and organic gaseous compounds of chlorine, fluorine, bromine and iodine; and (2) chloride, fluoride, bromide and iodine in particulate form and in precipitation. The roles that these data and other, unavailable data play in the determination of the global cycles of the halogens are discussed. It is found that the speciation of the halogen gases in the troposphere is uncertain, with the only inorganic species detected by species-specific methods being HC1 and SF6. It is shown that heterogeneous reactions, both gas-to-particle and particle-to-gas processes, precipitation removal, and sea-salt aerosol generation and fractionation processes, need quantitative investigation to allow progress in estimating halogen sources and sinks. Where practical, quantitative comparisons are made between measured and predicted concentrations.

  2. Mechanisms of halogen-based covalent self-assembly on metal surfaces.

    Science.gov (United States)

    Björk, Jonas; Hanke, Felix; Stafström, Sven

    2013-04-17

    We computationally study the reaction mechanisms of halogen-based covalent self-assembly, a major route for synthesizing molecular nanostructures and nanographenes on surfaces. Focusing on biphenyl as a small model system, we describe the dehalogenation, recombination, and diffusion processes. The kinetics of the different processes are also investigated, in particular how diffusion and coupling barriers affect recombination rates. Trends across the periodic table are derived from three commonly used close-packed (111) surfaces (Cu, Ag, and Au) and two halogens (Br and I). We show that the halogen atoms can poison the surface, thus hindering long-range ordering of the self-assembled structures. Finally, we present core-level shifts of the relevant carbon and halogen atoms, to provide reference data for reliably detecting self-assembly without the need for atomic-resolution scanning tunneling microscopy.

  3. Molecular Beam Studies of Hot Atom Chemical Reactions: Reactive Scattering of Energetic Deuterium Atoms

    Science.gov (United States)

    Continetti, R. E.; Balko, B. A.; Lee, Y. T.

    1989-02-01

    A brief review of the application of the crossed molecular beams technique to the study of hot atom chemical reactions in the last twenty years is given. Specific emphasis is placed on recent advances in the use of photolytically produced energetic deuterium atoms in the study of the fundamental elementary reactions D + H{sub 2} -> DH + H and the substitution reaction D + C{sub 2}H{sub 2} -> C{sub 2}HD + H. Recent advances in uv laser and pulsed molecular beam techniques have made the detailed study of hydrogen atom reactions under single collision conditions possible.

  4. Dramatic effects of halogen substitution and solvent on the rates and mechanisms of nucleophilic substitution reactions of aziridines.

    Science.gov (United States)

    Banks, Harold D

    2008-04-04

    In a previous study we reported that fluorine substitution at the carbon positions of aziridine results in profound enhancements of the rate of reaction with ammonia, a typical nucleophile, in the gas phase. In this study the investigation is extended to include chloro- and bromoaziridines. Because syntheses are largely performed in the condensed phase, the present computational investigation [(MP2(Full)/6-311++G(d,p)//MP2(Full)/6-31+G(d) level] was conducted with three typical solvents that cover a wide range of polarity: THF, CH3CN, and H2O. Nucleophiles can react with haloaziridines 1 by displacing a substituted amide ion by means of an SN2 mechanism (pathway a), producing 1,2-diaminohaloethanes (from the initially formed dipolar species 2). Alternatively, a rearrangement mechanism involving rate-determining departure of a halide ion (pathway b) to form an imidoyl halide, 3, is possible. Transition-state theory was used to compute relative reaction rates of these mechanistic possibilities and to assess the role of the halogen substituents and the reaction solvent. Gas-phase results provided the basis of mechanistic insights that were more apparent in the absence of intermolecular interactions. Fluoroaziridines were found to react at accelerated rates relative to aziridine exclusively by means of the a Menshutkin-type mechanism (SN2) in each solvent tested, while the reactions of the chloro- and bromoaziridines could be directed toward 2 in the highly nonpolar solvent, cyclohexane, or toward 3 in the more polar solvents. An assessment is made of the feasibility of using this chemistry of the haloazirdines in the synthetic laboratory.

  5. Single-Atom Catalysts of Precious Metals for Electrochemical Reactions.

    Science.gov (United States)

    Kim, Jiwhan; Kim, Hee-Eun; Lee, Hyunjoo

    2017-09-11

    Single-atom catalysts (SACs), where the metal atom is dispersed on the support without forming nanoparticles, have been used for various heterogeneous reactions and most recently for electro-chemical reactions. In this mini-review, we introduce recent exam-ples of single-atom electrocatalysts used for the oxygen reduction reaction (ORR), hydrogen oxidation reaction (HOR), hydrogen evo-lution reaction (HER), formic acid oxidation reaction (FAOR), and methanol oxidation reaction (MOR). Many density functional theory (DFT) simulations have predicted that SACs may be effective for CO2 reduction towards methane or methanol production while sup-pressing H2 evolution, and those cases are introduced here as well. Single atoms, mainly Pt single atoms, have been deposited on TiN or TiC nanoparticles, defective graphene nanosheets, N-doped covalent triazine framework, graphitic carbon nitride, S-doped zeo-lite template carbon, and Sb-doped SnO2 surfaces. Scanning transmission electron microscopy, extended X-ray absorption fine structure measurement, and in-situ infrared spectroscopy have been used to detect the single-atom structure and confirm the ab-sence of nanoparticles. SACs have shown high mass activity, min-imizing the use of precious metal, and unique selectivity distinct from nanoparticle catalysts due to the absence of ensemble sites. Additional features that SACs should possess for effective elec-trochemical applications were also suggested. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Reactions the private life of atoms

    CERN Document Server

    Atkins, Peter

    2011-01-01

    Through an innovative, closely integrated design of images and text, and his characteristically clear, precise, and economical exposition, Peter Atkins explains the processes involved in chemical reactions. He begins by introducing a 'tool kit' of basic reactions, such as precipitation, corrosion, and catalysis, and concludes by showing how these building blocks are brought together in more complex processes such as photosynthesis.

  7. Fine tuning of graphene properties by modification with aryl halogens

    Science.gov (United States)

    Bouša, D.; Pumera, M.; Sedmidubský, D.; Šturala, J.; Luxa, J.; Mazánek, V.; Sofer, Z.

    2016-01-01

    Graphene and its derivatives belong to one of the most intensively studied materials. The radical reaction using halogen derivatives of arene-diazonium salts can be used for effective control of graphene's electronic properties. In our work we investigated the influence of halogen atoms (fluorine, chlorine, bromine and iodine) as well as their position on the benzene ring towards the electronic and electrochemical properties of modified graphenes. The electronegativity as well as the position of the halogen atoms on the benzene ring has crucial influence on graphene's properties due to the inductive and mesomeric effects. The results of resistivity measurement are in good agreement with the theoretical calculations of electron density within chemically modified graphene sheets. Such simple chemical modifications of graphene can be used for controllable and scalable synthesis of graphene with tunable transport properties.Graphene and its derivatives belong to one of the most intensively studied materials. The radical reaction using halogen derivatives of arene-diazonium salts can be used for effective control of graphene's electronic properties. In our work we investigated the influence of halogen atoms (fluorine, chlorine, bromine and iodine) as well as their position on the benzene ring towards the electronic and electrochemical properties of modified graphenes. The electronegativity as well as the position of the halogen atoms on the benzene ring has crucial influence on graphene's properties due to the inductive and mesomeric effects. The results of resistivity measurement are in good agreement with the theoretical calculations of electron density within chemically modified graphene sheets. Such simple chemical modifications of graphene can be used for controllable and scalable synthesis of graphene with tunable transport properties. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06295k

  8. Comment on "Cosmic-ray-driven reaction and greenhouse effect of halogenated molecules: Culprits for atmospheric ozone depletion and global climate change"

    Science.gov (United States)

    Müller, Rolf; Grooß, Jens-Uwe

    2014-04-01

    Lu's "cosmic-ray-driven electron-induced reaction (CRE) theory" is based on the assumption that the CRE reaction of halogenated molecules (e.g., chlorofluorocarbons (CFCs), HCl, ClONO2) adsorbed or trapped in polar stratospheric clouds in the winter polar stratosphere is the key step in forming photoactive halogen species that are the cause of the springtime ozone hole. This theory has been extended to a warming theory of halogenated molecules for climate change. In this comment, we discuss the chemical and physical foundations of these theories and the conclusions derived from the theories. First, it is unclear whether the loss rates of halogenated molecules induced by dissociative electron attachment (DEA) observed in the laboratory can also be interpreted as atmospheric loss rates, but even if this were the case, the impact of DEA-induced reactions on polar chlorine activation and ozone loss in the stratosphere is limited. Second, we falsify several conclusions that are reported on the basis of the CRE theory: There is no polar ozone loss in darkness, there is no apparent 11-year periodicity in polar total ozone measurements, the age of air in the polar lower stratosphere is much older than 1-2 years, and the reported detection of a pronounced recovery (by about 20-25%) in Antarctic total ozone measurements by the year 2010 is in error. There are also conclusions about the future development of sea ice and global sea level which are fundamentally flawed because Archimedes' principle is neglected. Many elements of the CRE theory are based solely on correlations between certain datasets which are no substitute for providing physical and chemical mechanisms causing a particular behavior noticeable in observations. In summary, the CRE theory cannot be considered as an independent, alternative mechanism for polar stratospheric ozone loss and the conclusions on recent and future surface temperature and global sea level change do not have a physical basis.

  9. Reaction-diffusion patterns: From observations in halogene chemistry to a test for implication in mitosis

    Science.gov (United States)

    Dulos, E.; Hunding, A.; Boissonade, J.; de Kepper, P.

    Since the seminal paper "The chemical basis of morphogenesis" by Alan Turing, the temporal and spatial self-organization phenomena produced in chemically reacting and diffusing systems are often thought as paradigms for biological development. The basic theoretical principles on which the development of stationary concentration patterns (Turing structures) rely on are briefly presented. We review different aspects of our contribution to the experimental observation of reaction-diffusion patterns in iodine-oxychlorine systems. The experimental techniques are emphasized. Phase diagrams gathering different standing and travelling patterns are presented, analyzed and modeled. A special attention is also given to some peculiar pattern growth dynamics (spot division, finger splitting).

  10. Reactions of carbon atoms in pulsed molecular beams

    Energy Technology Data Exchange (ETDEWEB)

    Reisler, H. [Univ. of Southern California, Los Angeles (United States)

    1993-12-01

    This research program consists of a broad scope of experiments designed to unravel the chemistry of atomic carbon in its two spin states, P and D, by using well-controlled initial conditions and state-resolved detection of products. Prerequisite to the proposed studies (and the reason why so little is known about carbon atom reactions), is the development of clean sources of carbon atoms. Therefore, in parallel with the studies of its chemistry and reaction dynamics, the authors continuously explore new, state-specific and efficient ways of producing atomic carbon. In the current program, C({sup 3}P) is produced via laser ablation of graphite, and three areas of study are being pursued: (i) exothermic reactions with small inorganic molecules (e.g., O{sub 2}, N{sub 2}O, NO{sub 2}) that can proceed via multiple pathways; (ii) the influence of vibrational and translational energy on endothermic reactions involving H-containing reactants that yield CH products (e.g., H{sub 2}O H{sub 2}CO); (iii) reactions of C({sup 3}P) with free radicals (e.g., HCO, CH{sub 3}O). In addition, the authors plan to develop a source of C({sup 1}D) atoms by exploiting the pyrolysis of diazotetrazole and its salts in the ablation source. Another important goal involves collaboration with theoreticians in order to obtain relevant potential energy surfaces, rationalize the experimental results and predict the roles of translational and vibrational energies.

  11. Halogenation of cobalt dicarbollide

    Science.gov (United States)

    Hurlburt, Paul K.; Abney, Kent D.; Kinkead, Scott A.

    1997-01-01

    A method for selectively adding chlorine, bromine, or iodine to cobalt dicarbollide anions by means of electrophilic substitution reactions. Halogens are added only to the B10 and B10' positions of the anion. The process involves use of hypohalous acid or N-halosuccinimide or gaseous chlorine in the presence of iron.

  12. ReactionMap: an efficient atom-mapping algorithm for chemical reactions.

    Science.gov (United States)

    Fooshee, David; Andronico, Alessio; Baldi, Pierre

    2013-11-25

    Large databases of chemical reactions provide new data-mining opportunities and challenges. Key challenges result from the imperfect quality of the data and the fact that many of these reactions are not properly balanced or atom-mapped. Here, we describe ReactionMap, an efficient atom-mapping algorithm. Our approach uses a combination of maximum common chemical subgraph search and minimization of an assignment cost function derived empirically from training data. We use a set of over 259,000 balanced atom-mapped reactions from the SPRESI commercial database to train the system, and we validate it on random sets of 1000 and 17,996 reactions sampled from this pool. These large test sets represent a broad range of chemical reaction types, and ReactionMap correctly maps about 99% of the atoms and about 96% of the reactions, with a mean time per mapping of 2 s. Most correctly mapped reactions are mapped with high confidence. Mapping accuracy compares favorably with ChemAxon's AutoMapper, versions 5 and 6.1, and the DREAM Web tool. These approaches correctly map 60.7%, 86.5%, and 90.3% of the reactions, respectively, on the same data set. A ReactionMap server is available on the ChemDB Web portal at http://cdb.ics.uci.edu .

  13. Controlled state-to-state atom-exchange reaction in an ultracold atom-dimer mixture

    CERN Document Server

    Rui, Jun; Liu, Lan; Zhang, De-Chao; Liu, Ya-Xiong; Nan, Jue; Zhao, Bo; Pan, Jian-Wei

    2016-01-01

    Ultracold molecules offer remarkable opportunities to study chemical reactions at nearly zero temperature. Although significant progresses have been achieved in exploring ultracold bimolecular reactions, the investigations are usually limited to measurements of the overall loss rates of the reactants. Detection of the reaction products will shed new light on understanding the reaction mechanism and provide a unique opportunity to study the state-to-state reaction dynamics. Here we report on the direct observation of an exoergic atom-exchange reaction in an ultracold atom-dimer mixture. Both the atom and molecule products are observed and the quantum states are characterized. By changing the magnetic field, the reaction can be switched on or off, and the reaction rate can be controlled. The reaction is efficient and we have measured a state-to-state reaction rate of up to $1.1(3)\\times10^{-9}$cm$^{3}/$s from the time evolution of the reactants and products. Our work represents the realization of a controlled q...

  14. Models for identification of erroneous atom-to-atom mapping of reactions performed by automated algorithms.

    Science.gov (United States)

    Muller, Christophe; Marcou, Gilles; Horvath, Dragos; Aires-de-Sousa, João; Varnek, Alexandre

    2012-12-21

    Machine learning (SVM and JRip rule learner) methods have been used in conjunction with the Condensed Graph of Reaction (CGR) approach to identify errors in the atom-to-atom mapping of chemical reactions produced by an automated mapping tool by ChemAxon. The modeling has been performed on the three first enzymatic classes of metabolic reactions from the KEGG database. Each reaction has been converted into a CGR representing a pseudomolecule with conventional (single, double, aromatic, etc.) bonds and dynamic bonds characterizing chemical transformations. The ChemAxon tool was used to automatically detect the matching atom pairs in reagents and products. These automated mappings were analyzed by the human expert and classified as "correct" or "wrong". ISIDA fragment descriptors generated for CGRs for both correct and wrong mappings were used as attributes in machine learning. The learned models have been validated in n-fold cross-validation on the training set followed by a challenge to detect correct and wrong mappings within an external test set of reactions, never used for learning. Results show that both SVM and JRip models detect most of the wrongly mapped reactions. We believe that this approach could be used to identify erroneous atom-to-atom mapping performed by any automated algorithm.

  15. Intrinsic barriers for H-atom transfer reactions involving hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Camaioni, D.M.; Autrey, S.T.; Franz, J.A.

    1994-08-01

    Intrinsic barriers (formally the barrier in the absence of driving force) for H-atom transfer reactions are key parameters in Evans-Polyanyi and Marcus equations for estimating exothermic reaction barriers and are fundamentally significant for the insight they provide about bond reorganization energies for formation of transition state structures. Although knowable from experiment, relatively few of these barriers have been measured due to experimental difficulties in measuring rates for identity reactions. Thus, the authors have used semiempirical Molecular Orbital theoretical methods (MNDO/PM3) to calculate barriers for a series of H-atom transfer identity reactions involving alkyl, alkenyl, arylalkyl and hydroaryl radicals and donors. Briefly stated, they find that barriers decrease with the degree of alkyl substitution at the radical site whereas barriers increase with the degree of conjugation with the radical site. Details of the methodology and analyses of how these barrier heights correlate with reactant and transition state properties will be presented and discussed.

  16. Atomic-level insights in optimizing reaction paths for hydroformylation reaction over Rh/CoO single-atom catalyst.

    Science.gov (United States)

    Wang, Liangbing; Zhang, Wenbo; Wang, Shenpeng; Gao, Zehua; Luo, Zhiheng; Wang, Xu; Zeng, Rui; Li, Aowen; Li, Hongliang; Wang, Menglin; Zheng, Xusheng; Zhu, Junfa; Zhang, Wenhua; Ma, Chao; Si, Rui; Zeng, Jie

    2016-12-22

    Rh-based heterogeneous catalysts generally have limited selectivity relative to their homogeneous counterparts in hydroformylation reactions despite of the convenience of catalyst separation in heterogeneous catalysis. Here, we develop CoO-supported Rh single-atom catalysts (Rh/CoO) with remarkable activity and selectivity towards propene hydroformylation. By increasing Rh mass loading, isolated Rh atoms switch to aggregated clusters of different atomicity. During the hydroformylation, Rh/CoO achieves the optimal selectivity of 94.4% for butyraldehyde and the highest turnover frequency number of 2,065 h(-1) among the obtained atomic-scale Rh-based catalysts. Mechanistic studies reveal that a structural reconstruction of Rh single atoms in Rh/CoO occurs during the catalytic process, facilitating the adsorption and activation of reactants. In kinetic view, linear products are determined as the dominating products by analysing reaction paths deriving from the two most stable co-adsorbed configurations. As a bridge of homogeneous and heterogeneous catalysis, single-atom catalysts can be potentially applied in other industrial reactions.

  17. Atomic-level insights in optimizing reaction paths for hydroformylation reaction over Rh/CoO single-atom catalyst

    Science.gov (United States)

    Wang, Liangbing; Zhang, Wenbo; Wang, Shenpeng; Gao, Zehua; Luo, Zhiheng; Wang, Xu; Zeng, Rui; Li, Aowen; Li, Hongliang; Wang, Menglin; Zheng, Xusheng; Zhu, Junfa; Zhang, Wenhua; Ma, Chao; Si, Rui; Zeng, Jie

    2016-12-01

    Rh-based heterogeneous catalysts generally have limited selectivity relative to their homogeneous counterparts in hydroformylation reactions despite of the convenience of catalyst separation in heterogeneous catalysis. Here, we develop CoO-supported Rh single-atom catalysts (Rh/CoO) with remarkable activity and selectivity towards propene hydroformylation. By increasing Rh mass loading, isolated Rh atoms switch to aggregated clusters of different atomicity. During the hydroformylation, Rh/CoO achieves the optimal selectivity of 94.4% for butyraldehyde and the highest turnover frequency number of 2,065 h-1 among the obtained atomic-scale Rh-based catalysts. Mechanistic studies reveal that a structural reconstruction of Rh single atoms in Rh/CoO occurs during the catalytic process, facilitating the adsorption and activation of reactants. In kinetic view, linear products are determined as the dominating products by analysing reaction paths deriving from the two most stable co-adsorbed configurations. As a bridge of homogeneous and heterogeneous catalysis, single-atom catalysts can be potentially applied in other industrial reactions.

  18. New small molecule inhibitors of histone methyl transferase DOT1L with a nitrile as a non-traditional replacement for heavy halogen atoms.

    Science.gov (United States)

    Spurr, Sophie S; Bayle, Elliott D; Yu, Wenyu; Li, Fengling; Tempel, Wolfram; Vedadi, Masoud; Schapira, Matthieu; Fish, Paul V

    2016-09-15

    A number of new nucleoside derivatives are disclosed as inhibitors of DOT1L activity. SARs established that DOT1L inhibition could be achieved through incorporation of polar groups and small heterocycles at the 5-position (5, 6, 12) or by the application of alternative nitrogenous bases (18). Based on these results, CN-SAH (19) was identified as a potent and selective inhibitor of DOT1L activity where the polar 5-nitrile group was shown by crystallography to bind in the hydrophobic pocket of DOT1L. In addition, we show that a polar nitrile group can be used as a non-traditional replacement for heavy halogen atoms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Halogen Bonding in Organic Synthesis and Organocatalysis.

    Science.gov (United States)

    Bulfield, David; Huber, Stefan M

    2016-10-01

    Halogen bonding is a noncovalent interaction similar to hydrogen bonding, which is based on electrophilic halogen substituents. Hydrogen-bonding-based organocatalysis is a well-established strategy which has found numerous applications in recent years. In light of this, halogen bonding has recently been introduced as a key interaction for the design of activators or organocatalysts that is complementary to hydrogen bonding. This Concept features a discussion on the history and electronic origin of halogen bonding, summarizes all relevant examples of its application in organocatalysis, and provides an overview on the use of cationic or polyfluorinated halogen-bond donors in halide abstraction reactions or in the activation of neutral organic substrates.

  20. Co-existing Intermolecular Halogen Bonding and Hydrogen Bonding in the Compound Trans-5,10-bis(1-bromodifluoroacetyl-1-ethoxycarbonyl-methylidene)thianthrene

    Institute of Scientific and Technical Information of China (English)

    ZHU Shi-Fa祝诗发; ZHU Shi-Zheng朱士正; LIAO Yuan-Xi廖远熹; HUANG Chao-Feng黄超峰; LI Zhan-Ting黎占亭

    2004-01-01

    Trans-5,10-bis(1-bromodifluoroacetyl-1-ethoxycarbonyl-methylidene)thianthrene (1b) was prepared from the reaction of BrCF2COC(N2)CO2Et with thianthrene. X-ray single crystal diffraction analysis showed that the intermolecular halogen bonding and hydrogen bonding coexisted in this compound. The bromine atom acted as an electron acceptor in the halogen bond and an electron donor in the hydrogen bond. It is the first example that the bromine atom acted as such a dual role in the hydrogen and halogen bond.

  1. Reaction to Halogens and Interhalogens with 4-Halo-1,1,2-trifluorobut-1-enes: Rearrangement of 3-Membered Halonium to 5-Membered Trifluorotetramethylene Halonium Ion Intermediates and Comparison of Open-Chloronium Fluorosubstituted Ions to Flurocarbocations from Protons (Preprint)

    Science.gov (United States)

    2008-02-28

    from preparative scale reactions , or they were independently synthesized and/or converted by SN2 reactions to known compounds. Product 8 was...22, 23, and 24 are characterized in the Supporting Information. Several reaction products were converted by SN2 reaction of halide ion to replace...the number-4 halogen converting it to a known compound. Thus compounds 10, 11, 22 and 24 were converted by SN2 reactions to known or characterized

  2. An STM study of the localized atomic reaction of 1,2- and 1,4-dibromoxylene with Si(1 1 1)-7 × 7

    Science.gov (United States)

    Dobrin, Sergey; Rajamma Harikumar, K.; Matta, Chérif F.; Polanyi, John C.

    2005-04-01

    Thermal reactions of 1,2- and 1,4-dibromoxylene (1,2- and 1,4-diBrXy) with Si(1 1 1)-7 × 7 were investigated by STM at room temperature under UHV conditions. Reaction led to the formation of single adsorbed Br-atoms or pairs of Br-atoms, in a ratio approx. 3:1 for both reagents. Experimental results were interpreted in terms of 'parent-mediated' (halogen atom accompanied by organic residue), and 'daughter-mediated' (no accompanying organic residue) reaction dynamics. Both mechanisms contributed to the bromination of the silicon surface in comparable amounts. For pairs of bromine atoms the Br-Br separation had a most probable value of 7.6 Å for 1,2-diBrXy, and 11.5 Å for 1,4-diBrXy. This separation was in each case greater than that in the diBrXy parent molecule by a few angstroms. For parent-mediated reaction the dynamics were revealed in detail by the STM images which gave the vectorial location of the halogen-atom products (distance and angle of the daughter atoms) relative to the prior location and alignment of the adsorbed parent molecule. Both reagents, 1,2- and 1,4-diBrXy, were found to be less reactive than the corresponding dibromobenzenes studied earlier in this laboratory [S. Dobrin et al., Surf. Sci. 561 (2004) 11], in both parent- and daughter-mediated modes.

  3. Free Radical Halogenation, Selectivity, and Thermodynamics: The Polanyi Principle and Hammond's Postulate

    Science.gov (United States)

    Scala, Alfred A.

    2004-01-01

    The underlying ideas of the Polanyi principle and Hammond's postulate in relation to the simple free halogenation reactions and their selectivity and thermodynamics is presented. The results indicate that the chlorine atom exhibits a slightly less selectivity in the liquid phase as compared to in the gas phase.

  4. Cytotoxicity of halogenated graphenes

    Science.gov (United States)

    Teo, Wei Zhe; Khim Chng, Elaine Lay; Sofer, Zdeněk; Pumera, Martin

    2013-12-01

    Graphene and its family of derivatives possess unique and remarkable physicochemical properties which make them valuable materials for applications in many areas like electronics, energy storage and biomedicine. In response to the possibility of its large-scale manufacturing as commercial products in the future, an investigation was conducted to determine the cytotoxicity of one particular family of graphene derivatives, the halogenated graphenes, for the first time. Halogenated graphenes were prepared through thermal exfoliation of graphite oxide in gaseous chlorine, bromine or iodine atmospheres to yield chlorine- (TRGO-Cl), bromine- (TRGO-Br) and iodine-doped graphene (TRGO-I) respectively. 24 h exposure of human lung carcinoma epithelial cells (A549) to the three halogenated graphenes and subsequent cell viability assessments using methylthiazolyldiphenyl-tetrazolium bromide (MTT) and water-soluble tetrazolium salt (WST-8) assays revealed that all the halogenated graphenes examined are rather cytotoxic at the concentrations tested (3.125 μg mL-1 to 200 μg mL-1) and the effects are dose-dependent, with TRGO-Cl reducing the cell viability to as low as 25.7% at the maximum concentration of 200 μg mL-1. Their levels of cytotoxicity can be arranged in the order of TRGO-Cl > TRGO-Br > TRGO-I, and it is suggested that the amount of halogen present in the graphene material is the determining factor for the observed trend. Control experiments were carried out to test for possible nanomaterial-induced interference as a consequence of reaction between the halogenated graphenes and the viability markers (MTT/WST-8 reagent) or binding of the formazan products under cell-free conditions. The data obtained eliminate the probability of significant influence by these interferents as the change in the normalized percentage of formazan formed is relatively small and thorough washings were performed prior to the viability assessments to reduce the amount of halogenated

  5. The reaction of formyl radical with chlorine atom

    Science.gov (United States)

    Qu, Zhang-Wang; Dong, Feng; Zhang, Qiyuan; Kong, Fanao

    2004-03-01

    The radical-radical reaction of formyl radical with chlorine atom has been investigated by the time-resolved infrared emission spectroscopy and by the theoretical calculations at the UB3LYP/6-31++G(d,p) and single-point UCCSD(T)/6-311++G(d,p) levels. The products have been verified as the vibrationally excited CO ( v⩽4) and HCl. The reaction is initiated by radical-radical recombination forming an intermediate of formaldehyde chloride, which further dissociates into the products of HCl and CO.

  6. *H atom and *OH radical reactions with 5-methylcytosine.

    Science.gov (United States)

    Grand, A; Morell, C; Labet, V; Cadet, J; Eriksson, L A

    2007-09-20

    The reactions between either a hydrogen atom or a hydroxyl radical and 5-methylcytosine (5-MeCyt) are studied by using the hybrid kinetic energy meta-GGA functional MPW1B95. *H atom and *OH radical addition to positions C5 and C6 of 5-MeCyt, or *OH radical induced H-abstraction from the C5 methyl group, are explored. All systems are optimized in bulk solvent. The data presented show that the barriers to reaction are very low: ca. 7 kcal/mol for the *H atom additions and 1 kcal/mol for the reactions involving the *OH radical. Thermodynamically, the two C6 radical adducts and the *H-abstraction product are the most stable ones. The proton hyperfine coupling constants (HFCC), computed at the IEFPCM/MPW1B95/6-311++G(2d,2p) level, agree well with B3LYP results and available experimental and theoretical data on related thymine and cytosine radicals.

  7. Chlorine atom formation dynamics in the dissociation of halogenated pyridines after photoexcitation at 235 nm: A resonance enhanced multiphoton ionization-time of flight (REMPI-TOF) study

    Science.gov (United States)

    Srinivas, D.; Upadhyaya, Hari P.

    2016-06-01

    The photodissociation dynamics of halogen substituted pyridines, namely, 3-chloropyridine (ClPy) and 3-chloro-2,4,5,6-tetrafluoropyridine (ClFPy), has been studied around 235 nm by detecting chlorine atoms in their spin orbit states Cl(2P3/2) and Cl∗(2P1/2) using the REMPI-TOF technique. We have determined the translational energy distribution, the recoil anisotropy parameter, β, and the spin-orbit branching ratio, for chlorine atom elimination channels. The TOF profiles for Cl and Cl∗ are found to be independent of laser polarization suggesting a zero value for β, within the experimental uncertainties. For 3-chloropyridine, the average translational energies for Cl and Cl∗ elimination channels are determined to be 3.7 ± 1.0 and 7.0 ± 1.5 kcal/mol, respectively. Similarly, for 3-chloro-2,4,5,6-tetrafluoropyridine, the average translational energies for Cl and Cl∗ elimination channels are determined to be 8.0 ± 1.5 and 9.0 ± 1.5 kcal/mol, respectively. The theoretical calculation suggests that the fluorine substitution increases the possibility of cross over to the π-σ∗ state from the initially prepared π-π∗ state.

  8. Reaction of iodine atoms with submicrometer squalane and squalene droplets: mechanistic insights into heterogeneous reactions.

    Science.gov (United States)

    Popolan-Vaida, Denisia M; Wilson, Kevin R; Leone, Stephen R

    2014-11-13

    The gas-phase reaction of iodine atoms with hydrocarbon molecules is energetically unfavorable, and there is no direct evidence for iodinated product formation by either H abstraction or I addition reactions at ambient temperature. Here we consider the possible heterogeneous reaction of I atoms with submicrometer droplets composed of a saturated alkane, squalane (Sq), and an unsaturated alkene, squalene (Sqe). The investigations are performed in an atmospheric pressure photochemical flow tube reactor in conjunction with a vacuum ultraviolet photoionization aerosol mass spectrometer and a scanning mobility particle sizer. Squalane, a branched alkane, is unreactive toward I atoms within the signal-to-noise, and an upper limit of the effective reactive uptake coefficient is estimated to be γI(Sq) ≤ 8.58 × 10(–7). In contrast, the reaction of I atoms with unsaturated submicrometer squalene droplets results in observable iodinated squalene products. The effective reactive uptake coefficient of I atom with squalene particles is determined to be γI(Sqe) = (1.20 ± 0.52) × 10(–4) at an average I concentration of 1.5 × 10(14) molecules·cm(–3).

  9. Hydroxylation Reaction Mechanism for Nitrosodimethylamine by Oxygen Atom

    Institute of Scientific and Technical Information of China (English)

    LI Lan; LIN Xiao-yan; LI Zong-he

    2011-01-01

    The hydroxylation reaction mechanism of nitrosodimethylamine(NDMA)by oxygen atom was theoretically investigated at the B3LYP/6-31G** level.It has been found that the path of the oxydation of the C-H bond is easier than the path involving a Singlet/Triplet crossing.The study of the potential surface shows that both solvent effect at B3LYP/6-31G** level and different method at more credible MP2/6-311G** level in the gas phase have no effect on the hydroxylation reaction mechanism.The oxidation hydroxylation process of NDMA by O is exothermic reaction and easy to occur.

  10. Intrinsic barriers for H-atom transfer reactions

    Energy Technology Data Exchange (ETDEWEB)

    Camaioni, D.M.; Autrey, S.T.; Franz, J.A.

    1994-08-01

    Hydrogen transfer reactions play a well-recognized role in coal liquefaction. While H-abstraction reactions between radicals and H-donors have been well-studied, understanding of structure-reactivity relationships remains surprisingly incomplete. Another form of hydrogen transfer known as radical hydrogen transfer (radical donation of H to an unsaturated compound) is currently the subject of much speculation. The barriers for identity reactions are key parameters in the Evans-Polanyi equation for estimating reaction barriers and are fundamentally significant for the insight they provide about bond reorganization energies for formation of transition state structures. Although knowable from experiment, relatively few H-abstraction identity barriers and no barriers for hydrocarbon radical hydrogen transfer reactions have been measured. This paper seeks to supplement and extend existing experimental data with results obtained by calculation. The authors have used ab initio and semiempirical molecular orbital methods (MNDO-PM3) to calculate barriers for a series of H-atom abstraction and radical-hydrogen-transfer identity reactions for alkyl, alkenyl, arylalkyl and hydroaryl systems. Details of this methodology and analyses of how barrier heights correlate with reactant and transition state properties will be presented and discussed.

  11. Is an iodine atom almighty as a leaving group for Bu(3)SnH-mediated radical cyclization? The effect of a halogen atom on the 5-endo-trig radical cyclization of N-vinyl-alpha-halo amides.

    Science.gov (United States)

    Tamura, Osamu; Matsukida, Hana; Toyao, Atsushi; Takeda, Yoshifumi; Ishibashi, Hiroyuki

    2002-08-09

    The effect of a halogen atom as a leaving group on Bu(3)SnH-mediated 5-endo-trig radical cyclization of N-(cyclohex-1-enyl) alpha-halo amides was examined. The cyclization of alpha-chloro amides occurred with a high degree of efficiency, whereas the corresponding alpha-iodo congeners gave only limited quantities of cyclization products. A detailed study revealed that these phenomena could be attributed to the initial conformations of alpha-halo amides. The cyclizing ability of alpha-iodo amides can be restored with Bu(3)SnCl or Bu(3)SnF as an additive. The cyclization of an alpha-iodo amide in the presence of Bu(3)SnF could be applied to a short-step synthesis of lycoranes featuring sequential 5-endo-trig and 6-endo-trig radical cyclizations.

  12. Stereoselective Halogenation in Natural Product Synthesis.

    Science.gov (United States)

    Chung, Won-jin; Vanderwal, Christopher D

    2016-03-24

    At last count, nearly 5000 halogenated natural products have been discovered. In approximately half of these compounds, the carbon atom to which the halogen is bound is sp(3) -hybridized; therefore, there are an enormous number of natural products for which stereocontrolled halogenation must be a critical component of any synthesis strategy. In this Review, we critically discuss the methods and strategies used for stereoselective introduction of halogen atoms in the context of natural product synthesis. Using the successes of the past, we also attempt to identify gaps in our synthesis technology that would aid the synthesis of halogenated natural products, as well as existing methods that have not yet seen application in complex molecule synthesis. The chemistry described herein demonstrates yet again how natural products continue to provide the inspiration for critical advances in chemical synthesis.

  13. Laboratory Studies of Halogen Oxides Important to Stratospheric Ozone Depletion

    Science.gov (United States)

    Wilmouth, D. M.; Klobas, J. E.; Anderson, J. G.

    2016-12-01

    Inorganic chlorine and bromine molecules are primarily responsible for stratospheric ozone destruction, with BrO, ClO, and ClOOCl comprising the two reaction cycles that cause most polar ozone losses. Despite comprehensive international treaties regulating CFCs and halons, seasonal polar ozone depletion will likely continue for decades to come. Accurate spectroscopic and kinetic measurements of inorganic bromine and chlorine molecules obtained in the laboratory are essential for reducing uncertainty in atmospheric models, better interpreting atmospheric field measurements, and forming trusted projections of future ozone changes. Here we present results from recent work in our laboratory using absorption spectroscopy and atomic resonance fluorescence detection to determine rate constants of halogen reactions, the equilibrium constant of ClO/ClOOCl, and absorption cross sections of several halogen oxides using a new cold trap-thermal desorption approach.

  14. Imaging the dynamics of chlorine atom reactions with alkenes

    Science.gov (United States)

    Estillore, Armando D.; Visger, Laura M.; Suits, Arthur G.

    2010-08-01

    We report a study of chlorine atom reactions with a series of target monounsaturated alkene molecules: 1-pentene, 1-hexene, 2-hexene, and cyclohexene. These reactions were studied using crossed-beam dc slice ion imaging at collision energies of 4 and 7 kcal/mol. Images of the reactively scattered alkenyl radical products were obtained via single photon ionization at 157 nm. The angular distributions at low collision energy are largely isotropic, suggesting the formation of a complex that has a lifetime comparable to or longer than its rotational period, followed by HCl elimination. At high collision energy, the distributions show a sharp forward peak superimposed on the isotropic component accounting for ˜13% of the product flux. The translational energy distributions peak near zero for the backscattered product, in sharp contrast to the results for alkanes. In the forward direction, the translational energy distributions change dramatically with collision energy. At the high collision energy, a sharp forward peak at ˜80% of the collision energy appears, quite reminiscent of results of our recent study of Cl+pentane reactions. The scattering distributions for all target molecules are similar, suggesting similarity of the reaction dynamics among these molecules. Ab initio calculations of the energetics and ionization energies for the various product channels were performed at the CBS-QB3 level to aid in interpreting the results.

  15. Collisions of halogen (/sup 2/P) and rare gas (/sup 1/S) atoms. [Differential cross sections, elastic model, coupling potential energy, L-S coupling, multiplets

    Energy Technology Data Exchange (ETDEWEB)

    Becker, C.H.

    1978-12-01

    Differential cross sections I (THETA) at several collision energies measured in crossed molecular beam experiments are reported for several combinations of halogen atoms (/sup 2/P) scattered off rare gas-rare gas atoms (/sup 1/S/sub 0/), namely, F + Ne, F + Ar, F + Kr, F + Xe, C1 + Xe. The scattering is described by an elastic model appropriate to Hund's case c coupling. With the use of this model, the X 1/2, I 3/2, and II 1/2 interaction potential energy curves are derived by fitting calculated differential cross sections, based on analytic representations of the potentials, to the data. The F - Xe X 1/2 potential shows a significant bonding qualitatively different than for the other F-rare gases. The I 3/2 and II 1/2 potentials closely resemble the van der Waals interactions of the one electron richer ground state rare gas-rare gas systems. Coupled-channel scattering calculations are carried out for F + Ar, F + Xe, and C1 + Xe using the realistic potential curves derived earlier. The results justify the use of the elastic model, and give additional information on intramultiplet and intermultiplet transitions. The transitions are found to be governed by the crossing of the two ..cap omega.. = 1/2 potentials in the complex plane. The measured I (theta) and I (THETA) derived from the coupled-channel computations show small oscillations or perturbations (Stueckelberg oscillations) though quantitative agreement is not obtained.The nature of the anomalous F - Xe X 1/2 potential is discussed as is the approximation of a constant spin orbit coupling over the experimentally accessible range of internuclear distances for these open shell molecules. 55 references.

  16. Halogen bond: a long overlooked interaction.

    Science.gov (United States)

    Cavallo, Gabriella; Metrangolo, Pierangelo; Pilati, Tullio; Resnati, Giuseppe; Terraneo, Giancarlo

    2015-01-01

    Because of their high electronegativity, halogen atoms are typically considered, in most of their derivatives, as sites of high electron density and it is commonly accepted that they can form attractive interactions by functioning as the electron donor site (nucleophilic site). This is the case when they work as hydrogen bond acceptor sites. However, the electron density in covalently bound halogens is anisotropically distributed. There is a region of higher electron density, accounting for the ability of halogens to function as electron donor sites in attractive interactions, and a region of lower electron density where the electrostatic potential is frequently positive (mainly in the heavier halogens). This latter region is responsible for the ability of halogen atoms to function as the electron-acceptor site (electrophilic site) in attractive interactions formed with a variety of lone pair-possessing atoms, anions, and π-systems. This ability is quite general and is shown by a wide diversity of halogenated compounds (e.g., organohalogen derivatives and dihalogens). According to the definition proposed by the International Union of Pure and Applied Chemistry, any attractive interactions wherein the halogen atom is the electrophile is named halogen bond (XB). In this chapter, it is discussed how the practice and the concept of XB developed and a brief history of the interaction is presented. Papers (either from the primary or secondary literature) which have reported major experimental findings in the field or which have given important theoretical contributions for the development of the concept are recollected in order to trace how a unifying and comprehensive categorization emerged encompassing all interactions wherein halogen atoms function as the electrophilic site.

  17. The dynamics of reaction of Cl atoms with tetramethylsilane.

    Science.gov (United States)

    Retail, Bertrand; Rose, Rebecca A; Pearce, Julie K; Greaves, Stuart J; Orr-Ewing, Andrew J

    2008-03-28

    Rotational state distributions and state-selected CM-frame angular distributions were measured for HCl (v' = 0, j') products from the reaction of Cl-atoms with tetramethylsilane (TMS) under single collision conditions at a collision energy, E(coll), of 8.2 +/- 2.0 kcal mol(-1). The internal excitation of these products was very low with only 2% of the total energy available partitioned into HCl rotation. A transition state with a quasi-linear C-H-Cl moiety structure was computed and used to explain this finding. A backward peaking differential cross section was also reported together with a product translational energy (T') distribution with a maximum at T' approximately E(coll). This scattering behaviour is accounted for by reactions proceeding through a tight transition state on a highly skewed potential energy surface, which favours collisions at low impact parameters with a strong kinematic constraint on the internal excitation of the products. The large Arrhenius pre-exponential factor previously reported for this reaction is reconciled with the tight differential scattering observed in our study by considering the large size of the TMS molecule.

  18. New Insecticidal Agents from Halogenation/Acylation of the Furyl-Ring of Fraxinellone

    Science.gov (United States)

    Guo, Yong; Yang, Ruige; Xu, Hui

    2016-10-01

    Introduction of the halogen atom or the acyl group at the C-ring of fraxinellone was investigated. Some unexpected halogenation products were obtained with the different chlorination/bromination reagents, and their possible reaction mechanisms were also proposed. Seven key steric structures of 2a’, 2b, 2b’, 2c’, 3a, 3b, and one isomer (5’α-Cl) of 2a were further confirmed by single-crystal X-ray diffraction. Especially compounds 2a, 2a’, 3a and 3c exhibited more potent insecticidal activity than toosendanin. Some structure-activity relationships of tested compounds were also described.

  19. Latest generation of halogen-containing pesticides.

    Science.gov (United States)

    Jeschke, Peter

    2017-02-01

    Agriculture is confronted with enormous challenges, from production of enough high-quality food to water use, environmental impacts and issues combined with a continually growing world population. Modern agricultural chemistry has to support farmers by providing innovative agrichemicals, used in applied agriculture. In this context, the introduction of halogen atoms into an active ingredient is still an important tool to modulate the properties of new crop protection compounds. Since 2010, around 96% of the launched products (herbicides, fungicides, insecticides/acaricides and nematicides) contain halogen atoms. The launched nematicides contain the largest number of halogen atoms, followed by insecticides/acaricides, herbicides and fungicides. In this context, fungicides and herbicides contain in most cases fluorine atoms, whereas nematicides and insecticides contain in most cases 'mixed' halogen atoms, for example chlorine and fluorine. This review gives an overview of the latest generation of halogen-containing pesticides launched over the past 6 years and describes current halogen-containing development candidates. © 2017 Society of Chemical Industry.

  20. On-line reaction monitoring of lithiation of halogen substituted acetanilides via in situ calorimetry, ATR spectroscopy, and endoscopy.

    Science.gov (United States)

    Godany, Tamas A; Neuhold, Yorck-Michael; Hungerbühler, Konrad

    2011-01-01

    Lithiation of N-(4-chlorophenyl)-pivalamide (NCP) and two additional substituted acetanilides: 4-fluoroacetanilide (4-F) and 4-chloroacetanilide (4-Cl) has been monitored by means of calorimetry, on-line ATR-IR and UV/vis spectroscopy and endoscopy. The combined on-line monitoring revealed the differences between the reaction paths of the chosen substrates. Thus the product structure and the reaction times for the individual reaction steps can be determined in situ.

  1. Two-Pulse Atomic Coherent Control (2PACC) Spectroscopy of Eley-Rideal Reactions. An Application of an Atom Laser

    CERN Document Server

    Jorgensen, S F; Jorgensen, Solvejg; Kosloff, Ronnie

    2003-01-01

    A spectroscopic application of the atom laser is suggested. The spectroscopy termed 2PACC employs the coherent properties of matter-waves from a two pulse atom laser. These waves are employed to control a gas-surface chemical recombination reaction. The method is demonstrated for an Eley-Rideal reaction of a hydrogen or alkali atom-laser pulse where the surface target is an adsorbed hydrogen atom. The reaction yields either a hydrogen or alkali hydride molecule. The desorbed gas phase molecular yield and its internal state is shown to be controlled by the time and phase delay between two atom-laser pulses. The calculation is based on solving the time-dependent Schrodinger equation in a diabatic framework. The probability of desorption which is the predicted 2PACC signal has been calculated as a function of the pulse parameters.

  2. Ring opening reaction dynamics in the reaction of hydrogen atoms with ethylene oxide

    Science.gov (United States)

    Shin, S. K.; Jarek, R. L.; Böhmer, E.; Wittig, C.

    1994-10-01

    Ethylene oxide, C2H4O, is a three-membered ring with a single oxygen atom bridging the two carbons. Reactions of H and D atoms with ethylene oxide have been studied in the gas phase to provide insight into the dynamics of three-membered ring opening. H atoms were produced by photolyzing HI in the wavelength range 240-266 nm. The channel leading to OH+C2H4 was monitored via laser-induced fluorescence (LIF) of the OH A 2Σ←X 2Π system. The D atom reaction yields OD with no hydrogen scrambling. With an available energy of 23 000 cm-1, the average OH D rotational energy is ˜350 cm-1 for OH(v=0) and OD(v=0) and ˜250 cm-1 for OD(v=1). OH(v=1) was not observed, while the OD(v=1) population was about one-tenth that of OD(v=0). There was no apparent bias in populations between Λ doublets in each of the spin-orbit states for both OH and OD. Doppler broadening of OH(v=0) rotational lines was measured to evaluate the average center-of-mass (c.m.) translational energy, which was found to be ˜2300 cm-1. On average, the ring opening process deposits ˜10% of the available energy into c.m. translation, ˜2% into OH rotation, and ˜88% into ethylene internal energy. Comparison with CH2CH2OH unimolecular dissociation dynamics and theoretical transition state calculations leads to a likely mechanism in which hydrogen abstracts oxygen via sequential C-O bond fission without involving a long-lived CH2CH2OH intermediate.

  3. Structural perspective on enzymatic halogenation.

    Science.gov (United States)

    Blasiak, Leah C; Drennan, Catherine L

    2009-01-20

    Simple halogen substituents frequently afford key structural features that account for the potency and selectivity of natural products, including antibiotics and hormones. For example, when a single chlorine atom on the antibiotic vancomycin is replaced by hydrogen, the resulting antibacterial activity decreases by up to 70% ( Harris , C. M. ; Kannan , R. ; Kopecka , H. ; Harris , T. M. J. Am. Chem. Soc. 1985 , 107 , 6652 - 6658 ). This Account analyzes how structure underlies mechanism in halogenases, the molecular machines designed by nature to incorporate halogens into diverse substrates. Traditional synthetic methods of integrating halogens into complex molecules are often complicated by a lack of specificity and regioselectivity. Nature, however, has developed a variety of elegant mechanisms for halogenating specific substrates with both regio- and stereoselectivity. An improved understanding of the biological routes toward halogenation could lead to the development of novel synthetic methods for the creation of new compounds with enhanced functions. Already, researchers have co-opted a fluorinase from the microorganism Streptomyces cattleya to produce (18)F-labeled molecules for use in positron emission tomography (PET) ( Deng , H. ; Cobb , S. L. ; Gee , A. D. ; Lockhart , A. ; Martarello , L. ; McGlinchey , R. P. ; O'Hagan , D. ; Onega , M. Chem. Commun. 2006 , 652 - 654 ). Therefore, the discovery and characterization of naturally occurring enzymatic halogenation mechanisms has become an active area of research. The catalogue of known halogenating enzymes has expanded from the familiar haloperoxidases to include oxygen-dependent enzymes and fluorinases. Recently, the discovery of a nucleophilic halogenase that catalyzes chlorinations has expanded the repertoire of biological halogenation chemistry ( Dong , C. ; Huang , F. ; Deng , H. ; Schaffrath , C. ; Spencer , J. B. ; O'Hagan , D. ; Naismith , J. H. Nature 2004 , 427 , 561 - 565 ). Structural

  4. Does fluorine participate in halogen bonding?

    Science.gov (United States)

    Eskandari, Kiamars; Lesani, Mina

    2015-03-16

    When R is sufficiently electron withdrawing, the fluorine in the R-F molecules could interact with electron donors (e.g., ammonia) and form a noncovalent bond (F⋅⋅⋅N). Although these interactions are usually categorized as halogen bonding, our studies show that there are fundamental differences between these interactions and halogen bonds. Although the anisotropic distribution of electronic charge around a halogen is responsible for halogen bond formations, the electronic charge around the fluorine in these molecules is spherical. According to source function analysis, F is the sink of electron density at the F⋅⋅⋅N BCP, whereas other halogens are the source. In contrast to halogen bonds, the F⋅⋅⋅N interactions cannot be regarded as lump-hole interactions; there is no hole in the valence shell charge concentration (VSCC) of fluorine. Although the quadruple moment of Cl and Br is mainly responsible for the existence of σ-holes, it is negligibly small in the fluorine. Here, the atomic dipole moment of F plays a stabilizing role in the formation of F⋅⋅⋅N bonds. Interacting quantum atoms (IQA) analysis indicates that the interaction between halogen and nitrogen in the halogen bonds is attractive, whereas it is repulsive in the F⋅⋅⋅N interactions. Virial-based atomic energies show that the fluorine, in contrast to Cl and Br, stabilize upon complex formation. According to these differences, it seems that the F⋅⋅⋅N interactions should be referred to as "fluorine bond" instead of halogen bond.

  5. Halogenation of microcapsule walls

    Science.gov (United States)

    Davis, T. R.; Schaab, C. K.; Scott, J. C.

    1972-01-01

    Procedure for halogenation of confining walls of both gelatin and gelatin-phenolic resin capsules is similar to that used for microencapsulation. Ten percent halogen content renders capsule wall nonburning; any higher content enhances flame-retardant properties of selected internal phase material. Halogenation decreases permeability of wall material to encapsulated materials.

  6. The chemistry of halogens on diamond: effects on growth and electron emission

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, W.L.; Pan, L.S.; Brown, L.A. [Sandia National Labs., Livermore, CA (United States)] [and others

    1997-02-01

    Diamond growth using halogenated precursors was studied in several diamond growth reactors. In a conventionao plasma reactor, diamond growth using the following gas mixtures was studied: CF{sub 4}/H{sub 2}, CH{sub 4}/H{sub 2}, CH{sub 3}F/H{sub 2}, and CH{sub 3}CL/H{sub 2}. Both the diamond growth measurements demonstrated ineffective transport of halogen radicals to the diamond surface during the growth process. In order to transport radical halogen species to the diamond surface during growth, a flow-tube reactor was constructed which minimized gas phase reactions. Also, the flow-tube reactor enabled pulsed gs transport to the diamond surface by fast-acting valves. Molecular beam mass spectroscopy was used to find condition which resulted in atomic hydrogen and/or atomic fluorine transport to the growing diamond surface. Although such conditions were found, they required very low pressures (0.5 Torr and below); these low pressures produce radical fluxes which are too low to sustain a reasonable diamond growth rate. The sequential reactor at Stanford was modified to add a halogen-growth step to the conventinoal atomic hydrogen/atomic carbon diamond growth cycle. Since the atomic fluorine, hydrogen and carbon environments are independent in the sequential reactor, the effect of fluorine on diamond growth could be studied independently of gas phase reactions. Although the diamond growth rate was increased by the use of fluorine, the film quality was seen to deteriorate as well as the substrate surface. Moreover, materials incompatibilities with fluorine significantly limited the use of fluorine in this reactor. A diamond growth model incorporating both gas phase and surface reactions was developed for the halocarbon system concurrent with the film growth efforts. In this report, we review the results of the growth experiments, the modeling, and additional experiments done to understand fluorine with diamond surfaces.

  7. Nano-porous sponges and proven chemical reactions for the trapping and sensing of halogenated gaseous compounds; Le piegeage et la detection de composes halogenes gazeux. Utilisation d'eponges nanoporeuses et de reactions chimiques

    Energy Technology Data Exchange (ETDEWEB)

    Banet, P. [Universite de Cergy Pontoise, Lab. de Physico-Chimie des Polymeres et des Interfaces (LPPI), 95 - Neuville sur Oise (France); Cantau, C. [Institut de Chimie de la Matiere Condensee (ICMCB-CNRS), 33 - Pessac (France); Rivron, C.; Tran-Thi, T.H. [CEA Saclay (DSM/DRECAM/SPAM), Lab. Francis Perrin, URA CEA-CNRS 2453, 91 - Gif-sur-Yvette (France)

    2009-06-15

    The literature is well illustrated with examples of porous materials elaborated via the sol-gel process, which display high adsorption surface area suitable for the trapping of volatile organic compounds (VOC). Very often, the porous network of these materials is randomly distributed in terms of pore size. However, some materials can display very ordered nano-structures with uniform pore sizes or hierarchical structures with microscopic (< 2 nm) and mesoscopic (2-60 nm) domains. The utility of such organized media and the possibility of reproducing liquid phase chemical reactions in these confined environments are here discussed with regards to their potentiality as sensitive layers of chemical sensors for the detection of gaseous pollutants. To illustrate the potentiality of the porous materials and the importance of the chemical reactivity at gas-solid interfaces, an example of a chemical sensor which detects chlorine, a toxic industrial gas encountered in microelectronics and semiconductor industries, will be given. (authors)

  8. Reaction of Np atom with H₂O in the gas phase: reaction mechanisms and ab initio molecular dynamics study.

    Science.gov (United States)

    Li, Peng; Niu, Wenxia; Gao, Tao; Wang, Hongyan

    2014-10-01

    The gas-phase reaction of an Np atom with H2O was investigated using density functional theory and ab initio molecular dynamics. The reaction mechanisms and the corresponding potential energy profiles for different possible spin states were analyzed. Three reaction channels were found in the mechanism study: the isomerization channel, the H2 elimination channel, and the H atom elimination channel. The latter two were observed in the dynamics simulation. It was found that the branching ratio of the title reaction depends on the initial kinetic energy along the transition vector. Product energy distributions for the reaction were evaluated by performing direct classical trajectory calculations on the lowest sextet potential energy surface. The results indicate that most of the available energy appears as the translational energy of the products. The overall results indicate that the H2 elimination channel with low kinetic energy is thermodynamically favored but competes with the H atom elimination channel with higher kinetic energy.

  9. Reaction Mechanism of Oxygen Atoms with Unsaturated Hydrocarbons by the Crossed-Molecular-Beams Method

    Science.gov (United States)

    Buss, R. J.; Baseman, R. J.; Guozhong, H.; Lee, Y. T.

    1982-04-01

    From a series of studies of the reaction of oxygen atoms with unsaturated hydrocarbons using the crossed molecular beam method, the dominant reaction mechanisms were found to be the simple substitution reactions with oxygen atoms replacing H, Cl, Br atom or alkyl groups. Complication due to secondary reaction was avoided by carrying out experiments under single collisions and observing primary products directly. Primary products were identified by measuring the angular and velocity distributions of products at all the mass numbers which could be detected by the mass spectrometer, and from comparison of these distributions, applying the requirement of energy and momentum conservation.

  10. Halogen Bonding in Hypervalent Iodine Compounds.

    Science.gov (United States)

    Catalano, Luca; Cavallo, Gabriella; Metrangolo, Pierangelo; Resnati, Giuseppe; Terraneo, Giancarlo

    Halogen bonds occur when electrophilic halogens (Lewis acids) attractively interact with donors of electron density (Lewis bases). This term is commonly used for interactions undertaken by monovalent halogen derivatives. The aim of this chapter is to show that the geometric features of the bonding pattern around iodine in its hypervalent derivatives justify the understanding of some of the longer bonds as halogen bonds. We suggest that interactions directionality in ionic and neutral λ(3)-iodane derivatives is evidence that the electron density distribution around iodine atoms is anisotropic, a region of most positive electrostatic potential exists on the extensions of the covalent bonds formed by iodine, and these positive caps affect, or even determine, the crystal packing of these derivatives. For instance, the short cation-anion contacts in ionic λ(3)-iodane and λ(5)-iodane derivatives fully match the halogen bond definition and geometrical prerequisites. The same holds for the short contacts the cation of ionic λ(3)-iodanes forms with lone-pair donors or the short contacts given by neutral λ(3)-iodanes with incoming nucleophiles. The longer and weaker bonds formed by iodine in hypervalent compounds are usually called secondary bondings and we propose that the term halogen bond can also be used. Compared to the term secondary bond, halogen bond may possibly be more descriptive of some bonding features, e.g., its directionality and the relationships between structure of interacting groups and interaction strength.

  11. Reactions of pulsed laser produced boron and nitrogen atoms in a condensing argon stream

    Science.gov (United States)

    Andrews, Lester; Hassanzadeh, Parviz; Burkholder, Thomas R.; Martin, J. M. L.

    1993-01-01

    Reactions of pulsed laser produced B and N atoms at high dilution in argon favored diboron species. At low laser power with minimum radiation, the dominant reaction with N2 gave BBNN (3Π). At higher laser power, reactions of N atoms contributed the B2N (2B2), BNB (2Σu+), NNBN (1Σ+), and BNBN (3Π) species. These new transient molecules were identified from mixed isotopic patterns, isotopic shifts, and ab initio calculations of isotopic spectra.

  12. Oxygen Atom Exchange Mechanism in Reaction of OH Radical with AsO

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Oxygen atom exchange reaction mechanism in the reaction of OH radicals with AsO was investigated by means of the density functional theory (DFT) with 6-311++G(3df,3pd) and 6-311++G(d,p) basis sets. The calculated results suggest that the reaction between OH and AsO should make the oxygen atoms exchange rapidly because the barrier to isomerization is significantly less than the HO-AsO bond dissociation energy.

  13. Theoretical studies of the dynamics of chemical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, A.F. [Argonne National Laboratory, IL (United States)

    1993-12-01

    Recent research effort has focussed on several reactions pertinent to combustion. The formation of the formyl radical from atomic hydrogen and carbon monoxide, recombination of alkyl radicals and halo-alkyl radicals with halogen atoms, and the thermal dissociation of hydrogen cyanide and acetylene have been studied by modeling. In addition, the inelastic collisions of NCO with helium have been investigated.

  14. Heavy atom effects in the Paternò–Büchi reaction of pyrimidine derivatives with 4,4’-disubstituted benzophenones

    Directory of Open Access Journals (Sweden)

    Qin-Hua Song

    2011-01-01

    Full Text Available The regioselectivity and the photochemical efficiency were investigated in the Paternò–Büchi reaction of 1,3-dimethylthymine (DMT and 1,3-dimethyluracil (DMU with benzophenone (1b and some 4,4’-disubstituted derivatives (dimethoxy (1a, difluoro (1c, dichloro (1d, dibromo (1e and dicyano benzophenone (1f that gives rise to two regioisomeric oxetanes, 2 and 3. The regioselectivity (the ratio of 2/3 decreased gradually for both DMT/DMU photochemical systems from 1a to 1f. That is, a halogen atom as an electron-withdrawing group (EWG has a pronounced effect on the regioselectivity. However, the photochemical efficiency of the 1e systems did not show the expected increase, but decreased relative to systems with 1b. Temperature effects on the regioselectivity of 1b–e systems showed some interesting features for systems with heavy atoms (including the 1d and 1e systems, such as higher inversion temperatures, and an entropy-controlled regioselectively whereas the regioselectivity for two other systems (1b and 1c is enthalpy–entropy controlled. A heavy atom effect is suggested to be responsible for these unusual phenomena based on the triplet-diradical mechanism of the Paternò–Büchi reaction.

  15. Tropospheric Chemistry and Climate Impacts of VSL Halogens: Pre-Industrial to Present day

    Science.gov (United States)

    Kinnison, Douglas; Saiz-Lopez, Alfonso; Lamarque, Jean-Francois; Ordoñez, Carlos; Fernandez, Rafael; Tilmes, Simone

    2013-04-01

    Ozone in the troposphere is one of the most important short-lived gases contributing to greenhouse radiative forcing (IPCC, 2007) and is of central importance to the chemistry of this region of the atmosphere. Tropospheric ozone is produced by photochemical oxidation of carbon monoxide, methane and non-methane volatile organic compounds in the presence of nitrogen oxide. A large fraction of the tropospheric ozone loss occurs within the tropical marine boundary layer via photolysis to excited oxygen atoms followed by reaction with water vapor, reactions with odd hydrogen radical, and surface deposition. In addition, inorganic halogens (i.e., chlorine, bromine, and iodine species) are known to destroy ozone through efficient catalytic reaction cycles. In this study, we use the NCAR 3D chemistry climate model (CAM-CHEM). The model has a full representation of tropospheric and stratospheric chemistry. Its scope has been extended to include halogen sources, reactive halogen chemistry, and related atmospheric processes (Ordonez et al. 2012; Saiz-Lopez et al. 2012). The purpose of this work is to contrast the pre-industrial importance of tropospheric halogen driven ozone loss to present day conditions; specifically the importance of iodine chemistry.

  16. Chemistry of Very Short Lived Halogens in the Troposphere: Pre-Industrial to Present day

    Science.gov (United States)

    Kinnison, Douglas; Saiz-Lopez, Alfonso; Fernandez, Rafael; Lamarque, Jean-Francois; Tilmes, Simone

    2014-05-01

    Ozone in the troposphere is one of the most important short-lived gases contributing to greenhouse radiative forcing (IPCC, 2007) and is of central importance to the chemistry of this region of the atmosphere. Tropospheric ozone is produced by photochemical oxidation of carbon monoxide, methane and other non-methane volatile organic compounds in the presence of nitrogen oxide. A large fraction of the tropospheric ozone loss occurs within the tropical marine boundary layer via photolysis to excited oxygen atoms followed by reaction with water vapor, reactions with odd hydrogen radical, and surface deposition. In addition, inorganic halogens (i.e., chlorine, bromine, and iodine species) are known to destroy ozone through efficient catalytic reaction cycles. In this study, we use the NCAR 3D chemistry climate model (CAM-Chem), including a detailed representation of tropospheric and stratospheric chemistry. Its scope has been extended to include halogen sources, reactive halogen chemistry, and related atmospheric processes (Ordonez et al., ACP, 2012; Saiz-Lopez et al., ACP,. 2012). The purpose of this work is to contrast the pre-industrial importance of tropospheric halogen driven ozone loss to present day conditions, specifically the importance of iodine and bromine chemistry. The sensitivity to inorganic nitrogen abundance will be shown. The model results compared to the pre-industrial surface ozone measurements at Montsouris (Volz and Kley, 1988) will also be discussed.

  17. On the nuclear $(n;t)-$reaction in the three-electron ${}^{6}$Li atom

    CERN Document Server

    Frolov, Alexei M

    2012-01-01

    The nuclear $(n;t)-$reaction of the three-electron ${}^{6}$Li atom with thermal/slow neutrons is considered. An effective method has been developed for determining the probabilities of formation of various atoms and ions in different bound states. We discuss a number of fundamental questions directly related to numerical computations of the final state atomic probabilities. A few appropriate variational expansions for atomic wave functions of the incident lithium atom and final helium atom and/or tritium negatively charged ion are discussed. It appears that the final ${}^4$He atom arising during the nuclear $(n,{}^{6}$Li; ${}^4$He$,t)$-reaction in the three-electron Li atom can also be created in its triplet states. The formation of the quasi-stable three-electron $e^{-}_3$ during the nuclear $(n; t)-$reaction at the Li atom is briefly discussed. Bremsstrahlung emitted by atomic electrons accelerated by the rapidly moving fragments from this reaction is analyzed. The frequency spectrum of the emitted radiatio...

  18. Halogen bonds in crystal engineering: like hydrogen bonds yet different.

    Science.gov (United States)

    Mukherjee, Arijit; Tothadi, Srinu; Desiraju, Gautam R

    2014-08-19

    The halogen bond is an attractive interaction in which an electrophilic halogen atom approaches a negatively polarized species. Short halogen atom contacts in crystals have been known for around 50 years. Such contacts are found in two varieties: type I, which is symmetrical, and type II, which is bent. Both are influenced by geometric and chemical considerations. Our research group has been using halogen atom interactions as design elements in crystal engineering, for nearly 30 years. These interactions include halogen···halogen interactions (X···X) and halogen···heteroatom interactions (X···B). Many X···X and almost all X···B contacts can be classified as halogen bonds. In this Account, we illustrate examples of crystal engineering where one can build up from previous knowledge with a focus that is provided by the modern definition of the halogen bond. We also comment on the similarities and differences between halogen bonds and hydrogen bonds. These interactions are similar because the protagonist atoms-halogen and hydrogen-are both electrophilic in nature. The interactions are distinctive because the size of a halogen atom is of consequence when compared with the atomic sizes of, for example, C, N, and O, unlike that of a hydrogen atom. Conclusions may be drawn pertaining to the nature of X···X interactions from the Cambridge Structural Database (CSD). There is a clear geometric and chemical distinction between type I and type II, with only type II being halogen bonds. Cl/Br isostructurality is explained based on a geometric model. In parallel, experimental studies on 3,4-dichlorophenol and its congeners shed light on the nature of halogen···halogen interactions and reveal the chemical difference between Cl and Br. Variable temperature studies also show differences between type I and type II contacts. In terms of crystal design, halogen bonds offer a unique opportunity in the strength, atom size and interaction gradation; this may be

  19. Prediction of reacting atoms for the major biotransformation reactions of organic xenobiotics.

    Science.gov (United States)

    Rudik, Anastasia V; Dmitriev, Alexander V; Lagunin, Alexey A; Filimonov, Dmitry A; Poroikov, Vladimir V

    2016-01-01

    The knowledge of drug metabolite structures is essential at the early stage of drug discovery to understand the potential liabilities and risks connected with biotransformation. The determination of the site of a molecule at which a particular metabolic reaction occurs could be used as a starting point for metabolite identification. The prediction of the site of metabolism does not always correspond to the particular atom that is modified by the enzyme but rather is often associated with a group of atoms. To overcome this problem, we propose to operate with the term "reacting atom", corresponding to a single atom in the substrate that is modified during the biotransformation reaction. The prediction of the reacting atom(s) in a molecule for the major classes of biotransformation reactions is necessary to generate drug metabolites. Substrates of the major human cytochromes P450 and UDP-glucuronosyltransferases from the Biovia Metabolite database were divided into nine groups according to their reaction classes, which are aliphatic and aromatic hydroxylation, N- and O-glucuronidation, N-, S- and C-oxidation, and N- and O-dealkylation. Each training set consists of positive and negative examples of structures with one labelled atom. In the positive examples, the labelled atom is the reacting atom of a particular reaction that changed adjacency. Negative examples represent non-reacting atoms of a particular reaction. We used Labelled Multilevel Neighbourhoods of Atoms descriptors for the designation of reacting atoms. A Bayesian-like algorithm was applied to estimate the structure-activity relationships. The average invariant accuracy of prediction obtained in leave-one-out and 20-fold cross-validation procedures for five human isoforms of cytochrome P450 and all isoforms of UDP-glucuronosyltransferase varies from 0.86 to 0.99 (0.96 on average). We report that reacting atoms may be predicted with reasonable accuracy for the major classes of metabolic reactions

  20. Catalytic mechanisms, basic roles, and biotechnological and environmental significance of halogenating enzymes

    Institute of Scientific and Technical Information of China (English)

    Xianping Chen; Karl-Heinz van Pée

    2008-01-01

    The understanding of enzymatic incorporation of halogen atoms into organic molecules has increased during the last few years. Two novel types of halogenating enzymes, flavindependent halogenases and α-ketoglutarate-dependent halogenases, are now known to play a significant role in enzyme-catalyzed halogenation. The recent advances on the halogenating enzymes RebH, SyrB2, and CytC3 have suggested some new mechanisms for enzymatic halogenations. This review concentrates on the occurrence, catalytic mechanisms, and biotechnological applications of the halogenating enzymes that are currently known.

  1. Automatic generation of reaction energy databases from highly accurate atomization energy benchmark sets.

    Science.gov (United States)

    Margraf, Johannes T; Ranasinghe, Duminda S; Bartlett, Rodney J

    2017-03-31

    In this contribution, we discuss how reaction energy benchmark sets can automatically be created from arbitrary atomization energy databases. As an example, over 11 000 reaction energies derived from the W4-11 database, as well as some relevant subsets are reported. Importantly, there is only very modest computational overhead involved in computing >11 000 reaction energies compared to 140 atomization energies, since the rate-determining step for either benchmark is performing the same 140 quantum chemical calculations. The performance of commonly used electronic structure methods for the new database is analyzed. This allows investigating the relationship between the performances for atomization and reaction energy benchmarks based on an identical set of molecules. The atomization energy is found to be a weak predictor for the overall usefulness of a method. The performance of density functional approximations in light of the number of empirically optimized parameters used in their design is also discussed.

  2. Universal four-boson system: dimer-atom-atom Efimov effect and recombination reactions

    CERN Document Server

    Deltuva, A

    2013-01-01

    Recent theoretical developments in the four-boson system with resonant interactions are described. Momentum-space scattering equations for the four-particle transition operators are used. The properties of unstable tetramers with approximate dimer-atom-atom structure are determined. In addition, the three- and four-cluster recombination processes in the four-boson system are studied.

  3. Ab initio Mechanism Study on the Reaction of Chlorine Atom with Formic Acid

    Institute of Scientific and Technical Information of China (English)

    于海涛; 付宏刚; 等

    2003-01-01

    The potential energy surface(PES) for the reaction of Cl atom with HCOOH is predicted using ab initio molecular orbital calculation methods at UQCIDS(T,full)6-311++G(3df,2p)//UMP2(full)/6-311+G(d,P) level of theory with zero-point vibrational energy (ZPVE) correction.The calculated results show that the reaction mechanism of Cl atom with formic acid is a C-site hydrogen abstraction reaction from cis-HOC(H)O molecule by Cl atom with a 3.73kJ/mol reaction barrier height,leading to the formation of cis-HOCO radical which will reacts with Cl atom or other molecules in such a reaction system.Because the reaction barrier height of O-site hydrogen abstraction reaction from cis-HOC(H)O molecule by Cl atom which leads to the formation of HCO2 radical is 67.95kJ/mol,it is a secondary reaction channel in experiment,This is in good agreement with the prediction based on the previous experiments.

  4. (e, 3e) reactions at moderate energies visualization of average field effects in atom

    CERN Document Server

    Kuzakov, K A; Gusev, A A; Popov, Y V; Vinitsky, S I

    2002-01-01

    In the case of helium atom the theory is presented for quasi-elastic A (e, 3e) A sup + sup + and A (e, 3 -1e) A sup + sup + atomic reactions in the coplanar symmetric geometry at incident electron energy of several hundreds eV. The comparison with the recent (e, 3 - 1 e) experiment has allowed one to observe the effect of the mean atomic field as well as postcollisional effects.

  5. Comparative Study of Cl-Atom Reactions in Solution Using Time-Resolved Vibrational Spectroscopy.

    Science.gov (United States)

    Shin, Jae Yoon; Case, Amanda S; Crim, F Fleming

    2016-04-28

    A Cl atom can react with 2,3-dimethylbutane (DMB), 2,3-dimethyl-2-butene (DMBE), and 2,5-dimethyl-2,4-hexadiene (DMHD) in solution via a hydrogen-abstraction reaction. The large exoergicity of the reaction between a Cl atom and alkenes (DMBE and DMHD) makes vibrational excitation of the HCl product possible, and we observe the formation of vibrationally excited HCl (v = 1) for both reactions. In CCl4, the branching fractions of HCl (v = 1), Γ (v = 1), for the Cl-atom reactions with DMBE and DMHD are 0.14 and 0.23, respectively, reflecting an increased amount of vibrational excitation in the products of the more exoergic reaction. In addition, Γ (v = 1) for both reactions is larger in the solvent CDCl3, being 0.23 and 0.40, as the less viscous solvent apparently dampens the vibrational excitation of the nascent HCl less effectively. The bimolecular reaction rates for the Cl reactions with DMB, DMBE, and DMHD in CCl4 are diffusion limited (having rate constants of 1.5 × 10(10), 3.6 × 10(10), and 17.5 × 10(10) M(-1) s(-1), respectively). In fact, the bimolecular reaction rate for Cl + DMHD exceeds a typical diffusion-limited reaction rate, implying that the attractive intermolecular forces between a Cl atom and a C═C bond increase the rate of favorable encounters. The 2-fold increase in the reaction rate of the Cl + DMBE reaction from that of the Cl + DMB reaction likely reflects the effect of the C═C bond, while both the number of C═C bonds and the molecular geometry likely play a role in the large reaction rate of the Cl + DMHD reaction.

  6. A box model study on photochemical interactions between VOCs and reactive halogen species in the marine boundary layer

    Directory of Open Access Journals (Sweden)

    K. Toyota

    2004-01-01

    Full Text Available A new chemical scheme is developed for the multiphase photochemical box model SEAMAC (size-SEgregated Aerosol model for Marine Air Chemistry to investigate photochemical interactions between volatile organic compounds (VOCs and reactive halogen species in the marine boundary layer (MBL. Based primarily on critically evaluated kinetic and photochemical rate parameters as well as a protocol for chemical mechanism development, the new scheme has achieved a near-explicit description of oxidative degradation of up to C3-hydrocarbons (CH4, C2H6, C3H8, C2H4, C3H6, and C2H2 initiated by reactions with OH radicals, Cl- and Br-atoms, and O3. Rate constants and product yields for reactions involving halogen species are taken from the literature where available, but the majority of them need to be estimated. In particular, addition reactions of halogen atoms with alkenes will result in forming halogenated organic intermediates, whose photochemical loss rates are carefully evaluated in the present work. Model calculations with the new chemical scheme reveal that the oceanic emissions of acetaldehyde (CH3CHO and alkenes (especially C3H6 are important factors for regulating reactive halogen chemistry in the MBL by promoting the conversion of Br atoms into HBr or more stable brominated intermediates in the organic form. The latter include brominated hydroperoxides, bromoacetaldehyde, and bromoacetone, which sequester bromine from a reactive inorganic pool. The total mixing ratio of brominated organic species thus produced is likely to reach 10-20% or more of that of inorganic gaseous bromine species over wide regions over the ocean. The reaction between Br atoms and C2H2 is shown to be unimportant for determining the degree of bromine activation in the remote MBL. These results imply that reactive halogen chemistry can mediate a link between the oceanic emissions of VOCs and the behaviors of compounds that are sensitive to halogen chemistry such as dimethyl

  7. Controlled Reactions between Ultracold Alkali and Metastable Helium Atoms

    CERN Document Server

    Flores, Adonis Silva; Knoop, Steven

    2016-01-01

    In an ultracold, optically trapped mixture of $^{87}$Rb and metastable triplet $^4$He atoms we have studied trap loss for different spin-state combinations, for which interspecies Penning ionization is the main two-body loss process. We observe long trapping lifetimes for the purely quartet spin-state combination, indicating strong suppression of Penning ionization loss by at least two orders of magnitude. For the other spin-mixtures we observe short lifetimes that depend linearly on the doublet character of the entrance channel. We compare the extracted loss rate coefficient with recent predictions of multichannel quantum-defect theory for reactive collisions involving a strong exothermic loss channel and find near-universal loss for doublet scattering. Our work demonstrates control of reactive collisions by internal atomic state preparation, which also implies magnetic field tunability.

  8. Growth and Destruction of PAH Molecules in Reactions with Carbon Atoms

    Science.gov (United States)

    Krasnokutski, Serge A.; Huisken, Friedrich; Jäger, Cornelia; Henning, Thomas

    2017-02-01

    A very high abundance of atomic carbon in the interstellar medium (ISM), and the high reactivity of these species toward different hydrocarbon molecules including benzene, raise questions regarding the stability of polycyclic aromatic hydrocarbon (PAH) molecules in space. To test the efficiency of destruction of PAH molecules via reactions with atomic carbon, we performed a set of laboratory and computational studies of the reactions of naphthalene, anthracene, and coronene molecules with carbon atoms in the ground state. The reactions were investigated in liquid helium droplets at T = 0.37 K and by quantum chemical computations. Our studies suggest that all small and all large catacondensed PAHs react barrierlessly with atomic carbon, and therefore should be efficiently destroyed by such reactions in a broad temperature range. At the same time, large compact pericondensed PAHs should be more inert toward such a reaction. In addition, taking into account their higher photostability, much higher abundances of pericondensed PAHs should be expected in various astrophysical environments. The barrierless reactions between carbon atoms and small PAHs also suggest that, in the ISM, these reactions could lead to the bottom-up formation of PAH molecules.

  9. Kinetic studies of the infrared-induced reaction between atomic chlorine and solid parahydrogen

    Science.gov (United States)

    Raston, Paul L.; Kettwich, Sharon C.; Anderson, David T.

    2015-04-01

    We present Fourier-transform infrared (FTIR) spectroscopic studies of the IR-induced Cl + H2(v = 1) → HCl + H reaction in a parahydrogen (pH2) matrix aimed at distinguishing between two proposed reactions mechanisms; direct-IR and vibron-mediated. The Cl atom reactants are produced via 355 nm in situ photolysis of a Cl2 doped pH2 matrix. After photolysis is complete, a long-pass IR filter in the FTIR beam is removed and we measure the ensuing IR-induced reaction kinetics using rapid scan FTIR spectroscopy. We follow both the decay of the Cl atom reactant and growth of the HCl product using the Cl spin-orbit (SO) + Q1(0) and HCl R1(0) transitions, respectively. We show the IR-induced reaction mechanism depends on the spectral profile of the IR radiation; for IR spectral profiles that have significant IR intensities between 4000 and 5000 cm-1 we observe first-order kinetics that are assigned to a vibron-mediated mechanism and for spectral profiles that have significant IR intensities that include the Cl SO + Q1(0) transition near 5094 cm-1 we observe bi-exponential kinetics that are dominated by the direct-IR mechanism at early reaction times. We can distinguish between the two mechanisms using the observed kinetics. We investigate the reaction kinetics for different FTIR optical setups, for a range of sample conditions, and start and stop the IR-induced reaction to investigate the importance of secondary H atom reactions. We also study the IR-induced reaction in Br/Cl co-doped pH2 samples and show the presence of the Br atom quenches the vibron-mediated reaction kinetics presumably because the Br-atoms serve as efficient vibron traps. This paper indicates that in a highly enriched pH2 matrix the H atoms that are produced by the IR-induced Cl atom reaction likely do not play a significant role in the measured reaction kinetics which implies these secondary H atom reactions are highly selective.

  10. Rate of reaction of dimethylmercury with oxygen atoms in the gas phase

    DEFF Research Database (Denmark)

    Egsgaard, Helge

    1986-01-01

    The rate constant for the reaction of atomic oxygen (O(3P)) with dimethylmercury has been measured at room temperature at a pressure of about 1 Torr using a fast flow system with electron paramagnetic resonance and mass spectrometric detection. Some reaction products were identified. The rate...

  11. Single-Atom Catalyst of Platinum Supported on Titanium Nitride for Selective Electrochemical Reactions.

    Science.gov (United States)

    Yang, Sungeun; Kim, Jiwhan; Tak, Young Joo; Soon, Aloysius; Lee, Hyunjoo

    2016-02-05

    As a catalyst, single-atom platinum may provide an ideal structure for platinum minimization. Herein, a single-atom catalyst of platinum supported on titanium nitride nanoparticles were successfully prepared with the aid of chlorine ligands. Unlike platinum nanoparticles, the single-atom active sites predominantly produced hydrogen peroxide in the electrochemical oxygen reduction with the highest mass activity reported so far. The electrocatalytic oxidation of small organic molecules, such as formic acid and methanol, also exhibited unique selectivity on the single-atom platinum catalyst. A lack of platinum ensemble sites changed the reaction pathway for the oxygen-reduction reaction toward a two-electron pathway and formic acid oxidation toward direct dehydrogenation, and also induced no activity for the methanol oxidation. This work demonstrates that single-atom platinum can be an efficient electrocatalyst with high mass activity and unique selectivity.

  12. Quantum Diffusion-Controlled Chemistry: Reactions of Atomic Hydrogen with Nitric Oxide in Solid Parahydrogen.

    Science.gov (United States)

    Ruzi, Mahmut; Anderson, David T

    2015-12-17

    Our group has been working to develop parahydrogen (pH2) matrix isolation spectroscopy as a method to study low-temperature condensed-phase reactions of atomic hydrogen with various reaction partners. Guided by the well-defined studies of cold atom chemistry in rare-gas solids, the special properties of quantum hosts such as solid pH2 afford new opportunities to study the analogous chemical reactions under quantum diffusion conditions in hopes of discovering new types of chemical reaction mechanisms. In this study, we present Fourier transform infrared spectroscopic studies of the 193 nm photoinduced chemistry of nitric oxide (NO) isolated in solid pH2 over the 1.8 to 4.3 K temperature range. Upon short-term in situ irradiation the NO readily undergoes photolysis to yield HNO, NOH, NH, NH3, H2O, and H atoms. We map the postphotolysis reactions of mobile H atoms with NO and document first-order growth in HNO and NOH reaction products for up to 5 h after photolysis. We perform three experiments at 4.3 K and one at 1.8 K to permit the temperature dependence of the reaction kinetics to be quantified. We observe Arrhenius-type behavior with a pre-exponential factor of A = 0.036(2) min(-1) and Ea = 2.39(1) cm(-1). This is in sharp contrast to previous H atom reactions we have studied in solid pH2 that display definitively non-Arrhenius behavior. The contrasting temperature dependence measured for the H + NO reaction is likely related to the details of H atom quantum diffusion in solid pH2 and deserves further study.

  13. Deformylation Reaction by a Nonheme Manganese(III)-Peroxo Complex via Initial Hydrogen-Atom Abstraction.

    Science.gov (United States)

    Barman, Prasenjit; Upadhyay, Pranav; Faponle, Abayomi S; Kumar, Jitendra; Nag, Sayanta Sekhar; Kumar, Devesh; Sastri, Chivukula V; de Visser, Sam P

    2016-09-05

    Metal-peroxo intermediates are key species in the catalytic cycles of nonheme metalloenzymes, but their chemical properties and reactivity patterns are still poorly understood. The synthesis and characterization of a manganese(III)-peroxo complex with a pentadentate bispidine ligand system and its reactivity with aldehydes was studied. Manganese(III)-peroxo can react through hydrogen-atom abstraction reactions instead of the commonly proposed nucleophilic addition reaction. Evidence of the mechanism comes from experiments which identify a primary kinetic isotope effect of 5.4 for the deformylation reaction. Computational modeling supports the established mechanism and identifies the origin of the reactivity preference of hydrogen-atom abstraction over nucleophilic addition.

  14. Ultra-Low-Temperature Reactions of Carbon Atoms with Hydrogen Molecules

    CERN Document Server

    Krasnokutski, S A; Renzler, M; Jäger, C; Henning, Th; Scheier, P

    2016-01-01

    The reactions of carbon atoms with dihydrogen have been investigated in liquid helium droplets at $T$ = 0.37 K. A calorimetric technique was applied to monitor the energy released in the reaction. The barrierless reaction between a single carbon atom and a single dihydrogen molecule was detected. Reactions between dihydrogen clusters and carbon atoms have been studied by high-resolution mass spectrometry. The formation of hydrocarbon cations of the type C$_m$H$_n^+$, with $m$ = 1-4 and $n$ = 1-15 was observed. With enhanced concentration of dihydrogen, the mass spectra demonstrated the main "magic" peak assigned to the CH$_5^+$ cation. A simple formation pathway and the high stability of this cation suggest its high abundance in the interstellar medium.

  15. Atomization mechanisms and gas phase reactions in graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Frech, W.; Lindberg, A.O.; Lundberg, E.; Cedergren, A.

    1986-04-01

    The amounts of carbon monoxide as well as the total amounts of hydrocarbons generated in different types of graphite tubes were investigated under various experimental conditions. Depending on whether or not a matrix like 50 ..mu..g of sodium nitrate was added the amount of carbon monoxide formed during atomization at 1,700 K in a pyrocoated tube was in the range 60 to 600 nmoles when using a thermal pretreatment temperature of 1,200 K. The corresponding values for an uncoated tube were 250 to 1,300 nmoles. The effect of carbon monoxide on the atomization behaviour of silver, bismuth, chromium, copper and lead was investigated experimentally and the results were evaluated by means of thermodynamically based models. In accordance with theoretical predications, only lead, bismuth and chromium, which are assumed to be atomized by oxide decomposition, showed substantial shifts in their appearance temperatures in different gas mixtures, and changes in activation energies.

  16. Halogen Chemistry on Catalytic Surfaces.

    Science.gov (United States)

    Moser, Maximilian; Pérez-Ramírez, Javier

    2016-01-01

    Halogens are key building blocks for the manufacture of high-value products such as chemicals, plastics, and pharmaceuticals. The catalytic oxidation of HCl and HBr is an attractive route to recover chlorine and bromine in order to ensure the sustainability of the production processes. Very few materials withstand the high corrosiveness and the strong exothermicity of the reactions and among them RuO2 and CeO2-based catalysts have been successfully applied in HCl oxidation. The search for efficient systems for HBr oxidation was initiated by extrapolating the results of HCl oxidation based on the chemical similarity of these reactions. Interestingly, despite its inactivity in HCl oxidation, TiO2 was found to be an outstanding HBr oxidation catalyst, which highlighted that the latter reaction is more complex than previously assumed. Herein, we discuss the results of recent comparative studies of HCl and HBr oxidation on both rutile-type (RuO2, IrO2, and TiO2) and ceria-based catalysts using a combination of advanced experimental and theoretical methods to provide deeper molecular-level understanding of the reactions. This knowledge aids the design of the next-generation catalysts for halogen recycling.

  17. AIM Study on the Reaction of CH2SH Radical with Fluorine Atom

    Institute of Scientific and Technical Information of China (English)

    Cui-hong Sun; Yan-li Zeng; Ling-peng Meng; Shi-jun Zheng

    2008-01-01

    The reaction of CH2SH radical with fluorine atom was studied at the levels of B3LYP/6-311G(d,p) and MP2(Full)/6-311G(d,p).The computational results show that the reaction has three channels and proceeds by the addition of fluorine atoms on carbon or sulfur sites of CH2SH,forming initial intermediates.The calculated results show that the channel,in which fluorine attaches to the carbon atom to form CH2S and HF,is the most likely reaction pathway.Topological analysis of electron density was carried out for the three channels.The change trends of the chemical bonds on the reaction paths were discussed.The energy transition states and the structure transition regions (states) of the three channels were found.The calculated results show that the structure transition regions axe broad in unobvions exothermic reactions or unobvions endothermic reactions,and are narrow in obvious exothermic reactions or obvious endothermic reactions.

  18. Entrance Channel Stereospecificity of Photoinitiated H-Atom Reactions in Weakly Bonded Complexes

    Science.gov (United States)

    Shin, Seung Koo; Chen, Y.; Oh, D.; Wittig, C.

    1990-08-01

    Hot H-atom reactions photoinitiated in T-shaped CO2-HBr and nearly-linear CO2-HCl complexes show remarkably different reaction probabilities. Broadside H-atom approaches in CO2-HBr complexes are greatly favoured over the relatively endon approaches of CO2-HCl complexes, a striking steric effect. Photoinitiated hot H-atom reactions with N2O result in a much lower [NH]/[OH] ratio with N2O-HI complexes than under single-collision conditions at the same photolysis wavelength. In addition, OH rotational distributions differ markedly between bulk and complexed conditions, while NH rotational distributions are similar. These results can be interpreted in terms of entrance channel stereospecificity influencing chemically distinct product channels.

  19. Rate constant for the reaction of atomic oxygen with phosphine at 298 K

    Science.gov (United States)

    Stief, L. J.; Payne, W. A.; Nava, D. F.

    1987-01-01

    The rate constant for the reaction of atomic oxygen with phosphine has been measured at 298 K using flash photolysis combined with time-resolved detection of O(3P) via resonance fluorescence. Atomic oxygen was produced by flash photolysis of N2O or NO highly diluted in argon. The results were shown to be independent of (PH3), (O), total pressure and the source of O(3P). The mean value of all the experiments is k1 = (3.6 + or -0.8) x 10 to the -11th cu cm/s (1 sigma). Two previous measurements of k1 differed by more than an order of magnitude, and the results support the higher value obtained in a discharge flow-mass spectrometry study. A comparison with rate data for other atomic and free radical reactions with phosphine is presented, and the role of these reactions in the aeronomy or photochemistry of Jupiter and Saturn is briefly considered.

  20. Atom-Scale Reaction Pathways and Free-Energy Landscapes in Oxygen Plasma Etching of Graphene.

    Science.gov (United States)

    Koizumi, Kenichi; Boero, Mauro; Shigeta, Yasuteru; Oshiyama, Atsushi

    2013-05-16

    We report first-principles molecular dynamics calculations combined with rare events sampling techniques that clarify atom-scale mechanisms of oxygen plasma etching of graphene. The obtained reaction pathways and associated free-energy landscapes show that the etching proceeds near vacancies via a two-step mechanism, formation of precursor lactone structures and the subsequent exclusive CO2 desorption. We find that atomic oxygen among the plasma components is most efficient for etching, providing a guidline in tuning the plasma conditions.

  1. Is H Atom Abstraction Important in the Reaction of Cl with 1-Alkenes?

    Science.gov (United States)

    Walavalkar, M P; Vijayakumar, S; Sharma, A; Rajakumar, B; Dhanya, S

    2016-06-23

    The relative yields of products of the reaction of Cl atoms with 1-alkenes (C4-C9) were determined to see whether H atom abstraction is an important channel and if it is to identify the preferred position of abstraction. The presence of all the possible positional isomers of long chain alkenones and alkenols among the products, along with chloroketones and chloroalcohols, confirms the occurrence of H atom abstraction. A consistent pattern of distribution of abstraction products is observed with oxidation at C4 (next to allyl) being the lowest and that at CH2 groups away from the double bond being the highest. This contradicts with the higher stability of allyl (C3) radical. For a better understanding of the relative reactivity, ab initio calculations at MP2/6-311+G (d,p) level of theory are carried out in the case of 1-heptene. The total rate coefficient, calculated using conventional transition state theory, was found to be in good agreement with the experimental value at room temperature. The preferred position of Cl atom addition is predicted to be the terminal carbon atom, which matches with the experimental observation, whereas the rate coefficients calculated for individual channels of H atom abstraction do not explain the observed pattern of products. The distribution of abstraction products except at C4 is found to be better explained by reported structure activity relationship, developed from experimental rate coefficient data. This implies the reactions to be kinetically dictated and emphasizes the importance of secondary reactions.

  2. Investigation of Surface Reaction and Degradation Mechanism of Kapton during Atomic Oxygen Exposure

    Institute of Scientific and Technical Information of China (English)

    Shuwang DUO; Meishuan LI; Yanchun ZHOU; Jingyu TONG; Gang SUN

    2003-01-01

    The erosion behavior of Kapton when exposed to atomic oxygen (AO) environment in the ground-based simulation facility was studied. The chemical and physical changes of sample surfaces after exposed to AO fluxes were investigated by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The results indicated that Kapton underwent dramatically degradation, including much mass loss and change of surface morphologies; vacuum outgassing effect of Kapton was the key factor for initial mass loss in the course of atomic oxygen beam exposures. XPS analysis showed that the carbonyl group in Kapton reacted with oxygen atoms to generate CO2, then CO2 desorbed from Kapton surface. In addition, PMDA in the polyimide structure degraded due to the reaction with atomic oxygen of 5 eV.

  3. Halogen bonding origin properties and applications

    Energy Technology Data Exchange (ETDEWEB)

    Hobza, Pavel [Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 166 10 Prague (Czech Republic); Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Palacky University, 77146 Olomouc (Czech Republic)

    2015-12-31

    σ-hole bonding represents an unusual and novel type of noncovalent interactions in which atom with σ- hole interacts with Lewis base such as an electronegative atom (oxygen, nitrogen, …) or aromatic systems. This bonding is of electrostatic nature since the σ-hole bears a positive charge. Dispersion energy forms equally important energy term what is due to the fact that two heavy atoms (e.g. halogen and oxygen) having high polarizability lie close together (the respective distance is typically shorter than the sum of van der Waals radii). Among different types of σ-hole bondings the halogen bonding is by far the most known but chalcogen and pnictogen bondings are important as well.

  4. Halogenated fatty acids

    DEFF Research Database (Denmark)

    Mu, Huiling; Sundin, Peter; Wesén, Clas

    1997-01-01

    Halogenated fatty acids are the major contributors to organohalogen compounds in lipids of marine mammals, fish, and bivalves. For the initial characterization of these recently noticed compounds, a determination of the halogen concentration has usually been combined with some lipid isolation...... and separation method. This review covers separation by solid phase chromatography, gel permeation chromatography, and liquid-liquid extraction, followed by halogen determination. All studies performed according to this outline have indicated that the major organohalogen compounds are chlorinated fatty acids...... bound in different lipids. For the detection and identification of individual, halogenated fatty acid methyl esters (FAMEs) liberated from the lipids, gas chromatography (GC) has been employed together with detection methods such as electron capture detection, electrolytic conductivity detection (ELCD...

  5. Free radical hydrogen atom abstraction from saturated hydrocarbons: A crossed-molecular-beams study of the reaction Cl + C{sub 3}H{sub 8} {yields} HCl + C{sub 3}H{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Blank, D.A.; Hemmi, N.; Suits, A.G.; Lee, Y.T. [Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    The abstraction of hydrogen atoms from saturated hydrocarbons are reactions of fundamental importance in combustion as well as often being the rate limiting step in free radical substitution reactions. The authors have begun studying these reactions under single collision conditions using the crossed molecular beam technique on beamline 9.0.2.1, utilizing VUV undulator radiation to selectively ionize the scattered hydrocarbon free radical products (C{sub x}H{sub 2x+1}). The crossed molecular beam technique involves two reactant molecular beams fixed at 90{degrees}. The molecular beam sources are rotatable in the plane defined by the two beams. The scattered neutral products travel 12.0 cm where they are photoionized using the VUV undulator radiation, mass selected, and counted as a function of time. In the authors initial investigations they are using halogen atoms as protypical free radicals to abstract hydrogen atoms from small alkanes. Their first study has been looking at the reaction of Cl + propane {r_arrow} HCl + propyl radical. In their preliminary efforts the authors have measured the laboratory scattering angular distribution and time of flight spectra for the propyl radical products at collision energies of 9.6 kcal/mol and 14.9 kcal/mol.

  6. Halogens in the troposphere.

    Science.gov (United States)

    Finlayson-Pitts, Barbara J

    2010-02-01

    Although inorganic halogen gases are believed to play key roles in the chemistry of the lower atmosphere, many of them have not yet been detected or measured in ambient air. This article describes some of the current techniques and future needs for inorganic halogens in air. (To listen to a podcast about this feature, please go to the Analytical Chemistry multimedia page at pubs.acs.org/page/ancham/audio/index.html.).

  7. Light-Assisted Cold Chemical Reactions of Barium Ions with Rubidium Atoms

    CERN Document Server

    Hall, Felix H J; Raoult, Maurice; Dulieu, Olivier; Willitsch, Stefan

    2013-01-01

    Light-assisted reactive collisions between laser-cooled Ba+ ions and Rb atoms were studied in an ion-atom hybrid trap. The reaction rate was found to strongly depend on the electronic state of the reaction partners with the largest rate constant (7(2) x 10^-11 cm^3 s^-1) obtained for the excited Ba+(6s)+Rb(5p) reaction channel. Similar to the previously studied Ca+ + Rb system, charge transfer and radiative association were found to be the dominant reactive processes. The generation of molecular ions by radiative association could directly be observed by their sympathetic cooling into a Coulomb crystal. Potential energy curves up to the Ba+(6s)+Rb(5p) asymptote and reactive-scattering cross sections for the radiative processes were calculated. The theoretical rate constant obtained for the lowest reaction channel Ba+(6s)+Rb(5s) is compatible with the experimental estimates obtained thus far.

  8. Doping Reaction of some Nanotubes with Aluminium Atom: A Thermodynamic PM6 and ONIOM Investigation

    Directory of Open Access Journals (Sweden)

    Nasrin Zeighami

    2017-02-01

    Full Text Available The doping reaction of boron nitride and carbon nanotubes with aluminium atom was theoretically investigated. ONIOM method and PM6 method have been used to evaluate the thermochemistry of doping reactions of single walled boron nitride nanotubes and carbon nanotubes. The enthalpy changes, Gibbs free energy changes, of studied doping reactions were evaluated at different temperatures. All nanotubes were single-walled and finite length with hydrogen saturation in the terminal atoms. The thermodynamic calculations based on the ONIOM and PM6 levels results showed (8,0CNT is the best candidate for Al-doping reaction.result suggest the aluminum doped boron nitride nanotubes and carbon nanotubes may be considered the proper carries for the drug delivery.

  9. The reaction of nitromethane with hydrogen and deuterium atoms in the gas phase. A mechanistic study

    DEFF Research Database (Denmark)

    Lund Thomsen, E.; Nielsen, O.J.; Egsgaard, H.

    1993-01-01

    The mechanism of the reaction between H and CH3NO2, has been studied in a discharge flow system using electron paramagnetic resonance and modulated molecular beam mass spectrometry for the detection of reactants and products. Deuterium atoms have, in addition to CD3NO2, been used to support...... the proposed reaction mechanism. The reaction was studied with the atomic reactant in slight excess at 298 K and a total pressure of 2 Torr. Two concurrent reaction channels: (1a) H+CH3NO2-->HONO+.CH3 and (1b) H+CH3NO2-->CH3NO+.OH were observed. The branching ratio, k1a/(k1a+k1b), is 0.7+/-0.2....

  10. Reactions of atomic cations with methane: gas phase room-temperature kinetics and periodicities in reactivity.

    Science.gov (United States)

    Shayesteh, Alireza; Lavrov, Vitali V; Koyanagi, Gregory K; Bohme, Diethard K

    2009-05-14

    Reactions of methane have been measured with 59 atomic metal cations at room temperature in helium bath gas at 0.35 Torr using an inductively-coupled plasma/selected-ion flow tube (ICP/SIFT) tandem mass spectrometer. The atomic cations were produced at approximately 5500 K in an ICP source and allowed to decay radiatively and to thermalize by collisions with argon and helium atoms prior to reaction. Rate coefficients and product distributions are reported for the reactions of fourth-row atomic cations from K(+) to Se(+), of fifth-row atomic cations from Rb(+) to Te(+) (excluding Tc(+)), of sixth-row atomic cations from Cs(+) to Bi(+), and of the lanthanide cations from La(+) to Lu(+) (excluding Pm(+)). Two primary reaction channels were observed: C-H bond insertion with elimination of H(2), and CH(4) addition. The bimolecular H(2) elimination was observed in the reactions of CH(4) with As(+), Nb(+), and some sixth-row metal cations, i.e., Ta(+), W(+), Os(+), Ir(+), Pt(+); secondary and higher-order H(2) elimination was observed exclusively for Ta(+), W(+), and Ir(+) ions. All other transition-metal cations except Mn(+) and Re(+) were observed to react with CH(4) exclusively by addition, and up to two methane molecules were observed to add sequentially to most transition-metal ions. CH(4) addition was also observed for Ge(+), Se(+), La(+), Ce(+), and Gd(+) ions, while the other main-group and lanthanide cations did not react measurably with methane.

  11. Hydrogen bond and halogen bond inside the carbon nanotube

    Science.gov (United States)

    Wang, Weizhou; Wang, Donglai; Zhang, Yu; Ji, Baoming; Tian, Anmin

    2011-02-01

    The hydrogen bond and halogen bond inside the open-ended single-walled carbon nanotubes have been investigated theoretically employing the newly developed density functional M06 with the suitable basis set and the natural bond orbital analysis. Comparing with the hydrogen or halogen bond in the gas phase, we find that the strength of the hydrogen or halogen bond inside the carbon nanotube will become weaker if there is a larger intramolecular electron-density transfer from the electron-rich region of the hydrogen or halogen atom donor to the antibonding orbital of the X-H or X-Hal bond involved in the formation of the hydrogen or halogen bond and will become stronger if there is a larger intermolecular electron-density transfer from the electron-rich region of the hydrogen or halogen atom acceptor to the antibonding orbital of the X-H or X-Hal bond. According to the analysis of the molecular electrostatic potential of the carbon nanotube, the driving force for the electron-density transfer is found to be the negative electric field formed in the carbon nanotube inner phase. Our results also show that the X-H bond involved in the formation of the hydrogen bond and the X-Hal bond involved in the formation of the halogen bond are all elongated when encapsulating the hydrogen bond and halogen bond within the carbon nanotube, so the carbon nanotube confinement may change the blue-shifting hydrogen bond and the blue-shifting halogen bond into the red-shifting hydrogen bond and the red-shifting halogen bond. The possibility to replace the all electron nanotube-confined calculation by the simple polarizable continuum model is also evaluated.

  12. The reaction of hydrogen atoms with hydrogen peroxide as a function of temperature

    DEFF Research Database (Denmark)

    Lundström, T.; Christensen, H.; Sehested, K.

    2001-01-01

    The temperature dependence for the reaction of H atoms with H2O2 at pH 1 has been determined using pulse radiolysis technique. The reaction was studied in the temperature range 10-120 degreesC. The rate constant at 25 degreesC was found to be 5.1 +/- 0.5 x 10(7) dm(3) mol(-1) s(-1) and the activa...

  13. Ultracold chemical reactions of a single Rydberg atom in a dense gas

    CERN Document Server

    Schlagmüller, Michael; Engel, Felix; Kleinbach, Kathrin S; Böttcher, Fabian; Westphal, Karl M; Gaj, Anita; Löw, Robert; Hofferberth, Sebastian; Pfau, Tilman; Pérez-Ríos, Jesús; Greene, Chris H

    2016-01-01

    Within a dense environment ($\\rho \\approx 10^{14}\\,$atoms/cm$^3$) at ultracold temperatures ($T 140$ compared to $1\\,\\mu\\text{s}$ at $n=90$. In addition, a second observed reaction mechanism, namely Rb$_2^+$ molecule formation, was studied. Both reaction products are equally probable for $n=40$ but the fraction of Rb$_2^+$ created drops to below 10$\\,$% for $n\\ge90$.

  14. Experimental and computational investigation on the gas phase reaction of p-cymene with Cl atoms.

    Science.gov (United States)

    Dash, Manas Ranjan; Srinivasulu, G; Rajakumar, B

    2015-01-29

    The rate coefficient for the gas-phase reaction of Cl atoms with p-cymene was determined as a function of temperature (288-350 K) and pressure (700-800 Torr) using the relative rate technique, with 1,3-butadiene and ethylene as reference compounds. Cl atoms were generated by UV photolysis of oxalyl chloride ((COCl)2) at 254 nm, and nitrogen was used as the diluent gas. The rate coefficient for the reaction of Cl atoms with p-cymene at 298 K was measured to be (2.58 ± 1.55) × 10(-10) cm(3) molecule(-1) s(-1). The kinetic data obtained over the temperature range 288-350 K were used to derive an Arrhenius expression: k(T) = (9.36 ± 2.90) × 10(-10) exp[-(488 ± 98)/T] cm(3) molecule(-1) s(-1). Theoretical kinetic calculations were also performed for the title reaction using canonical variational transition state theory (CVT) with small curvature tunneling (SCT) between 250 and 400 K. The calculated rate coefficients obtained over the temperature range 250-400 K were used to derive an Arrhenius expression: k(T) = 5.41 × 10(-13) exp[1837/T] cm(3) molecule(-1) s(-1). Theoretical study indicated that addition channels contribute maximum to the total reaction and H-abstraction channels can be neglected. The atmospheric lifetime (τ) of p-cymene due to its reactions with various tropospheric oxidants was estimated, and it was concluded that the reactions of p-cymene with Cl atoms may compete with OH radicals in the marine boundary layer and in coastal urban areas where the concentration of Cl atoms is high.

  15. Palladium-atom catalyzed formic acid decomposition and the switch of reaction mechanism with temperature.

    Science.gov (United States)

    He, Nan; Li, Zhen Hua

    2016-04-21

    Formic acid decomposition (FAD) reaction has been an innovative way for hydrogen energy. Noble metal catalysts, especially palladium-containing nanoparticles, supported or unsupported, perform well in this reaction. Herein, we considered the simplest model, wherein one Pd atom is used as the FAD catalyst. With high-level theoretical calculations of CCSD(T)/CBS quality, we investigated all possible FAD pathways. The results show that FAD catalyzed by one Pd atom follows a different mechanism compared with that catalyzed by surfaces or larger clusters. At the initial stage of the reaction, FAD follows a dehydration route and is quickly poisoned by CO due to the formation of very stable PdCO. PdCO then becomes the actual catalyst for FAD at temperatures approximately below 1050 K. Beyond 1050 K, there is a switch of catalyst from PdCO to Pd atom. The results also show that dehydration is always favoured over dehydrogenation on either the Pd-atom or PdCO catalyst. On the Pd-atom catalyst, neither dehydrogenation nor dehydration follows the formate mechanism. In contrast, on the PdCO catalyst, dehydrogenation follows the formate mechanism, whereas dehydration does not. We also systematically investigated the performance of 24 density functional theory methods. We found that the performance of the double hybrid mPW2PLYP functional is the best, followed by the B3LYP, B3PW91, N12SX, M11, and B2PLYP functionals.

  16. A new class of rhodium complexes containing free donor atoms and their intramolecular substitution reaction

    Institute of Scientific and Technical Information of China (English)

    JIANG, Hua; YUAN, Guo-Qing; ZHANG, Shu-Feng; PAN, Ping-Lai; DIAO, Kai-Sheng

    2000-01-01

    A new class of rhodium complexes with high catalytic activity as well as excellent stability, which was used as catalyst for carlbonylation of methanol to acetic acid, is reported. It con tains free donor (namely un-coordinated donor) atoms which enable to improve its stability by intramolecular substitution rearction. Its synthesis, characteristic and catalytic reaction were discussed here.

  17. Learning about Regiochemistry from a Hydrogen-Atom Abstraction Reaction in Water

    Science.gov (United States)

    Sears-Dundes, Christopher; Huon, Yoeup; Hotz, Richard P.; Pinhas, Allan R.

    2011-01-01

    An experiment has been developed in which the hydrogen-atom abstraction and the coupling of propionitrile, using Fenton's reagent, are investigated. Students learn about the regiochemistry of radical formation, the stereochemistry of product formation, and the interpretation of GC-MS data, in a safe reaction that can be easily completed in one…

  18. Near-resonant versus nonresonant chemiluminescent charge-transfer reactions of atomic ions with HCl

    Science.gov (United States)

    Glenewinkel-Meyer, Th.; Ottinger, Ch.

    1994-01-01

    Charge-transfer reactions of C+, O+, F+, Ar+ and some other atomic ions with hydrogen chloride were investigated at collision energies between eVc.m.. This may be due to formation of a long-lived collision complex (Ar-HCl)+.

  19. Modeling Mechanism and Growth Reactions for New Nanofabrication Processes by Atomic Layer Deposition.

    Science.gov (United States)

    Elliott, Simon D; Dey, Gangotri; Maimaiti, Yasheng; Ablat, Hayrensa; Filatova, Ekaterina A; Fomengia, Glen N

    2016-07-01

    Recent progress in the simulation of the chemistry of atomic layer deposition (ALD) is presented for technologically important materials such as alumina, silica, and copper metal. Self-limiting chemisorption of precursors onto substrates is studied using density functional theory so as to determine reaction pathways and aid process development. The main challenges for the future of ALD modeling are outlined.

  20. The effect of moderators on the reactions of hot hydrogen atoms with methane

    CERN Document Server

    Estrup, Peder J.

    1960-01-01

    The reaction of recoil tritium with methane has been examined in further detail. The previous hypothesis that this system involves a hot displacement reaction of high kinetic energy hydrogen to give CH$_{3}$T, CH$_{2}$T and HT is confirmed. The effect of moderator on this process is studied by the addition of noble gases. As predicted these gases inhibit the hot reaction action, their efficiency in this respect being He > Ne > A > Se. The data are quantitatively in accord with a theory of hot atom kinetics. The mechanism of the hot displacement process is briefly discussed.

  1. Reactions between cold methyl halide molecules and alkali-metal atoms.

    Science.gov (United States)

    Lutz, Jesse J; Hutson, Jeremy M

    2014-01-07

    We investigate the potential energy surfaces and activation energies for reactions between methyl halide molecules CH3X (X = F, Cl, Br, I) and alkali-metal atoms A (A = Li, Na, K, Rb) using high-level ab initio calculations. We examine the anisotropy of each intermolecular potential energy surface (PES) and the mechanism and energetics of the only available exothermic reaction pathway, CH3X + A → CH3 + AX. The region of the transition state is explored using two-dimensional PES cuts and estimates of the activation energies are inferred. Nearly all combinations of methyl halide and alkali-metal atom have positive barrier heights, indicating that reactions at low temperatures will be slow.

  2. Impact of wastewater infrastructure upgrades on the urban water cycle: Reduction in halogenated reaction byproducts following conversion from chlorine gas to ultraviolet light disinfection

    Energy Technology Data Exchange (ETDEWEB)

    Barber, Larry B. [U.S. Geological Survey, 3215 Marine St., Boulder, CO 80303 (United States); Hladik, Michelle L. [U.S. Geological Survey, 6000 J Street Placer Hall, Sacramento, CA 95819 (United States); Vajda, Alan M. [University of Colorado, Department of Integrative Biology, CB 171, Denver, CO 80217 (United States); Fitzgerald, Kevin C. [U.S. Geological Survey, 3215 Marine St., Boulder, CO 80303 (United States); AECOM, 500 West Jefferson St., Ste. 1600, Louisville, KY 40202 (United States); Douville, Chris [City of Boulder, 4049 75th Street, Boulder, CO 80301 (United States)

    2015-10-01

    The municipal wastewater treatment facility (WWTF) infrastructure of the United States is being upgraded to expand capacity and improve treatment, which provides opportunities to assess the impact of full-scale operational changes on water quality. Many WWTFs disinfect their effluent prior to discharge using chlorine gas, which reacts with natural and synthetic organic matter to form halogenated disinfection byproducts (HDBPs). Because HDBPs are ubiquitous in chlorine-disinfected drinking water and have adverse human health implications, their concentrations are regulated in potable water supplies. Less is known about the formation and occurrence of HDBPs in disinfected WWTF effluents that are discharged to surface waters and become part of the de facto wastewater reuse cycle. This study investigated HDBPs in the urban water cycle from the stream source of the chlorinated municipal tap water that comprises the WWTF inflow, to the final WWTF effluent disinfection process before discharge back to the stream. The impact of conversion from chlorine-gas to low-pressure ultraviolet light (UV) disinfection at a full-scale (68,000 m{sup 3} d{sup −1} design flow) WWTF on HDBP concentrations in the final effluent was assessed, as was transport and attenuation in the receiving stream. Nutrients and trace elements (boron, copper, and uranium) were used to characterize the different urban source waters, and indicated that the pre-upgrade and post-upgrade water chemistry was similar and insensitive to the disinfection process. Chlorinated tap water during the pre-upgrade and post-upgrade samplings contained 11 (mean total concentration = 2.7 μg L{sup −1}; n = 5) and 10 HDBPs (mean total concentration = 4.5 μg L{sup −1}), respectively. Under chlorine-gas disinfection conditions 13 HDBPs (mean total concentration = 1.4 μg L{sup −1}) were detected in the WWTF effluent, whereas under UV disinfection conditions, only one HDBP was detected. The chlorinated WWTF effluent had

  3. Occurrence of halogenated alkaloids.

    Science.gov (United States)

    Gribble, Gordon W

    2012-01-01

    Once considered to be isolation artifacts or chemical "mistakes" of nature, the number of naturally occurring organohalogen compounds has grown from a dozen in 1954 to >5000 today. Of these, at least 25% are halogenated alkaloids. This is not surprising since nitrogen-containing pyrroles, indoles, carbolines, tryptamines, tyrosines, and tyramines are excellent platforms for biohalogenation, particularly in the marine environment where both chloride and bromide are plentiful for biooxidation and subsequent incorporation into these electron-rich substrates. This review presents the occurrence of all halogenated alkaloids, with the exception of marine bromotyrosines where coverage begins where it left off in volume 61 of The Alkaloids. Whereas the biological activity of these extraordinary compounds is briefly cited for some examples, a future volume of The Alkaloids will present full coverage of this topic and will also include selected syntheses of halogenated alkaloids. Natural organohalogens of all types, especially marine and terrestrial halogenated alkaloids, comprise a rapidly expanding class of natural products, in many cases expressing powerful biological activity. This enormous proliferation has several origins: (1) a revitalization of natural product research in a search for new drugs, (2) improved compound characterization methods (multidimensional NMR, high-resolution mass spectrometry), (3) specific enzyme-based and other biological assays, (4) sophisticated collection methods (SCUBA and remote submersibles for deep ocean marine collections), (5) new separation and purification techniques (HPLC and countercurrent separation), (6) a greater appreciation of traditional folk medicine and ethobotany, and (7) marine bacteria and fungi as novel sources of natural products. Halogenated alkaloids are truly omnipresent in the environment. Indeed, one compound, Q1 (234), is ubiquitous in the marine food web and is found in the Inuit from their diet of whale

  4. Halogen Bonding: An AIM Analysis of the Weak Interactions

    Institute of Scientific and Technical Information of China (English)

    ZOU, Jian-Wei; LU, Yun-Xiang; YU, Qing-Sen; ZHANG, Hua-Xin; JIANG, Yong-Jun

    2006-01-01

    A series of complexes formed between halogen-containing molecules and ammonia have been investigated by means of the atoms in molecules (AIM) approach to gain a deeper insight into halogen bonding. The existence of the halogen bond critical points (XBCP) and the values of the electron density (ρb) and Laplacian of electron density (▽2pb) at the XBCP reveal the closed-shell interactions in these complexes. Integrated atomic properties such as charge, energy, polarization moment, volume of the halogen bond donor atoms, and the corresponding changes (△) upon complexation have been calculated. The present calculations have demonstrated that the halogen bond represents different AIM properties as compared to the well-documented hydrogen bond. Both the electron density and the Laplacian of electron density at the XBCP have been shown to correlate well with the interaction energy, which indicates that the topological parameters at the XBCP can be treated as a good measure of the halogen bond strength.In addition, an excellent linear relationship between the interatomic distance d(X…N) and the logarithm of ρb has been established.

  5. Halogenated solvent remediation

    Science.gov (United States)

    Sorenson, Kent S.

    2004-08-31

    Methods for enhancing bioremediation of ground water contaminated with nonaqueous halogenated solvents are disclosed. A preferred method includes adding a composition to the ground water wherein the composition is an electron donor for microbe-mediated reductive dehalogenation of the halogenated solvents and enhances mass transfer of the halogenated solvents from residual source areas into the aqueous phase of the ground water. Illustrative compositions effective in these methods include surfactants such as C.sub.2 -C.sub.4 carboxylic acids and hydroxy acids, salts thereof, esters of C.sub.2 -C.sub.4 carboxylic acids and hydroxy acids, and mixtures thereof. Especially preferred compositions for use in these methods include lactic acid, salts of lactic acid, such as sodium lactate, lactate esters, and mixtures thereof. The microbes are either indigenous to the ground water, or such microbes can be added to the ground water in addition to the composition.

  6. State-to-state dynamics of elementary chemical reactions using Rydberg H-atom translational spectroscopy

    Science.gov (United States)

    Yang, Xueming

    In this review, a few examples of state-to-state dynamics studies of both unimolecular and bimolecular reactions using the H-atom Rydberg tagging TOF technique were presented. From the H2O photodissociation at 157 nm, a direction dissociation example is provided, while photodissociation of H2O at 121.6 has provided an excellent dynamical case of complicated, yet direct dissociation process through conical intersections. The studies of the O(1D) + H2 → OH + H reaction has also been reviewed here. A prototype example of state-to-state dynamics of pure insertion chemical reaction is provided. Effect of the reagent rotational excitation and the isotope effect on the dynamics of this reaction have also been investigated. The detailed mechanism for abstraction channel in this reaction has also been closely studied. The experimental investigations of the simplest chemical reaction, the H3 system, have also been described here. Through extensive collaborations between theory and experiment, the mechanism for forward scattering product at high collision energies for the H + HD reaction was clarified, which is attributed to a slow down mechanism on the top of a quantized barrier transition state. Oscillations in the product quantum state resolved different cross sections have also been observed in the H + D2 reaction, and were attributed to the interference of adiabatic transition state pathways from detailed theoretical analysis. The results reviewed here clearly show the significant advances we have made in the studies of the state-to-state molecular reaction dynamics.

  7. In Situ Catalyst Modification in Atom Transfer Radical Reactions with Ruthenium Benzylidene Complexes.

    Science.gov (United States)

    Lee, Juneyoung; Grandner, Jessica M; Engle, Keary M; Houk, K N; Grubbs, Robert H

    2016-06-08

    Ruthenium benzylidene complexes are well-known as olefin metathesis catalysts. Several reports have demonstrated the ability of these catalysts to also facilitate atom transfer radical (ATR) reactions, such as atom transfer radical addition (ATRA) and atom transfer radical polymerization (ATRP). However, while the mechanism of olefin metathesis with ruthenium benzylidenes has been well-studied, the mechanism by which ruthenium benzylidenes promote ATR reactions remains unknown. To probe this question, we have analyzed seven different ruthenium benzylidene complexes for ATR reactivity. Kinetic studies by (1)H NMR revealed that ruthenium benzylidene complexes are rapidly converted into new ATRA-active, metathesis-inactive species under typical ATRA conditions. When ruthenium benzylidene complexes were activated prior to substrate addition, the resulting activated species exhibited enhanced kinetic reactivity in ATRA with no significant difference in overall product yield compared to the original complexes. Even at low temperature, where the original intact complexes did not catalyze the reaction, preactivated catalysts successfully reacted. Only the ruthenium benzylidene complexes that could be rapidly transformed into ATRA-active species could successfully catalyze ATRP, whereas other complexes preferred redox-initiated free radical polymerization. Kinetic measurements along with additional mechanistic and computational studies show that a metathesis-inactive ruthenium species, generated in situ from the ruthenium benzylidene complexes, is the active catalyst in ATR reactions. Based on data from (1) H, (13)C, and (31)P NMR spectroscopy and X-ray crystallography, we suspect that this ATRA-active species is a RuxCly(PCy3)z complex.

  8. Chemical Reaction of Ultracold Atoms and Ions in a Hybrid Trap

    CERN Document Server

    Rellergert, Wade G; Kotochigova, Svetlana; Petrov, Alexander; Chen, Kuang; Schowalter, Steven J; Hudson, Eric R

    2011-01-01

    Interactions between cold ions and atoms have been proposed for use in implementing quantum gates\\cite{Idziaszek2007}, probing quantum gases\\cite{Sherkunov2009}, observing novel charge-transport dynamics\\cite{Cote2000}, and sympathetically cooling atomic and molecular systems which cannot be laser cooled\\cite{Smith2005,Hudson2009}. Furthermore, the chemistry between cold ions and atoms is foundational to issues in modern astrophysics, including the formation of stars, planets, and interstellar clouds\\cite{Smith1992}, the diffuse interstellar bands\\cite{Reddy2010}, and the post-recombination epoch of the early universe\\cite{Stancil1996b}. However, as pointed out in refs 9 and 10, both experimental data and a theoretical description of the ion-atom interaction at low temperatures, reached in these modern atomic physics experiments and the interstellar environment, are still largely missing. Here we observe a chemical reaction between ultracold $^{174}$Yb$^+$ ions and $^{40}$Ca atoms held in a hybrid trap. We me...

  9. Halogen-induced organic aerosol (XOA) formation and decarboxylation of carboxylic acids by reactive halogen species - a time-resolved aerosol flow-reactor study

    Science.gov (United States)

    Ofner, Johannes; Zetzsch, Cornelius

    2013-04-01

    Reactive halogen species (RHS) are released to the atmosphere from various sources like photo-activated sea-salt aerosol and salt lakes. Recent studies (Cai et al., 2006 and 2008, Ofner et al., 2012) indicate that RHS are able to interact with SOA precursors similarly to common atmospheric oxidizing gases like OH radicals and ozone. The reaction of RHS with SOA precursors like terpenes forms so-called halogen-induced organic aerosol (XOA). On the other hand, RHS are also able to change the composition of functional groups, e.g. to initiate the decarboxylation of carboxylic acids (Ofner et al., 2012). The present study uses a 50 cm aerosol flow-reactor, equipped with a solar simulator to investigate the time-resolved evolution and transformation of vibrational features in the mid-infrared region. The aerosol flow-reactor is coupled to a home-made multi-reflection cell (Ofner et al., 2010), integrated into a Bruker IFS 113v FTIR spectrometer. The reactor is operated with an inlet feed (organic compound) and a surrounding feed (reactive halogen species). The moveable inlet of the flow reactor allows us to vary reaction times between a few seconds and up to about 3 minutes. Saturated vapours of different SOA precursors and carboxylic acids were fed into the flow reactor using the moveable inlet. The surrounding feed inside the flow reactor was a mixture of zero air with molecular chlorine as the precursor for the formation of reactive halogen species. Using this setup, the formation of halogen-induced organic aerosol could be monitored with a high time resolution using FTIR spectroscopy. XOA formation is characterized by hydrogen-atom abstraction, carbon-chlorine bond formation and later, even formation of carboxylic acids. Several changes of the entire structure of the organic precursor, caused by the reaction of RHS, are visible. While XOA formation is a very fast process, the decarboxylation of carboxylic acids, induced by RHS is rather slow. However, XOA formation

  10. Interactions between volatile organic compounds and reactive halogen in the tropical marine atmosphere using WRF-Chem

    Science.gov (United States)

    Badia, Alba; Reeves, Claire E.; Baker, Alex; Volkamer, Rainer; von Glasow, Roland

    2016-04-01

    Halogen species (chlorine, bromine and iodine) are known to play an important role in the chemistry and oxidizing capacity of the troposphere, particularly in the marine boundary layer (MBL). Reactive halogens cause ozone (O3) destruction, change the HOx and NOX partitioning, affect the oxidation of volatile organic compounds (VOCs) and mercury, reduce the lifetime of methane, and take part in new particle formation. Numerical models predicted that reactive halogen compounds account for 30% of O3 destruction in the MBL and 5-20% globally. There are indications that the chemistry of reactive halogens and oxygenated VOCs (OVOCs) in the tropics are inter-related. Moreover, the presence of aldehydes, such as glyoxal (CHOCHO), has a potential impact on radical cycling and secondary organic aerosol (SOA) formation in the MBL and free troposphere (FT). Model calculations suggest aldehydes to be an important sink for bromine atoms and hence competition for their reaction with O3 forming BrO and so illustrating a link between the cycles of halogens and OVOCs in the marine atmosphere. The main objective of this contribution is to investigate the atmospheric chemistry in the tropical East Pacific with a focus on reactive halogens and OVOCs and their links using the latest version of the Weather Research and Forecasting (WRF) model coupled with Chemistry (WRF-Chem) and field data from the TORERO campaign. WRF-Chem is a highly flexible community model for atmospheric research where aerosol-radiation-cloud feedback processes are taken into account. Our current reaction mechanism in WRF-Chem is based on the MOZART mechanism and has been extended to include bromine, chlorine and iodine chemistry. The MOZART mechanism includes detailed gas-phase chemistry of CHOCHO formation as well as state-of-the-science pathways to form SOA. Oceanic emissions of aldehydes, including CHOCHO, and of organic halogens based on measurements from the TORERO campaign have been added into the model. Sea

  11. Halogen Bonding in (Z-2-Iodocinnamaldehyde

    Directory of Open Access Journals (Sweden)

    Miriam Rossi

    2013-07-01

    Full Text Available Based on the bulkiness of the iodine atom, a non-planar conformation was expected for the title compound. Instead, its molecular structure is planar, as experimentally determined using single crystal X-ray diffraction, and confirmed theoretically by DFT calculations on the single molecule and the halogen pair paired molecules, therefore ruling out crystal packing forces as a principal factor leading to planarity. Indeed, planarity is ascribed to the carbonyl double bond, as when this bond is saturated on forming the related alcohol derivative, the molecule loses planarity. The X-ray molecular structure shows an intermolecular separation between the iodine and the oxygen of the carbonyl shorter than the corresponding van der Waals distance suggesting a weak halogen bond interaction. DFT minimization of this 2-molecule arrangement shows the iodine--oxygen distance much shorter than that observed in the crystal interaction and confirming its stronger halogen bond nature. A trend between increasing I•••O(carbonyl separation and decreasing C-I•••O(carbonyl angle is demonstrated, further confirming the existence of a halogen bond.

  12. Crossed-beam DC slice imaging of fluorine atom reactions with linear alkanes

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yuanyuan; Kamasah, Alexander; Joalland, Baptiste; Suits, Arthur G., E-mail: asuits@chem.wayne.edu [Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202 (United States)

    2015-05-14

    We report the reaction dynamics of F atom with selected alkanes studied by crossed beam scattering with DC slice ion imaging. The target alkanes are propane, n-butane, and n-pentane. The product alkyl radicals are probed by 157 nm single photon ionization following reaction at a collision energy of ∼10 kcal mol{sup −1}. The analyzed data are compared with the corresponding theoretical studies. Reduced translational energy distributions for each system show similar trends with little of the reaction exoergicity appearing in translation. However, the pentane reaction shows a somewhat smaller fraction of available energy in translation than the other two, suggesting greater energy channeled into pentyl internal degrees of freedom. The center-of-mass angular distributions all show backscattering as well as sharp forward scattering that decreases in relative intensity with the size of the molecule. Possible reasons for these trends are discussed.

  13. Chapter 11 Computational Study of the Reaction of n-Bromopropane with OH Radicals and Cl Atoms

    Science.gov (United States)

    Rosado-Reyes, Claudette M.; Martínez-Avilés, Mónica; Francisco, Joseph S.

    Ab initio molecular orbital theory is utilized to study the hydrogen abstraction reaction of n-bromopropane with hydroxyl radical and chlorine atom. The stability of the trans and gauche isomers of n-bromopropane is explored. The potential energy surface of both reactions is characterized by pre- and post-reactive complexes, as well as transition state structures in both trans and gauche isomeric forms. The importance of these two reactions relies on the ultimate product distribution from both reactions. Differences in the reactivity of 1-bromopropane toward OH and Cl are observed. The reaction of n-bromopropane with OH radical favors the abstraction of [beta] hydrogen atoms while the reaction with Cl atoms favors the abstraction of hydrogen atoms at the [alpha] and [beta] carbon sites.

  14. Surface reactions of molecular and atomic oxygen with carbon phosphide films.

    Science.gov (United States)

    Gorham, Justin; Torres, Jessica; Wolfe, Glenn; d'Agostino, Alfred; Fairbrother, D Howard

    2005-11-01

    The surface reactions of atomic and molecular oxygen with carbon phosphide films have been studied using X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Carbon phosphide films were produced by ion implantation of trimethylphosphine into polyethylene. Atmospheric oxidation of carbon phosphide films was dominated by phosphorus oxidation and generated a carbon-containing phosphate surface film. This oxidized surface layer acted as an effective diffusion barrier, limiting the depth of phosphorus oxidation within the carbon phosphide film to phosphorus atoms as well as the degree of phosphorus oxidation. For more prolonged AO exposures, a highly oxidized phosphate surface layer formed that appeared to be inert toward further AO-mediated erosion. By utilizing phosphorus-containing hydrocarbon thin films, the phosphorus oxides produced during exposure to AO were found to desorb at temperatures >500 K under vacuum conditions. Results from this study suggest that carbon phosphide films can be used as AO-resistant surface coatings on polymers.

  15. Chain reaction. History of the atomic bomb; Kettenreaktion. Die Geschichte der Atombombe

    Energy Technology Data Exchange (ETDEWEB)

    Mania, Hubert

    2010-07-01

    Henri becquerel tracked down in 1896 a strange radiation, which was called radioactivity by Marie Curie. In the following centuries German scientists Max Planck, Albert Einstein and Werner Heisenberg presented fundamental contributions to understand processes in the atomic nucleus. At Goettingen, center of the international nuclear physics community, the American student J. Robert Oppenheimer admit to this physical research. In the beginning of 1939 the message of Otto Hahns' nuclear fission electrified researchers. The first step, unleashing atomic energy, was done. A half year later the Second World War begun. And suddenly being friend with and busily communicating physicians were devided into hostile power blocs as bearers of official secrets. The author tells in this exciting book the story of the first atomic bomb as a chain reaction of ideas, discoveries and visions, of friendships, jealousy and intrigues of scientists, adventurers and genius. (orig./GL)

  16. Hot hydrogen atoms reactions of interest in molecular evolution and interstellar chemistry

    Science.gov (United States)

    Becker, R. S.; Hong, K.; Hong, J. H.

    1974-01-01

    Hot hydrogen atoms which are photochemically generated initiate reactions among mixtures of methane, ethane, water and ammonia, to produce ethanol, organic amines, organic acids, and amino acids. Both ethanol and ethyl amine can also act as substrates for formation of amino acids. The one carbon substrate methane is sufficient as a carbon source to produce amino acids. Typical quantum yields for formation of amino acids are approximately 0.00002 to 0.00004. In one experiment, 6 protein amino acids were identified and 8 nonprotein amino acids verified utilizing gas chromatography-mass spectroscopy. We propose that hot atoms, especially hydrogen, initiate reactions in the thermodynamic nonequilibrium environment of interstellar space as well as in the atmospheres of planets.

  17. On the theory of (e, 2e) reactions in atomic hydrogen and helium

    Science.gov (United States)

    Byron, F. W.; Joachain, C. J.; Piraux, B.

    1984-12-01

    We compare the results of eikonal-Born series calculations which we have performed for the (e, 2e) reaction in atomic hydrogen with recent absolute measurements of triple differential cross sections for that process, carried out in the asymmetric coplanar geometry. We find that second-order effects play a crucial role in understanding both the angular positions and the magnitudes of the binary and recoil peaks. The implications of our analysis for the case of (e, 2e) reactions in helium are also discussed.

  18. The selectivity of charged phenyl radicals in hydrogen atom abstraction reactions with isopropanol.

    Science.gov (United States)

    Jing, Linhong; Guler, Leonard P; Pates, George; Kenttämaa, Hilkka I

    2008-10-09

    The vertical electron affinity is demonstrated to be a key factor in controlling the selectivity of charged phenyl radicals in hydrogen atom abstraction from isopropanol in the gas phase. The measurement of the total reaction efficiencies (hydrogen and/or deuterium atom abstraction) for unlabeled and partially deuterium-labeled isopropanol, and the branching ratios of hydrogen and deuterium atom abstraction, by using a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer, allowed the determination of the selectivity for each site in the unlabeled isopropanol. Examination of hydrogen atom abstraction from isopropanol by eight structurally different radicals revealed that the preferred site is the CH group. The selectivity of the charged phenyl radicals correlates with the radical's vertical electron affinity and the reaction efficiency. The smaller the vertical electron affinity of a radical, the lower its reactivity, and the greater the preference for the thermodynamically favored CH group over the CH3 group or the OH group. As the vertical electron affinity increases from 4.87 to 6.28 eV, the primary kinetic isotope effects decrease from 2.9 to 1.3 for the CD group, and the mixture of primary and alpha-secondary kinetic isotopes decreases from 6.0 to 2.4 for the CD3 group.

  19. H{sup .} atom and OH{sup .} radical reactions with 5-methyl-cytosine

    Energy Technology Data Exchange (ETDEWEB)

    Grand, A.; Morell, C.; Labet, V.; Cadet, J. [CEA Grenoble, Lab Les Acides Nucl, DRFMC/SCIB, UMR-E 3, CEA-UJF, F-38054 Grenoble, (France); Eriksson, L.A. [Univ Orebro, Dept Nat Sci and Orebro Life Sci Ctr, S-70182 Orebro, (Sweden)

    2007-07-01

    The reactions between either a hydrogen atom or a hydroxyl radical and 5-methyl-cytosine (5-MeCyt) are studied by using the hybrid kinetic energy meta-GGA functional MPW1B95. H{sup .} atom and OH{sup .} radical addition to positions C5 and C6 of 5-MeCyt, or OH{sup .} radical induced H-abstraction from the C5 methyl group, are explored. All systems are optimized in bulk solvent. The data presented show that the barriers to reaction are very low: ca. 7 kCal/mol for the H{sup .} atom additions and 1 kCal/mol for the reactions involving the OH{sup .} radical. Thermodynamically, the two C6 radical adducts and the H{sup .}- abstraction product are the most stable ones. The proton hyperfine coupling constants (HFCC), computed at the IEFPCM/MPW1B95/6-311++G(2d,2p) level, agree well with B3LYP results and available experimental and theoretical data on related thymine and cytosine radicals. (authors)

  20. Halogen Chemistry in Volcanic Plumes (Invited)

    Science.gov (United States)

    Roberts, Tjarda

    2017-04-01

    only partially constrained by available observations. Reactions on aerosol are a key driver of the chemistry and are affected by uncertainties in both the HOBr reactive uptake coefficient and the aerosol surface area. Recent work has explored the reactive uptake of HOBr on sulfate-rich aerosol, whilst field-measurements at Mt Etna have aimed to quantify the size-resolved primary aerosol emission, towards improving model representations of this highly non-linear volcanic plume halogen chemistry.

  1. The synthesis and crystal structures of halogenated tolans p-X-C6H4-C[triple bond]C-C6F5 and p-X-C6F4-C[triple bond]C-C6H5(X=F, Cl, Br, I).

    Science.gov (United States)

    Collings, Jonathan C; Burke, Jacquelyn M; Smith, Philip S; Batsanov, Andrei S; Howard, Judith A K; Marder, Todd B

    2004-11-07

    A series of halogenated, partially fluorinated tolans of general formula p-X-C6H4-C[triple bond]C-C6F5[X=I (1), Br (2), Cl (3), F (4)] and p-X-C6F4-C[triple bond]C-C6H5[X=I (5), Br (6)] have been prepared via palladium-catalysed Sonogashira cross-coupling, or for X=Cl (7), by nucleophilic aromatic substitution reactions. The single-crystal X-ray structures of 1-3 and 5-6 have been determined. The structures reveal that the molecular packing is characterized by either arene-perfluoroarene interactions (3), or halogen-halogen interactions (isomorphous 1 and 2), or neither (isomorphous 5 and 6). The structure of represents the first fully determined crystal structure of a compound that contains a halogen atom other than fluorine, in which arene-perfluoroarene interactions are present.

  2. STM observation of the chemical reaction of atomic hydrogen on the N-adsorbed Cu(001) surface

    Science.gov (United States)

    Hattori, Takuma; Yamada, Masamichi; Komori, Fumio

    2017-01-01

    Chemical reaction of atomic hydrogen with the N-adsorbed Cu(001) surfaces was investigated at room temperature by scanning tunnel microscopy. At the low exposure of atomic hydrogen, it reacted with the N atoms and turned to be the NH species on the surface. The reaction rate is proportional to the amount of the unreacted N atoms. By increasing the exposure of atomic hydrogen from this condition, the amount of nitrogen species on the surface decreased. This is attributed to the formation of ammonia and its desorption from the surface. The NH species on the surface turn to NH3 through the surface NH2 species by atomic hydrogen. Coexistence of the clean Cu surface enhances the rate of ammonia formation owing to atomic hydrogen migrating on the clean surface.

  3. Weak acidity of vinyl CH bonds enhanced by halogen substitution.

    Science.gov (United States)

    Craig, Norman C; Matlin, Albert R

    2014-02-21

    As shown by the rates of proton-deuteron exchange in ethylenes with halogen substituents, the weak acidity of vinyl CH bonds is enhanced by halogen substitution. Relative rates of exchange in basic deuterium oxide reflect the relative acidities. Substitution in the α position has the strongest effect. Less electronegative halogens such as bromine increase the acidity more than does fluorine. The vinyl CH acid strengths correlate closely with the energies of deprotonation of isolated molecules into isolated anions, as computed with the MP2/cc-pVQZ model. The smaller deprotonation energies are associated with the stronger acids. Atomic charges from a natural bond order analysis done with the MP2/aug-cc-pVQZ model show that the negative charge becomes more dispersed in the anions of the stronger acids. Results are given for 13 haloethylenes and for 6 halogen-substituted butadienes, cyclopropenes, and a cyclobutene.

  4. Photoinitiated H- and D-atom reactions with N2O in the gas phase and in N2O-HI and N2O-DI complexes

    Science.gov (United States)

    Böhmer, E.; Shin, S. K.; Chen, Y.; Wittig, C.

    1992-08-01

    Reactions of H atoms with N2O have two product channels yielding NH+NO and OH+N2. Both channels were observed via NH A 3Π←X 3∑ and OH A 2∑←X 2Π laser-induced fluorescence spectra. Photoinitiated reactions with N2O-HI complexes yield a much lower [NH]/[OH] ratio than under the corresponding bulk conditions at the same photolysis wavelength. For hot D-atom reactions with N2O, this effect is somewhat more pronounced. These results can be interpreted in terms of entrance channel geometric specificity, namely, biasing hydrogen attack toward the oxygen. Another striking observation is that the OH and OD rotational level distributions (RLD) obtained under bulk conditions differ markedly from those obtained under complexed conditions, while the NH as well as the ND RLD are similar for the two environments. In addition, OH Doppler profiles change considerably in going from bulk to complexed conditions, while such an effect is not observed for NH. The changes observed with the OH RLD are most likely due to OH-halogen interactions and/or entrance channel specificity. Under bulk conditions, the Doppler shift measurements indicate a large amount of N2 internal excitation (i.e., ˜25 000 cm-1) for the OH (v=0) levels monitored. This is consistent with a reaction mechanism involving an HNNO° intermediate. The hot hydrogen atom first attaches to the terminal nitrogen of N2O and forms an excited HNNO° intermediate having a relatively elongated N-N bond compared with N2O. Then the H atom migrates from nitrogen to oxygen and exits to the N2+OH product channel, leaving N2 vibrationally excited. A simple Franck-Condon model can reconcile quantitatively the large amount of N2 vibrational excitation.

  5. Dynamical resonances in the fluorine atom reaction with the hydrogen molecule.

    Science.gov (United States)

    Yang, Xueming; Zhang, Dong H

    2008-08-01

    [Reaction: see text]. The concept of transition state has played a crucial role in the field of chemical kinetics and reaction dynamics. Resonances in the transition state region are important in many chemical reactions at reaction energies near the thresholds. Detecting and characterizing isolated reaction resonances, however, have been a major challenge in both experiment and theory. In this Account, we review the most recent developments in the study of reaction resonances in the benchmark F + H 2 --> HF + H reaction. Crossed molecular beam scattering experiments on the F + H 2 reaction have been carried out recently using the high-resolution, highly sensitive H-atom Rydberg tagging technique with HF rovibrational states almost fully resolved. Pronounced forward scattering for the HF (nu' = 2) product has been observed at the collision energy of 0.52 kcal/mol in the F + H 2 (j = 0) reaction. Quantum dynamical calculations based on two new potential energy surfaces, the Xu-Xie-Zhang (XXZ) surface and the Fu-Xu-Zhang (FXZ) surface, show that the observed forward scattering of HF (nu' = 2) in the F + H 2 reaction is caused by two Feshbach resonances (the ground resonance and first excited resonance). More interestingly, the pronounced forward scattering of HF (nu' = 2) at 0.52 kcal/mol is enhanced considerably by the constructive interference between the two resonances. In order to probe the resonance potential more accurately, the isotope substituted F + HD --> HF + D reaction has been studied using the D-atom Rydberg tagging technique. A remarkable and fast changing dynamical picture has been mapped out in the collision energy range of 0.3-1.2 kcal/mol for this reaction. Quantum dynamical calculations based on the XXZ surface suggest that the ground resonance on this potential is too high in comparison with the experimental results of the F + HD reaction. However, quantum scattering calculations on the FXZ surface can reproduce nearly quantitatively the resonance

  6. Evaluating the potential for halogen bonding in ketosteroid isomerase’s oxyanion hole using unnatural amino acid mutagenesis

    Science.gov (United States)

    Kraut, Daniel A; Churchil, Michael J; Dawson, Phillip E

    2009-01-01

    There has recently been an increasing interest in controlling macromolecular conformations and interactions through halogen bonding. Halogen bonds are favorable electrostatic interactions between polarized, electropositive chlorine, bromine or iodine atoms and electronegative atoms such as oxygen or nitrogen. These interactions have been likened to hydrogen bonds both in terms of their favored acceptor molecules, their geometries, and their energetics. We asked whether a halogen bond could replace a hydrogen bond in the oxyanion hole of ketosteroid isomerase, using semi-synthetic enzyme containing para-halogenated phenylalanine derivatives to replace the tyrosine hydrogen bond donor. Formation of a halogen bond to the oxyanion in the transition state would be expected to rescue the effects of mutation to phenylalanine, but all of the halogenated enzymes were comparable in activity to the phenylalanine mutant. We conclude that, at least in this active site, a halogen bond cannot functionally replace a hydrogen bond. PMID:19260691

  7. Effects of delocalization on intrinsic barriers for H-atom transfer: Implications for the radical hydrogen transfer reaction

    Energy Technology Data Exchange (ETDEWEB)

    Camaioni, D.M.; Autrey, S.T.; Ferris, K.F.; Franz, J.A.

    1992-08-01

    PM3 calculations of transition states (TS) for both normal H-atom transfer and radical hydrogen transfer (RHT) reactions of a a wide-variety of hydrocarbon structures have enabled development of quantitative structure-reactivity relationships. Results indicate that activation barriers for RHT reactions are large enough that thermoneutral and endothermic reactions should not compete with alternative multistep pathways.

  8. Hydrogen atom transfer reactions in thiophenol: photogeneration of two new thione isomers.

    Science.gov (United States)

    Reva, Igor; Nowak, Maciej J; Lapinski, Leszek; Fausto, Rui

    2015-02-21

    Photoisomerization reactions of monomeric thiophenol have been investigated for the compound isolated in low-temperature argon matrices. The initial thiophenol population consists exclusively of the thermodynamically most stable thiol form. Phototransformations were induced by irradiation of the matrices with narrowband tunable UV light. Irradiation at λ > 290 nm did not induce any changes in isolated thiophenol molecules. Upon irradiation at 290-285 nm, the initial thiol form of thiophenol converted into its thione isomer, cyclohexa-2,4-diene-1-thione. This conversion occurs by transfer of an H atom from the SH group to a carbon atom at the ortho position of the ring. Subsequent irradiation at longer wavelengths (300-427 nm) demonstrated that this UV-induced hydrogen-atom transfer is photoreversible. Moreover, upon irradiation at 400-425 nm, the cyclohexa-2,4-diene-1-thione product converts, by transfer of a hydrogen atom from the ortho to para position, into another thione isomer, cyclohexa-2,5-diene-1-thione. The latter thione isomer is also photoreactive and is consumed if irradiated at λ atom-transfer isomerization reactions dominate the unimolecular photochemistry of thiophenol confined in a solid argon matrix. A set of low-intensity infrared bands, observed in the spectra of UV irradiated thiophenol, indicates the presence of a phenylthiyl radical with an H- atom detached from the SH group. Alongside the H-atom-transfer and H-atom-detachment processes, the ring-opening photoreaction occurred in cyclohexa-2,4-diene-1-thione by the cleavage of the C-C bond at the alpha position with respect to the thiocarbonyl C[double bond, length as m-dash]S group. The resulting open-ring conjugated thioketene adopts several isomeric forms, differing by orientations around single and double bonds. The species photogenerated upon UV irradiation of thiophenol were identified by comparison of their experimental infrared spectra with the spectra theoretically calculated for

  9. Oxygen atom transfer reactions from Mimoun complexes to sulfides and sulfoxides. A bonding evolution theory analysis.

    Science.gov (United States)

    González-Navarrete, Patricio; Sensato, Fabricio R; Andrés, Juan; Longo, Elson

    2014-08-07

    In this research, a comprehensive theoretical investigation has been conducted on oxygen atom transfer (OAT) reactions from Mimoun complexes to sulfides and sulfoxides. The joint use of the electron localization function (ELF) and Thom's catastrophe theory (CT) provides a powerful tool to analyze the evolution of chemical events along a reaction pathway. The progress of the reaction has been monitored by structural stability domains from ELF topology while the changes between them are controlled by turning points derived from CT which reveal that the reaction mechanism can be separated in several steps: first, a rupture of the peroxo O1-O2 bond, then a rearrangement of lone pairs of the sulfur atom occurs and subsequently the formation of S-O1 bond. The OAT process involving the oxidation of sulfides and sulfoxides is found to be an asynchronous process where O1-O2 bond breaking and S-O1 bond formation processes do not occur simultaneously. Nucleophilic/electrophilic characters of both dimethyl sulfide and dimethyl sulfoxide, respectively, are sufficiently described by our results, which hold the key to unprecedented insight into the mapping of electrons that compose the bonds while the bonds change.

  10. Atomic layer deposition by reaction of molecular oxygen with tetrakisdimethylamido-metal precursors

    Energy Technology Data Exchange (ETDEWEB)

    Provine, J, E-mail: jprovine@stanford.edu; Schindler, Peter; Torgersen, Jan; Kim, Hyo Jin [Department of Mechanical Engineering, Stanford University, Stanford, California 94305 (United States); Karnthaler, Hans-Peter [Physics of Nanostructured Materials, University of Vienna, 1090 Vienna (Austria); Prinz, Fritz B. [Department of Mechanical Engineering, Stanford University, Stanford, California 94305 and Department of Materials Science and Engineering, Stanford University, Stanford, California 94305 (United States)

    2016-01-15

    Tetrakisdimethylamido (TDMA) based precursors are commonly used to deposit metal oxides such as TiO{sub 2}, ZrO{sub 2}, and HfO{sub 2} by means of chemical vapor deposition and atomic layer deposition (ALD). Both thermal and plasma enhanced ALD (PEALD) have been demonstrated with TDMA-metal precursors. While the reactions of TDMA-type precursors with water and oxygen plasma have been studied in the past, their reactivity with pure O{sub 2} has been overlooked. This paper reports on experimental evaluation of the reaction of molecular oxygen (O{sub 2}) and several metal organic precursors based on TDMA ligands. The effect of O{sub 2} exposure duration and substrate temperature on deposition and film morphology is evaluated and compared to thermal reactions with H{sub 2}O and PEALD with O{sub 2} plasma.

  11. ARTICLE Crossed Beams Study on the Dynamics of F Atom Reaction with 1,2-Butadiene

    Science.gov (United States)

    Xiao, Chong-fa; Shen, Guan-lin; Wang, Xiu-yan; Yang, Xue-ming

    2010-12-01

    We have investigated the dynamics of the F+C4H6 reaction using the universal crossed molecular beam method. The C4H5F+H reaction channel was observed in this experiment. Angular resolved time-of-flight spectra have been measured for the C4H5F product. Product angular distributions as well as kinetic energy distributions were determined for this product channel. Experimental results show that the C4H5F product is largely backward scattered with considerable forward scattering signal, relative to the F atom beam direction. This suggests that the reaction channel mainly proceeds via a long-lived complex formation mechanism, with possible contribution from a direct SN2 type mechanism.

  12. Multiply Confined Nickel Nanocatalysts Produced by Atomic Layer Deposition for Hydrogenation Reactions.

    Science.gov (United States)

    Gao, Zhe; Dong, Mei; Wang, Guizhen; Sheng, Pei; Wu, Zhiwei; Yang, Huimin; Zhang, Bin; Wang, Guofu; Wang, Jianguo; Qin, Yong

    2015-07-27

    To design highly efficient catalysts, new concepts for optimizing the metal-support interactions are desirable. Here we introduce a facile and general template approach assisted by atomic layer deposition (ALD), to fabricate a multiply confined Ni-based nanocatalyst. The Ni nanoparticles are not only confined in Al2 O3 nanotubes, but also embedded in the cavities of Al2 O3 interior wall. The cavities create more Ni-Al2 O3 interfacial sites, which facilitate hydrogenation reactions. The nanotubes inhibit the leaching and detachment of Ni nanoparticles. Compared with the Ni-based catalyst supported on the outer surface of Al2 O3 nanotubes, the multiply confined catalyst shows a striking improvement of catalytic activity and stability in hydrogenation reactions. Our ALD-assisted template method is general and can be extended for other multiply confined nanoreactors, which may have potential applications in many heterogeneous reactions.

  13. Theoretical studies of the reactions of O(3p) with halogenated methyl (Ⅰ)——Reaction mechanism of the O(3p) + CH2Cl reaction

    Institute of Scientific and Technical Information of China (English)

    侯华; 王宝山; 顾月姝

    1999-01-01

    The reaction of O(3P) with CH2Cl radical has been studied using ab initio molecular orbital theory. G2 (MP2) method is used to calculate the geometrical parameters, vibrational frequencies and energies of various stationary points on the potential energy surface. The reaction mechanism is revealed. The addition of O(3P) with CH2Cl leads to the formation of an energy rich intermediate OCH2Cl which can subsequently undergo decomposition or isomerization to the final products. The calculated heat of reaction for each channel is in agreement with the experimental value. The production of H+CHClO and Cl+CH2O are predicted to be the major channels. The overall rate constants are calculated using transition state theory on the basis of ab initio data. The rate constant is pressure independent and exhibits negative temperature dependence at lower temperatures, in accordance with the experimental results.

  14. Atoms

    Institute of Scientific and Technical Information of China (English)

    刘洪毓

    2007-01-01

    Atoms(原子)are all around us.They are something like the bricks (砖块)of which everything is made. The size of an atom is very,very small.In just one grain of salt are held millions of atoms. Atoms are very important.The way one object acts depends on what

  15. Behavior of Halogen Bonds of the Y-X⋅⋅⋅π Type (X, Y=F, Cl, Br, I) in the Benzene π System, Elucidated by Using a Quantum Theory of Atoms in Molecules Dual-Functional Analysis.

    Science.gov (United States)

    Sugibayashi, Yuji; Hayashi, Satoko; Nakanishi, Waro

    2016-08-18

    The nature of halogen bonds of the Y-X-✶-π(C6 H6 ) type (X, Y=F, Cl, Br, and I) have been elucidated by using the quantum theory of atoms in molecules (QTAIM) dual-functional analysis (QTAIM-DFA), which we proposed recently. Asterisks (✶) emphasize the presence of bond-critical points (BCPs) in the interactions in question. Total electron energy densities, Hb (rc ), are plotted versus Hb (rc )-Vb (rc )/2 [=(ħ(2) /8m)∇(2) ρb (rc )] for the interactions in QTAIM-DFA, in which Vb (rc ) are potential energy densities at the BCPs. Data for perturbed structures around fully optimized structures were used for the plots, in addition to those of the fully optimized ones. The plots were analyzed by using the polar (R, θ) coordinate for the data of fully optimized structures with (θp , κp ) for those that contained the perturbed structures; θp corresponds to the tangent line of the plot and κp is the curvature. Whereas (R, θ) corresponds to the static nature, (θp , κp ) represents the dynamic nature of the interactions. All interactions in Y-X-✶-π(C6 H6 ) are classified by pure closed-shell interactions and characterized to have vdW nature, except for Y-I-✶-π(C6 H6 ) (Y=F, Cl, Br) and F-Br-✶-π(C6 H6 ), which have typical hydrogen-bond nature without covalency. I-I-✶-π(C6 H6 ) has a borderline nature between the two. Y-F-✶-π(C6 H6 ) (Y=Br, I) were optimized as bent forms, in which Y-✶-π interactions were detected. The Y-✶-π interactions in the bent forms are predicted to be substantially weaker than those in the linear F-Y-✶-π(C6 H6 ) forms.

  16. Atom-efficient metal-catalyzed cross-coupling reaction of indium organometallics with organic electrophiles.

    Science.gov (United States)

    Pérez, I; Sestelo, J P; Sarandeses, L A

    2001-05-09

    The novel metal-catalyzed cross-coupling reaction of indium organometallics with organic electrophiles is described. Triorganoindium compounds (R(3)In) containing alkyl, vinyl, aryl, and alkynyl groups are efficiently prepared from the corresponding lithium or magnesium organometallics by reaction with indium trichloride. The cross-coupling reaction of R(3)In with aryl halides and pseudohalides (iodide 2, bromide 5, and triflate 4), vinyl triflates, benzyl bromides, and acid chlorides proceeds under palladium catalysis in excellent yields and with high chemoselectivity. Indium organometallics also react with aryl chlorides as under nickel catalysis. In the cross-coupling reaction the triorganoindium compounds transfer, in a clear example of atom economy, all three of the organic groups attached to the metal, as shown by the necessity of using only 34 mol % of indium. The feasibility of using R(3)In in reactions with different electrophiles, along with the high yields and chemoselectivities obtained, reveals indium organometallics to be useful alternatives to other organometallics in cross-coupling reactions.

  17. Water O-H bond activation by gas-phase plutonium atoms: reaction mechanisms and ab initio molecular dynamics study.

    Science.gov (United States)

    Li, Peng; Niu, Wenxia; Gao, Tao; Wang, Hongyan

    2014-10-06

    A thorough description of the reaction mechanisms, taking into account different possible spin states, offers insights into the gas-phase reaction of plutonium atoms with water. Two possible reactions (isomerization and dehydrogenation) are presented. These reactions are found to be exothermic, with the best thermochemical conditions observed for the dehydrogenation reaction at around 23.5 kcal mol(-1). The nature of the chemical-bonding evolution along the reaction pathways are investigated by employing various methods including electron localization function, atoms in molecules, and Mayer bond order. Total, partial, and overlap population density of state diagrams and analyses are also presented. Reaction rates at elevated temperatures (T=298-2 000 K) are calculated by using variational transition-state theory with one-dimensional tunneling effects. In dynamics simulations, only the dehydrogenation reaction is observed, and found to be in good agreement with experimental values.

  18. Halogenated fatty acids

    DEFF Research Database (Denmark)

    Mu, Huiling; Wesén, Clas; Sundin, Peter

    1997-01-01

    Chlorinated fatty acids have been found to be major contributors to organohalogen compounds in fish, bivalves, jellyfish, and lobster, and they have been indicated to contribute considerably to organohalogens in marine mammals. Brominated fatty acids have been found in marine sponges. Also......, chlorinated lipids have been found in meat exposed to hypochlorite disinfected water, and in chlorine-treated flour and in products made from such flour. Following exposure to chlorine bleached pulp mill effluents, aquatic organisms may have elevated concentrations of chlorinated fatty acids in their lipids....... However, a natural production of halogenated fatty acids is also possible. In this paper we summarize the present knowledge of the occurrence of halogenated fatty acids in lipids and suggested ways of their formation. In Part II (Trends Anal. Chem. 16 (1997) 274) we deal with methods...

  19. Dynamics of interfacial reactions between O(3 P) atoms and long-chain liquid hydrocarbons

    Science.gov (United States)

    Allan, Mhairi; Bagot, Paul A. J.; Köhler, Sven P. K.; Reed, Stewart K.; Westacott, Robin E.; Costen, Matthew L.; McKendrick, Kenneth G.

    2007-09-01

    Recent progress that has been made towards understanding the dynamics of collisions at the gas-liquid interface is summarized briefly. We describe in this context a promising new approach to the experimental study of gas-liquid interfacial reactions that we have introduced. This is based on laser-photolytic production of reactive gas-phase atoms above the liquid surface and laser-spectroscopic probing of the resulting nascent products. This technique is illustrated for reaction of O(3P) atoms at the surface of the long-chain liquid hydrocarbon squalane (2,6,10,15,19,23-hexamethyltetracosane). Laser-induced fluorescence detection of the nascent OH has revealed mechanistically diagnostic correlations between its internal and translational energy distributions. Vibrationally excited OH molecules are able to escape the surface. At least two contributions to the product rotational distributions are identified, confirming and extending previous hypotheses of the participation of both direct and trapping-desorption mechanisms. We speculate briefly on future experimental and theoretical developments that might be necessary to address the many currently unanswered mechanistic questions for this, and other, classes of gas-liquid interfacial reaction.

  20. Reaction rate of H atoms with N2O in hot water

    Science.gov (United States)

    Sargent, Leanne; Sterniczuk, Marcin; Bartels, David M.

    2017-06-01

    The rate constant of H• atoms with N2O in water has been measured by a competition method up to 300 °C. Radiolysis with 2.5 MeV electrons generated H• atoms, and the HD product from their reaction with deuterated tetrahydrofuran (THF-d8) was measured with mass spectroscopy. The concentration of THF-d8 was changed by an order of magnitude in the presence of 25 mM N2O to obtain the ratio of rate constants. To determine the rate constant of H• with THF-d8, a similar competition vs. 0.2 mM OH- ion was also measured. The reaction rate of H• with OH- has been accurately determined vs. temperature in previous work, allowing the two unknown rate constants to be deduced. Rate constant of H• with THF-d8 follows the Arrhenius law ln(k/M-1s-1)=27.33 - (32.30 kJ/mol)/RT. Rate constant of H• with N2O follows the Arrhenius law ln(k/M-1s-1)=24.50 - (30.42 kJ/mol)/RT. In all likelihood, the N2O reaction proceeds via cis-HNNO• radical intermediate as in the gas phase, but with participation of a bridging water molecule in the 1,3 hydrogen shift to form N2 and •OH products.

  1. Impact of wastewater infrastructure upgrades on the urban water cycle: Reduction in halogenated reaction byproducts following conversion from chlorine gas to ultraviolet light disinfection.

    Science.gov (United States)

    Barber, Larry B; Hladik, Michelle L; Vajda, Alan M; Fitzgerald, Kevin C; Douville, Chris

    2015-10-01

    The municipal wastewater treatment facility (WWTF) infrastructure of the United States is being upgraded to expand capacity and improve treatment, which provides opportunities to assess the impact of full-scale operational changes on water quality. Many WWTFs disinfect their effluent prior to discharge using chlorine gas, which reacts with natural and synthetic organic matter to form halogenated disinfection byproducts (HDBPs). Because HDBPs are ubiquitous in chlorine-disinfected drinking water and have adverse human health implications, their concentrations are regulated in potable water supplies. Less is known about the formation and occurrence of HDBPs in disinfected WWTF effluents that are discharged to surface waters and become part of the de facto wastewater reuse cycle. This study investigated HDBPs in the urban water cycle from the stream source of the chlorinated municipal tap water that comprises the WWTF inflow, to the final WWTF effluent disinfection process before discharge back to the stream. The impact of conversion from chlorine-gas to low-pressure ultraviolet light (UV) disinfection at a full-scale (68,000 m(3) d(-1) design flow) WWTF on HDBP concentrations in the final effluent was assessed, as was transport and attenuation in the receiving stream. Nutrients and trace elements (boron, copper, and uranium) were used to characterize the different urban source waters, and indicated that the pre-upgrade and post-upgrade water chemistry was similar and insensitive to the disinfection process. Chlorinated tap water during the pre-upgrade and post-upgrade samplings contained 11 (mean total concentration=2.7 μg L(-1); n=5) and 10 HDBPs (mean total concentration=4.5 μg L(-1)), respectively. Under chlorine-gas disinfection conditions 13 HDBPs (mean total concentration=1.4 μg L(-1)) were detected in the WWTF effluent, whereas under UV disinfection conditions, only one HDBP was detected. The chlorinated WWTF effluent had greater relative proportions of

  2. Impact of wastewater infrastructure upgrades on the urban water cycle: Reduction in halogenated reaction byproducts following conversion from chlorine gas to ultraviolet light disinfection

    Science.gov (United States)

    Barber, Larry B.; Hladik, Michelle; Vajda, Alan M.; Fitzgerald, Kevin C.; Douville, Chris

    2015-01-01

    The municipal wastewater treatment facility (WWTF) infrastructure of the United States is being upgraded to expand capacity and improve treatment, which provides opportunities to assess the impact of full-scale operational changes on water quality. Many WWTFs disinfect their effluent prior to discharge using chlorine gas, which reacts with natural and synthetic organic matter to form halogenated disinfection byproducts (HDBPs). Because HDBPs are ubiquitous in chlorine-disinfected drinking water and have adverse human health implications, their concentrations are regulated in potable water supplies. Less is known about the formation and occurrence of HDBPs in disinfected WWTF effluents that are discharged to surface waters and become part of the de facto wastewater reuse cycle. This study investigated HDBPs in the urban water cycle from the stream source of the chlorinated municipal tap water that comprises the WWTF inflow, to the final WWTF effluent disinfection process before discharge back to the stream. The impact of conversion from chlorine-gas to low-pressure ultraviolet light (UV) disinfection at a full-scale (68,000 m3 d−1 design flow) WWTF on HDBP concentrations in the final effluent was assessed, as was transport and attenuation in the receiving stream. Nutrients and trace elements (boron, copper, and uranium) were used to characterize the different urban source waters, and indicated that the pre-upgrade and post-upgrade water chemistry was similar and insensitive to the disinfection process. Chlorinated tap water during the pre-upgrade and post-upgrade samplings contained 11 (mean total concentration = 2.7 μg L−1; n=5) and 10 HDBPs (mean total concentration = 4.5 μg L−1), respectively. Under chlorine-gas disinfection conditions 13 HDBPs (mean total concentration = 1.4 μg L−1) were detected in the WWTF effluent, whereas under UV disinfection conditions, only one HDBP was detected. The chlorinated WWTF effluent had greater relative

  3. Demystifying Introductory Chemistry. Part 4: An Approach to Reaction Thermodynamics through Enthalpies, Entropies, and Free Energies of Atomization.

    Science.gov (United States)

    Spencer, James N.; And Others

    1996-01-01

    Presents an alternative approach to teaching reaction thermodynamics in introductory chemistry courses using calculations of enthalpies, entropies, and free energies of atomization. Uses a consistent concept, that of decomposition of a compound to its gaseous atoms, to discuss not only thermodynamic parameters but also equilibrium and…

  4. Mechanistic Details of Surface Reactions in Atomic Layer Deposition (ALD) Processes

    Institute of Scientific and Technical Information of China (English)

    Menno; Bouman; Christopher; Clark; Hugo; Tiznado; Francisco; Zaera

    2007-01-01

    1 Results The reaction mechanisms of the atomic layer deposition (ALD) processes used for thin-film growth have been characterized by a combination of surface sensitive techniques. Our early studies focused on the deposition of TiN films from TiCl4 and ammonia,starting with the independent characterization of each of the two half steps comprising the ALD process. It was found that exposure of the substrate to TiCl4 leads to the initial deposition of titanium in the +3 oxidation state; only at a later st...

  5. Progress and prospects in nanoscale dry processes: How can we control atomic layer reactions?

    Science.gov (United States)

    Ishikawa, Kenji; Karahashi, Kazuhiro; Ichiki, Takanori; Chang, Jane P.; George, Steven M.; Kessels, W. M. M.; Lee, Hae June; Tinck, Stefan; Um, Jung Hwan; Kinoshita, Keizo

    2017-06-01

    In this review, we discuss the progress of emerging dry processes for nanoscale fabrication. Experts in the fields of plasma processing have contributed to addressing the increasingly challenging demands in achieving atomic-level control of material selectivity and physicochemical reactions involving ion bombardment. The discussion encompasses major challenges shared across the plasma science and technology community. Focus is placed on advances in the development of fabrication technologies for emerging materials, especially metallic and intermetallic compounds and multiferroic, and two-dimensional (2D) materials, as well as state-of-the-art techniques used in nanoscale semiconductor manufacturing with a brief summary of future challenges.

  6. Temperature-dependent kinetics of charge transfer, hydrogen-atom transfer, and hydrogen-atom expulsion in the reaction of CO+ with CH4 and CD4.

    Science.gov (United States)

    Melko, Joshua J; Ard, Shaun G; Johnson, Ryan S; Shuman, Nicholas S; Guo, Hua; Viggiano, Albert A

    2014-09-18

    We have determined the rate constants and branching ratios for the reactions of CO(+) with CH4 and CD4 in a variable-temperature selected ion flow tube. We find that the rate constants are collisional for all temperatures measured (193-700 K for CH4 and 193-500 K for CD4). For the CH4 reaction, three product channels are identified, which include charge transfer (CH4(+) + CO), H-atom transfer (HCO(+) + CH3), and H-atom expulsion (CH3CO(+) + H). H-atom transfer is slightly preferred to charge transfer at low temperature, with the charge-transfer product increasing in contribution as the temperature is increased (H-atom expulsion is a minor product for all temperatures). Analogous products are identified for the CD4 reaction. Density functional calculations on the CO(+) + CH4 reaction were also conducted, revealing that the relative temperature dependences of the charge-transfer and H-atom transfer pathways are consistent with an initial charge transfer followed by proton transfer.

  7. Unexpected autumnal halogen activity in the lower troposphere at Neumayer III/Antarctica

    Science.gov (United States)

    Nasse, Jan-Marcus; Frieß, Udo; Pöhler, Denis; Schmitt, Stefan; Weller, Rolf; Schaefer, Thomas; Platt, Ulrich

    2017-04-01

    The influence of Reactive Halogen Species (RHS, like IO, BrO, ClO, etc.) on the lower polar troposphere has been subject of intense research for several decades. Ozone Depletion Events (ODEs) caused by the catalytic reaction of tropospheric ozone with inorganic halogen species or the oxidation of gaseous elemental mercury are well observed phenomena that occur during the respective springtime in both Arctic and Antarctica. Chlorine atoms also react more efficiently with hydrocarbons than e.g. OH radicals and all reactive halogen species can furthermore influence the atmospheric sulphur or nitrate cycles. While an autocatalytic release mechanism from salty surfaces, the so called bromine explosion, has been identified to rapidly increase inorganic bromine mixing ratios many aspects of atmospheric halogen chemistry in polar regions remains unclear. Since January 2016, we are operating an active Long Path DOAS instrument at Neumayer III on the Antarctic Ekström shelf ice designed for autonomous measurements. This instrument is able to detect a wide range of trace gases absorbing in the UV/Vis including ClO, BrO, OClO, IO, I2, OIO, ozone, NO2, H2O, O4, and SO2 at a temporal resolution of 5-30 minutes. The analysis of the first year of observations shows several surprising findings which give new insights into polar halogen chemistry. E.g. we observe surprisingly strong bromine activity in late summer and autumn (in addition to well-known springtime events) with mixing ratios often higher than 20 pptv. We could even observe peak mixing ratios of 110 pptv. The observed BrO levels could be the result of local/regional chemistry rather than long-range transport and modulated by the stability of the boundary layer. Also, there are hints for NOx - driven halogen activation. Furthermore, chlorine monoxide (ClO) and OClO mixing ratios of several ten pptv could be detected on a number of days, however the source mechanism for reactive chlorine remains unclear. We will give an

  8. Halogen Chemistry in the CMAQ Model

    Science.gov (United States)

    Halogens (iodine and bromine) emitted from oceans alter atmospheric chemistry and influence atmospheric ozone mixing ratio. We previously incorporated a representation of detailed halogen chemistry and emissions of organic and inorganic halogen species into the hemispheric Commun...

  9. Theoretical study of the reaction kinetics of atomic bromine with tetrahydropyran

    KAUST Repository

    Giri, Binod

    2015-02-12

    A detailed theoretical analysis of the reaction of atomic bromine with tetrahydropyran (THP, C5H10O) was performed using several ab initio methods and statistical rate theory calculations. Initial geometries of all species involved in the potential energy surface of the title reaction were obtained at the B3LYP/cc-pVTZ level of theory. These molecular geometries were reoptimized using three different meta-generalized gradient approximation (meta-GGA) functionals. Single-point energies of the stationary points were obtained by employing the coupled-cluster with single and double excitations (CCSD) and fourth-order Møller-Plesset (MP4 SDQ) levels of theory. The computed CCSD and MP4(SDQ) energies for optimized structures at various DFT functionals were found to be consistent within 2 kJ mol-1. For a more accurate energetic description, single-point calculations at the CCSD(T)/CBS level of theory were performed for the minimum structures and transition states optimized at the B3LYP/cc-pVTZ level of theory. Similar to other ether + Br reactions, it was found that the tetrahydropyran + Br reaction proceeds in an overall endothermic addition-elimination mechanism via a number of intermediates. However, the reactivity of various ethers with atomic bromine was found to vary substantially. In contrast with the 1,4-dioxane + Br reaction, the chair form of the addition complex (c-C5H10O-Br) for THP + Br does not need to undergo ring inversion to form a boat conformer (b-C4H8O2-Br) before the intramolecular H-shift can occur to eventually release HBr. Instead, a direct, yet more favorable route was mapped out on the potential energy surface of the THP + Br reaction. The rate coefficients for all relevant steps involved in the reaction mechanism were computed using the energetics of coupled cluster calculations. On the basis of the results of the CCSD(T)/CBS//B3LYP/cc-pVTZ level of theory, the calculated overall rate coefficients can be expressed as kov.,calc.(T) = 4.60 × 10

  10. Revisiting the Dielectric Constant Effect on the Nucleophile and Leaving Group of Prototypical Backside Sn2 Reactions: a Reaction Force and Atomic Contribution Analysis.

    Science.gov (United States)

    Pedraza-González, Laura Milena; Galindo, Johan Fabian; Gonzalez, Ronald; Reyes, Andrés

    2016-10-09

    The solvent effect on the nucleophile and leaving group atoms of the prototypical F(-) + CH3Cl → CH3F + Cl(-) backside bimolecular nucleophilic substitution reaction (SN2) is analyzed employing the reaction force and the atomic contributions methods on the intrinsic reaction coordinate (IRC). Solvent effects were accounted for using the polarizable continuum solvent model. Calculations were performed employing eleven dielectric constants, ε, ranging from 1.0 to 78.5, to cover a wide spectrum of solvents. The reaction force data reveals that the solvent mainly influences the region of the IRC preceding the energy barrier, where the structural rearrangement to reach the transition state occurs. A detailed analysis of the atomic role in the reaction as a function of ε reveals that the nucleophile and the carbon atom are the ones that contribute the most to the energy barrier. In addition, we investigated the effect of the choice of nucleophile and leaving group on the ΔE0 and ΔE(↕) of Y(-) + CH3X → YCH3 + X(-) (X,Y= F, Cl, Br, I) in aqueous solution. Our analysis allowed us to find relationships between the atomic contributions to the activation energy and leaving group ability and nucleophilicity.

  11. Rate parameters for the reaction of atomic hydrogen with dimethyl ether and dimethyl sulfide

    Science.gov (United States)

    Lee, J. H.; Machen, R. C.; Nava, D. F.; Stief, L. J.

    1981-03-01

    Absolute rate constants for the reaction of atomic hydrogen with dimethyl ether (DME) and dimethyl sulfide (DMS) were obtained using the flash photolysis-resonance fluorescence technique. Under conditions where secondary reactions are avoided, rate constants for the H+DME reaction over the temperature range 273-426 K are well represented by the Arrhenius expression k1=(4.38±0.59)×10-12 exp(-1956±43/T) cm3 molecule-1 s-1. The corresponding Arrhenius expression for the H+DMS reaction over the temperature range 212-500 K is k2=(1.30±0.43)×10-11exp(-1118±81/T) cm3 molecule-1 s-1. The Arrhenius plot for k2 shows signs of curvature, however, and separate Arrhenius expressions are derived for the data above and below room temperature. These results are discussed and comparisons are made with previous determinations which employed flow discharge and product analysis techniques.

  12. Investigating the role of atomic hydrogen on chloroethene reactions with iron using tafel analysis and electrochemical impedance spectroscopy.

    Science.gov (United States)

    Wang, Jiankang; Farrell, James

    2003-09-01

    Metallic iron filings are commonly employed as reducing agents in permeable barriers used for remediating groundwater contaminated by chlorinated solvents. Reactions of trichloroethylene (TCE) and tetrachloroethylene (PCE) with zerovalent iron were investigated to determine the role of atomic hydrogen in their reductive dechlorination. Experiments simultaneously measuring dechlorination and iron corrosion rates were performed to determine the fractions of the total current going toward dechlorination and hydrogen evolution. Corrosion rates were determined using Tafel analysis, and dechlorination rates were determined from rates of byproduct generation. Electrochemical impedance spectroscopy (EIS) was used to determine the number of reactions that controlled the observed rates of chlorocarbon disappearance, as well as the role of atomic hydrogen in TCE and PCE reduction. Comparison of iron corrosion rates with those for TCE reaction showed that TCE reduction occurred almost exclusively via atomic hydrogen at low pH values and via atomic hydrogen and direct electron transfer at neutral pH values. In contrast, reduction of PCE occurred primarily via direct electron transfer at both low and neutral pH values. At low pH values and micromolar concentrations, TCE reaction rates were faster than those for PCE due to more rapid reduction of TCE by atomic hydrogen. At neutral pH values and millimolar concentrations, PCE reaction rates were faster than those for TCE. This shift in relative reaction rates was attributed to a decreasing contribution of the atomic hydrogen reaction mechanism with increasing halocarbon concentrations and pH values. The EIS data showed that all the rate limitations for TCE and PCE dechlorination occurred during the transfer of the first two electrons. Results from this study show that differences in relative reaction rates of TCE and PCE with iron are dependent on the significance of the reduction pathway involving atomic hydrogen.

  13. Atomic-Scale Observations of Catalyst Structures under Reaction Conditions and during Catalysis.

    Science.gov (United States)

    Tao, Franklin Feng; Crozier, Peter A

    2016-03-23

    Heterogeneous catalysis is a chemical process performed at a solid-gas or solid-liquid interface. Direct participation of catalyst atoms in this chemical process determines the significance of the surface structure of a catalyst in a fundamental understanding of such a chemical process at a molecular level. High-pressure scanning tunneling microscopy (HP-STM) and environmental transmission electron microscopy (ETEM) have been used to observe catalyst structure in the last few decades. In this review, instrumentation for the two in situ/operando techniques and scientific findings on catalyst structures under reaction conditions and during catalysis are discussed with the following objectives: (1) to present the fundamental aspects of in situ/operando studies of catalysts; (2) to interpret the observed restructurings of catalyst and evolution of catalyst structures; (3) to explore how HP-STM and ETEM can be synergistically used to reveal structural details under reaction conditions and during catalysis; and (4) to discuss the future challenges and prospects of atomic-scale observation of catalysts in understanding of heterogeneous catalysis. This Review focuses on the development of HP-STM and ETEM, the in situ/operando characterizations of catalyst structures with them, and the integration of the two structural analytical techniques for fundamentally understanding catalysis.

  14. Quantum Chemical Evaluation of the Astrochemical Significance of Reactions between S Atom and Acetylene or Ethylene

    Science.gov (United States)

    Woon, David E.

    2007-01-01

    Addition-elimination reactions of S atom in its P-3 ground state with acetylene (C2H2) and ethylene (C2H4) were characterized with both molecular orbital and density functional theory calculations employing correlation consistent basis sets in order to assess the likelihood either reaction might play a general role in astrochemistry or a specific role in the formation of S2 (X (sup 3 SIGMA (sub g) (sup -)) via a mechanism proposed by Saxena and Misra (Mon. Not. R. Astron. Soc. 1995, 272, 89). The acetylene and ethylene reactions proceed through C2H2S ((sup 3)A")) and C2H4S ((sup 3)A")) intermediates, respectively, to yield HCCS ((sup 2)II)) and C2H3S ((sup 2)A')). Substantial barriers were found in the exit channels for every combination of method and basis set considered in this work, which effectively precludes hydrogen elimination pathways for both S + C2H2 and S + C2H4 in the ultracold interstellar medium where only very modest barriers can be surmounted and processes without barriers tend to predominate. However, if one or both intermediates is formed and stabilized efficiently under cometary or dense interstellar cloud conditions, they could serve as temporary reservoirs for S atom and participate in reactions such as S + C2H2S (right arrow) S2 = C2H2 or S + C2H4S (right arrow) S2 + C2H4. For formation and stabilization to be efficient, the reaction must possess a barrier height small enough to be surmountable at low temperatures yet large enough to prevent redissociation to reactants. Barrier heights computed with B3LYP and large basis sets are very low, but more rigorous QCISD(T) and RCCSD(T) results indicate that the barrier heights are closer to 3-4 kcal/mol. The calculations therefore indicate that S + C2H2 or S + C2H4 could contribute to the formation of S2 in comets and may serve as a means to gauge coma temperature. The energetics of the ethylene reaction are more favorable.

  15. Chemical reaction of atomic oxygen with evaporated films of copper, part 4

    Science.gov (United States)

    Fromhold, A. T.; Williams, J. R.

    1990-01-01

    Evaporated copper films were exposed to an atomic oxygen flux of 1.4 x 10(exp 17) atoms/sq cm per sec at temperatures in the range 285 to 375 F (140 to 191 C) for time intervals between 2 and 50 minutes. Rutherford backscattering spectroscopy (RBS) was used to determine the thickness of the oxide layers formed and the ratio of the number of copper to oxygen atoms in the layers. Oxide film thicknesses ranged from 50 to 3000 A (0.005 to 0.3 microns, or equivalently, 5 x 10(exp -9) to 3 x 10(exp -7); it was determined that the primary oxide phase was Cu2O. The growth law was found to be parabolic (L(t) varies as t(exp 1/2)), in which the oxide thickness L(t) increases as the square root of the exposure time t. The analysis of the data is consistent with either of the two parabolic growth laws. (The thin-film parabolic growth law is based on the assumption that the process is diffusion controlled, with the space charge within the growing oxide layer being negligible. The thick-film parabolic growth law is also based on a diffusion controlled process, but space-charge neutrality prevails locally within very thick oxides.) In the absence of a voltage measurement across the growing oxide, a distinction between the two mechanisms cannot be made, nor can growth by the diffusion of neutral atomic oxygen be entirely ruled out. The activation energy for the reaction is on the order of 1.1 eV (1.76 x 10(exp -19) joule, or equivalently, 25.3 kcal/mole).

  16. Rate constants and isotope effects for the reaction of H-atom abstraction from RH substrates by PINO radicals

    Science.gov (United States)

    Opeida, I. A.; Litvinov, Yu. E.; Kushch, O. V.; Kompanets, M. A.; Shendrik, A. N.; Matvienko, A. G.; Novokhatko, A. A.

    2016-11-01

    The kinetics of the reactions of hydrogen atom abstraction from the C-H bonds of substrates of different structures by phthalimide- N-oxyl radicals is studied. The rate constants of this reaction are measured and the kinetic isotope effects are determined. It is shown that in addition to the thermodynamic factor, Coulomb forces and donor-acceptor interactions affect the reaction between phthalimide- N-oxyl radicals and substrate molecules, altering the shape of the transition state. This favors the tunneling of hydrogen atoms and leads to a substantial reduction in the activation energy of the process.

  17. Excited state intramolecular charge transfer reaction of 4-(morpholenyl) benzonitrile in solution: Effects of hetero atom in the donor moiety

    Indian Academy of Sciences (India)

    Tuhin Pradhan; Harun Al Rasid Gazi; Ranjit Biswas

    2010-07-01

    An intramolecular charge transfer (ICT) molecule with an extra hetero atom in its donor moiety has been synthesized in order to investigate how ICT reaction is affected by hetero atom replacement. Photo-physical and photo-dynamical properties of this molecule, 4-(morpholenyl)benzonitrile (M6C), have been studied in 20 different solvents. The correlation between the reaction driving force (- ) and activation barrier ( #) has been explored in order to understand the solvent effects (static and dynamic) on the photo-excited ICT reaction in this molecule. A Kramer’s model analysis of the experimentally observed reaction rate constants indicates a solvent-averaged activation barrier of ∼ 4 in the absence of solvent dynamical control. The reaction in M6C is therefore not a barrier-less reaction but close to the limit where conventional kinetics might break down.

  18. Halogenation processes of secondary organic aerosol and implications on halogen release mechanisms

    Directory of Open Access Journals (Sweden)

    J. Ofner

    2012-07-01

    Full Text Available Reactive halogen species (RHS, such as X·, X2 and HOX containing X = chlorine and/or bromine, are released by various sources like photo-activated sea-salt aerosol or from salt pans, and salt lakes. Despite many studies of RHS reactions, the potential of RHS reacting with secondary organic aerosol (SOA and organic aerosol derived from biomass-burning (BBOA has been neglected. Such reactions can constitute sources of gaseous organohalogen compounds or halogenated organic matter in the tropospheric boundary layer and can influence physicochemical properties of atmospheric aerosols.

    Model SOA from α-pinene, catechol, and guaiacol was used to study heterogeneous interactions with RHS. Particles were exposed to molecular chlorine and bromine in an aerosol smog-chamber in the presence of UV/VIS irradiation and to RHS, released from simulated natural halogen sources like salt pans. Subsequently, the aerosol was characterized in detail using a variety of physicochemical and spectroscopic methods. Fundamental features were correlated with heterogeneous halogenation, which results in new functional groups (FTIR spectroscopy, changes UV/VIS absorption, chemical composition (ultrahigh resolution mass spectroscopy (ICR-FT/MS, or aerosol size distribution. However, the halogen release mechanisms were also found to be affected by the presence of organic aerosol. Those interaction processes, changing chemical and physical properties of the aerosol are likely to influence e.g. the ability of the aerosol to act as cloud condensation nuclei, its potential to adsorb other gases with low-volatility, or its contribution to radiative forcing and ultimately the Earth's radiation balance.

  19. Chapter 13 Theoretical and Experimental Studies of the Gas-Phase Cl-Atom Initiated Reactions of Benzene and Toluene

    Science.gov (United States)

    Ryzhkov, A.; Ariya, P. A.; Raofie, F.; Niki, H.; Harris, G. W.

    The reactions of benzene (Bz) and toluene (PhMe) with chlorine atoms in the gas phase have been studied using both theoretical and experimental techniques. Energy and geometry of reaction complexes and transition states were calculated in the Cl-atom initiated reaction of benzene and toluene using modern hybrid functional PBE0 method with the aug-pc1 basis set with an additional CCSD(T)/aug-CC-pVDZ energy single point calculation. Three stationary structures have been found for the Bz...Cl complex: hexahapto-complex, [pi]-complex and [sigma]-complex. The first one is a transition state between two opposite [pi]-complexes. PhMe...Cl has additional structures due to ipso-, ortho-, meta- and para-isomerization. The stability of all calculated complexes was determined and compared. Two reaction pathways for benzene and toluene with a Cl atom were evaluated: (a) the hydrogen abstraction of benzene and toluene by Cl atom, which is seemingly barrierless and endothermic, and (b) the hydrogen substitution reaction that in contrast has a relatively high energy of activation. Rate coefficients for these same reactions were measured using ethane, n-butane, and chloro-, dichloro- and trichloromethane, as reference compounds, with gas chromatography equipped with mass detection spectrometry and flame ionization detection (GC-MSD and GC-FID). The reaction rates were estimated as (5.57±0.15)×10-11 and for benzene and toluene, respectively. Chlorinated products of the reactions were analyzed by GS-MS. Chlorobenzene was the only identified product between a reaction of benzene and the Cl atom. The major products of the PhMe + Cl reaction were chloromethylbenzene with ortho- and para-chlorotoluenes.

  20. Investigation at the atomic level of homologous enzymes reveals distinct reaction paths

    Science.gov (United States)

    Zoi, Ioanna; Schwartz, Steven D.

    2015-03-01

    Bacterial enzymes Escherichia coli and Vibrio cholerae 5' -Methylthioadenosine nucleosidases (MTANs) have different binding affinities for the same transition state analogue. This was surprising as these enzymes share 60% sequence identity, have almost identical active sites and act under the same mechanism. We performed Transition Path Sampling simulations of both enzymes to reveal the atomic details of the catalytic chemical step, to explain the inhibitor affinity differences. Unlike EcMTAN, VcMTAN has multiple distinct transition states, which is an indication that multiple sets of coordinated protein motions can reach a transition state. We also identified the important residues that participate in each enzyme's reaction coordinate and explained their contribution. Subtle dynamic differences manifest in difference of reaction coordinate and transition state structure and also suggest that MTANs differ from most ribosyl transferases. As experimental approaches report averages regarding reaction coordinate information, this study offers, previously unavailable, detailed knowledge to the explanation of bacterial MTANs catalytic mechanism, and could have a significant impact on pharmaceutical design. We acknowledge the support of the National Institutes of Health through Grant GM068036.

  1. Reactions of substituted benzene anions with N and O atoms: Chemistry in Titan's upper atmosphere and the interstellar medium

    Science.gov (United States)

    Wang, Zhe-Chen; Bierbaum, Veronica M.

    2016-06-01

    The likely existence of aromatic anions in many important extraterrestrial environments, from the atmosphere of Titan to the interstellar medium (ISM), is attracting increasing attention. Nitrogen and oxygen atoms are also widely observed in the ISM and in the ionospheres of planets and moons. In the current work, we extend previous studies to explore the reactivity of prototypical aromatic anions (deprotonated toluene, aniline, and phenol) with N and O atoms both experimentally and computationally. The benzyl and anilinide anions both exhibit slow associative electron detachment (AED) processes with N atom, and moderate reactivity with O atom in which AED dominates but ionic products are also formed. The reactivity of phenoxide is dramatically different; there is no measurable reaction with N atom, and the moderate reactivity with O atom produces almost exclusively ionic products. The reaction mechanisms are studied theoretically by employing density functional theory calculations, and spin conversion is found to be critical for understanding some product distributions. This work provides insight into the rich gas-phase chemistry of aromatic ion-atom reactions and their relevance to ionospheric and interstellar chemistry.

  2. Kinetic study of the reaction of chlorine atoms with hydroxyacetone in gas-phase

    Science.gov (United States)

    Stoeffler, Clara; Joly, Lilian; Durry, Georges; Cousin, Julien; Dumelié, Nicolas; Bruyant, Aurélien; Roth, Estelle; Chakir, Abdelkhaleq

    2013-12-01

    In this letter the kinetics of the reaction of hydroxyacetone CH3C(O)CH2OH with Cl atoms is investigated using the relative rate technique. Experiments are carried out in a 65 L multipass photoreactor in the temperature range of 281-350 K. A mid-infrared spectrometer based on a quantum cascade laser in external cavity emitting at 9.5 μm is used to analyze the reactants. The determined rate coefficient for the investigated reaction is (1.7 ± 0.3) × 10-11exp(381.5 ± 57.3/T). The results are presented and discussed in terms of precision and compared with those obtained previously. The impact of Cl atoms on the atmospheric life time of hydroxyacetone is also discussed. Developing analytical techniques to quantify this compound in the atmosphere. Several methods of measurement have been used including the technique of proton transfer mass spectrometry (PTR-MS) [2] and derivatization with a chemical agent such as dinitrophenylhydrazine (DNPH) [3,4] followed by GC/MS or HPLC analyses. The HA amount in the troposphere was found to be in the order of a few hundred parts per trillion by volume [4], Performing laboratory experiments in order to study the HA reactivity with atmospheric oxidants. The first study on the kinetic of the reaction between OH radicals and HA was made by Dagault et al. [5] whose work was performed at room temperature by flash photolysis-resonance fluorescence. The determined rate constant implies a lifetime of a few days for HA relative to oxidation by OH radicals. Orlando et al. performed mechanistic and kinetics studies of the reaction of HA with OH radicals and Cl atoms at room temperature using a relative method [6]. Products detection was performed using FTIR spectroscopy. Moreover, these authors studied the photolysis of HA to determine its quantum yield and UV absorption spectrum. These studies showed that HA is principally removed from the atmosphere by reaction with OH radicals. Kinetic studies of the reaction of OH radicals with HA as a

  3. Release of Reactive Halogen Species from Sea-Salt Aerosols under Tropospheric Conditions with/without the Influence of Organic Matter in Smog-Chamber Experiments

    Science.gov (United States)

    Balzer, N.; Behnke, W.; Bleicher, S.; Krueger, H.; Ofner, J.; Siekmann, F.; Zetzsch, C.

    2008-12-01

    Experiments to investigate the release of reactive halogen species from sea-salt aerosol and the influence of organic matter were performed in an aerosol smog-chamber (3500 l), made of Teflon film (FEP 200A, Dupont). Smog chamber facilities at lowered temperature (coolable down to -25°C) enable us to simulate these reactions under polar, tropospheric conditions. First experiments were performed to investigate the production of atomic Br and Cl without the impact of organic aerosol. Br and Cl play an important role in atmospheric ozone depletion, particularly regarding ozone depletion events (bromine explosion) during polar spring. In these studies, the aerosol was generated by atomizing salt solutions containing the typical Br/Cl ratio of 1/660 in seawater by an ultrasonic nebulizer and increasing the Br content up to sixfold. To ensure the aqueous surface of the aerosol, the experiments were performed at relative humidities above 76%. We determined the atomic Cl and OH-radical concentrations from the simultaneous consumption of four reference hydrocarbons. The Br-radical concentration was calculated on the basis of ozone depletion. Organic aerosol may take part in these reaction cycles by halogenation and production of volatile organic halogens. Further experiments are planned to add organic aerosol for mechanistic and kinetic studies on the influence of secondary organic aerosols (SOA) and humic-like substances (HULIS) on bromine explosion. The formation of the secondary organic aerosol and the determination of possible halogenated gaseous and solid organic products will be studied using longpath-FTIR, DRIFTS, ATR-FTIR, GC-FID, GC-ECD, GC-MS, TPD-MS and DMA-CNC.

  4. Monolithic Laser Scribed Graphene Scaffold with Atomic Layer Deposited Platinum for Hydrogen Evolution Reaction

    KAUST Repository

    Nayak, Pranati

    2017-09-01

    The use of three-dimensional (3D) electrode architectures as scaffolds for conformal deposition of catalysts is an emerging research area with significant potential for electrocatalytic applications. In this study, we report the fabrication of monolithic, self-standing, 3D graphitic carbon scaffold with conformally deposited Pt by atomic layer deposition (ALD) as a hydrogen evolution reaction catalyst. Laser scribing is employed to transform polyimide into 3D porous graphitic carbon, which possesses good electronic conductivity and numerous edge plane sites. This laser scribed graphene (LSG) architecture makes it possible to fabricate monolithic electrocatalyst support without any binders or conductive additives. The synergistic effect between ALD of Pt on 3D network of LSG provides an avenue for minimal yet effective Pt usage, leading to an enhanced HER activity. This strategy establish a general approach for inexpensive and large scale HER device fabrication with minimum catalyst cost.

  5. Atomic-scale observation of lithiation reaction front in nanoscale SnO2 materials

    KAUST Repository

    Nie, Anmin

    2013-07-23

    In the present work, taking advantage of aberration-corrected scanning transmission electron microscopy, we show that the dynamic lithiation process of anode materials can be revealed in an unprecedented resolution. Atomically resolved imaging of the lithiation process in SnO2 nanowires illustrated that the movement, reaction, and generation of b = [1Ì...1Ì...1] mixed dislocations leading the lithiated stripes effectively facilitated lithium-ion insertion into the crystalline interior. The geometric phase analysis and density functional theory simulations indicated that lithium ions initial preference to diffuse along the [001] direction in the {200} planes of SnO2 nanowires introduced the lattice expansion and such dislocation behaviors. At the later stages of lithiation, the Li-induced amorphization of rutile SnO2 and the formation of crystalline Sn and LixSn particles in the Li2O matrix were observed. © 2013 American Chemical Society.

  6. Kinetics and mechanism of the gas-phase reaction of Cl atoms and OH radicals with fluorobenzene at 296 K

    DEFF Research Database (Denmark)

    Andersen, Mads Peter Sulbæk; Nielsen, Ole John; Hurley, MD;

    2002-01-01

    constant for the reaction of C6H5F with Cl atoms. The equilibrium between Cl atoms, C6H5F, and the C6H5F-Cl adduct is established rapidly and has an equilibrium constant estimated to be K-5b=[C6H5F]/[Cl]/[C6H5F][Cl] = (3.2 +/- 2.4) x 10(-1)8 cm(3) molecule(-1). An upper limit of k(9)

  7. Formation of hydrogen peroxide and water from the reaction of cold hydrogen atoms with solid oxygen at 10K

    CERN Document Server

    Miyauchi, N; Chigai, T; Nagaoka, A; Watanabe, N; Kouchi, A

    2008-01-01

    The reactions of cold H atoms with solid O2 molecules were investigated at 10 K. The formation of H2O2 and H2O has been confirmed by in-situ infrared spectroscopy. We found that the reaction proceeds very efficiently and obtained the effective reaction rates. This is the first clear experimental evidence of the formation of water molecules under conditions mimicking those found in cold interstellar molecular clouds. Based on the experimental results, we discuss the reaction mechanism and astrophysical implications.

  8. Manganese Catalyzed C-H Halogenation.

    Science.gov (United States)

    Liu, Wei; Groves, John T

    2015-06-16

    The remarkable aliphatic C-H hydroxylations catalyzed by the heme-containing enzyme, cytochrome P450, have attracted sustained attention for more than four decades. The effectiveness of P450 enzymes as highly selective biocatalysts for a wide range of oxygenation reactions of complex substrates has driven chemists to develop synthetic metalloporphyrin model compounds that mimic P450 reactivity. Among various known metalloporphyrins, manganese derivatives have received considerable attention since they have been shown to be versatile and powerful mediators for alkane hydroxylation and olefin epoxidation. Mechanistic studies have shown that the key intermediates of the manganese porphyrin-catalyzed oxygenation reactions include oxo- and dioxomanganese(V) species that transfer an oxygen atom to the substrate through a hydrogen abstraction/oxygen recombination pathway known as the oxygen rebound mechanism. Application of manganese porphyrins has been largely restricted to catalysis of oxygenation reactions until recently, however, due to ultrafast oxygen transfer rates. In this Account, we discuss recently developed carbon-halogen bond formation, including fluorination reactions catalyzed by manganese porphyrins and related salen species. We found that biphasic sodium hypochlorite/manganese porphyrin systems can efficiently and selectively convert even unactivated aliphatic C-H bonds to C-Cl bonds. An understanding of this novel reactivity derived from results obtained for the oxidation of the mechanistically diagnostic substrate and radical clock, norcarane. Significantly, the oxygen rebound rate in Mn-mediated hydroxylation is highly correlated with the nature of the trans-axial ligands bound to the manganese center (L-Mn(V)═O). Based on the ability of fluoride ion to decelerate the oxygen rebound step, we envisaged that a relatively long-lived substrate radical could be trapped by a Mn-F fluorine source, effecting carbon-fluorine bond formation. Indeed, this idea

  9. Dynamics of the gas-liquid interfacial reaction of O(3P) atoms with hydrocarbons

    Science.gov (United States)

    Kelso, Hailey; Köhler, Sven P. K.; Henderson, David A.; McKendrick, Kenneth G.

    2003-11-01

    We describe an experimental approach to the determination of the nascent internal state distribution of gas-phase products of a gas-liquid interfacial reaction. The system chosen for study is O(3P) atoms with the surface of liquid deuterated squalane, a partially branched long-chain saturated hydrocarbon, C30D62. The nascent OD products are detected by laser-induced fluorescence. Both OD (v'=0) and (v'=1) were observed in significant yield. The rotational distributions in both vibrational levels are essentially the same, and are characteristic of a Boltzmann distribution at a temperature close to that of the liquid surface. This contrasts with the distributions in the corresponding homogeneous gas-phase reactions. We propose a preliminary interpretation in terms of a dominant trapping-desorption mechanism, in which the OD molecules are retained at the surface sufficiently long to cause rotational equilibration but not complete vibrational relaxation. The significant yield of vibrationally excited OD also suggests that the surface is not composed entirely of -CD3 endgroups, but that secondary and/or tertiary units along the backbone are exposed.

  10. Surface reaction mechanisms during ozone and oxygen plasma assisted atomic layer deposition of aluminum oxide.

    Science.gov (United States)

    Rai, Vikrant R; Vandalon, Vincent; Agarwal, Sumit

    2010-09-07

    We have elucidated the reaction mechanism and the role of the reactive intermediates in the atomic layer deposition (ALD) of aluminum oxide from trimethyl aluminum in conjunction with O(3) and an O(2) plasma. In situ attenuated total reflection Fourier transform infrared spectroscopy data show that both -OH groups and carbonates are formed on the surface during the oxidation cycle. These carbonates, once formed on the surface, are stable to prolonged O(3) exposure in the same cycle. However, in the case of plasma-assisted ALD, the carbonates decompose upon prolonged O(2) plasma exposure via a series reaction kinetics of the type, A (CH(3)) --> B (carbonates) --> C (Al(2)O(3)). The ratio of -OH groups to carbonates on the surface strongly depends on the oxidizing agent, and also the duration of the oxidation cycle in plasma-assisted ALD. However, in both O(3) and O(2) plasma cycles, carbonates are a small fraction of the total number of reactive sites compared to the hydroxyl groups.

  11. Product polarization distribution: Stereodynamics of the reaction of atom H and radical NH

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The product angular momentum polarization of the reaction of H+NH is calculated via the quasiclassical trajectory method(QCT)based on the extended London-Eyring-Polanyi-Sato(LEPS)potential energy surface(PES)at a collision energy of 5.1 kcal/mol.The calculated results of the vector correlations are denoted by using the angular distribution functions.The polarization-dependent differential cross sections(PDDCSs)demonstrate that the rotational angular momentum of the product H2 is aligned and oriented along the direction perpendicular to the scattering plane.Vector correlation shows that the angular momentum of the product H2 is aligned in the plane perpendicular to the velocity vector.It suggests that the reaction proceeds preferentially when the reactant velocity vector lies in a plane containing all three atoms.The orientation and alignment of the product angular momentum affects the scattering direction of the product molecules.The polarization-dependent differential cross sections(PDDCSs)reveal that scattering is predominantly in the backward hemisphere.

  12. Organometallic Bonding in an Ullmann-Type On-Surface Chemical Reaction Studied by High-Resolution Atomic Force Microscopy.

    Science.gov (United States)

    Kawai, Shigeki; Sadeghi, Ali; Okamoto, Toshihiro; Mitsui, Chikahiko; Pawlak, Rémy; Meier, Tobias; Takeya, Jun; Goedecker, Stefan; Meyer, Ernst

    2016-10-01

    The on-surface Ullmann-type chemical reaction synthesizes polymers by linking carbons of adjacent molecules on solid surfaces. Although an organometallic compound is recently identified as the reaction intermediate, little is known about the detailed structure of the bonded organometallic species and its influence on the molecule and the reaction. Herein atomic force microscopy at low temperature is used to study the reaction with 3,9-diiododinaphtho[2,3-b:2',3'-d]thiophene (I-DNT-VW), which is polymerized on Ag(111) in vacuum. Thermally sublimated I-DNT-VW picks up a Ag surface atom, forming a CAg bond at one end after removing an iodine. The CAg bond is usually short-lived, and a CAgC organometallic bond immediately forms with an adjacent molecule. The existence of the bonded Ag atoms strongly affects the bending angle and adsorption height of the molecular unit. Density functional theory calculations reveal the bending mechanism, which reveals that charge from the terminus of the molecule is transferred via the Ag atom into the organometallic bond and strengths the local adsorption to the substrate. Such deformations vanish when the Ag atoms are removed by annealing and CC bonds are established.

  13. How do halogen bonds (S-O⋯I, N-O⋯I and C-O⋯I) and halogen-halogen contacts (C-I⋯I-C, C-F⋯F-C) subsist in crystal structures? A quantum chemical insight.

    Science.gov (United States)

    Pandiyan, B Vijaya; Deepa, P; Kolandaivel, P

    2017-01-01

    Thirteen X-ray crystal structures containing various non-covalent interactions such as halogen bonds, halogen-halogen contacts and hydrogen bonds (I⋯N, I⋯F, I⋯I, F⋯F, I⋯H and F⋯H) were considered and investigated using the DFT-D3 method (B97D/def2-QZVP). The interaction energies were calculated at MO62X/def2-QZVP and MP2/aug-cc-pvDZ level of theories. The higher interaction and dispersion energies (2nd crystal) of -9.58 kcal mol(-1) and -7.10 kcal mol(-1) observed for 1,4-di-iodotetrafluorobenzene bis [bis (2-phenylethyl) sulfoxide] structure indicates the most stable geometrical arrangement in the crystal packing. The electrostatic potential values calculated for all crystal structures have a positive σ-hole, which aids understanding of the nature of σ-hole bonds. The significance of the existence of halogen bonds in crystal packing environments was authenticated by replacing iodine atoms by bromine and chlorine atoms. Nucleus independent chemical shift analysis reported on the resonance contribution to the interaction energies of halogen bonds and halogen-halogen contacts. Hirshfeld surface analysis and topological analysis (atoms in molecules) were carried out to analyze the occurrence and strength of all non-covalent interactions. These analyses revealed that halogen bond interactions were more dominant than hydrogen bonding interactions in these crystal structures. Graphical Abstract Molecluar structure of 1,4-Di-iodotetrafluorobenzene bis(thianthrene 5-oxide) moelcule and its corresponding molecular electrostatic potential map for the view of σ-hole.

  14. All-metal clusters that mimic the chemistry of halogens.

    Science.gov (United States)

    Zhao, Tianshan; Li, Yawei; Wang, Qian; Jena, Puru

    2013-10-07

    Owing to their s(2)p(5) electronic configuration, halogen atoms are highly electronegative and constitute the anionic components of salts. Whereas clusters that contain no halogen atoms, such as AlH(4), mimic the chemistry of halogens and readily form salts (e.g., Na(+)(AlH(4))(-)), clusters that are solely composed of metal atoms and yet behave in the same manner as a halogen are rare. Because coinage-metal atoms (Cu, Ag, and Au) only have one valence electron in their outermost electronic shell, as in H, we examined the possibility that, on interacting with Al, in particular as AlX(4) (X=Cu, Ag, Au), these metal atoms may exhibit halogen-like properties. By using density functional theory, we show that AlAu(4) not only mimics the chemistry of halogens, but also, with a vertical detachment energy (VDE) of 3.98 eV in its anionic form, is a superhalogen. Similarly, analogous to XHX superhalogens (X=F, Cl, Br), XAuX species with VDEs of 4.65, 4.50, and 4.34 eV in their anionic form, respectively, also form superhalogens. In addition, Au can also form hyperhalogens, a recently discovered species that show electron affinities (EAs) that are even higher than those of their corresponding superhalogen building blocks. For example, the VDEs of M(AlAu(4))(2)(-) (M=Na and K) and anionic (FAuF)Au(FAuF) range from 4.06 to 5.70 eV. Au-based superhalogen anions, such as AlAu(4)(-) and AuF(2)(-), have the additional advantage that they exhibit wider optical absorption ranges than their H-based analogues, AlH(4)(-) and HF(2)(-). Because of the catalytic properties and the biocompatibility of Au, Au-based superhalogens may be multifunctional. However, similar studies that were carried out for Cu and Ag atoms have shown that, unlike AlAu(4), AlX(4) (X=Cu, Ag) clusters are not superhalogens, a property that can be attributed to the large EA of the Au atom. Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Highly Regioselective Halogenation of Pyridine N-Oxide: Practical Access to 2-Halo-Substituted Pyridines.

    Science.gov (United States)

    Chen, Ying; Huang, Jinkun; Hwang, Tsang-Lin; Chen, Maosheng J; Tedrow, Jason S; Farrell, Robert P; Bio, Matthew M; Cui, Sheng

    2015-06-19

    A highly efficient and regioselective halogenation reaction of unsymmetrical pyridine N-oxide under mild conditions is described. The methodology provides a practical access to various 2-halo-substituted pyridines, which are pharmaceutically important intermediates.

  16. Total reaction cross sections for 20-30 MeV pions and the anomaly of pionic atoms

    Science.gov (United States)

    Friedman, E.; Goldring, A.; Johnson, R. R.; Meirav, O.; Vetterli, D.; Weber, P.; Altman, A.

    1991-03-01

    Total reaction cross sections of 20 MeV π- and 30 MeV π+ and π- have been measured for carbon and nickel targets. The experimental results are in very good agreement with calculations based on commonly accepted pion-nucleus potentials but disagree with calculations based on the potentials associated with the so-called pionic atom anomaly.

  17. Nafion®-catalyzed microwave-assisted Ritter reaction: An atom-economic solvent-free synthesis of amides

    Science.gov (United States)

    An atom-economic solvent-free synthesis of amides by the Ritter reaction of alcohols and nitriles under microwave irradiation is reported. This green protocol is catalyzed by solid supported Nafion®NR50 with improved efficiency and reduced waste production.

  18. ATOMIC-LEVEL IMAGING OF CO2 DISPOSAL AS A CARBONATE MINERAL: OPTIMIZING REACTION PROCESS DESIGN

    Energy Technology Data Exchange (ETDEWEB)

    M.J. McKelvy; R. Sharma; A.V.G. Chizmeshya; H. Bearat; R.W. Carpenter

    2002-11-01

    Fossil fuels, especially coal, can support the energy demands of the world for centuries to come, if the environmental problems associated with CO{sub 2} emissions can be overcome. Permanent and safe methods for CO{sub 2} capture and disposal/storage need to be developed. Mineralization of stationary-source CO{sub 2} emissions as carbonates can provide such safe capture and long-term sequestration. Mg-rich lamellar-hydroxide based minerals (e.g., brucite and serpentine) offer a class of widely available, low-cost materials, with intriguing mineral carbonation potential. Carbonation of such materials inherently involves dehydroxylation, which can disrupt the material down to the atomic level. As such, controlled dehydroxylation, before and/or during carbonation, may provide an important parameter for enhancing carbonation reaction processes. Mg(OH){sub 2} was chosen as the model material for investigating lamellar hydroxide mineral dehydroxylation/carbonation mechanisms due to (1) its structural and chemical simplicity, (2) interest in Mg(OH){sub 2} gas-solid carbonation as a potentially cost-effective CO{sub 2} mineral sequestration process component, and (3) its structural and chemical similarity to other lamellar-hydroxide-based minerals (e.g., serpentine-based minerals) whose carbonation reaction processes are being explored due to their low-cost CO{sub 2} sequestration potential. Fundamental understanding of the mechanisms that govern dehydroxylation/carbonation processes is essential for minimizing the cost of any lamellar-hydroxide-based mineral carbonation sequestration process. This final report covers the overall progress of this grant.

  19. Photoinitiated H- and D-atom reactions with N sub 2 O in the gas phase and in N sub 2 O--HI and N sub 2 O--DI complexes

    Energy Technology Data Exchange (ETDEWEB)

    Boehmer, E.; Shin, S.K.; Chen, Y.; Wittig, C. (Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482 (United States))

    1992-08-15

    Reactions of H atoms with N{sub 2}O have two product channels yielding NH+NO and OH+N{sub 2}. Both channels were observed via NH {ital A} {sup 3}{Pi}{l arrow}{ital X} {sup 3}{summation} and OH {ital A} {sup 2}{summation}{l arrow}{ital X} {sup 2}{Pi} laser-induced fluorescence spectra. Photoinitiated reactions with N{sub 2}O--HI complexes yield a much lower (NH)/(OH) ratio than under the corresponding bulk conditions at the same photolysis wavelength. For hot D-atom reactions with N{sub 2}O, this effect is somewhat more pronounced. These results can be interpreted in terms of entrance channel geometric specificity, namely, biasing hydrogen attack toward the oxygen. Another striking observation is that the OH and OD rotational level distributions (RLD) obtained under bulk conditions differ markedly from those obtained under complexed conditions, while the NH as well as the ND RLD are similar for the two environments. In addition, OH Doppler profiles change considerably in going from bulk to complexed conditions, while such an effect is not observed for NH. The changes observed with the OH RLD are most likely due to OH--halogen interactions and/or entrance channel specificity. Under bulk conditions, the Doppler shift measurements indicate a large amount of N{sub 2} internal excitation (i.e., {similar to}25 000 cm{sup {minus}1}) for the OH ({ital v}=0) levels monitored. This is consistent with a reaction mechanism involving an HNNO{sup {dagger}} intermediate. The hot hydrogen atom first attaches to the terminal nitrogen of N{sub 2}O and forms an excited HNNO{sup {dagger}} intermediate having a relatively elongated N--N bond compared with N{sub 2}O. Then the H atom migrates from nitrogen to oxygen and exits to the N{sub 2}+OH product channel, leaving N{sub 2} vibrationally excited. A simple Franck--Condon model can reconcile quantitatively the large amount of N{sub 2} vibrational excitation.

  20. Biodegradation of Trihalomethanes and Other Halogenated Aliphatic Compounds

    Science.gov (United States)

    Smith, G. B.

    1996-01-01

    The biological dehalogenation of common water pollutants such as trichloromethane (chloroform) and other halogenated aliphatic compounds was the subject of this project. Samples from diverse water environments such as from groundwater contaminated with halogenated compounds and wastewaters from regional treatment plants were studied to identify conditions that favor certain dehalogenation reactions over others. Gene probe analyses of DNA extracted from the dichlormethane-degrading wastewater indicated the presence of the gene coding for dichloromethane dehalogenase, indicating the genetic basis for the dechlorination activity observed. These studies indicate that methanogenic bacteria are the organisms responsible for the chloroform dechlorination. Dechlorination of a common chlorofluorocarbon (CFC-11) was identified in samples taken from a regional aquifer contaminated with halogenated aliphatic compounds.

  1. The Halogen Occultation Experiment

    Science.gov (United States)

    Russell, James M., III; Gordley, Larry L.; Park, Jae H.; Drayson, S. R.; Hesketh, W. D.; Cicerone, Ralph J.; Tuck, Adrian F.; Frederick, John E.; Harries, John E.; Crutzen, Paul J.

    1993-01-01

    The Halogen Occultation Experiment (HALOE) uses solar occultation to measure vertical profiles of O3, HCl, HF, CH4, H2O, NO, NO2, aerosol extinction, and temperature versus pressure with an instantaneous vertical field of view of 1.6 km at the earth limb. Latitudinal coverage is from 80 deg S to 80 deg N over the course of 1 year and includes extensive observations of the Antarctic region during spring. The altitude range of the measurements extends from about 15 km to about 60-130 km, depending on channel. Experiment operations have been essentially flawless, and all performance criteria either meet or exceed specifications. Internal data consistency checks, comparisons with correlative measurements, and qualitative comparisons with 1985 atmospheric trace molecule spectroscopy (ATMOS) results are in good agreement. Examples of pressure versus latitude cross sections and a global orthographic projection for the September 21 to October 15, 1992, period show the utility of CH4, HF, and H2O as tracers, the occurrence of dehydration in the Antarctic lower stratosphere, the presence of the water vapor hygropause in the tropics, evidence of Antarctic air in the tropics, the influence of Hadley tropical upwelling, and the first global distribution of HCl, HF, and NO throughout the stratosphere. Nitric oxide measurements extend through the lower thermosphere.

  2. Halogens and their role in polar boundary-layer ozone depletion

    Directory of Open Access Journals (Sweden)

    W. R. Simpson

    2007-03-01

    Full Text Available During springtime in the polar regions, unique photochemistry converts inert halide salts ions (e.g. Br into reactive halogen species (e.g. Br atoms and BrO that deplete ozone in the boundary layer to near zero levels. Since their discovery in the late 1980s, research on ozone depletion events (ODEs has made great advances; however many key processes remain poorly understood. In this article we review the history, chemistry, dependence on environmental conditions, and impacts of ODEs. This research has shown the central role of bromine photochemistry, but how salts are transported from the ocean and are oxidized to become reactive halogen species in the air is still not fully understood. Halogens other than bromine (chlorine and iodine are also activated through incompletely understood mechanisms that are probably coupled to bromine chemistry. The main consequence of halogen activation is chemical destruction of ozone, which removes the primary precursor of atmospheric oxidation, and generation of reactive halogen atoms/oxides that become the primary oxidizing species. The different reactivity of halogens as compared to OH and ozone has broad impacts on atmospheric chemistry, including near complete removal and deposition of mercury, alteration of oxidation fates for organic gases, and export of bromine into the free troposphere. Recent changes in the climate of the Arctic and state of the Arctic sea ice cover are likely to have strong effects on halogen activation and ODEs; however, more research is needed to make meaningful predictions of these changes.

  3. An investigation of one- versus two-dimensional semiclassical transition state theory for H atom abstraction and exchange reactions

    Science.gov (United States)

    Greene, Samuel M.; Shan, Xiao; Clary, David C.

    2016-02-01

    We investigate which terms in Reduced-Dimensionality Semiclassical Transition State Theory (RD SCTST) contribute most significantly in rate constant calculations of hydrogen extraction and exchange reactions of hydrocarbons. We also investigate the importance of deep tunneling corrections to the theory. In addition, we introduce a novel formulation of the theory in Jacobi coordinates. For the reactions of H atoms with methane, ethane, and cyclopropane, we find that a one-dimensional (1-D) version of the theory without deep tunneling corrections compares well with 2-D SCTST results and accurate quantum scattering results. For the "heavy-light-heavy" H atom exchange reaction between CH3 and CH4, deep tunneling corrections are needed to yield 1-D results that compare well with 2-D results. The finding that accurate rate constants can be obtained from derivatives of the potential along only one dimension further validates RD SCTST as a computationally efficient yet accurate rate constant theory.

  4. Atmospheric reactions of methylcyclohexanes with Cl atoms and OH radicals: determination of rate coefficients and degradation products.

    Science.gov (United States)

    Ballesteros, Bernabé; Ceacero-Vega, Antonio A; Jiménez, Elena; Albaladejo, José

    2015-04-01

    As the result of biogenic and anthropogenic activities, large quantities of chemical compounds are emitted into the troposphere. Alkanes, in general, and cycloalkanes are an important chemical class of hydrocarbons found in diesel, jet and gasoline, vehicle exhaust emissions, and ambient air in urban areas. In general, the primary atmospheric fate of organic compounds in the gas phase is the reaction with hydroxyl radicals (OH). The oxidation by Cl atoms has gained importance in the study of atmospheric reactions because they may exert some influence in the boundary layer, particularly in marine and coastal environments, and in the Arctic troposphere. The aim of this paper is to study of the atmospheric reactivity of methylcylohexanes with Cl atoms and OH radicals under atmospheric conditions (in air at room temperature and pressure). Relative kinetic techniques have been used to determine the rate coefficients for the reaction of Cl atoms and OH radicals with methylcyclohexane, cis-1,4-dimethylcyclohexane, trans-1,4-dimethylcyclohexane, and 1,3,5-trimethylcyclohexane at 298 ± 2 K and 720 ± 5 Torr of air by Fourier transform infrared) spectroscopy and gas chromatography-mass spectrometry (GC-MS) in two atmospheric simulation chambers. The products formed in the reaction under atmospheric conditions were investigated using a 200-L Teflon bag and employing the technique of solid-phase microextraction coupled to a GC-MS. The rate coefficients obtained for the reaction of Cl atoms with the studied compounds are the following ones (in units of 10(-10) cm(3) molecule(-1) s(-1)): (3.11 ± 0.16), (2.89 ± 0.16), (2.89 ± 0.26), and (2.61 ± 0.42), respectively. For the reactions with OH radicals the determined rate coefficients are (in units of 10(-11) cm(3) molecule(-1) s(-1)): (1.18 ± 0.12), (1.49 ± 0.16), (1.41 ± 0.15), and (1.77 ± 0.23), respectively. The reported error is twice the standard deviation. A detailed

  5. Observation of Spontaneous C=C Bond Breaking in the Reaction between Atomic Boron and Ethylene in Solid Neon.

    Science.gov (United States)

    Jian, Jiwen; Lin, Hailu; Luo, Mingbiao; Chen, Mohua; Zhou, Mingfei

    2016-07-11

    A ground-state boron atom inserts into the C=C bond of ethylene to spontaneously form the allene-like compound H2 CBCH2 on annealing in solid neon. This compound can further isomerize to the propyne-like HCBCH3 isomer under UV light excitation. The observation of this unique spontaneous C=C bond insertion reaction is consistent with theoretical predictions that the reaction is thermodynamically exothermic and kinetically facile. This work demonstrates that the stronger C=C bond, rather than the less inert C-H bond, can be broken to form organoboron species from the reaction of a boron atom with ethylene even at cryogenic temperatures.

  6. Tests of stratospheric models - The reactions of atomic chlorine with O3 and CH4 at low temperature

    Science.gov (United States)

    Demore, W. B.

    1991-01-01

    The rate-constant ratio of the photochemical reactions of atomic chlorine with O3 and CH4 was determined using data from laboratory experiments on competitive chlorination of O3/CH4 mixtures at stratospheric temperatures (197-217 K). Two experimental approaches were used: (1) measuring the k1/k2 ratio for the reactions of atomic chlorine with ozone and methane and (2) testing for some of the ClO/CH3O2 chemistry. The chlorine and ozone concentrations were monitored by UV-Vis spectroscopy, and the CH3Cl concentration was measured by FTIR. The results on the k1/k2 ratio are in excellent agreement with the current NASA recommendation (DeMore et al., 1990), being only 12 percent higher. On the other hand, results on the ClO + CH3O2 reaction do not support the rate constant suggested by Simon et al. (1989).

  7. A MATLAB-based finite-element visualization of quantum reactive scattering. I. Collinear atom-diatom reactions.

    Science.gov (United States)

    Warehime, Mick; Alexander, Millard H

    2014-07-14

    We restate the application of the finite element method to collinear triatomic reactive scattering dynamics with a novel treatment of the scattering boundary conditions. The method provides directly the reactive scattering wave function and, subsequently, the probability current density field. Visualizing these quantities provides additional insight into the quantum dynamics of simple chemical reactions beyond simplistic one-dimensional models. Application is made here to a symmetric reaction (H+H2), a heavy-light-light reaction (F+H2), and a heavy-light-heavy reaction (F+HCl). To accompany this article, we have written a MATLAB code which is fast, simple enough to be accessible to a wide audience, as well as generally applicable to any problem that can be mapped onto a collinear atom-diatom reaction. The code and user's manual are available for download from http://www2.chem.umd.edu/groups/alexander/FEM.

  8. Entropy production and efficiency analysis of the Bunsen reaction in the General Atomic sulfur-iodine thermochemical hydrogen production cycle

    Energy Technology Data Exchange (ETDEWEB)

    Davis, M.E.; Conger, W.L.

    1980-01-01

    An entropy production and efficiency analysis of the first reaction in the General Atomic sulfur-iodine thermochemical hydrogen production cycle has been carried out by simulating the reaction including the mixing of reactants and separation of the resulting phases. The reaction: 2H/sub 2/O(L) + SO/sub 2/(g) + (excess) I/sub 2/(g) = H/sub 2/SO/sub 4/ (sol)(Phase I) + 2 HI core (Phase II) was simulated at 388 K, which is slightly above the melting point of I/sup 2/. Analysis of only this reaction shows that the reaction should be run at 15 to 25% I/sub 2/ reacted and the greatest excess of H/sub 2/O which will produce two product phases. Actual operating conditions are however dependent on the total processing scheme. An entropy production and efficiency analysis along with economic factors for the entire process is necessary to obtain these conditions.

  9. A MATLAB-based finite-element visualization of quantum reactive scattering. I. Collinear atom-diatom reactions

    Energy Technology Data Exchange (ETDEWEB)

    Warehime, Mick [Chemical Physics Program, University of Maryland, College Park, Maryland 20742-2021 (United States); Alexander, Millard H., E-mail: mha@umd.edu [Department of Chemistry and Biochemistry and Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742-2021 (United States)

    2014-07-14

    We restate the application of the finite element method to collinear triatomic reactive scattering dynamics with a novel treatment of the scattering boundary conditions. The method provides directly the reactive scattering wave function and, subsequently, the probability current density field. Visualizing these quantities provides additional insight into the quantum dynamics of simple chemical reactions beyond simplistic one-dimensional models. Application is made here to a symmetric reaction (H+H{sub 2}), a heavy-light-light reaction (F+H{sub 2}), and a heavy-light-heavy reaction (F+HCl). To accompany this article, we have written a MATLAB code which is fast, simple enough to be accessible to a wide audience, as well as generally applicable to any problem that can be mapped onto a collinear atom-diatom reaction. The code and user's manual are available for download from http://www2.chem.umd.edu/groups/alexander/FEM.

  10. The physiological and ecological roles of volatile halogen production by marine diatoms

    Science.gov (United States)

    Hughes, Claire; Sun, Shuo

    2015-04-01

    Sea-to-air halogen flux is known to have a major impact on catalytic ozone cycling and aerosol formation in the troposphere. The biological production of volatile organic (e.g. bromoform, diiodomethane) and reactive inorganic halogens (e.g. molecular iodine) is believed to play an important role in mediating halogen emissions from the marine environment. Marine diatoms in particular are known to produce the organic and inorganic volatile halogens at high rates in pelagic waters and sea-ice systems. The climate-induced changes in diatom communities that have already been observed and are expected to occur throughout the world's oceans as warming progresses are likely to alter sea-to-air halogen flux. However, we currently have insufficient understanding of the physiological and ecological functions of volatile halogen production to develop modelling tools that can predict the nature and magnitude of the impact. The results of a series of laboratory studies aimed at establishing the physiological and ecological role of volatile halogen production in two marine polar diatoms (Thalassiosira antarctica and Porosira glacialis) will be described in this presentation. We will focus on our work investigating how the activity of the haloperoxidases, a group of enzymes known to be involved in halogenation reactions in marine organisms, is altered by environmental conditions. This will involve exploring the antioxidative defence role proposed for marine haloperoxidases by showing specifically how halogenating activity varies with photosynthetic rate and changes in the ambient light conditions in the two model marine diatoms. We will also present results from our experiments designed to investigate how volatile halogen production is impacted by and influences diatom-bacterial interactions. We will discuss how improved mechanistic understanding like this could pave the way for future volatile halogen-ecosystem model development.

  11. Laser photolysis-resonance fluorescence technique (LP-RF) applied to the study of reactions of atmospheric interest

    Science.gov (United States)

    Albaladejo, J.; Cuevas, C. A.; Notario, A.; Martínez, E.

    Atomic chlorine is highly reactive with a variety of organic and inorganic compounds so that relatively small concentrations can compete with the tropospheric oxidants (OH, O3 and NO3) in determining the tropospheric fate of such compounds [1]. Besides, there is a lot of evidence that bromine compounds play significant role in the ozone chemistry both in the troposphere and in the stratosphere [2]. In this work we show the laser photolysis-resonance fluorescence technique (LP-RF) applied to the study of gas phase reactions of halogen atoms with volatile organic compounds (VOCs) of interest in atmospheric chemistry [3]. By means of this technique is possible to measure the rate constants of theses reactions, and subsequently obtain the Arrhenius parameters. Halogens atoms are produced in a excess of the VOC and He, by photolyzing Cl2 at 308 nm to obtain Cl atoms, or CF2Br2 at 248 nm for Br atoms, both cases using a pulsed excimer laser. The radiation (135 nm) from a microwave-driven lamp, through which He containing a low concentrations of Cl2 or Br2 was flowed, was used to excite the resonance fluorescence from the corresponding halogen atom in the jacketed Pyrex reaction cell. Signal were obtained using photon-counting techniques in conjunction with multichannel scaling. The fluorescence signal from the PMT was processed by a preamplifier and sent to an multichannel scaler to collect the time-resolved signal. The multichannel scaler was coupled to a microcomputer for further kinetics analysis.

  12. Investigations of Buffer-Gases Role in Xenon and Halogen Excimer Mixtures

    Science.gov (United States)

    Ciobotaru, L. C.; Porosnicu, C.

    2010-10-01

    Excimer- is an acronym in use for the excited dimmer, molecule which does not exist in the ground state but only in an excited state. This paper presents the role of the buffer-gas atoms (Ar, Ne, He), in the (Cl2/I2 Xe) excimer radiation emission mechanisms. The same buffer-gas produced a different effect on the excimer emission intensity: the neon and argon addition to xenon/chlorine/iodine had a negative effect while the helium and neon addition had a positive effect. The Penning reactions play an important role in the excimer radiation generation in connection with the gas-buffer addition and the halogen ionization potential value. The measurements are performed using a dielectric barrier discharge (DBD) at moderate pressure in a panel, respectively classic coaxial geometry.

  13. A reaction-diffusion model for atomic oxygen interacting with spacecraft surface protective materials in low earth orbit environment

    Institute of Scientific and Technical Information of China (English)

    CHEN LaiWen; WANG JingHua; LEE Chun-Hian

    2009-01-01

    When hyperthermal atomic oxygen collides with a silicon surface, an ultrathin oxidation regime characterized by fractional atomic-oxygen anions having low diffusive and reactive barriers, along with their enhanced diffusion due to both the electric field and image potential, will form on the surface. In accordance with these properties, an attempt was made in the present study to modify the AlmeidaGoncalves-Baumvol (AGB) model by setting the diffusivity and reaction rate constant to be diffusion-length dependence. According to the modified model, numerical parametric studies for oxidation thin growth were performed. The dependencies of the diffusion coefficient, the reaction rate constant,the attenuation length, and the adjustable parameter upon the translational kinetic energy, flux, temperature, and tangential flux of atomic oxygen were analyzed briefly via the fitting of the experimental data given by Tagawa et al. The numerical results confirmed the rationality of the modified diffusion-reaction model. The model together with the computer code developed in this study would be a useful tool for thickness evaluation of the protective film against the oxidation of atomic oxygen toward spacecraft surface materials in LEO environment.

  14. A reaction-diffusion model for atomic oxygen interacting with spacecraft surface protective materials in low earth orbit environment

    Institute of Scientific and Technical Information of China (English)

    LEE; Chun-Hian

    2009-01-01

    When hyperthermal atomic oxygen collides with a silicon surface, an ultrathin oxidation regime characterized by fractional atomic-oxygen anions having low diffusive and reactive barriers, along with their enhanced diffusion due to both the electric field and image potential, will form on the surface. In ac- cordance with these properties, an attempt was made in the present study to modify the Almeida- Goncalves-Baumvol (AGB) model by setting the diffusivity and reaction rate constant to be diffu- sion-length dependence. According to the modified model, numerical parametric studies for oxidation thin growth were performed. The dependencies of the diffusion coefficient, the reaction rate constant, the attenuation length, and the adjustable parameter upon the translational kinetic energy, flux, tem- perature, and tangential flux of atomic oxygen were analyzed briefly via the fitting of the experimental data given by Tagawa et al. The numerical results confirmed the rationality of the modified diffu- sion-reaction model. The model together with the computer code developed in this study would be a useful tool for thickness evaluation of the protective film against the oxidation of atomic oxygen toward spacecraft surface materials in LEO environment.

  15. Halogenated compounds from marine algae.

    Science.gov (United States)

    Cabrita, Maria Teresa; Vale, Carlos; Rauter, Amélia Pilar

    2010-08-09

    Marine algae produce a cocktail of halogenated metabolites with potential commercial value. Structures exhibited by these compounds go from acyclic entities with a linear chain to complex polycyclic molecules. Their medical and pharmaceutical application has been investigated for a few decades, however other properties, such as antifouling, are not to be discarded. Many compounds were discovered in the last years, although the need for new drugs keeps this field open as many algal species are poorly screened. The ecological role of marine algal halogenated metabolites has somehow been overlooked. This new research field will provide valuable and novel insight into the marine ecosystem dynamics as well as a new approach to comprehending biodiversity. Furthermore, understanding interactions between halogenated compound production by algae and the environment, including anthropogenic or global climate changes, is a challenging target for the coming years. Research of halogenated metabolites has been more focused on macroalgae than on phytoplankton. However, phytoplankton could be a very promising material since it is the base of the marine food chain with quick adaptation to environmental changes, which undoubtedly has consequences on secondary metabolism. This paper reviews recent progress on this field and presents trends on the role of marine algae as producers of halogenated compounds.

  16. From gas-phase to liquid-water chemical reactions: the fluorine atom plus water trimer system.

    Science.gov (United States)

    Li, Guoliang; Li, Qian-Shu; Xie, Yaoming; Schaefer, Henry F

    2015-09-14

    The potential energy profile for the F+(H2 O)3 →HF+(H2 O)2 OH reaction has been investigated using the "gold standard" CCSD(T) method with correlation-consistent basis sets up to cc-pVQZ. Four different reaction pathways have been found and these are related, both geometrically and energetically. The entrance complexes F⋅⋅⋅(H2 O)3 for all four reaction pathways are found lying ca. 7 kcal mol(-1) below the separated reactants F+(H2 O)3 . The four reaction barriers on their respective reaction coordinates lie ca. 4 kcal mol(-1) below the reactants. There are also corresponding exit complexes HF⋅⋅⋅(H2 O)2 OH, lying about 13 kcal mol(-1) below the separated products HF+(H2 O)2 OH. Compared with analogous F+(H2 O)2 and F+H2 O reactions, the F+(H2 O)3 reaction is somewhat similar to the former but qualitatively different from the latter. It may be reasonable to predict that the reactions between atomic fluorine and water tetramer (or even larger water clusters) may be similar to the F+(H2 O)3 reaction.

  17. Kinetic of the gas-phase reactions of OH radicals and Cl atoms with Diethyl Ethylphosphonate and Triethyl Phosphate

    KAUST Repository

    Laversin, H.

    2015-11-30

    In this paper, the relative-rate technique has been used to obtain rate coefficients for the reaction of two organophosphorus compounds: Triethyl phosphate (TEP) and Diethyl ethylphosphonate (DEEP) with OH radicals and Cl atoms at atmospheric pressure and at different temperatures. The calculated rate constants were fitted to the Arrhenius expression over the temperature range 298 – 352 K. The following expressions (in cm3molecule-1s-1) were obtained for the reactions of OH and CL with DEEP and TEP: kOH+DEEP= (7.84±0.65)x10-14exp((1866±824)/T), kOH+TEP = (6.54±0.42)x10-14exp((1897±626)/T), kCl+DEEP = (5.27± 0.80)x10−11exp(765±140/T) and kCl+TEP = (5.23± 0.80)x10−11exp(736± 110/T). These results show that the reaction of the studied compounds with Cl atoms proceeds more rapidly than that with OH radicals. The related tropospheric lifetimes suggest that once emitted into the atmosphere, TEP and DEEP can be removed within a few hours in areas close to their emission sources. TEP and DEEP are principally removed by OH radicals. However, in coastal areas where the Cl atoms’ concentration is higher, TEP and DEEP removal by reaction with Cl atoms could be a competitive process.

  18. Anaerobic microbial transformation of halogenated aromatics and fate prediction using electron density modeling.

    Science.gov (United States)

    Cooper, Myriel; Wagner, Anke; Wondrousch, Dominik; Sonntag, Frank; Sonnabend, Andrei; Brehm, Martin; Schüürmann, Gerrit; Adrian, Lorenz

    2015-05-19

    Halogenated homo- and heterocyclic aromatics including disinfectants, pesticides and pharmaceuticals raise concern as persistent and toxic contaminants with often unknown fate. Remediation strategies and natural attenuation in anaerobic environments often build on microbial reductive dehalogenation. Here we describe the transformation of halogenated anilines, benzonitriles, phenols, methoxylated, or hydroxylated benzoic acids, pyridines, thiophenes, furoic acids, and benzenes by Dehalococcoides mccartyi strain CBDB1 and environmental fate modeling of the dehalogenation pathways. The compounds were chosen based on structural considerations to investigate the influence of functional groups present in a multitude of commercially used halogenated aromatics. Experimentally obtained growth yields were 0.1 to 5 × 10(14) cells mol(-1) of halogen released (corresponding to 0.3-15.3 g protein mol(-1) halogen), and specific enzyme activities ranged from 4.5 to 87.4 nkat mg(-1) protein. Chlorinated electron-poor pyridines were not dechlorinated in contrast to electron-rich thiophenes. Three different partial charge models demonstrated that the regioselective removal of halogens is governed by the least negative partial charge of the halogen. Microbial reaction pathways combined with computational chemistry and pertinent literature findings on Co(I) chemistry suggest that halide expulsion during reductive dehalogenation is initiated through single electron transfer from B12Co(I) to the apical halogen site.

  19. The electronic behavior of a photosynthetic reaction center monitored by conductive atomic force microscopy.

    Science.gov (United States)

    Mikayama, Takeshi; Iida, Kouji; Suemori, Yoshiharu; Dewa, Takehisa; Miyashita, Tokuji; Nango, Mamoru; Gardiner, Alastair T; Cogdell, Richard J

    2009-01-01

    The conductivity of a photosynthetic reaction center (RC) from Rhodobacter sphaeroides was measured with conductive atomic force microscopy (CAFM) on SAM-modified Au(111) substrates. 2-mercaptoethanol (2ME), 2-mercaptoacetic acid (MAC), 2-mercaptopyridine (2MP) and 4-mercaptopyridine (4MP) were prepared as SAM materials to investigate the stability and morphology of RCs on the substrate by using near-IR absorption spectroscopy and AFM, respectively. The clear presence of the three well known RC near-IR absorption peaks indicates that the RCs were native on the SAM-modified Au(111). Dense grains with various diameters of 5-20 nm, which corresponded to mixtures of single RCs up to aggregates of 10, were observed in topographs of RCs adsorbed on all the different SAM-modified Au(111) substrates. The size of currents obtained from the RC using a bare conductive cantilever were produced in the following order for SAM molecules: 2MP > 2ME > 4MP > MAC. A clear rectification of this current was observed for the modification of the Au(111) substrate with the pi-conjugated thiol, 2MP, indicating that 2MP was effective in both promoting the specific orientation of the RCs on the electrode and electron injection into the RC. Cyclic voltammetry measurements indicate that the 2MP is better mediator for the electron transfer between a quinone and substrate. The current with 2MP-modified cantilever was twice as high as that obtained with the Au-coated one alone, indicating that 2MP has an important role in lowering the electron injection barrier between special pair side of RC and gold electrode.

  20. Reaction layer growth and reaction heat of U-Mo/Al dispersion fuels using centrifugally atomized powders

    Science.gov (United States)

    Ryu, Ho Jin; Han, Young Soo; Park, Jong Man; Park, Soon Dal; Kim, Chang Kyu

    2003-09-01

    The growth behavior of reaction layers and heat generation during the reaction between U-Mo powders and the Al matrix in U-Mo/Al dispersion fuels were investigated. Annealing of 10 vol.% U-10Mo/Al dispersion fuels at temperatures from 500 to 550 °C was carried out for 10 min to 36 h to measure the growth rate and the activation energy for the growth of reaction layers. The concentration profiles of reaction layers between the U-10Mo vs. Al diffusion couples were measured and the integrated interdiffusion coefficients were calculated for the U and Al in the reaction layers. Heat generation of U-Mo/Al dispersion fuels with 10-50 vol.% of U-Mo fuel during the thermal cycle from room temperature to 700 °C was measured employing the differential scanning calorimetry. Exothermic heat from the reaction between U-Mo and the Al matrix is the largest when the volume fraction of U-Mo fuel is about 30 vol.%. The unreacted fraction in the U-Mo powders increases as the volume fraction of U-Mo fuel increases from 30 to 50 vol.%.

  1. Atmospheric reactions between E,E-2,4-hexadienal and OH, NO3 radicals and Cl atoms

    Science.gov (United States)

    Colmenar, I.; Martín, P.; Cabañas, B.; Salgado, S.; Martínez, E.

    2014-12-01

    E,E-2,4-Hexadienal is an α,β-unsaturated aldehyde whose presence in the atmosphere can arise from different sources. The rate coefficients for the reaction of this compound with Cl atoms, OH and NO3 radicals and for the photolysis process have been determined at atmospheric pressure and room temperature. A relative method has been developed with a Fourier Transform Infrared spectrometer (FTIR) or Solid Phase Micro Extraction fiber/chromatography-mass spectrometer (SPME/GC-MS) used as sampling/detection techniques. The absolute rate coefficients k (in units of cm3 molecule-1 s-1) obtained for Cl, OH and NO3 were (3.98 ± 0.44) × 10-10, (6.78 ± 0.47) × 10-11 and (1.34 ± 0.56) × 10-12, respectively. An estimation of the rate coefficient for the reaction of E,E-2,4-hexadienal with OH and NO3 radicals and Cl atoms has been carried out using correlations and SAR methods. The SAR substituent factor for the -C(O)H group, [G-(C(O)H)] = 3.58 × 10-3, has been obtained. This group reactivity factor allows the rate coefficients to be estimated for the reaction of unsaturated aldehydes with NO3 radicals. The results of this study confirm that the reaction of unsaturated aldehydes with Cl atoms is very fast and that the structure of the compound has little influence, with the influence of the structure being more marked in the case of the OH radical reaction and relatively large for the NO3 reaction. The results are consistent with a mechanism in which the first stage is addition of an atom or radical to the double bond of E,E-2,4-hexadienal as the main reaction channel and, to a minor extent, the abstraction of aldehydic hydrogen. These are the first data reported for the atmospheric reactions of this compound and this study therefore contributes to the database of rate coefficients for atmospheric reactions.

  2. Halogenation generates effective modulators of amyloid-Beta aggregation and neurotoxicity.

    Directory of Open Access Journals (Sweden)

    H Edward Wong

    Full Text Available Halogenation of organic compounds plays diverse roles in biochemistry, including selective chemical modification of proteins and improved oral absorption/blood-brain barrier permeability of drug candidates. Moreover, halogenation of aromatic molecules greatly affects aromatic interaction-mediated self-assembly processes, including amyloid fibril formation. Perturbation of the aromatic interaction caused by halogenation of peptide building blocks is known to affect the morphology and other physical properties of the fibrillar structure. Consequently, in this article, we investigated the ability of halogenated ligands to modulate the self-assembly of amyloidogenic peptide/protein. As a model system, we chose amyloid-beta peptide (Aβ, which is implicated in Alzheimer's disease, and a novel modulator of Aβ aggregation, erythrosine B (ERB. Considering that four halogen atoms are attached to the xanthene benzoate group in ERB, we hypothesized that halogenation of the xanthene benzoate plays a critical role in modulating Aβ aggregation and cytotoxicity. Therefore, we evaluated the modulating capacities of four ERB analogs containing different types and numbers of halogen atoms as well as fluorescein as a negative control. We found that fluorescein is not an effective modulator of Aβ aggregation and cytotoxicity. However, halogenation of either the xanthenes or benzoate ring of fluorescein substantially enhanced the inhibitory capacity on Aβ aggregation. Such Aβ aggregation inhibition by ERB analogs except rose bengal correlated well to the inhibition of Aβ cytotoxicity. To our knowledge, this is the first report demonstrating that halogenation of aromatic rings substantially enhance inhibitory capacities of small molecules on Aβ-associated neurotoxicity via Aβ aggregation modulation.

  3. 40 CFR 721.8675 - Halogenated pyridines.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Halogenated pyridines. 721.8675... Substances § 721.8675 Halogenated pyridines. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as halogenated pyridine (PMN P-83-1163)...

  4. Coke Formation in a Zeolite Crystal During the Methanol-to-Hydrocarbons Reaction as Studied with Atom Probe Tomography.

    Science.gov (United States)

    Schmidt, Joel E; Poplawsky, Jonathan D; Mazumder, Baishakhi; Attila, Özgün; Fu, Donglong; de Winter, D A Matthijs; Meirer, Florian; Bare, Simon R; Weckhuysen, Bert M

    2016-09-01

    Understanding the formation of carbon deposits in zeolites is vital to developing new, superior materials for various applications, including oil and gas conversion processes. Herein, atom probe tomography (APT) has been used to spatially resolve the 3D compositional changes at the sub-nm length scale in a single zeolite ZSM-5 crystal, which has been partially deactivated by the methanol-to-hydrocarbons reaction using (13) C-labeled methanol. The results reveal the formation of coke in agglomerates that span length scales from tens of nanometers to atomic clusters with a median size of 30-60 (13) C atoms. These clusters correlate with local increases in Brønsted acid site density, demonstrating that the formation of the first deactivating coke precursor molecules occurs in nanoscopic regions enriched in aluminum. This nanoscale correlation underscores the importance of carefully engineering materials to suppress detrimental coke formation.

  5. A metagenomic-based survey of microbial (de)halogenation potential in a German forest soil.

    Science.gov (United States)

    Weigold, Pascal; El-Hadidi, Mohamed; Ruecker, Alexander; Huson, Daniel H; Scholten, Thomas; Jochmann, Maik; Kappler, Andreas; Behrens, Sebastian

    2016-06-29

    In soils halogens (fluorine, chlorine, bromine, iodine) are cycled through the transformation of inorganic halides into organohalogen compounds and vice versa. There is evidence that these reactions are microbially driven but the key enzymes and groups of microorganisms involved are largely unknown. Our aim was to uncover the diversity, abundance and distribution of genes encoding for halogenating and dehalogenating enzymes in a German forest soil by shotgun metagenomic sequencing. Metagenomic libraries of three soil horizons revealed the presence of genera known to be involved in halogenation and dehalogenation processes such as Bradyrhizobium or Pseudomonas. We detected a so far unknown diversity of genes encoding for (de)halogenating enzymes in the soil metagenome including specific and unspecific halogenases as well as metabolic and cometabolic dehalogenases. Genes for non-heme, no-metal chloroperoxidases and haloalkane dehalogenases were the most abundant halogenase and dehalogenase genes, respectively. The high diversity and abundance of (de)halogenating enzymes suggests a strong microbial contribution to natural halogen cycling. This was also confirmed in microcosm experiments in which we quantified the biotic formation of chloroform and bromoform. Knowledge on microorganisms and genes that catalyze (de)halogenation reactions is critical because they are highly relevant to industrial biotechnologies and bioremediation applications.

  6. Formation of halogenated acetones in the lower troposphere

    Science.gov (United States)

    Sattler, Tobias; Wittmer, Julian; Krause, Torsten; Schöler, Heinz Friedrich; Kamilli, Katharina; Held, Andreas; Zetzsch, Cornelius; Ofner, Johannes; Atlas, Elliot

    2015-04-01

    Western Australia is a semi-/arid region that is heavily influenced by climate change and agricultural land use. The area is known for its saline lakes with a wide range of hydrogeochemical parameters and consists of ephemeral saline and saline groundwater fed lakes with a pH range from 2.5 to 7.1. In 2012 a novel PTFE-chamber was setup directly on the lakes. The 1.5 m³ cubic chamber was made of UV transparent PTFE foil to permit photochemistry while preventing dilution of the air due to lateral wind transport. This experimental setup allows linking measured data directly to the chemistry of and above the salt lakes. Air samples were taken using stainless steel canisters and measured by GC-MS/ECD. Sediment, crust and water samples were taken for investigation of potential VOC and VOX emissions in the laboratory using GC-MS. Several lakes were investigated and canister samples were taken over the day to see diurnal variations. The first samples were collected at 6 a.m. and from this time every 2 hours a canister was filled with chamber air. Concentrations of chloroacetone up to 15 ppb and of bromoacetone up to 40 ppb in the air samples were detected. The concentrations vary over the day and display their highest values around noon. Soil and water samples showed a variety of highly volatile and semi-volatile VOC/VOX but no halogenated acetones. An abiotic formation of these VOC/VOX seems conclusive due to iron-catalysed reactions below the salt crust [1]. The salt crust is the interface through which VOC/VOX pass from soil/groundwater to the atmosphere where they were photochemically altered. This explains the finding of halo acetones only in the air samples and not in water and soil samples measured in the laboratory. The main forming pathway for these haloacetones is the direct halogenation due to atomic chlorine and bromine above the salt lakes [2]. A minor pathway is the atmospheric degradation of chloropropane and bromopropane [3]. These halopropanes were found

  7. A Novel Mechanism for Halogenated Quinone- Mediated and Metal-Independent Organic Fenton-Like Reaction%不依赖于过渡金属离子的卤代醌介导的新型有机类Fenton反应机理

    Institute of Scientific and Technical Information of China (English)

    朱本占; 任福荣; 夏海英; 邵杰

    2012-01-01

    卤代醌是许多卤芳香持久有机污染物的致癌代谢产物和饮用水消毒副产物.羟基自由基(OH)被公认为生物系统中最具活性的活性氧物种,能导致生物体内DNA等生物大分子的氧化损伤.目前,最被广泛接受的OH产生机理是过渡金属离子催化的Fenton反应.综合采用电子自旋共振二级自旋捕获和其他分析方法,发现四氯苯醌和其它卤代醌皆可通过不依赖于过渡金属离子的途径,显著促进氢过氧化物(H2O2或有机氢过氧化物)的分解而产生OH或烷氧自由基,并首次检测到一种新型的、以碳为中心的醌自由基.基于以上研究,提出一类不依赖于过渡金属离子的卤代醌介导的新型有机类Fenton反应机理.%Halogenated quinones are a class of carcinogenic metabolites of many halogenated persistent organic pollutants and new chlorination disinfection byproducts in drinking water. The hydroxyl radical ("OH) has been considered to be one of the most reactive oxygen species produced in biological systems. It has been shown that 'OH can cause oxidative damage to DNA and other macromolecuies. One of the most widely accepted mechanisms for OH production is through the transition metal-catalyzed Fenton reaction. Through the complementary application of electron spin resonance (ESR) secondary spin-trapping and other analytical methods, we found that tetrachloro-1,4-benzoquinone (TCBQ) and other halogenated quinones could markedly enhance the decomposition of hydroperoxides (H2O2 and organic hydroperoxides) and formation of "OH and alkoxyl radicals independent of transition metal ions. A novel carbon-centered quinone ketoxy radical was also detected and identified for the first time. Based on these data, we proposed a novel mechanism for metal-independent and halogenated quinone-mediated organic Fenton-like reaction.

  8. Effect of Hetero Atom on the Hammett’s Reaction Constant (ρ from the Physical Basis of Dissociation Equilibriums of (Dithio Benzoic Acids and (Thio Phenols and Its Application to Solvolysis Reactions and Some Free Radical Reactions

    Directory of Open Access Journals (Sweden)

    Jagannadham Vandanapu

    2012-01-01

    Full Text Available The emergence of putative Hammett equation in mid 1930s was a boon to physical-organic chemists to elucidate the reaction mechanisms of several organic reactions. Based on the concept of this equation several hundreds of papers have emerged in chemical literature in the last century on the effect of structure, on reactivity, and very few on thermodynamic stability and kinetic reactivity of intermediates. In this article an attempt is made to explain the effect of hetero atom on Hammett’s reaction constant (ρ taking the dissociation equilibriums of benzoic acids, dithiobenzoic acids, phenols, and thiophenols.

  9. Magnetic isotope effect and theory of atomic orbital hybridization to predict a mechanism of chemical exchange reactions.

    Science.gov (United States)

    Epov, Vladimir N

    2011-08-07

    A novel approach is suggested to investigate the mechanisms of chemical complexation reactions based on the results of Fujii with co-workers; they have experimentally observed that several metals and metalloids demonstrate mass-independent isotope fractionation during the reactions with the DC18C6 crown ether using solvent-solvent extraction. In this manuscript, the isotope fractionation caused by the magnetic isotope effect is used to understand the mechanisms of chemical exchange reactions. Due to the rule that reactions are allowed for certain electron spin states, and forbidden for others, magnetic isotopes show chemical anomalies during these reactions. Mass-independent fractionation is suggested to take place due to the hyperfine interaction of the nuclear spin with the electron spin of the intermediate product. Moreover, the sign of the mass-independent fractionation is found to be dependent on the element and its species, which is also explained by the magnetic isotope effect. For example, highly negative mass-independent isotope fractionation of magnetic isotopes was observed for reactions of DC18C6 with SnCl(2) species and with several Ru(III) chloro-species, and highly positive for reactions of this ether with TeCl(6)(2-), and with several Cd(II) and Pd(II) species. The atomic radius of an element is also a critical parameter for the reaction with crown ether, particularly the element ions with [Kr]4d(n)5s(m) electron shell fits the best with the DC18C6 crown ring. It is demonstrated that the magnetic isotope effect in combination with the theory of orbital hybridization can help to understand the mechanism of complexation reactions. The suggested approach is also applied to explain previously published mass-independent fractionation of Hg isotopes in other types of chemical exchange reactions.

  10. Effects of aluminum additions to gas atomized reaction synthesis produced oxide dispersion strengthened alloys

    Science.gov (United States)

    Spicher, Alexander Lee

    The production of an aluminum containing ferritic oxide dispersion strengthened (ODS) alloy was investigated. The production method used in this study was gas atomization reaction synthesis (GARS). GARS was chosen over the previously commercial method of mechanical alloying (MA) process due to complications from this process. The alloy compositions was determined from three main components; corrosion resistance, dispersoid formation, and additional elements. A combination of Cr and Al were necessary in order to create a protective oxide in the steam atmosphere that the boiler tubing in the next generation of coal-fired power plants would be exposed to. Hf and Y were chosen as dispersoid forming elements due to their increased thermal stability and potential to avoid decreased strength caused by additions of Al to traditional ODS materials. W was used as an additive due to benefits as a strengthener as well as its benefits for creep rupture time. The final composition chosen for the alloy was Fe-16Cr-12Al-0.9W-0.25Hf-0.2Y at%. The aforementioned alloy, GA-1-198, was created through gas atomization with atomization gas of Ar-300ppm O2. The actual composition created was found to be Fe-15Cr-12.3Al-0.9W-0.24Hf-0.19Y at%. An additional alloy that was nominally the same without the inclusion of aluminum was created as a comparison for the effects on mechanical and corrosion properties. The actual composition of the comparison alloy, GA-1-204, was Fe-16Cr-0Al-0.9W-0.25Hf-0.24Y at%. An investigation on the processing parameters for these alloys was conducted on the GA-1-198 alloy. In order to predict the necessary amount of time for heat treatment, a diffusion study was used to find the diffusion rate of oxygen in cast alloys with similar composition. The diffusion rate was found to be similar to that of other GARS compositions that have been created without the inclusion of aluminum. The effect of heat treatment time was investigated with temperatures of 950°C, 1000

  11. Iron Coordination and Halogen-Bonding Assisted Iodosylbenzene Activation

    DEFF Research Database (Denmark)

    Wegeberg, Christina; Poulsen de Sousa, David; McKenzie, Christine

    catalytic mixtures using soluble terminal oxygen transfer agents. Isolation of a reactive iron-terminal oxidant adduct, an unique Fe(III)-OIPh complex, is facilitated by strong stabilizing supramolecular halogen-bonding. L3-edge XANES suggests +1.6 for the average oxidation state for the iodine atom3...... in the iron(III)-coordinated PhIO. This represents a reduction of iodine relative to the original “hypervalent” (+3) PhIO. The equivalent of electron density must be removed from the {(tpena)Fe(III)O} moiety, however Mössbauer spectroscopy shows that the iron atom is not high valent....

  12. 卤键弱作用浅谈%Brief discussion on halogen bonding weak interaction

    Institute of Scientific and Technical Information of China (English)

    王亚琴; 邵群

    2015-01-01

    Halogen bonding, a noncovalent, int ermolecular weak interaction analogues to hydrogen bonding, exists between σ antibonding orbital of halogen atoms and atoms with lone-pair electron and πelectron system, which exerts unique effect in the field of desigh of functional materials and biomedicine. In this paper, the interaction essence of halogen bonding was simply introduced, the developing history of halogen bonding was elaborated and the basic character of halogen bonding was depicted, looking forward to much more comprehension toward halogen bonding.%卤键是与氢键相似的一种分子间非共价作用,存在于卤原子的σ反键轨道与具有孤电子对的原子或π电子体系之间,在功能材料与生物药物设计方面发挥了独特作用。介绍卤键的作用本质,阐述卤键发展简史,并描述卤键的基本特征。

  13. Single Cobalt Atoms with Precise N-Coordination as Superior Oxygen Reduction Reaction Catalysts.

    Science.gov (United States)

    Yin, Peiqun; Yao, Tao; Wu, Yuen; Zheng, Lirong; Lin, Yue; Liu, Wei; Ju, Huanxin; Zhu, Junfa; Hong, Xun; Deng, Zhaoxiang; Zhou, Gang; Wei, Shiqiang; Li, Yadong

    2016-08-26

    A new strategy for achieving stable Co single atoms (SAs) on nitrogen-doped porous carbon with high metal loading over 4 wt % is reported. The strategy is based on a pyrolysis process of predesigned bimetallic Zn/Co metal-organic frameworks, during which Co can be reduced by carbonization of the organic linker and Zn is selectively evaporated away at high temperatures above 800 °C. The spherical aberration correction electron microscopy and extended X-ray absorption fine structure measurements both confirm the atomic dispersion of Co atoms stabilized by as-generated N-doped porous carbon. Surprisingly, the obtained Co-Nx single sites exhibit superior ORR performance with a half-wave potential (0.881 V) that is more positive than commercial Pt/C (0.811 V) and most reported non-precious metal catalysts. Durability tests revealed that the Co single atoms exhibit outstanding chemical stability during electrocatalysis and thermal stability that resists sintering at 900 °C. Our findings open up a new routine for general and practical synthesis of a variety of materials bearing single atoms, which could facilitate new discoveries at the atomic scale in condensed materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Suzuki-Miyaura cross-coupling reactions of aryl tellurides with potassium aryltrifluoroborate salts.

    Science.gov (United States)

    Cella, Rodrigo; Cunha, Rodrigo L O R; Reis, Ana E S; Pimenta, Daniel C; Klitzke, Clécio F; Stefani, Hélio A

    2006-01-06

    [reaction: see text] Palladium(0)-catalyzed cross-coupling between potassium aryltrifluoroborate salts and aryl tellurides proceeds readily to afford the desired biaryls in good to excellent yield. The reaction seems to be unaffected by the presence of electron-withdrawing or electron-donating substituents in both the potassium aryltrifluoroborate salts and aryl tellurides partners. Biaryls containing a variety of functional groups can be prepared. A chemoselectivity study was also carried out using aryl tellurides bearing halogen atoms in the same compound. In addition, this new version of the Suzuki-Miyaura cross-coupling reaction was monitored by electrospray ionization mass spectrometry where some reaction intermediates were detected and analyzed.

  15. Probing the resonance potential in the F atom reaction with hydrogen deuteride with spectroscopic accuracy

    Science.gov (United States)

    Ren, Zefeng; Che, Li; Qiu, Minghui; Wang, Xingan; Dong, Wenrui; Dai, Dongxu; Wang, Xiuyan; Yang, Xueming; Sun, Zhigang; Fu, Bina; Lee, Soo-Y.; Xu, Xin; Zhang, Dong H.

    2008-01-01

    Reaction resonances are transiently trapped quantum states along the reaction coordinate in the transition state region of a chemical reaction that could have profound effects on the dynamics of the reaction. Obtaining an accurate reaction potential that holds these reaction resonance states and eventually modeling quantitatively the reaction resonance dynamics is still a great challenge. Up to now, the only viable way to obtain a resonance potential is through high-level ab initio calculations. Through highly accurate crossed-beam reactive scattering studies on isotope-substituted reactions, the accuracy of the resonance potential could be rigorously tested. Here we report a combined experimental and theoretical study on the resonance-mediated F + HD → HF + D reaction at the full quantum state resolved level, to probe the resonance potential in this benchmark system. The experimental result shows that isotope substitution has a dramatic effect on the resonance picture of this important system. Theoretical analyses suggest that the full-dimensional FH2 ground potential surface, which was believed to be accurate in describing the resonance picture of the F + H2 reaction, is found to be insufficiently accurate in predicting quantitatively the resonance picture for the F + HD → HF + D reaction. We constructed a global potential energy surface by using the CCSD(T) method that could predict the correct resonance peak positions as well as the dynamics for both F + H2 → HF + H and F + HD → HF + D, providing an accurate resonance potential for this benchmark system with spectroscopic accuracy. PMID:18687888

  16. Differentiation of diastereotopic bromine atoms in SN2 reactions of gem-dibromides.

    Science.gov (United States)

    Münster, Niels; Harms, Klaus; Koert, Ulrich

    2012-02-11

    A novel directed S(N)2 reaction of conformationally biased gem-dibromides and an arenesulfinate anion is described. The reaction results in the diastereoselective formation of α-bromosulfones. The selectivity originates from pre-coordination of the nucleophile to a free hydroxyl group in the γ-position.

  17. Atomic-scale study of transformation paths in unmixing and ordering reactions

    Energy Technology Data Exchange (ETDEWEB)

    Blavette, D.; Pareige-Schmuck, C.; Danoix, F. [CNRS, Mont Saint Aignan (France). Fac. des Sci. de Rouen; Stiller, K.

    1997-06-01

    The tomographic atom-probe (TAP) is a new high resolution nanoanalytical microscope, which provides three-dimensional maps of chemical heterogeneities in a metallic material on a near-atomic scale. Application of the TAP to unmixing and ordering in metallic alloys is discussed and illustrated through various examples (spinodal decomposition in FeCr ferritic phases, nucleation and growth of LI{sub 2} ordered precipitates in nickel based alloys, precipitation in maraging steels). The role of the TAP in the investigation of transformation paths in these systems is discussed. (orig.). 17 refs.

  18. Prediction of Tetraoxygen Reaction Mechanism with Sulfur Atom on the Singlet Potential Energy Surface

    Directory of Open Access Journals (Sweden)

    Ashraf Khademzadeh

    2014-01-01

    Full Text Available The mechanism of S+O4 (D2h reaction has been investigated at the B3LYP/6-311+G(3df and CCSD levels on the singlet potential energy surface. One stable complex has been found for the S+O4 (D2h reaction, IN1, on the singlet potential energy surface. For the title reaction, we obtained four kinds of products at the B3LYP level, which have enough thermodynamic stability. The results reveal that the product P3 is spontaneous and exothermic with −188.042 and −179.147 kcal/mol in Gibbs free energy and enthalpy of reaction, respectively. Because P1 adduct is produced after passing two low energy level transition states, kinetically, it is the most favorable adduct in the 1S+1O4 (D2h atmospheric reactions.

  19. Dynamics of interfacial reactions between O({sup 3} P) atoms and long-chain liquid hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Allan, Mhairi [School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Bagot, Paul A J [School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Koehler, Sven P K [School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Reed, Stewart K [Department of Physics and Astronomy, University of Edinburgh, The King' s Buildings, Edinburgh EH9 3JZ (United Kingdom); Westacott, Robin E [School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Costen, Matthew L [School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); McKendrick, Kenneth G [School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom)

    2007-09-15

    Recent progress that has been made towards understanding the dynamics of collisions at the gas-liquid interface is summarized briefly. We describe in this context a promising new approach to the experimental study of gas-liquid interfacial reactions that we have introduced. This is based on laser-photolytic production of reactive gas-phase atoms above the liquid surface and laser-spectroscopic probing of the resulting nascent products. This technique is illustrated for reaction of O({sup 3}P) atoms at the surface of the long-chain liquid hydrocarbon squalane (2,6,10,15,19,23-hexamethyltetracosane). Laser-induced fluorescence detection of the nascent OH has revealed mechanistically diagnostic correlations between its internal and translational energy distributions. Vibrationally excited OH molecules are able to escape the surface. At least two contributions to the product rotational distributions are identified, confirming and extending previous hypotheses of the participation of both direct and trapping-desorption mechanisms. We speculate briefly on future experimental and theoretical developments that might be necessary to address the many currently unanswered mechanistic questions for this, and other, classes of gas-liquid interfacial reaction.

  20. Effects of doping in 25-atom bimetallic nanocluster catalysts for carbon–carbon coupling reaction of iodoanisole and phenylacetylene

    Directory of Open Access Journals (Sweden)

    Zhimin Li

    2016-10-01

    Full Text Available We here report the catalytic effects of foreign atoms (Cu, Ag, and Pt doped into well-defined 25-gold-atom nanoclusters. Using the carbon-carbon coupling reaction of p-iodoanisole and phenylacetylene as a model reaction, the gold-based bimetallic MxAu25−x(SR18 (–SR=–SCH2CH2Ph nanoclusters (supported on titania were found to exhibit distinct effects on the conversion of p-iodoanisole as well as the selectivity for the Sonogashira cross-coupling product, 1-methoxy-4-(2-phenylethynylbenzene. Compared to Au25(SR18, the centrally doped Pt1Au24(SR18 causes a drop in catalytic activity but with the selectivity retained, while the AgxAu25−x(SR18 nanoclusters gave an overall performance comparable to Au25(SR18. Interestingly, CuxAu25−x(SR18 nanoclusters prefer the Ullmann homo-coupling pathway and give rise to product 4,4′-dimethoxy-1,1′-biphenyl, which is in opposite to the other three nanocluster catalysts. Our overall conclusion is that the conversion of p-iodoanisole is largely affected by the electronic effect in the bimetallic nanoclusters’ 13-atom core (i.e., Pt1Au12, CuxAu13−x, and Au13, with the exception of Ag doping, and that the selectivity is primarily determined by the type of atoms on the MxAu12−x shell (M=Ag, Cu, and Au in the nanocluster catalysts.

  1. The effects of sulfur substitution for the nucleophile and bridging oxygen atoms in reactions of hydroxyalkyl phosphate esters.

    Science.gov (United States)

    Iyer, Subashree; Hengge, Alvan C

    2008-07-04

    The effects of sulfur substitution on the reactions of hydroxyalkyl phosphate esters are examined. These compounds are models for the intramolecular phosphoryl transfer reaction involved in the cleavage of the internucleotide bond in RNA. The models studied here lack the ribose ring and their conformational flexibility results in greater stability and the availability of different reaction pathways. Sulfur in the nucleophilic position shows no nucleophilic reaction at phosphorus, instead rapidly attacking at the beta carbon atom, forming thiirane with departure of a phosphomonoester. Sulfur substitution at either of the two bridging positions leads to cleavage of the diester via formation of a cyclic intermediate, but with significant rate acceleration when compared to the oxygen analogues. The bridge-substituted models react substantially slower than the analogous ribose compounds with sulfur substitution at comparable positions. Kinetic isotope effects reveal significant differences in the transition state depending on which bridging position sulfur occupies. When sulfur is in the scissile bridging position, a highly associative transition state is indicated, with a largely formed bond to the nucleophile and the scissile P-S bond is little changed. When sulfur occupies the other bridging position, the isotope effects imply a very early transition state in a concerted reaction.

  2. Atomic-Scale Modeling of Particle Size Effects for the Oxygen Reduction Reaction of Pt

    DEFF Research Database (Denmark)

    Tritsaris, Georgios; Greeley, Jeffrey Philip; Rossmeisl, Jan;

    2011-01-01

    in both the specific and mass activities for particle sizes in the range between 2 and 30 nm. The mass activity is calculated to be maximized for particles of a diameter between 2 and 4 nm. Our study demonstrates how an atomic-scale description of the surface microstructure is a key component...

  3. Infrared spectra of the ethynyl metal hydrides produced in reactions of laser-ablated Mn and Re atoms with acetylene.

    Science.gov (United States)

    Cho, Han-Gook; Andrews, Lester

    2011-05-19

    The ethynyl metal hydride molecules (HM-C≡CH) are identified in the matrix infrared spectra from reactions of laser-ablated Mn and Re atoms with acetylene using D and (13)C isotopic substitution and density functional computed frequencies. The assignment of strong M-H as well as C≡C bond stretching product absorptions suggests oxidative C-H insertion during reagent codeposition and subsequent photolysis. The unique linear structure calculated for HMn-C≡CH is parallel to C(3v) structures found recently for Mn complexes including CH(3)-MnF.

  4. Environmental Factors Influencing Arctic Halogen Chemistry During Late Spring

    Science.gov (United States)

    Burd, J.; Nghiem, S. V.; Simpson, W. R.

    2015-12-01

    Reactive halogen radicals (e.g. Br, Cl atoms and their oxides, BrO, ClO) are important oxidizers in the troposphere that decrease atmospheric pollutants and deplete tropospheric ozone, affecting the abundance of other oxidizers such as the hydroxyl radical. During Arctic springtime, the heterogeneous chemical cycles (often called the "bromine explosion") produce high levels of bromine monoxide (BrO), through reactions on saline snow, ice, and/or aerosol surfaces. Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) measured BrO at Barrow, AK, from 2008-2009 and 2012-2015, as well at various locations above the frozen Arctic Ocean with O-Buoys in 2008 and 2011-2015. Observed BrO levels drop suddenly during late spring (May-June) and generally do not recover, which indicates the bromine explosion cycle can no longer produce significant amounts of BrO. We have established, through an objective algorithm, the local day of year of this drop in BrO as the "seasonal end." Additionally, in about half of the years, "recurrence" events were observed where BrO levels recover for at least a day. This study investigates the environmental factors influencing seasonal end and recurrence events including: temperature, relative humidity, precipitation and snowmelt. Analysis of BrO and air temperature revealed the temperature reaches 0°C within five days of the seasonal end event; however, temperatures drop below freezing during a recurrence event. In addition, there are periods where the temperature remains below freezing, but no recurrence event is observed. This BrO and temperature analysis indicates above-freezing air temperature prevents reactive bromine release; however, it is not the only environmental factor influencing this heterogeneous recycling. Further analysis of additional environmental influences on the bromine explosion cycle could help to better understand and model bromine chemistry in the Arctic.

  5. AutoDock VinaXB: implementation of XBSF, new empirical halogen bond scoring function, into AutoDock Vina.

    Science.gov (United States)

    Koebel, Mathew R; Schmadeke, Grant; Posner, Richard G; Sirimulla, Suman

    2016-01-01

    Halogen bonding has recently come to play as a target for lead optimization in rational drug design. However, most docking program don't account for halogen bonding in their scoring functions and are not able to utilize this new approach. In this study a new and improved halogen bonding scoring function (XBSF) is presented along with its implementation in the AutoDock Vina molecular docking software. This new improved program is termed as AutoDock VinaXB, where XB stands for the halogen bonding parameters that were added. XBSF scoring function is derived based on the X···A distance and C-X···A angle of interacting atoms. The distance term was further corrected to account for the polar flattening effect of halogens. A total of 106 protein-halogenated ligand complexes were tested and compared in terms of binding affinity and docking poses using Vina and VinaXB. VinaXB performed superior to Vina in the majority of instances. VinaXB was closer to native pose both above and below 2 Å deviation categories almost twice as frequently as Vina. Implementation of XBSF into AutoDock Vina has been shown to improve the accuracy of the docking result with regards to halogenated ligands. AutoDock VinaXB addresses the issues of halogen bonds that were previously being scored unfavorably due to repulsion factors, thus effectively lowering the output RMSD values.

  6. Stability and Characteristics of the Halogen Bonding Interaction in an Anion-Anion Complex: A Computational Chemistry Study.

    Science.gov (United States)

    Wang, Guimin; Chen, Zhaoqiang; Xu, Zhijian; Wang, Jinan; Yang, Yang; Cai, Tingting; Shi, Jiye; Zhu, Weiliang

    2016-02-04

    Halogen bonding is the noncovalent interaction between the positively charged σ-hole of organohalogens and nucleophiles. In reality, both the organohalogen and nucleophile could be deprotonated to form anions, which may lead to the vanishing of the σ-hole and possible repulsion between the two anions. However, our database survey in this study revealed that there are halogen bonding-like interactions between two anions. Quantum mechanics calculations with small model complexes composed of halobenzoates and propiolate indicated that the anion-anion halogen bonding is unstable in vacuum but attractive in solvents. Impressively, the QM optimized halogen bonding distance between the two anions is shorter than that in a neutral system, indicating a possibly stronger halogen bonding interaction, which is verified by the calculated binding energies. Furthermore, natural bond orbital and quantum theory of atoms in molecule analyses also suggested stronger anion-anion halogen bonding than that of the neutral one. Energy decomposition by symmetry adapted perturbation theory revealed that the strong binding might be attributed to large induction energy. The calculations on 4 protein-ligand complexes from PDB by the QM/MM method demonstrated that the anion-anion halogen bonding could contribute to the ligands' binding affinity up to ∼3 kcal/mol. Therefore, anion-anion halogen bonding is stable and applicable in reality.

  7. Stability, defect and electronic properties of graphane-like carbon-halogen compounds

    Institute of Scientific and Technical Information of China (English)

    Lu Di; Yang Yu-Rong; Xiao Yang; Zhang Xiao-Yu

    2011-01-01

    We perform first-principles total energy calculations to investigate the stabilities and the electronic structures of graphane-like structures of carbon-halogen compounds,where the hydrogen atoms in the graphane are substituted by halogen atoms.Three halogen elements,fluorine (F),chlorine (Cl) and bromine (Br),are considered,and the graphanelike structures are named as CF,CCl and CBr,respectively.It is found that for the single-atom adsorption,only the F adatom can be chemically adsorbed on the graphene.However,the stable graphane-like structures of CF,CCl and CBr can form due to the interaction between the halogen atoms.The carbon atoms in the stable CF,CCl and CBr compounds are in the sp3 hybridization,forming a hexagonal network similar to the graphane.The electronic band calculations show that CF and CCl are semiconductors with band gaps of 3.28 eV and 1.66 eV,respectively,while CBr is a metal.Moreover,the molecular dynamics simulation is employed to clarify the stabilities of CF and CCl.Those two compounds are stable at room temperature.A high temperature (≥ 1200 K) is needed to damage CF,while CCl is destroyed at 700 K.Furthermore,the effects of a vacancy on the structure and the electronic property of CF are discussed.

  8. [Halogenated natural products from the marine-derived actinobacteria and their halogenation mechanism].

    Science.gov (United States)

    Tan, Yi; Zhou, Hong-xia; Wang, Yi-guang; Gan, Mao-luo; Yang, Zhao-yong

    2013-09-01

    In the last decade, along with the development of taxonomy research in marine-derived actinobacteria, more and more halogenated natural products were discovered from marine actinobacteria. Most of them showed good biological activity and unique structure compared to those from land. The special halogenation mechanism in some compounds' biosynthesis has drawn great attention. So in this review, we focus on the halogenated natural products from marine actinobacteria and their halogenation mechanisms.

  9. Lewis acid-water/alcohol complexes as hydrogen atom donors in radical reactions.

    Science.gov (United States)

    Povie, Guillaume; Renaud, Philippe

    2013-01-01

    Water or low molecular weight alcohols are, due to their availability, low price and low toxicity ideal reagents for organic synthesis. Recently, it was reported that, despite the very strong BDE of the O-H bond, they can be used as hydrogen atom donors in place of expensive and/or toxic group 14 metal hydrides when boron and titanium(III) Lewis acids are present. This finding represents a considerable innovation and uncovers a new perspective on the paradigm of hydrogen atom transfers to radicals. We discuss here the influence of complex formation and other association processes on the efficacy of the hydrogen transfer step. A delicate balance between activation by complex formation and deactivation by further hydrogen bonding is operative.

  10. Structure sensitivity and photocatalytic reactions of semiconductors. Effect of the last layer atomic arrangement.

    Science.gov (United States)

    Wilson, Jarod N; Idriss, Hicham

    2002-09-25

    Photocatalytic reactions of heterogeneous systems, probably the most complex catalytic reactions, are central to a wide variety of phenomena including those of evolution theory, energy conversion, and environmental cleanup. Although catalytic reactions are essentially surface driven, the effect of bulk structure is particularly important for the photo processes in solid materials because it directly affects the excitation and charge transfer mechanisms. To treat surface photocatalytic reactions, it is necessary to differentiate between surface and bulk effects. We have successfully decoupled the surface-bulk effects by using a TiO2 (001) single crystal. This was achieved by allowing for surface reconstruction and measuring the rate of reaction for the two thermodynamically stable reconstructed surfaces of the oxide single crystal in ultrahigh vacuum conditions. A considerable difference, in the quantum yield of the photoreaction of acetic acid, between the two reconstructed surfaces was found. This large difference (due to different surface electron-hole recombination rates) between both reconstructed surfaces could not be seen without decoupling the surface from bulk effects.

  11. Metal Free Azide-Alkyne Click Reaction: Role of Substituents and Heavy Atom Tunneling.

    Science.gov (United States)

    Karmakar, Sharmistha; Datta, Ayan

    2015-09-03

    Metal free click reactions provide an excellent noninvasive tool to modify and understand the processes in biological systems. Release of ring strain in cyclooctynes on reaction with azides on the formation of triazoles results in small activation energies for various intermolecular Huisgen reactions (1-9). Substitution of difluoro groups at the α, α' position of the cyclooctyne ring enhances the rates of cycloadditions by 10 and 20 times for methyl azide and benzyl azide respectively at room temperature. The computed rate enhancement on difluoro substitution using direct dynamical calculations using the canonical variational transition state theory (CVT/CAG) with small curvature tunneling (SCT) corrections are in excellent agreement with the experimental results. For the intramolecular click reaction (10) notwithstanding its much higher activation energy, quantum mechanical tunneling (QMT) enhances the rate of cycloaddition significantly and increases the N(14)/N(15) primary kinetic isotope effect at 298 K. QMT is shown to be rather efficient in 10 due to a thin barrier of ∼2.4 Å. The present study shows that tunneling effects can be significant for intramolecular click reactions.

  12. QSARS for Acute Toxicity of Halogenated Benzenes to Bacteria in Natural Waters

    Institute of Scientific and Technical Information of China (English)

    GUAN-GHUA LU; CHAO WANG; YU-MEI LI

    2006-01-01

    Objective To measure the acute toxicity of halogenated benzenes to bacteria in natural waters and to study quantitative relationships between the structure and activity of chemicals. Methods The concentration values causing 50% inhibition of bacteria growth (24h-IC50) were determined according to the bacterial growth inhibition test method. The energy of the lowest unoccupied molecular orbital and the net charge of carbon atom of 20 halogenated benzenes were calculated by the quantum chemical MOPAC program. Results The log1/IC50 values ranged from 4.79 for 2,4-dinitrochlorobenzene to 3.65 for chlorobenzene. A quantitative structure-activity relationship model was derived from the toxicity and structural parameters: log1/IC50 =-0.531(ELUMO)+1.693(Qc)+0.163(logP)+3.375. This equation was found to fit well (r2=0.860, s=0.106), and the average percentage error was only 1.98%. Conclusion Halogenated benzenes and alkyl halogenated benzenes are non-polar narcotics, and have hydrophobicity-dependent toxicity. The halogenated phenols and anilines exhibit a higher toxic potency than their hydrophobicity, whereas 2,4-dinitrochlorobenzene is electrophile with the halogen acting as the leaving group.

  13. Reaction of N({sup 2}D) atoms with bromomethyl radicals: A theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Cimas, A. [Departamento de Quimica Fisica, Facultad de Ciencias, Universidad de Valladolid, 47005 Valladolid (Spain); Rayon, V.M. [Departamento de Quimica Fisica, Facultad de Ciencias, Universidad de Valladolid, 47005 Valladolid (Spain); Barrientos, C. [Departamento de Quimica Fisica, Facultad de Ciencias, Universidad de Valladolid, 47005 Valladolid (Spain); Aschi, M. [Dipartimento di Chimica, Ingegneria Chimica e Materiali, Universita di L' Aquila, Via Vetoio (Coppito 2), I-67010 L' Aquila (Italy); Sordo, J.A. [Laboratorio de Quimica Computacional, Departamento de Quimica Fisica y Analitica, Facultad de Quimica, Universidad de Oviedo, 33006 Oviedo (Spain); Largo, A. [Departamento de Quimica Fisica, Facultad de Ciencias, Universidad de Valladolid, 47005 Valladolid (Spain)], E-mail: alargo@qf.uva.es

    2006-09-29

    The singlet potential energy surface for the N({sup 2}D) + CH{sub 2}Br reaction has been studied employing both MP2 and DFT(B3LYP) methods. The energies of the involved species have been refined using the G2, CBS and CCSD(T) methods, respectively. The reaction proceeds through the formation of an initial intermediate which does not involve any activation barrier. Based on the singlet PES, the most exothermic products result from elimination of either HBr or H{sub 2}, instead of elimination of either Br or H. The preferred channel is predicted to be HCN + HBr. The analysis of the possible spin crossing between the triplet and singlet [CH{sub 2}NBr] potential surfaces suggests that the N({sup 4}S) + CH{sub 2}Br reaction should take place with no change in the spin angular momentum.

  14. Spin-unrestricted random-phase approximation with range separation: Benchmark on atomization energies and reaction barrier heights

    CERN Document Server

    Mussard, Bastien; Angyan, Janos; Toulouse, Julien

    2015-01-01

    We consider several spin-unrestricted random-phase approximation (RPA) variants for calculating correlation energies, with and without range separation, and test them on datasets of atomization energies and reaction barrier heights. We show that range separation greatly improves the accuracy of all RPA variants for these properties. Moreover, we show that a RPA variant with exchange, hereafter referred to as RPAx-SO2, first proposed by Sz-abo and Ostlund [A. Szabo and N. S. Ostlund, J. Chem. Phys. 67, 4351 (1977)] in a spin-restricted closed-shell formalism, and extended here to a spin-unrestricted formalism, provides on average the most accurate range-separated RPA variant for atomization energies and reaction barrier heights. Since this range-separated RPAx-SO2 method had already been shown to be among the most accurate range-separated RPA variants for weak intermolecular interactions [J. Toulouse, W. Zhu, A. Savin, G. Jansen, and J. G. {\\'A}ngy{\\'a}n, J. Chem. Phys. 135, 084119 (2011)], this works confirms...

  15. Spin-unrestricted random-phase approximation with range separation: Benchmark on atomization energies and reaction barrier heights

    Energy Technology Data Exchange (ETDEWEB)

    Mussard, Bastien, E-mail: bastien.mussard@upmc.fr [Sorbonne Universités, UPMC Univ Paris 06, Institut du Calcul et de la Simulation, F-75005 Paris (France); Sorbonne Universités, UPMC Univ Paris 06, UMR 7616, Laboratoire de Chimie Théorique, F-75005 Paris (France); CNRS, UMR 7616, Laboratoire de Chimie Théorique, F-75005 Paris (France); Reinhardt, Peter; Toulouse, Julien, E-mail: julien.toulouse@upmc.fr [Sorbonne Universités, UPMC Univ Paris 06, UMR 7616, Laboratoire de Chimie Théorique, F-75005 Paris (France); CNRS, UMR 7616, Laboratoire de Chimie Théorique, F-75005 Paris (France); Ángyán, János G. [CRM2, Institut Jean Barriol, Université de Lorraine, F-54506 Vandoeuvre-lés-Nancy (France); CRM2, Institut Jean Barriol, CNRS, F-54506 Vandoevre-lés-Nancy (France)

    2015-04-21

    We consider several spin-unrestricted random-phase approximation (RPA) variants for calculating correlation energies, with and without range separation, and test them on datasets of atomization energies and reaction barrier heights. We show that range separation greatly improves the accuracy of all RPA variants for these properties. Moreover, we show that a RPA variant with exchange, hereafter referred to as RPAx-SO2, first proposed by Szabo and Ostlund [J. Chem. Phys. 67, 4351 (1977)] in a spin-restricted closed-shell formalism, and extended here to a spin-unrestricted formalism, provides on average the most accurate range-separated RPA variant for atomization energies and reaction barrier heights. Since this range-separated RPAx-SO2 method had already been shown to be among the most accurate range-separated RPA variants for weak intermolecular interactions [J. Toulouse et al., J. Chem. Phys. 135, 084119 (2011)], this works confirms range-separated RPAx-SO2 as a promising method for general chemical applications.

  16. Tandem catalysis of ring-closing metathesis/atom transfer radical reactions with homobimetallic ruthenium–arene complexes

    Directory of Open Access Journals (Sweden)

    Yannick Borguet

    2010-12-01

    Full Text Available The tandem catalysis of ring-closing metathesis/atom transfer radical reactions was investigated with the homobimetallic ruthenium–indenylidene complex [(p-cymeneRu(μ-Cl3RuCl(3-phenyl-1-indenylidene(PCy3] (1 to generate active species in situ. The two catalytic processes were first carried out independently in a case study before the whole sequence was optimized and applied to the synthesis of several polyhalogenated bicyclic γ-lactams and lactones from α,ω-diene substrates bearing trihaloacetamide or trichloroacetate functionalities. The individual steps were carefully monitored by 1H and 31P NMR spectroscopies in order to understand the intimate details of the catalytic cycles. Polyhalogenated substrates and the ethylene released upon metathesis induced the clean transformation of catalyst precursor 1 into the Ru(II–Ru(III mixed-valence compound [(p-cymeneRu(μ-Cl3RuCl2(PCy3], which was found to be an efficient promoter for atom transfer radical reactions under the adopted experimental conditions.

  17. Atomic layer deposition-Sequential self-limiting surface reactions for advanced catalyst "bottom-up" synthesis

    Science.gov (United States)

    Lu, Junling; Elam, Jeffrey W.; Stair, Peter C.

    2016-06-01

    Catalyst synthesis with precise control over the structure of catalytic active sites at the atomic level is of essential importance for the scientific understanding of reaction mechanisms and for rational design of advanced catalysts with high performance. Such precise control is achievable using atomic layer deposition (ALD). ALD is similar to chemical vapor deposition (CVD), except that the deposition is split into a sequence of two self-limiting surface reactions between gaseous precursor molecules and a substrate. The unique self-limiting feature of ALD allows conformal deposition of catalytic materials on a high surface area catalyst support at the atomic level. The deposited catalytic materials can be precisely constructed on the support by varying the number and type of ALD cycles. As an alternative to the wet-chemistry based conventional methods, ALD provides a cycle-by-cycle "bottom-up" approach for nanostructuring supported catalysts with near atomic precision. In this review, we summarize recent attempts to synthesize supported catalysts with ALD. Nucleation and growth of metals by ALD on oxides and carbon materials for precise synthesis of supported monometallic catalyst are reviewed. The capability of achieving precise control over the particle size of monometallic nanoparticles by ALD is emphasized. The resulting metal catalysts with high dispersions and uniformity often show comparable or remarkably higher activity than those prepared by conventional methods. For supported bimetallic catalyst synthesis, we summarize the strategies for controlling the deposition of the secondary metal selectively on the primary metal nanoparticle but not on the support to exclude monometallic formation. As a review of the surface chemistry and growth behavior of metal ALD on metal surfaces, we demonstrate the ways to precisely tune size, composition and structure of bimetallic metal nanoparticles. The cycle-by-cycle "bottom up" construction of bimetallic (or multiple

  18. Theoretical Studies on the Abstraction Reaction of Atomic O(3p) with Si2H6

    Institute of Scientific and Technical Information of China (English)

    QingZhuZHANG; ChunShengWANG; 等

    2002-01-01

    The hydrogen abstraction reaction of O(3P) with Si2H6 has been studied theoretially. Two transition states of 3A″ and 3A′ symmetries have been located for this abstraction reaction. Geometries have been optimized at the UMP2 leve with 6-311G+(d) basis set. G3MP2 has been used for the final single-point energy calculation. The rate constants have been calculated over a wide temperature range of 200-3000K using canonical variational transition-state sheory (CVT) with small curvature tunneling effect(SCT). The calculated CVT/SCT rate constants match well with the experimental value.

  19. Preparation of an Ester-Containing Grignard Reagent by Halogen-Metal Exchange

    Science.gov (United States)

    Snider, Barry B.

    2015-01-01

    In this experiment, students carry out a halogen-metal exchange reaction of methyl 2-iodobenzoate with isopropylmagnesium chloride in THF at 0°C to afford 2-carbomethoxyphenylmagnesium chloride, which is treated with "p"-methoxybenzaldehyde to give a lactone (phthalide) product. This reaction introduces students to the modern method of…

  20. Stability of mutagenic tautomers of uracil and its halogen derivatives: the results of quantum-mechanical investigation

    OpenAIRE

    Hovorun D. M.; Brovarets’ O. O.

    2010-01-01

    Aim. To investigate using the quantum-mechanical methods uracil (Ura) intramolecular tautomerisation and the effect of the thymine (Thy) methyl (Me) group substitution by the halogen on that process. Methods. Non-empirical quantum mechanic, analysis of the electron density by means of Bader’s atom in molecules (AIM) theory and physicochemical kinetics were used. Results. For the first time it has been established that the substitution of thymine Me-group for the halogen (Br, F, Cl) has practi...

  1. Halogenated cytisine derivatives as agonists at human neuronal nicotinic acetylcholine receptor subtypes.

    Science.gov (United States)

    Slater, Y E; Houlihan, L M; Maskell, P D; Exley, R; Bermúdez, I; Lukas, R J; Valdivia, A C; Cassels, B K

    2003-03-01

    Cytisine (cy) is a potent and competitive partial agonist at alpha4 subunit-containing nicotinic acetylcholine (nACh) receptors while at homomeric alpha7-nACh receptors it behaves as a full agonist with a relatively lower potency. In the present study, we assessed the effects of bromination or iodination of the pyridone ring of cy and N-methylcytisine (N-Me-cy) on the effects of these compounds on recombinant human (h) alpha7, halpha4beta2 and halpha4beta4 nACh receptors expressed in clonal cell lines and Xenopus oocytes. Halogenation at C(3) of cy or N-Me-cy usually brings about a marked increase in both affinity and efficacy at halpha7, halpha4beta2 and halpha4beta4 nACh, the extent of which depends on whether the halogen is bromine or iodine, and upon receptor subtype. The effects of halogenation at C(5) are strongly influenced by the specific halogen substituent so that bromination causes a decrease in both affinity and efficacy while iodination decreases affinity but its effects on efficacy range from a decrease (halpha7, halpha4beta4 nACh receptors) to a marked increase (halpha4beta2 nACh receptors). Based on these findings, which differ from those showing that neither the affinity nor efficacy of nicotine, 3-(2-azetidinylmethoxy)-pyridine or epibatidine are greatly affected by halogenation, dehalogenation or halogen exchange at equivalent positions, we suggest that cy, N-Me-cy and their halo-isosteres bind to neuronal nACh receptors in a different orientation allowing the halogen atom to interact with a hydrophobic halogen-accepting region within the predominantly hydrophobic agonist-binding pocket of the receptors.

  2. Synthesis, characterisation, and oxygen atom transfer reactions involving the first gold(I)-alkylperoxo complexes.

    Science.gov (United States)

    Collado, Alba; Gómez-Suárez, Adrián; Oonishi, Yoshihiro; Slawin, Alexandra M Z; Nolan, Steven P

    2013-11-25

    The synthesis of a new class of organogold species containing a peroxo moiety is reported. Complexes [Au(IPr)(OO(t)Bu)] and [Au(SIPr)(OO(t)Bu)] have been synthesised via a straightforward methodology using the parent gold(I) hydroxide complexes as synthons. These complexes have been successfully used in oxygen-transfer reactions to triphenylphosphine.

  3. Characterization of cement minerals, cements and their reaction products at the atomic and nano scale

    DEFF Research Database (Denmark)

    Skibsted, Jørgen; Hall, Christopher

    2008-01-01

    Recent advances and highlights in characterization methods are reviewed for cement minerals, cements and their reaction products. The emphasis is on X-ray and neutron diffraction, and on nuclear magnetic resonance methods, although X-ray absorption and Raman spectroscopies are discussed briefly...

  4. Mutual Neutralization of Atomic Rare-Gas Cations (Ne+, Ar+, Kr+, Xe+) with Atomic Halide Anions (Cl-, Br-, I-)

    Science.gov (United States)

    2015-01-07

    occur at intersections of the initial ionic potential curve and those describing the interaction between the atoms in their fi- nal states, as in...reactions, the halogen product is formed in excited states with sufficient energy to autoionize to form X+ + e−, Rg+ +X− → Rg +X∗, (3a) → Rg +X+ + e−. (3b...me- ters. The liquid reagents, CCl4 and CF2Br2, are purified via freeze-pump-thaw cycles prior to mixture preparation. The absolute electron density

  5. Rate constants for 1,5- and 1,6-hydrogen atom transfer reactions of mono-, di-, and tri-aryl-substituted donors, models for hydrogen atom transfers in polyunsaturated fatty acid radicals.

    Science.gov (United States)

    DeZutter, Christopher B; Horner, John H; Newcomb, Martin

    2008-03-06

    Rate constants for 1,5- and 1,6-hydrogen atom transfer reactions in models of polyunsaturated fatty acid radicals were measured via laser flash photolysis methods. Photolyses of PTOC (pyridine-2-thioneoxycarbonyl) ester derivatives of carboxylic acids gave primary alkyl radicals that reacted by 1,5-hydrogen transfer from mono-, di-, and tri-aryl-substituted positions or 1,6-hydrogen transfer from di- and tri-aryl-substituted positions to give UV-detectable products. Rate constants for reactions in acetonitrile at room temperature ranged from 1 x 10(4) to 4 x 10(6) s(-1). The activation energies for a matched pair of 1,5- and 1,6-hydrogen atom transfers giving tri-aryl-substituted radicals were approximately equal, as were the primary kinetic isotope effects, but the 1,5-hydrogen atom transfer reaction was 1 order of magnitude faster at room temperature than the 1,6-hydrogen atom transfer reaction due to a less favorable entropy of activation for the 1,6-transfer reaction. Solvent effects on the rate constants for the 1,5-hydrogen atom transfer reaction of the 2-[2-(diphenylmethyl)phenyl]ethyl radical at ambient temperature were as large as a factor of 2 with the reaction increasing in rate in lower polarity solvents. Hybrid density functional theory computations for the 1,5- and 1,6-hydrogen atom transfers of the tri-aryl-substituted donors were in qualitative agreement with the experimental results.

  6. Palladium-catalyzed C-H activation/intramolecular amination reaction: a new route to 3-aryl/alkylindazoles.

    Science.gov (United States)

    Inamoto, Kiyofumi; Saito, Tadataka; Katsuno, Mika; Sakamoto, Takao; Hiroya, Kou

    2007-07-19

    A method for the catalytic C-H activation of hydrazone compounds followed by intramolecular amination is described. It requires the use of a catalytic amount of Pd(OAc)2 in the presence of Cu(OAc)2 and AgOCOCF3, which efficiently effects the cyclization to afford variously substituted indazoles. The reactions proceed under relatively mild conditions and thus tolerate a variety of functional groups, including alkoxycarbonyl and cyano groups and halogen atoms.

  7. Volatile halogenated hydrocarbons in foods

    Energy Technology Data Exchange (ETDEWEB)

    Miyahara, Makoto; Toyoda, Masatake; Saito, Yukio [National Institute of Health Services, Tokyo (Japan)] [and others

    1995-02-01

    Volatile halogenated organic compounds were determined in foods. Statistical treatment of the data for 13 sampled from 20 families living in suburban Tokyo (Saitama prefecture) indicated that the foods were contaminated by water pollution and/or substances introduced by the process of food production. Butter and margarine were contaminated by chlorinated ethylene, ethane, and related compounds released by dry cleaning and other operations. Soybean sprouts and tofu (soybean curd) contained chloroform and related trihalomethanes absorbed during the production process. 27 refs., 6 figs., 5 tabs.

  8. Atmospheric reactions of (H)- and (D)-fluoroalcohols with chlorine atoms.

    Science.gov (United States)

    Garzón, Andrés; Moral, Mónica; Notario, Alberto; Ceacero-Vega, Antonio A; Fernández-Gómez, Manuel; Albaladejo, José

    2010-02-01

    The reactions of Cl with a series of fluoroalcohols and deuterated fluoroalcohols, CF(3)CH(2)OH (k(4)), CF(3)CH(OH)CH(3) (k(5)), CF(3)CH(OH)CF(3) (k(6)), CF(3)CH(OD)CF(3) (k(7)) and CF(3)CD(OD)CF(3) (k(8)), are investigated as a function of temperature in the range of 268-378 K by laser photolysis-resonance fluorescence. To our knowledge, only the CF(3)CH(2)OH + Cl reaction has been previously studied from a kinetic point of view. The derived Arrhenius expressions obtained using our kinetic data are: k(4) = (1.79+/-0.17) x 10(-13) exp[(410+/-26)/T], k(5) = (1.20+/-0.11) x 10(-12) exp[(394+/-14)/T], k(6) = (2.32+/-0.18) x 10(-13) exp[-(740+/-12)/T], k(7) = (6.45+/-1.87) x 10(-13) exp[-(1136+/-94)/T] and k(8) = (4.19+/-1.09) x 10(-13) exp[-(1378+/-81)/T] (in units of cm(3) molecule(-1) s(-1) and where errors are +/-sigma). Moreover, a theoretical insight into the mechanisms of these reactions is pursued through ab initio Möller-Plesset second-order perturbation treatment calculations with the 6-311G** basis set. Optimized geometries are obtained for reagents, transition states and molecular complexes appearing along the different reaction pathways. Furthermore, molecular energies are calculated at the quadratic configuration interaction with single, double and triple excitations [QCISD(T)] level to obtain an estimation of the activation energies. Finally, the rate constants are calculated through transition-state theory using Wigner's transmission coefficient in order to include the tunnelling-effect corrections.

  9. Halogen poisoning effect of Pt-TiO{sub 2} for formaldehyde catalytic oxidation performance at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiaofeng; Cheng, Bei [State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology, Luoshi Road 122#, Wuhan 430070 (China); Yu, Jiaguo, E-mail: jiaguoyu@yahoo.com [State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology, Luoshi Road 122#, Wuhan 430070 (China); Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Ho, Wingkei, E-mail: keithho@ied.edu.hk [Department of Science and Environmental Studies and Centre for Education in Environmental Sustainability, The Hong Kong Institute of Education, Tai Po, N.T. Hong Kong (China)

    2016-02-28

    Graphical abstract: - Highlights: • The Pt-TiO{sub 2} catalyst is deactivated by adsorption of halogen ions. • The halogen poison is mainly attributed to the active site blocking of the Pt surface. • Halogen ions and Pt form Pt−X coordination bonds. • Large halogen diameter exhibits severe poisoning effect. - Abstract: Catalytic decomposition of formaldehyde (HCHO) at room temperature is an important method for HCHO removal. Pt-based catalysts are the optimal catalyst for HCHO decomposition at room temperature. However, the stability of this catalyst remains unexplored. In this study, Pt-TiO{sub 2} (Pt-P25) catalysts with and without adsorbed halogen ions (including F{sup −}, Cl{sup −}, Br{sup −}, and I{sup −}) were prepared through impregnation and ion modification. Pt-TiO{sub 2} samples with adsorbed halogen ions exhibited reduced catalytic activity for formaldehyde decomposition at room temperature compared with the Pt-TiO{sub 2} sample; the catalytic activity followed the order of F-Pt-P25, Cl-Pt-P25, Br-Pt-P25, and I-Pt-P25. Characterization results (including XRD, TEM, HRTEM, BET, XPS, and metal dispersion) showed that the adsorbed halogen ions can poison Pt nanoparticles (NPs), thereby reducing the HCHO oxidation activity of Pt-TiO{sub 2}. The poison mechanism is due to the strong adsorption of halogen ions on the surface of Pt NPs. The adsorbed ions form coordination bonds with surface Pt atoms by transferring surplus electrons into the unoccupied 5d orbit of the Pt atom, thereby inhibiting oxygen adsorption and activation of the Pt NP surface. Moreover, deactivation rate increases with increasing diameter of halogen ions. This study provides new insights into the fabrication of high-performance Pt-based catalysts for indoor air purification.

  10. Active MnO{sub x} electrocatalysts prepared by atomic layer deposition for oxygen evolution and oxygen reduction reactions

    Energy Technology Data Exchange (ETDEWEB)

    Pickrahn, Katie L.; Park, Sang Wook; Gorlin, Yelena; Lee, Han-Bo-Ram; Jaramillo, Thomas F.; Bent, Stacey F. [Department of Chemical Engineering, Stanford University, Stanford, CA 94305-5025 (United States)

    2012-10-15

    The ability to deposit conformal catalytic thin films enables opportunities to achieve complex nanostructured designs for catalysis. Atomic layer deposition (ALD) is capable of creating conformal thin films over complex substrates. Here, ALD-MnO{sub x} on glassy carbon is investigated as a catalyst for the oxygen evolution reaction (OER) and the oxygen reduction reaction (ORR), two reactions that are of growing interest due to their many applications in alternative energy technologies. The films are characterized by X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy, ellipsometry, and cyclic voltammetry. The as-deposited films consist of Mn(II)O, which is shown to be a poor catalyst for the ORR, but highly active for the OER. By controllably annealing the samples, Mn{sub 2}O{sub 3} catalysts with good activity for both the ORR and OER are synthesized. Hypotheses are presented to explain the large difference in the activity between the MnO and Mn{sub 2}O{sub 3} catalysts for the ORR, but similar activity for the OER, including the effects of surface oxidation under experimental conditions. These catalysts synthesized though ALD compare favorably to the best MnO{sub x} catalysts in the literature, demonstrating a viable way to produce highly active, conformal thin films from earth-abundant materials for the ORR and the OER. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Slow hydrogen atom transfer reactions of oxo- and hydroxo-vanadium compounds: the importance of intrinsic barriers.

    Science.gov (United States)

    Waidmann, Christopher R; Zhou, Xin; Tsai, Erin A; Kaminsky, Werner; Hrovat, David A; Borden, Weston Thatcher; Mayer, James M

    2009-04-08

    Reactions are described that interconvert vanadium(IV) oxo-hydroxo complexes [V(IV)O(OH)(R(2)bpy)(2)]BF(4) (1a-c) and vanadium(V) dioxo complexes [V(V)O(2)(R(2)bpy)(2)]BF(4) (2a-c) [R(2)bpy = 4,4'-di-tert-butyl-2,2'-bipyridine ((t)Bu(2)bpy), a; 4,4'-dimethyl-2,2'-bipyridine (Me(2)bpy), b; 2,2'-bipyridine (bpy), c]. These are rare examples of pairs of isolated, sterically unencumbered, first-row metal-oxo/hydroxo complexes that differ by a hydrogen atom (H(+) + e(-)). The V(IV)-(t)Bu(2)bpy derivative 1a has a useful (1)H NMR spectrum, despite being paramagnetic. Complex 2a abstracts H(*) from organic substrates with weak O-H and C-H bonds, converting 2,6-(t)Bu(2)-4-MeO-C(6)H(2)OH (ArOH) and 2,2,6,6-tetramethyl-N-hydroxypiperidine (TEMPOH) to their corresponding radicals ArO(*) and TEMPO, hydroquinone to benzoquinone, and dihydroanthracene to anthracene. The equilibrium constant for 2a + ArOH 1a + ArO(*) is (4 +/- 2) x 10(-3), implying that the VO-H bond dissociation free energy (BDFE) is 70.6 +/- 1.2 kcal mol(-1). Consistent with this value, 1a is oxidized by 2,4,6-(t)Bu(3)C(6)H(2)O(*). All of these reactions are surprisingly slow, typically occurring over hours at ambient temperatures. The net hydrogen-atom pseudo-self-exchange 1a + 2b 2a + 1b, using the (t)Bu- and Me-bpy substituents as labels, also occurs slowly, with k(se) = 1.3 x 10(-2) M(-1) s(-1) at 298 K, DeltaH(double dagger) = 15 +/- 2 kcal mol(-1), and DeltaS(double dagger) = 16 +/- 5 cal mol(-1) K. Using this k(se) and the BDFE, the vanadium reactions are shown to follow the Marcus cross relation moderately well, with calculated rate constants within 10(2) of the observed values. The vanadium self-exchange reaction is ca. 10(6) slower than that for the related Ru(IV)O(py)(bpy)(2)(2+)/Ru(III)OH(py)(bpy)(2)(2+) self-exchange. The origin of this dramatic difference has been probed with DFT calculations on the self-exchange reactions of 1c + 2c and on monocationic ruthenium complexes with pyrrolate or

  12. Molecular dynamics of halogenated graphene - hexagonal boron nitride nanoribbons

    Science.gov (United States)

    Nemnes, G. A.; Visan, Camelia; Anghel, D. V.; Manolescu, A.

    2016-08-01

    The hybrid graphene - hexagonal boron nitride (G-hBN) systems offer new routes in the design of nanoscale electronic devices. Using ab initio density functional theory calculations we investigate the dynamics of zig-zag nanoribbons a few interatomic distances wide. Several structures are analyzed, namely pristine graphene, hBN and G-hBN systems. By passivating the nanoribbon edges with hydrogen and different halogen atoms, one may tune the electronic and mechanical properties, like the band gap energies and the natural frequencies of vibration.

  13. Halogen effect on structure and 13C NMR chemical shift of 3,6-disubstituted-N-alkyl carbazoles

    DEFF Research Database (Denmark)

    Radula-Janik, Klaudia; Kupka, Teobald; Ejsmont, Krzysztof

    2013-01-01

    Structures of selected 3,6-dihalogeno-N-alkyl carbazole derivatives were calculated at the B3LYP/6-311++G(3df,2pd) level of theory and their 13C NMR isotropic nuclear shieldings were predicted using density functional theory (DFT). The model compounds contained 9H-, N-methyl and N-ethyl derivatives......). The decreasing electronegativity of the halogen substituent (F, Cl, Br and I) was reflected in both nonrelativistic and relativistic NMR results as decreased values of chemical shifts of carbon atoms attached to halogen (C3 and C6) leading to a strong sensitivity to halogen atom type at 3 and 6 positions...

  14. Hetero-atom doped carbon nanotubes for dye degradation and oxygen reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Nandan, Ravi, E-mail: aerawat27@gmail.com; Nanda, Karuna Kar [Materials Research Centre, Indian Institute of Science, Bangalore-560012 (India)

    2015-06-24

    We report the synthesis of nitrogen doped vertically aligned multi-walled (MWNCNTs) carbon nanotubes by pyrolysis and its catalytic performance for degradation of methylene blue (MB) dye & oxygen reduction reaction (ORR). The degradation of MB was monitored spectrophotometrically with time. Kinetic studies show the degradation of MB follows a first order kinetic with rate constant k=0.0178 min{sup −1}. The present rate constant is better than that reported for various supported/non-supported semiconducting nanomaterials. Further ORR performance in alkaline media makes MWNCNTs a promising cost-effective, fuel crossover tolerance, metal-free, eco-friendly cathode catalyst for direct alcohol fuel cell.

  15. Hetero-atom doped carbon nanotubes for dye degradation and oxygen reduction reaction

    Science.gov (United States)

    Nandan, Ravi; Nanda, Karuna Kar

    2015-06-01

    We report the synthesis of nitrogen doped vertically aligned multi-walled (MWNCNTs) carbon nanotubes by pyrolysis and its catalytic performance for degradation of methylene blue (MB) dye & oxygen reduction reaction (ORR). The degradation of MB was monitored spectrophotometrically with time. Kinetic studies show the degradation of MB follows a first order kinetic with rate constant k=0.0178 min-1. The present rate constant is better than that reported for various supported/non-supported semiconducting nanomaterials. Further ORR performance in alkaline media makes MWNCNTs a promising cost-effective, fuel crossover tolerance, metal-free, eco-friendly cathode catalyst for direct alcohol fuel cell.

  16. Influence of Halogen Substituents on the Catalytic Oxidation of 2,4,6-Halogenated Phenols by Fe(III-Tetrakis(p-hydroxyphenyl porphyrins and Potassium Monopersulfate

    Directory of Open Access Journals (Sweden)

    Seiya Nagao

    2011-12-01

    Full Text Available The influence of halogen substituents on the catalytic oxidation of 2,4,6-trihalogenated phenols (TrXPs by iron(III-porphyrin/KHSO5 catalytic systems was investigated. Iron(III-5,10,15,20-tetrakis(p-hydroxyphenylporphyrin (FeTHP and its supported variants were employed, where the supported catalysts were synthesized by introducing FeTHP into hydroquinone-derived humic acids via formaldehyde poly-condensation. F (TrFP, Cl (TrCP, Br (TrBP and I (TrIP were examined as halogen substituents for TrXPs. Although the supported catalysts significantly enhanced the degradation and dehalogenation of TrFP and TrCP, the oxidation of TrBP and TrIP was not enhanced, compared to the FeTHP catalytic system. These results indicate that the degree of oxidation of TrXPs is strongly dependent on the types of halogen substituent. The order of dehalogenation levels for halogen substituents in TrXPs was F > Cl > Br > I, consistent with their order of electronegativity. The electronegativity of a halogen substituent affects the nucleophilicity of the carbon to which it is attached. The levels of oxidation products in the reaction mixtures were analyzed by GC/MS after extraction with n-hexane. The most abundant dimer product from TrFP via 2,6-difluoroquinone is consistent with a scenario where TrXP, with a more electronegative halogen substituent, is readily oxidized, while less electronegative halogen substituents are oxidized less readily by iron(III-porphyrin/KHSO5 catalytic systems.

  17. Multifunctional silicon surfaces: reaction of dichlorocarbene generated from Seyferth reagent with hydrogen-terminated silicon (111) surfaces.

    Science.gov (United States)

    Liu, Wenjun; Sharp, Ian D; Tilley, T Don

    2014-01-14

    Insertion of dichlorocarbene (:CCl2), generated by decomposition of the Seyferth reagent PhHgCCl2Br, into the Si-H bond of a tertiary silane to form a Si-CCl2H group is an efficient homogeneous, molecular transformation. A heterogeneous version of this reaction, between PhHgCCl2Br and a silicon (111) surface terminated by tertiary Si-H bonds, was studied using a combination of surface-sensitive infrared and X-ray photoelectron spectroscopies. The insertion of dichlorocarbene into surface Si-H bonds parallels the corresponding reaction of silanes in solution, to produce surface-bound dichloromethyl groups (Si-CCl2H) covering ∼25% of the silicon surface sites. A significant fraction of the remaining Si-H bonds on the surface was converted to Si-Cl/Br groups during the same reaction, with PhHgCCl2Br serving as a halogen atom source. The presence of two distinct environments for the chlorine atoms (Si-CCl2H and Si-Cl) and one type of bromine atom (Si-Br) was confirmed by Cl 2p, Br 3d, and C 1s X-ray photoelectron spectroscopy. The formation of reactive, halogen-terminated atop silicon sites was also verified by reaction with sodium azide or the Grignard reagent (CH3MgBr), to produce Si-N3 or Si-Me functionalities, respectively. Thus, reaction of a hydrogen-terminated silicon (111) surface with PhHgCCl2Br provides a facile route to multifunctional surfaces possessing both stable silicon-carbon and labile silicon-halogen sites, in a single pot synthesis. The reactive silicon-halogen groups can be utilized for subsequent transformations and, potentially, the construction of more complex organic-silicon hybrid systems.

  18. Hydrogen-atom transfer reactions from ortho-alkoxy-substituted phenols: an experimental approach.

    Science.gov (United States)

    Amorati, Riccardo; Menichetti, Stefano; Mileo, Elisabetta; Pedulli, Gian Franco; Viglianisi, Caterina

    2009-01-01

    The role of intramolecular hydrogen bonding (HB) on the bond-dissociation enthalpy (BDE) of the phenolic O-H and on the kinetics of H-atom transfer to peroxyl radicals (k(inh)) of several 2-alkoxyphenols was experimentally quantified by the EPR equilibration technique and by inhibited autoxidation studies. These compounds can be regarded as useful models for studying the H-atom abstraction from 2-OR phenols, such as many lignans, reduced coenzyme Q and curcumin. The effects of the various substituents on the BDE(O-H) of 2-methoxy, 2-methoxy-4-methyl, 2,4-dimethoxyphenols versus phenol were measured in benzene solution as -1.8; -3.7; -5.4 kcal mol(-1), respectively. In the case of polymethoxyphenols, significant deviations from the BDE(O-H) values predicted by the additive effects of the substituents were found. The logarithms of the k(inh) constants in cumene were inversely related to the BDE(O-H) values, obeying a linear Evans-Polanyi plot with the same slope of other substituted phenols and a y-axis intercept slightly smaller than that of 2,6-dimethyl phenols. In the cases of phenols having the 2-OR substituent included in a five-membered condensed ring (i.e, compounds 9-11), both conformational isomers in which the OH group points toward or away from the oxygen in position 2 were detected by FTIR spectroscopy and the intramolecular HB strength was thus estimated. The contribution to the BDE(O-H) of the ortho-OR substituent in 9, corrected for intramolecular HB formation, was calculated as -5.6 kcal mol(-1). The similar behaviour of cyclic and non-cyclic ortho-alkoxy derivatives clearly showed that the preferred conformation of the OMe group in ortho-methoxyphenoxyl radicals is that in which the methyl group points away from the phenoxyl oxygen, in contrast to the geometries predicted by DFT calculations.

  19. Adiabatic Channel Capture Theory Applied to Cold Atom-Molecule Reactions: Li + CaH -> LiH + Ca at 1 K

    CERN Document Server

    Tscherbul, Timur V

    2014-01-01

    We use quantum and classical adiabatic capture theories to study the chemical reaction Li + CaH -> LiH + Ca. Using a recently developed ab initio potential energy surface, which provides an accurate representation of long-range interactions in the entrance reaction channel, we calculate the adiabatic channel potentials by diagonalizing the atom-molecule Hamiltonian as a function of the atom-molecule separation. The resulting adiabatic channel potentials are used to calculate both the classical and quantum capture probabilities as a function of collision energy, as well as the temperature dependencies of the partial and total reaction rates. The calculated reaction rate agrees well with the measured value at 1 K [V. Singh et al., Phys. Rev. Lett. 108, 203201 (2012)], suggesting that the title reaction proceeds without an activation barrier. The calculated classical adiabatic capture rate agrees well with the quantum result in the multiple partial wave regime of relevance to the experiment. Significant differen...

  20. Single-particle detection of products from atomic and molecular reactions in a cryogenic ion storage ring

    Science.gov (United States)

    Krantz, C.; Novotný, O.; Becker, A.; George, S.; Grieser, M.; Hahn, R. von; Meyer, C.; Schippers, S.; Spruck, K.; Vogel, S.; Wolf, A.

    2017-04-01

    We have used a single-particle detector system, based on secondary electron emission, for counting low-energetic (∼keV/u) massive products originating from atomic and molecular ion reactions in the electrostatic Cryogenic Storage Ring (CSR). The detector is movable within the cryogenic vacuum chamber of CSR, and was used to measure production rates of a variety of charged and neutral daughter particles. In operation at a temperature of ∼ 6 K , the detector is characterised by a high dynamic range, combining a low dark event rate with good high-rate particle counting capability. On-line measurement of the pulse height distributions proved to be an important monitor of the detector response at low temperature. Statistical pulse-height analysis allows to infer the particle detection efficiency of the detector, which has been found to be close to unity also in cryogenic operation at 6 K.

  1. Reaction of Laser-Ablated Uranium and Thorium Atoms with H2Se: A Rare Example of Selenium Multiple Bonding.

    Science.gov (United States)

    Vent-Schmidt, Thomas; Andrews, Lester; Thanthiriwatte, K Sahan; Dixon, David A; Riedel, Sebastian

    2015-10-19

    The compounds H2ThSe and H2USe were synthesized by the reaction of laser-ablated actinide metal atoms with H2Se under cryogenic conditions following the procedures used to synthesize H2AnX (An = Th, U; X = O, S). The molecules were characterized by infrared spectra in an argon matrix with the aid of deuterium substitution and electronic structure calculations at the density functional theory level. The main products, H2ThSe and H2USe, are shown to have a highly polarized actinide-selenium triple bond, as found for H2AnS on the basis of electronic structure calculations. There is an even larger back-bonding of the Se with the An than found for the corresponding sulfur compounds. These molecules are of special interest as rare examples of multiple bonding of selenium to a metal, particularly an actinide metal.

  2. Formation Mechanism and Emission Spectrum of AlO Radicals in Reaction of Laser-ablated Al Atom and Oxygen

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shu-dong; LI Hai-Yang

    2003-01-01

    The emission spectrum of AlO radicals was analyzed in 440-540 nm in the reaction of laser ablated Al beam and O2. The carrier of spectrum was assigned to Δν=0, ±1, ±2 vibrational sequences of B2Σ+-X2Σ+ transition of AlO radicals, the observed maximum vibrational quantum number was ν′=6. The rotational and vibrational temperatures of B state were estimated at 3000 and 7500 K by spectrally simulating the rovibronic population distribution. There is a strong evidence that the production of excited Al(2S) atoms is essential to the formation of excited AlO radicals.

  3. Ultrathin Coating of Confined Pt Nanocatalysts by Atomic Layer Deposition for Enhanced Catalytic Performance in Hydrogenation Reactions.

    Science.gov (United States)

    Wang, Meihua; Gao, Zhe; Zhang, Bin; Yang, Huimin; Qiao, Yan; Chen, Shuai; Ge, Huibin; Zhang, Jiankang; Qin, Yong

    2016-06-13

    Metal-support interfaces play a prominent role in heterogeneous catalysis. However, tailoring the metal-support interfaces to realize full utilization remains a major challenge. In this work, we propose a graceful strategy to maximize the metal-oxide interfaces by coating confined nanoparticles with an ultrathin oxide layer. This is achieved by sequential deposition of ultrathin Al2 O3 coats, Pt, and a thick Al2 O3 layer on carbon nanocoils templates by atomic layer deposition (ALD), followed by removal of the templates. Compared with the Pt catalysts confined in Al2 O3 nanotubes without the ultrathin coats, the ultrathin coated samples have larger Pt-Al2 O3 interfaces. The maximized interfaces significantly improve the activity and the protecting Al2 O3 nanotubes retain the stability for hydrogenation reactions of 4-nitrophenol. We believe that applying ALD ultrathin coats on confined catalysts is a promising way to achieve enhanced performance for other catalysts.

  4. Full optimized reaction space model for quantum chemical reaction calculations. Definition, applications, and the IntraAtomic correlation correction extension. [H/sub 2/ exchange between ethane and ethylene; gas-phase ozonolysis

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, M.W.

    1982-12-01

    The Full Optimized Reaction Space (FORS) model is used for the theoretical calculation of molecular potential energy surfaces involved in chemical reactions. The FORS model is applied to two polyatomic reactions: the dihydrogen exchange between ethane and etylene, and the formation and dissolution of dioxirane and dioxymethane. The former reaction is found to possess a high barrier, in spite of its symmetry allowed nature. The latter reaction involves significant configuration mixing as methylene and oxygen react to form, successively, dioxirane, dioxymethane, and hydrogen and carbon dioxide. Finally, FORS wavefunctions can be expressed in terms of a basis of antisymmetrized products of atomic state functions, using the predominantly atomic projected localized orbitals. The atoms in molecules analysis permits the incorporation of data from atomic spectra into the molecular Hamiltonian to achieve the IntraAtomic Correlation Correction (IACC). The IACC scheme is illustrated for a few small diatomics (H/sub 2/, NH, F/sub 2/), and is shown to yield more accurate results than the uncorrected FORS wavefunctions.

  5. Hydrogen atom abstraction reactions from tertiary amines by benzyloxyl and cumyloxyl radicals: influence of structure on the rate-determining formation of a hydrogen-bonded prereaction complex.

    Science.gov (United States)

    Salamone, Michela; DiLabio, Gino A; Bietti, Massimo

    2011-08-05

    A time-resolved kinetic study on the hydrogen atom abstraction reactions from a series of tertiary amines by the cumyloxyl (CumO(•)) and benzyloxyl (BnO(•)) radicals was carried out. With the sterically hindered triisobutylamine, comparable hydrogen atom abstraction rate constants (k(H)) were measured for the two radicals (k(H)(BnO(•))/k(H)(CumO(•)) = 2.8), and the reactions were described as direct hydrogen atom abstractions. With the other amines, increases in k(H)(BnO(•))/k(H)(CumO(•)) ratios of 13 to 2027 times were observed. k(H) approaches the diffusion limit in the reactions between BnO(•) and unhindered cyclic and bicyiclic amines, whereas a decrease in reactivity is observed with acyclic amines and with the hindered cyclic amine 1,2,2,6,6-pentamethylpiperidine. These results provide additional support to our hypothesis that the reaction proceeds through the rate-determining formation of a C-H/N hydrogen-bonded prereaction complex between the benzyloxyl α-C-H and the nitrogen lone pair wherein hydrogen atom abstraction occurs, and demonstrate the important role of amine structure on the overall reaction mechanism. Additional mechanistic information in support of this picture is obtained from the study of the reactions of the amines with a deuterated benzyloxyl radical (PhCD(2)O(•), BnO(•)-d(2)) and the 3,5-di-tert-butylbenzyloxyl radical.

  6. Halogen-Bonding-Assisted Iodosylbenzene Activation by a Homogenous Iron Catalyst

    DEFF Research Database (Denmark)

    de Sousa, David P.; Wegeberg, Christina; Vad, Mads Sørensen;

    2016-01-01

    The iron(III) complex of hexadentate N,N,N′-tris(2-pyridylmethyl)ethylendiamine-N′-acetate (tpena−) is a more effective homogenous catalyst for selective sulfoxidation and epoxidation with insoluble iodosylbenzene, [PhIO]n, compared with soluble methyl-morpholine-N-oxide (NMO). We propose that two...... molecules of [Fe(tpena)]2+ cooperate to solubilize PhIO, extracting two equivalents to form the halogen-bonded dimeric {[Fe(tpena)OIPh]2}4+. The closest intradimeric I⋅⋅⋅O distance, 2.56 Å, is nearly 1 Å less than the sum of the van de Waals radii of these atoms. A correlation of the rates of the reaction...... of {[Fe(tpena)OIPh]2}4+ with para-substituted thioanisoles indicate that this species is a direct metal-based oxidant rather than a derived ferryl or perferryl complex. A study of gas-phase reactions indicate that an ion at m/z=231.06100 originates from solution-state {[Fe(tpena)OIPh]2}4+ and is ascribed...

  7. Temperature dependence of the OH(-) + CH3I reaction kinetics. experimental and simulation studies and atomic-level dynamics.

    Science.gov (United States)

    Xie, Jing; Kohale, Swapnil C; Hase, William L; Ard, Shaun G; Melko, Joshua J; Shuman, Nicholas S; Viggiano, Albert A

    2013-12-27

    Direct dynamics simulations and selected ion flow tube (SIFT) experiments were performed to study the kinetics and dynamics of the OH(-) + CH3I reaction versus temperature. This work complements previous direct dynamics simulation and molecular beam ion imaging experiments of this reaction versus reaction collision energy (Xie et al. J. Phys. Chem. A 2013, 117, 7162). The simulations and experiments are in quite good agreement. Both identify the SN2, OH(-) + CH3I → CH3OH + I(-), and proton transfer, OH(-) + CH3I → CH2I(-) + H2O, reactions as having nearly equal importance. In the experiments, the SN2 pathway constitutes 0.64 ± 0.05, 0.56 ± 0.05, 0.51 ± 0.05, and 0.46 ± 0.05 of the total reaction at 210, 300, 400, and 500 K, respectively. For the simulations this fraction is 0.56 ± 0.06, 0.55 ± 0.04, and 0.50 ± 0.05 at 300, 400, and 500 K, respectively. The experimental total reaction rate constant is (2.3 ± 0.6) × 10(-9), (1.7 ± 0.4) × 10(-9), (1.9 ± 0.5) × 10(-9), and (1.8 ± 0.5) × 10(-9) cm(3) s(-1) at 210, 300, 400, and 500 K, respectively, which is approximately 25% smaller than the collision capture value. The simulation values for this rate constant are (1.7 ± 0.2) × 10(-9), (1.8 ± 0.1) × 10(-9), and (1.6 ± 0.1) × 10(-9) cm(3)s(-1) at 300, 400, and 500 K. From the simulations, direct rebound and stripping mechanisms as well as multiple indirect mechanisms are identified as the atomic-level reaction mechanisms for both the SN2 and proton-transfer pathways. For the SN2 reaction the direct and indirect mechanisms have nearly equal probabilities; the direct mechanisms are slightly more probable, and direct rebound is more important than direct stripping. For the proton-transfer pathway the indirect mechanisms are more important than the direct mechanisms, and stripping is significantly more important than rebound for the latter. Calculations were performed with the OH(-) quantum number J equal to 0, 3, and 6 to investigate the effect of

  8. Reactions of hot deuterium atoms with OCS in the gas phase and in OCS--DI complexes

    Energy Technology Data Exchange (ETDEWEB)

    Boehmer, E.; Mikhaylichenko, K.; Wittig, C. (University of Southern California, Department of Chemistry, Los Angeles, California 90089-0482 (United States))

    1993-11-01

    Reactions of photolytically prepared hot deuterium atoms with OCS have been investigated: (i) under gas phase, single collision, arrested relaxation (i.e., bulk) conditions; and (ii) by photoinitiating reactions within weakly bound OCS--DI complexes. Nascent SD([ital X] [sup 2][Pi], [ital v]=0) rotational, spin--orbit, and [Lambda]-doublet populations were obtained for the photolysis wavelengths 250, 225, and 223 nm by using [ital A] [sup 2][Sigma][l arrow][ital X] [sup 2][Pi] laser induced fluorescence (LIF). The reason for using deuterium is strictly experimental: [ital A] [sup 2][Sigma] predissociation rates are considerably smaller for SD than for SH. The SD ([ital v]=0) rotational distribution was found to be very cold and essentially the same for both bulk and complexed conditions; the most probable rotational energy is [similar to]180 cm[sup [minus]1]. No bias in [Lambda]-doublet populations was detected. Spin--orbit excitation for bulk conditions was estimated to be [[sup 2][Pi][sub 1/2

  9. Reactions of hot deuterium atoms with OCS in the gas phase and in OCS-DI complexes

    Science.gov (United States)

    Böhmer, E.; Mikhaylichenko, K.; Wittig, C.

    1993-11-01

    Reactions of photolytically prepared hot deuterium atoms with OCS have been investigated: (i) under gas phase, single collision, arrested relaxation (i.e., bulk) conditions; and (ii) by photoinitiating reactions within weakly bound OCS-DI complexes. Nascent SD(X 2Π, v=0) rotational, spin-orbit, and Λ-doublet populations were obtained for the photolysis wavelengths 250, 225, and 223 nm by using A 2Σ←X 2Π laser induced fluorescence (LIF). The reason for using deuterium is strictly experimental: A 2Σ predissociation rates are considerably smaller for SD than for SH. The SD (v=0) rotational distribution was found to be very cold and essentially the same for both bulk and complexed conditions; the most probable rotational energy is ˜180 cm-1. No bias in Λ-doublet populations was detected. Spin-orbit excitation for bulk conditions was estimated to be [2Π1/2]/[2Π3/2]˜0.25, where 2Π1/2 is the upper spin-orbit component. This ratio could not be obtained with complexes because of limited S/N. The complete set of present and past experimental findings, combined with recent theoretical results of Rice, Cartland, and Chabalowski suggest a mechanism in which SD derives from a very short lived HSCO precursor. This can result from direct hydrogen attack at the sulfur and/or the transfer of hydrogen from carbon to sulfur via the HCOS intermediate.

  10. The formation of diethyl ether via the reaction of iodoethane with atomic oxygen on the Ag(110) surface

    Science.gov (United States)

    Jones, G. Scott; Barteau, Mark A.; Vohs, John M.

    1999-01-01

    The reactions of iodoethane (ICH 2CH 3) on clean and oxygen-covered Ag(110) surfaces were investigated using temperature-programmed desorption (TPD) and high-resolution electron energy-loss spectroscopy (HREELS). Iodoethane adsorbs dissociatively at 150 K to produce surface ethyl groups on both clean and oxygen-covered Ag(110) surfaces. The ethyl species couple to form butane on both surfaces, with the desorption peak maximum located between 218 and 238 K, depending on the ethyl coverage. In addition to butane, a number of oxidation products including diethyl ether, ethanol, acetaldehyde, surface acetate, ethylene, carbon dioxide and water were formed on the oxygen-dosed Ag(110) surface. Diethyl ether was the major oxygenate produced at all ethyl:oxygen ratios, and the peak temperature for ether evolution varied from 220 to 266 K depending on the relative coverages of these reactants. The total combustion products, CO 2 and H 2O, were primarily formed at low ethyl coverages in the presence of excess oxygen. The formation of ethylene near 240 K probably involves an oxygen-assisted dehydrogenation pathway since ethylene is not formed from ethyl groups on the clean surface. Acetaldehyde and ethanol evolve coincidentally with a peak centered at 270-280 K, and are attributed to the reactions of surface ethoxide species. The surface acetate which decomposes near 620 K is formed from subsequent reactions of acetaldehyde with oxygen atoms. The addition of ethyl to oxygen to form surface ethoxides was verified by HREELS results. The yields of all products exhibited a strong dependence on the relative coverages of ethyl and oxygen.

  11. Major Reaction Coordinates Linking Transient Amyloid-β Oligomers to Fibrils Measured at Atomic Level.

    Science.gov (United States)

    Chandra, Bappaditya; Bhowmik, Debanjan; Maity, Barun Kumar; Mote, Kaustubh R; Dhara, Debabrata; Venkatramani, Ravindra; Maiti, Sudipta; Madhu, Perunthiruthy K

    2017-08-22

    The structural underpinnings for the higher toxicity of the oligomeric intermediates of amyloidogenic peptides, compared to the mature fibrils, remain unknown at present. The transient nature and heterogeneity of the oligomers make it difficult to follow their structure. Here, using vibrational and solid-state nuclear magnetic resonance spectroscopy, and molecular dynamics simulations, we show that freely aggregating Aβ40 oligomers in physiological solutions have an intramolecular antiparallel configuration that is distinct from the intermolecular parallel β-sheet structure observed in mature fibrils. The intramolecular hydrogen-bonding network flips nearly 90°, and the two β-strands of each monomeric unit move apart, to give rise to the well-known intermolecular in-register parallel β-sheet structure in the mature fibrils. Solid-state nuclear magnetic resonance distance measurements capture the interstrand separation within monomer units during the transition from the oligomer to the fibril form. We further find that the D23-K28 salt-bridge, a major feature of the Aβ40 fibrils and a focal point of mutations linked to early onset Alzheimer's disease, is not detectable in the small oligomers. Molecular dynamics simulations capture the correlation between changes in the D23-K28 distance and the flipping of the monomer secondary structure between antiparallel and parallel β-sheet architectures. Overall, we propose interstrand separation and salt-bridge formation as key reaction coordinates describing the structural transition of the small Aβ40 oligomers to fibrils. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  12. Ultra-low-temperature reactions of C({sup 3}P{sub 0}) atoms with benzene molecules in helium droplets

    Energy Technology Data Exchange (ETDEWEB)

    Krasnokutski, Serge A., E-mail: skrasnokutskiy@yahoo.com; Huisken, Friedrich, E-mail: friedrich.huisken@uni-jena.de [Laboratory Astrophysics Group of the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena, Institute of Solid State Physics, Helmholtzweg 3, D-07743 Jena (Germany)

    2014-12-07

    The reaction of carbon atoms with benzene has been investigated in liquid helium droplets at T = 0.37 K. We found an addition of the carbon atom to form an initial intermediate complex followed by a ring opening and the formation of a seven-membered ring. In contrast to a previous gas phase study, the reaction is frozen after these steps and the loss of hydrogen does not occur. A calorimetric technique was applied to monitor the energy balance of the reaction. It was found that more than 267 kJ mol{sup −1} were released in this reaction. This estimation is in line with quantum chemical calculations of the formation energy of a seven-membered carbon ring. It is suggested that reactions of this kind could be responsible for the low abundance of small polycyclic aromatic hydrocarbon molecules in the interstellar medium. We also found the formation of weakly bonded water-carbon adducts, in which the carbon atom is linked to the oxygen atom of the water molecule with a binding energy of about 33.4 kJ mol{sup −1}.

  13. High-temperature shock tube and modeling studies on the reactions of methanol with D-atoms and CH3-radicals.

    Science.gov (United States)

    Peukert, S L; Michael, J V

    2013-10-10

    The shock tube technique has been used to study the hydrogen abstraction reactions D + CH3OH → CH2O + H + HD (A) and CH3 + CH3OH → CH2O + H + CH4 (B). For reaction A, the experiments span a T-range of 1016 K ≤ T ≤ 1325 K, at pressures 0.25 bar ≤ P ≤ 0.46 bar. The experiments on reaction B, CH3 + CH3OH, cover a T-range of 1138 K ≤ T ≤ 1270 K, at pressures around 0.40 bar. Reflected shock tube experiments, monitoring the depletion of D-atoms by applying D-atom atomic resonance absorption spectrometry (ARAS), were performed on reaction A using gas mixtures of C2D5I and CH3OH in Kr bath gas. C2D5I was used as precursor for D-atoms. For reaction B, reflected shock tube experiments monitoring H-atom formation with H-ARAS, were carried out using gas mixtures of diacetyl ((CH3CO)2) and CH3OH in Kr bath gas. (CH3CO)2 was used as the source of CH3-radicals. Detailed reaction models were assembled to fit the D-atom and H-atom time profiles in order to obtain experimental rate constants for reactions A and B. Total rate constants from the present experiments on D + CH3OH and CH3 + CH3OH can be represented by the Arrhenius equations kA(T) = 1.51 × 10(-10) exp(-3843 K/T) cm(3) molecules(-1) s(-1) (1016 K ≤ T ≤ 1325 K) and kB(T) = 9.62 × 10(-12) exp(-7477 K/T) cm(3) molecules(-1) s(-1) (1138 K ≤ T ≤ 1270 K). The experimentally obtained rate constants were compared with available rate data from the literature. The results from quantum chemical studies on reaction A were found to be in good agreement with the present results. The present work represents the first direct experimental study on these bimolecular reactions at combustion temperatures and is important to the high-temperature oxidation of CH3OH.

  14. Crystal structures of deoxygenation products and the characteristics of reactions of phenyl- (trihalomethyl)mercury with tetraphenylcyclone

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The single crystal structures of the gem-dihalides (3a and 3b)produced from the reactions of tetraphenylcy- clone (TPCP) with phenyl(trihalomethyl)mercury (trihalo = tribromo, bromodichloro) are reported. The structural parameters of the X-ray single crystal analysis vary slightly with the radius of the halogen atom in dihalides and are found to be related to the yields of the deoxygenation products. These results support the proposed mechanism for the carbene reaction of this type and reflect the key role of the structural characteristics of the incipient carbonyl ylide intermediate in choosing different competitive reaction path- ways.

  15. Quantifying the effects of halogen bonding by haloaromatic donors on the acceptor pyrimidine.

    Science.gov (United States)

    Ellington, Thomas L; Reves, Peyton L; Simms, Briana L; Wilson, Jamey L; Watkins, Davita L; Tschumper, Gregory S; Hammer, Nathan I

    2017-02-28

    The effects of intermolecular interactions by a series of haloaromatic halogen bond donors on the normal modes and chemical shifts of the acceptor pyrimidine are investigated by Raman and NMR spectroscopies and electronic structure computations. Halogen bond interactions with pyrimidine's nitrogen atoms shift normal modes to higher energy and shift 1H and 13C NMR peaks upfield in adjacent nuclei. This perturbation of vibrational normal modes is reminiscent of the effects of hydrogen bonded networks of water, methanol, or silver on pyrimidine. The unexpected observation of vibrational red shifts and downfield 13C NMR shifts in some complexes suggests that other intermolecular forces such as pi-interactions are competing with halogen bonding. Natural bond orbital analyses indicate a wide range of charge transfer from pyrimidine to different haloaromatic donors is possible and computed halogen bond binding energies can be larger than a typical hydrogen bond. These results emphasize the importance in strategic selection of substituents and electron withdrawing groups in developing supramolecular structures based on halogen bonding.

  16. Theoretical studies on dynamics and thermochemistry of the reactions CHClFCHO, CHF 2CHO and CClF 2CHO with the Cl atom

    Science.gov (United States)

    Wang, Ying; Liu, Jing-Yao; Li, Ze-Sheng; Wang, Li; Wu, Jia-Yan; Sun, Chia-Chung

    2006-05-01

    The theoretical investigations are performed on the reaction mechanisms, including hydrogen abstraction and addition reaction channels for the three reactions CHClFCHO + Cl → products (R1), CHF 2CHO + Cl → products (R2), and CClF 2CHO + Cl → products (R3) by ab initio direct dynamics approach. The electronic structure information for the stationary points is obtained at the MP2 level of theory using the cc-pVDZ and aug-cc-pVDZ basis sets. The classical energy profile is refined by multi-coefficient correlation method based on quadratic configuration interaction with single and double excitation (MC-QCISD) using the MP2 optimized geometries. The enthalpies of formation for the reactants and product radicals involved in the three reactions are estimated at the MC-QCISD//MP2 level via isodesmic reactions. We find that each addition reaction pathway has a much higher potential energy barrier, and therefore its contribution to the total rate constants can be neglected. The rate constants for the H-abstraction reactions, which are evaluated by canonical variational transition state theory with the small-curvature tunneling correction over a range of temperatures from 220 to 2000 K, are in good agreement with the available experimental values. The Arrhenius expressions are fitted to be (in cm 3 molecule -1 s -1) k1 = 5.08 × 10 -160 T1.60 exp (244.6/ T), k2 = 4.80 × 10 -17 T1.86 exp (274.9/ T), and k3 = 2.34 × 10 -16 T1.67 exp (37.1/ T), respectively. Our conclusions show that for reaction CHClFCHO + Cl → products (R1), the channel of hydrogen abstraction from the formyl (-CHO) position is the primary pathway at low temperature, but as the temperature increases the hydrogen abstraction from the -CHClF group is more probable. While for reaction CHF 2CHO + Cl → products (R2), the pathway of hydrogen abstraction from the formyl position is always the primary channel over the whole temperature range. We also find that the halogen substitute (F or Cl

  17. Brønsted Acidic Ionic Liquid Accelerated Halogenation of Organic Compounds with N-Halosuccinimides (NXS

    Directory of Open Access Journals (Sweden)

    Stojan Stavber

    2012-12-01

    Full Text Available The Brønsted-acidic ionic liquid 1-methyl-3-(4-sulfobutylimidazolium triflate [BMIM(SO3H][OTf] was demonstrated to act efficiently as solvent and catalyst for the halogenation of activated organic compounds with N-halosuccinimides (NXS under mild conditions with short reaction times. Methyl aryl ketones were converted into α-halo and α,α-dihaloketones, depending on the quantity of NXS used. Ketones with activated aromatic rings were selectively halogenated, however in some cases mixtures of α-halogenated ketone and ring-halogenated ketones were obtained. Activated aromatics were regioselectively ring halogenated to give mono- and dihalo-substituted products. The [BMIM(SO3H][OTf] ionic liquid (IL-A was successfully reused eight times in a representative monohalogenation reaction with no noticeable decrease in efficiency. An effective halogenation scale-up in this IL is also presented. The reactivity trend and the observed chemo- and regioselectiivities point to an ET process in these IL-promoted halofunctionalization reactions.

  18. Brønsted acidic ionic liquid accelerated halogenation of organic compounds with N-Halosuccinimides (NXS).

    Science.gov (United States)

    Vražič, Dejan; Jereb, Marjan; Laali, Kenneth K; Stavber, Stojan

    2012-12-21

    The Brønsted-acidic ionic liquid 1-methyl-3-(4-sulfobutyl)imidazolium triflate [BMIM(SO(3)H)][OTf] was demonstrated to act efficiently as solvent and catalyst for the halogenation of activated organic compounds with N-halosuccinimides (NXS) under mild conditions with short reaction times. Methyl aryl ketones were converted into α-halo and α,α-dihaloketones, depending on the quantity of NXS used. Ketones with activated aromatic rings were selectively halogenated, however in some cases mixtures of α-halogenated ketone and ring-halogenated ketones were obtained. Activated aromatics were regioselectively ring halogenated to give mono- and dihalo-substituted products. The [BMIM(SO(3)H)][OTf] ionic liquid (IL-A) was successfully reused eight times in a representative monohalogenation reaction with no noticeable decrease in efficiency. An effective halogenation scale-up in this IL is also presented. The reactivity trend and the observed chemo- and regioselectiivities point to an ET process in these IL-promoted halofunctionalization reactions.

  19. Does a Second Halogen Atom Affect the Nature of Intermolecular Interactions in Protic Acid-Haloethylene Complexes? in (E)-1-CHLORO-2-FLUOROETHYLENE-HYDROGEN Chloride it Depends on how you Look at it

    Science.gov (United States)

    Leung, Helen O.; Marshall, Mark D.

    2016-06-01

    As part of a systematic study of the effect of chlorine substitution on the structures of protic acid haloethylene complexes, the structure of the (E)-1-chloro-2-fluoroethylene-hydrogen chloride complex has been investigated using ab initio quantum chemistry calculations and microwave spectroscopy. Although theory predicts a non-planar equilibrium structure for this species, it is only 7 cm-1 lower in energy than the planar geometry connecting the two equivalent minima on either side of the haloethylene plane, and the observed spectrum is consistent with a planar, average structure, likely the result of zero-point averaging. The geometry is very similar to the fluorine binding, vinyl fluoride-hydrogen chloride complex, suggesting that the substitution of chlorine for a hydrogen trans to the fluorine atom has very little effect on intermolecular interactions in this case. On the other hand, vinyl chloride-hydrogen chloride adopts a non-planar, chlorine binding configuration so that alternatively one could say that the presence of fluorine has a large effect on protic acid-chlorine interactions.

  20. Does a Second Halogen Atom Affect the Nature of Intermolecular Interactions in Protic Acid-Haloethylene Complexes? in (Z)-1-CHLORO-2-FLUOROETHYLENE-HYDROGEN Chloride it Most Certainly DOES!

    Science.gov (United States)

    Tandon, Hannah K.; Leung, Helen O.; Marshall, Mark D.

    2016-06-01

    As part of a systematic study of the effect of chlorine substitution on the structures of protic acid-haloethylene complexes, the structure of the (Z)-1-chloro-2-fluoroethylene-hydrogen chloride complex has been investigated using ab initio quantum chemistry calculations and microwave spectroscopy. Although theory predicts a non-planar equilibrium structure for this species, it is only 6 cm-1 lower in energy than the planar geometry connecting the two equivalent minima on either side of the haloethylene plane, and the observed spectrum is consistent with a planar, average structure, likely the result of zero-point averaging. The geometry is unlike that of any previously characterized protic acid-haloethylene complex with a bifurcated primary interaction in which the hydrogen of the acid interacts with both the fluorine and the chlorine atoms on the haloethylene and there is no evidence for a secondary interaction involving the electron rich region of the acid. This structure can be contrasted to those of vinyl fluoride-hydrogen chloride (fluorine bound, planar ``top-binding,'' across the double bond), vinyl chloride-hydrogen chloride (chlorine bound, non-planar) and (Z)-1-chloro-2-fluoroethylene-acetylene (chlorine bound, planar ``side-binding,'' at one end of the double bond).

  1. Informative document halogenated hydrocarbon-containing waste

    NARCIS (Netherlands)

    Verhagen H

    1992-01-01

    This "Informative document halogenated hydrocarbon-containing waste" forms part of a series of "Informative documents waste materials". These documents are conducted by RIVM on the instructions of the Directorate General for the Environment, Waste Materials Directorate, in behal

  2. Organic halogens in spruce forest throughfall

    DEFF Research Database (Denmark)

    Öberg, G.; Johansen, C.; Grøn, C.

    1998-01-01

    . No relationship between the position of the collectors and the forest edge or dominating wind-direction was found, suggesting that dry deposition was not a major source. The concentration of organic halogens was related to that of organic carbon and decreased from the tree-trunk and outwards. In addition......Deposition of dissolved organic halogens by throughfall was determined in a small spruce forest site in Denmark (56 degrees 28'N, 8 degrees 24'E). The mean annual deposition of dissolved organic halogens was 377 g ha(-1)yr(-1), and larger than the general deposition by precipitation......, the concentrations were higher during the growing season than during the dormant season. This indicates that the major part of the organic carbon and organic halogens in spruce forest throughfall originates from canopy leachates or other internal sources. (C) 1998 Elsevier Science Ltd....

  3. Cross-reactivity of Halogenated Platinum Salts

    Science.gov (United States)

    Halogenated platinum (Pt) salts are well-known respiratory sensitizers associated with the development of asthma. People may be exposed to a variety of platinum compounds in different contexts (e.g. occupationally, automobile exhaust). Published reports suggest that sensitizati...

  4. Extremely stable platinum nanoparticles encapsulated in a zirconia nanocage by area-selective atomic layer deposition for the oxygen reduction reaction.

    Science.gov (United States)

    Cheng, Niancai; Banis, Mohammad Norouzi; Liu, Jian; Riese, Adam; Li, Xia; Li, Ruying; Ye, Siyu; Knights, Shanna; Sun, Xueliang

    2015-01-14

    Encapsulation of Pt nanoparticles (NPs) in a zirconia nanocage by area-selective atomic layer deposition (ALD) can significantly enhance both the Pt stability and activity. Such encapsulated Pt NPs show 10 times more stability than commercial Pt/C catalysts and an oxygen reduction reaction (ORR) activity 6.4 times greater than that of Pt/C.

  5. FIELD SCREENING FOR HALOGENATED VOLATILE ORGANIC COMPOUNDS

    Energy Technology Data Exchange (ETDEWEB)

    John F. Schabron; Joseph F. Rovani Jr.; Theresa M. Bomstad

    2002-06-01

    Western Research Institute (WRI) initiated exploratory work towards the development of new field screening methodology and a test kit to measure halogenated volatile organic compounds (VOCs) in the field. Heated diode and corona discharge sensors are commonly used to detect leaks of refrigerants from air conditioners, freezers, and refrigerators. They are both selective to the presence of carbon-halogen bonds. Commercially available heated diode and corona discharge leak detectors were procured and evaluated for halogenated VOC response. The units were modified to provide a digital readout of signal related to VOC concentration. Sensor response was evaluated with carbon tetrachloride and tetrachloroethylene (perchloroethylene, PCE), which represent halogenated VOCs with and without double bonds. The response characteristics were determined for the VOCs directly in headspace in Tedlar bag containers. Quantitation limits in air were estimated. Potential interferences from volatile hydrocarbons, such as toluene and heptane, were evaluated. The effect of humidity was studied also. The performance of the new devices was evaluated in the laboratory by spiking soil samples and monitoring headspace for halogenated VOCs. A draft concept of the steps for a new analytical method was outlined. The results of the first year effort show that both devices show potential utility for future analytical method development work towards the goal of developing a portable test kit for screening halogenated VOCs in the field.

  6. Presolvated Electron Reactions with Methyl Acetoacetate: Electron Localization, Proton-Deuteron Exchange, and H-Atom Abstraction

    Directory of Open Access Journals (Sweden)

    Alex Petrovici

    2014-09-01

    Full Text Available Radiation-produced electrons initiate various reaction processes that are important to radiation damage to biomolecules. In this work, the site of attachment of the prehydrated electrons with methyl acetoacetate (MAA, CH3-CO-CH2-COOCH3 at 77 K and subsequent reactions of the anion radical (CH3-CO•−-CH2-COOCH3 in the 77 to ca. 170 K temperature range have been investigated in homogeneous H2O and D2O aqueous glasses by electron spin resonance (ESR spectroscopy. At 77 K, the prehydrated electron attaches to MAA forming the anion radical in which the electron is delocalized over the two carbonyl groups. This species readily protonates to produce the protonated electron adduct radical CH3-C(•OH-CH2-COOCH3. The ESR spectrum of CH3-C(•OH-CH2-COOCH3 in H2O shows line components due to proton hyperfine couplings of the methyl and methylene groups. Whereas, the ESR spectrum of CH3-C(•OH-CH2-COOCH3 in D2O glass shows only the line components due to proton hyperfine couplings of CH3 group. This is expected since the methylene protons in MAA are readily exchangeable in D2O. On stepwise annealing to higher temperatures (ca. 150 to 170 K, CH3-C(•OH-CH2-COOCH3 undergoes bimolecular H-atom abstraction from MAA to form the more stable radical, CH3-CO-CH•-COOCH3. Theoretical calculations using density functional theory (DFT support the radical assignments.

  7. Abiotic and biotic reductive dehalogenation of halogenated methanes

    Energy Technology Data Exchange (ETDEWEB)

    Matheson, L.J.

    1994-01-01

    Reductive dehalogenation is an important reaction that generally leads to detoxification of many halogenated methanes. Halogenated methanes are widely used in industrial and commercial applications and the inadvertent or deliberate release of these chemicals has caused contamination of the atmosphere, soil and groundwater. The research presented here details the study of several systems for reductive dehalogenation of chlorinated methanes. The first system described in this dissertation involves reductive dechlorination of chlorinated methanes by laboratory cultures of methanogens. A vessel was constructed that allowed maintenance of anaerobic conditions and minimized losses of the volatile chlorocarbons. Methylene chloride was not dechlorinated in the presence of pure cultures of methanogens. Similarly, dechlorination did not occur in enrichments made with samples from several different anaerobic digesters. Abiotic dehalogenation studies showed that cobalamins, cobalt-centered macrocyclic compounds, catalyzed the reductive dechlorination of several halomethanes in anaerobic, closed batch systems. These studies focused on immobilization of cobalamins to several types of supports for use in pollution remediation strategies. Cyanocobalamin bound to Epoxy-Activated Sepharose 6B and talc catalyzed the rapid reduction of carbon tetrachloride and methylene chloride to sequentially reduced products. Corroding iron metal was also studied as a reductant for halogenated methanes. Several chlorinated methanes were reductively dechlorinated in closed, anaerobic, laboratory-scale model systems containing granular iron. Carbon tetrachloride was sequentially dehalogenated, via chloroform, to methylene chloride. The initial rate of each reaction was pseudo-first order in substrate and declined substantially with each dehalogenation step. Trichloroethene was also dechlorinated by iron, although more slowly than carbon tetrachloride.

  8. Synthesis and photophysical properties of halogenated derivatives of (dibenzoylmethanato)boron difluoride

    Science.gov (United States)

    Kononevich, Yuriy N.; Surin, Nikolay M.; Sazhnikov, Viacheslav A.; Svidchenko, Evgeniya A.; Aristarkhov, Vladimir M.; Safonov, Andrei A.; Bagaturyants, Alexander A.; Alfimov, Mikhail V.; Muzafarov, Aziz M.

    2017-03-01

    A series of (dibenzoylmethanato)boron difluoride (BF2DBM) derivatives with a halogen atom in one of the phenyl rings at the para-position were synthesized and used to elucidate the effects of changing the attached halogen atom on the photophysical properties of BF2DBM. The room-temperature absorption and fluorescence maxima of fluoro-, chloro-, bromo- and iodo-substituted derivatives of BF2DBM in THF are red-shifted by about 2-10 nm relative to the corresponding peaks of the parent BF2DBM. The fluorescence quantum yields of the halogenated BF2DBMs (except the iodinated derivative) are larger than that of the unsubstituted BF2DBM. All the synthesized compounds are able to form fluorescent exciplexes with benzene and toluene (emission maxima at λem = 433 and 445 nm, respectively). The conformational structure and electronic spectral properties of halogenated BF2DBMs have been modeled by DFT/TDDFT calculations at the PBE0/SVP level of theory. The structure and fluorescence spectra of exciplexes were calculated using the CIS method with empirical dispersion correction.

  9. The H + OCS hot atom reaction - CO state distributions and translational energy from time-resolved infrared absorption spectroscopy

    Science.gov (United States)

    Nickolaisen, Scott L.; Cartland, Harry E.

    1993-01-01

    Time-resolved infrared diode laser spectroscopy has been used to probe CO internal and translational excitation from the reaction of hot H atoms with OCS. Product distributions should be strongly biased toward the maximum 1.4 eV collision energy obtained from 278 nm pulsed photolysis of HI. Rotations and vibrations are both colder than predicted by statistical density of states theory, as evidenced by large positive surprisal parameters. The bias against rotation is stronger than that against vibration, with measurable population as high as v = 4. The average CO internal excitation is 1920/cm, accounting for only 13 percent of the available energy. Of the energy balance, time-resolved sub-Doppler line shape measurements show that more than 38 percent appears as relative translation of the separating CO and SH fragments. Studies of the relaxation kinetics indicate that some rotational energy transfer occurs on the time scale of our measurements, but the distributions do not relax sufficiently to alter our conclusions. Vibrational distributions are nascent, though vibrational relaxation of excited CO is unusually fast in the OCS bath, with rates approaching 3 percent of gas kinetic for v = 1.

  10. Improving the Solubility of Halogenated 1-Ammonio-closo-dodecaborate Anions.

    Science.gov (United States)

    Bertocco, Philipp; Derendorf, Janis; Jenne, Carsten; Kirsch, Christoph

    2017-03-20

    The partly halogenated and N-alkylated closo-dodecaborates [B12Cl6H5N(propyl)3](-) and [B12Br6H5NR3](-) (R = ethyl-pentyl) were prepared by alkylation of [B12H11NH3](-) and subsequent halogenation with elemental chlorine or N-bromosuccinimide. Simple metathesis reactions yielded the [HNMe3](+), [C6mim](+), [NBu4](+), and Na(+) salts, which were characterized by heteronuclear NMR and IR spectroscopy as well as electrospray ionization mass spectrometry. The crystal structures of the salts [HNMe3][B12Br6H5N(ethyl)3]·CH3CN, [HNMe3][B12Br6H5N(propyl)3], Na[B12Br6H5N(butyl)3], and [HNMe3][B12Cl7H4N(propyl)3]·CH3CN were determined by single-crystal X-ray diffraction. The [C6mim](+) salts are thermally stable to temperatures higher than 300 °C. The melting points are between 57 and 80 °C, which classify the [C6mim](+) salts of [B12Cl6H5N(propyl)3](-) and [B12Br6H5NR3](-) (R = propyl-pentyl) as ionic liquids. The anions are oxidized only at potentials higher than 2 V versus Fc(0/+) as determined by cyclic voltammetry. The solubility of the sodium salts in CH2Cl2 solution was determined by NMR spectroscopy. With the increasing length of the alkyl chain attached to the ammonio group the solubility is significantly enhanced. A solubility up to 125 mmol/L for Na[B12Br6H5N(pentyl)3] in dichloromethane was determined. In addition, the trialkylation of the perchlorinated anion [B12Cl11NH3](-) was investigated in detail. A Hofmann elimination was observed to occur at higher temperatures, when alkyl groups with β-hydrogen atoms were introduced. Organic substituents without β-hydrogen atoms gave more stable compounds; however, trialkylation proved to be difficult presumably due to steric hindrance. The crystal structure of the byproduct [PPh4]2[B12Cl11N(propargyl)2] was determined.

  11. Shining Light on Copper: Unique Opportunities for Visible-Light-Catalyzed Atom Transfer Radical Addition Reactions and Related Processes.

    Science.gov (United States)

    Reiser, Oliver

    2016-09-20

    Visible-light photoredox catalysis offers exciting opportunities to achieve challenging carbon-carbon bond formations under mild and ecologically benign conditions. Desired features of photoredox catalysts are photostability, long excited-state lifetimes, strong absorption in the visible region, and high reduction or oxidation potentials to achieve electron transfer to substrates, thus generating radicals that can undergo synthetic organic transformations. These requirements are met in a convincing way by Ru(II)(phenanthroline)3- and Ir(III)(phenylpyridine)3-type complexes and, as a low-cost alternative, by organic dyes that offer a metal-free catalyst but suffer in general from lower photostability. Cu(I)(phenanthroline)2 complexes have been recognized for more than 30 years as photoresponsive compounds with highly negative Cu(I)* → Cu(II) oxidation potentials, but nevertheless, they have not been widely considered as suitable photoredox catalysts, mainly because their excited lifetimes are shorter by a factor of 5 to 10 compared with Ru(II) and Ir(III) complexes, their absorption in the visible region is weak, and their low Cu(II) → Cu(I) reduction potentials might impede the closure of a catalytic cycle for a given process. Contrasting again with Ru(II)L3 and Ir(III)L3 complexes, Cu(I)L2 assemblies undergo more rapid ligand exchange in solution, thus potentially reducing the concentration of the photoactive species. Focusing on atom transfer radical addition (ATRA) reactions and related processes, we highlight recent developments that show the utility of Cu(I)(phenanthroline)2 complexes as photoredox catalysts, demonstrating that despite their short excited-state lifetimes and weak absorption such complexes are efficient at low catalyst loadings. Moreover, some of the inherent disadvantages stated above can even be turned to advantages: (1) the low Cu(II) → Cu(I) reduction potential might efficiently promote reactions via a radical chain pathway, and (2

  12. The reaction mechanisms and kinetics of CF3CHFOCH 3 and CHF 2CHFOCF 3 with atomic chlorine: a computational study.

    Science.gov (United States)

    Liu, Fang-Yu; Long, Zheng-Wen; Tan, Xing-Feng; Long, Bo

    2014-09-01

    Due to their lack of effect on the ozone depletion, hydrofluoroethers are considered as potential candidates for third generation refrigerants. In the present work, the mechanisms and kinetics of reaction of the Cl atom with CF(3)CHFOCH(3) and CHF(2)CHFOCF(3) were investigated theoretically using quantum chemical methods and transition state theory. Four reaction pathways for the title reaction were explored. By using conventional transition state theory with Eckart tunneling correction, the rate constants of the title reaction were obtained over the temperature range 200-300 K. Kinetic calculations demonstrate that H-abstraction from the -CH(3) group in CF(3)CHFOCH(3) and H-abstraction from the -CHF2 group in CHF(2)CHFOCF(3) are major reaction pathways, with the barrier heights of the two paths calculated to be -1.04 and 4.33 kcal mol(-1), respectively. However, the contribution of H-abstraction from the -CHFO- group for the two reactions should also be taken into account with increased temperature. At 298 K, the calculated overall rate constants of the reaction of CHF(2)CHFOCF(3) with the Cl atom are 4.27 × 10(-15) cm(3) molecule(-1) s(-1), which is consistent with the experimental value of (1.2 ± 2.0) × 10(-15) cm(3) molecule(-1) s(-1).

  13. Seaonal Sea Ice as a source of organo-halogens during Polar night

    Science.gov (United States)

    Abrahamsson, Katarina; Granfors, Anna; Ahnoff, Martin

    2016-04-01

    The release of bromine from snow and sea ice surfaces has mainly been attributed to the reaction of hypobromous acid with bromide at acidic conditions to form Br2. Little attention has been given to the role of volatile halogenated organic compounds (organo-halogens) in the formation of reactive halogen species in the atmosphere during bromine explosion events. The load of organo-halogens was studied during a winter expedition to the Weddell Sea in June to August 2013. These compounds are emitted from the different compartments of the cryosphere to the atmosphere where they are photolysed to BrO and IO, which are involved in the degradation of ozone. We will present results that show the importance of organo-halogens formed during polar winter. In newly formed ice, in contrast to summer sea ice, the concentration of organo-bromine was found at levels as high as nM. These high concentrations were reflected both in frost flowers and in the sea-snow interface. Moreover, air measurements revealed high loads of organo-bromine over the sea ice. The situation was similar for iodinated compounds. Interestingly, the precursers of IO, mainly diiodomethane, could be measured in sea ice and snow, most probably due to the low light levels.

  14. Non-conventional gas phase remediation of volatile halogenated compounds by dehydrated bacteria.

    Science.gov (United States)

    Erable, Benjamin; Goubet, Isabelle; Seltana, Amira; Maugard, Thierry

    2009-06-01

    Traditional biological removal processes are limited by the low solubility of halogenated compounds in aqueous media. A new technology appears very suitable for the remediation of these volatile organic compounds (VOCs). Solid/gas bio-catalysis applied in VOC remediation can transform halogenated compounds directly in the gas phase using dehydrated cells as a bio-catalyst. The hydrolysis of volatile halogenated substrates into the corresponding alcohol was studied in a solid/gas biofilter where lyophilised bacterial cultures were used as the catalyst. Four strains containing dehalogenase enzymes were tested for the hydrolysis of 1-chlorobutane. The highest removal yield was obtained using the dhaA-containing strains, the maximal reaction rate of 0.8 micromol min(-1)g(-1) being observed with Escherichia coli BL21(DE3)(dhaA). Various treatments such as cell disruption by lysozyme or alkaline gas addition in the bio-filter could stabilise the dehalogenase activity of the bacteria. A pre-treatment of the dehydrated bacterial cells by ammonia vapour improved the stability of the catalyst and a removal activity of 0.9 micromol min(-1)g(-1) was then obtained for 60h. Finally, the process was extended to a range of halogenated substrates including bromo- and chloro-substrates. It was shown that the removal capacity for long halogenated compounds (C(5)-C(6)) was greatly increased relative to traditional biological processes.

  15. Treatment System for Removing Halogenated Compounds from Contaminated Sources

    Science.gov (United States)

    Quinn, Jacqueline W. (Inventor); Clausen, Christian A. (Inventor); Yestrebsky, Cherie L. (Inventor)

    2015-01-01

    A treatment system and a method for removal of at least one halogenated compound, such as PCBs, found in contaminated systems are provided. The treatment system includes a polymer blanket for receiving at least one non-polar solvent. The halogenated compound permeates into or through a wall of the polymer blanket where it is solubilized with at least one non-polar solvent received by said polymer blanket forming a halogenated solvent mixture. This treatment system and method provides for the in situ removal of halogenated compounds from the contaminated system. In one embodiment, the halogenated solvent mixture is subjected to subsequent processes which destroy and/or degrade the halogenated compound.

  16. Formation of noble-gas hydrides and decay of solvated protons revisited: diffusion-controlled reactions and hydrogen atom losses in solid noble gases.

    Science.gov (United States)

    Tanskanen, Hanna; Khriachtchev, Leonid; Lignell, Antti; Räsänen, Markku; Johansson, Susanna; Khyzhniy, Ivan; Savchenko, Elena

    2008-02-07

    UV photolysis and annealing of C2H2/Xe, C2H2/Xe/Kr, and HBr/Xe matrices lead to complicated photochemical processes and reactions. The dominating products in these experiments are noble-gas hydrides with general formula HNgY (Ng = noble-gas atom, Y = electronegative fragment). We concentrate on distinguishing the local and global mobility and losses of H atoms, barriers of the reactions, and the decay of solvated protons. Different deposition temperatures change the amount of lattice imperfections and thus the amount of traps for H atoms. The averaged distance between reacting species influencing the reaction kinetics is controlled by varying the precursor concentration. A number of solid-state processes connected to the formation of noble-gas hydrides and decay of solvated protons are discussed using a simple kinetic model. The most efficient formation of noble-gas hydrides is connected with global (long-range) mobility of H atoms leading to the H + Xe + Y reaction. The highest concentration of noble-gas hydrides was obtained in matrices of highest optical quality, which probably have the lowest concentration of defects and H-atom losses. In matrices with high amount of geometrical imperfections, the product formation is inefficient and dominated by a local (short-range) process. The decay of solvated protons is rather local than a global process, which is different from the formation of noble-gas molecules. However, the present data do not allow distinguishing local proton and electron mobilities. Our previous results indicate that these are electrons which move to positively-charged centers and neutralize them. It is believed that the image obtained here for solid xenon is applicable to solid krypton whereas the case of argon deserves special attention.

  17. Rational design of organic semiconductors for texture control and self-patterning on halogenated surfaces

    KAUST Repository

    Ward, Jeremy W.

    2014-05-15

    Understanding the interactions at interfaces between the materials constituting consecutive layers within organic thin-film transistors (OTFTs) is vital for optimizing charge injection and transport, tuning thin-film microstructure, and designing new materials. Here, the influence of the interactions at the interface between a halogenated organic semiconductor (OSC) thin film and a halogenated self-assembled monolayer on the formation of the crystalline texture directly affecting the performance of OTFTs is explored. By correlating the results from microbeam grazing incidence wide angle X-ray scattering (μGIWAXS) measurements of structure and texture with OTFT characteristics, two or more interaction paths between the terminating atoms of the semiconductor and the halogenated surface are found to be vital to templating a highly ordered morphology in the first layer. These interactions are effective when the separating distance is lower than 2.5 dw, where dw represents the van der Waals distance. The ability to modulate charge carrier transport by several orders of magnitude by promoting "edge-on" versus "face-on" molecular orientation and crystallographic textures in OSCs is demonstrated. It is found that the "edge-on" self-assembly of molecules forms uniform, (001) lamellar-textured crystallites which promote high charge carrier mobility, and that charge transport suffers as the fraction of the "face-on" oriented crystallites increases. The role of interfacial halogenation in mediating texture formation and the self-patterning of organic semiconductor films, as well as the resulting effects on charge transport in organic thin-film transistors, are explored. The presence of two or more anchoring sites between a halogenated semiconductor and a halogenated self-assembled monolayer, closer than about twice the corresponding van der Waals distance, alter the microstructure and improve electrical properties. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. A QTAIM exploration of the competition between hydrogen and halogen bonding in halogenated 1-methyluracil: Water systems

    Science.gov (United States)

    Huan, Guo; Xu, Tianlv; Momen, Roya; Wang, Lingling; Ping, Yang; Kirk, Steven R.; Jenkins, Samantha; van Mourik, Tanja

    2016-10-01

    Using QTAIM we show that the hydrogen bonding complexes of 5-halogenated-1-methyluracil (XmU; X = F, Cl, Br, I or At) with a water molecule were always stronger than the corresponding halogen bonds. The strength of the hydrogen bond decreased with increasing halogen size. The hydrogen bonds displayed an admixture of covalent character but all the halogen bonds were purely electrostatic in nature. An F---O halogen bond was found and was facilitated by an intermediate F---H bonding interaction. The metallicity ξ(rb) of the C = O bonds neighboring the hydrogen bonds and of the C-X bonds contiguous with the halogen bonds was explored.

  19. Theoretical study on the degradation reaction of octachlorinated dibenzo-p-dioxin with atomic oxygen O((3)P) in dielectric barrier discharge reactor.

    Science.gov (United States)

    Gong, Chen; Sun, Xiaomin; Zhang, Chenxi; Hu, Jingtian; Qi, Chuansong

    2014-11-01

    Dielectric barrier discharges (DBD) have been used in the degradation of dioxins due to the large number of excimers and free radicals produced in discharge process. In this article, the density functional theory (DFT) is used to study the degradation mechanism of octachlorinated dibenzo-p-dioxin (OCDD) with the atomic oxygen O((3)P) in DBD reactor. The reactants, intermediates, transition states and products are optimized at the MPWB1K/6-31+G(d,p) level. The vibrational frequencies have been calculated at the same level. The reaction pathways and mechanisms are analyzed in detail. The effect of removing the chlorine atom on environment also has been discussed.

  20. Chemiluminescent reactions of sulfur /3P2/ atoms in cryogenic matrices - S + O2 yields SO2 /a3 B1/

    Science.gov (United States)

    Long, S. R.; Pimentel, G. C.

    1977-01-01

    Results are reported for thermoluminescence studies of reactions of sulfur atoms in cryogenically deposited solid argon through in situ photolysis of OCS. Analysis of the thermoluminescence spectrum that resulted from photolysis and heating of matrices in which O2 was codeposited with an OCS/Ar mixture shows that the emitter contained oxygen derived from the added O2 and that little SO2 accumulated during photolysis. The observed absence of thermoluminescence or fluorescence in either of the allowed transitions of excited SO2 is taken as definitive evidence that ground-state sulfur atoms can insert into the oxygen molecule with effectively zero activation energy.

  1. Quantum Chemical Insight into the LiF Interlayer Effects in Organic Electronics: Reactions between Al Atom and LiF Clusters.

    Science.gov (United States)

    Wu, Shui-Xing; Kan, Yu-He; Li, Hai-Bin; Zhao, Liang; Wu, Yong; Su, Zhong-Min

    2015-08-06

    It is well known that the aluminum cathode performs dramatically better when a thin lithium fluoride (LiF) layer inserted in organic electronic devices. The doping effect induced by the librated Li atom via the chemical reactions producing AlF3 as byproduct was previously proposed as one of possible mechanisms. However, the underlying mechanism discussion is quite complicated and not fully understood so far, although the LiF interlayer is widely used. In this paper, we perform theoretical calculations to consider the reactions between an aluminum atom and distinct LiF clusters. The reaction pathways of the Al-(LiF)n (n = 2, 4, 16) systems were discovered and the energetics were theoretically evaluated. The release of Li atom and the formation of AlF3 were found in two different chemical reaction routes. The undissociated Al-(LiF)n systems have chances to change to some structures with loosely bound electrons. Our findings about the interacted Al-(LiF)n systems reveal new insights into the LiF interlayer effects in organic electronics applications.

  2. Insights into thermal diffusion of germanium and oxygen atoms in HfO{sub 2}/GeO{sub 2}/Ge gate stacks and their suppressed reaction with atomically thin AlO{sub x} interlayers

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Shingo, E-mail: Shingo-Ogawa@trc.toray.co.jp [Toray Research Center, Inc., 3-3-7 Sonoyama, Otsu, Shiga 520-8567 (Japan); Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Asahara, Ryohei; Minoura, Yuya; Hosoi, Takuji, E-mail: hosoi@mls.eng.osaka-u.ac.jp; Shimura, Takayoshi; Watanabe, Heiji [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Sako, Hideki; Kawasaki, Naohiko; Yamada, Ichiko; Miyamoto, Takashi [Toray Research Center, Inc., 3-3-7 Sonoyama, Otsu, Shiga 520-8567 (Japan)

    2015-12-21

    The thermal diffusion of germanium and oxygen atoms in HfO{sub 2}/GeO{sub 2}/Ge gate stacks was comprehensively evaluated by x-ray photoelectron spectroscopy and secondary ion mass spectrometry combined with an isotopic labeling technique. It was found that {sup 18}O-tracers composing the GeO{sub 2} underlayers diffuse within the HfO{sub 2} overlayers based on Fick's law with the low activation energy of about 0.5 eV. Although out-diffusion of the germanium atoms through HfO{sub 2} also proceeded at the low temperatures of around 200 °C, the diffusing germanium atoms preferentially segregated on the HfO{sub 2} surfaces, and the reaction was further enhanced at high temperatures with the assistance of GeO desorption. A technique to insert atomically thin AlO{sub x} interlayers between the HfO{sub 2} and GeO{sub 2} layers was proven to effectively suppress both of these independent germanium and oxygen intermixing reactions in the gate stacks.

  3. Halogen-bonding-triggered supramolecular gel formation.

    Science.gov (United States)

    Meazza, Lorenzo; Foster, Jonathan A; Fucke, Katharina; Metrangolo, Pierangelo; Resnati, Giuseppe; Steed, Jonathan W

    2013-01-01

    Supramolecular gels are topical soft materials involving the reversible formation of fibrous aggregates using non-covalent interactions. There is significant interest in controlling the properties of such materials by the formation of multicomponent systems, which exhibit non-additive properties emerging from interaction of the components. The use of hydrogen bonding to assemble supramolecular gels in organic solvents is well established. In contrast, the use of halogen bonding to trigger supramolecular gel formation in a two-component gel ('co-gel') is essentially unexplored, and forms the basis for this study. Here, we show that halogen bonding between a pyridyl substituent in a bis(pyridyl urea) and 1,4-diiodotetrafluorobenzene brings about gelation, even in polar media such as aqueous methanol and aqueous dimethylsulfoxide. This demonstrates that halogen bonding is sufficiently strong to interfere with competing gel-inhibitory interactions and create a 'tipping point' in gel assembly. Using this concept, we have prepared a halogen bond donor bis(urea) gelator that forms co-gels with halogen bond acceptors.

  4. Chemical reaction dynamics of Rydberg atoms with neutral molecules: a comparison of molecular-beam and classical trajectory results for the H(n)+D2-->HD+D(n') reaction.

    Science.gov (United States)

    Song, Hui; Dai, Dongxu; Wu, Guorong; Wang, Chia Chen; Harich, Steven A; Hayes, Michael Y; Wang, Xiuyan; Gerlich, Dieter; Yang, Xueming; Skodje, Rex T

    2005-08-15

    Recent molecular-beam experiments have probed the dynamics of the Rydberg-atom reaction, H(n)+D2-->HD+D(n) at low collision energies. It was discovered that the rotationally resolved product distribution was remarkably similar to a much more limited data set obtained at a single scattering angle for the ion-molecule reaction H++D2-->D++HD. The equivalence of these two problems would be consistent with the Fermi-independent-collider model (electron acting as a spectator) and would provide an important new avenue for the study of ion-molecule reactions. In this work, we employ a classical trajectory calculation on the ion-molecule reaction to facilitate a more extensive comparison between the two systems. The trajectory simulations tend to confirm the equivalence of the ion+molecule dynamics to that for the Rydberg-atom+molecule system. The theory reproduces the close relationship of the two experimental observations made previously. However, some differences between the Rydberg-atom experiments and the trajectory simulations are seen when comparisons are made to a broader data set. In particular, the angular distribution of the differential cross section exhibits more asymmetry in the experiment than in the theory. The potential breakdown of the classical model is discussed. The role of the "spectator" Rydberg electron is addressed and several crucial issues for future theoretical work are brought out.

  5. Halogen poisoning effect of Pt-TiO2 for formaldehyde catalytic oxidation performance at room temperature

    Science.gov (United States)

    Zhu, Xiaofeng; Cheng, Bei; Yu, Jiaguo; Ho, Wingkei

    2016-02-01

    Catalytic decomposition of formaldehyde (HCHO) at room temperature is an important method for HCHO removal. Pt-based catalysts are the optimal catalyst for HCHO decomposition at room temperature. However, the stability of this catalyst remains unexplored. In this study, Pt-TiO2 (Pt-P25) catalysts with and without adsorbed halogen ions (including F-, Cl-, Br-, and I-) were prepared through impregnation and ion modification. Pt-TiO2 samples with adsorbed halogen ions exhibited reduced catalytic activity for formaldehyde decomposition at room temperature compared with the Pt-TiO2 sample; the catalytic activity followed the order of F-Pt-P25, Cl-Pt-P25, Br-Pt-P25, and I-Pt-P25. Characterization results (including XRD, TEM, HRTEM, BET, XPS, and metal dispersion) showed that the adsorbed halogen ions can poison Pt nanoparticles (NPs), thereby reducing the HCHO oxidation activity of Pt-TiO2. The poison mechanism is due to the strong adsorption of halogen ions on the surface of Pt NPs. The adsorbed ions form coordination bonds with surface Pt atoms by transferring surplus electrons into the unoccupied 5d orbit of the Pt atom, thereby inhibiting oxygen adsorption and activation of the Pt NP surface. Moreover, deactivation rate increases with increasing diameter of halogen ions. This study provides new insights into the fabrication of high-performance Pt-based catalysts for indoor air purification.

  6. Evaluation of Halogenated Coumarins for Antimosquito Properties

    Directory of Open Access Journals (Sweden)

    Venugopala K. Narayanaswamy

    2014-01-01

    Full Text Available Mosquitoes are the major vectors of parasites and pathogens affecting humans and domestic animals. The widespread development of insecticide resistance and negative environmental effects of most synthetic compounds support an interest in finding and developing alternative products against mosquitoes. Natural coumarins and synthetic coumarin analogues are known for their several pharmacological properties, including being insecticidal. In the present study halogenated coumarins (3-mono/dibromo acetyl, 6-halogenated coumarin analogues were screened for larvicidal, adulticidal, and repellent properties against Anopheles arabiensis, a zoophilic mosquito that is one of the dominant vectors of malaria in Africa. Five compounds exerted 100% larval mortality within 24 h of exposure. All coumarins and halogenated coumarins reversibly knocked down adult mosquitoes but did not kill them after 24 h of exposure. Repellent properties could not be evidenced. Five compounds were considered potential larvicidal agents for further research and development, while adulticidal activity was considered only mild to moderate.

  7. Halogen bonded supramolecular capsules: a challenging test case for quantum chemical methods.

    Science.gov (United States)

    Sure, Rebecca; Grimme, Stefan

    2016-08-02

    Recently, Diederich et al. synthesized the first supramolecular capsule with a well-defined four-point halogen bonding interaction [Angew. Chem., Int. Ed., 2015, 54, 12339]. This interesting system comprising about 400 atoms represents a challenging test case for accurate quantum chemical methods. We investigate it with our new density functional based composite method for structures and noncovalent interactions (PBEh-3c) as well as our standard protocol for supramolecular thermochemistry and give predictions for chemical modifications to improve the binding strength.

  8. Kinetics of the reaction of F atoms with Osub>2sub> and UV spectrum of FOsub>2sub> radicals in the gas phase at 295 K

    DEFF Research Database (Denmark)

    Ellermann, T.; Sehested, J.; Nielsen, O.J.

    1994-01-01

    The ultraviolet absorption spectrum of FO2 radicals and the kinetics of the reaction of F atoms with O2 have been studied in the gas phase at 295 K using pulse radiolysis combined with kinetic UV spectroscopy. At 230 nm, sigma(FO2) = (5.08 +/- 0.70) X 10(-18) cm2 molecule-1. The kinetics of the r......The ultraviolet absorption spectrum of FO2 radicals and the kinetics of the reaction of F atoms with O2 have been studied in the gas phase at 295 K using pulse radiolysis combined with kinetic UV spectroscopy. At 230 nm, sigma(FO2) = (5.08 +/- 0.70) X 10(-18) cm2 molecule-1. The kinetics...

  9. Evidence for a Precursor Complex in C-H Hydrogen Atom Transfer Reactions Mediated by a Manganese(IV) Oxo Complex

    OpenAIRE

    Garcia Bosch, Isaac; Company Casadevall, Anna; Cady, Clyde W.; Styring, Stenbjörn; Browne, Wesley R; Ribas Salamaña, Xavi; Costas Salgueiro, Miquel

    2011-01-01

    HAT trick: [MnIV(OH)2(H,MePytacn)]2+ (A) and [MnIV(O)(OH)(H,MePytacn)]+ (B) differ in their reactions with CH bonds: compound A engages in typical single-step hydrogen atom transfer (HAT) reactions, whereas B first forms a substrate–B encounter complex (C; see scheme). This equilibrium alters the relative CH reactivity from that expected from CH bond dissociation energies Aquest mateix article està publicat a l'edició alemanya d''Angewandte Chemie' (ISSN 0044-8249, EISSN 1521-3757), 2011, ...

  10. Reactions of the cumyloxyl radical with secondary amides. The influence of steric and stereoelectronic effects on the hydrogen atom transfer reactivity and selectivity.

    Science.gov (United States)

    Salamone, Michela; Basili, Federica; Mele, Riccardo; Cianfanelli, Marco; Bietti, Massimo

    2014-12-19

    A time-resolved kinetic study of the hydrogen atom transfer (HAT) reactions from secondary alkanamides to the cumyloxyl radical was carried out in acetonitrile. HAT predominantly occurs from the N-alkyl α-C-H bonds, and a >60-fold decrease in kH was observed by increasing the steric hindrance of the acyl and N-alkyl groups. The role of steric and stereoelectronic effects on the reactivity and selectivity is discussed in the framework of HAT reactions from peptides.

  11. Kinetic Study of the Reaction of the Phthalimide-N-oxyl Radical with Amides: Structural and Medium Effects on the Hydrogen Atom Transfer Reactivity and Selectivity.

    Science.gov (United States)

    Bietti, Massimo; Forcina, Veronica; Lanzalunga, Osvaldo; Lapi, Andrea; Martin, Teo; Mazzonna, Marco; Salamone, Michela

    2016-12-02

    A kinetic study of the hydrogen atom transfer (HAT) reactions from a series of secondary N-(4-X-benzyl)acetamides and tertiary amides to the phthalimide-N-oxyl radical (PINO) has been carried out. The results indicate that HAT is strongly influenced by structural and medium effects; in particular, the addition of Brønsted and Lewis acids determines a significant deactivation of C-H bonds α to the amide nitrogen of these substrates. Thus, by changing the reaction medium, it is possible to carefully control the regioselectivity of the aerobic oxidation of amides catalyzed by N-hydroxyphthalimide, widening the synthetic versatility of this process.

  12. Vertical ionization energies of halogen anions in solution

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Based on the constrained equilibrium state theory,the nonequilibrium solvation energy is derived in the framework of the continuum model.The formula for spectral shift and vertical ionization energy are deduced for a single sphere cavity with the point charge assumption.The new model is adopted to investigate the vertical ionization for halogen atomic and molecular anions X(X = Cl,Br,I,Cl2,Br2,I2) in aqueous solution.According to the calculation using the CCSD-t/aug-cc-pVQZ method in vacuum,our final estimated vertical ionization energies in solution are very close to the experimental observations,while the traditional nonequilibrium solvation theory overestimates these vertical ionization energies.

  13. 40 CFR 721.329 - Halogenated benzyl ester acrylate (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Halogenated benzyl ester acrylate... Specific Chemical Substances § 721.329 Halogenated benzyl ester acrylate (generic). (a) Chemical substance... halogenated benzyl ester acrylate (PMN P-90-1527) is subject to reporting under this section for...

  14. 40 CFR 721.535 - Halogenated alkane (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Halogenated alkane (generic). 721.535... Substances § 721.535 Halogenated alkane (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as halogenated alkane (PMN P-01-433) is...

  15. 40 CFR 721.536 - Halogenated phenyl alkane.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Halogenated phenyl alkane. 721.536... Substances § 721.536 Halogenated phenyl alkane. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as halogenated phenyl alkane (PMN P-89-867)...

  16. 40 CFR 721.8700 - Halogenated alkyl pyridine.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Halogenated alkyl pyridine. 721.8700... Substances § 721.8700 Halogenated alkyl pyridine. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as halogenated alkyl pyridine (PMN P-83-237)...

  17. Photofragmentation spectra of halogenated methanes in the VUV photon energy range.

    Science.gov (United States)

    Cartoni, Antonella; Bolognesi, Paola; Fainelli, Ettore; Avaldi, Lorenzo

    2014-05-14

    In this paper an investigation of the photofragmentation of dihalomethanes CH2X2 (X = F, Cl, Br, I) and chlorinated methanes (CH(n)Cl(4-n) with n = 0-3) with VUV helium, neon, and argon discharge lamps is reported and the role played by the different halogen atoms is discussed. Halogenated methanes are a class of molecules used in several fields of chemistry and the study of their physical and chemical proprieties is of fundamental interest. In particular their photodissociation and photoionization are of great importance since the decomposition of these compounds in the atmosphere strongly affects the environment. The results of the present work show that the halogen-loss is the predominant fragmentation channel for these molecules in the VUV photon energy range and confirm their role as reservoir of chlorine, bromine, and iodine atoms in the atmosphere. Moreover, the results highlight the peculiar feature of CH2F2 as a source of both fluorine and hydrogen atoms and the characteristic formation of I2(+) and CH2(+) ions from the photofragmentation of the CH2I2 molecule.

  18. Photofragmentation spectra of halogenated methanes in the VUV photon energy range

    Energy Technology Data Exchange (ETDEWEB)

    Cartoni, Antonella, E-mail: antonella.cartoni@uniroma1.it [Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, P.le Aldo Moro 5, Roma 00185 (Italy); Bolognesi, Paola; Fainelli, Ettore; Avaldi, Lorenzo [CNR-IMIP, Area della Ricerca di Roma 1, Monterotondo Scalo (Rm) 00015 (Italy)

    2014-05-14

    In this paper an investigation of the photofragmentation of dihalomethanes CH{sub 2}X{sub 2} (X = F, Cl, Br, I) and chlorinated methanes (CH{sub n}Cl{sub 4−n} with n = 0–3) with VUV helium, neon, and argon discharge lamps is reported and the role played by the different halogen atoms is discussed. Halogenated methanes are a class of molecules used in several fields of chemistry and the study of their physical and chemical proprieties is of fundamental interest. In particular their photodissociation and photoionization are of great importance since the decomposition of these compounds in the atmosphere strongly affects the environment. The results of the present work show that the halogen-loss is the predominant fragmentation channel for these molecules in the VUV photon energy range and confirm their role as reservoir of chlorine, bromine, and iodine atoms in the atmosphere. Moreover, the results highlight the peculiar feature of CH{sub 2}F{sub 2} as a source of both fluorine and hydrogen atoms and the characteristic formation of I{sub 2}{sup +} and CH{sub 2}{sup +} ions from the photofragmentation of the CH{sub 2}I{sub 2} molecule.

  19. Atmospheric chemistry of trans-CF3CH=CHCl: Kinetics of the gas-phase reactions with Cl atoms, OH radicals, and O3

    DEFF Research Database (Denmark)

    Andersen, Mads Peter Sulbaek; Nilsson, Elna Johanna Kristina; Nielsen, Ole John;

    2008-01-01

    Long path length Fourier transform infrared (FTIR)–smog chamber techniques were used to study the kinetics of the gas-phase reactions of Cl atoms, OH radicals and O3 with trans-3,3,3-trifluoro-1-chloropropene, t-CF3CH CHCl, in 700 Torr total pressure at 295±2K. Values of k(Cl + t-CF3CH CHCl) = (5...

  20. Single step synthesis of gold-amino acid composite, with the evidence of the catalytic hydrogen atom transfer (HAT) reaction, for the electrochemical recognition of Serotonin

    Science.gov (United States)

    Choudhary, Meenakshi; Siwal, Samarjeet; Nandi, Debkumar; Mallick, Kaushik

    2016-03-01

    A composite architecture of amino acid and gold nanoparticles has been synthesized using a generic route of 'in-situ polymerization and composite formation (IPCF)' [1,2]. The formation mechanism of the composite has been supported by a model hydrogen atom (H•≡H++e-) transfer (HAT) type of reaction which belongs to the proton coupled electron transfer (PCET) mechanism. The 'gold-amino acid composite' was used as a catalyst for the electrochemical recognition of Serotonin.

  1. Halogen degassing during ascent and eruption of water-poor basaltic magma

    Science.gov (United States)

    Edmonds, M.; Gerlach, T.M.; Herd, Richard A.

    2009-01-01

    A study of volcanic gas composition and matrix glass volatile concentrations has allowed a model for halogen degassing to be formulated for K??lauea Volcano, Hawai'i. Volcanic gases emitted during 2004-2005 were characterised by a molar SO2/HCl of 10-64, with a mean of 33; and a molar HF/HCl of 0-5, with a mean of 1.0 (from approximately 2500 measurements). The HF/HCl ratio was more variable than the SO2/HCl ratio, and the two correlate weakly. Variations in ratio took place over rapid timescales (seconds). Matrix glasses of Pele's tears erupted in 2006 have a mean S, Cl and F content of 67, 85 and 173??ppm respectively, but are associated with a large range in S/F. A model is developed that describes the open system degassing of halogens from parental magmas, using the glass data from this study, previously published results and parameterisation of sulphur degassing from previous work. The results illustrate that halogen degassing takes place at pressures of pressure, virtually at the top of the magma column. This model reproduces the volcanic gas data and other observations of volcanic activity well and is consistent with other studies of halogen degassing from basaltic magmas. The model suggests that variation in volcanic gas halogen ratios is caused by exsolution and gas-melt separation at low pressures in the conduit. There is no evidence that either diffusive fractionation or near-vent chemical reactions involving halogens is important in the system, although these processes cannot be ruled out. The fluxes of HCl and HF from K??lauea during 2004-5 were ~ 25 and 12??t/d respectively. ?? 2008 Elsevier B.V.

  2. Investigations of the tropospheric halogen chemistry around Ross Island, Antarctica, during austral spring 2012

    Science.gov (United States)

    Zielcke, Johannes; Pöhler, Denis; Frieß, Udo; Hay, Tim; Kreher, Karin; Kalnajs, Lars; Platt, Ulrich

    2013-04-01

    A unique feature of the polar troposphere is the strong impact of halogen photochemistry, in which reactive halogen species (RHS) are responsible for ozone depletion as well as the oxidation of elemental mercury and dimethyl sulphide. The source, however, as well as release and recycling mechanisms of these halogen species are far from being completely understood, especially the role of chlorine and iodine compounds. Reactive chlorine, bromine and iodine compounds are thought to be released from sea salt particles or produced by the photolysis of halocarbons and I2 emitted by the ocean. Here we present observations of halogen oxides, ozone and nitrogen dioxide conducted for three months during austral spring 2012 on Ross Island, Antarctica. Measurements were performed with a suite of remote sensing instruments. An active long-path differential optical absorption spectroscopy (LP-DOAS) system was set up, measuring several species (BrO, O3, NO2, OBrO, IO, OIO, I2, ClO, OClO, CHOCHO, HCHO, HONO) continuously for the whole period, with two light paths over first year sea ice. In addition, a passive MAX-DOAS as well as a new Cavity-Enhanced (CE)-DOAS system were used for mobile halogen oxide measurements on a variety of locations around Ross Island (sea ice, shelf ice, snow, coastal, etc.), with top surface layer pH measurements performed at the different measurement sites. First results show highly variable ozone concentrations including partial Ozone Depletion Events (ODEs), as well as concentrations of BrO up to 16ppt and NO2 up to 15ppb. Suprisingly, a high variation of ozone was observed without significant amounts of BrO, indicating already depleted air masses transported to the measurement site and/or NOx chemistry inhibiting halogen radical reactions.

  3. Reaction between atomic N(4S) and molecular CO at very low temperature: possible formation of HNCO in the Oort cloud

    Science.gov (United States)

    Nourry, Sendres; Zins, Emilie-Laure; Krim, Lahouari

    2015-07-01

    Beyond the Kuiper belt, the Oort cloud is characterized by particularly cold temperatures and the absence of energetic particles. Specific chemical processes involving cold radicals may occur in this reservoir of comets. A microwave-driven atomic source can be used to generate cold atomic nitrogen (N (4S)) for reactivity study of ices relevant to the Oort cloud. Without any additional source of energy, atomic nitrogen does not react with CO molecules to form NCO. This is consistent with a previous theoretical investigation carried out by Yazidi et al., who have shown that the potential energy surface for the CO (X1Σ+) + N (4S) system is purely dissociative. On the other hand, a very small amount of water is sufficient to induce a reaction between these two species. This three-body reaction leads to the formation of the HNCO monomer, the (HNCO)(H2O) complex, and the hydroxyl radical. Such reactions, leading to prebiotic molecules, may take place in the Oort cloud and in the Kuiper belt, from which most of the comets come.

  4. Monitoring the dissolution process of metals in the gas phase: reactions of nanoscale Al and Ga metal atom clusters and their relationship to similar metalloid clusters.

    Science.gov (United States)

    Burgert, Ralf; Schnöckel, Hansgeorg

    2008-05-14

    Formation and dissolution of metals are two of the oldest technical chemical processes. On the atomic scale, these processes are based on the formation and cleavage of metal-metal bonds. During the past 15 years we have studied intensively the intermediates during the formation process of metals, i.e. the formation of compounds containing many metal-metal bonds between naked metal atoms in the center and ligand-bearing metal atoms at the surface. We have called the clusters metalloid or, more generally, elementoid clusters. Via a retrosynthetic route, the many different Al and Ga metalloid clusters which have been structurally characterized allow us to understand also the dissolution process; i.e. the cleavage of metal-metal (M-M) bonds. However, this process can be detected much more directly by the reaction of single metal atom clusters in the gas phase under high vacuum conditions. A suitable tool to monitor the dissolution process of a metal cluster in the gas phase is FT-ICR (Fourier transform ion cyclotron resonance) mass spectrometry. Snapshots during these cleavage processes are possible because only every 1-10 s is there a contact between a cluster molecule and an oxidizing molecule (e.g. Cl2). This period is long, i.e. the formation of the primary product (a smaller metal atom cluster) is finished before the next collision happens. We have studied three different types of reaction:(1) Step-by-step fragmentation of a structurally known metalloid cluster allows us to understand the bonding principle of these clusters because in every step only the weakest bond is broken.(2) There are three oxidation reactions of an Al13(-) cluster molecule with Cl2, HCl and O2 central to this review. These three reactions represent three different reaction types, (a) an exothermic reaction (Cl2), (b) an endothermic reaction (HCl), and (c) a kinetically limited reaction based on spin conservation rules (O2).(3) Finally, we present the reaction of a metalloid cluster with Cl2

  5. Exploring possible reaction pathways for the o-atom transfer reactions to unsaturated substrates catalyzed by a [Ni-NO2 ] ↔ [Ni-NO] redox couple using DFT methods.

    Science.gov (United States)

    Tsipis, Athanassios C

    2017-07-15

    The (nitro)(N-methyldithiocarbamato)(trimethylphospane)nickel(II), [Ni(NO2 )(S2 CNHMe)(PMe3 )] complex catalyses efficiently the O-atom transfer reactions to CO and acetylene. Energetically feasible sequence of elementary steps involved in the catalytic cycle of the air oxidation of CO and acetylene are proposed promoted by the Ni(NO2 )(S2 CNHMe)(PMe3 )] ↔ Ni(NO2 )(S2 CNHMe)(PMe3 ) redox couple using DFT methods both in vacuum and dichloromethane solutions. The catalytic air oxidation of HC≡CH involves formation of a five-member metallacycle intermediate, via a [3 + 2] cyclo-addition reaction of HC≡CH to the Ni-N = O moiety of the Ni(NO2 )(S2 CNHMe)(PMe3 )] complex, followed by a β H-atom migration toward the Cα carbon atom of the coordinated acetylene and release of the oxidation product (ketene). The geometric and energetic reaction profile for the reversible [Ni( κN1-NO2 )(S2 CNHMe)(PMe3 )] ⇌ [Ni( κO,O2-ONO)(S2 CNHMe)(PMe3 )] linkage isomerization has also been modeled by DFT calculations. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. High temperature shock tube studies on the thermal decomposition of O3 and the reaction of dimethyl carbonate with O-atoms.

    Science.gov (United States)

    Peukert, S L; Sivaramakrishnan, R; Michael, J V

    2013-05-09

    The shock tube technique was used to study the thermal decomposition of ozone, O3, with a view to using this as a thermal precursor of O-atoms at high temperatures. The formation of O-atoms was measured behind reflected shock waves by using atomic resonance absorption spectrometry (ARAS). The experiments span a T-range, 819 K ≤ T ≤ 1166 K, at pressures 0.13 bar ≤ P ≤ 0.6 bar. Unimolecular rate theory provides an excellent representation of the falloff characteristics from the present and literature data on ozone decomposition at high temperatures. The present decomposition study on ozone permits its usage as a thermal source for O-atoms allowing measurements for, O + CH3OC(O)OCH3 → OH + CH3OC(O)OCH2 [A]. Reflected shock tube experiments monitoring the formation and decay of O-atoms were performed on reaction A using mixtures of O3 and CH3OC(O)OCH3, (DMC), in Kr bath gas over the T-range, 862 K ≤ T ≤ 1167 K, and pressure range, 0.15 bar ≤ P ≤ 0.33 bar. A detailed model was used to fit the O-atom temporal profile to obtain experimental rate constants for reaction A. Rate constants from the present experiments for O + DMC can be represented by the Arrhenius expression: kA(T) = 2.70 × 10(-11) exp(-2725 K/T) cm(3) molecule(-1) s(-1) (862-1167 K). Transition state theory calculations employing CCSD(T)/cc-pv∞z//M06-2X/cc-pvtz energetics and molecular properties for reaction A are in good agreement with the experimental rate constants. The theoretical rate constants can be well represented (to within ±10%) over the 500-2000 K temperature range by: kA(T) = 1.87 × 10(-20)T(2.924) exp(-2338 K/T) cm(3) molecule(-1) s(-1). The present study represents the first experimental measurement and theoretical study on this bimolecular reaction which is of relevance to the high temperature oxidation of DMC.

  7. Theoretical Kinetics Analysis for Ḣ Atom Addition to 1,3-Butadiene and Related Reactions on the Ċ4H7 Potential Energy Surface.

    Science.gov (United States)

    Li, Yang; Klippenstein, Stephen J; Zhou, Chong-Wen; Curran, Henry J

    2017-09-08

    As the simplest conjugated hydrocarbon, 1,3-butadiene oxidation chemistry can provide a first step in understanding the role of poly-unsaturated hydrocarbons in combustion and, in particular, an understanding of their contribution towards soot formation. Based on our previous work on propene and the butene isomers (1-, 2- and isobutene), it was found that the reaction kinetics of H-atom addition to the C=C double bond plays a significant role in fuel consumption kinetics and influences the predictions of high-temperature ignition delay times, product species concentrations and flame speed measurements. In this study, the rate constants and thermodynamic properties for Ḣ-atom addition to 1,3-butadiene and related reactions on the Ċ4H7 potential energy surface (PES) have been calculated using two different series of quantum chemical methods and two different kinetic solvers. The calculated results including Zero Point Energies (ZPEs), Single Point Energies (SPEs), rate constants, barrier heights and thermochemistry are systematically compared among the two methods. 1-methylallyl (Ċ4H71-3) and 3-buten-1-yl (Ċ4H71-4) radicals and C2H4 + Ċ2H3 are found to be the most important channels and reactivity promoting products, respectively. We calculated that terminal addition is dominant (> 80%) compared to internal Ḣ-atom addition at all temperatures in the range 298 - 2000 K. However, this dominance decreases with increasing temperature. Particularly, for the bimolecular reaction C4H6 + Ḣ ↔ products and C2H4 +Ċ2H3 ↔ products, the calculated rate constants are in excellent agreement with both experimental and theoretical results from the literature. For selected C4 species, the calculated thermochemical values are also in good agreement with literature data. In addition, the rate constants for H-atom abstraction by Ḣ atoms have also been calculated, and it is found that abstraction from the central carbon atoms is the dominant channel (> 70%) at temperatures

  8. On the directionality of halogen bonding.

    Science.gov (United States)

    Huber, Stefan M; Scanlon, Joseph D; Jimenez-Izal, Elisa; Ugalde, Jesus M; Infante, Ivan

    2013-07-07

    The origin of the high directionality of halogen bonding was investigated quantum chemically by a detailed comparison of typical adducts in two different orientations: linear (most stable) and perpendicular. Energy decomposition analyses revealed that the synergy between charge-transfer interactions and Pauli repulsion are the driving forces for the directionality, while electrostatic contributions are more favourable in the less-stable, perpendicular orientation.

  9. Retention of Halogens in Waste Glass

    Energy Technology Data Exchange (ETDEWEB)

    Hrma, Pavel R.

    2010-05-01

    In spite of their potential roles as melting rate accelerators and foam breakers, halogens are generally viewed as troublesome components for glass processing. Of five halogens, F, Cl, Br, I, and At, all but At may occur in nuclear waste. A nuclear waste feed may contain up to 10 g of F, 4 g of Cl, and ≤100 mg of Br and I per kg of glass. The main concern is halogen volatility, producing hazardous fumes and particulates, and the radioactive iodine 129 isotope of 1.7x10^7-year half life. Because F and Cl are soluble in oxide glasses and tend to precipitate on cooling, they can be retained in the waste glass in the form of dissolved constituents or as dispersed crystalline inclusions. This report compiles known halogen-retention data in both high-level waste (HLW) and low-activity waste (LAW) glasses. Because of its radioactivity, the main focus is on I. Available data on F and Cl were compiled for comparison. Though Br is present in nuclear wastes, it is usually ignored; no data on Br retention were found.

  10. Skin Sensitizing Potency of Halogenated Platinum Salts.

    Science.gov (United States)

    The relationship between occupational exposure to halogenated platinum (Pt) salts and Pt-specific allergic sensitization is well-established. Although human case reports and clinical studies demonstrate that Pt salts are potent skin sensitizers, no studies have been published tha...

  11. Syntheses of very dense halogenated liquids.

    Science.gov (United States)

    Ye, Chengfeng; Shreeve, Jean'ne M

    2004-09-17

    A family of halogenated liquids with densities ranging from 1.95 to 2.80 g cm(-3) was readily synthesized by a one-pot procedure. These liquids exhibit characteristics of ionic liquids with melting/transition points lower than room temperature, long liquid ranges, and marked hydrolytic and thermal stabilities.

  12. Retention of Halogens in Waste Glass

    Energy Technology Data Exchange (ETDEWEB)

    Hrma, Pavel R.

    2010-05-01

    In spite of their potential roles as melting rate accelerators and foam breakers, halogens are generally viewed as troublesome components for glass processing. Of five halogens, F, Cl, Br, I, and At, all but At may occur in nuclear waste. A nuclear waste feed may contain up to 10 g of F, 4 g of Cl, and ≤100 mg of Br and I per kg of glass. The main concern is halogen volatility, producing hazardous fumes and particulates, and the radioactive iodine 129 isotope of 1.7x10^7-year half life. Because F and Cl are soluble in oxide glasses and tend to precipitate on cooling, they can be retained in the waste glass in the form of dissolved constituents or as dispersed crystalline inclusions. This report compiles known halogen-retention data in both high-level waste (HLW) and low-activity waste (LAW) glasses. Because of its radioactivity, the main focus is on I. Available data on F and Cl were compiled for comparison. Though Br is present in nuclear wastes, it is usually ignored; no data on Br retention were found.

  13. Evidence of a reduction reaction of oxidized iron/cobalt by boron atoms diffused toward naturally oxidized surface of CoFeB layer during annealing

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Soshi, E-mail: sato.soshi@cies.tohoku.ac.jp; Honjo, Hiroaki; Niwa, Masaaki [Center for Innovative Integrated Electronic Systems, Tohoku University, 468-1 Aza-aoba, Aramaki, Aoba-ku, Sendai 980-0845 (Japan); JST-ACCEL, 468-1 Aza-aoba, Aramaki, Aoba-ku, Sendai 980-0845 (Japan); Ikeda, Shoji [Center for Innovative Integrated Electronic Systems, Tohoku University, 468-1 Aza-aoba, Aramaki, Aoba-ku, Sendai 980-0845 (Japan); JST-ACCEL, 468-1 Aza-aoba, Aramaki, Aoba-ku, Sendai 980-0845 (Japan); Center for Spintronics Integrated Systems, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Ohno, Hideo [Center for Innovative Integrated Electronic Systems, Tohoku University, 468-1 Aza-aoba, Aramaki, Aoba-ku, Sendai 980-0845 (Japan); Center for Spintronics Integrated Systems, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); WPI-Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Endoh, Tetsuo [Center for Innovative Integrated Electronic Systems, Tohoku University, 468-1 Aza-aoba, Aramaki, Aoba-ku, Sendai 980-0845 (Japan); JST-ACCEL, 468-1 Aza-aoba, Aramaki, Aoba-ku, Sendai 980-0845 (Japan); Center for Spintronics Integrated Systems, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Graduate School of Engineering, Tohoku University, 6-6 Aza-aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan)

    2015-04-06

    We have investigated the redox reaction on the surface of Ta/CoFeB/MgO/CoFeB magnetic tunnel junction stack samples after annealing at 300, 350, and 400 °C for 1 h using angle-resolved X-ray photoelectron spectroscopy for precise analysis of the chemical bonding states. At a capping tantalum layer thickness of 1 nm, both the capping tantalum layer and the surface of the underneath CoFeB layer in the as-deposited stack sample were naturally oxidized. By comparison of the Co 2p and Fe 2p spectra among the as-deposited and annealed samples, reduction of the naturally oxidized cobalt and iron atoms occurred on the surface of the CoFeB layer. The reduction reaction was more significant at higher annealing temperature. Oxidized cobalt and iron were reduced by boron atoms that diffused toward the surface of the top CoFeB layer. A single CoFeB layer was prepared on SiO{sub 2}, and a confirmatory evidence of the redox reaction with boron diffusion was obtained by angle-resolved X-ray photoelectron spectroscopy analysis of the naturally oxidized surface of the CoFeB single layer after annealing. The redox reaction is theoretically reasonable based on the Ellingham diagram.

  14. A MCM modeling study of the effects of nitryl chloride on oxidant budgets, ozone production, VOC lifetimes, and halogen recycling in polluted regions

    Science.gov (United States)

    Riedel, T. P.; Thornton, J. A.; Wolfe, G. M.; Gilman, J. B.; Kuster, W. C.; De Gouw, J. A.; Bon, D.; Vlasenko, A. L.; Li, S.; Williams, E. J.; Lerner, B. M.; Veres, P. R.; Roberts, J. M.

    2012-12-01

    Nitryl chloride (ClNO2) is produced at night by reactions of dinitrogen pentoxide (N2O5) on chloride containing particles. Nitryl chloride is photolyzed during the day to liberate highly reactive chlorine atoms. This chemistry takes place primarily in urban environments where the concentrations of N2O5 precursors (NOx and ozone) are high, though it can likely occur in remote regions at lower intensity. Recent field measurements have illustrated the potential importance of ClNO2 as a chlorine atom source and a NOx reservoir. However, the fate of these chlorine atoms and the overall impact of ClNO2 remain unclear. To this end we have incorporated ClNO2 production, photolysis, and subsequent Cl-atom reactions into an existing Master Chemical Mechanism (MCM version 3.2) based model framework. Cl-atom reactions with alkenes and alcohols not presently part of the MCM have also been added. Using observational constraints from the CalNex 2010 field study, we assess the dominant reactive sinks and sources of chlorine atoms over the course of a model day. Relative to model runs excluding ClNO2 formation, the presence of ClNO2 produces marked changes on a variety of species important to tropospheric chemistry and air quality (e.g. O3, RO2, OH, HO2, ClOx). For example a 50% yield of ClNO2 (max ClNO2 of 1.5 ppb) from nighttime N2O5 reactions leads to a ~10% enhancement in integrated ozone production. VOC and NOx lifetimes are shorter due primarily to enhanced OH from propagation of RO2 produced by Cl-atom chemistry under high NOx. The impact of ClNO2 on daytime halogen atom recycling is substantial, with order of magnitude higher daytime Cl2 production predicted with ClNO2 chemistry than without. In fact, incorporation of ClNO2 could help explain daytime levels of Cl2 observed in polluted coastal regions. Additionally, we highlight a set of chlorinated VOC oxidation products that are predicted to form at small, but potentially detectable levels in regions with similar VOC

  15. A two-level atom and the problem of the radiation reaction in the semiclassical theory: optical Bloch equations revisited

    Science.gov (United States)

    Surdutovich, G. I.; Ghiner, A. V.

    2000-08-01

    A famous model of a two-level atom interacting with the classical electromagnetic field is used to illustrate the fundamental problem of the relationship between the dynamical and relaxation processes under the interaction of radiation with a quantum-mechanical system and, as a result, to derive nonlinear Bloch-like equations. The presented considerations are based on the analysis of the balance of the fluxes of energy between atomic and field subsystems. It is shown that the generally accepted model of the exponential relaxation deduced for an isolated excited atom and inserted customarily into optical Bloch equations (OBE) describing atom in an external field always leads to a very strange result: spontaneous emission of an atom should be accompanied by the radiation of the coherent field into the external field's mode. Making use of only the energetic considerations, we found the relaxation mechanism (in the form of additional terms in the OBE) which, on the one hand, guarantees the fulfillment of the energetic balance and, on the other hand, allows to introduce arbitrary additional collision-like relaxation mechanism without violation of this balance. Note that these additional terms introduced into OBE from the energetic considerations in a remarkable manner exactly correspond to the renormalization of the external field with the allowance of the classical radiation damping (RD) effect. The revisited OBE may be used as the starting point for considering the dynamics of an atom by making allowance for the quantum properties of an external field.

  16. Rate coefficients for hydrogen abstraction reaction of pinonaldehyde C10H16O2 with Cl atoms between 200 and 400 K: A DFT study

    Indian Academy of Sciences (India)

    G SRINIVASULU; B RAJAKUMAR

    2016-06-01

    The kinetics of the reaction between pinonaldehyde C10H16O2 and Cl atom were studied usinghigh level ab initio G3(MP2) and DFT based MPWB1K/6-31+G(d) and MPW1K/6-31+G(d) levels of theoriescoupled with Conventional Transition State Theory in the temperature range between 200 and 400 K. Thenegative temperature dependent rate expression for the title reaction obtained with Wigner’s and Eckart’s symmetricaltunneling corrections are k(T)=(5.1 ± 0.56) × 10−19T2.35exp[(2098 ± 2)/T] cm3 molecule-1 s-1, and k(T)=(0.92 ± 0.18) × 10-19T2.60exp[(2204 ± 4)/T] cm3 molecule-1 s-1, respectively, at G3(MP2)//MPWB1Kmethod. The H abstraction reaction from the –CHO group was found to be the most dominant reaction channelamong all the possible reaction pathways and its corresponding rate coefficient at 300 K is kEckart’s unsymmetrical= 3.86 ×10-10 cm3 molecule-1 s-1. Whereas the channel with immediate lower activation energy is the H-abstraction from –CH- group (Tertiary H-abstraction site, Cg). The rate coefficient for this channel is kCg(Eckart’s unsymmetrical) = 1.83 ×10-15 cm3 molecule-1 s-1 which is smaller than the dominant channel byfive orders of magnitude. The atmospherically relevant parameters such as lifetimes were computed in thisinvestigation of its reaction with Cl atom.

  17. Crossed-beam reaction of carbon atoms with hydrocarbon molecules. V. Chemical dynamics of n-C4H3 formation from reaction of C(3Pj) with allene, H2CCCH2(X 1A1)

    Science.gov (United States)

    Kaiser, R. I.; Mebel, A. M.; Chang, A. H. H.; Lin, S. H.; Lee, Y. T.

    1999-06-01

    The crossed molecular beams technique was employed to investigate the reaction between ground state carbon atoms, C(3Pj), and allene, H2CCCH2(X 1A1), at two averaged collision energies of 19.6 and 38.8 kJ mol-1. Product angular distributions and time-of-flight spectra of C4H3 were recorded. Forward-convolution fitting of the data yields weakly polarized center-of-mass angular flux distributions isotropic at lower, but forward scattered with respect to the carbon beam at a higher collision energy. The maximum translational energy release and the angular distributions combined with ab initio and RRKM calculations are consistent with the formation of the n-C4H3 radical in its electronic ground state. The channel to the i-C4H3 isomer contributes less than 1.5%. Reaction dynamics inferred from the experimental data indicate that the carbon atom attacks the π-orbitals of the allenic carbon-carbon double bond barrierless via a loose, reactant-like transition state located at the centrifugal barrier. The initially formed cyclopropylidene derivative rotates in a plane almost perpendicular to the total angular momentum vector around its C-axis and undergoes ring opening to triplet butatriene. At higher collision energy, the butatriene complex decomposes within 0.6 ps via hydrogen emission to form the n-C4H3 isomer and atomic hydrogen through an exit transition state located 9.2 kJ mol-1 above the products. The explicit identification of the n-C4H3 radical under single collision represents a further example of a carbon-hydrogen exchange in reactions of ground state carbon atoms with unsaturated hydrocarbons. This channel opens a barrierless route to synthesize extremely reactive hydrocarbon radicals in combustion processes, interstellar chemistry, and hydrocarbon-rich atmospheres of Jupiter, Saturn, Titan, as well as Triton.

  18. Growth of Ge nanofilms using electrochemical atomic layer deposition, with a "bait and switch" surface-limited reaction.

    Science.gov (United States)

    Liang, Xuehai; Zhang, Qinghui; Lay, Marcus D; Stickney, John L

    2011-06-01

    Ge nanofilms were deposited from aqueous solutions using the electrochemical analog of atomic layer deposition (ALD). Direct electrodeposition of Ge from an aqueous solution is self-limited to a few monolayers, depending on the pH. This report describes an E-ALD process for the growth of Ge films from aqueous solutions. The E-ALD cycle involved inducing a Ge atomic layer to deposit on a Te atomic layer formed on Ge, via underpotential deposition (UPD). The Te atomic layer was then reductively stripped from the deposit, leaving the Ge and completing the cycle. The Te atomic layer was bait for Ge deposition, after which the Te was switched out, reduced to a soluble telluride, leaving the Ge (one "bait and switch" cycle). Deposit thickness was a linear function of the number of cycles. Raman spectra indicated formation of an amorphous Ge film, consistent with the absence of a XRD pattern. Films were more stable and homogeneous when formed on Cu substrates, than on Au, due to a larger hydrogen overpotential, and the corresponding lower tendency to form bubbles.

  19. Differential steric effects in Cl reactions with aligned CHD3(v1 = 1) by the R(0) and Q(1) transitions. II. Abstracting the unexcited D-atoms

    Science.gov (United States)

    Wang, Fengyan; Liu, Kopin

    2016-10-01

    A complete set of four polarization-dependent differential cross sections in the reactions of Cl + aligned-CHD 3 ( v 1 = 1 , |" separators=" jK > ) → DCl ( v = 0 ) + CHD 2 ( v 1 = 1 ) is reported here for two different, rotationally polarized states with j = 1: specifically the |" separators=" jK > = |" separators=" 10 > state prepared via the R(0) excitation and the |" separators=" 1 ± 1 > state via Q(1). In stark contrast to the complicated situation of the HCl(v) + CD3(v = 0) channel reported in Paper-I, the stereo-requirement of this isotopic channel for both polarized reactants appears quite straightforward and consistent with a direct rebound mechanism. The extent of steric effects is moderate and relatively smaller than the alternative H-atom abstraction channel. All major findings reported here can qualitatively be understood by first noting that the present reaction invokes abstracting a D-atom, which is the spectator in the IR-excitation process. Next, it is recognized that the directional properties of two polarized states of CHD 3 ( v 1 = 1 , |" separators=" jK > ) should manifest primarily in the IR-excited C-H bond, leaving secondary imprints in the unexcited CD3-moiety. The stereo-specificity of the DCl + CHD2 product channel is further reduced by the fact that the abstraction can occur with any one of the three spatially distinct D-atoms.

  20. Extending Halogen-based Medicinal Chemistry to Proteins: IODO-INSULIN AS A CASE STUDY.

    Science.gov (United States)

    El Hage, Krystel; Pandyarajan, Vijay; Phillips, Nelson B; Smith, Brian J; Menting, John G; Whittaker, Jonathan; Lawrence, Michael C; Meuwly, Markus; Weiss, Michael A

    2016-12-30

    Insulin, a protein critical for metabolic homeostasis, provides a classical model for protein design with application to human health. Recent efforts to improve its pharmaceutical formulation demonstrated that iodination of a conserved tyrosine (Tyr(B26)) enhances key properties of a rapid-acting clinical analog. Moreover, the broad utility of halogens in medicinal chemistry has motivated the use of hybrid quantum- and molecular-mechanical methods to study proteins. Here, we (i) undertook quantitative atomistic simulations of 3-[iodo-Tyr(B26)]insulin to predict its structural features, and (ii) tested these predictions by X-ray crystallography. Using an electrostatic model of the modified aromatic ring based on quantum chemistry, the calculations suggested that the analog, as a dimer and hexamer, exhibits subtle differences in aromatic-aromatic interactions at the dimer interface. Aromatic rings (Tyr(B16), Phe(B24), Phe(B25), 3-I-Tyr(B26), and their symmetry-related mates) at this interface adjust to enable packing of the hydrophobic iodine atoms within the core of each monomer. Strikingly, these features were observed in the crystal structure of a 3-[iodo-Tyr(B26)]insulin analog (determined as an R6 zinc hexamer). Given that residues B24-B30 detach from the core on receptor binding, the environment of 3-I-Tyr(B26) in a receptor complex must differ from that in the free hormone. Based on the recent structure of a "micro-receptor" complex, we predict that 3-I-Tyr(B26) engages the receptor via directional halogen bonding and halogen-directed hydrogen bonding as follows: favorable electrostatic interactions exploiting, respectively, the halogen's electron-deficient σ-hole and electronegative equatorial band. Inspired by quantum chemistry and molecular dynamics, such "halogen engineering" promises to extend principles of medicinal chemistry to proteins.

  1. Identification of atomic-level mechanisms for gas-phase X- + CH3Y SN2 reactions by combined experiments and simulations.

    Science.gov (United States)

    Xie, Jing; Otto, Rico; Mikosch, Jochen; Zhang, Jiaxu; Wester, Roland; Hase, William L

    2014-10-21

    For the traditional model of gas-phase X(-) + CH3Y SN2 reactions, C3v ion-dipole pre- and postreaction complexes X(-)---CH3Y and XCH3---Y(-), separated by a central barrier, are formed. Statistical intramolecular dynamics are assumed for these complexes, so that their unimolecular rate constants are given by RRKM theory. Both previous simulations and experiments have shown that the dynamics of these complexes are not statistical and of interest is how these nonstatistical dynamics affect the SN2 rate constant. This work also found there was a transition from an indirect, nonstatistical, complex forming mechanism, to a direct mechanism, as either the vibrational and/or relative translational energy of the reactants was increased. The current Account reviews recent collaborative studies involving molecular beam ion-imaging experiments and direct (on-the-fly) dynamics simulations of the SN2 reactions for which Cl(-), F(-), and OH(-) react with CH3I. Also considered are reactions of the microsolvated anions OH(-)(H2O) and OH(-)(H2O)2 with CH3I. These studies have provided a detailed understanding of the atomistic mechanisms for these SN2 reactions. Overall, the atomistic dynamics for the Cl(-) + CH3I SN2 reaction follows those found in previous studies. The reaction is indirect, complex forming at low reactant collision energies, and then there is a transition to direct reaction between 0.2 and 0.4 eV. The direct reaction may occur by rebound mechanism, in which the ClCH3 product rebounds backward from the I(-) product or a stripping mechanism in which Cl(-) strips CH3 from the I atom and scatters in the forward direction. A similar indirect to direct mechanistic transition was observed in previous work for the Cl(-) + CH3Cl and Cl(-) + CH3Br SN2 reactions. At the high collision energy of 1.9 eV, a new indirect mechanism, called the roundabout, was discovered. For the F(-) + CH3I reaction, there is not a transition from indirect to direct reaction as Erel is increased

  2. Halogen-free ionic liquids and their utilization as cellulose solvents

    Science.gov (United States)

    Gräsvik, John; Eliasson, Bertil; Mikkola, Jyri-Pekka

    2012-11-01

    This work demonstrates a novel synthesis route to halogen-free ionic liquids. A one-pot synthetic reaction route avoiding the use of toxic and high-energetic alkyl halides was developed to reduce the environmental impact of the synthesis process of ionic liquids. However, the elimination of halogens and alkyl halides in the preparation of ionic liquids is not just an environmental issue: the aforementioned species are also among the most common and persistent contaminants in today's Ionic Liquids (ILs). Thus, this paper introduces a range of quaternized nitrogen based ionic liquids, including both aromatic and non-aromatic components, all prepared without alkyl halides in any step of the process. Moreover, bio-renewable precursors such as (bio-)alcohols and carboxylic acids were employed as anion sources and alkylation media, thus avoiding halogen contamination or halogen-containing anions. The IL's prepared were designed to dissolve cellulose, some of which was included in a cellulose dissolution study using a sulphite cellulose from the company Domsjö.

  3. Are superhalogens without halogen ligand capable of transcending traditional halogen-based superhalogens? Ab initio case study of binuclear anions based on pseudohalogen ligand

    Science.gov (United States)

    Li, Jin-Feng; Sun, Yin-Yin; Bai, Hongcun; Li, Miao-Miao; Li, Jian-Li; Yin, Bing

    2015-06-01

    The superhalogen properties of polynuclear structures without halogen ligand are theoretically explored here for several [M2(CN)5]-1 (M = Ca, Be) clusters. At CCSD(T) level, these clusters have been confirmed to be superhalogens due to their high vertical electron detachment energies (VDE). The largest one is 9.70 eV for [Ca2(CN)5]-1 which is even higher than those of corresponding traditional structures based on fluorine or chlorine ligands. Therefore the superhalogens stronger than the traditional halogen-based structures could be realized by ligands other than halogen atoms. Compared with CCSD(T), outer valence Green's function (OVGF) method either overestimates or underestimates the VDEs for different structures while MP2 results are generally consistent in the aspect of relative values. The extra electrons of the highest VDE anions here aggregate on the bridging CN units with non-negligible distribution occurring on other CN units too. These two features lower both the potential and kinetic energies of the extra electron respectively and thus lead to high VDE. Besides superhalogen properties, the structures, relative stabilities and thermodynamic stabilities with respect to the detachment of cyanide ligand were also investigated. The sum of these results identifies the potential of polynuclear structures with pseudohalogen ligand as suitable candidates with enhanced superhalogens properties.

  4. Are superhalogens without halogen ligand capable of transcending traditional halogen-based superhalogens? Ab initio case study of binuclear anions based on pseudohalogen ligand

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jin-Feng; Sun, Yin-Yin; Li, Miao-Miao; Li, Jian-Li; Yin, Bing, E-mail: rayinyin@nwu.edu.cn [MOE Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi’an 710069 (China); Bai, Hongcun [Key Laboratory of Energy Source and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021 (China)

    2015-06-15

    The superhalogen properties of polynuclear structures without halogen ligand are theoretically explored here for several [M{sub 2}(CN){sub 5}]{sup −1} (M =  Ca, Be) clusters. At CCSD(T) level, these clusters have been confirmed to be superhalogens due to their high vertical electron detachment energies (VDE). The largest one is 9.70 eV for [Ca{sub 2}(CN){sub 5}]{sup −1} which is even higher than those of corresponding traditional structures based on fluorine or chlorine ligands. Therefore the superhalogens stronger than the traditional halogen-based structures could be realized by ligands other than halogen atoms. Compared with CCSD(T), outer valence Green’s function (OVGF) method either overestimates or underestimates the VDEs for different structures while MP2 results are generally consistent in the aspect of relative values. The extra electrons of the highest VDE anions here aggregate on the bridging CN units with non-negligible distribution occurring on other CN units too. These two features lower both the potential and kinetic energies of the extra electron respectively and thus lead to high VDE. Besides superhalogen properties, the structures, relative stabilities and thermodynamic stabilities with respect to the detachment of cyanide ligand were also investigated. The sum of these results identifies the potential of polynuclear structures with pseudohalogen ligand as suitable candidates with enhanced superhalogens properties.

  5. Are superhalogens without halogen ligand capable of transcending traditional halogen-based superhalogens? Ab initio case study of binuclear anions based on pseudohalogen ligand

    Directory of Open Access Journals (Sweden)

    Jin-Feng Li

    2015-06-01

    Full Text Available The superhalogen properties of polynuclear structures without halogen ligand are theoretically explored here for several [M2(CN5]−1 (M =  Ca, Be clusters. At CCSD(T level, these clusters have been confirmed to be superhalogens due to their high vertical electron detachment energies (VDE. The largest one is 9.70 eV for [Ca2(CN5]−1 which is even higher than those of corresponding traditional structures based on fluorine or chlorine ligands. Therefore the superhalogens stronger than the traditional halogen-based structures could be realized by ligands other than halogen atoms. Compared with CCSD(T, outer valence Green’s function (OVGF method either overestimates or underestimates the VDEs for different structures while MP2 results are generally consistent in the aspect of relative values. The extra electrons of the highest VDE anions here aggregate on the bridging CN units with non-negligible distribution occurring on other CN units too. These two features lower both the potential and kinetic energies of the extra electron respectively and thus lead to high VDE. Besides superhalogen properties, the structures, relative stabilities and thermodynamic stabilities with respect to the detachment of cyanide ligand were also investigated. The sum of these results identifies the potential of polynuclear structures with pseudohalogen ligand as suitable candidates with enhanced superhalogens properties.

  6. Electrostatically enhanced FF interactions through hydrogen bonding, halogen bonding and metal coordination: an ab initio study.

    Science.gov (United States)

    Bauzá, Antonio; Frontera, Antonio

    2016-07-27

    In this manuscript the ability of hydrogen and halogen bonding interactions, as well as metal coordination to enhance FF interactions involving fluorine substituted aromatic rings has been studied at the RI-MP2/def2-TZVPD level of theory. We have used 4-fluoropyridine, 4-fluorobenzonitrile, 3-(4-fluorophenyl)propiolonitrile and their respective meta derivatives as aromatic compounds. In addition, we have used HF and IF as hydrogen and halogen bond donors, respectively, and Ag(i) as the coordination metal. Furthermore, we have also used HF as an electron rich fluorine donor entity, thus establishing FF interactions with the above mentioned aromatic systems. Moreover, a CSD (Cambridge Structural Database) search has been carried out and some interesting examples have been found, highlighting the impact of FF interactions involving aromatic fluorine atoms in solid state chemistry. Finally, cooperativity effects between FF interactions and both hydrogen and halogen bonding interactions have been analyzed and compared. We have also used Bader's theory of "atoms in molecules" to further describe the cooperative effects.

  7. Halogen bonding interactions between brominated ion pairs and CO2 molecules: implications for design of new and efficient ionic liquids for CO2 absorption.

    Science.gov (United States)

    Zhu, Xiang; Lu, Yunxiang; Peng, Changjun; Hu, Jun; Liu, Honglai; Hu, Ying

    2011-04-14

    In recent years, several novel halogenated liquids with characteristics of ionic liquids (ILs) were reported. To explore their performance in the absorption of CO(2), in this work, quantum chemical calculations at DFT level have been carried out to investigate halogen bonding interactions between experimentally available brominated ion pairs and CO(2) molecules. It is shown that, as compared to B3LYP, the functional PBE yields geometrical and energetic data more close to those of MP2 for cation-CO(2) systems. The cation of brominated ILs under study can interact with CO(2) molecules through Br···O interactions, possibly making an important impact on the physical solubility of CO(2) in brominated ILs. The optimized geometries of the complexes of the ion pair with CO(2) molecules are quite similar to those of the corresponding complexes of the cation, especially for the essentially linear C-Br···O contacts. However, much weaker halogen bonds are predicted in the former systems, as indicated by the longer intermolecular distances and the smaller interaction energies. Charges derived from NBO analysis reveal the origin of the different optimized conformations and halogen bonding interactions for the CO(2) molecule. Based on the electrostatic potential results, the substitution of hydrogen atoms with fluorine atoms constituting the cation is then applied to enhance halogen bond strength. The QTAIM analysis further validates the existence of halogen bonding interaction in all complexes. The topological properties at the halogen bond critical points indicate that the Br···O interactions in the complexes are basically electrostatic in nature and belong to conventional weak halogen bonds. This study would be helpful for designing new and effective ILs for CO(2) physical absorption.

  8. Oxidation of phenyl and hydride ligands of bis(pentamethylcyclopentadienyl)hafnium derivatives by nitrous oxide via selective oxygen atom transfer reactions: insights from quantum chemistry calculations.

    Science.gov (United States)

    Xie, Hujun; Liu, Chengcheng; Yuan, Ying; Zhou, Tao; Fan, Ting; Lei, Qunfang; Fang, Wenjun

    2016-01-21

    The mechanisms for the oxidation of phenyl and hydride ligands of bis(pentamethylcyclopentadienyl)hafnium derivatives (Cp* = η(5)-C5Me5) by nitrous oxide via selective oxygen atom transfer reactions have been systematically studied by means of density functional theory (DFT) calculations. On the basis of the calculations, we investigated the original mechanism proposed by Hillhouse and co-workers for the activation of N2O. The calculations showed that the complex with an initial O-coordination of N2O to the coordinatively unsaturated Hf center is not a local minimum. Then we proposed a new reaction mechanism to investigate how N2O is activated and why N2O selectively oxidize phenyl and hydride ligands of . Frontier molecular orbital theory analysis indicates that N2O is activated by nucleophilic attack by the phenyl or hydride ligand. Present calculations provide new insights into the activation of N2O involving the direct oxygen atom transfer from nitrous oxide to metal-ligand bonds instead of the generally observed oxygen abstraction reaction to generate metal-oxo species.

  9. Electron-stimulated reactions in layered CO/H{sub 2}O films: Hydrogen atom diffusion and the sequential hydrogenation of CO to methanol

    Energy Technology Data Exchange (ETDEWEB)

    Petrik, Nikolay G.; Kimmel, Greg A., E-mail: gregory.kimmel@pnnl.gov [Physical Sciences Division, Pacific Northwest National Laboratory, MSIN K8-88, P.O. Box 999, Richland, Washington 99352 (United States); Monckton, Rhiannon J.; Koehler, Sven P. K. [School of Chemistry, The University of Manchester, Manchester M13 9PL (United Kingdom); Photon Science Institute, The University of Manchester, Manchester M13 9PL (United Kingdom); UK Dalton Cumbrian Facility, The University of Manchester, Moor Row, Whitehaven CA24 3HA (United Kingdom)

    2014-05-28

    Low-energy (100 eV) electron-stimulated reactions in layered H{sub 2}O/CO/H{sub 2}O ices are investigated. For CO layers buried in amorphous solid water (ASW) films at depths of 50 monolayers (ML) or less from the vacuum interface, both oxidation and reduction reactions are observed. However, for CO buried more deeply in ASW films, only the reduction of CO to methanol is observed. Experiments with layered films of H{sub 2}O and D{sub 2}O show that the hydrogen atoms participating in the reduction of the buried CO originate in the region that is 10–50 ML below the surface of the ASW films and subsequently diffuse through the film. For deeply buried CO layers, the CO reduction reactions quickly increase with temperature above ∼60 K. We present a simple chemical kinetic model that treats the diffusion of hydrogen atoms in the ASW and sequential hydrogenation of the CO to methanol to account for the observations.

  10. An HTP kinetics study of the reaction between ground-state H atoms and NH3 from 500 to 1140 K

    Science.gov (United States)

    Marshall, Paul; Fontijn, Arthur

    1986-09-01

    The H+NH3 reaction has been investigated using the high-temperature photochemistry (HTP) technique. H(1 2S) atoms were generated by flash photolysis of NH3 and monitored by time-resolved atomic resonance fluorescence with pulse counting. The rate coefficient for 660≤T≤1140 K is given by k(T)=(5.7±2.8)×10-10 exp[(-8650±410)K/T] cm3 molecule-1 s-1, where the uncertainties represent one standard deviation based on a propagation of error treatment including systematic errors. The Arrhenius plot reveals curvature between 500 and 660 K which follows the results of quantum mechanical tunneling calculations based on transition state theory and an Eckart potential.

  11. Theoretical Study of Isotopic Effect of Oxygen Atom on the Stereodynamics for the O(3P)+D2→ OD+D Reaction

    Institute of Scientific and Technical Information of China (English)

    LIU Shi-Li; SHI Ying

    2010-01-01

    @@ Quasi-classical trajectory theory is used to study the isotope effect of oxygen atoms on the vector correlations in the O(3p)+D2 reaction at a collision energy of 25kcal/mol using accurate potential energy surface of the 3 A' triplet state.The distributions of p(θr)and the distribution of dihedral angel p(ψr)as well as p(θr,ψr)are calculated.Moreover,four polarization-dependent generalized differential cross sections(PDDCSs)of product are presented in the center-of-mass frame.The results indicate that the polarization of the product presents different characters for the isotope effect of oxygen atoms.Isotopic substitute can cause obviously different effects on the four PDDCSs.

  12. High temperature shock tube and theoretical studies on the thermal decomposition of dimethyl carbonate and its bimolecular reactions with H and D-atoms.

    Science.gov (United States)

    Peukert, S L; Sivaramakrishnan, R; Michael, J V

    2013-05-09

    The shock tube technique was used to study the high temperature thermal decomposition of dimethyl carbonate, CH3OC(O)OCH3 (DMC). The formation of H-atoms was measured behind reflected shock waves by using atomic resonance absorption spectrometry (ARAS). The experiments span a T-range of 1053-1157 K at pressures ∼0.5 atm. The H-atom profiles were simulated using a detailed chemical kinetic mechanism for DMC thermal decomposition. Simulations indicate that the formation of H-atoms is sensitive to the rate constants for the energetically lowest-lying bond fission channel, CH3OC(O)OCH3 → CH3 + CH3OC(O)O [A], where H-atoms form instantaneously at high temperatures from the sequence of radical β-scissions, CH3OC(O)O → CH3O + CO2 → H + CH2O + CO2. A master equation analysis was performed using CCSD(T)/cc-pv∞z//M06-2X/cc-pvtz energetics and molecular properties for all thermal decomposition processes in DMC. The theoretical predictions were found to be in good agreement with the present experimentally derived rate constants for the bond fission channel (A). The theoretically derived rate constants for this important bond-fission process in DMC can be represented by a modified Arrhenius expression at 0.5 atm over the T-range 1000-2000 K as, kA(T) = 6.85 × 10(98)T (-24.239) exp(-65250 K/T) s(-1). The H-atom temporal profiles at long times show only minor sensitivity to the abstraction reaction, H + CH3OC(O)OCH3 → H2 + CH3OC(O)OCH2 [B]. However, H + DMC is an important fuel destruction reaction at high temperatures. Consequently, measurements of D-atom profiles using D-ARAS allowed unambiguous rate constant measurements for the deuterated analog of reaction B, D + CH3OC(O)OCH3 → HD + CH3OC(O)OCH2 [C]. Reaction C is a surrogate for H + DMC since the theoretically predicted kinetic isotope effect at high temperatures (1000 - 2000K) is close to unity, kC ≈ 1.2 kB. TST calculations employing CCSD(T)/cc-pv∞z//M06-2X/cc-pvtz energetics and molecular properties

  13. Hydroxyl radical substitution in halogenated carbonyls: oxalic acid formation.

    Science.gov (United States)

    Christiansen, Carrie J; Dalal, Shakeel S; Francisco, Joseph S; Mebel, Alexander M; Gaffney, Jeffrey S

    2010-03-04

    An ab initio study of OH radical substitution reactions in halogenated carbonyls is conducted. Hydroxyl radical substitution into oxalyl dichloride [ClC(O)C(O)Cl] and oxalyl dibromide [BrC(O)C(O)Br], resulting in the formation of oxalic acid, is presented. Analogous substitution reactions in formyl chloride [ClCH(O)], acetyl chloride [ClC(O)CH(3)], formyl bromide [BrCH(O)], and acetyl bromide [BrC(O)CH(3)] are considered. Energetics of competing hydrogen abstraction reactions for all applicable species are computed for comparison. Geometry optimizations and frequency computations are performed using the second-order Møller-Plesset perturbation theory (MP2) and the 6-31G(d) basis set for all minimum species and transition states. Single point energy computations are performed using fourth-order Møller-Plesset perturbation theory (MP4) and coupled cluster theory [CCSD(T)]. Potential energy surfaces, including activation energies and enthalpies, are determined from the computations. These potential energy surfaces show that OH substitution into ClC(O)C(O)Cl and BrC(O)C(O)Br, resulting in the formation of oxalic acid and other minor products, is energetically favorable. Energetics of analogous reactions with ClCH(O), BrCH(O), ClC(O)CH(3), and BrC(O)CH(3) are also computed.

  14. The effect of defects on the catalytic activity of single Au atom supported carbon nanotubes and reaction mechanism for CO oxidation.

    Science.gov (United States)

    Ali, Sajjad; Fu Liu, Tian; Lian, Zan; Li, Bo; Sheng Su, Dang

    2017-08-23

    The mechanism of CO oxidation by O2 on a single Au atom supported on pristine, mono atom vacancy (m), di atom vacancy (di) and the Stone Wales defect (SW) on single walled carbon nanotube (SWCNT) surface is systematically investigated theoretically using density functional theory. We determine that single Au atoms can be trapped effectively by the defects on SWCNTs. The defects on SWCNTs can enhance both the binding strength and catalytic activity of the supported single Au atom. Fundamental aspects such as adsorption energy and charge transfer are elucidated to analyze the adsorption properties of CO and O2 and co-adsorption of CO and O2 molecules. It is found that CO binds stronger than O2 on Au supported SWCNT. We clearly demonstrate that the defected SWCNT surface promotes electron transfer from the supported single Au atom to O2 molecules. On the other hand, this effect is weaker for pristine SWCNTs. It is observed that the high density of spin-polarized states are localized in the region of the Fermi level due to the strong interactions between Au (5d orbital) and the adjacent carbon (2p orbital) atoms, which influence the catalytic performance. In addition, we elucidate both the Langmuir-Hinshelwood (LH) and Eley-Rideal (ER) mechanisms of CO oxidation by O2. For the LH pathway, the barriers of the rate-limiting step are calculated to be 0.02 eV and 0.05 eV for Au/m-SWCNT and Au/di-SWCNT, respectively. To regenerate the active sites, an ER-like reaction occurs to form a second CO2 molecule. The ER pathway is observed on Au/m-SWCNT, Au/SW-SWCNT and Au/SWCNT in which the Au/m-SWCNT has a smaller barrier. The comparison with a previous study (Lu et al., J. Phys. Chem. C, 2009, 113, 20156-20160.) indicates that the curvature effect of SWCNTs is important for the catalytic property of the supported single Au. Overall, Au/m-SWCNT is identified as the most active catalyst for CO oxidation compared to pristine SWCNT, SW-SWCNT and di-SWCNT. Our findings give a clear

  15. Temperature dependent kinetics (195-798 K) and H atom yields (298-498 K) from reactions of (1)CH(2) with acetylene, ethene, and propene.

    Science.gov (United States)

    Gannon, K L; Blitz, M A; Liang, C H; Pilling, M J; Seakins, P W; Glowacki, D R

    2010-09-09

    The rate coefficients for the removal of the excited state of methylene, (1)CH(2) (a(1)A(1)), by acetylene, ethene, and propene have been studied over the temperature range 195-798 K by laser flash photolysis, with (1)CH(2) being monitored by laser-induced fluorescence. The rate coefficients of all three reactions exhibit a negative temperature dependence that can be parametrized as k((1)CH(2)+C(2)H(2)) = (3.06 +/- 0.11) x 10(-10) T ((-0.39+/-0.07)) cm(3) molecule(-1) s(-1), k((1)CH(2)+C(2)H(4)) = (2.10 +/- 0.18) x 10(-10) T ((-0.84+/-0.18)) cm(3) molecule(-1) s(-1), k((1)CH(2)+C(3)H(6)) = (3.21 +/- 0.02) x 10(-10) T ((-0.13+/-0.01)) cm(3) molecule(-1) s(-1), where the errors are statistical at the 2sigma level. Removal of (1)CH(2) occurs by chemical reaction and electronic relaxation to ground state triplet methylene. The H atom yields from the reactions of (1)CH(2) with acetylene, ethene, and propene have been determined by laser-induced fluorescence over the temperature range 298-498 K. For the reaction with propene, H atom yields are close to the detection limit, but for acetylene and ethene, the fraction of H atom production is approximately 0.88 and 0.71, respectively, at 298 K, rising to unity by 398 K, with the balance of the reaction with acetylene presumed to be electronic relaxation. Experimental constraints limit studies to a maximum of 1 Torr of bath gas; master equation calculations using an approach that allows treatment of intermediates with deep energy wells have been carried out to explore the role of collisional stabilization for the reaction of (1)CH(2) with acetylene. Stabilization is calculated to be insignificant under the experimental conditions, but does become significant at higher pressures. Between pressures of 100 and 1000 Torr, propyne and allene are formed in similar amounts with a slight preference for propyne. At higher pressures propyne formation becomes about a factor two greater than that of allene, and above 10(5) Torr (300 < T

  16. Comparative computational study of model halogen-bonded complexes of FKrCl.

    Science.gov (United States)

    Joseph, Jerelle A; McDowell, Sean A C

    2015-03-19

    Quantum chemical calculations for the FKrCl molecule at various levels of theory were performed and suggest that this molecule is metastable and may be amenable to experimental synthesis under cryogenic conditions. The FKrCl molecule forms weak halogen-bonded complexes FKrCl···Y with small molecules like FH and H2O and its computed properties were compared with those for analogous complexes of its precursor, FCl, and its rare gas hydride counterpart, FKrH. The cooperative effect of additional noncovalent interactions introduced at the F atom in the FKrCl···Y dimer (to give Z···FKrCl···Y trimers) showed a general strengthening of the intermolecular interactions in the order halogen bond < hydrogen bond < beryllium bond < lithium bond.

  17. Steric Effect for Proton, Hydrogen-Atom, andHydride Transfer Reactions with Geometric Isomers of NADH-Model Ruthenium Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Fujita E.; Cohen, B.W.; Polyansky, D.E.; Achord, P.; Cabelli, D.; Muckerman, J.T.; Tanaka, K.; Thummel, R.P.; Zong, R.

    2012-01-01

    Two isomers, [Ru(1)]{sup 2+} (Ru = Ru(bpy){sub 2}, bpy = 2,2{prime}-bipyridine, 1 = 2-(pyrid-2{prime}-yl)-1-azaacridine) and [Ru(2)]{sup 2+} (2 = 3-(pyrid-2{prime}-yl)-4-azaacridine), are bio-inspired model compounds containing the nicotinamide functionality and can serve as precursors for the photogeneration of C-H hydrides for studying reactions pertinent to the photochemical reduction of metal-C{sub 1} complexes and/or carbon dioxide. While it has been shown that the structural differences between the azaacridine ligands of [Ru(1)]{sup 2+} and [Ru(2)]{sup 2+} have a significant effect on the mechanism of formation of the hydride donors, [Ru(1HH)]{sup 2+} and [Ru(2HH)]{sup 2+}, in aqueous solution, we describe the steric implications for proton, net-hydrogen-atom and net-hydride transfer reactions in this work. Protonation of [Ru(2{sup {sm_bullet}-})]{sup +} in aprotic and even protic media is slow compared to that of [Ru(1{sup {sm_bullet}-})]{sup +}. The net hydrogen-atom transfer between *[Ru(1)]{sup 2+} and hydroquinone (H{sub 2}Q) proceeds by one-step EPT, rather than stepwise electron-proton transfer. Such a reaction was not observed for *[Ru(2)]{sup 2+} because the non-coordinated N atom is not easily available for an interaction with H{sub 2}Q. Finally, the rate of the net hydride ion transfer from [Ru(1HH)]{sup 2+} to [Ph{sub 3}C]{sup +} is significantly slower than that of [Ru(2HH)]{sup 2+} owing to steric congestion at the donor site.

  18. Non-adiabatic dynamics of reactions of O(1D) with Xe, CO, NO2, and CO2 from crossed atomic and molecular beam experiments

    Science.gov (United States)

    Boering, Kristie

    2015-03-01

    Reactions of the first excited state of atomic oxygen, O(1D), with small molecules such as CO, NO2, and CO2 continue to be of interest in aeronomy and atmospheric chemistry, thus providing additional motivation to understand the dynamics of these reactions and how well they are predicted by theory. In collaboration with Prof. Jim Lin of the Institute of Atomic and Molecular Sciences, Academia Sinica, Taiwan, we have studied the dynamics of quenching and non-quenching reactions between O(1D) and various small molecules using a universal crossed atomic and molecular beam apparatus. New experimental results for the dynamics of quenching of O(1D) by Xe and CO will be presented and compared with previous results for NO2 (K.A. Mar, A.L. Van Wyngarden, C.-W. Liang, Y.T. Lee, J.J. Lin, K.A. Boering, J. Chem. Phys., 137, 044302, doi: 10.1063/1.4736567, 2012) and CO2 (M.J. Perri, A.L. Van Wyngarden, K.A. Boering, J.J. Lin, and Y.T. Lee, J. Chem. Phys., 119(16), 8213-8216, 2003; M.J. Perri, A.L. Van Wyngarden, J.J. Lin, Y.T. Lee, and K.A. Boering, J. Phys. Chem. A, 108(39), 7995-8001, doi: 10.1021/jp0485845, 2004). Among the most intriguing of the new results are for quenching of O(1D) by Xe, for which marked oscillations in the differential cross sections were observed for the O(3P) and Xe products. The shape and relative phase of the oscillatory structure depended strongly on collision energy. This behavior is likely due to the quantum nature of the collision dynamics, caused by interferences among multiple curve crossing pathways accessible during electronic quenching, known as Stueckelberg oscillations.

  19. Growth of zinc sulfide thin films on (100)Si with the successive ionic layer adsorption and reaction method studied by atomic force microscopy

    Science.gov (United States)

    Valkonen, Mika P.; Lindroos, Seppo; Resch, Roland; Leskelä, Markku; Friedbacher, Gernot; Grasserbauer, Manfred

    1998-10-01

    Zinc sulfide (ZnS) thin films were grown on (100)Si substrates from solution with the successive ionic layer adsorption and reaction (SILAR) method. Aqueous solutions of ZnCl 2 and Na 2S were used as precursors. The morphological development of the films with increasing number of SILAR cycles was monitored ex situ by atomic force microscopy (AFM) operated in tapping mode. Their roughness increased vs. the growth cycles. AFM studies on (100)Si substrates treated with Na 2S solution revealed that the dissolution of the silicon substrates is a process competing with the thin film growth and has to be considered when interpreting the AFM images.

  20. Matrix-isolation studies on the radiation-induced chemistry in H₂O/CO₂ systems: reactions of oxygen atoms and formation of HOCO radical.

    Science.gov (United States)

    Ryazantsev, Sergey V; Feldman, Vladimir I

    2015-03-19

    The radiation-induced transformations occurring upon X-ray irradiation of solid CO2/H2O/Ng systems (Ng = Ar, Kr, Xe) at 8-10 K and subsequent annealing up to 45 K were studied by Fourier transform infrared spectroscopy. The infrared (IR) spectra of deposited matrices revealed the presence of isolated monomers, dimers, and intermolecular H2O···CO2 complexes. Irradiation resulted in effective decomposition of matrix-isolated carbon dioxide and water yielding CO molecules and OH radicals, respectively. Annealing of the irradiated samples led to formation of O3, HO2, and a number of xenon hydrides of HXeY type (in the case of xenon matrices). The formation of these species was used for monitoring of the postirradiation thermally induced chemical reactions involving O and H atoms generated by radiolysis. It was shown that the radiolysis of CO2 in noble-gas matrices produced high yields of stabilized oxygen atoms. In all cases, the temperatures at which O atoms become mobile and react are lower than those of H atoms. Dynamics and reactivity of oxygen atoms was found to be independent of the precursor nature. In addition, the formation of HOCO radicals was observed in all the noble-gas matrices at remarkably low temperatures. The IR spectra of HOCO and DOCO were first characterized in krypton and xenon matrices. It was concluded that the formation of HOCO was mainly due to the radiation-induced evolution of the weakly bound H2O···CO2 complexes. This result indicates the significance of weak intermolecular interactions in the radiation-induced chemical processes in inert low-temperature media.

  1. An absolute- and relative-rate study of the gas-phase reaction of OH radicals and Cl atoms with n-alkyl nitrates

    DEFF Research Database (Denmark)

    Nielsen, O.J.; Sidebottom, H.W.; Donlon, M.

    1991-01-01

    Rate constants for the reactions of OH radicals and Cl atoms with CH3ONO2, C2H5ONO2, n-C3H7ONO2, n-C4H9ONO2, and n-C5H11ONO2 have been determined at 298 +/- 2 K and a total pressure of approximately 1 atm. The OH rate data were obtained using both the absolute-rate technique of pulse radiolysis...... combined with kinetic spectroscopy and a conventional photolytic relative-rate method. The Cl rate constants were measured using only the relative-rate method. Evidence is presented from the kinetic studies that reaction of OH radicals with alkyl nitrates may involve both addition and abstraction pathways...

  2. Importance of reactive halogens in the tropical marine atmosphere using WRF-chem

    Science.gov (United States)

    Badia, Alba; Reeves, Claire E.; Baker, Alex; Volkamer, Rainer; Apel, Eric; Saiz-Lopez, Alfonso; von Glasow, Roland

    2017-04-01

    Halogen species (chlorine, bromine and iodine) are known to play an important role in the chemistry and oxidizing capacity of the troposphere, particularly in the marine boundary layer (MBL). Reactive halogens participate in catalytic reaction cycles that efficiently destroy O3, change the HOX and NOX partitioning, affect the oxidation of volatile organic compounds (VOCs) and mercury, reduce the lifetime of methane, and take part in new particle formation. Numerical models predicted that reactive halogen compounds account for 30% of O3 destruction in the MBL and 5-20% globally. Up to 34% of O3 loss in the tropical East Pacific is due to I and Br combined. Recent studies have highlighted the key role that heterogeneous chemistry plays in explaining observations of BrO and IO abundances in the tropical troposphere. The main objective of this study is to investigate the atmospheric chemistry in the tropical East Pacific with a focus on reactive halogens using the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) and field data from the TORERO campaign. Our reaction mechanism in WRF-Chem is based on the MOZART mechanism and has been extended to include bromine, chlorine and iodine chemistry. Heterogeneous recycling reactions involving sea-salt aerosol and other particles have been included into the model, along with oceanic emissions of important OVOCs and halocarbons. Sea surface emissions of inorganic iodine are calculated using the parameterisation of Carpenter et al., 2013. Focusing on TORERO observations from the ships and a selected number of flights we present the tropospheric impacts of halogens (BrO, IO) in the tropospheric chemistry of relevant species (O3, OH and OVOCS). Sensitivity runs are made in order to study the impact of heterogeneous chemistry in the iodine and bromine species partitioning. A comparison between the online calculation of Very Short Lived Halocarbons (VSLH) oceanic emissions with prescribed oceanic emissions is

  3. Halogen bonding from a hard and soft acids and bases perspective: investigation by using density functional theory reactivity indices.

    Science.gov (United States)

    Pinter, Balazs; Nagels, Nick; Herrebout, Wouter A; De Proft, Frank

    2013-01-07

    Halogen bonds between the trifluoromethyl halides CF(3)Cl, CF(3)Br and CF(3)I, and dimethyl ether, dimethyl sulfide, trimethylamine and trimethyl phosphine were investigated using Pearson's hard and soft acids and bases (HSAB) concept with conceptual DFT reactivity indices, the Ziegler-Rauk-type energy-decomposition analysis, the natural orbital for chemical valence (NOCV) framework and the non-covalent interaction (NCI) index. It is found that the relative importance of electrostatic and orbital (charge transfer) interactions varies as a function of both the donor and acceptor molecules. Hard and soft interactions were distinguished and characterised by atomic charges, electrophilicity and local softness indices. Dual-descriptor plots indicate an orbital σ hole on the halogen similar to the electrostatic σ hole manifested in the molecular electrostatic potential. The predicted high halogen-bond-acceptor affinity of N-heterocyclic carbenes was evidenced in the highest complexation energy for the hitherto unknown CF(3) I·NHC complex. The dominant NOCV orbital represents an electron-density deformation according to a n→σ*-type interaction. The characteristic signal found in the reduced density gradient versus electron-density diagram corresponds to the non-covalent interaction between contact atoms in the NCI plots, which is the manifestation of halogen bonding within the NCI theory. The unexpected C-X bond strengthening observed in several cases was rationalised within the molecular orbital framework. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Quantum-state-controlled Penning-ionization reactions between ultracold alkali-metal and metastable helium atoms

    Science.gov (United States)

    Flores, A. S.; Vassen, W.; Knoop, S.

    2016-11-01

    In an ultracold, optically trapped mixture of 87Rb and metastable triplet 4He atoms we have studied trap loss for different spin-state combinations, for which interspecies Penning ionization is the main two-body loss process. We observe long trapping lifetimes for the purely quartet spin-state combination, indicating strong suppression of Penning-ionization loss by at least two orders of magnitude. For the other spin mixtures we observe short lifetimes that depend linearly on the doublet character of the entrance channel. We compare the extracted loss rate coefficient with recent predictions of multichannel quantum-defect theory for reactive collisions involving a strong exothermic loss channel and find near-universal loss for doublet scattering. Our work demonstrates control of Penning-ionization reactive collisions by internal atomic state preparation.

  5. Reactions of carbon radicals generated by 1,5-transposition of reactive centers

    Directory of Open Access Journals (Sweden)

    ZIVORAD CEKOVIC

    2005-03-01

    Full Text Available Radical intermediates can undergo specific reactions, such as intramolecular rearrangements, i.e., the transpositions of radical centers, which are not known in classical ionic organic reactions. 1,5-Transposition of a radical center to a non-activated carbon atom are of great synthetic importance. It can be successfully applied for the introduction of different functional groups (oxygen, nitrogen, sulfur, halogens onto a carbon atom remote from the present functional group. In addition to functionalization of a remote non-activated carbon atom, the formation of new C-C bonds on the d-carbon atom have also been achieved. 1,5-Transposition of the radical centers takes place from alkoxyl, aminyl and carbon radicals to a remote carbon atom. Relocation of the radical centers preferentially involves 1,5-transfer of a hydrogen atom, although migrations of some other groups are known. The reactions of the carbon radical generated by 1,5-relocation of the radical center are presented and their synthetic applications are reviewed.

  6. Computational Tools To Model Halogen Bonds in Medicinal Chemistry.

    Science.gov (United States)

    Ford, Melissa Coates; Ho, P Shing

    2016-03-10

    The use of halogens in therapeutics dates back to the earliest days of medicine when seaweed was used as a source of iodine to treat goiters. The incorporation of halogens to improve the potency of drugs is now fairly standard in medicinal chemistry. In the past decade, halogens have been recognized as direct participants in defining the affinity of inhibitors through a noncovalent interaction called the halogen bond or X-bond. Incorporating X-bonding into structure-based drug design requires computational models for the anisotropic distribution of charge and the nonspherical shape of halogens, which lead to their highly directional geometries and stabilizing energies. We review here current successes and challenges in developing computational methods to introduce X-bonding into lead compound discovery and optimization during drug development. This fast-growing field will push further development of more accurate and efficient computational tools to accelerate the exploitation of halogens in medicinal chemistry.

  7. Reaction of hydrogen atoms with singlet delta oxygen (O2(a 1Δg)). Is everything completely clear?

    Science.gov (United States)

    Chukalovsky, A. A.; Klopovsky, K. S.; Palov, A. P.; Mankelevich, Yu A.; Rakhimova, T. V.

    2016-12-01

    In this paper, a comprehensive analysis of the reaction H  +  O2(a 1Δg)  →  products and its channels, including available experimental data, theoretical estimations and kinetic studies, was carried out. A possible intrinsic mechanism of the reaction H  +  O2(a 1Δg)  →  products, taking into account Renner-Teller coupling between the lowest doublet 2A‧ and 2A″ states of a HO2 molecule was suggested. The proposed mechanism allows qualitative justification of the available data on the high probability for the quenching reaction: H  +  O2(a 1Δg)  →  H  +  O2(3Σg). The effect of the reactions, including electronically excited \\text{HO}2\\ast molecules on the evaluation of temperature dependencies for the total and branching rate constants of the reaction H  +  O2(a 1Δg)  →  products at low temperatures, was investigated. The value of the reaction H  +  O2(a 1Δg)(+M)  →  HO2(2A‧,2A″)(+M) rate constant was evaluated from shock tube experiments on O2(a 1Δg) quenching in a lean H2-O2-O2(a 1Δg) mixture. Based on the obtained results, temperature and pressure dependencies for the rate constants of the reaction H  +  O2(a 1Δg)  →  product channels were recommended for the simulations, together with the proposed kinetic sub-mechanism for O2(a 1Δg) chemistry in H2-O2 mixtures.

  8. Crystal structures of four δ-keto esters and a Cambridge Structural Database analysis of cyano-halogen interactions.

    Science.gov (United States)

    Kamal, Kulsoom; Maurya, Hardesh K; Gupta, Atul; Vasudev, Prema G

    2015-10-01

    The revived interest in halogen bonding as a tool in pharmaceutical cocrystals and drug design has indicated that cyano-halogen interactions could play an important role. The crystal structures of four closely related δ-keto esters, which differ only in the substitution at a single C atom (by H, OMe, Cl and Br), are compared, namely ethyl 2-cyano-5-oxo-5-phenyl-3-(piperidin-1-yl)pent-2-enoate, C19H22N2O3, (1), ethyl 2-cyano-5-(4-methoxyphenyl)-5-oxo-3-(piperidin-1-yl)pent-2-enoate, C20H24N2O4, (2), ethyl 5-(4-chlorophenyl)-2-cyano-5-oxo-3-(piperidin-1-yl)pent-2-enoate, C19H21ClN2O3, (3), and the previously published ethyl 5-(4-bromophenyl)-2-cyano-5-oxo-3-(piperidin-1-yl)pent-2-enoate, C19H21BrN2O3, (4) [Maurya, Vasudev & Gupta (2013). RSC Adv. 3, 12955-12962]. The molecular conformations are very similar, while there are differences in the molecular assemblies. Intermolecular C-H...O hydrogen bonds are found to be the primary interactions in the crystal packing and are present in all four structures. The halogenated derivatives have additional aromatic-aromatic interactions and cyano-halogen interactions, further stabilizing the molecular packing. A database analysis of cyano-halogen interactions using the Cambridge Structural Database [CSD; Groom & Allen (2014). Angew. Chem. Int. Ed. 53, 662-671] revealed that about 13% of the organic molecular crystals containing both cyano and halogen groups have cyano-halogen interactions in their packing. Three geometric parameters for the C-X...N[triple-bond]C interaction (X = F, Cl, Br or I), viz. the N...X distance and the C-X...N and C-N...X angles, were analysed. The results indicate that all the short cyano-halogen contacts in the CSD can be classified as halogen bonds, which are directional noncovalent interactions.

  9. Isomorphous Crystals from Diynes and Bromodiynes Involved in Hydrogen and Halogen Bonds

    Directory of Open Access Journals (Sweden)

    Pierre Baillargeon

    2016-04-01

    Full Text Available Isomorphous crystals of two diacetylene derivatives with carbamate functionality (BocNH-CH2-diyne-X, where X = H or Br have been obtained. The main feature of these structures is the original 2D arrangement (as supramolecular sheets or walls in which the H bond and halogen bond have a prominent effect on the whole architecture. The two diacetylene compounds harbor neighboring carbamate (Boc protected amine and conjugated alkyne functionalities. They differ only by the nature of the atom located at the penultimate position of the diyne moiety, either a hydrogen atom or a bromine atom. Both of them adopt very similar 2D wall organizations with antiparallel carbamates (as in antiparallel beta pleated sheets. Additional weak interactions inside the same walls between molecular bricks are H bond interactions (diyne-H···O=C or halogen bond interactions (diyne-Br···O=C, respectively. Based on crystallographic atom coordinates, DFT (B3LYP/6-31++G(d,p and DFT (M06-2X/6-31++G(d,p calculations were performed on these isostructural crystals to gain insight into the intermolecular interactions.

  10. A comparison of quantum and quasiclassical statistical models for reactions of electronically excited atoms with molecular hydrogen.

    Science.gov (United States)

    Aoiz, F J; González-Lezana, T; Sáez Rábanos, V

    2008-09-01

    A detailed comparison of statistical models based on the quasiclassical trajectory (SQCT) and quantum mechanical (SQM) methods is presented in this work for the C((1)D)+H(2), S((1)D)+H(2), O((1)D)+H(2) and N((2)D)+H(2) insertion reactions. Reaction probabilities, integral (ICS) and differential (DCS) cross sections at different levels of product's state resolution are shown and discussed for these reactions. The agreement is in most cases excellent and indicates that the effect of tunneling through the centrifugal barrier is negligible. However, if there exists a dynamical barrier, as in the case of the N((2)D)+H(2) reaction, some of the SQM results can be slightly different than those calculated with the SQCT model. The rationale of the observed similarities and discrepancies can be traced back to the specific topologies of the potential energy surfaces for each of the reactions examined. The SQCT model is sensitive enough to show the relatively small inaccuracies resulting from the decoupling inherent to the centrifugal sudden approximation when used in the SQM calculations. In addition, the effect of ignoring the parity conservation is also examined. This effect is in general minor except in particular cases such as the DCS from initial rotational state j=0, which requires, in order to reproduce the sharp forward and backward peaks, the explicit conservation of parity.

  11. Reactions of the phthalimide N-oxyl radical (PINO) with activated phenols: the contribution of π-stacking interactions to hydrogen atom transfer rates.

    Science.gov (United States)

    D'Alfonso, Claudio; Bietti, Massimo; DiLabio, Gino A; Lanzalunga, Osvaldo; Salamone, Michela

    2013-02-01

    The kinetics of reactions of the phthalimide N-oxyl radical (PINO) with a series of activated phenols (2,2,5,7,8-pentamethylchroman-6-ol (PMC), 2,6-dimethyl- and 2,6-di-tert-butyl-4-substituted phenols) were investigated by laser flash photolysis in CH(3)CN and PhCl in order to establish if the reactions with PINO can provide a useful tool for evaluating the radical scavenging ability of phenolic antioxidants. On the basis of the small values of deuterium kinetic isotope effects, the relatively high and negative ρ values in the Hammett correlations and the results of theoretical calculations, we suggest that these reactions proceed by a hydrogen atom transfer (HAT) mechanism having a significant degree of charge transfer resulting from a π-stacked conformation between PINO and the aromatic ring of the phenols. Kinetic solvent effects were analyzed in detail for the hydrogen transfer from 2,4,6-trimethylphenol to PINO and the data obtained are in accordance with the Snelgrove-Ingold equation for HAT. Experimental rate constants for the reactions of PINO with activated phenols are in accordance with those predicted by applying the Marcus cross relation.

  12. H-atom addition and abstraction reactions in mixed CO, H2CO and CH3OH ices: an extended view on complex organic molecule formation

    CERN Document Server

    Chuang, K -J; Ioppolo, S; van Dishoeck, E F; Linnartz, H

    2016-01-01

    Complex organic molecules (COMs) have been observed not only in the hot cores surrounding low- and high- mass protostars, but also in cold dark clouds. Therefore, it is interesting to understand how such species can be formed without the presence of embedded energy sources. We present new laboratory experiments on the low-temperature solid state formation of three complex molecules: methyl formate (HC(O)OCH3), glycolaldehyde (HC(O)CH2OH) and ethylene glycol (H2C(OH)CH2OH), through recombination of free radicals formed via H-atom addition and abstraction reactions at different stages in the CO-H2CO-CH3OH hydrogenation network at 15 K. The experiments extend previous CO hydrogenation studies and aim at resembling the physical&chemical conditions typical of the CO freeze-out stage in dark molecular clouds, when H2CO and CH3OH form by recombination of accreting CO molecules and H-atoms on ice grains. We confirm that H2CO, once formed through CO hydrogenation, not only yields CH3OH through ongoing H-atom addit...

  13. Energy partitioning in polyatomic chemical reactions: Quantum state resolved studies of highly exothermic atom abstraction reactions from molecules in the gas phase and at the gas-liquid interface

    Science.gov (United States)

    Zolot, Alexander M.

    This thesis recounts a series of experiments that interrogate the dynamics of elementary chemical reactions using quantum state resolved measurements of gas-phase products. The gas-phase reactions F + HCl → HF + Cl and F + H2O → HF + OH are studied using crossed supersonic jets under single collision conditions. Infrared (IR) laser absorption probes HF product with near shot-noise limited sensitivity and high resolution, capable of resolving rovibrational states and Doppler lineshapes. Both reactions yield inverted vibrational populations. For the HCl reaction, strongly bimodal rotational distributions are observed, suggesting microscopic branching of the reaction mechanism. Alternatively, such structure may result from a quantum-resonance mediated reaction similar to those found in the well-characterized F + HD system. For the H2O reaction, a small, but significant, branching into v = 2 is particularly remarkable because this manifold is accessible only via the additional center of mass collision energy in the crossed jets. Rotationally hyperthermal HF is also observed. Ab initio calculations of the transition state geometry suggest mechanisms for both rotational and vibrational excitation. Exothermic chemical reaction dynamics at the gas-liquid interface have been investigated by colliding a supersonic jet of F atoms with liquid squalane (C30H62), a low vapor pressure hydrocarbon compatible with the high vacuum environment. IR spectroscopy provides absolute HF( v,J) product densities and Doppler resolved velocity component distributions perpendicular to the surface normal. Compared to analogous gas-phase F + hydrocarbon reactions, the liquid surface is a more effective "heat sink," yet vibrationally excited populations reveal incomplete thermal accommodation with the surface. Non-Boltzmann J-state populations and hot Doppler lineshapes that broaden with HF excitation indicate two competing scattering mechanisms: (i) a direct reactive scattering channel

  14. GC-MS Study of Mono- and Bishaloethylphosphonates Related to Schedule 2.B.04 of the Chemical Weapons Convention: The Discovery of a New Intramolecular Halogen Transfer

    Science.gov (United States)

    Picazas-Márquez, Nerea; Sierra, María; Nova, Clara; Moreno, Juan Manuel; Aboitiz, Nuria; de Rivas, Gema; Sierra, Miguel A.; Martínez-Álvarez, Roberto; Gómez-Caballero, Esther

    2016-09-01

    A new class of compounds, mono- and bis-haloethylphosphonates (HAPs and bisHAPs, respectively), listed in Schedule 2.B.04 of the Chemical Weapons Convention (CWC), has been synthesized and studied by GC-MS with two aims. First, to improve the identification of this type of chemicals by the Organization for the Prohibition of Chemical Weapons, (OPCW). Second, to study the synergistic effect of halogen and silicon atoms in molecules undergoing mass spectrometry. Fragmentation patterns of trimethylsilyl derivatives of HAPs were found to depend on the nature of the halogen atom; this was in agreement with DFT-calculations. The data suggest that a novel intramolecular halogen transfer takes place during the fragmentation process.

  15. OD(X/sup 2/II) and SD(X/sup 2/II) from reactions of D atoms with OCS under bulk and precursor geometry limited conditions

    Energy Technology Data Exchange (ETDEWEB)

    Haeusler, D.; Rice, J.; Wittig, C.

    1987-10-08

    Reactions of D atoms with OCS were studied by 193-nm pulsed laser photolysis of DBr as a nearly monoenergetic D-atom source. Nascent OD(X/sup 2/II) and SD(X/sup 2/II) rotational, vibrational, spin-orbit, and ..lambda..-doublet populations were obtained under single-collision bulk conditions at 300 K. The SD channel is favored energetically (..delta.. H = -43 +/- 13 and 230 +/- 13 kJ mol/sup -1/ for the SD and OD channels, respectively) and is the dominant pathway ((SD)/(OD) = 5 +/- 2). Nascent OD(X/sup 2/II) products were also obtained from a precursor geometry limited (PGL) reaction by using the weakly bound van der Waals complex SCO-DBr. The OD(X/sup 2/II) rotational distributions are the same for both bulk and PGL conditions and can be reproduced by using a statistical model. Due to experimental difficulties, SD(X/sup 2/II) distributions could not be obtained under PGL conditions. The SD(X/sup 2/II) distribution obtained under bulk conditions is very nonstatistical, suggesting that this species is not formed via a long-lived DSCO intermediate complex in which vibrational energy is randomized.

  16. Catalytic role of TiO(2) terminal oxygen atoms in liquid-phase photocatalytic reactions: oxidation of aromatic compounds in anhydrous acetonitrile.

    Science.gov (United States)

    Montoya, Juan F; Bahnemann, Detlef W; Peral, José; Salvador, Pedro

    2014-08-04

    On the basis of experiments carried out with controlled amounts of residual oxygen and water, or by using oxygen-isotope-labeled Ti(18) O2 as the photocatalyst, we demonstrate that (18) Os atoms behave as real catalytic species in the photo-oxidation of acetonitrile-dissolved aromatic compounds such as benzene, phenol, and benzaldehyde with TiO2 . The experimental evidence allows a terminal-oxygen indirect electron-transfer (TOIET) mechanism to be proposed, which is a new pathway that involves the trapping of free photogenerated valence-band holes at Os species and their incorporation into the reaction products, with simultaneous generation of oxygen vacancies at the TiO2 surface and their subsequent healing with oxygen atoms from either O2 or H2 O molecules that are dissolved in the liquid phase. According to the TOIET mechanism, the TiO2 surface is not considered to remain stable, but is continuously changing in the course of the photocatalytic reaction, challenging earlier interpretations of TiO2 photocatalytic phenomena.

  17. The tert-butoxyl radical mediated hydrogen atom transfer reactions of the Parkinsonian proneurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and selected tertiary amines.

    Science.gov (United States)

    Suleman, N Kamrudin; Flores, Joey; Tanko, James M; Isin, Emre Mehmet; Castagnoli, Neal

    2008-09-15

    Previous studies have shown that the hydrogen atom transfer (HAT) reactions of tert-butoxyl radical from the Parkinsonian proneurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) occur with low selectivity at the allylic and non-allylic alpha-C-H positions. In this paper, we report a more comprehensive regiochemical study on the reactivity of the tert-butoxyl radical as well as on the associated primary kinetic deuterium isotope effects for the various hydrogen atom abstractions of MPTP. In addition, the results of a computational study to estimate the various C-H bond dissociation energies of MPTP are presented. The results of the present study show the allylic/non-allylic selectivity is approximately 73:21. The behavior of the tert-butoxyl radical mediated oxidation of MPTP contrasts with this reaction as catalyzed by monoamine oxidase B (MAO-B) that occurs selectively at the allylic alpha-carbon. These observations lead to the conclusion that the tert-butoxyl radical is not a good chemical model for the MAO-B-catalyzed bioactivation of MPTP.

  18. Weakly coordinating anions: crystallographic and NQR studies of halogen-metal bonding in silver, thallium, sodium, and potassium halomethanesulfonates.

    Science.gov (United States)

    Wulfsberg, Gary; Parks, Katherine D; Rutherford, Richard; Jackson, Debra Jones; Jones, Frank E; Derrick, Dana; Ilsley, William; Strauss, Steven H; Miller, Susie M; Anderson, Oren P; Babushkina, T A; Gushchin, S I; Kravchenko, E A; Morgunov, V G

    2002-04-22

    35Cl, (79,81)Br, and (127)I NQR (nuclear quadrupole resonance) spectroscopy in conjunction with X-ray crystallography is potentially one of the best ways of characterizing secondary bonding of metal cations such as Ag(+) to halogen donor atoms on the surfaces of very weakly coordinating anions. We have determined the X-ray crystal structure of Ag(O(3)SCH(2)Cl) (a = 13.241(3) A; b = 7.544(2) A; c = 4.925(2) A; orthorhombic; space group Pnma; Z = 4) and compared it with the known structure of Ag(O(3)SCH(2)Br) (Charbonnier, F.; Faure, R.; Loiseleur, H. Acta Crystallogr., Sect. B 1978, 34, 3598-3601). The halogen atom in each is apical (three-coordinate), being weakly coordinated to two silver ions. (127)I NQR studies on Ag(O(3)SCH(2)I) show the expected NQR consequences of three-coordination of iodine: substantially reduced NQR frequencies nu(1) and nu(2) and a fairly small NQR asymmetry parameter eta. The reduction of the halogen NQR frequency of the coordinating halogen atom in Ag(O(3)SCH(2)X) becomes more substantial in the series X = Cl < Br < I, indicating that the coordination to Ag(+) strengthens in this series, as expected from hard-soft acid-base principles. The numbers of electrons donated by the organic iodine atom to Ag(+) have been estimated; these indicate that the bonding to the cation is weak but not insignificant. We have not found any evidence for the bonding of these organohalogen atoms to another soft-acid metal ion, thallium. A scheme for recycling of thallium halide wastes is included.

  19. Ab Initio Study of Chemical Reactions of Cold SrF and CaF Molecules with Alkali-Metal and Alkaline-Earth-Metal Atoms: The Implications for Sympathetic Cooling.

    Science.gov (United States)

    Kosicki, Maciej Bartosz; Kędziera, Dariusz; Żuchowski, Piotr Szymon

    2017-06-01

    We investigate the energetics of the atom exchange reaction in the SrF + alkali-metal atom and CaF + alkali-metal atom systems. Such reactions are possible only for collisions of SrF and CaF with the lithium atoms, while they are energetically forbidden for other alkali-metal atoms. Specifically, we focus on SrF interacting with Li, Rb, and Sr atoms and use ab initio methods to demonstrate that the SrF + Li and SrF + Sr reactions are barrierless. We present potential energy surfaces for the interaction of the SrF molecule with the Li, Rb, and Sr atoms in their energetically lowest-lying electronic spin states. The obtained potential energy surfaces are deep and exhibit profound interaction anisotropies. We predict that the collisions of SrF molecules in the rotational or Zeeman excited states most likely have a strong inelastic character. We discuss the prospects for the sympathetic cooling of SrF and CaF molecules using ultracold alkali-metal atoms.

  20. Direct determination of atom and radical concentrations in thermal reactions of hydrocarbons and other gases. Progress report, June 1, 1976--December 31, 1976. [Design and construction of shock tube for measuring reaction products

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, G. B.; Lifshitz, A.

    1977-01-01

    A shock tube has been designed and constructed for the purpose of measuring atom and radical concentrations in thermal reactions of gases. Design features which lead to extremely low levels of contamination include a turbomolecular vacuum pump, metal O-rings in the test section, stainless steel bellows-seal valves, and provision for baking all components to 150 to 200/sup 0/C. The optical system consists of a microwave discharge lamp through which various gas mixtures may flow at low pressures, MgF/sub 2/ windows on the shock tube, and a photodetector. For initial measurements of H and O atoms, a solar blind photomultiplier sensitive at 110 to 140 nm is being used. During the balance of the contract year (January 1--May 31) testing of the shock tube will be completed, the light source will be characterized, and measurements of H atom concentrations in shock-heated mixtures of CH/sub 4/--Ar and H/sub 2/--O/sub 2/--Ar will be started.

  1. Synthesis of deuterium-labelled halogen derivatives of L-tryptophan catalysed by tryptophanase.

    Science.gov (United States)

    Winnicka, Elżbieta; Szymańska, Jolanta; Kańska, Marianna

    2016-06-01

    The isotopomers of halogen derivatives of l-tryptophan (l-Trp) (4'-F-, 7'-F-, 5'-Cl- and 7'-Br-l-Trp), specifically labelled with deuterium in α-position of the side chain, were obtained by enzymatic coupling of the corresponding halogenated derivatives of indole with S-methyl-l-cysteine in (2)H2O, catalysed by enzyme tryptophanase (EC 4.1.99.1). The positional deuterium enrichment of the resulting tryptophan derivatives was controlled using (1)H NMR. In accordance with the mechanism of the lyase reaction, a 100% deuterium labelling was observed in the α-position; the chemical yields were between 23 and 51%. Furthermore, β-F-l-alanine, synthesized from β-F-pyruvic acid by the l-alanine dehydrogenase reaction, has been tested as a coupling agent to obtain the halogenated deuterium-labelled derivatives of l-Trp. The chemical yield (∼30%) corresponded to that as observed with S-methyl-l-cysteine but the deuterium label was only 63%, probably due to the use of a not completely deuterated incubation medium.

  2. Direct evidence of reactive ion etching induced damages in Ge{sub 2}Sb{sub 2}Te{sub 5} based on different halogen plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Li, Juntao [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Microsystem Technology Laboratory, Microsystem & Terahertz Research Center, Sichuan Province 610200 (China); Xia, Yangyang [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100080 (China); Liu, Bo, E-mail: liubo@mail.sim.ac.cn [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Feng, Gaoming [United Lab, Semiconductor Manufacturing International Corporation, Shanghai 201203 (China); Song, Zhitang [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Gao, Dan; Xu, Zhen; Wang, Weiwei [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100080 (China); Chan, Yipeng [United Lab, Semiconductor Manufacturing International Corporation, Shanghai 201203 (China); Feng, Songlin [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China)

    2016-08-15

    Highlights: • The results of SEM and AFM directly showed that the surface of Cl2 etched samples were roughest with a Ge deficient damaged layer. • The XPS of Te 3d revealed the electrons were transferred from chalcogenide to halogen and the highest halogenation was observed on CF4 etching GST films. • The sidewall of HBr etching GST is nearly vertical compared with others. • HBr is promising gas for GST etching in the fabrication of high-density memory devices. - Abstract: Chalcogenide glasses based on Ge-Te-Sb are processed using reactive ion etching (RIE) in the fabrication of phase change memory (PCM). These materials are known to be halogenated easily and apt to be damaged when exposed to halogen gas based plasmas which can cause severe halogenation-induced degradation. In this paper, we investigate the RIE induced damage of popular phase change material Ge{sub 2}Sb{sub 2}Te{sub 5} (GST) in different halogen based plasmas (CF{sub 4}, Cl{sub 2} and HBr) highly diluted by argon. After blanket etching, results of scanning electron microscopy and atomic force microscopy directly showed that the surface of Cl{sub 2} etched samples were roughest with a Ge deficient damaged layer. X-ray photoelectron spectroscopy was performed to investigate the chemical shift of constituent elements. Selected scans over the valence band peaks of Te 3d revealed that electrons were transferred from chalcogenide to halogen and the highest halogenation was observed on the GST etched by CF{sub 4}. The GST films masked with patterned TiN were also etched. High-resolution transmission electron microscopy and surface scan directly showed the line profile and the damaged layer. Almost vertical and smooth sidewall without damaged layer makes HBr a promising gas for GST etch in the fabrication of high-density memory devices.

  3. Hydrogen atom abstraction selectivity in the reactions of alkylamines with the benzyloxyl and cumyloxyl radicals. The importance of structure and of substrate radical hydrogen bonding.

    Science.gov (United States)

    Salamone, Michela; DiLabio, Gino A; Bietti, Massimo

    2011-10-19

    A time-resolved kinetic study on the hydrogen abstraction reactions from a series of primary and secondary amines by the cumyloxyl (CumO(•)) and benzyloxyl (BnO(•)) radicals was carried out. The results were compared with those obtained previously for the corresponding reactions with tertiary amines. Very different hydrogen abstraction rate constants (k(H)) and intermolecular selectivities were observed for the reactions of the two radicals. With CumO(•), k(H) was observed to decrease on going from the tertiary to the secondary and primary amines. The lowest k(H) values were measured for the reactions with 2,2,6,6-tetramethylpiperidine (TMP) and tert-octylamine (TOA), substrates that can only undergo N-H abstraction. The opposite behavior was observed for the reactions of BnO(•), where the k(H) values increased in the order tertiary < secondary < primary. The k(H) values for the reactions of BnO(•) were in all cases significantly higher than those measured for the corresponding reactions of CumO(•), and no significant difference in reactivity was observed between structurally related substrates that could undergo exclusive α-C-H and N-H abstraction. This different behavior is evidenced by the k(H)(BnO(•))/k(H)(CumO(•)) ratios that range from 55-85 and 267-673 for secondary and primary alkylamines up to 1182 and 3388 for TMP and TOA. The reactions of CumO(•) were described in all cases as direct hydrogen atom abstractions. With BnO(•) the results were interpreted in terms of the rate-determining formation of a hydrogen-bonded prereaction complex between the radical α-C-H and the amine lone pair wherein hydrogen abstraction occurs. Steric effects and amine HBA ability play a major role, whereas the strength of the substrate α-C-H and N-H bonds involved appears to be relatively unimportant. The implications of these different mechanistic pictures are discussed.

  4. Stereoselectivity in Autoionization Reactions of Hydrogenated Molecules by Metastable Noble Gas Atoms: The Role of Electronic Couplings.

    Science.gov (United States)

    Falcinelli, Stefano; Rosi, Marzio; Cavalli, Simonetta; Pirani, Fernando; Vecchiocattivi, Franco

    2016-08-22

    Focus in the present paper is on the analysis of total and partial ionization cross sections, measured in absolute value as a function of the collision energy, representative of the probability of ionic product formation in selected electronic states in Ne*-H2 O, H2 S, and NH3 collisions. In order to characterize the imaginary part of the optical potential, related to electronic couplings, we generalize a methodology to obtain direct information on the opacity function of these reactions. Such a methodology has been recently exploited to test the real part of the optical potential (S. Falcinelli et al., Chem. Eur. J., 2016, 22, 764-771). Depending on the balance of noncovalent contributions, the real part controls the approach of neutral reactants, the removal of ionic products, and the structure of the transition state. Strength, range, and stereoselectivity of electronic couplings, triggering these and many other reactions, are directly obtained from the present investigation.

  5. Self-assembly of iodine in superfluid helium droplets. Halogen bonds and nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    He, Yunteng; Zhang, Jie; Lei, Lei; Kong, Wei [Department of Chemistry, Oregon State University, Corvallis, OR (United States)

    2017-03-20

    We present evidence of halogen bond in iodine clusters formed in superfluid helium droplets based on results from electron diffraction. Iodine crystals are known to form layered structures with intralayer halogen bonds, with interatomic distances shorter than the sum of the van der Waals radii of the two neighboring atoms. The diffraction profile of dimer dominated clusters embedded in helium droplets reveals an interatomic distance of 3.65 Aa, much closer to the value of 3.5 Aa in iodine crystals than to the van der Waals distance of 4.3 Aa. The profile from larger iodine clusters deviates from a single layer structure; instead, a bi-layer structure qualitatively fits the experimental data. This work highlights the possibility of small halogen bonded iodine clusters, albeit in a perhaps limited environment of superfluid helium droplets. The role of superfluid helium in guiding the trapped molecules into local potential minima awaits further investigation. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Theoretical Study of the Iodine-catalyzed Nucleophilic Addition by Halogen Bond

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The iodine-catalyzed nucleophilic addition of pyrrole to acetone has been studied by density functional theory at the level of Lanl2DZ*. It has been shown that the first iodine molecule appears to have a remarkable catalytic effect on this reaction by halogen bond between carbonyl oxygen and iodine molecule, but the second one does not improve the reaction largely. In general, the nucleophilic addition at the C(2) site of pyrrole is more favorable than that at the C(3)site;however, this trend is not prominent or even changed in acetronitrile solvent for the indole system, which is consistent with the experimental result by Bandgar.

  7. Reactions between a <111> screw dislocation and <100> interstitial dislocation loops in alpha-iron modelled at atomic-scale

    Energy Technology Data Exchange (ETDEWEB)

    Terentyev, Dmitry [Belgian Nuclear Research Centre, SCK-CEN; Bacon, David J [University of Liverpool; Osetskiy, Yury N [ORNL

    2010-03-01

    Interstitial dislocation loops with Burgers vector of <100> type are observed in {alpha}-iron irradiated by neutrons or heavy ions, and their population increases with increasing temperature. Their effect on motion of a 1/2<111> edge dislocation was reported earlier 1. Results are presented of a molecular dynamics study of interactions between a 1/2<111> screw dislocation and <100> loops in iron at temperature in the range 100 to 600 K. A variety of reaction mechanisms and outcomes are observed and classified in terms of the resulting dislocation configuration and the maximum stress required for the dislocation to break away. The highest obstacle resistance arises when the loop is absorbed to form a helical turn on the screw dislocation line, for the dislocation cannot glide away until the turn closes and a loop is released with the same Burgers vector as the line. Other than one situation found, in which no dislocation-loop reaction occurs, the weakest obstacle strength is found when the original <100> loop is restored at the end of the reaction. The important role of the cross-slip and the influence of model boundary conditions are emphasised and demonstrated by examples.

  8. An atomic emission spectroelectrochemical study of corrosion inhibition: The effect of hexamethylenetetramine on the reaction of mild steel in HCl

    Energy Technology Data Exchange (ETDEWEB)

    Volovitch, P., E-mail: polina-volovitch@enscp.f [Laboratoire de Physicochimie des Surfaces, UMR7045, Ecole Nationale Superieure de Chimie de Paris, Chmie ParisTech, 11, rue Pierre et Marie Curie, Paris (France); Gazizzullin, I.; Ruel, F. [Laboratoire de Physicochimie des Surfaces, UMR7045, Ecole Nationale Superieure de Chimie de Paris, Chmie ParisTech, 11, rue Pierre et Marie Curie, Paris (France); Ogle, K., E-mail: kevin-ogle@enscp.f [Laboratoire de Physicochimie des Surfaces, UMR7045, Ecole Nationale Superieure de Chimie de Paris, Chmie ParisTech, 11, rue Pierre et Marie Curie, Paris (France)

    2011-04-15

    Research highlights: Time resolved elemental dissolution rates on time scales typical for pickling lines. Segregated impurities dissolve selectively at early stages. At high HMTA concentration the dissolution rate is the same for different steels. Several mechanisms of HMTA inhibition are discussed. - Abstract: The dissolution of low carbon steel in hydrochloric acid has been investigated by atomic emission spectroelectrochemistry. The rate of Mn, Fe and P dissolution was measured as a function of time for steels of variable Mn and P composition and as a function of HMTA concentration. Regardless of the reactivity of the steel in uninhibited solutions, at high concentration of HMTA, all steel grades show a nearly identical dissolution rate. The effect is selective for Fe; the dissolution of segregated Mn is not affected by HMTA.

  9. Mercury and halogens in coal: Chapter 2

    Science.gov (United States)

    Kolker, Allan; Quick, Jeffrey C.; Granite, Evan J.; Pennline, Henry W.; Senior, Constance L.

    2014-01-01

    Apart from mercury itself, coal rank and halogen content are among the most important factors inherent in coal that determine the proportion of mercury captured by conventional controls during coal combustion. This chapter reviews how mercury in coal occurs, gives available concentration data for mercury in U.S. and international commercial coals, and provides an overview of the natural variation in halogens that influence mercury capture. Three databases, the U.S. Geological Survey coal quality (USGS COALQUAL) database for in-ground coals, and the 1999 and 2010 U.S. Environmental Protection Agency (EPA) Information Collection Request (ICR) databases for coals delivered to power stations, provide extensive results for mercury and other parameters that are compared in this chapter. In addition to the United States, detailed characterization of mercury is available on a nationwide basis for China, whose mean values in recent compilations are very similar to the United States in-ground mean of 0.17 ppm mercury. Available data for the next five largest producers (India, Australia, South Africa, the Russian Federation, and Indonesia) are more limited and with the possible exceptions of Australia and the Russian Federation, do not allow nationwide means for mercury in coal to be calculated. Chlorine in coal varies as a function of rank and correspondingly, depth of burial. As discussed elsewhere in this volume, on a proportional basis, bromine is more effective than chlorine in promoting mercury oxidation in flue gas and capture by conventional controls. The ratio of bromine to chlorine in coal is indicative of the proportion of halogens present in formation waters within a coal basin. This ratio is relatively constant except in coals that have interacted with deep-basin brines that have reached halite saturation, enriching residual fluids in bromine. Results presented here help optimize mercury capture by conventional controls and provide a starting point for

  10. A theoretical study of the mechanism of the atmospherically relevant reaction of chlorine atoms with methyl nitrate, and calculation of the reaction rate coefficients at temperatures relevant to the troposphere.

    Science.gov (United States)

    Ng, Maggie; Mok, Daniel K W; Lee, Edmond P F; Dyke, John M

    2015-03-21

    The reaction between atomic chlorine (Cl) and methyl nitrate (CH3ONO2) is significant in the atmosphere, as Cl is a key oxidant, especially in the marine boundary layer, and alkyl nitrates are important nitrogen-containing organic compounds, which are temporary reservoirs of the reactive nitrogen oxides NO, NO2 and NO3 (NOx). Four reaction channels HCl + CH2ONO2, CH3OCl + NO2, CH3Cl + NO3 and CH3O + ClNO2 were considered. The major channel is found to be the H abstraction channel, to give the products HCl + CH2ONO2. For all channels, geometry optimization and frequency calculations were carried out at the M06-2X/6-31+G** level, while relative electronic energies were improved to the UCCSD(T*)-F12/CBS level. The reaction barrier (ΔE(‡)0K) and reaction enthalpy (ΔH(RX)298K) of the H abstraction channel were computed to be 0.61 and -2.30 kcal mol(-1), respectively, at the UCCSD(T*)-F12/CBS//M06-2X/6-31+G** level. Reaction barriers (ΔE(‡)0K) for the other channels are more positive and these pathways do not contribute to the overall reaction rate coefficient in the temperature range considered (200-400 K). Rate coefficients were calculated for the H-abstraction channel at various levels of variational transition state theory (VTST) including tunnelling. Recommended ICVT/SCT rate coefficients in the temperature range 200-400 K are presented for the first time for this reaction. The values obtained in the 200-300 K region are particularly important as they will be valuable for atmospheric modelling calculations involving reactions with methyl nitrate. The implications of the results to atmospheric chemistry are discussed. Also, the enthalpies of formation, ΔHf,298K, of CH3ONO2 and CH2ONO2 were computed to be -29.7 and 19.3 kcal mol(-1), respectively, at the UCCSD(T*)-F12/CBS level.

  11. FIELD SCREENING FOR HALOGENATED VOLATILE ORGANIC COMPOUNDS

    Energy Technology Data Exchange (ETDEWEB)

    John F. Schabron; Joseph F. Rovani, Jr.; Theresa M. Bomstad

    2003-07-01

    Western Research Institute (WRI) is continuing work toward the development of new screening methodology and a test kit to measure halogenated volatile organic compounds (VOCs) in the field. Heated diode and corona discharge sensors are commonly used to detect leaks of refrigerants from air conditioners, freezers, and refrigerators. They are both selective to the presence of halogens. In prior work, the devices were tested for response to carbon tetrachloride, heptane, toluene, and water vapors. In the current work, sensor response was evaluated with sixteen halogenated VOCs relative to carbon tetrachloride. The results show that the response of the various chlorinated VOCs is within an order of magnitude of the response to carbon tetrachloride for each of the sensors. Thus, for field screening a single response factor can be used. Both types of leak detectors are being further modified to provide an on-board LCD signal readout, which is related to VOC concentration. The units will be fully portable and will operate with 115-V line or battery power. Signal background, noise level, and response data on the Bacharach heated diode detector and the TIF corona discharge detector show that when the response curves are plotted against the log of concentration, the plot is linear to the upper limit for the particular unit, with some curvature at lower levels. When response is plotted directly against concentration, the response is linear at the low end and is curved at the high end. The dynamic ranges for carbon tetrachloride of the two devices from the lower detection limit (S/N=2) to signal saturation are 4-850 vapor parts per million (vppm) for the corona discharge unit and 0.01-70 vppm for the heated diode unit. Additional circuit modifications are being made to lower the detection limit and increase the dynamic response range of the corona discharge unit. The results indicate that both devices show potential utility for future analytical method development work toward

  12. Boiling Heat Transfer to Halogenated Hydrocarbon Refrigerants

    Science.gov (United States)

    Yoshida, Suguru; Fujita, Yasunobu

    The current state of knowledge on heat transfer to boiling refrigerants (halogenated hydrocarbons) in a pool and flowing inside a horizontal tube is reviewed with an emphasis on information relevant to the design of refrigerant evaporators, and some recommendations are made for future research. The review covers two-phase flow pattern, heat transfer characteristics, correlation of heat transfer coefficient, influence of oil, heat transfer augmentation, boiling from tube-bundle, influence of return bend, burnout heat flux, film boiling, dryout and post-dryout heat transfer.

  13. Halogenated MOF-5 variants show new configuration, tunable band gaps and enhanced optical response in the visible and near infrared.

    Science.gov (United States)

    Yang, Li-Ming; Fang, Guo-Yong; Ma, Jing; Pushpa, Raghani; Ganz, Eric

    2016-11-30

    Inspired by recent experimental fabrication of mono-halogenated versions of Metal-Organic Framework MOF-5 (i.e., X-MOF-5, X = F to I) and some experimentally known fully halogenated MOF compounds, we systematically studied frameworks incorporating full halogenation of the BDC linkers of the prototypical Iso-Reticular Metal-Organic Framework (IRMOF) series, exemplified by MOF-5. Using quantum chemistry calculations, we find that halogenation leads to a 90° rotation of the aryl group, which is mainly ascribed to overcrowding between halogen atoms and the carboxyl and benzene ring and strong repulsion among in-plane atoms/groups. The 90° configuration decreases the repulsion, and maximizes the stabilization energy, and is therefore more stable than 0° configuration. We find that the band gap can be tuned from 4.1 to 1.5 eV as we go from F, Cl, Br, to I. This extends the optical response of these experimentally accessible materials through the visible and infrared region. We have also considered a broader range of new materials that substitute various metals for Zn. Totally, 70 materials were systematically examined computationally including (M4O)(BDC-Z4)3 (M = Zn, Cd, Be, Mg, Ca, Sr, Ba; Z = H, F, Cl, Br, I). For the full range of materials, we calculate band gaps of 4.2 to 1.0 eV, corresponding to a threshold of absorption of 290-1240 nm. Four selected materials were tested for stability using short 5 ps molecular dynamics simulations up to 600 K. The new materials with the smallest band gaps could potentially be used in near-infrared (NIR) light-emitting devices. Other properties, e.g., bulk moduli, formation energy, chemical bonding, and optical properties, were also investigated. The present results may provide new materials for use as novel photocatalysts, photoactive materials for photovoltaic cells, or functional devices in nanoelectronics and optoelectronics.

  14. Photoresponsive liquid crystals based on halogen bonding of azopyridines.

    Science.gov (United States)

    Chen, Yinjie; Yu, Haifeng; Zhang, Lanying; Yang, Huai; Lu, Yunfeng

    2014-09-04

    A series of photoresponsive halogen-bonded liquid crystals (LCs) were successfully constructed using molecular halogen and azopyridine compounds, which show interesting properties of photoinduced phase transition upon UV irradiation. In addition, bromine-bonded LCs were first obtained with high mesophase stability.

  15. Scientific conferences: A big hello to halogen bonding

    Science.gov (United States)

    Erdelyi, Mate

    2014-09-01

    Halogen bonding connects a wide range of subjects -- from materials science to structural biology, from computation to crystal engineering, and from synthesis to spectroscopy. The 1st International Symposium on Halogen Bonding explored the state of the art in this fast-growing field of research.

  16. 40 CFR 721.8900 - Substituted halogenated pyridinol, alkali salt.

    Science.gov (United States)

    2010-07-01

    ..., alkali salt. 721.8900 Section 721.8900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.8900 Substituted halogenated pyridinol, alkali salt. (a) Chemical... as substituted halogenated pyridinols, alkali salts (PMNs P-88-1271 and P-88-1272) are subject to...

  17. 40 CFR 721.8750 - Halogenated substituted pyridine.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Halogenated substituted pyridine. 721... Substances § 721.8750 Halogenated substituted pyridine. (a) Chemical substances and significant new uses... pyridine (PMN P-86-838) is subject to reporting under this section for the significant new uses...

  18. Reaction of O(/sup 3/P) atoms with ethane: An HTP kinetics study from 300 to 1270 K

    Energy Technology Data Exchange (ETDEWEB)

    Mahmud, K.; Marshall, P.; Fontijn, A.

    1988-02-15

    Rate coefficients for the O+C/sub 2/H/sub 6/ reaction have been measured using the high-temperature photochemistry (HTP) technique. Strong non-Arrhenius behavior is observed. The data are well fitted by the empirical expression k(T) = 1.9 x 10/sup -31/ T/sup 6.5/ exp(-138 K/T) cm/sup 3/ molecule/sup -1/ s/sup -1/. Confidence limits are discussed in the text. The results are consistent with calculations based on transition state theory and tunneling through an Eckart barrier.

  19. The reaction of O(3P) atoms with ethane: An HTP kinetics study from 300 to 1270 K

    Science.gov (United States)

    Mahmud, Khaled; Marshall, Paul; Fontijn, Arthur

    1988-02-01

    Rate coefficients for the O+C2H6 reaction have been measured using the high-temperature photochemistry (HTP) technique. Strong non-Arrhenius behavior is observed. The data are well fitted by the empirical expression k(T)=1.9×10-31 T6.5 exp(-138 K/T) cm3 molecule-1 s-1. Confidence limits are discussed in the text. The results are consistent with calculations based on transition state theory and tunneling through an Eckart barrier.

  20. Nonsymmetrical 3,4-dithienylmaleimides by cross-coupling reactions with indium organometallics: synthesis and photochemical studies.

    Science.gov (United States)

    Mosquera, Angeles; Férnandez, M Isabel; Canle Lopez, Moisés; Pérez Sestelo, José; Sarandeses, Luis A

    2014-10-27

    The synthesis and photochemical study of novel nonsymmetrical 1,2-dithienylethenes (DTEs) with a maleimide bridge have been carried out. The synthetic approach to the DTEs was based on successive selective palladium-catalyzed cross-coupling reactions of 5-susbtituted-2-methyl-3-thiophenyl indium reagents with 3,4-dichloromaleimides. The required organoindium reagents were prepared from 2-methyl-3,5-dibromothiophene by a selective (C-5) coupling reaction with triorganoindium compounds (R3 In) and subsequent metal-halogen exchange. The coupling reactions usually gave good yields and have a high atom economy with substoichiometric amounts of R3 In. The results of photochemical studies show that these novel dithienylmaleimides undergo a photocyclization reaction upon irradiation in the UV region and a photocycloreversion after excitation in the visible region, thus they can be used as photochemical switches. ON-OFF operations can be repeated in successive cycles without appreciable loss of effectiveness in the process.

  1. Non-destructive characterization of vertical ZnO nanowire arrays by slow positron implantation spectroscopy, atomic force microscopy, and nuclear reaction analysis

    Energy Technology Data Exchange (ETDEWEB)

    Brauer, G [Institut fuer Ionenstrahlphysik und Materialforschung, Forschungszentrum Dresden-Rossendorf, Postfach 510119, D-01314 Dresden (Germany); Anwand, W [Institut fuer Ionenstrahlphysik und Materialforschung, Forschungszentrum Dresden-Rossendorf, Postfach 510119, D-01314 Dresden (Germany); Grambole, D [Institut fuer Ionenstrahlphysik und Materialforschung, Forschungszentrum Dresden-Rossendorf, Postfach 510119, D-01314 Dresden (Germany); Skorupa, W [Institut fuer Ionenstrahlphysik und Materialforschung, Forschungszentrum Dresden-Rossendorf, Postfach 510119, D-01314 Dresden (Germany); Hou, Y [Institut fuer Physik, Montanuniversitaet Leoben, Franz Josef Strasse 18, A-8700 Leoben (Austria); Andreev, A [Institut fuer Physik, Montanuniversitaet Leoben, Franz Josef Strasse 18, A-8700 Leoben (Austria); Teichert, C [Institut fuer Physik, Montanuniversitaet Leoben, Franz Josef Strasse 18, A-8700 Leoben (Austria); Tam, K H [Department of Physics, University of Hong Kong, Pokfulam Road, Hong Kong (China); Djurisic, A B [Department of Physics, University of Hong Kong, Pokfulam Road, Hong Kong (China)

    2007-05-16

    ZnO nanorods, grown by a hydrothermal method, have been characterized by slow positron implantation spectroscopy (SPIS) and atomic force microscopy (AFM). It has been demonstrated that such non-destructive characterization techniques can provide a comprehensive picture of the nanorod structure (including its length, shape, orientation, and seed layer thickness), as well as provide additional information about defects present in the structure. Nanorods were also characterized by scanning electron microscopy (SEM) and x-ray diffraction (XRD), and it was found that the SPIS/AFM combination is more sensitive to the nanorod orientation and the thickness of the seed layer. To obtain still more information about defects in the nanorods, as well as to confirm the findings on the sample structure, nuclear reaction analysis (NRA) was performed and a large concentration of bound hydrogen was found. The results obtained by different characterization techniques are discussed.

  2. Photodissociation of pyrrole-ammonia clusters by velocity map imaging: mechanism for the H-atom transfer reaction.

    Science.gov (United States)

    Rubio-Lago, L; Amaral, G A; Oldani, A N; Rodríguez, J D; González, M G; Pino, G A; Bañares, L

    2011-01-21

    The photodissociation dynamics of pyrrole-ammonia clusters (PyH·(NH(3))(n), n = 2-6) has been studied using a combination of velocity map imaging and non-resonant detection of the NH(4)(NH(3))(n-1) products. The excited state hydrogen-atom transfer mechanism (ESHT) is evidenced through delayed ionization and presents a threshold around 236.6 nm, in agreement with previous reports. A high resolution determination of the kinetic energy distributions (KEDs) of the products reveals slow (∼0.15 eV) and structured distributions for all the ammonia cluster masses studied. The low values of the measured kinetic energy rule out the existence of a long-lived intermediate state, as it has been proposed previously. Instead, a direct N-H bond rupture, in the fashion of the photodissociation of bare pyrrole, is proposed. This assumption is supported by a careful analysis of the structure of the measured KEDs in terms of a discrete vibrational activity of the pyrrolyl co-fragment.

  3. Importance of π-stacking interactions in the hydrogen atom transfer reactions from activated phenols to short-lived N-oxyl radicals.

    Science.gov (United States)

    Mazzonna, Marco; Bietti, Massimo; DiLabio, Gino A; Lanzalunga, Osvaldo; Salamone, Michela

    2014-06-06

    A kinetic study of the hydrogen atom transfer from activated phenols (2,6-dimethyl- and 2,6-di-tert-butyl-4-substituted phenols, 2,2,5,7,8-pentamethylchroman-6-ol, caffeic acid, and (+)-cathechin) to a series of N-oxyl radical (4-substituted phthalimide-N-oxyl radicals (4-X-PINO), 6-substituted benzotriazole-N-oxyl radicals (6-Y-BTNO), 3-quinazolin-4-one-N-oxyl radical (QONO), and 3-benzotriazin-4-one-N-oxyl radical (BONO)), was carried out by laser flash photolysis in CH3CN. A significant effect of the N-oxyl radical structure on the hydrogen transfer rate constants (kH) was observed with kH values that monotonically increase with increasing NO-H bond dissociation energy (BDENO-H) of the N-hydroxylamines. The analysis of the kinetic data coupled to the results of theoretical calculations indicates that these reactions proceed by a hydrogen atom transfer (HAT) mechanism where the N-oxyl radical and the phenolic aromatic rings adopt a π-stacked arrangement. Theoretical calculations also showed pronounced structural effects of the N-oxyl radicals on the charge transfer occurring in the π-stacked conformation. Comparison of the kH values measured in this study with those previously reported for hydrogen atom transfer to the cumylperoxyl radical indicates that 6-CH3-BTNO is the best N-oxyl radical to be used as a model for evaluating the radical scavenging ability of phenolic antioxidants.

  4. Halogen control in integrated hot gas cleaning: final report

    Energy Technology Data Exchange (ETDEWEB)

    Nieminen, M.; Kangasmaa, K.; Laatikainen-Luntama, J.; Kurkela, E. [VTT Energy (Finland)

    1998-12-31

    A simple and cost effective dry-scrubbing halogen control method for hot gasification gas cleaning applications was developed. The work aimed to develop a dry scrubbing method for integration into a hot gas cleaning system including particulate removal by cyclones, filtration and possibly a desulphurisation system. Work started by determining the behaviour of halogen compounds in a reducing gasification atmosphere to evaluate the fate of halogens on downstream components, to understand the role of halogens as precursors for environmental emissions, and to give background information for developing halogen control methods. New halogen sampling and analysis methods for pressurised gasification gas conditions were also developed. Mass balances were determined for several gasification conditions, with and without calcium-based bed additives. Several potential dry scrubbing sorbent candidates were evaluated. Chemical, technical, economical and environmental aspects were used as selection criteria, calcium-based sorbents being chosen for development of the halogen removal system. The process concept was based on sorbent feeding into the product gas prior to the hot gas filter unit, where the final step of halogen capture takes place and both sorbent and particulates are removed from the gas. Preliminary screening of calcium-based sorbents and preoptimisation of process conditions was performed in a laboratory scale dry scrubbing test rig. Finally, the performance of the developed dry scrubbing halogen removal system was verified in a PDU scale pressurised fluidised bed gasification and gas cleaning test rig. Preliminary verification showed that, in favourable conditions, the system developed formed a potential halogen control system that could be easily integrated into the other hot gas cleaning systems. 2 refs., 9 figs., 2 tabs.

  5. [Near infrared light irradiator using halogen lamp].

    Science.gov (United States)

    Ide, Yasuo

    2012-07-01

    The practical electric light bulb was invented by Thomas Alva Edison in 1879. Halogen lamp is the toughest and brightest electric light bulb. With light filter, it is used as a source of near infrared light. Super Lizer and Alphabeam are made as near infrared light irradiator using halogen lamp. The light emmited by Super Lizer is linear polarized near infrared light. The wave length is from 600 to 1,600 nm and strongest at about 1,000 nm. Concerning Super Lizer, there is evidence of analgesic effects and normalization of the sympathetic nervous system. Super Lizer has four types of probes. SG type is used for stellate ganglion irradiation. B type is used for narrow area irradiation. C and D types are for broad area irradiation. The output of Alphabeam is not polarized. The wave length is from 700 to 1,600 nm and the strongest length is about 1,000nm. Standard attachment is used for spot irradiation. Small attachment is used for stellate ganglion irradiation. Wide attachment is used for broad area irradiation. The effects of Alphabeam are thought to be similar to that of Super Lizer.

  6. HTP kinetics studies of the reactions of O(2 3PJ) atoms with H2 and D2 over wide temperature ranges

    Science.gov (United States)

    Marshall, Paul; Fontijn, Arthur

    1987-12-01

    The O+H2(1) and O+D2(2) reactions have been investigated, using the high-temperature photochemistry (HTP) technique, over the 350 to 1420 and 390 to 1420 K temperature ranges, respectively. O(2 3PJ) atoms were generated from flash photolysis of CO2 and monitored by time-resolved atomic resonance fluorescence with pulse counting. Above 430 K the rate coefficients are given by k1(T)=7.3×10-21 (T/K)2.93 exp(-2980 K/T) cm3 molecule-1 s-1 and k2(T)=3.1×10-16 (T/K)1.65 exp (-5260 K/T) cm3 molecule-1 s-1. Combination of our data with those from other experiments which isolated the reactions from secondary processes yields our recommendations k1(T)=1.5×10-12 exp (-3540 K/T)+3.7×10-10 exp (-7450 K/T) cm3 molecule-1 s-1 (300 K≤T≤2500 K) and k2(T)=1.4×10-12 exp(-4260 K/T) +2.9×10-10 exp (-7780 K/T) cm3 molecule-1 s-1 (390 K≤T≤1420 K). Accuracy assessments are discussed in the text. k1(T), k2(T), and the kinetic isotope effect compare well with calculations based on recent ICVT/LAG and CEQB ab initio methods, which suggest that the first terms of the double exponential expressions approximate the tunneling contributions.

  7. Model study of multiphase DMS oxidation with a focus on halogens

    Directory of Open Access Journals (Sweden)

    R. von Glasow

    2004-01-01

    Full Text Available We studied the oxidation of dimethylsulfide (DMS in the marine boundary layer (MBL with a one-dimensional numerical model and focused on the influence of halogens. Our model runs show that there is still significant uncertainty about the end products of the DMS addition pathway, which is especially caused by uncertainty in the product yield of the reaction of the intermediate product methyl sulfinic acid (MSIA with OH. BrO strongly increases the importance of the addition branch in the oxidation of DMS even when present at mixing ratios smaller than 0.5pmol mol-1. The inclusion of halogen chemistry leads to higher DMS oxidation rates and smaller DMS to SO2 conversion efficiencies. The DMS to SO2 conversion efficiency is also drastically reduced under cloudy conditions. In cloud-free model runs between 5 and 15% of the oxidized DMS reacts further to particulate sulfur, in cloudy runs this fraction is almost 100%. Sulfate production by HOClaq and HOBraq is important in cloud droplets even for small Br- deficits and related small gas phase halogen concentrations. In general, more particulate sulfur is formed when halogen chemistry is included. A possible enrichment of HCO3- in fresh sea salt aerosol would increase pH values enough to make the reaction of S(IV* (=SO2,aq+HSO3-+SO32- with O3 dominant for sulfate production. It leads to a shift from methyl sulfonic acid (MSA to non-sea salt sulfate (nss-SO42- production but increases the total nss-SO42- only somewhat because almost all available sulfur is already oxidized to particulate sulfur in the base scenario. We discuss how realistic this is for the MBL. We found the reaction MSAaq+OH to contribute about 10% to the production of nss-SO42- in clouds. It is unimportant for cloud-free model runs. Overall we find that the presence of halogens leads to processes that decrease the albedo of stratiform clouds in the MBL.

  8. Glutathione transferase mimics : Micellar catalysis of an enzymic reaction

    NARCIS (Netherlands)

    Lindkvist, Björn; Weinander, Rolf; Engman, Lars; Koetse, Marc; Engberts, Jan B.F.N.; Morgenstern, Ralf

    1997-01-01

    Substances that mimic the enzyme action of glutathione transferases (which serve in detoxification) are described. These micellar catalysts enhance the reaction rate between thiols and activated halogenated nitroarenes as well as alpha,beta-unsaturated carbonyls. The nucleophilic aromatic substituti

  9. A study of the hydration of deoxydinucleoside monophosphates containing thymine, uracil and its 5-halogen derivatives: Monte Carlo simulation.

    Science.gov (United States)

    Alderfer, J L; Danilov, V I; Poltev, V I; Slyusarchuk, O N

    1999-04-01

    An extensive Monte Carlo simulation of hydration of various conformations of the dinucleoside monophosphates (DNP), containing thymine, uracil and its 5-halogen derivatives has been performed. An anti-anti conformation is the most energetically stable one for each of the DNPs. In the majority of cases the energy preference is determined by water-water interaction. For other dimers conformational energy is the most important factor, or both the factors are of nearly equal importance. The introduction of the methyl group into the 5-position of uracil ring most noticeably influences the conformational energy and leads to the decrease of its stabilizing contribution to the total interaction energy. The introduction of halogen atoms increases the relative content of anti-syn and syn-anti conformations of DNPs as compared to the parent ones due to the formation of an energetically more favorable water structure around these conformations. A correlation is observed between the Monte Carlo results for the halogenated DNPs and their experimental photoproduct distribution. The data obtained demonstrates a sequence dependence in the photochemistry of the halogenated dinucleoside monophosphates.

  10. Halogen bonds in some dihalogenated phenols: applications to crystal engineering.

    Science.gov (United States)

    Mukherjee, Arijit; Desiraju, Gautam R

    2014-01-01

    3,4-Dichlorophenol (1) crystallizes in the tetragonal space group I41/a with a short axis of 3.7926 (9) Å. The structure is unique in that both type I and type II Cl⋯Cl interactions are present, these contact types being distinguished by the angle ranges of the respective C-Cl⋯Cl angles. The present study shows that these two types of contacts are utterly different. The crystal structures of 4-bromo-3-chlorophenol (2) and 3-bromo-4-chlorophenol (3) have been determined. The crystal structure of (2) is isomorphous to that of (1) with the Br atom in the 4-position participating in a type II interaction. However, the monoclinic P21/c packing of compound (3) is different; while the structure still has O-H⋯O hydrogen bonds, the tetramer O-H⋯O synthon seen in (1) and (2) is not seen. Rather than a type I Br⋯Br interaction which would have been mandated if (3) were isomorphous to (1) and (2), Br forms a Br⋯O contact wherein its electrophilic character is clearly evident. Crystal structures of the related compounds 4-chloro-3-iodophenol (4) and 3,5-dibromophenol (5) were also determined. A computational survey of the structural landscape was undertaken for (1), (2) and (3), using a crystal structure prediction protocol in space groups P21/c and I41/a with the COMPASS26 force field. While both tetragonal and monoclinic structures are energetically reasonable for all compounds, the fact that (3) takes the latter structure indicates that Br prefers type II over type I contacts. In order to differentiate further between type I and type II halogen contacts, which being chemically distinct are expected to have different distance fall-off properties, a variable-temperature crystallography study was performed on compounds (1), (2) and (4). Length variations with temperature are greater for type II contacts compared with type I. The type II Br⋯Br interaction in (2) is stronger than the corresponding type II Cl⋯Cl interaction in (1), leading to elastic bending

  11. Halogen bonds in some dihalogenated phenols: applications to crystal engineering

    Directory of Open Access Journals (Sweden)

    Arijit Mukherjee

    2014-01-01

    Full Text Available 3,4-Dichlorophenol (1 crystallizes in the tetragonal space group I41/a with a short axis of 3.7926 (9 Å. The structure is unique in that both type I and type II Cl...Cl interactions are present, these contact types being distinguished by the angle ranges of the respective C—Cl...Cl angles. The present study shows that these two types of contacts are utterly different. The crystal structures of 4-bromo-3-chlorophenol (2 and 3-bromo-4-chlorophenol (3 have been determined. The crystal structure of (2 is isomorphous to that of (1 with the Br atom in the 4-position participating in a type II interaction. However, the monoclinic P21/c packing of compound (3 is different; while the structure still has O—H...O hydrogen bonds, the tetramer O—H...O synthon seen in (1 and (2 is not seen. Rather than a type I Br...Br interaction which would have been mandated if (3 were isomorphous to (1 and (2, Br forms a Br...O contact wherein its electrophilic character is clearly evident. Crystal structures of the related compounds 4-chloro-3-iodophenol (4 and 3,5-dibromophenol (5 were also determined. A computational survey of the structural landscape was undertaken for (1, (2 and (3, using a crystal structure prediction protocol in space groups P21/c and I41/a with the COMPASS26 force field. While both tetragonal and monoclinic structures are energetically reasonable for all compounds, the fact that (3 takes the latter structure indicates that Br prefers type II over type I contacts. In order to differentiate further between type I and type II halogen contacts, which being chemically distinct are expected to have different distance fall-off properties, a variable-temperature crystallography study was performed on compounds (1, (2 and (4. Length variations with temperature are greater for type II contacts compared with type I. The type II Br...Br interaction in (2 is stronger than the corresponding type II Cl...Cl interaction in (1, leading to elastic

  12. Combined crossed molecular beam and ab initio investigation of the multichannel reaction of boron monoxide (BO; X2Σ+) with Propylene (CH3CHCH2; X1A'): competing atomic hydrogen and methyl loss pathways.

    Science.gov (United States)

    Maity, Surajit; Dangi, Beni B; Parker, Dorian S N; Kaiser, Ralf I; An, Yi; Sun, Bing-Jian; Chang, A H H

    2014-10-16

    The reaction dynamics of boron monoxide ((11)BO; X(2)Σ(+)) with propylene (CH(3)CHCH(2); X(1)A') were investigated under single collision conditions at a collision energy of 22.5 ± 1.3 kJ mol(-1). The crossed molecular beam investigation combined with ab initio electronic structure and statistical (RRKM) calculations reveals that the reaction follows indirect scattering dynamics and proceeds via the barrierless addition of boron monoxide radical with its radical center located at the boron atom. This addition takes place to either the terminal carbon atom (C1) and/or the central carbon atom (C2) of propylene reactant forming (11)BOC(3)H(6) intermediate(s). The long-lived (11)BOC(3)H(6) doublet intermediate(s) underwent unimolecular decomposition involving at least three competing reaction mechanisms via an atomic hydrogen loss from the vinyl group, an atomic hydrogen loss from the methyl group, and a methyl group elimination to form cis-/trans-1-propenyl-oxo-borane (CH(3)CHCH(11)BO), 3-propenyl-oxo-borane (CH(2)CHCH(2)(11)BO), and ethenyl-oxo-borane (CH(2)CH(11)BO), respectively. Utilizing partially deuterated propylene (CD(3)CHCH(2) and CH(3)CDCD(2)), we reveal that the loss of a vinyl hydrogen atom is the dominant hydrogen elimination pathway (85 ± 10%) forming cis-/trans-1-propenyl-oxo-borane, compared to the loss of a methyl hydrogen atom (15 ± 10%) leading to 3-propenyl-oxo-borane. The branching ratios for an atomic hydrogen loss from the vinyl group, an atomic hydrogen loss from the methyl group, and a methyl group loss are experimentally derived to be 26 ± 8%:5 ± 3%:69 ± 15%, respectively; these data correlate nicely with the branching ratios calculated via RRKM theory of 19%:5%:75%, respectively.

  13. The Halogenated Metabolism of Brown Algae (Phaeophyta, Its Biological Importance and Its Environmental Significance

    Directory of Open Access Journals (Sweden)

    Stéphane La Barre

    2010-03-01

    Full Text Available Brown algae represent a major component of littoral and sublittoral zones in temperate and subtropical ecosystems. An essential adaptive feature of this independent eukaryotic lineage is the ability to couple oxidative reactions resulting from exposure to sunlight and air with the halogenations of various substrates, thereby addressing various biotic and abiotic stresses i.e., defense against predators, tissue repair, holdfast adhesion, and protection against reactive species generated by oxidative processes. Whereas marine organisms mainly make use of bromine to increase the biological activity of secondary metabolites, some orders of brown algae such as Laminariales have also developed a striking capability to accumulate and to use iodine in physiological adaptations to stress. We review selected aspects of the halogenated metabolism of macrophytic brown algae in the light of the most recent results, which point toward novel functions for iodide accumulation in kelps and the importance of bromination in cell wall modifications and adhesion properties of brown algal propagules. The importance of halogen speciation processes ranges from microbiology to biogeochemistry, through enzymology, cellular biology and ecotoxicology.

  14. Development of an enzymatic fiber-optic biosensor for detection of halogenated hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Bidmanova, Sarka; Chaloupkova, Radka; Damborsky, Jiri; Prokop, Zbynek [Masaryk University, Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment, Faculty of Science, Brno (Czech Republic)

    2010-11-15

    An enzyme-based biosensor was developed by co-immobilization of purified enzyme haloalkane dehalogenase (EC 3.8.1.5) and a fluorescence pH indicator on the tip of an optical fiber. Haloalkane dehalogenase catalyzes hydrolytic dehalogenation of halogenated aliphatic hydrocarbons, which is accompanied by a pH change influencing the fluorescence of the indicator. The pH sensitivity of several fluorescent dyes was evaluated. The selected indicator 5(6)-carboxyfluorescein was conjugated with bovine serum albumin and its reaction was tested under different immobilization conditions. The biosensor was prepared by cross-linking of the conjugate in tandem with haloalkane dehalogenase using glutaraldehyde vapor. The biosensor, stored for 24 h in 50 mM phosphate buffer (pH 7.5) prior to measurement, was used after 15 min of equilibration, the halogenated compound was added, and the response was monitored for 30 min. Calibration of the biosensor with 1,2-dibromoethane and 3-chloro-2-(chloromethyl)-1-propene showed an excellent linear dependence, with detection limits of 0.133 and 0.014 mM, respectively. This biosensor provides a new tool for continuous in situ monitoring of halogenated environmental pollutants. (orig.)

  15. Atomic-Resolution Transmission Electron Microscopic Movies for Study of Organic Molecules, Assemblies, and Reactions: The First 10 Years of Development.

    Science.gov (United States)

    Nakamura, Eiichi

    2017-06-20

    A molecule is a quantum mechanical entity. "Watching motions and reactions of a molecule with our eyes" has therefore been a dream of chemists for a century. This dream has come true with the aid of the movies of atomic-resolution transmission electron microscopic (AR-TEM) molecular images through real-time observation of dynamic motions of single organic molecules (denoted hereafter as single-molecule atomic-resolution real-time (SMART) TEM imaging). Since 2007, we have reported movies of a variety of single organic molecules, organometallic molecules, and their assemblies, which are rotating, stretching, and reacting. Like movies in the theater, the atomic-resolution molecular movies provide us information on the 3-D structures of the molecules and also their time evolution. The success of the SMART-TEM imaging crucially depends on the development of "chemical fishhooks" with which fish (organic molecules) in solution can be captured on a single-walled carbon nanotube (CNT, serving as a "fishing rod"). The captured molecules are connected to a slowly vibrating CNT, and their motions are displayed on a monitor in real time. A "fishing line" connecting the fish and the rod may be a σ-bond, a van der Waals force, or other weak connections. Here, the molecule/CNT system behaves as a coupled oscillator, where the low-frequency anisotropic vibration of the CNT is transmitted to the molecules via the weak chemical connections that act as an energy filter. Interpretation of the observed motions of the molecules at atomic resolution needs us to consider the quantum mechanical nature of electrons as well as bond rotation, letting us deviate from the conventional statistical world of chemistry. What new horizons can we explore? We have so far carried out conformational studies of individual molecules, assigning anti or gauche conformations to each C-C bond in conformers that we saw. We can also determine the structures of van der Waals assemblies of organic molecules

  16. Calculation of state-to-state differential and integral cross sections for atom-diatom reactions with transition-state wave packets

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Bin [Center for Theoretical and Computational Chemistry, and State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131 (United States); Sun, Zhigang, E-mail: zsun@dicp.ac.cn, E-mail: hguo@unm.edu [Center for Theoretical and Computational Chemistry, and State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Guo, Hua, E-mail: zsun@dicp.ac.cn, E-mail: hguo@unm.edu [Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131 (United States)

    2014-06-21

    A recently proposed transition-state wave packet method [R. Welsch, F. Huarte-Larrañaga, and U. Manthe, J. Chem. Phys. 136, 064117 (2012)] provides an efficient and intuitive framework to study reactive quantum scattering at the state-to-state level. It propagates a few transition-state wave packets, defined by the eigenfunctions of the low-rank thermal flux operator located near the transition state, into the asymptotic regions of the reactant and product arrangement channels separately using the corresponding Jacobi coordinates. The entire S-matrix can then be assembled from the corresponding flux-flux cross-correlation functions for all arrangement channels. Since the transition-state wave packets can be defined in a relatively small region, its transformation into either the reactant or product Jacobi coordinates is accurate and efficient. Furthermore, the grid/basis for the propagation, including the maximum helicity quantum number K, is much smaller than that required in conventional wave packet treatments of state-to-state reactive scattering. This approach is implemented for atom-diatom reactions using a time-dependent wave packet method and applied to the H + D{sub 2} reaction with all partial waves. Excellent agreement with benchmark integral and differential cross sections is achieved.

  17. Calculation of state-to-state differential and integral cross sections for atom-diatom reactions with transition-state wave packets

    Science.gov (United States)

    Zhao, Bin; Sun, Zhigang; Guo, Hua

    2014-06-01

    A recently proposed transition-state wave packet method [R. Welsch, F. Huarte-Larrañaga, and U. Manthe, J. Chem. Phys. 136, 064117 (2012)] provides an efficient and intuitive framework to study reactive quantum scattering at the state-to-state level. It propagates a few transition-state wave packets, defined by the eigenfunctions of the low-rank thermal flux operator located near the transition state, into the asymptotic regions of the reactant and product arrangement channels separately using the corresponding Jacobi coordinates. The entire S-matrix can then be assembled from the corresponding flux-flux cross-correlation functions for all arrangement channels. Since the transition-state wave packets can be defined in a relatively small region, its transformation into either the reactant or product Jacobi coordinates is accurate and efficient. Furthermore, the grid/basis for the propagation, including the maximum helicity quantum number K, is much smaller than that required in conventional wave packet treatments of state-to-state reactive scattering. This approach is implemented for atom-diatom reactions using a time-dependent wave packet method and applied to the H + D2 reaction with all partial waves. Excellent agreement with benchmark integral and differential cross sections is achieved.

  18. Detection of O(3P(J)) atoms formed by reaction, Al+O2--> AlO+O under crossed-beam condition.

    Science.gov (United States)

    Ishida, Masayuki; Higashiyama, Tomohiko; Matsumoto, Yoshiteru; Honma, Kenji

    2005-05-22

    The vacuum ultraviolet laser-induced fluorescence technique was employed to detect the oxygen atoms formed by the reaction, Al+O(2)--> AlO+O. The measurements were carried out under the crossed-beam condition at 12.2 kJmol of collision energy. The relative populations of three spin-orbit states of O((3)P(J)) were determined to be 3.8, 1.0, and 0.2 for J=2, 1, and 0, respectively. They show nonstatistical populations, i.e., more population in O((3)P(2)) and less population in O((3)P(0)) than the statistical expectation. These populations were almost identical for two Al beam conditions where the relative concentrations of two spin-orbit states of Al, (2)P(1/2), and (2)P(3/2), are different. These results suggest that the reaction of Al with O(2) proceeds via an intermediate complex where the memory of the initial spin-orbit state is lost. Deviation from the statistical population of O((3)P(J)) implies the occurrence of the interaction among potential surfaces in the exit channel.

  19. Synthesis of Calcium(II) Amidinate Precursors for Atomic Layer Deposition through a Redox Reaction between Calcium and Amidines.

    Science.gov (United States)

    Kim, Sang Bok; Yang, Chuanxi; Powers, Tamara; Davis, Luke M; Lou, Xiabing; Gordon, Roy G

    2016-08-22

    We have prepared two new Ca(II) amidinates, which comprise a new class of ALD precursors. The syntheses proceed by a direct reaction between Ca metal and the amidine ligands in the presence of ammonia. Bis(N,N'-diisopropylformamidinato)calcium(II) (1) and bis(N,N'-diisopropylacetamidinato)calcium(II) (2) adopt dimeric structures in solution and in the solid state. X-ray crystallography revealed asymmetry in one of the bridging ligands to afford the structure [(η(2) -L)Ca(μ-η(2) :η(2) -L)(μ-η(2) :η(1) -L)Ca(η(2) -L)]. These amidinate complexes showed unprecedentedly high volatility as compared to the widely employed and commercially available Ca(II) precursor, [Ca3 (tmhd)6 ]. In CaS ALD with 1 and H2 S, the ALD window was approximately two times wider and lower in temperature by about 150 °C than previously reported with [Ca3 (tmhd)6 ] and H2 S. Complexes 1 and 2, with their excellent volatility and thermal stability (up to at least 350 °C), are the first homoleptic Ca(II) amidinates suitable for use as ALD precursors.

  20. Halogen-π Interactions between Benzene and X2/CX4 (X = Cl, Br): Assessment of Various Density Functionals with Respect to CCSD(T).

    Science.gov (United States)

    Youn, Il Seung; Kim, Dong Yeon; Cho, Woo Jong; Madridejos, Jenica Marie L; Lee, Han Myoung; Kołaski, Maciej; Lee, Joonho; Baig, Chunggi; Shin, Seung Koo; Filatov, Michael; Kim, Kwang S

    2016-11-23

    Various types of interactions between halogen (X) and π moiety (X-π interaction) including halogen bonding play important roles in forming the structures of biological, supramolecular, and nanomaterial systems containing halogens and aromatic rings. Furthermore, halogen molecules such as X2 and CX4 (X = Cl/Br) can be intercalated in graphite and bilayer graphene for doping and graphene functionalization/modification. Due to the X-π interactions, though recently highly studied, their structures are still hardly predictable. Here, using the coupled-cluster with single, double, and noniterative triple excitations (CCSD(T)), the Møller-Plesset second-order perturbation theory (MP2), and various flavors of density functional theory (DFT) methods, we study complexes of benzene (Bz) with halogen-containing molecules X2 and CX4 (X = Cl/Br) and analyze various components of the interaction energy using symmetry adapted perturbation theory (SAPT). As for the lowest energy conformers (S1), X2-Bz is found to have the T-shaped structure where the electropositive X atom-end of X2 is pointing to the electronegative midpoint of CC bond of the Bz ring, and CX4-Bz has the stacked structure. In addition to this CX4-Bz (S1), other low energy conformers of X2-Bz (S2/S3) and CX4-Bz (S2) are stabilized primarily by the dispersion interaction, whereas the electrostatic interaction is substantial. Most of the density functionals show noticeable deviations from the CCSD(T) complete basis set (CBS) limit binding energies, especially in the case of strongly halogen-bonded conformers of X2-Bz (S1), whereas the deviations are relatively small for CX4-Bz where the dispersion is more important. The halogen bond shows highly anisotropic electron density around halogen atoms and the DFT results are very sensitive to basis set. The unsatisfactory performance of many density functionals could be mainly due to less accurate exchange. This is evidenced from the good performance by the dispersion

  1. The Gibbs free energy of formation of halogenated benzenes, benzoates and phenols and their potential role as electron acceptors in anaerobic environments.

    Science.gov (United States)

    Dolfing, Jan; Novak, Igor

    2015-02-01

    The sequence of redox reactions in the natural environment generally follows the electron affinity of the electron acceptors present and can be rationalized by the redox potentials of the appropriate half-reactions. Answering the question how halogenated aromatics fit into this sequence requires information on their Gibbs free energy of formation values. In 1992 Gibbs free energy data for various classes of halogenated aromatic compounds were systematically explored for the first time based on Benson's group contribution method. Since then more accurate quantum chemical calculation methods have become available. Here we use these methods to estimate enthalpy and Gibbs free energy of formation values of all chlorinated and brominated phenols. These data and similar state-of-the-art datasets for halogenated benzenes and benzoates were then used to calculate two-electron redox potentials of halogenated aromatics for standard conditions and for pH 7. The results underline the need to take speciation into consideration when evaluating redox potentials at pH 7 and highlight the fact that halogenated aromatics are excellent electron acceptors in aqueous environments.

  2. Halogenated coumarin derivatives as novel seed protectants.

    Science.gov (United States)

    Brooker, N; Windorski, J; Bluml, E

    2008-01-01

    Development of new and improved antifungal compounds that are target-specific is backed by a strong Federal, public and commercial mandate. Many plant-derived chemicals have proven fungicidal properties, including the coumarins (1,2-Benzopyrone) found in a variety of plants such as clover, sweet woodruff and grasses. Preliminary research has shown the coumarins to be a highly active group of molecules with a wide range of antimicrobial activity against both fungi and bacteria. It is believed that these cyclic compounds behave as natural pesticidal defence molecules for plants and they represent a starting point for the exploration of new derivative compounds possessing a range of improved antifungal activity. Within this study, derivatives of coumarin that were modified with halogenated side groups were screened for their antifungal activity against a range of soil-borne plant pathogenic fungi. Fungi included in this in vitro screen included Macrophomina phaseolina (charcoal rot), Phytophthora spp. (damping off and seedling rot), Rhizoctonia spp. (damping off and root rot) and Pythium spp. (seedling blight), four phylogenetically diverse and economically important plant pathogens. Studies indicate that these halogenated coumarin derivatives work very effectively in vitro to inhibit fungal growth and some coumarin derivatives have higher antifungal activity and stability as compared to the original coumarin compound alone. The highly active coumarin derivatives are brominated, iodinated and chlorinated compounds and results suggest that besides being highly active, very small amounts can be used to achieve LD100 rates. In addition to the in vitro fungal inhibition assays, results of polymer seed coating compatibility and phytotoxicity testing using these compounds as seed treatments will also be reported. These results support additional research in this area of natural pesticide development.

  3. Synthesis and improved photochromic properties of pyrazolones in the solid state by incorporation of halogen

    Science.gov (United States)

    Guo, Jixi; Yuan, Hui; Jia, Dianzeng; Guo, Mingxi; Li, Yinhua

    2017-01-01

    Four novel photochromic pyrazolones have been prepared by introducing halogen atoms as substituents on the benzene ring. All as-synthesized compounds exhibited excellent reversible photochromic performances in the solid state. Upon UV light irradiation, the as-synthesized compounds can change their structures from E-form to K-form with yellow coloration. Further processed by heating, they rapidly reverted to their initial states at 120 °С. Their photo-response and thermal bleaching kinetics were detailed investigated by UV absorption spectra. The results showed that the time constants were higher than that of our previously reported compounds at least one order of magnitude and the rate constants of the as-synthesized compounds were significantly influenced by the size and electronegativity of different halogen atoms. The fluorescence emission were modulated in a high degree via photoisomerization of pyrazolones, which might be due to the efficient energy transfer from E-form to K-form isomers for their partly overlaps between their E-form absorption spectra and K-form fluorescence spectra.

  4. Halogenation effects on electron collisions with CF3Cl, CF2Cl2, and CFCl3

    Science.gov (United States)

    Freitas, T. C.; Lopes, A. R.; Azeredo, A. D.; Bettega, M. H. F.

    2016-04-01

    We report differential and integral elastic cross sections for low-energy electron collisions with CF3Cl, CF2Cl2, and CFCl3 molecules for energies ranging from 0.1 eV to 30 eV. The calculations were performed using the Schwinger multichannel method with pseudopotentials in the static-exchange and static-exchange plus polarization approximations. The influence of the permanent electric dipole moment on the cross sections was included using the Born closure scheme. A very good agreement between our calculations and the experimental results of Jones [J. Chem. Phys. 84, 813 (1986)], Mann and Linder [J. Phys. B 25, 1621 (1992); 25, 1633 (1992)] and Hoshino et al. [J. Chem. Phys. 138, 214305 (2013)] was found. We also compare our results with the calculations of Beyer et al. [Chem. Phys. 255, 1 (2000)] using the R-matrix method, where we find good agreement with respect to the location of the resonances, and with the calculations of Hoshino et al. using the independent atom method with screening corrected additivity rule, where we find qualitative agreement at energies above 20 eV. Additional electronic structure calculations were carried out in order to help in the interpretation of the scattering results. The stabilization the lowest σ∗ resonance due to the exchange of fluorine by chlorine atoms (halogenation effect) follows a simple linear relation with the energy of the lowest unoccupied molecular orbitals and can be considered as a signature of the halogenation effect.

  5. Atomic displacements in ferroelectric trigonal and orthorhombic boracite structures

    Science.gov (United States)

    Dowty, Eric; Clark, J.R.

    1972-01-01

    New crystal-structure refinements of Pca21 boracite, Mg3ClB7O13, and R??{lunate}c ericaite, Fe2.4Mg0.6ClB7O13, show that some boron and oxygen atoms are involved in the 'ferro' transitions as well as the metal and halogen atoms. The atomic displacements associated with the polarity changes are as large as 0.6A??. ?? 1972.

  6. Performance of the wet oxidation unit of the HPLC isotope ratio mass spectrometry system for halogenated compounds.

    Science.gov (United States)

    Gilevska, Tetyana; Gehre, Matthias; Richnow, Hans Hermann

    2014-08-05

    The performance of liquid chromatography-isotope ratio mass spectrometry (LC-IRMS) for polar halogenated compounds was evaluated. Oxidation capacity of the system was tested with halogenated acetic acids and halogenated aromatic compounds. Acetic acid (AA) was selected as a reference compound for complete oxidation and compared on the molar basis to the oxidation of other analytes. The isotope values were proofed with calibrated δ(13)C values obtained with an elemental analyzer (EA). Correct isotope values were obtained for mono- and dichlorinated, fluorinated, and tribrominated acetic acids and also for aniline, phenol, benzene, bromobenzene, chlorobenzene, 1,2-dichlorobenzene, 2,4,6-trichlorophenol, pentafluorophenol, and nitrobenzene. Incomplete oxidation of trichloroacetic acid (TCA) and trifluoroacetic acid (TFA) resulted in lower recovery compared to AA (37% and 24%, respectively) and in isotopic shift compared to values obtained with EA (TCA Δδ(13)C(EA/LC-IRMS) = 8.8‰, TFA Δδ(13)C(EA/LC-IRMS) = 6.0‰). Improvement of oxidation by longer reaction time in the reactor and increase in the concentration of sulfate radicals did not lead to complete combustion of TCA and TFA needed for δ(13)C analysis. To the best of our knowledge, this is the first time such highly chlorinated compounds were studied with the LC-IRMS system. This work provides information for method development of LC-IRMS methods for halogenated contaminants that are known as potential threats to public health and the environment.

  7. Reactions of the bis(dialkylphosphino)methane complexes Pd2X2(μ-R2PCH2PR2)2 (X = halogen, R = Me or Et) with H2S, S8, COS, and CS2; detection of reaction intermediates.

    Science.gov (United States)

    Pamplin, Craig B; Rettig, Steven J; Patrick, Brian O; James, Brian R

    2011-09-01

    The Pd(2)X(2)(dmpm)(2) complexes [X = Cl (1a), Br (1b), I (1c); dmpm = bis(dimethylphosphino)methane. In all the dipalladium complexes mentioned in this paper, the dmpm, depm, and dppm ligands (unless stated otherwise) are bridging, but for convenience the μ-symbol is omitted.] react with H(2)S to yield H(2) and the bridged-sulfido complexes Pd(2)X(2)(μ-S)(dmpm)(2) (2a-c), of which 2a and 2b are structurally characterized. With 1a, two rapid reversible equilibria are observed by NMR spectroscopy below -30 °C, and two reaction intermediates are detected; both are likely hydrido(mercapto) species. Reaction of 1a with 1 equiv of elemental sulfur also yields 2a. The reaction of 1a with COS results in the initial formation of Pd(2)Cl(2)(μ-COS)(dmpm)(2) (3) that undergoes decarbonylation to yield 2a and Pd(2)Cl(2)(μ-CO)(dmpm)(2) (4), which is also formed via reversible insertion of the CO into the Pd-Pd bond of 1a. The solid-state molecular structure of the previously reported complex Pd(2)Cl(2)(μ-CS(2))(dmpm)(2) (5), together with solution NMR data for 3 and 5, reveal that the bridging heterocumulene ligands coordinate in an η(2)-C,S fashion. Analogous findings were made for the corresponding Pd(2)X(2)(depm)(2) complexes [X = Cl (1a'), Br (1b'), I (1c'); depm = bis(diethylphosphino)methane], although no μ-COS species was detected. The Pd(2)X(2)(μ-S)(depm)(2) complex was structurally characterized. Differences in the chemistry of the previously studied, corresponding dppm systems (dppm = bis(diphenylphosphino)methane) are discussed.

  8. Molecular docking and structural analysis of non-opioid analgesic drug acemetacin with halogen substitution: A DFT approach

    Science.gov (United States)

    Leenaraj, D. R.; Manimaran, D.; Joe, I. Hubert

    2016-11-01

    Acemetacin is a non-opioid analgesic which belongs to the class, the non-steroidal anti-inflammatory drug. The bioactive conformer was identified through potential energy surface scan studies. Spectral features of acemetacin have been probed by the techniques of Fourier transform infrared, Raman and Nuclear magnetic resonance combined with density functional theory calculations at the B3LYP level with 6-311 + G(d,p) basis set. The detailed interpretation of vibrational spectral assignments has been carried out on the basis of potential energy distribution method. Geometrical parameters reveal that the carbonyl substitution in between chlorophenyl and indole ring leads to a significant loss of planarity. The red-shifted Cdbnd O stretching wavenumber describe the conjugation between N and O atoms. The shifted Csbnd H stretching wavenumbers of Osbnd CH3 and Osbnd CH2 groups depict the back-donation and induction effects. The substitution of halogen atoms on the title molecule influences the charge distribution and the geometrical parameters. Drug activity and binding affinity of halogen substitution in title molecule with target protein were undertaken by molecular docking study. This study enlightens the effects of bioefficiency due to the halogen substitution in the molecule.

  9. Quadrupole coupling constants and isomeric Moessbauer shifts for halogen-containing gold, platinum, niobium, tantalum and antimony compounds

    Energy Technology Data Exchange (ETDEWEB)

    Poleshchuk, O. K., E-mail: poleshch@tspu.edu.ru [Tomsk State Pedagogical University (Russian Federation); Branchadell, V. [Universitat Autonoma de Barcelona, Departament de Quimica (Spain); Ritter, R. A.; Fateev, A. V. [Tomsk State Pedagogical University (Russian Federation)

    2008-01-15

    We have analyzed by means of Density functional theory calculations the nuclear quadrupole coupling constants of a range of gold, antimony, platinum, niobium and tantalum compounds. The geometrical parameters and halogen nuclear quadrupole coupling constants obtained by these calculations substantially corresponded to the data of microwave and nuclear quadrupole resonance spectroscopy. An analysis of the quality of the calculations that employ pseudo-potentials and all-electron basis sets for the halogen compounds was carried out. The zero order regular approximation (ZORA) method is shown to be a viable alternative for the calculation of halogen coupling constants in molecules. In addition, the ZORA model, in contrast to the pseudo-potential model, leads to realistic values of all metal nuclear quadrupole coupling constants. From Klopman's approach, it follows that the relationship between the electrostatic bonding and covalent depends on the nature of the central atom. The results on Moessbauer chemical shifts are also in a good agreement with the coordination number of the central atom.

  10. Oxidative dechlorination of halogenated phenols catalyzed by two distinct enzymes: Horseradish peroxidase and dehaloperoxidase.

    Science.gov (United States)

    Szatkowski, Lukasz; Thompson, Matthew K; Kaminski, Rafal; Franzen, Stefan; Dybala-Defratyka, Agnieszka

    2011-01-01

    The mechanism of the dehalogenation step catalyzed by dehaloperoxidase (DHP) from Amphitrite ornata, an unusual heme-containing protein with a globin fold and peroxidase activity, has remarkable similarity with that of the classical heme peroxidase, horseradish peroxidase (HRP). Based on quantum mechanical/molecular mechanical (QM/MM) modeling and experimentally determined chlorine kinetic isotope effects, we have concluded that two sequential one electron oxidations of the halogenated phenol substrate leads to a cationic intermediate that strongly resembles a Meisenheimer intermediate - a commonly formed reactive complex during nucleophilic aromatic substitution reactions especially in the case of arenes carrying electron withdrawing groups.

  11. Spectroscopical Determination of ground-level concentrations of Reactive Halogen Species (RHS) above salt lakes, salt pans and other areas with high halogen emissions

    Science.gov (United States)

    Holla, Robert; Landwehr, Sebastian; Platt, Ulrich; Kotte, Karsten; Lisitsyna, Linda V.; Mulder, Ines; Emmerich, Maren; Huber, Stefan; Heidak, Markus

    2010-05-01

    Reactive Halogen Species (RHS), especially BrO and IO, are crucial for the photo chemistry of ozone, the oxidation capacity of the troposphere and have an impact on the equilibria of many atmospheric reaction cycles. This also induces a potential influence on the earth's climate. Beside polar regions, volcanoes and the marine boundary layer salt lakes are an important source for reactive halogen species. At the Dead Sea BrO mixing ratios of up to 176 ppt were measured in summer 2001 [Matveev et al., 2001] and IO was identified with maximal mixing ratios of more than 10 ppt by [Zingler and Platt, 2005]. The Salar de Uyuni in Bolivia showed the presence of up to 20 ppt BrO [Hönninger et al., 2004]. Salt pans and salt deserts may be important halogen sources as well. Saline soils cover 2.5% of the land surface of the earth and might increase in the near future due to desertification as one aspect of the global climate change. Within the scope of the DFG research group HALOPROC a measurement campaign in Southern Russia was performed in August 2009. The ground-level concentrations of BrO, IO, Ozone and other trace gases above the salt lakes El'Ton, Baskuntschak and other local areas were measured using the Multi-AXis-DOAS technique. A further campaign was performed in Mauritania in November/December 2009 in cooperation with the BMBF project SOPRAN. In addition to the above-mentioned measurements the Long-Path DOAS technique was used in order to measure the ground-level concentrations at two different sites: 1. the salt pan Sebkha N'Dramcha and 2. close to a sea weed field at Poste Iwik in a coastal area. We present results from both campaigns concerning the concentrations of bromine oxide (BrO), iodine oxide (IO), ozone (O3)and formaldehyde (HCHO) and give an outlook on possible further campaigns in the future.

  12. Halogen Bonding Promotes Higher Dye-Sensitized Solar Cell Photovoltages.

    Science.gov (United States)

    Simon, Sarah J C; Parlane, Fraser G L; Swords, Wesley B; Kellett, Cameron W; Du, Chuan; Lam, Brian; Dean, Rebecca K; Hu, Ke; Meyer, Gerald J; Berlinguette, Curtis P

    2016-08-24

    We report here an enhancement in photovoltage for dye-sensitized solar cells (DSSCs) where halogen-bonding interactions exist between a nucleophilic electrolyte species (I(-)) and a photo-oxidized dye immobilized on a TiO2 surface. The triarylamine-based dyes under investigation showed larger rate constants for dye regeneration (kreg) by the nucleophilic electrolyte species when heavier halogen substituents were positioned on the dye. The open-circuit voltages (VOC) tracked these kreg values. This analysis of a homologous series of dyes that differ only in the identity of two halogen substituents provides compelling evidence that the DSSC photovoltage is sensitive to kreg. This study also provides the first direct evidence that halogen-bonding interactions between the dye and the electrolyte can bolster DSSC performance.

  13. UARS Halogen Occultation Experiment (HALOE) Level 2 V001

    Data.gov (United States)

    National Aeronautics and Space Administration — The HALOE home page on the WWW is http://haloe.gats-inc.com/home/index.php The Halogen Occultation Experiment (HALOE) on NASA's Upper Atmosphere Research Satellite...

  14. I2-Mediated 2H-indazole synthesis via halogen-bond-assisted benzyl C-H functionalization.

    Science.gov (United States)

    Yi, Xiangli; Jiao, Lei; Xi, Chanjuan

    2016-10-18

    I2-Mediated benzyl C-H functionalization has been developed for the synthesis of 2H-indazoles, which features high efficiency, simple conditions and no need for metals. Mechanistic experiments and DFT calculations have revealed halogen bond assistance and a radical chain process for this reaction. The azo group and the bound iodine cooperate in the hydrogen abstraction step, which circumvents the thermodynamic disfavor of direct hydrogen abstraction by a simple iodine radical.

  15. Substituent Effects on the Photodeprotection Reactions of Selected Ketoprofen Derivatives in Phosphate Buffered Aqueous Solutions

    Science.gov (United States)

    Liu, Mingyue; Li, Ming-De; Huang, Jinqing; Li, Tianlu; Liu, Han; Li, Xuechen; Phillips, David Lee

    2016-02-01

    Photodeprotection is an important reaction that has been attracting broad interest for use in a variety of applications. Recent advances in ultrafast and vibrational time-resolved spectroscopies can facilitate obtaining data to help unravel the reaction mechanisms involving in the photochemical reactions of interest. The kinetics and reaction mechanisms for the photodeprotection reactions of ketoprofen derivatives containing three different substituents (ibuprofen, Br and I) were investigated by femtosecond transient absorption (fs-TA) and nanosecond time-resolved resonance Raman (ns-TR3) spectroscopy methods in phosphate buffered solutions (PBS). Fs-TA allows us to detect the decay kinetics of the triplet species as the key precursor for formation of a carbanion species for three different substituents attached to ketoprofen. To characterize the structural and electronic properties of the corresponding carbanion and triplet intermediates, TR3 spectroscopic experiments were conducted. The transient spectroscopy work reveals that the different substituents affect the photodecarboxylation reaction to produce carbon dioxide which in turn influences the generation of the carbanion species which determines the rate of the photorelease of the functional groups attached on the ketoprofen parent molecule. The fingerprint TR3 spectroscopy results suggest that ketoprofen derivatives may be deactivated to produce a triplet carbanion when increasing the atom mass of the halogen atoms.

  16. Halogenated naphthyl methoxy piperidines for mapping serotonin transporter sites

    Science.gov (United States)

    Goodman, M.M.; Faraj, B.

    1999-07-06

    Halogenated naphthyl methoxy piperidines having a strong affinity for the serotonin transporter are disclosed. Those compounds can be labeled with positron-emitting and/or gamma emitting halogen isotopes by a late step synthesis that maximizes the useable lifeterm of the label. The labeled compounds are useful for localizing serotonin transporter sites by positron emission tomography and/or single photon emission computed tomography.

  17. Halogen chemistry reduces tropospheric O3 radiative forcing

    Science.gov (United States)

    Sherwen, Tomás; Evans, Mat J.; Carpenter, Lucy J.; Schmidt, Johan A.; Mickley, Loretta J.

    2017-01-01

    Tropospheric ozone (O3) is a global warming gas, but the lack of a firm observational record since the preindustrial period means that estimates of its radiative forcing (RFTO3) rely on model calculations. Recent observational evidence shows that halogens are pervasive in the troposphere and need to be represented in chemistry-transport models for an accurate simulation of present-day O3. Using the GEOS-Chem model we show that tropospheric halogen chemistry is likely more active in the present day than in the preindustrial. This is due to increased oceanic iodine emissions driven by increased surface O3, higher anthropogenic emissions of bromo-carbons, and an increased flux of bromine from the stratosphere. We calculate preindustrial to present-day increases in the tropospheric O3 burden of 113 Tg without halogens but only 90 Tg with, leading to a reduction in RFTO3 from 0.43 to 0.35 Wm-2. We attribute ˜ 50 % of this reduction to increased bromine flux from the stratosphere, ˜ 35 % to the ocean-atmosphere iodine feedback, and ˜ 15 % to increased tropospheric sources of anthropogenic halogens. This reduction of tropospheric O3 radiative forcing due to halogens (0.087 Wm-2) is greater than that from the radiative forcing of stratospheric O3 (˜ 0.05 Wm-2). Estimates of RFTO3 that fail to consider halogen chemistry are likely overestimates (˜ 25 %).

  18. Kinetic solvent effects on the reactions of the cumyloxyl radical with tertiary amides. Control over the hydrogen atom transfer reactivity and selectivity through solvent polarity and hydrogen bonding.

    Science.gov (United States)

    Salamone, Michela; Mangiacapra, Livia; Bietti, Massimo

    2015-01-16

    A laser flash photolysis study on the role of solvent effects on hydrogen atom transfer (HAT) from the C-H bonds of N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMA), N-formylpyrrolidine (FPRD), and N-acetylpyrrolidine (APRD) to the cumyloxyl radical (CumO(•)) was carried out. From large to very large increases in the HAT rate constant (kH) were measured on going from MeOH and TFE to isooctane (kH(isooctane)/kH(MeOH) = 5-12; kH(isooctane)/kH(TFE) > 80). This behavior was explained in terms of the increase in the extent of charge separation in the amides determined by polar solvents through solvent-amide dipole-dipole interactions and hydrogen bonding, where the latter interactions appear to play a major role with strong HBD solvents such as TFE. These interactions increase the electron deficiency of the amide C-H bonds, deactivating these bonds toward HAT to an electrophilic radical such as CumO(•), indicating that changes in solvent polarity and hydrogen bonding can provide a convenient method for deactivation of the C-H bond of amides toward HAT. With DMF, a solvent-induced change in HAT selectivity was observed, suggesting that solvent effects can be successfully employed to control the reaction selectivity in HAT-based procedures for the functionalization of C-H bonds.

  19. Synthesis of Soluble Halogenated Polyphenylenes. Mechanism for the Coupling Halogenated Lithiobenzenes

    Science.gov (United States)

    1993-11-22

    the halogen content in these polymers was lowered using larger amounts of tert- butyllithium. TGA analysis (N2 , 20C/rmin) of I1 showed a 10% weight...iodide for every three aryl rings. DSC analysis (N2 , 20°C/min) for 1 8 showed no transitions on either the first or second heating scans to 230"C. TGA ... analysis (N2. 20C/rmin) showed a 10% weight loss at 3220C and char yields of 46% at 900"C. Visual analysis of the charred material did indicate that

  20. Electron transfer reactions of macrocyclic compounds of cobalt

    Energy Technology Data Exchange (ETDEWEB)

    Heckman, R.A.

    1978-08-01

    The kinetics and mechanisms of reduction of H/sub 2/O/sub 2/, Br/sub 2/, and I/sub 2/ by various macrocyclic tetraaza complexes of cobalt(II), including Vitamin B/sub 12r/, were studied. The synthetic macrocycles studied were all 14-membered rings which varied in the degree of unsaturation,substitution of methyl groups on the periphery of the ring, and substitution within the ring itself. Scavenging experiments demonstrated that the reductions of H/sub 2/O/sub 2/ produce free hydroxyl radicals only in the case of Co((14)ane)/sup 2 +/ but with none of the others. In the latter instances apparently H/sub 2/O/sub 2/ simultaneously oxidizes the metal center and the ligand. The reductions of Br/sub 2/ and I/sub 2/ produce an aquohalocobalt(III) product for all reductants (except B/sub 12r/ + Br/sub 2/, which was complicated by bromination of the corrin ring). The mechanism of halogen reduction was found to involve rate-limiting inner-sphere electron transfer from cobalt to halogen to produce a dihalide anion coordinated to the cobalt center. This intermediate subsequently decomposes in rapid reactions to halocobalt(III) and halogen atom species or reacts with another cobalt(II) center to give two molecules of halocobalt(III). The reductions of halomethylcobaloximes and related compounds and diamminecobaloxime by Cr/sup 2 +/ were also studied. The reaction was found to be biphasic in all cases with the reaction products being halomethane (for the halomethylcobaloximes), Co/sup 2 +/ (in less than 100 percent yield), a Cr(III)-dimethylglyoxime species, a small amount of free dmgH/sub 2/, and a highly-charged species containing both cobalt and chromium. The first-stage reaction occurs with a stoichiometry of 1:1 producing an intermediate with an absorption maximum at 460 nm for all starting reagents. The results were interpreted in terms of inner-sphere coordination of the cobaloxime to the Cr(II) and electron transfer through the oxime N-O bond.