WorldWideScience

Sample records for halo states coulomb

  1. Elastic scattering and reaction mechanisms of the halo nucleus $^{11}$Be around the Coulomb barrier

    CERN Document Server

    Di Pietro, A; Fisichella, M; Borge, M J G; Randisi, G; Milin, M; Figuera, P; Gomez-Camacho, J; Raabe, R; Amorini, F; Fraile, L M; Rizzo, F; Zadro, M; Torresi, D; Wenander, F; Pellegriti, M G; Papa, M; Jeppesen, H; Santonocito, D; Scuderi, V; Acosta, L; Perez-Bernal, F; Tengblad, O; Lattuada, M; Musumarra, A; Scalia, G; Maira Vidal, A; Voulot, D

    2010-01-01

    Collisions induced by $^{9}$Be, $^{10}$Be, $^{11}$Be on a $^{64}$Zn target at the same c. m. energy were studied. For the first time, strong effects of the $^{11}$Be halo structure on elastic-scattering and reaction mechanisms at energies near the Coulomb barrier are evidenced experimentally. The elastic-scattering cross section of the $^{11}$Be halo nucleus shows unusual behavior in the Coulomb-nuclear interference peak angular region. The extracted total-reaction cross section for the $^{11}$Be collision is more than double the ones measured in the collisions induced by $^{9}$Be, $^{10}$Be. It is shown that such a strong enhancement of the total-reaction cross section with $^{11}$Be is due to transfer and breakup processes.

  2. Fusion and Direct Reactions of Halo Nuclei at Energies around the Coulomb Barrier

    CERN Document Server

    Keeley, N; Raabe, R; Sida, J L

    2007-01-01

    The present understanding of reaction processes involving light unstable nuclei at energies around the Coulomb barrier is reviewed. The effect of coupling to direct reaction channels on elastic scattering and fusion is investigated, with the focus on halo nuclei. A list of definitions of processes is given, followed by a review of the experimental and theoretical tools and information presently available. The effect of couplings on elastic scattering and fusion is studied with a series of model calculations within the coupled-channels framework. The experimental data on fusion are compared to "bare" no-coupling one-dimensional barrier penetration model calculations. On the basis of these calculations and comparisons with experimental data, conclusions are drawn from the observation of recurring features. The total fusion cross sections for halo nuclei show a suppression with respect to the "bare" calculations at energies just above the barrier that is probably due to single neutron transfer reactions. The dat...

  3. COULOMB DISSOCIATION REACTION AND CORRELATIONS OF 2 HALO NEUTRONS IN LI-11

    NARCIS (Netherlands)

    SHIMOURA, S; NAKAMURA, T; ISHIHARA, M; INABE, N; KOBAYASHI, T; KUBO, T; SIEMSSEN, RH; TANIHATA, [No Value; WATANABE, Y

    1995-01-01

    We have performed an exclusive measurement for the Coulomb dissociation reaction, Pb(Li-11,Li-9+2n)X at an incident energy of 43 A MeV. The deduced excitation energy spectrum of the Li-11 nucleus shows a prominent peak at 1 MeV with a large tail towards higher excitation energies. The relative

  4. Structure Effects in Collisions Induced by Halo and Weakly Bound Nuclei Around the Coulomb Barrier

    CERN Document Server

    Scuderi, V; Torresi, D; Fisichella, M; Borge, M J G; Randisi, G; Milin, M; Figuera, P; Raabe, R; Di Pietro, A; Amorini, F; Fraile, L M; Vidal, A M; Rizzo, F; Zadro, M; Gomez-Camacho, J; Pellegriti, M G; Papa, M; Jeppesen, H; Santonocito, D; Sanchez, E M R; Acosta, L; Tengblad, O; Lattuada, M; Musumarra, A; Scalia, G

    2010-01-01

    In this contribution, results concerning different reaction channels for the collisions induced by the three Be isotopes, Be-9,Be-10,Be-11, on a Zn-64 target at energies around the Coulomb barrier will be presented. The experiments with the radioactive Be-10,Be-11 beams were performed at REX-ISOLDE (CERN) whereas the experiment with the stable weakly bound Be-9 beam was performed at LNS Catania. Elastic scattering angular distributions have been measured for the three systems Be-9,Be-10,Be-11 + Zn-64 at the same center of mass energy. The angular distributions were analyzed with optical potentials and reaction cross sections were obtained from optical model calculations, performed with the code PTOLEMY. For the Be-11 + Zn-64 reaction, the break-up angular distribution was also measured.

  5. Triaxiality near the 110Ru ground state from Coulomb excitation

    Directory of Open Access Journals (Sweden)

    D.T. Doherty

    2017-03-01

    Full Text Available A multi-step Coulomb excitation measurement with the GRETINA and CHICO2 detector arrays was carried out with a 430-MeV beam of the neutron-rich 110Ru (t1/2=12 s isotope produced at the CARIBU facility. This represents the first successful measurement following the post-acceleration of an unstable isotope of a refractory element. The reduced transition probabilities obtained for levels near the ground state provide strong evidence for a triaxial shape; a conclusion confirmed by comparisons with the results of beyond-mean-field and triaxial rotor model calculations.

  6. Imaging of Coulomb-Driven Quantum Hall Edge States

    KAUST Repository

    Lai, Keji

    2011-10-01

    The edges of a two-dimensional electron gas (2DEG) in the quantum Hall effect (QHE) regime are divided into alternating metallic and insulating strips, with their widths determined by the energy gaps of the QHE states and the electrostatic Coulomb interaction. Local probing of these submicrometer features, however, is challenging due to the buried 2DEG structures. Using a newly developed microwave impedance microscope, we demonstrate the real-space conductivity mapping of the edge and bulk states. The sizes, positions, and field dependence of the edge strips around the sample perimeter agree quantitatively with the self-consistent electrostatic picture. The evolution of microwave images as a function of magnetic fields provides rich microscopic information around the ν=2 QHE state. © 2011 American Physical Society.

  7. Can $\\beta$-decay probe excited state halos?

    CERN Multimedia

    2002-01-01

    In the first experiment at the newly constructed ISOLDE Facility the first-forbidden $\\beta$-decay of $^{17}$Ne into the first excited state of $^{17}$F has been measured. It is a factor two faster than the corresponding mirror decay and thus gives one of the largest recorded asymmetries for $\\beta$-decays feeding bound final states. Shell-model calculations can only reproduce the asymmetry if the halo structure of the $^{17}$F state is taken into account.

  8. Isobar analog states (IAS), double isobar analog states (DIAS), configuration states (CS), and double configuration states (DCS) in halo nuclei. Halo isomers

    Energy Technology Data Exchange (ETDEWEB)

    Izosimov, I. N., E-mail: izosimov@jinr.ru [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation)

    2015-10-15

    It has been shown that IAS, DIAS, CS, and DCS can simultaneously have n-n, n-p, and p-p halo components in their wave functions. Differences in halo structure of the excited and ground states can result in the formation of isomers (halo-isomers). Both the Borromean and tango halo types can be observed for n-p configurations of atomic nuclei. The structure of the ground and excited states with different isospin quantum number in halo like nuclei is discussed. B(Mλ) and B(Eλ) for γ-transitions in {sup 6,7,8}Li, {sup 8,9,10}Be, {sup 8,10,11}B, {sup 10,11,12,13,14}C, {sup 13,14,15,16,17}N, {sup 15,16,17,19}O, and {sup 17}F are analyzed. Special attention is given to nuclei whose ground state does not exhibit halo structure but the excited state may have one.

  9. Tricriticality for dimeric Coulomb molecular crystals in ground state

    Science.gov (United States)

    Travěnec, Igor; Šamaj, Ladislav

    2017-12-01

    We study the ground-state properties of a system of dimers. Each dimer consists in a pair of equivalent charges at a fixed distance, immersed in a neutralizing homogeneous background. All charges interact pairwisely by Coulomb potential. The dimer centers form a two-dimensional rectangular lattice with the aspect ratio α\\in [0, 1] and each dimer is allowed to rotate around its center. The previous numerical simulations, made for the more general Yukawa interaction, indicate that only two basic dimer configurations can appear: either all dimers are parallel or they have two different angle orientations within alternating (checkerboard) sublattices. As the dimer size increases, two second-order phase transitions, related to two kinds of the symmetry breaking in dimer’s orientations, were reported. In this paper, we use a recent analytic method based on an expansion of the interaction energy in Misra functions which converges quickly and provides an analytic derivation of the critical behaviour. Our main result is that there exists a specific aspect ratio of the rectangular lattice α^*=0.714 106 840 000 71\\ldots which divides the space of model’s phases onto two distinct regions. If the lattice aspect ratio α>α* , we recover both types of the second-order phase transitions and find that they are of mean-field type with the critical exponent β = 1/2 . If 0.711 535≤slantα<α* , the phase transition associated with the discontinuity of dimer’s angles on alternating sublattices becomes of first order. For α=α* , the first- and second-order phase transitions meet at the tricritical point, characterized by the different critical index β = 1/4 . Such phenomenon is known from literature about the Landau theory of one-component fields, but in our two-component version the scenario is more complicated: the component which is already in the symmetry-broken state at the tricritical point also interferes and exhibits unexpectedly the mean-field singular

  10. Ground-state configuration of neutron-rich Aluminum isotopes through Coulomb Breakup

    Directory of Open Access Journals (Sweden)

    Chakraborty S.

    2014-03-01

    Full Text Available Neutron-rich 34,35Al isotopes have been studied through Coulomb excitation using LAND-FRS setup at GSI, Darmstadt. The method of invariant mass analysis has been used to reconstruct the excitation energy of the nucleus prior to decay. Comparison of experimental CD cross-section with direct breakup model calculation with neutron in p3/2 orbital favours 34Al(g.s⊗νp3/2 as ground state configuration of 35Al. But ground state configuration of 34Al is complicated as evident from γ-ray spectra of 33Al after Coulomb breakup of 34Al.

  11. Ground-state configuration of neutron-rich Aluminum isotopes through Coulomb Breakup

    Science.gov (United States)

    Chakraborty, S.; Datta Pramanik, U.; Aumann, T.; Beceiro, S.; Boretzky, K.; Caesar, C.; Carlson, B. V.; Catford, W. N.; Chatterjee, S.; Chartier, M.; Cortina-Gil, D.; De Angelis, G.; Gonzalez-Diaz, D.; Emling, H.; Diaz Fernandez, P.; Fraile, L. M.; Ershova, O.; Geissel, H.; Heil, M.; Jonson, B.; Kelic, A.; Johansson, H.; Kruecken, R.; Kroll, T.; Kurcewicz, J.; Langer, C.; Le Bleis, T.; Leifels, Y.; Munzenberg, G.; Marganiec, J.; Nociforo, C.; Najafi, A.; Panin, V.; Paschalis, S.; Pietri, S.; Plag, R.; Rahaman, A.; Reifarth, R.; Ricciardi, V.; Rossi, D.; Ray, J.; Simon, H.; Scheidenberger, C.; Typel, S.; Taylor, J.; Togano, Y.; Volkov, V.; Weick, H.; Wagner, A.; Wamers, F.; Weigand, M.; Winfield, J. S.; Yakorev, D.; Zoric, M.

    2014-03-01

    Neutron-rich 34,35Al isotopes have been studied through Coulomb excitation using LAND-FRS setup at GSI, Darmstadt. The method of invariant mass analysis has been used to reconstruct the excitation energy of the nucleus prior to decay. Comparison of experimental CD cross-section with direct breakup model calculation with neutron in p3/2 orbital favours 34Al(g.s)⊗νp3/2 as ground state configuration of 35Al. But ground state configuration of 34Al is complicated as evident from γ-ray spectra of 33Al after Coulomb breakup of 34Al.

  12. Modes of transference and rupture of the nucleus with neutron halos {sup 6} He on {sup 209} Bi near of the Coulomb barrier; Modos de transferencia y rompimiento del nucleo con halo neutronico {sup 6} He sobre {sup 209} Bi cerca de la barrera de Coulomb

    Energy Technology Data Exchange (ETDEWEB)

    Lizcano C, D

    2003-07-01

    In recent experiments, the fusion of the exotic radioactive nucleus {sup 6} He with {sup 209} Bi has been studied for the first time at energies above and below the Coulomb barrier. A considerable enhancement in the fusion was observed, which implies a reduction of about 25% in the nominal fusion barrier. Some previous theoretical works suggest that this striking effect may be caused by the coupling to neutron transfer channels with a positive Q-value which would lead to a neutron flow and the consequent formation of a neck between the projectile and the target. Later, in the current work, we ran two new experiments on the same reaction using the FN Tandem Van de Graaff (10 MV) accelerator and the dual superconducting TwinSol system, both of them belonging to the University of Notre Dame, USA. This time, the purpose was to study one- and two-neutron transfer and the {sup 6} He projectile breakup at laboratory energies of 14.7, 16.2, 17.9, 19.0 and 22.5 MeV. A strong group of {sup 4} He was observed (with an effective Q-value about .5 MeV) whose integrated cross section results exceptionally high, exceeding the fusion cross section both above and below the barrier. The simultaneously measured elastic scattering angular distribution required high total cross sections so that this yield is confirmed. Preliminary coupled channels calculations sing the computer program called Fresco developed at the University of Surrey (England) suggested that the reaction mechanisms may be better described as a direct nuclear breakup and two-neutron transfer to unbound states in {sup 211} Bi. These calculations predicted also an enhancement in the fusion cross section below the barrier due to the transfer and breakup channel coupling, which strongly suggests that this channel is the 'doorway state' that explains the fusion barrier reduction observed in previous experiments. It was found that the {sup 4} He group fully dominates the total reaction cross section at the

  13. One-proton halo in 26P and two-proton halo in 27S

    Science.gov (United States)

    Ren, Zhongzhou; Chen, Baoqiu; Ma, Zhongyu; Xu, Gongou

    1996-02-01

    Proton-drip-line nuclei 26P and 27S are studied in the nonlinear relativistic mean-field theory. Calculations show that the mean-square radius of protons in the 2s1/2 state is approximately 18-20 fm2 which is abnormally large as compared with the mean-square radii of proton, neutron, and matter distributions, giving a strong evidence for proton halos in 26P and 27S. This indicates that the size of proton halos is as large as that of neutron halos although there exists the Coulomb barrier in proton-drip-line nuclei.

  14. Imaging the He$_2$ quantum halo state using a free electron laser

    CERN Document Server

    Zeller, S; Voigtsberger, J; Kalinin, A; Schottelius, A; Schober, C; Waitz, M; Sann, H; Hartung, A; Bauer, T; Pitzer, M; Trinter, F; Goihl, C; Janke, C; Richter, M; Kastirke, G; Weller, M; Czasch, A; Kitzler, M; Braune, M; Grisenti, R E; Schöllkopf, W; Schmidt, L Ph H; Schöffer, M; Williams, J B; Jahnke, T; Dörner, R

    2016-01-01

    We report on coulomb explosion imaging of the wavefunction of the quantum halo system He$_2$. Each atom of this system is ionized by tunnelionization in a femto second laser pulse and in a second experiment by single photon ionization employing a free electron laser. We visualize the exponential decay of the probability density of the tunneling particle over distance for over two orders of magnitude up to an internuclear distance of 250 \\r{A}. By fitting the slope of the density in the tunneling regime we obtain a binding energy of 151.9 $\\pm$ 13.3 neV, which is in agreement with most recent calculations.

  15. Electron Dynamics of Interatomic Coulombic Decay in Quantum Dots: Singlet Initial State

    Directory of Open Access Journals (Sweden)

    Cederbaum Lorenz S.

    2013-03-01

    Full Text Available In this paper we investigated the interatomic Coulombic decay (ICD of a resonance singlet state in a model potential for two few-electron semiconductor quantum dots (QDs by means of electron dynamics. We demonstrate that ICD is the major decay process of the resonance for the singlet wave function and compare the total and partial decay widths as a function of the QD separation with that from our previous study on the corresponding triplet states [1].

  16. The structure of low-lying states in ${}^{140}$Sm studied by Coulomb excitation

    CERN Document Server

    Klintefjord, M.; Görgen, A.; Bauer, C.; Bello Garrote, F.L.; Bönig, S.; Bounthong, B.; Damyanova, A.; Delaroche, J.P.; Fedosseev, V.; Fink, D.A.; Giacoppo, F.; Girod, M.; Hoff, P.; Imai, N.; Korten, W.; Larsen, A.C.; Libert, J.; Lutter, R.; Marsh, B.A.; Molkanov, P.L.; Naïdja, H.; Napiorkowski, P.; Nowacki, F.; Pakarinen, J.; Rapisarda, E.; Reiter, P.; Renstrøm, T.; Rothe, S.; Seliverstov, M.D.; Siebeck, B.; Siem, S.; Srebrny, J.; Stora, T.; Thöle, P.; Tornyi, T.G.; Tveten, G.M.; Van Duppen, P.; Vermeulen, M.J.; Voulot, D.; Warr, N.; Wenander, F.; De Witte, H.; Zielińska, M.

    2016-05-02

    The electromagnetic structure of $^{140}$Sm was studied in a low-energy Coulomb excitation experiment with a radioactive ion beam from the REX-ISOLDE facility at CERN. The $2^+$ and $4^+$ states of the ground-state band and a second $2^+$ state were populated by multi-step excitation. The analysis of the differential Coulomb excitation cross sections yielded reduced transition probabilities between all observed states and the spectroscopic quadrupole moment for the $2_1^+$ state. The experimental results are compared to large-scale shell model calculations and beyond-mean-field calculations based on the Gogny D1S interaction with a five-dimensional collective Hamiltonian formalism. Simpler geometric and algebraic models are also employed to interpret the experimental data. The results indicate that $^{140}$Sm shows considerable $\\gamma$ softness, but in contrast to earlier speculation no signs of shape coexistence at low excitation energy. This work sheds more light on the onset of deformation and collectivit...

  17. Coulomb Excitation of a Neutron-Rich $^{88}$Kr Beam Search for Mixed Symmetry States

    CERN Document Server

    Andreoiu, C; Napiorkowski, P J; Iwanicki, J S

    2002-01-01

    We propose to use the ISOLDE/REX/MINIBALL/CD set-up to perform a Coulomb Excitation experiment with a $^{88}$Kr radioactive beam. The motivation includes a search for $Mixed$ $Symmetry$ states predicted by the IBM-2 model, gathering more spectroscopy data about the $^{88}$Kr nucleus and extending shape coexistence studies (performed previously by the proposers for neutron-deficient Kr isotopes) to the neutron-rich side. The proposed experiment will provide data complementary to the Coulomb Excitation of a relativistic $^{88}$Kr beam proposed by D. Tonev et al. for a RISING experiment. A total of 12 days of beam time is necessary for the experiment, equally divided into two runs. One run with a 2.2 MeV/A beam energy on a $^{48}$Ti target and a second run with the maximum available REX energy of 3.1 MeV/A on a $^{208}$Pb target are requested. Using either a UC$_{x}$ or ThC$_{x}$ fissioning primary target coupled with a plasma source by a cooled transfer line seems to be the best choice for the proposed experime...

  18. Borromean halo, Tango halo, and halo isomers in atomic nuclei

    Science.gov (United States)

    Izosimov, Igor

    2016-01-01

    Structure of the ground and excited states in halo-like nuclei is discussed. Both the Borromean and tango halo types can be observed for n-p configurations of atomic nuclei.Structure of the halo may be different for the different levels and resonances in atomic nuclei. Isobar analog, double isobar analog, configuration, and double configuration states can simultaneously have n-n, n-p, and p-p halo components in their wave functions. When the halo structure of the excited state differs from that of the ground state, or the ground state has non-halo structure, the γ-transition from the excited state to the ground state can be essentially hindered, i.e. the formation of a specific type of isomers (halo isomers) becomes possible. B(Mγ) and B(Eγ) values for γ-transitions in 6,7,8Li, 8,9,10Be, 8,10,11B, 10,11,12,13,14C, 13,14,15,16,17N, 15,16,17,19O, and 17F are analyzed. Special attention is given to nuclei which ground state does not exhibit halo structure but the excited state (halo isomer) may have one.

  19. Study of Ground State Wave-function of the Neutron-rich 29,30Na Isotopes through Coulomb Breakup

    Science.gov (United States)

    Rahaman, A.; Datta Pramanik, U.; Aumann, T.; Beceiro, S.; Boretzky, K.; Caesar, C.; Carlson, B. V.; Catford, W. N.; Chakraborty, S.; Chatterjee, S.; Chartier, M.; De Angelis, G.; Cortina-Gil, D.; Gonzalez-Diaz, D.; Emling, H.; Diaz Fernandez, P.; Fraile, L. M.; Ershova, O.; Geissel, H.; Heil, M.; Jonson, B.; Kelic, A.; Johansson, H.; Kruecken, R.; Kroll, T.; Kurcewicz, J.; Langer, C.; Bleis, T. Le; Leifels, Y.; Munzenberg, G.; Marganiec, J.; Nociforo, C.; Najafi, A.; Panin, V.; Paschalis, S.; Pietri, S.; Plag, R.; Reifarth, R.; Ricciardi, V.; Rossi, D.; Ray, J.; Simon, H.; Scheidenberge, C.; Typel, S.; Taylor, J.; Togano, Y.; Volkov, V.; Weick, H.; Wagner, A.; Wamers, F.; Weigand, M.; Winfield, J. S.; Yakorev, D.; Zoric, M.

    2014-03-01

    Coulomb breakup of unstable neutron rich nuclei 29,30Na around the `island of inversion' has been studied at energy around 434 MeV/nucleon and 409 MeV/nucleon respectively. Four momentum vectors of fragments, decay neutron from excited projectile and γ-rays emitted from excited fragments after Coulomb breakup are measured in coincidence. For these nuclei, the low-lying dipole strength above one neutron threshold can be explained by direct breakup model. The analysis for Coulomb breakup of 29,30Na shows that large amount of the cross section yields the 28Na, 29Na core in ground state. The predominant ground-state configuration of 29,30Na is found to be 28Na(g.s)⊗νs1/2 and 29Na(g.s)⊗νs1/2,respectively.

  20. Study of Ground State Wave-function of the Neutron-rich 29,30Na Isotopes through Coulomb Breakup

    Directory of Open Access Journals (Sweden)

    Rahaman A.

    2014-03-01

    Full Text Available Coulomb breakup of unstable neutron rich nuclei 29,30Na around the ‘island of inversion’ has been studied at energy around 434 MeV/nucleon and 409 MeV/nucleon respectively. Four momentum vectors of fragments, decay neutron from excited projectile and γ-rays emitted from excited fragments after Coulomb breakup are measured in coincidence. For these nuclei, the low-lying dipole strength above one neutron threshold can be explained by direct breakup model. The analysis for Coulomb breakup of 29,30Na shows that large amount of the cross section yields the 28Na, 29Na core in ground state. The predominant ground-state configuration of 29,30Na is found to be 28Na(g.s⊗νs1/2 and 29Na(g.s⊗νs1/2,respectively.

  1. Ground-state configuration of neutron-rich 35Al via Coulomb breakup

    Science.gov (United States)

    Chakraborty, S.; Datta, Ushasi; Aumann, T.; Beceiro-Novo, S.; Boretzky, K.; Caesar, C.; Carlson, B. V.; Catford, W. N.; Chartier, M.; Cortina-Gil, D.; De Angelis, G.; Fernandez, P. Diaz; Emling, H.; Ershova, O.; Fraile, L. M.; Geissel, H.; Gonzalez-Diaz, D.; Johansson, H.; Jonson, B.; Kalantar-Nayestanaki, N.; Kröll, T.; Krücken, R.; Langer, C.; Le Bleis, T.; Leifels, Y.; Marganiec, J.; Münzenberg, G.; Najafi, M. A.; Nilsson, T.; Nociforo, C.; Panin, V.; Plag, R.; Rahaman, A.; Reifarth, R.; Ricciardi, M. V.; Rigollet, C.; Rossi, D.; Scheidenberger, C.; Scheit, H.; Simon, H.; Taylor, J. T.; Togano, Y.; Typel, S.; Utsuno, Y.; Wagner, A.; Wamers, F.; Weick, H.; Winfield, J. S.

    2017-09-01

    The ground-state configuration of 35Al has been studied via Coulomb dissociation (CD) using the LAND-FRS setup (GSI, Darmstadt) at a relativistic energy of ˜403 MeV/nucleon. The measured inclusive differential CD cross section for 35Al, integrated up to 5.0 MeV relative energy between the 34Al core and the neutron using a Pb target, is 78(13) mb. The exclusive measured CD cross section that populates various excited states of 34Al is 29(7) mb. The differential CD cross section of 35Al→34Al+n has been interpreted in the light of a direct breakup model, and it suggests that the possible ground-state spin and parity of 35Al could be, tentatively, 1 /2+ or 3 /2+ or 5 /2+ . The valence neutrons, in the ground state of 35Al, may occupy a combination of either l =3 ,0 or l =1 ,2 orbitals coupled with the 34Al core in the ground and isomeric state(s), respectively. This hints of a particle-hole configuration of the neutron across the magic shell gaps at N =20 ,28 which suggests narrowing the magic shell gap. If the 5 /2+ is the ground-state spin-parity of 35Al as suggested in the literature, then the major ground-state configuration of 35Al is a combination of 34Al(g.s.;4-) ⊗νp3/2 and 34Al(isomer;1+) ⊗νd3/2 states. The result from this experiment has been compared with that from a previous knockout measurement and a calculation using the SDPF-M interaction.

  2. Studying 10Be and 11Be Halo States through the (p,d) Single-Neutron Transfer Reaction

    Science.gov (United States)

    Kuhn, Keri; Sarazin, Fred; Tigress Collaboration; (Pcb) 2 Collaboration

    2017-09-01

    One-neutron transfer reactions are being used to study single-particle neutron states in nuclei. For one-neutron halo nuclei, such as 11Be, the (p,d) reaction enables the removal of the halo neutron or of one of the core neutrons. This way, it is possible to simultaneously study the halo wavefunction of the 11Be ground-state but also a possible excited halo state in 10Be. The 11Be(p, d)10Be transfer reaction at 10 MeV/nucleon is being investigated at the TRIUMF-ISAC II facility with the Printed Circuit Board Based Charged Particle ((PCB)2) array inside the TRIUMF ISAC Gamma-Ray Escape-Suppressed Spectrometer (TIGRESS). The ground state and first excited state of 10Be can be directly identified using deuteron identification and kinematics from the charged particle array, while the four excited states in 10Be around 6 MeV, including the suspected halo state (2- state), are identified using coincident gamma rays from TIGRESS with the identified deuterons. Angular distributions for the 10Be populated states will be shown along with their FRESCO fits. This work is partially supported by the US Department of Energy through Grant/Contract No. DE-FG03- 93ER40789 (Colorado School of Mines).

  3. Isospin in halo nuclei: Borromean halo, tango halo, and halo isomers

    Science.gov (United States)

    Izosimov, I. N.

    2017-09-01

    It is shown that the wave functions for isobaric analog, double isobaric analog, configuration, and double configuration states may simultaneously have components corresponding to nn, np, and pp halos. The difference in the halo structure between the ground and excited states of a nucleus may lead to the formation of halo isomers. A halo structure of both Borromean and tango types can be observed for np configurations. The structure of ground and excited states with various isospins in halo-like nuclei is discussed. The reduced probabilities B( Mλ) and B( Eλ) for gamma transitions in 6-8Li, 8-10Be, 8,10,11B, 10-14C, 13-17N, 15-17,19O, and 17F nuclei are analyzed. Particular attention is given to the cases where the ground state of a nucleus does not have a halo structure, but where its excited state may have it.

  4. Ground-state configuration of neutron-rich Aluminum isotopes through Coulomb Breakup

    NARCIS (Netherlands)

    Chakraborty, S.; Pramanik, U. Datta; Aumann, T.; Beceiro, S.; Boretzky, K.; Caesar, C.; Carlson, B.V.; Catford, W.N.; Chatterjee, S.; Chartier, M.; Cortina-Gil, D.; Angelis, G.De; Gonzalez - Dias, D.; Emling, H.; Diaz Fernandes, P.; Fraile, L.M.; Ershova, O.; Geissel, H.; Heil, M.; Jonson, B.; Kelic, A.; Johansson, H.; Kruecken, R.; Kroll, T.; Kurcewicz, J.; Langer, C.; Le Bleis, T.; Leifels, Y.; Munzenberg, G.; Marganiec, J.; Nociforo, C.; Najafi, A.; Panin, V.; Paschalis, S.; Pietri, S.; Plag, R.; Rahaman, A.; Reifarth, R.; Ricciardi, V.; Rossi, D.; Ray, J.; Simon, H.; Scheidenberger, C.; Typel, S.; Taylor, J.; Togano, Y.; Volkov, V.; Weick, H.; Wagner, A.; Wamers, F.; Weigand, M.; Winfield, J.S.; Yakorev, D.; Zoric, M.

    2014-01-01

    Neutron-rich 34,35Al isotopes have been studied through Coulomb excitation using LAND-FRS setup at GSI, Darmstadt. The method of invariant mass analysis has been used to reconstruct the excitation energy of the nucleus prior to decay. Comparison of experimental CD cross-section with direct breakup

  5. Exotic clustering and halo states in sup 1 sup 2 sup , sup 1 sup 4 Be

    CERN Document Server

    Orr, N A

    1999-01-01

    The nuclei sup 1 sup 2 Be and sup 1 sup 4 Be have been investigated using breakup reactions on p, sup 1 sup 2 C and sup 2 sup 0 sup 8 Pb targets. The decay of sup 1 sup 2 Be into two helium clusters ( sup 6 He+ sup 6 He and sup 4 He+ sup 8 He) was observed from a series of excited states between 10 and 25 MeV with spins in the range 4 to 8h, consistent with a deformed 'molecular' structure. In the case of sup 1 sup 4 Be, narrow forward peaked single-neutron angular distributions were were observed for the breakup to sup 1 sup 2 Be. Analysis of the associated neutron-neutron correlations indicate an RMS separation for the halo neutrons of around 5 fm.

  6. Pair Potential with Submillikelvin Uncertainties and Nonadiabatic Treatment of the Halo State of the Helium Dimer

    Science.gov (United States)

    Przybytek, Michał; Cencek, Wojciech; Jeziorski, Bogumił; Szalewicz, Krzysztof

    2017-09-01

    The pair potential for helium is computed with accuracy improved by an order of magnitude relative to the best previous determination. For the well region, its uncertainties are now below 1 millikelvin. The main improvement is due to the use of explicitly correlated wave functions at the nonrelativistic Born-Oppenheimer (BO) level of theory. The diagonal BO and the relativistic corrections are obtained from large full configuration interaction calculations. Nonadiabatic perturbation theory is used to predict the properties of the halo state of the helium dimer. Its binding energy and the average value of the interatomic distance are found to be 138.9(5) neV and 47.13(8) Å. The binding energy agrees with its first experimental determination of 151.9(13.3) neV [Zeller et al., Proc. Natl. Acad. Sci. U.S.A. 113, 14651 (2016), 10.1073/pnas.1610688113].

  7. Coulomb Damping

    Science.gov (United States)

    Fay, Temple H.

    2012-01-01

    Viscous damping is commonly discussed in beginning differential equations and physics texts but dry friction or Coulomb friction is not despite dry friction being encountered in many physical applications. One reason for avoiding this topic is that the equations involve a jump discontinuity in the damping term. In this article, we adopt an energy…

  8. SU(1,1) coherent states for Dirac–Kepler–Coulomb problem in D+1 dimensions with scalar and vector potentials

    Energy Technology Data Exchange (ETDEWEB)

    Ojeda-Guillén, D., E-mail: dogphysics@gmail.com [Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Ed. 9, Unidad Profesional Adolfo López Mateos, C.P. 07738, México D.F. (Mexico); Mota, R.D. [Escuela Superior de Ingeniería Mecánica y Eléctrica, Unidad Culhuacán, Instituto Politécnico Nacional, Av. Santa Ana No. 1000, Col. San Francisco Culhuacán, Delegación Coyoacán, C.P. 04430, México D.F. (Mexico); Granados, V.D. [Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Ed. 9, Unidad Profesional Adolfo López Mateos, C.P. 07738, México D.F. (Mexico)

    2014-08-14

    We decouple the Dirac's radial equations in D+1 dimensions with Coulomb-type scalar and vector potentials through appropriate transformations. We study each of these uncoupled second-order equations in an algebraic way by using an su(1,1) algebra realization. Based on the theory of irreducible representations, we find the energy spectrum and the radial eigenfunctions. We construct the Perelomov coherent states for the Sturmian basis, which is the basis for the unitary irreducible representation of the su(1,1) Lie algebra. The physical radial coherent states for our problem are obtained by applying the inverse original transformations to the Sturmian coherent states. - Highlights: • We solve the most general Dirac–Kepler–Coulomb problem. • The eigenfunctions and energy spectrum are obtained in a purely algebraic way. • We construct the radial SU(1,1) coherent states for the Kepler–Coulomb problem.

  9. Sensitivity study of forecasted aftershock seismicity based on Coulomb stress calculation and rate- and state-dependent frictional response (Invited)

    Science.gov (United States)

    Cocco, M.; Hainzl, S.; Woessner, J.; Enescu, B.; Catalli, F.; Lombardi, A.

    2009-12-01

    It is nowadays well established that both Coulomb stress perturbations and the rate- and state-dependent frictional response of fault populations are needed to model the spatial and temporal evolution of seismicity. This represents the most popular physics-based approach to forecast the rate of earthquake production and its performances have to be verified with respect to alternative statistical methods. Despite the numerous applications of Coulomb stress interactions, a rigorous validation of the forecasting capabilities is still missing. In this work, we use the Dieterich (1994) physics-based approach to simulate the spatio-temporal evolution of seismicity caused by stress changes applied to an infinite population of nucleating patches modelled through a rate- and state-dependent friction law. According to this model, seismicity rate changes depend on the amplitude of stress perturbation, the physical constitutive properties of faults (represented by the parameter Aσ), the stressing rate and the background seismicity rate of the study area. In order to apply this model in a predictive manner, we need to understand the variability of input physical model parameters and their correlations. We first discuss the impact of uncertainties in model parameters and, in particular, in computed coseismic stress perturbations on the seismicity rate changes forecasted through the frictional model. We aim to understand how the variability of Coulomb stress changes affects the correlation between predicted and observed changes in the rate of earthquake production. We use the aftershock activity following the 1992 M 7.3 Landers (California) earthquake as one of our case studies. We analyze the variability of stress changes resulting from the use of different published slip distributions. We find that the standard deviation of the uncertainty is of the same size as the absolute stress change and that their ratio, the coefficient of variation (CV), is approximately constant in

  10. Equation of state calculations for two-dimensional dust coulomb crystal at near zero temperature by molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Djouder, M., E-mail: djouder-madjid@ummto.dz; Kermoun, F.; Mitiche, M. D.; Lamrous, O. [Laboratoire de Physique et Chimie Quantique, Université Mouloud Mammeri Tizi-Ouzou, BP 17 RP, 15000 Tizi-Ouzou (Algeria)

    2016-01-15

    Dust particles observed in universe as well as in laboratory and technological plasma devices are still under investigation. At low temperature, these particles are strongly negatively charged and are able to form a 2D or 3D coulomb crystal. In this work, our aim was to check the ideal gas law validity for a 2D single-layer dust crystal recently reported in the literature. For this purpose, we have simulated, using the molecular dynamics method, its thermodynamic properties for different values of dust particles number and confinement parameters. The obtained results have allowed us to invalidate the ideal gas behaviour and to propose an effective equation of state which assumes a near zero dust temperature. Furthermore, the value of the calculated sound velocity was found to be in a good agreement with experimental data published elsewhere.

  11. Proton halos in the 1 s0 d shell

    Science.gov (United States)

    Brown, B. A.; Hansen, P. G.

    1996-02-01

    The shell-model properties of proton halo states in proton-rich 1 s0 d shell nuclei are investigated. The most interesting cases appear to be those in 26,27P and 27S. The parallel-momentum distributions of core fragments from proton stripping reactions may provide experimental insight into the structure of the halo states and the role played by the reaction mechanism. The “generalized Coulomb shift”, defined as the difference between the neutron and proton separation energies for an analogue pair, is shown to vary smoothly as a function of proton-separation energy and provides a good tool for mass extrapolations. The relation between the total interaction cross section and the matter radius is discussed.

  12. Artificial halos

    Science.gov (United States)

    Selmke, Markus

    2015-09-01

    Judged by their frequency and beauty, ice halos easily rival rainbows as a prominent atmospheric optics phenomenon. This article presents experimental halo demonstrations of varying complexity. Using a single commercially available hexagonal glass prism, a variety of artificial halos can be simulated. The experiments include laser beam path analysis, a modified classic spinning prism experiment, and a novel Monte-Carlo machine for three-dimensional rotations. Each of these experiments emulates different conditions of certain halo displays, and in combination, they allow a thorough understanding of these striking phenomena.

  13. Why LiFePO4 is a safe battery electrode: Coulomb repulsion induced electron-state reshuffling upon lithiation.

    Science.gov (United States)

    Liu, Xiaosong; Wang, Yung Jui; Barbiellini, Bernardo; Hafiz, Hasnain; Basak, Susmita; Liu, Jun; Richardson, Thomas; Shu, Guojiun; Chou, Fangcheng; Weng, Tsu-Chien; Nordlund, Dennis; Sokaras, Dimosthenis; Moritz, Brian; Devereaux, Thomas P; Qiao, Ruimin; Chuang, Yi-De; Bansil, Arun; Hussain, Zahid; Yang, Wanli

    2015-10-21

    LiFePO4 is a battery cathode material with high safety standards due to its unique electronic structure. We performed systematic experimental and theoretical studies based on soft X-ray emission, absorption, and hard X-ray Raman spectroscopy of LixFePO4 nanoparticles and single crystals. The results clearly show a non-rigid electron-state reconfiguration of both the occupied and unoccupied Fe-3d and O-2p states during the (de)lithiation process. We focus on the energy configurations of the occupied states of LiFePO4 and the unoccupied states of FePO4, which are the critical states where electrons are removed and injected during the charge and discharge process, respectively. In LiFePO4, the soft X-ray emission spectroscopy shows that, due to the Coulomb repulsion effect, the occupied Fe-3d states with the minority spin sit close to the Fermi level. In FePO4, the soft X-ray absorption and hard X-ray Raman spectroscopy show that the unoccupied Fe-3d states again sit close to the Fermi level. These critical 3d electron state configurations are consistent with the calculations based on modified Becke and Johnson potentials GGA+U (MBJGGA+U) framework, which improves the overall lineshape prediction compared with the conventionally used GGA+U method. The combined experimental and theoretical studies show that the non-rigid electron state reshuffling guarantees the stability of oxygen during the redox reaction throughout the charge and discharge process of LiFePO4 electrodes, leading to the intrinsic safe performance of the electrodes.

  14. Spectroscopy of 9Be and observation of neutron halo structure in the states of positive parity rotational band

    Directory of Open Access Journals (Sweden)

    Demyanova A.S.

    2014-03-01

    Full Text Available The differential cross sections of the 9Be + α inelastic scattering at 30 MeV were measured at the tandem of Tsukuba University. All the known states of 9Be up to energies ~ 12 MeV were observed and decomposed into three rotational bands, each of them having a cluster structure consisting of a 8Be core plus a valence neutron in one of the sub-shells: p3/2−, s1/2+ and p1/2−. Existence of a neutron halo in the positive parity states was confirmed.

  15. Application of Stochastic variational method with correlated Ground States to coulombic systems

    Energy Technology Data Exchange (ETDEWEB)

    Usukura, Junko; Suzuki, Yasuyuki [Niigata Univ. (Japan); Varga, K.

    1998-07-01

    Positronium molecule, Ps{sub 2} has not been found experimentally yet, and it has been believed theoretically that Ps{sub 2} has only one bound state with L = 0. We predicted the existence of new bound state of Ps{sub 2}, which is the excited state with L = 1 and comes from Pauli principle, by Stochastic variational method. There are two decay mode with respect to Ps{sub 2}(P); one is pair annihilation and another is electric dipole (E1) transition to the ground state. While it is difficult to tell {gamma}-ray caused by annihilation of Ps{sub 2} from that of Ps since both of them have same energy, Energy (4.94 eV) of the photon emitted in E1 transition is specific enough to distinguish from other spectra. Then the excited state is one of clues to observe Ps{sub 2}. (author)

  16. A New Proof of Existence of a Bound State in the Quantum Coulomb Field

    Science.gov (United States)

    Staruszkiewicz, A.

    2004-09-01

    Let S(x) be a massless scalar quantum field which lives on the three-dimensional hyperboloid xx= (x0)2-(x1)2-(x2)2-(x3)2=-1. The classical action is assumed to be (hbar=1=c)(8π e2)-1int dx gikpartial i Spartial k S, where e2 is the coupling constant, dx is the invariant measure on the de Sitter hyperboloid xx=-1 and gik, i,k=1,2,3, is the internal metric on this hyperboloid. Let u be a fixed four-velocity i.e. a fixed unit time-like vector. The field S(u)=(1/4 π )int dxδ (ux)S(x)is smooth enough to be exponentiated, being an average of the operator valued distribution S(x) over the entire Cauchy surface ux=0. We prove that if 0 = exp (-iS(u))mid 0>, where mid 0 > is the Lorentz invariant vacuum state, contains a normalizable eigenstate of the Casimir operator C1=-(1/2)Mμ ν Mμ ν ; Mμ ν are generators of the proper orthochronous Lorentz group. The eigenvalue is (e2/π )(2-(e2/π )). This theorem was first proven by the Author in 1992 in his contribution to the Czyz Festschrift, see Erratum Acta Phys. Pol. B 23, 959 (1992). In this paper a completely different proof is given: we derive the partial, differential equation satisfied by the matrix element , σ > 0, and show that the function exp(z)\\cdot (1-z)\\cdot exp [-σ z (2-z)], z= e2/ π , is an exact solution of this differential equation, recovering thus both the eigenvalue and the probability of occurrence of the bound state. A beautiful integral is calculated as a byproduct.

  17. Two-proton radioactivity with 2p halo in light mass nuclei A=18–34

    Directory of Open Access Journals (Sweden)

    G. Saxena

    2017-12-01

    Full Text Available Two-proton radioactivity with 2p halo is reported theoretically in light mass nuclei A=18–34. We predict 19Mg, 22Si, 26S, 30Ar and 34Ca as promising candidates of ground state 2p-radioactivity with S2p0. Observation of extended tail of spatial charge density distribution, larger charge radius and study of proton single particle states, Fermi energy and the wave functions indicate 2p halo like structure which supports direct 2p emission. The Coulomb and centrifugal barriers in experimentally identified 2p unbound 22Si show a quasi-bound state that ensures enough life time for such experimental probes. Our predictions are in good accord with experimental and other theoretical data available so far. Keywords: Relativistic mean-field theory, Nilson Strutinsky approach, Two-proton radioactivity, One- and two-proton separation energy, Halo nuclei, Proton drip-lines

  18. Direct and resonant breakup of {sup 6}He on {sup 209}Bi near the Coulomb barrier

    Energy Technology Data Exchange (ETDEWEB)

    Kolata, J.J. [Physics Department, University of Notre Dame, Notre Dame, Indiana, 46556-5670 (United States)

    2007-12-15

    As part of a program to study reactions induced by the two-neutron halo nucleus {sup 6}He on high-Z targets, a neutron-{alpha} particle coincidence experiment was performed for {sup 6}He incident on a {sup 209}Bi target at an energy just above the Coulomb barrier. The experimental setup was optimized for the measurement of projectile breakup. Direct breakup, as well as breakup through the 2{sup +} excited state of {sup 6}He and also the {sup 5}He+n channel, could be distinguished. The total breakup cross section measured in this work compares well with a continuum-discretized coupled-channels calculation that assumes a 50% reduction in the B(E1) computed from a pure {sup 4}He+2n cluster configuration. The B(E2{up_arrow}) for Coulomb excitation of the 2{sup +} state in {sup 6}He was also determined. (Author)

  19. Effective field theory description of halo nuclei

    Science.gov (United States)

    Hammer, H.-W.; Ji, C.; Phillips, D. R.

    2017-10-01

    Nuclear halos emerge as new degrees of freedom near the neutron and proton driplines. They consist of a core and one or a few nucleons which spend most of their time in the classically-forbidden region outside the range of the interaction. Individual nucleons inside the core are thus unresolved in the halo configuration, and the low-energy effective interactions are short-range forces between the core and the valence nucleons. Similar phenomena occur in clusters of 4He atoms, cold atomic gases near a Feshbach resonance, and some exotic hadrons. In these weakly-bound quantum systems universal scaling laws for s-wave binding emerge that are independent of the details of the interaction. Effective field theory (EFT) exposes these correlations and permits the calculation of non-universal corrections to them due to short-distance effects, as well as the extension of these ideas to systems involving the Coulomb interaction and/or binding in higher angular-momentum channels. Halo nuclei exhibit all these features. Halo EFT, the EFT for halo nuclei, has been used to compute the properties of single-neutron, two-neutron, and single-proton halos of s-wave and p-wave type. This review summarizes these results for halo binding energies, radii, Coulomb dissociation, and radiative capture, as well as the connection of these properties to scattering parameters, thereby elucidating the universal correlations between all these observables. We also discuss how Halo EFT's encoding of the long-distance physics of halo nuclei can be used to check and extend ab initio calculations that include detailed modeling of their short-distance dynamics.

  20. Two-proton radioactivity with 2p halo in light mass nuclei A = 18-34

    Science.gov (United States)

    Saxena, G.; Kumawat, M.; Kaushik, M.; Jain, S. K.; Aggarwal, Mamta

    2017-12-01

    Two-proton radioactivity with 2p halo is reported theoretically in light mass nuclei A = 18- 34. We predict 19Mg, 22Si, 26S, 30Ar and 34Ca as promising candidates of ground state 2p-radioactivity with S2p 0. Observation of extended tail of spatial charge density distribution, larger charge radius and study of proton single particle states, Fermi energy and the wave functions indicate 2p halo like structure which supports direct 2p emission. The Coulomb and centrifugal barriers in experimentally identified 2p unbound 22Si show a quasi-bound state that ensures enough life time for such experimental probes. Our predictions are in good accord with experimental and other theoretical data available so far.

  1. Characterising excited states in and around the semi-magic nucleus $^{68}$ Ni using Coulomb excitation and one-neutron transfer

    CERN Multimedia

    It is proposed to investigate the structure of excited states in $^{68, 70}$Ni(Z =28, N=40, 42) via the measurement of electromagnetic matrix elements in a Coulomb excitation experiment in order to study the N = 40 harmonic-oscillator shell and the Z = 28 proton shell closures. The measured B(E2) values connecting low-lying 0$^{+}$ and 2$^{+}$ can be compared to shell-model predictions. It is also proposed to perform the one-neutron transfer reaction ${d}$($^{68}$Ni,$^{69}$Ni)${p}$, with the aim of populating excited states in $^{69}$Ni. Comparisons with the states populated in the recently performed ${d}$($^{66}$Ni,$^{67}$Ni)${p}$ reaction will be useful in determining the role of the neutron $d_{5/2}$ orbital in the semi-magic properties of $^{68}$Ni.

  2. Coulomb dissociation of light unstable nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Kido, Toshihiko [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Yabana, Kazuhiro; Suzuki, Yoshiyuki

    1997-05-01

    The aim of this study is that a simulation method applicable to the atomic nucleus with neutron halo structure developed till now is applied to a wider range unstable nucleus containing proton excess nucleus to also attribute understanding of nuclear reaction with interest in astronomical nuclear reaction. The proton dissociation energy in {sup 8}B nucleus is small value of 138 eV, which is thought to have a structure of proton at the most outer shell bound much weakly by core nucleus and spread in thinner thickness. For the coulomb excitation of such weak bound system, quantum theoretical and non-perturbational treatment is important. Therefore, 3-dimensional time-dependent Schroedinger equation on relative wave function of the core nucleus {sup 7}Be and halo proton p will be dissolved in time space and will execute a time developmental simulation. (G.K.)

  3. Three-Body Coulomb Problem

    Directory of Open Access Journals (Sweden)

    R. Combescot

    2017-11-01

    Full Text Available We present a general approach for the solution of the three-body problem for a general interaction and apply it to the case of the Coulomb interaction. This approach is exact, simple, and fast. It makes use of integral equations derived from the consideration of the scattering properties of the system. In particular, this makes full use of the solution of the two-body problem, the interaction appearing only through the corresponding known T matrix. In the case of the Coulomb potential, we make use of a very convenient expression for the T matrix obtained by Schwinger. As a check, we apply this approach to the well-known problem of the helium atom ground state and obtain a perfect numerical agreement with the known result for the ground-state energy. The wave function is directly obtained from the corresponding solution. We expect our method to be, in particular, quite useful for the trion problem in semiconductors.

  4. Multiple Coulomb excitation of a {sup 70}Ge beam and the interpretation of the 0{sub 2}{sup +} state as a deformed intruder

    Energy Technology Data Exchange (ETDEWEB)

    Sugawara, M. [Chiba Institute of Technology, Narashino, Chiba 275-0023 (Japan); Toh, Y.; Oshima, M.; Hayakawa, T.; Hatsukawa, Y.; Katakura, J.; Shinohara, N.; Matsuda, M. [Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195 (Japan); Czosnyka, T. [Heavy Ion Laboratory, Warsaw University, Warsaw PL-02097 (Poland); Kusakari, H. [Chiba University, Inage-ku, Chiba 263-8522 (Japan); Morikawa, T. [Kyushu University, Hakozaki, Fukuoka 812-8581 (Japan); Seki, A.; Sakata, F. [Department of Mathematical Sciences, Ibaraki University, Mito, Ibaraki 310-8512 (Japan)

    2003-03-01

    Electromagnetic properties of the low-lying states in a {sup 70}Ge nucleus were studied through the multiple Coulomb excitation of a {sup 70}Ge beam with a {sup nat}Pb target. Relative {gamma}-ray intensities were measured as a function of emission angle relative to the scattered projectile. Sixteen E2 matrix elements, including diagonal ones, for 6 low-lying states have been determined using the least-squares search code GOSIA. The expectation values left angle Q{sup 2} right angle of 0{sub 1}{sup +} and 0{sub 2}{sup +} states in {sup 70}Ge are compared with those in {sup 72,} {sup 74,} {sup 76}Ge. Simple mixing calculations indicate that the 0 {sub 2}{sup +} states in {sup 70}Ge and {sup 72}Se can be treated as deformed intruder states. It is shown that the deformed intruder becomes the ground state in {sup 74}Kr. These interpretations of the 0 {sub 2}{sup +} states in this region are compared with the potential-energy surface calculations by the Nilsson-Strutinsky model, which allow to interpret the experimental results in a qualitative way from the theoretical point of view. (orig.)

  5. The conversion of resonances to bound states in the presence of a Coulomb potential and the computation of autoionization lifetimes from quantum defects

    Science.gov (United States)

    Lucchese, Robert; McCurdy, C. W.; Rescigno, T. N.

    2017-04-01

    The conversion of resonant metastable states to bound states with changing potential strength in the presence of a Coulomb potential proceeds by a mechanism fundamentally different from the same process in the case of short-range potentials. This phenomenon, which can accompany changes in molecular geometry, is central to the physics of the process of dissociative recombination of electrons with molecular cations. We verify computationally that there is no direct connection between a resonance pole of the S-matrix and the bound state poles for several model problems. We present a detailed analysis of the analytic structure of the scattering matrix in which the resonance pole remains distinct in the complex plane while a new state appears in the bound state spectrum. Nonetheless, as might be expected from quantum-defect theory, there is a close analytic relation between the resonant behavior of scattering at positive energies and the energies of the bound states. This connection allows the width of a resonance at low energies to be calculated directly from the behavior of the quantum defects with changing potential strength or molecular geometry. US-DOE, OBES, Chemical Sciences, Geosciences, and Biosciences Division.

  6. Excitation and ionization of hydrogen and helium atoms by femtosecond laser pulses: theoretical approach by Coulomb-Volkov states; Excitation et ionisation des atomes d'hydrogene et d'helium par des impulsions laser femtosecondes: approche theorique par des etats de Coulomb-Volkov

    Energy Technology Data Exchange (ETDEWEB)

    Guichard, R

    2007-12-15

    We present a theoretical approach using Coulomb-Volkov states that appears useful for the study of atomic multi-photonic processes induced by intense XUV femtosecond laser pulses. It predicts hydrogen ionization spectra when it is irradiated by laser pulses in perturbations conditions. Three ways have been investigated. Extension to strong fields when {Dirac_h}{omega} > I{sub p}: it requires to include the hydrogen ground state population, introducing it in standard Coulomb-Volkov amplitude leads to saturated multi-photonic ionization. Extension to multi-photonic transitions with {Dirac_h}{omega} < I{sub p}: new quantum paths are open by the possibility to excite the lower hydrogen bound states. Multiphoton excitation of these states is investigated using a Coulomb-Volkov approach. Extension to helium: two-photon double ionization study shows the influence of electronic correlations in both ground and final state. Huge quantity of information such as angular and energetic distributions as well as total cross sections is available. (author)

  7. Halo Properties of the First 1/2{sup +} State in {sup 17}F from the {sup 16}O({ital p},{gamma}){sup 17}F Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Morlock, R.; Kunz, R.; Mayer, A.; Jaeger, M.; Mueller, A.; Hammer, J.W. [Institut fuer Strahlenphysik, Universitaet Stuttgart, Allmandring 3, D-70569 Stuttgart (Germany); Mohr, P.; Oberhummer, H. [Institut fuer Kernphysik, Technische Universitaet Wien, Wiedner Hauptstrasse 8-10, A-1040 Wien (Austria); Staudt, G.; Koelle, V. [Physikalisches Institut, Universitaet Tuebingen, Auf der Morgenstelle 14, D-72076 Tuebingen (Germany)

    1997-11-01

    The capture cross section of the reaction {sup 16}O( p,{gamma}){sup 17}F was measured in the energy range from E{sub c.m.}=200{endash}3750 keV using the windowless gas target facility Rhinoceros . The low-energy S factor that is dominated by the transition to the 1/2{sup +} first excited state in {sup 17}F increases strikingly with decreasing energy. This behavior is explained by the halo properties of this 1/2{sup +} state within the framework of the direct capture model. {copyright} {ital 1997} {ital The American Physical Society}

  8. Revealing the Cosmic Web-dependent Halo Bias

    Science.gov (United States)

    Yang, Xiaohu; Zhang, Youcai; Lu, Tianhuan; Wang, Huiyuan; Shi, Feng; Tweed, Dylan; Li, Shijie; Luo, Wentao; Lu, Yi; Yang, Lei

    2017-10-01

    Halo bias is the one of the key ingredients of the halo models. It was shown at a given redshift to be only dependent, to the first order, on the halo mass. In this study, four types of cosmic web environments—clusters, filaments, sheets, and voids—are defined within a state-of-the-art high-resolution N-body simulation. Within these environments, we use both halo-dark matter cross correlation and halo-halo autocorrelation functions to probe the clustering properties of halos. The nature of the halo bias differs strongly between the four different cosmic web environments described here. With respect to the overall population, halos in clusters have significantly lower biases in the {10}11.0˜ {10}13.5 {h}-1 {M}⊙ mass range. In other environments, however, halos show extremely enhanced biases up to a factor 10 in voids for halos of mass ˜ {10}12.0 {h}-1 {M}⊙ . Such a strong cosmic web environment dependence in the halo bias may play an important role in future cosmological and galaxy formation studies. Within this cosmic web framework, the age dependency of halo bias is found to be only significant in clusters and filaments for relatively small halos ≲ {10}12.5 {h}-1 {M}⊙ .

  9. Sensitivity study of forecasted aftershock seismicity based on Coulomb stress calculation and rate- and state-dependent frictional response

    Science.gov (United States)

    Cocco, M.; Hainzl, S.; Catalli, F.; Enescu, B.; Lombardi, A. M.; Woessner, J.

    2010-05-01

    We use the Dieterich (1994) physics-based approach to simulate the spatiotemporal evolution of seismicity caused by stress changes applied to an infinite population of nucleating patches modeled through a rate- and state-dependent friction law. According to this model, seismicity rate changes depend on the amplitude of stress perturbation, the physical constitutive properties of faults (represented by the parameter Aσ), the stressing rate, and the background seismicity rate of the study area. In order to apply this model in a predictive manner, we need to understand the impact of physical model parameters and the correlations between them. First, we discuss different definitions of the reference seismicity rate and show their impact on the computed rate of earthquake production for the 1992 Landers earthquake sequence as a case study. Furthermore, we demonstrate that all model parameters are strongly correlated for physical and statistical reasons. We discuss this correlation, emphasizing that the estimations of the background seismicity rate, stressing rate, and Aσ are strongly correlated to reproduce the observed aftershock productivity. Our analytically derived relation demonstrates the impact of these model parameters on the Omori-like aftershock decay: the c value and the productivity of the Omori law, implying a p value smaller than or equal to 1. Finally, we discuss an optimal strategy to constrain model parameters for near-real-time forecasts.

  10. "Safe" Coulomb Excitation of $^{30}$Mg

    CERN Document Server

    Niedermaier, O; Bildstein, V; Boie, H; Fitting, J; Von Hahn, R; Köck, F; Lauer, M; Pal, U K; Podlech, H; Repnow, R; Schwalm, D; Alvarez, C; Ames, F; Bollen, G; Emhofer, S; Habs, D; Kester, O; Lutter, R; Rudolph, K; Pasini, M; Thirolf, P G; Wolf, B H; Eberth, J; Gersch, G; Hess, H; Reiter, P; Thelen, O; Warr, N; Weisshaar, D; Aksouh, F; Van den Bergh, P; Van Duppen, P; Huyse, M; Ivanov, O; Mayet, P; Van de Walle, J; Äystö, J; Butler, P A; Cederkäll, J; Delahaye, P; Fynbo, H O U; Fraile-Prieto, L M; Forstner, O; Franchoo, S; Köster, U; Nilsson, T; Oinonen, M; Sieber, T; Wenander, F; Pantea, M; Richter, A; Schrieder, G; Simon, H; Behrens, T; Gernhäuser, R; Kröll, T; Krücken, R; Münch, M M; Davinson, T; Gerl, J; Huber, G; Hurst, A; Iwanicki, J; Jonson, B; Lieb, P; Liljeby, L; Schempp, A; Scherillo, A; Schmidt, P; Walter, G

    2005-01-01

    We report on the first radioactive beam experiment performed at the recently commissioned REX-ISOLDE facility at CERN in conjunction with the highly efficient $\\gamma$ -spectrometer MINIBALL. Using $^{30}$Mg ions accelerated to an energy of 2.25MeV/u together with a thin $^{nat}$Ni target, Coulomb excitation of the first excited 2+ states of the projectile and target nuclei well below the Coulomb barrier was observed. From the measured relative de-excitation $\\gamma$ -ray yields the B(E2; 0$^{+}_{gs} \\rightarrow 2^{+}_{1}$) value of $^{30}$Mg was determined to be 241(31)$e^{2}$fm$^{4}$. Our result is lower than values obtained at projectile fragmenttion facilities using the intermediate-energy Coulomb excitation method and confirms that the theoretical conjecture that the neutron-rich magnesium isotope $^{30}$Mg lies still outside the "island of inversion".

  11. Coulomb drag in coherent mesoscopic systems

    DEFF Research Database (Denmark)

    Mortensen, Niels Asger; Flensberg, Karsten; Jauho, Antti-Pekka

    2001-01-01

    , such as the random matrix theory, or by numerical simulations. We show that Coulomb drag is sensitive to localized states, which usual transport measurements do not probe. For chaotic 2D systems we find a vanishing average drag, with a nonzero variance. Disordered 1D wires show a finite drag, with a large variance...

  12. Interatomic Coulombic decay in helium nanodroplets

    DEFF Research Database (Denmark)

    Shcherbinin, Mykola; Laforge, Aaron; Sharma, Vandana

    2017-01-01

    Interatomic Coulombic decay (ICD) is induced in helium nanodroplets by photoexciting the n=2 excited state of He+ using XUV synchrotron radiation. By recording multiple-coincidence electron and ion images we find that ICD occurs in various locations at the droplet surface, inside the surface region...

  13. Coulomb excitation of (31)Mg

    CERN Document Server

    Seidlitz, M; Reiter, P; Bildstein, V; Blazhev, A; Bree, N; Bruyneel, B; Cederkall, J; Clement, E; Davinson, T; van Duppen, P; Ekstrom, A; Finke, F; Fraile, L M; Geibel, K; Gernhauser, R; Hess, H; Holler, A; Huyse, M; Ivanov, O; Jolie, J; Kalkuhler, M; Kotthaus, T; Krucken, R; Lutter, R; Piselli, E; Scheit, H; Stefanescu, I; van de Walle, J; Voulot, D; Warr, N; Wenander, F; Wiens, A

    2011-01-01

    The ground state properties of ^3^1Mg indicate a change of nuclear shape at N=19 with a deformed J^@p=1/2^+ intruder state as a ground state, implying that ^3^1Mg is part of the ''island of inversion''. The collective properties of excited states were the subject of a Coulomb excitation experiment at REX-ISOLDE, CERN, employing a radioactive ^3^1Mg beam. De-excitation @c-rays were detected by the MINIBALL @c-spectrometer in coincidence with scattered particles in a segmented Si-detector. The level scheme of ^3^1Mg was extended. Spin and parity assignment of the 945 keV state yielded 5/2^+ and its de-excitation is dominated by a strong collective M1 transition. Comparison of the transition probabilities of ^3^0^,^3^1^,^3^2Mg establishes that for th e N=19 magnesium isotope not only the ground state but also excited states are largely dominated by a deformed pf intruder configuration.

  14. Coulombic Transformation in Momentum Space

    Science.gov (United States)

    Yamaguchi, M.; Kamada, H.; Glöckle, W.

    2013-08-01

    We studied the Coulombic transformation of potential in momentum space. The Coulombic transformation is defined as a unitary transformation in momentum space, which is equivalent of the Coulomb-Fourier transformation in coordinate space. The analytic continuation scheme avoids the difficulty which is occurred from the singularity of the Coulomb wave function in momentum space. We adopted the point method to perform the analytic continuation. The validity of the new scheme is checked by comparing with the analytic solution for the Malfliet-Tjon potential. Numerical calculation of the integration was done by separating into four intervals. We demonstrate the high accuracy of our calculation.

  15. ALFA beam halo

    CERN Document Server

    Komarek, Tomas

    2014-01-01

    This note serves as a final report about CERN Summer Student Programme 2014 project. The beam halo is an undesired phenomenon for physics analyses on particle accelerators. It surrounds the beam core and constitutes an important part of background for signal measurements on some detectors, eg. in the forward region. In this study, the data from the ALFA detector were used, specifically from the run 191373 ($\\beta^*=90\\unit{m}$) and the run 213268 ($\\beta^*=1\\unit{km}$). Using the ROOT framework, a software for beam halo events selection was created and beam halo properties were examined. In the run 213268, excessive beam halo is suspected to be the reason for multiple beam scrapings that occurred. A kinematic reconstruction of beam halo particles is attempted in order to understand beam halo properties in the interaction point. Some further simulations are employed to find constraints for beam halo particles in order to survive in the accelerator for a longer time/many revolutions. This work represents a st...

  16. Coulomb and Nuclear Breakup at Low Energies: Scaling Laws

    Directory of Open Access Journals (Sweden)

    Hussein M. S.

    2013-12-01

    Full Text Available We report on a recent work on the low-energy behavior of the breakup cross section in so far as it has important role in the fusion of weakly bound and halo nuclei at near-barrier energies. We assess the way the nuclear component of this cross section scales with the target mass. In complete accord with previous finding at higher energies we verify that the low energy behavior of the breakup cross section for a given projectile and relative center of mass energy with respect to the Coulomb barrier height scales as the cubic root of the mass number of the target. Surprisingly we find that the Coulomb component of the breakup cross section at these low energies also obeys scaling, but with a linear dependence on the target charge. Our findings are important when planning for experiments involving these exotic nuclei.

  17. What's a Halo?

    Science.gov (United States)

    ... Development Infections Diseases & Conditions Pregnancy & Baby Nutrition & Fitness Emotions & Behavior School & Family Life First Aid & Safety Doctors & ... of quick or jerky movements, like jumping or dancing pulling or tugging on the halo or attached ...

  18. Halo excitations in fragmentation of sup 6 He at 240 MeV/u on carbon and lead targets

    CERN Document Server

    Aleksandrov, D V; Axelsson, L; Baumann, T; García-Borge, M J; Chulkov, L V; Cub, J; Dostal, W; Eberlein, B; Elze, T W; Emling, H; Geissel, H; Goldberg, V Z; Grünschloss, A; Hellström, M; Holeczek, J; Holzmann, R; Jonson, B; Kratz, J V; Kraus, G; Kulessa, R; Leifels, Y; Leistenschneider, A; Leth, T; Markenroth, K G; Meister, M; Mukha, I; Münzenberg, G; Nickel, F; Nilsson, T; Nyman, G H; Petersen, B; Pfützner, M; Pribora, V N; Richter, A; Riisager, K; Scheidenberger, C; Schrieder, G; Schwab, W; Simon, H; Smedberg, M H; Stroth, J; Surowiec, A; Tengblad, O; Zhukov, M V

    2000-01-01

    Dissociation of a 240 MeV/u beam of sup 6 He, incident on carbon and lead targets, has been studied in kinematically complete experiments to investigate low-lying excitation modes in the halo nucleus sup 6 He. It is shown that alignment effects characterize the inelastic scattering and allow an unambiguous assignment of the spin of a narrow resonance observed in the excitation energy spectrum. The differential cross sections for the sup 6 He inelastic scattering on carbon and lead targets were deduced from the measured momenta of the two neutrons and the alpha-particle. An analysis of these distributions shows that quadrupole and, possibly, monopole excitations characterize the hadronic interaction, while the dipole mode is dominating in Coulomb dissociation. Neither theoretically predicted new resonance states in sup 6 He nor nuclear excitation of a dipole mode were found. Direct evidence has been obtained for strong suppression of Coulomb post-acceleration in direct Coulomb breakup in a lead target.

  19. On the Emergence of the Coulomb Forces in Quantum Electrodynamics

    Directory of Open Access Journals (Sweden)

    Jan Naudts

    2017-01-01

    Full Text Available A simple transformation of field variables eliminates Coulomb forces from the theory of quantum electrodynamics. This suggests that Coulomb forces may be an emergent phenomenon rather than being fundamental. This possibility is investigated in the context of reducible quantum electrodynamics. It is shown that states exist which bind free photon and free electron fields. The binding energy peaks in the long-wavelength limit. This makes it plausible that Coulomb forces result from the interaction of the electron/positron field with long-wavelength transversely polarized photons.

  20. Coulomb center instability in bilayer graphene

    Science.gov (United States)

    Oriekhov, D. O.; Sobol, O. O.; Gorbar, E. V.; Gusynin, V. P.

    2017-10-01

    In the low-energy two-band as well as four-band continuum models, we study the supercritical charge instability in gapped bilayer graphene in the field of an impurity charge when the lowest-energy bound state dives into the hole continuum. It is found that the screening effects are crucially important in bilayer graphene. If they are neglected, then the critical value for the impurity charge tends to zero as the gap Δ vanishes. If the screened Coulomb interaction is considered, then the critical charge tends to a finite value for Δ →0 . The different scalings of the kinetic energy of quasiparticles and the Coulomb interaction with respect to the distance to the charged impurity ensure that the wave function of the electron bound state does not shrink toward the impurity as its charge increases. This results in the absence of the fall-to-center phenomenon in bilayer graphene although the supercritical charge instability is realized.

  1. On the one-dimensional Coulomb problem

    Energy Technology Data Exchange (ETDEWEB)

    Jaramillo, Benjamin [Instituto de Fisica, Universidad de Guanajuato, Loma del Bosque 103, Fracc. Lomas del Campestre, CP 37150 Leon, Guanajuato (Mexico); Martinez-y-Romero, R.P. [Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, Apartado Postal 21-267, CP 04000, Coyoacan, D.F. (Mexico); Nunez-Yepez, H.N. [Departamento Fisica, Universidad Autonoma Metropolitana-Iztapalapa, Apartado Postal 55-534, CP 09340, Iztapalapa, D.F. (Mexico); Salas-Brito, A.L., E-mail: asb@correo.azc.uam.m [Laboratorio de Sistemas Dinamicos, Departamento de Ciencias Basicas, Universidad Autonoma Metropolitana-Azcapotzalco, Apartado Postal 21-267, CP 04000, Coyoacan, D.F. (Mexico)

    2009-12-28

    We analyse the one-dimensional Coulomb problem (1DCP) pointing out some mistaken beliefs on it. We show that no eigenstates of even or odd parity can represent states of the system. The 1DCP exhibits a sort of spontaneous breaking of parity. We also show that a superselection rule operates in the system. Such rule explains some of its peculiarities. We build the superpotential associated to the 1DCP.

  2. Coulomb-oscillator duality and 5-dimensional Coulomb problem

    CERN Document Server

    Karayan, K H

    2003-01-01

    It is shown that the Hurwitz transformation connects the eight-dimensional oscillator problem with the five-dimensional Coulomb problem. The hyperspherical and parabolic coordinates are applied for analyzing the five-dimensional Coulomb problem. We calculate the spherical and parabolic bases for this system, derive the Park's and Tarter's representations for the coefficients of the spherical-parabolic and parabolic-spherical interbasis expansions

  3. Coulomb excitation of 73Ga

    CERN Document Server

    Diriken, J; Balabanski, D; Blasi, N; Blazhev, A; Bree, N; Cederkäll, J; Cocolios, T E; Davinson, T; Eberth, J; Ekström, A; Fedorov, D V; Fedosseev, V N; Fraille, L M; Franchoo, S; Georgiev, G; Gladnishki, K; Huyse, M; Ivanov, O V; Ivanov, V S; Iwanicki, V; Jolie, J; Konstantinopoulos, T; Kröll, Th; Krücken, R; Köster, U; Lagoyannis, A; Bianco, G Lo; Maierbeck, P; March, B A; Napiarkowski, P; Patronis, N; Pauwels, D; Reiter, P; Seliverstov, M; Sletten, G; Van de Walle, J; Van Duppen, P; Voulot, D; Walters, W B; Warr, N; Wenander, F; Wrzosek, K

    2010-01-01

    The B(E2; Ii ! If ) values for transitions in 71Ga and 73Ga were deduced from a Coulomb excitation experiment at the safe energy of 2.95 MeV/nucleon using post-accelerated beams of 71,73Ga at the REX-ISOLDE on-line isotope mass separator facility. The emitted gamma rays were detected by the MINIBALL-detector array and B(E2; Ii->If ) values were obtained from the yields normalized to the known strength of the 2+ -> 0+ transition in the 120Sn target. The comparison of these new results with the data of less neutron-rich gallium isotopes shows a shift of the E2 collectivity towards lower excitation energy when adding neutrons beyond N = 40. This supports conclusions from previous studies of the gallium isotopes which indicated a structural change in this isotopical chain between N = 40 and N = 42. Combined with recent measurements from collinear laser spectroscopy showing a 1/2- spin and parity for the ground state, the extracted results revealed evidence for a 1/2-; 3/2- doublet near the ground state in 73 31Ga...

  4. Simulating Halos with the Caterpillar Project

    Science.gov (United States)

    Kohler, Susanna

    2016-04-01

    the Caterpillar Project, detailed in a recently published paper led by Brendan Griffen (Massachusetts Institute of Technology). The Caterpillar Project was designed to simulate 70 Milky-Way-size halos (quadrupling the total number of halos that have been simulated in the past!) at a high mass resolution (10,000 solar masses per particle) and time resolution (5 Myr per snapshot). The project is extremely computationally intense, requiring 14 million CPU hours and 700 TB of data storage!Mass evolution of the first 24 Caterpillar halos (selected to be Milky-Way-size at z=0). The inset panel shows the mass evolution normalized by the halo mass at z=0, demonstrating the highly varied evolution these different halos undergo. [Griffen et al. 2016]In this first study, the Griffen and collaboratorsshow the end states for the first 24 halos of the project, evolved from a large redshift to today (z=0). They use these initialresults to demonstrate the integrity of their data and the utility of their methods, which include new halo-finding techniques that recover more substructure within each halo.The first results from the Caterpillar Project are already enough to show clear general trends, such as the highly variable paths the different halos take as they merge, accrete, and evolve, as well as how different their ends states can be. Statistically examining the evolution of these halos is an importantnext step in providinginsight intothe origin and evolution of the Milky Way, and helping us to understand how our galaxy differs from other galaxies of similar mass. Keep an eye out for future results from this project!BonusCheck out this video (make sure to watch in HD!) of how the first 24 Milky-Way-like halos from the Caterpillar simulations form. Seeingthese halos evolve simultaneously is an awesome way to identifythe similarities and differences between them.CitationBrendan F. Griffen et al 2016 ApJ 818 10. doi:10.3847/0004-637X/818/1/10

  5. Brightest galaxies as halo centre tracers in SDSS DR7

    Science.gov (United States)

    Lange, Johannes U.; van den Bosch, Frank C.; Hearin, Andrew; Campbell, Duncan; Zentner, Andrew R.; Villarreal, Antonio; Mao, Yao-Yuan

    2018-01-01

    Determining the positions of halo centres in large-scale structure surveys is crucial for many cosmological studies. A common assumption is that halo centres correspond to the location of their brightest member galaxies. In this paper, we study the dynamics of brightest galaxies with respect to other halo members in the Sloan Digital Sky Survey DR7. Specifically, we look at the line-of-sight velocity and spatial offsets between brightest galaxies and their neighbours. We compare those to detailed mock catalogues, constructed from high-resolution, dark-matter-only N-body simulations, in which it is assumed that satellite galaxies trace dark matter subhaloes. This allows us to place constraints on the fraction fBNC of haloes in which the brightest galaxy is not the central. Compared to previous studies, we explicitly take into account the unrelaxed state of the host haloes, velocity offsets of halo cores and correlations between fBNC and the satellite occupation. We find that fBNC strongly decreases with the luminosity of the brightest galaxy and increases with the mass of the host halo. Overall, in the halo mass range 1013-1014.5 h- 1M⊙ we find fBNC ∼ 30 per cent, in good agreement with a previous study by Skibba et al. We discuss the implications of these findings for studies inferring the galaxy-halo connection from satellite kinematics, models of the conditional luminosity function and galaxy formation in general.

  6. Inelastic p{sup 9}Be scattering and halo-structure of excited states of {sup 9}Be

    Energy Technology Data Exchange (ETDEWEB)

    Ibraeva, E.T., E-mail: ibraeva.elena@gmail.com [Institute of Nuclear Physics RK, 050032, str. Ibragimova 1, Almaty (Kazakhstan); Zhusupov, M.A. [Al-Farabi Kazakh National University, 050040, av. Al-Farabi 71, Almaty (Kazakhstan); Dzhazairov-Kakhramanov, A.V., E-mail: albert-j@yandex.ru [Institute of Nuclear Physics RK, 050032, str. Ibragimova 1, Almaty (Kazakhstan); V.G. Fessenkov Astrophysical Institute “NCSRT” NSA RK, 050020, Observatory 23, Kamenskoe plato, Almaty (Kazakhstan); Krassovitskiy, P.M. [Institute of Nuclear Physics RK, 050032, str. Ibragimova 1, Almaty (Kazakhstan)

    2015-01-15

    The calculation of the differential cross-section of inelastic p{sup 9}Be scattering (to the levels J{sup π}=1/2{sup +}, 3/2{sup +}) was made in the framework of the Glauber diffraction theory. We have used the wave function of {sup 9}Be in the ground and excited states in the three-body 2αn model. Expansion in series by gaussoids of the wave function of {sup 9}Be and presentation of the Glauber's operator Ω in the form, conjugated with three-body wave function make it possible for us to analytically calculate the matrix elements of inelastic scattering, taking into account all of the multiplicities of scattering and rescattering on clusters and nucleons, which are components of {sup 9}Be. The drawn-up profiles of probability densities of excited state functions allow us to form conclusions on their extended neutron distribution. The differential cross-section with the wave function in model 1 (with the αα-Ali–Bodmer potential) is in good agreement with available experimental data at E=180 MeV.

  7. Spectrum of Sprite Halos

    Czech Academy of Sciences Publication Activity Database

    Gordillo-Vázquez, F.J.; Luque, A.; Šimek, Milan

    2011-01-01

    Roč. 116, č. 9 (2011), A09319-A09319 ISSN 0148-0227 Institutional research plan: CEZ:AV0Z20430508 Keywords : sprites * halos * spectroscopy Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.021, year: 2011 http://www.trappa.iaa.es/sites/all/files/papers/isi_journal_papers/2011/2011_08.pdf

  8. QCD Coulomb Gauge Approach to Exotic Hadrons

    OpenAIRE

    Cotanch, Stephen R.; General, Ignacio J.; Wang, Ping

    2006-01-01

    The Coulomb gauge Hamiltonian model is used to calculate masses for selected J^{PC} states consisting of exotic combinations of quarks and gluons: ggg glueballs (oddballs), q bar{q} g hybrid mesons and q bar{q} q bar{q} tetraquark systems. An odderon Regge trajectory is computed for the J^{--} glueballs with intercept much smaller than the pomeron, explaining its nonobservation. The lowest 1^{-+} hybrid meson mass is found to be just above 2.2 GeV while the lightest tetraquark state mass with...

  9. Tracking the LHC halo

    CERN Document Server

    Antonella Del Rosso

    2015-01-01

    In the LHC, beams of 25-ns-spaced proton bunches travel at almost the speed of light and pass through many different devices installed along the ring that monitor their properties. During their whirling motion, beam particles might interact with the collimation instrumentation or with residual gas in the vacuum chambers and this creates the beam halo – an annoying source of background for the physics data. Newly installed CMS sub-detectors are now able to monitor it.   The Beam Halo Monitors (BHM) are installed around the CMS rotating shielding. The BHM are designed and built by University of Minnesota, CERN, Princeton University, INFN Bologna and the National Technical University of Athens. (Image: Andrea Manna). The Beam Halo Monitor (BHM) is a set of 20 Cherenkov radiators – 10-cm-long quartz crystals – installed at each end of the huge CMS detector. Their design goal is to measure the particles that can cause the so-called “machine-induced...

  10. Coulomb drag in multiwall armchair carbon nanotubes

    DEFF Research Database (Denmark)

    Lunde, A.M.; Jauho, Antti-Pekka

    2004-01-01

    We calculate the transresistivity rho(21) between two concentric armchair nanotubes in a diffusive multiwall carbon nanotube as a function of temperature T and Fermi level epsilon(F). We approximate the tight-binding band structure by two crossing bands with a linear dispersion near the Fermi...... surface. The cylindrical geometry of the nanotubes and the different parities of the Bloch states are accounted for in the evaluation of the effective Coulomb interaction between charges in the concentric nanotubes. We find a broad peak in rho(21) as a function of temperature at roughly T similar to 0.4T...

  11. Coulomb breakup of {sup 23}O

    Energy Technology Data Exchange (ETDEWEB)

    Nociforo, C. [Institut fuer Kernchemie, Johannes Gutenberg Universitaet, D-55099 Mainz (Germany)]. E-mail: nociforo@lns.infn.it; Jones, K.L.; Aumann, T.; Datta Pramanik, U.; Emling, H.; Geissel, H.; Hellstroem, M.; Leifels, Y.; Muenzenberg, G.; Suemmerer, K.; Weick, H.; Typel, S. [Gesellschaft fuer Schwerionenforschung (GSI), D-64291 Darmstadt (Germany); Khiem, L.H. [Institut fuer Kernchemie, Johannes Gutenberg Universitaet, D-55099 Mainz (Germany); Adrich, P. [Gesellschaft fuer Schwerionenforschung (GSI), D-64291 Darmstadt (Germany)]|[Instytut Fizyki, Uniwersytet Jagellonski, PL-30-059 Cracow (Poland); Carlson, B.V. [Instituto Tecnologico de Aeronautica, CTA, Sao Jose dos Campos (Brazil); Cortina-Gil, D. [Gesellschaft fuer Schwerionenforschung (GSI), D-64291 Darmstadt (Germany)]|[Universidad de Santiago de Compostela, E-15706 Santiago de Compostela (Spain); Elze, Th.W. [Institut fuer Kernphysik, Johann Wolfgang Goethe Universitaet, D-60486 Frankfurt (Germany); Kratz, J.V. [Institut fuer Kernchemie, Johannes Gutenberg Universitaet, D-55099 Mainz (Germany); Kulessa, R. [Instytut Fizyki, Uniwersytet Jagellonski, PL-30-059 Cracow (Poland); Lange, T. [Institut fuer Kernphysik, Johann Wolfgang Goethe Universitaet, D-60486 Frankfurt (Germany); Lenske, H. [Institut fuer Theoretische, Universitaet Giessen, D-35392 Giessen (Germany); Lubkiewicz, E. [Instytut Fizyki, Uniwersytet Jagellonski, PL-30-059 Cracow (Poland); Palit, R. [Gesellschaft fuer Schwerionenforschung (GSI), D-64291 Darmstadt (Germany)]|[Institut fuer Kernphysik, Johann Wolfgang Goethe Universitaet, D-60486 Frankfurt (Germany); Scheit, H. [Max-Planck Institut fuer Kernphysik, D-69029 Heidelberg (Germany); Simon, H. [Gesellschaft fuer Schwerionenforschung (GSI), D-64291 Darmstadt (Germany)]|[Institut fuer Kernphysik, Technische Universitaet Darmstadt, D-64289 Darmstadt (Germany); Wajda, E.; Walus, W. [Instytut Fizyki, Uniwersytet Jagellonski, PL-30-059 Cracow (Poland)

    2005-01-06

    The ground-state structure of the near-drip-line nucleus {sup 23}O has been investigated in a one-neutron Coulomb breakup reaction. Differential cross sections d{sigma}/dE* for electromagnetic excitation of {sup 23}O projectiles (422 MeV/nucleon) incident on a lead target have been obtained from the measurement of the momenta of all breakup products including {gamma} rays. The analysis of the deduced dipole-transition probability into the continuum infers a 2s{sub 1/2}-bar O22(0{sup +}) ground state configuration with a spectroscopic factor of 0.77(10) and thus a ground-state spin I{sup {pi}}(O23)=1/2{sup +}, resolving earlier conflicting experimental findings. Final-state interaction is of significant influence, an effective reduced scattering length for low-energy p{sub 3/2} neutron scattering could be derived from the data.

  12. Relativistic Coulomb excitation of 88Kr

    Science.gov (United States)

    Moschner, K.; Blazhev, A.; Jolie, J.; Warr, N.; Boutachkov, P.; Bednarczyk, P.; Sieja, K.; Algora, A.; Ameil, F.; Bentley, M. A.; Brambilla, S.; Braun, N.; Camera, F.; Cederkäll, J.; Corsi, A.; Danchev, M.; DiJulio, D.; Fahlander, C.; Gerl, J.; Giaz, A.; Golubev, P.; Górska, M.; Grebosz, J.; Habermann, T.; Hackstein, M.; Hoischen, R.; Kojouharov, I.; Kurz, N.; Mǎrginean, N.; Merchán, E.; Möller, T.; Naqvi, F.; Nara Singh, B. S.; Nociforo, C.; Pietralla, N.; Pietri, S.; Podolyák, Zs.; Prochazka, A.; Reese, M.; Reiter, P.; Rudigier, M.; Rudolph, D.; Sava, T.; Schaffner, H.; Scruton, L.; Taprogge, J.; Thomas, T.; Weick, H.; Wendt, A.; Wieland, O.; Wollersheim, H.-J.

    2016-11-01

    To investigate the systematics of mixed-symmetry states in N =52 isotones, a relativistic Coulomb excitation experiment was performed during the PreSPEC campaign at the GSI Helmholtzzentrum für Schwerionenforschung to determine E 2 transition strengths to 2+ states of the radioactive nucleus 88Kr. Absolute transition rates could be measured towards the first and third 2+ states. For the latter a mixed-symmetry character is suggested on the basis of the indication for a strong M 1 transition to the fully symmetric 21+ state, extending the knowledge of the N =52 isotones below Z =40 . A comparison with the proton-neutron interacting boson model and shell-model predictions is made and supports the assignment.

  13. Sensitivity of the halo nuclei-12C elastic scattering at incident nucleon energy 800 MeV to the halo density distribution

    Science.gov (United States)

    Hassan, M. A. M.; Nour El-Din, M. S. M.; Ellithi, A.; Hosny, H.; Salama, T. N. E.

    2017-10-01

    In the framework of Glauber optical limit approximation where Coulomb effect is taken into account, the elastic scattering differential cross section for halo nuclei with {}^{12}{C} at 800 MeV/N has been calculated. Its sensitivity to the halo densities and the root mean square of the core and halo is the main goal of the current study. The projectile nuclei are taken to be one-neutron and two-neutron halo. The calculations are carried out for Gaussian-Gaussian, Gaussian-Oscillator and Gaussian-2 s phenomenological densities for each considered projectile in the mass number range 6-29. Also included a comparison between the obtained results of phenomenological densities and the results within the microscopic densities LSSM of {}6{He} and {}^{11}{Li} and microscopic densities GCM of {}^{11}{Be} where the density of the target nucleus {}^{12}{C} obtained from electron-{}^{12}{C} scattering is used. The zero range approximation is considered in the calculations. We found that the sensitivity of elastic scattering differential cross section to the halo density is clear if the nucleus appears as two clear different clusters, core and halo.

  14. Transport Through a Coulomb Blockaded Majorana Nanowire

    Science.gov (United States)

    Zazunov, Alex; Egger, Reinhold; Yeyati, Alfredo Levy; Hützen, Roland; Braunecker, Bernd

    In one-dimensional (1D) quantum wires with strong spin-orbit coupling and a Zeeman field, a superconducting substrate can induce zero-energy Majorana bound states located near the ends of the wire. We study electronic properties when such a wire is contacted by normal metallic or superconducting electrodes. A special attention is devoted to Coulomb blockade effects. We analyze the "Majorana single-charge transistor" (MSCT), i.e., a floating Majorana wire contacted by normal metallic source and drain contacts, where charging effects are important. We describe Coulomb oscillations in this system and predict that Majorana fermions could be unambiguously detected by the emergence of sideband peaks in the nonlinear differential conductance. We also study a superconducting variant of the MSCT setup with s-wave superconducting (instead of normal-conducting) leads. In the noninteracting case, we derive the exact current-phase relation (CPR) and find π-periodic behavior with negative critical current for weak tunnel couplings. Charging effects then cause the anomalous CPR I(\\varphi ) = Ic\\cos \\varphi, where the parity-sensitive critical current I c provides a signature for Majorana states.

  15. Coulomb dissociation of N,2120

    Science.gov (United States)

    Röder, Marko; Adachi, Tatsuya; Aksyutina, Yulia; Alcantara, Juan; Altstadt, Sebastian; Alvarez-Pol, Hector; Ashwood, Nicholas; Atar, Leyla; Aumann, Thomas; Avdeichikov, Vladimir; Barr, M.; Beceiro, Saul; Bemmerer, Daniel; Benlliure, Jose; Bertulani, Carlos; Boretzky, Konstanze; Borge, Maria J. G.; Burgunder, G.; Caamaño, Manuel; Caesar, Christoph; Casarejos, Enrique; Catford, Wilton; Cederkäll, Joakim; Chakraborty, S.; Chartier, Marielle; Chulkov, Leonid; Cortina-Gil, Dolores; Crespo, Raquel; Datta Pramanik, Ushasi; Diaz-Fernandez, Paloma; Dillmann, Iris; Elekes, Zoltan; Enders, Joachim; Ershova, Olga; Estrade, A.; Farinon, F.; Fraile, Luis M.; Freer, Martin; Freudenberger, M.; Fynbo, Hans; Galaviz, Daniel; Geissel, Hans; Gernhäuser, Roman; Göbel, Kathrin; Golubev, Pavel; Gonzalez Diaz, D.; Hagdahl, Julius; Heftrich, Tanja; Heil, Michael; Heine, Marcel; Heinz, Andreas; Henriques, Ana; Holl, Matthias; Ickert, G.; Ignatov, Alexander; Jakobsson, Bo; Johansson, Hâkan; Jonson, Björn; Kalantar-Nayestanaki, Nasser; Kanungo, Rituparna; Kelic-Heil, Aleksandra; Knöbel, Ronja; Kröll, Thorsten; Krücken, Reiner; Kurcewicz, J.; Kurz, Nikolaus; Labiche, Marc; Langer, Christoph; Le Bleis, Tudi; Lemmon, Roy; Lepyoshkina, Olga; Lindberg, Simon; Machado, Jorge; Marganiec, Justyna; Mostazo Caro, Magdalena; Movsesyan, Alina; Najafi, Mohammad Ali; Nilsson, Thomas; Nociforo, Chiara; Panin, Valerii; Paschalis, Stefanos; Perea, Angel; Petri, Marina; Pietri, S.; Plag, Ralf; Prochazka, A.; Rahaman, Md. Anisur; Rastrepina, Ganna; Reifarth, Rene; Ribeiro, Guillermo; Ricciardi, M. Valentina; Rigollet, Catherine; Riisager, Karsten; Rossi, Dominic; Sanchez del Rio Saez, Jose; Savran, Deniz; Scheit, Heiko; Simon, Haik; Sorlin, Olivier; Stoica, V.; Streicher, Branislav; Taylor, Jon; Tengblad, Olof; Terashima, Satoru; Thies, Ronja; Togano, Yasuhiro; Uberseder, Ethan; Van de Walle, J.; Velho, Paulo; Volkov, Vasily; Wagner, Andreas; Wamers, Felix; Weick, Helmut; Weigand, Mario; Wheldon, Carl; Wilson, G.; Wimmer, Christine; Winfield, J. S.; Woods, Philip; Yakorev, Dmitry; Zhukov, Mikhail; Zilges, Andreas; Zuber, Kai; R3B Collaboration

    2016-06-01

    Neutron-rich light nuclei and their reactions play an important role in the creation of chemical elements. Here, data from a Coulomb dissociation experiment on N,2120 are reported. Relativistic N,2120 ions impinged on a lead target and the Coulomb dissociation cross section was determined in a kinematically complete experiment. Using the detailed balance theorem, the 19N (n ,γ )20N and 20N (n ,γ ) 21N excitation functions and thermonuclear reaction rates have been determined. The 19 (n ,γ )20N rate is up to a factor of 5 higher at T <1 GK with respect to previous theoretical calculations, leading to a 10% decrease in the predicted fluorine abundance.

  16. Coulomb drag in quantum circuits.

    Science.gov (United States)

    Levchenko, Alex; Kamenev, Alex

    2008-11-21

    We study the drag effect in a system of two electrically isolated quantum point contacts, coupled by Coulomb interactions. Drag current exhibits maxima as a function of quantum point contacts gate voltages when the latter are tuned to the transitions between quantized conductance plateaus. In the linear regime this behavior is due to enhanced electron-hole asymmetry near an opening of a new conductance channel. In the nonlinear regime the drag current is proportional to the shot noise of the driving circuit, suggesting that the Coulomb drag experiments may be a convenient way to measure the quantum shot noise. Remarkably, the transition to the nonlinear regime may occur at driving voltages substantially smaller than the temperature.

  17. Fusion reactions with the one-neutron halo nucleus 15C

    Directory of Open Access Journals (Sweden)

    Marley S. T.

    2011-10-01

    Full Text Available We have for the first time studied the fusion-fission excitation functions for the systems 14,15C + 232Th at energies in the vicinity of the Coulomb barrier. At energies below the barrier, the fusion cross section of the halo nucleus 15C showed an enhancement by a factor of 2-5, while the fusion cross section for 14C shows a similar trend to that of 12,13C.

  18. What to expect from dynamical modelling of galactic haloes

    Science.gov (United States)

    Wang, Wenting; Han, Jiaxin; Cole, Shaun; Frenk, Carlos; Sawala, Till

    2017-09-01

    Many dynamical models of the Milky Way halo require assumptions that the distribution function of a tracer population should be independent of time (I.e. a steady-state distribution function) and that the underlying potential is spherical. We study the limitations of such modelling by applying a general dynamical model with minimal assumptions to a large sample of galactic haloes from cosmological N-body and hydrodynamical simulations. Using dark matter particles as dynamical tracers, we find that the systematic uncertainties in the measured mass and concentration parameters typically have an amplitude of 25-40 per cent. When stars are used as tracers, however, the systematic uncertainties can be as large as a factor of 2-3. The systematic uncertainties are not reduced by increasing the tracer sample size and vary stochastically from halo to halo. These systematic uncertainties are mostly driven by underestimated statistical noise caused by correlated phase-space structures that violate the steady-state assumption. The number of independent phase-space structures inferred from the uncertainty level sets a limiting sample size beyond which a further increase no longer significantly improves the accuracy of dynamical inferences. The systematic uncertainty level is determined by the halo merger history, the shape and environment of the halo. Our conclusions apply generally to any spherical steady-state model.

  19. Cosmic web type dependence of halo clustering

    Science.gov (United States)

    Fisher, J. D.; Faltenbacher, A.

    2018-01-01

    We use the Millennium Simulation to show that halo clustering varies significantly with cosmic web type. Haloes are classified as node, filament, sheet and void haloes based on the eigenvalue decomposition of the velocity shear tensor. The velocity field is sampled by the peculiar velocities of a fixed number of neighbouring haloes, and spatial derivatives are computed using a kernel borrowed from smoothed particle hydrodynamics. The classification scheme is used to examine the clustering of haloes as a function of web type for haloes with masses larger than 1011 h- 1 M⊙. We find that node haloes show positive bias, filament haloes show negligible bias and void and sheet haloes are antibiased independent of halo mass. Our findings suggest that the mass dependence of halo clustering is rooted in the composition of web types as a function of halo mass. The substantial fraction of node-type haloes for halo masses ≳ 2 × 1013 h- 1 M⊙ leads to positive bias. Filament-type haloes prevail at intermediate masses, 1012-1013 h- 1 M⊙, resulting in unbiased clustering. The large contribution of sheet-type haloes at low halo masses ≲ 1012 h- 1 M⊙ generates antibiasing.

  20. Black holes with halos

    Science.gov (United States)

    Monten, Ruben; Toldo, Chiara

    2018-02-01

    We present new AdS4 black hole solutions in N =2 gauged supergravity coupled to vector and hypermultiplets. We focus on a particular consistent truncation of M-theory on the homogeneous Sasaki–Einstein seven-manifold M 111, characterized by the presence of one Betti vector multiplet. We numerically construct static and spherically symmetric black holes with electric and magnetic charges, corresponding to M2 and M5 branes wrapping non-contractible cycles of the internal manifold. The novel feature characterizing these nonzero temperature configurations is the presence of a massive vector field halo. Moreover, we verify the first law of black hole mechanics and we study the thermodynamics in the canonical ensemble. We analyze the behavior of the massive vector field condensate across the small-large black hole phase transition and we interpret the process in the dual field theory.

  1. Coulomb crystallization in classical and quantum systems

    Science.gov (United States)

    Bonitz, Michael

    2007-11-01

    Coulomb crystallization occurs in one-component plasmas when the average interaction energy exceeds the kinetic energy by about two orders of magnitude. A simple road to reach such strong coupling consists in using external confinement potentials the strength of which controls the density. This has been succsessfully realized with ions in traps and storage rings and also in dusty plasma. Recently a three-dimensional spherical confinement could be created [1] which allows to produce spherical dust crystals containing concentric shells. I will give an overview on our recent results for these ``Yukawa balls'' and compare them to experiments. The shell structure of these systems can be very well explained by using an isotropic statically screened pair interaction. Further, the thermodynamic properties of these systems, such as the radial density distribution are discussed based on an analytical theory [3]. I then will discuss Coulomb crystallization in trapped quantum systems, such as mesoscopic electron and electron hole plasmas in coupled layers [4,5]. These systems show a very rich correlation behavior, including liquid and solid like states and bound states (excitons, biexcitons) and their crystals. On the other hand, also collective quantum and spin effects are observed, including Bose-Einstein condensation and superfluidity of bound electron-hole pairs [4]. Finally, I consider Coulomb crystallization in two-component neutral plasmas in three dimensions. I discuss the necessary conditions for crystals of heavy charges to exist in the presence of a light component which typically is in the Fermi gas or liquid state. It can be shown that their exists a critical ratio of the masses of the species of the order of 80 [5] which is confirmed by Quantum Monte Carlo simulations [6]. Familiar examples are crystals of nuclei in the core of White dwarf stars, but the results also suggest the existence of other crystals, including proton or α-particle crystals in dense matter

  2. PREFACE: Strongly Coupled Coulomb Systems Strongly Coupled Coulomb Systems

    Science.gov (United States)

    Neilson, David; Senatore, Gaetano

    2009-05-01

    This special issue contains papers presented at the International Conference on Strongly Coupled Coulomb Systems (SCCS), held from 29 July-2 August 2008 at the University of Camerino. Camerino is an ancient hill-top town located in the Apennine mountains of Italy, 200 kilometres northeast of Rome, with a university dating back to 1336. The Camerino conference was the 11th in a series which started in 1977: 1977: Orleans-la-Source, France, as a NATO Advanced Study Institute on Strongly Coupled Plasmas (hosted by Marc Feix and Gabor J Kalman) 1982: Les Houches, France (hosted by Marc Baus and Jean-Pierre Hansen) 1986: Santa Cruz, California, USA (hosted by Forrest J Rogers and Hugh E DeWitt) 1989: Tokyo, Japan (hosted by Setsuo Ichimaru) 1992: Rochester, New York, USA (hosted by Hugh M Van Horn and Setsuo Ichimaru) 1995: Binz, Germany (hosted by Wolf Dietrich Kraeft and Manfred Schlanges) 1997: Boston, Massachusetts, USA (hosted by Gabor J Kalman) 1999: St Malo, France (hosted by Claude Deutsch and Bernard Jancovici) 2002: Santa Fe, New Mexico, USA (hosted by John F Benage and Michael S Murillo) 2005: Moscow, Russia (hosted by Vladimir E Fortov and Vladimir Vorob'ev). The name of the series was changed in 1996 from Strongly Coupled Plasmas to Strongly Coupled Coulomb Systems to reflect a wider range of topics. 'Strongly Coupled Coulomb Systems' encompasses diverse many-body systems and physical conditions. The purpose of the conferences is to provide a regular international forum for the presentation and discussion of research achievements and ideas relating to a variety of plasma, liquid and condensed matter systems that are dominated by strong Coulomb interactions between their constituents. Each meeting has seen an evolution of topics and emphases that have followed new discoveries and new techniques. The field has continued to see new experimental tools and access to new strongly coupled conditions, most recently in the areas of warm matter, dusty plasmas

  3. Coulomb branch localization in quiver quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Ohta, Kazutoshi; Sasai, Yuya [Institute of Physics, Meiji Gakuin University,1518 Kamikurata-cho, Yokohama, 244-8539 (Japan)

    2016-02-16

    We show how to exactly calculate the refined indices of N=4U(1)×U(N) supersymmetric quiver quantum mechanics in the Coulomb branch by using the localization technique. The Coulomb branch localization is discussed from the viewpoint of both non-linear and gauged linear sigma models. A classification of fixed points in the Coulomb branch differs from one in the Higgs branch, but the derived indices completely agree with the results which were obtained by the localization in the Higgs branch. In the Coulomb branch localization, the refined indices can be written as a summation over different sets of the Coulomb branch fixed points. We also discuss a space-time picture of the fixed points in the Coulomb branch.

  4. Exploring halo effects in the scattering of $^{11}$Be on heavy targets at REX-ISOLDE

    CERN Multimedia

    2002-01-01

    We propose to measure the scattering of $^{11}$Be on heavy targets at energies around the Coulomb barrier with the aim to study the effect of the neutron halo on the reaction mechanisms. We expect to see deviations of the elastic cross sections with respect to Rutherford, even at energies below the barrier, due to the effect of dipole polarizability. We also expect to observe the inelastic excitation from the 1/2$^{+}$ ground state to the 1/2$^{-}$ excited state. One neutron transfer, as well as break-up cross sections will be obtained from the analysis of the $^{10}$Be fragments produced in the collision. We expect to obtain information on the B(E1) distribution in the low energy continuum of $^{11}$Be. \\\\ \\\\In a previous experiment, $^{11}$Be was produced and accelerated at REX-ISOLDE with an intensity of 10$^{5}$ pps. This beam intensity would allow us to measure the scattered fragments, at forward and backward angles, with a detector array based on silicon strip detectors. We ask for a total of 27 shift...

  5. The Excursion Set Theory of Halo Mass Functions, Halo Clustering, and Halo Growth

    Science.gov (United States)

    Zentner, Andrew R.

    I review the excursion set theory with particular attention toward applications to cold dark matter halo formation and growth, halo abundance, and halo clustering. After a brief introduction to notation and conventions, I begin by recounting the heuristic argument leading to the mass function of bound objects given by Press and Schechter. I then review the more formal derivation of the Press-Schechter halo mass function that makes use of excursion sets of the density field. The excursion set formalism is powerful and can be applied to numerous other problems. I review the excursion set formalism for describing both halo clustering and bias and the properties of void regions. As one of the most enduring legacies of the excursion set approach and one of its most common applications, I spend considerable time reviewing the excursion set theory of halo growth. This section of the review culminates with the description of two Monte Carlo methods for generating ensembles of halo mass accretion histories. In the last section, I emphasize that the standard excursion set approach is the result of several simplifying assumptions. Dropping these assumptions can lead to more faithful predictions and open excursion set theory to new applications. One such assumption is that the height of the barriers that define collapsed objects is a constant function of scale. I illustrate the implementation of the excursion set approach for barriers of arbitrary shape. One such application is the now well-known improvement of the excursion set mass function derived from the "moving" barrier for ellipsoidal collapse. I also emphasize that the statement that halo accretion histories are independent of halo environment in the excursion set approach is not a general prediction of the theory. It is a simplifying assumption. I review the method for constructing correlated random walks of the density field in the more general case. I construct a simple toy model to illustrate that excursion set

  6. Gauge Theories on the Coulomb Branch

    Science.gov (United States)

    Schwarz, John H.

    We construct the world-volume action of a probe D3-brane in AdS5 × S5 with N units of flux. It has the field content, symmetries, and dualities of the U(1) factor of 𝒩 = 4 U(N + 1) super Yang-Mills theory, spontaneously broken to U(N) × U(1) by being on the Coulomb branch, with the massive fields integrated out. This motivates the conjecture that it is the exact effective action, called a highly effective action (HEA). We construct an SL(2, Z) multiplet of BPS soliton solutions of the D3-brane theory (the conjectured HEA) and show that they reproduce the electrically charged massive states that have been integrated out as well as magnetic monopoles and dyons. Their charges are uniformly spread on a spherical surface, called a soliton bubble, which is interpreted as a phase boundary.

  7. Relativistic Coulomb excitation of {sup 88}Kr

    Energy Technology Data Exchange (ETDEWEB)

    Moschner, Kevin; Blazhev, Andrey; Jolie, Jan; Warr, Nigel; Wendt, Andreas [IKP, Universitaet zu Koeln, 50937 Koeln (Germany); Collaboration: PreSPEC-Collaboration

    2015-07-01

    Within the scope of the PreSPEC campaign we performed a Coulomb-excitation experiment to determine absolute E2 transition strengths to 2{sup +} states in the radioactive nucleus {sup 88}Kr. The aim of our studies was to identify the one quadruple-phonon mixed-symmetry 2{sub MS}{sup +} state in order to extend our knowledge on these states to lighter N = 52 isotones and to track their evolution over different proton shells. The investigated ions were provided through projectile fission of a 650 MeV {sup 238}U beam on a primary target consisting of 0.6 g/cm{sup 2} {sup 9}Be and subsequent separation and identification of the reaction products via the FRS at GSI. The secondary target consisted of 0.4 g/cm{sup 2} {sup 197}Au. De-exciting γ radiation was detected by the PreSPEC array, consisting of 15 EUROBALL Cluster detectors. The Lund-York-Cologne-CAlorimeter LYCCA was used for particle identification after the secondary target. Absolute transition strengths of the transitions depopulating the 2{sup +}{sub 3} state in {sup 88}Kr which suggest the mixed symmetric character of this state are presented and discussed within the systematics of the N = 52 isotones.

  8. Neutron halos in hypernuclei

    CERN Document Server

    Lue, H F; Meng, J; Zhou, S G

    2003-01-01

    Properties of single-LAMBDA and double-LAMBDA hypernuclei for even-N Ca isotopes ranging from the proton dripline to the neutron dripline are studied using the relativistic continuum Hartree-Bogolyubov theory with a zero-range pairing interaction. Compared with ordinary nuclei, the addition of one or two LAMBDA-hyperons lowers the Fermi level. The predicted neutron dripline nuclei are, respectively, sup 7 sup 5 subLAMBDA Ca and sup 7 sup 6 sub 2 subLAMBDA Ca, as the additional attractive force provided by the LAMBDA-N interaction shifts nuclei from outside to inside the dripline. Therefore, the last bound hypernuclei have two more neutrons than the corresponding ordinary nuclei. Based on the analysis of two-neutron separation energies, neutron single-particle energy levels, the contribution of continuum and nucleon density distribution, giant halo phenomena due to the pairing correlation, and the contribution from the continuum are suggested to exist in Ca hypernuclei similar to those that appear in ordinary ...

  9. Coulomb dissociation of N-20,N-21

    NARCIS (Netherlands)

    Roeder, Marko; Adachi, Tatsuya; Aksyutina, Yulia; Alcantara, Juan; Altstadt, Sebastian; Alvarez-Pol, Hector; Ashwood, Nicholas; Atar, Leyla; Aumann, Thomas; Avdeichikov, Vladimir; Barr, M.; Beceiro, Saul; Bemmerer, Daniel; Benlliure, Jose; Bertulani, Carlos; Boretzky, Konstanze; Borge, Maria J. G.; Burgunder, G.; Caamano, Manuel; Caesar, Christoph; Casarejos, Enrique; Catford, Wilton; Cederkall, Joakim; Chakraborty, S.; Chartier, Marielle; Chulkov, Leonid; Cortina-Gil, Dolores; Crespo, Raquel; Pramanik, Ushasi Datta; Diaz-Fernandez, Paloma; Dillmann, Iris; Elekes, Zoltan; Enders, Joachim; Ershova, Olga; Estrade, A.; Farinon, F.; Fraile, Luis M.; Freer, Martin; Freudenberger, M.; Fynbo, Hans; Galaviz, Daniel; Geissel, Hans; Gernhaeuser, Roman; Goebel, Kathrin; Golubev, Pavel; Diaz, D. Gonzalez; Hagdahl, Julius; Heftrich, Tanja; Heil, Michael; Heine, Marcel; Heinz, Andreas; Henriques, Ana; Holl, Matthias; Ickert, G.; Ignatov, Alexander; Jakobsson, Bo; Johansson, Hakan; Jonson, Bjorn; Kalantar-Nayestanaki, Nasser; Kanungo, Rituparna; Kelic-Heil, Aleksandra; Knoebel, Ronja; Kroell, Thorsten; Kruecken, Reiner; Kurcewicz, J.; Kurz, Nikolaus; Labiche, Marc; Langer, Christoph; Le Bleis, Tudi; Lemmon, Roy; Lepyoshkina, Olga; Lindberg, Simon; Machado, Jorge; Marganiec, Justyna; Mostazo Caro, Magdalena; Movsesyan, Alina; Najafi, Mohammad Ali; Nilsson, Thomas; Nociforo, Chiara; Panin, Valerii; Paschalis, Stefanos; Perea, Angel; Petri, Marina; Pietri, S.; Plag, Ralf; Prochazka, A.; Rahaman, Md. Anisur; Rastrepina, Ganna; Reifarth, Rene; Ribeiro, Guillermo; Ricciardi, M. Valentina; Rigollet, Catherine; Riisager, Karsten; Rossi, Dominic; del Rio Saez, Jose Sanchez; Savran, Deniz; Scheit, Heiko; Simon, Haik; Sorlin, Olivier; Stoica, V.; Streicher, Branislav; Taylor, Jon; Tengblad, Olof; Terashima, Satoru; Thies, Ronja; Togano, Yasuhiro; Uberseder, Ethan; Van de Walle, J.; Velho, Paulo; Volkov, Vasily; Wagner, Andreas; Wamers, Felix; Weick, Helmut; Weigand, Mario; Wheldon, Carl; Wilson, G.; Wimmer, Christine; Winfield, J. S.; Woods, Philip; Yakorev, Dmitry; Zhukov, Mikhail; Zilges, Andreas; Zuber, Kai

    2016-01-01

    Neutron-rich light nuclei and their reactions play an important role in the creation of chemical elements. Here, data from a Coulomb dissociation experiment on N-20,N-21 are reported. Relativistic N-20,N-21 ions impinged on a lead target and the Coulomb dissociation cross section was determined in a

  10. Intersite Coulomb interaction and Heisenberg exchange

    NARCIS (Netherlands)

    Eder, R; van den Brink, J.; Sawatzky, G.A

    1996-01-01

    Based on exact diagonalization results for small clusters we discuss the effect of intersite Coulomb repulsion in Mott-Hubbard or charge transfers insulators. Whereas the exchange constant J for direct exchange is enhanced by intersite Coulomb interaction, that for superexchange is suppressed. The

  11. Halo modelling in chameleon theories

    Energy Technology Data Exchange (ETDEWEB)

    Lombriser, Lucas; Koyama, Kazuya [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth, PO1 3FX (United Kingdom); Li, Baojiu, E-mail: lucas.lombriser@port.ac.uk, E-mail: kazuya.koyama@port.ac.uk, E-mail: baojiu.li@durham.ac.uk [Institute for Computational Cosmology, Ogden Centre for Fundamental Physics, Department of Physics, University of Durham, Science Laboratories, South Road, Durham, DH1 3LE (United Kingdom)

    2014-03-01

    We analyse modelling techniques for the large-scale structure formed in scalar-tensor theories of constant Brans-Dicke parameter which match the concordance model background expansion history and produce a chameleon suppression of the gravitational modification in high-density regions. Thereby, we use a mass and environment dependent chameleon spherical collapse model, the Sheth-Tormen halo mass function and linear halo bias, the Navarro-Frenk-White halo density profile, and the halo model. Furthermore, using the spherical collapse model, we extrapolate a chameleon mass-concentration scaling relation from a ΛCDM prescription calibrated to N-body simulations. We also provide constraints on the model parameters to ensure viability on local scales. We test our description of the halo mass function and nonlinear matter power spectrum against the respective observables extracted from large-volume and high-resolution N-body simulations in the limiting case of f(R) gravity, corresponding to a vanishing Brans-Dicke parameter. We find good agreement between the two; the halo model provides a good qualitative description of the shape of the relative enhancement of the f(R) matter power spectrum with respect to ΛCDM caused by the extra attractive gravitational force but fails to recover the correct amplitude. Introducing an effective linear power spectrum in the computation of the two-halo term to account for an underestimation of the chameleon suppression at intermediate scales in our approach, we accurately reproduce the measurements from the N-body simulations.

  12. Nuclear halo of a 177\\,MeV proton beam in water

    CERN Document Server

    Gottschalk, Bernard; Daartz, Juliane; Wagner, Miles S

    2014-01-01

    The dose distribution of a pencil beam in a water tank consists of a core, a halo and an aura. The core consists of primary protons which suffer multiple Coulomb scattering (MCS) and slow down by multiple collisions with atomic electrons (Bethe-Bloch theory). The halo consists of charged secondaries, many of them protons, from elastic interactions with H, elastic and inelastic interactions with O, and nonelastic interactions with O. We show that the halo radius is roughly one third of the beam range. The aura consists of neutral secondaries (neutrons and gamma rays) and the charged particles they set in motion. We have measured the core/halo at 177 MeV using a test beam offset in a water tank. The beam monitor was a plane parallel ionization chamber (IC) and the field IC a dose calibrated Exradin T1. Our dose measurements are absolute. We took depth-dose scans at ten displacements from the beam axis ranging from 0 to 10 cm. The dose spans five orders of magnitude, and the transition from halo to aura is obvio...

  13. Coulomb excitation of radioactive {sup 20,21}Na

    Energy Technology Data Exchange (ETDEWEB)

    Schumaker, M.A.; Svensson, C.E.; Bandyopadhyay, D.; Demand, G.A.; Finlay, P.; Green, K.L.; Grinyer, G.F.; Leach, K.G.; Phillips, A.A.; Wong, J. [Univ. of Guelph, Dept. of Physics, Guelph, Ontario (Canada); Cline, D.; Hayes, A.B.; Whitbeck, A. [Univ. of Rochester, Dept. of Physics and Astronomy, Rochester, NY (United States); Hackman, G.; Pearson, C.; Andreyev, A.; Ball, G.C.; Buchmann, L.; Churchman, R.; Cifarelli, F.; Lee, G.; Maharaj, R.; Morton, A.C.; Padilla-Rodal, E.; Ruiz, C.; Williams, S.J. [TRIUMF, Vancouver, British Columbia (Canada); Wu, C.Y.; Becker, J.A. [Lawrence Livermore National Lab., Livermore, CA (United States); Austin, R.A.E.; Gallant, A.T. [Saint Mary' s Univ., Dept. of Astronomy and Physics, Halifax, Nova Scotia (Canada); Boston, A.J.; Boston, H.C.; Cooper, R.J.; Dimmock, M.R.; Grint, A.N.; Harkness, L.J.; Nelson, L.; Nolan, P.J.; Scraggs, D.P. [Univ. of Liverpool, Dept. of Physics, Liverpool (United Kingdom); Cross, D.S.; Ressler, J.J.; Wan, J.M. [Simon Fraser Univ., Dept. of Chemistry, Burnaby, British Columbia (Canada); Dashdorj, D. [North Carolina State Univ., Dept. of Physics, Raleigh, NC (United States); Drake, T.E. [Univ. of Toronto, Dept. of Physics, Toronto, Ontario (Canada); Garrett, P.E. [Univ. of Guelph, Dept. of Physics, Guelph, Ontario (Canada); TRIUMF, Vancouver, British Columbia (Canada); Kanungo, R. [TRIUMF, Vancouver, British Columbia (Canada); Saint Mary' s Univ., Dept. of Astronomy and Physics, Halifax, Nova Scotia (Canada); Lisetskiy, A.F. [Univ. of Arizona, Dept. of Physics, Tucson, AZ (United States); Martin, J.P. [Universite de Montreal, Montreal, Quebec (Canada); Moisan, F.; Roy, R. [Universite de Laval, Laval, Quebec (Canada); Mythili, S. [TRIUMF, Vancouver, British Columbia (Canada); Univ. of British Columbia, Dept. of Physics and Astronomy, British Columbia (Canada); Newman, O. [TRIUMF, Vancouver, British Columbia (Canada); Univ. of Surrey, Guildford (United Kingdom)] [and others

    2009-12-15

    The low-energy structures of the radioactive nuclei {sup 20,21}Na have been examined using Coulomb excitation at the TRIUMF-ISAC radioactive ion beam facility. Beams of {proportional_to}5 x 10{sup 6} ions/s were accelerated to 1.7 MeV/A and Coulomb excited in a 0.5 mg/cm {sup 2} {sup nat}Ti target. Two TIGRESS HPGe clover detectors perpendicular to the beam axis were used for {gamma} -ray detection, while scattered nuclei were observed by the Si detector BAMBINO. For {sup 21}Na, Coulomb excitation from the 3/2{sup +} ground state to the first excited 5/2{sup +} state was observed, while for {sup 20}Na, Coulomb excitation was observed from the 2{sup +} ground state to the first excited 3{sup +} and 4{sup +} states. For both beams, B ({lambda} L) values were determined using the 2{sup +} {yields} 0{sup +} de-excitation in {sup 48}Ti as a reference. The resulting B(E2) arrow up and down value for {sup 21}Na is 137{+-}9 e{sup 2}fm{sup 4}, while the resulting B({lambda} L) arrow up and down values for {sup 20}Na are 55{+-}6 e{sup 2}fm{sup 4} for the 3{sup +} {yields} 2{sup +}, 35.7{+-}5.7 e{sup 2} fm{sup 4} for the 4{sup +} {yields} 2{sup +}, and 0.154{+-}0.030 {mu}{sub N}{sup 2} for the 4{sup +}{yields}3{sup +} transitions. This analysis significantly improves the measurement of the {sup 21}Na B(E2) value, and provides the first experimental determination of B({lambda} L) values for the proton dripline nucleus {sup 20}Na. (orig.)

  14. Galaxy models with live halos

    CERN Document Server

    Sellwood, J A

    1980-01-01

    Computer models of galaxies are described, in which the disc stars and the halo stars are both treated fully self consistently. These were used to test the validity of the 'rigid halo' approximation usually employed when studying the instabilities of a disc of stars. The models show that very little interaction between the populations occurs while the disc remains nearly axisymmetric, but a strong bar is able to transfer angular momentum from the disc to the halo. The global bar stability of the disc is not greatly affected by the interaction between the two stellar populations, and it is found that a large fraction of the total galactic mass is still required in the spheroidal component if bar formation is to be prevented. (36 refs).

  15. Halo-free Phase Contrast Microscopy

    National Research Council Canada - National Science Library

    Tan H Nguyen; Mikhail Kandel; Haadi M Shakir; Catherine Best-popescu; Jyothi Arikkath; Minh N Do; Gabriel Popescu

    2017-01-01

    We present a new approach for retrieving halo-free phase contrast microscopy (hfPC) images by upgrading the conventional PC microscope with an external interferometric module, which generates sufficient data for reversing the halo artifact...

  16. Coulomb-Driven Relativistic Electron Beam Compression

    Science.gov (United States)

    Lu, Chao; Jiang, Tao; Liu, Shengguang; Wang, Rui; Zhao, Lingrong; Zhu, Pengfei; Xiang, Dao; Zhang, Jie

    2018-01-01

    Coulomb interaction between charged particles is a well-known phenomenon in many areas of research. In general, the Coulomb repulsion force broadens the pulse width of an electron bunch and limits the temporal resolution of many scientific facilities such as ultrafast electron diffraction and x-ray free-electron lasers. Here we demonstrate a scheme that actually makes use of the Coulomb force to compress a relativistic electron beam. Furthermore, we show that the Coulomb-driven bunch compression process does not introduce additional timing jitter, which is in sharp contrast to the conventional radio-frequency buncher technique. Our work not only leads to enhanced temporal resolution in electron-beam-based ultrafast instruments that may provide new opportunities in probing material systems far from equilibrium, but also opens a promising direction for advanced beam manipulation through self-field interactions.

  17. Coulomb flux tube on the lattice

    Science.gov (United States)

    Chung, Kristian; Greensite, Jeff

    2017-08-01

    In Coulomb gauge a longitudinal electric field is generated instantaneously with the creation of a static quark-antiquark pair. The field due to the quarks is a sum of two contributions, one from the quark and one from the antiquark, and there is no obvious reason that this sum should fall off exponentially with distance from the sources. We show here, however, from numerical simulations in pure SU(2) lattice gauge theory, that the color Coulomb electric field does in fact fall off exponentially with transverse distance away from a line joining static quark-antiquark sources, indicating the existence of a color Coulomb flux tube, and the absence of long-range Coulomb dipole fields.

  18. Coulomb's law in maximally symmetric spaces

    OpenAIRE

    Vakili, B.; Gorji, M. A.

    2012-01-01

    We study the modifications to the Coulomb's law when the background geometry is a $n$-dimensional maximally symmetric space, by using of the $n$-dimensional version of the Gauss' theorem. It is shown that some extra terms are added to the usual expression of the Coulomb electric field due to the curvature of the background space. Also, we consider the problem of existence of magnetic monopoles in such spaces and present analytical expressions for the corresponding magnetic fields and vector p...

  19. Coulomb correction to elastic. alpha. -. alpha. scattering

    Energy Technology Data Exchange (ETDEWEB)

    Bera, P.K.; Jana, A.K.; Haque, N.; Talukdar, B. (Department of Physics, Visva-Bharati University, Santiniketan-731235, West Bengal, India (IN))

    1991-02-01

    The elastic {alpha}-{alpha} scattering is treated within the framework of a generalized phase-function method (GPFM). This generalization consists in absorbing the effect of Coulomb interaction in the comparison functions for developing the phase equation. Based on values of scattering phase shifts computed by the present method, it is concluded that the GPFM provides an uncomplicated approach to rigorous Coulomb correction in the {alpha}-{alpha} scattering.

  20. Cavity QED experiments with ion Coulomb crystals

    DEFF Research Database (Denmark)

    Herskind, Peter Fønss; Dantan, Aurélien; Marler, Joan

    2009-01-01

    Cavity QED experimental results demonstrating collective strong coupling between ensembles of atomic ions cooled into Coulomb crystals and optical cavity fields have been achieved. Collective Zeeman coherence times of milliseconds have furthermore been obtained.......Cavity QED experimental results demonstrating collective strong coupling between ensembles of atomic ions cooled into Coulomb crystals and optical cavity fields have been achieved. Collective Zeeman coherence times of milliseconds have furthermore been obtained....

  1. A comparison of Coulomb and pseudo-Coulomb friction implementations: Application to the table contact phase of gymnastics vaulting.

    Science.gov (United States)

    Jackson, M I; Hiley, M J; Yeadon, M R

    2011-10-13

    In the table contact phase of gymnastics vaulting both dynamic and static friction act. The purpose of this study was to develop a method of simulating Coulomb friction that incorporated both dynamic and static phases and to compare the results with those obtained using a pseudo-Coulomb implementation of friction when applied to the table contact phase of gymnastics vaulting. Kinematic data were obtained from an elite level gymnast performing handspring straight somersault vaults using a Vicon optoelectronic motion capture system. An angle-driven computer model of vaulting that simulated the interaction between a seven segment gymnast and a single segment vaulting table during the table contact phase of the vault was developed. Both dynamic and static friction were incorporated within the model by switching between two implementations of the tangential frictional force. Two vaulting trials were used to determine the model parameters using a genetic algorithm to match simulations to recorded performances. A third independent trial was used to evaluate the model and close agreement was found between the simulation and the recorded performance with an overall difference of 13.5%. The two-state simulation model was found to be capable of replicating performance at take-off and also of replicating key contact phase features such as the normal and tangential motion of the hands. The results of the two-state model were compared to those using a pseudo-Coulomb friction implementation within the simulation model. The two-state model achieved similar overall results to those of the pseudo-Coulomb model but obtained solutions more rapidly. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. About the Absence of Exotics and the Coulomb Branch Formula

    Science.gov (United States)

    Del Zotto, Michele; Sen, Ashoke

    2017-11-01

    The absence of exotics is a conjectural property of the spectrum of BPS states of four-dimensional {N=2} supersymmetric QFT's. In this note we revisit the precise statement of this conjecture, and develop a general strategy that, if applicable, entails the absence of exotic BPS states. Our method is based on the Coulomb branch formula and on quiver mutations. In particular, we obtain the absence of exotic BPS states for all pure SYM theories with simple, simply-laced gauge group G, and, as a corollary, of infinitely many other lagrangian {N=2} theories.

  3. HaloTag technology: a versatile platform for biomedical applications.

    Science.gov (United States)

    England, Christopher G; Luo, Haiming; Cai, Weibo

    2015-06-17

    Exploration of protein function and interaction is critical for discovering links among genomics, proteomics, and disease state; yet, the immense complexity of proteomics found in biological systems currently limits our investigational capacity. Although affinity and autofluorescent tags are widely employed for protein analysis, these methods have been met with limited success because they lack specificity and require multiple fusion tags and genetic constructs. As an alternative approach, the innovative HaloTag protein fusion platform allows protein function and interaction to be comprehensively analyzed using a single genetic construct with multiple capabilities. This is accomplished using a simplified process, in which a variable HaloTag ligand binds rapidly to the HaloTag protein (usually linked to the protein of interest) with high affinity and specificity. In this review, we examine all current applications of the HaloTag technology platform for biomedical applications, such as the study of protein isolation and purification, protein function, protein-protein and protein-DNA interactions, biological assays, in vitro cellular imaging, and in vivo molecular imaging. In addition, novel uses of the HaloTag platform are briefly discussed along with potential future applications.

  4. Visibility of halos and rainbows.

    Science.gov (United States)

    Gedzelman, S D

    1980-09-15

    A theory for the visibility of halos and rainbows is presented. The light reaching the observer's eye from the direction of the halo or rainbow is assumed to consist of two parts: (1) a beam of singly scattered sunlight (or moonlight) from a cloud of ice crystals or a rainswath, which, in turn, has suffered depletion by scattering or absorption in its passage to the observer, and (2) the general background brightness. The model is able to account for several long-known qualitative observations concerning halos, namely, that the brightest halos are produced by optically thin cirrostratus clouds (i.e., for which the cloud optical depth tau(c), rainbow the brightness of the beam increases monotonically with the optical depth tau(R) of the sunlit part of the rainswath, but the increase is quite small for tau(R) >/=1. On the other hand, the brightness of the background increases more rapidly with tau(R) for tau(R)> 1 so that the rainbow appears most easily visible for tau(R) less, similar1. This implies that the most easily visible rainbows are produced by light or moderate showers rather than heavy downpours. Finally, suggestions are made for applying the theory to other atmospheric optical phenomena, such as coronas and glories.

  5. Halo Mitigation Using Nonlinear Lattices

    CERN Document Server

    Sonnad, Kiran G

    2005-01-01

    This work shows that halos in beams with space charge effects can be controlled by combining nonlinear focusing and collimation. The study relies on Particle-in-Cell (PIC) simulations for a one dimensional, continuous focusing model. The PIC simulation results show that nonlinear focusing leads to damping of the beam oscillations thereby reducing the mismatch. It is well established that reduced mismatch leads to reduced halo formation. However, the nonlinear damping is accompanied by emittance growth causing the beam to spread in phase space. As a result, inducing nonlinear damping alone cannot help mitigate the halo. To compensate for this expansion in phase space, the beam is collimated in the simulation and further evolution of the beam shows that the halo is not regenerated. The focusing model used in the PIC is analysed using the Lie Transform perturbation theory showing that by averaging over a lattice period, one can reuduce the focusing force to a form that is identical to that used in the PIC simula...

  6. Direct photoassociation of halo molecules in ultracold 86 Sr

    Science.gov (United States)

    Aman, J. A.; Hill, Joshua; Killian, T. C.

    2017-04-01

    We investigate the creation of 1S0 +1S0 halo molecules in strontium 86 through direct photoassociation in an optical dipole trap. We drive two photon Raman transitions near-resonance with a molecular level of the 1S0 +3P1 interatomic potential as the intermediate state. This provides large Frank-Condon factors and allows us to observe resonances for the creation of halo molecules through higher order Raman processes. The halo molecule is bound by EB 85 kHz at low excitation-laser intensity, but experiments show large AC Stark shifts of the molecular binding energy. These conditions suggest that STIRAP should be very effective for improving molecular conversion efficiency. Further experiments in a 3D lattice will explore molecular lifetimes and collision rates. Travel support provided by Shell Corporation.

  7. Clustering dark energy and halo abundances

    Science.gov (United States)

    Batista, Ronaldo C.; Marra, Valerio

    2017-11-01

    Within the standard paradigm, dark energy is taken as a homogeneous fluid that drives the accelerated expansion of the universe and does not contribute to the mass of collapsed objects such as galaxies and galaxy clusters. The abundance of galaxy clusters—measured through a variety of channels—has been extensively used to constrain the normalization of the power spectrum: it is an important probe as it allows us to test if the standard ΛCDM model can indeed accurately describe the evolution of structures across billions of years. It is then quite significant that the Planck satellite has detected, via the Sunyaev-Zel'dovich effect, less clusters than expected according to the primary CMB anisotropies. One of the simplest generalizations that could reconcile these observations is to consider models in which dark energy is allowed to cluster, i.e., allowing its sound speed to vary. In this case, however, the standard methods to compute the abundance of galaxy clusters need to be adapted to account for the contributions of dark energy. In particular, we examine the case of clustering dark energy—a dark energy fluid with negligible sound speed—with a redshift-dependent equation of state. We carefully study how the halo mass function is modified in this scenario, highlighting corrections that have not been considered before in the literature. We address modifications in the growth function, collapse threshold, virialization densities and also changes in the comoving scale of collapse and mass function normalization. Our results show that clustering dark energy can impact halo abundances at the level of 10%-30%, depending on the halo mass, and that cluster counts are modified by about 30% at a redshift of unity.

  8. Accelerated Monte Carlo Methods for Coulomb Collisions

    Science.gov (United States)

    Rosin, Mark; Ricketson, Lee; Dimits, Andris; Caflisch, Russel; Cohen, Bruce

    2014-03-01

    We present a new highly efficient multi-level Monte Carlo (MLMC) simulation algorithm for Coulomb collisions in a plasma. The scheme, initially developed and used successfully for applications in financial mathematics, is applied here to kinetic plasmas for the first time. The method is based on a Langevin treatment of the Landau-Fokker-Planck equation and has a rich history derived from the works of Einstein and Chandrasekhar. The MLMC scheme successfully reduces the computational cost of achieving an RMS error ɛ in the numerical solution to collisional plasma problems from (ɛ-3) - for the standard state-of-the-art Langevin and binary collision algorithms - to a theoretically optimal (ɛ-2) scaling, when used in conjunction with an underlying Milstein discretization to the Langevin equation. In the test case presented here, the method accelerates simulations by factors of up to 100. We summarize the scheme, present some tricks for improving its efficiency yet further, and discuss the method's range of applicability. Work performed for US DOE by LLNL under contract DE-AC52- 07NA27344 and by UCLA under grant DE-FG02-05ER25710.

  9. Coulomb excitation of {sup 48}K

    Energy Technology Data Exchange (ETDEWEB)

    Siebeck, Burkhard; Blazhev, Andrey; Geibel, Kerstin; Hess, Herbert; Reiter, Peter; Seidlitz, Michael; Schneiders, David; Steinbach, Tim; Warr, Nigel [IKP, Universitaet zu Koeln (Germany); Bauer, Christopher [IKP, TU Darmstadt (Germany); Witte, Hilde de [KU Leuven (Belgium); Klintefjord, Malin [University of Oslo (Norway); Pakarinen, Janne [University of Jyvaeskylae (Finland); Rapisarda, Elisa [KU Leuven (Belgium); CERN, Genf (Switzerland); Scheck, Marcus [University of the West of Scotland, Paisley (United Kingdom); Voulot, Didier; Wenander, Frederik [CERN, Genf (Switzerland)

    2016-07-01

    Potassium isotopes in the direct vicinity of doubly-magic nuclei are of great interest and subject of recent shell model calculations. These show that the ground states of most K isotopes are dominated by a π0p0h configuration, while {sup 47}K and {sup 49}K have a major π2p2h contribution. However, the situation is not clear for the odd-odd isotope {sup 48}K, which shows a mixture between 0p0h and 2p2h. In order to study the coupling between the νp{sub 3/2}-shell and the πs{sub 1/2}-, πd{sub 3/2}-shells, transition matrix elements are deduced from a Coulomb excitation experiment performed with MINIBALL at REX-ISOLDE. A {sup 104}Pd target was irradiated by a radioactive {sup 48}K beam. γ rays of both target and projectile deexcitation have been observed. Those yields, together with available spectroscopic data, allow the detemination of transition matrix elements with GOSIA2. The new findings are compared to shell model calculations.

  10. Effective Kratzer and Coulomb potentials as limit cases of a multiparameter exponential-type potential

    Energy Technology Data Exchange (ETDEWEB)

    García-Ravelo, J., E-mail: g.ravelo@hotmail.com [Departamento de Física, Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Edificio 9, Unidad Profesional Adolfo López Mateos, México D.F., 07738 (Mexico); Menéndez, A.; García-Martínez, J. [Departamento de Física, Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Edificio 9, Unidad Profesional Adolfo López Mateos, México D.F., 07738 (Mexico); Schulze-Halberg, A. [Department of Mathematics and Actuarial Science and Department of Physics, Indiana University Northwest, 3400 Broadway, Gary, IN 46408 (United States)

    2014-06-13

    We show that the effective Kratzer and Coulomb potentials can be obtained by taking particular limits of a multiparameter exponential potential that was studied recently. Moreover, we demonstrate that the bound state solutions of the exponential potential reduce correctly to their well-known counterparts associated with the Kratzer and Coulomb potentials. As a byproduct, we obtain a new limit relation for the hypergeometric function. - Highlights: • Kratzer and Coulomb potentials are limit cases of an exponential-type potential. • From exact s-waves, approximate solutions for l-waves are obtained. • l-waves of the potential tend to the solutions of the Kratzer and Coulomb potentials. • A non-evident identity between hypergeometric functions is demonstrated.

  11. Three-body halo nuclei in an effective theory framework

    Energy Technology Data Exchange (ETDEWEB)

    Canham, David L.

    2009-05-20

    The universal properties and structure of halo nuclei composed of two neutrons (2n) and a core are investigated within an effective quantum mechanics framework. We construct an effective interaction potential that exploits the separation of scales in halo nuclei and treat the nucleus as an effective three-body system, which to leading order is described by the large S-wave scattering lengths in the underlying two-body subsystems. The uncertainty from higher orders in the expansion is quantified through theoretical error bands. First, we investigate the possibility to observe excited Efimov states in 2n halo nuclei. Based on the experimental data, {sup 20}C is the only halo nucleus candidate to possibly have an Efimov excited state, with an energy less than 7 keV below the scattering threshold. Second, we study the structure of {sup 20}C and other 2n halo nuclei. In particular, we calculate their matter density form factors, radii, and two-neutron opening angles. We then make a systematic improvement upon these calculations by extending the effective potential to the next-to-leading order. To this order, we require an additional two-body parameter, which we tune to the effective range of the interaction. In addition to range corrections to the 2n halo nuclei results, we show corrections to the Efimov effect in the three-boson system. Furthermore, we explore universality in the linear range corrections to the Efimov spectrum. Finally, we study the scattering of D{sup 0} and D{sup *0} mesons and their antiparticles off the X(3872) in an effective field theory for short-range interactions. We present results for the S-wave scattering amplitude, total interaction cross section and S-wave scattering length. (orig.)

  12. Reaction study of {sup 11}Li on {sup 208}Pb target at energies close the Coulomb barrier

    Energy Technology Data Exchange (ETDEWEB)

    Cubero, Mario; Jose Borge, Maria; Tengblad, Olof; Alcorta, Martin; Madurga, Miguel [Instituto de Estructura de la Materia, Madrid (Spain); Camacho, Joaquin [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad de Sevilla, Sevilla (Spain); Martel, Ismael [Departamento de Fisica Aplicada, Universidad de Huelva, Huelva (Spain); Walden, Pat [TRI-University Meson Facilities, University of British Columbia, Vancouver (Canada)

    2009-07-01

    In the past 20 years there has been interest among the nuclear physics community to study the exotic properties observed in halo nuclei such as {sup 11}Li. Recent theoretical calculations predicted a deviation of the elastic cross section from the standard Rutherford formula, expected due to the dipole structure formed by the {sup 9}Li core and the halo neutrons when passing near the strong Coulomb produced by the Pb target. To explore this effect, the scattering and breakup reactions of the two-neutron halo nucleus {sup 11}Li were measured at ISACII-TRIUMF. Data was obtained at energies around, below and above the Coulomb barrier, 2.7 MeV/u. We used a set of four telescopes with PAD silicon detectors behind in order to clearly identified all fragments in the full detection angles covering 10-140 degree.In this contribution we present the analysis of the {sup 9}Li scattering data that it is needed to understand the effect on the {sup 11}Li cross sections. We also present preliminary results of the {sup 11}Li scattering.

  13. The mass function of unprocessed dark matter haloes and merger tree branching rates

    Science.gov (United States)

    Benson, Andrew J.

    2017-05-01

    A common approach in semi-analytic modelling of galaxy formation is to construct Monte Carlo realizations of merger histories of dark matter haloes whose masses are sampled from a halo mass function. Both the mass function itself and the merger rates used to construct merging histories are calibrated to N-body simulations. Typically, 'backsplash' haloes (those which were once subhaloes within a larger halo, but which have since moved outside of the halo) are counted in both the halo mass functions and in the merger rates (or, equivalently, progenitor mass functions). This leads to a double counting of mass in Monte Carlo merger histories, which will bias results relative to N-body results. We measure halo mass functions and merger rates with this double counting removed in a large, cosmological N-body simulation with cosmological parameters consistent with current constraints. Furthermore, we account for the inherently noisy nature of N-body halo mass estimates when fitting functions to N-body data, and show that ignoring these errors leads to a significant systematic bias given the precision statistics available from state-of-the-art N-body cosmological simulations.

  14. Revealing the Coulomb interaction strength in a cuprate superconductor

    Science.gov (United States)

    Yang, S.-L.; Sobota, J. A.; He, Y.; Wang, Y.; Leuenberger, D.; Soifer, H.; Hashimoto, M.; Lu, D. H.; Eisaki, H.; Moritz, B.; Devereaux, T. P.; Kirchmann, P. S.; Shen, Z.-X.

    2017-12-01

    We study optimally doped Bi2Sr2Ca0.92Y0.08Cu2O8 +δ (Bi2212) using angle-resolved two-photon photoemission spectroscopy. Three spectral features are resolved near 1.5, 2.7, and 3.6 eV above the Fermi level. By tuning the photon energy, we determine that the 2.7-eV feature arises predominantly from unoccupied states. The 1.5- and 3.6-eV features reflect unoccupied states whose spectral intensities are strongly modulated by the corresponding occupied states. These unoccupied states are consistent with the prediction from a cluster perturbation theory based on the single-band Hubbard model. Through this comparison, a Coulomb interaction strength U of 2.7 eV is extracted. Our study complements equilibrium photoemission spectroscopy and provides a direct spectroscopic measurement of the unoccupied states in cuprates. The determined Coulomb U indicates that the charge-transfer gap of optimally doped Bi2212 is 1.1 eV.

  15. Coulomb-gas approach for boundary conformal field theory

    Energy Technology Data Exchange (ETDEWEB)

    Kawai, Shinsuke E-mail: kawai@thphys.ox.ac.uk

    2002-05-20

    We present a construction of boundary states based on the Coulomb-gas formalism of Dotsenko and Fateev. It is shown that Neumann-like coherent states on the charged bosonic Fock space provide a set of boundary states with consistent modular properties. Such coherent states are characterised by the boundary charges, which are related to the number of bulk screening operators through the charge neutrality condition. We illustrate this using the Ising model as an example, and show that all of its known consistent boundary states are reproduced in our formalism. This method applies to c<1 minimal conformal theories and provides an unified computational tool for studying boundary states of such theories.

  16. Galaxy and Mass Assembly (GAMA): halo formation times and halo assembly bias on the cosmic web

    Science.gov (United States)

    Tojeiro, Rita; Eardley, Elizabeth; Peacock, John A.; Norberg, Peder; Alpaslan, Mehmet; Driver, Simon P.; Henriques, Bruno; Hopkins, Andrew M.; Kafle, Prajwal R.; Robotham, Aaron S. G.; Thomas, Peter; Tonini, Chiara; Wild, Vivienne

    2017-09-01

    We present evidence for halo assembly bias as a function of geometric environment (GE). By classifying Galaxy and Mass Assembly (GAMA) galaxy groups as residing in voids, sheets, filaments or knots using a tidal tensor method, we find that low-mass haloes that reside in knots are older than haloes of the same mass that reside in voids. This result provides direct support to theories that link strong halo tidal interactions with halo assembly times. The trend with GE is reversed at large halo mass, with haloes in knots being younger than haloes of the same mass in voids. We find a clear signal of halo downsizing - more massive haloes host galaxies that assembled their stars earlier. This overall trend holds independently of GE. We support our analysis with an in-depth exploration of the L-Galaxies semi-analytic model, used here to correlate several galaxy properties with three different definitions of halo formation time. We find a complex relationship between halo formation time and galaxy properties, with significant scatter. We confirm that stellar mass to halo mass ratio, specific star formation rate (SFR) and mass-weighed age are reasonable proxies of halo formation time, especially at low halo masses. Instantaneous SFR is a poor indicator at all halo masses. Using the same semi-analytic model, we create mock spectral observations using complex star formation and chemical enrichment histories, which approximately mimic GAMA's typical signal-to-noise ratio and wavelength range. We use these mocks to assert how well potential proxies of halo formation time may be recovered from GAMA-like spectroscopic data.

  17. A Coulomb-Like Off-Shell T-Matrix with the Correct Coulomb Phase Shift

    Science.gov (United States)

    Oryu, Shinsho; Watanabe, Takashi; Hiratsuka, Yasuhisa; Togawa, Yoshio

    2017-03-01

    We confirm the reliability of the well-known Coulomb renormalization method (CRM). It is found that the CRM is only available for a very-long-range screened Coulomb potential (SCP). However, such an SCP calculation in momentum space is considerably difficult because of the cancelation of significant digits. In contrast to the CRM, we propose a new method by using an on-shell equivalent SCP and the rest term. The two-potential theory with r-space is introduced, which defines fully the off-shell Coulomb amplitude.

  18. Multiple Coulomb excitation experiment of sup 6 sup 6 Zn

    CERN Document Server

    Koizumi, M; Oshima, M; Osa, A; Kimura, A; Hatsukawa, Y; Shizuma, T; Hayakawa, T; Matsuda, M; Katakura, J; Seki, A; Czosnyka, T; Sugawara, M; Morikawa, T; Kusakari, H

    2003-01-01

    A Coulomb excitation experiment was carried out with a sup 6 sup 6 Zn beam bombarding a sup n sup a sup t Pb target. Four E2 matrix elements and the quadrupole moment of the 2 sub 1 sup + state were derived with the least-squares search code GOSIA. According to the B(E2) values, the ground band can be interpreted as a quasirotational band. It was found that the 2 sub 1 sup + level has a positive quadrupole moment, which may be interpreted as a soft triaxial deformation.

  19. Multiple Coulomb excitation experiment of {sup 66}Zn

    Energy Technology Data Exchange (ETDEWEB)

    Koizumi, M.; Toh, Y.; Oshima, M.; Osa, A.; Kimura, A.; Hatsukawa, Y.; Shizuma, T.; Hayakawa, T.; Matsuda, M.; Katakura, J. [Japan Atomic Energy Research Institute, Tokai, 319-1195, Ibaraki (Japan); Seki, A. [Japan Atomic Energy Research Institute, Tokai, 319-1195, Ibaraki (Japan); Graduate School of Science and Engineering, Ibaraki University, Bunkyo 2-1-1, Mito, 310-8512, Ibaraki (Japan); Czosnyka, T. [Heavy Ion Laboratory, Warsaw University, Pasteura 5a, 02-093, Warszawa (Poland); Sugawara, M. [Chiba Institute of Technology, Narashino, 275-0023, Chiba (Japan); Morikawa, T. [Kyushu University, Hakozaki, 812-8581, Fukuoka (Japan); Kusakari, H. [Chiba University, Inage-ku, 263-8522, Chiba (Japan)

    2003-09-01

    A Coulomb excitation experiment was carried out with a {sup 66}Zn beam bombarding a {sup nat}Pb target. Four E2 matrix elements and the quadrupole moment of the 2{sub 1}{sup +} state were derived with the least-squares search code GOSIA. According to the B(E2) values, the ground band can be interpreted as a quasirotational band. It was found that the 2{sub 1}{sup +} level has a positive quadrupole moment, which may be interpreted as a soft triaxial deformation. (orig.)

  20. Phonon-mediated versus coulombic backaction in quantum dot circuits.

    Science.gov (United States)

    Harbusch, D; Taubert, D; Tranitz, H P; Wegscheider, W; Ludwig, S

    2010-05-14

    Quantum point contacts (QPCs) are commonly employed to detect capacitively the charge state of coupled quantum dots (QDs). An indirect backaction of a biased QPC onto a double QD laterally defined in a GaAs/AlGaAs heterostructure is observed. Energy is emitted by nonequilibrium charge carriers in the leads of the biased QPC. Part of this energy is absorbed by the double QD where it causes charge fluctuations that can be observed under certain conditions in its stability diagram. By investigating the spectrum of the absorbed energy, we find that both acoustic phonons and Coulomb interaction can be involved in the backaction, depending on the geometry and coupling constants.

  1. Unbound particles in dark matter halos

    Energy Technology Data Exchange (ETDEWEB)

    Behroozi, Peter S.; Loeb, Abraham; Wechsler, Risa H.

    2013-06-13

    We investigate unbound dark matter particles in halos by tracing particle trajectories in a simulation run to the far future (a = 100). We find that the traditional sum of kinetic and potential energies is a very poor predictor of which dark matter particles will eventually become unbound from halos. We also study the mass fraction of unbound particles, which increases strongly towards the edges of halos, and decreases significantly at higher redshifts. We discuss implications for dark matter detection experiments, precision calibrations of the halo mass function, the use of baryon fractions to constrain dark energy, and searches for intergalactic supernovae.

  2. Halo scale predictions of symmetron modified gravity

    Energy Technology Data Exchange (ETDEWEB)

    Clampitt, Joseph; Jain, Bhuvnesh; Khoury, Justin, E-mail: clampitt@sas.upenn.edu, E-mail: bjain@physics.upenn.edu, E-mail: jkhoury@sas.upenn.edu [Center for Particle Cosmology and Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd St., Philadelphia, PA 19104 (United States)

    2012-01-01

    We offer predictions of symmetron modified gravity in the neighborhood of realistic dark matter halos. The predictions for the fifth force are obtained by solving the nonlinear symmetron equation of motion in the spherical NFW approximation. In addition, we compare the three major known screening mechanisms: Vainshtein, Chameleon, and Symmetron around such dark matter halos, emphasizing the significant differences between them and highlighting observational tests which exploit these differences. Finally, we demonstrate the host halo environmental screening effect (''blanket screening'') on smaller satellite halos by solving for the modified forces around a density profile which is the sum of satellite and approximate host components.

  3. Coulomb drag in the mesoscopic regime

    DEFF Research Database (Denmark)

    Mortensen, N.A.; Flensberg, Karsten; Jauho, Antti-Pekka

    2002-01-01

    We present a theory for Coulomb drag between two mesoscopic systems which expresses the drag in terms of scattering matrices and wave functions. The formalism can be applied to both ballistic and disordered systems and the consequences can be studied either by numerical simulations or analytic...

  4. Local simulation algorithms for Coulombic interactions

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 64; Issue 6. Local simulation algorithms for Coulombic interactions. L Leverel F Alet J Rottler A C Maggs. Invited Talks:- Topic 7. Soft condensed matter (colloids, polymers, liquid crystals, microemulsions, foams, membranes, etc.) Volume 64 Issue 6 June 2005 pp ...

  5. Coulomb drag in coherent mesoscopic systems

    DEFF Research Database (Denmark)

    Mortensen, Asger; Flensberg, Karsten; Jauho, Antti-Pekka

    2001-01-01

    We present a theory for Coulomb drag between two mesoscopic systems. Our formalism expresses the drag in terms of scattering matrices and wave functions, and its range of validity covers both ballistic and disordered systems. The consequences can be worked out either by analytic means...

  6. Coulomb drag in the mesoscopic regime

    DEFF Research Database (Denmark)

    Mortensen, N. Asger; Flensberg, Karsten; Jauho, Antti-Pekka

    2002-01-01

    We present a theory for Coulomb drug between two mesoscopic systems which expresses the drag in terms of scattering matrices and wave functions. The formalism can be applied to both ballistic and disordered systems and the consequences can be studied either by numerical simulations or analytic...

  7. Labelling HaloTag Fusion Proteins with HaloTag Ligand in Living Cells.

    Science.gov (United States)

    Duc, Huy Nguyen; Ren, Xiaojun

    2017-09-05

    HaloTag has been widely used to label proteins in vitro and in vivo (Los et al., 2008). In this protocol, we describe labelling HaloTag-Cbx fusion proteins by HaloTag ligands for live-cell single-molecule imaging (Zhen et al., 2016).

  8. Labelling HaloTag Fusion Proteins with HaloTag Ligand in Living Cells

    OpenAIRE

    Duc, Huy Nguyen; Ren, Xiaojun

    2017-01-01

    HaloTag has been widely used to label proteins in vitro and in vivo (Los et al., 2008). In this protocol, we describe labelling HaloTag-Cbx fusion proteins by HaloTag ligands for live-cell single-molecule imaging (Zhen et al., 2016).

  9. Dynamical Coulomb blockade of the nonlocal conductance in normalmetal/superconductor hybrid structures

    Energy Technology Data Exchange (ETDEWEB)

    Kolenda, Stefan; Wolf, Michael J.; Beckmann, Detlef [Institut fuer Nanotechnologie, KIT, 76021 Karlsruhe (Germany)

    2013-07-01

    In normalmetal/superconductor hybrid structures nonlocal conductance is determined by crossed Andreev reflection (CAR) and elastic cotunneling (EC). This was investigated recently both experimentally and theoretically. Dynamical Coulomb blockade of EC and CAR was predicted theoretically. Here we report on experimental investigations of these effects. We found signatures of dynamical Coulomb blockade in local and nonlocal conductance in the normal state. In the superconducting state, we find s-shaped nonlocal differential conductance curves as a function of bias applied on both contacts. These curves were observed for bias voltages both below and above the gap. We compare our results to theory.

  10. Interatomic Coulombic decay cascades in multiply excited neon clusters

    Science.gov (United States)

    Nagaya, K.; Iablonskyi, D.; Golubev, N. V.; Matsunami, K.; Fukuzawa, H.; Motomura, K.; Nishiyama, T.; Sakai, T.; Tachibana, T.; Mondal, S.; Wada, S.; Prince, K. C.; Callegari, C.; Miron, C.; Saito, N.; Yabashi, M.; Demekhin, Ph. V.; Cederbaum, L. S.; Kuleff, A. I.; Yao, M.; Ueda, K.

    2016-01-01

    In high-intensity laser light, matter can be ionized by direct multiphoton absorption even at photon energies below the ionization threshold. However on tuning the laser to the lowest resonant transition, the system becomes multiply excited, and more efficient, indirect ionization pathways become operative. These mechanisms are known as interatomic Coulombic decay (ICD), where one of the species de-excites to its ground state, transferring its energy to ionize another excited species. Here we show that on tuning to a higher resonant transition, a previously unknown type of interatomic Coulombic decay, intra-Rydberg ICD occurs. In it, de-excitation of an atom to a close-lying Rydberg state leads to electron emission from another neighbouring Rydberg atom. Moreover, systems multiply excited to higher Rydberg states will decay by a cascade of such processes, producing even more ions. The intra-Rydberg ICD and cascades are expected to be ubiquitous in weakly-bound systems exposed to high-intensity resonant radiation. PMID:27917867

  11. UARS Halogen Occultation Experiment (HALOE) Level 2 V001

    Data.gov (United States)

    National Aeronautics and Space Administration — The HALOE home page on the WWW is http://haloe.gats-inc.com/home/index.php The Halogen Occultation Experiment (HALOE) on NASA's Upper Atmosphere Research Satellite...

  12. Multiple Coulomb excitation of a {sup 76}Ge beam

    Energy Technology Data Exchange (ETDEWEB)

    Toh, Y. [Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan)]. E-mail: toh@jball4.tokai.jaeri.go.jp; Oshima, M.; Hayakawa, T.; Osa, A.; Koizumi, M.; Hatsukawa, Y.; Katakura, J.; Shinohara, N.; Matsuda, M. [Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan); Czosnyka, T. [Heavy Ion Laboratory, Warsaw University, Warsaw (Poland); Kusakari, H. [Chiba University, Inage-ku, Chiba (Japan); Sugawara, M. [Chiba Institute of Technology, Narashino, Chiba (Japan)

    2001-07-01

    A multiple Coulomb excitation experiment on a {sup 76}Ge beam was performed using a {sup nat}Pb target. The relative excitation probabilities were measured as a function of the projectile scattering-angle. 15 E2 matrix elements, including diagonal ones, for seven low-lying states were determined using the least-squares search code GOSIA. The expectation values of centroid for the magnitude of the intrinsic frame E2 properties show that the ground state is weakly deformed, while the shape of the 0{sub 2}{sup +} level is almost spherical. The 2{sub 2}{sup +} state is found to be a band head of the {gamma} vibrational band and the 4{sub 2}{sup +} state is a member of this band. (author)

  13. Multiple Coulomb excitation experiment of {sup 68}Zn

    Energy Technology Data Exchange (ETDEWEB)

    Koizumi, M. E-mail: koizumi@jball4.tokai.jaeri.go.jp; Seki, A.; Toh, Y.; Osa, A.; Utsuno, Y.; Kimura, A.; Oshima, M.; Hayakawa, T.; Hatsukawa, Y.; Katakura, J.; Matsuda, M.; Shizuma, T.; Czosnyka, T.; Sugawara, M.; Morikawa, T.; Kusakari, H

    2004-01-12

    Coulomb excitation experiment was carried out with a {sup 68}Zn beam bombarding a {sup nat}Pb target. Two E2 matrix elements and the quadrupole moment of the 2{sub 1}{sup +} state were newly derived with the least-squares search code GOSIA. The potential energy surface (PES) was calculated with the Nilsson-Strutinsky model, showing two shallow minima: the first minimum does not contain the 1g{sub 9/2} orbit below the Fermi surface, while the second minimum does. The ground state band and the intruder band seem to be constructed on the first and the second minimum, respectively. As for the ground state band, the asymmetric rotor model and the IBM in O(6) limit reproduced the experimental values rather well. The shallow PES may suggest instability of the shape. The ground state band structure may be explained assuming a soft triaxial deformation.

  14. Studying dark matter haloes with weak lensing

    NARCIS (Netherlands)

    Velander, Malin Barbro Margareta

    2012-01-01

    Our Universe is comprised not only of normal matter but also of unknown components: dark matter and dark energy. This Thesis recounts studies of dark matter haloes, using a technique known as weak gravitational lensing, in order to learn more about the nature of these dark components. The haloes

  15. Halo abundances and shear in void models

    DEFF Research Database (Denmark)

    Alonso, David; García-Bellido, Juan; Haugbølle, Troels

    2012-01-01

    We study the non-linear gravitational collapse of dark matter into halos through numerical N-body simulations of Lemaitre-Tolman-Bondi void models. We extend the halo mass function formalism to these models in a consistent way. This extension not only compares well with the simulated data at all...

  16. Analytical halo model of galactic conformity

    Science.gov (United States)

    Pahwa, Isha; Paranjape, Aseem

    2017-09-01

    We present a fully analytical halo model of colour-dependent clustering that incorporates the effects of galactic conformity in a halo occupation distribution framework. The model, based on our previous numerical work, describes conformity through a correlation between the colour of a galaxy and the concentration of its parent halo, leading to a correlation between central and satellite galaxy colours at fixed halo mass. The strength of the correlation is set by a tunable 'group quenching efficiency', and the model can separately describe group-level correlations between galaxy colour (1-halo conformity) and large-scale correlations induced by assembly bias (2-halo conformity). We validate our analytical results using clustering measurements in mock galaxy catalogues, finding that the model is accurate at the 10-20 per cent level for a wide range of luminosities and length-scales. We apply the formalism to interpret the colour-dependent clustering of galaxies in the Sloan Digital Sky Survey (SDSS). We find good overall agreement between the data and a model that has 1-halo conformity at a level consistent with previous results based on an SDSS group catalogue, although the clustering data require satellites to be redder than suggested by the group catalogue. Within our modelling uncertainties, however, we do not find strong evidence of 2-halo conformity driven by assembly bias in SDSS clustering.

  17. MODIFIED DYNAMICS (MOND) AS A DARK HALO

    NARCIS (Netherlands)

    SANDERS, RH; BEGEMAN, KG

    1994-01-01

    We propose a form for dark haloes that embodies the fundamental aspect of Milgrom's modified dynamics (MOND): the discrepancy between the visible mass and the Newtonian dynamical mass appears below a critical acceleration. This is a halo having a density distribution, at least to several tens of

  18. Galactic stellar haloes in the CDM model

    NARCIS (Netherlands)

    Cooper, A. P.; Cole, S.; Frenk, C. S.; White, S. D. M.; Helly, J.; Benson, A. J.; De Lucia, G.; Helmi, A.; Jenkins, A.; Navarro, J. F.; Springel, V.; Wang, J.

    2010-01-01

    We present six simulations of galactic stellar haloes formed by the tidal disruption of accreted dwarf galaxies in a fully cosmological setting. Our model is based on the Aquarius project, a suite of high-resolution N-body simulations of individual dark matter haloes. We tag subsets of particles in

  19. WFIRST: Surveying galactic halos within 10Mpc

    Science.gov (United States)

    Courtney, Sol; Johnston, Kathryn; Sanderson, Robyn; WINGS Team

    2018-01-01

    Three aims of a WFIRST Infrared Nearby Galaxy Survey (WINGS) of stellar halos are: (i) to look at the global properties of the halos (e.g. radial profile and total content); (ii) to find and interpret structures that are signatures of accretion histories (including luminosity functions, merger rates and orbits); (iii) to find features at widest possible separations in order to constrain the distribution of dark matter. For all of the above purposes, the halos should be observed to the greatest radial extent possible. The extent to which this is possible or interesting will depend on expected densities of the stellar halos as well as contamination by background galaxies at faint magnitudes. This study “observes" the Bullock/Johnston stellar halo models as a guide for these expectations.

  20. Transfer reactions below the Coulomb barrier

    Energy Technology Data Exchange (ETDEWEB)

    Napoli, D.R.; Stefanini, A.M.; Million, B.; Narayanasamy, M.; Prete, G.; Spolaore, P.; Li Zichang (INFN, Legnaro (Italy) Lab. Nazionali, Legnaro (Italy)); Moreno Gonzalez, H. (INFN, Legnaro (Italy) Lab. Nazionali, Legnaro (Italy) Dept. de Fisica Atomica y Nuclear, Univ. Sevilla (Spain)); Pollarolo, G. (Univ. Turin (Italy) INFN, Turin (Italy)); Beghini, S.; Montagnoli, G.; Scarlassara, F.; Segato, G.F.; Signorini, C.; Soramel, F. (Univ. Padua (Italy) INFN, Padua (Italy)); Rapisarda, A. (INFN, Catania (Italy))

    1993-03-01

    We report here on the measurements of one-particle transfer cross sections and quasi-elastic scattering of [sup 32]Si+[sup 64]Ni at energies around and well below the Coulomb barrier. The experiment has been performed with the Legnaro Recoil Mass Spectrometer. We have measured the excitation function at [theta][sub cm]=170deg from E[sub lab]=68.3 to 92.4 MeV and the angular distribution at E[sub lab]=81.3 MeV from [theta][sub cm]=120deg to 170deg. The results have been analysed in the framework of the complex WKB theory and the semiclassical approach based on Coulomb trajectories. (orig.).

  1. Coulomb dissociation studies for astrophysical thermonuclear reactions

    Energy Technology Data Exchange (ETDEWEB)

    Motobayashi, T. [Dept. of Physics, Rikkyo Univ., Toshima, Tokyo (Japan)

    1998-06-01

    The Coulomb dissociation method was applied to several radiative capture processes of astrophysical interest. The method has an advantage of high experimental efficiency, which allow measurements with radioactive nuclear beams. The reactions {sup 13}N(p,{gamma}){sup 14}O and {sup 7}Be(p,{gamma}){sup 8}B are mainly discussed. They are the key reaction in the hot CNO cycle in massive stars and the one closely related to the solar neutrino problem, respectively. (orig.)

  2. An Alternative Simple Solution of the Sextic Anharmonic Oscillator and Perturbed Coulomb Problems

    Science.gov (United States)

    Ikhdair, Sameer M.; Sever, Ramazan

    Utilizing an appropriate ansatz to the wave function, we reproduce the exact bound-state solutions of the radial Schrödinger equation to various exactly solvable sextic anharmonic oscillator and confining perturbed Coulomb models in D-dimensions. We show that the perturbed Coulomb problem with eigenvalue E can be transformed to a sextic anharmonic oscillator problem with eigenvalue hat E. We also check the explicit relevance of these two related problems in higher-space dimensions. It is shown that exact solutions of these potentials exist when their coupling parameters with k = D +2ℓ appearing in the wave equation satisfy certain constraints.

  3. A rate-dependent Hosford-Coulomb model for predicting ductile fracture at high strain rates

    Directory of Open Access Journals (Sweden)

    Marcadet Stephane J.

    2015-01-01

    Full Text Available The Hosford-Coulomb model incorporates the important effect of the Lode angle parameter in addition to the stress triaxiality to predict the initiation of ductile fracture. A strain-rate dependent extension of the Hosford-Coulomb model is presented to describe the results from low, intermediate and high strain rate fracture experiments on advanced high strength steels (DP590 and TRIP780. The model predictions agree well with the experimental observation of an increase in ductility as function of strain rate for stress states ranging from uniaxial to equi-biaxial tension.

  4. Coulomb excitation of neutron-deficient polonium isotopes studied at ISOLDE

    CERN Document Server

    Neven, Michiel

    The polonium isotopes represent an interesting region of the nuclear chart having only two protons outside the Z = 82 closed shell. These isotopes have already been extensively studied theoretically and experimentally. The heavier isotopes (A > 200) seem to follow a "regular seniority-type regime" while for the lighter isotopes (A < 200) a more collective behavior is observed. Many questions remain regarding the transition between these two regimes and the configuration mixing between quantum states. Experiments in the lighter polonium isotopes point to the presence of shape coexistence, however the phenomenon is not fully understood. A Coulomb excitation study of the polonium isotopes whereby the dynamic properties are investigated can provide helpful insights in understanding the shape coexistence phenomena. In this thesis $^{202}$Po was studied via Coulomb excitation. The $^{202}$Po isotope was part of an experimental campaign in which the $^{196,198,200,206}$Po isotopes were studied as well via Coulomb...

  5. Effect of the intersite Coulomb interaction on chiral superconductivity at the noncollinear spin ordering

    Science.gov (United States)

    Val'kov, V. V.; Zlotnikov, A. O.

    2017-11-01

    We investigate the effect of the intersite Coulomb interaction in a planar system with the triangular lattice on the structure of chiral order parameter Δ( p) in the phase of coexisting superconductivity and noncollinear 120° magnetic ordering. It has been established that the Coulomb correlations in this phase initiate the state where the quasi-momentum dependence Δ( p) can be presented as a superposition of the chiral invariants corresponding to the {d_{{x^2} - {y^2}}} + i{d_{xy}} and p x + ip y symmetry types. It is demonstrated that the inclusion of the Coulomb interaction shifts the Δ( p) nodal point positions and, thereby, changes the conditions for a quantum topological transition.

  6. Halo assembly bias and the tidal anisotropy of the local halo environment

    Science.gov (United States)

    Paranjape, Aseem; Hahn, Oliver; Sheth, Ravi K.

    2018-02-01

    We study the role of the local tidal environment in determining the assembly bias of dark matter haloes. Previous results suggest that the anisotropy of a halo's environment (i.e, whether it lies in a filament or in a more isotropic region) can play a significant role in determining the eventual mass and age of the halo. We statistically isolate this effect using correlations between the large-scale and small-scale environments of simulated haloes at z = 0 with masses between 1011.6 ≲ (m/h-1M⊙) ≲ 1014.9. We probe the large-scale environment using a novel halo-by-halo estimator of linear bias. For the small-scale environment, we identify a variable αR that captures the tidal anisotropy in a region of radius R = 4R200b around the halo and correlates strongly with halo bias at fixed mass. Segregating haloes by αR reveals two distinct populations. Haloes in highly isotropic local environments (αR ≲ 0.2) behave as expected from the simplest, spherically averaged analytical models of structure formation, showing a negative correlation between their concentration and large-scale bias at all masses. In contrast, haloes in anisotropic, filament-like environments (αR ≳ 0.5) tend to show a positive correlation between bias and concentration at any mass. Our multi-scale analysis cleanly demonstrates how the overall assembly bias trend across halo mass emerges as an average over these different halo populations, and provides valuable insights towards building analytical models that correctly incorporate assembly bias. We also discuss potential implications for the nature and detectability of galaxy assembly bias.

  7. Dark matter haloes: a multistream view

    Science.gov (United States)

    Ramachandra, Nesar S.; Shandarin, Sergei F.

    2017-09-01

    Mysterious dark matter constitutes about 85 per cent of all masses in the Universe. Clustering of dark matter plays a dominant role in the formation of all observed structures on scales from a fraction to a few hundreds of Mega-parsecs. Galaxies play a role of lights illuminating these structures so they can be observed. The observations in the last several decades have unveiled opulent geometry of these structures currently known as the cosmic web. Haloes are the highest concentrations of dark matter and host luminous galaxies. Currently the most accurate modelling of dark matter haloes is achieved in cosmological N-body simulations. Identifying the haloes from the distribution of particles in N-body simulations is one of the problems attracting both considerable interest and efforts. We propose a novel framework for detecting potential dark matter haloes using the field unique for dark matter-multistream field. The multistream field emerges at the non-linear stage of the growth of perturbations because the dark matter is collisionless. Counting the number of velocity streams in gravitational collapses supplements our knowledge of spatial clustering. We assume that the virialized haloes have convex boundaries. Closed and convex regions of the multistream field are hence isolated by imposing a positivity condition on all three eigenvalues of the Hessian estimated on the smoothed multistream field. In a single-scale analysis of high multistream field resolution and low softening length, the halo substructures with local multistream maxima are isolated as individual halo sites.

  8. Abnormal behavior of the optical potential for the halo nuclear system 6He+209Bi

    Science.gov (United States)

    Yang, L.; Lin, C. J.; Jia, H. M.; Wang, D. X.; Ma, N. R.; Sun, L. J.; Yang, F.; Xu, X. X.; Wu, Z. D.; Zhang, H. Q.; Liu, Z. H.

    2017-10-01

    In a recent transfer reaction measurement of 208Pb(7Li,6He )209Bi at energies around and below the Coulomb barrier, the optical model potentials of the halo nuclear system 6He+209Bi were extracted by fitting the experimental data with the theoretical frameworks of the distorted-wave Born approximation and coupled reaction channels, respectively. With the high-precision result, a complete picture of the behavior of the optical potential for this halo system is clearly derived for the first time. The real potential presents a bell-like shape around the barrier as a normal threshold anomaly. However, for the imaginary part, it first increases with the energy decreasing below the barrier and then falls quickly to 0, hence the threshold energy can be determined by fitting the variation trend. Moreover, the result also provides some evidence that the dispersion relation does not hold for this halo nuclear system, which calls for further investigation of the underlying physics.

  9. The pushing gate in a planar Coulomb crystal using a flat-top laser beam

    Energy Technology Data Exchange (ETDEWEB)

    Kitaoka, M., E-mail: kitaoka@lyman.q.t.u-tokyo.ac.j [Department of Systems Innovation, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Buluta, I.M. [Department of Quantum Engineering and Systems Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Hasegawa, S., E-mail: hasegawa@sys.t.u-tokyo.ac.j [Department of Systems Innovation, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Department of Quantum Engineering and Systems Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2009-08-10

    We propose a pushing gate for entangling two ions in a planar Coulomb crystal in the view of realizing large-scale quantum simulations. A tightly focused laser is irradiated from the direction perpendicular to the crystal plane and its spatial intensity profile generates a state-dependent force. We analyze the error sources in this scheme and obtain low infidelity.

  10. The pushing gate in a planar Coulomb crystal using a flat-top laser beam

    Science.gov (United States)

    Kitaoka, M.; Buluta, I. M.; Hasegawa, S.

    2009-08-01

    We propose a pushing gate for entangling two ions in a planar Coulomb crystal in the view of realizing large-scale quantum simulations. A tightly focused laser is irradiated from the direction perpendicular to the crystal plane and its spatial intensity profile generates a state-dependent force. We analyze the error sources in this scheme and obtain low infidelity.

  11. Nonlocal Coulomb interaction in the two-dimensional spin-1/2 ...

    Indian Academy of Sciences (India)

    Abstract. The two-dimensional (2D) extended Falicov–Kimball model has been studied to ob- serve the role of nonlocal Coulomb interaction (Unc) using an exact diagonalization technique. The f-state occupation (n f ), the f–d intersite correlation function (cfd), the specific heat (C), entropy (S) and the specific heat coefficient ...

  12. Nonlocal Coulomb interaction in the two-dimensional spin-1/2 ...

    Indian Academy of Sciences (India)

    Nonlocal Coulomb interaction-induced discontinuous insulator-to-metal transition occurs at a critical f-level energy. More ordered state is obtained with the increase of nc. In the specific heat curves, two-peak structure as well as a singlepeak structure appears. At low-temperature region, a sharp rise in the specific heat ...

  13. Coulomb Impurity Potential RbCl Quantum Pseudodot Qubit

    Science.gov (United States)

    Ma, Xin-Jun; Qi, Bin; Xiao, Jing-Lin

    2015-08-01

    By employing a variational method of Pekar type, we study the eigenenergies and the corresponding eigenfunctions of the ground and the first-excited states of an electron strongly coupled to electron-LO in a RbCl quantum pseudodot (QPD) with a hydrogen-like impurity at the center. This QPD system may be used as a two-level quantum qubit. The expressions of electron's probability density versus time and the coordinates, and the oscillating period versus the Coulombic impurity potential and the polaron radius have been derived. The investigated results indicate ① that the probability density of the electron oscillates in the QPD with a certain oscillating period of , ② that due to the presence of the asymmetrical potential in the z direction of the RbCl QPD, the electron probability density shows double-peak configuration, whereas there is only one peak if the confinement is a two-dimensional symmetric structure in the xy plane of the QPD, ③ that the oscillation period is a decreasing function of the Coulombic impurity potential, whereas it is an increasing one of the polaron radius.

  14. "Coulombic Viscosity" In Granular Materials: Planetary and Astrophysical Implications

    Science.gov (United States)

    Marshall, J. R.

    1999-09-01

    . It is predicted that this will lead to an increase with time of both the aerodynamic and bed-dilatancy thresholds (3). Because of Paschen discharge effects in the martian atmosphere, the electrostatic charging in a saltation cloud may be partially abated, but this will lead to greater grain mobility, more charging, and thus to a charge-discharge steady state mediated by mechanical interactions. II. Dry colluvial systems: Sand avalanches on dunes, dry debris flows, talus flows, avalanches, and pyroclastic surges are examples of gravity-driven, dense granular flows where rock/grain fragmentation and grain-to-grain interactions cause triboelectrification (sometimes augmented by other electrical charging processes), and where the grain densities of the systems are such that strong dipole-dipole interactions between grains might be expected to be present. Because it is expected that the Coulombic forces between grains will cause a sluggishness or enhanced granular-flow viscosity, the motion of a grain mass will be retarded or damped so that this will assist, ultimately, in terminating the flow. The greatest Coulombic viscosity will be created in the most highly charged systems, which will also be the most energetic. Thus, grain flows have some tendency to be self-limiting by internal energy partitioning; gravitational potential is converted to Coulombic potential, which manifests itself as a drag force between the grains. III. Volcanic eruption plumes and impact ejecta curtains: The violence of these systems leads to powerful electrical charging of particulates. Lightning storms emanating from volcanic plumes are a testimony to the levels of charging. As pyroclastic grains interact forcefully and frequently within eruption plumes, it is reasonable to predict that the internal turbulent motions of the plume will be significantly damped by the Coulombic viscosity exerted by grain charges. Additional information is contained in the original.

  15. Coulomb impurity scattering in topological insulator thin films

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Gen; Wickramaratne, Darshana; Lake, Roger K., E-mail: rlake@ee.ucr.edu [Department of Electrical Engineering, University of California, Riverside, California 92521 (United States); Zhao, Yuanyuan [Texas Center for Superconductivity and Department of Physics, University of Houston, Houston, Texas 77204 (United States)

    2014-07-21

    Inter-surface coupling in thin-film topological insulators can reduce the surface state mobility by an order of magnitude in low-temperature transport measurements. The reduction is caused by a reduction in the group velocity and an increased s{sub z} component of the surface-state spin which weakens the selection rule against large-angle scattering. An intersurface potential splits the degenerate bands into a Rashba-like bandstructure. This reduces the intersurface coupling, it largely restores the selection rule against large angle scattering, and the ring-shaped valence band further reduces backscattering by requiring, on average, larger momentum transfer for backscattering events. The effects of temperature, Fermi level, and intersurface potential on the Coulomb impurity scattering limited mobility are analyzed and discussed.

  16. Decay Properties of the Halo Nucleus $^{11}$Li

    CERN Multimedia

    2002-01-01

    During the past years a considerable experimental effort has been devoted to the production and study of nuclei close to the neutron and proton drip-lines. The most spectacular phenomenon encountered is the occurrence of neutron halos in the loosely bound neutron rich nuclei. \\\\ \\\\ Another interesting feature, observed at ISOLDE, which most likely is connected to the halo structure, is the very strong (super-allowed) Gamow-Teller $\\beta$- transitions to highly excited states which are systematically observed for the lightest neutron rich drip-line nuclei. These transitions might be viewed as arising from the quasi-free $\\beta$ -decay of the halo neutrons. It is proposed to make a detailed study of the $\\beta$- strength function for $^{11}$Li, a nuclide having a half-life of 8.2 ms and a Q $\\beta$-value of 20.73~MeV. \\\\ \\\\ So far only a lower limit of the Gamow-Teller transition rate to highly excited states ($\\approx$~18.5~MeV) in the daughter nucleus has been obtained from measurements of $\\beta$-delayed tri...

  17. Beam halo collimation in heavy ion synchrotrons

    Directory of Open Access Journals (Sweden)

    I. Strašík

    2015-08-01

    Full Text Available This paper presents a systematic study of the halo collimation of ion beams from proton up to uranium in synchrotrons. The projected Facility for Antiproton and Ion Research synchrotron SIS100 is used as a reference case. The concepts are separated into fully stripped (e.g., ^{238}U^{92+} and partially stripped (e.g., ^{238}U^{28+} ion collimation. An application of the two-stage betatron collimation system, well established for proton accelerators, is intended also for fully stripped ions. The two-stage system consists of a primary collimator (a scattering foil and secondary collimators (bulky absorbers. Interaction of the particles with the primary collimator (scattering, momentum losses, and nuclear interactions was simulated by using fluka. Particle-tracking simulations were performed by using mad-x. Finally, the dependence of the collimation efficiency on the primary ion species was determined. The influence of the collimation system adjustment, lattice imperfections, and beam parameters was estimated. The concept for the collimation of partially stripped ions employs a thin stripping foil in order to change their charge state. These ions are subsequently deflected towards a dump location using a beam optical element. The charge state distribution after the stripping foil was obtained from global. The ions were tracked by using mad–x.

  18. The Effects of Varying Cosmological Parameters on Halo Substructure

    Science.gov (United States)

    Dooley, Gregory A.; Griffen, Brendan F.; Zukin, Phillip; Ji, Alexander P.; Vogelsberger, Mark; Hernquist, Lars E.; Frebel, Anna

    2014-05-01

    We investigate how different cosmological parameters, such as those delivered by the WMAP and Planck missions, affect the nature and evolution of the dark matter halo substructure. We use a series of flat Λ cold dark matter cosmological N-body simulations of structure formation, each with a different power spectrum but with the same initial white noise field. Our fiducial simulation is based on parameters from the WMAP seventh year cosmology. We then systematically vary the spectral index, ns ; matter density, Ω M ; and normalization of the power spectrum, σ8, for seven unique simulations. Across these, we study variations in the subhalo mass function, mass fraction, maximum circular velocity function, spatial distribution, concentration, formation times, accretion times, and peak mass. We eliminate dependence of subhalo properties on host halo mass and average the values over many hosts to reduce variance. While the "same" subhalos from identical initial overdensity peaks in higher σ8, ns , and Ω m simulations accrete earlier and end up less massive and closer to the halo center at z = 0, the process of continuous subhalo accretion and destruction leads to a steady state distribution of these properties across all subhalos in a given host. This steady state mechanism eliminates cosmological dependence on all of the properties listed above except for subhalo concentration and V max, which remain greater for higher σ8, ns , and Ω m simulations, and subhalo formation time, which remains earlier. We also find that the numerical technique for computing the scale radius and the halo finder that were used can significantly affect the concentration-mass relationship as computed for a simulation.

  19. Contribution to the study of collective states of heavy nuclei by means of coulomb excitation; Contribution a l'etude des etats collectifs des noyaux lourds par excitation coulombienne

    Energy Technology Data Exchange (ETDEWEB)

    Barloutaud, R. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-06-15

    The following nuclei were excited by protons of 5 MeV maximum energy: {sup 182}W - {sup 184}W - {sup 186}W - {sup 186}Os - {sup 188}Os - {sup 189}Os - {sup 190}Os - {sup 192}Os - {sup 194}Pt - {sup 196}Pt - {sup 198}Pt - {sup 198}Hg - {sup 200}Hg - {sup 202}Hg - {sup 204}Hg - {sup 206}Pb. The reduced probabilities of the various transitions were deduced from the coulomb excitation cross-section measurements. For some even-even nuclei two 2 + levels were excited. The properties of the excited levels are interpreted in terms of the collective model. (author) [French] Au moyen de protons d'energie inferieure a 5 MeV, l'excitation coulombienne des noyaux suivants a ete etudiee: {sup 182}W - {sup 184}W - {sup 186}W - {sup 186}Os - {sup 188}Os - {sup 189}Os - {sup 190}Os - {sup 192}Os - {sup 194}Pt - {sup 196}Pt - {sup 198}Pt - {sup 198}Hg - {sup 200}Hg - {sup 202}Hg - {sup 204}Hg - {sup 206}Pb. La mesure de la section efficace d'excitation coulombienne a permis de deduire les -probabilites reduites des diverses transitions observees. Dans certains noyaux pair-pair, deux niveaux de caractere 2 + ont ete excites. L'interpretation de ces niveaux en termes de niveaux de rotation et de niveaux de vibration a l'aide du modele collectif est discutee. En particulier, la variation des proprietes de ces niveaux avec la deformation nucleaire permet de fixer des limites a la validite des diverses hypotheses entrant dans le modele collectif. (auteur)

  20. Probing shape coexistence in neutron-deficient $^{72}$Se via low-energy Coulomb excitation

    CERN Multimedia

    We propose to study the evolution of nuclear structure in neutron-­deficient $^{72}$Se by performing a low-­energy Coulomb excitation measurement. Matrix elements will be determined for low-­lying excited states allowing for a full comparison with theoretical predictions. Furthermore, the intrinsic shape of the ground state, and the second 0$^{+}$ state, will be investigated using the quadrupole sum rules method.

  1. Degradation of HaloTag-fused nuclear proteins using bestatin-HaloTag ligand hybrid molecules.

    Science.gov (United States)

    Tomoshige, Shusuke; Naito, Mikihiko; Hashimoto, Yuichi; Ishikawa, Minoru

    2015-10-14

    We have developed a protein knockdown technology using hybrid small molecules designed as conjugates of a ligand for the target protein and a ligand for ubiquitin ligase cellular inhibitor of apoptosis protein 1 (cIAP1). However, this technology has several limitations. Here, we report the development of a novel protein knockdown system to address these limitations. In this system, target proteins are fused with HaloTag to provide a common binding site for a degradation inducer. We designed and synthesized small molecules consisting of alkyl chloride as the HaloTag-binding degradation inducer, which binds to HaloTag, linked to BE04 (2), which binds to cIAP1. Using this system, we successfully knocked down HaloTag-fused cAMP responsive element binding protein 1 (HaloTag-CREB1) and HaloTag-fused c-jun (HaloTag-c-jun), which are ligand-unknown nuclear proteins, in living cells. HaloTag-binding degradation inducers can be synthesized easily, and are expected to be useful as biological tools for pan-degradation of HaloTag-fused proteins.

  2. The Dark Halo of the Milky Way

    National Research Council Canada - National Science Library

    Charles Alcock

    2000-01-01

    .... This dark matter is distributed in space differently than the stars, forming a vast, diffuse halo, more spherical than disklike, which occupies more than 1000 times the volume of the disk of stars...

  3. Exact Relativistic Magnetized Haloes around Rotating Disks

    Directory of Open Access Journals (Sweden)

    Antonio C. Gutiérrez-Piñeres

    2015-01-01

    Full Text Available The study of the dynamics of magnetic fields in galaxies is one of important problems in formation and evolution of galaxies. In this paper, we present the exact relativistic treatment of a rotating disk surrounded by a magnetized material halo. The features of the halo and disk are described by the distributional energy-momentum tensor of a general fluid in canonical form. All the relevant quantities and the metric and electromagnetic potentials are exactly determined by an arbitrary harmonic function only. For instance, the generalized Kuzmin-disk potential is used. The particular class of solutions obtained is asymptotically flat and satisfies all the energy conditions. Moreover, the motion of a charged particle on the halo is described. As far as we know, this is the first relativistic model describing analytically the magnetized halo of a rotating disk.

  4. Simulating rainbows and halos in color.

    Science.gov (United States)

    Gedzelman, S D

    1994-07-20

    Geometric optics rainbows and ice-crystal halos that include some effects of a Rayleigh-scattering atmosphere and a cloud of finite optical thickness are simulated in color by the use of a Monte Carlo approach.

  5. Spatial Clustering of Dark Matter Haloes: Secondary Bias, Neighbour Bias, and the Influence of Massive Neighbours on Halo Properties

    Science.gov (United States)

    Salcedo, Andrés N.; Maller, Ariyeh H.; Berlind, Andreas A.; Sinha, Manodeep; McBride, Cameron K.; Behroozi, Peter S.; Wechsler, Risa H.; Weinberg, David H.

    2018-01-01

    We explore the phenomenon commonly known as halo assembly bias, whereby dark matter haloes of the same mass are found to be more or less clustered when a second halo property is considered, for haloes in the mass range 3.7 × 1011 h-1 M⊙ - 5.0 × 1013 h-1 M⊙. Using the Large Suite of Dark Matter Simulations (LasDamas) we consider nine commonly used halo properties and find that a clustering bias exists if haloes are binned by mass or by any other halo property. This secondary bias implies that no single halo property encompasses all the spatial clustering information of the halo population. The mean values of some halo properties depend on their halo's distance to a more massive neighbour. Halo samples selected by having high values of one of these properties therefore inherit a neighbour bias such that they are much more likely to be close to a much more massive neighbour. This neighbour bias largely accounts for the secondary bias seen in haloes binned by mass and split by concentration or age. However, haloes binned by other mass-like properties still show a secondary bias even when the neighbour bias is removed. The secondary bias of haloes selected by their spin behaves differently than that for other halo properties, suggesting that the origin of the spin bias is different than of other secondary biases.

  6. Probing nuclear shell structure beyond the N=40 subshell using multiple Coulomb excitation and transfer experiments

    Energy Technology Data Exchange (ETDEWEB)

    Hellgartner, Stefanie Christine

    2015-11-13

    In this work, the N=40 subshell closure is investigated with two complementary methods using a radioactive {sup 72}Zn ISOLDE beam: One- and two-neutron transfer reactions and multiple Coulomb excitation. In the one-neutron transfer reaction, two new levels of {sup 73}Zn were discovered. The two-neutron transfer channel allowed to study the differential cross section of the ground state and the 2{sup +}{sub 1} state of {sup 74}Zn. In the Coulomb excitation experiment, the measured B(E2) values and quadrupole moments of {sup 72}Zn showed that the yrast states 0{sup +}{sub 1}, 2{sup +}{sub 1} and 4{sup +}{sub 1} are moderately collective. Contrary, the 0{sup +}{sub 2} state has a different structure, since it features a stronger closed N=40 configuration compared to the ground state.

  7. Action principle for Coulomb collisions in plasmas

    CERN Document Server

    Hirvijoki, Eero

    2015-01-01

    In this letter we derive an action principle for Coulomb collisions in plasmas. Although no natural Lagrangian exists for the Landau-Fokker-Planck equation, an Eulerian variational formulation is found considering the system of partial differential equations that couple the distribution function and the Rosenbluth potentials. Exact conservation laws are derived after generalizing the energy-momentum stress tensor for second order Lagrangians and, in the case of a test-particle population in a given plasma background, the action principle is shown to correspond to the Langevin equation for individual particles. Being suitable for discretization, the presented action allows construction of variational integrators. Numerical implementation is left for a future study.

  8. Resonances in the two centers Coulomb system

    Energy Technology Data Exchange (ETDEWEB)

    Seri, Marcello

    2012-09-14

    In this work we investigate the existence of resonances for two-centers Coulomb systems with arbitrary charges in two and three dimensions, defining them in terms of generalized complex eigenvalues of a non-selfadjoint deformation of the two-center Schroedinger operator. After giving a description of the bifurcation of the classical system for positive energies, we construct the resolvent kernel of the operators and we prove that they can be extended analytically to the second Riemann sheet. The resonances are then defined and studied with numerical methods and perturbation theory.

  9. Nonequilibrium quantum thermodynamics in Coulomb crystals

    Science.gov (United States)

    Cosco, F.; Borrelli, M.; Silvi, P.; Maniscalco, S.; De Chiara, G.

    2017-06-01

    We present an in-depth study of the nonequilibrium statistics of the irreversible work produced during sudden quenches in proximity to the structural linear-zigzag transition of ion Coulomb crystals in 1+1 dimensions. By employing both an analytical approach based on a harmonic expansion and numerical simulations, we show the divergence of the average irreversible work in proximity to the transition. We show that the nonanalytic behavior of the work fluctuations can be characterized in terms of the critical exponents of the quantum Ising chain. Due to the technological advancements in trapped-ion experiments, our results can be readily verified.

  10. MODIFIED GRAVITY SPINS UP GALACTIC HALOS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jounghun [Astronomy Program, Department of Physics and Astronomy, FPRD, Seoul National University, Seoul 151-747 (Korea, Republic of); Zhao, Gong-Bo [National Astronomy Observatories, Chinese Academy of Science, Beijing 100012 (China); Li, Baojiu [Institute of Computational Cosmology, Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Koyama, Kazuya, E-mail: jounghun@astro.snu.ac.kr [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth, PO1 3FX (United Kingdom)

    2013-01-20

    We investigate the effect of modified gravity on the specific angular momentum of galactic halos by analyzing the halo catalogs at z = 0 from high-resolution N-body simulations for a f(R) gravity model that meets the solar-system constraint. It is shown that the galactic halos in the f(R) gravity model tend to acquire significantly higher specific angular momentum than those in the standard {Lambda}CDM model. The largest difference in the specific angular momentum distribution between these two models occurs for the case of isolated galactic halos with mass less than 10{sup 11} h {sup -1} M {sub Sun }, which are likely least shielded by the chameleon screening mechanism. As the specific angular momentum of galactic halos is rather insensitive to other cosmological parameters, it can in principle be an independent discriminator of modified gravity. We speculate a possibility of using the relative abundance of low surface brightness galaxies (LSBGs) as a test of general relativity given that the formation of the LSBGs occurs in fast spinning dark halos.

  11. Nanomechanics of HaloTag tethers.

    Science.gov (United States)

    Popa, Ionel; Berkovich, Ronen; Alegre-Cebollada, Jorge; Badilla, Carmen L; Rivas-Pardo, Jaime Andrés; Taniguchi, Yukinori; Kawakami, Masaru; Fernandez, Julio M

    2013-08-28

    The active site of the Haloalkane Dehydrogenase (HaloTag) enzyme can be covalently attached to a chloroalkane ligand providing a mechanically strong tether, resistant to large pulling forces. Here we demonstrate the covalent tethering of protein L and I27 polyproteins between an atomic force microscopy (AFM) cantilever and a glass surface using HaloTag anchoring at one end and thiol chemistry at the other end. Covalent tethering is unambiguously confirmed by the observation of full length polyprotein unfolding, combined with high detachment forces that range up to ∼2000 pN. We use these covalently anchored polyproteins to study the remarkable mechanical properties of HaloTag proteins. We show that the force that triggers unfolding of the HaloTag protein exhibits a 4-fold increase, from 131 to 491 pN, when the direction of the applied force is changed from the C-terminus to the N-terminus. Force-clamp experiments reveal that unfolding of the HaloTag protein is twice as sensitive to pulling force compared to protein L and refolds at a slower rate. We show how these properties allow for the long-term observation of protein folding-unfolding cycles at high forces, without interference from the HaloTag tether.

  12. New views of the distant stellar halo

    Science.gov (United States)

    Sanderson, Robyn E.; Secunda, Amy; Johnston, Kathryn V.; Bochanski, John J.

    2017-10-01

    Currently, only a small number of Milky Way (MW) stars are known to exist beyond 100 kpc from the Galactic Centre. Though the distribution of these stars in the outer halo is believed to be sparse, they can provide evidence of more recent accretion events than in the inner halo and help map out the MW's dark matter halo to its virial radius. We have re-examined the outermost regions of 11 existing stellar halo models with two synthetic surveys: one mimicking present-day searches for distant M giants and another mimicking RR Lyra (RRL) projections for the Large Synoptic Survey Telescope (LSST). Our models suggest that colour and proper motion cuts currently used to select M giant candidates for follow-up successfully remove nearly all self-contamination from foreground halo dwarf stars and are useful for focusing observations on distant M giants, of which there are thousands to tens of thousands beyond 100 kpc in our models. We likewise expect that LSST will identify comparable numbers of RRLe at these distances. We demonstrate that several observable properties of both tracers, such as proximity of neighbouring stars, proper motions and distances (for RRLe), could help us separate different accreted dwarf galaxies from one another in the distant MW halo. We also discuss prospects for using ratios of M giants to RRLe as a proxy for accretion time, which in the future could provide new constraints on the recent accretion history of our Galaxy.

  13. RR Lyrae to understand the Galactic halo

    Science.gov (United States)

    Fiorentino, Giuliana

    2016-08-01

    We present recent results obtained using old variable RR Lyrae stars on the Galactic halo structure and its connection with nearby dwarf galaxies. We compare the period and period-amplitude distributions for a sizeable sample of fundamental mode RR Lyrae stars (RRab) in dwarf spheroidals (~1300 stars) with those in the Galactic halo (~16'000 stars) and globular clusters (~1000 stars). RRab in dwarfs -as observed today- do not appear to follow the pulsation properties shown by those in the Galactic halo, nor they have the same properties as RRab in globulars. Thanks to the OGLE experiment we extended our comparison to massive metal-rich satellites like the dwarf irregular Large Magellanic Cloud (LMC) and the Sagittarius (Sgr) dwarf spheroidal. These massive and more metal-rich stellar systems likely have contributed to the Galactic halo formation more than classical dwarf spheroidals. Finally, exploiting the intrinsic nature of RR Lyrae as distance indicators we were able to study the period and period amplitude distributions of RRab within the Halo. It turned out that the inner and the outer Halo do show a difference that may suggest a different formation scenario (in situ vs accreted).

  14. The proton-proton scattering without Coulomb force renormalization

    Directory of Open Access Journals (Sweden)

    Glöckle W.

    2010-04-01

    Full Text Available We demonstrate numerically that proton-proton (pp scattering observables can be determined directly by standard short range methods using a screened pp Coulomb force without renormalization. We numerically investigate solutions of the 3-dimensional Lippmann-Schwinger (LS equation for an exponentially screened Coulomb potential. For the limit of large screening radii we confirm analytically predicted properties for off-shell, half-shell and on-shell elements of the Coulomb t-matrix.

  15. Coulomb implosion mechanism of negative ion acceleration in laser plasmas

    OpenAIRE

    Nakamura, T.; Fukuda, Y.; Yogo, A.; Tampo, M.; Kando, M.; Hayashi, Y.; Kameshima, T.; Pirozhkov, A. S.; Esirkepov, T. Zh.; Pikuz, T. A.; Faenov, A. Ya.; Daido, H.; Bulanov, S. V.

    2008-01-01

    Coulomb implosion mechanism of the negatively charged ion acceleration in laser plasmas is proposed. When a cluster target is irradiated by an intense laser pulse and the Coulomb explosion of positively charged ions occurs, the negative ions are accelerated inward. The maximum energy of negative ions is several times lower than that of positive ions. The theoretical description and Particle-in-Cell simulation of the Coulomb implosion mechanism and the evidence of the negative ion acceleration...

  16. Dwarf Galaxies in Voids: Dark Matter Halos and Gas Cooling

    Directory of Open Access Journals (Sweden)

    Matthias Hoeft

    2010-01-01

    Full Text Available Galaxy surveys have shown that luminous galaxies are mainly distributed in large filaments and galaxy clusters. The remaining large volumes are virtually devoid of luminous galaxies. This is in concordance with the formation of the large-scale structure in the universe as derived from cosmological simulations. However, the numerical results indicate that cosmological voids are abundantly populated with dark matter haloes which may in principle host dwarf galaxies. Observational efforts have in contrast revealed that voids are apparently devoid of dwarf galaxies. We investigate the formation of dwarf galaxies in voids by hydrodynamical cosmological simulations. Due to the cosmic ultraviolet background radiation low-mass haloes show generally a reduced baryon fraction. We determine the characteristic mass below which dwarf galaxies are baryon deficient. We show that the circular velocity below which the accretion of baryons is suppressed is approximately 40 kms−1. The suppressed baryon accretion is caused by the photo-heating due to the UV background. We set up a spherical halo model and show that the effective equation of the state of the gas in the periphery of dwarf galaxies determines the characteristic mass. This implies that any process which heats the gas around dwarf galaxies increases the characteristic mass and thus reduces the number of observable dwarf galaxies.

  17. Statistics of dark matter substructure - III. Halo-to-halo variance

    Science.gov (United States)

    Jiang, Fangzhou; van den Bosch, Frank C.

    2017-11-01

    We present a study of unprecedented statistical power regarding the halo-to-halo variance of dark matter substructure. Combining N-body simulations and a semi-analytical model, we investigate the variance in subhalo mass fractions and occupation numbers, with an emphasis on their halo-formation-time dependence. We show that the average subhalo mass fraction, fsub, is mainly a function of halo formation time: at fixed formation redshift, the average subhalo mass fraction is virtually independent of halo mass and the mass dependence of fsub therefore mainly manifests the later assembly of more massive haloes. We note that the observational constraints on fsub from gravitational lensing are substantially higher than the median Λcold dark matter predictions, yet marginally lie within the 95th percentile when the halo-to-halo variance is considered. The halo occupation number distribution of subhaloes, P(Nsub|Mhalo), in addition to the well-known super-Poissonity for large 〈Nsub〉, is sub-Poissonian for 〈Nsub〉 ≲ 2. Ignoring this results in systematic errors of the predicted clustering of galaxies of a few percent, with a complicated scale- and luminosity dependence. The non-Poissonity is likely imprinted at accretion, and the dynamical evolution of subhaloes drives the statistics towards Poissonian. Contrary to a recent claim, the non-Poissonity of subhalo occupation statistics does not vanish by selecting haloes with fixed mass and fixed formation redshift. Finally, we use subhalo occupation statistics to put loose constraints on the mass and formation redshift of the Milky Way halo.

  18. Correlated Coulomb drag in capacitively coupled quantum-dot structures

    DEFF Research Database (Denmark)

    Kaasbjerg, Kristen; Jauho, Antti-Pekka

    2016-01-01

    We study theoretically Coulomb drag in capacitively coupled quantum dots (CQDs) -- a biasdriven dot coupled to an unbiased dot where transport is due to Coulomb mediated energy transfer drag. To this end, we introduce a master-equation approach which accounts for higher-order tunneling (cotunneling......) processes as well as energy-dependent lead couplings, and identify a mesoscopic Coulomb drag mechanism driven by nonlocal multi-electron cotunneling processes. Our theory establishes the conditions for a nonzero drag as well as the direction of the drag current in terms of microscopic system parameters...... on Coulomb drag in CQD systems....

  19. The Coulomb Branch Formula for Quiver Moduli Spaces

    CERN Document Server

    Manschot, Jan; Sen, Ashoke

    2014-01-01

    In recent series of works, by translating properties of multi-centered supersymmetric black holes into the language of quiver representations, we proposed a formula that expresses the Hodge numbers of the moduli space of semi-stable representations of quivers with generic superpotential in terms of a set of invariants associated to `single-centered' or `pure-Higgs' states. The distinguishing feature of these invariants is that they are independent of the choice of stability condition. Furthermore they are uniquely determined by the $\\chi_y$-genus of the moduli space. Here, we provide a self-contained summary of the Coulomb branch formula, spelling out mathematical details but leaving out proofs and physical motivations.

  20. Coulomb crystallization of highly charged ions.

    Science.gov (United States)

    Schmöger, L; Versolato, O O; Schwarz, M; Kohnen, M; Windberger, A; Piest, B; Feuchtenbeiner, S; Pedregosa-Gutierrez, J; Leopold, T; Micke, P; Hansen, A K; Baumann, T M; Drewsen, M; Ullrich, J; Schmidt, P O; López-Urrutia, J R Crespo

    2015-03-13

    Control over the motional degrees of freedom of atoms, ions, and molecules in a field-free environment enables unrivalled measurement accuracies but has yet to be applied to highly charged ions (HCIs), which are of particular interest to future atomic clock designs and searches for physics beyond the Standard Model. Here, we report on the Coulomb crystallization of HCIs (specifically (40)Ar(13+)) produced in an electron beam ion trap and retrapped in a cryogenic linear radiofrequency trap by means of sympathetic motional cooling through Coulomb interaction with a directly laser-cooled ensemble of Be(+) ions. We also demonstrate cooling of a single Ar(13+) ion by a single Be(+) ion-the prerequisite for quantum logic spectroscopy with a potential 10(-19) accuracy level. Achieving a seven-orders-of-magnitude decrease in HCI temperature starting at megakelvin down to the millikelvin range removes the major obstacle for HCI investigation with high-precision laser spectroscopy. Copyright © 2015, American Association for the Advancement of Science.

  1. Coulomb Correlations Intertwined with Spin and Orbital Excitations in LaCoO3

    Science.gov (United States)

    Tomiyasu, K.; Okamoto, J.; Huang, H. Y.; Chen, Z. Y.; Sinaga, E. P.; Wu, W. B.; Chu, Y. Y.; Singh, A.; Wang, R.-P.; de Groot, F. M. F.; Chainani, A.; Ishihara, S.; Chen, C. T.; Huang, D. J.

    2017-11-01

    We carried out temperature-dependent (20-550 K) measurements of resonant inelastic x-ray scattering on LaCoO3 to investigate the evolution of its electronic structure across the spin-state crossover. In combination with charge-transfer multiplet calculations, we accurately quantified the renomalized crystal-field excitation energies and spin-state populations. We show that the screening of the effective on-site Coulomb interaction of 3 d electrons is orbital selective and coupled to the spin-state crossover in LaCoO3 . The results establish that the gradual spin-state crossover is associated with a relative change of Coulomb energy versus bandwidth, leading to a Mott-type insulator-to-metal transition.

  2. The effect of electromagnetic field and Coulomb impurity on polaron in RbCl triangular quantum dot qubit

    Science.gov (United States)

    Tiotsop, M.; Fotue, A. J.; Kenfack, S. C.; Fotsin, H. B.; Fai, L. C.

    2016-09-01

    In the following study, the time evolution of the quantum mechanical state of a magnetopolaron using the Pekar type variational method on the electric-LO-phonon was considered. A strong coupling of polaron in triangular RbCl quantum dot with Coulomb impurity was duly derived. The Eigen energies and the Eigen functions of the ground state and the first excited state were obtained respectively. The obtained system in a quantum dot was treated as a two-level quantum system qubit and the numerical calculations were performed. The relations of polaron life time, the probability density, the Coulomb binding parameter and the polar angle were derived.

  3. Electronic and Structural Properties of ABO3: Role of the B-O Coulomb Repulsions for Ferroelectricity

    Directory of Open Access Journals (Sweden)

    Kaoru Miura

    2011-01-01

    Full Text Available We have investigated the role of the Ti–O Coulomb repulsions in the appearance of the ferroelectric state in BaTiO3 as well as the role of the Zn–O Coulomb repulsions in BiZn0.5Ti0.5O3, using a first-principles calculation with optimized structures. In tetragonal BaTiO3, it is found that the Coulomb repulsions between Ti 3s and 3p states and O 2s and 2p states have an important role for the appearance of Ti ion displacement. In BiZn0.5Ti0.5O3, on the other hand, the stronger Zn–O Coulomb repulsions, which are due to the 3s, 3p, and 3d (d10 states of the Zn ion, have more important role than the Ti–O Coulomb repulsions for the appearance of the tetragonal structure. Our suggestion is consistent with the other ferroelectric perovskite oxides ABO3 in the appearance of tetragonal structures as well as rhombohedral structures.

  4. Gravitationally Consistent Halo Catalogs and Merger Trees for Precision Cosmology

    Science.gov (United States)

    Behroozi, Peter S.; Wechsler, Risa H.; Wu, Hao-Yi; Busha, Michael T.; Klypin, Anatoly A.; Primack, Joel R.

    2013-01-01

    We present a new algorithm for generating merger trees and halo catalogs which explicitly ensures consistency of halo properties (mass, position, and velocity) across time steps. Our algorithm has demonstrated the ability to improve both the completeness (through detecting and inserting otherwise missing halos) and purity (through detecting and removing spurious objects) of both merger trees and halo catalogs. In addition, our method is able to robustly measure the self-consistency of halo finders; it is the first to directly measure the uncertainties in halo positions, halo velocities, and the halo mass function for a given halo finder based on consistency between snapshots in cosmological simulations. We use this algorithm to generate merger trees for two large simulations (Bolshoi and Consuelo) and evaluate two halo finders (ROCKSTAR and BDM). We find that both the ROCKSTAR and BDM halo finders track halos extremely well; in both, the number of halos which do not have physically consistent progenitors is at the 1%-2% level across all halo masses. Our code is publicly available at http://code.google.com/p/consistent-trees. Our trees and catalogs are publicly available at http://hipacc.ucsc.edu/Bolshoi/.

  5. Electric Properties of One-Neutron Halo Nuclei in Halo EFT

    Science.gov (United States)

    Braun, Jonas; Hammer, Hans-Werner

    2017-03-01

    We exploit the separation of scales in weakly-bound nuclei to compute E2 transitions and electric form factors in a halo effective field theory (EFT) framework. The relevant degrees of freedom are the core and the halo neutron. The EFT expansion is carried out in powers of R_{core}/R_{halo}, where R_{core} and R_{halo} denote the length scales of the core and halo, respectively. We include the strong s-wave and d-wave interactions by introducing dimer fields. The dimer propagators are regulated by employing the power divergence subtraction scheme and matched to the effective range expansion in the respective channel. Electromagnetic interactions are included via minimal substitution in the Lagrangian. We demonstrate that, depending on the observable and respective partial wave, additional local gauge-invariant operators contribute in LO, NLO and higher orders.

  6. Evaluation of negative energy Coulomb (Whittaker) functions

    Science.gov (United States)

    Noble, C. J.

    2004-05-01

    This paper describes a code for evaluating exponentially decaying negative energy Coulomb functions and their first derivatives with respect to the radial variable. The functions, which correspond to Whittaker functions of the second kind, are obtained to high accuracy for a wide range of parameters using recurrence techniques. Program summaryTitle of program: whittaker_w Catalog identifier: ADSZ Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADSZ Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer: Cray T3E, Sun Ultra-5_10 sparc, Origin2000, Compaq EV67, IBM SP3, Toshiba 460CDT Operating systems under which the program has been tested: Windows NT4, Redhat Linux, SunOS 5.8 Programming language used: Fortran 95 Memory required to run with typical data: 500 KB Number of bytes in distributed program, including test data, etc.: 39728 Number of lines in distributed program, including test data, etc.: 2900 Distribution format: tar gzip file Nature of physical problem: The closed-channel components of the asymptotic radial wave function corresponding to electron or positron scattering by atomic or molecular ions may be expressed in terms of negative energy Coulomb functions. The scattering observables are obtained from S or T matrices which in turn are obtained by matching the radial and asymptotic wavefunctions at a finite radial point. Recent large scale scattering calculations have required accurate values of the Coulomb functions at smaller ρ values and larger negative η values than previous work. The present program is designed to extend the range of parameters for which the function may be calculated. Method of solution: Recurrence relations, power series expansion, numerical quadrature. Restrictions on the complexity of the problem: The program has been tested for the parameter ranges: 0< ρ⩽1000, | η|⩽120 and 0⩽ l⩽100. These ranges may, with appropriate scaling to avoid underflow and overflow, be

  7. Dependence of halo bias on mass and environment

    Science.gov (United States)

    Shi, Jingjing; Sheth, Ravi K.

    2018-01-01

    The simplest analyses of halo bias assume that halo mass alone determines halo clustering. However, if the large-scale environment is fixed, then halo clustering is almost entirely determined by environment, and is almost completely independent of halo mass. We show why. Our analysis is useful for studies that use the environmental dependence of clustering to constrain cosmological and galaxy formation models. It also shows why many correlations between galaxy properties and environment are merely consequences of the underlying correlations between haloes and their environments, and provides a framework for quantifying such inherited correlations.

  8. Plasmons in Dimensionally Mismatched Coulomb Coupled Graphene Systems

    DEFF Research Database (Denmark)

    Badalyan, S. M.; Shylau, A. A.; Jauho, Antti-Pekka

    2017-01-01

    We calculate the plasmon dispersion relation for Coulomb coupled metallic armchair graphene nanoribbons and doped monolayer graphene. The crossing of the plasmon curves, which occurs for uncoupled 1D and 2D systems, is split by the interlayer Coulomb coupling into a lower and an upper plasmon...... by varying the system parameters and be used in plasmonic applications....

  9. Antilocalization of Coulomb Blockade in a Ge-Si Nanowire

    DEFF Research Database (Denmark)

    Higginbotham, Andrew P.; Kuemmeth, Ferdinand; Larsen, Thorvald Wadum

    2014-01-01

    The distribution of Coulomb blockade peak heights as a function of magnetic field is investigated experimentally in a Ge-Si nanowire quantum dot. Strong spin-orbit coupling in this hole-gas system leads to antilocalization of Coulomb blockade peaks, consistent with theory. In particular, the peak...

  10. Coulomb Excitation of Neutron Deficient Sn-Isotopes using REX-ISOLDE

    CERN Multimedia

    Di julio, D D; Kownacki, J M; Marechal, F; Andreoiu, C; Siem, S; Perrot, F; Van duppen, P L E; Napiorkowski, P J; Iwanicki, J S

    2002-01-01

    It is proposed to study the evolution of the reduced transition probabilities, B(E2; 0$^{+} \\rightarrow$ 2$^{+}$), for neutron deficient Sn isotopes by Coulomb excitation in inverse kinematics using REX-ISOLDE and the MINIBALL detector array. Measurements of the reduced transition matrix element for the transition between the ground state and the first excited 2$^{+}$ state in light even-even Sn isotopes provide a means to study e.g. core polarization effects in the $^{100}$Sn core. Previous attempts to measure this quantity have been carried out using the decay of isomeric states populated in fusion evaporation reactions. We thus propose to utilize the unique opportunity provided by REX-ISOLDE, after the energy upgrade to 3.1 MeV/u, to use the more model-independent approach of Coulomb excitation to measure this quantity in a number of isotopes in this region.

  11. Simplistic Coulomb Forces in Molecular Dynamics

    DEFF Research Database (Denmark)

    Hansen, Jesper Schmidt; Schrøder, Thomas; Dyre, J. C.

    2012-01-01

    measures for the convergence of the Wolf method to the Ewald summation method. The SF approximation is also tested for the SPC/Fw model of liquid water at room temperature, showing good agreement with both the Wolf and the particle mesh Ewald methods; this confirms previous findings [Fennell, C. J......In this paper we compare the Wolf method to the shifted forces (SF) method for efficient computer simulation of bulk systems with Coulomb forces, taking results from the Ewald summation and particle mesh Ewald methods as representing the true behavior. We find that for the Hansen–McDonald molten...... salt model the SF approximation overall reproduces the structural and dynamical properties as accurately as does the Wolf method. It is shown that the optimal Wolf damping parameter depends on the property in focus and that neither the potential energy nor the radial distribution function are useful...

  12. Tabletop Nucleosynthesis Driven by Cluster Coulomb Explosion

    Science.gov (United States)

    Last, Isidore; Jortner, Joshua

    2006-10-01

    Coulomb explosion of completely ionized (CH4)n, (NH3)n, and (H2O)n clusters will drive tabletop nuclear reactions of protons with C6+12, N7+14, and O8+16 nuclei, extending the realm of nuclear reactions driven by ultraintense laser-heterocluster interaction. The realization for nucleosynthesis in exploding cluster beams requires complete electron stripping from the clusters (at laser intensities IM≥1019Wcm-2), the utilization of nanodroplets of radius 300 700 Å for vertical ionization, and the attainment of the highest energies for the nuclei (i.e., ˜30MeV for heavy nuclei and ˜3MeV for protons).

  13. Study on Coulomb explosions of ion mixtures

    CERN Document Server

    Boella, E; D'Angola, A; Coppa, G; Silva, L O

    2015-01-01

    The paper presents a theoretical work on the dynamics of Coulomb explosion for spherical nanoplasmas composed by two different ion species. Particular attention has been dedicated to study the energy spectra of the ions with the larger charge-to-mass ratio. The connection between the formation of shock shells and the energy spread of the ions has been the object of a detailed analysis, showing that under particular conditions the width of the asymptotic energy spectrum tends to become very narrow, which leads to a multi-valued ion phase-space. The conditions to generate a quasi mono-energetic ion spectrum have been rigorously demonstrated and verifed by numerical simulations, using a technique that, exploiting the spherical symmetry of the problem, allows one to obtain very accurate and precise results.

  14. Powerful Coulomb-drag thermoelectric engine

    Science.gov (United States)

    Daré, A.-M.; Lombardo, P.

    2017-09-01

    We investigate a thermoelectric nanoengine whose properties are steered by Coulomb interaction. The device whose design decouples charge and energy currents is made up of two interacting quantum dots connected to three different reservoirs. We show that, by tailoring the tunnel couplings, this setup can be made very attractive for energy-harvesting prospects, due to a delivered power that can be of the order of the quantum bound [R. S. Whitney, Phys. Rev. Lett. 112, 130601 (2014), 10.1103/PhysRevLett.112.130601; Entropy 18, 208 (2016), 10.3390/e18060208], with a concomitant fair efficiency. To unveil its properties beyond the sequential quantum master equation, we apply a nonequilibrium noncrossing approximation in the Keldysh Green's function formalism, and a quantum master equation that includes cotunneling processes. Both approaches are rather qualitatively similar in a large operating regime where sequential tunneling alone fails.

  15. Thermal decay of Coulomb blockade oscillations

    Science.gov (United States)

    Idrisov, Edvin G.; Levkivskyi, Ivan P.; Sukhorukov, Eugene V.

    2017-10-01

    We study transport properties and the charge quantization phenomenon in a small metallic island connected to the leads through two quantum point contacts (QPCs). The linear conductance is calculated perturbatively with respect to weak tunneling and weak backscattering at QPCs as a function of the temperature T and gate voltage. The conductance shows Coulomb blockade (CB) oscillations as a function of the gate voltage that decay with the temperature as a result of thermally activated fluctuations of the charge in the island. The regimes of quantum T ≪EC and thermal T ≫EC fluctuations are considered, where EC is the charging energy of an isolated island. Our predictions for CB oscillations in the quantum regime coincide with previous findings by Furusaki and Matveev [Phys. Rev. B 52, 16676 (1995), 10.1103/PhysRevB.52.16676]. In the thermal regime the visibility of Coulomb blockade oscillations decays with the temperature as √{T /EC }exp(-π2T /EC) , where the exponential dependence originates from the thermal averaging over the instant charge fluctuations, while the prefactor has a quantum origin. This dependence does not depend on the strength of couplings to the leads. The differential capacitance, calculated in the case of a single tunnel junction, shows the same exponential decay, however the prefactor is linear in the temperature. This difference can be attributed to the nonlocality of the quantum effects. Our results agree with the recent experiment [Nature (London) 536, 58 (2016), 10.1038/nature19072] in the whole range of the parameter T /EC .

  16. Shape determination in Coulomb excitation of $^{72}$Kr

    CERN Multimedia

    Reiter, P; Kruecken, R; Paul, E S; Wadsworth, R; Heenen, P

    Nuclei with oblate shapes at low spins are very special in nature because of their rarity. Both theoretical and experimental shape co-existence studies in the mass 70 region for near proton drip-line nuclei suggest $^{72}$Kr to be the unique case with oblate low-lying and prolate high-lying levels. However, there is no direct experimental evidence in the literature to date for the oblate nature predicted for the first 2$^+$ state in $^{72}$Kr. We propose to determine the sign of the spectroscopic quadrupole moment of this state via the re-orientation effect in a low-energy Coulomb excitation measurement. In the inelastic excitation of the 2$^+$ state in $^{72}$Kr beam of 3.1 MeV/u with an intensity of 800 pps at REX-ISOLDE impinging on $^{104}$Pd target, the re-orientation effect plays a significant role. The cross section measurement for the 2$^+$ state should thus allow the model-independent determination of the sign of the quadrupole moment unambiguously and will shed light on the co-existing prolate and o...

  17. Stability of BEC galactic dark matter halos

    Energy Technology Data Exchange (ETDEWEB)

    Guzmán, F.S.; Lora-Clavijo, F.D.; González-Avilés, J.J.; Rivera-Paleo, F.J., E-mail: guzman@ifm.umich.mx, E-mail: fadulora@ifm.umich.mx, E-mail: javiles@ifm.umich.mx, E-mail: friverap@ifm.umich.mx [Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio C-3, Cd. Universitaria, 58040 Morelia, Michoacán (Mexico)

    2013-09-01

    In this paper we show that spherically symmetric BEC dark matter halos, with the sin r/r density profile, that accurately fit galactic rotation curves and represent a potential solution to the cusp-core problem are unstable. We do this by introducing back the density profiles into the fully time-dependent Gross-Pitaevskii-Poisson system of equations. Using numerical methods to track the evolution of the system, we found that these galactic halos lose mass at an approximate rate of half of its mass in a time scale of dozens of Myr. We consider this time scale is enough as to consider these halos are unstable and unlikely to be formed. We provide some arguments to show that this behavior is general and discuss some other drawbacks of the model that restrict its viability.

  18. Charge Radii and Neutron Correlations in Helium Halo Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Papadimitriou, Georgios [ORNL; Kruppa, A. T. [Institute of Nuclear Research, Debrecen, Hungary; Michel, N. [University of Jyvaskyla; Nazarewicz, W. [University of Tennessee, Knoxville (UTK) & Oak Ridge National Laboratory (ORNL); Ploszajczak, M. [Grand Accelerateur National d' Ions Lourds (GANIL); Rotureau, J. [University of Arizona

    2011-01-01

    Within the complex-energy configuration interaction framework, we study correlations of valence neutrons to explain the behavior of charge radii in the neutron halo nuclei ^{6,8}He. We find that the experimentally observed decrease of the charge radius between ^{6}He and ^{8}He is caused by a subtle interplay between three effects: dineutron correlations, a spin-orbit contribution to the charge radius, and a core swelling effect. We demonstrate that two-neutron angular correlations in the 2^+}_{1} resonance of ^{6}He differ markedly from the ground-state correlations in ^{6,8}He.

  19. The dark halo of the Milky Way.

    Science.gov (United States)

    Alcock, C.

    2000-01-01

    Most of the matter in the Milky Way is invisible to astronomers. Precise numbers are elusive, but it appears that the dark component is 20 times as massive as the visible disk of stars and gas. This dark matter is distributed in space differently than the stars, forming a vast, diffuse halo, more spherical than disklike, which occupies more than 1000 times the volume of the disk of stars. The composition of this dark halo is unknown, but it may comprise a mixture of ancient, degenerate dwarf stars and exotic, hypothetical elementary particles.

  20. Complex artificial halos for the classroom

    Science.gov (United States)

    Selmke, Markus; Selmke, Sarah

    2016-07-01

    Halos represent a common and imposing atmospheric optics phenomenon whose displays are caused by tiny air-borne ice crystals. Their variety stems from a certain set of orientation classes to which these crystals belong. We present a robust and inexpensive device, made of modular components, that allows for the replication of most of these orientation classes in the laboratory. Under the illumination of light, the corresponding artificial halo counterparts emerge. The mechanical realization of this device allows a thorough understanding and demonstration of these beautiful atmospheric optics phenomena.

  1. Dark energy and extended dark matter halos

    Science.gov (United States)

    Chernin, A. D.; Teerikorpi, P.; Valtonen, M. J.; Dolgachev, V. P.; Domozhilova, L. M.; Byrd, G. G.

    2012-03-01

    The cosmological mean matter (dark and baryonic) density measured in the units of the critical density is Ωm = 0.27. Independently, the local mean density is estimated to be Ωloc = 0.08-0.23 from recent data on galaxy groups at redshifts up to z = 0.01-0.03 (as published by Crook et al. 2007, ApJ, 655, 790 and Makarov & Karachentsev 2011, MNRAS, 412, 2498). If the lower values of Ωloc are reliable, as Makarov & Karachentsev and some other observers prefer, does this mean that the Local Universe of 100-300 Mpc across is an underdensity in the cosmic matter distribution? Or could it nevertheless be representative of the mean cosmic density or even be an overdensity due to the Local Supercluster therein. We focus on dark matter halos of groups of galaxies and check how much dark mass the invisible outer layers of the halos are able to host. The outer layers are usually devoid of bright galaxies and cannot be seen at large distances. The key factor which bounds the size of an isolated halo is the local antigravity produced by the omnipresent background of dark energy. A gravitationally bound halo does not extend beyond the zero-gravity surface where the gravity of matter and the antigravity of dark energy balance, thus defining a natural upper size of a system. We use our theory of local dynamical effects of dark energy to estimate the maximal sizes and masses of the extended dark halos. Using data from three recent catalogs of galaxy groups, we show that the calculated mass bounds conform with the assumption that a significant amount of dark matter is located in the invisible outer parts of the extended halos, sufficient to fill the gap between the observed and expected local matter density. Nearby groups of galaxies and the Virgo cluster have dark halos which seem to extend up to their zero-gravity surfaces. If the extended halo is a common feature of gravitationally bound systems on scales of galaxy groups and clusters, the Local Universe could be typical or even

  2. Temperature-Dependent Ellipsometry Measurements of Partial Coulomb Energy in Superconducting Cuprates

    Science.gov (United States)

    Levallois, J.; Tran, M. K.; Pouliot, D.; Presura, C. N.; Greene, L. H.; Eckstein, J. N.; Uccelli, J.; Giannini, E.; Gu, G. D.; Leggett, A. J.; van der Marel, D.

    2016-07-01

    We performed an experimental study of the temperature and doping dependence of the energy-loss function of the bilayer and trilayer bismuth cuprates family. The primary aim is to obtain information on the energy stored in the Coulomb interaction between the conduction electrons, on the temperature dependence thereof, and on the change of Coulomb interaction when Cooper pairs are formed. We performed temperature-dependent ellipsometry measurements on several Bi2 Sr2 CaCu2 O8 -x single crystals: underdoped with Tc=60 , 70, and 83 K; optimally doped with Tc=91 K ; overdoped with Tc=84 , 81, 70, and 58 K; as well as optimally doped Bi2 Sr2 Ca2 Cu3 O10 +x with Tc=110 K . Our first observation is that, as the temperature drops through Tc, the loss function in the range up to 2 eV displays a change of temperature dependence as compared to the temperature dependence in the normal state. This effect at—or close to—Tc depends strongly on doping, with a sign change for weak overdoping. The size of the observed change in Coulomb energy, using an extrapolation with reasonable assumptions about its q dependence, is about the same size as the condensation energy that has been measured in these compounds. Our results therefore lend support to the notion that the Coulomb energy is an important factor for stabilizing the superconducting phase. Because of the restriction to small momentum, our observations do not exclude a possible significant contribution to the condensation energy of the Coulomb energy associated with the region of q around (π ,π ).

  3. Temperature-Dependent Ellipsometry Measurements of Partial Coulomb Energy in Superconducting Cuprates

    Directory of Open Access Journals (Sweden)

    J. Levallois

    2016-08-01

    Full Text Available We performed an experimental study of the temperature and doping dependence of the energy-loss function of the bilayer and trilayer bismuth cuprates family. The primary aim is to obtain information on the energy stored in the Coulomb interaction between the conduction electrons, on the temperature dependence thereof, and on the change of Coulomb interaction when Cooper pairs are formed. We performed temperature-dependent ellipsometry measurements on several Bi_{2}Sr_{2}CaCu_{2}O_{8-x} single crystals: underdoped with T_{c}=60, 70, and 83 K; optimally doped with T_{c}=91  K; overdoped with T_{c}=84, 81, 70, and 58 K; as well as optimally doped Bi_{2}Sr_{2}Ca_{2}Cu_{3}O_{10+x} with T_{c}=110  K. Our first observation is that, as the temperature drops through T_{c}, the loss function in the range up to 2 eV displays a change of temperature dependence as compared to the temperature dependence in the normal state. This effect at—or close to—T_{c} depends strongly on doping, with a sign change for weak overdoping. The size of the observed change in Coulomb energy, using an extrapolation with reasonable assumptions about its q dependence, is about the same size as the condensation energy that has been measured in these compounds. Our results therefore lend support to the notion that the Coulomb energy is an important factor for stabilizing the superconducting phase. Because of the restriction to small momentum, our observations do not exclude a possible significant contribution to the condensation energy of the Coulomb energy associated with the region of q around (π,π.

  4. Substructure in the Stellar Halos of the Aquarius Simulations

    NARCIS (Netherlands)

    Helmi, Amina; Cooper, A. P.; White, S. D. M.; Cole, S.; Frenk, C. S.; Navarro, J. F.

    2011-01-01

    We characterize the substructure in the simulated stellar halos of Cooper et al. which were formed by the disruption of satellite galaxies within the cosmological N-body simulations of galactic halos of the Aquarius project. These stellar halos exhibit a wealth of tidal features: broad overdensities

  5. Derivation of the nonlinear Schrödinger equation with a Coulomb potential

    CERN Document Server

    Erdos, L

    2001-01-01

    We consider the time evolution of $N$ bosonic particles interacting via a mean field Coulomb potential. Suppose the initial state is a product wavefunction. We show that at any finite time the correlation functions factorize in the limit $N \\to \\infty$. Furthermore, the limiting one particle density matrix satisfies the nonlinear Hartree equation. The key ingredients are the uniqueness of the BBGKY hierarchy for the correlation functions and a new apriori estimate for the many-body Schrödinger equations.

  6. Current conservation and ratio rules in magnetic metals with Coulomb repulsion

    OpenAIRE

    Odagiri, Kosuke

    2011-01-01

    From general considerations of spin-symmetry breaking associated with (anti-)ferromagnetism in metallic systems with Coulomb repulsion, we obtain interesting and simple all-order rules involving the ratios of the densities of states. These are exact for ferromagnetism under reasonable conditions, and nearly exact for anti-ferromagnetism. In the case of ferromagnetism, the comparison with the available experimental and theoretical numbers yields favourable results.

  7. Elastic scattering measurements of {sup 4},{sup 6}He+ {sup 58}Ni at energies near the Coulomb barrier

    Energy Technology Data Exchange (ETDEWEB)

    Morcelle, V.; Lichtenthaeler, R.; Guimaraes, V.; Lepine-Szily, A.; Faria, P.N.; Camargo, O.; Barioni, A.; Mendes Junior, D.R.; Condori, R.P.; Zamora, J.C.; Morais, M.C.; Pires, K.C.C.; Scarduelli, V.; Leistenschneider, E.; Zagatto, V.A.B. [Universidade de Sao Paulo (USP), SP (Brazil); Shorto, J.M.B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Full text: Elastic scattering angular distributions and total reaction cross sections of the neutron halo projectile nucleus {sup 6}He on a {sup 58}Ni target at energies around the Coulomb barrier are presented. The measurements were obtained at pelletron accelerator at the University of Sao Paulo (Brazil) and the {sup 6}He radioactive secondary beam has been produced in the RIBRAS system through the {sup 9}Be({sup 7}Li, {sup 6}He){sup 10}B production reaction. The elastic scattering angular distributions obtained at E{sub Lab}= 12.5, 16.5 and 21.0 MeV, have been analysed by using optical model, using the Sao Paulo and Wood-Saxon potentials and the respective total reaction cross sections have been obtained. The total reaction cross sections have been reduced using the Wong formula and the UFF equation and are compared with other stable and unstable systems from the literature. (author)

  8. Description of Charge Radii in Halo Nuclei Within the Gamow Shell Model

    Energy Technology Data Exchange (ETDEWEB)

    Papadimitriou, G. [University of Tennessee, Knoxville (UTK) & Oak Ridge National Laboratory (ORNL); Michel, N. [CEA, Saclay, France; Nazarewicz, W. [University of Tennessee, Knoxville (UTK) & Oak Ridge National Laboratory (ORNL); Ploszajczak, M. [Grand Accelerateur National d' Ions Lourds (GANIL); Rotureau, J. [University of Arizona

    2009-01-01

    The charge radius of the halo nucleus 6He is studied within the framework of the Gamow Shell Model (GSM). The charge radius carries information about the size of the neutron halo, the recoil of the core, and the effective interaction between valence nucleons. The motivation for this work stems from the precise measurements of charge radii in 6,8He, 11Li, and 11Be. For these weakly bound nuclei, the proper treatment of the particle continuum turns out to be crucial. The GSM is a tool that can properly account for the coupling of the continuum space (of both resonant and scattering character) with that of the bound states. We use a GSM Hamiltonian written explicitly in intrinsic coordinates. This guarantees that the core recoil effect is properly described and the spurious center-of-mass motion is removed. According to our calculations for 6He, the charge radius is very sensitive to (i) the halo extent given by the two-neutron separation energy of the system, and (ii) the p3/2 occupation. In particular, we show that the two-body wave function of halo neutrons in 6He should contain ~91% of a p3/2 partial wave to reproduce the charge radius. This observation will help us to construct a GSM effective interaction on the interface of p and sd shells that is needed to describe other halo systems.

  9. Halo white dwarfs in the Gaia era

    NARCIS (Netherlands)

    van Oirschot, P.; Nelemans, G.; Pols, O.; Helmi, A.; Tolstoy, E.; Brown, A. G. A.; Pugliese, G.; de Koter, A.; Wijburg, M.

    The Galactic Halo is the oldest and most metal-poor component of the Galaxy. It is studied in detail both to understand the formation and evolution of galaxies, as well as the formation and evolution of the earliest stars. With this aim in mind, we plan to couple a population synthesis model to a

  10. New (theoretical) Perspectives on the Galactic Halo

    NARCIS (Netherlands)

    Helmi, A.; Turon, C; Meynadier, F; Arenou, F

    1 discuss recent progress in our understanding of the formation of the stellar halo of the Milky Way in the context of the concordance cosmological model. The Gaia mission will provide unique insights especially into the early assembly of the Galaxy and likely be key in unraveling its merger

  11. Reflection halo twins : subsun and supersun

    NARCIS (Netherlands)

    Konnen, Gunther P.; van der Werf, Siebren Y.

    2011-01-01

    From an aircraft, a short distinct vertical structure is sometimes seen above the setting sun. Such a feature can be understood as a halo, which is the counterpart of the well-known subsun. Whereas the latter arises from reflections off basal faces of plate-oriented ice crystals illuminated from

  12. Streams in the Aquarius stellar haloes

    NARCIS (Netherlands)

    Gomez, Facundo A.; Helmi, Amina; Cooper, Andrew P.; Frenk, Carlos S.; Navarro, Julio F.; White, Simon D. M.

    2013-01-01

    We use the very high resolution, fully cosmological simulations from the Aquarius Project, coupled to a semi-analytical model of galaxy formation, to study the phase-space distribution of halo stars in 'solar neighbourhood' like volumes. We find that this distribution is very rich in substructure in

  13. Ionic Coulomb Blockade and Resonant Conduction in Biological Ion Channels

    CERN Document Server

    Kaufman, I Kh; Eisenberg, R S

    2014-01-01

    The conduction and selectivity of calcium/sodium ion channels are described in terms of ionic Coulomb blockade, a phenomenon based on charge discreteness and an electrostatic model of an ion channel. This novel approach provides a unified explanation of numerous observed and modelled conductance and selectivity phenomena, including the anomalous mole fraction effect and discrete conduction bands. Ionic Coulomb blockade and resonant conduction are similar to electronic Coulomb blockade and resonant tunnelling in quantum dots. The model is equally applicable to other nanopores.

  14. Coulomb implosion mechanism of negative ion acceleration in laser plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, T., E-mail: nakamura.tatsufumi@jaea.go.j [Kansai Photon Science Institute (JAEA), 8-1 Umemidai, Kizugawa, Kyoto 619-0215 (Japan); Fukuda, Y.; Yogo, A.; Tampo, M.; Kando, M.; Hayashi, Y.; Kameshima, T.; Pirozhkov, A.S.; Esirkepov, T.Zh.; Pikuz, T.A.; Faenov, A.Ya.; Daido, H.; Bulanov, S.V. [Kansai Photon Science Institute (JAEA), 8-1 Umemidai, Kizugawa, Kyoto 619-0215 (Japan)

    2009-07-06

    Coulomb implosion mechanism of the negatively charged ion acceleration in laser plasmas is proposed. When a cluster target is irradiated by an intense laser pulse and the Coulomb explosion of positively charged ions occurs, the negative ions are accelerated inward. The maximum energy of negative ions is several times lower than that of positive ions. We present the theoretical description and Particle-in-Cell simulation results of the Coulomb implosion mechanism, and show the evidence of the negative ion acceleration in the experiments on the high intensity laser pulse interaction with the cluster targets.

  15. Coulomb breakup of the neutron-rich isotopes {sup 15}C and {sup 17}C

    Energy Technology Data Exchange (ETDEWEB)

    Datta Pramanik, U.; Aumann, T.; Boretzky, K.; Carlson, B.V.; Cortina, D.; Elze, Th.W.; Emling, H.; Geissel, H.; Gruenschloss, A.; Hellstroem, M.; Ilievski, S.; Kratz, J.V.; Kulessa, R.; Leifels, Y.; Leistenschneider, A.; Lubkiewicz, E.; Muenzenberg, G.; Reiter, P.; Simon, H.; Suemmerer, K.; Wajda, E.; Walus, W

    2003-01-02

    Coulomb breakup of unstable neutron-rich carbon isotopes {sup 15,17}C has been studied at energies around {approx}500-600 MeV/nucleon. Non-resonant low-lying dipole strength is observed in these isotopes which can be explained by a direct breakup mechanism. In addition to the decay neutron from excited projectile, {gamma}-rays emitted from excited fragments after Coulomb breakup are measured in coincidence, giving access to quantitative spectroscopic information. The spectroscopic factor deduced for a valence neutron occupying the s{sub 1/2} level in the {sup 15}C ground state is consistent with that obtained earlier from (d,p) transfer reactions. The analysis for Coulomb breakup of {sup 17}C shows that most of the cross section yields the {sup 16}C core in excited states. The predominant ground-state configuration of {sup 17}C is found to be {sup 16}C(2{sup +}) x {nu}{sub sd}.

  16. Asymptotic three-particle approach to the Coulomb breakup process {sup 6}Li + {sup 208}Pb → {sup 208}Pb + α + d

    Energy Technology Data Exchange (ETDEWEB)

    Igamov, S. B., E-mail: igamov@inp.uz [Uzbek Academy of Sciences, Institute of Nuclear Physics (Uzbekistan)

    2017-03-15

    On the basis of the distorted-wave method, experimental data on the triple-differential cross section for the Coulomb breakup reaction {sup 208}Pb({sup 6}Li, αd){sup 208}Pb are analyzed by employing a correct expression for the final-state {sup 208}Pb–α–d three-particle Coulomb wave function. It is shown that the effect of final-state three-particle Coulomb dynamics can be used to assess the kinematical condition of clean Coulomb breakup processes. New values of the astrophysical S factor for the direct-radiative-capture reaction d(α, γ){sup 6}Li at ultralow energies in the range of 70 ≤ E{sub dα} ≤ 600 keV were extracted from experimental data. The value of S(0) = 1.60 ± 0.17 MeV nb was obtained.

  17. Detectability of the effect of Inflationary non-Gaussianity on halo bias

    CERN Document Server

    Verde, Licia

    2009-01-01

    We consider the description of the clustering of halos for physically-motivated types of non-Gaussian initial conditions. In particular we include non-Gaussianity of the type arising from single field slow-roll, multi fields, curvaton (local type), higher-order derivative-type (equilateral), vacuum-state modifications (enfolded-type) and horizon-scale GR corrections type. We show that large-scale halo bias is a very sensitive tool to probe non-Gaussianity, potentially leading, for some planned surveys, to a detection of non-Gaussianity arising from horizon-scale GR corrections.

  18. The Impact of Theoretical Uncertainties in the Halo Mass Function and Halo

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hao-Yi; Zentner, Andrew R.; Wechsler, Risa H.; /KIPAC, Menlo Park /SLAC /Pittsburgh U. /KIPAC, Menlo Park /SLAC

    2010-06-04

    We study the impact of theoretical uncertainty in the dark matter halo mass function and halo bias on dark energy constraints from imminent galaxy cluster surveys. We find that for an optical cluster survey like the Dark Energy Survey, the accuracy required on the predicted halo mass function to make it an insignificant source of error on dark energy parameters is {approx}1%. The analogous requirement on the predicted halo bias is less stringent ({approx}5%), particularly if the observable-mass distribution can be well constrained by other means. These requirements depend upon survey area but are relatively insensitive to survey depth. The most stringent requirements are likely to come from a survey over a significant fraction of the sky that aims to observe clusters down to relatively low mass, M{sub th}{approx} 10{sup 13.7} h{sup -1} M{sub sun}; for such a survey, the mass function and halo bias must be predicted to accuracies of {approx}0.5% and {approx}1%, respectively. These accuracies represent a limit on the practical need to calibrate ever more accurate halo mass and bias functions. We find that improving predictions for the mass function in the low-redshift and low-mass regimes is the most effective way to improve dark energy constraints.

  19. Parametrizing the stellar haloes of galaxies

    Science.gov (United States)

    D'Souza, Richard; Kauffman, Guinevere; Wang, Jing; Vegetti, Simona

    2014-09-01

    We study the stellar haloes of galaxies out to 70-100 kpc as a function of stellar mass and galaxy type by stacking aligned r- and g-band images from a sample of 45 508 galaxies from Sloan Digital Sky Survey Data Release 9 in the redshift range 0.06 ≤ z ≤ 0.1 and in the mass range 1010.0 M⊙ < M* < 1011.4 M⊙. We derive surface brightness profiles to a depth of almost μr ˜ 32 mag arcsec-2. We find that the ellipticity of the stellar halo is a function of galaxy stellar mass and that the haloes of high-concentration galaxies are more elliptical than those of low-concentration galaxies. Where the g - r colour of the stellar halo can be measured, we find that the stellar light is always bluer than in the main galaxy. The colour of the stellar halo is redder for more massive galaxies. We further demonstrate that the full two-dimensional surface intensity distribution of our galaxy stacks can only be fit through multicomponent Sérsic models. Using the fraction of light in the outer component of the models as a proxy for the fraction of accreted stellar light, we show that this fraction is a function of stellar mass and galaxy type. The fraction of accreted stellar light rises from 30 to 70 per cent and from 2 to 25 per cent for high- and low-concentration galaxies, respectively, over the mass range 1010.0-1011.4 M⊙.

  20. Shakeoff Ionization near the Coulomb Barrier Energy

    Science.gov (United States)

    Sharma, Prashant; Nandi, T.

    2017-11-01

    We measure the projectile K x-ray spectra as a function of the beam energies around the Coulomb barrier in different collision systems. The energy is scanned in small steps around the barrier aiming to explore the nuclear effects on the elastically scattered projectile ions. The variation of the projectile x-ray energy with the ion-beam energies exhibits an unusual increase in between the interaction barrier and fusion barrier energies. This additional contribution to the projectile ionization can be attributed to the shakeoff of outer-shell electrons of the projectile ions due to the sudden nuclear recoil (˜10-21 sec ) caused by the attractive nuclear potential, which gets switched on near the interaction barrier energy. In the sudden approximation limit, the theoretical shakeoff probability calculation due to the nuclear recoil explains the observed data well. In addition to its fundamental interest, such processes can play a significant role in dark matter detection through the possible mechanism of x-ray emissions, where the weakly interacting massive particle-nucleus elastic scattering can lead to the nuclear-recoil-induced inner-shell vacancy creations. Furthermore, the present work may provide new prospects for atomic physics research at barrier energies as well as provide a novel technique to perform barrier distribution studies for two-body systems.

  1. Correlation functions of Coulomb branch operators

    Energy Technology Data Exchange (ETDEWEB)

    Gerchkovitz, Efrat [Weizmann Institute of Science,Rehovot 76100 (Israel); Gomis, Jaume [Perimeter Institute for Theoretical Physics,Waterloo, ON N2L 2Y5 (Canada); Ishtiaque, Nafiz [Perimeter Institute for Theoretical Physics,Waterloo, ON N2L 2Y5 (Canada); Department of Physics, University of Waterloo,Waterloo, ON N2L 3G1 (Canada); Karasik, Avner; Komargodski, Zohar [Weizmann Institute of Science,Rehovot 76100 (Israel); Pufu, Silviu S. [Joseph Henry Laboratories, Princeton University,Princeton, NJ 08544 (United States)

    2017-01-24

    We consider the correlation functions of Coulomb branch operators in four-dimensional N=2 Superconformal Field Theories (SCFTs) involving exactly one anti-chiral operator. These extremal correlators are the “minimal' non-holomorphic local observables in the theory. We show that they can be expressed in terms of certain determinants of derivatives of the four-sphere partition function of an appropriate deformation of the SCFT. This relation between the extremal correlators and the deformed four-sphere partition function is non-trivial due to the presence of conformal anomalies, which lead to operator mixing on the sphere. Evaluating the deformed four-sphere partition function using supersymmetric localization, we compute the extremal correlators explicitly in many interesting examples. Additionally, the representation of the extremal correlators mentioned above leads to a system of integrable differential equations. We compare our exact results with previous perturbative computations and with the four-dimensional tt{sup ∗} equations. We also use our results to study some of the asymptotic properties of the perturbative series expansions we obtain in N=2 SQCD.

  2. Considerations on elliptical failure envelope associated to Mohr-Coulomb criterion

    Science.gov (United States)

    Comanici, A. M.; Barsanescu, P. D.

    2016-08-01

    Mohr-Coulomb theory is mostly used in civil engineering as it is suitable for soils, rock, concretes, etc., meaning that the theory is generally used for brittle facture of the materials, but there are cases when it matches ductile behaviour also. The failure envelope described by the Mohr-Coulomb criterion is not completely accurate to the real yield envelope. The ductile or brittle behaviour of materials could not be incorporated in a linear envelope suggested by classic stress state theories and so, there have been a number of authors who have refined the notion of yield envelope so that it would fit better to the actual behaviour of materials. The need of a realistic yield envelope comes from the demand that the failure state should be able to be predicted in a fair manner and with as little errors as possible. Of course, certain criteria will be closer to the actual situation, but there is a constant need to unify and refine the limit stress theories in order to avoid problems as defining boundaries of application areas on numerical programs. Mohr-Coulomb's yield envelope is the most used one on programs, can be reduced to Tresca theory when the materials are conducting a ductile behaviour and has a linear simplified form. The paper presents some considerations with respect to the elliptical failure envelope correlated to the Mohr-Coulomb theory. The equations have been rewritten for triaxial situation to describe a more accurate state of stress that is encountered under real conditions in materials. Using the Mohr's circles to define the yield envelope, the calculus has been made in in order to determine the yield stress at tensile tests

  3. What is the Milky Way outer halo made of?. High resolution spectroscopy of distant red giants

    Science.gov (United States)

    Battaglia, G.; North, P.; Jablonka, P.; Shetrone, M.; Minniti, D.; Díaz, M.; Starkenburg, E.; Savoy, M.

    2017-12-01

    In a framework where galaxies form hierarchically, extended stellar haloes are predicted to be an ubiquitous feature around Milky Way-like galaxies and to consist mainly of the shredded stellar component of smaller galactic systems. The type of accreted stellar systems are expected to vary according to the specific accretion and merging history of a given galaxy, and so is the fraction of stars formed in situ versus accreted. Analysis of the chemical properties of Milky Way halo stars out to large Galactocentric radii can provide important insights into the properties of the environment in which the stars that contributed to the build-up of different regions of the Milky Way stellar halo formed. In this work we focus on the outer regions of the Milky Way stellar halo, by determining chemical abundances of halo stars with large present-day Galactocentric distances, >15 kpc. The data-set we acquired consists of high resolution HET/HRS, Magellan/MIKE and VLT/UVES spectra for 28 red giant branch stars covering a wide metallicity range, -3.1 ≲ [Fe/H] ≲-0.6. We show that the ratio of α-elements over Fe as a function of [Fe/H] for our sample of outer halo stars is not dissimilar from the pattern shown by MW halo stars from solar neighborhood samples. On the other hand, significant differences appear at [Fe/H] ≳-1.5 when considering chemical abundance ratios such as [Ba/Fe], [Na/Fe], [Ni/Fe], [Eu/Fe], [Ba/Y]. Qualitatively, this type of chemical abundance trends are observed in massive dwarf galaxies, such as Sagittarius and the Large Magellanic Cloud. This appears to suggest a larger contribution in the outer halo of stars formed in an environment with high initial star formation rate and already polluted by asymptotic giant branch stars with respect to inner halo samples. Based on ESO program 093.B-0615(A).Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University

  4. Characteristic time for halo current growth and rotation

    Energy Technology Data Exchange (ETDEWEB)

    Boozer, Allen H., E-mail: ahb17@columbia.edu [Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States)

    2015-10-15

    A halo current flows for part of its path through the plasma edge and for part through the chamber walls and during tokamak disruptions can be as large as tenths of the plasma current. The primary interest in halo currents is the large force that they can exert on machine components particularly if the toriodal rotation of the halo current resonates with a natural oscillation frequency of the tokamak device. Halo currents arise when required to slow down the growth of a kink that is too unstable to be stabilized by the chamber walls. The width of the current channel in the halo plasma is comparable to the amplitude of the kink, and the halo current grows linearly, not exponentially, in time. The current density in the halo is comparable to that of the main plasma body. The rocket force due to plasma flowing out of the halo and recombining on the chamber walls can cause the non-axisymmetric magnetic structure produced by the kink to rotate toroidally at a speed comparable to the halo speed of sound. Gerhardt's observations of the halo current in NSTX shot 141 687 [Nucl. Fusion 53, 023005 (2013)] illustrate many features of the theory of halo currents and are discussed as a summary of the theory.

  5. Do nuclei go pear-shaped? Coulomb excitation of 220Rn and 224Ra at REX-ISOLDE (CERN

    Directory of Open Access Journals (Sweden)

    Scheck M.

    2015-01-01

    Full Text Available The IS475 collaboration conducted Coulomb-excitation experiments with post-accelerated radioactive 220Rn and 224Ra beams at the REX-ISOLDE facility. The beam particles (Ebeam: 2.83 MeV/u were Coulomb excited using 60Ni, 114Cd, and 120Sn scattering targets. De-excitation γ-rays were detected employing the Miniball array and scattered particles were detected in a silicon detector. Exploiting the Coulomb-excitation code GOSIA for each nucleus several matrix elements could be obtained from the measured γ-ray yields. The extracted ‹3−||E3||0+› matrix element allows for the conclusion that, while 220Rn represents an octupole vibrational system, 224Ra has already substantial octupole correlations in its ground state. This finding has implications for the search of CP-violating Schiff moments in the atomic systems of the adjacent odd-mass nuclei.

  6. Dynamics of the Disruption Halo Current Toroidal Asymmetry in NSTX

    Energy Technology Data Exchange (ETDEWEB)

    S.P. Gerhardt

    2012-09-27

    This paper describes the dynamics of disruption halo current non-axisymmetries in the lower divertor of the National Spherical Torus Experiment [M. Ono, et al. Nuclear Fusion 40, 557 (2000)]. While. The halo currents typically have a strongly asymmetric structure where they enter the divertor floor, and this asymmetry has been observed to complete up to 7 toroidal revolutions over the duration of the halo current pulse. However, the rotation speed and toroidal extend of the asymmetry can vary significantly during the pulse. The rotation speed, halo current pulse duration, and total number of revolutions tend to be smaller in cases with large halo currents. The halo current pattern is observed to become toroidally symmetric at the end of the halo current pulse. It is proposed that this symmeterization is due to the loss of most or all of the closed field line geometry in the final phase of the vertical displacement event.

  7. ORIGAMI: DELINEATING HALOS USING PHASE-SPACE FOLDS

    Energy Technology Data Exchange (ETDEWEB)

    Falck, Bridget L.; Neyrinck, Mark C.; Szalay, Alexander S. [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States)

    2012-08-01

    We present the ORIGAMI method of identifying structures, particularly halos, in cosmological N-body simulations. Structure formation can be thought of as the folding of an initially flat three-dimensional manifold in six-dimensional phase space. ORIGAMI finds the outer folds that delineate these structures. Halo particles are identified as those that have undergone shell-crossing along three orthogonal axes, providing a dynamical definition of halo regions that is independent of density. ORIGAMI also identifies other morphological structures: particles that have undergone shell-crossing along 2, 1, or 0 orthogonal axes correspond to filaments, walls, and voids, respectively. We compare this method to a standard friends-of-friends halo-finding algorithm and find that ORIGAMI halos are somewhat larger, more diffuse, and less spherical, though the global properties of ORIGAMI halos are in good agreement with other modern halo-finding algorithms.

  8. Using Tidal Tails to Probe Dark Matter Halos

    Science.gov (United States)

    Mihos, Chris; Dubinski, John; Hernquist, Lars

    1995-03-01

    We present a series of numerical simulations of merging galaxies to explore the effect of differing halo mass distributions on the morphology of tidal tails. We employ composite disk/bulge/halo galaxy models which span a range of halo properties from low mass, compact halos to very massive, extended halos, and possess identically flat rotation curves inside a few disk scale lengths. These merger experiments are performed with a range of impact parameters, inclinations and mass ratios for the galaxies as well. Our simulations indicate that even under the most favorable conditions, galaxies with extended dark matter halos produce very anemic tidal tails when merging. In light of several observed mergers which sport prominent tidal tails --- e.g., NGC 7252, NGC 4038/39 (``The Antennae"), NGC 4676, and most spectacularly IRAS 19254-7245 (``The Superantennae") --- our results suggest that galaxy halos may be significantly more compact and less massive than expected in Omega =1 cosmological scenarios.

  9. Analysis and results of the 104Sn Coulomb excitation experiment

    Science.gov (United States)

    Guastalla, G.; DiJulio, D. D.; Górska, M.; Cederkäll, J.; Boutachkov, P.; Golubev, P.; Pietri, S.; Grawe, H.; Nowacki, F.; Algora, A.; Ameil, F.; Arici, T.; Atac, A.; Bentley, M. A.; Blazhev, A.; Bloor, D.; Brambilla, S.; Braun, N.; Camera, F.; Domingo Pardo, C.; Estrade, A.; Farinon, F.; Gerl, J.; Goel, N.; Grȩbosz, J.; Habermann, T.; Hoischen, R.; Jansson, K.; Jolie, J.; Jungclaus, A.; Kojouharov, I.; Knoebel, R.; Kumar, R.; Kurcewicz, J.; Kurz, N.; Lalović, N.; Merchan, E.; Moschner, K.; Naqvi, F.; Nara Singh, B. S.; Nyberg, J.; Nociforo, C.; Obertelli, A.; Pfützner, M.; Pietralla, N.; Podolyák, Z.; Prochazka, A.; Ralet, D.; Reiter, P.; Rudolph, D.; Schaffner, H.; Schirru, F.; Scruton, L.; Swaleh, T.; Taprogge, J.; Wadsworth, R.; Warr, N.; Weick, H.; Wendt, A.; Wieland, O.; Winfield, J. S.; Wollersheim, H. J.

    2014-09-01

    The analysis of the Coulomb excitation experiment conducted on 104Sn required a strict selection of the data in order to reduce the large background present in the γ-ray energy spectra and identify the γ-ray peak corresponding to the Coulomb excitation events. As a result the B(E2; 0+ → 2+) value could be extracted, which established the downward trend towards 100Sn and therefore the robustness of the N=Z=50 core against quadrupole excitations.

  10. Optically induced structural phase transitions in ion Coulomb crystals

    DEFF Research Database (Denmark)

    Horak, Peter; Dantan, Aurelien Romain; Drewsen, Michael

    2012-01-01

    We investigate numerically the structural dynamics of ion Coulomb crystals confined in a three-dimensional harmonic trap when influenced by an additional one-dimensional optically induced periodical potential. We demonstrate that transitions between thermally excited crystal structures, such as b......We investigate numerically the structural dynamics of ion Coulomb crystals confined in a three-dimensional harmonic trap when influenced by an additional one-dimensional optically induced periodical potential. We demonstrate that transitions between thermally excited crystal structures...

  11. Effect of Coulomb correlation on charge transport in disordered organic semiconductors

    Science.gov (United States)

    Liu, Feilong; van Eersel, Harm; Xu, Bojian; Wilbers, Janine G. E.; de Jong, Michel P.; van der Wiel, Wilfred G.; Bobbert, Peter A.; Coehoorn, Reinder

    2017-11-01

    Charge transport in disordered organic semiconductors, which is governed by incoherent hopping between localized molecular states, is frequently studied using a mean-field approach. However, such an approach only considers the time-averaged occupation of sites and neglects the correlation effect resulting from the Coulomb interaction between charge carriers. Here, we study the charge transport in unipolar organic devices using kinetic Monte Carlo simulations and show that the effect of Coulomb correlation is already important when the charge-carrier concentration is above 10-3 per molecular site and the electric field is smaller than 108 V/m. The mean-field approach is then no longer valid, and neglecting the effect can result in significant errors in device modeling. This finding is supported by experimental current density-voltage characteristics of ultrathin sandwich-type unipolar poly(3-hexylthiophene) (P3HT) devices, where high carrier concentrations are reached.

  12. Coulomb singularity in the transverse momentum distribution for strong-field single ionization

    Energy Technology Data Exchange (ETDEWEB)

    Rudenko, A; Zrost, K; Ergler, Th; Voitkiv, A B; Najjari, B; Jesus, V L B de; Feuerstein, B; Schroeter, C D; Moshammer, R; Ullrich, J [Max-Planck-Institut fuer Kernphysik, D-69029 Heidelberg (Germany)

    2005-06-14

    We present high-resolution momentum distributions of ions and electrons created in single ionization of He, Ne and Ar targets by intense (0.15-2 PW cm{sup -2}) short-pulsed (25 fs) linearly polarized laser fields in the direction perpendicular to the polarization. Instead of a Gaussian shape predicted by standard tunnelling theory, the experimental data exhibit a sharp cusp-like peak at zero transverse momentum. The comparison of experimental data with (i) calculations performed within the strong-field approximation employing a Coulomb-Volkov wavefunction to model the final electron state and (ii) results of recent semiclassical calculations, shows that the 'cusp' appears due to the long-range Coulomb interaction between the emitted electron and the remaining ion. A similar structure was previously observed for ion-atom collisions. (letter to the editor)

  13. Coulomb excitation of the two proton-hole nucleus $^{206}$Hg

    CERN Multimedia

    We propose to use Coulomb excitation of the single magic two-proton-hole nucleus $^{206}$Hg. In a single-step excitation both the first 2$^{+}$ and the highly collective octupole 3$^{-}$ states will be populated. Thus, information on both quadrupole and octupole collectivity will be gained in this neutron-rich nucleus. Due to the high beam intensity, we will be able to observe multi-step Coulomb excitation as well, providing further test on theoretical calculations. The results will be used to improve the predictive power of the shell model for more exotic nuclei as we move to lighter N=126 nuclei. The experiment will use the new HIE-ISOLDE facility and the MINIBALL array, and will take advantage of the recently developed $^{206}$Hg beam from the molten lead target.

  14. Coulomb-explosion imaging of concurrent CH2BrI photodissociation dynamics

    Science.gov (United States)

    Burt, Michael; Boll, Rebecca; Lee, Jason W. L.; Amini, Kasra; Köckert, Hansjochen; Vallance, Claire; Gentleman, Alexander S.; Mackenzie, Stuart R.; Bari, Sadia; Bomme, Cédric; Düsterer, Stefan; Erk, Benjamin; Manschwetus, Bastian; Müller, Erland; Rompotis, Dimitrios; Savelyev, Evgeny; Schirmel, Nora; Techert, Simone; Treusch, Rolf; Küpper, Jochen; Trippel, Sebastian; Wiese, Joss; Stapelfeldt, Henrik; de Miranda, Barbara Cunha; Guillemin, Renaud; Ismail, Iyas; Journel, Loïc; Marchenko, Tatiana; Palaudoux, Jérôme; Penent, Francis; Piancastelli, Maria Novella; Simon, Marc; Travnikova, Oksana; Brausse, Felix; Goldsztejn, Gildas; Rouzée, Arnaud; Géléoc, Marie; Geneaux, Romain; Ruchon, Thierry; Underwood, Jonathan; Holland, David M. P.; Mereshchenko, Andrey S.; Olshin, Pavel K.; Johnsson, Per; Maclot, Sylvain; Lahl, Jan; Rudenko, Artem; Ziaee, Farzaneh; Brouard, Mark; Rolles, Daniel

    2017-10-01

    The dynamics following laser-induced molecular photodissociation of gas-phase CH2BrI at 271.6 nm were investigated by time-resolved Coulomb-explosion imaging using intense near-IR femtosecond laser pulses. The observed delay-dependent photofragment momenta reveal that CH2BrI undergoes C-I cleavage, depositing 65.6% of the available energy into internal product states, and that absorption of a second UV photon breaks the C-Br bond of CH2Br . Simulations confirm that this mechanism is consistent with previous data recorded at 248 nm, demonstrating the sensitivity of Coulomb-explosion imaging as a real-time probe of chemical dynamics.

  15. A new device for combined Coulomb excitation and isomeric conversion electron spectroscopy with fast fragmentation beams

    Energy Technology Data Exchange (ETDEWEB)

    Clement, E. [CEA Saclay, DSM/DAPNIA/SPhN, F-91191 Gif-sur-Yvette (France); GANIL, BP-5027, F-14076 Caen Cedex (France); Goergen, A. [CEA Saclay, DSM/DAPNIA/SPhN, F-91191 Gif-sur-Yvette (France)], E-mail: andreas.goergen@cea.fr; Korten, W. [CEA Saclay, DSM/DAPNIA/SPhN, F-91191 Gif-sur-Yvette (France); Buerger, A. [CEA Saclay, DSM/DAPNIA/SPhN, F-91191 Gif-sur-Yvette (France); Helmholtz-Institut fuer Strahlen- und Kernphysik, Universitaet Bonn, D-53115 Bonn (Germany); Chatillon, A.; Le Coz, Y.; Theisen, Ch. [CEA Saclay, DSM/DAPNIA/SPhN, F-91191 Gif-sur-Yvette (France); Zielinska, M. [CEA Saclay, DSM/DAPNIA/SPhN, F-91191 Gif-sur-Yvette (France); Heavy Ion Laboratory, Warsaw University, Warsaw PL-02097 (Poland); Blank, B. [CEN Bordeaux-Gradignan, Universite Bordeaux I-CNRS/IN2P3, F-33175 Gradignan Cedex (France); Davies, P.J.; Fox, S.P. [Department of Physics, University of York, York YO10 5DD (United Kingdom); Gerl, J. [Gesellschaft fuer Schwerionenforschung, D-64291 Darmstadt (Germany); Georgiev, G.; Grevy, S. [GANIL, BP-5027, F-14076 Caen Cedex (France); Iwanicki, J. [Heavy Ion Laboratory, Warsaw University, Warsaw PL-02097 (Poland); Jenkins, D.G.; Johnston-Theasby, F.; Joshi, P. [Department of Physics, University of York, York YO10 5DD (United Kingdom); Matea, I. [CEN Bordeaux-Gradignan, Universite Bordeaux I-CNRS/IN2P3, F-33175 Gradignan Cedex (France); Napiorkowski, P.J. [Heavy Ion Laboratory, Warsaw University, Warsaw PL-02097 (Poland)] (and others)

    2008-03-21

    A new setup has been designed to perform Coulomb excitation experiments with fragmentation beams at intermediate energy and to measure at the same time conversion electrons from isomeric states populated in the fragmentation reaction. The newly designed setup is described and experimental results from a first experiment are shown. Radioactive even-even nuclei in the mass region A{approx_equal}70 close to the N=Z line were Coulomb excited after fragmentation of an intense primary {sup 78}Kr beam and selection in flight with the LISE3 spectrometer at GANIL. The {gamma} rays emitted after Coulomb excitation were detected in an array of four large segmented HPGe clover detectors in a very close geometry. The scattered ions were identified in a stack of highly segmented annular silicon detectors combined with a time-of-flight measurement using beam tracking detectors. Conversion electrons from isomeric 0{sub 2}{sup +} states decaying via electric monopole transitions were detected in an array of segmented cooled silicon detectors surrounding a telescope of plastic scintillators. Reduced transitions probabilities B(E2;0{sub 1}{sup +}{yields}2{sub 1}{sup +}) were deduced for several stable and radioactive nuclei.

  16. Kinetic theory for strongly coupled Coulomb systems

    Science.gov (United States)

    Dufty, James; Wrighton, Jeffrey

    2018-01-01

    The calculation of dynamical properties for matter under extreme conditions is a challenging task. The popular Kubo-Greenwood model exploits elements from equilibrium density-functional theory (DFT) that allow a detailed treatment of electron correlations, but its origin is largely phenomenological; traditional kinetic theories have a more secure foundation but are limited to weak ion-electron interactions. The objective here is to show how a combination of the two evolves naturally from the short-time limit for the generator of the effective single-electron dynamics governing time correlation functions without such limitations. This provides a theoretical context for the current DFT-related approach, the Kubo-Greenwood model, while showing the nature of its corrections. The method is to calculate the short-time dynamics in the single-electron subspace for a given configuration of the ions. This differs from the usual kinetic theory approach in which an average over the ions is performed as well. In this way the effective ion-electron interaction includes strong Coulomb coupling and is shown to be determined from DFT. The correlation functions have the form of the random-phase approximation for an inhomogeneous system but with renormalized ion-electron and electron-electron potentials. The dynamic structure function, density response function, and electrical conductivity are calculated as examples. The static local field corrections in the dielectric function are identified in this way. The current analysis is limited to semiclassical electrons (quantum statistical potentials), so important quantum conditions are excluded. However, a quantization of the kinetic theory is identified for broader application while awaiting its detailed derivation.

  17. Precise halo orbit design and optimal transfer to halo orbits from earth using differential evolution

    Science.gov (United States)

    Nath, Pranav; Ramanan, R. V.

    2016-01-01

    The mission design to a halo orbit around the libration points from Earth involves two important steps. In the first step, we design a halo orbit for a specified size and in the second step, we obtain an optimal transfer trajectory design to the halo orbit from an Earth parking orbit. Conventionally, the preliminary design for these steps is obtained using higher order analytical solution and the dynamical systems theory respectively. Refinements of the design are carried out using gradient based methods such as differential correction and pseudo arc length continuation method under the of circular restricted three body model. In this paper, alternative single level schemes are developed for both of these steps based on differential evolution, an evolutionary optimization technique. The differential evolution based scheme for halo orbit design produces precise halo orbit design avoiding the refinement steps. Further, in this approach, prior knowledge of higher order analytical solutions for the halo orbit design is not needed. The differential evolution based scheme for the transfer trajectory, identifies the precise location on the halo orbit that needs minimum energy for insertion and avoids exploration of multiple points. The need of a close guess is removed because the present scheme operates on a set of bounds for the unknowns. The constraint on the closest approach altitude from Earth is handled through objective function. The use of these schemes as the design and analysis tools within the of circular restricted three body model is demonstrated through case studies for missions to the first libration point of Sun-Earth system.

  18. Models of dark matter halos based on statistical mechanics: The fermionic King model

    Science.gov (United States)

    Chavanis, Pierre-Henri; Lemou, Mohammed; Méhats, Florian

    2015-12-01

    We discuss the nature of phase transitions in the fermionic King model which describes tidally truncated quantum self-gravitating systems. This distribution function takes into account the escape of high-energy particles and has a finite mass. On the other hand, the Pauli exclusion principle puts an upper bound on the phase-space density of the system and stabilizes it against gravitational collapse. As a result, there exists a statistical equilibrium state for all accessible values of energy and temperature. We plot the caloric curves and investigate the nature of phase transitions as a function of the degeneracy parameter in both microcanonical and canonical ensembles, extending the work of Chavanis [Int. J. Mod. Phys. B 20, 3113 (2006)] for box-confined configurations. We consider stable and metastable states and emphasize the importance of the latter for systems with long-range interactions. Phase transitions can take place between a "gaseous" phase unaffected by quantum mechanics and a "condensed" phase dominated by quantum mechanics. The phase diagram exhibits two critical points, one in each ensemble, beyond which the phase transitions disappear. There also exists a region of negative specific heats and a situation of ensemble inequivalence for sufficiently large systems. In the microcanonical ensemble, gravitational collapse (gravothermal catastrophe) results in the formation of a small degenerate object containing a small mass. This is accompanied by the expulsion of a hot envelope containing a large mass. In the canonical ensemble, gravitational collapse (isothermal collapse) leads to a small degenerate object containing almost all the mass. It is surrounded by a tenuous envelope. We apply the fermionic King model to the case of dark matter halos made of massive neutrinos following the work of de Vega, Salucci, and Sanchez [Mon. Not. R. Astron. Soc. 442, 2717 (2014)]. The gaseous phase describes large halos and the condensed phase describes dwarf halos

  19. HaloTag, a Platform Technology for Protein Analysis.

    Science.gov (United States)

    Urh, Marjeta; Rosenberg, Martin

    2012-01-01

    Understanding protein function and interaction is central to the elucidation of biological processes. Systematic analysis of protein interactions have shown that the eukaryotic proteome is highly interconnected and that biological function frequently depends on the orchestrated action of many proteins. Perturbation of these functions or interactions can lead to various disease states and pharmacologic intervention can result in corrective therapies. The fact that proteins rarely act in isolation, but rather comprise complex machines that stably and/or transiently interact with many different partners at different times, demands the need for robust tools that allow comprehensive global analyses of these events. Here we describe a powerful protein fusion technology, the HaloTag platform, and how it enables the study of many facets of protein biology by offering a broad choice of applications. We review the development of the key aspects of the technology and it's performance in both in vitro and in vivo applications. In particular, we focus on HaloTag's multifunctional utility in protein imaging, protein isolation and display, and in the study of protein complexes and interactions. We demonstrate it's potential to help elucidate important facets of proteomic biology across complex biological systems at the biochemical, cell-based and whole animal level.

  20. Tracing Gas Flows from Halo to Disk: Observing the Milky Way's Galactic Fountain

    Science.gov (United States)

    Werk, Jessica

    2017-08-01

    Galactic-scale winds are a common feature of galaxy formation models, and are observed ubiquitously across the star-forming sequence down to 0.5 Msun/yr. However, empirical constraints on the radial density profile and total spatial extent of these winds have been very challenging to obtain. At the same time, direct empirical evidence is scarce for the flows of gas onto galaxy disks that are critical for maintaining star formation. We have devised a simple experiment using blue horizontal branch (BHB) stars in the halo of the Milky Way that will directly map the location and density of diffuse, ionized gas flows between the Galactic disk and halo. This experiment, initiated in Cycle 23, obtains COS FUV spectra of halo BHB stars that sample a range of scale heights to 13 kpc towards the Northern Galactic pole. In this Cycle, we propose to observe 3 additional BHB stars along the complementary sightline to the South, effectively doubling our sightline sample size and permitting a novel test of the symmetry of gas flows at the disk-halo interface. This program allows us to unambiguously track inflowing and outflowing material from the Milky Way via absorption component blueshifts and redshifts. With BHBs at a range of known distances, we will directly determine changes in the gas density and metal mass as it travels through the disk-halo interface. Our experiment will yield the most detailed constraints on the physical state and energetics of the gas in the Milky Way's Galactic Fountain to date. Such constraints are fundamental to understanding the role of feedback in building the Galactic gaseous halo and the extent to which ongoing gas accretion fuels the ISM.

  1. The Halo B2B Studio

    Science.gov (United States)

    Gorzynski, Mark; Derocher, Mike; Mitchell, April Slayden

    Research underway at Hewlett-Packard on remote communication resulted in the identification of three important components typically missing in existing systems. These missing components are: group nonverbal communication capabilities, high-resolution interactive data capabilities, and global services. Here we discuss some of the design elements in these three areas as part of the Halo program at HP, a remote communication system shown to be effective to end-users.

  2. Effects of Coulomb repulsion on conductivity of heterojunction carbon nanotube quantum dots with spin-orbital coupling and interacting leads

    Energy Technology Data Exchange (ETDEWEB)

    Ogloblya, O.V., E-mail: olexandr.ogloblya@gmail.com [Taras Shevchenko National University, 64/13 Volodymyrska St., Kyiv 01601 (Ukraine); Kuznietsova, H.M. [Taras Shevchenko National University, 64/13 Volodymyrska St., Kyiv 01601 (Ukraine); Strzhemechny, Y.M. [Dept. of Physics and Astronomy, Texas Christian University, Fort Worth, TX 76129 (United States)

    2017-01-01

    We performed numerical studies for the conductance of a heterojunction carbon nanotube quantum dot (QD) with an extra spin orbital quantum number and a conventional QD in which the electron state is determined only by the spin quantum number. Our computational approach took into account the spin-orbit interaction and the Coulomb repulsion both between electrons on a QD as well as between the QD electron and the contacts. We utilized an approach based on the Keldysh non-equilibrium Green's function formalism as well as the equation of motion technique. We focused on the case of a finite Coulombic on-site repulsion and considered two possible cases of applied voltage: spin bias and conventional bias. For the system of interest we obtained bias spectroscopy diagrams, i.e. contour charts showing dependence of conductivity on two variables - voltage and the energy level position in a QD - which can be controlled by the plunger gate voltage. The finite Coulombic repulsion splits the density of states into two distinct maxima with the energy separation between them controlled by that parameter. It was also shown that an increase of either the value of the on-site Coulomb repulsion in a QD or the parameter of the Coulomb repulsion between the electrons in the QD and the contacts leads to an overall shift of the density of electronic states dependence toward higher energy values. Presence of the QD-lead interaction yields formation of a new pair of peaks in the differential conductance dependence. We also show that existence of four quantum states in a QD leads to abrupt changes in the density of states. These results could be beneficial for potential applications in nanotube-based amperometric sensors.

  3. Beam Shape and Halo Monitor Study

    CERN Document Server

    Lallement, J B; Hori, M; CERN. Geneva. AB Department

    2006-01-01

    The Beam Shape and Halo Monitor, designed by Masaki Hori, is the main diagnostic tool for the 3 MeV test stand scheduled in 2008. This detector will be able to measure the transverse halo generated in the RFQ and the Chopper-line and to detect and measure the longitudinal halo composed of the incompletely chopped bunches. Its principle of functioning is the following: H- ions hit a carbon foil and generate secondary electrons with the same spatial distribution than the incoming beam and a current depending on an emission coefficient given by the carbon foil. These electrons are accelerated towards a phosphor screen by an electric field applied between accelerating grids. Once the electrons reach the phosphor screen, they generate light which is transmitted to a CCD camera via optic fibers [1]. It is expected to give a time resolution of 1-2ns and a spatial resolution of 1mm. The first test of the BSHM done with a Laser has shown a spatial resolution bigger than 1cm and the time resolution bigger than 2ns[2]. ...

  4. Dissecting Halo Components in IFU Data

    Directory of Open Access Journals (Sweden)

    Michael Merrifield

    2017-05-01

    Full Text Available While most astronomers are now familiar with tools to decompose images into multiple components such as disks, bulges, and halos, the equivalent techniques for spectral data cubes are still in their infancy. This is unfortunate, as integral field unit (IFU spectral surveys are now producing a mass of data in this format, which we are ill-prepared to analyze effectively. We have therefore been developing new tools to separate out components using this full spectral data. The results of such analyses will prove invaluable in determining not only whether such decompositions have an astrophysical significance, but, where they do, also in determining the relationship between the various elements of a galaxy. Application to a pilot study of IFU data from the cD galaxy NGC 3311 confirms that the technique can separate the stellar halo from the underlying galaxy in such systems, and indicates that, in this case, the halo is older and more metal poor than the galaxy, consistent with it forming from the cannibalism of smaller satellite galaxies. The success of the method bodes well for its application to studying the larger samples of cD galaxies that IFU surveys are currently producing.

  5. The Extended Baryonic Halo of NGC 3923

    Directory of Open Access Journals (Sweden)

    Bryan W. Miller

    2017-07-01

    Full Text Available Galaxy halos and their globular cluster systems build up over time by the accretion of small satellites. We can learn about this process in detail by observing systems with ongoing accretion events and comparing the data with simulations. Elliptical shell galaxies are systems that are thought to be due to ongoing or recent minor mergers. We present preliminary results of an investigation of the baryonic halo—light profile, globular clusters, and shells/streams—of the shell galaxy NGC 3923 from deep Dark Energy Camera (DECam g and i-band imaging. We present the 2D and radial distributions of the globular cluster candidates out to a projected radius of about 185 kpc, or ∼ 37 R e , making this one of the most extended cluster systems studied. The total number of clusters implies a halo mass of M h ∼ 3 × 10 13 M ⊙ . Previous studies had identified between 22 and 42 shells, making NGC 3923 the system with the largest number of shells. We identify 23 strong shells and 11 that are uncertain. Future work will measure the halo mass and mass profile from the radial distributions of the shell, N-body models, and line-of-sight velocity distribution (LOSVD measurements of the shells using the Multi Unit Spectroscopic Explorer (MUSE.

  6. Impacts of Coulomb Interactions on the Magnetic Responses of Excitonic Complexes in Single Semiconductor Nanostructures

    Directory of Open Access Journals (Sweden)

    Fu Ying-Jhe

    2010-01-01

    Full Text Available Abstract We report on the diamagnetic responses of different exciton complexes in single InAs/GaAs self-assembled quantum dots (QDs and quantum rings (QRs. For QDs, the imbalanced magnetic responses of inter-particle Coulomb interactions play a crucial role in the diamagnetic shifts of excitons (X, biexcitons (XX, and positive trions (X−. For negative trions (X− in QDs, anomalous magnetic responses are observed, which cannot be described by the conventional quadratic energy shift with the magnetic field. The anomalous behavior is attributed to the apparent change in the electron wave function extent after photon emission due to the strong Coulomb attraction by the hole in its initial state. In QRs, the diamagnetic responses of X and XX also show different behaviors. Unlike QDs, the diamagnetic shift of XX in QRs is considerably larger than that of X. The inherent structural asymmetry combined with the inter-particle Coulomb interactions makes the wave function distribution of XX very different from that of X in QRs. Our results suggest that the phase coherence of XX in QRs may survive from the wave function localization due to the structural asymmetry or imperfections.

  7. Testing refined shell-model interactions in the sd shell: Coulomb excitation of Na26

    CERN Document Server

    Siebeck, B; Blazhev, A; Reiter, P; Altenkirch, R; Bauer, C; Butler, P A; De Witte, H; Elseviers, J; Gaffney, L P; Hess, H; Huyse, M; Kröll, T; Lutter, R; Pakarinen, J; Pietralla, N; Radeck, F; Scheck, M; Schneiders, D; Sotty, C; Van Duppen, P; Vermeulen, M; Voulot, D; Warr, N; Wenander, F

    2015-01-01

    Background: Shell-model calculations crucially depend on the residual interaction used to approximate the nucleon-nucleon interaction. Recent improvements to the empirical universal sd interaction (USD) describing nuclei within the sd shell yielded two new interactions—USDA and USDB—causing changes in the theoretical description of these nuclei. Purpose: Transition matrix elements between excited states provide an excellent probe to examine the underlying shell structure. These observables provide a stringent test for the newly derived interactions. The nucleus Na26 with 7 valence neutrons and 3 valence protons outside the doubly-magic 16O core is used as a test case. Method: A radioactive beam experiment with Na26 (T1/2=1,07s) was performed at the REX-ISOLDE facility (CERN) using Coulomb excitation at safe energies below the Coulomb barrier. Scattered particles were detected with an annular Si detector in coincidence with γ rays observed by the segmented MINIBALL array. Coulomb excitation cross sections...

  8. No evidence of reduced collectivity in Coulomb-excited Sn isotopes

    Science.gov (United States)

    Kumar, R.; Saxena, M.; Doornenbal, P.; Jhingan, A.; Banerjee, A.; Bhowmik, R. K.; Dutt, S.; Garg, R.; Joshi, C.; Mishra, V.; Napiorkowski, P. J.; Prajapati, S.; Söderström, P.-A.; Kumar, N.; Wollersheim, H.-J.

    2017-11-01

    In a series of Coulomb excitation experiments the first excited 2+ states in semimagic Sn 112 ,116 ,118 ,120 ,122 ,124 isotopes were excited using a 58Ni beam at safe Coulomb energy. The B (E 2 ; 0+→2+) values were determined with high precision (˜3 %) relative to 58Ni projectile excitation. These results disagree with previously reported B (E 2 ↑) values [A. Jungclaus et al., Phys. Lett. B 695, 110 (2011)., 10.1016/j.physletb.2010.11.012] extracted from Doppler-shift attenuation lifetime measurements, whereas the reported mass dependence of B (E 2 ↑) values is very similar to a recent Coulomb excitation study [J. M. Allmond et al., Phys. Rev. C 92, 041303(R) (2015), 10.1103/PhysRevC.92.041303]. The stable Sn isotopes, key nuclei in nuclear structure, show no evidence of reduced collectivity and we, thus, reconfirm the nonsymmetric behavior of reduced transition probabilities with respect to the midshell A =116 .

  9. Higgs transition from a magnetic Coulomb liquid to a ferromagnet in Yb₂Ti₂O₇.

    Science.gov (United States)

    Chang, Lieh-Jeng; Onoda, Shigeki; Su, Yixi; Kao, Ying-Jer; Tsuei, Ku-Ding; Yasui, Yukio; Kakurai, Kazuhisa; Lees, Martin Richard

    2012-01-01

    In a class of frustrated magnets known as spin ice, magnetic monopoles emerge as classical defects and interact via the magnetic Coulomb law. With quantum-mechanical interactions, these magnetic charges are carried by fractionalized bosonic quasi-particles, spinons, which can undergo Bose-Einstein condensation through a first-order transition via the Higgs mechanism. Here, we report evidence of a Higgs transition from a magnetic Coulomb liquid to a ferromagnet in single-crystal Yb(2)Ti(2)O(7). Polarized neutron scattering experiments show that the diffuse [111]-rod scattering and pinch-point features, which develop on cooling are suddenly suppressed below T(C)~0.21 K, where magnetic Bragg peaks and a full depolarization of the neutron spins are observed with thermal hysteresis, indicating a first-order ferromagnetic transition. Our results are explained on the basis of a quantum spin-ice model, whose high-temperature phase is effectively described as a magnetic Coulomb liquid, whereas the ground state shows a nearly collinear ferromagnetism with gapped spin excitations.

  10. Cluster structure and Coulomb shift in two-center mirror systems

    Science.gov (United States)

    Nakao, M.; Umehara, H.; Sonoda, S.; Ebata, S.; Ito, M.

    2017-11-01

    The α + 14C elastic scattering and the nuclear structure of its compound systems, 18O = α + 14C, are analyzed on the basis of the semi-microscopic model. The α + 14C interaction potential is constructed from the double folding (DF) model with the effective nucleon-nucleon interaction of the density-dependent Michigan 3-range Yukawa. The DF potential is applied to the α+14C elastic scattering in the energy range of Eα/Aα = 5.5 8.8 MeV, and the observed differential cross sections are reasonably reproduced. The energy spectra of 18O are calculated by employing the orthogonality condition model (OCM) plus the absorbing boundary condition (ABC). The OCM + ABC calculation predicts the formation of the 0+ resonance around E = 3MeV with respect to the α threshold, which seems to correspond to the resonance identified in the recent experiment. We also apply the OCM + ABC calculation to the mirror system, such as 18Ne = α+14O, and the Coulomb shift of 18O - 18Ne is evaluated. We have found that the Coulomb shift is clearly reduced in the excited 0+ state due to the development of the α cluster structure. This result strongly supports that the Coulomb shift is a candidate of new probe to identify the clustering phenomena.

  11. Measurements of competing structures in neutron-deficient Pb isotopes by employing Coulomb excitation

    CERN Multimedia

    Bastin, B; Kruecken, R; Larsen, A; Rahkila, P J; Srebrny, J; Clement, E; Wadsworth, R; Syed naeemul, H; Peura, P J; Siem, S; Hadynska-klek, K; Habs, D; Napiorkowski, P J; Diriken, J V J; Iwanicki, J S

    Coulomb excitation measurements to study the shape coexistence and quadrupole collectivity of the low-lying levels in neutron-deficient Pb nuclei are proposed. Even-mass $^{188−192}$Pb nuclei will be post-accelerated at REX-ISOLDE in order to measure transition probabilities and quadrupole moments for the first excited states. In combination with results obtained in lifetime measurements, this will allow the sign of the quadrupole deformation parameter to be extracted for the first time for 2$^{+}$ states in the even-mass $^{188−192}$Pb nuclei.

  12. Coulomb excitation of neutron-rich $^{134-136}$Sn isotopes

    CERN Multimedia

    We propose to study excited states in the isotopes $^{134,136}$Sn by $\\gamma$-ray spectroscopy following "safe" Coulomb excitation. The experiment aims to investigate the evolution of quadrupole collectivity beyond the magic shell closure at N = 82 by the determination of B(E2) values and electric quadrupole moments $\\mathcal{Q}_2$. Recent shell-model calculations using realistic interactions predict possible enhanced collectivity in neutron-rich regions. Evidence for this could be obtained by this experiment. Furthermore, the currently unknown excitation energies of the 2$^+_{1}$ and 4$^+_{1}$ states in $^{136}$Sn will be measured for the first time.

  13. Measurements of shape co-existence in $^{182,184}$Hg using Coulomb excitation

    CERN Multimedia

    Voulot, D; Paul, E S; Siem, S; Czosnyka, T; Napiorkowski, P J; Iwanicki, J S

    2007-01-01

    We propose to exploit the unique capability of ISOLDE to provide post-accelerated $^{182,184}$Hg ions from the REX facility to enable the lowest states of these nuclei to be Coulomb excited. By measuring the $\\gamma$-ray yields using the MINIBALL array we can measure the transition and diagonal E2 matrix elements for these states. This will give quantitative information about the nature of the shape coexistence in these nuclei and allow the sign of the quadrupole deformation be determined for the first time. We require 24 shifts to fulfill the aims of the experiment.

  14. Self-Conistent Dynamical Modeling of the Milky Way Halo with Stellar Orbits

    Science.gov (United States)

    Valluri, Monica

    Despite significant advances in understanding our Galaxy in the context of LCDM, important questions remain unanswered. LCDM predicts that dark matter halos are triaxial overall, but oblate in regions where baryons dominate. However recent measurements of the shape of the Milky Way (MW) dark matter (DM) halo find it to be very triaxial with a shape and orientation that are significantly at odds with theoretical predictions. The European Space Agency s Gaia satellite will soon map the entire MW giving us six phase-space coordinates, ages and abundances for hundreds of thousands of stars. The PI and a postdoc will build a novel code (based on the Schwarzschild orbit superposition method and orbital frequency mapping), to determine the global shape of the Milky Way's dark matter halo using field stars from Gaia. Our technique will simultaneously yield the self-consistent phase-space distribution function of the stellar halo in the inner 20-30 kpc region. Detailed analysis of correlations between the chemical abundances, ages and orbits of halo stars in this distribution function will enable us to extract clues to the formation history of the MW that are encoded in orbital properties of halo stars. Our technique is unique since we will use independent sets of observational constraints, at small and large radii, to measure the radial variation in halo shape, in conjunction with a strategy tailored to modeling discrete stellar datasets. We will perform end-to-end tests of our new code with mock catalogs generated from state-of-the art cosmological simulations of MW like disk galaxies. Our team has the ideal combination of expertise in dynamical modeling, observations, simulations, and Gaia data analysis and processing necessary to achieve our goals. PI Valluri has significant prior experience with Schwarzschild modeling and the analysis of phase-space distribution functions of simulated halos, Co-I Loebman recently published the first measurement of the shape of the DM

  15. Recoiling supermassive black hole escape velocities from dark matter haloes

    Science.gov (United States)

    Choksi, Nick; Behroozi, Peter; Volonteri, Marta; Schneider, Raffaella; Ma, Chung-Pei; Silk, Joseph; Moster, Benjamin

    2017-12-01

    We simulate recoiling black hole trajectories from z = 20 to z = 0 in dark matter haloes, quantifying how parameter choices affect escape velocities. These choices include the strength of dynamical friction, the presence of stars and gas, the accelerating expansion of the Universe (Hubble acceleration), host halo accretion and motion, and seed black hole mass. Lambda cold dark matter halo accretion increases escape velocities by up to 0.6 dex and significantly shortens return time-scales compared to non-accreting cases. Other parameters change orbit damping rates but have subdominant effects on escape velocities; dynamical friction is weak at halo escape velocities, even for extreme parameter values. We present formulae for black hole escape velocities as a function of host halo mass and redshift. Finally, we discuss how these findings affect black hole mass assembly as well as minimum stellar and halo masses necessary to retain supermassive black holes.

  16. The “Building Blocks” of Stellar Halos

    Directory of Open Access Journals (Sweden)

    Kyle A. Oman

    2017-08-01

    Full Text Available The stellar halos of galaxies encode their accretion histories. In particular, the median metallicity of a halo is determined primarily by the mass of the most massive accreted object. We use hydrodynamical cosmological simulations from the apostle project to study the connection between the stellar mass, the metallicity distribution, and the stellar age distribution of a halo and the identity of its most massive progenitor. We find that the stellar populations in an accreted halo typically resemble the old stellar populations in a present-day dwarf galaxy with a stellar mass ∼0.2–0.5 dex greater than that of the stellar halo. This suggests that had they not been accreted, the primary progenitors of stellar halos would have evolved to resemble typical nearby dwarf irregulars.

  17. N-body dark matter haloes with simple hierarchical histories

    Science.gov (United States)

    Jiang, Lilian; Helly, John C.; Cole, Shaun; Frenk, Carlos S.

    2014-05-01

    We present a new algorithm which groups the subhaloes found in cosmological N-body simulations by structure finders such as SUBFIND into dark matter haloes whose formation histories are strictly hierarchical. One advantage of these `Dhaloes' over the commonly used friends-of-friends (FoF) haloes is that they retain their individual identity in the cases when FoF haloes are artificially merged by tenuous bridges of particles or by an overlap of their outer diffuse haloes. Dhaloes are thus well suited for modelling galaxy formation and their merger trees form the basis of the Durham semi-analytic galaxy formation model, GALFORM. Applying the Dhalo construction to the Λ cold dark matter Millennium II Simulation, we find that approximately 90 per cent of Dhaloes have a one-to-one, bijective match with a corresponding FoF halo. The remaining 10 per cent are typically secondary components of large FoF haloes. Although the mass functions of both types of haloes are similar, the mass of Dhaloes correlates much more tightly with the virial mass, M200, than FoF haloes. Approximately 80 per cent of FoF and bijective and non-bijective Dhaloes are relaxed according to standard criteria. For these relaxed haloes, all three types have similar concentration-M200 relations and, at fixed mass, the concentration distributions are described accurately by log-normal distributions.

  18. Reversed Halo Sign: Presents in Different Pulmonary Diseases.

    Directory of Open Access Journals (Sweden)

    Xi Zhan

    Full Text Available To observe the incidence of reversed halo sign in different pulmonary diseases and the pathological correspondence of reversed halo sign.Retrospectively studied the high resolution computer tomography scans of all the patients who were admitted in our department with abnormal pulmonary imaging, from 1st of January 2011 to 31st of December 2013, and all the cases with reversed halo sign on the high resolution computer tomography were collected. Clinical data such as pathological findings and confirmed diagnosis of the patients with reversed halo sign on the high resolution computer tomography scan were collected and summarized.Of 1546 abnormal High resolution computer tomography scans 108 had a reverse halo sign present, including 108 cases were observed with reversed halo sign in the high resolution computer tomography, including 40 cases of pulmonary tuberculosis, 43 cases of cryptogenic organizing pneumonia, 16 cases of lung cancer, 7 cases of sarcoidosis, and 1 case of pulmonary cryptococcosis, 1 case of granulomatosis with polyangiitis. Reversed halo sign had a higher incidence in granulomatous diseases (16.28% compared with non-granulomatous diseases (9.97%.Reversed halo sign is relatively non specific; it can be observed in different lung diseases, and different phases of diseases; reversed halo sign is more commonly found in granulomatous diseases compared with non-granulomatous diseases, and is most commonly observed in pulmonary tuberculosis among the granulomatous diseases, and in cryptogenic organizing pneumonia among the non-granulomatous diseases.

  19. Electromagnetic properties of the Beryllium-11 nucleus in Halo EFT

    Directory of Open Access Journals (Sweden)

    Hammer H.-W.

    2010-04-01

    Full Text Available We compute electromagnetic properties of the Beryllium-11 nucleus using an effective field theory that exploits the separation of scales in this halo system. We fix the parameters of the EFT from measured data on levels and scattering lengths in the 10Be plus neutron system. We then obtain predictions for the B(E1 strength of the 1/2+ to 1/2− transition in the 11Be nucleus. We also compute the charge radius of the ground state of 11Be. Agreement with experiment within the expected accuracy of a leading-order computation in this EFT is obtained. We also indicate how higher-order corrections that affect both s-wave and p-wave 10 Be-neutron interactions will affect our results.

  20. Coulomb branch Hilbert series and Hall-Littlewood polynomials

    CERN Document Server

    Cremonesi, Stefano; Mekareeya, Noppadol; Zaffaroni, Alberto

    2014-01-01

    There has been a recent progress in understanding the chiral ring of 3d $\\mathcal{N}=4$ superconformal gauge theories by explicitly constructing an exact generating function (Hilbert series) counting BPS operators on the Coulomb branch. In this paper we introduce Coulomb branch Hilbert series in the presence of background magnetic charges for flavor symmetries, which are useful for computing the Hilbert series of more general theories through gluing techniques. We find a simple formula of the Hilbert series with background magnetic charges for $T_\\rho(G)$ theories in terms of Hall-Littlewood polynomials. Here $G$ is a classical group and $\\rho$ is a certain partition related to the dual group of $G$. The Hilbert series for vanishing background magnetic charges show that Coulomb branches of $T_\\rho(G)$ theories are complete intersections. We also demonstrate that mirror symmetry maps background magnetic charges to baryonic charges.

  1. Effect of increasing disorder on domains of the 2d Coulomb glass

    Science.gov (United States)

    Bhandari, Preeti; Malik, Vikas

    2017-12-01

    We have studied a two dimensional lattice model of Coulomb glass for a wide range of disorders at T∼ 0 . The system was first annealed using Monte Carlo simulation. Further minimization of the total energy of the system was done using an algorithm developed by Baranovskii et al, followed by cluster flipping to obtain the pseudo-ground states. We have shown that the energy required to create a domain of linear size L in d dimensions is proportional to Ld-1 . Using Imry–Ma arguments given for random field Ising model, one gets critical dimension d_c≥slant 2 for Coulomb glass. The investigation of domains in the transition region shows a discontinuity in staggered magnetization which is an indication of a first-order type transition from charge-ordered phase to disordered phase. The structure and nature of random field fluctuations of the second largest domain in Coulomb glass are inconsistent with the assumptions of Imry and Ma, as was also reported for random field Ising model. The study of domains showed that in the transition region there were mostly two large domains, and that as disorder was increased the two large domains remained, but a large number of small domains also opened up. We have also studied the properties of the second largest domain as a function of disorder. We furthermore analysed the effect of disorder on the density of states, and showed a transition from hard gap at low disorders to a soft gap at higher disorders. At W=2 , we have analysed the soft gap in detail, and found that the density of states deviates slightly (δ≈ 1.293 +/- 0.027 ) from the linear behaviour in two dimensions. Analysis of local minima show that the pseudo-ground states have similar structure.

  2. Coulomb excitation of neutron-rich odd-$A$ Cd isotopes

    CERN Multimedia

    Reiter, P; Kruecken, R; Gernhaeuser, R A; Kroell, T; Leske, J; Marginean, N M

    We propose to study excited states in the odd-${A}$ isotopes $^{123,125,127}$Cd by ${\\gamma}$-ray spectroscopy following "safe" Coulomb excitation. The experiment aims to determine the B(E2) values connecting excited states with the ground state as well as the long-lived (11/2$^{-}$) isomer. The proposed study profits from the unique capability of ISOLDE to produce beams containing Cd in the ground state or in the isomeric state. Our recent results on the neutron-rich even-A Cd nuclei appear to show that these nuclei may possess some collectivity beyond that calculated by modern shell-model predictions. Beyond-mean-field calculations also predict these nuclei to be weakly deformed. These facets are surprising considering their proximity to the doubly magic $^{132}$Sn. Coulomb-excitation studies of odd-${A}$ Cd isotopes may give a unique insight into the deformation-driving roles played by different orbits in this region. Such studies of the onset of collectivity become especially important in light of recent...

  3. Small-molecule hydrophobic tagging-induced degradation of HaloTag fusion proteins.

    Science.gov (United States)

    Neklesa, Taavi K; Tae, Hyun Seop; Schneekloth, Ashley R; Stulberg, Michael J; Corson, Timothy W; Sundberg, Thomas B; Raina, Kanak; Holley, Scott A; Crews, Craig M

    2011-07-03

    The ability to regulate any protein of interest in living systems with small molecules remains a challenge. We hypothesized that appending a hydrophobic moiety to the surface of a protein would mimic the partially denatured state of the protein, thus engaging the cellular quality control machinery to induce its proteasomal degradation. We designed and synthesized bifunctional small molecules to bind a bacterial dehalogenase (the HaloTag protein) and present a hydrophobic group on its surface. Hydrophobic tagging of the HaloTag protein with an adamantyl moiety induced the degradation of cytosolic, isoprenylated and transmembrane HaloTag fusion proteins in cell culture. We demonstrated the in vivo utility of hydrophobic tagging by degrading proteins expressed in zebrafish embryos and by inhibiting Hras1(G12V)-driven tumor progression in mice. Therefore, hydrophobic tagging of HaloTag fusion proteins affords small-molecule control over any protein of interest, making it an ideal system for validating potential drug targets in disease models.

  4. Mapping stellar content to dark matter haloes - II. Halo mass is the main driver of galaxy quenching

    Science.gov (United States)

    Zu, Ying; Mandelbaum, Rachel

    2016-04-01

    We develop a simple yet comprehensive method to distinguish the underlying drivers of galaxy quenching, using the clustering and galaxy-galaxy lensing of red and blue galaxies in Sloan Digital Sky Survey. Building on the iHOD framework developed by Zu & Mandelbaum, we consider two quenching scenarios: (1) a `halo' quenching model in which halo mass is the sole driver for turning off star formation in both centrals and satellites; and (2) a `hybrid' quenching model in which the quenched fraction of galaxies depends on their stellar mass, while the satellite quenching has an extra dependence on halo mass. The two best-fitting models describe the red galaxy clustering and lensing equally well, but halo quenching provides significantly better fits to the blue galaxies above 1011 h-2 M⊙. The halo quenching model also correctly predicts the average halo mass of the red and blue centrals, showing excellent agreement with the direct weak lensing measurements of locally brightest galaxies. Models in which quenching is not tied to halo mass, including an age-matching model in which galaxy colour depends on halo age at fixed M*, fail to reproduce the observed halo mass for massive blue centrals. We find similar critical halo masses responsible for the quenching of centrals and satellites (˜1.5 × 1012 h-1 M⊙), hinting at a uniform quenching mechanism for both, e.g. the virial shock heating of infalling gas. The success of the iHOD halo quenching model provides strong evidence that the physical mechanism that quenches star formation in galaxies is tied principally to the masses of their dark matter haloes rather than the properties of their stellar components.

  5. Phase-function method for Coulomb-distorted nuclear scattering

    Energy Technology Data Exchange (ETDEWEB)

    Sett, G.C.; Laha, U.; Talukdar, B.

    1988-09-21

    The phase-function method is very effective in treating quantum mechanical scattering problems for short-range local potentials. We adapt the phase method to deal with Coulomb plus Graz non-local separable potentials and derive a closed-form expression for the scattering phase shift. Our approach to the problem circumvents in a rather natural way the typical difficulties of incorporating the Coulomb interaction in a nuclear phase-shift calculation. We demonstrate the usefulness of our constructed expression by means of a model calculation.

  6. Effect of Coulombic friction on spatial displacement statistics.

    Science.gov (United States)

    Menzel, Andreas M; Goldenfeld, Nigel

    2011-07-01

    The phenomenon of Coulombic friction enters the stochastic description of dry friction between two solids and the statistic characterization of vibrating granular media. Here we analyze the corresponding Fokker-Planck equation including both velocity and spatial components, exhibiting a formal connection to a quantum mechanical harmonic oscillator in the presence of a delta potential. Numerical solutions for the resulting spatial displacement statistics show a crossover from exponential to Gaussian displacement statistics. We identify a transient intermediate regime that exhibits multiscaling properties arising from the contribution of Coulombic friction. The possible role of these effects during observations in diffusion experiments is briefly discussed.

  7. Vibrational motions in rotating nuclei studied by Coulomb excitations

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Yoshifumi R. [Kyushu Univ., Fukuoka (Japan). Dept. of Physics

    1998-03-01

    As is well-known Coulomb excitation is an excellent tool to study the nuclear collective motions. Especially the vibrational excitations in rotating nuclei, which are rather difficult to access by usual heavy-ion fusion reactions, can be investigated in detail. Combined with the famous 8{pi}-Spectrometer, which was one of the best {gamma}-ray detector and had discovered some of superdeformed bands, such Coulomb excitation experiments had been carried out at Chalk River laboratory just before it`s shutdown of physics division. In this meeting some of the experimental data are presented and compared with the results of theoretical investigations. (author)

  8. Intershell resistance in multiwall carbon nanotubes: A Coulomb drag study

    DEFF Research Database (Denmark)

    Lunde, Anders Mathias; Flensborg, Karsten; Jauho, Antti-Pekka

    2005-01-01

    We calculate the intershell resistance R-21 in a multiwall carbon nanotube as a function of temperature T and Fermi level epsilon(F) (e.g., a gate voltage), varying the chirality of the inner and outer tubes. This is done in a so-called Coulomb drag setup, where a current I-1 in one shell induces...... effects for the Coulomb drag between different tubes due to selection rules combined with mismatching of wave vector and crystal angular momentum conservation near the Fermi level. This gives rise to orders of magnitude changes in R-21 and even the sign of R-21 can change depending on the chirality...

  9. Fast low-energy halo-to-halo transfers between Sun–planet systems

    Directory of Open Access Journals (Sweden)

    Shang Haibin

    2014-04-01

    Full Text Available In this paper, the problem of fast low-energy halo-to-halo transfers between Sun–planet systems is discussed under ephemeris constraints. According to the structure of an invariant manifold, employing an invariant manifold and planetary gravity assist to save fuel consumption is analyzed from the view of orbital energy. Then, a pseudo-manifold is introduced to replace the invariant manifold in such a way that more transfer opportunities are allowed. Fast escape and capture can be achieved along the pseudo-manifold. Furthermore, a global searching method that is based on patched-models is proposed to find an appropriate transfer trajectory. In this searching method, the trajectory is divided into several segments that can be designed under simple dynamical models, and an analytical algorithm is developed for connecting the segments. Earth–Mars and Earth–Venus halo-to-halo transfers are designed to demonstrate the proposed approach. Numerical results show that the transfers that combine the pseudo-manifolds and planetary gravity assist can offer significant fuel consumption and flight time savings over traditional transfer schemes.

  10. Haloes, molecules and multi-neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Marques Moreno, F.M

    2003-01-01

    Away from the equilibrium between protons and neutrons within stable nuclei, many exotic nuclei exist. Most of the known nuclear properties evolve smoothly with exoticism, but some extreme proton-neutron combinations have revealed during the last decade completely new concepts. They will be illustrated through three examples: the extended and dilute halo formed by very weakly bound neutrons, the molecular-like neutron orbitals found in nuclei exhibiting a clustering, and the recently revived debate on the possible existence of neutral nuclei. The different experimental results will be reviewed, and we will see how several properties of these new phenomena can be well understood within relatively simple theoretical approaches. (author)

  11. Clustering and correlations in neutrons haloes

    Energy Technology Data Exchange (ETDEWEB)

    Orr, N.A

    2002-02-01

    In the present paper clustering and correlations within halo systems is explored. In particular, the application of neutron-neutron interferometry and Dalitz-plot type analyses is presented through the example provided by the dissociation of {sup 14}Be. A novel approach for producing and detection bound neutron clusters is also described. The observation of some 6 events with characteristics consistent with the liberation of a multi-neutron cluster in the breakup of {sup 14}Be - possibly in the channel {sup 10}Be+{sup 4}n - is discussed. (author)

  12. Project ECHO: Electronic Communications from Halo Orbit

    Science.gov (United States)

    Borrelli, Jason; Cooley, Bryan; Debole, Marcy; Hrivnak, Lance; Nielsen, Kenneth; Sangmeister, Gary; Wolfe, Matthew

    1994-01-01

    The design of a communications relay to provide constant access between the Earth and the far side of the Moon is presented. Placement of the relay in a halo orbit about the L2 Earth-Moon Lagrange point allows the satellite to maintain constant simultaneous communication between Earth and scientific payloads on the far side of the Moon. The requirements of NASA's Discovery-class missions adopted and modified for this design are: total project cost should not exceed $150 million excluding launch costs, launch must be provided by Delta-class vehicle, and the satellite should maintain an operational lifetime of 10 to 15 years. The spacecraft will follow a transfer trajectory to the L2 point, after launch by a Delta II 7925 vehicle in 1999. Low-level thrust is used for injection into a stationkeeping-free halo orbit once the spacecraft reaches the L2 point. The shape of this halo orbit is highly elliptical with the maximum excursion from the L2 point being 35000 km. A spun section and despun section connected through a bearing and power transfer assembly (BAPTA) compose the structure of the spacecraft. Communications equipment is placed on the despun section to provide for a stationary dual parabolic offset-feed array antenna system. The dual system is necessary to provide communications coverage during portions of maximum excursion on the halo orbit. Transmissions to the NASA Deep Space Network 34 m antenna include six channels (color video, two voice, scientific data from lunar payloads, satellite housekeeping and telemetry and uplinked commands) using the S- and X-bands. Four radioisotope thermoelectric generators (RTG's) provide a total of 1360 W to power onboard systems and any two of the four Hughes 13 cm ion thrusters at once. Output of the ion thrusters is approximately 17.8 mN each with xenon as the propellant. Presence of torques generated by solar pressure on the antenna dish require the addition of a 'skirt' extending from the spun section of the satellite

  13. Universal properties of dark matter halos.

    Science.gov (United States)

    Boyarsky, A; Neronov, A; Ruchayskiy, O; Tkachev, I

    2010-05-14

    We discuss the universal relation between density and size of observed dark matter halos that was recently shown to hold on a wide range of scales, from dwarf galaxies to galaxy clusters. Predictions of cold dark matter (ΛCDM) N-body simulations are consistent with this relation. We demonstrate that this property of ΛCDM can be understood analytically in the secondary infall model. Qualitative understanding given by this model provides a new way to predict which deviations from ΛCDM or large-scale modifications of gravity can affect universal behavior and, therefore, to constrain them observationally.

  14. Stellar Mass—Halo Mass Relation and Star Formation Efficiency in High-Mass Halos

    Science.gov (United States)

    Kravtsov, A. V.; Vikhlinin, A. A.; Meshcheryakov, A. V.

    2018-01-01

    We study relation between stellar mass and halo mass for high-mass halos using a sample of galaxy clusters with accurate measurements of stellar masses from optical and ifrared data and total masses from X-ray observations. We find that stellar mass of the brightest cluster galaxies (BCGs) scales as M *,BCG ∝ M 500 αBCG with the best fit slope of α BCG ≈ 0.4 ± 0.1. We measure scatter of M *,BCG at a fixed M 500 of ≈0.2 dex. We show that stellar mass-halo mass relations from abundance matching or halo modelling reported in recent studies underestimate masses of BCGs by a factor of ˜2-4. We argue that this is because these studies used stellar mass functions (SMF) based on photometry that severely underestimates the outer surface brightness profiles of massive galaxies. We show that M * -M relation derived using abundance matching with the recent SMF calibration by Bernardi et al. (2013) based on improved photometry is in a much better agreement with the relation we derive via direct calibration for observed clusters. The total stellar mass of galaxies correlates with total mass M 500 with the slope of ≈0.6 ± 0.1 and scatter of 0.1 dex. This indicates that efficiency with which baryons are converted into stars decreases with increasing cluster mass. The low scatter is due to large contribution of satellite galaxies: the stellar mass in satellite galaxies correlates with M 500 with scatter of ≈0.1 dex and best fit slope of αsat ≈ 0.8 ± 0.1. We show that for a fixed choice of the initial mass function (IMF) total stellar fraction in clusters is only a factor of 3-5 lower than the peak stellar fraction reached in M ≈ 1012 M ⊙ halos. The difference is only a factor of ˜1.5-3 if the IMF becomes progressively more bottom heavy with increasing mass in early type galaxies, as indicated by recent observational analyses. This means that the overall efficiency of star formation in massive halos is only moderately suppressed compared to L * galaxies and

  15. The Prevalence of the 22 deg Halo in Cirrus Clouds

    Science.gov (United States)

    Diedenhoven, vanBastiaan

    2014-01-01

    Halos at 22 deg from the sun attributed to randomly-orientated, pristine hexagonal crystals are frequently observed through ice clouds. These frequent sightings of halos formed by pristine crystals pose an apparent inconsistency with the dominance of distorted, nonpristine ice crystals indicated by in situ and remote sensing data. Furthermore, the 46 deg halo, which is associated with pristine hexagonal crystals as well, is observed far less frequently than the 22 deg halo. Considering that plausible mechanisms that could cause crystal distortion such as aggregation, sublimation, riming and collisions are stochastic processes that likely lead to distributions of crystals with varying distortion levels, here the presence of the 22 deg and 46 deg halo features in phase functions of mixtures of pristine and distorted hexagonal ice crystals is examined. We conclude that the 22 deg halo feature is generally present if the contribution by pristine crystals to the total scattering cross section is greater than only about 10% in the case of compact particles or columns, and greater than about 40% for plates. The 46 deg halo feature is present only if the mean distortion level is low and the contribution of pristine crystals to the total scattering cross section is above about 20%, 50% and 70%, in the case of compact crystals, plates and columns, respectively. These results indicate that frequent sightings of 22 deg halos are not inconsistent with the observed dominance of distorted, non-pristine ice crystals. Furthermore, the low mean distortion levels and large contributions by pristine crystals needed to produce the 461 halo features provide a potential explanation of the common sighting of the 22 deg halo without any detectable 46 deg halo.

  16. Diverse stellar haloes in nearby Milky Way mass disc galaxies

    Science.gov (United States)

    Harmsen, Benjamin; Monachesi, Antonela; Bell, Eric F.; de Jong, Roelof S.; Bailin, Jeremy; Radburn-Smith, David J.; Holwerda, Benne W.

    2017-04-01

    We have examined the resolved stellar populations at large galactocentric distances along the minor axis (from 10 kpc up to between 40 and 75 kpc), with limited major axis coverage, of six nearby highly inclined Milky Way (MW) mass disc galaxies using Hubble Space Telescope data from the Galaxy haloes, Outer discs, Substructure, Thick discs, and Star clusters (GHOSTS) survey. We select red giant branch stars to derive stellar halo density profiles. The projected minor axis density profiles can be approximated by power laws with projected slopes of -2 to -3.7 and a diversity of stellar halo masses of 1-6 × 109 M⊙, or 2-14 per cent of the total galaxy stellar masses. The typical intrinsic scatter around a smooth power-law fit is 0.05-0.1 dex owing to substructure. By comparing the minor and major axis profiles, we infer projected axis ratios c/a at ˜25 kpc between 0.4and0.75. The GHOSTS stellar haloes are diverse, lying between the extremes charted out by the (rather atypical) haloes of the MW and M31. We find a strong correlation between the stellar halo metallicities and the stellar halo masses. We compare our results with cosmological models, finding good agreement between our observations and accretion-only models where the stellar haloes are formed by the disruption of dwarf satellites. In particular, the strong observed correlation between stellar halo metallicity and mass is naturally reproduced. Low-resolution hydrodynamical models have unrealistically high stellar halo masses. Current high-resolution hydrodynamical models appear to predict stellar halo masses somewhat higher than observed but with reasonable metallicities, metallicity gradients, and density profiles.

  17. 77 FR 75672 - Manufacturer of Controlled Substances, Notice of Registration, Halo Pharmaceutical, Inc.

    Science.gov (United States)

    2012-12-21

    ... Enforcement Administration Manufacturer of Controlled Substances, Notice of Registration, Halo Pharmaceutical... 47114, Halo Pharmaceutical, Inc., 30 North Jefferson Road, Whippany, New Jersey 07981, made application... determined that the registration of Halo Pharmaceutical, Inc., to manufacture the listed basic classes of...

  18. 77 FR 16264 - Manufacturer of Controlled Substances, Notice of Registration; Halo Pharmaceutical Inc.

    Science.gov (United States)

    2012-03-20

    ... Enforcement Administration Manufacturer of Controlled Substances, Notice of Registration; Halo Pharmaceutical... FR 77850, Halo Pharmaceutical Inc., 30 North Jefferson Road, Whippany, New Jersey 07981, made... determined that the registration of Halo Pharmaceutical Inc. to manufacture the listed basic classes of...

  19. Convergence properties of halo merger trees; halo and substructure merger rates across cosmic history

    Science.gov (United States)

    Poole, Gregory B.; Mutch, Simon J.; Croton, Darren J.; Wyithe, Stuart

    2017-12-01

    We introduce GBPTREES: an algorithm for constructing merger trees from cosmological simulations, designed to identify and correct for pathological cases introduced by errors or ambiguities in the halo finding process. GBPTREES is built upon a halo matching method utilizing pseudo-radial moments constructed from radially sorted particle ID lists (no other information is required) and a scheme for classifying merger tree pathologies from networks of matches made to-and-from haloes across snapshots ranging forward-and-backward in time. Focusing on SUBFIND catalogues for this work, a sweep of parameters influencing our merger tree construction yields the optimal snapshot cadence and scanning range required for converged results. Pathologies proliferate when snapshots are spaced by ≲0.128 dynamical times; conveniently similar to that needed for convergence of semi-analytical modelling, as established by Benson et al. Total merger counts are converged at the level of ∼5 per cent for friends-of-friends (FoF) haloes of size np ≳ 75 across a factor of 512 in mass resolution, but substructure rates converge more slowly with mass resolution, reaching convergence of ∼10 per cent for np ≳ 100 and particle mass mp ≲ 109 M⊙. We present analytic fits to FoF and substructure merger rates across nearly all observed galactic history (z ≤ 8.5). While we find good agreement with the results presented by Fakhouri et al. for FoF haloes, a slightly flatter dependence on merger ratio and increased major merger rates are found, reducing previously reported discrepancies with extended Press-Schechter estimates. When appropriately defined, substructure merger rates show a similar mass ratio dependence as FoF rates, but with stronger mass and redshift dependencies for their normalization.

  20. Investigating shape evolution and the emergence of collectivity through the synergy of Coulomb excitation and beta decay

    Energy Technology Data Exchange (ETDEWEB)

    Allmond, James M [ORNL

    2016-01-01

    The synthesis of Coulomb excitation and decay offers very practical advantages in the study of nuclear shapes and collectivity. For instance, Coulomb excitation is unique in its ability to measure the electric quadrupole moments, i.e., I2 ||M(E2)||I1 matrix elements, of excited, non-isomeric states in atomic nuclei, providing information on the intrinsic shape. However, the Coulomb excitation analysis and structural inter- pretation can be strongly dependent upon weak transitions or decay branches, which are often obscured by the Compton background. Transitions of particular interest are those low in energy and weak in intensity due to the E 5 attenuation factor. These weak decay branches can often be determined with high precision from -decay studies. Recently, 106Mo and 110Cd were studied by both Coulomb excitation and decay. Preliminary results of new weak decay branches following decay of 110mAg to 110Cd are presented; these results will challenge competing interpretations based on vibrations and configuration mixing.

  1. Coulomb Solutions from Improper Pseudo-Unitary Free Gauge Field Operator Translations

    Directory of Open Access Journals (Sweden)

    Andreas Aste

    2014-12-01

    Full Text Available Fundamental problems of quantum field theory related to the representation problem of canonical commutation relations are discussed within a gauge field version of a van Hove-type model. The Coulomb field generated by a static charge distribution is described as a formal superposition of time-like pseudo-photons in Fock space with a Krein structure. In this context, a generalization of operator gauge transformations is introduced to generate coherent states of Abelian gauge fields interacting with a charged background.

  2. Efficient Modeling of Coulomb Interaction Effect on Exciton in Crystal-Phase Nanowire Quantum Dot

    DEFF Research Database (Denmark)

    Taherkhani, Masoomeh; Gregersen, Niels; Mørk, Jesper

    2016-01-01

    The binding energy and oscillation strength of the ground-state exciton in type-II quantum dot (QD) is calculated by using a post Hartree-Fock method known as the configuration interaction (CI) method which is significantly more efficient than conventional methods like ab initio method. We show t...... that the Coulomb interaction between electron and holes in these structures considerably affects the transition dipole moment which is the key parameter of optical quantum gating in STIRAP (stimulated Raman adiabatic passage) process for implementing quantum gates [1], [2]....

  3. Alternative techniques for beam halo measurements

    CERN Document Server

    Welsch, CP; Burel, B; Lefèvre, T; Chapman, T; Pilon, MJ

    2006-01-01

    In future high intensity, high energy accelerators it must be ensured that particle losses are minimized, as activation of the vacuum chambers or other components makes maintenance and upgrade work time consuming and costly. It is imperative to have a clear understanding of the mechanisms that can lead to halo formation and to have the possibility to test available theoretical models with an adequate experimental setup. Measurements based on optical transition radiation (OTR) are a well-established technique for measurements of the transverse beam profile. However, in order to be suitable for halo measurements as well, the dynamic range of the final image acquisition system needs to be high, being able to cover at least five orders of magnitude in intensity changes. Here, the performance of a standard acquisition system as it is used in the CLIC test facility (CTF3) is compared to a step-by-step measurement with a small movable photo multiplier tube and an innovative camera system based on charge injection de...

  4. The CMS Beam Halo Monitor Detector System

    CERN Document Server

    CMS Collaboration

    2015-01-01

    A new Beam Halo Monitor (BHM) detector system has been installed in the CMS cavern to measure the machine-induced background (MIB) from the LHC. This background originates from interactions of the LHC beam halo with the final set of collimators before the CMS experiment and from beam gas interactions. The BHM detector uses the directional nature of Cherenkov radiation and event timing to select particles coming from the direction of the beam and to suppress those originating from the interaction point. It consists of 40 quartz rods, placed on each side of the CMS detector, coupled to UV sensitive PMTs. For each bunch crossing the PMT signal is digitized by a charge integrating ASIC and the arrival time of the signal is recorded. The data are processed in real time to yield a precise measurement of per-bunch-crossing background rate. This measurement is made available to CMS and the LHC, to provide real-time feedback on the beam quality and to improve the efficiency of data taking. In this talk we will describ...

  5. The CMS Beam Halo Monitor Detector System

    CERN Document Server

    Stifter, Kelly

    2015-01-01

    A new Beam Halo Monitor (BHM) detector system has been installed in the CMS cavern to measure the machine-induced background (MIB) from the LHC. This background originates from interactions of the LHC beam halo with the final set of collimators before the CMS experiment and from beam gas interactions. The BHM detector uses the directional nature of Cherenkov radiation and event timing to select particles coming from the direction of the beam and to supress those originating from the interaction point. It consists of 40 quartz rods, placed on each side of the CMS detector, coupled to UV sensitive PMTs. For each bunch crossing the PMT signal is digitized by a charge integrating ASIC and the arrival time of the signal is recorded. The data are processed in real time to yield a precise measurement of per-bunch-crossing background rate. This measurement is made available to CMS and the LHC, to provide real-time feedback on the beam quality and to improve the efficiency of data taking. In this talk we will descri...

  6. Constraints on the evolution of the relationship between H I mass and halo mass in the last 12 Gyr

    Science.gov (United States)

    Padmanabhan, Hamsa; Kulkarni, Girish

    2017-09-01

    The neutral hydrogen (H I) content of dark matter haloes forms an intermediate state in the baryon cycle that connects the hot shock-heated gas and cold star-forming gas in haloes. Measurement of the relationship between H I mass and halo mass therefore puts important constraints on galaxy formation models. We combine radio observations of H I in emission at low redshift (z ˜ 0) with optical/UV observations of H I in absorption at high redshift (1 < z < 4) to derive constraints on the evolution of the H I-mass-halo-mass (HIHM) relation from redshift z = 4 to 0. We find that one can model the HIHM relation similar to the stellar-mass-halo-mass (SHM) relation at z ˜ 0. At z = 0, haloes with mass 1011.7 M⊙ have the highest H I mass fraction (˜1 per cent), which is about four times smaller than their stellar-mass fraction. We model the evolution of the HIHM relation in a manner similar to that of the SHM relation. Combining this parametrization with a redshift- and mass-dependent modified Navarro-Frenk-White profile for the H I density within a halo, we draw constraints on the evolution of the HIHM relation from the observed H I column density, incidence rate and clustering bias at high redshift. We compare these findings with results from hydrodynamical simulations and other approaches in the literature and find the models to be consistent with each other at the 68 per cent confidence level.

  7. A 500 PARSEC HALO SURROUNDING THE GALACTIC GLOBULAR NGC 1851

    NARCIS (Netherlands)

    Olszewski, Edward W.; Saha, Abhijit; Knezek, Patricia; Subramaniam, Annapurni; de Boer, Thomas; Seitzer, Patrick

    2009-01-01

    Using imaging that shows 4 mag of main-sequence stars, we have discovered that the Galactic globular cluster NGC 1851 is surrounded by a halo that is visible from the tidal radius of 700 arcsec (41 pc) to more than 4500 arcsec (> 250 pc). This halo is symmetric and falls in density as a power law of

  8. Is the dark halo of our Galaxy spherical?

    NARCIS (Netherlands)

    Helmi, A

    2004-01-01

    It has been recently claimed that the confined structure of the debris from the Sagittarius dwarf implies that the dark matter halo of our Galaxy should be nearly spherical, in strong contrast with predictions from cold dark matter simulations, where dark haloes are found to have typical density

  9. Investigating Halo and Ceiling Effects in Student Evaluations of Instruction

    Science.gov (United States)

    Keeley, Jared W.; English, Taylor; Irons, Jessica; Henslee, Amber M.

    2013-01-01

    Many measurement biases affect student evaluations of instruction (SEIs). However, two have been relatively understudied: halo effects and ceiling/floor effects. This study examined these effects in two ways. To examine the halo effect, using a videotaped lecture, we manipulated specific teacher behaviors to be "good" or "bad"…

  10. Binary white dwarfs in the halo of the Milky Way

    NARCIS (Netherlands)

    van Oirschot, Pim; Nelemans, Gijs; Toonen, Silvia; Pols, Onno; Brown, Anthony G. A.; Helmi, Amina; Portegies Zwart, Simon

    Aims: We study single and binary white dwarfs in the inner halo of the Milky Way in order to learn more about the conditions under which the population of halo stars was born, such as the initial mass function (IMF), the star formation history, or the binary fraction. Methods: We simulate the

  11. Disk response to a lopsided halo potential (Jog 1997, 2002):

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Disk response to a lopsided halo potential (Jog 1997, 2002):. consider small (few %) perturbation in potential. --- solve equations of motion using epicyclic theory. The symmetric disk potential = ψ_0 (R ) = Vc 2 ln R. and the perturbation halo potential = Vc 2 εlop cos φ ...

  12. THE COSMOGRID SIMULATION: STATISTICAL PROPERTIES OF SMALL DARK MATTER HALOS

    Energy Technology Data Exchange (ETDEWEB)

    Ishiyama, Tomoaki [Center for Computational Science, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8577 (Japan); Rieder, Steven; Portegies Zwart, Simon [Sterrewacht Leiden, Leiden University, P.O. Box 9513, 2300-RA Leiden (Netherlands); Makino, Junichiro [Graduate School of Science and Engineering, Tokyo Institute of Technology (Japan); Groen, Derek [Centre for Computational Science, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ (United Kingdom); Nitadori, Keigo [RIKEN Advanced Institute for Computational Science (Japan); De Laat, Cees [Section System and Network Engineering, University of Amsterdam, Amsterdam (Netherlands); McMillan, Stephen [Department of Physics, Drexel University, Philadelphia, PA 19104 (United States); Hiraki, Kei [Department of Creative Informatics, Graduate School of Information Science and Technology, the University of Tokyo (Japan); Harfst, Stefan, E-mail: ishiyama@ccs.tsukuba.ac.jp [Center for Astronomy and Astrophysics, Technical University Berlin, Hardenbergstr. 36, D-10623 Berlin (Germany)

    2013-04-20

    We present the results of the ''Cosmogrid'' cosmological N-body simulation suites based on the concordance LCDM model. The Cosmogrid simulation was performed in a 30 Mpc box with 2048{sup 3} particles. The mass of each particle is 1.28 Multiplication-Sign 10{sup 5} M{sub Sun }, which is sufficient to resolve ultra-faint dwarfs. We found that the halo mass function shows good agreement with the Sheth and Tormen fitting function down to {approx}10{sup 7} M{sub Sun }. We have analyzed the spherically averaged density profiles of the three most massive halos which are of galaxy group size and contain at least 170 million particles. The slopes of these density profiles become shallower than -1 at the innermost radius. We also find a clear correlation of halo concentration with mass. The mass dependence of the concentration parameter cannot be expressed by a single power law, however a simple model based on the Press-Schechter theory proposed by Navarro et al. gives reasonable agreement with this dependence. The spin parameter does not show a correlation with the halo mass. The probability distribution functions for both concentration and spin are well fitted by the log-normal distribution for halos with the masses larger than {approx}10{sup 8} M{sub Sun }. The subhalo abundance depends on the halo mass. Galaxy-sized halos have 50% more subhalos than {approx}10{sup 11} M{sub Sun} halos have.

  13. The Cosmogrid Simulation: Statistical Properties of Small Dark Matter Halos

    Science.gov (United States)

    Ishiyama, Tomoaki; Rieder, Steven; Makino, Junichiro; Portegies Zwart, Simon; Groen, Derek; Nitadori, Keigo; de Laat, Cees; McMillan, Stephen; Hiraki, Kei; Harfst, Stefan

    2013-04-01

    We present the results of the "Cosmogrid" cosmological N-body simulation suites based on the concordance LCDM model. The Cosmogrid simulation was performed in a 30 Mpc box with 20483 particles. The mass of each particle is 1.28 × 105 M ⊙, which is sufficient to resolve ultra-faint dwarfs. We found that the halo mass function shows good agreement with the Sheth & Tormen fitting function down to ~107 M ⊙. We have analyzed the spherically averaged density profiles of the three most massive halos which are of galaxy group size and contain at least 170 million particles. The slopes of these density profiles become shallower than -1 at the innermost radius. We also find a clear correlation of halo concentration with mass. The mass dependence of the concentration parameter cannot be expressed by a single power law, however a simple model based on the Press-Schechter theory proposed by Navarro et al. gives reasonable agreement with this dependence. The spin parameter does not show a correlation with the halo mass. The probability distribution functions for both concentration and spin are well fitted by the log-normal distribution for halos with the masses larger than ~108 M ⊙. The subhalo abundance depends on the halo mass. Galaxy-sized halos have 50% more subhalos than ~1011 M ⊙ halos have.

  14. A two-point correlation function for Galactic halo stars

    NARCIS (Netherlands)

    Cooper, A. P.; Cole, S.; Frenk, C. S.; Helmi, A.

    2011-01-01

    We describe a correlation function statistic that quantifies the amount of spatial and kinematic substructure in the stellar halo. We test this statistic using model stellar halo realizations constructed from the Aquarius suite of six high-resolution cosmological N-body simulations, in combination

  15. Influence of halo doping profiles on MOS transistor mismatch

    NARCIS (Netherlands)

    Andricciola, P.; Tuinhout, H.

    2009-01-01

    Halo implants are used in modern CMOS technology to reduce the short channel effect. However, the lateral non-uniformity of the channel doping has been proven to degenerate the mismatch performance. With this paper we want to discuss the influence of the halo profile on MOS transistor mismatch. The

  16. A Hidden Radio Halo in the Galaxy Cluster A1682?

    Indian Academy of Sciences (India)

    High sensitivity observations of radio halos in galaxy clusters at frequencies ≤ 330 MHz are still relatively rare, and very little is known compared to the classical 1.4 GHz images. The few radio halos imaged down to 150–240 MHz show a considerable spread in size, morphology and spectral properties. All clusters ...

  17. Double folding model analysis of elastic scattering of halo nucleus ...

    Indian Academy of Sciences (India)

    features of halo nuclei largely affect the interaction with light and heavy targets at low bombarding energies and have created tremendous interest in the study of nuclear reac- tions. Elastic scattering is sensitive to the nature of the surface of nuclei and hence it is effective in studying halo nuclei. Pramana – J. Phys., Vol.

  18. The Connection between Radio Halos and Cluster Mergers and the ...

    Indian Academy of Sciences (India)

    We discuss the statistical properties of the radio halo population in galaxy clusters. Radio bi-modality is observed in galaxy clusters: a fraction of clusters host giant radio halos while a majority of clusters do not show evidence of diffuse cluster-scale radio emission. The radio bi-modality has a correspondence in terms of ...

  19. Structure of light neutron-rich nuclei through Coulomb dissociation

    Indian Academy of Sciences (India)

    pp. 535–544. Structure of light neutron-rich nuclei through Coulomb dissociation. U DATTA PRAMANIK, T AUMANN, D CORTINA, H EMLING, H GEISSEL, M HELL-. STR ¨OM, R HOLZMANN, N IWASA, Y LEIFELS, G M ¨UNZENBERG, M REJMUND,. C SCHEIDENBERGER, K S ¨UMMERER, A LEISTENSCHNEIDER. ½.

  20. Coulomb Sturmians as a basis for molecular calculations

    DEFF Research Database (Denmark)

    Avery, John Scales; Avery, James Emil

    2012-01-01

    mathematical difficulty of evaluating interelectron repulsion integrals when exponential-type orbitals (ETOs) are used. In this paper we show that when many-centre Coulomb Sturmian ETOs are used as a basis, the most important integrals can be evaluated rapidly and accurately by means of the theory...

  1. Molecular integrals for slater type orbitals using coulomb sturmians

    DEFF Research Database (Denmark)

    Avery, James Emil; Avery, John Scales

    2014-01-01

    The use of Slater type orbitals in molecular calculations is hindered by the slowness of integral evaluation. In the present paper, we introduce a method for overcoming this problem by expanding STO's in terms of Coulomb Sturmians, for which the problem of evaluating molecular integrals rapidly has...

  2. Spontaneous breakdown of PT symmetry in the complex Coulomb ...

    Indian Academy of Sciences (India)

    To rectify this problem, a U-shaped trajectory was proposed in ref. [11], in the complex plane, which was parametrized in terms of a real variable. With this, not only was it possible to restore the correct sign of the energy spectrum, but also scattering solutions of the PT -symmetric Coulomb problem could be described,.

  3. Coulomb collisional relaxation process of ion beams in magnetized plasmas

    OpenAIRE

    Nishimura, Y.

    2010-01-01

    An orbit following code is developed to calculate ion beam trajectories in magnetized plasmas. The equation of motion (the Newton's equation) is solved including the Lorentz force term and Coulomb collisional relaxation term. Furthermore, a new algorithm is introduced by applying perturbation method regarding the collision term as a small term. The reduction of computation time is suggested.

  4. Snippets of Physics-Perturbing Coulomb to Avoid Accidents!

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 6. Snippets of Physics - Perturbing Coulomb to Avoid Accidents! T Padmanabhan. Series Article Volume 14 Issue 6 June 2009 pp 622-629. Fulltext. Click here to view fulltext PDF. Permanent link:

  5. Coulomb blockade and superuniversality of the theta angle

    NARCIS (Netherlands)

    Burmistrov, I.S.; Pruisken, A.M.M.

    2008-01-01

    Based on the Ambegaokar-Eckern-Schön approach to the Coulomb blockade, we develop a complete quantum theory of the single electron transistor. We identify a previously unrecognized physical observable in the problem that, unlike the usual average charge on the island, is robustly quantized for any

  6. A mean field approach to Coulomb blockade for a disordered ...

    Indian Academy of Sciences (India)

    The Coulomb blockade (CB) in quantum dots (QDs) is by now well documented. It has been used to guide the fabrication of single electron transistors. Even the most sophisticated techniques for synthesizing QDs (e.g. MOCVD/MBE) result in an assembly in which a certain amount of disorder is inevitable. On the other hand, ...

  7. Relativistic Coulomb Green's function in $d$-dimensions

    OpenAIRE

    Lee, R. N.; Milstein, A. I.; Terekhov, I. S.

    2011-01-01

    Using the operator method, the Green's functions of the Dirac and Klein-Gordon equations in the Coulomb potential $-Z\\alpha/r$ are derived for the arbitrary space dimensionality $d$. Nonrelativistic and quasiclassical asymptotics of these Green's functions are considered in detail.

  8. Chaos in a coulombic muffin-tin potential

    Energy Technology Data Exchange (ETDEWEB)

    Brandis, S. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    1994-04-01

    We study the two-dimensional classical scattering dynamics by a Muffin-Tin potential with 3 Coulomb singularities. A complete symbolic dynamics for the periodic orbits is derivd. The classical trajectories are shown to be hyperbolic everywhere in phase space and to carry no conjugate points. (orig.)

  9. Electrostatic potential of phase boundary in Coulomb systems

    NARCIS (Netherlands)

    Iosilevski, [No Value; Chigvintsev, A

    Any interface boundary in an equilibrium system of Coulomb particles is accompanied by the existence of a finite difference in the average electrostatic potential through this boundary. This interface potential drop is a thermodynamic quantity. It depends on temperature only and does not depend on

  10. Plasmon-mediated Coulomb drag between graphene waveguides

    DEFF Research Database (Denmark)

    Shylau, Artsem A.; Jauho, Antti-Pekka

    2014-01-01

    We analyze theoretically charge transport in Coulomb coupled graphene waveguides (GWGs). The GWGs are defined using antidot lattices, and the lateral geometry bypasses many technological challenges of earlier designs. The drag resistivity ρD, which is a measure of the many-particle interactions...

  11. Coulomb crystallization in two-component quantum plasmas

    Science.gov (United States)

    Bonitz, M.; Filinov, V. S.; Levashov, P. R.; Fortov, V. E.; Fehske, H.

    2006-10-01

    Coulomb crystallization is a common phenomenon in trapped (non-neutral) plasmas. In a neutral plasma, however, it is hampered by recombination of electrons and ions. Known examples are ion Coulomb crystals in white dwarf and neutron stars. Here, we predict the conditions under which a Coulomb crystal of heavy particles (e.g. ions) can form in the presence of a degenerate delocalized background of light charges (e.g. electrons): the key requirement is the mass ratio has to exceed a critical value of about 80 [1]. This leads to the prediction of novel types of crystals e.g. in hydrogen and helium. Further, we predict that holes in semiconductors can spontaneously order into a regular lattice in materials with sufficiently flat valence bands. A unified phase diagram of Coulomb crystals in two-component systems is derived and verified by first-principe path-integral Monte Carlo simulations [1-3]. [1] M. Bonitz, V.S. Filinov, V.E. Fortov, P. Levashov, H. Fehske, Phys. Rev. Lett. 95, 235006 (2005), Phys. Rev. Focus, Dec 2005 [2] M. Bonitz, V.S. Filinov, V.E. Fortov, P. Levashov, H. Fehske, J. Phys. A: Math. Gen. 39, 4717 (2006) [3] M. Bonitz, V.S. Filinov, V.E. Fortov, P. Levashov, H. Fehske, Phys. Rev. E (2006)

  12. Multicomponent ionic diffusion in porewaters: Coulombic effects revisited

    NARCIS (Netherlands)

    Boudreau, B.P.; Meysman, F.J.R.; Middelburg, J.J.

    2004-01-01

    The diffusion of an ion in porewaters cannot occur independently of the other ions in solution as a result of Coulombic coupling, as well as from other effects not considered here. Unfortunately, a longstanding disagreement exists about the correct form and meaning of the equations that describe

  13. RR Lyrae to build up the Galactic Halo

    Science.gov (United States)

    Fiorentino, Giuliana

    2015-08-01

    We compare the period and period-amplitude distributions for a sizeable sample of rrab in dwarfs (~1300stars) with those in the galactic halo (~14,000stars) and globular clusters (~1000stars). Field rrab show a significant change in their period distribution when moving from the inner (dg~14kpc) halo regions, suggesting that the halo formed from (at least) two dissimilar progenitors or events. Rrab in dwarfs-as observed today-do not appear to follow the pulsation properties shown by those in the galactic halo, nor do they have the same properties as rrls in globulars. Only massive and metal rich satellites likely have mainly contributed to the galactic halo formation, e.g. Sgr dSph.

  14. Cycling capacity recovery effect: A coulombic efficiency and post-mortem study

    Science.gov (United States)

    Wilhelm, Jörn; Seidlmayer, Stefan; Keil, Peter; Schuster, Jörg; Kriele, Armin; Gilles, Ralph; Jossen, Andreas

    2017-10-01

    The analysis of lithium-ion battery aging relies on correct differentiation between irreversible and reversible capacity changes. Anode overhang regions have been observed to influence Coulombic Efficiency (CE) measurements through lithium diffusion into and out of these areas, complicating precise capacity determination. This work presents an analysis of the extent of graphite anode overhang lithiation after calendar storage by means of local X-ray diffraction (XRD), CE measurements, and color change analysis. We found LiC12 lithiation of the anode overhang area after 20 month storage at 40 °C at high state of charge (SoC) and partial lithiation (LiC18) at medium SoC storage at 40 °C and 25 °C. Graphite color changes in the overhang areas are observed and consistent with the state of lithiation measured by XRD. Coulombic efficiencies greater than unity and increasing capacity during 1200 h of cycling are detected for high SoC storage cells. The capacity difference between high and low storage SoC batteries decreases by up to 40 mAh (3.6% of nominal capacity) after cycling compared to tests directly after storage. Consequently, the size of the anode overhang areas as well as the battery storage temperature and duration need to be considered in CE analysis and state of health assessment.

  15. Binary white dwarfs in the halo of the Milky Way

    Science.gov (United States)

    van Oirschot, Pim; Nelemans, Gijs; Toonen, Silvia; Pols, Onno; Brown, Anthony G. A.; Helmi, Amina; Portegies Zwart, Simon

    2014-09-01

    Aims: We study single and binary white dwarfs in the inner halo of the Milky Way in order to learn more about the conditions under which the population of halo stars was born, such as the initial mass function (IMF), the star formation history, or the binary fraction. Methods: We simulate the evolution of low-metallicity halo stars at distances up to ~3 kpc using the binary population synthesis code SeBa. We use two different white dwarf cooling models to predict the present-day luminosities of halo white dwarfs. We determine the white dwarf luminosity functions (WDLFs) for eight different halo models and compare these with the observed halo WDLF of white dwarfs in the SuperCOSMOS Sky Survey. Furthermore, we predict the properties of binary white dwarfs in the halo and determine the number of halo white dwarfs that is expected to be observed with the Gaia satellite. Results: By comparing the WDLFs, we find that a standard IMF matches the observations more accurately than a top-heavy one, but the difference with a bottom-heavy IMF is small. A burst of star formation 13 Gyr ago fits slightly better than a star formation burst 10 Gyr ago and also slightly better than continuous star formation 10-13 Gyr ago. Gaia will be the first instument to constrain the bright end of the field halo WDLF, where contributions from binary WDs are considerable. Many of these will have He cores, of which a handful have atypical surface gravities (log g 0 in our standard model for WD cooling. These so called pre-WDs, if observed, can help us to constrain white dwarf cooling models and might teach us something about the fraction of halo stars that reside in binaries. Appendices are available in electronic form at http://www.aanda.org

  16. What sets the central structure of dark matter haloes?

    Science.gov (United States)

    Ogiya, Go; Hahn, Oliver

    2018-02-01

    Dark matter (DM) haloes forming near the thermal cut-off scale of the density perturbations are unique, since they are the smallest objects and form through monolithic gravitational collapse, while larger haloes contrastingly have experienced mergers. While standard cold dark matter (CDM) simulations readily produce haloes that follow the universal Navarro-Frenk-White (NFW) density profile with an inner slope, ρ ∝ r-α, with α = 1, recent simulations have found that when the free-streaming cut-off expected for the CDM model is resolved, the resulting haloes follow nearly power-law density profiles of α ∼ 1.5. In this paper, we study the formation of density cusps in haloes using idealized N-body simulations of the collapse of proto-haloes. When the proto-halo profile is initially cored due to particle free-streaming at high redshift, we universally find ∼r-1.5 profiles irrespective of the proto-halo profile slope outside the core and large-scale non-spherical perturbations. Quite in contrast, when the proto-halo has a power-law profile, then we obtain profiles compatible with the NFW shape when the density slope of the proto-halo patch is shallower than a critical value, αini ∼ 0.3, while the final slope can be steeper for αini ≳ 0.3. We further demonstrate that the r-1.5 profiles are sensitive to small-scale noise, which gradually drives them towards an inner slope of -1, where they become resilient to such perturbations. We demonstrate that the r-1.5 solutions are in hydrostatic equilibrium, largely consistent with a simple analytic model, and provide arguments that angular momentum appears to determine the inner slope.

  17. [Halos and multifocal intraocular lenses: origin and interpretation].

    Science.gov (United States)

    Alba-Bueno, F; Vega, F; Millán, M S

    2014-10-01

    To present the theoretical and experimental characterization of the halo in multifocal intraocular lenses (MIOL). The origin of the halo in a MIOL is the overlaying of 2 or more images. Using geometrical optics, it can be demonstrated that the diameter of each halo depends on the addition of the lens (ΔP), the base power (P(d)), and the diameter of the IOL that contributes to the «non-focused» focus. In the image plane that corresponds to the distance focus, the halo diameter (δH(d)) is given by: δH(d)=d(pn) ΔP/P(d), where d(pn) is the diameter of the IOL that contributes to the near focus. Analogously, in the near image plane the halo diameter (δH(n)) is: δH(n)=d(pd) ΔP/P(d), where d(pd) is the diameter of the IOL that contributes to the distance focus. Patients perceive halos when they see bright objects over a relatively dark background. In vitro, the halo can be characterized by analyzing the intensity profile of the image of a pinhole that is focused by each of the foci of a MIOL. A comparison has been made between the halos induced by different MIOL of the same base power (20D) in an optical bench. As predicted by theory, the larger the addition of the MIOL, the larger the halo diameter. For large pupils and with MIOL with similar aspheric designs and addition (SN6AD3 vs ZMA00), the apodized MIOL has a smaller halo diameter than a non-apodized one in distance vision, while in near vision the size is very similar, but the relative intensity is higher in the apodized MIOL. When comparing lenses with the same diffractive design, but with different spherical-aspheric base design (SN60D3 vs SN6AD3), the halo in distance vision of the spherical MIOL is larger, while in near vision the spherical IOL induces a smaller halo, but with higher intensity due to the spherical aberration of the distance focus in the near image. In the case of a trifocal-diffractive IOL (AT LISA 839MP) the most noticeable characteristic is the double-halo formation due to the 2 non

  18. Historic halo displays as weather indicator: Criteria and examples

    Science.gov (United States)

    Neuhäuser, Dagmar L.; Neuhäuser, Ralph

    2016-04-01

    There are numerous celestial signs reported in historic records, many of them refer to atmospheric ("sub-lunar") phenomena, such as ice halos and aurorae. In an interdisciplinary collaboration between astrophysics and cultural astronomy, we noticed that celestial observations including meteorological phenomena are often misinterpreted, mostly due to missing genuine criteria: especially ice crystal halos were recorded frequently in past centuries for religious reasons, but are mistaken nowadays often for other phenomena like aurorae. Ice halo displays yield clear information on humidity and temperature in certain atmospheric layers, and thereby indicate certain weather patterns. Ancient so-called rain makers used halo observations for weather forecast; e.g., a connection between certain halo displays and rain a few day later is statistically significant. Ice halos exist around sun and moon and are reported for both (they can stay for several days): many near, middle, and far eastern records from day- and night-time include such observations with high frequency. (Partly based on publications on halos by D.L. Neuhäuser & R. Neuhäuser, available at http://www.astro.uni-jena.de/index.php/terra-astronomy.html)

  19. Accurate mass and velocity functions of dark matter haloes

    Science.gov (United States)

    Comparat, Johan; Prada, Francisco; Yepes, Gustavo; Klypin, Anatoly

    2017-08-01

    N-body cosmological simulations are an essential tool to understand the observed distribution of galaxies. We use the MultiDark simulation suite, run with the Planck cosmological parameters, to revisit the mass and velocity functions. At redshift z = 0, the simulations cover four orders of magnitude in halo mass from ˜1011M⊙ with 8783 874 distinct haloes and 532 533 subhaloes. The total volume used is ˜515 Gpc3, more than eight times larger than in previous studies. We measure and model the halo mass function, its covariance matrix w.r.t halo mass and the large-scale halo bias. With the formalism of the excursion-set mass function, we explicit the tight interconnection between the covariance matrix, bias and halo mass function. We obtain a very accurate (Planck cosmology. Finally, we provide precise analytical fits of the Vmax maximum velocity function up to redshift z < 2.3 to push for the development of halo occupation distribution using Vmax. The data and the analysis code are made publicly available in the Skies and Universes data base.

  20. Coulomb excitation of $^{182-184}$ Hg: Shape coexistence in the neutron-deficient lead region

    CERN Multimedia

    We put forward a study of the interplay between individual nucleon behavior and collective degrees of freedom in the nucleus, as manifested in shape coexistence in the neutron-deficient lead region. As a first step of this experimental campaign, we propose to perform Coulomb excitation on light mercury isotopes to probe their excited states and determine transitional and diagonal E2 matrix elements, especially reducing the current uncertainties. The results from previous Coulomb excitation measurements in this mass region performed with 2.85 MeV/u beams from REX-ISOLDE have shown the feasibility of these experiments. Based on our past experience and the results obtained, we propose a detailed study of the $^{182-184}$Hg nuclei, that exhibit a pronounced mixing between 2 low-lying excited states of apparently different deformation character, using the higher energy beams from HIE-ISOLDE which are crucial to reach our goal. The higher beam energy should result in an increased sensitivity with respect to the qua...

  1. The simplest model for non-congruent fluid-fluid phase transition in Coulomb system

    CERN Document Server

    Stroev, Nikita

    2015-01-01

    The simplest model for non-congruent phase transition of gas-liquid type was developed in frames of modified model with no associations of a binary ionic mixture (BIM) on a homogeneous compressible ideal background (or non-ideal) electron gas /BIM($\\sim$)/. The analytical approximation for equation of state equation of state of Potekhin and Chabrier of fully ionized electron-ionic plasma was used for description of the ion-ion correlations (Coulomb non-ideality) in combination with ``linear mixture'' (LM) approximation. Phase equilibrium for the charged species was calculated according to the Gibbs-Guggenheim conditions. The presently considered BIM($\\sim$) model allows to calculate full set of parameters for phase boundaries of non-congruent variant of phase equilibrium and to study all features for this non-congruent phase transition realization in Coulomb system in comparison with the simpler (standard) forced-congruent evaporation mode. In particular, in BIM($\\sim$) there were reproduced two-dimensional r...

  2. Production of low kinetic energy electrons and energetic ion pairs by Intermolecular Coulombic Decay.

    Science.gov (United States)

    Hergenhahn, Uwe

    2012-12-01

    The paper gives an introduction into Interatomic and Intermolecular Coulombic Decay (ICD). ICD is an autoionization process, which contrary to Auger decay involves neighbouring sites of the initial vacancy as an integral part of the decay transition. As a result of ICD, slow electrons are produced which generally are known to be active in radiation damage. The author summarizes the properties of ICD and reviews a number of important experiments performed in recent years. Intermolecular Coulombic Decay can generally take place in weakly bonded aggregates in the presence of ionizing particles or ionizing radiation. Examples collected here mostly use soft X-rays produced by synchrotron radiation to ionize, and use rare-gas clusters, water clusters or solutes in a liquid jet to observe ICD after irradiation. Intermolecular Coulombic Decay is initiated by single ionization into an excited state. The subsequent relaxation proceeds via an ultra-fast energy transfer to a neighbouring site, where a second ionization occurs. Secondary electrons from ICD have clearly been identified in numerous systems. ICD can take place after primary ionization, as the second step of a decay cascade which also involves Auger decay, or after resonant excitation with an energy which exceeds the ionization potential of the system. ICD is expected to play a role whenever particles or radiation with photon energies above the ionization energies for inner valence electrons are present in weakly bonded matter, e.g., biological tissue. The process produces at the same time a slow electron and two charged atomic or molecular fragments, which will lead to structural changes around the ionized site.

  3. Chemical Cartography. I. A Carbonicity Map of the Galactic Halo

    Science.gov (United States)

    Lee, Young Sun; Beers, Timothy C.; Kim, Young Kwang; Placco, Vinicius; Yoon, Jinmi; Carollo, Daniela; Masseron, Thomas; Jung, Jaehun

    2017-02-01

    We present the first map of carbonicity, [C/Fe], for the halo system of the Milky Way, based on a sample of over 100,000 main-sequence turnoff stars with available spectroscopy from the Sloan Digital Sky Survey. This map, which explores distances up to 15 kpc from the Sun, reveals clear evidence for the dual nature of the Galactic halo, based on the spatial distribution of stellar carbonicity. The metallicity distribution functions of stars in the inner- and outer-halo regions of the carbonicity map reproduce those previously argued to arise from contributions of the inner- and outer-halo populations, with peaks at [Fe/H] = -1.5 and -2.2, respectively. From consideration of the absolute carbon abundances for our sample, A(C), we also confirm that the carbon-enhanced metal-poor (CEMP) stars in the outer-halo region exhibit a higher frequency of CEMP-no stars (those with no overabundances of heavy neutron-capture elements) than of CEMP-s stars (those with strong overabundances of elements associated with the s-process), whereas the stars in the inner-halo region exhibit a higher frequency of CEMP-s stars. We argue that the contrast in the behavior of the CEMP-no and CEMP-s fractions in these regions arises from differences in the mass distributions of the mini-halos from which the stars of the inner- and outer-halo populations formed, which gives rise in turn to the observed dichotomy of the Galactic halo.

  4. Chemical Cartography. I. A Carbonicity Map of the Galactic Halo

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Sun; Kim, Young Kwang [Department of Astronomy and Space Science, Chungnam National University, Daejeon 34134 (Korea, Republic of); Beers, Timothy C.; Placco, Vinicius; Yoon, Jinmi [Department of Physics and JINA Center for the Evolution of the Elements, University of Notre Dame, Notre Dame, IN 46556 (United States); Carollo, Daniela [Research School of Astronomy and Astrophysics, The Australian National University, Canberra, ACT 2611 (Australia); Masseron, Thomas [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Jung, Jaehun, E-mail: youngsun@cnu.ac.kr [Department of Astronomy, Space Science, and Geology, Chungnam National University, Daejeon 34134 (Korea, Republic of)

    2017-02-10

    We present the first map of carbonicity, [C/Fe], for the halo system of the Milky Way, based on a sample of over 100,000 main-sequence turnoff stars with available spectroscopy from the Sloan Digital Sky Survey. This map, which explores distances up to 15 kpc from the Sun, reveals clear evidence for the dual nature of the Galactic halo, based on the spatial distribution of stellar carbonicity. The metallicity distribution functions of stars in the inner- and outer-halo regions of the carbonicity map reproduce those previously argued to arise from contributions of the inner- and outer-halo populations, with peaks at [Fe/H] = −1.5 and −2.2, respectively. From consideration of the absolute carbon abundances for our sample, A (C), we also confirm that the carbon-enhanced metal-poor (CEMP) stars in the outer-halo region exhibit a higher frequency of CEMP-no stars (those with no overabundances of heavy neutron-capture elements) than of CEMP- s stars (those with strong overabundances of elements associated with the s -process), whereas the stars in the inner-halo region exhibit a higher frequency of CEMP- s stars. We argue that the contrast in the behavior of the CEMP-no and CEMP- s fractions in these regions arises from differences in the mass distributions of the mini-halos from which the stars of the inner- and outer-halo populations formed, which gives rise in turn to the observed dichotomy of the Galactic halo.

  5. Studying generalised dark matter interactions with extended halo-independent methods

    Energy Technology Data Exchange (ETDEWEB)

    Kahlhoefer, Felix [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Wild, Sebastian [Technische Univ. Muenchen, Garching (Germany). Physik-Dept. T30d

    2016-07-15

    The interpretation of dark matter direct detection experiments is complicated by the fact that neither the astrophysical distribution of dark matter nor the properties of its particle physics interactions with nuclei are known in detail. To address both of these issues in a very general way we develop a new framework that combines the full formalism of non-relativistic effective interactions with state-of-the-art halo-independent methods. This approach makes it possible to analyse direct detection experiments for arbitrary dark matter interactions and quantify the goodness-of-fit independent of astrophysical uncertainties. We employ this method in order to demonstrate that the degeneracy between astrophysical uncertainties and particle physics unknowns is not complete. Certain models can be distinguished in a halo-independent way using a single ton-scale experiment based on liquid xenon, while other models are indistinguishable with a single experiment but can be separated using combined information from several target elements.

  6. Studying generalised dark matter interactions with extended halo-independent methods

    Energy Technology Data Exchange (ETDEWEB)

    Kahlhoefer, Felix [DESY, Notkestraße 85,D-22607 Hamburg (Germany); Wild, Sebastian [Physik-Department T30d, Technische Universität München,James-Franck-Straße 1, D-85748 Garching (Germany)

    2016-10-20

    The interpretation of dark matter direct detection experiments is complicated by the fact that neither the astrophysical distribution of dark matter nor the properties of its particle physics interactions with nuclei are known in detail. To address both of these issues in a very general way we develop a new framework that combines the full formalism of non-relativistic effective interactions with state-of-the-art halo-independent methods. This approach makes it possible to analyse direct detection experiments for arbitrary dark matter interactions and quantify the goodness-of-fit independent of astrophysical uncertainties. We employ this method in order to demonstrate that the degeneracy between astrophysical uncertainties and particle physics unknowns is not complete. Certain models can be distinguished in a halo-independent way using a single ton-scale experiment based on liquid xenon, while other models are indistinguishable with a single experiment but can be separated using combined information from several target elements.

  7. Stellar halos: a rosetta stone for galaxy formation and cosmology

    Science.gov (United States)

    Inglis Read, Justin

    2015-08-01

    Stellar halos make up about a percent of the total stellar mass in galaxies. Yet their old age and long phase mixing times make them living fossil records of galactic history. In this talk, I review the latest simulations of structure formation in our standard Lambda Cold Dark Matter cosmology. I discuss the latest predictions for stellar halos and the relationship between the stellar halo light and the underlying dark matter. Finally, I discuss how these simulations compare to observations of the Milky Way and Andromeda and, ultimately, what this means for our cosmological model and the formation history of the Galaxy.

  8. Peripheral cholangiocarcinoma : Radiologic significance of hypoechoic halo sign on sonography

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Young Eok; Moon, Haeng Jin; Lee, Eun Ja; Ahn, In Oak [Gyeong Sang National Univ., College of Medicine, Chinju (Korea, Republic of)

    2001-12-01

    To determine the prevalence and characteristics of the hypoechoic halo sign in peripheral cholangiocarcinoma. Seventeen sonograms of 17 patients with peripheral cholangiocarcinoma histologically proven by either percutaneous needle biopsy (n=16) or surgical biopsy (n=1) were retrospectively reviewed. The size, margin, homogeneity and internal echogenicity of the masses as well as their peritumoral ductal dilatation and intratumoral calcification were ascertained, and the presence of a hypoechoic halo, and if present, its thickness and type, were also determined. We arbitrarily defined a 'thin' and 'thick' halo respectively, as one with a thickness less than of less than 3 mm, and 3 mm or more, and classified halos as 'intratumoral', 'extratumoral', or 'mixed'. Tumor diameter ranged from 4 to 13.5 (mean,7.3)cm, and the margin was well-defined in 15 cases (smooth: n=2; lobulated: n=13) and irregular in two. Echogenicity was slightly heterogeneous in 11 cases, severely heterogeneous in three, and hemogeneous in three, while the central portion was hyperechoic in eight cases, isoechoic in seven, and hypoechoic in only two. A hypoechoic halo was detected in 10 of 15 tumors (67%) with isoechoic centers. In evaluating the halo, two cases in which the mass was hypoechoic were excluded. All ten hypoechoic halos were at least 3 (range, 4-13; mean, 8.3) mm thick; in two cases the presence of a halo was equivocal, and in three there was no halo. Eight of ten halos were the mixed type, two were intratumoral, and none were extratumoral. Peritumoral ductal dilatation was seen in four cases (24%), but no internal calcification was observed. US showed that the margins of peripheral cholangiocarcinomas were mostly well-defined and smooth (12%) or lobulated (76%), and that masses were mainly heterogeneous (64%) A hypoechoic halo, which in all cases was thick and in 80% of cases was mixed, was noted in 67% of tumors with a hyper (47

  9. Evolution of Southern Hemisphere spring air masses observed by HALOE

    Science.gov (United States)

    Pierce, R. Bradley; Grose, William L.; Russell, James M., III; Tuck, Adrian F.

    1994-01-01

    The evolution of Southern Hemisphere air masses observed by the Halogen Occultation Experiment (HALOE) during September 21 through October 15, 1992, is investigated using isentropic trajectories computed from United Kingdom Meteorological Office (UKMO) assimilated winds and temperatures. Maps of constituent concentrations are obtained by accumulation of air masses from previous HALOE occultations. Lagged correlations between initial and subsequent HALOE observations of the same air mass are used to validate the air mass trajectories. High correlations are found for lag times as large as 10 days. Frequency distributions of the air mass constituent concentrations are used to examine constituent distributions in and around the Southern Hemisphere polar vortex.

  10. Connecting Galaxies, Halos, and Star Formation Rates Across Cosmic Time

    Energy Technology Data Exchange (ETDEWEB)

    Conroy, Charlie; Wechsler, Risa H.

    2008-06-02

    A simple, observationally-motivated model is presented for understanding how halo masses, galaxy stellar masses, and star formation rates are related, and how these relations evolve with time. The relation between halo mass and galaxy stellar mass is determined by matching the observed spatial abundance of galaxies to the expected spatial abundance of halos at multiple epochs--i.e. more massive galaxies are assigned to more massive halos at each epoch. This 'abundance matching' technique has been shown previously to reproduce the observed luminosity- and scale-dependence of galaxy clustering over a range of epochs. Halos at different epochs are connected by halo mass accretion histories estimated from N-body simulations. The halo-galaxy connection at fixed epochs in conjunction with the connection between halos across time provides a connection between observed galaxies across time. With approximations for the impact of merging and accretion on the growth of galaxies, one can then directly infer the star formation histories of galaxies as a function of stellar and halo mass. This model is tuned to match both the observed evolution of the stellar mass function and the normalization of the observed star formation rate--stellar mass relation to z {approx} 1. The data demands, for example, that the star formation rate density is dominated by galaxies with M{sub star} {approx} 10{sup 10.0-10.5} M{sub {circle_dot}} from 0 < z < 1, and that such galaxies over these epochs reside in halos with M{sub vir} {approx} 10{sup 11.5-12.5} M{sub {circle_dot}}. The star formation rate--halo mass relation is approximately Gaussian over the range 0 < z < 1 with a mildly evolving mean and normalization. This model is then used to shed light on a number of issues, including (1) a clarification of 'downsizing', (2) the lack of a sharp characteristic halo mass at which star formation is truncated, and (3) the dominance of star formation over merging to the stellar

  11. Femtosecond Studies Of Coulomb Explosion Utilizing Covariance Mapping

    CERN Document Server

    Card, D A

    2000-01-01

    The studies presented herein elucidate details of the Coulomb explosion event initiated through the interaction of molecular clusters with an intense femtosecond laser beam (≥1 PW/cm2). Clusters studied include ammonia, titanium-hydrocarbon, pyridine, and 7-azaindole. Covariance analysis is presented as a general technique to study the dynamical processes in clusters and to discern whether the fragmentation channels are competitive. Positive covariance determinations identify concerted processes such as the concomitant explosion of protonated cluster ions of asymmetrical size. Anti- covariance mapping is exploited to distinguish competitive reaction channels such as the production of highly charged nitrogen atoms formed at the expense of the protonated members of a cluster ion ensemble. This technique is exemplified in each cluster system studied. Kinetic energy analyses, from experiment and simulation, are presented to fully understand the Coulomb explosion event. A cutoff study strongly suggests that...

  12. Back to epicycles - relativistic Coulomb systems in velocity space

    Science.gov (United States)

    Ben-Ya'acov, Uri

    2017-05-01

    The study of relativistic Coulomb systems in velocity space is prompted by the fact that the study of Newtonian Kepler/Coulomb systems in velocity space, although less familiar than the analytic solutions in ordinary space, provides a much simpler (also more elegant) method. The simplicity and elegance of the velocity-space method derives from the linearity of the velocity equation, which is the unique feature of 1/r interactions for Newtonian and relativistic systems alike. The various types of possible trajectories are presented, their properties deduced from the orbits in velocity space, accompanied with illustrations. In particular, it is found that the orbits traversed in the relativistic velocity space (which is hyperbolic (H 3) rather than Euclidean) are epicyclic - circles whose centres also rotate - thus the title. Dedicated to the memory of J. D. Bekenstein - physicist, teacher and human

  13. Fast Electron Repulsion Integrals for Molecular Coulomb Sturmians

    DEFF Research Database (Denmark)

    Avery, James Emil

    2013-01-01

    of hyperspherical harmonics. A rudimentary software library has been implemented and preliminary benchmarks indicate very good performance: On average 40 ns, or approximately 80 clock cycles, per electron repulsion integral. This makes molecular Coulomb Sturmians competitive with Gaussian type orbitals in terms......A new method is presented for calculating interelectron repulsion integrals for molecular Coulomb Sturmian basis sets. This makes use of an expansion of densities in terms of 2k-Sturmians, and the interelectron repulsion integrals are then calculated by a method based on the theory...... of speed, and is three to four orders of magnitude faster than methods based on expanding the exponential type orbitals in Gaussians. A full software library will be made available during autumn 2013....

  14. Conductance of a proximitized nanowire in the Coulomb blockade regime

    Science.gov (United States)

    van Heck, B.; Lutchyn, R. M.; Glazman, L. I.

    2016-06-01

    We identify the leading processes of electron transport across finite-length segments of proximitized nanowires and build a quantitative theory of their two-terminal conductance. In the presence of spin-orbit interaction, a nanowire can be tuned across the topological transition point by an applied magnetic field. Due to a finite segment length, electron transport is controlled by the Coulomb blockade. Upon increasing of the field, the shape and magnitude of the Coulomb blockade peaks in the linear conductance are defined, respectively, by Andreev reflection, single-electron tunneling, and resonant tunneling through the Majorana modes emerging after the topological transition. Our theory provides the framework for the analysis of experiments with proximitized nanowires [such as reported in S. M. Albrecht et al., Nature (London) 531, 206 (2016), 10.1038/nature17162] and identifies the signatures of the topological transition in the two-terminal conductance.

  15. Coulomb repulsion in (TMTSF)2X and (TMTTF)2X

    DEFF Research Database (Denmark)

    Mortensen, Kell; Engler, E. M.

    1985-01-01

    On the basis of studies of transport properties of (TMTSF)2 X, (TMTTF)2X and their binary alloys the authors discuss the role of on-site Coulomb repulsion relative to the transfer integrals. In TMTTF-salts U/ta are believed to be large, resulting in a Hubbard gap, whereas U/ta in TMTSF-salts are ......On the basis of studies of transport properties of (TMTSF)2 X, (TMTTF)2X and their binary alloys the authors discuss the role of on-site Coulomb repulsion relative to the transfer integrals. In TMTTF-salts U/ta are believed to be large, resulting in a Hubbard gap, whereas U/ta in TMTSF...

  16. An infinite family of superintegrable deformations of the Coulomb potential

    Energy Technology Data Exchange (ETDEWEB)

    Post, Sarah [Centre de recherches mathematiques, CP 6128 succ. Centre-Ville, Montreal, QC H3C 3J7 (Canada); Winternitz, Pavel, E-mail: post@CRM.UMontreal.C, E-mail: wintern@CRM.UMontreal.C [Centre de recherches mathematiques and Departement de mathematiques et de statistique, CP 6128 succ. Centre-Ville, Montreal, QC H3C 3J7 (Canada)

    2010-06-04

    We introduce a new family of Hamiltonians with a deformed Kepler-Coulomb potential dependent on an indexing parameter k. We show that this family is superintegrable for all rational k and compute the classical trajectories and quantum wavefunctions. We show that this system is related, via coupling constant metamorphosis, to a family of superintegrable deformations of the harmonic oscillator given by Tremblay, Turbiner and Winternitz. In doing so, we prove that all Hamiltonians with an oscillator term are related by coupling constant metamorphosis to systems with a Kepler-Coulomb term, both on Euclidean space. We also look at the effect of the transformation on the integrals of the motion, the classical trajectories and the wavefunctions, and give the transformed integrals explicitly for the classical system. (fast track communication)

  17. An entropic form for NLFP with coulombic-like potential

    Energy Technology Data Exchange (ETDEWEB)

    Grassi, A., E-mail: agrassi@unict.it [Dipartimento di Scienze del Farmaco, Università di Catania, V.le A. Doria 6, 95125 Catania (Italy)

    2012-01-30

    Here it is proposed a new entropy form for which it is possible to obtain a stationary solution of the Non-Linear Fokker–Planck equation (NLFP) with coulombic-like potentials. The general properties of this new entropy form are shown and the results are compared with those obtained by other entropy forms. Finally, the behavior of the stationary solution in presence of two point charges is also shown. -- Highlights: ► In this Letter we have proposed a new form of entropy. ► Starting from this new entropy form a Non-Linear Fokker–Planck equation has been derived. ► The stationary solution of the Non-Linear Fokker–Planck equation is obtained by using an external coulombic-like potential. ► A comparison with other forms of entropies has been proposed in the case of a single or two point charges.

  18. Structural phase transitions and topological defects in ion Coulomb crystals

    Energy Technology Data Exchange (ETDEWEB)

    Partner, Heather L. [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany); Nigmatullin, Ramil [Institute of Quantum Physics, Ulm Univ., Ulm (Germany); Burgermeister, Tobias [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany); Keller, Jonas [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany); Pyka, Karsten [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany); Plenio, Martin B. [Center for Integrated Quantum Science and Technology, Ulm Univ., Ulm, (Germany):Institute for Theoretical Physics, Ulm Univ.,Ulm, (Germany); Retzker, Alex [Racah Institute of Physics, The Hebrew University of Jerusalem, Givat Ram (Israel); Zurek, Wojciech Hubert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); del Campo, Adolfo [Univ. of Massachusetts, Amherst, MA (United States). Dept. of Physics; Mehlstaubler, Tanja E. [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany)

    2014-11-19

    We use laser-cooled ion Coulomb crystals in the well-controlled environment of a harmonic radiofrequency ion trap to investigate phase transitions and defect formation. Topological defects in ion Coulomb crystals (kinks) have been recently proposed for studies of nonlinear physics with solitons and as carriers of quantum information. Defects form when a symmetry breaking phase transition is crossed non-adiabatically. For a second order phase transition, the Kibble-Zurek mechanism predicts that the formation of these defects follows a power law scaling in the rate of the transition. We demonstrate a scaling of defect density and describe kink dynamics and stability. We further discuss the implementation of mass defects and electric fields as first steps toward controlled kink preparation and manipulation.

  19. The immitigable nature of assembly bias: the impact of halo definition on assembly bias

    Science.gov (United States)

    Villarreal, Antonio S.; Zentner, Andrew R.; Mao, Yao-Yuan; Purcell, Chris W.; van den Bosch, Frank C.; Diemer, Benedikt; Lange, Johannes U.; Wang, Kuan; Campbell, Duncan

    2017-11-01

    Dark matter halo clustering depends not only on halo mass, but also on other properties such as concentration and shape. This phenomenon is known broadly as assembly bias. We explore the dependence of assembly bias on halo definition, parametrized by spherical overdensity parameter, Δ. We summarize the strength of concentration-, shape-, and spin-dependent halo clustering as a function of halo mass and halo definition. Concentration-dependent clustering depends strongly on mass at all Δ. For conventional halo definitions (Δ ˜ 200 - 600 m), concentration-dependent clustering at low mass is driven by a population of haloes that is altered through interactions with neighbouring haloes. Concentration-dependent clustering can be greatly reduced through a mass-dependent halo definition with Δ ˜ 20 - 40 m for haloes with M200 m ≲ 1012 h-1M⊙. Smaller Δ implies larger radii and mitigates assembly bias at low mass by subsuming altered, so-called backsplash haloes into now larger host haloes. At higher masses (M200 m ≳ 1013 h-1M⊙) larger overdensities, Δ ≳ 600 m, are necessary. Shape- and spin-dependent clustering are significant for all halo definitions that we explore and exhibit a relatively weaker mass dependence. Generally, both the strength and the sense of assembly bias depend on halo definition, varying significantly even among common definitions. We identify no halo definition that mitigates all manifestations of assembly bias. A halo definition that mitigates assembly bias based on one halo property (e.g. concentration) must be mass dependent. The halo definitions that best mitigate concentration-dependent halo clustering do not coincide with the expected average splashback radii at fixed halo mass.

  20. Band Gap, Excitons, and Coulomb Interaction in Solid C60

    NARCIS (Netherlands)

    Lof, R.W.; Veenendaal, M.A. van; Jonkman, H.T.; Sawatzky, G.A.; Koopmans, H.

    1992-01-01

    The band gap of solid C60 is found to be 2.3 ± 0.1 eV. The on-site molecular C60 Coulomb interaction (U) as determined from the KVV C60 Auger spectrum is found to be 1.6 ± 0.2 eV. This value of U is shown to lead to Frenkel-type molecular excitons in the 1.5-2 eV range. These results lead us to

  1. Stability characterizations of fixtured rigid bodies with Coulomb friction

    Energy Technology Data Exchange (ETDEWEB)

    PANG,J.S.; TRINKLE,JEFFREY C.

    2000-02-15

    This paper formally introduces several stability characterizations of fixtured three-dimensional rigid bodies initially at rest and in unilateral contact with Coulomb friction. These characterizations, weak stability and strong stability, arise naturally from the dynamic model of the system, formulated as a complementarity problem. Using the tools of complementarity theory, these characterizations are studied in detail to understand their properties and to develop techniques to identify the stability classifications of general systems subjected to known external loads.

  2. Reconstruction of halo power spectrum from redshift-space galaxy distribution: cylinder-grouping method and halo exclusion effect

    Science.gov (United States)

    Okumura, Teppei; Takada, Masahiro; More, Surhud; Masaki, Shogo

    2017-07-01

    The peculiar velocity field measured by redshift-space distortions (RSD) in galaxy surveys provides a unique probe of the growth of large-scale structure. However, systematic effects arise when including satellite galaxies in the clustering analysis. Since satellite galaxies tend to reside in massive haloes with a greater halo bias, the inclusion boosts the clustering power. In addition, virial motions of the satellite galaxies cause a significant suppression of the clustering power due to non-linear RSD effects. We develop a novel method to recover the redshift-space power spectrum of haloes from the observed galaxy distribution by minimizing the contamination of satellite galaxies. The cylinder-grouping method (CGM) we study effectively excludes satellite galaxies from a galaxy sample. However, we find that this technique produces apparent anisotropies in the reconstructed halo distribution over all the scales which mimic RSD. On small scales, the apparent anisotropic clustering is caused by exclusion of haloes within the anisotropic cylinder used by the CGM. On large scales, the misidentification of different haloes in the large-scale structures, aligned along the line of sight, into the same CGM group causes the apparent anisotropic clustering via their cross-correlation with the CGM haloes. We construct an empirical model for the CGM halo power spectrum, which includes correction terms derived using the CGM window function at small scales as well as the linear matter power spectrum multiplied by a simple anisotropic function at large scales. We apply this model to a mock galaxy catalogue at z = 0.5, designed to resemble Sloan Digital Sky Survey-III Baryon Oscillation Spectroscopic Survey (BOSS) CMASS galaxies, and find that our model can predict both the monopole and quadrupole power spectra of the host haloes up to k < 0.5 {{h Mpc^{-1}}} to within 5 per cent.

  3. Double folding model analysis of elastic scattering of halo nucleus ...

    Indian Academy of Sciences (India)

    2014-04-17

    Coulomb barrier energy have been performed using a potential obtained from the double folding model and are compared with the experiment. In the framework of the double folding model, the nuclear matter densities of 9,10 ...

  4. Optimal reconfigurations of two-craft Coulomb formations along manifolds

    Science.gov (United States)

    Jones, Drew R.; Schaub, Hanspeter

    2013-02-01

    Coulomb formations refer to swarms of closely flying spacecraft, in which the net electric charge of each vehicle is controlled. Active charge control is central to this concept and enables a propulsion system with highly desirable characteristics, albeit with limited controllability. Numerous Coulomb formation equilibria have been derived, but to maintain and maneuver these configurations, some inertial thrust is required to supplement the nearly propellant-less charge control. In this work, invariant manifold theory is applied to two-craft Coulomb equilibria, which are admitted in a linearized two-body gravity model. The manifolds associated with these systems are analyzed for the first time, and are then utilized as part of a general procedure for formulating optimal reconfigurations. Specifically, uncontrolled flows along the manifolds are sought which provide near continuous transfers from one equilibrium to another. Control is then introduced to match continuity, while minimizing inertial thrusting. This methodology aims to exploit uncontrolled motions and charge control to realize the shape-changing ability of these formations, without large inertial control efforts. Some variations in formulating and parameterizing the optimal transfers are discussed, and analytical expressions are derived to aid in establishing control parameter limits, under certain assumptions. Numerical results are provided, as demonstrative examples of the optimization procedure, using relatively simple control approximations. Finally, Particle Swarm Optimization, a novel stochastic method, is used with considerable success to solve the numerically difficult parameter optimization problems.

  5. Regularized friction and continuation: Comparison with Coulomb's law

    Science.gov (United States)

    Vigué, Pierre; Vergez, Christophe; Karkar, Sami; Cochelin, Bruno

    2017-02-01

    Periodic solutions of systems with friction are difficult to investigate because of the non-smooth nature of friction laws. This paper examines periodic solutions and most notably stick-slip, on a simple one-degree-of-freedom system (mass, spring, damper, and belt), with Coulomb's friction law, and with a regularized friction law (i.e. the friction coefficient becomes a function of relative speed, with a stiffness parameter). With Coulomb's law, the stick-slip solution is constructed step by step, which gives a usable existence condition. With the regularized law, the Asymptotic Numerical Method and the Harmonic Balance Method provide bifurcation diagrams with respect to the belt speed or normal force, and for several values of the regularization parameter. Formulations from the Coulomb case give the means of a comparison between regularized solutions and a standard reference. With an appropriate definition, regularized stick-slip motion exists, its amplitude increases with respect to the belt speed and its pulsation decreases with respect to the normal force.

  6. Coulomb blockade phenomena observed in supported metallic nanoislands

    Directory of Open Access Journals (Sweden)

    Wolf-Dieter eSchneider

    2013-09-01

    Full Text Available The electron transport properties of single crystalline metallic nanostructures in the Coulomb blockade regime have been investigated by low-temperature scanning tunneling spectroscopy. To this end, nanoscale flat-top Pb islands with well-defined geometries are grown on NaCl-covered Ag(111 substrate. The tunneling spectra acquired at 4.6 K on the Pb nanoislands reflect the presence of single electron tunneling processes across the double-barrier tunnel junction (DBTJ. By a controlled change of the tip-island tunnel distance, the spectra display the characteristic evolution from Coulomb blockade (CB to Coulomb staircase (CS regime. Simulations within the semi-classical orthodox theory allow us to extract quantitatively the parameters characterizing the DBTJ, i. e., the resistances, capacitances, and the residual charge Q0. Manipulation of Q0 is achieved by controlled application of voltage pulses on the Pb islands. Moreover, under specific tunneling conditions, the influence of the tip-island junction on Q0 is revealed in topographic images of the Pb islands.

  7. On the galaxy-halo connection in the EAGLE simulation

    Science.gov (United States)

    Desmond, Harry; Mao, Yao-Yuan; Wechsler, Risa H.; Crain, Robert A.; Schaye, Joop

    2017-10-01

    Empirical models of galaxy formation require assumptions about the correlations between galaxy and halo properties. These may be calibrated against observations or inferred from physical models such as hydrodynamical simulations. In this Letter, we use the EAGLE simulation to investigate the correlation of galaxy size with halo properties. We motivate this analysis by noting that the common assumption of angular momentum partition between baryons and dark matter in rotationally supported galaxies overpredicts both the spread in the stellar mass-size relation and the anticorrelation of size and velocity residuals, indicating a problem with the galaxy-halo connection it implies. We find the EAGLE galaxy population to perform significantly better on both statistics, and trace this success to the weakness of the correlations of galaxy size with halo mass, concentration and spin at fixed stellar mass. Using these correlations in empirical models will enable fine-grained aspects of galaxy scalings to be matched.

  8. Impact of Neutrinos on Dark Matter Halo Environment

    Science.gov (United States)

    Court, Travis; Villaescusa-Navarro, Francisco

    2018-01-01

    The spatial clustering of galaxies is commonly used to infer the shape of the matter power spectrum and therefore to place constraints on the value of the cosmological parameters. In order to extract the maximum information from galaxy surveys it is required to provide accurate theoretical predictions. The first step to model galaxy clustering is to understand the spatial distribution of the structures where they reside: dark matter halos. I will show that the clustering of halos does not depend only on mass, but on other quantities like local matter overdensity. I will point out that halo clustering is also sensitive to the local overdensity of the cosmic neutrino background. I will show that splitting halos according to neutrino overdensity induces a very large scale-dependence bias, an effect that may lead to a new technique to constraint the sum of the neutrino masses.

  9. Visibility of stars, halos, and rainbows during solar eclipses.

    Science.gov (United States)

    Können, Gunther P; Hinz, Claudia

    2008-12-01

    The visibility of stars, planets, diffraction coronas, halos, and rainbows during the partial and total phases of a solar eclipse is studied. The limiting magnitude during various stages of the partial phase is presented. The sky radiance during totality with respect to noneclipse conditions is revisited and found to be typically 1/4000. The corresponding limiting magnitude is +3.5. At totality, the signal-to-background ratio of diffraction coronas, halos, and rainbows has dropped by a factor of 250. It is found that diffraction coronas around the totally eclipsed Sun may nevertheless occur. Analyses of lunar halo observations during twilight indicate that bright halo displays may also persist during totality. Rainbows during totality seem impossible.

  10. Planetary nebulae as kinematic tracers of galaxy stellar halos

    Science.gov (United States)

    Coccato, Lodovico

    2017-10-01

    The kinematic and dynamical properties of galaxy stellar halos are difficult to measure because of the faint surface brightness that characterizes these regions. Spiral galaxies can be probed using the radio Hi emission; on the contrary, early-type galaxies contain less gas, therefore alternative kinematic tracers need to be used. Planetary nebulae (PNe) can be easily detected far out in the halo thanks to their bright emission lines. It is therefore possible to map the halo kinematics also in early-type galaxies, typically out to 5 effective radii or beyond. Thanks to the recent spectroscopic surveys targeting extra-galactic PNe, we can now rely on a few tens of galaxies where the kinematics of the stellar halos are measured. Here, I will review the main results obtained in this field in the last decades.

  11. Halo performance on low light level image intensifiers

    Science.gov (United States)

    Cui, Dongxu; Ren, Ling; Chang, Benkang; Shi, Feng; Shi, Jifang; Qian, Yunsheng; Wang, Honggang; Zhang, Junju

    To analyze the formation mechanism of the halo on low light level image intensifiers and the influencing factors on the halo size, a halo tester has been designed. Under the illumination between 10-2 lx and 10-4 lx, we use the tester to collect a 0.1922 mm hole image directly with CoolSNAPK4 charge-coupled device (CCD) in a darkroom. The practical measurement result shows that the amplification ratio is 343.4. Then we put the super second and third generation image intensifiers after the hole, and the halo sizes of the hole images on the screens are determined as 0.2388 and 0.5533 mm respectively. The results are helpful to improve the quality of the low light level image intensifiers.

  12. Summary of the 2014 Beam-Halo Monitoring Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Alan

    2015-09-25

    Understanding and controlling beam halo is important for high-intensity hadron accelerators, for high-brightness electron linacs, and for low-emittance light sources. This can only be achieved by developing suitable diagnostics. The main challenge faced by such instrumentation is the high dynamic range needed to observe the halo in the presence of an intense core. In addition, measurements must often be made non-invasively. This talk summarizes the one-day workshop on Beam-Halo Monitoring that was held at SLAC on September 19 last year, immediately following IBIC 2014 in Monterey. Workshop presentations described invasive techniques using wires, screens, or crystal collimators, and non-invasive measurements with gas or scattered electrons. Talks on optical methods showed the close links between observing halo and astronomical problems like observing the solar corona or directly observing a planet orbiting another star.

  13. UARS Halogen Occultation Experiment (HALOE) Level 3AT V001

    Data.gov (United States)

    National Aeronautics and Space Administration — The Halogen Occultation Experiment (HALOE) Level 3AT data product consists of daily vertical profiles of temperature, aerosol extinction and concentrations of HCl,...

  14. Revisiting Scaling Relations for Giant Radio Halos in Galaxy Clusters

    Science.gov (United States)

    Cassano, R.; Ettori, S.; Brunetti, G.; Giacintucci, S.; Pratt, G. W.; Venturi, T.; Kale, R.; Dolag, K.; Markevitch, Maxim L.

    2013-01-01

    Many galaxy clusters host megaparsec-scale radio halos, generated by ultrarelativistic electrons in the magnetized intracluster medium. Correlations between the synchrotron power of radio halos and the thermal properties of the hosting clusters were established in the last decade, including the connection between the presence of a halo and cluster mergers. The X-ray luminosity and redshift-limited Extended GMRT Radio Halo Survey provides a rich and unique dataset for statistical studies of the halos. We uniformly analyze the radio and X-ray data for the GMRT cluster sample, and use the new Planck Sunyaev-Zel'dovich (SZ) catalog to revisit the correlations between the power of radio halos and the thermal properties of galaxy clusters. We find that the radio power at 1.4 GHz scales with the cluster X-ray (0.1-2.4 keV) luminosity computed within R(sub 500) as P(sub 1.4) approx. L(2.1+/-0.2) - 500). Our bigger and more homogenous sample confirms that the X-ray luminous (L(sub 500) > 5 × 10(exp 44) erg/s)) clusters branch into two populations-radio halos lie on the correlation, while clusters without radio halos have their radio upper limits well below that correlation. This bimodality remains if we excise cool cores from the X-ray luminosities. We also find that P(sub 1.4) scales with the cluster integrated SZ signal within R(sub 500), measured by Planck, as P(sub 1.4) approx. Y(2.05+/-0.28) - 500), in line with previous findings. However, contrary to previous studies that were limited by incompleteness and small sample size, we find that "SZ-luminous" Y(sub 500) > 6×10(exp -5) Mpc(exp 2) clusters show a bimodal behavior for the presence of radio halos, similar to that in the radio-X-ray diagram. Bimodality of both correlations can be traced to clusters dynamics, with radio halos found exclusively in merging clusters. These results confirm the key role of mergers for the origin of giant radio halos, suggesting that they trigger the relativistic particle acceleration.

  15. Testing approximate predictions of displacements of cosmological dark matter halos

    Science.gov (United States)

    Munari, Emiliano; Monaco, Pierluigi; Koda, Jun; Kitaura, Francisco-Shu; Sefusatti, Emiliano; Borgani, Stefano

    2017-07-01

    We present a test to quantify how well some approximate methods, designed to reproduce the mildly non-linear evolution of perturbations, are able to reproduce the clustering of DM halos once the grouping of particles into halos is defined and kept fixed. The following methods have been considered: Lagrangian Perturbation Theory (LPT) up to third order, Truncated LPT, Augmented LPT, MUSCLE and COLA. The test runs as follows: halos are defined by applying a friends-of-friends (FoF) halo finder to the output of an N-body simulation. The approximate methods are then applied to the same initial conditions of the simulation, producing for all particles displacements from their starting position and velocities. The position and velocity of each halo are computed by averaging over the particles that belong to that halo, according to the FoF halo finder. This procedure allows us to perform a well-posed test of how clustering of the matter density and halo density fields are recovered, without asking to the approximate method an accurate reconstruction of halos. We have considered the results at z=0,0.5,1, and we have analysed power spectrum in real and redshift space, object-by-object difference in position and velocity, density Probability Distribution Function (PDF) and its moments, phase difference of Fourier modes. We find that higher LPT orders are generally able to better reproduce the clustering of halos, while little or no improvement is found for the matter density field when going to 2LPT and 3LPT. Augmentation provides some improvement when coupled with 2LPT, while its effect is limited when coupled with 3LPT. Little improvement is brought by MUSCLE with respect to Augmentation. The more expensive particle-mesh code COLA outperforms all LPT methods, and this is true even for mesh sizes as large as the inter-particle distance. This test sets an upper limit on the ability of these methods to reproduce the clustering of halos, for the cases when these objects are

  16. Vaporization in comets - The icy grain halo of Comet West

    Science.gov (United States)

    Ahearn, M. F.; Cowan, J. J.

    1980-01-01

    The variation with heliocentric distance of the production rates of various species in Comet West (1975n = 1976 VI) is explained with a cometary model consisting of a CO2 dominated nucleus plus a halo of icy grains of H2O or clathrate hydrate. It is concluded that the parents of CN and C3 are released primarily from the nucleus but that the parent of C2 is released primarily from the halo of icy grains.

  17. Integrated Marketing Communications (IMC) Di PT Halo Rumah Bernyanyi

    OpenAIRE

    Rismayanti, Rebekka

    2016-01-01

    : This research aims to describe the effectiveness of Integrated Marketing Communication (IMC) in PT Halo Rumah Bernyanyi which, from the perspective of marketing strategy, could be studied by analyzing the segmentation, targeting, and positioning. Using case-study method with in-depth interview, the result shows that the implementation of IMC at PT Halo Rumah Bernyayi is arranged in one single strategy and tend to neglect the complexities of running multi-brand family karaoke-house. This con...

  18. Integrated Marketing Communications (IMC) di PT Halo Rumah Bernyanyi

    OpenAIRE

    Rebekka Rismayanti

    2017-01-01

    Abstract: This research aims to describe the effectiveness of Integrated Marketing Communication (IMC) in PT Halo Rumah Bernyanyi which, from the perspective of marketing strategy, could be studied by analyzing the segmentation, targeting, and positioning. Using case-study method with in-depth interview, the result shows that the implementation of IMC at PT Halo Rumah Bernyayi is arranged in one single strategy and tend to neglect the complexities of running multi-brand family karaoke-house. ...

  19. Non-Gaussianity and Excursion Set Theory: Halo Bias

    Energy Technology Data Exchange (ETDEWEB)

    Adshead, Peter [Enrico Fermi Institute, Univ. of Chicago, IL (United States); Baxter, Eric J. [Univ. of Chicago, Chicago, IL (United States); Dodelson, Scott [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Lidz, Adam [Univ. of Pennsylvania, Philadelphia, PA (United States)

    2012-09-01

    We study the impact of primordial non-Gaussianity generated during inflation on the bias of halos using excursion set theory. We recapture the familiar result that the bias scales as $k^{-2}$ on large scales for local type non-Gaussianity but explicitly identify the approximations that go into this conclusion and the corrections to it. We solve the more complicated problem of non-spherical halos, for which the collapse threshold is scale dependent.

  20. MD 1691: Active halo control using tune ripple at injection

    CERN Document Server

    Garcia Morales, Hector; Bruce, Roderik; Redaelli, Stefano; Fitterer, Miriam; Fiascaris, Maria; Nisbet, David; Thiesen, Hugues; Valentino, Gianluca; Xu, Chen; CERN. Geneva. ATS Department

    2017-01-01

    In this MD we performed halo excitation through tune ripple. This consists in an excitation that introduces new resonance sidebands around the existing resonance lines. In presence of sufficient detuning with amplitude, these sidebands can in principle affect only the dynamics of the halo particles at large amplitudes. Tune ripple was induced through a current modulation of the warm trim quadrupoles in IR7. This is the first time this method is experimentally tested at the LHC.

  1. Nano-mechanics of HaloTag Tethers

    OpenAIRE

    Popa, Ionel; Berkovich, Ronen; Alegre-Cebollada, Jorge; Badilla, Carmen L.; Rivas-Pardo, Jaime Andres; Taniguchi, Yukinori; Kawakami, Masaru; Fernandez, Julio M.

    2013-01-01

    The active site of the Haloalkane Dehydrogenase (HaloTag) enzyme can be covalently attached to a chloroalkane ligand providing a mechanically strong tether, resistant to large pulling forces. Here we demonstrate the covalent tethering of protein L and I27 polyproteins between an AFM cantilever and a glass surface using HaloTag anchoring at one end, and thiol chemistry at the other end. Covalent tethering is unambiguously confirmed by the observation of full length polyprotein unfolding, combi...

  2. Two Stellar Components in the Halo of the Milky Way

    Science.gov (United States)

    2007-12-13

    distributed throughout the primordial interstellar medium by stellar winds and supernovae . Previous work has provided evidence that the halo of the Milky...the number of stars), for samples in which a counter-rotating halo has been claimed, ordered by sample size. The samples listed in the first column...sample by the authors are listed in the third column (see original papers for details). The method of analysis used for each determination is listed : F&W

  3. The globular cluster-dark matter halo connection

    Science.gov (United States)

    Boylan-Kolchin, Michael

    2017-12-01

    I present a simple phenomenological model for the observed linear scaling of the stellar mass in old globular clusters (GCs) with $z=0$ halo mass in which the stellar mass in GCs scales linearly with progenitor halo mass at $z=6$ above a minimum halo mass for GC formation. This model reproduces the observed $M_{\\rm GCs}-M_{\\rm halo}$ relation at $z=0$ and results in a prediction for the minimum halo mass at $z=6$ required for hosting one GC: $M_{\\rm min}(z=6)=1.07 \\times 10^9\\,M_{\\odot}$. Translated to $z=0$, the mean threshold mass is $M_{\\rm halo}(z=0) \\approx 2\\times 10^{10}\\,M_{\\odot}$. I explore the observability of GCs in the reionization era and their contribution to cosmic reionization, both of which depend sensitively on the (unknown) ratio of GC birth mass to present-day stellar mass, $\\xi$. Based on current detections of $z \\gtrsim 6$ objects with $M_{1500} 10$ are strongly disfavored; this, in turn, has potentially important implications for GC formation scenarios. Even for low values of $\\xi$, some observed high-$z$ galaxies may actually be GCs, complicating estimates of reionization-era galaxy ultraviolet luminosity functions and constraints on dark matter models. GCs are likely important reionization sources if $5 \\lesssim \\xi \\lesssim 10$. I also explore predictions for the fraction of accreted versus in situ GCs in the local Universe and for descendants of systems at the halo mass threshold of GC formation (dwarf galaxies). An appealing feature of the model presented here is the ability to make predictions for GC properties based solely on dark matter halo merger trees.

  4. The abundance and environment of dark matter haloes

    Science.gov (United States)

    Metuki, Ofer; Libeskind, Noam I.; Hoffman, Yehuda

    2016-07-01

    An open question in cosmology and the theory of structure formation is to what extent does environment affect the properties of galaxies and haloes. The present paper aims at shedding light on this problem. The paper focuses on the analysis of a dark matter only simulation and it addresses the issue of how the environment affects the abundance of haloes, which are assigned four attributes: their virial mass, an ambient density calculated with an aperture that scales with Rvir (ΔM), a fixed-aperture (ΔR) ambient density, and a cosmic web classification (i.e. voids, sheets, filaments, and knots, as defined by the V-web algorithm). ΔM is the mean density around a halo evaluated within a sphere of a radius of 5Rvir, where Rvir is the virial radius. ΔR is the density field Gaussian smoothed with R = 4 h-1 Mpc, evaluated at the centre of the halo. The main result of the paper is that the difference between haloes in different web elements stems from the difference in their mass functions, and does not depend on their adaptive-aperture ambient density. A dependence on the fixed-aperture ambient density is induced by the cross-correlation between the mass of a halo and its fixed-aperture ambient density.

  5. Stellar-to-halo mass relation of cluster galaxies

    Science.gov (United States)

    Niemiec, Anna; Jullo, Eric; Limousin, Marceau; Giocoli, Carlo; Erben, Thomas; Hildebrant, Hendrik; Kneib, Jean-Paul; Leauthaud, Alexie; Makler, Martin; Moraes, Bruno; Pereira, Maria E. S.; Shan, Huanyuan; Rozo, Eduardo; Rykoff, Eli; Van Waerbeke, Ludovic

    2017-10-01

    In the formation of galaxy groups and clusters, the dark matter haloes containing satellite galaxies are expected to be tidally stripped in gravitational interactions with the host. We use galaxy-galaxy weak lensing to measure the average mass of dark matter haloes of satellite galaxies as a function of projected distance to the centre of the host, since stripping is expected to be greater for satellites closer to the centre of the cluster. We further classify the satellites according to their stellar mass: Assuming that the stellar component of the galaxy is less disrupted by tidal stripping, stellar mass can be used as a proxy of the infall mass. We study the stellar-to-halo mass relation of satellites as a function of the cluster-centric distance to measure tidal stripping. We use the shear catalogues of the Dark Energy Survey (DES) science verification archive, the Canada-France-Hawaii Lensing Survey (CFHTLenS) and the CFHT Stripe 82 surveys, and we select satellites from the redMaPPer catalogue of clusters. For galaxies located in the outskirts of clusters, we find a stellar-to- halo mass relation in good agreement with the theoretical expectations from Moster et al. for central galaxies. In the centre of the cluster, we find that this relation is shifted to smaller halo mass for a given stellar mass. We interpret this finding as further evidence for tidal stripping of dark matter haloes in high-density environments.

  6. Nano-mechanics of HaloTag Tethers

    Science.gov (United States)

    Popa, Ionel; Berkovich, Ronen; Alegre-Cebollada, Jorge; Badilla, Carmen L.; Rivas-Pardo, Jaime Andres; Taniguchi, Yukinori; Kawakami, Masaru; Fernandez, Julio M.

    2013-01-01

    The active site of the Haloalkane Dehydrogenase (HaloTag) enzyme can be covalently attached to a chloroalkane ligand providing a mechanically strong tether, resistant to large pulling forces. Here we demonstrate the covalent tethering of protein L and I27 polyproteins between an AFM cantilever and a glass surface using HaloTag anchoring at one end, and thiol chemistry at the other end. Covalent tethering is unambiguously confirmed by the observation of full length polyprotein unfolding, combined with high detachment forces that range up to ~2000 pN. We use these covalently anchored polyproteins to study the remarkable mechanical properties of HaloTag proteins. We show that the force that triggers unfolding of the HaloTag protein exhibits a four-fold increase, from 131 pN to 491 pN, when the direction of the applied force is changed from the C-terminus to the N-terminus. Force-clamp experiments reveal that unfolding of the HaloTag protein is twice more sensitive to pulling force compared to protein L, and refolds at a slower rate. We show how these properties allow for the long-term observation of protein folding-unfolding cycles at high forces, without interference from the HaloTag tether. PMID:23909704

  7. Cold dark matter. 1: The formation of dark halos

    Science.gov (United States)

    Gelb, James M.; Bertschinger, Edmund

    1994-01-01

    We use numerical simulations of critically closed cold dark matter (CDM) models to study the effects of numerical resolution on observable quantities. We study simulations with up to 256(exp 3) particles using the particle-mesh (PM) method and with up to 144(exp 3) particles using the adaptive particle-particle-mesh (P3M) method. Comparisons of galaxy halo distributions are made among the various simulations. We also compare distributions with observations, and we explore methods for identifying halos, including a new algorithm that finds all particles within closed contours of the smoothed density field surrounding a peak. The simulated halos show more substructure than predicted by the Press-Schechter theory. We are able to rule out all omega = 1 CDM models for linear amplitude sigma(sub 8) greater than or approximately = 0.5 because the simulations produce too many massive halos compared with the observations. The simulations also produce too many low-mass halos. The distribution of halos characterized by their circular velocities for the P3M simulations is in reasonable agreement with the observations for 150 km/s less than or = V(sub circ) less than or = 350 km/s.

  8. Coulomb excitation of 104Sn and the strength of the 100Sn shell closure.

    Science.gov (United States)

    Guastalla, G; DiJulio, D D; Górska, M; Cederkäll, J; Boutachkov, P; Golubev, P; Pietri, S; Grawe, H; Nowacki, F; Sieja, K; Algora, A; Ameil, F; Arici, T; Atac, A; Bentley, M A; Blazhev, A; Bloor, D; Brambilla, S; Braun, N; Camera, F; Dombrádi, Zs; Domingo Pardo, C; Estrade, A; Farinon, F; Gerl, J; Goel, N; Grȩbosz, J; Habermann, T; Hoischen, R; Jansson, K; Jolie, J; Jungclaus, A; Kojouharov, I; Knoebel, R; Kumar, R; Kurcewicz, J; Kurz, N; Lalović, N; Merchan, E; Moschner, K; Naqvi, F; Nara Singh, B S; Nyberg, J; Nociforo, C; Obertelli, A; Pfützner, M; Pietralla, N; Podolyák, Z; Prochazka, A; Ralet, D; Reiter, P; Rudolph, D; Schaffner, H; Schirru, F; Scruton, L; Sohler, D; Swaleh, T; Taprogge, J; Vajta, Zs; Wadsworth, R; Warr, N; Weick, H; Wendt, A; Wieland, O; Winfield, J S; Wollersheim, H J

    2013-04-26

    A measurement of the reduced transition probability for the excitation of the ground state to the first 2+ state in 104Sn has been performed using relativistic Coulomb excitation at GSI. 104Sn is the lightest isotope in the Sn chain for which this quantity has been measured. The result is a key point in the discussion of the evolution of nuclear structure in the proximity of the doubly magic nucleus 100Sn. The value B(E2; 0+ → 2+) = 0.10(4) e2b2 is significantly lower than earlier results for 106Sn and heavier isotopes. The result is well reproduced by shell model predictions and therefore indicates a robust N = Z = 50 shell closure.

  9. Coulomb Excitation of Sn104 and the Strength of the Sn100 Shell Closure

    Science.gov (United States)

    Guastalla, G.; DiJulio, D. D.; Górska, M.; Cederkäll, J.; Boutachkov, P.; Golubev, P.; Pietri, S.; Grawe, H.; Nowacki, F.; Sieja, K.; Algora, A.; Ameil, F.; Arici, T.; Atac, A.; Bentley, M. A.; Blazhev, A.; Bloor, D.; Brambilla, S.; Braun, N.; Camera, F.; Dombrádi, Zs.; Domingo Pardo, C.; Estrade, A.; Farinon, F.; Gerl, J.; Goel, N.; Grȩbosz, J.; Habermann, T.; Hoischen, R.; Jansson, K.; Jolie, J.; Jungclaus, A.; Kojouharov, I.; Knoebel, R.; Kumar, R.; Kurcewicz, J.; Kurz, N.; Lalović, N.; Merchan, E.; Moschner, K.; Naqvi, F.; Nara Singh, B. S.; Nyberg, J.; Nociforo, C.; Obertelli, A.; Pfützner, M.; Pietralla, N.; Podolyák, Z.; Prochazka, A.; Ralet, D.; Reiter, P.; Rudolph, D.; Schaffner, H.; Schirru, F.; Scruton, L.; Sohler, D.; Swaleh, T.; Taprogge, J.; Vajta, Zs.; Wadsworth, R.; Warr, N.; Weick, H.; Wendt, A.; Wieland, O.; Winfield, J. S.; Wollersheim, H. J.

    2013-04-01

    A measurement of the reduced transition probability for the excitation of the ground state to the first 2+ state in Sn104 has been performed using relativistic Coulomb excitation at GSI. Sn104 is the lightest isotope in the Sn chain for which this quantity has been measured. The result is a key point in the discussion of the evolution of nuclear structure in the proximity of the doubly magic nucleus Sn100. The value B(E2;0+→2+)=0.10(4) e2b2 is significantly lower than earlier results for Sn106 and heavier isotopes. The result is well reproduced by shell model predictions and therefore indicates a robust N=Z=50 shell closure.

  10. Ultrafast proton migration and Coulomb explosion of methyl chloride in intense laser fields

    Science.gov (United States)

    Ma, Pan; Wang, Chuncheng; Li, Xiaokai; Yu, Xitao; Tian, Xu; Hu, Wenhui; Yu, Jiaqi; Luo, Sizuo; Ding, Dajun

    2017-06-01

    We investigated the ultrafast proton migration and the Coulomb explosion (CE) dynamics of methyl chloride (CH3Cl) in intense femtosecond laser fields at the wavelengths of 800 nm (5.5 × 1014 W/cm2) and 400 nm (4 × 1014 W/cm2), respectively. Various fragment channels from molecular dication and trication were observed by coincidence momentum imaging through the measurement of their kinetic energy releases (KERs). The proton migration from different charged parent ions was analyzed from the obtained KER distributions. For the direct CE channel of CH3 + + Cl+ and CH3 + + Cl2+, the contribution of multiply excited electronic states and multicharged states is identified. In addition, the measurements of relative yields of the fragmentation channel at different laser wavelengths provide a selective control of proton migration for CH3Cl molecules in intense laser fields.

  11. Design of CMS Beam Halo Monitor system

    CERN Document Server

    AUTHOR|(CDS)2078842

    2015-01-01

    A fast and directional monitoring system for the CMS experiment is designed to provide an online, bunch-by-bunch measurement of beam background induced by beam halo interactions, separately for each beam. The background detection is based on Cherenkov radiation produced in synthetic fused silica read out by a fast, UV sensitive photomultiplier tube. Twenty detector units per end will be azimuthally distributed around the rotating shielding of CMS, covering ~408 cm2 at 20.6m from the interaction point, at a radius of ~180 cm. The directional and fast response of the system allows the discrimination of the background particles from the dominant flux in the cavern induced by pp collision debris, produced within the 25 ns bunch spacing. A robust multi-layered shielding will enclose each detector unit to protect the photomultiplier tube from the magnetic field and to eliminate the occupancy from low energy particles. The design of the front-end units is validated by experimental results. An overview of the new sy...

  12. The CMS Beam Halo Monitor electronics

    Science.gov (United States)

    Tosi, N.; Dabrowski, A. E.; Fabbri, F.; Grassi, T.; Hughes, E.; Mans, J.; Montanari, A.; Orfanelli, S.; Rusack, R.; Torromeo, G.; Stickland, D. P.; Stifter, K.

    2016-02-01

    The CMS Beam Halo Monitor has been successfully installed in the CMS cavern in LHC Long Shutdown 1 for measuring the machine induced background for LHC Run II. The system is based on 40 detector units composed of synthetic quartz Cherenkov radiators coupled to fast photomultiplier tubes (PMTs). The readout electronics chain uses many components developed for the Phase 1 upgrade to the CMS Hadronic Calorimeter electronics, with dedicated firmware and readout adapted to the beam monitoring requirements. The PMT signal is digitized by a charge integrating ASIC (QIE10), providing both the signal rise time, with few nanosecond resolution, and the charge integrated over one bunch crossing. The backend electronics uses microTCA technology and receives data via a high-speed 5 Gbps asynchronous link. It records histograms with sub-bunch crossing timing resolution and is read out via IPbus using the newly designed CMS data acquisition for non-event based data. The data is processed in real time and published to CMS and the LHC, providing online feedback on the beam quality. A dedicated calibration monitoring system has been designed to generate short triggered pulses of light to monitor the efficiency of the system. The electronics has been in operation since the first LHC beams of Run II and has served as the first demonstration of the new QIE10, Microsemi Igloo2 FPGA and high-speed 5 Gbps link with LHC data.

  13. Performance of the CMS Beam Halo Monitor

    CERN Document Server

    CMS Collaboration

    2015-01-01

    The CMS Beam Halo Monitor has been successfully installed in the CMS cavern in LHC Long Shutdown 1 for measuring the machine induced background for LHC Run II. The system is based on 40 detector units composed of radiation hard synthetic quartz Cherenkov radiators coupled to fast photomultiplier tubes for a direction sensitive measurement. The readout electronics chain uses many components developed for the Phase 1 upgrade to the CMS Hadronic Calorimeter electronics, with dedicated firmware and readout adapted to the beam monitoring requirements. The PMT signal is digitized by a charge integrating ASIC (QIE10), providing both the signal rise time, with few ns resolution, and the charge integrated over one bunch crossing. The backend electronics uses microTCA technology and received data via a high-speed 5 Gbps asynchronous link. It records histograms with sub-bunch crossing timing resolution and is readout by IPbus using the newly designed CMS data acquisition for non-event based data. The data is processed i...

  14. The CMS Beam Halo Monitor Electronics

    CERN Document Server

    AUTHOR|(CDS)2080684; Fabbri, F.; Grassi, T.; Hughes, E.; Mans, J.; Montanari, A.; Orfanelli, S.; Rusack, R.; Torromeo, G.; Stickland, D.P.; Stifter, K.

    2016-01-01

    The CMS Beam Halo Monitor has been successfully installed in the CMS cavern in LHC Long Shutdown 1 for measuring the machine induced background for LHC Run II. The system is based on 40 detector units composed of synthetic quartz Cherenkov radiators coupled to fast photomultiplier tubes. The readout electronics chain uses many components developed for the Phase 1 upgrade to the CMS Hadronic Calorimeter electronics, with dedicated firmware and readout adapted to the beam monitoring requirements. The PMT signal is digitized by a charge integrating ASIC (QIE10), providing both the signal rise time, with few ns resolution, and the charge integrated over one bunch crossing. The backend electronics uses microTCA technology and receives data via a high-speed 5 Gbps asynchronous link. It records histograms with sub-bunch crossing timing resolution and is readout by IPbus using the newly designed CMS data acquisition for non-event based data. The data is processed in real time and published to CMS and the LHC, providi...

  15. The Outer Halos of Very Massive Galaxies: BCGs and their DSC in the Magneticum Simulations

    Science.gov (United States)

    Remus, Rhea-Silvia; Dolag, Klaus; Hoffmann, Tadziu

    2017-09-01

    Recent hydrodynamic cosmological simulations cover volumes up to Gpc^3 and resolve halos across a wide range of masses and environments, from massive galaxy clusters down to normal galaxies, while following a large variety of physical processes (star formation, chemical enrichment, AGN feedback) to allow a self-consistent comparison to observations at multiple wavelengths. Using the Magneticum simulations, we investigate the buildup of the diffuse stellar component (DSC) around massive galaxies within group and cluster environments. The DSC in our simulations reproduces the spatial distribution of the observed intracluster light (ICL) as well as its kinematic properties remarkably well. For galaxy clusters and groups we find that, although the DSC in almost all cases shows a clear separation from the brightest cluster galaxy (BCG) with regard to its dynamic state, the radial stellar density distribution in many halos is often characterized by a single Sersic profile, representing both the BCG component and the DSC, very much in agreement with current observational results. Interestingly, even in those halos that clearly show two components in both the dynamics and the spatial distribution of the stellar component, no correlation between them is evident.

  16. Small-Molecule Hydrophobic Tagging Induced Degradation of HaloTag Fusion Proteins

    Science.gov (United States)

    Neklesa, Taavi K.; Tae, Hyun Seop; Schneekloth, Ashley R.; Stulberg, Michael J.; Corson, Timothy W.; Sundberg, Thomas B.; Raina, Kanak; Holley, Scott A.; Crews, Craig M.

    2011-01-01

    The ability to regulate any protein of interest in living systems with small molecules remains a challenge. We hypothesized that appending a hydrophobic moiety to the surface of a protein would mimic the partially denatured state of the protein, thus engaging the cellular quality control machinery to induce its proteasomal degradation. We designed and synthesized bifunctional small molecules that bind a bacterial dehalogenase (HaloTag protein) and present a hydrophobic group on its surface. Remarkably, hydrophobic tagging of the HaloTag protein with an adamantyl moiety induced the degradation of cytosolic, isoprenylated, and transmembrane fusion proteins in cell culture. We demonstrated the in vivo utility of hydrophobic tagging by degrading proteins expressed in zebrafish embryos and by inhibiting RasG12V-driven tumor progression in mice. Therefore, hydrophobic tagging of HaloTag fusion proteins affords small molecule control over any protein of interest, making it an ideal system for validating potential drug targets in disease models. PMID:21725302

  17. The Electron Temperature and Anisotropy in the Solar Wind. Comparison of the Core and Halo Populations

    Science.gov (United States)

    Pierrard, V.; Lazar, M.; Poedts, S.; Štverák, Š.; Maksimovic, M.; Trávníček, P. M.

    2016-08-01

    Estimating the temperature of solar wind particles and their anisotropies is particularly important for understanding the origin of their deviations from thermal equilibrium and the effects this has. In the absence of energetic events, the velocity distribution of electrons reveals a dual structure with a thermal (Maxwellian) core and a suprathermal (kappa) halo. This article presents a detailed observational analysis of these two components, providing estimations of their temperatures and temperature anisotropies, and decoding any potential interdependence that their properties may indicate. The dataset used in this study includes more than 120 000 of the distributions measured by three missions in the ecliptic within an extended range of heliocentric distances from 0.3 to over 4 AU. The core temperature is found to decrease with the radial distance, while the halo temperature slightly increases, clarifying an apparent contradiction in previous observational analyses and providing valuable clues about the temperature of the kappa-distributed populations. For low values of the power-index kappa, these two components manifest a clear tendency to deviate from isotropy in the same direction, which seems to confirm the existence of mechanisms with similar effects on both components, e.g., the solar wind expansion, or the particle heating by the fluctuations. However, the existence of plasma states with anticorrelated anisotropies of the core and halo populations and the increase in their number for high values of the power-index kappa suggest a dynamic interplay of these components, mediated, most probably, by the anisotropy-driven instabilities.

  18. HaloPROTACS: Use of Small Molecule PROTACs to Induce Degradation of HaloTag Fusion Proteins.

    Science.gov (United States)

    Buckley, Dennis L; Raina, Kanak; Darricarrere, Nicole; Hines, John; Gustafson, Jeffrey L; Smith, Ian E; Miah, Afjal H; Harling, John D; Crews, Craig M

    2015-08-21

    Small molecule-induced protein degradation is an attractive strategy for the development of chemical probes. One method for inducing targeted protein degradation involves the use of PROTACs, heterobifunctional molecules that can recruit specific E3 ligases to a desired protein of interest. PROTACs have been successfully used to degrade numerous proteins in cells, but the peptidic E3 ligase ligands used in previous PROTACs have hindered their development into more mature chemical probes or therapeutics. We report the design of a novel class of PROTACs that incorporate small molecule VHL ligands to successfully degrade HaloTag7 fusion proteins. These HaloPROTACs will inspire the development of future PROTACs with more drug-like properties. Additionally, these HaloPROTACs are useful chemical genetic tools, due to their ability to chemically knock down widely used HaloTag7 fusion proteins in a general fashion.

  19. The Cation−π Interaction Enables a Halo-Tag Fluorogenic Probe for Fast No-Wash Live Cell Imaging and Gel-Free Protein Quantification

    Science.gov (United States)

    2017-01-01

    The design of fluorogenic probes for a Halo tag is highly desirable but challenging. Previous work achieved this goal by controlling the chemical switch of spirolactones upon the covalent conjugation between the Halo tag and probes or by incorporating a “channel dye” into the substrate binding tunnel of the Halo tag. In this work, we have developed a novel class of Halo-tag fluorogenic probes that are derived from solvatochromic fluorophores. The optimal probe, harboring a benzothiadiazole scaffold, exhibits a 1000-fold fluorescence enhancement upon reaction with the Halo tag. Structural, computational, and biochemical studies reveal that the benzene ring of a tryptophan residue engages in a cation−π interaction with the dimethylamino electron-donating group of the benzothiadiazole fluorophore in its excited state. We further demonstrate using noncanonical fluorinated tryptophan that the cation−π interaction directly contributes to the fluorogenicity of the benzothiadiazole fluorophore. Mechanistically, this interaction could contribute to the fluorogenicity by promoting the excited-state charge separation and inhibiting the twisting motion of the dimethylamino group, both leading to an enhanced fluorogenicity. Finally, we demonstrate the utility of the probe in no-wash direct imaging of Halo-tagged proteins in live cells. In addition, the fluorogenic nature of the probe enables a gel-free quantification of fusion proteins expressed in mammalian cells, an application that was not possible with previously nonfluorogenic Halo-tag probes. The unique mechanism revealed by this work suggests that incorporation of an excited-state cation−π interaction could be a feasible strategy for enhancing the optical performance of fluorophores and fluorogenic sensors. PMID:28221782

  20. The Cation-π Interaction Enables a Halo-Tag Fluorogenic Probe for Fast No-Wash Live Cell Imaging and Gel-Free Protein Quantification.

    Science.gov (United States)

    Liu, Yu; Miao, Kun; Dunham, Noah P; Liu, Hongbin; Fares, Matthew; Boal, Amie K; Li, Xiaosong; Zhang, Xin

    2017-03-21

    The design of fluorogenic probes for a Halo tag is highly desirable but challenging. Previous work achieved this goal by controlling the chemical switch of spirolactones upon the covalent conjugation between the Halo tag and probes or by incorporating a "channel dye" into the substrate binding tunnel of the Halo tag. In this work, we have developed a novel class of Halo-tag fluorogenic probes that are derived from solvatochromic fluorophores. The optimal probe, harboring a benzothiadiazole scaffold, exhibits a 1000-fold fluorescence enhancement upon reaction with the Halo tag. Structural, computational, and biochemical studies reveal that the benzene ring of a tryptophan residue engages in a cation-π interaction with the dimethylamino electron-donating group of the benzothiadiazole fluorophore in its excited state. We further demonstrate using noncanonical fluorinated tryptophan that the cation-π interaction directly contributes to the fluorogenicity of the benzothiadiazole fluorophore. Mechanistically, this interaction could contribute to the fluorogenicity by promoting the excited-state charge separation and inhibiting the twisting motion of the dimethylamino group, both leading to an enhanced fluorogenicity. Finally, we demonstrate the utility of the probe in no-wash direct imaging of Halo-tagged proteins in live cells. In addition, the fluorogenic nature of the probe enables a gel-free quantification of fusion proteins expressed in mammalian cells, an application that was not possible with previously nonfluorogenic Halo-tag probes. The unique mechanism revealed by this work suggests that incorporation of an excited-state cation-π interaction could be a feasible strategy for enhancing the optical performance of fluorophores and fluorogenic sensors.

  1. Non-extensive entropy and properties of polaron in RbCl delta quantum dot under an applied electric field and Coulombic impurity

    Science.gov (United States)

    Tiotsop, M.; Fotue, A. J.; Fotsin, H. B.; Fai, L. C.

    2017-08-01

    Bound polaron in RbCl delta quantum dot under electric field and Coulombic impurity were considered. The ground and first excited state energy were derived by employing Pekar variational and unitary transformation methods. Applying Fermi golden rule, the expression of temperature and polaron lifetime were derived. The decoherence was studied trough the Tsallis entropy. Results shows that decreasing (or increasing) the lifetime increases (or decreases) the temperature and delta parameter (electric field strength and hydrogenic impurity). This suggests that to accelerate quantum transition in nanostructure, temperature and delta have to be enhanced. The improvement of electric field and coulomb parameter, increases the lifetime of the delta quantum dot qubit. Energy spectrum of polaron increases with increase in temperature, electric field strength, Coulomb parameter, delta parameter, and polaronic radius. The control of the delta quantum dot energies can be done via the electric field, coulomb impurity, and delta parameter. Results also show that the non-extensive entropy is an oscillatory function of time. With the enhancement of delta parameter, non-extensive parameter, Coulombic parameter, and electric field strength, the entropy has a sinusoidal increase behavior with time. With the study of decoherence through the Tsallis entropy, it may be advised that to have a quantum system with efficient transmission of information, the non-extensive and delta parameters need to be significant. The study of the probability density showed an increase from the boundary to the center of the dot where it has its maximum value and oscillates with period T0 = ℏ / ΔE with the tunneling of the delta parameter, electric field strength, and Coulombic parameter. The results may be very helpful in the transmission of information in nanostructures and control of decoherence

  2. High-T C superconductivity in Cs3C60 compounds governed by local Cs-C60 Coulomb interactions

    Science.gov (United States)

    Harshman, Dale R.; Fiory, Anthony T.

    2017-04-01

    Unique among alkali-doped A 3C60 fullerene compounds, the A15 and fcc forms of Cs3C60 exhibit superconducting states varying under hydrostatic pressure with highest transition temperatures at T\\text{C}\\text{meas}   =  38.3 and 35.2 K, respectively. Herein it is argued that these two compounds under pressure represent the optimal materials of the A 3C60 family, and that the C60-associated superconductivity is mediated through Coulombic interactions with charges on the alkalis. A derivation of the interlayer Coulombic pairing model of high-T C superconductivity employing non-planar geometry is introduced, generalizing the picture of two interacting layers to an interaction between charge reservoirs located on the C60 and alkali ions. The optimal transition temperature follows the algebraic expression, T C0  =  (12.474 nm2 K)/ℓζ, where ℓ relates to the mean spacing between interacting surface charges on the C60 and ζ is the average radial distance between the C60 surface and the neighboring Cs ions. Values of T C0 for the measured cation stoichiometries of Cs3-x C60 with x  ≈  0 are found to be 38.19 and 36.88 K for the A15 and fcc forms, respectively, with the dichotomy in transition temperature reflecting the larger ζ and structural disorder in the fcc form. In the A15 form, modeled interacting charges and Coulomb potential e2/ζ are shown to agree quantitatively with findings from nuclear-spin relaxation and mid-infrared optical conductivity. In the fcc form, suppression of T\\text{C}\\text{meas} below T C0 is ascribed to native structural disorder. Phononic effects in conjunction with Coulombic pairing are discussed.

  3. The shape of the invisible halo: N-body simulations on parallel supercomputers

    Energy Technology Data Exchange (ETDEWEB)

    Warren, M.S.; Zurek, W.H. (Los Alamos National Lab., NM (USA)); Quinn, P.J. (Australian National Univ., Canberra (Australia). Mount Stromlo and Siding Spring Observatories); Salmon, J.K. (California Inst. of Tech., Pasadena, CA (USA))

    1990-01-01

    We study the shapes of halos and the relationship to their angular momentum content by means of N-body (N {approximately} 10{sup 6}) simulations. Results indicate that in relaxed halos with no apparent substructure: (i) the shape and orientation of the isodensity contours tends to persist throughout the virialised portion of the halo; (ii) most ({approx}70%) of the halos are prolate; (iii) the approximate direction of the angular momentum vector tends to persist throughout the halo; (iv) for spherical shells centered on the core of the halo the magnitude of the specific angular momentum is approximately proportional to their radius; (v) the shortest axis of the ellipsoid which approximates the shape of the halo tends to align with the rotation axis of the halo. This tendency is strongest in the fastest rotating halos. 13 refs., 4 figs.

  4. Improving Student Understanding of Coulomb's Law and Gauss's Law

    CERN Document Server

    Singh, Chandralekha

    2016-01-01

    We discuss the development and evaluation of five research-based tutorials on Coulomb's law, superposition, symmetry and Gauss's Law to help students in the calculus-based introductory physics courses learn these concepts. We discuss the performance of students on the pre-/post-tests given before and after the tutorials in three calculus-based introductory physics courses. We also discuss the performance of students who used the tutorials and those who did not use it on a multiple-choice test which employs concepts covered in the tutorials.

  5. Hadronic correction to Coulomb potential between quarks and diquark structure

    Energy Technology Data Exchange (ETDEWEB)

    Xin-Heng, Guo [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Xue-Qian, Li; Peng-Nian, Shen [Academia Sinica, Beijing, BJ (China). Inst. of High Energy Physics; Chuang, Wang [Nankai Univ., TJ (China). Dept. of Physics

    1997-07-01

    We have studied the hadronic correction from the background pion fields due to the chiral symmetry breaking to the Coulomb potential that governs the short-distance behavior of the interactions between the bound quarks. The background fields are associated with the constituent quark mass. We find a modified form which favors the diquark structure. We also roughly estimate an influence of this correction on the phase shifts in nucleon scattering and find that it may cause an extra middle range attraction between nucleons which is expected. (author) 17 refs., 4 figs.

  6. Nonlocal and nonlinear electrostatics of a dipolar Coulomb fluid.

    Science.gov (United States)

    Sahin, Buyukdagli; Ralf, Blossey

    2014-07-16

    We study a model Coulomb fluid consisting of dipolar solvent molecules of finite extent which generalizes the point-like dipolar Poisson-Boltzmann model (DPB) previously introduced by Coalson and Duncan (1996 J. Phys. Chem. 100 2612) and Abrashkin et al (2007 Phys. Rev. Lett. 99 077801). We formulate a nonlocal Poisson-Boltzmann equation (NLPB) and study both linear and nonlinear dielectric response in this model for the case of a single plane geometry. Our results shed light on the relevance of nonlocal versus nonlinear effects in continuum models of material electrostatics.

  7. Proton radiography, nuclear cross sections and multiple Coulomb scattering

    Energy Technology Data Exchange (ETDEWEB)

    Sjue, Sky K. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-04

    The principles behind proton radiography including multiple Coulomb scattering are discussed for a purely imaginary square well nucleus in the eikonal approximation. It is found that a very crude model can reproduce the angular dependence of the cross sections measured at 24 GeV/c. The largest differences are ~3% for the 4.56 mrad data, and ~4% for the 6.68 mrad data. The prospect of understanding how to model deterministically high-energy proton radiography over a very large range of energies is promising, but it should be tested more thoroughly.

  8. Imaging of Acoustic Waves in Piezoelectric Ceramics by Coulomb Coupling

    Science.gov (United States)

    Habib, Anowarul; Shelke, Amit; Pluta, Mieczyslaw; Kundu, Tribikram; Pietsch, Ullrich; Grill, Wolfgang

    2012-07-01

    The transport properties of bulk and guided acoustic waves travelling in a lead zirconate titanate (PZT) disc, originally manufactured to serve as ultrasonic transducer, have been monitored by scanned Coulomb coupling. The images are recorded by excitation and detection of ultrasound with local electric field probes via piezoelectric coupling. A narrow pulse has been used for excitation. Broadband coupling is achieved since neither mechanical nor electrical resonances are involved. The velocities of the traveling acoustic waves determined from the images are compared with characteristic velocities calculated from material properties listed by the manufacturer of the PZT plate.

  9. Coulombic quantum liquids in spin-1/2 pyrochlores.

    Science.gov (United States)

    Savary, Lucile; Balents, Leon

    2012-01-20

    We develop a nonperturbative gauge mean field theory (gMFT) method to study a general effective spin-1/2 model for magnetism in rare earth pyrochlores. gMFT is based on a novel exact slave-particle formulation, and matches both the perturbative regime near the classical spin ice limit and the semiclassical approximation far from it. We show that the full phase diagram contains two exotic phases: a quantum spin liquid and a Coulombic ferromagnet, both of which support deconfined spinon excitations and emergent quantum electrodynamics. Phenomenological properties of these phases are discussed. © 2012 American Physical Society

  10. Probing the decay mechanism of hot nuclei by Coulomb chronometry

    Directory of Open Access Journals (Sweden)

    Gruyer D.

    2015-01-01

    Full Text Available In this contribution, we propose a new Coulomb chronometer suitable for three-fragment exit channels. We use this chronometer to extract the evolution of the fragment emission time in 129Xe+catSn central collisions from 12 to 25 MeV/A bombarding energy. The involved time scale becomes compatible with simultaneous threefragment break-up above E* = 4.0 ± 0.5 MeV/A, which can be interpreted as the energy required for the onset of multifragmentation.

  11. Measurements of octupole collectivity in $^{220,222}$Rn and $^{222,224}$Ra using Coulomb excitation

    CERN Multimedia

    Kruecken, R; Larsen, A; Hurst, A M; Voulot, D; Grahn, T; Clement, E; Wadsworth, R; Gernhaeuser, R A; Siem, S; Huyse, M L; Iwanicki, J S

    2008-01-01

    We propose to exploit the unique capability of ISOLDE to provide post-accelerated $^{220,222}$Rn and $^{222,224}$Ra ion beams from the REX facility to enable the Coulomb excitation of the first 3$^{-}$ states in these nuclei. By measuring the $\\gamma$-ray yields of the E1 decays from the 3$^{-}$ state using the MINIBALL array we can obtain the transition matrix elements. This will give quantitative information about octupole correlations in these nuclei. We require 22 shifts to fulfil the aims of the experiment.

  12. Mass measurement of halo nuclides and beam cooling with the mass spectrometer Mistral; Mesure de masse de noyaux a halo et refroidissement de faisceaux avec l'experience MISTRAL

    Energy Technology Data Exchange (ETDEWEB)

    Bachelet, C

    2004-12-01

    Halo nuclides are a spectacular drip-line phenomenon and their description pushes nuclear theories to their limits. The most critical input parameter is the nuclear binding energy; a quantity that requires excellent measurement precision, since the two-neutron separation energy is small at the drip-line by definition. Moreover halo nuclides are typically very short-lived. Thus, a high accuracy instrument using a quick method of measurement is necessary. MISTRAL is such an instrument; it is a radiofrequency transmission mass spectrometer located at ISOLDE/CERN. In July 2003 we measured the mass of the Li{sup 11}, a two-neutron halo nuclide. Our measurement improves the precision by a factor 6, with an error of 5 keV. Moreover the measurement gives a two-neutron separation energy 20% higher than the previous value. This measurement has an impact on the radius of the nucleus, and on the state of the two valence neutrons. At the same time, a measurement of the Be{sup 11} was performed with an uncertainty of 4 keV, in excellent agreement with previous measurements. In order to measure the mass of the two-neutron halo nuclide Be{sup 14}, an ion beam cooling system is presently under development which will increase the sensitivity of the spectrometer. The second part of this work presents the development of this beam cooler using a gas-filled Paul trap. (author)

  13. Enhanced population of side band of {sup 155}Gd in heavy-ion Coulomb excitation

    Energy Technology Data Exchange (ETDEWEB)

    Oshima, Masumi; Hayakawa, Takehito; Hatsukawa, Yuichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    1998-03-01

    In the Coulomb excitation of {sup 155}Gd with heavy projectiles, {sup 32}S, {sup 58}Ni and {sup 90}Zr, unexpectedly large enhancement of a positive-parity side band has been observed. This enhancement could not be reproduced by a Coulomb-excitation calculation taking into account the recommended upper limits of E1 or E3 transitions, which are compiled in the whole mass region, and is proportional to the electric field accomplished in the Coulomb-scattering process. (author)

  14. HaloTag as a reporter gene: positron emission tomography imaging with 64Cu-labeled second generation HaloTag ligands

    OpenAIRE

    Hong, Hao; Benink, Hélène A.; Uyeda, H. Tetsuo; Valdovinos, Hector F.; Zhang, Yin; Meisenheimer, Poncho; Barnhart, Todd E.; Fan, Frank; Cai, Weibo

    2013-01-01

    The goal of this study is to employ the HaloTag technology for positron emission tomography (PET), which involves two components: the HaloTag protein (a modified hydrolase which covalently binds to synthetic ligands) and HaloTag ligands (HTLs). 4T1 murine breast cancer cells were stably transfected to express HaloTag protein on the surface (termed as 4T1-HaloTag-ECS, ECS denotes extracellular surface). Two new HTLs were synthesized and termed NOTA-HTL2G-S and NOTA-HTL2G-L (2G indicates second...

  15. Room temperature Coulomb blockade mediated field emission via self-assembled gold nanoparticles

    Science.gov (United States)

    Wang, Fei; Fang, Jingyue; Chang, Shengli; Qin, Shiqiao; Zhang, Xueao; Xu, Hui

    2017-02-01

    Coulomb blockade mediated field-emission current was observed in single-electron tunneling devices based on self-assembled gold nanoparticles at 300 K. According to Raichev's theoretical model, by fixing a proper geometric distribution of source, island and drain, the transfer characteristics can be well explained through a combination of Coulomb blockade and field emission. Coulomb blockade and field emission alternately happen in our self-assembled devices. The Coulomb island size derived from the experimental data is in good agreement with the average size of the gold nanoparticles used in the device. The integrated tunneling can be adjusted via a gate electrode.

  16. Halo formation and evolution: unifying physical properties with structure

    Science.gov (United States)

    Ernest, Alllan David; Collins, Matthew P.

    2015-08-01

    The assembly of matter in the universe proliferates a variety of structures with diverse properties. For example, massive halos of clusters of galaxies have temperatures often an order of magnitude or more higher than the individual galaxy halos within the cluster, or the temperatures of isolated galaxy halos. Giant spiral galaxies contain large quantities of both dark matter and hot gas while other structures like globular clusters appear to have little or no dark matter or gas. Still others, like the dwarf spheroidal galaxies have low gravity and little hot gas, but ironically contain some of the largest fractions of dark matter in the universe. Star forming rates (SFRs) also vary: compare for example the SFRs of giant elliptical galaxies, globular clusters, spiral and starburst galaxies. Furthermore there is evidence that the various structure types have existed over a large fraction of cosmic history. How can this array of variation in properties be reconciled with galaxy halo formation and evolution?We propose a model of halo formation [1] and evolution [2] that is consistent with both primordial nucleosynthesis (BBN) and the isotropies in the cosmic microwave background (CMB). The model uses two simple parameters, the total mass and size of a structure, to (1) explain why galaxies have the fractions of dark matter that they do (including why dwarf spheroidals are so dark matter dominated despite their weak gravity), (2) enable an understanding of the black hole-bulge/black hole-dark halo relations, (3) explain how fully formed massive galaxies can occur so early in cosmic history, (4) understand the connection between spiral and elliptical galaxies (5) unify the nature of globular clusters, dwarf spheroidal galaxies and bulges and (6) predict the temperatures of hot gas halos and understand how cool galaxy halos can remain stable in the hot environments of cluster-galaxy halos.[1] Ernest, A. D., 2012, in Prof. Ion Cotaescu (Ed) Advances in Quantum Theory, pp

  17. The Angular Momentum of Baryons and Dark Matter Halos Revisited

    Science.gov (United States)

    Kimm, Taysun; Devriendt, Julien; Slyz, Adrianne; Pichon, Christophe; Kassin, Susan A.; Dubois, Yohan

    2011-01-01

    Recent theoretical studies have shown that galaxies at high redshift are fed by cold, dense gas filaments, suggesting angular momentum transport by gas differs from that by dark matter. Revisiting this issue using high-resolution cosmological hydrodynamics simulations with adaptive-mesh refinement (AMR), we find that at the time of accretion, gas and dark matter do carry a similar amount of specific angular momentum, but that it is systematically higher than that of the dark matter halo as a whole. At high redshift, freshly accreted gas rapidly streams into the central region of the halo, directly depositing this large amount of angular momentum within a sphere of radius r = 0.1R(sub vir). In contrast, dark matter particles pass through the central region unscathed, and a fraction of them ends up populating the outer regions of the halo (r/R(sub vir) > 0.1), redistributing angular momentum in the process. As a result, large-scale motions of the cosmic web have to be considered as the origin of gas angular momentum rather than its virialised dark matter halo host. This generic result holds for halos of all masses at all redshifts, as radiative cooling ensures that a significant fraction of baryons remain trapped at the centre of the halos. Despite this injection of angular momentum enriched gas, we predict an amount for stellar discs which is in fair agreement with observations at z=0. This arises because the total specific angular momentum of the baryons (gas and stars) remains close to that of dark matter halos. Indeed, our simulations indicate that any differential loss of angular momentum amplitude between the two components is minor even though dark matter halos continuously lose between half and two-thirds of their specific angular momentum modulus as they evolve. In light of our results, a substantial revision of the standard theory of disc formation seems to be required. We propose a new scenario where gas efficiently carries the angular momentum generated

  18. Coulomb excitation of re-accelerated 208Rn and 206Po beams

    Directory of Open Access Journals (Sweden)

    Grahn T.

    2013-12-01

    Full Text Available In the present study, B(E2; 2+ → 0+ values have been measured in the 208Rn and 206Po nuclei through Coulomb excitation of re-accelerated radioactive beams in inverse kinematics at CERN-ISOLDE. The resulting B(E2; 2+ → 0+ in 208Rn is ∼ 0.08 e2b2. These nuclei lie in, or at the boundary of the region where seniority scheme should persist. However, contributions from collective excitations may be present when moving away from the N = 126 shell closure. To date, surprisingly little is known of the transition probabilities between the low-spin states in this region.

  19. Radioactive beam EXperiments at ISOLDE : Coulomb excitation and neutron transfer reactions of exotic nuclei.

    CERN Multimedia

    Kugler, E; Ratzinger, U; Wenander, F J C

    2002-01-01

    % IS347 \\\\ \\\\We propose to perform a pilot experiment to study very neutron rich (A<32) Na-Mg and (A<52) K-Ca isotopes in the region around the neutron shell closures of N=20 and N=28 after Coulomb excitation and neutron transfer, and to demonstrate highly efficient and cost-effective ways to bunch, charge-state breed and accelerate already existing mass-separated singly-charged radioactive ion beams. \\\\ \\\\To do this we plan to accelerate the ISOLDE beams up to 2~MeV/u by means of a novel acceleration scheme and to install an efficient $\\gamma$-ray array for low-multiplicity events around the target position.

  20. Analysis methods of safe Coulomb-excitation experiments with radioactive ion beams using the GOSIA code

    Energy Technology Data Exchange (ETDEWEB)

    Zielinska, M. [CEA Saclay, IRFU/SPhN, Gif-sur-Yvette (France); Gaffney, L.P. [KU Leuven, Instituut voor Kern- en Stralingsfysica, Leuven (Belgium); University of the West of Scotland, School of Engineering, Paisley (United Kingdom); Wrzosek-Lipska, K. [KU Leuven, Instituut voor Kern- en Stralingsfysica, Leuven (Belgium); University of Warsaw, Heavy Ion Laboratory, Warsaw (Poland); Clement, E. [GANIL, Caen Cedex (France); Grahn, T.; Pakarinen, J. [University of Jyvaskylae, Department of Physics, Jyvaskylae (Finland); University of Helsinki, Helsinki Institute of Physics, Helsinki (Finland); Kesteloot, N. [KU Leuven, Instituut voor Kern- en Stralingsfysica, Leuven (Belgium); SCK-CEN, Belgian Nuclear Research Centre, Mol (Belgium); Napiorkowski, P. [University of Warsaw, Heavy Ion Laboratory, Warsaw (Poland); Duppen, P. van [KU Leuven, Instituut voor Kern- en Stralingsfysica, Leuven (Belgium); Warr, N. [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany)

    2016-04-15

    With the recent advances in radioactive ion beam technology, Coulomb excitation at safe energies becomes an important experimental tool in nuclear-structure physics. The usefulness of the technique to extract key information on the electromagnetic properties of nuclei has been demonstrated since the 1960s with stable beam and target combinations. New challenges present themselves when studying exotic nuclei with this technique, including dealing with low statistics or number of data points, absolute and relative normalisation of the measured cross-sections and a lack of complementary experimental data, such as excited-state lifetimes and branching ratios. This paper addresses some of these common issues and presents analysis techniques to extract transition strengths and quadrupole moments utilising the least-squares fit code, GOSIA. (orig.)

  1. Microscopic study of {sup 6}He elastic scattering around the Coulomb barrier

    Energy Technology Data Exchange (ETDEWEB)

    Descouvemont, P. [Physique Nucléaire Théorique et Physique Mathématique, C.P. 229, Université Libre de Bruxelles (ULB), B 1050 Brussels (Belgium)

    2016-07-07

    We investigate {sup 6}He scattering on {sup 27}Al, {sup 58}Ni, {sup 120}Sn, and {sup 208}Pb in a microscopic version of the Continuum Discretized Coupled Channel (CDCC) method. We essentially focus on energies around the Coulomb barrier. The {sup 6}He nucleus is described by an antisymmetric 6-nucleon wave function, defined in the Resonating Group Method. The {sup 6}He continuum is simulated by square-integrable positive-energy states. The model does not depend on any adjustable parameter as it is based only on well known nucleon-target potentials. We show that experimental elastic cross sections are fairly well reproduced. The calculation suggests that breakup effects increase for high target masses. For a light system such as {sup 6}He+{sup 27}Al, breakup effects are small, and a single-channel approximation provides fair results.

  2. Deep brain transcranial magnetic stimulation using variable "Halo coil" system

    Science.gov (United States)

    Meng, Y.; Hadimani, R. L.; Crowther, L. J.; Xu, Z.; Qu, J.; Jiles, D. C.

    2015-05-01

    Transcranial Magnetic Stimulation has the potential to treat various neurological disorders non-invasively and safely. The "Halo coil" configuration can stimulate deeper regions of the brain with lower surface to deep-brain field ratio compared to other coil configurations. The existing "Halo coil" configuration is fixed and is limited in varying the site of stimulation in the brain. We have developed a new system based on the current "Halo coil" design along with a graphical user interface system that enables the larger coil to rotate along the transverse plane. The new system can also enable vertical movement of larger coil. Thus, this adjustable "Halo coil" configuration can stimulate different regions of the brain by adjusting the position and orientation of the larger coil on the head. We have calculated magnetic and electric fields inside a MRI-derived heterogeneous head model for various positions and orientations of the coil. We have also investigated the mechanical and thermal stability of the adjustable "Halo coil" configuration for various positions and orientations of the coil to ensure safe operation of the system.

  3. Halo-Independent Direct Detection Analyses Without Mass Assumptions

    CERN Document Server

    Anderson, Adam J.; Kahn, Yonatan; McCullough, Matthew

    2015-10-06

    Results from direct detection experiments are typically interpreted by employing an assumption about the dark matter velocity distribution, with results presented in the $m_\\chi-\\sigma_n$ plane. Recently methods which are independent of the DM halo velocity distribution have been developed which present results in the $v_{min}-\\tilde{g}$ plane, but these in turn require an assumption on the dark matter mass. Here we present an extension of these halo-independent methods for dark matter direct detection which does not require a fiducial choice of the dark matter mass. With a change of variables from $v_{min}$ to nuclear recoil momentum ($p_R$), the full halo-independent content of an experimental result for any dark matter mass can be condensed into a single plot as a function of a new halo integral variable, which we call $\\tilde{h}(p_R)$. The entire family of conventional halo-independent $\\tilde{g}(v_{min})$ plots for all DM masses are directly found from the single $\\tilde{h}(p_R)$ plot through a simple re...

  4. The accuracy of the Gaussian-and-finite-element-Coulomb (GFC) method for the calculation of Coulomb integrals.

    Science.gov (United States)

    Przybytek, Michal; Helgaker, Trygve

    2013-08-07

    We analyze the accuracy of the Coulomb energy calculated using the Gaussian-and-finite-element-Coulomb (GFC) method. In this approach, the electrostatic potential associated with the molecular electronic density is obtained by solving the Poisson equation and then used to calculate matrix elements of the Coulomb operator. The molecular electrostatic potential is expanded in a mixed Gaussian-finite-element (GF) basis set consisting of Gaussian functions of s symmetry centered on the nuclei (with exponents obtained from a full optimization of the atomic potentials generated by the atomic densities from symmetry-averaged restricted open-shell Hartree-Fock theory) and shape functions defined on uniform finite elements. The quality of the GF basis is controlled by means of a small set of parameters; for a given width of the finite elements d, the highest accuracy is achieved at smallest computational cost when tricubic (n = 3) elements are used in combination with two (γ(H) = 2) and eight (γ(1st) = 8) Gaussians on hydrogen and first-row atoms, respectively, with exponents greater than a given threshold (αmin (G)=0.5). The error in the calculated Coulomb energy divided by the number of atoms in the system depends on the system type but is independent of the system size or the orbital basis set, vanishing approximately like d(4) with decreasing d. If the boundary conditions for the Poisson equation are calculated in an approximate way, the GFC method may lose its variational character when the finite elements are too small; with larger elements, it is less sensitive to inaccuracies in the boundary values. As it is possible to obtain accurate boundary conditions in linear time, the overall scaling of the GFC method for large systems is governed by another computational step-namely, the generation of the three-center overlap integrals with three Gaussian orbitals. The most unfavorable (nearly quadratic) scaling is observed for compact, truly three-dimensional systems

  5. Coulomb effects on pions produced in heavy-ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, J.P.

    1981-11-01

    Double differential cross sections for the production of ..pi../sup +/ and ..pi../sup -/ near the velocity of the incident beam for pion lab angles less than 40 degrees are presented. The experimental apparatus and the techniques are discussed. Beams of /sup 20/Ne with E/A from 80 to 655 MeV and /sup 40/Ar with E/A = 535 MeV incident on Be, C, NaF, KC1, Cu, and U targets were used. A sharp peak in the ..pi../sup -/ spectrum and a depression in the ..pi../sup +/ spectrum were observed at zero degrees near the incident beam velocity. The effect is explained in terms of Coulomb interactions between the pions and fragments of the incident beam. Least squares fits to the data using the Coulomb correction formulas of Gyulassy and Kauffman and an effective projectile fragment charge are made. The relationship between these data and previously measured pion production and projectile fragmentation data is discussed. The data are also compared to some theoretical models. A simple expression is given for the differential cross section as a function of the projectile mass, target mass, and beam energy.

  6. Super-Coulombic atom-atom interactions in hyperbolic media

    Science.gov (United States)

    Cortes, Cristian L.; Jacob, Zubin

    2017-01-01

    Dipole-dipole interactions, which govern phenomena such as cooperative Lamb shifts, superradiant decay rates, Van der Waals forces and resonance energy transfer rates, are conventionally limited to the Coulombic near-field. Here we reveal a class of real-photon and virtual-photon long-range quantum electrodynamic interactions that have a singularity in media with hyperbolic dispersion. The singularity in the dipole-dipole coupling, referred to as a super-Coulombic interaction, is a result of an effective interaction distance that goes to zero in the ideal limit irrespective of the physical distance. We investigate the entire landscape of atom-atom interactions in hyperbolic media confirming the giant long-range enhancement. We also propose multiple experimental platforms to verify our predicted effect with phonon-polaritonic hexagonal boron nitride, plasmonic super-lattices and hyperbolic meta-surfaces as well. Our work paves the way for the control of cold atoms above hyperbolic meta-surfaces and the study of many-body physics with hyperbolic media.

  7. Coulomb dissociation reactions on molybdenum isotopes for astrophysics applications

    Energy Technology Data Exchange (ETDEWEB)

    Ershova, Olga

    2012-03-09

    Within the present work, photodissociation reactions on {sup 100}Mo, {sup 93}Mo and {sup 92}Mo isotopes were studied by means of the Coulomb dissociation method at the LAND setup at GSI. As a result of the analysis of the present experiment, integrated Coulomb excitation cross sections of the {sup 100}Mo({gamma},n), {sup 100}Mo({gamma},2n), {sup 93}Mo({gamma},n) and {sup 92}Mo({gamma},n) reactions were determined. A second important topic of the present thesis is the investigation of the efficiency of the CsI gamma detector. The data taken with the gamma calibration sources shortly after the experiment were used for the investigation. In addition, a test experiment in refined conditions was conducted within the framework of this thesis. Numerous GEANT3 simulations of the detector were performed in order to understand various aspects of its performance. As a result, the efficiency of the detector was determined to be approximately a factor of 2 lower than the efficiency expected from the simulation. (orig.)

  8. The COS-Halos Survey: Metallicities in the Low-redshift Circumgalactic Medium

    Science.gov (United States)

    Prochaska, J. Xavier; Werk, Jessica K.; Worseck, Gábor; Tripp, Todd M.; Tumlinson, Jason; Burchett, Joseph N.; Fox, Andrew J.; Fumagalli, Michele; Lehner, Nicolas; Peeples, Molly S.; Tejos, Nicolas

    2017-03-01

    We analyze new far-ultraviolet spectra of 13 quasars from the z˜ 0.2 COS-Halos survey that cover the H I Lyman limit of 14 circumgalactic medium (CGM) systems. These data yield precise estimates or more constraining limits than previous COS-Halos measurements on the H I column densities {N}{{H}{{I}}}. We then apply a Monte-Carlo Markov chain approach on 32 systems from COS-Halos to estimate the metallicity of the cool (T˜ {10}4 K) CGM gas that gives rise to low-ionization state metal lines, under the assumption of photoionization equilibrium with the extragalactic UV background. The principle results are: (1) the CGM of field L* galaxies exhibits a declining H I surface density with impact parameter {R}\\perp (at > 99.5 % confidence), (2) the transmission of ionizing radiation through CGM gas alone is 70 ± 7% (3) the metallicity distribution function of the cool CGM is unimodal with a median of {10}-0.51 {Z}⊙ and a 95% interval ≈ 1/50 {Z}⊙ to > 3 {Z}⊙ ; the incidence of metal-poor (metallicity with declining {N}{{H}{{I}}} (at > 99.9 % confidence) and, therefore, also with increasing {R}\\perp ; the high metallicity at large radii implies early enrichment; and (5) a non-parametric estimate of the cool CGM gas mass is {M}{CGM}{cool}=(9.2+/- 4.3)× {10}10 {M}⊙ , which together with new mass estimates for the hot CGM may resolve the galactic missing baryons problem. Future analyses of halo gas should focus on the underlying astrophysics governing the CGM, rather than processes that simply expel the medium from the halo. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs 13033 and 11598.

  9. Properties of dark matter haloes as a function of local environment density

    Science.gov (United States)

    Lee, Christoph T.; Primack, Joel R.; Behroozi, Peter; Rodríguez-Puebla, Aldo; Hellinger, Doug; Dekel, Avishai

    2017-04-01

    We study how properties of discrete dark matter haloes depend on halo environment, characterized by the mass density around the haloes on scales from 0.5 to 16 h-1 Mpc. We find that low-mass haloes (those less massive than the characteristic mass MC of haloes collapsing at a given epoch) in high-density environments have lower accretion rates, lower spins, higher concentrations and rounder shapes than haloes in median density environments. Haloes in median- and low-density environments have similar accretion rates and concentrations, but haloes in low-density environments have lower spins and are more elongated. Haloes of a given mass in high-density regions accrete material earlier than haloes of the same mass in lower density regions. All but the most massive haloes in high-density regions are losing mass (i.e. being stripped) at low redshifts, which causes artificially lowered NFW scale radii and increased concentrations. Tidal effects are also responsible for the decreasing spins of low-mass haloes in high-density regions at low redshifts z spins because they lack nearby haloes whose tidal fields can spin them up. We also show that the simulation density distribution is well fit by an extreme value distribution, and that the density distribution becomes broader with cosmic time.

  10. Subdural abscess associated with halo-pin traction.

    Science.gov (United States)

    Garfin, S R; Botte, M J; Triggs, K J; Nickel, V L

    1988-10-01

    Osteomyelitis and intracranial abscess are among the most serious complications that have been reported in association with the use of the halo device. The cases of five patients who had formation of an intracranial abscess related to the use of a halo cervical immobilizer are described. All of the infections resolved after drainage of the abscess, débridement, and parenteral administration of antibiotics. Meticulous care of the pin sites is essential to avoid this serious complication. Additionally, since all of the infections were associated with prolonged halo-skeletal traction, this technique should be used with caution and with an awareness of the possible increased risks of pin-site infection and of formation of a subdural abscess.

  11. Axionic dark matter signatures in various halo models

    Energy Technology Data Exchange (ETDEWEB)

    Vergados, J.D., E-mail: vergados@uoi.gr [Center for Axion and Precision Physics Research, Institute for Basic Science (IBS), Daejeon 34141 (Korea, Republic of); Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141 (Korea, Republic of); ARC Centre of Excellence in Particle Physics at the Terascale and Centre for the Subatomic Structure of Matter (CSSM), University of Adelaide, Adelaide SA 5005 (Australia); Semertzidis, Y.K. [Center for Axion and Precision Physics Research, Institute for Basic Science (IBS), Daejeon 34141 (Korea, Republic of); Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141 (Korea, Republic of)

    2017-02-15

    In the present work we study possible signatures in the Axion Dark Matter searches. We focus on the dependence of the expected width in resonant cavities for various popular halo models, leading to standard velocity distributions, e.g. Maxwell–Boltzmann, as well as phase-mixed and non-virialized axionic dark matter (flows, caustic rings). We study, in particular, the time dependence of the resonance width (modulation) arising from such models. We find that the difference between the maximum (in June) and the minimum (in December) can vary by about 10% in the case of standard halos. In the case of mixed phase halos the variation is a bit bigger and for caustic rings the maximum is expected to occur a bit later. Experimentally such a modulation is observable with present technology.

  12. Particle ejection during mergers of dark matter halos

    Energy Technology Data Exchange (ETDEWEB)

    Carucci, Isabella P.; Sparre, Martin; Hansen, Steen H. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, Copenhagen, 2100 Denmark (Denmark); Joyce, Michael, E-mail: carucci@dark-cosmology.dk, E-mail: sparre@dark-cosmology.dk, E-mail: hansen@dark-cosmology.dk, E-mail: joyce@lpnhe.in2p3.fr [Laboratoire de Physique Nucléaire et Hautes Énergies, Université Pierre et Marie Curie - Paris 6, CNRS IN2P3 UMR 7585, 4 Place Jussieu, Paris Cedex 05, 75752 France (France)

    2014-06-01

    Dark matter halos are built from accretion and merging. During merging some of the dark matter particles may be ejected with velocities higher than the escape velocity. We use both N-body simulations and single-particle smooth-field simulations to demonstrate that rapid changes to the mean field potential are responsible for such ejection, and in particular that dynamical friction plays no significant role in it. Studying a range of minor mergers, we find that typically between 5–15% of the particles from the smaller of the two merging structures are ejected. We also find that the ejected particles originate essentially from the small halo, and more specifically are particles in the small halo which pass later through the region in which the merging occurs.

  13. Simulation Studies of the Helium and Lead Observatory (HALO)

    Science.gov (United States)

    Sanford, Nikki; Scholberg, Kate

    2012-10-01

    Simulation studies for were conducted for the Helium and Lead Observatory (HALO), the supernova neutrino detector at SNOLAB, Sudbury, Ontario. HALO consists of 79 tons of lead, with 128 ^3He counters which detect the scattered lead neutrons resulting from incoming neutrinos. Improvements were made to the Geant4 Monte Carlo simulation's geometry by the addition of water boxes and plastic baseboards, which serve to reflect scattered neutrons back towards counters, and shield against outside neutrons and gammas. Several box designs were created, and the resulting event detection efficiencies and labeling of 1n and 2n events were studied. It was found that these additions cause a 2% efficiency increase, a slight improvement of correctly labeled events, and are a significant improvement to the HALO simulation.

  14. Reactions of Proton Halo Nuclei in a Relativistic Optical Potential

    CERN Document Server

    Rashdan, M

    2003-01-01

    The reaction cross section, sigma sub R; of the proton halo nuclei sup 1 sup 7 Ne and sup 1 sup 2 N on Si is calculated using an optical potential derived from the solution of the Dirac-Brueckner-Bethe-Goldstone equation, starting from the one-boson-exchange potential of Bonn. The nuclear densities are generated from self-consistent Hartree-Fock calculations using the recent Skyrme interaction SKRA. It is found that the enhancement in the reaction cross section found experimentally for the sup 1 sup 7 Ne + Si system in comparison to sup 1 sup 5 O + Si, where sup 1 sup 5 O has been considered as a core of sup 1 sup 7 Ne, is mainly due to the proton halo structure of sup 1 sup 7 Ne which increases the interaction, in the surface and tail regions. Glauber model calculations did not produce this enhancement in sigma sub R for proton halo nuclei

  15. Determination of the B(E3,0$^{+}$ $\\rightarrow$ 3$^{-}$) strength in the octupole correlated nuclei $^{142,144}$Ba using Coulomb excitation

    CERN Multimedia

    We propose to exploit the unique capability of ISOLDE to provide intense post-accelerated $^{142}$Ba and $^{144}$Ba ion beams from the HIE-ISOLDE facility to enable the Coulomb excitation of the first 3$^-$ state in these nuclei. By measuring the $\\gamma$-ray yields of the E1 decays from the 3$^-$ state using the MINIBALL array, we can obtain the interesting transition matrix element. The results will give quantitative information about octupole correlations in these nuclei.

  16. Capacity of straylight and disk halo size to diagnose cataract.

    Science.gov (United States)

    Palomo-Álvarez, Catalina; Puell, María C

    2015-10-01

    To examine the capacity of straylight and disk halo size to diagnose cataract. Faculty of Optics and Optometry, Universidad Complutense de Madrid, Spain. Prospective study. Straylight, disk halo radius, and high-contrast corrected distance visual acuity (CDVA) measurements were compared between patients with age-related cataract and age-matched normal-sighted control subjects by calculating the area under the curve (AUC) receiver operating characteristic. Measurements were made in 53 eyes of 53 patients with a mean age of 67.94 years ± 7.11 (SD) and 31 eyes of 31 controls with a mean age 66.06 ± 5.43 years. Significantly worse (P cataract group than in the control group (1.17 ± 0.11 log[s], 2.10 ± 0.16 log arcmin, and 0.08 ± 0.08 logMAR). Significant differences in AUCs were observed for disk halo radius (0.89 ± 0.04) versus straylight (0.77 ± 0.05) (P = .03) and disk halo radius versus CDVA (0.72 ± 0.05) (P = .001). The comparison of disk halo radius versus the discriminant function with input from CDVA and straylight (0.80 ± 0.05) was at the limit of significance only (0.091 ± 0.05, P = .051). Although all 3 variables discriminated well between normal eyes and eyes with cataract, the disk halo radius showed the best diagnostic capacity. Neither author has a financial or proprietary interest in any material or method mentioned. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  17. The orbital eccentricity distribution of solar-neighbourhood halo stars

    Science.gov (United States)

    Hattori, K.; Yoshii, Y.

    2011-12-01

    We present theoretical calculations for the differential distribution of stellar orbital eccentricity for a sample of solar-neighbourhood halo stars. Two types of static, spherical gravitational potentials are adopted to define the eccentricity e for given energy E and angular momentum L, such as an isochrone potential and a Navarro-Frenk-White potential that can serve as two extreme ends covering in between any realistic potential of the Milky Way halo. The solar-neighbourhood eccentricity distribution ΔN(e) is then formulated, based on a static distribution function of the form f(E, L) in which the velocity anisotropy parameter β monotonically increases in the radial direction away from the galaxy centre, such that β is below unity (near-isotropic velocity dispersion) in the central region and asymptotically approaches ˜1 (radially anisotropic velocity dispersion) in the far distant region of the halo. We find that ΔN(e) sensitively depends upon the radial profile of β, and this sensitivity is used to constrain such a profile in comparison with some observational properties of ΔNobs(e) recently reported by Carollo et al. In particular, the linear e-distribution and the fraction of higher e stars for their sample of solar-neighbourhood inner-halo stars rule out a constant profile of β, contrary to the opposite claim by Bond et al. Our constraint of β≲ 0.5 at the galaxy centre indicates that the violent relaxation that has acted on the inner halo is effective within a scale radius of ˜10 kpc from the galaxy centre. We argue that our result would help to understand the formation and evolution of the Milky Way halo.

  18. The Halo Boundary of Galaxy Clusters in the SDSS

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, Eric; Jain, Bhuvnesh; Sheth, Ravi K. [Center for Particle Cosmology, Department of Physics, University of Pennsylvania, Philadelphia, PA 19104 (United States); Chang, Chihway; Kravtsov, Andrey [Kavli Institute for Cosmological Physics, The University of Chicago, Chicago, IL 60637 (United States); Adhikari, Susmita; Dalal, Neal [Department of Astronomy, University of Illinois at Urbana-Champaign, Champaign, IL 61801 (United States); More, Surhud [Kavli Institute for the Physics and Mathematics of the Universe (WPI), Tokyo Institutes for Advanced Study, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba, 277-8583 (Japan); Rozo, Eduardo [Department of Physics, University of Arizona, Tucson, AZ 85721 (United States); Rykoff, Eli, E-mail: ebax@sas.upenn.edu [Kavli Institute for Particle Astrophysics and Cosmology, P.O. Box 2450, Stanford University, Stanford, CA 94305 (United States)

    2017-05-20

    Analytical models and simulations predict a rapid decline in the halo density profile associated with the transition from the “infalling” regime outside the halo to the “collapsed” regime within the halo. Using data from SDSS, we explore evidence for such a feature in the density profiles of galaxy clusters using several different approaches. We first estimate the steepening of the outer galaxy density profile around clusters, finding evidence for truncation of the halo profile. Next, we measure the galaxy density profile around clusters using two sets of galaxies selected on color. We find evidence of an abrupt change in galaxy colors that coincides with the location of the steepening of the density profile. Since galaxies that have completed orbits within the cluster are more likely to be quenched of star formation and thus appear redder, this abrupt change in galaxy color can be associated with the transition from single-stream to multi-stream regimes. We also use a standard model comparison approach to measure evidence for a “splashback”-like feature, but find that this approach is very sensitive to modeling assumptions. Finally, we perform measurements using an independent cluster catalog to test for potential systematic errors associated with cluster selection. We identify several avenues for future work: improved understanding of the small-scale galaxy profile, lensing measurements, identification of proxies for the halo accretion rate, and other tests. With upcoming data from the DES, KiDS, and HSC surveys, we can expect significant improvements in the study of halo boundaries.

  19. Coulombic interactions during advection-dominated transport of ions in porous media

    Science.gov (United States)

    Muniruzzaman, Muhammad; Stolze, Lucien; Rolle, Massimo

    2017-04-01

    Solute transport of charged species in porous media is significantly affected by the electrochemical migration term resulting from the charge-induced interactions among dissolved ions and with solid surfaces. Therefore, the characterization of such Coulombic interactions and their effect on multicomponent ionic transport is of critical importance for assessing the fate of charged solutes in porous media. In this work we present a detailed investigation of the electrochemical effects during conservative multicomponent ionic transport in homogeneous and heterogeneous domains by means of laboratory bench-scale experiments and numerical simulations. The investigation aims at quantifying the key role of small-scale electrostatic interactions in flow-through systems, especially when advection is the dominant mass-transfer process. Considering dilute solutions of strong electrolytes (e.g., MgCl2 and NaBr) we report results showing the important role of Coulombic interactions in the lateral displacement of the different ionic species for steady-state transport scenarios in which the solutions are continuously injected through different portions of the flow-through chamber [1, 2]. Successively, we focus our attention on transient transport and pulse injection of the electrolytes. In these experiments high-resolution spatial and temporal monitoring of the ions' concentrations (600 samples; 1800 concentration measurements), at closely spaced outlet ports (5 mm), allowed us resolving the effects of charge interactions on the temporal breakthrough and spatial profiles of the cations and anions [3]. The interpretation of the experimental results requires a multicomponent modeling approach with an accurate description of local hydrodynamic dispersion, as well as the explicit quantification of the dispersive fluxes' cross-coupling due to the Coulombic interactions between the charged species. A new 2-D simulator [4], coupling the solution of the multicomponent ionic transport

  20. Coulomb excitation of the odd-odd isotopes $^{106, 108}$In

    CERN Document Server

    Ekstrom, A; Blazhev, A; Van de Walle, J; Weisshaar, D; Zielinska, M; Tveten, G M; Marsh, B A; Siem, S; Gorska, M; Engeland, T; Hurst, A M; Cederkall, J; Finke, F; Iwanicki, J; Hjorth-Jensen, M; Davinson, T; Eberth, J; Sletten, G; Mierzejewski, J; Reiter, P; Warr, N; Butler, P A; Fahlander, C; Stefanescu, I; Koester, U; Ivanov, O; Wenander, F; Voulot, D

    2010-01-01

    The low-lying states in the odd-odd and unstable isotopes In-106,In-108 have been Coulomb excited from the ground state and the first excited isomeric state at the REX-ISOLDE facility at CERN. With the additional data provided here the pi g(9/2)(-1) circle times nu d(5/2) and pi g(9/2)(-1) circle times nu g7/2 multiplets have been re-analyzed and are modified compared to previous results. The observed gamma-ray de-excitation patterns were interpreted within a shell model calculation based on a realistic effective interaction. The agreement between theory and experiment is satisfactory and the calculations reproduce the observed differences in the excitation pattern of the two isotopes. The calculations exclude a 6(+) ground state in In-106. This is in agreement with the conclusions drawn using other techniques. Furthermore, based on the experimental results, it is also concluded that the ordering of the isomeric and ground state in In-108 is inverted compared to the shell model prediction. Limits on B(E2) val...

  1. Signatures of compact halos of sterile-neutrino dark matter

    Science.gov (United States)

    Kühnel, Florian; Ohlsson, Tommy

    2017-11-01

    We investigate compact halos of sterile-neutrino dark matter and examine observable signatures with respect to neutrino and photon emission. Primarily, we consider two cases: primordial black-hole halos and ultracompact minihalos. In both cases, we find that there exists a broad range of possible parameter choices such that detection in the near future with x-ray and gamma-ray telescopes might be well possible. In fact, for energies above 10 TeV, the neutrino telescope IceCube would be a splendid detection machine for such macroscopic dark-matter candidates.

  2. The FUSE Survey of 0 VI in the Galactic Halo

    Science.gov (United States)

    Sonneborn, George; Savage, B. D.; Wakker, B. P.; Sembach, K. R.; Jenkins, E. B.; Moos, H. W.; Shull, J. M.

    2003-01-01

    This paper summarizes the results of the Far-Ultraviolet Spectroscopic Explorer (FUSE) program to study 0 VI in the Milky Way halo. Spectra of 100 extragalactic objects and two distant halo stars are analyzed to obtain measures of O VI absorption along paths through the Milky Way thick disk/halo. Strong O VI absorption over the velocity range from -100 to 100 km/s reveals a widespread but highly irregular distribution of O VI, implying the existence of substantial amounts of hot gas with T approx. 3 x 10(exp 5) K in the Milky Way thick disk/halo. The overall distribution of O VI is not well described by a symmetrical plane-parallel layer of patchy O VI absorption. The simplest departure from such a model that provides a reasonable fit to the observations is a plane-parallel patchy absorbing layer with an average O VI mid-plane density of n(sub 0)(O VI) = 1.7 x 10(exp -2)/cu cm, a scale height of approx. 2.3 kpc, and a approx. 0.25 dex excess of O VI in the northern Galactic polar region. The distribution of O VI over the sky is poorly correlated with other tracers of gas in the halo, including low and intermediate velocity H I, Ha emission from the warm ionized gas at approx. l0(exp 4) K, and hot X-ray emitting gas at approx. l0(exp 6) K . The O VI has an average velocity dispersion, b approx. 60 km/s and standard deviation of 15 km/s. Thermal broadening alone cannot explain the large observed profile widths. A combination of models involving the radiative cooling of hot fountain gas, the cooling of supernova bubbles in the halo, and the turbulent mixing of warm and hot halo gases is required to explain the presence of O VI and other highly ionized atoms found in the halo. The preferential venting of hot gas from local bubbles and superbubbles into the northern Galactic polar region may explain the enhancement of O VI in the North.

  3. Two distinct halo populations in the solar neighborhood. IV

    DEFF Research Database (Denmark)

    Nissen, P. E.; Schuster, W. J.

    2012-01-01

    We investigate if there is a difference in the lithium abundances of stars belonging to two halo populations of F and G main-sequence stars previously found to differ in [alpha/Fe] for the metallicity range -1.4 ...-resolution spectra using MARCS model atmospheres. Furthermore, masses of the stars are determined from the logTeff - logg diagram by interpolating between Yonsei-Yale evolutionary tracks. There is no significant systematic difference in the lithium abundances of high- and low-alpha halo stars. For the large majority...

  4. Dynamical Constraints On The Galaxy-Halo Connection

    Science.gov (United States)

    Desmond, Harry

    2017-07-01

    Dark matter halos comprise the bulk of the universe's mass, yet must be probed by the luminous galaxies that form within them. A key goal of modern astrophysics, therefore, is to robustly relate the visible and dark mass, which to first order means relating the properties of galaxies and halos. This may be expected not only to improve our knowledge of galaxy formation, but also to enable high-precision cosmological tests using galaxies and hence maximise the utility of future galaxy surveys. As halos are inaccessible to observations - as galaxies are to N-body simulations - this relation requires an additional modelling step.The aim of this thesis is to develop and evaluate models of the galaxy-halo connection using observations of galaxy dynamics. In particular, I build empirical models based on the technique of halo abundance matching for five key dynamical scaling relations of galaxies - the Tully-Fisher, Faber-Jackson, mass-size and mass discrepancy-acceleration relations, and Fundamental Plane - which relate their baryon distributions and rotation or velocity dispersion profiles. I then develop a statistical scheme based on approximate Bayesian computation to compare the predicted and measured values of a number of summary statistics describing the relations' important features. This not only provides quantitative constraints on the free parameters of the models, but also allows absolute goodness-of-fit measures to be formulated. I find some features to be naturally accounted for by an abundance matching approach and others to impose new constraints on the galaxy-halo connection; the remainder are challenging to account for and may imply galaxy-halo correlations beyond the scope of basic abundance matching.Besides providing concrete statistical tests of specific galaxy formation theories, these results will be of use for guiding the inputs of empirical and semi-analytic galaxy formation models, which require galaxy-halo correlations to be imposed by hand. As

  5. Efimov effect in 2-neutron halo nuclei

    Indian Academy of Sciences (India)

    2015-11-27

    Nov 27, 2015 ... ... heavy core ( = 100) with two valence neutrons. In all these cases the Efimov states show up as resonances as the two-body energy is increased. However, in sharp contrast, the Efimov states, for a system of three equal masses, show up as virtual states beyond a certain value of the two-body interaction.

  6. Beta Dips in the Gaia Era: Simulation Predictions of the Galactic Velocity Anisotropy Parameter (β) for Stellar Halos

    Science.gov (United States)

    Loebman, Sarah R.; Valluri, Monica; Hattori, Kohei; Debattista, Victor P.; Bell, Eric F.; Stinson, Greg; Christensen, Charlotte R.; Brooks, Alyson; Quinn, Thomas R.; Governato, Fabio

    2018-02-01

    The velocity anisotropy parameter, β, is a measure of the kinematic state of orbits in the stellar halo, which holds promise for constraining the merger history of the Milky Way (MW). We determine global trends for β as a function of radius from three suites of simulations, including accretion-only and cosmological hydrodynamic simulations. We find that the two types of simulations are consistent and predict strong radial anisotropy ( ∼ 0.7) for Galactocentric radii greater than 10 kpc. Previous observations of β for the MW’s stellar halo claim a detection of an isotropic or tangential “dip” at r ∼ 20 kpc. Using the N-body+SPH simulations, we investigate the temporal persistence, population origin, and severity of “dips” in β. We find that dips in the in situ stellar halo are long-lived, while dips in the accreted stellar halo are short-lived and tied to the recent accretion of satellite material. We also find that a major merger as early as z ∼ 1 can result in a present-day low (isotropic to tangential) value of β over a broad range of radii and angles. While all of these mechanisms are plausible drivers for the β dip observed in the MW, each mechanism in the simulations has a unique metallicity signature associated with it, implying that future spectroscopic surveys could distinguish between them. Since an accurate knowledge of β(r) is required for measuring the mass of the MW halo, we note that significant transient dips in β could cause an overestimate of the halo’s mass when using spherical Jeans equation modeling.

  7. SDSS 1507+52: A Halo Cataclysmic Variable?

    Science.gov (United States)

    Patterson, Joseph; Thorstensen, John R.; Knigge, Christian

    2008-05-01

    We report a photometric and spectroscopic study of the peculiar cataclysmic variable SDSS 1507+52. The star shows very deep eclipses on the 67-minute orbital period, and those eclipses are easily separable into white-dwarf and hot-spot components. This leads to tight constraints on binary parameters, with M1 = 0.83(8) M⊙, M2 = 0.057(8) M⊙, R1 = 0.0097(9) R⊙, R2 = 0.097(4) R⊙, q = 0.069(2), and i = 83.18(13)°. Such numbers suggest possible membership among the WZ Sge stars, a common type of dwarf nova. The spectroscopic behavior (strong and broad H emission, double-peaked and showing a classic rotational disturbance during eclipse) is also typical. But the star’s orbital period is shockingly below the “period minimum” of ˜77 minutes that is characteristic of hydrogen-rich CVs; producing such a strange binary will require some tinkering with the theory of cataclysmic-variable evolution. The proper motion is also remarkably high for a star of its distance, which we estimate from photometry and trigonometric parallax as 230 ± 40 pc. This suggests a transverse velocity of 164 ± 30 km s-1 —uncomfortably high if the star belongs to a Galactic-disk population. These difficulties with understanding its evolution and space velocity can be solved if the star belongs to a Galactic-halo population. Based on observations obtained at the MDM Observatory, operated by Dartmouth College, Columbia University, Ohio State University, Ohio University, and the University of Michigan.

  8. Gribov horizon and the one-loop color-Coulomb potential

    DEFF Research Database (Denmark)

    Golterman, Maarten; Greensite, Jeffrey Paul; Peris, Santiago

    2012-01-01

    We recalculate the color-Coulomb potential to one-loop order, under the assumption that the effect of the Gribov horizon is to make (i) the transverse gluon propagator less singular and (ii) the color-Coulomb potential more singular than their perturbative behavior in the low-momentum limit...

  9. A Simple And Efficient FEM-Implementation Of The Modified Mohr-Coulomb Criterion

    DEFF Research Database (Denmark)

    Clausen, Johan Christian; Damkilde, Lars

    2006-01-01

    This paper presents a conceptually simple finite element implementation of the combined elasto-plastic Mohr-Coulomb and Rankine material models, also known as Modified Mohr-Coulomb plasticity. The stress update is based on a return mapping scheme where all manipulations are carried out in princip...

  10. Toward a Combined SAGE II-HALOE Aerosol Climatology: An Evaluation of HALOE Version 19 Stratospheric Aerosol Extinction Coefficient Observations

    Science.gov (United States)

    Thomason, L. W.

    2012-01-01

    Herein, the Halogen Occultation Experiment (HALOE) aerosol extinction coefficient data is evaluated in the low aerosol loading period after 1996 as the first necessary step in a process that will eventually allow the production of a combined HALOE/SAGE II (Stratospheric Aerosol and Gas Experiment) aerosol climatology of derived aerosol products including surface area density. Based on these analyses, it is demonstrated that HALOE's 3.46 microns is of good quality above 19 km and suitable for scientific applications above that altitude. However, it is increasingly suspect at lower altitudes and should not be used below 17 km under any circumstances after 1996. The 3.40 microns is biased by about 10% throughout the lower stratosphere due to the failure to clear NO2 but otherwise appears to be a high quality product down to 15 km. The 2.45 and 5.26 micron aerosol extinction coefficient measurements are clearly biased and should not be used for scientific applications after the most intense parts of the Pinatubo period. Many of the issues in the aerosol data appear to be related to either the failure to clear some interfering gas species or doing so poorly. For instance, it is clear that the 3.40micronaerosol extinction coefficient measurements can be improved through the inclusion of an NO2 correction and could, in fact, end up as the highest quality overall HALOE aerosol extinction coefficient measurement. It also appears that the 2.45 and 5.26 micron channels may be improved by updating the Upper Atmosphere Pilot Database which is used as a resource for the removal of gas species otherwise not available from direct HALOE measurements. Finally, a simple model to demonstrate the promise of mixed visible/infrared aerosol extinction coefficient ensembles for the retrieval of bulk aerosol properties demonstrates that a combined HALOE/SAGE II aerosol climatology is feasible and may represent a substantial improvement over independently derived data sets.

  11. HaloTag: a novel reporter gene for positron emission tomography

    OpenAIRE

    Hong, Hao; Benink, Hélène A.; Zhang, Yin; Yang, Yunan; Uyeda, H. Tetsuo; Engle, Jonathan W.; Severin, Gregory W.; McDougall, Mark G; Barnhart, Todd E.; Klaubert, Dieter H.; Nickles, Robert J; Fan, Frank; Cai, Weibo

    2011-01-01

    Among the many molecular imaging techniques, reporter gene imaging has been a dynamic area of research. The HaloTag protein is a modified haloalkane dehalogenase which was designed to covalently bind to synthetic ligands (i.e. the HaloTag ligands [HTL]). Covalent bond formation between the HaloTag protein and the chloroal-kane within the HTL occurs rapidly under physiological conditions, which is highly specific and essentially irreversible. Over the years, HaloTag technology has been investi...

  12. Resolution of vitiligo following excision of halo congenital melanocytic nevus: a rare case report.

    Science.gov (United States)

    Wang, Kai; Wang, Zhi; Huang, Weiqing

    2016-05-01

    Halo congenital melanocytic nevus (CMN) associated with vitiligo is rare, especially with regard to CMN excision. Only two reports of excision of halo CMN following repigmentation of vitiligo are found in the literature. We present a case of a girl with halo CMN and periorbital vitiligo. The halo CMN was excised and followed by spontaneous improvement of vitiligo. The result suggests excision of the inciting lesion may be a promising way to control vitiligo. © 2015 Wiley Periodicals, Inc.

  13. N-Protonated Isomers and Coulombic Barriers to Dissociation of Doubly Protonated Ala8Arg

    Science.gov (United States)

    Haeffner, Fredrik; Irikura, Karl K.

    2017-10-01

    Collision-induced dissociation (or tandem mass spectrometry, MS/MS) of a protonated peptide results in a spectrum of fragment ions that is useful for inferring amino acid sequence. This is now commonplace and a foundation of proteomics. The underlying chemical and physical processes are believed to be those familiar from physical organic chemistry and chemical kinetics. However, first-principles predictions remain intractable because of the conflicting necessities for high accuracy (to achieve qualitatively correct kinetics) and computational speed (to compensate for the high cost of reliable calculations on such large molecules). To make progress, shortcuts are needed. Inspired by the popular mobile proton model, we have previously proposed a simplified theoretical model in which the gas-phase fragmentation pattern of protonated peptides reflects the relative stabilities of N-protonated isomers, thus avoiding the need for transition-state information. For singly protonated Ala n ( n = 3-11), the resulting predictions were in qualitative agreement with the results from low-energy MS/MS experiments. Here, the comparison is extended to a model tryptic peptide, doubly protonated Ala8Arg. This is of interest because doubly protonated tryptic peptides are the most important in proteomics. In comparison with experimental results, our model seriously overpredicts the degree of backbone fragmentation at N9. We offer an improved model that corrects this deficiency. The principal change is to include Coulombic barriers, which hinder the separation of the product cations from each other. Coulombic barriers may be equally important in MS/MS of all multiply charged peptide ions. [Figure not available: see fulltext.

  14. Noninvasive Vibrational Mode Spectroscopy of Ion Coulomb Crystals through Resonant Collective Coupling to an Optical Cavity Field

    DEFF Research Database (Denmark)

    Dantan, Aurélien; Marler, Joan; Albert, Magnus

    2010-01-01

    We report on a novel noninvasive method to determine the normal mode frequencies of ion Coulomb crystals in traps based on the resonance enhanced collective coupling between the electronic states of the ions and an optical cavity field at the single photon level. Excitations of the normal modes...... are observed through a Doppler broadening of the resonance. An excellent agreement with the predictions of a zero-temperature uniformly charged liquid plasma model is found. The technique opens up for investigations of the heating and damping of cold plasma modes, as well as the coupling between them....

  15. Imaging many-body Coulomb interactions and ultrafast photoionization and diffraction with cold atom electron and ion sources

    Science.gov (United States)

    Scholten, Robert; Speirs, Rory; Murphy, Dene; Torrance, Joshua; Thompson, Daniel; Sparkes, Benjamin; McCulloch, Andrew

    2017-04-01

    The CAEIS cold-atom electron/ion source, based on photoionisation of laser cooled atoms, provides a powerful tool for investigating fundamental physical processes. The very low temperature of the ions has allowed us to image intra-beam Coulomb effects with unprecedented detail. With ultrafast laser excitation and streak detection we can probe competing ionization processes, particularly via Rydberg states, including sequential excitation, multiphoton excitation, resonance-enhanced multiphoton excitation and two-color multiphoton excitation. Knowledge from these studies has enabled ultrafast single-shot diffractive electron imaging with atomic resolution using a CAEIS.

  16. Coulomb-stable triply charged diatomic: HeY3+

    Science.gov (United States)

    Wesendrup, Ralf; Pernpointner, Markus; Schwerdtfeger, Peter

    1999-11-01

    Accurate relativistic coupled-cluster calculations show that the triply charged species HeY3+ is a stable molecule and represents the lightest diatomic trication that does not undergo a Coulomb fragmentation into charged fragments. The diatomic potential-energy curve is approximated by an extended Morse potential, and vibrational-rotational constants for HeY3+ are predicted (Re=224.3 pm, D0=0.394 eV, ωe=437 cm-1, ωexe=15.8 cm-1, Be=0.877 cm-1). It is further shown that the He-Y3+ bond can basically be described as a charge-induced dipole interaction.

  17. Ultra-high-ohmic microstripline resistors for Coulomb blockade devices

    Science.gov (United States)

    Lotkhov, Sergey V.

    2013-06-01

    In this paper, we report on the fabrication and low-temperature characterization of ultra-high-ohmic microstripline resistors made of a thin film of weakly oxidized titanium. Nearly linear voltage-current characteristics were measured at temperatures down to T ˜ 20 mK for films with sheet resistivities as high as ˜7 kΩ, i.e. about an order of magnitude higher than our previous findings for weakly oxidized Cr. Our analysis indicates that such an improvement can help to create an advantageous high-impedance environment for different Coulomb blockade devices. Further properties of the Ti film addressed in this work show the promise of low-noise behavior of the resistors when applied in different realizations of the quantum standard of current.

  18. Gravitational Modification of the Coulomb-Breit Hamiltonian

    Science.gov (United States)

    Caicedo, José Alexander; Urrutia, Luis Fernando

    2009-04-01

    In the poster session we presented a short review of our first results in the construction of the Coulomb-Breit Hamiltonian for a pair of fermions immersed in a background gravitational field which is described by General Relativity. Here we present a resume of that construction. We make a special stress on the objectives and the hypothesis used, but there is no special attention on the explicit form of the results because actually there is an updated and optimised version of our work in the edition process for publication; however we mention some special characteristics of the effect of the background gravitational field on the quantum nature of the system composed by fermions and its electromagnetic field, particularly the possibility of the observation of centre of mass effects in matter interferometry experiments.

  19. Coulomb interaction effect in tilted Weyl fermion in two dimensions

    Science.gov (United States)

    Isobe, Hiroki; Nagaosa, Naoto

    Weyl fermions with tilted linear dispersions characterized by several different velocities appear in some systems including the quasi-two-dimensional organic semiconductor α-(BEDT-TTF)2I3 and three-dimensional WTe2. The Coulomb interaction between electrons modifies the velocities in an essential way in the low energy limit, where the logarithmic corrections dominate. Taking into account the coupling to both the transverse and longitudinal electromagnetic fields, we derive the renormalization group equations for the velocities of the tilted Weyl fermions in two dimensions, and found that they increase as the energy decreases and eventually hit the velocity of light c to result in the Cherenkov radiation. Especially, the system restores the isotropic Weyl cone even when the bare Weyl cone is strongly tilted and the velocity of electrons becomes negative in certain directions.

  20. Quantum mechanics on phase space and the Coulomb potential

    Science.gov (United States)

    Campos, P.; Martins, M. G. R.; Vianna, J. D. M.

    2017-04-01

    Symplectic quantum mechanics (SMQ) makes possible to derive the Wigner function without the use of the Liouville-von Neumann equation. In this formulation of the quantum theory the Galilei Lie algebra is constructed using the Weyl (or star) product with Q ˆ = q ⋆ = q +iħ/2∂p , P ˆ = p ⋆ = p -iħ/2∂q, and the Schrödinger equation is rewritten in phase space; in consequence physical applications involving the Coulomb potential present some specific difficulties. Within this context, in order to treat the Schrödinger equation in phase space, a procedure based on the Levi-Civita (or Bohlin) transformation is presented and applied to two-dimensional (2D) hydrogen atom. Amplitudes of probability in phase space and the correspondent Wigner quasi-distribution functions are derived and discussed.

  1. Electric and Magnetic Coulomb Potentials in the Deuteron

    Directory of Open Access Journals (Sweden)

    Bernard Schaeffer

    2013-09-01

    Full Text Available After one century of nuclear physics, the underlying fun- damental laws of nuclear physics are still missing. Bohr had found a formula for the H atom and another for the H2 molecule but no equivalent formula exists for the deuteron 2H. The only known Coulomb interaction in a nucleus by the mainstream nuclear physics is the long range repulsion between protons, forgetting that the neutron contains elec- tric charges with no net charge. The neutron is attracted by the proton in a way discovered two millenaries ago by the Greeks. This attraction is equilibrated by the repulsion between the opposite magnetic moments of the proton and of the neutron in the deuteron. The bare application of ge- ometry together with electric and magnetic Coulomb’s in- teractions accounts for the binding energy of the deuteron, without fitting, with only 4 per cent discrepancy, proving the electromagnetic nature of the nuclear energy.

  2. De bepaling van halo-azijnzuren, chloriet en chloraat in drinkwater

    NARCIS (Netherlands)

    Peters RJB; van de Meer-Arp KKM; Versteegh JFM

    1990-01-01

    A method was developed to determine halo-acetic acids with a detection limit of 0.1 mug/L. Halo-acetic acids were determined in samples drinking water derived from surface- and bankfiltrated water however, not in drinking water derived from groundwater. Halo-acetic acids were found in chlorinated

  3. Describing one-and two-neutron halos in effective field theory

    Indian Academy of Sciences (India)

    2014-11-01

    Nov 1, 2014 ... Click here to view fulltext PDF ... In this paper, the recent work our group has undertaken on effective field theory (EFT) analyses of experimental data pertaining to one- and two-neutron halo nuclei is discussed. The cases of 19C and 8Li (one-neutron halos) and 22C (two-neutron halo) are considered.

  4. Transfer reactions and multiple Coulomb excitation in the $^{100}$Sn Region

    CERN Multimedia

    It is proposed to continue our REX-ISOLDE program in the $^{100}$Sn region at HIE-ISOLDE at ~5 MeV/u. Earlier measurements, with a precision of 10-20%, at 3 MeV/u with REX-ISOLDE point to a deviation between the measured B(E2) values for the first excited 2$^{+}$ states in $^{110,108,106}$Sn compared to theoretical predictions. In addition, the trend of B(E2) values for the lighter isotopes, in particular $^{106}$Sn, appear to differ between low- and high-energy measurements. In line with our letter-of-intent we aim in a first step to address the electromagnetic properties of the first 2$^{+}$and 4$^{+}$ states in $^{110,108,106}$Sn using Coulomb excitation. In these measurements we will directly access the lifetimes of the first excited 4$^{+}$ states in $^{110,108,106}$Sn for the first time. The yield of $^{104}$Sn from the LaC$_{x}$ target will be revisited to clarify if the new solid state RILIS gives sufficient yield to expand the measurements to this isotope. Following this proposal we plan similar meas...

  5. Prospects for detecting supersymmetric dark matter in the Galactic halo

    NARCIS (Netherlands)

    Springel, V.; White, S. D. M.; Frenk, C. S.; Navarro, J. F.; Jenkins, A.; Vogelsberger, M.; Wang, J.; Ludlow, A.; Helmi, A.

    2008-01-01

    Dark matter is the dominant form of matter in the Universe, but its nature is unknown. It is plausibly an elementary particle, perhaps the lightest supersymmetric partner of known particle species(1). In this case, annihilation of dark matter in the halo of the Milky Way should produce gamma-rays at

  6. The Galactic Halo in Mixed Dark Matter Cosmologies

    NARCIS (Netherlands)

    Anderhalden, D.; Diemand, J.; Bertone, G.; Macciò, A.V.; Schneider, A.

    2012-01-01

    A possible solution to the small scale problems of the cold dark matter (CDM) scenario is that the dark matter consists of two components, a cold and a warm one. We perform a set of high resolution simulations of the Milky Way halo varying the mass of the WDM particle (mWDM) and the cosmic dark

  7. The prolate shape of the galactic dark-matter halo

    NARCIS (Netherlands)

    Helmi, A; Spooner, NJC; Kudryavtsev,

    2005-01-01

    Knowledge of the distribution of dark-matter in our Galaxy plays a crucial role in the interpretation of dark-matter detection experiments. I will argue here that probably the best way of constraining the properties of the dark-matter halo is through astrophysical observations. These provide

  8. Redshift space bias and beta from the halo model

    OpenAIRE

    Seljak, Uros

    2000-01-01

    We analyze scale dependence of redshift space bias $b$ and $\\beta \\equiv \\Omega_m^{0.6}/b$ in the context of the halo model. We show that linear bias is a good approximation only on large scales, for $k

  9. Lithium abundances in high- and low-alpha halo stars

    DEFF Research Database (Denmark)

    Nissen, P. E.; Schuster, W. J.

    2012-01-01

    A previous study of F and G main-sequence stars in the solar neighborhood has revealed the existence of two distinct halo populations with a clear separation in [alpha /Fe] for the metallicity range -1.4 < [Fe/H] < -0.7. The kinematics of the stars and models of galaxy formation suggest that the ...

  10. On the shape of the Galactic dark matter halo

    NARCIS (Netherlands)

    Helmi, A

    2004-01-01

    The confined nature of the debris from the Sagittarius dwarf to a narrow trail on the sky has recently prompted the suggestion that the dark matter halo of our Galaxy should be nearly spherical (Ibata et al. 2001; Majewski et al. 2003). This would seem to be in strong contrast with predictions from

  11. Jet interactions with the hot halos of clusters and galaxies

    NARCIS (Netherlands)

    McNamara, B.R.; Bîrzan, L.; Rafferty, D.A.; Nulsen, P.E.J.; Carilli, C.; Wise, M.W.

    2008-01-01

    X-ray observations of cavities and shock fronts produced by jets streaming through hot halos have significantly advanced our understanding of the energetics and dynamics of extragalactic radio sources. Radio sources at the centers of clusters have dynamical ages between ten and several hundred

  12. A halo model for cosmological neutral hydrogen : abundances and clustering

    Science.gov (United States)

    Padmanabhan, Hamsa; Refregier, Alexandre; Amara, Adam

    2017-08-01

    We extend the results of previous analyses towards constraining the abundance and clustering of post-reionization (z ∼ 0-5) neutral hydrogen (H i) systems using a halo model framework. We work with a comprehensive H I data set including the small-scale clustering, column density and mass function of H I galaxies at low redshifts, intensity mapping measurements at intermediate redshifts and the ultraviolet/optical observations of Damped Lyman Alpha (DLA) systems at higher redshifts. We use a Markov Chain Monte Carlo (MCMC) approach to constrain the parameters of the best-fitting models, both for the H i-halo mass (HIHM) relation and the H I radial density profile. We find that a radial exponential profile results in a good fit to the low-redshift H I observations, including the clustering and the column density distribution. The form of the profile is also found to match the high-redshift DLA observations, when used in combination with a three-parameter HIHM relation and a redshift evolution in the H I concentration. The halo model predictions are in good agreement with the observed H I surface density profiles of low-redshift galaxies, and the general trends in the impact parameter and covering fraction observations of high-redshift DLAs. We provide convenient tables summarizing the best-fitting halo model predictions.

  13. The Disk Mass Project: breaking the disk-halo degeneracy

    NARCIS (Netherlands)

    Verheijen, Marc A. W.; Bershady, Matthew A.; Swaters, Rob A.; Andersen, David R.; Westfall, Kyle B.; DE JONG, R. S.

    2007-01-01

    Little is known about the content and distribution of dark matter in spiral galaxies. To break the degeneracy in galaxy rotation curve decompositions, which allows a wide range of dark matter halo density profiles, an independent measure of the mass surface density of stellar disks is needed. Here,

  14. Halo-like structures studied by atomic force microscopy

    DEFF Research Database (Denmark)

    Sørensen, Alexis Hammer; Kyhle, Anders; Hansen, L. Theil

    1997-01-01

    Nanometer-sized clusters of copper have been produced in a hollow cathode sputtering source and deposited on SiOx. Halo-like structures consisting of micrometer sized protrusions in the solicon oxide surface surrounded by thin rings of smaller particles are observed. The area in between seems...

  15. The influence of halo evolution on galaxy structure

    Science.gov (United States)

    White, Simon

    2015-03-01

    If Einstein-Newton gravity holds on galactic and larger scales, then current observations demonstrate that the stars and interstellar gas of a typical bright galaxy account for only a few percent of its total nonlinear mass. Dark matter makes up the rest and cannot be faint stars or any other baryonic form because it was already present and decoupled from the radiation plasma at z = 1000, long before any nonlinear object formed. The weak gravito-sonic waves so precisely measured by CMB observations are detected again at z = 4 as order unity fluctuations in intergalactic matter. These subsequently collapse to form today's galaxy/halo systems, whose mean mass profiles can be accurately determined through gravitational lensing. High-resolution simulations link the observed dark matter structures seen at all these epochs, demonstrating that they are consistent and providing detailed predictions for all aspects of halo structure and growth. Requiring consistency with the abundance and clustering of real galaxies strongly constrains the galaxy-halo relation, both today and at high redshift. This results in detailed predictions for galaxy assembly histories and for the gravitational arena in which galaxies live. Dark halos are not expected to be passive or symmetric but to have a rich and continually evolving structure which will drive evolution in the central galaxy over its full life, exciting warps, spiral patterns and tidal arms, thickening disks, producing rings, bars and bulges. Their growth is closely related to the provision of new gas for galaxy building.

  16. Large-scale assembly bias of dark matter halos

    Science.gov (United States)

    Lazeyras, Titouan; Musso, Marcello; Schmidt, Fabian

    2017-03-01

    We present precise measurements of the assembly bias of dark matter halos, i.e. the dependence of halo bias on other properties than the mass, using curved "separate universe" N-body simulations which effectively incorporate an infinite-wavelength matter overdensity into the background density. This method measures the LIMD (local-in-matter-density) bias parameters bn in the large-scale limit. We focus on the dependence of the first two Eulerian biases bE1 and bE2 on four halo properties: the concentration, spin, mass accretion rate, and ellipticity. We quantitatively compare our results with previous works in which assembly bias was measured on fairly small scales. Despite this difference, our findings are in good agreement with previous results. We also look at the joint dependence of bias on two halo properties in addition to the mass. Finally, using the excursion set peaks model, we attempt to shed new insights on how assembly bias arises in this analytical model.

  17. Halo formation from mismatched beam-beam interactions

    Energy Technology Data Exchange (ETDEWEB)

    Qiang, Ji

    2003-05-23

    In this paper, we report on the halo formation and emittance growth driven by a parametric resonance during mismatched beam-beam collisions. In the regime of the weak-strong beam-beam interaction, if two beams have the same machine tunes, on-axis head-on collisions between a mismatched strong beam and a weak beam will not cause the formation of halo. However, if the two beams collide with an initial offset, the beam-beam force from the mismatched strong beam can cause halo formation and emittance growth in the weak beam. Meanwhile, if two beams have different machine tunes, for opposite charged colliding beams, when the machine tune of the weak beam is smaller than that of strong beam, there is emittance growth in the weak beam. When the machine tune of the weak beam is larger than that of the strong beam, there is little emittance growth. In the regime of strong-strong beam-beam interaction, halo is formed in both beams even when the two beams collide head-on on the axis with equal machine tunes. This puts a strong requirement for a good beam match during the injection to colliders in order to avoid the emittance growth.

  18. Haloes and clustering in light, neutron-rich nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Orr, N.A

    2001-10-01

    Clustering is a relatively widespread phenomenon which takes on many guises across the nuclear landscape. Selected topics concerning the study of halo systems and clustering in light, neutron-rich nuclei are discussed here through illustrative examples taken from the Be isotopic chain. (author)

  19. Planetary Nebulae as kinematic and dynamical tracers of galaxy halos

    NARCIS (Netherlands)

    Coccato, Lodovico; Napolitano, Nicola; Arnaboldi, Magda; Cortesi, Arianna; Romanowsky, Aaron; Gerhard, Ortwin; Merrifield, Michael; Kuijken, Konrad; Freeman, Ken; Douglas, Nigel

    2015-01-01

    The kinematics and dynamical properties of galaxy halos are difficult to measure, given the faint stellar surface brightness that characterizes those regions. Gas-rich systems such as spiral galaxies can be probed using the radio emission of their gas component. Early type galaxies contain less gas,

  20. Uncovering the hidden iceberg structure of the Galactic halo

    Science.gov (United States)

    Moss, Vanessa A.; Di Teodoro, Enrico M.; McClure-Griffiths, Naomi M.; Lockman, Felix; Pisano, D. J.; Price, Daniel; Rees, Glen

    2018-01-01

    How the Milky Way gets its gas and keeps its measured star formation rate going are both long-standing mysteries in Galactic studies, with important implications for galaxy evolution across the Universe. I will present our recent discovery of two populations of neutral hydrogen (HI) in the halo of the Milky Way: 1) a narrow line-width dense population typical of the majority of bright high velocity cloud (HVC) components, and 2) a fainter, broad line-width diffuse population that aligns well with the population found in very sensitive pointings such as in Lockman et al. (2002). From our existing data, we concluded that the diffuse population likely outweighs the dense HI by a factor of 3. This discovery of diffuse HI, which appears to be prevalent throughout the halo, takes us closer to solving the Galactic mystery of accretion and reveals a gaseous neutral halo hidden from the view of most large-scale surveys. We are currently carrying out deep Parkes observations to investigate these results further, in order to truly uncover the nature of the diffuse HI and determine whether our 3:1 ratio (based on the limited existing data) is consistent with what is seen when Parkes and the 140 ft Green Bank telescope are employed at comparable sensitivity. With these data, through a combination of both known and new sightline measurements, we aim to reveal the structure of the Galactic halo in more detail than ever before.

  1. The reversed halo sign: update and differential diagnosis

    Science.gov (United States)

    Godoy, M C B; Viswanathan, C; Marchiori, E; Truong, M T; Benveniste, M F; Rossi, S; Marom, E M

    2012-01-01

    The reversed halo sign is characterised by a central ground-glass opacity surrounded by denser air–space consolidation in the shape of a crescent or a ring. It was first described on high-resolution CT as being specific for cryptogenic organising pneumonia. Since then, the reversed halo sign has been reported in association with a wide range of pulmonary diseases, including invasive pulmonary fungal infections, paracoccidioidomycosis, pneumocystis pneumonia, tuberculosis, community-acquired pneumonia, lymphomatoid granulomatosis, Wegener granulomatosis, lipoid pneumonia and sarcoidosis. It is also seen in pulmonary neoplasms and infarction, and following radiation therapy and radiofrequency ablation of pulmonary malignancies. In this article, we present the spectrum of neoplastic and non-neoplastic diseases that may show the reversed halo sign and offer helpful clues for assisting in the differential diagnosis. By integrating the patient's clinical history with the presence of the reversed halo sign and other accompanying radiological findings, the radiologist should be able to narrow the differential diagnosis substantially, and may be able to provide a presumptive final diagnosis, which may obviate the need for biopsy in selected cases, especially in the immunosuppressed population. PMID:22553298

  2. Alpha alpha scattering in halo effective field theory

    NARCIS (Netherlands)

    Higa, R.; Hammer, H. -W.; van Kolck, U.

    2008-01-01

    We study the two-alpha-particle (alpha alpha) system in an Effective Field Theory (EFT) for halo-like systems. We propose a power Counting that incorporates the subtle interplay of strong and electromagnetic forces leading to a narrow resonance at an energy of about 0.1 MeV. We investigate the EFT

  3. Matting of Hair Due to Halo-egg Shampoo

    Directory of Open Access Journals (Sweden)

    Z M Mani

    1983-01-01

    Full Text Available A case of hair matting in an 18 year old female is reported. The hair got densely entangled immediately after washing the hair with ′Halo Egg′ shampoo. The hair was disentangled completely after prolonged dipping of the hair in arachis oil frr 5 days.

  4. A galaxy-halo model for multiple cosmological tracers

    Science.gov (United States)

    Bull, Philip

    2017-10-01

    The information extracted from large galaxy surveys with the likes of DES, DESI, Euclid, LSST, SKA, and WFIRST will be greatly enhanced if the resultant galaxy catalogues can be cross-correlated with one another. Predicting the nature of the information gain, and developing the tools to realize it, depends on establishing a consistent model of how the galaxies detected by each survey trace the same underlying matter distribution. Existing analytic methods, such as halo occupation distribution modelling, are not well suited for this task, and can suffer from ambiguities and tuning issues when applied to multiple tracers. In this paper, we take the first step towards constructing an alternative that provides a common model for the connection between galaxies and dark matter haloes across a wide range of wavelengths (and thus tracer populations). This is based on a chain of parametrized statistical distributions that model the connection between (I) halo mass and bulk physical properties of galaxies, such as star formation rate; and (II) those same physical properties and a variety of emission processes. The result is a flexible parametric model that allows analytic halo model calculations of one-point functions to be carried out for multiple tracers, as well as providing semi realistic galaxy properties for fast mock catalogue generation.

  5. Giant Radio Halos in Galaxy Clusters as Probes of Particle ...

    Indian Academy of Sciences (India)

    Giant radio halos in galaxy clusters probe mechanisms of particle acceleration connected with cluster merger events. Shocks and turbulence are driven in the inter-galactic medium (IGM) during clusters mergers and may have a deep impact on the non-thermal properties of galaxy clusters. Models of turbulent ...

  6. Inheritance of halo blight resistance in common bean | Chataika ...

    African Journals Online (AJOL)

    Halo blight caused by (Pseudomonas syringe pv. phaseolicola (Burkh) (Psp)) is an important disease of common bean (Phaseolus vulgaris L.) world-wide. Several races of the Psp exist and likewise some sources of resistance in common bean have been identified. CAL 143, is a CIAT-bred common bean line, which was ...

  7. DM haloes in the fifth-force cosmology

    NARCIS (Netherlands)

    Hellwing, Wojciech A.; Cautun, Marius; Knebe, Alexander; Juszkiewicz, Roman; Knollmann, Steffen

    2013-01-01

    We investigate how long-range scalar interactions affect the properties of dark matter haloes. For doing so we employ the ReBEL model which implements an additional interaction between dark matter particles. On the phenomenological level this is equivalent to a modification of gravity. We analyse

  8. Prospects for detecting supersymmetric dark matter in the Galactic halo.

    Science.gov (United States)

    Springel, V; White, S D M; Frenk, C S; Navarro, J F; Jenkins, A; Vogelsberger, M; Wang, J; Ludlow, A; Helmi, A

    2008-11-06

    Dark matter is the dominant form of matter in the Universe, but its nature is unknown. It is plausibly an elementary particle, perhaps the lightest supersymmetric partner of known particle species. In this case, annihilation of dark matter in the halo of the Milky Way should produce gamma-rays at a level that may soon be observable. Previous work has argued that the annihilation signal will be dominated by emission from very small clumps (perhaps smaller even than the Earth), which would be most easily detected where they cluster together in the dark matter haloes of dwarf satellite galaxies. Here we report that such small-scale structure will, in fact, have a negligible impact on dark matter detectability. Rather, the dominant and probably most easily detectable signal will be produced by diffuse dark matter in the main halo of the Milky Way. If the main halo is strongly detected, then small dark matter clumps should also be visible, but may well contain no stars, thereby confirming a key prediction of the cold dark matter model.

  9. Is the halo responsible for the microlensing events?

    CERN Document Server

    Roulet, E.; Giudice, G.F.

    1994-01-01

    Abstract: We discuss whether the astrophysical objects responsible for the recently reported microlensing events of sources in the Large Magellanic Cloud can be identified as the brown dwarf components of the spheroid of our galaxy, rather than the constituents of a dark baryonic halo.

  10. Lensing effects of misaligned disks in dark matter halos

    NARCIS (Netherlands)

    Quadri, R.; Möller, O.; Natarajan, P.

    2002-01-01

    Published in: Astrophys. J. 597 (2003) 659-671 citations recorded in [Science Citation Index] Abstract: We study the observational signatures of the lensing signal produced by dark matter halos with embedded misaligned disks. This issue is of particular interest at the present time since most of the

  11. Spin alignment of dark matter haloes in filaments and walls

    NARCIS (Netherlands)

    Aragón-Calvo, M. A.; Weygaert, R. van de; Jones, B. J. T.; Hulst, T. van der

    2006-01-01

    Abstract: The MMF technique is used to segment the cosmic web as seen in a cosmological N-body simulation into wall-like and filament-like structures. We find that the spins and shapes of dark matter haloes are significantly correlated with each other and with the orientation of their host

  12. Spin alignment of dark matter halos in filaments and walls

    NARCIS (Netherlands)

    Aragon-Calvo, Miguel A.; van de Weygaert, Rien; Jones, Bernard J. T.; van der Hulst, J. M.

    2007-01-01

    The MMF technique is used to segment the cosmic web as seen in a cosmological N-body simulation into wall-like and filament-like structures. We find that the spins and shapes of dark matter halos are significantly correlated with each other and with the orientation of their host structures. The

  13. Fast weak-lensing simulations with halo model

    Science.gov (United States)

    Giocoli, Carlo; Di Meo, Sandra; Meneghetti, Massimo; Jullo, Eric; de la Torre, Sylvain; Moscardini, Lauro; Baldi, Marco; Mazzotta, Pasquale; Metcalf, R. Benton

    2017-09-01

    Full ray-tracing maps of gravitational lensing, constructed from N-body simulations, represent a fundamental tool to interpret present and future weak-lensing data. However, the limitation of computational resources and storage capabilities severely restricts the number of realizations that can be performed in order to accurately sample both the cosmic shear models and covariance matrices. In this paper, we present a halo model formalism for weak gravitational lensing that alleviates these issues by producing weak-lensing mocks at a reduced computational cost. Our model takes as input the halo population within a desired light cone and the linear power spectrum of the underlined cosmological model. We examine the contribution given by the presence of substructures within haloes to the cosmic shear power spectrum and quantify it to the percent level. Our method allows us to reconstruct high-resolution convergence maps, for any desired source redshifts, of light cones that realistically trace the matter density distribution in the universe, account for masked area and sample selections. We compare our analysis on the same large-scale structures constructed using ray-tracing techniques and find very good agreements in both the linear and non-linear regimes up to few percent levels. The accuracy and speed of our method demonstrate the potential of our halo model for weak-lensing statistics and the possibility to generate a large sample of convergence maps for different cosmological models as needed for the analysis of large galaxy redshift surveys.

  14. Giant Radio Halos in Galaxy Clusters as Probes of Particle ...

    Indian Academy of Sciences (India)

    Abstract. Giant radio halos in galaxy clusters probe mechanisms of particle acceleration connected with cluster merger events. Shocks and turbulence are driven in the inter-galactic medium (IGM) during clusters mergers and may have a deep impact on the non-thermal properties of galaxy clusters. Models of turbulent ...

  15. Cosmic Rays in the Disk and Halo of Galaxies

    Science.gov (United States)

    Dogiel, V. A.; Breitschwerdt, D.

    2012-09-01

    We give a review of cosmic ray propagation models. It is shown that the development of the theory of cosmic ray origin leads inevitably to the conclusion that cosmic ray propagation in the Galaxy is determined by effective particle scattering, which is described by spatial diffusion. The Galactic Disk is surrounded by an extended halo, in which cosmic rays are confined before escaping into intergalactic space. For a long time cosmic ray convective outflow from the Galaxy (galactic wind) was believed to be insignificant. However, investigations of hydrodynamic stability and an analysis of ISM dynamics (including cosmic rays) showed that a galactic wind was emanating near the disk, and accelerating towards the halo, reaching its maximum velocity far away from the disk. Therefore convective cosmic ray transport should be important in galactic halos. Recent analysis of the gamma-ray emissivity in the Galactic disk of EGRET data, which showed that cosmic rays are more or less uniformly distributed in the radial direction of the disk, as well as the interpretation of soft X-ray emission in galactic halos, give convincing evidence of the existence of a galactic wind in star forming galaxies.

  16. The halo sign: HRCT findings in 85 patients.

    Science.gov (United States)

    Alves, Giordano Rafael Tronco; Marchiori, Edson; Irion, Klaus; Nin, Carlos Schuler; Watte, Guilherme; Pasqualotto, Alessandro Comarú; Severo, Luiz Carlos; Hochhegger, Bruno

    2016-01-01

    The halo sign consists of an area of ground-glass opacity surrounding pulmonary lesions on chest CT scans. We compared immunocompetent and immunosuppressed patients in terms of halo sign features and sought to identify those of greatest diagnostic value. This was a retrospective study of CT scans performed at any of seven centers between January of 2011 and May of 2015. Patients were classified according to their immune status. Two thoracic radiologists reviewed the scans in order to determine the number of lesions, as well as their distribution, size, and contour, together with halo thickness and any other associated findings. Of the 85 patients evaluated, 53 were immunocompetent and 32 were immunosuppressed. Of the 53 immunocompetent patients, 34 (64%) were diagnosed with primary neoplasm. Of the 32 immunosuppressed patients, 25 (78%) were diagnosed with aspergillosis. Multiple and randomly distributed lesions were more common in the immunosuppressed patients than in the immunocompetent patients (p Pacientes imunocompetentes e imunodeprimidos foram comparados quanto a características do sinal do halo a fim de identificar as de maior valor diagnóstico. Estudo retrospectivo de tomografias realizadas em sete centros entre janeiro de 2011 e maio de 2015. Os pacientes foram classificados de acordo com seu estado imunológico. Dois radiologistas torácicos analisaram os exames a fim de determinar o número de lesões e sua distribuição, tamanho e contorno, bem como a espessura do halo e quaisquer outros achados associados. Dos 85 pacientes avaliados, 53 eram imunocompetentes e 32 eram imunodeprimidos. Dos 53 pacientes imunocompetentes, 34 (64%) receberam diagnóstico de neoplasia primária. Dos 32 pacientes imunodeprimidos, 25 (78%) receberam diagnóstico de aspergilose. Lesões múltiplas e distribuídas aleatoriamente foram mais comuns nos imunodeprimidos do que nos imunocompetentes (p pacientes imunocompetentes são bastante diferentes das observadas em

  17. Low-energy Coulomb excitation of $^{62}$Fe and $^{62}$Mn following in-beam decay of $^{62}$Mn

    CERN Document Server

    Gaffney, L P; Bastin, B; Bildstein, V; Blazhev, A; Bree, N; Darby, I; De Witte, H; DiJulio, D; Diriken, J; Fedosseev, V N; Fransen, Ch; Gernhäuser, R; Gustafsson, A; Hess, H; Huyse, M; Kesteloot, N; Kröll, Th; Lutter, R; Marsh, B A; Reiter, P; Seidlitz, M; Van Duppen, P; Voulot, D; Warr, N; Wenander, F; Wimmer, K; Wrzosek-Lipska, K

    2015-01-01

    Sub-barrier Coulomb-excitation was performed on a mixed beam of $^{62}$Mn and $^{62}$Fe, following in-trap $\\beta^{-}$ decay of $^{62}$Mn at REX-ISOLDE, CERN. The trapping and charge breeding times were varied in order to alter the composition of the beam, which was measured by means of an ionisation chamber at the zero-angle position of the Miniball array. A new transition was observed at 418 keV, which has been tentatively associated to a $2^{(+)},3^{(+)}\\rightarrow1^{+}_{g.s.}$ transition. This fixes the relative positions of the $\\beta$-decaying $4^{(+)}$ and $1^{+}$ states in $^{62}$Mn for the first time. Population of the $2^{+}_{1}$ state was observed in $^{62}$Fe and the cross-section determined by normalisation to the $^{109}$Ag target excitation. Combining this Coulomb-excitation cross-section with previously measured lifetimes of the $2^{+}_{1}$ state, the spectroscopic quadrupole moment, $Q_{s}(2^{+}_{1})$, is extracted, albeit with a large uncertainty.

  18. Efficient protein knockdown of HaloTag-fused proteins using hybrid molecules consisting of IAP antagonist and HaloTag ligand.

    Science.gov (United States)

    Tomoshige, Shusuke; Hashimoto, Yuichi; Ishikawa, Minoru

    2016-07-15

    We previously reported a protein knockdown system for HaloTag-fused proteins using hybrid small molecules consisting of alkyl chloride, which binds covalently to HaloTag, linked to BE04 (2), a bestatin (3) derivative with an affinity for cellular inhibitor of apoptosis protein 1 (cIAP1, a kind of ubiquitin ligase). This system addressed several limitations of prior protein knockdown technology, and was applied to degrade two HaloTag-fused proteins. However, the degradation activity of these hybrid small molecules was not potent. Therefore, we set out to improve this system. We report here the design, synthesis and biological evaluation of novel hybrid compounds 4a and 4b consisting of alkyl chloride linked to IAP antagonist MV1 (5). Compounds 4a and 4b were confirmed to reduce the levels of HaloTag-fused tumor necrosis factor α (HaloTag-TNFα), HaloTag-fused cell division control protein 42 (HaloTag-Cdc42), and unfused HaloTag protein in living cells more potently than did BE04-linked compound 1b. Analysis of the mode of action revealed that the reduction of HaloTag-TNFα is proteasome-dependent, and is also dependent on the linker structure between MV1 (5) and alkyl chloride. These compounds appear to induce ubiquitination at the HaloTag moiety of HaloTag-fused proteins. Our results indicate that these newly synthesized MV1-type hybrid compounds, 4a and 4b, are efficient tools for protein knockdown for HaloTag-fused proteins. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Study of the effect of {sup 11}Be halo on the sub-coulombian fusion; Etude de l`effet du halo du {sup 11}Be sur la fusion sous-coulombienne

    Energy Technology Data Exchange (ETDEWEB)

    Felou Youmbi, V

    1996-12-11

    Fission cross sections of {sup 9,11}Be + {sup 238}U systems are measured in the energy range of the coulomb barrier. These measures allow the study of neutron halo effect on sub coulombian fusion. {sup 9,11}Be beams are obtained by fragmentation at the GANIL facilities. The fusion between incident particle and the target nucleus leads to a compound nucleus which disappears by fission. The FUSION detector is used to detect the fission fragments by coincidence. We present some calculations of potential barriers by using Wong formula. The nucleus-nucleus interaction is simulated by a double convolution between the nucleus density and the effective M3Y interaction. In a more realistic framework ECIS94 code calculates the fusion cross section by using a coupling formalism. Theoretical values and experimental results are compared. We get a good agreement for {sup 9}Be + {sup 238}U system and an unusual behaviour appears for {sup 11}Be + {sup 238}U system 116 refs.

  20. Halo nature of sup 1 sup 4 sup , sup 1 sup 5 C

    CERN Document Server

    Liu Zu Hua

    2002-01-01

    The authors have used spectroscopic factors extracted from the (d,p) transfer reactions to calculate asymptotic normalization coefficients and root-mean-square (rms) radii for the valence neutron in sup 1 sup 4 sup , sup 1 sup 5 C. The obtained rms radii are 4.57 +- 0.30, 5.78 +- 0.36 and 5.82 +- 0.60 fm for the first 1 sup - , 0 sup - excited states of sup 1 sup 4 C and the ground state of sup 1 sup 5 C, which are 1.84, 2.33 and 2.32 times larger than the size of their cores, respectively. These large values imply that sup 1 sup 5 C as well as sup 1 sup 4 C in its first 1 sup - , 0 sup - states are halo nuclei

  1. Constraints on the Formation of M31’s Stellar Halo from the SPLASH Survey

    Directory of Open Access Journals (Sweden)

    Karoline Gilbert

    2017-09-01

    Full Text Available The SPLASH (Spectroscopic and Photometric Landscape of Andromeda’s Stellar Halo Survey has observed fields throughout M31’s stellar halo, dwarf satellites, and stellar disk. The observations and derived measurements have either been compared to predictions from simulations of stellar halo formation or modeled directly in order to derive inferences about the formation and evolution of M31’s stellar halo. We summarize some of the major results from the SPLASH survey and the resulting implications for our understanding of the build-up of M31’s stellar halo.

  2. A Phenomenological Model of Star Formation Efficiency in Dark Matter Halos

    Science.gov (United States)

    Finnegan, Daniel; Alsheshakly, Ghadeer; Moustakas, John

    2018-01-01

    The efficiency of star formation in massive dark matter halos is extraordinarily low, less than 10% in >10^13 Msun sized halos. Although many physical processes have been proposed to explain this low efficiency, such as feedback from supermassive black halos and massive stars, this question remains one of the most important outstanding problems in galaxy evolution. To explore this problem, we build a simple phenomenological model to predict the variations in gas fraction and star formation efficiency as a function of halo mass. We compare our model predictions to central galaxy stellar masses and halo masses drawn from the literature, and discuss plans for our future work.

  3. Planar density of vacuum charge induced by a supercritical Coulomb potential

    Energy Technology Data Exchange (ETDEWEB)

    Khalilov, V.R., E-mail: khalilov@phys.msu.ru; Mamsurov, I.V.

    2017-06-10

    Analytical expressions for the planar density of an induced vacuum charge are obtained in a strong Coulomb potential in coordinate space. Treatment is based on a self-adjoint extension approach for constructing of the Green's function of a charged fermion in an external electromagnetic field. Induced vacuum charge density is calculated and analyzed in subcritical and supercritical Coulomb potentials for massless and massive fermions. We argue that the virtual and so-called real vacuum polarizations contribute in an induced vacuum charge in a supercritical Coulomb potential. The behavior of the polarization vacuum charge density is investigated at long and short distances from the Coulomb center. The induced vacuum charge has a screening sign. Screening of a Coulomb impurity in graphene is briefly discussed. The real vacuum polarization charge density that acquires the quantum electrodynamics vacuum in a supercritical Coulomb potential due to the real vacuum polarization is calculated. It is shown that the vacuum charge densities essentially differ in massive and massless cases. We expect that our results can, as a matter of principle, be tested in graphene with a supercritical Coulomb impurity.

  4. Planar density of vacuum charge induced by a supercritical Coulomb potential

    Directory of Open Access Journals (Sweden)

    V.R. Khalilov

    2017-06-01

    Full Text Available Analytical expressions for the planar density of an induced vacuum charge are obtained in a strong Coulomb potential in coordinate space. Treatment is based on a self-adjoint extension approach for constructing of the Green's function of a charged fermion in an external electromagnetic field. Induced vacuum charge density is calculated and analyzed in subcritical and supercritical Coulomb potentials for massless and massive fermions. We argue that the virtual and so-called real vacuum polarizations contribute in an induced vacuum charge in a supercritical Coulomb potential. The behavior of the polarization vacuum charge density is investigated at long and short distances from the Coulomb center. The induced vacuum charge has a screening sign. Screening of a Coulomb impurity in graphene is briefly discussed. The real vacuum polarization charge density that acquires the quantum electrodynamics vacuum in a supercritical Coulomb potential due to the real vacuum polarization is calculated. It is shown that the vacuum charge densities essentially differ in massive and massless cases. We expect that our results can, as a matter of principle, be tested in graphene with a supercritical Coulomb impurity.

  5. Search for halo structure in 37Mg using the Glauber model and microscopic relativistic mean-field densities

    Science.gov (United States)

    Sharma, Mahesh K.; Panda, R. N.; Sharma, Manoj K.; Patra, S. K.

    2016-01-01

    We have studied the ground-state properties (binding energy and charge radius) using relativistic mean field formalism (RMF) for Mg isotopes from the valley of stability to the drip-line region. The RMF densities have been analyzed in the context of reaction dynamics. The results for Mg-4024+12C reactions at projectile energy of 240 MeV/nucleon are calculated using the Glauber model with the conjunction of densities from relativistic mean field formalism and compared with experimental data. We found nice agreement of estimated values of the reaction cross sections with the data values, except for the 37Mg isotope. In view of this, the halo status of 37Mg is examined through a higher magnitude of rms radius, one neutron removal cross section, and a small value of longitudinal momentum distribution. Finally, an effort is made to explore the structure of 37Mg halo candidate using Glauber many-body formalism.

  6. ZOMG - III. The effect of halo assembly on the satellite population

    Science.gov (United States)

    Garaldi, Enrico; Romano-Díaz, Emilio; Borzyszkowski, Mikolaj; Porciani, Cristiano

    2018-01-01

    We use zoom hydrodynamical simulations to investigate the properties of satellites within galaxy-sized dark-matter haloes with different assembly histories. We consider two classes of haloes at redshift z = 0: 'stalled' haloes that assembled at z > 1 and 'accreting' ones that are still forming nowadays. Previously, we showed that the stalled haloes are embedded within thick filaments of the cosmic web, while the accreting ones lie where multiple thin filaments converge. We find that satellites in the two classes have both similar and different properties. Their mass spectra, radial count profiles, baryonic and stellar content, and the amount of material they shed are indistinguishable. However, the mass fraction locked in satellites is substantially larger for the accreting haloes as they experience more mergers at late times. The largest difference is found in the satellite kinematics. Substructures fall towards the accreting haloes along quasi-radial trajectories whereas an important tangential velocity component is developed, before accretion, while orbiting the filament that surrounds the stalled haloes. Thus, the velocity anisotropy parameter of the satellites (β) is positive for the accreting haloes and negative for the stalled ones. This signature enables us to tentatively categorize the Milky Way halo as stalled based on a recent measurement of β. Half of our haloes contain clusters of satellites with aligned orbital angular momenta corresponding to flattened structures in space. These features are not driven by baryonic physics and are only found in haloes hosting grand-design spiral galaxies, independently of their assembly history.

  7. Halo-induced large enhancement of soft dipole excitation of 11Li observed via proton inelastic scattering

    Directory of Open Access Journals (Sweden)

    J. Tanaka

    2017-11-01

    Full Text Available Proton inelastic scattering off a neutron halo nucleus, 11Li, has been studied in inverse kinematics at the IRIS facility at TRIUMF. The aim was to establish a soft dipole resonance and to obtain its dipole strength. Using a high quality 66 MeV 11Li beam, a strongly populated excited state in 11Li was observed at Ex=0.80±0.02 MeV with a width of Γ=1.15±0.06 MeV. A DWBA (distorted-wave Born approximation analysis of the measured differential cross section with isoscalar macroscopic form factors leads us to conclude that this observed state is excited in an electric dipole (E1 transition. Under the assumption of isoscalar E1 transitions, the strength is evaluated to be extremely large amounting to 30∼296 Weisskopf units, exhausting 2.2%∼21% of the isoscalar E1 energy-weighted sum rule (EWSR value. The large observed strength originates from the halo and is consistent with the simple di-neutron model of 11Li halo.

  8. Halo-induced large enhancement of soft dipole excitation of 11Li observed via proton inelastic scattering

    Science.gov (United States)

    Tanaka, J.; Kanungo, R.; Alcorta, M.; Aoi, N.; Bidaman, H.; Burbadge, C.; Christian, G.; Cruz, S.; Davids, B.; Diaz Varela, A.; Even, J.; Hackman, G.; Harakeh, M. N.; Henderson, J.; Ishimoto, S.; Kaur, S.; Keefe, M.; Krücken, R.; Leach, K. G.; Lighthall, J.; Padilla Rodal, E.; Randhawa, J. S.; Ruotsalainen, P.; Sanetullaev, A.; Smith, J. K.; Workman, O.; Tanihata, I.

    2017-11-01

    Proton inelastic scattering off a neutron halo nucleus, 11Li, has been studied in inverse kinematics at the IRIS facility at TRIUMF. The aim was to establish a soft dipole resonance and to obtain its dipole strength. Using a high quality 66 MeV 11Li beam, a strongly populated excited state in 11Li was observed at Ex = 0.80 ± 0.02 MeV with a width of Γ = 1.15 ± 0.06 MeV. A DWBA (distorted-wave Born approximation) analysis of the measured differential cross section with isoscalar macroscopic form factors leads us to conclude that this observed state is excited in an electric dipole (E1) transition. Under the assumption of isoscalar E1 transitions, the strength is evaluated to be extremely large amounting to 30 ∼ 296 Weisskopf units, exhausting 2.2% ∼ 21% of the isoscalar E1 energy-weighted sum rule (EWSR) value. The large observed strength originates from the halo and is consistent with the simple di-neutron model of 11Li halo.

  9. Detection of Hot Halo Gets Theory Out of Hot Water

    Science.gov (United States)

    2006-02-01

    Scientists using NASA's Chandra X-ray Observatory have detected an extensive halo of hot gas around a quiescent spiral galaxy. This discovery is evidence that galaxies like our Milky Way are still accumulating matter from the gradual inflow of intergalactic gas. "What we are likely witnessing here is the ongoing galaxy formation process," said Kristian Pedersen of the University of Copenhagen, Denmark, and lead author of a report on the discovery. Chandra observations show that the hot halo extends more than 60,000 light years on either side of the disk of the galaxy known as NGC 5746. The detection of such a large halo alleviates a long-standing problem for the theory of galaxy formation. Spiral galaxies are thought to form from enormous clouds of intergalactic gas that collapse to form giant, spinning disks of stars and gas. Chandra X-ray Image of NGC 5746 Chandra X-ray Image of NGC 5746 One prediction of this theory is that large spiral galaxies should be immersed in halos of hot gas left over from the galaxy formation process. Hot gas has been detected around spiral galaxies in which vigorous star formation is ejecting matter from the galaxy, but until now hot halos due to infall of intergalactic matter have not been detected. "Our observations solve the mystery of the missing hot halos around spiral galaxies," said Pedersen. "The halos exist, but are so faint that an extremely sensitive telescope such as Chandra is needed to detect them." DSS Optical Image of NGC 5746 DSS Optical Image of NGC 5746 NGC 5746 is a massive spiral galaxy about a 100 million light years from Earth. Its disk of stars and gas is viewed almost edge-on. The galaxy shows no signs of unusual star formation, or energetic activity from its nuclear region, making it unlikely that the hot halo is produced by gas flowing out of the galaxy. "We targeted NGC 5746 because we thought its distance and orientation would give us the best chance to detect a hot halo caused by the infall of

  10. Prospective testing of Coulomb short-term earthquake forecasts

    Science.gov (United States)

    Jackson, D. D.; Kagan, Y. Y.; Schorlemmer, D.; Zechar, J. D.; Wang, Q.; Wong, K.

    2009-12-01

    Earthquake induced Coulomb stresses, whether static or dynamic, suddenly change the probability of future earthquakes. Models to estimate stress and the resulting seismicity changes could help to illuminate earthquake physics and guide appropriate precautionary response. But do these models have improved forecasting power compared to empirical statistical models? The best answer lies in prospective testing in which a fully specified model, with no subsequent parameter adjustments, is evaluated against future earthquakes. The Center of Study of Earthquake Predictability (CSEP) facilitates such prospective testing of earthquake forecasts, including several short term forecasts. Formulating Coulomb stress models for formal testing involves several practical problems, mostly shared with other short-term models. First, earthquake probabilities must be calculated after each “perpetrator” earthquake but before the triggered earthquakes, or “victims”. The time interval between a perpetrator and its victims may be very short, as characterized by the Omori law for aftershocks. CSEP evaluates short term models daily, and allows daily updates of the models. However, lots can happen in a day. An alternative is to test and update models on the occurrence of each earthquake over a certain magnitude. To make such updates rapidly enough and to qualify as prospective, earthquake focal mechanisms, slip distributions, stress patterns, and earthquake probabilities would have to be made by computer without human intervention. This scheme would be more appropriate for evaluating scientific ideas, but it may be less useful for practical applications than daily updates. Second, triggered earthquakes are imperfectly recorded following larger events because their seismic waves are buried in the coda of the earlier event. To solve this problem, testing methods need to allow for “censoring” of early aftershock data, and a quantitative model for detection threshold as a function of

  11. Charge density waves and the Coulomb correlation effects in Na2Ti2P2O (P =Sb ,As )

    Science.gov (United States)

    Kim, Heejung; Shim, J. H.; Kim, Kyoo; Min, B. I.

    2017-10-01

    To explore the origin of the phase transitions in Na2Ti2P2O (P = Sb, As), we have investigated their band structures and phonon dispersions based on the a b i n i t i o density functional theory. We have found that the phonon softening instabilities occur for both compounds at qX and qM, which lead to charge density wave (CDW) instabilities through the electron-phonon coupling. When the Coulomb correlation effect of Ti d electrons is taken into account, the CDW transition to a 2 ×1 ×1 supercell driven by the normal mode at qX produces the most stable state for both compounds. In the CDW ground states, Na2Ti2Sb2O and Na2Ti2As2O have the partial and full gap openings in the band structures, respectively, which are in good agreement with the observed transport and angle-resolved photoemission spectroscopy results. Our paper reveals that the Coulomb correlation effects of Ti d electrons are essential to properly describe the CDW transitions in Na2Ti2P2O .

  12. Coulomb scatter of diamagnetic dust particles in a cusp magnetic trap under microgravity conditions

    Energy Technology Data Exchange (ETDEWEB)

    Myasnikov, M. I., E-mail: miasnikovmi@mail.ru; D’yachkov, L. G.; Petrov, O. F.; Vasiliev, M. M., E-mail: mixxy@mail.ru; Fortov, V. E. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation); Savin, S. F.; Serova, E. O. [Korolev Rocket and Space Corporation Energia, ul. Lenina 4A (Russian Federation)

    2017-02-15

    The effect of a dc electric field on strongly nonideal Coulomb systems consisting of a large number (~10{sup 4}) of charged diamagnetic dust particles in a cusp magnetic trap are carried out aboard the Russian segment of the International Space Station (ISS) within the Coulomb Crystal experiment. Graphite particles of 100–400 μm in size are used in the experiments. Coulomb scatter of a dust cluster and the formation of threadlike chains of dust particles are observed experimentally. The processes observed are simulated by the molecular dynamics (MD) method.

  13. Large ion Coulomb crystals: A near-ideal medium for coupling optical cavity modes to matter

    DEFF Research Database (Denmark)

    Dantan, Aurélien; Albert, Magnus; Marler, Joan

    2009-01-01

    We present an investigation of the coherent coupling of various transverse field modes of an optical cavity to ion Coulomb crystals. The obtained experimental results, which include the demonstration of identical collective coupling rates for different transverse modes of a cavity field to ions...... in the same large Coulomb crystal, are in excellent agreement with theoretical predictions. The results furthermore suggest that Coulomb crystals in the future may serve as near-ideal media for high-fidelity multimode quantum information processing and communication purposes, including the generation...... and storage of single-photon qubits encoded in different transverse modes....

  14. Halo histories versus Galaxy properties at z = 0 - I. The quenching of star formation

    Science.gov (United States)

    Tinker, Jeremy L.; Wetzel, Andrew R.; Conroy, Charlie; Mao, Yao-Yuan

    2017-12-01

    We test whether halo age and galaxy age are correlated at fixed halo and galaxy mass. The formation histories, and thus ages, of dark matter haloes correlate with their large-scale density ρ, an effect known as assembly bias. We test whether this correlation extends to galaxies by measuring the dependence of galaxy stellar age on ρ. To clarify the comparison between theory and observation, and to remove the strong environmental effects on satellites, we use galaxy group catalogues to identify central galaxies and measure their quenched fraction, fQ, as a function of large-scale environment. Models that match halo age to central galaxy age predict a strong positive correlation between fQ and ρ. However, we show that the amplitude of this effect depends on the definition of halo age: assembly bias is significantly reduced when removing the effects of splashback haloes - those haloes that are central but have passed through a larger halo or experienced strong tidal encounters. Defining age using halo mass at its peak value rather than current mass removes these effects. In Sloan Digital Sky Survey data, at M* ≳ 1010 M⊙ h-2, there is a ∼5 per cent increase in fQ from low-to-high densities, which is in agreement with predictions of dark matter haloes using peak halo mass. At lower stellar mass there is little to no correlation of fQ with ρ. For these galaxies, age matching is inconsistent with the data across the range of halo formation metrics that we tested. This implies that halo formation history has a small but statistically significant impact on quenching of star formation at high masses, while the quenching process in low-mass central galaxies is uncorrelated with halo formation history.

  15. Moving-mesh cosmology: characteristics of galaxies and haloes

    Science.gov (United States)

    Kereš, Dušan; Vogelsberger, Mark; Sijacki, Debora; Springel, Volker; Hernquist, Lars

    2012-09-01

    We discuss cosmological hydrodynamic simulations of galaxy formation performed with the new moving-mesh code AREPO, which promises higher accuracy compared with the traditional smoothed particle hydrodynamics (SPH) technique that has been widely employed for this problem. In this exploratory study, we deliberately limit the complexity of the physical processes followed by the code for ease of comparison with previous calculations, and include only cooling of gas with a primordial composition, heating by a spatially uniform ultraviolet background, and a simple subresolution model for regulating star formation in the dense interstellar medium. We use an identical set of physics in corresponding simulations carried out with the well-tested SPH code GADGET, adopting also the same high-resolution gravity solver. We are thus able to compare both simulation sets on an object-by-object basis, allowing us to cleanly isolate the impact of different hydrodynamical methods on galaxy and halo properties. In accompanying papers, Vogelsberger et al. and Sijacki et al., we focus on an analysis of the global baryonic statistics predicted by the simulation codes, and complementary idealized simulations that highlight the differences between the hydrodynamical schemes. Here we investigate their influence on the baryonic properties of simulated galaxies and their surrounding haloes. We find that AREPO leads to significantly higher star formation rates for galaxies in massive haloes and to more extended gaseous discs in galaxies, which also feature a thinner and smoother morphology than their GADGET counterparts. Consequently, galaxies formed in AREPO have larger sizes and higher specific angular momentum than their SPH correspondents. Interestingly, the more efficient cooling flows in AREPO yield higher densities and lower entropies in halo centres compared to GADGET, whereas the opposite trend is found in halo outskirts. The cooling differences leading to higher star formation rates

  16. Efimov effect in 2-neutron halo nuclei

    Indian Academy of Sciences (India)

    This is in conformity with what was originally predicted by Amado and Noble about the movement of Efimov states into the unphysical sheet associated with the two-body unitarity cut on increasing the strength of the binary interaction [12]. This particular behaviour was investigated by extending the study in the scattering.

  17. Current correlators in the Coulomb branch of N=4 SYM

    CERN Document Server

    Brandhuber, A; Brandhuber, Andreas; Sfetsos, Konstadinos

    2000-01-01

    We study correlators of R-symmetry currents in the Coulomb branch of N = 4 supersymmetric gauge theory in the large-N limit, using the AdS/CFT correspondence. In particular, we consider gauge fields in the presence of gravity and scalar fields parameterizing the coset SL(6,R)/SO(6) in the context of five-dimensional gauged supergravity. From a ten-dimensional point of view these backgrounds correspond to continuous D3-brane distributions. We find the surprising result that all 2-point functions of gauge currents fall into the same universality class, irrespectively of whether they correspond to broken or unbroken symmetries. We show that the problem of finding the spectrum can be mapped into an equivalent Schroedinger problem for supersymmetric quantum mechanics. The corresponding potential is the supersymmetric partner of the potential arising in studies of the spectrum for massless scalars and transverse graviton fluctuations in these backgrounds and the associated spectra are also identical. We discuss in ...

  18. Analytic quantum-interference conditions in Coulomb corrected photoelectron holography

    Science.gov (United States)

    Maxwell, A. S.; Al-Jawahiry, A.; Lai, X. Y.; Figueira de Morisson Faria, C.

    2018-02-01

    We provide approximate analytic expressions for above-threshold ionization (ATI) transition probabilities and photoelectron angular distributions. These analytic expressions are more general than those existing in the literature and include the residual binding potential in the electron continuum propagation. They successfully reproduce the ATI side lobes and specific holographic structures such as the near-threshold fan-shaped pattern and the spider-like structure that extends up to relatively high photoelectron energies. We compare such expressions with the Coulomb quantum orbit strong-field approximation (CQSFA) and the full solution of the time-dependent Schrödinger equation for different driving-field frequencies and intensities, and provide an in-depth analysis of the physical mechanisms behind specific holographic structures. Our results shed additional light on what aspects of the CQSFA must be prioritized in order to obtain the key holographic features, and highlight the importance of forward scattered trajectories. Furthermore, we find that the holographic patterns change considerably for different field parameters, even if the Keldysh parameter is kept roughly the same.

  19. Coulomb nuclear interference with deuterons in even palladium isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, M.R.D.; Rodrigues, C.L.; Borello-Lewin, T.; Horodynski-Matsushigue, L.B.; Duarte, J. L.M. [Sao Paulo Univ., SP (Brazil); Ukita, G.M. [Universidade de Santo Amaro, SP (Brazil). Faculdade de Psicologia

    2004-09-15

    Angular distributions for the inelastic scattering of 13.0 MeV deuterons on {sup 104,106,108,110}Pd were measured with the Sao Paulo Pelletron-Enge-Spectrograph facility in the range of 12{sup 0} {<=}{theta}{sub lab} {<=}64{sup 0}. A Coulomb-Nuclear Interference analysis, employing the Distorted Wave Born Approximation with the Deformed Optical Model as transition potential, under well established global optical parameters, was applied to the first quadrupolar excitations. The values of C = {delta}{sub LC}/{delta}{sub LN}, the ratio of charge to isoscalar deformation lengths, and of ({delta}{sub LN}){sup 2} were extracted through the comparison of experimental and predicted cross section angular distributions. The ratios of reduced charge to isoscalar transition probabilities, B(EL) to B(ISL) respectively, are related to the square of the parameter C and were thus obtained with the advantage of scale uncertainties cancellation. For {sup 104}Pd, and preliminary for {sup 108}Pd, the respective values of C = 1.18(3) and C = 1.13(4) reveal an enhanced contribution of the protons relative to the neutrons to the excitation, while a smaller effect is found for {sup 106}Pd, C = 1.06(3) and for {sup 110}Pd, C 1.07(3), in comparison with the value C 1.00 expected for homogenous collective excitations. (author)

  20. Coulomb gas partition function of a layered loop model

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Hirohiko, E-mail: shimada@dice.c.u-tokyo.ac.j [Department of Basic Sciences, University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902 (Japan)

    2010-12-03

    We consider a two-dimensional bi-layered loop model with a certain interlayer coupling and study its spectrum on a torus. Each layer consists of an O(n) model on a honeycomb lattice with periodic boundary conditions; these layers are stacked such that the links of the lattice intersect each other. A complex Boltzmann weight {lambda} with unit modulus is assigned to each intersection of two loops each from each layer. The model is reduced to an inhomogeneous vertex model at a special point of parameters. The continuum partition function is represented, based on the idea of the Coulomb gas, by a path integral over two compact bosonic fields. The modular invariance of the partition function follows naturally. Further, because of the topological nature of the interlayer coupling, the fluctuation of loops decomposes into a local and a global part. The existence of the latter leads to a sum over all the pairs of torus knots, which can be Poisson resummed by the Moebius inversion formula. This reveals the operator content of the theory. The multiplicity of each operator is explicitly given by a combination of two Ramanujan sums. We calculate each scaling dimension as a function of {lambda}. We present the flow of dimensions which connects the decoupled-O(1) models at {lambda} = 1 and the layered-O(1) model with the non-trivial coupling {lambda} = -1. The lower spectrum in the latter model is related to that of a known coset model.