WorldWideScience

Sample records for halo particle production

  1. Unbound particles in dark matter halos

    Energy Technology Data Exchange (ETDEWEB)

    Behroozi, Peter S.; Loeb, Abraham; Wechsler, Risa H.

    2013-06-13

    We investigate unbound dark matter particles in halos by tracing particle trajectories in a simulation run to the far future (a = 100). We find that the traditional sum of kinetic and potential energies is a very poor predictor of which dark matter particles will eventually become unbound from halos. We also study the mass fraction of unbound particles, which increases strongly towards the edges of halos, and decreases significantly at higher redshifts. We discuss implications for dark matter detection experiments, precision calibrations of the halo mass function, the use of baryon fractions to constrain dark energy, and searches for intergalactic supernovae.

  2. Simulation of halo particles with Simpsons

    International Nuclear Information System (INIS)

    Machida, Shinji

    2003-01-01

    Recent code improvements and some simulation results of halo particles with Simpsons will be presented. We tried to identify resonance behavior of halo particles by looking at tune evolution of individual macro particle

  3. Simulation of halo particles with Simpsons

    Science.gov (United States)

    Machida, Shinji

    2003-12-01

    Recent code improvements and some simulation results of halo particles with Simpsons will be presented. We tried to identify resonance behavior of halo particles by looking at tune evolution of individual macro particle.

  4. New Spectral Method for Halo Particle Definition in Intense Mis-matched Beams

    Energy Technology Data Exchange (ETDEWEB)

    Dorf, Mikhail A.; Davidson, Ronald C.; Startsev, Edward A.

    2011-04-27

    An advanced spectral analysis of a mis-matched charged particle beam propagating through a periodic focusing transport lattice is utilized in particle-in-cell (PIC) simulations. It is found that the betatron frequency distribution function of a mismatched space-charge-dominated beam has a bump-on-tail structure attributed to the beam halo particles. Based on this observation, a new spectral method for halo particle definition is proposed that provides the opportunity to carry out a quantitative analysis of halo particle production by a beam mismatch. In addition, it is shown that the spectral analysis of the mismatch relaxation process provides important insights into the emittance growth attributed to the halo formation and the core relaxation processes. Finally, the spectral method is applied to the problem of space-charge transport limits.

  5. The Splashback Radius of Halos from Particle Dynamics. I. The SPARTA Algorithm

    Science.gov (United States)

    Diemer, Benedikt

    2017-07-01

    Motivated by the recent proposal of the splashback radius as a physical boundary of dark-matter halos, we present a parallel computer code for Subhalo and PARticle Trajectory Analysis (SPARTA). The code analyzes the orbits of all simulation particles in all host halos, billions of orbits in the case of typical cosmological N-body simulations. Within this general framework, we develop an algorithm that accurately extracts the location of the first apocenter of particles after infall into a halo, or splashback. We define the splashback radius of a halo as the smoothed average of the apocenter radii of individual particles. This definition allows us to reliably measure the splashback radii of 95% of host halos above a resolution limit of 1000 particles. We show that, on average, the splashback radius and mass are converged to better than 5% accuracy with respect to mass resolution, snapshot spacing, and all free parameters of the method.

  6. Giant Radio Halos in Galaxy Clusters as Probes of Particle ...

    Indian Academy of Sciences (India)

    scenario still remain poorly understood. ... to test models with future observations. ... A popular scenario for the origin of radio halos assumes that relativis- ..... based on particle acceleration by merger-driven turbulence in galaxy clusters shows.

  7. Stochastic-hydrodynamic model of halo formation in charged particle beams

    Directory of Open Access Journals (Sweden)

    Nicola Cufaro Petroni

    2003-03-01

    Full Text Available The formation of the beam halo in charged particle accelerators is studied in the framework of a stochastic-hydrodynamic model for the collective motion of the particle beam. In such a stochastic-hydrodynamic theory the density and the phase of the charged beam obey a set of coupled nonlinear hydrodynamic equations with explicit time-reversal invariance. This leads to a linearized theory that describes the collective dynamics of the beam in terms of a classical Schrödinger equation. Taking into account space-charge effects, we derive a set of coupled nonlinear hydrodynamic equations. These equations define a collective dynamics of self-interacting systems much in the same spirit as in the Gross-Pitaevskii and Landau-Ginzburg theories of the collective dynamics for interacting quantum many-body systems. Self-consistent solutions of the dynamical equations lead to quasistationary beam configurations with enhanced transverse dispersion and transverse emittance growth. In the limit of a frozen space-charge core it is then possible to determine and study the properties of stationary, stable core-plus-halo beam distributions. In this scheme the possible reproduction of the halo after its elimination is a consequence of the stationarity of the transverse distribution which plays the role of an attractor for every other distribution.

  8. Dynamics of particles around a pseudo-Newtonian Kerr black hole with halos

    International Nuclear Information System (INIS)

    Wang Ying; Wu Xin

    2012-01-01

    The regular and chaotic dynamics of test particles in a superposed field between a pseudo-Newtonian Kerr black hole and quadrupolar halos is detailed. In particular, the dependence of dynamics on the quadrupolar parameter of the halos and the spin angular momentum of the rotating black hole is studied. It is found that the small quadrupolar moment, in contrast with the spin angular momentum, does not have a great effect on the stability and radii of the innermost stable circular orbits of these test particles. In addition, chaos mainly occurs for small absolute values of the rotating parameters, and does not exist for the maximum counter-rotating case under some certain initial conditions and parameters. This means that the rotating parameters of the black hole weaken the chaotic properties. It is also found that the counter-rotating system is more unstable than the co-rotating one. Furthermore, chaos is absent for small absolute values of the quadrupoles, and the onset of chaos is easier for the prolate halos than for the oblate ones. (general)

  9. Giant Radio Halos in Galaxy Clusters as Probes of Particle ...

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Giant radio halos in galaxy clusters probe mechanisms of particle acceleration connected with cluster merger events. Shocks and turbulence are driven in the inter-galactic medium (IGM) during clusters mergers and may have a deep impact on the non-thermal properties of galaxy clusters. Models of ...

  10. Self-consistent beam halo studies ampersand halo diagnostic development in a continuous linear focusing channel

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1994-01-01

    Beam halos are formed via self-consistent motion of the beam particles. Interactions of single particles with time-varying density distributions of other particles are a major source of halo. Aspects of these interactions are studied for an initially equilibrium distribution in a radial, linear, continuous focusing system. When there is a mismatch, it is shown that in the self-consistent system, there is a threshold in space-charge and mismatch, above which a halo is formed that extends to ∼1.5 times the initial maximum mismatch radius. Tools are sought for characterizing the halo dynamics. Testing the particles against the width of the mismatch driving resonance is useful for finding a conservative estimate of the threshold. The exit, entering and transition times, and the time evolution of the halo, are also explored using this technique. Extension to higher dimensions is briefly discussed

  11. The Splashback Radius of Halos from Particle Dynamics. II. Dependence on Mass, Accretion Rate, Redshift, and Cosmology

    Science.gov (United States)

    Diemer, Benedikt; Mansfield, Philip; Kravtsov, Andrey V.; More, Surhud

    2017-07-01

    The splashback radius R sp, the apocentric radius of particles on their first orbit after falling into a dark matter halo, has recently been suggested to be a physically motivated halo boundary that separates accreting from orbiting material. Using the Sparta code presented in Paper I, we analyze the orbits of billions of particles in cosmological simulations of structure formation and measure R sp for a large sample of halos that span a mass range from dwarf galaxy to massive cluster halos, reach redshift 8, and include WMAP, Planck, and self-similar cosmologies. We analyze the dependence of R sp/R 200m and M sp/M 200m on the mass accretion rate Γ, halo mass, redshift, and cosmology. The scatter in these relations varies between 0.02 and 0.1 dex. While we confirm the known trend that R sp/R 200m decreases with Γ, the relationships turn out to be more complex than previously thought, demonstrating that R sp is an independent definition of the halo boundary that cannot trivially be reconstructed from spherical overdensity definitions. We present fitting functions for R sp/R 200m and M sp/M 200m as a function of accretion rate, peak height, and redshift, achieving an accuracy of 5% or better everywhere in the parameter space explored. We discuss the physical meaning of the distribution of particle apocenters and show that the previously proposed definition of R sp as the radius of the steepest logarithmic density slope encloses roughly three-quarters of the apocenters. Finally, we conclude that no analytical model presented thus far can fully explain our results.

  12. Pre-asymptotic behavior of single-particle overlap integrals of non-Borromean two-neutron halos

    International Nuclear Information System (INIS)

    Timofeyuk, N.K.; Tostevin, J.A.; Blokhintsev, L.D.

    2003-01-01

    For non-Borromean two-neutron halo nuclei, modifications to the behavior of single-particle overlap integrals will arise due to the correlations of the two interacting nucleons in the halo. An additional contribution to the overlap integral can be obtained using the Feynman diagram approach. This additional term is modeled using a simple local potential model. We show that these modifications may play a role in detailed interpretations of experimental results from single-nucleon knockout, transfer, and other reactions that probe the single-nucleon overlap functions

  13. ORIGAMI: DELINEATING HALOS USING PHASE-SPACE FOLDS

    Energy Technology Data Exchange (ETDEWEB)

    Falck, Bridget L.; Neyrinck, Mark C.; Szalay, Alexander S. [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States)

    2012-08-01

    We present the ORIGAMI method of identifying structures, particularly halos, in cosmological N-body simulations. Structure formation can be thought of as the folding of an initially flat three-dimensional manifold in six-dimensional phase space. ORIGAMI finds the outer folds that delineate these structures. Halo particles are identified as those that have undergone shell-crossing along three orthogonal axes, providing a dynamical definition of halo regions that is independent of density. ORIGAMI also identifies other morphological structures: particles that have undergone shell-crossing along 2, 1, or 0 orthogonal axes correspond to filaments, walls, and voids, respectively. We compare this method to a standard friends-of-friends halo-finding algorithm and find that ORIGAMI halos are somewhat larger, more diffuse, and less spherical, though the global properties of ORIGAMI halos are in good agreement with other modern halo-finding algorithms.

  14. ORIGAMI: DELINEATING HALOS USING PHASE-SPACE FOLDS

    International Nuclear Information System (INIS)

    Falck, Bridget L.; Neyrinck, Mark C.; Szalay, Alexander S.

    2012-01-01

    We present the ORIGAMI method of identifying structures, particularly halos, in cosmological N-body simulations. Structure formation can be thought of as the folding of an initially flat three-dimensional manifold in six-dimensional phase space. ORIGAMI finds the outer folds that delineate these structures. Halo particles are identified as those that have undergone shell-crossing along three orthogonal axes, providing a dynamical definition of halo regions that is independent of density. ORIGAMI also identifies other morphological structures: particles that have undergone shell-crossing along 2, 1, or 0 orthogonal axes correspond to filaments, walls, and voids, respectively. We compare this method to a standard friends-of-friends halo-finding algorithm and find that ORIGAMI halos are somewhat larger, more diffuse, and less spherical, though the global properties of ORIGAMI halos are in good agreement with other modern halo-finding algorithms.

  15. Partial coherence in the core/halo picture of Bose-Einstein n-particle correlations

    OpenAIRE

    Csorgo, T.; Lorstad, B.; Schmidt-Sorensen, J.; Ster, A.

    1998-01-01

    We study the influence of a possible coherent component in the boson source on the two-, three- and $n$-particle correlation functions in a generalized core/halo type of boson-emitting source. In particular, a simple formula is presented for the strengh of the $n$-particle correlation functions for such systems. Graph rules are obtained to evaluate the correlation functions of arbitrary high order. The importance of experimental determination of the 4-th and 5-th order Bose-Einstein correlati...

  16. Cold dark matter. 1: The formation of dark halos

    Science.gov (United States)

    Gelb, James M.; Bertschinger, Edmund

    1994-01-01

    We use numerical simulations of critically closed cold dark matter (CDM) models to study the effects of numerical resolution on observable quantities. We study simulations with up to 256(exp 3) particles using the particle-mesh (PM) method and with up to 144(exp 3) particles using the adaptive particle-particle-mesh (P3M) method. Comparisons of galaxy halo distributions are made among the various simulations. We also compare distributions with observations, and we explore methods for identifying halos, including a new algorithm that finds all particles within closed contours of the smoothed density field surrounding a peak. The simulated halos show more substructure than predicted by the Press-Schechter theory. We are able to rule out all omega = 1 CDM models for linear amplitude sigma(sub 8) greater than or approximately = 0.5 because the simulations produce too many massive halos compared with the observations. The simulations also produce too many low-mass halos. The distribution of halos characterized by their circular velocities for the P3M simulations is in reasonable agreement with the observations for 150 km/s less than or = V(sub circ) less than or = 350 km/s.

  17. PHIPS-HALO: the airborne particle habit imaging and polar scattering probe - Part 2: Characterization and first results

    Science.gov (United States)

    Schnaiter, Martin; Järvinen, Emma; Abdelmonem, Ahmed; Leisner, Thomas

    2018-01-01

    The novel aircraft optical cloud probe PHIPS-HALO has been developed to establish clarity regarding the fundamental link between the microphysical properties of single atmospheric ice particles and their appropriated angular light scattering function. After final improvements were implemented in the polar nephelometer part and the acquisition software of PHIPS-HALO, the instrument was comprehensively characterized in the laboratory and was deployed in two aircraft missions targeting cirrus and Arctic mixed-phase clouds. This work demonstrates the proper function of the instrument under aircraft conditions and highlights the uniqueness, quality, and limitations of the data that can be expected from PHIPS-HALO in cloud-related aircraft missions.

  18. Meniscus and beam halo formation in a tandem-type negative ion source with surface production

    International Nuclear Information System (INIS)

    Miyamoto, K.; Okuda, S.; Hatayama, A.

    2012-01-01

    A meniscus of plasma-beam boundary in H - ion sources largely affects the extracted H - ion beam optics. Although it is hypothesized that the shape of the meniscus is one of the main reasons for the beam halo observed in experiments, a physical mechanism of the beam halo formation is not yet fully understood. In this letter, it is first shown by the 2D particle in cell simulation that the H - ions extracted from the periphery of the meniscus cause a beam halo since the surface produced H - ions penetrate into the bulk plasma, and, thus, the resultant meniscus has a relatively large curvature.

  19. Meniscus and beam halo formation in a tandem-type negative ion source with surface production

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, K. [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Okuda, S.; Hatayama, A. [Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan)

    2012-06-04

    A meniscus of plasma-beam boundary in H{sup -} ion sources largely affects the extracted H{sup -} ion beam optics. Although it is hypothesized that the shape of the meniscus is one of the main reasons for the beam halo observed in experiments, a physical mechanism of the beam halo formation is not yet fully understood. In this letter, it is first shown by the 2D particle in cell simulation that the H{sup -} ions extracted from the periphery of the meniscus cause a beam halo since the surface produced H{sup -} ions penetrate into the bulk plasma, and, thus, the resultant meniscus has a relatively large curvature.

  20. Beam halo studies using a three-dimensional particle-core model

    Directory of Open Access Journals (Sweden)

    Ji Qiang

    2000-06-01

    Full Text Available In this paper we present a study of beam halo based on a three-dimensional particle-core model of an ellipsoidal bunched beam in a constant focusing channel including the effects of nonlinear rf focusing. For an initially mismatched beam, three linear envelope modes—a high frequency mode, a low frequency mode, and a quadrupole mode—are identified for an azimuthally symmetric bunched beam. The high frequency mode has three components all in phase; the low frequency mode has the transverse components in phase and the longitudinal component 180° out of phase; the quadrupole mode has no longitudinal component, and the two transverse components in the mode are 180° out of phase. We also study the case of an ellipsoidal bunched beam without azimuthal symmetry and find that the high frequency mode and the low frequency mode are still present but the quadrupole mode is replaced by a new mode with transverse components 180° out of phase and a nonzero longitudinal component. Previous studies, which generally addressed the situation where the longitudinal-to-transverse focusing strength is roughly 0.6 or less, conclude that the oscillation of the high frequency mode is predominantly transverse, and that of the low frequency mode is predominantly longitudinal. In this paper we present a systematic study of the features of the modes as a function of the longitudinal-to-transverse focusing strength ratio. We find that, when the ratio is greater than unity, the high frequency mode may contain a significant longitudinal component. Thus, excitation of the high frequency mode in this situation can be responsible for the formation of longitudinal beam halo. Furthermore, while previous studies have observed halo amplitudes roughly 2–3 times the matched beam edge, for the present parameters we observe much larger amplitudes (5 times or more. This is due to the fact that the longitudinal-to-transverse focusing ratio used here is greater than that of previous

  1. Testing approximate predictions of displacements of cosmological dark matter halos

    Energy Technology Data Exchange (ETDEWEB)

    Munari, Emiliano; Monaco, Pierluigi; Borgani, Stefano [Department of Physics, Astronomy Unit, University of Trieste, via Tiepolo 11, I-34143 Trieste (Italy); Koda, Jun [INAF – Osservatorio Astronomico di Brera, via E. Bianchi 46, I-23807 Merate (Italy); Kitaura, Francisco-Shu [Instituto de Astrofísica de Canarias, 38205 San Cristóbal de La Laguna, Santa Cruz de Tenerife (Spain); Sefusatti, Emiliano, E-mail: munari@oats.inaf.it, E-mail: monaco@oats.inaf.it, E-mail: jun.koda@brera.inaf.it, E-mail: fkitaura@iac.es, E-mail: sefusatti@oats.inaf.it, E-mail: borgani@oats.inaf.it [INAF – Osservatorio Astronomico di Trieste, via Tiepolo 11, I-34143 Trieste (Italy)

    2017-07-01

    We present a test to quantify how well some approximate methods, designed to reproduce the mildly non-linear evolution of perturbations, are able to reproduce the clustering of DM halos once the grouping of particles into halos is defined and kept fixed. The following methods have been considered: Lagrangian Perturbation Theory (LPT) up to third order, Truncated LPT, Augmented LPT, MUSCLE and COLA. The test runs as follows: halos are defined by applying a friends-of-friends (FoF) halo finder to the output of an N-body simulation. The approximate methods are then applied to the same initial conditions of the simulation, producing for all particles displacements from their starting position and velocities. The position and velocity of each halo are computed by averaging over the particles that belong to that halo, according to the FoF halo finder. This procedure allows us to perform a well-posed test of how clustering of the matter density and halo density fields are recovered, without asking to the approximate method an accurate reconstruction of halos. We have considered the results at z =0,0.5,1, and we have analysed power spectrum in real and redshift space, object-by-object difference in position and velocity, density Probability Distribution Function (PDF) and its moments, phase difference of Fourier modes. We find that higher LPT orders are generally able to better reproduce the clustering of halos, while little or no improvement is found for the matter density field when going to 2LPT and 3LPT. Augmentation provides some improvement when coupled with 2LPT, while its effect is limited when coupled with 3LPT. Little improvement is brought by MUSCLE with respect to Augmentation. The more expensive particle-mesh code COLA outperforms all LPT methods, and this is true even for mesh sizes as large as the inter-particle distance. This test sets an upper limit on the ability of these methods to reproduce the clustering of halos, for the cases when these objects are

  2. Testing approximate predictions of displacements of cosmological dark matter halos

    Science.gov (United States)

    Munari, Emiliano; Monaco, Pierluigi; Koda, Jun; Kitaura, Francisco-Shu; Sefusatti, Emiliano; Borgani, Stefano

    2017-07-01

    We present a test to quantify how well some approximate methods, designed to reproduce the mildly non-linear evolution of perturbations, are able to reproduce the clustering of DM halos once the grouping of particles into halos is defined and kept fixed. The following methods have been considered: Lagrangian Perturbation Theory (LPT) up to third order, Truncated LPT, Augmented LPT, MUSCLE and COLA. The test runs as follows: halos are defined by applying a friends-of-friends (FoF) halo finder to the output of an N-body simulation. The approximate methods are then applied to the same initial conditions of the simulation, producing for all particles displacements from their starting position and velocities. The position and velocity of each halo are computed by averaging over the particles that belong to that halo, according to the FoF halo finder. This procedure allows us to perform a well-posed test of how clustering of the matter density and halo density fields are recovered, without asking to the approximate method an accurate reconstruction of halos. We have considered the results at z=0,0.5,1, and we have analysed power spectrum in real and redshift space, object-by-object difference in position and velocity, density Probability Distribution Function (PDF) and its moments, phase difference of Fourier modes. We find that higher LPT orders are generally able to better reproduce the clustering of halos, while little or no improvement is found for the matter density field when going to 2LPT and 3LPT. Augmentation provides some improvement when coupled with 2LPT, while its effect is limited when coupled with 3LPT. Little improvement is brought by MUSCLE with respect to Augmentation. The more expensive particle-mesh code COLA outperforms all LPT methods, and this is true even for mesh sizes as large as the inter-particle distance. This test sets an upper limit on the ability of these methods to reproduce the clustering of halos, for the cases when these objects are

  3. Disc-halo interactions in ΛCDM

    Science.gov (United States)

    Bauer, Jacob S.; Widrow, Lawrence M.; Erkal, Denis

    2018-05-01

    We present a new method for embedding a stellar disc in a cosmological dark matter halo and provide a worked example from a Λ cold dark matter zoom-in simulation. The disc is inserted into the halo at a redshift z = 3 as a zero-mass rigid body. Its mass and size are then increased adiabatically while its position, velocity, and orientation are determined from rigid-body dynamics. At z = 1, the rigid disc (RD) is replaced by an N-body disc whose particles sample a three-integral distribution function (DF). The simulation then proceeds to z = 0 with live disc (LD) and halo particles. By comparison, other methods assume one or more of the following: the centre of the RD during the growth phase is pinned to the minimum of the halo potential, the orientation of the RD is fixed, or the live N-body disc is constructed from a two rather than three-integral DF. In general, the presence of a disc makes the halo rounder, more centrally concentrated, and smoother, especially in the innermost regions. We find that methods in which the disc is pinned to the minimum of the halo potential tend to overestimate the amount of adiabatic contraction. Additionally, the effect of the disc on the subhalo distribution appears to be rather insensitive to the disc insertion method. The LD in our simulation develops a bar that is consistent with the bars seen in late-type spiral galaxies. In addition, particles from the disc are launched or `kicked up' to high galactic latitudes.

  4. Tracking the LHC halo

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    In the LHC, beams of 25-ns-spaced proton bunches travel at almost the speed of light and pass through many different devices installed along the ring that monitor their properties. During their whirling motion, beam particles might interact with the collimation instrumentation or with residual gas in the vacuum chambers and this creates the beam halo – an annoying source of background for the physics data. Newly installed CMS sub-detectors are now able to monitor it.   The Beam Halo Monitors (BHM) are installed around the CMS rotating shielding. The BHM are designed and built by University of Minnesota, CERN, Princeton University, INFN Bologna and the National Technical University of Athens. (Image: Andrea Manna). The Beam Halo Monitor (BHM) is a set of 20 Cherenkov radiators – 10-cm-long quartz crystals – installed at each end of the huge CMS detector. Their design goal is to measure the particles that can cause the so-called “machine-induced...

  5. Interactions between massive dark halos and warped disks

    NARCIS (Netherlands)

    Kuijken, K; Persic, M; Salucci, P

    1997-01-01

    The normal mode theory for warping of galaxy disks, in which disks are assumed to be tilted with respect to the equator of a massive, flattened dark halo, assumes a rigid, fixed halo. However, consideration of the back-reaction by a misaligned disk on a massive particle halo shows there to be strong

  6. Conditions for minimization of halo particle production during transverse compression of intense ion charge bunches in the Paul Trap Simulator Experiment (PTSX)

    International Nuclear Information System (INIS)

    Gilson, Erik P.; Chung, Moses; Davidson, Ronald C.; Dorf, Mikhail; Efthimion, Philip C.; Grote, David P.; Majeski, Richard; Startsev, Edward A.

    2007-01-01

    The Paul Trap Simulator Experiment (PTSX) is a compact laboratory Paul trap that simulates propagation of a long, thin charged-particle bunch coasting through a multi-kilometer-long magnetic alternating-gradient (AG) transport system by putting the physicist in the frame-of-reference of the beam. The transverse dynamics of particles in both systems are described by the same sets of equations-including all nonlinear space-charge effects. The time-dependent quadrupolar voltages applied to the PTSX confinement electrodes correspond to the axially dependent magnetic fields applied in the AG system. This paper presents the results of experiments in which the amplitude of the applied confining voltage is changed over the course of the experiment in order to transversely compress a beam with an initial depressed tune ν/ν 0 ∼0.9. Both instantaneous and smooth changes are considered. Particular emphasis is placed on determining the conditions that minimize the emittance growth and, generally, the number of particles that are found at large radius (so-called halo particles) after the beam compression. The experimental data are also compared with the results of particle-in-cell (PIC) simulations performed with the WARP code

  7. Neutron halo in deformed nuclei

    International Nuclear Information System (INIS)

    Zhou Shangui; Meng Jie; Ring, P.; Zhao Enguang

    2010-01-01

    Halo phenomena in deformed nuclei are investigated within a deformed relativistic Hartree Bogoliubov (DRHB) theory. These weakly bound quantum systems present interesting examples for the study of the interdependence between the deformation of the core and the particles in the halo. Contributions of the halo, deformation effects, and large spatial extensions of these systems are described in a fully self-consistent way by the DRHB equations in a spherical Woods-Saxon basis with the proper asymptotic behavior at a large distance from the nuclear center. Magnesium and neon isotopes are studied and detailed results are presented for the deformed neutron-rich and weakly bound nucleus 44 Mg. The core of this nucleus is prolate, but the halo has a slightly oblate shape. This indicates a decoupling of the halo orbitals from the deformation of the core. The generic conditions for the occurrence of this decoupling effects are discussed.

  8. Production of enhanced beam halos via collective modes and colored noise

    Directory of Open Access Journals (Sweden)

    Ioannis V. Sideris

    2004-10-01

    Full Text Available We investigate how collective modes and colored noise conspire to produce a beam halo with much larger amplitude than could be generated by either phenomenon separately. The collective modes are lowest-order radial eigenmodes calculated self-consistently for a configuration corresponding to a direct-current, cylindrically symmetric, warm-fluid Kapchinskij-Vladimirskij equilibrium. The colored noise arises from unavoidable machine errors and influences the internal space-charge force. Its presence quickly launches statistically rare particles to ever-growing amplitudes by continually kicking them back into phase with the collective-mode oscillations. The halo amplitude is essentially the same for purely radial orbits as for orbits that are initially purely azimuthal; orbital angular momentum has no statistically significant impact. Factors that do have an impact include the amplitudes of the collective modes and the strength and autocorrelation time of the colored noise. The underlying dynamics ensues because the noise breaks the Kolmogorov-Arnol’d-Moser tori that otherwise would confine the beam. These tori are fragile; even very weak noise will eventually break them, though the time scale for their disintegration depends on the noise strength. Both collective modes and noise are therefore centrally important to the dynamics of halo formation in real beams.

  9. HALO | Arts at CERN

    CERN Multimedia

    Caraban Gonzalez, Noemi

    2018-01-01

    In 2015, the artists participated in a research residency at CERN and began to work with data captured by ATLAS, one of the four detectors at the Large Hadron Collider (LHC) that sits in a cavern 100 metres below ground near the main site of CERN, in Meyrin (Switzerland). For Art Basel, they created HALO, an installation that surrounds visitors with data collected by the ATLAS experiment at the LHC. HALO consists of a 10 m wide cylinder defined by vertical piano wires, within which a 4-m tall screen displays particle collisions. The data also triggers hammers that strike the vertical wires and set up vibrations to create a truly multisensory experience. More info: https://arts.cern/event/unveiling-halo-art-basel

  10. Bose-Einstein condensate haloes embedded in dark energy

    Science.gov (United States)

    Membrado, M.; Pacheco, A. F.

    2018-04-01

    Context. We have studied clusters of self-gravitating collisionless Newtonian bosons in their ground state and in the presence of the cosmological constant to model dark haloes of dwarf spheroidal (dSph) galaxies. Aim. We aim to analyse the influence of the cosmological constant on the structure of these systems. Observational data of Milky Way dSph galaxies allow us to estimate the boson mass. Methods: We obtained the energy of the ground state of the cluster in the Hartree approximation by solving a variational problem in the particle density. We have also developed and applied the virial theorem. Dark halo models were tested in a sample of 19 galaxies. Galaxy radii, 3D deprojected half-light radii, mass enclosed within them, and luminosity-weighted averages of the square of line-of-sight velocity dispersions are used to estimate the particle mass. Results: Cosmological constant repulsive effects are embedded in one parameter ξ. They are appreciable for ξ > 10-5. Bound structures appear for ξ ≤ ξc = 1.65 × 10-4, what imposes a lower bound for cluster masses as a function of the particle mass. In principle, these systems present tunnelling through a potential barrier; however, after estimating their mean lifes, we realize that their existence is not affected by the age of the Universe. When Milky Way dSph galaxies are used to test the model, we obtain 3.5-1.0+1.3 × 10-22 eV for the particle mass and a lower limit of 5.1-2.8+2.2 × 106 M⊙ for bound haloes. Conclusions: Our estimation for the boson mass is in agreement with other recent results which use different methods. From our particle mass estimation, the treated dSph galaxies would present dark halo masses 5-11 ×107 M⊙. With these values, they would not be affected by the cosmological constant (ξ 10-5) would already feel their effects. Our model that includes dark energy allows us to deal with these dark haloes. Assuming quantities averaged in the sample of galaxies, 10-5 < ξ ≤ ξc dark

  11. Self-consistent construction of virialized wave dark matter halos

    Science.gov (United States)

    Lin, Shan-Chang; Schive, Hsi-Yu; Wong, Shing-Kwong; Chiueh, Tzihong

    2018-05-01

    Wave dark matter (ψ DM ), which satisfies the Schrödinger-Poisson equation, has recently attracted substantial attention as a possible dark matter candidate. Numerical simulations have, in the past, provided a powerful tool to explore this new territory of possibility. Despite their successes in revealing several key features of ψ DM , further progress in simulations is limited, in that cosmological simulations so far can only address formation of halos below ˜2 ×1011 M⊙ and substantially more massive halos have become computationally very challenging to obtain. For this reason, the present work adopts a different approach in assessing massive halos by constructing wave-halo solutions directly from the wave distribution function. This approach bears certain similarities with the analytical construction of the particle-halo (cold dark matter model). Instead of many collisionless particles, one deals with one single wave that has many noninteracting eigenstates. The key ingredient in the wave-halo construction is the distribution function of the wave power, and we use several halos produced by structure formation simulations as templates to determine the wave distribution function. Among different models, we find the fermionic King model presents the best fits and we use it for our wave-halo construction. We have devised an iteration method for constructing the nonlinear halo and demonstrate its stability by three-dimensional simulations. A Milky Way-sized halo has also been constructed, and the inner halo is found to be flatter than the NFW profile. These wave-halos have small-scale interferences both in space and time producing time-dependent granules. While the spatial scale of granules varies little, the correlation time is found to increase with radius by 1 order of magnitude across the halo.

  12. Accurate halo-galaxy mocks from automatic bias estimation and particle mesh gravity solvers

    Science.gov (United States)

    Vakili, Mohammadjavad; Kitaura, Francisco-Shu; Feng, Yu; Yepes, Gustavo; Zhao, Cheng; Chuang, Chia-Hsun; Hahn, ChangHoon

    2017-12-01

    Reliable extraction of cosmological information from clustering measurements of galaxy surveys requires estimation of the error covariance matrices of observables. The accuracy of covariance matrices is limited by our ability to generate sufficiently large number of independent mock catalogues that can describe the physics of galaxy clustering across a wide range of scales. Furthermore, galaxy mock catalogues are required to study systematics in galaxy surveys and to test analysis tools. In this investigation, we present a fast and accurate approach for generation of mock catalogues for the upcoming galaxy surveys. Our method relies on low-resolution approximate gravity solvers to simulate the large-scale dark matter field, which we then populate with haloes according to a flexible non-linear and stochastic bias model. In particular, we extend the PATCHY code with an efficient particle mesh algorithm to simulate the dark matter field (the FASTPM code), and with a robust MCMC method relying on the EMCEE code for constraining the parameters of the bias model. Using the haloes in the BigMultiDark high-resolution N-body simulation as a reference catalogue, we demonstrate that our technique can model the bivariate probability distribution function (counts-in-cells), power spectrum and bispectrum of haloes in the reference catalogue. Specifically, we show that the new ingredients permit us to reach percentage accuracy in the power spectrum up to k ∼ 0.4 h Mpc-1 (within 5 per cent up to k ∼ 0.6 h Mpc-1) with accurate bispectra improving previous results based on Lagrangian perturbation theory.

  13. Beam losses and beam halos in accelerators for new energy sources

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1995-01-01

    Large particle accelerators are proposed as drivers for new ways to produce electricity from nuclear fusion and fission reactions. The accelerators must be designed to deliver large particle beam currents to a target facility with very little beam spill along the accelerator itself, in order that accelerator maintenance can be accomplished without remote manipulators. Typically, particle loss is preceded by the formation of a tenuous halo of particles around the central beam core, caused by beam dynamics effects, often coupled with the slight imperfections inevitable in a practical design. If the halo becomes large enough, particles may be scraped off along the accelerator. The tolerance for beam spill in different applications is discussed, halo mechanisms and recent work to explore and understand their dynamics are reviewed, and possible directions for future investigation are outlined. 17 refs., 10 figs

  14. Relation Between Initial Cosmological Conditions and the Properties of Dark Matter Haloes

    International Nuclear Information System (INIS)

    Semenov, Vadim

    2013-01-01

    The core-cusp problem is one of the essential issues in modern cosmology. The Entropy Theory of haloes Evolution recently suggested by Lukash, Doroshkevich and Mikheeva is one of the possible solutions to this problem. This work compares some results of numerical simulation of Large-Scale Structure with the conclusions of the Entropy Theory in order to verify this theory. The numerical simulation was performed in a volume 100 Mpc/h in a side using ∼ 17 million particles. Dark matter particles, which then form virialized haloes, were found in the initial perturbation field. This work investigates the distribution of these dark matter particles and measures the velocity dispersion profiles. It also traces evolution of haloes entropy profiles. On the whole, simulation results correspond to Entropy Theory of haloes evolution

  15. Halo Mitigation Using Nonlinear Lattices

    CERN Document Server

    Sonnad, Kiran G

    2005-01-01

    This work shows that halos in beams with space charge effects can be controlled by combining nonlinear focusing and collimation. The study relies on Particle-in-Cell (PIC) simulations for a one dimensional, continuous focusing model. The PIC simulation results show that nonlinear focusing leads to damping of the beam oscillations thereby reducing the mismatch. It is well established that reduced mismatch leads to reduced halo formation. However, the nonlinear damping is accompanied by emittance growth causing the beam to spread in phase space. As a result, inducing nonlinear damping alone cannot help mitigate the halo. To compensate for this expansion in phase space, the beam is collimated in the simulation and further evolution of the beam shows that the halo is not regenerated. The focusing model used in the PIC is analysed using the Lie Transform perturbation theory showing that by averaging over a lattice period, one can reuduce the focusing force to a form that is identical to that used in the PIC simula...

  16. Convergence properties of halo merger trees; halo and substructure merger rates across cosmic history

    Science.gov (United States)

    Poole, Gregory B.; Mutch, Simon J.; Croton, Darren J.; Wyithe, Stuart

    2017-12-01

    We introduce GBPTREES: an algorithm for constructing merger trees from cosmological simulations, designed to identify and correct for pathological cases introduced by errors or ambiguities in the halo finding process. GBPTREES is built upon a halo matching method utilizing pseudo-radial moments constructed from radially sorted particle ID lists (no other information is required) and a scheme for classifying merger tree pathologies from networks of matches made to-and-from haloes across snapshots ranging forward-and-backward in time. Focusing on SUBFIND catalogues for this work, a sweep of parameters influencing our merger tree construction yields the optimal snapshot cadence and scanning range required for converged results. Pathologies proliferate when snapshots are spaced by ≲0.128 dynamical times; conveniently similar to that needed for convergence of semi-analytical modelling, as established by Benson et al. Total merger counts are converged at the level of ∼5 per cent for friends-of-friends (FoF) haloes of size np ≳ 75 across a factor of 512 in mass resolution, but substructure rates converge more slowly with mass resolution, reaching convergence of ∼10 per cent for np ≳ 100 and particle mass mp ≲ 109 M⊙. We present analytic fits to FoF and substructure merger rates across nearly all observed galactic history (z ≤ 8.5). While we find good agreement with the results presented by Fakhouri et al. for FoF haloes, a slightly flatter dependence on merger ratio and increased major merger rates are found, reducing previously reported discrepancies with extended Press-Schechter estimates. When appropriately defined, substructure merger rates show a similar mass ratio dependence as FoF rates, but with stronger mass and redshift dependencies for their normalization.

  17. Systematic problems with using dark matter simulations to model stellar halos

    International Nuclear Information System (INIS)

    Bailin, Jeremy; Bell, Eric F.; Valluri, Monica; Stinson, Greg S.; Debattista, Victor P.; Couchman, H. M. P.; Wadsley, James

    2014-01-01

    The limits of available computing power have forced models for the structure of stellar halos to adopt one or both of the following simplifying assumptions: (1) stellar mass can be 'painted' onto dark matter (DM) particles in progenitor satellites; (2) pure DM simulations that do not form a luminous galaxy can be used. We estimate the magnitude of the systematic errors introduced by these assumptions using a controlled set of stellar halo models where we independently vary whether we look at star particles or painted DM particles, and whether we use a simulation in which a baryonic disk galaxy forms or a matching pure DM simulation that does not form a baryonic disk. We find that the 'painting' simplification reduces the halo concentration and internal structure, predominantly because painted DM particles have different kinematics from star particles even when both are buried deep in the potential well of the satellite. The simplification of using pure DM simulations reduces the concentration further, but increases the internal structure, and results in a more prolate stellar halo. These differences can be a factor of 1.5-7 in concentration (as measured by the half-mass radius) and 2-7 in internal density structure. Given this level of systematic uncertainty, one should be wary of overinterpreting differences between observations and the current generation of stellar halo models based on DM-only simulations when such differences are less than an order of magnitude.

  18. Beam halo formation from space-charge dominated beams in uniform focusing channels

    International Nuclear Information System (INIS)

    O'Connell, J.S.; Wangler, T.P.; Mills, R.S.; Crandall, K.R.

    1993-01-01

    In space-charge dominated beams the nonlinear space-charge forces produce a filamentation pattern, which results in a 2-component beam consisting of an inner core and an outer halo. The halo is very prominent in mismatched beams, and the potential for accelerator activation is of concern for a next generation of cw, high-power proton linacs that could be applied for intense neutron generators to process nuclear materials. We present new results about beam halo and the evolution of space-charge dominated beams from multiparticle simulation of initial laminar beams in a uniform linear focusing channel, and from a model consisting of single particle interactions with a uniform-density beam core. We study the energy gain from particle interactions with the space-charge field of the core, and we identify the resonant characteristic of this interaction as the basic cause of the separation of the beam into the two components. We identify three different particle-trajectory types, and we suggest that one of these types may lead to continuous halo growth, even after the halo is removed by collimators

  19. MEASUREMENT AND SIMULATION OF SOURCE-GENERATED HALOS IN THE UNIVERSITY OF MARYLAND ELECTRON RING (UMER)

    International Nuclear Information System (INIS)

    Haber, I.; Haber, I.; Bernal, S.; Kishek, R.A.; O'Shea, P.G.; Papadopoulos, C.; Reiser, M.; Feldman, R.B.; Stratakis, D.; Walter, M.; Vay, J.-L.; Friedman, A.; Grote, D.P.

    2007-01-01

    One of the areas of fundamental beam physics that have served as the rationale for recent research on UMER is the study of the generation and evolution of beam halos. Recent experiments and simulations have identified imperfections in the source geometry, particularly in the region near the emitter edge, as a significant potential source of halo particles. The edge-generated halo particles, both in the experiments and the simulations are found to pass through the center of the beam a short distance downstream of the anode plane. Understanding the detailed evolution of these particle orbits is therefore important to designing any aperture to remove the beam halo

  20. Reionization histories of Milky Way mass halos

    International Nuclear Information System (INIS)

    Li, Tony Y.; Wechsler, Risa H.; Abel, Tom; Alvarez, Marcelo A.

    2014-01-01

    We investigate the connection between the reionization era and the present-day universe by examining the mass reionization histories of z = 0 dark matter halos. In a 600 3 Mpc 3 volume, we combine a dark matter N-body simulation with a three-dimensional seminumerical reionization model. This tags each particle with a reionization redshift, so that individual present-day halos can be connected to their reionization histories and environments. We find that the vast majority of present-day halos with masses larger than ∼ few × 10 11 M ☉ reionize earlier than the rest of the universe. We also find significant halo-to-halo diversity in mass reionization histories, and find that in realistic inhomogeneous models, the material within a given halo is not expected to reionize at the same time. In particular, the scatter in reionization times within individual halos is typically larger than the scatter among halos. From our fiducial reionization model, we find that the typical 68% scatter in reionization times within halos is ∼115 Myr for 10 12±0.25 M ☉ halos, decreasing slightly to ∼95 Myr for 10 15±0.25 M ☉ halos. We find a mild correlation between reionization history and environment: halos with shorter reionization histories are typically in more clustered environments, with the strongest trend on a scale of ∼20 Mpc. Material in Milky Way mass halos with short reionization histories is preferentially reionized in relatively large H II regions, implying reionization mostly by sources external to the progenitors of the present-day halo. We investigate the impact on our results of varying the reionization model parameters, which span a range of reionization scenarios with varying timing and morphology.

  1. THE OVERDENSITY AND MASSES OF THE FRIENDS-OF-FRIENDS HALOS AND UNIVERSALITY OF HALO MASS FUNCTION

    International Nuclear Information System (INIS)

    More, Surhud; Kravtsov, Andrey V.; Dalal, Neal; Gottloeber, Stefan

    2011-01-01

    The friends-of-friends algorithm (hereafter FOF) is a percolation algorithm which is routinely used to identify dark matter halos from N-body simulations. We use results from percolation theory to show that the boundary of FOF halos does not correspond to a single density threshold but to a range of densities close to a critical value that depends upon the linking length parameter, b. We show that for the commonly used choice of b = 0.2, this critical density is equal to 81.62 times the mean matter density. Consequently, halos identified by the FOF algorithm enclose an average overdensity which depends on their density profile (concentration) and therefore changes with halo mass, contrary to the popular belief that the average overdensity is ∼180. We derive an analytical expression for the overdensity as a function of the linking length parameter b and the concentration of the halo. Results of tests carried out using simulated and actual FOF halos identified in cosmological simulations show excellent agreement with our analytical prediction. We also find that the mass of the halo that the FOF algorithm selects crucially depends upon mass resolution. We find a percolation-theory-motivated formula that is able to accurately correct for the dependence on number of particles for the mock realizations of spherical and triaxial Navarro-Frenk-White halos. However, we show that this correction breaks down when applied to the real cosmological FOF halos due to the presence of substructures. Given that abundance of substructure depends on redshift and cosmology, we expect that the resolution effects due to substructure on the FOF mass and halo mass function will also depend on redshift and cosmology and will be difficult to correct for in general. Finally, we discuss the implications of our results for the universality of the mass function.

  2. Simulation on control of beam halo-chaos by power function in the hackle periodic-focusing channel

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The K-V beam through a hackle periodic-focusing magnetic field is studied using the particle-core model. The beam halo-chaos is found, and a power function controller is proposed based on mechanism of halo formation and strategy of controlling halo-chaos. Multiparticle simulation was performed to control the halo by using the power function control method. The results show that the halo-chaos and its regeneration can be eliminated effectively. We also find that the radial particle density evolvement is of uniformity at the beam's centre as long as appropriate paramours are chosen.

  3. A beam halo event of the ATLAS Experiment

    CERN Multimedia

    ATLAS, Experiment

    2014-01-01

    Beam halo events: These occur as a single beam of protons is circulating in one direction in LHC, just passing through ATLAS. An outlier particle hits a part of the detector causing a spray of particles.

  4. Collisionless analogs of Riemann S ellipsoids with halo

    International Nuclear Information System (INIS)

    Abramyan, M.G.

    1987-01-01

    A spheroidal halo ensures equilibrium of the collisionless analogs of the Riemann S ellipsoids with oscillations of the particles along the direction of their rotation. Sequences of collisionless triaxial ellipsoids begin and end with dynamically stable members of collisionless embedded spheroids. Both liquid and collisionless Riemann S ellipsoids with weak halo have properties that resemble those of bars of SB galaxies

  5. New halo formation mechanism at the KEK compact energy recovery linac

    Science.gov (United States)

    Tanaka, Olga; Nakamura, Norio; Shimada, Miho; Miyajima, Tsukasa; Ueda, Akira; Obina, Takashi; Takai, Ryota

    2018-02-01

    The beam halo mitigation is a very important challenge for reliable and safe operation of a high-energy machine. A systematic beam halo study was conducted at the KEK compact energy recovery linac (cERL) since non-negligible beam loss was observed in the recirculation loop during a common operation. We found that the beam loss can be avoided by making use of the collimation system. Beam halo measurements have demonstrated the presence of vertical beam halos at multiple locations in the beam line (except the region near the electron gun). Based on these observations, we made a conjecture that the transverse beam halo is attributed to the longitudinal bunch tail arising at the photocathode. The transfer of particles from the longitudinal space to a transverse halo may have been observed and studied in other machines, considering nonlinear effects as their causes. However, our study demonstrates a new unique halo formation mechanism, in which a transverse beam halo can be generated by a longitudinal bunch tail due to transverse rf kicks from the accelerating (monopole) fields of the radio-frequency cavities. This halo formation occurs when nonrelativistic particles enter the cavities with a transverse offset, even if neither nonlinear optics nor nonlinear beam effects are present. A careful realignment of the injector system will mitigate the present halo. Another possible cure is to reduce the bunch tails by changing the photocathode material from the present GaAs to a multi-alkali that is known to have a shorter longitudinal tail.

  6. MINIMARS interim report appendix halo model and computer code

    International Nuclear Information System (INIS)

    Santarius, J.F.; Barr, W.L.; Deng, B.Q.; Emmert, G.A.

    1985-01-01

    A tenuous, cool plasma called the halo shields the core plasma in a tandem mirror from neutral gas and impurities. The neutral particles are ionized and then pumped by the halo to the end tanks of the device, since flow of plasma along field lines is much faster than radial flow. Plasma reaching the end tank walls recombines, and the resulting neutral gas is vacuum pumped. The basic geometry of the MINIMARS halo is shown. For halo modeling purposes, the core plasma and cold gas regions may be treated as single radial zones leading to halo source and sink terms. The halo itself is differential into two major radial zones: halo scraper and halo dump. The halo scraper zone is defined by the radial distance required for the ion end plugging potential to drop to the central cell value, and thus have no effect on axial confinement; this distance is typically a sloshing plug ion Larmor diameter. The outer edge of the halo dump zone is defined by the last central cell flux tube to pass through the choke coil. This appendix will summarize the halo model that has been developed for MINIMARS and the methodology used in implementing that model as a computer code

  7. Research Note--Should Consumers Use the Halo to Form Product Evaluations?

    OpenAIRE

    Peter Boatwright; Ajay Kalra; Wei Zhang

    2008-01-01

    In purchase situations where attribute information is either missing or difficult to judge, a well-known heuristic that consumers use to form evaluations is the halo effect. The psychology literature has widely considered the halo a reflection of consumers' inability to discriminate between different attributes and have therefore labeled it the "halo error" or the "logical error." The objective of this paper is to offer a rationale for the halo effect. We use a decision-theory framework to sh...

  8. Dark matter haloes: a multistream view

    Science.gov (United States)

    Ramachandra, Nesar S.; Shandarin, Sergei F.

    2017-09-01

    Mysterious dark matter constitutes about 85 per cent of all masses in the Universe. Clustering of dark matter plays a dominant role in the formation of all observed structures on scales from a fraction to a few hundreds of Mega-parsecs. Galaxies play a role of lights illuminating these structures so they can be observed. The observations in the last several decades have unveiled opulent geometry of these structures currently known as the cosmic web. Haloes are the highest concentrations of dark matter and host luminous galaxies. Currently the most accurate modelling of dark matter haloes is achieved in cosmological N-body simulations. Identifying the haloes from the distribution of particles in N-body simulations is one of the problems attracting both considerable interest and efforts. We propose a novel framework for detecting potential dark matter haloes using the field unique for dark matter-multistream field. The multistream field emerges at the non-linear stage of the growth of perturbations because the dark matter is collisionless. Counting the number of velocity streams in gravitational collapses supplements our knowledge of spatial clustering. We assume that the virialized haloes have convex boundaries. Closed and convex regions of the multistream field are hence isolated by imposing a positivity condition on all three eigenvalues of the Hessian estimated on the smoothed multistream field. In a single-scale analysis of high multistream field resolution and low softening length, the halo substructures with local multistream maxima are isolated as individual halo sites.

  9. The role of Dark Matter sub-halos in the non-thermal emission of galaxy clusters

    Energy Technology Data Exchange (ETDEWEB)

    Marchegiani, Paolo; Colafrancesco, Sergio, E-mail: Paolo.Marchegiani@wits.ac.za, E-mail: Sergio.Colafrancesco@wits.ac.za [School of Physics, University of the Witwatersrand, Private Bag 3, WITS-2050, Johannesburg (South Africa)

    2016-11-01

    Annihilation of Dark Matter (DM) particles has been recognized as one of the possible mechanisms for the production of non-thermal particles and radiation in galaxy clusters. Previous studies have shown that, while DM models can reproduce the spectral properties of the radio halo in the Coma cluster, they fail in reproducing the shape of the radio halo surface brightness because they produce a shape that is too concentrated towards the center of the cluster with respect to the observed one. However, in previous studies the DM distribution was modeled as a single spherically symmetric halo, while the DM distribution in Coma is found to have a complex and elongated shape. In this work we calculate a range of non-thermal emissions in the Coma cluster by using the observed distribution of DM sub-halos. We find that, by including the observed sub-halos in the DM model, we obtain a radio surface brightness with a shape similar to the observed one, and that the sub-halos boost the radio emission by a factor between 5 and 20%, thus allowing to reduce the gap between the annihilation cross section required to reproduce the radio halo flux and the upper limits derived from other observations, and that this gap can be explained by realistic values of the boosting factor due to smaller substructures. Models with neutralino mass of 9 GeV and composition τ{sup +} τ{sup −}, and mass of 43 GeV and composition b b-bar can fit the radio halo spectrum using the observed properties of the magnetic field in Coma, and do not predict a gamma-ray emission in excess compared to the recent Fermi-LAT upper limits. These findings make these DM models viable candidate to explain the origin of radio halos in galaxy clusters, avoiding the problems connected to the excessive gamma-ray emission expected from proton acceleration in most of the currently proposed models, where the acceleration of particles is directly or indirectly connected to events related to clusters merging. Therefore, DM

  10. Remapping simulated halo catalogues in redshift space

    OpenAIRE

    Mead, Alexander; Peacock, John

    2014-01-01

    We discuss the extension to redshift space of a rescaling algorithm, designed to alter the effective cosmology of a pre-existing simulated particle distribution or catalogue of dark matter haloes. The rescaling approach was initially developed by Angulo & White and was adapted and applied to halo catalogues in real space in our previous work. This algorithm requires no information other than the initial and target cosmological parameters, and it contains no tuned parameters. It is shown here ...

  11. Halo's production in vitro on brachytherapy experiments

    International Nuclear Information System (INIS)

    Cuperschmid, Ethel M.; Sarmento, Eduardo V.; Campos, Tarcisio P.R.

    2011-01-01

    Since earlier of 1960, one of the most significant contributions of radiation biology has been the theory of cell killing as a function of increasing doses of a cytotoxic agent, as well as the demonstration of repair of sublethal or potentially lethal damage after irradiation. The impact of cellular and molecular radiobiology, by exploitation of cellular mechanisms related to apoptosis, may be the cell killing with irradiation by including changes other than unrepaired DNA damage. Based on the understanding of the tumor microenvironment and how growth factors and proteins produced by irradiated cells may alter cellular processes, improved combined-modality strategies may emerge. This effect was show since 1960's, but here we propose to demonstrate this phenomenon in Brachytherapy. The present goal is to verify the macroscopic response through the production and analysis of clonogenic control based on halos generation by radioactive seeds of Ho-165 and Sm-153, aiming to study the effect of this type of irradiation. Confluent cell culture flasks with HeLa cell line were subjected to radiation in a period up to five half-lives of radionuclide, respectively. Devices were introduced which set the polymer-ceramic Ho-165 and Sm-153 seeds in the vials. After a period of exposure, the flasks were stained with violet Gensiana. The results showed the formation of halos control of confluent cancer cells. This paper will describe these experiments in the current stage of the research and report the implications of this new way of therapy for cancer treatment. (author)

  12. Galactic warps and the shape of heavy halos

    International Nuclear Information System (INIS)

    Sparke, L.S.

    1984-01-01

    The outer disks of many spiral galaxies are bent away from the plane of the inner disk; the abundance of these warps suggests that they are long-lived. Isolated galactic disks have long been thought to have no discrete modes of vertical oscillation under their own gravity, and so to be incapable of sustaining persistent warps. However, the visible disk contains only a fraction of the galactic mass; an invisible galactic halo makes up the rest. This paper presents an investigation of vertical warping modes in self-gravitating disks, in the imposed potential due to an axisymmetric unseen massive halo. If the halo matter is distributed so that the free precession rate of a test particle decreases with radius near the edge of the disk, then the disk has a discrete mode of vibration; oblate halos which become rapidly more flattened at large radii, and uniformly prolate halos, satisfy this requirement. Otherwise, the disk has no discrete modes and so cannot maintain a long-lived warp, unless the edge is sharply truncated. Computed mode shapes which resemble the observed warps can be found for halo masses consistent with those inferred from galactic rotation curves

  13. Remapping dark matter halo catalogues between cosmological simulations

    Science.gov (United States)

    Mead, A. J.; Peacock, J. A.

    2014-05-01

    We present and test a method for modifying the catalogue of dark matter haloes produced from a given cosmological simulation, so that it resembles the result of a simulation with an entirely different set of parameters. This extends the method of Angulo & White, which rescales the full particle distribution from a simulation. Working directly with the halo catalogue offers an advantage in speed, and also allows modifications of the internal structure of the haloes to account for non-linear differences between cosmologies. Our method can be used directly on a halo catalogue in a self-contained manner without any additional information about the overall density field; although the large-scale displacement field is required by the method, this can be inferred from the halo catalogue alone. We show proof of concept of our method by rescaling a matter-only simulation with no baryon acoustic oscillation (BAO) features to a more standard Λ cold dark matter model containing a cosmological constant and a BAO signal. In conjunction with the halo occupation approach, this method provides a basis for the rapid generation of mock galaxy samples spanning a wide range of cosmological parameters.

  14. The Excursion Set Theory of Halo Mass Functions, Halo Clustering, and Halo Growth

    Science.gov (United States)

    Zentner, Andrew R.

    I review the excursion set theory with particular attention toward applications to cold dark matter halo formation and growth, halo abundance, and halo clustering. After a brief introduction to notation and conventions, I begin by recounting the heuristic argument leading to the mass function of bound objects given by Press and Schechter. I then review the more formal derivation of the Press-Schechter halo mass function that makes use of excursion sets of the density field. The excursion set formalism is powerful and can be applied to numerous other problems. I review the excursion set formalism for describing both halo clustering and bias and the properties of void regions. As one of the most enduring legacies of the excursion set approach and one of its most common applications, I spend considerable time reviewing the excursion set theory of halo growth. This section of the review culminates with the description of two Monte Carlo methods for generating ensembles of halo mass accretion histories. In the last section, I emphasize that the standard excursion set approach is the result of several simplifying assumptions. Dropping these assumptions can lead to more faithful predictions and open excursion set theory to new applications. One such assumption is that the height of the barriers that define collapsed objects is a constant function of scale. I illustrate the implementation of the excursion set approach for barriers of arbitrary shape. One such application is the now well-known improvement of the excursion set mass function derived from the "moving" barrier for ellipsoidal collapse. I also emphasize that the statement that halo accretion histories are independent of halo environment in the excursion set approach is not a general prediction of the theory. It is a simplifying assumption. I review the method for constructing correlated random walks of the density field in the more general case. I construct a simple toy model to illustrate that excursion set

  15. Pushing down the low-mass halo concentration frontier with the Lomonosov cosmological simulations

    Science.gov (United States)

    Pilipenko, Sergey V.; Sánchez-Conde, Miguel A.; Prada, Francisco; Yepes, Gustavo

    2017-12-01

    We introduce the Lomonosov suite of high-resolution N-body cosmological simulations covering a full box of size 32 h-1 Mpc with low-mass resolution particles (2 × 107 h-1 M⊙) and three zoom-in simulations of overdense, underdense and mean density regions at much higher particle resolution (4 × 104 h-1 M⊙). The main purpose of this simulation suite is to extend the concentration-mass relation of dark matter haloes down to masses below those typically available in large cosmological simulations. The three different density regions available at higher resolution provide a better understanding of the effect of the local environment on halo concentration, known to be potentially important for small simulation boxes and small halo masses. Yet, we find the correction to be small in comparison with the scatter of halo concentrations. We conclude that zoom simulations, despite their limited representativity of the volume of the Universe, can be effectively used for the measurement of halo concentrations at least at the halo masses probed by our simulations. In any case, after a precise characterization of this effect, we develop a robust technique to extrapolate the concentration values found in zoom simulations to larger volumes with greater accuracy. Altogether, Lomonosov provides a measure of the concentration-mass relation in the halo mass range 107-1010 h-1 M⊙ with superb halo statistics. This work represents a first important step to measure halo concentrations at intermediate, yet vastly unexplored halo mass scales, down to the smallest ones. All Lomonosov data and files are public for community's use.

  16. SEEDING THE FORMATION OF COLD GASEOUS CLOUDS IN MILKY WAY-SIZE HALOS

    International Nuclear Information System (INIS)

    Keres, Dusan; Hernquist, Lars

    2009-01-01

    We use one of the highest resolution cosmological smoothed particle hydrodynamic simulations to date to demonstrate that cold gaseous clouds form around Milky Way-size galaxies. We further explore mechanisms responsible for their formation and show that a large fraction of clouds originate as a consequence of late-time filamentary 'cold mode' accretion. Here, filaments that are still colder and denser than the surrounding halo gas are not able to connect directly to galaxies, as they do at high redshift, but are instead susceptible to the combined action of cooling and Rayleigh-Taylor instabilities at intermediate radii within the halo leading to the production of cold, dense pressure-confined clouds, without an associated dark matter component. This process is aided through the compression of the incoming filaments by the hot halo gas and expanding shocks during the halo buildup. Our mechanism directly seeds clouds from gas with substantial local overdensity, unlike in previous models, and provides a channel for the origin of cloud complexes. These clouds can later 'rain' onto galaxies, delivering fuel for star formation. Owing to the relatively large cross-section of filaments and the net angular momentum carried by the gas, the clouds will be distributed in a modestly flattened region around a galaxy.

  17. Beyond assembly bias: exploring secondary halo biases for cluster-size haloes

    Science.gov (United States)

    Mao, Yao-Yuan; Zentner, Andrew R.; Wechsler, Risa H.

    2018-03-01

    Secondary halo bias, commonly known as `assembly bias', is the dependence of halo clustering on a halo property other than mass. This prediction of the Λ Cold Dark Matter cosmology is essential to modelling the galaxy distribution to high precision and interpreting clustering measurements. As the name suggests, different manifestations of secondary halo bias have been thought to originate from halo assembly histories. We show conclusively that this is incorrect for cluster-size haloes. We present an up-to-date summary of secondary halo biases of high-mass haloes due to various halo properties including concentration, spin, several proxies of assembly history, and subhalo properties. While concentration, spin, and the abundance and radial distribution of subhaloes exhibit significant secondary biases, properties that directly quantify halo assembly history do not. In fact, the entire assembly histories of haloes in pairs are nearly identical to those of isolated haloes. In general, a global correlation between two halo properties does not predict whether or not these two properties exhibit similar secondary biases. For example, assembly history and concentration (or subhalo abundance) are correlated for both paired and isolated haloes, but follow slightly different conditional distributions in these two cases. This results in a secondary halo bias due to concentration (or subhalo abundance), despite the lack of assembly bias in the strict sense for cluster-size haloes. Due to this complexity, caution must be exercised in using any one halo property as a proxy to study the secondary bias due to another property.

  18. Study of plasma meniscus and beam halo in negative ion sources using three dimension in real space and three dimension in velocity space particle in cell model

    Energy Technology Data Exchange (ETDEWEB)

    Nishioka, S., E-mail: nishioka@ppl.appi.keio.ac.jp; Goto, I.; Hatayama, A. [Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Miyamoto, K. [School of Natural and Living Sciences Education, Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Okuda, S.; Fukano, A. [Toshiba, 33 Isogo-chou, Isogo-ku, Yokohama-shi, Kanagawa 235-001 (Japan)

    2014-02-15

    Our previous study by two dimension in real space and three dimension in velocity space-particle in cell model shows that the curvature of the plasma meniscus causes the beam halo in the negative ion sources. The negative ions extracted from the periphery of the meniscus are over-focused in the extractor due to the electrostatic lens effect, and consequently become the beam halo. The purpose of this study is to verify this mechanism with the full 3D model. It is shown that the above mechanism is essentially unchanged even in the 3D model, while the fraction of the beam halo is significantly reduced to 6%. This value reasonably agrees with the experimental result.

  19. Study of plasma meniscus and beam halo in negative ion sources using three dimension in real space and three dimension in velocity space particle in cell model

    International Nuclear Information System (INIS)

    Nishioka, S.; Goto, I.; Hatayama, A.; Miyamoto, K.; Okuda, S.; Fukano, A.

    2014-01-01

    Our previous study by two dimension in real space and three dimension in velocity space-particle in cell model shows that the curvature of the plasma meniscus causes the beam halo in the negative ion sources. The negative ions extracted from the periphery of the meniscus are over-focused in the extractor due to the electrostatic lens effect, and consequently become the beam halo. The purpose of this study is to verify this mechanism with the full 3D model. It is shown that the above mechanism is essentially unchanged even in the 3D model, while the fraction of the beam halo is significantly reduced to 6%. This value reasonably agrees with the experimental result

  20. Study of beam optics and beam halo by integrated modeling of negative ion beams from plasma meniscus formation to beam acceleration

    International Nuclear Information System (INIS)

    Miyamoto, K.; Okuda, S.; Hatayama, A.; Hanada, M.; Kojima, A.

    2013-01-01

    To understand the physical mechanism of the beam halo formation in negative ion beams, a two-dimensional particle-in-cell code for simulating the trajectories of negative ions created via surface production has been developed. The simulation code reproduces a beam halo observed in an actual negative ion beam. The negative ions extracted from the periphery of the plasma meniscus (an electro-static lens in a source plasma) are over-focused in the extractor due to large curvature of the meniscus.

  1. Study of beam optics and beam halo by integrated modeling of negative ion beams from plasma meniscus formation to beam acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, K. [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Okuda, S.; Hatayama, A. [Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Hanada, M.; Kojima, A. [Japan Atomic Energy Agency, 801-1 Mukouyama, Naka 319-0913 (Japan)

    2013-01-14

    To understand the physical mechanism of the beam halo formation in negative ion beams, a two-dimensional particle-in-cell code for simulating the trajectories of negative ions created via surface production has been developed. The simulation code reproduces a beam halo observed in an actual negative ion beam. The negative ions extracted from the periphery of the plasma meniscus (an electro-static lens in a source plasma) are over-focused in the extractor due to large curvature of the meniscus.

  2. Comparing semi-analytic particle tagging and hydrodynamical simulations of the Milky Way's stellar halo

    Science.gov (United States)

    Cooper, Andrew P.; Cole, Shaun; Frenk, Carlos S.; Le Bret, Theo; Pontzen, Andrew

    2017-08-01

    Particle tagging is an efficient, but approximate, technique for using cosmological N-body simulations to model the phase-space evolution of the stellar populations predicted, for example, by a semi-analytic model of galaxy formation. We test the technique developed by Cooper et al. (which we call stings here) by comparing particle tags with stars in a smooth particle hydrodynamic (SPH) simulation. We focus on the spherically averaged density profile of stars accreted from satellite galaxies in a Milky Way (MW)-like system. The stellar profile in the SPH simulation can be recovered accurately by tagging dark matter (DM) particles in the same simulation according to a prescription based on the rank order of particle binding energy. Applying the same prescription to an N-body version of this simulation produces a density profile differing from that of the SPH simulation by ≲10 per cent on average between 1 and 200 kpc. This confirms that particle tagging can provide a faithful and robust approximation to a self-consistent hydrodynamical simulation in this regime (in contradiction to previous claims in the literature). We find only one systematic effect, likely due to the collisionless approximation, namely that massive satellites in the SPH simulation are disrupted somewhat earlier than their collisionless counterparts. In most cases, this makes remarkably little difference to the spherically averaged distribution of their stellar debris. We conclude that, for galaxy formation models that do not predict strong baryonic effects on the present-day DM distribution of MW-like galaxies or their satellites, differences in stellar halo predictions associated with the treatment of star formation and feedback are much more important than those associated with the dynamical limitations of collisionless particle tagging.

  3. What sets the central structure of dark matter haloes?

    Science.gov (United States)

    Ogiya, Go; Hahn, Oliver

    2018-02-01

    Dark matter (DM) haloes forming near the thermal cut-off scale of the density perturbations are unique, since they are the smallest objects and form through monolithic gravitational collapse, while larger haloes contrastingly have experienced mergers. While standard cold dark matter (CDM) simulations readily produce haloes that follow the universal Navarro-Frenk-White (NFW) density profile with an inner slope, ρ ∝ r-α, with α = 1, recent simulations have found that when the free-streaming cut-off expected for the CDM model is resolved, the resulting haloes follow nearly power-law density profiles of α ∼ 1.5. In this paper, we study the formation of density cusps in haloes using idealized N-body simulations of the collapse of proto-haloes. When the proto-halo profile is initially cored due to particle free-streaming at high redshift, we universally find ∼r-1.5 profiles irrespective of the proto-halo profile slope outside the core and large-scale non-spherical perturbations. Quite in contrast, when the proto-halo has a power-law profile, then we obtain profiles compatible with the NFW shape when the density slope of the proto-halo patch is shallower than a critical value, αini ∼ 0.3, while the final slope can be steeper for αini ≳ 0.3. We further demonstrate that the r-1.5 profiles are sensitive to small-scale noise, which gradually drives them towards an inner slope of -1, where they become resilient to such perturbations. We demonstrate that the r-1.5 solutions are in hydrostatic equilibrium, largely consistent with a simple analytic model, and provide arguments that angular momentum appears to determine the inner slope.

  4. Structure and reactions of quantum halos

    International Nuclear Information System (INIS)

    Jensen, A.S.; Riisager, K.; Fedorov, D.V.; Garrido, E.

    2004-01-01

    This article provides an overview of the basic principles of the physics of quantum halo systems, defined as bound states of clusters of particles with a radius extending well into classically forbidden regions. Exploiting the consequences of this definition, the authors derive the conditions for occurrence in terms of the number of clusters, binding energy, angular momentum, cluster charges, and excitation energy. All these quantities must be small. The article discusses the transitions between different cluster divisions and the importance of thresholds for cluster or particle decay, with particular attention to the Efimov effect and the related exotic states. The pertinent properties can be described by the use of dimensionless variables. Then universal and specific properties can be distinguished, as shown in a series of examples selected from nuclear, atomic, and molecular systems. The neutron dripline is especially interesting for nuclei and negative ions for atoms. For molecules, in which the cluster division comes naturally, a wider range of possibilities exists. Halos in two dimensions have very different properties, and their states are easily spatially extended, whereas Borromean systems are unlikely and spatially confined. The Efimov effect and the Thomas collapse occur only for dimensions between 2.3 and 3.8 and thus not for 2. High-energy reactions directly probe the halo structure. The authors discuss the reaction mechanisms for high-energy nuclear few-body halo breakup on light, intermediate, and heavy nuclear targets. For light targets, the strong interaction dominates, while for heavy targets, the Coulomb interaction dominates. For intermediate targets these processes are of comparable magnitude. As in atomic and molecular physics, a geometric impact-parameter picture is very appropriate. Finally, the authors briefly consider the complementary processes involving electroweak probes available through beta decay, electromagnetic transitions, and

  5. First Attempts at using Active Halo Control at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Joschka [CERN; Bruce, Roderik [CERN; Garcia Morales, Hector [CERN; Höfle, Wolfgang [CERN; Kotzian, Gerd [CERN; Kwee-Hinzmann, Regina [CERN; Langner, Andy [CERN; Mereghetti, Alessio [CERN; Quaranta, Elena [CERN; Redaelli, Stefano [CERN; Rossi, Adriana [CERN; Salvachua, Belen [CERN; Stancari, Giulio [Fermilab; Tomás, Rogelio [CERN; Valentino, Gianluca [CERN; Valuch, Daniel [CERN

    2016-06-01

    The beam halo population is a non-negligible factor for the performance of the LHC collimation system and the machine protection. In particular this could become crucial for aiming at stored beam energies of 700 MJ in the High Luminosity (HL-LHC) project, in order to avoid beam dumps caused by orbit jitter and to ensure safety during a crab cavity failure. Therefore several techniques to safely deplete the halo, i.e. active halo control, are under development. In a first attempt a novel way for safe halo depletion was tested with particle narrow-band excitation employing the LHC Transverse Damper (ADT). At an energy of 450 GeV a bunch selective beam tail scraping without affecting the core distribution was attempted. This paper presents the first measurement results, as well as a simple simulation to model the underlying dynamics.

  6. Annihilation physics of exotic galactic dark matter particles

    Science.gov (United States)

    Stecker, F. W.

    1990-01-01

    Various theoretical arguments make exotic heavy neutral weakly interacting fermions, particularly those predicted by supersymmetry theory, attractive candidates for making up the large amount of unseen gravitating mass in galactic halos. Such particles can annihilate with each other, producing secondary particles of cosmic-ray energies, among which are antiprotons, positrons, neutrinos, and gamma-rays. Spectra and fluxes of these annihilation products can be calculated, partly by making use of positron electron collider data and quantum chromodynamic models of particle production derived therefrom. These spectra may provide detectable signatures of exotic particle remnants of the big bang.

  7. DAMA RESULTS: DARK MATTER IN THE GALACTIC HALO

    Directory of Open Access Journals (Sweden)

    R. Bernabei

    2013-12-01

    Full Text Available Experimental efforts and theoretical developmens support that most of the Universe is Dark and a large fraction of it should be made of relic particles; many possibilities are open on their nature and interaction types. In particular, the DAMA/LIBRA experiment at Gran Sasso Laboratory (sensitive mass: ~250 kg is mainly devoted to the investigation of Dark Matter (DM particles in the Galactic halo by exploiting the model independent DM annual modulation signature with higly radiopure Na I(Tl targets. DAMA/LIBRA is the succesor of the first generation DAMA/NaI (sensitive mass: ~100 kg; cumulatively the two experiments have released so far the results obtained by analyzing an exposure of 1.17 t yr, collected over 13 annual cycles. The data show a model independent evidence of the presence of DM particles in the galactic halo at 8.9σ confidence level (C.L.. Some of the already achieved results are shortly reminded, the last upgrade occurred at fall 2010 is mentioned and future perspectives are sumarized.

  8. Halo control, beam matching, and new dynamical variables for beam distributions

    International Nuclear Information System (INIS)

    Lysenko, W.; Parsa, Z.

    1997-01-01

    We present the status of our work on physics models that relate release to the understanding and control of beam halo, which is a cause of particle loss in high power ion linear accelerators. We can minimize these particle losses, even in the presence of nonlinearities, by ensuring the beam is matched to high order. Our goal is to determine new dynamical variables that enable us to more directly solve for the evolution of the halo. We considered moments and several new variables, using a Lie-Poisson formulation whenever possible. Using symbolic techniques, we computed high-order matches and mode invariants (analogs of moment invariants) in the new variables. A promising new development developments is that of the variables we call weighted moments, which allow us to compute high-order nonlinear effects (like halos) while making use of well-developed existing results and computational techniques developed for studying first order effects. copyright 1997 American Institute of Physics

  9. Prospects for detecting supersymmetric dark matter in the Galactic halo

    NARCIS (Netherlands)

    Springel, V.; White, S. D. M.; Frenk, C. S.; Navarro, J. F.; Jenkins, A.; Vogelsberger, M.; Wang, J.; Ludlow, A.; Helmi, A.

    2008-01-01

    Dark matter is the dominant form of matter in the Universe, but its nature is unknown. It is plausibly an elementary particle, perhaps the lightest supersymmetric partner of known particle species(1). In this case, annihilation of dark matter in the halo of the Milky Way should produce gamma-rays at

  10. Dissipative dark matter halos: The steady state solution

    Science.gov (United States)

    Foot, R.

    2018-02-01

    Dissipative dark matter, where dark matter particle properties closely resemble familiar baryonic matter, is considered. Mirror dark matter, which arises from an isomorphic hidden sector, is a specific and theoretically constrained scenario. Other possibilities include models with more generic hidden sectors that contain massless dark photons [unbroken U (1 ) gauge interactions]. Such dark matter not only features dissipative cooling processes but also is assumed to have nontrivial heating sourced by ordinary supernovae (facilitated by the kinetic mixing interaction). The dynamics of dissipative dark matter halos around rotationally supported galaxies, influenced by heating as well as cooling processes, can be modeled by fluid equations. For a sufficiently isolated galaxy with a stable star formation rate, the dissipative dark matter halos are expected to evolve to a steady state configuration which is in hydrostatic equilibrium and where heating and cooling rates locally balance. Here, we take into account the major cooling and heating processes, and numerically solve for the steady state solution under the assumptions of spherical symmetry, negligible dark magnetic fields, and that supernova sourced energy is transported to the halo via dark radiation. For the parameters considered, and assumptions made, we were unable to find a physically realistic solution for the constrained case of mirror dark matter halos. Halo cooling generally exceeds heating at realistic halo mass densities. This problem can be rectified in more generic dissipative dark matter models, and we discuss a specific example in some detail.

  11. MD 1691: Active halo control using tune ripple at injection

    CERN Document Server

    Garcia Morales, Hector; Bruce, Roderik; Redaelli, Stefano; Fitterer, Miriam; Fiascaris, Maria; Nisbet, David; Thiesen, Hugues; Valentino, Gianluca; Xu, Chen; CERN. Geneva. ATS Department

    2017-01-01

    In this MD we performed halo excitation through tune ripple. This consists in an excitation that introduces new resonance sidebands around the existing resonance lines. In presence of sufficient detuning with amplitude, these sidebands can in principle affect only the dynamics of the halo particles at large amplitudes. Tune ripple was induced through a current modulation of the warm trim quadrupoles in IR7. This is the first time this method is experimentally tested at the LHC.

  12. Exotic nuclei: Halos

    Energy Technology Data Exchange (ETDEWEB)

    Orr, Nigel [Lab. de Physique Corpusculaire, Caen Univ., 14 (France); Collaboration: La Direction des Sciences de la Matiere du CEA (FR); Le Fonds National de la Recherche Scientifique de Belgique (BE)

    1998-12-31

    A brief overview of the nuclear halo is presented. Following some historical remarks the general characteristics of the halo systems are discussed with reference to a simple model. The conditions governing the formation of halos are also explored, as are two subjects of current interest - low-lying resonances of halo nucleon correlations. (author) 54 refs., 16 figs., 1 tabs.

  13. Dissipative dark matter halos: The steady state solution. II.

    Science.gov (United States)

    Foot, R.

    2018-05-01

    Within the mirror dark matter model and dissipative dark matter models in general, halos around galaxies with active star formation (including spirals and gas-rich dwarfs) are dynamical: they expand and contract in response to heating and cooling processes. Ordinary type II supernovae (SNe) can provide the dominant heat source, which is possible if kinetic mixing interaction exists with strength ɛ ˜10-9- 10-10 . Dissipative dark matter halos can be modeled as a fluid governed by Euler's equations. Around sufficiently isolated and unperturbed galaxies the halo can relax to a steady state configuration, where heating and cooling rates locally balance and hydrostatic equilibrium prevails. These steady state conditions can be solved to derive the physical properties, including the halo density and temperature profiles, for model galaxies. Here, we consider idealized spherically symmetric galaxies within the mirror dark particle model, as in our earlier paper [Phys. Rev. D 97, 043012 (2018), 10.1103/PhysRevD.97.043012], but we assume that the local halo heating in the SN vicinity dominates over radiative sources. With this assumption, physically interesting steady state solutions arise which we compute for a representative range of model galaxies. The end result is a rather simple description of the dark matter halo around idealized spherically symmetric systems, characterized in principle by only one parameter, with physical properties that closely resemble the empirical properties of disk galaxies.

  14. The gamma-ray-flux PDF from galactic halo substructure

    International Nuclear Information System (INIS)

    Lee, Samuel K.; Ando, Shin'ichiro; Kamionkowski, Marc

    2009-01-01

    One of the targets of the recently launched Fermi Gamma-ray Space Telescope is a diffuse gamma-ray background from dark-matter annihilation or decay in the Galactic halo. N-body simulations and theoretical arguments suggest that the dark matter in the Galactic halo may be clumped into substructure, rather than smoothly distributed. Here we propose the gamma-ray-flux probability distribution function (PDF) as a probe of substructure in the Galactic halo. We calculate this PDF for a phenomenological model of halo substructure and determine the regions of the substructure parameter space in which the PDF may be distinguished from the PDF for a smooth distribution of dark matter. In principle, the PDF allows a statistical detection of substructure, even if individual halos cannot be detected. It may also allow detection of substructure on the smallest microhalo mass scales, ∼ M ⊕ , for weakly-interacting massive particles (WIMPs). Furthermore, it may also provide a method to measure the substructure mass function. However, an analysis that assumes a typical halo substructure model and a conservative estimate of the diffuse background suggests that the substructure PDF may not be detectable in the lifespan of Fermi in the specific case that the WIMP is a neutralino. Nevertheless, for a large range of substructure, WIMP annihilation, and diffuse background models, PDF analysis may provide a clear signature of substructure

  15. Halo assembly bias and the tidal anisotropy of the local halo environment

    Science.gov (United States)

    Paranjape, Aseem; Hahn, Oliver; Sheth, Ravi K.

    2018-05-01

    We study the role of the local tidal environment in determining the assembly bias of dark matter haloes. Previous results suggest that the anisotropy of a halo's environment (i.e. whether it lies in a filament or in a more isotropic region) can play a significant role in determining the eventual mass and age of the halo. We statistically isolate this effect, using correlations between the large-scale and small-scale environments of simulated haloes at z = 0 with masses between 1011.6 ≲ (m/h-1 M⊙) ≲ 1014.9. We probe the large-scale environment, using a novel halo-by-halo estimator of linear bias. For the small-scale environment, we identify a variable αR that captures the tidal anisotropy in a region of radius R = 4R200b around the halo and correlates strongly with halo bias at fixed mass. Segregating haloes by αR reveals two distinct populations. Haloes in highly isotropic local environments (αR ≲ 0.2) behave as expected from the simplest, spherically averaged analytical models of structure formation, showing a negative correlation between their concentration and large-scale bias at all masses. In contrast, haloes in anisotropic, filament-like environments (αR ≳ 0.5) tend to show a positive correlation between bias and concentration at any mass. Our multiscale analysis cleanly demonstrates how the overall assembly bias trend across halo mass emerges as an average over these different halo populations, and provides valuable insights towards building analytical models that correctly incorporate assembly bias. We also discuss potential implications for the nature and detectability of galaxy assembly bias.

  16. What to expect from dynamical modelling of galactic haloes - II. The spherical Jeans equation

    Science.gov (United States)

    Wang, Wenting; Han, Jiaxin; Cole, Shaun; More, Surhud; Frenk, Carlos; Schaller, Matthieu

    2018-06-01

    The spherical Jeans equation (SJE) is widely used in dynamical modelling of the Milky Way (MW) halo potential. We use haloes and galaxies from the cosmological Millennium-II simulation and hydrodynamical APOSTLE (A Project of Simulations of The Local Environment) simulations to investigate the performance of the SJE in recovering the underlying mass profiles of MW mass haloes. The best-fitting halo mass and concentration parameters scatter by 25 per cent and 40 per cent around their input values, respectively, when dark matter particles are used as tracers. This scatter becomes as large as a factor of 3 when using star particles instead. This is significantly larger than the estimated statistical uncertainty associated with the use of the SJE. The existence of correlated phase-space structures that violate the steady-state assumption of the SJE as well as non-spherical geometries is the principal source of the scatter. Binary haloes show larger scatter because they are more aspherical in shape and have a more perturbed dynamical state. Our results confirm that the number of independent phase-space structures sets an intrinsic limiting precision on dynamical inferences based on the steady-state assumption. Modelling with a radius-independent velocity anisotropy, or using tracers within a limited outer radius, result in significantly larger scatter, but the ensemble-averaged measurement over the whole halo sample is approximately unbiased.

  17. THE ROCKSTAR PHASE-SPACE TEMPORAL HALO FINDER AND THE VELOCITY OFFSETS OF CLUSTER CORES

    International Nuclear Information System (INIS)

    Behroozi, Peter S.; Wechsler, Risa H.; Wu, Hao-Yi

    2013-01-01

    We present a new algorithm for identifying dark matter halos, substructure, and tidal features. The approach is based on adaptive hierarchical refinement of friends-of-friends groups in six phase-space dimensions and one time dimension, which allows for robust (grid-independent, shape-independent, and noise-resilient) tracking of substructure; as such, it is named ROCKSTAR (Robust Overdensity Calculation using K-Space Topologically Adaptive Refinement). Our method is massively parallel (up to 10 5 CPUs) and runs on the largest current simulations (>10 10 particles) with high efficiency (10 CPU hours and 60 gigabytes of memory required per billion particles analyzed). A previous paper has shown ROCKSTAR to have excellent recovery of halo properties; we expand on these comparisons with more tests and higher-resolution simulations. We show a significant improvement in substructure recovery compared to several other halo finders and discuss the theoretical and practical limits of simulations in this regard. Finally, we present results that demonstrate conclusively that dark matter halo cores are not at rest relative to the halo bulk or substructure average velocities and have coherent velocity offsets across a wide range of halo masses and redshifts. For massive clusters, these offsets can be up to 350 km s –1 at z = 0 and even higher at high redshifts. Our implementation is publicly available at http://code.google.com/p/rockstar.

  18. Puzzle of the folding potential on the nuclear halo reactions

    International Nuclear Information System (INIS)

    Ismail, Atef; Lee, Yen Cheong; Mahmoud, Z.M.M.

    2015-01-01

    Folding potentials of the elastic scattering drip-line nuclei at various incident energies is one method to study nuclear matter density distributions and nuclear radii. The nuclei with density distributions consisting of a bulk (core) and an outer layer (halo), dilute and spatially extended are called the halo nuclei caused for the weak particle binding. Several halo nuclei are studied and many potential candidates are identified. All the cross-sections of the elastic scattering for the drip-line nuclei 11 Be and 6 He, are calculated to understand the exotic properties of these nuclei starting from its structure, extended radius, nuclear size till the large total reaction cross-sections for these nuclei when it interacts with a stable target 12 C. (author)

  19. Toward a combined SAGE II-HALOE aerosol climatology: an evaluation of HALOE version 19 stratospheric aerosol extinction coefficient observations

    Directory of Open Access Journals (Sweden)

    L. W. Thomason

    2012-09-01

    Full Text Available Herein, the Halogen Occultation Experiment (HALOE aerosol extinction coefficient data is evaluated in the low aerosol loading period after 1996 as the first necessary step in a process that will eventually allow the production of a combined HALOE/SAGE II (Stratospheric Aerosol and Gas Experiment aerosol climatology of derived aerosol products including surface area density. Based on these analyses, it is demonstrated that HALOE's 3.46 μm is of good quality above 19 km and suitable for scientific applications above that altitude. However, it is increasingly suspect at lower altitudes and should not be used below 17 km under any circumstances after 1996. The 3.40 μm is biased by about 10% throughout the lower stratosphere due to the failure to clear NO2 but otherwise appears to be a high quality product down to 15 km. The 2.45 and 5.26 μm aerosol extinction coefficient measurements are clearly biased and should not be used for scientific applications after the most intense parts of the Pinatubo period. Many of the issues in the aerosol data appear to be related to either the failure to clear some interfering gas species or doing so poorly. For instance, it is clear that the 3.40 μm aerosol extinction coefficient measurements can be improved through the inclusion of an NO2 correction and could, in fact, end up as the highest quality overall HALOE aerosol extinction coefficient measurement. It also appears that the 2.45 and 5.26 μm channels may be improved by updating the Upper Atmosphere Pilot Database which is used as a resource for the removal of gas species otherwise not available from direct HALOE measurements. Finally, a simple model to demonstrate the promise of mixed visible/infrared aerosol extinction coefficient ensembles for the retrieval of bulk aerosol properties demonstrates that a combined HALOE/SAGE II aerosol climatology is feasible and may represent a substantial improvement over independently derived

  20. Toward a Combined SAGE II-HALOE Aerosol Climatology: An Evaluation of HALOE Version 19 Stratospheric Aerosol Extinction Coefficient Observations

    Science.gov (United States)

    Thomason, L. W.

    2012-01-01

    Herein, the Halogen Occultation Experiment (HALOE) aerosol extinction coefficient data is evaluated in the low aerosol loading period after 1996 as the first necessary step in a process that will eventually allow the production of a combined HALOE/SAGE II (Stratospheric Aerosol and Gas Experiment) aerosol climatology of derived aerosol products including surface area density. Based on these analyses, it is demonstrated that HALOE's 3.46 microns is of good quality above 19 km and suitable for scientific applications above that altitude. However, it is increasingly suspect at lower altitudes and should not be used below 17 km under any circumstances after 1996. The 3.40 microns is biased by about 10% throughout the lower stratosphere due to the failure to clear NO2 but otherwise appears to be a high quality product down to 15 km. The 2.45 and 5.26 micron aerosol extinction coefficient measurements are clearly biased and should not be used for scientific applications after the most intense parts of the Pinatubo period. Many of the issues in the aerosol data appear to be related to either the failure to clear some interfering gas species or doing so poorly. For instance, it is clear that the 3.40micronaerosol extinction coefficient measurements can be improved through the inclusion of an NO2 correction and could, in fact, end up as the highest quality overall HALOE aerosol extinction coefficient measurement. It also appears that the 2.45 and 5.26 micron channels may be improved by updating the Upper Atmosphere Pilot Database which is used as a resource for the removal of gas species otherwise not available from direct HALOE measurements. Finally, a simple model to demonstrate the promise of mixed visible/infrared aerosol extinction coefficient ensembles for the retrieval of bulk aerosol properties demonstrates that a combined HALOE/SAGE II aerosol climatology is feasible and may represent a substantial improvement over independently derived data sets.

  1. Structure study in the 19C halo

    International Nuclear Information System (INIS)

    Angelique, J.C.; Le Brun, C.; Liegard, E.; Marques, F.M.; Orr, N.A.

    1997-01-01

    The halo nuclei are nuclei which have one or more neutrons (or protons) with very weak binding energy what results in a spatial extension beyond the core containing the other nucleons. This important spatial extension is related via the Heisenberg principle to a narrow momentum distribution which signs the halo structure of the nucleus under consideration. To extend our understanding of this phenomenon an experiment has been carried out with the DEMON multidetector in the frame of the collaboration E133. The subject was the study of 19 C, a nucleus susceptible of having a neutron halo due to the low binding energy of its last neutron (S n = 240 ± 100 keV). The 19 C secondary beam was produced by fragmentation of a primary 40 Ar beam in a carbon target between the two solenoids of SISSI and than directed to a GANIL experimental room. A silicon detector telescope was used to detect the charged particles issued from the reaction of 19 C nuclei with the tantalum target while the DEMON detection modular assembly separated by four meters from the target allowed the neutron detection between 0 and 42 degrees. The first results of this analysis are favorable to a halo structure for this nucleus for the reaction channel in which the 18 C core is destroyed. We have compared the angular distribution of the neutrons of 19 C with those obtained from the breakup reactions of other exotic nuclei ( 21 N, 22 O and 24 F) but having no halo structure. A net different behavior of these nuclei indicate a clear difference in structure. Actually, the 19 C distribution corresponds to the superposition of a broad distribution and narrow distribution. The last one having width of 42 ± 12 MeV/c, compatible with an important spatial extension, corresponds to neutrons coming from the halo. It is argued that the model in which the halo neutron moves on a s orbital cannot described the structure of 19 C halo. A more adequate description would be a mixture of s and d orbitals which would also

  2. The effect of stellar feedback on a Milky Way-like galaxy and its gaseous halo

    NARCIS (Netherlands)

    Marasco, Antonino; Debattista, Victor P.; Fraternali, Filippo; van der Hulst, Thijs; Wadsley, James; Quinn, Thomas; Roškar, Rok

    We present the study of a set of N-body+smoothed particle hydrodynamics simulations of a Milky Way-like system produced by the radiative cooling of hot gas embedded in a dark matter halo. The galaxy and its gaseous halo evolve for 10 Gyr in isolation, which allows us to study how internal processes

  3. Non-Gaussian halo assembly bias

    International Nuclear Information System (INIS)

    Reid, Beth A.; Verde, Licia; Dolag, Klaus; Matarrese, Sabino; Moscardini, Lauro

    2010-01-01

    The strong dependence of the large-scale dark matter halo bias on the (local) non-Gaussianity parameter, f NL , offers a promising avenue towards constraining primordial non-Gaussianity with large-scale structure surveys. In this paper, we present the first detection of the dependence of the non-Gaussian halo bias on halo formation history using N-body simulations. We also present an analytic derivation of the expected signal based on the extended Press-Schechter formalism. In excellent agreement with our analytic prediction, we find that the halo formation history-dependent contribution to the non-Gaussian halo bias (which we call non-Gaussian halo assembly bias) can be factorized in a form approximately independent of redshift and halo mass. The correction to the non-Gaussian halo bias due to the halo formation history can be as large as 100%, with a suppression of the signal for recently formed halos and enhancement for old halos. This could in principle be a problem for realistic galaxy surveys if observational selection effects were to pick galaxies occupying only recently formed halos. Current semi-analytic galaxy formation models, for example, imply an enhancement in the expected signal of ∼ 23% and ∼ 48% for galaxies at z = 1 selected by stellar mass and star formation rate, respectively

  4. Galaxy and Mass Assembly (GAMA): halo formation times and halo assembly bias on the cosmic web

    Science.gov (United States)

    Tojeiro, Rita; Eardley, Elizabeth; Peacock, John A.; Norberg, Peder; Alpaslan, Mehmet; Driver, Simon P.; Henriques, Bruno; Hopkins, Andrew M.; Kafle, Prajwal R.; Robotham, Aaron S. G.; Thomas, Peter; Tonini, Chiara; Wild, Vivienne

    2017-09-01

    We present evidence for halo assembly bias as a function of geometric environment (GE). By classifying Galaxy and Mass Assembly (GAMA) galaxy groups as residing in voids, sheets, filaments or knots using a tidal tensor method, we find that low-mass haloes that reside in knots are older than haloes of the same mass that reside in voids. This result provides direct support to theories that link strong halo tidal interactions with halo assembly times. The trend with GE is reversed at large halo mass, with haloes in knots being younger than haloes of the same mass in voids. We find a clear signal of halo downsizing - more massive haloes host galaxies that assembled their stars earlier. This overall trend holds independently of GE. We support our analysis with an in-depth exploration of the L-Galaxies semi-analytic model, used here to correlate several galaxy properties with three different definitions of halo formation time. We find a complex relationship between halo formation time and galaxy properties, with significant scatter. We confirm that stellar mass to halo mass ratio, specific star formation rate (SFR) and mass-weighed age are reasonable proxies of halo formation time, especially at low halo masses. Instantaneous SFR is a poor indicator at all halo masses. Using the same semi-analytic model, we create mock spectral observations using complex star formation and chemical enrichment histories, which approximately mimic GAMA's typical signal-to-noise ratio and wavelength range. We use these mocks to assert how well potential proxies of halo formation time may be recovered from GAMA-like spectroscopic data.

  5. REVISITING SCALING RELATIONS FOR GIANT RADIO HALOS IN GALAXY CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Cassano, R.; Brunetti, G.; Venturi, T.; Kale, R. [INAF/IRA, via Gobetti 101, I-40129 Bologna (Italy); Ettori, S. [INAF/Osservatorio Astronomico di Bologna, via Ranzani 1, I-40127 Bologna (Italy); Giacintucci, S. [Department of Astronomy, University of Maryland, College Park, MD 20742-2421 (United States); Pratt, G. W. [Laboratoire AIM, IRFU/Service dAstrophysique-CEA/DSM-CNRS-Université Paris Diderot, Bât. 709, CEA-Saclay, F-91191 Gif-sur-Yvette Cedex (France); Dolag, K. [University Observatory Munich, Scheinerstr. 1, D-81679 Munich (Germany); Markevitch, M. [Astrophysics Science Division, NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2013-11-10

    Many galaxy clusters host megaparsec-scale radio halos, generated by ultrarelativistic electrons in the magnetized intracluster medium. Correlations between the synchrotron power of radio halos and the thermal properties of the hosting clusters were established in the last decade, including the connection between the presence of a halo and cluster mergers. The X-ray luminosity and redshift-limited Extended GMRT Radio Halo Survey provides a rich and unique dataset for statistical studies of the halos. We uniformly analyze the radio and X-ray data for the GMRT cluster sample, and use the new Planck Sunyaev-Zel'dovich (SZ) catalog to revisit the correlations between the power of radio halos and the thermal properties of galaxy clusters. We find that the radio power at 1.4 GHz scales with the cluster X-ray (0.1-2.4 keV) luminosity computed within R{sub 500} as P{sub 1.4}∼L{sup 2.1±0.2}{sub 500}. Our bigger and more homogenous sample confirms that the X-ray luminous (L{sub 500} > 5 × 10{sup 44} erg s{sup –1}) clusters branch into two populations—radio halos lie on the correlation, while clusters without radio halos have their radio upper limits well below that correlation. This bimodality remains if we excise cool cores from the X-ray luminosities. We also find that P{sub 1.4} scales with the cluster integrated SZ signal within R{sub 500}, measured by Planck, as P{sub 1.4}∼Y{sup 2.05±0.28}{sub 500}, in line with previous findings. However, contrary to previous studies that were limited by incompleteness and small sample size, we find that 'SZ-luminous' Y{sub 500} > 6 × 10{sup –5} Mpc{sup 2} clusters show a bimodal behavior for the presence of radio halos, similar to that in the radio-X-ray diagram. Bimodality of both correlations can be traced to clusters dynamics, with radio halos found exclusively in merging clusters. These results confirm the key role of mergers for the origin of giant radio halos, suggesting that they trigger the

  6. Investigating the Wave Nature of the Outer Envelope of Halo Coronal Mass Ejections

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Ryun-Young [College of Science, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States); Vourlidas, Angelos, E-mail: rkwon@gmu.edu [The Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723 (United States)

    2017-02-20

    We investigate the nature of the outer envelope of halo coronal mass ejections (H-CMEs) using multi-viewpoint observations from the Solar Terrestrial Relations Observatory-A , -B , and SOlar and Heliospheric Observatory coronagraphs. The 3D structure and kinematics of the halo envelopes and the driving CMEs are derived separately using a forward modeling method. We analyze three H-CMEs with peak speeds from 1355 to 2157 km s{sup −1}; sufficiently fast to drive shocks in the corona. We find that the angular widths of the halos range from 192° to 252°, while those of the flux ropes range between only 58° and 91°, indicating that the halos are waves propagating away from the CMEs. The halo widths are in agreement with widths of Extreme Ultraviolet (EUV) waves in the low corona further demonstrating the common origin of these structures. To further investigate the wave nature of the halos, we model their 3D kinematic properties with a linear fast magnetosonic wave model. The model is able to reproduce the position of the halo flanks with realistic coronal medium assumptions but fails closer to the CME nose. The CME halo envelope seems to arise from a driven wave (or shock) close to the CME nose, but it is gradually becoming a freely propagating fast magnetosonic wave at the flanks. This interpretation provides a simple unifying picture for CME halos, EUV waves, and the large longitudinal spread of solar energetic particles.

  7. Tune-Based Halo Diagnostics

    International Nuclear Information System (INIS)

    Cameron, Peter

    2003-01-01

    Tune-based halo diagnostics can be divided into two categories -- diagnostics for halo prevention, and diagnostics for halo measurement. Diagnostics for halo prevention are standard fare in accumulators, synchrotrons, and storage rings, and again can be divided into two categories -- diagnostics to measure the tune distribution (primarily to avoid resonances), and diagnostics to identify instabilities (which will not be discussed here). These diagnostic systems include kicked (coherent) tune measurement, phase-locked loop (PLL) tune measurement, Schottky tune measurement, beam transfer function (BTF) measurements, and measurement of transverse quadrupole mode envelope oscillations. We refer briefly to tune diagnostics used at RHIC and intended for the SNS, and then present experimental results. Tune-based diagnostics for halo measurement (as opposed to prevention) are considerably more difficult. We present one brief example of tune-based halo measurement

  8. The Galactic Halo in Mixed Dark Matter Cosmologies

    NARCIS (Netherlands)

    Anderhalden, D.; Diemand, J.; Bertone, G.; Macciò, A.V.; Schneider, A.

    2012-01-01

    A possible solution to the small scale problems of the cold dark matter (CDM) scenario is that the dark matter consists of two components, a cold and a warm one. We perform a set of high resolution simulations of the Milky Way halo varying the mass of the WDM particle (mWDM) and the cosmic dark

  9. Comparative study of the performance of columns packed with several new fine silica particles. Would the external roughness of the particles affect column properties?

    Science.gov (United States)

    Gritti, Fabrice; Guiochon, Georges

    2007-09-28

    We measured and compared the characteristics and performance of columns packed with particles of five different C(18)-bonded silica, 3 and 5 microm Luna, 3 microm Atlantis, 3.5 microm Zorbax, and 2.7 microm Halo. The average particle size of each material was derived from the SEM pictures of 200 individual particles. These pictures contrast the irregular morphology of the external surface of the Zorbax and Halo particles and the smooth surface of the Luna and Atlantis particles. In a wide range of mobile phase velocities (from 0.010 to 3 mL/min) and at ambient temperature, we measured the first and second central moments of the peaks of naphthalene, insulin, and bovine serum albumin (BSA). These moments were corrected for the contributions of the extra-column volumes to calculate the reduced HETPs. The C-terms of naphthalene and insulin are largest for the Halo and Zorbax materials and the A-term smallest for the Halo-packed column. The Halo column performs the best for the low molecular weight compound naphthalene (minimum reduced HETP, 1.4) but is not as good as the Atlantis or Luna columns for the large molecular weight compound insulin. The Zorbax column is the least efficient column because of its large C-term. The lowest sample diffusivity through these particles, alone, does not account for the results. It is most likely that the roughness of the external surface of the Halo and Zorbax particles limit the performance of these columns at high flow rates generating an unusually high film mass transfer resistance.

  10. Astrophysical dark matter: candidates from particle physics and detection possibilities

    International Nuclear Information System (INIS)

    Freese, K.

    1989-01-01

    In this talk, I will discuss the arguments that 50% to 90% of the matter in galaxies, including our own, is made of an unknown type of dark matter. I will review the reason why cosmologists believe Ω = 1 and illustrate the contrast with the limits on the amount of baryonic matter from element abundances in Big Bang Nucleosynthesis. Other arguments for nonbaryonic dark matter will also be discussed. Candidates for the dark matter from particle physics will be presented. I will focus on cold dark matter candidates known as WIMPs, weakly interacting massive (O(GeV)) particles. I will try to illustrate why these particles are interesting for astrophysics and outline ideas for cornering them. Detection possibilities for these particles include indirect detection, which takes advantage of the annihilation products of these particles in the galactic halo, the sun, or the earth. Direct detection via newly proposed cryogenic detectors must be sensitive to <∼ keV energy deposits. Annual modulation of the dark matter signal can be used as a signature for these halo particles. I hope to motivate the interest in these particles and discuss ideas for finding them

  11. A GIANT RADIO HALO IN THE MASSIVE AND MERGING CLUSTER ABELL 1351

    International Nuclear Information System (INIS)

    Giacintucci, S.; Venturi, T.; Cassano, R.; Dallacasa, D.; Brunetti, G.

    2009-01-01

    We report on the detection of diffuse radio emission in the X-ray luminous and massive galaxy cluster A 1351 (z = 0.322) using archival Very Large Array data at 1.4 GHz. Given its central location, morphology, and Mpc-scale extent, we classify the diffuse source as a giant radio halo. X-ray and weak lensing studies show A 1351 to be a system undergoing a major merger. The halo is associated with the most massive substructure. The presence of this source is explained assuming that merger-driven turbulence may re-accelerate high-energy particles in the intracluster medium and generate diffuse radio emission on the cluster scale. The position of A 1351 in the log P 1.4GHz -log L X plane is consistent with that of all other radio-halo clusters known to date, supporting a causal connection between the unrelaxed dynamical state of massive (>10 15 M sun ) clusters and the presence of giant radio halos.

  12. Aerosol characteristics and particle production in the upper troposphere over the Amazon Basin

    Science.gov (United States)

    Andreae, Meinrat O.; Afchine, Armin; Albrecht, Rachel; Amorim Holanda, Bruna; Artaxo, Paulo; Barbosa, Henrique M. J.; Borrmann, Stephan; Cecchini, Micael A.; Costa, Anja; Dollner, Maximilian; Fütterer, Daniel; Järvinen, Emma; Jurkat, Tina; Klimach, Thomas; Konemann, Tobias; Knote, Christoph; Krämer, Martina; Krisna, Trismono; Machado, Luiz A. T.; Mertes, Stephan; Minikin, Andreas; Pöhlker, Christopher; Pöhlker, Mira L.; Pöschl, Ulrich; Rosenfeld, Daniel; Sauer, Daniel; Schlager, Hans; Schnaiter, Martin; Schneider, Johannes; Schulz, Christiane; Spanu, Antonio; Sperling, Vinicius B.; Voigt, Christiane; Walser, Adrian; Wang, Jian; Weinzierl, Bernadett; Wendisch, Manfred; Ziereis, Helmut

    2018-01-01

    Airborne observations over the Amazon Basin showed high aerosol particle concentrations in the upper troposphere (UT) between 8 and 15 km altitude, with number densities (normalized to standard temperature and pressure) often exceeding those in the planetary boundary layer (PBL) by 1 or 2 orders of magnitude. The measurements were made during the German-Brazilian cooperative aircraft campaign ACRIDICON-CHUVA, where ACRIDICON stands for Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems and CHUVA is the acronym for Cloud Processes of the Main Precipitation Systems in Brazil: A Contribution to Cloud Resolving Modeling and to the GPM (global precipitation measurement), on the German High Altitude and Long Range Research Aircraft (HALO). The campaign took place in September-October 2014, with the objective of studying tropical deep convective clouds over the Amazon rainforest and their interactions with atmospheric trace gases, aerosol particles, and atmospheric radiation. Aerosol enhancements were observed consistently on all flights during which the UT was probed, using several aerosol metrics, including condensation nuclei (CN) and cloud condensation nuclei (CCN) number concentrations and chemical species mass concentrations. The UT particles differed sharply in their chemical composition and size distribution from those in the PBL, ruling out convective transport of combustion-derived particles from the boundary layer (BL) as a source. The air in the immediate outflow of deep convective clouds was depleted of aerosol particles, whereas strongly enhanced number concentrations of small particles ( 90 nm) particles in the UT, which consisted mostly of organic matter and nitrate and were very effective CCN. Our findings suggest a conceptual model, where production of new aerosol particles takes place in the continental UT from biogenic volatile organic material brought up by deep convection and converted to condensable

  13. Factors Controlling Pre-Columbian and Early Historic Maize Productivity in the American Southwest, Part 2: The Chaco Halo, Mesa Verde, Pajarito Plateau/Bandelier, and Zuni Archaeological Regions

    Science.gov (United States)

    Benson, L.V.

    2011-01-01

    Chemical and nutrient analyses of 471 soil samples from 161 sites within four archaeological regions (Pajarito Plateau/Bandelier, Zuni, Mesa Verde, and the Chaco Halo) were combined with historical climate data in order to evaluate the agricultural productivity of each region. In addition, maize productivity and field-life calculations were performed using organic-nitrogen (N) values from the upper 50 cm of soil in each region and a range (1-3%/year) of N-mineralization rates. The endmember values of this range were assumed representative of dry and wet climate states. With respect to precipitation and heat, the Pajarito Plateau area has excellent agricultural potential; the agricultural potentials of the Zuni and Mesa Verde regions are good; and the agricultural potential of the Chaco Halo is poor. Calculations of N mineralization and field life indicate that Morfield Valley in Mesa Verde should be able to provide 10 bu/ac of maize for decades (without the addition of N) when organic N-mineralization rates exceed 2%. Productivity and field-life potential decrease in the following order: Zuni, Mesa Verde, Bandelier, Chaco Halo. The Chaco Halo is very unproductive; e. g., 10 bushels per acre can be achieved within the Halo only from soils having the highest organic N concentration (third quartile) and which undergo the highest rate (3%) of N mineralization. ?? 2010 US Government.

  14. Studying generalised dark matter interactions with extended halo-independent methods

    Energy Technology Data Exchange (ETDEWEB)

    Kahlhoefer, Felix [DESY, Notkestraße 85,D-22607 Hamburg (Germany); Wild, Sebastian [Physik-Department T30d, Technische Universität München,James-Franck-Straße 1, D-85748 Garching (Germany)

    2016-10-20

    The interpretation of dark matter direct detection experiments is complicated by the fact that neither the astrophysical distribution of dark matter nor the properties of its particle physics interactions with nuclei are known in detail. To address both of these issues in a very general way we develop a new framework that combines the full formalism of non-relativistic effective interactions with state-of-the-art halo-independent methods. This approach makes it possible to analyse direct detection experiments for arbitrary dark matter interactions and quantify the goodness-of-fit independent of astrophysical uncertainties. We employ this method in order to demonstrate that the degeneracy between astrophysical uncertainties and particle physics unknowns is not complete. Certain models can be distinguished in a halo-independent way using a single ton-scale experiment based on liquid xenon, while other models are indistinguishable with a single experiment but can be separated using combined information from several target elements.

  15. Studying generalised dark matter interactions with extended halo-independent methods

    International Nuclear Information System (INIS)

    Kahlhoefer, Felix; Wild, Sebastian

    2016-07-01

    The interpretation of dark matter direct detection experiments is complicated by the fact that neither the astrophysical distribution of dark matter nor the properties of its particle physics interactions with nuclei are known in detail. To address both of these issues in a very general way we develop a new framework that combines the full formalism of non-relativistic effective interactions with state-of-the-art halo-independent methods. This approach makes it possible to analyse direct detection experiments for arbitrary dark matter interactions and quantify the goodness-of-fit independent of astrophysical uncertainties. We employ this method in order to demonstrate that the degeneracy between astrophysical uncertainties and particle physics unknowns is not complete. Certain models can be distinguished in a halo-independent way using a single ton-scale experiment based on liquid xenon, while other models are indistinguishable with a single experiment but can be separated using combined information from several target elements.

  16. Beam halo in high-intensity hadron linacs

    Energy Technology Data Exchange (ETDEWEB)

    Gerigk, F

    2006-12-21

    This document aims to cover the most relevant mechanisms for the development of beam halo in high-intensity hadron linacs. The introduction outlines the various applications of high-intensity linacs and it will explain why, in the case of the CERN Superconducting Proton Linac (SPL) study a linac was chosen to provide a high-power beam, rather than a different kind of accelerator. The basic equations, needed for the understanding of halo development are derived and employed to study the effects of initial and distributed mismatch on high-current beams. The basic concepts of the particle-core model, envelope modes, parametric resonances, the free-energy approach, and the idea of core-core resonances are introduced and extended to study beams in realistic linac lattices. The approach taken is to study the behavior of beams not only in simplified theoretical focusing structures but to highlight the beam dynamics in realistic accelerators. All effects which are described and derived with simplified analytic models, are tested in realistic lattices and are thus related to observable effects in linear accelerators. This approach involves the use of high-performance particle tracking codes, which are needed to simulate the behavior of the outermost particles in distributions of up to 100 million macro particles. In the end a set of design rules are established and their impact on the design of a typical high-intensity machine, the CERN SPL, is shown. The examples given in this document refer to two different design evolutions of the SPL study: the first conceptual design report (SPL I) and the second conceptual design report (SPL II). (orig.)

  17. The effect of J2 on equatorial and halo orbits around a magnetic planet

    International Nuclear Information System (INIS)

    Inarrea, Manuel; Lanchares, Victor; Palacian, Jesus F.; Pascual, Ana I.; Pablo Salas, J.; Yanguas, Patricia

    2009-01-01

    We calculate equatorial and halo orbits around a non-spherical (both oblate and prolate) magnetic planet. It is known that circular equatorial and halo orbits exist for a dust grain orbiting a spherical magnetic planet. However, the frequency of the orbit is constrained by the charge-mass ratio of the particle. If the non-sphericity of the planet is taken into account this constraint is modified or, in some cases, it disappears.

  18. The Angular Momentum of Baryons and Dark Matter Halos Revisited

    Science.gov (United States)

    Kimm, Taysun; Devriendt, Julien; Slyz, Adrianne; Pichon, Christophe; Kassin, Susan A.; Dubois, Yohan

    2011-01-01

    Recent theoretical studies have shown that galaxies at high redshift are fed by cold, dense gas filaments, suggesting angular momentum transport by gas differs from that by dark matter. Revisiting this issue using high-resolution cosmological hydrodynamics simulations with adaptive-mesh refinement (AMR), we find that at the time of accretion, gas and dark matter do carry a similar amount of specific angular momentum, but that it is systematically higher than that of the dark matter halo as a whole. At high redshift, freshly accreted gas rapidly streams into the central region of the halo, directly depositing this large amount of angular momentum within a sphere of radius r = 0.1R(sub vir). In contrast, dark matter particles pass through the central region unscathed, and a fraction of them ends up populating the outer regions of the halo (r/R(sub vir) > 0.1), redistributing angular momentum in the process. As a result, large-scale motions of the cosmic web have to be considered as the origin of gas angular momentum rather than its virialised dark matter halo host. This generic result holds for halos of all masses at all redshifts, as radiative cooling ensures that a significant fraction of baryons remain trapped at the centre of the halos. Despite this injection of angular momentum enriched gas, we predict an amount for stellar discs which is in fair agreement with observations at z=0. This arises because the total specific angular momentum of the baryons (gas and stars) remains close to that of dark matter halos. Indeed, our simulations indicate that any differential loss of angular momentum amplitude between the two components is minor even though dark matter halos continuously lose between half and two-thirds of their specific angular momentum modulus as they evolve. In light of our results, a substantial revision of the standard theory of disc formation seems to be required. We propose a new scenario where gas efficiently carries the angular momentum generated

  19. THE HALO MERGER RATE IN THE MILLENNIUM SIMULATION AND IMPLICATIONS FOR OBSERVED GALAXY MERGER FRACTIONS

    International Nuclear Information System (INIS)

    Genel, Shy; Genzel, Reinhard; Bouche, Nicolas; Naab, Thorsten; Sternberg, Amiel

    2009-01-01

    We have developed a new method to extract halo merger rates from the Millennium Simulation. First, by removing superfluous mergers that are artifacts of the standard friends-of-friends (FOF) halo identification algorithm, we find a lower merger rate compared to previous work. The reductions are more significant at lower redshifts and lower halo masses, and especially for minor mergers. Our new approach results in a better agreement with predictions from the extended Press-Schechter model. Second, we find that the FOF halo finder overestimates the halo mass by up to 50% for halos that are about to merge, which leads to an additional ∼20% overestimate of the merger rate. Therefore, we define halo masses by including only particles that are gravitationally bound to their FOF groups. We provide new best-fitting parameters for a global formula to account for these improvements. In addition, we extract the merger rate per progenitor halo, as well as per descendant halo. The merger rate per progenitor halo is the quantity that should be related to observed galaxy merger fractions when they are measured via pair counting. At low-mass/redshift, the merger rate increases moderately with mass and steeply with redshift. At high enough mass/redshift (for the rarest halos with masses a few times the 'knee' of the mass function), these trends break down, and the merger rate per progenitor halo decreases with mass and increases only moderately with redshift. Defining the merger rate per progenitor halo also allows us to quantify the rate at which halos are being accreted onto larger halos, in addition to the minor and major merger rates. We provide an analytic formula that converts any given merger rate per descendant halo into a merger rate per progenitor halo. Finally, we perform a direct comparison between observed merger fractions and the fraction of halos in the Millennium Simulation that have undergone a major merger during the recent dynamical friction time, and find a

  20. Isospin quantum number and structure of the excited states in halo nuclei. Halo-isomers

    International Nuclear Information System (INIS)

    Izosimov, I.N.

    2015-01-01

    It has been shown that isobar-analog (IAS), double isobar-analog (DIAS), configuration (CS), and double configuration states (DCS) can simultaneously have n-n, n-p, and p-p halo components in their wave functions. Differences in halo structure of the excited and ground states can result in the formation of isomers (halo-isomers). Both the Borromean and tango halo types can be observed for n-p configurations of atomic nuclei. The structure of the ground and excited states with different isospin quantum number in halo-like nuclei is discussed. B(Mλ) and B(Eλ) for γ-transitions in 6-8 Li, 8-10 Be, 8,10,11 B, 10-14 C, 13-17 N, 15-17,19 O, and 17 F are analyzed. Special attention is given to nuclei whose ground state does not exhibit halo structure, but the excited state may have one.

  1. Hot Gas Halos in Galaxies

    Science.gov (United States)

    Mulchaey, John

    Most galaxy formation models predict that massive low-redshift disk galaxies are embedded in extended hot halos of externally accreted gas. Such gas appears necessary to maintain ongoing star formation in isolated spirals like the Milky Way. To explain the large population of red galaxies in rich groups and clusters, most galaxy evolution models assume that these hot gas halos are stripped completely when a galaxy enters a denser environment. This simple model has been remarkably successful at reproducing many observed properties of galaxies. Although theoretical arguments suggest hot gas halos are an important component in galaxies, we know very little about this gas from an observational standpoint. In fact, previous observations have failed to detect soft X-ray emission from such halos in disk galaxies. Furthermore, the assumption that hot gas halos are stripped completely when a galaxy enters a group or cluster has not been verified. We propose to combine proprietary and archival XMM-Newton observations of galaxies in the field, groups and clusters to study how hot gas halos are impacted by environment. Our proposed program has three components: 1) The deepest search to date for a hot gas halo in a quiescent spiral galaxy. A detection will confirm a basic tenet of disk galaxy formation models, whereas a non-detection will seriously challenge these models and impose new constraints on the growth mode and feedback history of disk galaxies. 2) A detailed study of the hot gas halos properties of field early-type galaxies. As environmental processes such as stripping are not expected to be important in the field, a study of hot gas halos in this environment will allow us to better understand how feedback and other internal processes impact hot gas halos. 3) A study of hot gas halos in the outskirts of groups and clusters. By comparing observations with our suite of simulations we can begin to understand what role the stripping of hot gas halos plays in galaxy

  2. A Halo Event observed by the Hybrid Experiment at Mt. Chacaltaya

    International Nuclear Information System (INIS)

    Aoki, H.; Hashimoto, K.; Honda, K.; Inoue, N.; Kawasumi, N.; Martinic, N.; Navia O, C.; Ochi, N.; Ohmori, N.; Ohsawa, A.; Oliveira, C.; Shinozaki, K.; Tamada, M.; Ticona, R.; Tsushima, I.

    2006-01-01

    An experiment using an air shower array, a hadron calorimeter and an emulsion chamber is under way at Mt. Chacaltaya (5200 m, Bolivia). One of the highest energy events, having a halo (∼ 1 cm) in the centre of the family together with many γ-ray and hadron showers, is analyzed in detail. Available data for the event are on the halo (E halo =750 TeV) and on the high energy particles of electron/photon components by the emulsion chamber, and on the characteristics of the accompanied air shower (Ne=7.0x10 7 , s=0.59) by the air shower array. The diagram of the air shower size and the total energy of electron/photon components in the family, which shows discrepancy between the experimental data and simulated events (QGSJET code for nuclear collisions) in our previous reports, is discussed including the present event

  3. THE SCALING RELATIONS AND THE FUNDAMENTAL PLANE FOR RADIO HALOS AND RELICS OF GALAXY CLUSTERS

    International Nuclear Information System (INIS)

    Yuan, Z. S.; Han, J. L.; Wen, Z. L.

    2015-01-01

    Diffuse radio emission in galaxy clusters is known to be related to cluster mass and cluster dynamical state. We collect the observed fluxes of radio halos, relics, and mini-halos for a sample of galaxy clusters from the literature, and calculate their radio powers. We then obtain the values of cluster mass or mass proxies from previous observations, and also obtain the various dynamical parameters of these galaxy clusters from optical and X-ray data. The radio powers of relics, halos, and mini-halos are correlated with the cluster masses or mass proxies, as found by previous authors, while the correlations concerning giant radio halos are in general the strongest. We found that the inclusion of dynamical parameters as the third dimension can significantly reduce the data scatter for the scaling relations, especially for radio halos. We therefore conclude that the substructures in X-ray images of galaxy clusters and the irregular distributions of optical brightness of member galaxies can be used to quantitatively characterize the shock waves and turbulence in the intracluster medium responsible for re-accelerating particles to generate the observed diffuse radio emission. The power of radio halos and relics is correlated with cluster mass proxies and dynamical parameters in the form of a fundamental plane

  4. Revealing the Cosmic Web-dependent Halo Bias

    Science.gov (United States)

    Yang, Xiaohu; Zhang, Youcai; Lu, Tianhuan; Wang, Huiyuan; Shi, Feng; Tweed, Dylan; Li, Shijie; Luo, Wentao; Lu, Yi; Yang, Lei

    2017-10-01

    Halo bias is the one of the key ingredients of the halo models. It was shown at a given redshift to be only dependent, to the first order, on the halo mass. In this study, four types of cosmic web environments—clusters, filaments, sheets, and voids—are defined within a state-of-the-art high-resolution N-body simulation. Within these environments, we use both halo-dark matter cross correlation and halo-halo autocorrelation functions to probe the clustering properties of halos. The nature of the halo bias differs strongly between the four different cosmic web environments described here. With respect to the overall population, halos in clusters have significantly lower biases in the {10}11.0˜ {10}13.5 {h}-1 {M}⊙ mass range. In other environments, however, halos show extremely enhanced biases up to a factor 10 in voids for halos of mass ˜ {10}12.0 {h}-1 {M}⊙ . Such a strong cosmic web environment dependence in the halo bias may play an important role in future cosmological and galaxy formation studies. Within this cosmic web framework, the age dependency of halo bias is found to be only significant in clusters and filaments for relatively small halos ≲ {10}12.5 {h}-1 {M}⊙ .

  5. The effect of J{sub 2} on equatorial and halo orbits around a magnetic planet

    Energy Technology Data Exchange (ETDEWEB)

    Inarrea, Manuel [Universidad de la Rioja, Area de Fisica, 26006 Logrono (Spain); Lanchares, Victor [Dpto. de Matematicas y Computacion, CIEMUR: Centro de Investigacion en Informatica, Estadistica y Matematicas, Universidad de la Rioja, 26004 Logrono (Spain)], E-mail: vlancha@unirioja.es; Palacian, Jesus F. [Universidad Publica de Navarra, Departamento de Ingenieria Matematica e Informatica, 31006 Pamplona (Spain); Pascual, Ana I. [Dpto. de Matematicas y Computacion, CIEMUR: Centro de Investigacion en Informatica, Estadistica y Matematicas, Universidad de la Rioja, 26004 Logrono (Spain); Pablo Salas, J. [Universidad de la Rioja, Area de Fisica, 26006 Logrono (Spain); Yanguas, Patricia [Universidad Publica de Navarra, Departamento de Ingenieria Matematica e Informatica, 31006 Pamplona (Spain)

    2009-10-15

    We calculate equatorial and halo orbits around a non-spherical (both oblate and prolate) magnetic planet. It is known that circular equatorial and halo orbits exist for a dust grain orbiting a spherical magnetic planet. However, the frequency of the orbit is constrained by the charge-mass ratio of the particle. If the non-sphericity of the planet is taken into account this constraint is modified or, in some cases, it disappears.

  6. Brown dwarfs as dark galactic halos

    International Nuclear Information System (INIS)

    Adams, F.C.; Walker, T.P.

    1990-01-01

    The possibility that the dark matter in galactic halos can consist of brown dwarf stars is considered. The radiative signature for such halos consisting solely of brown dwarfs is calculated, and the allowed range of brown dwarf masses, the initial mass function (IMF), the stellar properties, and the density distribution of the galactic halo are discussed. The prediction emission from the halo is compared with existing observations. It is found that, for any IMF of brown dwarfs below the deuterium burning limit, brown dwarf halos are consistent with observations. Brown dwarf halos cannot, however, explain the recently observed near-IR background. It is shown that future satellite missions will either detect brown dwarf halos or place tight constraints on the allowed range of the IMF. 30 refs

  7. X-ray haloes around supernova remnants

    International Nuclear Information System (INIS)

    Morfill, G.E.; Aschenbach, B.

    1984-01-01

    Recent observations of the Cas-A supernova remnant have shown X-ray emissions not only from the interior, but also from a fainter 'halo' extending beyond what is normally regarded as the outer boundary, or shock front. The authors suggest that this may be due to the diffusion of energetic, charged particles out of the remnant giving rise to precursor structure of the type predicted by the theory of diffusive shock acceleration. If this is the case we are seeing thermal emission from ambient gas heated by compression and wave dissipation. (author)

  8. X-ray haloes around supernova remnants

    Energy Technology Data Exchange (ETDEWEB)

    Morfill, G.E.; Aschenbach, B. (Max-Planck-Institut fuer Physik und Astrophysik, Garching (Germany, F.R.). Inst. fuer Extraterrestrische Physik); Drury, L.O' C. (Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany, F.R.))

    1984-09-27

    Recent observations of the Cas-A supernova remnant have shown X-ray emissions not only from the interior, but also from a fainter 'halo' extending beyond what is normally regarded as the outer boundary, or shock front. The authors suggest that this may be due to the diffusion of energetic charged particles out of the remnant giving rise to precursor structure of the type predicted by the theory of diffusive shock acceleration. If this is the case we are seeing thermal emission from ambient gas heated by compression and wave dissipation.

  9. Effective description of dark matter self-interactions in small dark matter haloes

    International Nuclear Information System (INIS)

    Kummer, Janis

    2017-07-01

    Self-interacting dark matter may have striking astrophysical signatures, such as observ- able offsets between galaxies and dark matter in merging galaxy clusters. Numerical N-body simulations used to predict such observables typically treat the galaxies as collisionless test particles, a questionable assumption given that each galaxy is embedded in its own dark matter halo. To enable a more accurate treatment we develop an effective description of small dark matter haloes taking into account the two major effects due to dark matter self-scatterings: deceleration and evaporation. We point out that self-scatterings can have a sizeable impact on the trajectories of galaxies, diminishing the separation between galaxies and dark matter in merging clusters. This effect depends sensitively on the underlying particle physics, in particular the angular dependence of the self-scattering cross section, and cannot be predicted from the momentum transfer cross section alone.

  10. Earth-mass haloes and the emergence of NFW density profiles

    Science.gov (United States)

    Angulo, Raul E.; Hahn, Oliver; Ludlow, Aaron D.; Bonoli, Silvia

    2017-11-01

    We simulate neutralino dark matter (χDM) haloes from their initial collapse, at ˜ earth mass, up to a few percent solar. Our results confirm that the density profiles of the first haloes are described by a ˜r-1.5 power law. As haloes grow in mass, their density profiles evolve significantly. In the central regions, they become shallower and reach on average ˜r-1, the asymptotic form of an NFW profile. Using non-cosmological controlled simulations, we observe that temporal variations in the gravitational potential caused by major mergers lead to a shallowing of the inner profile. This transformation is more significant for shallower initial profiles and for a higher number of merging systems. Depending on the merger details, the resulting profiles can be shallower or steeper than NFW in their inner regions. Interestingly, mergers have a much weaker effect when the profile is given by a broken power law with an inner slope of -1 (such as NFW or Hernquist profiles). This offers an explanation for the emergence of NFW-like profiles: after their initial collapse, r-1.5 χDM haloes suffer copious major mergers, which progressively shallows the profile. Once an NFW-like profile is established, subsequent merging does not change the profile anymore. This suggests that halo profiles are not universal but rather a combination of (1) the physics of the formation of the microhaloes and (2) their early merger history - both set by the properties of the dark matter particle - as well as (3) the resilience of NFW-like profiles to perturbations.

  11. Shell closures, loosely bound structures, and halos in exotic nuclei

    International Nuclear Information System (INIS)

    Saxena, G.; Singh, D.

    2013-01-01

    Inspired by the recent experiments indicating doubly magic nuclei that lie near the drip-line and encouraged by the success of our relativistic mean-field (RMF) plus state-dependent BCS approach to the description of the ground-state properties of drip-line nuclei, we develop this approach further, across the entire periodic table, to explore magic nuclei, loosely bound structures, and halo formation in exotic nuclei. In our RMF+BCS approach, the single-particle continuum corresponding to the RMF is replaced by a set of discrete positive-energy states for the calculations of pairing energy. Detailed analysis of the single-particle spectrum, pairing energies, and densities of the nuclei predict the unusual proton shell closures at proton numbers Z = 6, 14, 16, 34, and unusual neutron shell closures at neutron numbers N = 6, 14, 16, 34, 40, 70, 112. Further, in several nuclei like the neutron-rich isotopes of Ca, Zr, Mo, etc., the gradual filling of lowlying single-particle resonant state together with weakly bound single-particle states lying close to the continuum threshold helps accommodate more neutrons but with an extremely small increase in the binding energy. This gives rise to the occurrence of loosely bound systems of neutron-rich nuclei with a large neutron-to-proton ratio. In general, the halo-like formation, irrespective of the existence of any resonant state, is seen to be due to the large spatial extension of the wave functions for the weakly bound single-particle states with low orbital angular momentum having very small or no centrifugal barriers.

  12. Shell closures, loosely bound structures, and halos in exotic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Saxena, G., E-mail: gauravphy@gmail.com [Govt. Women Engineering College, Department of Physics (India); Singh, D. [University of Rajasthan, Department of Physics (India)

    2013-04-15

    Inspired by the recent experiments indicating doubly magic nuclei that lie near the drip-line and encouraged by the success of our relativistic mean-field (RMF) plus state-dependent BCS approach to the description of the ground-state properties of drip-line nuclei, we develop this approach further, across the entire periodic table, to explore magic nuclei, loosely bound structures, and halo formation in exotic nuclei. In our RMF+BCS approach, the single-particle continuum corresponding to the RMF is replaced by a set of discrete positive-energy states for the calculations of pairing energy. Detailed analysis of the single-particle spectrum, pairing energies, and densities of the nuclei predict the unusual proton shell closures at proton numbers Z = 6, 14, 16, 34, and unusual neutron shell closures at neutron numbers N = 6, 14, 16, 34, 40, 70, 112. Further, in several nuclei like the neutron-rich isotopes of Ca, Zr, Mo, etc., the gradual filling of lowlying single-particle resonant state together with weakly bound single-particle states lying close to the continuum threshold helps accommodate more neutrons but with an extremely small increase in the binding energy. This gives rise to the occurrence of loosely bound systems of neutron-rich nuclei with a large neutron-to-proton ratio. In general, the halo-like formation, irrespective of the existence of any resonant state, is seen to be due to the large spatial extension of the wave functions for the weakly bound single-particle states with low orbital angular momentum having very small or no centrifugal barriers.

  13. The halo current in ASDEX Upgrade

    International Nuclear Information System (INIS)

    Pautasso, G.; Giannone, L.; Gruber, O.; Herrmann, A.; Maraschek, M.; Schuhbeck, K.H.

    2011-01-01

    Due to the complexity of the phenomena involved, a self-consistent physical model for the prediction of the halo current is not available. Therefore the ITER specifications of the spatial distribution and evolution of the halo current rely on empirical assumptions. This paper presents the results of an extensive analysis of the halo current measured in ASDEX Upgrade with particular emphasis on the evolution of the halo region, on the magnitude and time history of the halo current, and on the structure and duration of its toroidal and poloidal asymmetries. The effective length of the poloidal path of the halo current in the vessel is found to be rather insensitive to plasma parameters. Large values of the toroidally averaged halo current are observed in both vertical displacement events and centred disruptions but last a small fraction of the current quench; they coincide typically with a large but short-lived MHD event.

  14. The halo current in ASDEX Upgrade

    Science.gov (United States)

    Pautasso, G.; Giannone, L.; Gruber, O.; Herrmann, A.; Maraschek, M.; Schuhbeck, K. H.; ASDEX Upgrade Team

    2011-04-01

    Due to the complexity of the phenomena involved, a self-consistent physical model for the prediction of the halo current is not available. Therefore the ITER specifications of the spatial distribution and evolution of the halo current rely on empirical assumptions. This paper presents the results of an extensive analysis of the halo current measured in ASDEX Upgrade with particular emphasis on the evolution of the halo region, on the magnitude and time history of the halo current, and on the structure and duration of its toroidal and poloidal asymmetries. The effective length of the poloidal path of the halo current in the vessel is found to be rather insensitive to plasma parameters. Large values of the toroidally averaged halo current are observed in both vertical displacement events and centred disruptions but last a small fraction of the current quench; they coincide typically with a large but short-lived MHD event.

  15. Nuclear molecular halo: the ubiquitous occurrence of van der Waals molecular states near threshold in molecular, nuclear and particle physics

    International Nuclear Information System (INIS)

    Gai, Moshe

    1999-01-01

    The observation of large E1 strength near threshold in the electromagnetic dissociation of 11 Li poses a fundamental question: Is the large E1 strength due to the threshold or is it due to a low lying E1 state? Such molecular cluster states were observed in 18 O and in several nuclei near the drip line. We discuss the nature of the threshold effect as well as review the situation in Molecular (and Particle Physics) where such Molecular States are observed near the dissociation limit. We suggest that the situation in 11 Li is reminiscent of the argon-benzene molecule where the argon atom is loosely bound by a polarization (van der Waals) mechanism and thus leads to a very extended object lying near the dissociation limit. Such states are also suggested to dominate the structure of mesons [α 0 (980), f 0 (975)] and baryons [λ(1405)] with proposed Kaon molecular structure (Dalitz) near threshold. The inspection of such states throughout Physics allows us to gain insight into this phenomenon and suggest that a new collective Molecular Dipole Degree of Freedom plays a major role in the structure of hadrons (halo nuclei, mesons and baryons), and that quantitative tools such as the E1 Molecular Sum Rule are useful for elucidating the nature of the observed low lying E1 strength in halo nuclei. (author)

  16. Halo and spillover effect illustrations for selected beneficial medical devices and drugs

    Directory of Open Access Journals (Sweden)

    Brent D. Kerger

    2016-09-01

    Full Text Available Abstract Background Negative news media reports regarding potential health hazards of implanted medical devices and pharmaceuticals can lead to a ‘negative halo effect,’ a phenomenon whereby judgments about a product or product type can be unconsciously altered even though the scientific support is tenuous. To determine how a ‘negative halo effect’ may impact the rates of use and/or explantation of medical products, we analyzed the occurrence of such an effect on three implanted medical devices and one drug: 1 intrauterine contraceptive devices (IUDs; 2 silicone gel-filled breast implants (SGBI; 3 metal-on-metal hip implants (MoM; and 4 the drug Tysabri. Methods Data on IUD use from 1965 to 2008 were gathered from the Department of Health and Human Services Vital and Health Statistics and peer-reviewed publications. Data regarding SGBI implant and explantation rates from 1989 to 2012 were obtained from the Institute of Medicine and the American Society of Plastic Surgeons. MoM implant and explantation data were extracted from the England and Wales National Joint Registry and peer-reviewed publications. Tysabri patient data were reported by Elan Corporation or Biogen Idec Inc. Data trends for all products were compared with historical recall or withdrawal events and discussed in the context of public perceptions following such events. Results We found that common factors altered public risk perceptions and patterns of continued use. First, a negative halo effect may be driven by continuing patient anxiety despite positive clinical outcomes. Second, negative reports about one product can spill over to affect the use of dissimilar products in the same category. Third, a negative halo effect on an entire category of medical devices can be sustained regardless of the scientific findings pertaining to safety. Fourth, recovery of a product’s safety reputation and prevalent use may take decades in the U.S., even while these products may

  17. Disruption, vertical displacement event and halo current characterization for ITER

    International Nuclear Information System (INIS)

    Wesley, J.; Fujisawa, N.; Ortolani, S.; Putvinski, S.; Rosenbluth, M.N.

    1997-01-01

    Characteristics, in ITER, of plasma disruptions, vertical displacement events (VDEs) and the conversion of plasma current to runaway electron current in a disruption are presented. In addition to the well known potential of disruptions to produce rapid thermal energy and plasma current quenches and theoretical predictions that show the likelihood of ∼ 50% runaway conversion, an assessment of VDE and halo current characteristics in vertically elongated tokamaks shows that disruptions in ITER will result in VDEs with peak in-vessel halo currents of up to 50% of the predisruption plasma current and with toroidal peaking factors (peak/average current density) of up to 4:1. However, the assessment also shows an inverse correlation between the halo current magnitude and the toroidal peaking factor; hence, ITER VDEs can be expected to have a product of normalized halo current magnitude times toroidal peaking factor of ≤ 75%. (author). 3 refs, 2 figs, 3 tabs

  18. THE PSEUDO-EVOLUTION OF HALO MASS

    International Nuclear Information System (INIS)

    Diemer, Benedikt; Kravtsov, Andrey V.; More, Surhud

    2013-01-01

    A dark matter halo is commonly defined as a spherical overdensity of matter with respect to a reference density, such as the critical density or the mean matter density of the universe. Such definitions can lead to a spurious pseudo-evolution of halo mass simply due to redshift evolution of the reference density, even if its physical density profile remains constant over time. We estimate the amount of such pseudo-evolution of mass between z = 1 and 0 for halos identified in a large N-body simulation, and show that it accounts for almost the entire mass evolution of the majority of halos with M 200ρ-bar ≲ 10 12 h -1 M ☉ and can be a significant fraction of the apparent mass growth even for cluster-sized halos. We estimate the magnitude of the pseudo-evolution assuming that halo density profiles remain static in physical coordinates, and show that this simple model predicts the pseudo-evolution of halos identified in numerical simulations to good accuracy, albeit with significant scatter. We discuss the impact of pseudo-evolution on the evolution of the halo mass function and show that the non-evolution of the low-mass end of the halo mass function is the result of a fortuitous cancellation between pseudo-evolution and the absorption of small halos into larger hosts. We also show that the evolution of the low-mass end of the concentration-mass relation observed in simulations is almost entirely due to the pseudo-evolution of mass. Finally, we discuss the implications of our results for the interpretation of the evolution of various scaling relations between the observable properties of galaxies and galaxy clusters and their halo masses.

  19. Analysis of the beam halo in negative ion sources by using 3D3V PIC code

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, K., E-mail: kmiyamot@naruto-u.ac.jp [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Nishioka, S.; Goto, I.; Hatayama, A. [Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Hanada, M.; Kojima, A.; Hiratsuka, J. [Japan Atomic Energy Agency, 801-1 Mukouyama, Naka 319-0913 (Japan)

    2016-02-15

    The physical mechanism of the formation of the negative ion beam halo and the heat loads of the multi-stage acceleration grids are investigated with the 3D PIC (particle in cell) simulation. The following physical mechanism of the beam halo formation is verified: The beam core and the halo consist of the negative ions extracted from the center and the periphery of the meniscus, respectively. This difference of negative ion extraction location results in a geometrical aberration. Furthermore, it is shown that the heat loads on the first acceleration grid and the second acceleration grid are quantitatively improved compared with those for the 2D PIC simulation result.

  20. Scalable streaming tools for analyzing N-body simulations: Finding halos and investigating excursion sets in one pass

    Science.gov (United States)

    Ivkin, N.; Liu, Z.; Yang, L. F.; Kumar, S. S.; Lemson, G.; Neyrinck, M.; Szalay, A. S.; Braverman, V.; Budavari, T.

    2018-04-01

    Cosmological N-body simulations play a vital role in studying models for the evolution of the Universe. To compare to observations and make a scientific inference, statistic analysis on large simulation datasets, e.g., finding halos, obtaining multi-point correlation functions, is crucial. However, traditional in-memory methods for these tasks do not scale to the datasets that are forbiddingly large in modern simulations. Our prior paper (Liu et al., 2015) proposes memory-efficient streaming algorithms that can find the largest halos in a simulation with up to 109 particles on a small server or desktop. However, this approach fails when directly scaling to larger datasets. This paper presents a robust streaming tool that leverages state-of-the-art techniques on GPU boosting, sampling, and parallel I/O, to significantly improve performance and scalability. Our rigorous analysis of the sketch parameters improves the previous results from finding the centers of the 103 largest halos (Liu et al., 2015) to ∼ 104 - 105, and reveals the trade-offs between memory, running time and number of halos. Our experiments show that our tool can scale to datasets with up to ∼ 1012 particles while using less than an hour of running time on a single GPU Nvidia GTX 1080.

  1. The CMS Beam Halo Monitor Detector System

    CERN Document Server

    CMS Collaboration

    2015-01-01

    A new Beam Halo Monitor (BHM) detector system has been installed in the CMS cavern to measure the machine-induced background (MIB) from the LHC. This background originates from interactions of the LHC beam halo with the final set of collimators before the CMS experiment and from beam gas interactions. The BHM detector uses the directional nature of Cherenkov radiation and event timing to select particles coming from the direction of the beam and to suppress those originating from the interaction point. It consists of 40 quartz rods, placed on each side of the CMS detector, coupled to UV sensitive PMTs. For each bunch crossing the PMT signal is digitized by a charge integrating ASIC and the arrival time of the signal is recorded. The data are processed in real time to yield a precise measurement of per-bunch-crossing background rate. This measurement is made available to CMS and the LHC, to provide real-time feedback on the beam quality and to improve the efficiency of data taking. In this talk we will describ...

  2. DEEP 1.4 GHz FOLLOW-UP OF THE STEEP SPECTRUM RADIO HALO IN A521

    International Nuclear Information System (INIS)

    Dallacasa, D.; Macario, G.; Setti, G.; Brunetti, G.; Cassano, R.; Venturi, T.; Giacintucci, S.; Kassim, N. E.; Lane, W.

    2009-01-01

    In a recent paper, we reported on the discovery of a radio halo with very steep spectrum in the merging galaxy cluster A521 through observations with the Giant Metrewave Radio Telescope. We showed that the steep spectrum of the halo is inconsistent with a secondary origin of the relativistic electrons and supports a turbulent acceleration scenario. At that time, due to the steep spectrum, the available observations at 1.4 GHz (archival NRAO-Very Large Array-VLA-CnB-configuration data) were not adequate to accurately determine the flux density associated with the radio halo. In this paper, we report the detection at 1.4 GHz of the radio halo in A521 using deep VLA observations in the D configuration. We use these new data to confirm the steep spectrum of the object. We consider A521 the prototype of a population of very steep spectrum halos. This population is predicted assuming that turbulence plays an important role in the acceleration of relativistic particles in galaxy clusters, and we expect it will be unveiled by future surveys at low frequencies with the LOFAR and LWA radio telescopes.

  3. Assessing Compatibility of Direct Detection Data: Halo-Independent Global Likelihood Analyses

    CERN Document Server

    Gelmini, Graciela B.

    2016-10-18

    We present two different halo-independent methods utilizing a global maximum likelihood that can assess the compatibility of dark matter direct detection data given a particular dark matter model. The global likelihood we use is comprised of at least one extended likelihood and an arbitrary number of Poisson or Gaussian likelihoods. In the first method we find the global best fit halo function and construct a two sided pointwise confidence band, which can then be compared with those derived from the extended likelihood alone to assess the joint compatibility of the data. In the second method we define a "constrained parameter goodness-of-fit" test statistic, whose $p$-value we then use to define a "plausibility region" (e.g. where $p \\geq 10\\%$). For any halo function not entirely contained within the plausibility region, the level of compatibility of the data is very low (e.g. $p < 10 \\%$). As an example we apply these methods to CDMS-II-Si and SuperCDMS data, assuming dark matter particles with elastic s...

  4. Halo modelling in chameleon theories

    Energy Technology Data Exchange (ETDEWEB)

    Lombriser, Lucas; Koyama, Kazuya [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth, PO1 3FX (United Kingdom); Li, Baojiu, E-mail: lucas.lombriser@port.ac.uk, E-mail: kazuya.koyama@port.ac.uk, E-mail: baojiu.li@durham.ac.uk [Institute for Computational Cosmology, Ogden Centre for Fundamental Physics, Department of Physics, University of Durham, Science Laboratories, South Road, Durham, DH1 3LE (United Kingdom)

    2014-03-01

    We analyse modelling techniques for the large-scale structure formed in scalar-tensor theories of constant Brans-Dicke parameter which match the concordance model background expansion history and produce a chameleon suppression of the gravitational modification in high-density regions. Thereby, we use a mass and environment dependent chameleon spherical collapse model, the Sheth-Tormen halo mass function and linear halo bias, the Navarro-Frenk-White halo density profile, and the halo model. Furthermore, using the spherical collapse model, we extrapolate a chameleon mass-concentration scaling relation from a ΛCDM prescription calibrated to N-body simulations. We also provide constraints on the model parameters to ensure viability on local scales. We test our description of the halo mass function and nonlinear matter power spectrum against the respective observables extracted from large-volume and high-resolution N-body simulations in the limiting case of f(R) gravity, corresponding to a vanishing Brans-Dicke parameter. We find good agreement between the two; the halo model provides a good qualitative description of the shape of the relative enhancement of the f(R) matter power spectrum with respect to ΛCDM caused by the extra attractive gravitational force but fails to recover the correct amplitude. Introducing an effective linear power spectrum in the computation of the two-halo term to account for an underestimation of the chameleon suppression at intermediate scales in our approach, we accurately reproduce the measurements from the N-body simulations.

  5. Halo modelling in chameleon theories

    International Nuclear Information System (INIS)

    Lombriser, Lucas; Koyama, Kazuya; Li, Baojiu

    2014-01-01

    We analyse modelling techniques for the large-scale structure formed in scalar-tensor theories of constant Brans-Dicke parameter which match the concordance model background expansion history and produce a chameleon suppression of the gravitational modification in high-density regions. Thereby, we use a mass and environment dependent chameleon spherical collapse model, the Sheth-Tormen halo mass function and linear halo bias, the Navarro-Frenk-White halo density profile, and the halo model. Furthermore, using the spherical collapse model, we extrapolate a chameleon mass-concentration scaling relation from a ΛCDM prescription calibrated to N-body simulations. We also provide constraints on the model parameters to ensure viability on local scales. We test our description of the halo mass function and nonlinear matter power spectrum against the respective observables extracted from large-volume and high-resolution N-body simulations in the limiting case of f(R) gravity, corresponding to a vanishing Brans-Dicke parameter. We find good agreement between the two; the halo model provides a good qualitative description of the shape of the relative enhancement of the f(R) matter power spectrum with respect to ΛCDM caused by the extra attractive gravitational force but fails to recover the correct amplitude. Introducing an effective linear power spectrum in the computation of the two-halo term to account for an underestimation of the chameleon suppression at intermediate scales in our approach, we accurately reproduce the measurements from the N-body simulations

  6. Large-scale structure after COBE: Peculiar velocities and correlations of cold dark matter halos

    Science.gov (United States)

    Zurek, Wojciech H.; Quinn, Peter J.; Salmon, John K.; Warren, Michael S.

    1994-01-01

    Large N-body simulations on parallel supercomputers allow one to simultaneously investigate large-scale structure and the formation of galactic halos with unprecedented resolution. Our study shows that the masses as well as the spatial distribution of halos on scales of tens of megaparsecs in a cold dark matter (CDM) universe with the spectrum normalized to the anisotropies detected by Cosmic Background Explorer (COBE) is compatible with the observations. We also show that the average value of the relative pairwise velocity dispersion sigma(sub v) - used as a principal argument against COBE-normalized CDM models-is significantly lower for halos than for individual particles. When the observational methods of extracting sigma(sub v) are applied to the redshift catalogs obtained from the numerical experiments, estimates differ significantly between different observation-sized samples and overlap observational estimates obtained following the same procedure.

  7. Implementation of a 3D halo neutral model in the TRANSP code and application to projected NSTX-U plasmas

    Science.gov (United States)

    Medley, S. S.; Liu, D.; Gorelenkova, M. V.; Heidbrink, W. W.; Stagner, L.

    2016-02-01

    A 3D halo neutral code developed at the Princeton Plasma Physics Laboratory and implemented for analysis using the TRANSP code is applied to projected National Spherical Torus eXperiment-Upgrade (NSTX-U plasmas). The legacy TRANSP code did not handle halo neutrals properly since they were distributed over the plasma volume rather than remaining in the vicinity of the neutral beam footprint as is actually the case. The 3D halo neutral code uses a ‘beam-in-a-box’ model that encompasses both injected beam neutrals and resulting halo neutrals. Upon deposition by charge exchange, a subset of the full, one-half and one-third beam energy components produce first generation halo neutrals that are tracked through successive generations until an ionization event occurs or the descendant halos exit the box. The 3D halo neutral model and neutral particle analyzer (NPA) simulator in the TRANSP code have been benchmarked with the Fast-Ion D-Alpha simulation (FIDAsim) code, which provides Monte Carlo simulations of beam neutral injection, attenuation, halo generation, halo spatial diffusion, and photoemission processes. When using the same atomic physics database, TRANSP and FIDAsim simulations achieve excellent agreement on the spatial profile and magnitude of beam and halo neutral densities and the NPA energy spectrum. The simulations show that the halo neutral density can be comparable to the beam neutral density. These halo neutrals can double the NPA flux, but they have minor effects on the NPA energy spectrum shape. The TRANSP and FIDAsim simulations also suggest that the magnitudes of beam and halo neutral densities are relatively sensitive to the choice of the atomic physics databases.

  8. Implementation of a 3D halo neutral model in the TRANSP code and application to projected NSTX-U plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Medley, S. S. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Liu, D. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Univ. of California, Irvine, CA (United States). Dept. of Physics and Astronomy; Gorelenkova, M. V. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Heidbrink, W. W. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Univ. of California, Irvine, CA (United States). Dept. of Physics and Astronomy; Stagner, L. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Univ. of California, Irvine, CA (United States). Dept. of Physics and Astronomy

    2016-01-12

    A 3D halo neutral code developed at the Princeton Plasma Physics Laboratory and implemented for analysis using the TRANSP code is applied to projected National Spherical Torus eXperiment-Upgrade (NSTX-U plasmas). The legacy TRANSP code did not handle halo neutrals properly since they were distributed over the plasma volume rather than remaining in the vicinity of the neutral beam footprint as is actually the case. The 3D halo neutral code uses a 'beam-in-a-box' model that encompasses both injected beam neutrals and resulting halo neutrals. Upon deposition by charge exchange, a subset of the full, one-half and one-third beam energy components produce first generation halo neutrals that are tracked through successive generations until an ionization event occurs or the descendant halos exit the box. The 3D halo neutral model and neutral particle analyzer (NPA) simulator in the TRANSP code have been benchmarked with the Fast-Ion D-Alpha simulation (FIDAsim) code, which provides Monte Carlo simulations of beam neutral injection, attenuation, halo generation, halo spatial diffusion, and photoemission processes. When using the same atomic physics database, TRANSP and FIDAsim simulations achieve excellent agreement on the spatial profile and magnitude of beam and halo neutral densities and the NPA energy spectrum. The simulations show that the halo neutral density can be comparable to the beam neutral density. These halo neutrals can double the NPA flux, but they have minor effects on the NPA energy spectrum shape. The TRANSP and FIDAsim simulations also suggest that the magnitudes of beam and halo neutral densities are relatively sensitive to the choice of the atomic physics databases.

  9. The phase-space structure of a dark-matter halo: Implications for dark-matter direct detection experiments

    International Nuclear Information System (INIS)

    Helmi, Amina; White, Simon D.M.; Springel, Volker

    2002-01-01

    We study the phase-space structure of a dark-matter halo formed in a high resolution simulation of a ΛCDM cosmology. Our goal is to quantify how much substructure is left over from the inhomogeneous growth of the halo, and how it may affect the signal in experiments aimed at detecting the dark matter particles directly. If we focus on the equivalent of 'solar vicinity', we find that the dark matter is smoothly distributed in space. The probability of detecting particles bound within dense lumps of individual mass less than 10 7 M · h -1 is small, less than 10 -2 . The velocity ellipsoid in the solar neighborhood deviates only slightly from a multivariate Gaussian, and can be thought of as a superposition of thousands of kinematically cold streams. The motions of the most energetic particles are, however, strongly clumped and highly anisotropic. We conclude that experiments may safely assume a smooth multivariate Gaussian distribution to represent the kinematics of dark-matter particles in the solar neighborhood. Experiments sensitive to the direction of motion of the incident particles could exploit the expected anisotropy to learn about the recent merging history of our Galaxy

  10. ANGULAR MOMENTUM ACQUISITION IN GALAXY HALOS

    International Nuclear Information System (INIS)

    Stewart, Kyle R.; Brooks, Alyson M.; Bullock, James S.; Maller, Ariyeh H.; Diemand, Jürg; Wadsley, James; Moustakas, Leonidas A.

    2013-01-01

    We use high-resolution cosmological hydrodynamic simulations to study the angular momentum acquisition of gaseous halos around Milky-Way-sized galaxies. We find that cold mode accreted gas enters a galaxy halo with ∼70% more specific angular momentum than dark matter averaged over cosmic time (though with a very large dispersion). In fact, we find that all matter has a higher spin parameter when measured at accretion than when averaged over the entire halo lifetime, and is well characterized by λ ∼ 0.1, at accretion. Combined with the fact that cold flow gas spends a relatively short time (1-2 dynamical times) in the halo before sinking to the center, this naturally explains why cold flow halo gas has a specific angular momentum much higher than that of the halo and often forms ''cold flow disks.'' We demonstrate that the higher angular momentum of cold flow gas is related to the fact that it tends to be accreted along filaments.

  11. RHAPSODY. I. STRUCTURAL PROPERTIES AND FORMATION HISTORY FROM A STATISTICAL SAMPLE OF RE-SIMULATED CLUSTER-SIZE HALOS

    International Nuclear Information System (INIS)

    Wu, Hao-Yi; Hahn, Oliver; Wechsler, Risa H.; Mao, Yao-Yuan; Behroozi, Peter S.

    2013-01-01

    We present the first results from the RHAPSODY cluster re-simulation project: a sample of 96 'zoom-in' simulations of dark matter halos of 10 14.8±0.05 h –1 M ☉ , selected from a 1 h –3 Gpc 3 volume. This simulation suite is the first to resolve this many halos with ∼5 × 10 6 particles per halo in the cluster mass regime, allowing us to statistically characterize the distribution of and correlation between halo properties at fixed mass. We focus on the properties of the main halos and how they are affected by formation history, which we track back to z = 12, over five decades in mass. We give particular attention to the impact of the formation history on the density profiles of the halos. We find that the deviations from the Navarro-Frenk-White (NFW) model and the Einasto model depend on formation time. Late-forming halos tend to have considerable deviations from both models, partly due to the presence of massive subhalos, while early-forming halos deviate less but still significantly from the NFW model and are better described by the Einasto model. We find that the halo shapes depend only moderately on formation time. Departure from spherical symmetry impacts the density profiles through the anisotropic distribution of massive subhalos. Further evidence of the impact of subhalos is provided by analyzing the phase-space structure. A detailed analysis of the properties of the subhalo population in RHAPSODY is presented in a companion paper.

  12. Probing the shape and internal structure of dark matter haloes with the halo-shear-shear three-point correlation function

    Science.gov (United States)

    Shirasaki, Masato; Yoshida, Naoki

    2018-04-01

    Weak lensing three-point statistics are powerful probes of the structure of dark matter haloes. We propose to use the correlation of the positions of galaxies with the shapes of background galaxy pairs, known as the halo-shear-shear correlation (HSSC), to measure the mean halo ellipticity and the abundance of subhaloes in a statistical manner. We run high-resolution cosmological N-body simulations and use the outputs to measure the HSSC for galaxy haloes and cluster haloes. Non-spherical haloes cause a characteristic azimuthal variation of the HSSC, and massive subhaloes in the outer region near the virial radius contribute to ˜ 10 per cent of the HSSC amplitude. Using the HSSC and its covariance estimated from our N-body simulations, we make forecast for constraining the internal structure of dark matter haloes with future galaxy surveys. With 1000 galaxy groups with mass greater than 1013.5 h-1M⊙, the average halo ellipticity can be measured with an accuracy of 10 percent. A spherical, smooth mass distribution can be ruled out at a ˜5σ significance level. The existence of subhaloes whose masses are in 1-10 percent of the main halo mass can be detected with ˜104 galaxies/clusters. We conclude that the HSSC provides valuable information on the structure of dark haloes and hence on the nature of dark matter.

  13. A THEORY OF CONSUMER’S PERCEIVED RISK UNDER THE HALO EFFECT

    Directory of Open Access Journals (Sweden)

    Dorian-Laurenţiu FLOREA

    2015-06-01

    Full Text Available Despite being largely tackled by a manifold of sciences, perceived risk is still a rather unclear concept concerning its formation and update. In today’s economy, where poor purchase decisions are so easy to make, consumers have developed mental shields residing in actions based on perceived risk. This paper develops and tests a theory of perceived risk formation under the halo effect, based on correlation analysis in two forms: rankings individuals on their contribution to the correlations increase and partial correlations. Both internal and external halo effects were found, emerging from the perceived risk component – functional risk, financial risk, social risk, physical risk, psychological risk and time risk –, brand attitude, product category attitude, consumer’s regret, others’ regret expressed through word-of-mouth, recency, and awareness of awareness. The intricate halo that was revealed needs further attention from the scientific community in order to better delimit halo sources and, eventually, to explain its variability.

  14. Caustic ring model of the Milky Way halo

    International Nuclear Information System (INIS)

    Duffy, L. D.; Sikivie, P.

    2008-01-01

    We present a proposal for the full phase-space distribution of the Milky Way halo. The model is axially and reflection symmetric and its time evolution is self-similar. It describes the halo as a set of discrete dark matter flows with stated densities and velocity vectors everywhere. We first discuss the general conditions under which the time evolution of a cold collisionless self-gravitating fluid is self-similar, and show that symmetry is not necessary for self-similarity. When spherical symmetry is imposed, the model is the same as described by Fillmore and Goldreich, and by Bertschinger, twenty-three years ago. The spherically symmetric model depends on one dimensionless parameter ε and two dimensionful parameters. We set ε=0.3, a value consistent with the slope of the power spectrum of density perturbations on galactic scales. The dimensionful parameters are determined by the galactic rotation velocity (220 km/s) at the position of the Sun and by the age of the Galaxy (13.7 Gyr). The properties of the outer caustics are derived in the spherically symmetric model. The structure of the inner halo depends on the angular momentum distribution of the dark matter particles. We assume that distribution to be axial and reflection symmetric, and dominated by net overall rotation. The inner caustics are rings whose radii are determined in terms of a single additional parameter j max . We summarize the observational evidence in support of the model. The evidence is consistent with j max =0.18 in Concordance cosmology, equivalent to j max,old =0.26 in Einstein-de Sitter cosmology. We give formulas to estimate the flow densities and velocity vectors anywhere in the Milky Way halo. The properties of the first 40 flows at the location of the Earth are listed.

  15. Halo structure of strange particles in nuclei

    International Nuclear Information System (INIS)

    Akaishi, Yoshinori; Yamazaki, Toshimitsu.

    1997-01-01

    Some characteristic behaviors of hyperons in nuclei which have recently been revealed experimentally and theoretically are discussed with the emphasis on the repulsive part of the hyperon-nucleus interaction. The observed Σ 4 He nucleus is a bound state with J π = 0 + and T ≅ 1/2. Its nucleus-Σ potential derived from a realistic ΣN interaction is characterized by inner repulsion and a strong Lane term, which play important roles in forming the Σ-hypernuclear bound state. In 208 Pb a typical Coulomb-assisted bound state is expected, where Σ is trapped in the surface region by the nucleus-Σ potential with the aid of Coulomb and centrifugal interactions. In the double-strangeness (S=-2) sector, there is a possibility that the lightest double-Λ hypernucleus ΛΛ 4 H is abundantly populated by stopping Ξ - on 4 He. Its formation branching amounts to about 15%. A stopped Ξ - on 9 Be will also produce efficiently a variety of double-Λ hyperfragments. Discrete spectra of weak-decay pions from the fragments will provide a means of mass spectroscopy of double-Λ hypernuclei. In the S=-2 five-body system an excited state Ξ 5 H is predicted to appear with 'strangeness halo' and the ground state ΛΛ 5 H with almost pure ΛΛ component. (author)

  16. How do stars affect ψDM halos?

    Science.gov (United States)

    Chan, James H. H.; Schive, Hsi-Yu; Woo, Tak-Pong; Chiueh, Tzihong

    2018-04-01

    Wave dark matter (ψDM) predicts a compact soliton core and a granular halo in every galaxy. This work presents the first simulation study of an elliptical galaxy by including both stars and ψDM, focusing on the systematic changes of the central soliton and halo granules. With the addition of stars in the inner halo, we find the soliton core consistently becomes more prominent by absorbing mass from the host halo than that without stars, and the halo granules become "non-isothermal", "hotter" in the inner halo and "cooler" in the outer halo, as opposed to the isothermal halo in pure ψDM cosmological simulations. Moreover, the composite (star+ψDM) mass density is found to follow a r-2 isothermal profile near the half-light radius in most cases. Most striking is the velocity dispersion of halo stars that increases rapidly toward the galactic center by a factor of at least 2 inside the half-light radius caused by the deepened soliton gravitational potential, a result that compares favorably with observations of elliptical galaxies and bulges in spiral galaxies. However in some rare situations we find a phase segregation turning a compact distribution of stars into two distinct populations with high and very low velocity dispersions; while the high-velocity component mostly resides in the halo, the very low-velocity component is bound to the interior of the soliton core, resembling stars in faint dwarf spheroidal galaxies.

  17. Characteristic time for halo current growth and rotation

    Energy Technology Data Exchange (ETDEWEB)

    Boozer, Allen H., E-mail: ahb17@columbia.edu [Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States)

    2015-10-15

    A halo current flows for part of its path through the plasma edge and for part through the chamber walls and during tokamak disruptions can be as large as tenths of the plasma current. The primary interest in halo currents is the large force that they can exert on machine components particularly if the toriodal rotation of the halo current resonates with a natural oscillation frequency of the tokamak device. Halo currents arise when required to slow down the growth of a kink that is too unstable to be stabilized by the chamber walls. The width of the current channel in the halo plasma is comparable to the amplitude of the kink, and the halo current grows linearly, not exponentially, in time. The current density in the halo is comparable to that of the main plasma body. The rocket force due to plasma flowing out of the halo and recombining on the chamber walls can cause the non-axisymmetric magnetic structure produced by the kink to rotate toroidally at a speed comparable to the halo speed of sound. Gerhardt's observations of the halo current in NSTX shot 141 687 [Nucl. Fusion 53, 023005 (2013)] illustrate many features of the theory of halo currents and are discussed as a summary of the theory.

  18. ULTRAVIOLET HALOS AROUND SPIRAL GALAXIES. I. MORPHOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Hodges-Kluck, Edmund; Cafmeyer, Julian; Bregman, Joel N., E-mail: hodgeskl@umich.edu [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States)

    2016-12-10

    We examine ultraviolet halos around a sample of highly inclined galaxies within 25 Mpc to measure their morphology and luminosity. Despite contamination from galactic light scattered into the wings of the point-spread function, we find that ultraviolet (UV) halos occur around each galaxy in our sample. Around most galaxies the halos form a thick, diffuse disk-like structure, but starburst galaxies with galactic superwinds have qualitatively different halos that are more extensive and have filamentary structure. The spatial coincidence of the UV halos above star-forming regions, the lack of consistent association with outflows or extraplanar ionized gas, and the strong correlation between the halo and galaxy UV luminosity suggest that the UV light is an extragalactic reflection nebula. UV halos may thus represent 10{sup 6}–10{sup 7} M {sub ⊙} of dust within 2–10 kpc of the disk, whose properties may change with height in starburst galaxies.

  19. MODIFIED GRAVITY SPINS UP GALACTIC HALOS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jounghun [Astronomy Program, Department of Physics and Astronomy, FPRD, Seoul National University, Seoul 151-747 (Korea, Republic of); Zhao, Gong-Bo [National Astronomy Observatories, Chinese Academy of Science, Beijing 100012 (China); Li, Baojiu [Institute of Computational Cosmology, Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Koyama, Kazuya, E-mail: jounghun@astro.snu.ac.kr [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth, PO1 3FX (United Kingdom)

    2013-01-20

    We investigate the effect of modified gravity on the specific angular momentum of galactic halos by analyzing the halo catalogs at z = 0 from high-resolution N-body simulations for a f(R) gravity model that meets the solar-system constraint. It is shown that the galactic halos in the f(R) gravity model tend to acquire significantly higher specific angular momentum than those in the standard {Lambda}CDM model. The largest difference in the specific angular momentum distribution between these two models occurs for the case of isolated galactic halos with mass less than 10{sup 11} h {sup -1} M {sub Sun }, which are likely least shielded by the chameleon screening mechanism. As the specific angular momentum of galactic halos is rather insensitive to other cosmological parameters, it can in principle be an independent discriminator of modified gravity. We speculate a possibility of using the relative abundance of low surface brightness galaxies (LSBGs) as a test of general relativity given that the formation of the LSBGs occurs in fast spinning dark halos.

  20. Decay Properties of the Halo Nucleus $^{11}$Li

    CERN Multimedia

    2002-01-01

    During the past years a considerable experimental effort has been devoted to the production and study of nuclei close to the neutron and proton drip-lines. The most spectacular phenomenon encountered is the occurrence of neutron halos in the loosely bound neutron rich nuclei. \\\\ \\\\ Another interesting feature, observed at ISOLDE, which most likely is connected to the halo structure, is the very strong (super-allowed) Gamow-Teller $\\beta$- transitions to highly excited states which are systematically observed for the lightest neutron rich drip-line nuclei. These transitions might be viewed as arising from the quasi-free $\\beta$ -decay of the halo neutrons. It is proposed to make a detailed study of the $\\beta$- strength function for $^{11}$Li, a nuclide having a half-life of 8.2 ms and a Q $\\beta$-value of 20.73~MeV. \\\\ \\\\ So far only a lower limit of the Gamow-Teller transition rate to highly excited states ($\\approx$~18.5~MeV) in the daughter nucleus has been obtained from measurements of $\\beta$-delayed tri...

  1. The “Building Blocks” of Stellar Halos

    Directory of Open Access Journals (Sweden)

    Kyle A. Oman

    2017-08-01

    Full Text Available The stellar halos of galaxies encode their accretion histories. In particular, the median metallicity of a halo is determined primarily by the mass of the most massive accreted object. We use hydrodynamical cosmological simulations from the apostle project to study the connection between the stellar mass, the metallicity distribution, and the stellar age distribution of a halo and the identity of its most massive progenitor. We find that the stellar populations in an accreted halo typically resemble the old stellar populations in a present-day dwarf galaxy with a stellar mass ∼0.2–0.5 dex greater than that of the stellar halo. This suggests that had they not been accreted, the primary progenitors of stellar halos would have evolved to resemble typical nearby dwarf irregulars.

  2. Halos and related structures

    DEFF Research Database (Denmark)

    Riisager, Karsten

    2013-01-01

    The halo structure originated from nuclear physics but is now encountered more widely. It appears in loosely bound, clustered systems where the spatial extension of the system is significantly larger than that of the binding potentials. A review is given on our current understanding of these stru......The halo structure originated from nuclear physics but is now encountered more widely. It appears in loosely bound, clustered systems where the spatial extension of the system is significantly larger than that of the binding potentials. A review is given on our current understanding...... of these structures, with an emphasis on how the structures evolve as more cluster components are added and on the experimental situation concerning halo states in light nuclei....

  3. Halo formation in three-dimensional bunches

    International Nuclear Information System (INIS)

    Gluckstern, R.L.; Fedotov, A.V.; Kurennoy, S.; Ryne, R.

    1998-01-01

    We have constructed, analytically and numerically, a class of self-consistent six-dimensional (6D) phase space stationary distributions. Stationary distributions allow us to study the halo development mechanism without it being obscured by beam redistribution and its effect on halo formation. The beam is then mismatched longitudinally and/or transversely, and we explore the formation of longitudinal and transverse halos in 3D axisymmetric beam bunches. We find that the longitudinal halo forms first for comparable longitudinal and transverse mismatches because the longitudinal tune depression is more severe than the transverse one for elongated bunches. Of particular importance is the result that, due to the coupling between longitudinal and transverse motion, a longitudinal or transverse halo is observed for a mismatch less than 10% if the mismatch in the other plane is large. copyright 1998 The American Physical Society

  4. Model calculations for the airborne Fast Ice Nuclei CHamber FINCH-HALO

    Science.gov (United States)

    Nillius, B.; Bingemer, H.; Bundke, U.; Jaenicke, R.; Reimann, B.; Wetter, T.

    2009-04-01

    Ice nuclei (IN) initiate the formation of primary ice in tropospheric clouds. In mixed phase clouds the primary ice crystals can grow very fast by the Bergeron-Findeisen process (Findeisen, 1938) at the expense of evaporating water droplets, and form precipitation. Thus, IN are essential for the development of precipitation in mixed phase clouds in the middle latitude. However, the role of IN in the development of clouds is still poorly understood and needs to be studied (Levin and Cotton, 2007). A Fast Ice Nuclei CHamber (FINCH-HALO) for airborne operation on the High And LOng Range research aircraft (HALO) is under development at the Institute for Atmosphere and Environment University Frankfurt. IN particles are activated within the chamber at certain ice super-saturation and temperature by mixing three gas flows, a warm moist, a cold dry, and an aerosol flow. After activation the particles will grow within a processing chamber. In an optical depolarisation detector droplets and ice crystals are detected separately. The setup of the new FINCH-HALO instrument is based on the ground based IN counter FINCH (Bundke, 2008). In FINCH-HALO a new cooling unit is used. Thus, measurements down to -40°C are possible. Furthermore minor changes of the inlet section where the mixing occurs were done. The contribution will present 3D model calculations with FLUENT of the flow conditions in the new inlet section for different pressure levels during a flight typical for HALO. Growth rates of ice crystals in the chamber at different temperature and super-saturation will be shown. References: Bundke U., B. Nillius, R. Jaenicke, T. Wetter, H. Klein, H. Bingemer, (2008). The Fast Ice Nucleus Chamber FINCH, Atmospheric Research, doi:10.1016/j.atmosres.2008.02.008 Findeisen, R., (1938). Meteorologisch-physikalische Begebenheiten der Vereisung in der Atmosphäre. Hauptversammlung 1938 der Lilienthal-Gesellschaft. Levin, Z., W. Cotton, (2007). Aerosol pollution impact on precipitation

  5. Weighing halo nuclides

    International Nuclear Information System (INIS)

    Lunney, D.

    2009-01-01

    Weak binding energy is one of the fundamental criteria characterizing the unique properties of nuclear halos. As such, it must be known with great accuracy and is best obtained through direct mass measurements. The global mass market is now a competitive one. Of the many investment vehicles, the Penning trap has emerged as providing the best rate of return and reliability. We examine mass-market trends, highlighting the recent cases of interest. We also hazard a prediction for the halo futures market. (author)

  6. Particle production by neutrinos

    International Nuclear Information System (INIS)

    Schreiner, P.

    1979-01-01

    A review is given of particle production by neutrinos in charged-current inclusive and exclusive channels. The production rates for various particles in neutrino-nucleon interactions at a beam energy of 25 GeV are compared. The mesons are, of course, dominated by pion production. The p 0 (760) rate is an order of magnitude smaller. Strange and charm pseudoscalar mesons are a further factor of two down in rate. The strange vector mesons are suppressed by more than an order of magnitude relative to K 0 production; however, the charmed D* + (2010) is only a factor of two smaller in rate than the D 0 (1860). With regards to the baryons, most of them are, of course, nucleons. The Λ 0 and Y*(1385) rates are down by one and two orders of magnitudes, respectively. The lower limit on the charmed Σ/sub c/ ++ baryon rate is similar to the Y*(1385) rate. Finally, the quasielastic and one-pion production exclusive channels have about the same cross section as that of the D* + ; associated production of strange particles in the νn → μ - K + Λ channel and the ΔS = +ΔΩ process νp → μ - pK + are down by factors of five and twenty, respectively, compared to the quasielastic cross section

  7. Is Sextans dwarf galaxy in a scalar field dark matter halo?

    International Nuclear Information System (INIS)

    Lora, V.; Magaña, Juan

    2014-01-01

    The Bose-Einstein condensate/scalar field dark matter model, considers that the dark matter is composed by spinless-ultra-light particles which can be described by a scalar field. This model is an alternative model to the Λ-cold dark matter paradigm, and therefore should be studied at galactic and cosmological scales. Dwarf spheroidal galaxies have been very useful when studying any dark matter theory, because the dark matter dominates their dynamics. In this paper we study the Sextans dwarf spheroidal galaxy, embedded in a scalar field dark matter halo. We explore how the dissolution time-scale of the stellar substructures in Sextans, constrain the mass, and the self-interacting parameter of the scalar field dark matter boson. We find that for masses in the range (0.12< m φ <8) ×10 -22 eV, scalar field dark halos without self-interaction would have cores large enough to explain the longevity of the stellar substructures in Sextans, and small enough mass to be compatible with dynamical limits. If the self-interacting parameter is distinct to zero, then the mass of the boson could be as high as m φ ≈2×10 -21 eV, but it would correspond to an unrealistic low mass for the Sextans dark matter halo . Therefore, the Sextans dwarf galaxy could be embedded in a scalar field/BEC dark matter halo with a preferred self-interacting parameter equal to zero

  8. Constraints on the Galactic Halo Dark Matter from Fermi-LAT Diffuse Measurements

    Science.gov (United States)

    Ackermann, M.; Ajello, M.; Atwood, W. B.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Blandford, R. D.; Bloom, E. D.; hide

    2012-01-01

    We have performed an analysis of the diffuse gamma-ray emission with the Fermi Large Area Telescope (LAT) in the Milky Way halo region, searching for a signal from dark matter annihilation or decay. In the absence of a robust dark matter signal, constraints are presented. We consider both gamma rays produced directly in the dark matter annihilation/decay and produced by inverse Compton scattering of the e+/e- produced in the annihilation/decay. Conservative limits are derived requiring that the dark matter signal does not exceed the observed diffuse gamma-ray emission. A second set of more stringent limits is derived based on modeling the foreground astrophysical diffuse emission using the GALPROP code. Uncertainties in the height of the diffusive cosmic-ray halo, the distribution of the cosmic-ray sources in the Galaxy, the index of the injection cosmic-ray electron spectrum, and the column density of the interstellar gas are taken into account using a profile likelihood formalism, while the parameters governing the cosmic-ray propagation have been derived from fits to local cosmic-ray data. The resulting limits impact the range of particle masses over which dark matter thermal production in the early universe is possible, and challenge the interpretation of the PAMELA/Fermi-LAT cosmic ray anomalies as the annihilation of dark matter.

  9. Effect of basic physical parameters to control plasma meniscus and beam halo formation in negative ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, K. [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Okuda, S.; Nishioka, S.; Hatayama, A. [Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan)

    2013-09-14

    Our previous study shows that the curvature of the plasma meniscus causes the beam halo in the negative ion sources: the negative ions extracted from the periphery of the meniscus are over-focused in the extractor due to the electrostatic lens effect, and consequently become the beam halo. In this article, the detail physics of the plasma meniscus and beam halo formation is investigated with two-dimensional particle-in-cell simulation. It is shown that the basic physical parameters such as the H{sup −} extraction voltage and the effective electron confinement time significantly affect the formation of the plasma meniscus and the resultant beam halo since the penetration of electric field for negative ion extraction depends on these physical parameters. Especially, the electron confinement time depends on the characteristic time of electron escape along the magnetic field as well as the characteristic time of electron diffusion across the magnetic field. The plasma meniscus penetrates deeply into the source plasma region when the effective electron confinement time is short. In this case, the curvature of the plasma meniscus becomes large, and consequently the fraction of the beam halo increases.

  10. Effect of basic physical parameters to control plasma meniscus and beam halo formation in negative ion sources

    International Nuclear Information System (INIS)

    Miyamoto, K.; Okuda, S.; Nishioka, S.; Hatayama, A.

    2013-01-01

    Our previous study shows that the curvature of the plasma meniscus causes the beam halo in the negative ion sources: the negative ions extracted from the periphery of the meniscus are over-focused in the extractor due to the electrostatic lens effect, and consequently become the beam halo. In this article, the detail physics of the plasma meniscus and beam halo formation is investigated with two-dimensional particle-in-cell simulation. It is shown that the basic physical parameters such as the H − extraction voltage and the effective electron confinement time significantly affect the formation of the plasma meniscus and the resultant beam halo since the penetration of electric field for negative ion extraction depends on these physical parameters. Especially, the electron confinement time depends on the characteristic time of electron escape along the magnetic field as well as the characteristic time of electron diffusion across the magnetic field. The plasma meniscus penetrates deeply into the source plasma region when the effective electron confinement time is short. In this case, the curvature of the plasma meniscus becomes large, and consequently the fraction of the beam halo increases

  11. Analytic modeling of axisymmetric disruption halo currents

    International Nuclear Information System (INIS)

    Humphreys, D.A.; Kellman, A.G.

    1999-01-01

    Currents which can flow in plasma facing components during disruptions pose a challenge to the design of next generation tokamaks. Induced toroidal eddy currents and both induced and conducted poloidal ''halo'' currents can produce design-limiting electromagnetic loads. While induction of toroidal and poloidal currents in passive structures is a well-understood phenomenon, the driving terms and scalings for poloidal currents flowing on open field lines during disruptions are less well established. A model of halo current evolution is presented in which the current is induced in the halo by decay of the plasma current and change in enclosed toroidal flux while being convected into the halo from the core by plasma motion. Fundamental physical processes and scalings are described in a simplified analytic version of the model. The peak axisymmetric halo current is found to depend on halo and core plasma characteristics during the current quench, including machine and plasma dimensions, resistivities, safety factor, and vertical stability growth rate. Two extreme regimes in poloidal halo current amplitude are identified depending on the minimum halo safety factor reached during the disruption. A 'type I' disruption is characterized by a minimum safety factor that remains relatively high (typically 2 - 3, comparable to the predisruption safety factor), and a relatively low poloidal halo current. A 'type II' disruption is characterized by a minimum safety factor comparable to unity and a relatively high poloidal halo current. Model predictions for these two regimes are found to agree well with halo current measurements from vertical displacement event disruptions in DIII-D [T. S. Taylor, K. H. Burrell, D. R. Baker, G. L. Jackson, R. J. La Haye, M. A. Mahdavi, R. Prater, T. C. Simonen, and A. D. Turnbull, open-quotes Results from the DIII-D Scientific Research Program,close quotes in Proceedings of the 17th IAEA Fusion Energy Conference, Yokohama, 1998, to be published in

  12. Effective field theory description of halo nuclei

    Science.gov (United States)

    Hammer, H.-W.; Ji, C.; Phillips, D. R.

    2017-10-01

    Nuclear halos emerge as new degrees of freedom near the neutron and proton driplines. They consist of a core and one or a few nucleons which spend most of their time in the classically-forbidden region outside the range of the interaction. Individual nucleons inside the core are thus unresolved in the halo configuration, and the low-energy effective interactions are short-range forces between the core and the valence nucleons. Similar phenomena occur in clusters of 4He atoms, cold atomic gases near a Feshbach resonance, and some exotic hadrons. In these weakly-bound quantum systems universal scaling laws for s-wave binding emerge that are independent of the details of the interaction. Effective field theory (EFT) exposes these correlations and permits the calculation of non-universal corrections to them due to short-distance effects, as well as the extension of these ideas to systems involving the Coulomb interaction and/or binding in higher angular-momentum channels. Halo nuclei exhibit all these features. Halo EFT, the EFT for halo nuclei, has been used to compute the properties of single-neutron, two-neutron, and single-proton halos of s-wave and p-wave type. This review summarizes these results for halo binding energies, radii, Coulomb dissociation, and radiative capture, as well as the connection of these properties to scattering parameters, thereby elucidating the universal correlations between all these observables. We also discuss how Halo EFT's encoding of the long-distance physics of halo nuclei can be used to check and extend ab initio calculations that include detailed modeling of their short-distance dynamics.

  13. Particle dark matter signal in DAMA/LIBRA

    International Nuclear Information System (INIS)

    Bernabei, R.; Belli, P.; Di Marco, A.; Montecchia, F.; Cappella, F.; D'Angelo, A.; Incicchitti, A.; Prosperi, D.; Cerulli, R.; Dai, C.J.; He, H.L.; Ma, X.H.; Sheng, X.D.; Wang, R.G.; Ye, Z.P.

    2012-01-01

    The DAMA/LIBRA experiment, running at LNGS, has a sensitive mass of about 250 kg highly radiopure NaI(Tl) and it is mainly devoted to the investigation of Dark Matter (DM) particles in the Galactic halo by exploiting the model independent DM annual modulation signature. The present DAMA/LIBRA experiment and the former DAMA/NaI one have released so far results corresponding to a total exposure of 1.17 ton×yr over 13 annual cycles. They provide a model independent evidence of the presence of DM particles in the galactic halo at 8.9σ C.L.

  14. The growth of galaxies and their gaseous haloes

    NARCIS (Netherlands)

    Voort, Frederieke van de

    2012-01-01

    Galaxies grow by accreting gas, which they need to form stars, from their surrounding haloes. These haloes, in turn, accrete gas from the diffuse intergalactic medium. Feedback from stars and black holes returns gas from the galaxy to the halo and can even expel it from the halo. This cycle of gas

  15. Smooth halos in the cosmic web

    Energy Technology Data Exchange (ETDEWEB)

    Gaite, José, E-mail: jose.gaite@upm.es [Physics Dept., ETSIAE, IDR, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, E-28040 Madrid (Spain)

    2015-04-01

    Dark matter halos can be defined as smooth distributions of dark matter placed in a non-smooth cosmic web structure. This definition of halos demands a precise definition of smoothness and a characterization of the manner in which the transition from smooth halos to the cosmic web takes place. We introduce entropic measures of smoothness, related to measures of inequality previously used in economy and with the advantage of being connected with standard methods of multifractal analysis already used for characterizing the cosmic web structure in cold dark matter N-body simulations. These entropic measures provide us with a quantitative description of the transition from the small scales portrayed as a distribution of halos to the larger scales portrayed as a cosmic web and, therefore, allow us to assign definite sizes to halos. However, these ''smoothness sizes'' have no direct relation to the virial radii. Finally, we discuss the influence of N-body discreteness parameters on smoothness.

  16. Smooth halos in the cosmic web

    International Nuclear Information System (INIS)

    Gaite, José

    2015-01-01

    Dark matter halos can be defined as smooth distributions of dark matter placed in a non-smooth cosmic web structure. This definition of halos demands a precise definition of smoothness and a characterization of the manner in which the transition from smooth halos to the cosmic web takes place. We introduce entropic measures of smoothness, related to measures of inequality previously used in economy and with the advantage of being connected with standard methods of multifractal analysis already used for characterizing the cosmic web structure in cold dark matter N-body simulations. These entropic measures provide us with a quantitative description of the transition from the small scales portrayed as a distribution of halos to the larger scales portrayed as a cosmic web and, therefore, allow us to assign definite sizes to halos. However, these ''smoothness sizes'' have no direct relation to the virial radii. Finally, we discuss the influence of N-body discreteness parameters on smoothness

  17. Imbalance in the Local Galactic halo?

    International Nuclear Information System (INIS)

    Croswell, K.; Latham, D.W.; Carney, B.W.; North Carolina Univ., Chapel Hill)

    1987-01-01

    In a kinematically biased sample of 119 single halo stars, 65 percent of the stars are traveling away from the plane of the Galaxy. Halo spectroscopic binaries do not show this imbalance. Other kinematically biased halo surveys exhibit the same effect. Combining these samples with those of the authors' results in 223 halo stars, 63 percent of which are heading away from the plane of the Galaxy. The probability that the first result could be obtained from a symmetric w velocity distribution is 0.2 percent; the probability that the second result could be so obtained is 0.02 percent. Single halo stars traveling away from the disk appear to have a larger w velocity dispersion than those traveling toward it. Selection effects are analyzed and rejected as the cause of the observed asymmetry. Possible mechanisms for producing the imbalance are discussed, but each has serious difficulties accounting for the observations. 28 references

  18. GRAVITATIONALLY CONSISTENT HALO CATALOGS AND MERGER TREES FOR PRECISION COSMOLOGY

    International Nuclear Information System (INIS)

    Behroozi, Peter S.; Wechsler, Risa H.; Wu, Hao-Yi; Busha, Michael T.; Klypin, Anatoly A.; Primack, Joel R.

    2013-01-01

    We present a new algorithm for generating merger trees and halo catalogs which explicitly ensures consistency of halo properties (mass, position, and velocity) across time steps. Our algorithm has demonstrated the ability to improve both the completeness (through detecting and inserting otherwise missing halos) and purity (through detecting and removing spurious objects) of both merger trees and halo catalogs. In addition, our method is able to robustly measure the self-consistency of halo finders; it is the first to directly measure the uncertainties in halo positions, halo velocities, and the halo mass function for a given halo finder based on consistency between snapshots in cosmological simulations. We use this algorithm to generate merger trees for two large simulations (Bolshoi and Consuelo) and evaluate two halo finders (ROCKSTAR and BDM). We find that both the ROCKSTAR and BDM halo finders track halos extremely well; in both, the number of halos which do not have physically consistent progenitors is at the 1%-2% level across all halo masses. Our code is publicly available at http://code.google.com/p/consistent-trees. Our trees and catalogs are publicly available at http://hipacc.ucsc.edu/Bolshoi/.

  19. Characteristics of halo current in JT-60U

    International Nuclear Information System (INIS)

    Neyatani, Y.; Nakamura, Y.; Yoshino, R.; Hatae, T.

    1999-01-01

    Halo currents and their toroidal peaking factor (TPF) have been measured in JT-60U by Rogowski coil type halo current sensors. The electron temperature in the halo region was around 10 eV at 1 ms before the timing of the maximum halo current. The maximum TPF*I h /I p0 was 0.52 in the operational range of I p = 0.7 ∼ 1.8 MA, B T = 2.2 ∼ 3.5 T, including ITER design parameters of κ > 1.6 and q 95 = 3, which was lower than that of the maximum value of ITER data base (0.75). The magnitude of halo currents tended to decrease with the increase in stored energy just before the energy quench and with the line integrated electron density at the time of the maximum halo current. A termination technique in which the current channel remains stationary was useful to avoid halo current generation. Intense neon gas puffing during the VDE was effective for reducing the halo currents. (author)

  20. Characteristics of halo current in JT-60U

    International Nuclear Information System (INIS)

    Neyatani, Y.; Nakamura, Y.; Yoshino, R.; Hatae, T.

    2001-01-01

    Halo currents and their toroidal peaking factor (TPF) have been measured in JT-60U by Rogowski coil type halo current sensors. The electron temperature in the halo region was around 10 eV at 1 ms before the timing of the maximum halo current. The maximum TPF *I h /I p0 was 0.52 in the operational range of I p =0.7∼1.8MA, B T =2.2∼3.5T, including ITER design parameters of κ>1.6 and q 95 =3, which was lower than that of the maximum value of ITER data base (0.75). The magnitude of halo currents tended to decrease with the increase in stored energy just before the energy quench and with the line integrated electron density at the time of the maximum halo current. A termination technique in which the current channel remains stationary was useful to avoid halo current generation. Intense neon gas puffing during the VDE was effective for reducing the halo currents. (author)

  1. On the relevance of chaos for halo stars in the solar neighbourhood II

    Science.gov (United States)

    Maffione, Nicolas P.; Gómez, Facundo A.; Cincotta, Pablo M.; Giordano, Claudia M.; Grand, Robert J. J.; Marinacci, Federico; Pakmor, Rüdiger; Simpson, Christine M.; Springel, Volker; Frenk, Carlos S.

    2018-05-01

    In a previous paper based on dark matter only simulations we show that, in the approximation of an analytic and static potential describing the strongly triaxial and cuspy shape of Milky Way-sized haloes, diffusion due to chaotic mixing in the neighbourhood of the Sun does not efficiently erase phase space signatures of past accretion events. In this second paper we further explore the effect of chaotic mixing using multicomponent Galactic potential models and solar neighbourhood-like volumes extracted from fully cosmological hydrodynamic simulations, thus naturally accounting for the gravitational potential associated with baryonic components, such as the bulge and disc. Despite the strong change in the global Galactic potentials with respect to those obtained in dark matter only simulations, our results confirm that a large fraction of halo particles evolving on chaotic orbits exhibit their chaotic behaviour after periods of time significantly larger than a Hubble time. In addition, significant diffusion in phase space is not observed on those particles that do exhibit chaotic behaviour within a Hubble time.

  2. THE TILT OF THE HALO VELOCITY ELLIPSOID AND THE SHAPE OF THE MILKY WAY HALO

    International Nuclear Information System (INIS)

    Smith, Martin C.; Wyn Evans, N.; An, Jin H.

    2009-01-01

    A sample of ∼1800 halo subdwarf stars with radial velocities and proper motions is assembled from Bramich et al.'s light-motion catalog of 2008. This is based on the repeated multiband Sloan Digital Sky Survey photometric measurements in Stripe 82. Our sample of halo subdwarfs is extracted via a reduced proper motion diagram and distances are obtained using photometric parallaxes, thus giving full phase-space information. The tilt of the velocity ellipsoid with respect to the spherical polar coordinate system is computed and found to be consistent with zero for two of the three tilt angles, and very small for the third. We prove that if the inner halo is in a steady state and the triaxial velocity ellipsoid is everywhere aligned in spherical polar coordinates, then the potential must be spherically symmetric. The detectable, but very mild, misalignment with spherical polars is consistent with the perturbative effects of the Galactic disk on a spherical dark halo. Banana orbits are generated at the 1:1 resonance (in horizontal and vertical frequencies) by the disk. They populate Galactic potentials at the typical radii of our subdwarf sample, along with the much more dominant short-axis tubes. However, on geometric grounds alone, the tilt cannot vanish for the banana orbits and this leads to a slight, but detectable, misalignment. We argue that the tilt of the stellar halo velocity ellipsoid therefore provides a hitherto largely neglected but important line of argument that the Milky Way's dark halo, which dominates the potential, must be nearly spherical.

  3. Halo Intrinsic Alignment: Dependence on Mass, Formation Time, and Environment

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Qianli; Kang, Xi; Wang, Peng; Luo, Yu [Purple Mountain Observatory, the Partner Group of MPI für Astronomie, 2 West Beijing Road, Nanjing 210008 (China); Yang, Xiaohu; Jing, Yipeng [Center for Astronomy and Astrophysics, Shanghai Jiao Tong University, Shanghai 200240 (China); Wang, Huiyuan [Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Hefei, Anhui 230026 (China); Mo, Houjun, E-mail: kangxi@pmo.ac.cn [Astronomy Department and Center for Astrophysics, Tsinghua University, Beijing 10084 (China)

    2017-10-10

    In this paper we use high-resolution cosmological simulations to study halo intrinsic alignment and its dependence on mass, formation time, and large-scale environment. In agreement with previous studies using N -body simulations, it is found that massive halos have stronger alignment. For the first time, we find that for a given halo mass older halos have stronger alignment and halos in cluster regions also have stronger alignment than those in filaments. To model these dependencies, we extend the linear alignment model with inclusion of halo bias and find that the halo alignment with its mass and formation time dependence can be explained by halo bias. However, the model cannot account for the environment dependence, as it is found that halo bias is lower in clusters and higher in filaments. Our results suggest that halo bias and environment are independent factors in determining halo alignment. We also study the halo alignment correlation function and find that halos are strongly clustered along their major axes and less clustered along the minor axes. The correlated halo alignment can extend to scales as large as 100 h {sup −1} Mpc, where its feature is mainly driven by the baryon acoustic oscillation effect.

  4. Physical properties and structure of fine core-shell particles used as packing materials for chromatography Relationships between particle characteristics and column performance.

    Science.gov (United States)

    Gritti, Fabrice; Leonardis, Irene; Abia, Jude; Guiochon, Georges

    2010-06-11

    The recent development of new brands of packing materials made of fine porous-shell particles, e.g., Halo and Kinetex, has brought great improvements in potential column efficiency, demanding considerable progress in the design of chromatographic instruments. Columns packed with Halo and Kinetex particles provide minimum values of their reduced plate heights of nearly 1.5 and 1.2, respectively. These packing materials have physical properties that set them apart from conventional porous particles. The kinetic performance of 4.6mm I.D. columns packed with these two new materials is analyzed based on the results of a series of nine independent and complementary experiments: low-temperature nitrogen adsorption (LTNA), scanning electron microscopy (SEM), inverse size-exclusion chromatography (ISEC), Coulter counter particle size distributions, pycnometry, height equivalent to a theoretical plate (HETP), peak parking method (PP), total pore blocking method (TPB), and local electrochemical detection across the column exit section (LED). The results of this work establish links between the physical properties of these superficially porous particles and the excellent kinetic performance of columns packed with them. It clarifies the fundamental origin of the difference in the chromatographic performances of the Halo and the Kinetex columns. Copyright 2010 Elsevier B.V. All rights reserved.

  5. Imaging of SDSS z > 6 Quasar Fields: Gravitational Lensing, Companion Galaxies, and the Host Dark Matter Halos

    Science.gov (United States)

    Willott, Chris J.; Percival, Will J.; McLure, Ross J.; Crampton, David; Hutchings, John B.; Jarvis, Matt J.; Sawicki, Marcin; Simard, Luc

    2005-06-01

    We have undertaken deep optical imaging observations of three 6.2dropouts is consistent with that found in random fields. We consider the expected dark matter halo masses that host these quasars under the assumption that a correlation between black hole mass and dark matter halo mass exists. We show that the steepness of the high-mass tail of the halo mass function at this redshift, combined with realistic amounts of scatter in this correlation, leads to expected halo masses substantially lower than previously believed. This analysis can explain the lack of companion galaxies found here and the low dynamical mass recently published for one of the quasars. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the National Science Foundation (NSF) on behalf of the Gemini partnership: the NSF (United States), the Particle Physics and Astronomy Research Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), CNPq (Brazil), and CONICET (Argentina).

  6. Assessing compatibility of direct detection data: halo-independent global likelihood analyses

    Energy Technology Data Exchange (ETDEWEB)

    Gelmini, Graciela B. [Department of Physics and Astronomy, UCLA,475 Portola Plaza, Los Angeles, CA 90095 (United States); Huh, Ji-Haeng [CERN Theory Division,CH-1211, Geneva 23 (Switzerland); Witte, Samuel J. [Department of Physics and Astronomy, UCLA,475 Portola Plaza, Los Angeles, CA 90095 (United States)

    2016-10-18

    We present two different halo-independent methods to assess the compatibility of several direct dark matter detection data sets for a given dark matter model using a global likelihood consisting of at least one extended likelihood and an arbitrary number of Gaussian or Poisson likelihoods. In the first method we find the global best fit halo function (we prove that it is a unique piecewise constant function with a number of down steps smaller than or equal to a maximum number that we compute) and construct a two-sided pointwise confidence band at any desired confidence level, which can then be compared with those derived from the extended likelihood alone to assess the joint compatibility of the data. In the second method we define a “constrained parameter goodness-of-fit” test statistic, whose p-value we then use to define a “plausibility region” (e.g. where p≥10%). For any halo function not entirely contained within the plausibility region, the level of compatibility of the data is very low (e.g. p<10%). We illustrate these methods by applying them to CDMS-II-Si and SuperCDMS data, assuming dark matter particles with elastic spin-independent isospin-conserving interactions or exothermic spin-independent isospin-violating interactions.

  7. Ultra Light Axionic Dark Matter: Galactic Halos and Implications for Observations with Pulsar Timing Arrays

    Science.gov (United States)

    de Martino, Ivan; Broadhurst, Tom; Tye, S.-H. Henry; Chiueh, Tzihong; Shive, Hsi-Yu; Lazkoz, Ruth

    2018-01-01

    The cold dark matter (CDM) paradigm successfully explains the cosmic structure over an enormous span of redshifts. However, it fails when probing the innermost regions of dark matter halos and the properties of the Milky Way's dwarf galaxy satellites. Moreover, the lack of experimental detection of Weakly Interacting Massive Particle (WIMP) favors alternative candidates such as light axionic dark matter that naturally arise in string theory. Cosmological N-body simulations have shown that axionic dark matter forms a solitonic core of size of ≃ 150 pc in the innermost region of the galactic halos. The oscillating scalar field associated to the axionic dark matter halo produces an oscillating gravitational potential that induces a time dilation of the pulse arrival time of ≃ 400 ns/(m_B/10^{-22} eV) for pulsar within such a solitonic core. Over the whole galaxy, the averaged predicted signal may be detectable with current and forthcoming pulsar timing array telescopes.

  8. Double gate graphene nanoribbon field effect transistor with single halo pocket in channel region

    Science.gov (United States)

    Naderi, Ali

    2016-01-01

    A new structure for graphene nanoribbon field-effect transistors (GNRFETs) is proposed and investigated using quantum simulation with a nonequilibrium Green's function (NEGF) method. Tunneling leakage current and ambipolar conduction are known effects for MOSFET-like GNRFETs. To minimize these issues a novel structure with a simple change of the GNRFETs by using single halo pocket in the intrinsic channel region, "Single Halo GNRFET (SH-GNRFET)", is proposed. An appropriate halo pocket at source side of channel is used to modify potential distribution of the gate region and weaken band to band tunneling (BTBT). In devices with materials like Si in channel region, doping type of halo and source/drain regions are different. But, here, due to the smaller bandgap of graphene, the mentioned doping types should be the same to reduce BTBT. Simulations have shown that in comparison with conventional GNRFET (C-GNRFET), an SH-GNRFET with appropriately halo doping results in a larger ON current (Ion), smaller OFF current (Ioff), a larger ON-OFF current ratio (Ion/Ioff), superior ambipolar characteristics, a reduced power-delay product and lower delay time.

  9. Control of beam halo-chaos using fuzzy logic controller

    International Nuclear Information System (INIS)

    Gao Yuan; Yuan Haiying; Tan Guangxing; Luo Wenguang

    2012-01-01

    Considering the ion beam with initial K-V distribution in the periodic focusing magnetic filed channels (PFCs) as a typical sample, a fuzzy control method for control- ling beam halo-chaos was studied. A fuzzy proportional controller, using output of fuzzy inference as a control factor, was presented for adjusting exterior focusing magnetic field. The stability of controlled system was proved by fuzzy phase plane analysis. The simulation results demonstrate that the chaotic radius of envelope can be controlled to the matched radius via controlling magnetic field. This method was also applied to the multi-particle model. Under the control condition, the beam halos and its regeneration can be eliminated effectively, and that both the compactness and the uniformity of ion beam are improved evidently. Since the exterior magnetic field can be rather easily adjusted by proportional control and the fuzzy logic controller is independent to the mathematical model, this method has adaptive ability and is easily realized in experiment. The research offers a valuable reference for the design of the PFCs in the high- current linear ion accelerators. (authors)

  10. Understanding the core-halo relation of quantum wave dark matter from 3D simulations.

    Science.gov (United States)

    Schive, Hsi-Yu; Liao, Ming-Hsuan; Woo, Tak-Pong; Wong, Shing-Kwong; Chiueh, Tzihong; Broadhurst, Tom; Hwang, W-Y Pauchy

    2014-12-31

    We examine the nonlinear structure of gravitationally collapsed objects that form in our simulations of wavelike cold dark matter, described by the Schrödinger-Poisson (SP) equation with a particle mass ∼10(-22)  eV. A distinct gravitationally self-bound solitonic core is found at the center of every halo, with a profile quite different from cores modeled in the warm or self-interacting dark matter scenarios. Furthermore, we show that each solitonic core is surrounded by an extended halo composed of large fluctuating dark matter granules which modulate the halo density on a scale comparable to the diameter of the solitonic core. The scaling symmetry of the SP equation and the uncertainty principle tightly relate the core mass to the halo specific energy, which, in the context of cosmological structure formation, leads to a simple scaling between core mass (Mc) and halo mass (Mh), Mc∝a(-1/2)Mh(1/3), where a is the cosmic scale factor. We verify this scaling relation by (i) examining the internal structure of a statistical sample of virialized halos that form in our 3D cosmological simulations and by (ii) merging multiple solitons to create individual virialized objects. Sufficient simulation resolution is achieved by adaptive mesh refinement and graphic processing units acceleration. From this scaling relation, present dwarf satellite galaxies are predicted to have kiloparsec-sized cores and a minimum mass of ∼10(8)M⊙, capable of solving the small-scale controversies in the cold dark matter model. Moreover, galaxies of 2×10(12)M⊙ at z=8 should have massive solitonic cores of ∼2×10(9)M⊙ within ∼60  pc. Such cores can provide a favorable local environment for funneling the gas that leads to the prompt formation of early stellar spheroids and quasars.

  11. Dark Matter: Looking for WIMPs in the Galactic Halo

    International Nuclear Information System (INIS)

    Akerib, Daniel S.

    2006-01-01

    Overwhelming observational evidence indicates that most of the matter in the Universe consists of non-baryonic dark matter. One possibility is that the dark matter is Weakly-Interacting Massive Particles (WIMPs) that were produced in the early Universe. These relics could comprise the Milky Way's dark halo and provide evidence for new particle physics, such as Supersymmetry. After reviewing some of the evidence for dark matter and the WIMP hypothesis, I will describe the strategy for searching for WIMPs, along with a survey of the current status and outlook. In particular, dark matter searches have begun to explore the region of parameter space where SUSY particles could provide dark matter candidates. I will also mention some of the recent theoretical work on dark matter candidates which is being done in anticipation of the turn-on of the LHC and as part of the active R and D on the ILC. Finally, a vigorous detector development program promises significant advances in WIMP sensitivity in the coming years

  12. [Halos and multifocal intraocular lenses: origin and interpretation].

    Science.gov (United States)

    Alba-Bueno, F; Vega, F; Millán, M S

    2014-10-01

    To present the theoretical and experimental characterization of the halo in multifocal intraocular lenses (MIOL). The origin of the halo in a MIOL is the overlaying of 2 or more images. Using geometrical optics, it can be demonstrated that the diameter of each halo depends on the addition of the lens (ΔP), the base power (P(d)), and the diameter of the IOL that contributes to the «non-focused» focus. In the image plane that corresponds to the distance focus, the halo diameter (δH(d)) is given by: δH(d)=d(pn) ΔP/P(d), where d(pn) is the diameter of the IOL that contributes to the near focus. Analogously, in the near image plane the halo diameter (δH(n)) is: δH(n)=d(pd) ΔP/P(d), where d(pd) is the diameter of the IOL that contributes to the distance focus. Patients perceive halos when they see bright objects over a relatively dark background. In vitro, the halo can be characterized by analyzing the intensity profile of the image of a pinhole that is focused by each of the foci of a MIOL. A comparison has been made between the halos induced by different MIOL of the same base power (20D) in an optical bench. As predicted by theory, the larger the addition of the MIOL, the larger the halo diameter. For large pupils and with MIOL with similar aspheric designs and addition (SN6AD3 vs ZMA00), the apodized MIOL has a smaller halo diameter than a non-apodized one in distance vision, while in near vision the size is very similar, but the relative intensity is higher in the apodized MIOL. When comparing lenses with the same diffractive design, but with different spherical-aspheric base design (SN60D3 vs SN6AD3), the halo in distance vision of the spherical MIOL is larger, while in near vision the spherical IOL induces a smaller halo, but with higher intensity due to the spherical aberration of the distance focus in the near image. In the case of a trifocal-diffractive IOL (AT LISA 839MP) the most noticeable characteristic is the double-halo formation due to the 2 non

  13. On physical scales of dark matter halos

    International Nuclear Information System (INIS)

    Zemp, Marcel

    2014-01-01

    It is common practice to describe formal size and mass scales of dark matter halos as spherical overdensities with respect to an evolving density threshold. Here, we critically investigate the evolutionary effects of several such commonly used definitions and compare them to the halo evolution within fixed physical scales as well as to the evolution of other intrinsic physical properties of dark matter halos. It is shown that, in general, the traditional way of characterizing sizes and masses of halos dramatically overpredicts the degree of evolution in the last 10 Gyr, especially for low-mass halos. This pseudo-evolution leads to the illusion of growth even though there are no major changes within fixed physical scales. Such formal size definitions also serve as proxies for the virialized region of a halo in the literature. In general, those spherical overdensity scales do not coincide with the virialized region. A physically more precise nomenclature would be to simply characterize them by their very definition instead of calling such formal size and mass definitions 'virial'. In general, we find a discrepancy between the evolution of the underlying physical structure of dark matter halos seen in cosmological structure formation simulations and pseudo-evolving formal virial quantities. We question the importance of the role of formal virial quantities currently ubiquitously used in descriptions, models, and relations that involve properties of dark matter structures. Concepts and relations based on pseudo-evolving formal virial quantities do not properly reflect the actual evolution of dark matter halos and lead to an inaccurate picture of the physical evolution of our universe.

  14. Halo scale predictions of symmetron modified gravity

    Energy Technology Data Exchange (ETDEWEB)

    Clampitt, Joseph; Jain, Bhuvnesh; Khoury, Justin, E-mail: clampitt@sas.upenn.edu, E-mail: bjain@physics.upenn.edu, E-mail: jkhoury@sas.upenn.edu [Center for Particle Cosmology and Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd St., Philadelphia, PA 19104 (United States)

    2012-01-01

    We offer predictions of symmetron modified gravity in the neighborhood of realistic dark matter halos. The predictions for the fifth force are obtained by solving the nonlinear symmetron equation of motion in the spherical NFW approximation. In addition, we compare the three major known screening mechanisms: Vainshtein, Chameleon, and Symmetron around such dark matter halos, emphasizing the significant differences between them and highlighting observational tests which exploit these differences. Finally, we demonstrate the host halo environmental screening effect (''blanket screening'') on smaller satellite halos by solving for the modified forces around a density profile which is the sum of satellite and approximate host components.

  15. Research Progresses of Halo Streams in the Solar Neighborhood

    Science.gov (United States)

    Xi-long, Liang; Jing-kun, Zhao; Yu-qin, Chen; Gang, Zhao

    2018-01-01

    The stellar streams originated from the Galactic halo may be detected when they pass by the solar neighborhood, and they still keep some information at their birth times. Thus, the investigation of halo streams in the solar neighborhood is very important for understanding the formation and evolution of our Galaxy. In this paper, the researches of halo streams in the solar neighborhood are briefly reviewed. We have introduced the methods how to detect the halo streams and identify their member stars, summarized the progresses in the observation of member stars of halo streams and in the study of their origins, introduced in detail how to analyze the origins of halo streams in the solar neighborhood by means of numerical simulation and chemical abundance, and finally discussed the prospects of the LAMOST and GAIA in the research of halo streams in the solar neighborhood.

  16. Neutron halos in hypernuclei

    CERN Document Server

    Lue, H F; Meng, J; Zhou, S G

    2003-01-01

    Properties of single-LAMBDA and double-LAMBDA hypernuclei for even-N Ca isotopes ranging from the proton dripline to the neutron dripline are studied using the relativistic continuum Hartree-Bogolyubov theory with a zero-range pairing interaction. Compared with ordinary nuclei, the addition of one or two LAMBDA-hyperons lowers the Fermi level. The predicted neutron dripline nuclei are, respectively, sup 7 sup 5 subLAMBDA Ca and sup 7 sup 6 sub 2 subLAMBDA Ca, as the additional attractive force provided by the LAMBDA-N interaction shifts nuclei from outside to inside the dripline. Therefore, the last bound hypernuclei have two more neutrons than the corresponding ordinary nuclei. Based on the analysis of two-neutron separation energies, neutron single-particle energy levels, the contribution of continuum and nucleon density distribution, giant halo phenomena due to the pairing correlation, and the contribution from the continuum are suggested to exist in Ca hypernuclei similar to those that appear in ordinary ...

  17. Direct detection of WIMPs: implications of a self-consistent truncated isothermal model of the Milky Way's dark matter halo

    Science.gov (United States)

    Chaudhury, Soumini; Bhattacharjee, Pijushpani; Cowsik, Ramanath

    2010-09-01

    Direct detection of Weakly Interacting Massive Particle (WIMP) candidates of Dark Matter (DM) is studied within the context of a self-consistent truncated isothermal model of the finite-size dark halo of the Galaxy. The halo model, based on the ``King model'' of the phase space distribution function of collisionless DM particles, takes into account the modifications of the phase-space structure of the halo due to the gravitational influence of the observed visible matter in a self-consistent manner. The parameters of the halo model are determined by a fit to a recently determined circular rotation curve of the Galaxy that extends up to ~ 60 kpc. Unlike in the Standard Halo Model (SHM) customarily used in the analysis of the results of WIMP direct detection experiments, the velocity distribution of the WIMPs in our model is non-Maxwellian with a cut-off at a maximum velocity that is self-consistently determined by the model itself. For our halo model that provides the best fit to the rotation curve data, the 90% C.L. upper limit on the WIMP-nucleon spin-independent cross section from the recent results of the CDMS-II experiment, for example, is ~ 5.3 × 10-8 pb at a WIMP mass of ~ 71 GeV. We also find, using the original 2-bin annual modulation amplitude data on the nuclear recoil event rate seen in the DAMA experiment, that there exists a range of small WIMP masses, typically ~ 2-16 GeV, within which DAMA collaboration's claimed annual modulation signal purportedly due to WIMPs is compatible with the null results of other experiments. These results, based as they are on a self-consistent model of the dark matter halo of the Galaxy, strengthen the possibility of low-mass (lsim10 GeV) WIMPs as a candidate for dark matter as indicated by several earlier studies performed within the context of the SHM. A more rigorous analysis using DAMA bins over smaller intervals should be able to better constrain the ``DAMA regions'' in the WIMP parameter space within the context of

  18. Nuclear halo and its related reactions

    International Nuclear Information System (INIS)

    Zhang Huanqiao

    2005-01-01

    In order to search proton halo, the reaction cross sections of 27,28 P, 29 S and the corresponding isotones on Si target were measured at intermediate energies. The measured reaction cross sections of the N=12 and 13 isotones show an abrupt increase at Z=15. The experimental results for the isotones with Z=14 as well as 28 P can be well described by the modified Glauber theory of the optical limit approach. The enhancement of the reaction cross sections for 28 P could be explained in the modified Glauber theory with an enlarged core. Theoretical analysis with the modified Glauber theory of the optical limit and few-body approaches underpredicted the experimental data of 27 P. Our theoretical analysis shows that an enlarged core together with proton halo is probably the mechanism responsible for the enhancement of the cross sections for the reaction of 27 P+ 28 Si. In addition, we find from the experimental results that 29 S may have a moderate proton halo structure. Except the nuclei near or at drop-lines, halo may appear in the excited states of stable nuclei. By means of the asymptotic normalization coefficients (ANC's) extracted from transfer reactions of 11 B(d, p) 12 B, 12 C(d, p) 13 C, and H( 6 He, n) 6 Li, we have verified that the second ( Jπ = 2 - ) and third (Jπ = 1 - ) excited states in 12 B and the first (Jπ =1/2 + ) excited state in 13 C are the neutron halo states, while the second excited state (3.56 MeV, Jπ = 0 + ) in 6 Li is a proton-neutron halo state. We have proposed a procedure to extract the probability for valence particle being out of the binding potential from the measured nuclear asymptotic normalization coefficients. With this procedure, available data regarding the nuclear halo candidates are systematically analyzed and a number of halo nuclei are confirmed. Based on these results we have got a much relaxed condition for nuclear halo occurrence. Furthermore, we have presented the scaling laws for the dimensionless quantity 2 >/R 2 of

  19. HALOE test and evaluation software

    Science.gov (United States)

    Edmonds, W.; Natarajan, S.

    1987-01-01

    Computer programming, system development and analysis efforts during this contract were carried out in support of the Halogen Occultation Experiment (HALOE) at NASA/Langley. Support in the major areas of data acquisition and monitoring, data reduction and system development are described along with a brief explanation of the HALOE project. Documented listings of major software are located in the appendix.

  20. Halo vest effect on balance.

    Science.gov (United States)

    Richardson, J K; Ross, A D; Riley, B; Rhodes, R L

    2000-03-01

    To determine the effect of a halo vest, a cervical orthosis, on clinically relevant balance parameters. Subjects performed unipedal stance (with eyes open and closed, on both firm and soft surfaces) and functional reach, with and without the application of a halo vest. A convenience sample of 12 healthy young subjects, with an equal number of men and women. Seconds for unipedal stance (maximum 45); inches for functional reach. Both unipedal stance times and functional reach (mean +/- standard deviation) were significantly decreased with the halo vest as compared to without it (29.1+/-5.8 vs. 32.8+/-6.4 seconds, p = .002; 12.9+/-1.4 vs. 15.1+/-2.1 inches, prisk for a fall, which could have devastating consequences.

  1. Exhaust, ELM and Halo physics using the MAST tokamak

    International Nuclear Information System (INIS)

    Counsell, G.F.; Ahn, J-W.; Kirk, A.; Helander, P.; Martin, R.; Tabasso, A.; Wilson, H.R.; Cohen, R.H.; Ryutov, D.D.; Yang, Y.

    2003-01-01

    The scrape-off layer (Sol) and divertor target plasma of a large spherical tokamak (ST) is characterised in detail for the first time. Scalings for the SOL heat flux width in MAST are developed and compared to conventional tokamaks. Modelling reveals the significance of the mirror force to the ST SOL. Core energy losses, including during ELMs, in MAST arrive predominantly (>80%) to the outboard targets in all geometries. Convective transport dominates energy losses during ELMs and MHD analysis suggests ELMs in MAST are Type III even at auxiliary heating powers well above the L-H threshold. ELMs are associated with a poloidally and/or toroidally localised radial efflux at ∼1 km/s well into the far SOL but not with any broadening of the target heat flux width. Toroidally asymmetric divertor biasing experiments have been conducted in an attempt to broaden the target heat flux width, with promising results. During vertical displacement events, the maximum product of the toroidal peaking factor and halo current fraction remains below 0.3, around half the ITER design limit. Evidence is presented that the resistance of the halo current path may have an impact on the distribution of halo current. (author)

  2. Two-proton radioactivity with 2p halo in light mass nuclei A=18–34

    Directory of Open Access Journals (Sweden)

    G. Saxena

    2017-12-01

    Full Text Available Two-proton radioactivity with 2p halo is reported theoretically in light mass nuclei A=18–34. We predict 19Mg, 22Si, 26S, 30Ar and 34Ca as promising candidates of ground state 2p-radioactivity with S2p0. Observation of extended tail of spatial charge density distribution, larger charge radius and study of proton single particle states, Fermi energy and the wave functions indicate 2p halo like structure which supports direct 2p emission. The Coulomb and centrifugal barriers in experimentally identified 2p unbound 22Si show a quasi-bound state that ensures enough life time for such experimental probes. Our predictions are in good accord with experimental and other theoretical data available so far. Keywords: Relativistic mean-field theory, Nilson Strutinsky approach, Two-proton radioactivity, One- and two-proton separation energy, Halo nuclei, Proton drip-lines

  3. Heavy particle production at the SSC

    International Nuclear Information System (INIS)

    Brodsky, S.J.; Haber, H.E.; Gunion, J.F.

    1984-03-01

    Predictions for the production of heavy quarks, supersymmetric particles, and other colored systems at high energy due to intrinsic twist-six components in the proton wavefunction are given. We also suggest the possibility of using asymmetric collision energies (e.g., via intersecting rings at the SSC) in order to facilitate the study of forward and diffractive particle production processes. 9 references

  4. Subhalo demographics in the Illustris simulation: effects of baryons and halo-to-halo variation

    Science.gov (United States)

    Chua, Kun Ting Eddie; Pillepich, Annalisa; Rodriguez-Gomez, Vicente; Vogelsberger, Mark; Bird, Simeon; Hernquist, Lars

    2017-12-01

    We study the abundance of subhaloes in the hydrodynamical cosmological simulation Illustris, which includes both baryons and dark matter in a cold dark matter volume 106.5 Mpc a side. We compare Illustris to its dark-matter only (DMO) analogue, Illustris-Dark and quantify the effects of baryonic processes on the demographics of subhaloes in the host mass range 1011-3 × 1014 M⊙. We focus on both the evolved (z = 0) subhalo cumulative mass functions (SHMF) and the statistics of subhaloes ever accreted, i.e. infall SHMF. We quantify the variance in subhalo abundance at fixed host mass and investigate the physical reasons responsible for such scatter. We find that in Illustris, baryonic physics impacts both the infall and z = 0 subhalo abundance by tilting the DMO function and suppressing the abundance of low-mass subhaloes. The breaking of self-similarity in the subhalo abundance at z = 0 is enhanced by the inclusion of baryonic physics. The non-monotonic alteration of the evolved subhalo abundances can be explained by the modification of the concentration-mass relation of Illustris hosts compared to Illustris-Dark. Interestingly, the baryonic implementation in Illustris does not lead to an increase in the halo-to-halo variation compared to Illustris-Dark. In both cases, the normalized intrinsic scatter today is larger for Milky Way-like haloes than for cluster-sized objects. For Milky Way-like haloes, it increases from about eight per cent at infall to about 25 per cent at the current epoch. In both runs, haloes of fixed mass formed later host more subhaloes than early formers.

  5. Vacuum pumping by the halo plasma

    International Nuclear Information System (INIS)

    Barr, W.L.

    1985-01-01

    An estimate is made of the effective vacuum pumping speed of the halo plasma in a tandem mirror fusion reactor, and it is shown that, if the electron temperature and line density are great enough, the halo can be a very good vacuum pump. One can probably obtain the required density by recycling the ions at the halo dumps. An array of small venting ports in the dump plates allows local variation of the recycle fraction and local removal of the gas at a conveniently high pressure. This vented-port concept could introduce more flexibility in the design of pumped limiters for tokamaks

  6. The prolate dark matter halo of the Andromeda galaxy

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Kohei; Chiba, Masashi, E-mail: k.hayasi@astr.tohoku.ac.jp, E-mail: chiba@astr.tohoku.ac.jp [Astronomical Institute, Tohoku University, Aoba-ku, Sendai 980-8578 (Japan)

    2014-07-01

    We present new limits on the global shape of the dark matter halo in the Andromeda galaxy using and generalizing non-spherical mass models developed by Hayashi and Chiba and compare our results with theoretical predictions of cold dark matter (CDM) models. This is motivated by the fact that CDM models predict non-spherical virialized dark halos, which reflect the process of mass assembly in the galactic scale. Applying our models to the latest kinematic data of globular clusters and dwarf spheroidal galaxies in the Andromeda halo, we find that the most plausible cases for Andromeda yield a prolate shape for its dark halo, irrespective of assumed density profiles. We also find that this prolate dark halo in Andromeda is consistent with theoretical predictions in which the satellites are distributed anisotropically and preferentially located along major axes of their host halos. It is a reflection of the intimate connection between galactic dark matter halos and the cosmic web. Therefore, our result is profound in understanding internal dynamics of halo tracers in Andromeda, such as orbital evolutions of tidal stellar streams, which play important roles in extracting the abundance of CDM subhalos through their dynamical effects on stream structures.

  7. Accurate mass and velocity functions of dark matter haloes

    Science.gov (United States)

    Comparat, Johan; Prada, Francisco; Yepes, Gustavo; Klypin, Anatoly

    2017-08-01

    N-body cosmological simulations are an essential tool to understand the observed distribution of galaxies. We use the MultiDark simulation suite, run with the Planck cosmological parameters, to revisit the mass and velocity functions. At redshift z = 0, the simulations cover four orders of magnitude in halo mass from ˜1011M⊙ with 8783 874 distinct haloes and 532 533 subhaloes. The total volume used is ˜515 Gpc3, more than eight times larger than in previous studies. We measure and model the halo mass function, its covariance matrix w.r.t halo mass and the large-scale halo bias. With the formalism of the excursion-set mass function, we explicit the tight interconnection between the covariance matrix, bias and halo mass function. We obtain a very accurate (function. We also model the subhalo mass function and its relation to the distinct halo mass function. The set of models obtained provides a complete and precise framework for the description of haloes in the concordance Planck cosmology. Finally, we provide precise analytical fits of the Vmax maximum velocity function up to redshift z publicly available in the Skies and Universes data base.

  8. The prolate dark matter halo of the Andromeda galaxy

    International Nuclear Information System (INIS)

    Hayashi, Kohei; Chiba, Masashi

    2014-01-01

    We present new limits on the global shape of the dark matter halo in the Andromeda galaxy using and generalizing non-spherical mass models developed by Hayashi and Chiba and compare our results with theoretical predictions of cold dark matter (CDM) models. This is motivated by the fact that CDM models predict non-spherical virialized dark halos, which reflect the process of mass assembly in the galactic scale. Applying our models to the latest kinematic data of globular clusters and dwarf spheroidal galaxies in the Andromeda halo, we find that the most plausible cases for Andromeda yield a prolate shape for its dark halo, irrespective of assumed density profiles. We also find that this prolate dark halo in Andromeda is consistent with theoretical predictions in which the satellites are distributed anisotropically and preferentially located along major axes of their host halos. It is a reflection of the intimate connection between galactic dark matter halos and the cosmic web. Therefore, our result is profound in understanding internal dynamics of halo tracers in Andromeda, such as orbital evolutions of tidal stellar streams, which play important roles in extracting the abundance of CDM subhalos through their dynamical effects on stream structures.

  9. Pulsar TeV Halos Explain the Diffuse TeV Excess Observed by Milagro.

    Science.gov (United States)

    Linden, Tim; Buckman, Benjamin J

    2018-03-23

    Milagro observations have found bright, diffuse TeV emission concentrated along the galactic plane of the Milky Way. The intensity and spectrum of this emission is difficult to explain with current models of hadronic γ-ray production, and has been named the "TeV excess." We show that TeV emission from pulsars naturally explains this excess. Recent observations have detected "TeV halos" surrounding pulsars that are either nearby or particularly luminous. Extrapolating this emission to the full population of Milky Way pulsars indicates that the ensemble of "subthreshold" sources necessarily produces bright TeV emission diffusively along the Milky Way plane. Models indicate that the TeV halo γ-ray flux exceeds that from hadronic γ rays above an energy of ∼500  GeV. Moreover, the spectrum and intensity of TeV halo emission naturally matches the TeV excess. Finally, we show that upcoming HAWC observations will resolve a significant fraction of the TeV excess into individual TeV halos, conclusively confirming, or ruling out, this model.

  10. UARS Halogen Occultation Experiment (HALOE) Level 2 V001

    Data.gov (United States)

    National Aeronautics and Space Administration — The HALOE home page on the WWW is http://haloe.gats-inc.com/home/index.php The Halogen Occultation Experiment (HALOE) on NASA's Upper Atmosphere Research Satellite...

  11. Halo-independent analysis of direct detection data for light WIMPs

    International Nuclear Information System (INIS)

    Nobile, Eugenio Del; Gelmini, Graciela B.; Huh, Ji-Haeng; Gondolo, Paolo

    2013-01-01

    We present a halo-independent analysis of direct detection data on ''light WIMPs'', i.e. weakly interacting massive particles with mass close to or below 10 GeV/c 2 . We include new results from silicon CDMS detectors (bounds and excess events), the latest CoGeNT acceptances, and recent measurements of low sodium quenching factors in NaI crystals. We focus on light WIMPs with spin-independent isospin-conserving and isospin-violating interactions with nucleons. For these dark matter candidates we find that a low quenching factor would make the DAMA modulation incompatible with a reasonable escape velocity for the dark matter halo, and that the tension among experimental data tightens in both the isospin-conserving and isospin-violating scenarios. We also find that a new although milder tension appears between the CoGeNT and DAMA annual modulations on one side and the silicon excess events on the other, in that it seems difficult to interpret them as the modulated and unmodulated aspects of the same WIMP dark matter signal

  12. A novel approach to derive halo-independent limits on dark matter properties

    OpenAIRE

    Ferrer, Francesc; Ibarra, Alejandro; Wild, Sebastian

    2015-01-01

    We propose a method that allows to place an upper limit on the dark matter elastic scattering cross section with nucleons which is independent of the velocity distribution. Our approach combines null results from direct detection experiments with indirect searches at neutrino telescopes, and goes beyond previous attempts to remove astrophysical uncertainties in that it directly constrains the particle physics properties of the dark matter. The resulting halo-independent upper limits on the sc...

  13. Dark matter halos with cores from hierarchical structure formation

    International Nuclear Information System (INIS)

    Strigari, Louis E.; Kaplinghat, Manoj; Bullock, James S.

    2007-01-01

    We show that dark matter emerging from late decays (z or approx. 0.1 Mpc), and simultaneously generates observable constant-density cores in small dark matter halos. We refer to this class of models as meta-cold dark matter (mCDM), because it is born with nonrelativistic velocities from the decays of cold thermal relics. The constant-density cores are a result of the low phase-space density of mCDM at birth. Warm dark matter cannot produce similar size phase-space limited cores without saturating the Lyα power spectrum bounds. Dark matter-dominated galaxy rotation curves and stellar velocity dispersion profiles may provide the best means to discriminate between mCDM and CDM. mCDM candidates are motivated by the particle spectrum of supersymmetric and extra dimensional extensions to the standard model of particle physics

  14. Scale dependence of halo and galaxy bias: Effects in real space

    International Nuclear Information System (INIS)

    Smith, Robert E.; Scoccimarro, Roman; Sheth, Ravi K.

    2007-01-01

    We examine the scale dependence of dark matter halo and galaxy clustering on very large scales (0.01 -1 ] -1 ] -1 ], and only show amplification on smaller scales, whereas low mass haloes show strong, ∼5%-10%, suppression over the range 0.05 -1 ]<0.15. These results were primarily established through the use of the cross-power spectrum of dark matter and haloes, which circumvents the thorny issue of shot-noise correction. The halo-halo power spectrum, however, is highly sensitive to the shot-noise correction; we show that halo exclusion effects make this sub-Poissonian and a new correction is presented. Our results have special relevance for studies of the baryon acoustic oscillation features in the halo power spectra. Nonlinear mode-mode coupling: (i) damps these features on progressively larger scales as halo mass increases; (ii) produces small shifts in the positions of the peaks and troughs which depend on halo mass. We show that these effects on halo clustering are important over the redshift range relevant to such studies (0< z<2), and so will need to be accounted for when extracting information from precision measurements of galaxy clustering. Our analytic model is described in the language of the ''halo model.'' The halo-halo clustering term is propagated into the nonlinear regime using ''1-loop'' perturbation theory and a nonlinear halo bias model. Galaxies are then inserted into haloes through the halo occupation distribution. We show that, with nonlinear bias parameters derived from simulations, this model produces predictions that are qualitatively in agreement with our numerical results. We then use it to show that the power spectra of red and blue galaxies depend differently on scale, thus underscoring the fact that proper modeling of nonlinear bias parameters will be crucial to derive reliable cosmological constraints. In addition to showing that the bias on very large scales is not simply linear, the model also shows that the halo-halo and halo

  15. THE UNORTHODOX ORBITS OF SUBSTRUCTURE HALOS

    NARCIS (Netherlands)

    Ludlow, Aaron D.; Navarro, Julio F.; Springel, Volker; Jenkins, Adrian; Frenk, Carlos S.; Helmi, Amina

    2009-01-01

    We use a suite of cosmological N-body simulations to study the properties of substructure halos (subhalos) in galaxy-sized cold dark matter halos. We extend prior work on the subject by considering the whole population of subhalos physically associated with the main system. These are defined as

  16. MD 2179: Scraping of off-momentum halo after injection

    CERN Document Server

    Garcia Morales, Hector; Patecki, Marcin; Wretborn, Sven Joel; CERN. Geneva. ATS Department

    2018-01-01

    In this MD, a beam scraping was performed using the momentum primary collimator in IR3 where dispersion is high. A second scraping was performed using a TCSG in IR7 where dispersion is almost negligible. In such a way, we aim to disentangle the contribution of off-momentum particles to halo population. These scrapings will provide useful information to better understand the usual off-momentum losses we see at the start of the ramp. The MD results would also be used to benchmark simulations of off-momentum beam losses in order to gain confidence in simulation models.

  17. Bimodal Formation Time Distribution for Infall Dark Matter Halos

    Science.gov (United States)

    Shi, Jingjing; Wang, Huiyuan; Mo, H. J.; Xie, Lizhi; Wang, Xiaoyu; Lapi, Andrea; Sheth, Ravi K.

    2018-04-01

    We use a 200 {h}-1 {Mpc} a-side N-body simulation to study the mass accretion history (MAH) of dark matter halos to be accreted by larger halos, which we call infall halos. We define a quantity {a}nf}\\equiv (1+{z}{{f}})/(1+{z}peak}) to characterize the MAH of infall halos, where {z}peak} and {z}{{f}} are the accretion and formation redshifts, respectively. We find that, at given {z}peak}, their MAH is bimodal. Infall halos are dominated by a young population at high redshift and by an old population at low redshift. For the young population, the {a}nf} distribution is narrow and peaks at about 1.2, independent of {z}peak}, while for the old population, the peak position and width of the {a}nf} distribution both increase with decreasing {z}peak} and are both larger than those of the young population. This bimodal distribution is found to be closely connected to the two phases in the MAHs of halos. While members of the young population are still in the fast accretion phase at z peak, those of the old population have already entered the slow accretion phase at {z}peak}. This bimodal distribution is not found for the whole halo population, nor is it seen in halo merger trees generated with the extended Press–Schechter formalism. The infall halo population at {z}peak} are, on average, younger than the whole halo population of similar masses identified at the same redshift. We discuss the implications of our findings in connection to the bimodal color distribution of observed galaxies and to the link between central and satellite galaxies.

  18. Minimizing the stochasticity of halos in large-scale structure surveys

    Science.gov (United States)

    Hamaus, Nico; Seljak, Uroš; Desjacques, Vincent; Smith, Robert E.; Baldauf, Tobias

    2010-08-01

    In recent work (Seljak, Hamaus, and Desjacques 2009) it was found that weighting central halo galaxies by halo mass can significantly suppress their stochasticity relative to the dark matter, well below the Poisson model expectation. This is useful for constraining relations between galaxies and the dark matter, such as the galaxy bias, especially in situations where sampling variance errors can be eliminated. In this paper we extend this study with the goal of finding the optimal mass-dependent halo weighting. We use N-body simulations to perform a general analysis of halo stochasticity and its dependence on halo mass. We investigate the stochasticity matrix, defined as Cij≡⟨(δi-biδm)(δj-bjδm)⟩, where δm is the dark matter overdensity in Fourier space, δi the halo overdensity of the i-th halo mass bin, and bi the corresponding halo bias. In contrast to the Poisson model predictions we detect nonvanishing correlations between different mass bins. We also find the diagonal terms to be sub-Poissonian for the highest-mass halos. The diagonalization of this matrix results in one large and one low eigenvalue, with the remaining eigenvalues close to the Poisson prediction 1/n¯, where n¯ is the mean halo number density. The eigenmode with the lowest eigenvalue contains most of the information and the corresponding eigenvector provides an optimal weighting function to minimize the stochasticity between halos and dark matter. We find this optimal weighting function to match linear mass weighting at high masses, while at the low-mass end the weights approach a constant whose value depends on the low-mass cut in the halo mass function. This weighting further suppresses the stochasticity as compared to the previously explored mass weighting. Finally, we employ the halo model to derive the stochasticity matrix and the scale-dependent bias from an analytical perspective. It is remarkably successful in reproducing our numerical results and predicts that the

  19. Are baryonic galactic halos possible

    International Nuclear Information System (INIS)

    Olive, K.A.; Hegyi, D.J.

    1986-01-01

    There is little doubt from the rotation curves of spiral galaxies that galactic halos must contain large amounts of dark matter. In this contribution, the authors review arguments which indicate that it is very unlikely that galactic halos contain substantial amounts of baryonic matter. While the authors would like to be able to present a single argument which would rule out baryonic matter, at the present time they are only able to present a collection of arguments each of which argues against one form of baryonic matter. These include: 1) snowballs; 2) gas; 3) low mass stars and Jupiters; 4) high mass stars; and 5) high metalicity objects such as rooks or dust. Black holes, which do not have a well defined baryon number, are also a possible candidate for halo matter. They briefly discuss black holes

  20. Teaching children about good health? Halo effects in child-directed advertisements for unhealthy food.

    Science.gov (United States)

    Harris, J L; Haraghey, K S; Lodolce, M; Semenza, N L

    2018-04-01

    Food companies often use healthy lifestyle messages in child-directed advertising, raising public health concerns about health halo effects for nutrient-poor food/drinks. Examine effects of health messages promoting nutrient-poor foods in child-directed advertising. Randomized controlled experiment (N = 138). Children (7-11 years) viewed three child-friendly commercials in one of three conditions: (1) health halo (unfamiliar nutrient-poor food/drink ads with healthy messages); (2) nutrient-poor food/drink ads with other messages and (3) healthy food/drink ads. They rated the commercials and advertised products, provided attitudes about exercise and nutrition and consumed and rated healthy and unhealthy snack foods. Children in the health halo condition rated the advertised nutrient-poor products as significantly healthier compared with children in other conditions (p = .003), but the other commercials did not affect children's attitudes about other advertised products (p's > .50). Child age, gender or TV viewing habits did not significantly predict their ratings (p's > .18). There was no evidence that healthy lifestyle messages and/or healthy food commercials improved children's attitudes about nutrition, exercise or healthy snack consumption. Promoting healthy lifestyle messages in child-directed commercials for nutrient-poor food/drinks likely benefits brands by increasing products' perceived healthfulness, but these ads are unlikely to positively affect children's attitudes about health and nutrition. © 2017 World Obesity Federation.

  1. Halo-independent direct detection analyses without mass assumptions

    International Nuclear Information System (INIS)

    Anderson, Adam J.; Fox, Patrick J.; Kahn, Yonatan; McCullough, Matthew

    2015-01-01

    Results from direct detection experiments are typically interpreted by employing an assumption about the dark matter velocity distribution, with results presented in the m χ −σ n plane. Recently methods which are independent of the DM halo velocity distribution have been developed which present results in the v min −g-tilde plane, but these in turn require an assumption on the dark matter mass. Here we present an extension of these halo-independent methods for dark matter direct detection which does not require a fiducial choice of the dark matter mass. With a change of variables from v min to nuclear recoil momentum (p R ), the full halo-independent content of an experimental result for any dark matter mass can be condensed into a single plot as a function of a new halo integral variable, which we call h-til-tilde(p R ). The entire family of conventional halo-independent g-tilde(v min ) plots for all DM masses are directly found from the single h-tilde(p R ) plot through a simple rescaling of axes. By considering results in h-tilde(p R ) space, one can determine if two experiments are inconsistent for all masses and all physically possible halos, or for what range of dark matter masses the results are inconsistent for all halos, without the necessity of multiple g-tilde(v min ) plots for different DM masses. We conduct a sample analysis comparing the CDMS II Si events to the null results from LUX, XENON10, and SuperCDMS using our method and discuss how the results can be strengthened by imposing the physically reasonable requirement of a finite halo escape velocity

  2. Halo statistics analysis within medium volume cosmological N-body simulation

    Directory of Open Access Journals (Sweden)

    Martinović N.

    2015-01-01

    Full Text Available In this paper we present halo statistics analysis of a ΛCDM N body cosmological simulation (from first halo formation until z = 0. We study mean major merger rate as a function of time, where for time we consider both per redshift and per Gyr dependence. For latter we find that it scales as the well known power law (1 + zn for which we obtain n = 2.4. The halo mass function and halo growth function are derived and compared both with analytical and empirical fits. We analyse halo growth through out entire simulation, making it possible to continuously monitor evolution of halo number density within given mass ranges. The halo formation redshift is studied exploring possibility for a new simple preliminary analysis during the simulation run. Visualization of the simulation is portrayed as well. At redshifts z = 0−7 halos from simulation have good statistics for further analysis especially in mass range of 1011 − 1014 M./h. [176021 ’Visible and invisible matter in nearby galaxies: theory and observations

  3. The f ( R ) halo mass function in the cosmic web

    Energy Technology Data Exchange (ETDEWEB)

    Braun-Bates, F. von; Winther, H.A.; Alonso, D.; Devriendt, J., E-mail: francesca.vonbraun-bates@physics.ox.ac.uk, E-mail: hans.a.winther@physics.ox.ac.uk, E-mail: david.alonso@physics.ox.ac.uk, E-mail: julien.devriendt@physics.ox.ac.uk [Astrophysics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom)

    2017-03-01

    An important indicator of modified gravity is the effect of the local environment on halo properties. This paper examines the influence of the local tidal structure on the halo mass function, the halo orientation, spin and the concentration-mass relation. We use the excursion set formalism to produce a halo mass function conditional on large-scale structure. Our simple model agrees well with simulations on large scales at which the density field is linear or weakly non-linear. Beyond this, our principal result is that f ( R ) does affect halo abundances, the halo spin parameter and the concentration-mass relationship in an environment-independent way, whereas we find no appreciable deviation from \\text(ΛCDM) for the mass function with fixed environment density, nor the alignment of the orientation and spin vectors of the halo to the eigenvectors of the local cosmic web. There is a general trend for greater deviation from \\text(ΛCDM) in underdense environments and for high-mass haloes, as expected from chameleon screening.

  4. Observation and analysis of halo current in EAST

    Science.gov (United States)

    Chen, Da-Long; Shen, Biao; Qian, Jin-Ping; Sun, You-Wen; Liu, Guang-Jun; Shi, Tong-Hui; Zhuang, Hui-Dong; Xiao, Bing-Jia

    2014-06-01

    Plasma in a typically elongated cross-section tokamak (for example, EAST) is inherently unstable against vertical displacement. When plasma loses the vertical position control, it moves downward or upward, leading to disruption, and a large halo current is generated helically in EAST typically in the scrape-off layer. When flowing into the vacuum vessel through in-vessel components, the halo current will give rise to a large J × B force acting on the vessel and the in-vessel components. In EAST VDE experiment, part of the eddy current is measured in halo sensors, due to the large loop voltage. Primary experimental data demonstrate that the halo current first lands on the outer plate and then flows clockwise, and the analysis of the information indicates that the maximum halo current estimated in EAST is about 0.4 times the plasma current and the maximum value of TPF × Ih/IP0 is 0.65, furthermore Ih/Ip0 and TPF × Ih/Ip0 tend to increase with the increase of Ip0. The test of the strong gas injection system shows good success in increasing the radiated power, which may be effective in reducing the halo current.

  5. Unmixing the Galactic halo with RR Lyrae tagging

    Science.gov (United States)

    Belokurov, V.; Deason, A. J.; Koposov, S. E.; Catelan, M.; Erkal, D.; Drake, A. J.; Evans, N. W.

    2018-06-01

    We show that tagging RR Lyrae stars according to their location in the period-amplitude diagram can be used to shed light on the genesis of the Galactic stellar halo. The mixture of RR Lyrae of ab type, separated into classes along the lines suggested by Oosterhoff, displays a strong and coherent evolution with Galactocentric radius. The change in the RR Lyrae composition appears to coincide with the break in the halo's radial density profile at ˜25 kpc. Using simple models of the stellar halo, we establish that at least three different types of accretion events are necessary to explain the observed RRab behaviour. Given that there exists a correlation between the RRab class fraction and the total stellar content of a dwarf satellite, we hypothesize that the field halo RRab composition is controlled by the mass of the progenitor contributing the bulk of the stellar debris at the given radius. This idea is tested against a suite of cosmological zoom-in simulations of Milky Way-like stellar halo formation. Finally, we study some of the most prominent stellar streams in the Milky Way halo and demonstrate that their RRab class fractions follow the trends established previously.

  6. THE EFFECTS OF ANGULAR MOMENTUM ON HALO PROFILES

    Energy Technology Data Exchange (ETDEWEB)

    Lentz, Erik W; Rosenberg, Leslie J [Physics Department, University of Washington, Seattle, WA 98195-1580 (United States); Quinn, Thomas R, E-mail: lentze@phys.washington.edu, E-mail: ljrosenberg@phys.washington.edu, E-mail: trq@astro.washington.edu [Astronomy Department, University of Washington, Seattle, WA 98195-1580 (United States)

    2016-05-10

    The near universality of DM halo density profiles provided by N -body simulations proved to be robust against changes in total mass density, power spectrum, and some forms of initial velocity dispersion. Here we study the effects of coherently spinning up an isolated DM-only progenitor on halo structure. Halos with spins within several standard deviations of the simulated mean ( λ ≲ 0.20) produce profiles with negligible deviations from the universal form. Only when the spin becomes quite large ( λ ≳ 0.20) do departures become evident. The angular momentum distribution also exhibits a near universal form, which is also independent of halo spin up to λ ≲ 0.20. A correlation between these epidemic profiles and the presence of a strong bar in the virialized halo is also observed. These bar structures bear resemblance to the radial orbit instability in the rotationless limit.

  7. Galaxy halo occupation at high redshift

    Science.gov (United States)

    Bullock, James S.; Wechsler, Risa H.; Somerville, Rachel S.

    2002-01-01

    We discuss how current and future data on the clustering and number density of z~3 Lyman-break galaxies (LBGs) can be used to constrain their relationship to dark matter haloes. We explore a three-parameter model in which the number of LBGs per dark halo scales like a power law in the halo mass: N(M)=(M/M1)S for M>Mmin. Here, Mmin is the minimum mass halo that can host an LBG, M1 is a normalization parameter, associated with the mass above which haloes host more than one observed LBG, and S determines the strength of the mass-dependence. We show how these three parameters are constrained by three observable properties of LBGs: the number density, the large-scale bias and the fraction of objects in close pairs. Given these three quantities, the three unknown model parameters may be estimated analytically, allowing a full exploration of parameter space. As an example, we assume a ΛCDM cosmology and consider the observed properties of a recent sample of spectroscopically confirmed LBGs. We find that the favoured range for our model parameters is Mmin~=(0.4-8)×1010h- 1Msolar, M1~=(6-10)×1012h- 1Msolar, and 0.9acceptable if the allowed range of bg is permitted to span all recent observational estimates. We also discuss how the observed clustering of LBGs as a function of luminosity can be used to constrain halo occupation, although because of current observational uncertainties we are unable to reach any strong conclusions. Our methods and results can be used to constrain more realistic models that aim to derive the occupation function N(M) from first principles, and offer insight into how basic physical properties affect the observed properties of LBGs.

  8. Exhaust, ELM and halo physics using the MAST tokamak

    International Nuclear Information System (INIS)

    Counsell, G. F.

    2002-01-01

    Scalings for the SOL width on MAST extend the parameter range of conventional devices but confirm a negative dependence on power flow across the separatrix. In L-mode and at ELM peaks, >95% of power to the targets arrives to the outboard side. Peak heat flux densities rise by a factor 2∼6 during ELMs and are accompanied by a shift in the strike-point location but by little change in the target heat flux width. Energy loss per ELM as a percentage of pedestal energy and pedestal collisionality appear uncorrelated, possibly because ELMs on MAST are dominated by convective transport. Modelling shows that parallel gradients in the magnitude of the magnetic field in MAST may drive strong upstream flows. Broadening of the target heat flux width by divertor biasing is being explored as a means of reducing target power loading in next-step devices and has facilitated halo current measurements using series resistors. Halo currents are always less than 30% of plasma current and the product of toroidal peaking factor and halo current fraction is ∼50% of the ITER design limit. Varying the series resistance demonstrates that the VDE behaves more as a voltage source than a current source. (author)

  9. Historic halo displays as weather indicator: Criteria and examples

    Science.gov (United States)

    Neuhäuser, Dagmar L.; Neuhäuser, Ralph

    2016-04-01

    There are numerous celestial signs reported in historic records, many of them refer to atmospheric ("sub-lunar") phenomena, such as ice halos and aurorae. In an interdisciplinary collaboration between astrophysics and cultural astronomy, we noticed that celestial observations including meteorological phenomena are often misinterpreted, mostly due to missing genuine criteria: especially ice crystal halos were recorded frequently in past centuries for religious reasons, but are mistaken nowadays often for other phenomena like aurorae. Ice halo displays yield clear information on humidity and temperature in certain atmospheric layers, and thereby indicate certain weather patterns. Ancient so-called rain makers used halo observations for weather forecast; e.g., a connection between certain halo displays and rain a few day later is statistically significant. Ice halos exist around sun and moon and are reported for both (they can stay for several days): many near, middle, and far eastern records from day- and night-time include such observations with high frequency. (Partly based on publications on halos by D.L. Neuhäuser & R. Neuhäuser, available at http://www.astro.uni-jena.de/index.php/terra-astronomy.html)

  10. Beam halo in high-intensity beams

    International Nuclear Information System (INIS)

    Wangler, T.P.

    1993-01-01

    In space-charge dominated beams the nonlinear space-charge forces produce a filamentation pattern, which in projection to the 2-D phase spaces results in a 2-component beam consisting of an inner core and a diffuse outer halo. The beam-halo is of concern for a next generation of cw, high-power proton linacs that could be applied to intense neutron generators for nuclear materials processing. The author describes what has been learned about beam halo and the evolution of space-charge dominated beams using numerical simulations of initial laminar beams in uniform linear focusing channels. Initial results are presented from a study of beam entropy for an intense space-charge dominated beam

  11. Sensitivity of the halo nuclei-12C elastic scattering at incident nucleon energy 800 MeV to the halo density distribution

    Science.gov (United States)

    Hassan, M. A. M.; Nour El-Din, M. S. M.; Ellithi, A.; Hosny, H.; Salama, T. N. E.

    2017-10-01

    In the framework of Glauber optical limit approximation where Coulomb effect is taken into account, the elastic scattering differential cross section for halo nuclei with {}^{12}{C} at 800 MeV/N has been calculated. Its sensitivity to the halo densities and the root mean square of the core and halo is the main goal of the current study. The projectile nuclei are taken to be one-neutron and two-neutron halo. The calculations are carried out for Gaussian-Gaussian, Gaussian-Oscillator and Gaussian-2 s phenomenological densities for each considered projectile in the mass number range 6-29. Also included a comparison between the obtained results of phenomenological densities and the results within the microscopic densities LSSM of {}6{He} and {}^{11}{Li} and microscopic densities GCM of {}^{11}{Be} where the density of the target nucleus {}^{12}{C} obtained from electron-{}^{12}{C} scattering is used. The zero range approximation is considered in the calculations. We found that the sensitivity of elastic scattering differential cross section to the halo density is clear if the nucleus appears as two clear different clusters, core and halo.

  12. THE X-RAY HALO OF CEN X-3

    International Nuclear Information System (INIS)

    Thompson, Thomas W. J.; Rothschild, Richard E.

    2009-01-01

    Using two Chandra observations, we have derived estimates of the dust distribution and distance to the eclipsing high-mass X-ray binary Cen X-3 using the energy-resolved dust-scattered X-ray halo. By comparing the observed X-ray halos in 200 eV bands from 2-5 keV to the halo profiles predicted by the Weingartner and Draine interstellar grain model, we find that the vast majority (∼ 70%) of the dust along the line of sight to the system is located within about 300 pc of the Sun, although the halo measurements are insensitive to dust very close to the source. One of the Chandra observations occurred during an egress from eclipse as the pulsar emerged from behind the mass-donating primary. By comparing model halo light curves during this transition to the halo measurements, a source distance of 5.7 ± 1.5 kpc (68% confidence level) is estimated, although we find this result depends on the distribution of dust on very small scales. Nevertheless, this value is marginally inconsistent with the commonly accepted distance to Cen X-3 of 8 kpc. We also find that the energy scaling of the scattering optical depth predicted by the Weingartner and Draine interstellar grain model does not accurately represent the results determined by X-ray halo studies of Cen X-3. Relative to the model, there appears to be less scattering at low energies or more scattering at high energies in Cen X-3.

  13. Hierarchical formation of dark matter halos and the free streaming scale

    International Nuclear Information System (INIS)

    Ishiyama, Tomoaki

    2014-01-01

    The smallest dark matter halos are formed first in the early universe. According to recent studies, the central density cusp is much steeper in these halos than in larger halos and scales as ρ∝r –(1.5-1.3) . We present the results of very large cosmological N-body simulations of the hierarchical formation and evolution of halos over a wide mass range, beginning from the formation of the smallest halos. We confirmed early studies that the inner density cusps are steeper in halos at the free streaming scale. The cusp slope gradually becomes shallower as the halo mass increases. The slope of halos 50 times more massive than the smallest halo is approximately –1.3. No strong correlation exists between the inner slope and the collapse epoch. The cusp slope of halos above the free streaming scale seems to be reduced primarily due to major merger processes. The concentration, estimated at the present universe, is predicted to be 60-70, consistent with theoretical models and earlier simulations, and ruling out simple power law mass-concentration relations. Microhalos could still exist in the present universe with the same steep density profiles.

  14. Solar Wind Halo Formation by the Scattering of the Strahl via Direct Cluster/PEACE Observations of the 3D Velocity Distribution Function

    Science.gov (United States)

    Figueroa-Vinas, Adolfo; Gurgiolo, Chris A.; Nieves-Chinchilla, Teresa; Goldstein, Melvyn L.

    2010-01-01

    It has been suggested by a number of authors that the solar wind electron halo can be formed by the scattering of the strahl. On frequent occasions we have observed in electron angular skymaps (Phi/Theta-plots) of the electron 3D velocity distribution functions) a bursty-filament of particles connecting the strahl to the solar wind core-halo. These are seen over a very limited energy range. When the magnetic field is well off the nominal solar wind flow direction such filaments are inconsistent with any local forces and are probably the result of strong scattering. Furthermore, observations indicates that the strahl component is frequently and significantly anisotropic (Tper/Tpal approx.2). This provides a possible free energy source for the excitation of whistler waves as a possible scattering mechanism. The empirical observational evidence between the halo and the strahl suggests that the strahl population may be, at least in part, the source of the halo component.

  15. CARBON-ENHANCED METAL-POOR STARS IN THE INNER AND OUTER HALO COMPONENTS OF THE MILKY WAY

    International Nuclear Information System (INIS)

    Carollo, Daniela; Norris, John E.; Freeman, Ken C.; Beers, Timothy C.; Lee, Young Sun; Kennedy, Catherine R.; Bovy, Jo; Sivarani, Thirupathi; Aoki, Wako

    2012-01-01

    Carbon-enhanced metal-poor (CEMP) stars in the halo components of the Milky Way are explored, based on accurate determinations of the carbon-to-iron ([C/Fe]) abundance ratios and kinematic quantities for over 30,000 calibration stars from the Sloan Digital Sky Survey. Using our present criterion that low-metallicity stars exhibiting [C/Fe] ratios ( c arbonicity ) in excess of [C/Fe] =+0.7 are considered CEMP stars, the global frequency of CEMP stars in the halo system for [Fe/H] 5 kpc, the CarDF exhibits a strong tail toward high values, up to [C/Fe] > +3.0. We also find a clear increase in the CEMP frequency with |Z|. For stars with –2.0 < [Fe/H] <–1.5, the frequency grows from 5% at |Z| ∼2 kpc to 10% at |Z| ∼10 kpc. For stars with [Fe/H] <–2.0, the frequency grows from 8% at |Z| ∼2 kpc to 25% at |Z| ∼10 kpc. For stars with –2.0 < [Fe/H] <–1.5, the mean carbonicity is ([C/Fe]) ∼+1.0 for 0 kpc < |Z| < 10 kpc, with little dependence on |Z|; for [Fe/H] <–2.0, ([C/Fe]) ∼+1.5, again roughly independent of |Z|. Based on a statistical separation of the halo components in velocity space, we find evidence for a significant contrast in the frequency of CEMP stars between the inner- and outer-halo components—the outer halo possesses roughly twice the fraction of CEMP stars as the inner halo. The carbonicity distribution also differs between the inner-halo and outer-halo components—the inner halo has a greater portion of stars with modest carbon enhancement ([C/Fe] ∼+0.5]); the outer halo has a greater portion of stars with large enhancements ([C/Fe] ∼+2.0), although considerable overlap still exists. We interpret these results as due to the possible presence of additional astrophysical sources of carbon production associated with outer-halo stars, beyond the asymptotic giant-branch source that may dominate for inner-halo stars, with implications for the progenitors of these populations.

  16. Phase models of galaxies consisting of disk and halo

    International Nuclear Information System (INIS)

    Osipkov, L.P.; Kutuzov, S.A.

    1987-01-01

    A method of finding the phase density of a two-component model of mass distribution is developed. The equipotential surfaces and the potential law are given. The equipotentials are lenslike surfaces with a sharp edge in the equatorial plane, which provides the existence of an imbedded thin disk in halo. The equidensity surfaces of the halo coincide with the equipotentials. Phase models for the halo and the disk are constructed separately on the basis of spatial and surface mass densities by solving the corresponding integral equations. In particular the models for the halo with finite dimensions can be constructed. The even part of the phase density in respect to velocities is only found. For the halo it depends on the energy integral as a single argument

  17. Particle production at collider energies

    International Nuclear Information System (INIS)

    Geich-Gimbel, C.

    1987-11-01

    Key features of the SPS panti p Collider and the detectors of the UA-experiments involved are dealt with in chapter 2, which includes and accord to the ramping mode of the Collider, which allowed to raise the c.m. energy to 900 GeV in the UA5/2 experiment. The following chapters concentrate on physics results. Starting with a discussion of cross sections and diffraction dissociation in chapter 3 we then continue with a presentation of basic features of particle production such as rapidity and multiplicity distributions in chapter 4. There one of the unexpected findings at Collider energies, the breakdown of the so-called KNO-scaling, and new regularities potentially governing multiplicity distributions, are discussed. The findings about correlations among the final state particles, which may tell about the underlying dynamics of multi-particle production and be relevant to models thereof, are described in due detail in chapter 5. Transverse spectra and their trends with energy are shown in chapter 6. Results on identified particles are collected in a separate chapter in order to stress that this piece of information was an important outcome of the UA5 experiment. (orig./HSI)

  18. Abort Options for Human Missions to Earth-Moon Halo Orbits

    Science.gov (United States)

    Jesick, Mark C.

    2013-01-01

    Abort trajectories are optimized for human halo orbit missions about the translunar libration point (L2), with an emphasis on the use of free return trajectories. Optimal transfers from outbound free returns to L2 halo orbits are numerically optimized in the four-body ephemeris model. Circumlunar free returns are used for direct transfers, and cislunar free returns are used in combination with lunar gravity assists to reduce propulsive requirements. Trends in orbit insertion cost and flight time are documented across the southern L2 halo family as a function of halo orbit position and free return flight time. It is determined that the maximum amplitude southern halo incurs the lowest orbit insertion cost for direct transfers but the maximum cost for lunar gravity assist transfers. The minimum amplitude halo is the most expensive destination for direct transfers but the least expensive for lunar gravity assist transfers. The on-orbit abort costs for three halos are computed as a function of abort time and return time. Finally, an architecture analysis is performed to determine launch and on-orbit vehicle requirements for halo orbit missions.

  19. Dynamical Constraints On The Galaxy-Halo Connection

    Science.gov (United States)

    Desmond, Harry

    2017-07-01

    Dark matter halos comprise the bulk of the universe's mass, yet must be probed by the luminous galaxies that form within them. A key goal of modern astrophysics, therefore, is to robustly relate the visible and dark mass, which to first order means relating the properties of galaxies and halos. This may be expected not only to improve our knowledge of galaxy formation, but also to enable high-precision cosmological tests using galaxies and hence maximise the utility of future galaxy surveys. As halos are inaccessible to observations - as galaxies are to N-body simulations - this relation requires an additional modelling step.The aim of this thesis is to develop and evaluate models of the galaxy-halo connection using observations of galaxy dynamics. In particular, I build empirical models based on the technique of halo abundance matching for five key dynamical scaling relations of galaxies - the Tully-Fisher, Faber-Jackson, mass-size and mass discrepancy-acceleration relations, and Fundamental Plane - which relate their baryon distributions and rotation or velocity dispersion profiles. I then develop a statistical scheme based on approximate Bayesian computation to compare the predicted and measured values of a number of summary statistics describing the relations' important features. This not only provides quantitative constraints on the free parameters of the models, but also allows absolute goodness-of-fit measures to be formulated. I find some features to be naturally accounted for by an abundance matching approach and others to impose new constraints on the galaxy-halo connection; the remainder are challenging to account for and may imply galaxy-halo correlations beyond the scope of basic abundance matching.Besides providing concrete statistical tests of specific galaxy formation theories, these results will be of use for guiding the inputs of empirical and semi-analytic galaxy formation models, which require galaxy-halo correlations to be imposed by hand. As

  20. Dark energy and extended dark matter halos

    Science.gov (United States)

    Chernin, A. D.; Teerikorpi, P.; Valtonen, M. J.; Dolgachev, V. P.; Domozhilova, L. M.; Byrd, G. G.

    2012-03-01

    The cosmological mean matter (dark and baryonic) density measured in the units of the critical density is Ωm = 0.27. Independently, the local mean density is estimated to be Ωloc = 0.08-0.23 from recent data on galaxy groups at redshifts up to z = 0.01-0.03 (as published by Crook et al. 2007, ApJ, 655, 790 and Makarov & Karachentsev 2011, MNRAS, 412, 2498). If the lower values of Ωloc are reliable, as Makarov & Karachentsev and some other observers prefer, does this mean that the Local Universe of 100-300 Mpc across is an underdensity in the cosmic matter distribution? Or could it nevertheless be representative of the mean cosmic density or even be an overdensity due to the Local Supercluster therein. We focus on dark matter halos of groups of galaxies and check how much dark mass the invisible outer layers of the halos are able to host. The outer layers are usually devoid of bright galaxies and cannot be seen at large distances. The key factor which bounds the size of an isolated halo is the local antigravity produced by the omnipresent background of dark energy. A gravitationally bound halo does not extend beyond the zero-gravity surface where the gravity of matter and the antigravity of dark energy balance, thus defining a natural upper size of a system. We use our theory of local dynamical effects of dark energy to estimate the maximal sizes and masses of the extended dark halos. Using data from three recent catalogs of galaxy groups, we show that the calculated mass bounds conform with the assumption that a significant amount of dark matter is located in the invisible outer parts of the extended halos, sufficient to fill the gap between the observed and expected local matter density. Nearby groups of galaxies and the Virgo cluster have dark halos which seem to extend up to their zero-gravity surfaces. If the extended halo is a common feature of gravitationally bound systems on scales of galaxy groups and clusters, the Local Universe could be typical or even

  1. Test of a Diamond Detector Using Unbunched Beam Halo Particles

    CERN Document Server

    Dehning, B; Pernegger, H; Dobos, D; Frais-Kolbl, H; Griesmayer, E

    2010-01-01

    A pCVD diamond detector has been evaluated as a beam loss monitor for future applications in the LHC accelerator. The test monitor was mounted in the SPS BA5 downstream of a LHC collimator during the LHC beam set-up. CVD diamond particle detectors are already in use in the CERN experiments ATLAS, CMS, LHCb and Alice. This is a proven technology with high radiation tolerance and very fast signal read-out. It can be used for single-particle detection, as well as for measuring particle cascades, for timing measurements on the nanosecond scale and for beam protection systems. Despite the read-out being made through 250 m of CK50 cable, the tests have shown a very good signal-to-noise ratio of 6.8, an excellent double-pulse resolution of less than 5 ns and a high dynamic range of 1:350 MIP particles. The efficiency of particle detection is practically 100% for charged particles.

  2. DARK MATTER CORES IN THE FORNAX AND SCULPTOR DWARF GALAXIES: JOINING HALO ASSEMBLY AND DETAILED STAR FORMATION HISTORIES

    International Nuclear Information System (INIS)

    Amorisco, N. C.; Zavala, J.; De Boer, T. J. L.

    2014-01-01

    We combine the detailed star formation histories of the Fornax and Sculptor dwarf spheroidals with the mass assembly history of their dark matter (DM) halo progenitors to estimate if the energy deposited by Type II supernovae (SNe II) is sufficient to create a substantial DM core. Assuming the efficiency of energy injection of the SNe II into DM particles is ε gc = 0.05, we find that a single early episode, z ≳ z infall , that combines the energy of all SNe II due to explode over 0.5 Gyr is sufficient to create a core of several hundred parsecs in both Sculptor and Fornax. Therefore, our results suggest that it is energetically plausible to form cores in cold dark matter (CDM) halos via early episodic gas outflows triggered by SNe II. Furthermore, based on CDM merger rates and phase-space density considerations, we argue that the probability of a subsequent complete regeneration of the cusp is small for a substantial fraction of dwarf-size halos

  3. Inelastic dark matter, non-standard halos and the DAMA/LIBRA results

    International Nuclear Information System (INIS)

    March-Russell, John; McCabe, Christopher; McCullough, Matthew

    2009-01-01

    The DAMA collaboration have claimed to detect particle dark matter (DM) via an annual modulation in their observed recoil event rate. This appears to be in strong disagreement with the null results of other experiments if interpreted in terms of elastic DM scattering, while agreement for a small region of parameter space is possible for inelastic DM (iDM) due to the altered kinematics of the collision. To date most analyses assume a simple galactic halo DM velocity distribution, the Standard Halo Model, but direct experimental support for the SHM is severely lacking and theoretical studies indicate possible significant differences. We investigate the dependence of DAMA and the other direct detection experiments on the local DM velocity distribution, utilizing the results of the Via Lactea and Dark Disc numerical simulations. We also investigate effects of varying the solar circular velocity, the DM escape velocity, and the DAMA quenching factor within experimental limits. Our data set includes the latest ZEPLIN-III results, as well as full publicly available data sets. Due to the more sensitive dependence of the inelastic cross section on the velocity distribution, we find that with Via Lactea the DAMA results can be consistent with all other experiments over an enlarged region of iDM parameter space, with higher mass particles being preferred, while Dark Disc does not lead to an improvement. A definitive test of DAMA for iDM requires heavy element detectors.

  4. El halo de la memoria

    OpenAIRE

    GAVINO ROSELLÓ, AARÓN

    2017-01-01

    The halo effect is one of the most classic cognitive biases of psychology, and one that we can observe frequently in everyday life. It consists in the realization of an erroneous generalization from a single characteristic or quality of an object or a person, that is, we make a previous judgment from which, we generalize the rest of characteristics. The halo effect manifests itself as continuous in our life. For example, if someone is very handsome or attractive we attribute another series...

  5. Chataika Halo.pmd

    African Journals Online (AJOL)

    Prof. Adipala Ekwamu

    INHERITANCE OF HALO BLIGHT RESISTANCE IN COMMON BEAN ... pv phaseolicola (Psp) is a serious seed-borne disease of common bean ... a toxin produced by the Psp bacterium when ... stakes or in association with maize for support.

  6. DARK MATTER SUB-HALO COUNTS VIA STAR STREAM CROSSINGS

    International Nuclear Information System (INIS)

    Carlberg, R. G.

    2012-01-01

    Dark matter sub-halos create gaps in the stellar streams orbiting in the halos of galaxies. We evaluate the sub-halo stream crossing integral with the guidance of simulations to find that the linear rate of gap creation, R U , in a typical cold dark matter (CDM) galactic halo at 100 kpc is R U ≅0.0066 M-hat 8 -0.35 kpc -1 Gyr -1 , where M-hat 8 (≡ M-hat /10 8 M ☉ ) is the minimum mass halo that creates a visible gap. The relation can be recast entirely in terms of observables, as R U ≅0.059w -0.85 kpc -1 Gyr -1 , for w in kpc, normalized at 100 kpc. Using published data, the density of gaps is estimated for M31's NW stream and the Milky Way Pal 5 stream, Orphan stream, and Eastern Banded Structure. The estimated rates of gap creation all have errors of 50% or more due to uncertain dynamical ages and the relatively noisy stream density measurements. The gap-rate-width data are in good agreement with the CDM-predicted relation. The high density of gaps in the narrow streams requires a total halo population of 10 5 sub-halos above a minimum mass of 10 5 M ☉ .

  7. Weak strange particle production: advantages and difficulties

    International Nuclear Information System (INIS)

    Angelescu, Tatiana; Baker, O.K.

    2002-01-01

    Electromagnetic strange particle production developed at Jefferson Laboratory was an important source of information on strange particle electromagnetic formfactors and induced and transferred polarization. The high quality of the beam and the detection techniques involved could be an argument for detecting strange particles in weak interactions and answer questions about cross sections, weak formfactors, neutrino properties, which have not been investigated yet. The paper analyses some aspects related to the weak lambda production and detection with the Hall C facilities at Jefferson Laboratory and the limitations in measuring the weak interaction quantities. (authors)

  8. Investigations of the neutron halo by radioactive beam experiments

    International Nuclear Information System (INIS)

    Mueller, A.C.

    1993-01-01

    Recently, a new tool has become available to study the behaviour of nuclei at the limits of particle stability. Heavy-ion projectile fragmentation, in combination with efficient recoil spectrometers, allows to prepare 'exotic' beams which can be used to induce secondary nuclear reactions. First experiments have revealed surprising features in the reactions of the most neutron-rich light nuclei. There is now conclusive evidence that the observed effects are due to long-tail matter distributions ('neutron halo') which occur for the last, very weakly bound neutrons. The results of some recent radioactive beam experiments, made by means of the spectrometer LISE3 at GANIL, are presented. (author) 24 refs.; 7 figs

  9. Mechanical device for enhancing halo density in the TMX-U tandem mirror

    International Nuclear Information System (INIS)

    Hsu, W.L.; Barr, W.L.; Simonen, T.C.

    1984-04-01

    The halo recycler, a mechanical device similar to pumped limiters used in tokamaks, is studied as a means of enhancing the halo plasma density in the Tandem Mirror Experiment Upgrade (TMX-U). The recycler structure consists of an annular chamber at each end of the tandem mirror device where the halo plasma is collected. The halo plasma density is increased by recycling the halo ions as they are neutralized by the collector plate. With sufficient power fed into the halo electrons, the recycler can sustain an upstream electron temperature of 30 eV for effective halo shielding while maintaining a low temperature of 5 eV near the collector plate to reduce sputtering. A power flow model has shown that the required power for heating the halo is low enough to make the halo recycler a practical concept

  10. The shape of the invisible halo: N-body simulations on parallel supercomputers

    Energy Technology Data Exchange (ETDEWEB)

    Warren, M.S.; Zurek, W.H. (Los Alamos National Lab., NM (USA)); Quinn, P.J. (Australian National Univ., Canberra (Australia). Mount Stromlo and Siding Spring Observatories); Salmon, J.K. (California Inst. of Tech., Pasadena, CA (USA))

    1990-01-01

    We study the shapes of halos and the relationship to their angular momentum content by means of N-body (N {approximately} 10{sup 6}) simulations. Results indicate that in relaxed halos with no apparent substructure: (i) the shape and orientation of the isodensity contours tends to persist throughout the virialised portion of the halo; (ii) most ({approx}70%) of the halos are prolate; (iii) the approximate direction of the angular momentum vector tends to persist throughout the halo; (iv) for spherical shells centered on the core of the halo the magnitude of the specific angular momentum is approximately proportional to their radius; (v) the shortest axis of the ellipsoid which approximates the shape of the halo tends to align with the rotation axis of the halo. This tendency is strongest in the fastest rotating halos. 13 refs., 4 figs.

  11. Production of strange particles in hadronization processes

    International Nuclear Information System (INIS)

    Hofmann, W.

    1987-08-01

    Strange particles provide an important tool for the study of the color confinement mechanisms involved in hadronization processes. We review data on inclusive strange-particle production and on correlations between strange particles in high-energy reactions, and discuss phenomenological models for parton fragmentation. 58 refs., 24 figs

  12. A diffusive model for halo width growth during vertical displacement events

    International Nuclear Information System (INIS)

    Eidietis, N.W.; Humphreys, D.A.

    2011-01-01

    The electromagnetic loads produced by halo currents during vertical displacement events (VDEs) impose stringent requirements on the strength of ITER in-vessel components. A predictive understanding of halo current evolution is essential for ensuring the robust design of these components. A significant factor determining that evolution is the plasma resistance, which is a function of three quantities: the resistivities of the core and halo regions, and the halo region width. A diffusive model of halo width growth during VDEs has been developed, which provides one part of a physics basis for predictive halo current simulations. The diffusive model was motivated by DIII-D observations that VDEs with cold post-thermal quench plasma and a current decay time much faster than the vertical motion (type I VDE) possess much wider halo region widths than warmer plasma VDEs, where the current decay is much slower than the vertical motion (type II). A 2D finite element code is used to model the diffusion of toroidal halo current during selected type I and type II DIII-D VDEs. The model assumes a core plasma region within the last closed flux surface (LCFS) diffusing current into a halo plasma filling the vessel outside the LCFS. LCFS motion and plasma temperature are prescribed from experimental observations. The halo width evolution produced by this model compares favourably with experimental measurements of type I and type II toroidal halo current width evolution.

  13. Controlling beam halo-chaos via backstepping design

    International Nuclear Information System (INIS)

    Gao Yuan; Kong Feng

    2008-01-01

    A backstepping control method is proposed for controlling beam halo-chaos in the periodic focusing channels (PFCs) of high-current ion accelerator. The analysis and numerical results show that the method, via adjusting an exterior magnetic field, is effective to control beam halo chaos with five types of initial distribution ion beams, all statistical quantities of the beam halo-chaos are largely reduced, and the uniformity of ion beam is improved. This control method has an important value of application, for the exterior magnetic field can be easily adjusted in the periodical magnetic focusing channels in experiment

  14. Thermal and nonthermal particle production without event horizons

    International Nuclear Information System (INIS)

    Sanchez, N.

    1979-01-01

    Usually, particle production in accelerated frames is discussed in connection with the presence of event horizons and with a planckian spectrum. Accelerated frames without event horizons, where particle production takes place with thermal as well as nonthermal distributions, are constructed. (Auth.)

  15. Cumulative particle production in the quark recombination model

    International Nuclear Information System (INIS)

    Gavrilov, V.B.; Leksin, G.A.

    1987-01-01

    Production of cumulative particles in hadron-nuclear inteactions at high energies is considered within the framework of recombination quark model. Predictions for inclusive cross sections of production of cumulative particles and different resonances containing quarks in s state are made

  16. Chemical Cartography. I. A Carbonicity Map of the Galactic Halo

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Sun; Kim, Young Kwang [Department of Astronomy and Space Science, Chungnam National University, Daejeon 34134 (Korea, Republic of); Beers, Timothy C.; Placco, Vinicius; Yoon, Jinmi [Department of Physics and JINA Center for the Evolution of the Elements, University of Notre Dame, Notre Dame, IN 46556 (United States); Carollo, Daniela [Research School of Astronomy and Astrophysics, The Australian National University, Canberra, ACT 2611 (Australia); Masseron, Thomas [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Jung, Jaehun, E-mail: youngsun@cnu.ac.kr [Department of Astronomy, Space Science, and Geology, Chungnam National University, Daejeon 34134 (Korea, Republic of)

    2017-02-10

    We present the first map of carbonicity, [C/Fe], for the halo system of the Milky Way, based on a sample of over 100,000 main-sequence turnoff stars with available spectroscopy from the Sloan Digital Sky Survey. This map, which explores distances up to 15 kpc from the Sun, reveals clear evidence for the dual nature of the Galactic halo, based on the spatial distribution of stellar carbonicity. The metallicity distribution functions of stars in the inner- and outer-halo regions of the carbonicity map reproduce those previously argued to arise from contributions of the inner- and outer-halo populations, with peaks at [Fe/H] = −1.5 and −2.2, respectively. From consideration of the absolute carbon abundances for our sample, A (C), we also confirm that the carbon-enhanced metal-poor (CEMP) stars in the outer-halo region exhibit a higher frequency of CEMP-no stars (those with no overabundances of heavy neutron-capture elements) than of CEMP- s stars (those with strong overabundances of elements associated with the s -process), whereas the stars in the inner-halo region exhibit a higher frequency of CEMP- s stars. We argue that the contrast in the behavior of the CEMP-no and CEMP- s fractions in these regions arises from differences in the mass distributions of the mini-halos from which the stars of the inner- and outer-halo populations formed, which gives rise in turn to the observed dichotomy of the Galactic halo.

  17. The fine particle emissions of energy production in Finland

    International Nuclear Information System (INIS)

    Ohlstroem, M.

    1998-01-01

    The main purpose of this master's thesis was to define the fine particle (PM2.5, diameter under 2,5 μm) emissions of the energy production and to compare the calculated emission factors between different energy production concepts. The purpose was also to define what is known about fine particle emissions and what should still be studied/measured. The purpose was also to compare briefly the fine particle emissions of energy production and vehicle traffic, and their correlations to the fine particle concentrations of urban air. In the theory part of this work a literature survey was made about fine particles in energy production, especially how they form and how they are separated from the flue gas. In addition, the health effects caused by fine particles, and different measuring instruments were presented briefly. In the experimental part of this work, the aim was to find out the fine particle emissions of different energy production processes by calculating specific emission factors (mg/MJ fuel ) from powerplants' annual total particulate matter emissions (t/a), which were obtained from VAHTI-database system maintained by the Finnish Environmental Institute, and by evaluating the share of fine particles from total emissions with the help of existing measurement results. Only those energy production processes which produce significantly direct emissions of solid particles have been treated (pulverised combustion and oil burners from burner combustion, fluidized bed combustion processes, grate boilers, recovery boilers and diesel engines). The processes have been classified according to boiler type, size category, main fuel and also according to dust separation devices. To be able to compare different energy production processes, shared specific emission factor have been calculated for the similar subprocesses. The fine particle emissions depend strongest on the boiler size category and dust separation devices used. Spent fuel or combustion technique does not have

  18. Hydrodynamical simulations of coupled and uncoupled quintessence models - I. Halo properties and the cosmic web

    Science.gov (United States)

    Carlesi, Edoardo; Knebe, Alexander; Lewis, Geraint F.; Wales, Scott; Yepes, Gustavo

    2014-04-01

    We present the results of a series of adiabatic hydrodynamical simulations of several quintessence models (both with a free and an interacting scalar field) in comparison to a standard Λ cold dark matter cosmology. For each we use 2 × 10243 particles in a 250 h-1 Mpc periodic box assuming 7-year Wilkinson Microwave Anisotropy Probe cosmology. In this work we focus on the properties of haloes in the cosmic web at z = 0. The web is classified into voids, sheets, filaments and knots depending on the eigenvalues of the velocity shear tensor, which are an excellent proxy for the underlying overdensity distribution. We find that the properties of objects classified according to their surrounding environment show a substantial dependence on the underlying cosmology; for example, while Vmax shows average deviations of ≈5 per cent across the different models when considering the full halo sample, comparing objects classified according to their environment, the size of the deviation can be as large as 20 per cent. We also find that halo spin parameters are positively correlated to the coupling, whereas halo concentrations show the opposite behaviour. Furthermore, when studying the concentration-mass relation in different environments, we find that in all cosmologies underdense regions have a larger normalization and a shallower slope. While this behaviour is found to characterize all the models, differences in the best-fitting relations are enhanced in (coupled) dark energy models, thus providing a clearer prediction for this class of models.

  19. Baryonic pinching of galactic dark matter halos

    International Nuclear Information System (INIS)

    Gustafsson, Michael; Fairbairn, Malcolm; Sommer-Larsen, Jesper

    2006-01-01

    High resolution cosmological N-body simulations of four galaxy-scale dark matter halos are compared to corresponding N-body/hydrodynamical simulations containing dark matter, stars and gas. The simulations without baryons share features with others described in the literature in that the dark matter density slope continuously decreases towards the center, with a density ρ DM ∝r -1.3±0.2 , at about 1% of the virial radius for our Milky Way sized galaxies. The central cusps in the simulations which also contain baryons steepen significantly, to ρ DM ∝r -1.9±0.2 , with an indication of the inner logarithmic slope converging. Models of adiabatic contraction of dark matter halos due to the central buildup of stellar/gaseous galaxies are examined. The simplest and most commonly used model, by Blumenthal et al., is shown to overestimate the central dark matter density considerably. A modified model proposed by Gnedin et al. is tested and it is shown that, while it is a considerable improvement, it is not perfect. Moreover, it is found that the contraction parameters in their model not only depend on the orbital structure of the dark-matter-only halos but also on the stellar feedback prescription which is most relevant for the baryonic distribution. Implications for dark matter annihilation at the galactic center are discussed and it is found that, although our simulations show a considerable reduced dark matter halo contraction as compared to the Blumenthal et al. model, the fluxes from dark matter annihilation are still expected to be enhanced by at least a factor of a hundred, as compared to dark-matter-only halos. Finally, it is shown that, while dark-matter-only halos are typically prolate, the dark matter halos containing baryons are mildly oblate with minor-to-major axis ratios of c/a=0.73±0.11, with their flattening aligned with the central baryonic disks

  20. THE HALO OCCUPATION DISTRIBUTION OF SDSS QUASARS

    International Nuclear Information System (INIS)

    Richardson, Jonathan; Chatterjee, Suchetana; Nagai, Daisuke; Zheng Zheng; Shen Yue

    2012-01-01

    We present an estimate of the projected two-point correlation function (2PCF) of quasars in the Sloan Digital Sky Survey (SDSS) over the full range of one- and two-halo scales, 0.02 h –1 Mpc p –1 Mpc. This was achieved by combining data from SDSS DR7 on large scales and Hennawi et al. (with appropriate statistical corrections) on small scales. Our combined clustering sample is the largest spectroscopic quasar clustering sample to date, containing ∼48, 000 quasars in the redshift range 0.4 ∼ sat = (7.4 ± 1.4) × 10 –4 , be satellites in dark matter halos. At z ∼ 1.4, the median masses of the host halos of central and satellite quasars are constrained to be M cen = 4.1 +0.3 –0.4 × 10 12 h –1 M ☉ and M sat = 3.6 +0.8 –1.0 × 10 14 h –1 M ☉ , respectively. To investigate the redshift evolution of the quasar-halo relationship, we also perform HOD modeling of the projected 2PCF measured by Shen et al. for SDSS quasars with median redshift 3.2. We find tentative evidence for an increase in the mass scale of quasar host halos—the inferred median mass of halos hosting central quasars at z ∼ 3.2 is M cen = 14.1 +5.8 –6.9 × 10 12 h –1 M ☉ . The cutoff profiles of the mean occupation functions of central quasars reveal that quasar luminosity is more tightly correlated with halo mass at higher redshifts. The average quasar duty cycle around the median host halo mass is inferred to be f q = 7.3 +0.6 –1.5 × 10 –4 at z ∼ 1.4 and f q = 8.6 +20.4 –7.2 × 10 –2 at z ∼ 3.2. We discuss the implications of our results for quasar evolution and quasar-galaxy co-evolution.

  1. Halo-Independent Direct Detection Analyses Without Mass Assumptions

    CERN Document Server

    Anderson, Adam J.; Kahn, Yonatan; McCullough, Matthew

    2015-10-06

    Results from direct detection experiments are typically interpreted by employing an assumption about the dark matter velocity distribution, with results presented in the $m_\\chi-\\sigma_n$ plane. Recently methods which are independent of the DM halo velocity distribution have been developed which present results in the $v_{min}-\\tilde{g}$ plane, but these in turn require an assumption on the dark matter mass. Here we present an extension of these halo-independent methods for dark matter direct detection which does not require a fiducial choice of the dark matter mass. With a change of variables from $v_{min}$ to nuclear recoil momentum ($p_R$), the full halo-independent content of an experimental result for any dark matter mass can be condensed into a single plot as a function of a new halo integral variable, which we call $\\tilde{h}(p_R)$. The entire family of conventional halo-independent $\\tilde{g}(v_{min})$ plots for all DM masses are directly found from the single $\\tilde{h}(p_R)$ plot through a simple re...

  2. Search for macroscopic dark matter in the halo of the milky way through microlensing. A feasibility study

    International Nuclear Information System (INIS)

    Moniez, M.

    1990-05-01

    The possibility of searching for non-visible massive compact objects in the galactic halo is discussed here. The discovery of such objects would solve the problem of the missing mass in the galaxies, and the experiments which investigate for weakly interacting particles assuming a diffuse cloud of dark matter would have to revise their limits. The non-discovery of these objects would exclude the last possibility left for baryonic dark matter, providing good evidence that the galactic halo has to be made of new particles. The description of the general-relativistic microlensing effect and its application to the search of massive compact objects are given here. A feasibility study shows that it is possible to monitor the luminosity of several million stars in the Large Magellanic Cloud with the required precision, in order to detect a possible microlensing phenomenon induced by heavy compact objects (10 -4 - 10 -1 solar mass units). A CCD-based experimental setup is described, which would make it possible to search for compact objects in the 10 -6 - 10 -4 solar mass unit domain

  3. ZOMG - III. The effect of halo assembly on the satellite population

    Science.gov (United States)

    Garaldi, Enrico; Romano-Díaz, Emilio; Borzyszkowski, Mikolaj; Porciani, Cristiano

    2018-01-01

    We use zoom hydrodynamical simulations to investigate the properties of satellites within galaxy-sized dark-matter haloes with different assembly histories. We consider two classes of haloes at redshift z = 0: 'stalled' haloes that assembled at z > 1 and 'accreting' ones that are still forming nowadays. Previously, we showed that the stalled haloes are embedded within thick filaments of the cosmic web, while the accreting ones lie where multiple thin filaments converge. We find that satellites in the two classes have both similar and different properties. Their mass spectra, radial count profiles, baryonic and stellar content, and the amount of material they shed are indistinguishable. However, the mass fraction locked in satellites is substantially larger for the accreting haloes as they experience more mergers at late times. The largest difference is found in the satellite kinematics. Substructures fall towards the accreting haloes along quasi-radial trajectories whereas an important tangential velocity component is developed, before accretion, while orbiting the filament that surrounds the stalled haloes. Thus, the velocity anisotropy parameter of the satellites (β) is positive for the accreting haloes and negative for the stalled ones. This signature enables us to tentatively categorize the Milky Way halo as stalled based on a recent measurement of β. Half of our haloes contain clusters of satellites with aligned orbital angular momenta corresponding to flattened structures in space. These features are not driven by baryonic physics and are only found in haloes hosting grand-design spiral galaxies, independently of their assembly history.

  4. Studying dark matter haloes with weak lensing

    NARCIS (Netherlands)

    Velander, Malin Barbro Margareta

    2012-01-01

    Our Universe is comprised not only of normal matter but also of unknown components: dark matter and dark energy. This Thesis recounts studies of dark matter haloes, using a technique known as weak gravitational lensing, in order to learn more about the nature of these dark components. The haloes

  5. Multiple sampling ionization chamber (MUSIC) for investigation of fusion induced by halo nuclei

    International Nuclear Information System (INIS)

    Petrascu, H.; Kumagai, H.; Tanihata, I.; Fueloep, Zs.; Petrascu, M.

    1999-01-01

    A high resolution MUSIC for low and medium energy ions up to ∼ 20 AMeV, for investigation of fusion processes induced by halo nuclei, has been achieved. The chamber was used in the first experiments, aiming at investigating fusion processes induced by 9,11 Li with light targets. In these experiments MUSIC was used for the identification of the inclusive evaporation residues produced in the Si detector target, mounted inside the chamber. By using MUSIC it was possible to separate the inclusive spectra corresponding to the fusion processes, from the background due to the energy degraded beam particles. In principle such a chamber could be also used for investigation of particular fusion channels produced in the entrance window. In this case one could obtain the fusion product trajectory angle with the horizontal plane, by coupling each anode pad to a TDC. The chamber was also provided by a position grid, mounted between the Frisch grid and the anode pads. The energy loss distribution widths were measured using α particles. The chamber was filled with P-10 gas at pressures between 200 and 300 torr. The obtained resolution corresponding to a single pad, is close to the limit derived from the theory of Badhwar. (authors)

  6. The globular cluster-dark matter halo connection

    Science.gov (United States)

    Boylan-Kolchin, Michael

    2017-12-01

    I present a simple phenomenological model for the observed linear scaling of the stellar mass in old globular clusters (GCs) with z = 0 halo mass in which the stellar mass in GCs scales linearly with progenitor halo mass at z = 6 above a minimum halo mass for GC formation. This model reproduces the observed MGCs-Mhalo relation at z = 0 and results in a prediction for the minimum halo mass at z = 6 required for hosting one GC: Mmin(z = 6) = 1.07 × 109 M⊙. Translated to z = 0, the mean threshold mass is Mhalo(z = 0) ≈ 2 × 1010 M⊙. I explore the observability of GCs in the reionization era and their contribution to cosmic reionization, both of which depend sensitively on the (unknown) ratio of GC birth mass to present-day stellar mass, ξ. Based on current detections of z ≳ 6 objects with M1500 10 are strongly disfavoured; this, in turn, has potentially important implications for GC formation scenarios. Even for low values of ξ, some observed high-z galaxies may actually be GCs, complicating estimates of reionization-era galaxy ultraviolet luminosity functions and constraints on dark matter models. GCs are likely important reionization sources if 5 ≲ ξ ≲ 10. I also explore predictions for the fraction of accreted versus in situ GCs in the local Universe and for descendants of systems at the halo mass threshold of GC formation (dwarf galaxies). An appealing feature of the model presented here is the ability to make predictions for GC properties based solely on dark matter halo merger trees.

  7. Studies of emittance growth and halo particle production in intense charged particle beams using the Paul Trap Simulator Experiment

    International Nuclear Information System (INIS)

    Gilson, Erik P.; Davidson, Ronald C.; Dorf, Mikhail; Efthimion, Philip C.; Majeski, Richard; Chung, Moses; Gutierrez, Michael S.; Kabcenell, Aaron N.

    2010-01-01

    The Paul Trap Simulator Experiment (PTSX) is a compact laboratory experiment that places the physicist in the frame-of-reference of a long, charged-particle bunch coasting through a kilometers-long magnetic alternating-gradient (AG) transport system. The transverse dynamics of particles in both systems are described by the same set of equations, including nonlinear space-charge effects. The time-dependent voltages applied to the PTSX quadrupole electrodes in the laboratory frame are equivalent to the spatially periodic magnetic fields applied in the AG system. The transverse emittance of the charge bunch, which is a measure of the area in the transverse phase space that the beam distribution occupies, is an important metric of beam quality. Maintaining low emittance is an important goal when defining AG system tolerances and when designing AG systems to perform beam manipulations such as transverse beam compression. Results are reviewed from experiments in which white noise and colored noise of various amplitudes and durations have been applied to the PTSX electrodes. This noise is observed to drive continuous emittance growth and increase in root-mean-square beam radius over hundreds of lattice periods. Additional results are reviewed from experiments that determine the conditions necessary to adiabatically reduce the charge bunch's transverse size and simultaneously maintain high beam quality. During adiabatic transitions, there is no change in the transverse emittance. The transverse compression can be achieved either by a gradual change in the PTSX voltage waveform amplitude or frequency. Results are presented from experiments in which low emittance is achieved by using focusing-off-defocusing-off waveforms.

  8. The immitigable nature of assembly bias: the impact of halo definition on assembly bias

    Science.gov (United States)

    Villarreal, Antonio S.; Zentner, Andrew R.; Mao, Yao-Yuan; Purcell, Chris W.; van den Bosch, Frank C.; Diemer, Benedikt; Lange, Johannes U.; Wang, Kuan; Campbell, Duncan

    2017-11-01

    Dark matter halo clustering depends not only on halo mass, but also on other properties such as concentration and shape. This phenomenon is known broadly as assembly bias. We explore the dependence of assembly bias on halo definition, parametrized by spherical overdensity parameter, Δ. We summarize the strength of concentration-, shape-, and spin-dependent halo clustering as a function of halo mass and halo definition. Concentration-dependent clustering depends strongly on mass at all Δ. For conventional halo definitions (Δ ∼ 200 - 600 m), concentration-dependent clustering at low mass is driven by a population of haloes that is altered through interactions with neighbouring haloes. Concentration-dependent clustering can be greatly reduced through a mass-dependent halo definition with Δ ∼ 20 - 40 m for haloes with M200 m ≲ 1012 h-1M⊙. Smaller Δ implies larger radii and mitigates assembly bias at low mass by subsuming altered, so-called backsplash haloes into now larger host haloes. At higher masses (M200 m ≳ 1013 h-1M⊙) larger overdensities, Δ ≳ 600 m, are necessary. Shape- and spin-dependent clustering are significant for all halo definitions that we explore and exhibit a relatively weaker mass dependence. Generally, both the strength and the sense of assembly bias depend on halo definition, varying significantly even among common definitions. We identify no halo definition that mitigates all manifestations of assembly bias. A halo definition that mitigates assembly bias based on one halo property (e.g. concentration) must be mass dependent. The halo definitions that best mitigate concentration-dependent halo clustering do not coincide with the expected average splashback radii at fixed halo mass.

  9. Dynamical or static radio halo - Is there a galactic wind

    International Nuclear Information System (INIS)

    Lerche, I.; Schlickeiser, R.

    1981-01-01

    The effect of a galactic wind on a radio halo can be best observed at frequencies smaller than about 1 GHz. At higher frequencies static halo models predict the same features as dynamical halo models. External galaxies, which exhibit a break by 0.5 in their high frequency nonthermal integral flux spectrum, are the best candidates for studying the influence of galactic winds on the formation of relativistic electron haloes around these systems. Several such cases are presented

  10. Longitudinal halo in beam bunches with self-consistent 6-D distributions

    International Nuclear Information System (INIS)

    Gluckstern, R. L.; Fedotov, A. V.; Kurennoy, S. S.; Ryne, R. D.

    1998-01-01

    We have explored the formation of longitudinal and transverse halos in 3-D axisymmetric beam bunches by starting with a self-consistent 6-D phase space distribution. Stationary distributions allow us to study the halo development mechanism without being obscured by beam redistribution and its effect on halo formation. The beam is then mismatched longitudinally and/or transversely, and we explore the rate, intensity and spatial extent of the halos which form, as a function of the beam charge and the mismatches. We find that the longitudinal halo forms first because the longitudinal tune depression is more severe than the transverse one for elongated bunches and conclude that it plays a major role in halo formation

  11. Perturbative Universality in Soft Particle Production

    CERN Document Server

    Khoze, V A; Ochs, Wolfgang; Khoze, Valery A.; Lupia, Sergio; Ochs, Wolfgang

    1998-01-01

    The spectrum of partons in a QCD jet becomes independent of the primary energy in the low momentum limit. This follows within the perturbative QCD from the colour coherence in soft gluon branching. Remarkably, the hadrons follow such behaviour closely, suggesting the parton hadron duality picture to be appropriate also for the low momentum particles. More generally, this scaling property holds for particles of low transverse and arbitrary longitudinal momentum, which explains an old experimental observation (``fan invariance''). Further tests of the perturbatively based picture for soft particle production are proposed for three-jet events in e+e- annihilation and di-jet production events in gamma p, gamma-gamma and p\\bar p collisions. They are based upon the difference in the intensity of the soft radiation from primary q\\bar q and gg antennae.

  12. Efimov effect in 2-neutron halo nuclei

    Indian Academy of Sciences (India)

    This paper presents an overview of our theoretical investigations in search of Efimov states in light 2-neutron halo nuclei. The calculations have been carried out within a three-body formalism, assuming a compact core and two valence neutrons forming the halo. The calculations provide strong evidence for the occurrence ...

  13. THE SPIN AND ORIENTATION OF DARK MATTER HALOS WITHIN COSMIC FILAMENTS

    International Nuclear Information System (INIS)

    Zhang Youcai; Yang Xiaohu; Lin Weipeng; Faltenbacher, Andreas; Springel, Volker; Wang Huiyuan

    2009-01-01

    Clusters, filaments, sheets, and voids are the building blocks of the cosmic web. Forming dark matter halos respond to these different large-scale environments, and this in turn affects the properties of galaxies hosted by the halos. It is therefore important to understand the systematic correlations of halo properties with the morphology of the cosmic web, as this informs both about galaxy formation physics and possible systematics of weak lensing studies. In this study, we present and compare two distinct algorithms for finding cosmic filaments and sheets, a task which is far less well established than the identification of dark matter halos or voids. One method is based on the smoothed dark matter density field and the other uses the halo distributions directly. We apply both techniques to one high-resolution N-body simulation and reconstruct the filamentary/sheet like network of the dark matter density field. We focus on investigating the properties of the dark matter halos inside these structures, in particular, on the directions of their spins and the orientation of their shapes with respect to the directions of the filaments and sheets. We find that both the spin and the major axes of filament halos with masses ∼ 13 h -1 M sun are preferentially aligned with the direction of the filaments. The spins and major axes of halos in sheets tend to lie parallel to the sheets. There is an opposite mass dependence of the alignment strength for the spin (negative) and major (positive) axes, i.e. with increasing halo mass the major axis tends to be more strongly aligned with the direction of the filament, whereas the alignment between halo spin and filament becomes weaker with increasing halo mass. The alignment strength as a function of the distance to the most massive node halo indicates that there is a transit large-scale environment impact: from the two-dimensional collapse phase of the filament to the three-dimensional collapse phase of the cluster/node halo at

  14. The Spin and Orientation of Dark Matter Halos Within Cosmic Filaments

    Science.gov (United States)

    Zhang, Youcai; Yang, Xiaohu; Faltenbacher, Andreas; Springel, Volker; Lin, Weipeng; Wang, Huiyuan

    2009-11-01

    Clusters, filaments, sheets, and voids are the building blocks of the cosmic web. Forming dark matter halos respond to these different large-scale environments, and this in turn affects the properties of galaxies hosted by the halos. It is therefore important to understand the systematic correlations of halo properties with the morphology of the cosmic web, as this informs both about galaxy formation physics and possible systematics of weak lensing studies. In this study, we present and compare two distinct algorithms for finding cosmic filaments and sheets, a task which is far less well established than the identification of dark matter halos or voids. One method is based on the smoothed dark matter density field and the other uses the halo distributions directly. We apply both techniques to one high-resolution N-body simulation and reconstruct the filamentary/sheet like network of the dark matter density field. We focus on investigating the properties of the dark matter halos inside these structures, in particular, on the directions of their spins and the orientation of their shapes with respect to the directions of the filaments and sheets. We find that both the spin and the major axes of filament halos with masses lsim1013 h -1 M sun are preferentially aligned with the direction of the filaments. The spins and major axes of halos in sheets tend to lie parallel to the sheets. There is an opposite mass dependence of the alignment strength for the spin (negative) and major (positive) axes, i.e. with increasing halo mass the major axis tends to be more strongly aligned with the direction of the filament, whereas the alignment between halo spin and filament becomes weaker with increasing halo mass. The alignment strength as a function of the distance to the most massive node halo indicates that there is a transit large-scale environment impact: from the two-dimensional collapse phase of the filament to the three-dimensional collapse phase of the cluster/node halo at

  15. Gravitational particle production in braneworld cosmology.

    Science.gov (United States)

    Bambi, C; Urban, F R

    2007-11-09

    Gravitational particle production in a time variable metric of an expanding universe is efficient only when the Hubble parameter H is not too small in comparison with the particle mass. In standard cosmology, the huge value of the Planck mass M{Pl} makes the mechanism phenomenologically irrelevant. On the other hand, in braneworld cosmology, the expansion rate of the early Universe can be much faster, and many weakly interacting particles can be abundantly created. Cosmological implications are discussed.

  16. MAPPING THE GALACTIC HALO. VIII. QUANTIFYING SUBSTRUCTURE

    International Nuclear Information System (INIS)

    Starkenburg, Else; Helmi, Amina; Van Woerden, Hugo; Morrison, Heather L.; Harding, Paul; Frey, Lucy; Oravetz, Dan; Mateo, Mario; Dohm-Palmer, R. C.; Olszewski, Edward W.; Sivarani, Thirupathi; Norris, John E.; Freeman, Kenneth C.; Shectman, Stephen A.

    2009-01-01

    We have measured the amount of kinematic substructure in the Galactic halo using the final data set from the Spaghetti project, a pencil-beam high-latitude sky survey. Our sample contains 101 photometrically selected and spectroscopically confirmed giants with accurate distance, radial velocity, and metallicity information. We have developed a new clustering estimator: the '4distance' measure, which when applied to our data set leads to the identification of one group and seven pairs of clumped stars. The group, with six members, can confidently be matched to tidal debris of the Sagittarius dwarf galaxy. Two pairs match the properties of known Virgo structures. Using models of the disruption of Sagittarius in Galactic potentials with different degrees of dark halo flattening, we show that this favors a spherical or prolate halo shape, as demonstrated by Newberg et al. using the Sloan Digital Sky Survey data. One additional pair can be linked to older Sagittarius debris. We find that 20% of the stars in the Spaghetti data set are in substructures. From comparison with random data sets, we derive a very conservative lower limit of 10% to the amount of substructure in the halo. However, comparison to numerical simulations shows that our results are also consistent with a halo entirely built up from disrupted satellites, provided that the dominating features are relatively broad due to early merging or relatively heavy progenitor satellites.

  17. Halo Star Lithium Depletion

    International Nuclear Information System (INIS)

    Pinsonneault, M. H.; Walker, T. P.; Steigman, G.; Narayanan, Vijay K.

    1999-01-01

    The depletion of lithium during the pre-main-sequence and main-sequence phases of stellar evolution plays a crucial role in the comparison of the predictions of big bang nucleosynthesis with the abundances observed in halo stars. Previous work has indicated a wide range of possible depletion factors, ranging from minimal in standard (nonrotating) stellar models to as much as an order of magnitude in models that include rotational mixing. Recent progress in the study of the angular momentum evolution of low-mass stars permits the construction of theoretical models capable of reproducing the angular momentum evolution of low-mass open cluster stars. The distribution of initial angular momenta can be inferred from stellar rotation data in young open clusters. In this paper we report on the application of these models to the study of lithium depletion in main-sequence halo stars. A range of initial angular momenta produces a range of lithium depletion factors on the main sequence. Using the distribution of initial conditions inferred from young open clusters leads to a well-defined halo lithium plateau with modest scatter and a small population of outliers. The mass-dependent angular momentum loss law inferred from open cluster studies produces a nearly flat plateau, unlike previous models that exhibited a downward curvature for hotter temperatures in the 7Li-Teff plane. The overall depletion factor for the plateau stars is sensitive primarily to the solar initial angular momentum used in the calibration for the mixing diffusion coefficients. Uncertainties remain in the treatment of the internal angular momentum transport in the models, and the potential impact of these uncertainties on our results is discussed. The 6Li/7Li depletion ratio is also examined. We find that the dispersion in the plateau and the 6Li/7Li depletion ratio scale with the absolute 7Li depletion in the plateau, and we use observational data to set bounds on the 7Li depletion in main-sequence halo

  18. Effects of deformations and orientations on neutron-halo structure of light-halo nuclei

    International Nuclear Information System (INIS)

    Sawhney, Gudveen; Gupta, Raj K.; Sharma, Manoj K.

    2013-01-01

    The availability of radioactive nuclear beams have enabled to study the structure of nuclei far from the stability line, which in turn led to the discovery of neutron-halo nuclei. These nuclei, located near the neutron drip-line exhibit a high probability of presence of one or two loosely bound neutrons at a large distance from the rest of nucleons. The fragmentation behavior is studied for 13 cases of 1n-halo nuclei, which include 11 Be, 14 B, 15 C, 17 C, 19 C, 22 N, 22 O, 23 O, 24 O, 24 F, 26 F, 29 Ne and 31 Ne, using the cluster-core model (CCM) extended to include the deformations and orientations of nuclei

  19. A cascade mechanism of three-particle resonance production

    International Nuclear Information System (INIS)

    Badalyan, A.M.; Polikarpov, M.I.; Simonov, Yu.A.

    1976-01-01

    We study the mechanism of the three-particle resonance production in a system consisting of a two-particle resonance and of one particle, the resonance and the particle permanently exchanging the decay product particle. The N/D method is used to show that the solution of the unitarity for the resonance-particle amplitude reduces to solving a one-dimensional nonsingular integral equation for the denominator of the amplitude D(y). The contribution from the right-hand cut of the exchange decay diagram is considered explicitly and the final equation contains only the integral over an arbitrary left-hand cut as in the case of the interaction amplitude of stable particles. It is as well shown that if only the right-hand cut is present, than the denominator D(y) for L=0 has no singularities, whereas the amplitude may have virtual or real poles at L=1

  20. Stellar-to-halo mass relation of cluster galaxies

    International Nuclear Information System (INIS)

    Niemiec, Anna; Jullo, Eric; Limousin, Marceau; Giocoli, Carlo

    2017-01-01

    In the formation of galaxy groups and clusters, the dark matter haloes containing satellite galaxies are expected to be tidally stripped in gravitational interactions with the host. We use galaxy-galaxy weak lensing to measure the average mass of dark matter haloes of satellite galaxies as a function of projected distance to the centre of the host, since stripping is expected to be greater for satellites closer to the centre of the cluster. We further classify the satellites according to their stellar mass: assuming that the stellar component of the galaxy is less disrupted by tidal stripping, stellar mass can be used as a proxy of the infall mass. We study the stellar to halo mass relation of satellites as a function of the cluster-centric distance to measure tidal stripping. We use the shear catalogues of the DES science veri cation archive, the CFHTLenS and the CFHT Stripe 82 surveys, and we select satellites from the redMaPPer catalogue of clusters. For galaxies located in the outskirts of clusters, we nd a stellar to halo mass relation in good agreement with the theoretical expectations from Moster, Naab & White (2013) for central galaxies. In the centre of the cluster, we nd that this relation is shifted to smaller halo mass for a given stellar mass. We interpret this nding as further evidence for tidal stripping of dark matter haloes in high density environments.

  1. Levy-Student processes for a stochastic model of beam halos

    Energy Technology Data Exchange (ETDEWEB)

    Petroni, N. Cufaro [Department of Mathematics, University of Bari, and INFN Sezione di Bari, via E. Orabona 4, 70125 Bari (Italy)]. E-mail: cufaro@ba.infn.it; De Martino, S. [Department of Physics, University of Salerno, and INFN Sezione di Napoli (gruppo di Salerno), Via S. Allende, I-84081 Baronissi (SA) (Italy); De Siena, S. [Department of Physics, University of Salerno, and INFN Sezione di Napoli (gruppo di Salerno), Via S. Allende, I-84081 Baronissi (SA) (Italy); Illuminati, F. [Department of Physics, University of Salerno, and INFN Sezione di Napoli (gruppo di Salerno), Via S. Allende, I-84081 Baronissi (SA) (Italy)

    2006-06-01

    We describe the transverse beam distribution in particle accelerators within the controlled, stochastic dynamical scheme of the stochastic mechanics which produces time reversal invariant diffusion processes. In this paper we analyze the consequences of introducing the generalized Student laws, namely non-Gaussian, Levy infinitely divisible (but not stable) distributions. We will analyze this idea from two different standpoints: (a) first by supposing that the stationary distribution of our (Wiener powered) stochastic model is a Student distribution; (b) by supposing that our model is based on a (non-Gaussian) Levy process whose increments are Student distributed. In the case (a) the longer tails of the power decay of the Student laws, and in the case (b) the discontinuities of the Levy-Student process can well account for the rare escape of particles from the beam core, and hence for the formation of a halo in intense beams.

  2. Levy-Student processes for a stochastic model of beam halos

    International Nuclear Information System (INIS)

    Petroni, N. Cufaro; De Martino, S.; De Siena, S.; Illuminati, F.

    2006-01-01

    We describe the transverse beam distribution in particle accelerators within the controlled, stochastic dynamical scheme of the stochastic mechanics which produces time reversal invariant diffusion processes. In this paper we analyze the consequences of introducing the generalized Student laws, namely non-Gaussian, Levy infinitely divisible (but not stable) distributions. We will analyze this idea from two different standpoints: (a) first by supposing that the stationary distribution of our (Wiener powered) stochastic model is a Student distribution; (b) by supposing that our model is based on a (non-Gaussian) Levy process whose increments are Student distributed. In the case (a) the longer tails of the power decay of the Student laws, and in the case (b) the discontinuities of the Levy-Student process can well account for the rare escape of particles from the beam core, and hence for the formation of a halo in intense beams

  3. De bepaling van halo-azijnzuren, chloriet en chloraat in drinkwater

    NARCIS (Netherlands)

    Peters RJB; van de Meer-Arp KKM; Versteegh JFM

    1990-01-01

    A method was developed to determine halo-acetic acids with a detection limit of 0.1 mug/L. Halo-acetic acids were determined in samples drinking water derived from surface- and bankfiltrated water however, not in drinking water derived from groundwater. Halo-acetic acids were found in chlorinated

  4. DARK MATTER HALO MERGERS: DEPENDENCE ON ENVIRONMENT

    International Nuclear Information System (INIS)

    Hester, J. A.; Tasitsiomi, A.

    2010-01-01

    This paper presents a study of the specific major merger rate as a function of group membership, local environment, and redshift in a very large, 500 h -1 Mpc, cosmological N-body simulation, the Millennium Simulation. The goal is to provide environmental diagnostics of major merger populations in order to test simulations against observations and provide further constraints on major merger driven galaxy evolution scenarios. A halo sample is defined using the maximum circular velocity, which is both well defined for subhalos and closely correlated with galaxy luminosity. Subhalos, including the precursors of major mergers, are severely tidally stripped. Major mergers between subhalos are therefore rare compared to mergers between subhalos and their host halos. Tidal stripping also suppresses dynamical friction, resulting in long major merger timescales when the more massive merger progenitor does not host other subhalos. When other subhalos are present, however, major merger timescales are several times shorter. This enhancement may be due to inelastic unbound collisions between subhalos, which deplete their orbital angular momentum and lead to faster orbital decay. Following these results, we predict that major mergers in group environments are dominated by mergers involving the central galaxy, that the specific major merger rate is suppressed in groups when all group members are considered together, and that the frequency of fainter companions is enhanced for major mergers and their remnants. We also measure an 'assembly bias' in the specific major merger rate in that major mergers of galaxy-like halos are slightly suppressed in overdense environments while major mergers of group-like halos are slightly enhanced. A dynamical explanation for this trend is advanced which calls on both tidal effects and interactions between bound halos beyond the virial radii of locally dynamically dominant halos.

  5. Halo star streams in the solar neighborhood

    NARCIS (Netherlands)

    Kepley, Amanda A.; Morrison, Heather L.; Helmi, Amina; Kinman, T. D.; Van Duyne, Jeffrey; Martin, John C.; Harding, Paul; Norris, John E.; Freeman, Kenneth C.

    2007-01-01

    We have assembled a sample of halo stars in the solar neighborhood to look for halo substructure in velocity and angular momentum space. Our sample ( 231 stars) includes red giants, RR Lyrae variable stars, and red horizontal branch stars within 2.5 kpc of the Sun with [Fe/H] less than -1.0. It was

  6. Summary of the 2014 Beam-Halo Monitoring Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Alan

    2015-09-25

    Understanding and controlling beam halo is important for high-intensity hadron accelerators, for high-brightness electron linacs, and for low-emittance light sources. This can only be achieved by developing suitable diagnostics. The main challenge faced by such instrumentation is the high dynamic range needed to observe the halo in the presence of an intense core. In addition, measurements must often be made non-invasively. This talk summarizes the one-day workshop on Beam-Halo Monitoring that was held at SLAC on September 19 last year, immediately following IBIC 2014 in Monterey. Workshop presentations described invasive techniques using wires, screens, or crystal collimators, and non-invasive measurements with gas or scattered electrons. Talks on optical methods showed the close links between observing halo and astronomical problems like observing the solar corona or directly observing a planet orbiting another star.

  7. Stellar Velocity Dispersion: Linking Quiescent Galaxies to Their Dark Matter Halos

    Science.gov (United States)

    Zahid, H. Jabran; Sohn, Jubee; Geller, Margaret J.

    2018-06-01

    We analyze the Illustris-1 hydrodynamical cosmological simulation to explore the stellar velocity dispersion of quiescent galaxies as an observational probe of dark matter halo velocity dispersion and mass. Stellar velocity dispersion is proportional to dark matter halo velocity dispersion for both central and satellite galaxies. The dark matter halos of central galaxies are in virial equilibrium and thus the stellar velocity dispersion is also proportional to dark matter halo mass. This proportionality holds even when a line-of-sight aperture dispersion is calculated in analogy to observations. In contrast, at a given stellar velocity dispersion, the dark matter halo mass of satellite galaxies is smaller than virial equilibrium expectations. This deviation from virial equilibrium probably results from tidal stripping of the outer dark matter halo. Stellar velocity dispersion appears insensitive to tidal effects and thus reflects the correlation between stellar velocity dispersion and dark matter halo mass prior to infall. There is a tight relation (≲0.2 dex scatter) between line-of-sight aperture stellar velocity dispersion and dark matter halo mass suggesting that the dark matter halo mass may be estimated from the measured stellar velocity dispersion for both central and satellite galaxies. We evaluate the impact of treating all objects as central galaxies if the relation we derive is applied to a statistical ensemble. A large fraction (≳2/3) of massive quiescent galaxies are central galaxies and systematic uncertainty in the inferred dark matter halo mass is ≲0.1 dex thus simplifying application of the simulation results to currently available observations.

  8. Population II brown dwarfs and dark haloes

    International Nuclear Information System (INIS)

    Zinnecker, H.

    1986-01-01

    Opacity-limited fragmentation is investigated as a function of the dust-to-gas ratio and it is found that the characteristic protostellar mass Msub(*) is metallicity-dependent. This dependence is such that, for the low metallicity gas out of which the stars of Population II formed in the halo, Msub(*) is less than 0.1 M solar mass. If applicable, these theoretical considerations would predict that substellar masses have formed more frequently under the metal-poor conditions in the early Galaxy (Population II brown dwarfs). Thus the missing mass in the Galactic halo and in the dark haloes around other spirals may well reside in these metal-poor Population II brown dwarfs. (author)

  9. HOBBY-EBERLY TELESCOPE OBSERVATIONS OF THE DARK HALO IN NGC 821

    International Nuclear Information System (INIS)

    Forestell, Amy D.; Gebhardt, Karl

    2010-01-01

    We present stellar line-of-sight velocity distributions (LOSVDs) of elliptical galaxy NGC 821 obtained to approximately 100'' (over two effective radii) with long-slit spectroscopy from the Hobby-Eberly Telescope. Our measured stellar LOSVDs are larger than the planetary nebulae measurements at similar radii. We fit axisymmetric orbit-superposition models with a range of dark halo density profiles, including two-dimensional kinematics at smaller radii from SAURON data. Within our assumptions, the best-fitted model gives a total enclosed mass of 2.0 x 10 11 M sun within 100'', with an accuracy of 2%; this mass is equally divided between halo and stars. At 1 R e , the best-fitted dark matter halo accounts for 13% of the total mass in the galaxy. This dark halo is inconsistent with previous claims of little to no dark matter halo in this galaxy from planetary nebula measurements. We find that a power-law dark halo with a slope 0.1 is the best-fitted model; both the no dark halo and Navarro-Frenk-White models are worse fits at a greater than 99% confidence level. NGC 821 does not appear to have the expected dark halo density profile. The internal moments of the stellar velocity distribution show that the model with no dark halo is radially anisotropic at small radii and tangentially isotropic at large radii, while the best-fitted halo models are slightly radially anisotropic at all radii. We test the potential effects of model smoothing and find that there are no effects on our results within the errors. Finally, we run models using the planetary nebula kinematics and assuming our best-fitted halos and find that the planetary nebulae require radial orbits throughout the galaxy.

  10. Plasma analog of particle-pair production

    International Nuclear Information System (INIS)

    Tsidulko, Yu.A.; Berk, H.L.

    1996-09-01

    It is shown that the plasma axial shear flow instability satisfies the Klein-Gordon equation. The plasma instability is then shown to be analogous to spontaneous particle-pair production when a potential energy is present that is greater than twice the particle rest mass energy. Stability criteria can be inferred based on field theoretical conservation laws

  11. Reactions and single-particle structure of nuclei near the drip lines

    International Nuclear Information System (INIS)

    Hansen, P.G.; Sherrill, B.M.

    2001-01-01

    The techniques that have allowed the study of reactions of nuclei situated at or near the neutron or proton drip line are described. Nuclei situated just inside the drip line have low nucleon separation energies and, at most, a few bound states. If the angular momentum in addition is small, large halo states are formed where the wave function of the valency nucleon extends far beyond the nuclear radius. We begin with examples of the properties of nuclear halos and of their study in radioactive-beam experiments. We then turn to the continuum states existing above the particle threshold and also discuss the possibility of exciting them from the halo states in processes that may be thought of as 'collateral damage'. Finally, we show that the experience from studies of halo states has pointed to knockout reactions as a new way to perform spectroscopic studies of more deeply bound non-halo states. Examples are given of measurements of l values and spectroscopic factors

  12. Self-consistent simulation studies of periodically focused intense charged-particle beams

    International Nuclear Information System (INIS)

    Chen, C.; Jameson, R.A.

    1995-01-01

    A self-consistent two-dimensional model is used to investigate intense charged-particle beam propagation through a periodic solenoidal focusing channel, particularly in the regime in which there is a mismatch between the beam and the focusing channel. The present self-consistent studies confirm that mismatched beams exhibit nonlinear resonances and chaotic behavior in the envelope evolution, as predicted by an earlier envelope analysis [C. Chen and R. C. Davidson, Phys. Rev. Lett. 72, 2195 (1994)]. Transient effects due to emittance growth are studied, and halo formation is investigated. The halo size is estimated. The halo characteristics for a periodic focusing channel are found to be qualitatively the same as those for a uniform focusing channel. A threshold condition is obtained numerically for halo formation in mismatched beams in a uniform focusing channel, which indicates that relative envelope mismatch must be kept well below 20% to prevent space-charge-dominated beams from developing halos

  13. Close correlation between the reaction mechanism and inner structure of loosely halo-nuclei

    International Nuclear Information System (INIS)

    Liu Jianye; Tianshui Normal Univ., Tianshui; National Laboratory of Heavy Ion Accelerator of Lanzhou, Lanzhou; Guo Wenjun; Ren Zhongzhou; National Laboratory of Heavy Ion Accelerator of Lanzhou, Lanzhou; Xing Yongzhong; National Laboratory of Heavy Ion Accelerator of Lanzhou, Lanzhou

    2006-01-01

    It was based on the comparisons of the variance properties of fragment multiplicities FM's and nuclear stoppings R's for the neutron-halo colliding system with those of FZ's and R's for the proton-halo colliding system with the increases of beam energy in more detail, the closely correlations between the reaction mechanism and the inner structures of halo-nuclei is found. From above comparisons it is found that the variance properties of fragment multiplicities and nuclear stopping with the increases of beam energy are quite different for the neutron-halo and proton halo colliding systems, such as the effects of loosely bound neutron-halo structure on the fragment multiplicities and nuclear stopping are obviously larger than those for the proton-halo colliding system. This is due to that the structures of halo-neutron nucleus 11 Li is more loosely than that of the proton-halo nucleus 23 Al. In this case, the fragment multiplicity and nuclear stopping of halo nuclei may be used as a possible probe for studying the reaction mechanism and the correlation between the reaction mechanism and the inner structure of halo-nuclei. (authors)

  14. Chemical enrichment in halo planetary nebulae

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Peimbert, S; Rayo, J F; Peimbert, M [Universidad Nacional Autonoma de Mexico, Mexico City. Inst. de Astronomia

    1981-01-01

    Photoelectric spectrophotometry of emission lines in the 3400-7400 A region is presented for the planetary nebulae 108-76/sup 0/1(BB1). From these observations the relative abundances of H, He, C, N, O and Ne are derived. The abundances of the halo PN (BB1, H4-1 and K648) are compared to those predicted by stellar evolution theory under the assumption that the envelope has the chemical composition of the matter located between the H burning shell and the surface. The observed He/H and C/O values are higher than predicted which implies that halo PN contain matter from deeper layers than the H burning shell. Furthermore, the O/Ar, N/Ar and Ne/Ar values in halo PN are higher than in the solar neighbourhood, at least part of this enrichment is produced by the PN progenitors.

  15. Pair production of arbitrary spin particles by electromagnetic fields

    International Nuclear Information System (INIS)

    Kruglov, S.I.

    2006-01-01

    The exact solutions of the wave equation for arbitrary spin particles in the field of the soliton-like electric impulse were obtained. The differential probability of pair production of particles by electromagnetic fields has been evaluated on the basis of the exact solutions. As a particular case, the particle pair production in the constant and uniform electric field were studied

  16. Stellar Velocity Dispersion: Linking Quiescent Galaxies to their Dark Matter Halos

    OpenAIRE

    Zahid, H. Jabran; Sohn, Jubee; Geller, Margaret J.

    2018-01-01

    We analyze the Illustris-1 hydrodynamical cosmological simulation to explore the stellar velocity dispersion of quiescent galaxies as an observational probe of dark matter halo velocity dispersion and mass. Stellar velocity dispersion is proportional to dark matter halo velocity dispersion for both central and satellite galaxies. The dark matter halos of central galaxies are in virial equilibrium and thus the stellar velocity dispersion is also proportional to dark matter halo mass. This prop...

  17. Does SEGUE/SDSS indicate a dual galactic halo?

    International Nuclear Information System (INIS)

    Schönrich, Ralph; Asplund, Martin; Casagrande, Luca

    2014-01-01

    We re-examine recent claims of observational evidence for a dual Galactic halo in SEGUE/SDSS data, and trace them back to improper error treatment and neglect of selection effects. In particular, the detection of a vertical abundance gradient in the halo can be explained as a metallicity bias in distance. A similar bias and the impact of disk contamination affect the sample of blue horizontal branch stars. These examples highlight why non-volume complete samples require forward modeling from theoretical models or extensive bias-corrections. We also show how observational uncertainties produce the specific non-Gaussianity in the observed azimuthal velocity distribution of halo stars, which can be erroneously identified as two Gaussian components. A single kinematic component yields an excellent fit to the observed data, when we model the measurement process including distance uncertainties. Furthermore, we show that sample differences in proper motion space are the direct consequence of kinematic cuts and are enhanced when distance estimates are less accurate. Thus, their presence is neither proof of a separate population nor a measure of reliability for the applied distances. We conclude that currently there is no evidence from SEGUE/SDSS that would favor a dual Galactic halo over a single halo that is full of substructure.

  18. Effective Dark Matter Halo Catalog in f(R) Gravity.

    Science.gov (United States)

    He, Jian-Hua; Hawken, Adam J; Li, Baojiu; Guzzo, Luigi

    2015-08-14

    We introduce the idea of an effective dark matter halo catalog in f(R) gravity, which is built using the effective density field. Using a suite of high resolution N-body simulations, we find that the dynamical properties of halos, such as the distribution of density, velocity dispersion, specific angular momentum and spin, in the effective catalog of f(R) gravity closely mimic those in the cold dark matter model with a cosmological constant (ΛCDM). Thus, when using effective halos, an f(R) model can be viewed as a ΛCDM model. This effective catalog therefore provides a convenient way for studying the baryonic physics, the galaxy halo occupation distribution and even semianalytical galaxy formation in f(R) cosmologies.

  19. Remarks on search methods for stable, massive, elementary particles

    International Nuclear Information System (INIS)

    Perl, Martin L.

    2001-01-01

    This paper was presented at the 69th birthday celebration of Professor Eugene Commins, honoring his research achievements. These remarks are about the experimental techniques used in the search for new stable, massive particles, particles at least as massive as the electron. A variety of experimental methods such as accelerator experiments, cosmic ray studies, searches for halo particles in the galaxy and searches for exotic particles in bulk matter are described. A summary is presented of the measured limits on the existence of new stable, massive particle

  20. Universal Dark Halo Scaling Relation for the Dwarf Spheroidal Satellites

    Science.gov (United States)

    Hayashi, Kohei; Ishiyama, Tomoaki; Ogiya, Go; Chiba, Masashi; Inoue, Shigeki; Mori, Masao

    2017-07-01

    Motivated by a recently found interesting property of the dark halo surface density within a radius, {r}\\max , giving the maximum circular velocity, {V}\\max , we investigate it for dark halos of the Milky Way’s and Andromeda’s dwarf satellites based on cosmological simulations. We select and analyze the simulated subhalos associated with Milky-Way-sized dark halos and find that the values of their surface densities, {{{Σ }}}{V\\max }, are in good agreement with those for the observed dwarf spheroidal satellites even without employing any fitting procedures. Moreover, all subhalos on the small scales of dwarf satellites are expected to obey the universal relation, irrespective of differences in their orbital evolutions, host halo properties, and observed redshifts. Therefore, we find that the universal scaling relation for dark halos on dwarf galaxy mass scales surely exists and provides us with important clues for understanding fundamental properties of dark halos. We also investigate orbital and dynamical evolutions of subhalos to understand the origin of this universal dark halo relation and find that most subhalos evolve generally along the {r}\\max \\propto {V}\\max sequence, even though these subhalos have undergone different histories of mass assembly and tidal stripping. This sequence, therefore, should be the key feature for understanding the nature of the universality of {{{Σ }}}{V\\max }.

  1. Does the galaxy-halo connection vary with environment?

    Science.gov (United States)

    Dragomir, Radu; Rodríguez-Puebla, Aldo; Primack, Joel R.; Lee, Christoph T.

    2018-05-01

    (Sub)halo abundance matching (SHAM) assumes that one (sub) halo property, such as mass Mvir or peak circular velocity Vpeak, determines properties of the galaxy hosted in each (sub) halo such as its luminosity or stellar mass. This assumption implies that the dependence of galaxy luminosity functions (GLFs) and the galaxy stellar mass function (GSMF) on environmental density is determined by the corresponding halo density dependence. In this paper, we test this by determining from a Sloan Digital Sky Survey sample the observed dependence with environmental density of the ugriz GLFs and GSMF for all galaxies, and for central and satellite galaxies separately. We then show that the SHAM predictions are in remarkable agreement with these observations, even when the galaxy population is divided between central and satellite galaxies. However, we show that SHAM fails to reproduce the correct dependence between environmental density and g - r colour for all galaxies and central galaxies, although it better reproduces the colour dependence on environmental density of satellite galaxies.

  2. QUANTIFYING KINEMATIC SUBSTRUCTURE IN THE MILKY WAY'S STELLAR HALO

    International Nuclear Information System (INIS)

    Xue Xiangxiang; Zhao Gang; Luo Ali; Rix, Hans-Walter; Bell, Eric F.; Koposov, Sergey E.; Kang, Xi; Liu, Chao; Yanny, Brian; Beers, Timothy C.; Lee, Young Sun; Bullock, James S.; Johnston, Kathryn V.; Morrison, Heather; Rockosi, Constance; Weaver, Benjamin A.

    2011-01-01

    We present and analyze the positions, distances, and radial velocities for over 4000 blue horizontal-branch (BHB) stars in the Milky Way's halo, drawn from SDSS DR8. We search for position-velocity substructure in these data, a signature of the hierarchical assembly of the stellar halo. Using a cumulative 'close pair distribution' as a statistic in the four-dimensional space of sky position, distance, and velocity, we quantify the presence of position-velocity substructure at high statistical significance among the BHB stars: pairs of BHB stars that are close in position on the sky tend to have more similar distances and radial velocities compared to a random sampling of these overall distributions. We make analogous mock observations of 11 numerical halo formation simulations, in which the stellar halo is entirely composed of disrupted satellite debris, and find a level of substructure comparable to that seen in the actually observed BHB star sample. This result quantitatively confirms the hierarchical build-up of the stellar halo through a signature in phase (position-velocity) space. In detail, the structure present in the BHB stars is somewhat less prominent than that seen in most simulated halos, quite possibly because BHB stars represent an older sub-population. BHB stars located beyond 20 kpc from the Galactic center exhibit stronger substructure than at r gc < 20 kpc.

  3. Gravitational Particle Production and the Moduli Problem

    CERN Document Server

    Felder, G; Linde, Andrei D; Felder, Gary; Kofman, Lev; Linde, Andrei

    2000-01-01

    A theory of gravitational production of light scalar particles during and after inflation is investigated. We show that in the most interesting cases where long-wavelength fluctuations of light scalar fields can be generated during inflation, these fluctuations rather than quantum fluctuations produced after inflation give the dominant contribution to particle production. In such cases a simple analytical theory of particle production can be developed. Application of our results to the theory of quantum creation of moduli fields demonstrates that if the moduli mass is smaller than the Hubble constant then these fields are copiously produced during inflation. This gives rise to the cosmological moduli problem even if there is no homogeneous component of the classical moduli field in the universe. To avoid this version of the moduli problem it is necessary for the Hubble constant H during the last stages of inflation and/or the reheating temperature T_R after inflation to be extremely small.

  4. THE BLACK HOLE–DARK MATTER HALO CONNECTION

    International Nuclear Information System (INIS)

    Sabra, Bassem M.; Saliba, Charbel; Akl, Maya Abi; Chahine, Gilbert

    2015-01-01

    We explore the connection between the central supermassive black holes (SMBH) in galaxies and the dark matter halo through the relation between the masses of the SMBHs and the maximum circular velocities of the host galaxies, as well as the relationship between stellar velocity dispersion of the spheroidal component and the circular velocity. Our assumption here is that the circular velocity is a proxy for the mass of the dark matter halo. We rely on a heterogeneous sample containing galaxies of all types. The only requirement is that the galaxy has a direct measurement of the mass of its SMBH and a direct measurement of its circular velocity and its velocity dispersion. Previous studies have analyzed the connection between the SMBH and dark matter halo through the relationship between the circular velocity and the bulge velocity dispersion, with the assumption that the bulge velocity dispersion stands in for the mass of the SMBH, via the well-established SMBH mass–bulge velocity dispersion relation. Using intermediate relations may be misleading when one is studying them to decipher the active ingredients of galaxy formation and evolution. We believe that our approach will provide a more direct probe of the SMBH and the dark matter halo connection. We find that the correlation between the mass of SMBHs and the circular velocities of the host galaxies is extremely weak, leading us to state the dark matter halo may not play a major role in regulating the black hole growth in the present Universe

  5. THE BLACK HOLE–DARK MATTER HALO CONNECTION

    Energy Technology Data Exchange (ETDEWEB)

    Sabra, Bassem M. [Department of Physics and Astronomy, Notre Dame University-Louaize, P.O. Box 72 Zouk Mikael, Zouk Mosbeh (Lebanon); Saliba, Charbel; Akl, Maya Abi; Chahine, Gilbert, E-mail: bsabra@ndu.edu.lb [Department of Physics, Lebanese University II, Fanar (Lebanon)

    2015-04-10

    We explore the connection between the central supermassive black holes (SMBH) in galaxies and the dark matter halo through the relation between the masses of the SMBHs and the maximum circular velocities of the host galaxies, as well as the relationship between stellar velocity dispersion of the spheroidal component and the circular velocity. Our assumption here is that the circular velocity is a proxy for the mass of the dark matter halo. We rely on a heterogeneous sample containing galaxies of all types. The only requirement is that the galaxy has a direct measurement of the mass of its SMBH and a direct measurement of its circular velocity and its velocity dispersion. Previous studies have analyzed the connection between the SMBH and dark matter halo through the relationship between the circular velocity and the bulge velocity dispersion, with the assumption that the bulge velocity dispersion stands in for the mass of the SMBH, via the well-established SMBH mass–bulge velocity dispersion relation. Using intermediate relations may be misleading when one is studying them to decipher the active ingredients of galaxy formation and evolution. We believe that our approach will provide a more direct probe of the SMBH and the dark matter halo connection. We find that the correlation between the mass of SMBHs and the circular velocities of the host galaxies is extremely weak, leading us to state the dark matter halo may not play a major role in regulating the black hole growth in the present Universe.

  6. Testing DARKexp against energy and density distributions of Millennium-II halos

    Energy Technology Data Exchange (ETDEWEB)

    Nolting, Chris; Williams, Liliya L.R. [School of Physics and Astronomy, University of Minnesota, 116 Church Street SE, Minneapolis, MN, 55454 (United States); Boylan-Kolchin, Michael [Department of Astronomy, The University of Texas at Austin, 2515 Speedway, Stop C1400, Austin, TX, 78712 (United States); Hjorth, Jens, E-mail: nolting@astro.umn.edu, E-mail: llrw@astro.umn.edu, E-mail: mbk@astro.as.utexas.edu, E-mail: jens@dark-cosmology.dk [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, Copenhagen, DK-2100 Denmark (Denmark)

    2016-09-01

    We test the DARKexp model for relaxed, self-gravitating, collisionless systems against equilibrium dark matter halos from the Millennium-II simulation. While limited tests of DARKexp against simulations and observations have been carried out elsewhere, this is the first time the testing is done with a large sample of simulated halos spanning a factor of ∼ 50 in mass, and using independent fits to density and energy distributions. We show that DARKexp, a one shape parameter family, provides very good fits to the shapes of density profiles, ρ( r ), and differential energy distributions, N ( E ), of individual simulated halos. The best fit shape parameter φ{sub 0} obtained from the two types of fits are correlated, though with scatter. Our most important conclusions come from ρ( r ) and N ( E ) that have been averaged over many halos. These show that the bulk of the deviations between DARKexp and individual Millennium-II halos come from halo-to-halo fluctuations, likely driven by substructure, and other density perturbations. The average ρ( r ) and N ( E ) are quite smooth and follow DARKexp very closely. The only deviation that remains after averaging is small, and located at most bound energies for N ( E ) and smallest radii for ρ( r ). Since the deviation is confined to 3–4 smoothing lengths, and is larger for low mass halos, it is likely due to numerical resolution effects.

  7. FASHIONABLY LATE? BUILDING UP THE MILKY WAY'S INNER HALO

    International Nuclear Information System (INIS)

    Morrison, Heather L.; Harding, Paul; Helmi, Amina

    2009-01-01

    Using a sample of 246 metal-poor stars (RR Lyraes, red giants, and red horizontal branch stars) which is remarkable for the accuracy of its six-dimensional kinematical data, we find, by examining the distribution of stellar orbital angular momenta, a new component for the local halo which has an axial ratio c/a ∼ 0.2, a similar flattening to the thick disk. It has a small prograde rotation but is supported by velocity anisotropy, and contains more intermediate-metallicity stars (with -1.5 < [Fe/H] < -1.0) than the rest of our sample. We suggest that this component was formed quite late, during or after the formation of the disk. It formed either from the gas that was accreted by the last major mergers experienced by the Galaxy, or by dynamical friction of massive infalling satellite(s) with the halo and possibly the stellar disk or thick disk. The remainder of the halo stars in our sample, which are less closely confined to the disk plane, exhibit a clumpy distribution in energy and angular momentum, suggesting that the early, chaotic conditions under which the inner halo formed were not violent enough to erase the record of their origins. The clumpy structure suggests that a relatively small number of progenitors were responsible for building up the inner halo, in line with theoretical expectations. We find a difference in mean binding energy between the RR Lyrae variables and the red giants in our sample, suggesting that more of the RR Lyraes in the sample belong to the outer halo, and that the outer halo may be somewhat younger, as first suggested by Searle and Zinn. We also find that the RR Lyrae mean rotation is more negative than the red giants, which is consistent with the recent result of Carollo et al. that the outer halo has a retrograde rotation and with the difference in kinematics seen between RR Lyraes and blue horizontal branch stars by Kinman et al. (2007).

  8. Particle Production under External Fields and Its Applications

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Hojin [Univ. of Wisconsin, Madison, WI (United States)

    2014-01-01

    The thesis presents studies of vacuum pair productions and its applications in early universe cosmology and high energy astrophysics. Vacuum often becomes unstable and spontaneously decays into pairs of particles in rapidly expanding universes or under strong external electromagnetic fields. Theoretically, spontaneous pair productions due to such non-trivial backgrounds of spacetimes or electromagnetic fields are well-understood. However, the effect of particle productions has not been observed so far because of experiemtal difficulties in obtaining large curvatures of space-times or strong electric fields. Although it may be impossible to observe the pair productions directly via laboratory experiments, there are still powerful sources of space-time curvatures or electric fields in cosmology and astrophysics, which result in observations. In Part I, we explore the inflationary models in early universe utilizing pair productions through gravity. We study observable signatures on the cosmic microwave background, such as isocurvature perturbations and non-Gaussianities, generated from the particle production of WIMPzillas and axions during or after inflation. In Part II, we investigate the electron-positron pair production in the magnetosphere of pulsars whose electromagnetic fields are expected to close to or even greater than the pair production threshold. In particular, we demonstrate that the pair production may be responsible for giant pulses from the Crab pulsar.

  9. Theoretical relation between halo current-plasma energy displacement/deformation in EAST

    Science.gov (United States)

    Khan, Shahab Ud-Din; Khan, Salah Ud-Din; Song, Yuntao; Dalong, Chen

    2018-04-01

    In this paper, theoretical model for calculating halo current has been developed. This work attained novelty as no theoretical calculations for halo current has been reported so far. This is the first time to use theoretical approach. The research started by calculating points for plasma energy in terms of poloidal and toroidal magnetic field orientations. While calculating these points, it was extended to calculate halo current and to developed theoretical model. Two cases were considered for analyzing the plasma energy when flows down/upward to the diverter. Poloidal as well as toroidal movement of plasma energy was investigated and mathematical formulations were designed as well. Two conducting points with respect to (R, Z) were calculated for halo current calculations and derivations. However, at first, halo current was established on the outer plate in clockwise direction. The maximum generation of halo current was estimated to be about 0.4 times of the plasma current. A Matlab program has been developed to calculate halo current and plasma energy calculation points. The main objective of the research was to establish theoretical relation with experimental results so as to precautionary evaluate the plasma behavior in any Tokamak.

  10. THE SEGUE K GIANT SURVEY. III. QUANTIFYING GALACTIC HALO SUBSTRUCTURE

    Energy Technology Data Exchange (ETDEWEB)

    Janesh, William; Morrison, Heather L.; Ma, Zhibo; Harding, Paul [Department of Astronomy, Case Western Reserve University, Cleveland, OH 44106 (United States); Rockosi, Constance [UCO/Lick Observatory, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Starkenburg, Else [Department of Physics and Astronomy, University of Victoria, P.O. Box 1700, STN CSC, Victoria BC V8W 3P6 (Canada); Xue, Xiang Xiang; Rix, Hans-Walter [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Beers, Timothy C. [Department of Physics and JINA Center for the Evolution of the Elements, University of Notre Dame, Notre Dame, IN 46556 (United States); Johnson, Jennifer [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Lee, Young Sun [Department of Astronomy and Space Science, Chungnam National University, Daejeon 34134 (Korea, Republic of); Schneider, Donald P. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States)

    2016-01-10

    We statistically quantify the amount of substructure in the Milky Way stellar halo using a sample of 4568 halo K giant stars at Galactocentric distances ranging over 5–125 kpc. These stars have been selected photometrically and confirmed spectroscopically as K giants from the Sloan Digital Sky Survey’s Sloan Extension for Galactic Understanding and Exploration project. Using a position–velocity clustering estimator (the 4distance) and a model of a smooth stellar halo, we quantify the amount of substructure in the halo, divided by distance and metallicity. Overall, we find that the halo as a whole is highly structured. We also confirm earlier work using blue horizontal branch (BHB) stars which showed that there is an increasing amount of substructure with increasing Galactocentric radius, and additionally find that the amount of substructure in the halo increases with increasing metallicity. Comparing to resampled BHB stars, we find that K giants and BHBs have similar amounts of substructure over equivalent ranges of Galactocentric radius. Using a friends-of-friends algorithm to identify members of individual groups, we find that a large fraction (∼33%) of grouped stars are associated with Sgr, and identify stars belonging to other halo star streams: the Orphan Stream, the Cetus Polar Stream, and others, including previously unknown substructures. A large fraction of sample K giants (more than 50%) are not grouped into any substructure. We find also that the Sgr stream strongly dominates groups in the outer halo for all except the most metal-poor stars, and suggest that this is the source of the increase of substructure with Galactocentric radius and metallicity.

  11. Injection halos of hydrocarbons above oil-gas fields with super-high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Bakhtin, V.V.

    1979-09-01

    We studied the origin of injection halos of hydrocarbons above oil-gas fields with anomalously high formation pressures (AHFP). Using fields in Azerbaydzhan and Chechen-Ingushetiya as an example, we demonstrate the effect of certain factors (in particular, faults and zones of increased macro- and micro-jointing) on the morpholoy of the halos. The intensity of micro-jointing (jointing permeability, three-dimensional density of micro-jointing) is directly connected with vertical dimensions of the halos. We measured halos based on transverse profiles across the Khayan-Kort field and studied the distribution of bitumen saturation within the injection halo. Discovery of injection halos during drilling has enabled us to improve the technology of wiring deep-seated exploratory wells for oil and gas in regions with development of AHFP.

  12. Stability of BEC galactic dark matter halos

    Energy Technology Data Exchange (ETDEWEB)

    Guzmán, F.S.; Lora-Clavijo, F.D.; González-Avilés, J.J.; Rivera-Paleo, F.J., E-mail: guzman@ifm.umich.mx, E-mail: fadulora@ifm.umich.mx, E-mail: javiles@ifm.umich.mx, E-mail: friverap@ifm.umich.mx [Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio C-3, Cd. Universitaria, 58040 Morelia, Michoacán (Mexico)

    2013-09-01

    In this paper we show that spherically symmetric BEC dark matter halos, with the sin r/r density profile, that accurately fit galactic rotation curves and represent a potential solution to the cusp-core problem are unstable. We do this by introducing back the density profiles into the fully time-dependent Gross-Pitaevskii-Poisson system of equations. Using numerical methods to track the evolution of the system, we found that these galactic halos lose mass at an approximate rate of half of its mass in a time scale of dozens of Myr. We consider this time scale is enough as to consider these halos are unstable and unlikely to be formed. We provide some arguments to show that this behavior is general and discuss some other drawbacks of the model that restrict its viability.

  13. The influence of final state interaction on two-particle correlations in multiple production of particles and resonances

    International Nuclear Information System (INIS)

    Lednicky, R.; Lyuboshitz, V.L.

    1996-01-01

    The structure of pair correlations of interacting particles moving with nearby velocities is analysed. A general formalism of the two-particle space-time density matrix, taking into account the space-time coherence of the production process, is developed. The influence of strong final state interaction on two-particle correlations in the case of the production of a system resonance + particle is investigated in detail. It is shown that in the limit of small distances between the resonance and particle production points the effect of final state interaction is enhanced due to logarithmic singularity of the triangle diagram. Numerical estimates indicate that, in this limit, the effect of strong final state interaction becomes important even for two-pion correlations. (author)

  14. Is there a composition gradient in the halo

    International Nuclear Information System (INIS)

    Kraft, R.P.; Trefzger, C.F.; Suntzeff, N.

    1979-01-01

    In the inner halo (galactocentric distance R < approximately 8 kpc), the Basel RGU photometry should allow the derivation of the shapes and dimensions of the iso-abundance contours. For the outer halo to R approximately 30 kpc, the authors review techniques based on Δs-measurements of RR Lyraes (Lick) and intermediate band-pass photometry of globular-cluster giants (Searle and Zinn, Palomar). Both methods suggest little change in mean [Fe/H] between 10 and 30 kpc; however, both may be biased against the discovery of very metal-poor objects. The conclusion that the outer halo has no abundance gradient may be somewhat premature. (Auth.)

  15. ZOMG - I. How the cosmic web inhibits halo growth and generates assembly bias

    Science.gov (United States)

    Borzyszkowski, Mikolaj; Porciani, Cristiano; Romano-Díaz, Emilio; Garaldi, Enrico

    2017-07-01

    The clustering of dark matter haloes with fixed mass depends on their formation history, an effect known as assembly bias. We use zoom N-body simulations to investigate the origin of this phenomenon. For each halo at redshift z = 0, we determine the time in which the physical volume containing its final mass becomes stable. We consider five examples for which this happens at z ˜ 1.5 and two that do not stabilize by z = 0. The zoom simulations show that early-collapsing haloes do not grow in mass at z = 0 while late-forming ones show a net inflow. The reason is that 'accreting' haloes are located at the nodes of a network of thin filaments feeding them. Conversely, each 'stalled' halo lies within a prominent filament that is thicker than the halo size. Infalling material from the surroundings becomes part of the filament while matter within it recedes from the halo. We conclude that assembly bias originates from quenching halo growth due to tidal forces following the formation of non-linear structures in the cosmic web, as previously conjectured in the literature. Also the internal dynamics of the haloes change: the velocity anisotropy profile is biased towards radial (tangential) orbits in accreting (stalled) haloes. Our findings reveal the cause of the yet unexplained dependence of halo clustering on the anisotropy. Finally, we extend the excursion-set theory to account for these effects. A simple criterion based on the ellipticity of the linear tidal field combined with the spherical-collapse model provides excellent predictions for both classes of haloes.

  16. The Impact of Assembly Bias on the Galaxy Content of Dark Matter Halos

    Science.gov (United States)

    Zehavi, Idit; Contreras, Sergio; Padilla, Nelson; Smith, Nicholas J.; Baugh, Carlton M.; Norberg, Peder

    2018-01-01

    We study the dependence of the galaxy content of dark matter halos on large-scale environment and halo formation time using semi-analytic galaxy models applied to the Millennium simulation. We analyze subsamples of halos at the extremes of these distributions and measure the occupation functions for the galaxies they host. We find distinct differences among these occupation functions. The main effect with environment is that central galaxies (and in one model, also the satellites) in denser regions start populating lower-mass halos. A similar, but significantly stronger, trend exists with halo age, where early-forming halos are more likely to host central galaxies at lower halo mass. We discuss the origin of these trends and the connection to the stellar mass–halo mass relation. We find that, at fixed halo mass, older halos and to some extent also halos in dense environments tend to host more massive galaxies. Additionally, we see a reverse trend for the occupation of satellite galaxies where early-forming halos have fewer satellites, likely due to having more time for them to merge with the central galaxy. We describe these occupancy variations in terms of the changes in the occupation function parameters, which can aid in constructing realistic mock galaxy samples. Finally, we study the corresponding galaxy auto- and cross-correlation functions of the different samples and elucidate the impact of assembly bias on galaxy clustering. Our results can inform theoretical modeling of galaxy assembly bias and attempts to detect it in the real universe.

  17. Production of neutrinos and neutrino-like particles in proton-nucleus interactions

    International Nuclear Information System (INIS)

    Dishaw, J.P.

    1979-03-01

    An experimental search was performed to look for the direct production of neutrinos or neutrino-like particles, i.e., neutral particles which interact weakly with hadrons, in proton-nucleus interactions at 400 GeV incident proton energy. Possible sources of such particles include the semi-leptonic decay of new heavy particles such as charm, and the direct production of a light neutral Higgs particle such as the axion. The production of these particles has been inferred in this experiment by energy nonconservation in the collision of a proton with an iron nucleus. The total visible energy of the interaction was measured using a sampling ionization calorimeter. After correcting for beam intensity effects and cutting the data to eliminate systematic effects in the measurement, the final resolution of the calorimeter was 3.51% and increased with decreasing incident beam energy with a square root dependence on the beam energy. Energy nonconservation in the data is manifest as a non-Gaussian distribution on the low side of the calorimeter measured energy. Model calculations yield the fraction of events expected in this non-Gaussian behavior for the various sources of neutrinos or neutrino-like particles. A maximum likelihood fit to the data with the theoretical fraction of events expected yields the 95% confidence level production cross section upper limit values. The upper limits for general production of neutrino-like particles for various parameterizations of the production cross section are presented. The following specific upper limits have been established: charm particle production -3 times the π 0 production cross section. 144 references

  18. Dynamical behaviour of gaseous halo in a disk galaxy

    International Nuclear Information System (INIS)

    Ikeuchi, S.; Habe, A.

    1981-01-01

    Assuming that the gas in the halo of a disk galaxy is supplied from the disk as a hot gas, the authors have studied its dynamical and thermal behaviour by means of a time dependent, two-dimensional hydrodynamic code. They suppose the following boundary conditions at the disk. (i) The hot gas with the temperature Tsub(d) and the density nsub(d) is uniform at r=4-12 kpc in the disk and it is time independent. (ii) This hot gas rotates with the stellar disk in the same velocity. (iii) This hot gas can escape freely from the disk to the halo. These conditions will be verified if the filling factor of hot gas is so large as f=0.5-0.8, as proposed by McKee and Ostriker (1977). The gas motion in the halo has been studied for wider ranges of gas temperature and its density at the disk than previously studied. At the same time, the authors have clarified the observability of various types of gaseous haloes and discuss the roles of gaseous halo on the evolution of galaxies. (Auth.)

  19. Populating dark matter haloes with galaxies: comparing the 2dFGRS with mock galaxy redshift surveys

    Science.gov (United States)

    Yang, Xiaohu; Mo, H. J.; Jing, Y. P.; van den Bosch, Frank C.; Chu, YaoQuan

    2004-06-01

    In two recent papers, we developed a powerful technique to link the distribution of galaxies to that of dark matter haloes by considering halo occupation numbers as a function of galaxy luminosity and type. In this paper we use these distribution functions to populate dark matter haloes in high-resolution N-body simulations of the standard ΛCDM cosmology with Ωm= 0.3, ΩΛ= 0.7 and σ8= 0.9. Stacking simulation boxes of 100 h-1 Mpc and 300 h-1 Mpc with 5123 particles each we construct mock galaxy redshift surveys out to a redshift of z= 0.2 with a numerical resolution that guarantees completeness down to 0.01L*. We use these mock surveys to investigate various clustering statistics. The predicted two-dimensional correlation function ξ(rp, π) reveals clear signatures of redshift space distortions. The projected correlation functions for galaxies with different luminosities and types, derived from ξ(rp, π), match the observations well on scales larger than ~3 h-1 Mpc. On smaller scales, however, the model overpredicts the clustering power by about a factor two. Modelling the `finger-of-God' effect on small scales reveals that the standard ΛCDM model predicts pairwise velocity dispersions (PVD) that are ~400 km s-1 too high at projected pair separations of ~1 h-1 Mpc. A strong velocity bias in massive haloes, with bvel≡σgal/σdm~ 0.6 (where σgal and σdm are the velocity dispersions of galaxies and dark matter particles, respectively) can reduce the predicted PVD to the observed level, but does not help to resolve the overprediction of clustering power on small scales. Consistent results can be obtained within the standard ΛCDM model only when the average mass-to-light ratio of clusters is of the order of 1000 (M/L)solar in the B-band. Alternatively, as we show by a simple approximation, a ΛCDM model with σ8~= 0.75 may also reproduce the observational results. We discuss our results in light of the recent WMAP results and the constraints on σ8 obtained

  20. High-resolution disruption halo current measurements using Langmuir probes in Alcator C-Mod

    Science.gov (United States)

    Tinguely, R. A.; Granetz, R. S.; Berg, A.; Kuang, A. Q.; Brunner, D.; LaBombard, B.

    2018-01-01

    Halo currents generated during disruptions on Alcator C-Mod have been measured with Langmuir ‘rail’ probes. These rail probes are embedded in a lower outboard divertor module in a closely-spaced vertical (poloidal) array. The dense array provides detailed resolution of the spatial dependence (~1 cm spacing) of the halo current distribution in the plasma scrape-off region with high time resolution (400 kHz digitization rate). As the plasma limits on the outboard divertor plate, the contact point is clearly discernible in the halo current data (as an inversion of current) and moves vertically down the divertor plate on many disruptions. These data are consistent with filament reconstructions of the plasma boundary, from which the edge safety factor of the disrupting plasma can be calculated. Additionally, the halo current ‘footprint’ on the divertor plate is obtained and related to the halo flux width. The voltage driving halo current and the effective resistance of the plasma region through which the halo current flows to reach the probes are also investigated. Estimations of the sheath resistance and halo region resistivity and temperature are given. This information could prove useful for modeling halo current dynamics.

  1. Hadron and photon production of J particles and the origin of J particles

    International Nuclear Information System (INIS)

    Ting, S.C.C.

    1975-01-01

    Discovery of the J particles (psi-3105 and psi-3695) is detailed. A few experiments on the production of J particles are described, emphasizing photoproduction of J's by photons and hadrons. Finally, current theoretical attempts at explaining their origin are outlined. (29 figures) (U.S.)

  2. The Halo of NGC 2438 scrutinized

    Science.gov (United States)

    Oettl, Silvia; Kimeswenger, Stefan

    2015-08-01

    Haloes and multiple shells around planetary nebulae trace the mass-loss history of the central star. The haloes provide us with information about abundances, ionization or kinematics. Detailed investigations of these haloes can be used to study the evolution of the old stellar population in our galaxy and beyond.Different observations show structures in the haloes like radial rays, blisters and rings (e.g., Ramos-Larios et al. 2012, MNRAS 423, 3753 or Matsuura et al. 2009, ApJ, 700, 1067). The origin of these features has been associated with ionization shadows (Balick 2004, AJ, 127, 2262). They can be observed in regions, where dense knots are opaque to stellar ionizing photons. In this regions we can see leaking UV photons.In this work, we present a detailed investigation of the multiple shell PN NGC 2438. We derive a complete data set of the main nebula. This allows us to analize the physical conditions from photoionization models, such as temperature, density and ionization, and clumping.Data from ESO (3.6m telescope - EFOSC1 - direct imaging and long slit spectroscopy) and from SAAO (spectroscopic observations using a small slit) were available. These data were supplemented by imaging data from the HST archive and by archival VLA observations. The low-excitation species are found to be dominated by clumps. The emission line ratios show no evidence for shocks. We find the shell in ionization equilibrium: a significant amount of UV radiation infiltrates the inner nebula. Thus the shell still seems to be ionized.The photoionization code CLOUDY was used to model the nebular properties and to derive a more accurate distance and ionized mass. The model supports the hypothesis that photoionization is the dominant process in this nebula, far out into the shell.If we want to use extragalactic planetary nebulae as probes of the old stellar population, we need to assess the potential impact of a halo on the evolution. Also the connection of observations and models must

  3. Relaxation from particle production

    Energy Technology Data Exchange (ETDEWEB)

    Hook, Anson; Marques-Tavares, Gustavo [Stanford Institute for Theoretical Physics, Stanford University, Stanford, CA 94305 (United States)

    2016-12-20

    We consider using particle production as a friction force by which to implement a “Relaxion” solution to the electroweak hierarchy problem. Using this approach, we are able to avoid superplanckian field excursions and avoid any conflict with the strong CP problem. The relaxation mechanism can work before, during or after inflation allowing for inflationary dynamics to play an important role or to be completely decoupled.

  4. Large-scale assembly bias of dark matter halos

    Energy Technology Data Exchange (ETDEWEB)

    Lazeyras, Titouan; Musso, Marcello; Schmidt, Fabian, E-mail: titouan@mpa-garching.mpg.de, E-mail: mmusso@sas.upenn.edu, E-mail: fabians@mpa-garching.mpg.de [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85748 Garching (Germany)

    2017-03-01

    We present precise measurements of the assembly bias of dark matter halos, i.e. the dependence of halo bias on other properties than the mass, using curved 'separate universe' N-body simulations which effectively incorporate an infinite-wavelength matter overdensity into the background density. This method measures the LIMD (local-in-matter-density) bias parameters b {sub n} in the large-scale limit. We focus on the dependence of the first two Eulerian biases b {sup E} {sup {sub 1}} and b {sup E} {sup {sub 2}} on four halo properties: the concentration, spin, mass accretion rate, and ellipticity. We quantitatively compare our results with previous works in which assembly bias was measured on fairly small scales. Despite this difference, our findings are in good agreement with previous results. We also look at the joint dependence of bias on two halo properties in addition to the mass. Finally, using the excursion set peaks model, we attempt to shed new insights on how assembly bias arises in this analytical model.

  5. IDENTIFYING STAR STREAMS IN THE MILKY WAY HALO

    Energy Technology Data Exchange (ETDEWEB)

    King, Charles III; Brown, Warren R.; Geller, Margaret J.; Kenyon, Scott J., E-mail: cking@cfa.harvard.edu, E-mail: wbrown@cfa.harvard.edu, E-mail: mgeller@cfa.harvard.edu, E-mail: skenyon@cfa.harvard.edu [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States)

    2012-05-01

    We develop statistical methods for identifying star streams in the halo of the Milky Way that exploit observed spatial and radial velocity distributions. Within a great circle, departures of the observed spatial distribution from random provide a measure of the likelihood of a potential star stream. Comparisons between the radial velocity distribution within a great circle and the radial velocity distribution of the entire sample also measure the statistical significance of potential streams. The radial velocities enable construction of a more powerful joint statistical test for identifying star streams in the Milky Way halo. Applying our method to halo stars in the Hypervelocity Star (HVS) survey, we detect the Sagittarius stream at high significance. Great circle counts and comparisons with theoretical models suggest that the Sagittarius stream comprises 10%-17% of the halo stars in the HVS sample. The population of blue stragglers and blue horizontal branch stars varies along the stream and is a potential probe of the distribution of stellar populations in the Sagittarius dwarf galaxy prior to disruption.

  6. IDENTIFYING STAR STREAMS IN THE MILKY WAY HALO

    International Nuclear Information System (INIS)

    King, Charles III; Brown, Warren R.; Geller, Margaret J.; Kenyon, Scott J.

    2012-01-01

    We develop statistical methods for identifying star streams in the halo of the Milky Way that exploit observed spatial and radial velocity distributions. Within a great circle, departures of the observed spatial distribution from random provide a measure of the likelihood of a potential star stream. Comparisons between the radial velocity distribution within a great circle and the radial velocity distribution of the entire sample also measure the statistical significance of potential streams. The radial velocities enable construction of a more powerful joint statistical test for identifying star streams in the Milky Way halo. Applying our method to halo stars in the Hypervelocity Star (HVS) survey, we detect the Sagittarius stream at high significance. Great circle counts and comparisons with theoretical models suggest that the Sagittarius stream comprises 10%-17% of the halo stars in the HVS sample. The population of blue stragglers and blue horizontal branch stars varies along the stream and is a potential probe of the distribution of stellar populations in the Sagittarius dwarf galaxy prior to disruption.

  7. Biasing secondary particle interaction physics and production in MCNP6

    International Nuclear Information System (INIS)

    Fensin, M.L.; James, M.R.

    2016-01-01

    Highlights: • Biasing secondary production and interactions of charged particles in the tabular energy regime. • Examining lower weight window bounds for rare events when using Russian roulette. • The new biasing strategy can speedup calculations by a factor of 1 million or more. - Abstract: Though MCNP6 will transport elementary charged particles and light ions to low energies (i.e. less than 20 MeV), MCNP6 has historically relied on model physics with suggested minimum energies of ∼20 to 200 MeV. Use of library data for the low energy regime was developed for MCNP6 1.1.Beta to read and use light ion libraries. Thick target yields of neutron production for alphas on fluoride result in 1 production event per roughly million sampled alphas depending on the energy of the alpha (for other isotopes the yield can be even rarer). Calculation times to achieve statistically significant and converged thick target yields are quite laborious, needing over one hundred processor hours. The MUCEND code possess a biasing technique for improving the sampling of secondary particle production by forcing a nuclear interaction to occur per each alpha transported. We present here a different biasing strategy for secondary particle production from charged particles. During each substep, as the charged particle slows down, we bias both a nuclear collision event to occur at each substep and the production of secondary particles at the collision event, while still continuing to progress the charged particle until reaching a region of zero importance or an energy/time cutoff. This biasing strategy is capable of speeding up calculations by a factor of a million or more as compared to the unbiased calculation. Further presented here are both proof that the biasing strategy is capable of producing the same results as the unbiased calculation and the limitations to consider in order to achieve accurate results of secondary particle production. Though this strategy was developed for MCNP

  8. Strong orientation dependence of surface mass density profiles of dark haloes at large scales

    Science.gov (United States)

    Osato, Ken; Nishimichi, Takahiro; Oguri, Masamune; Takada, Masahiro; Okumura, Teppei

    2018-06-01

    We study the dependence of surface mass density profiles, which can be directly measured by weak gravitational lensing, on the orientation of haloes with respect to the line-of-sight direction, using a suite of N-body simulations. We find that, when major axes of haloes are aligned with the line-of-sight direction, surface mass density profiles have higher amplitudes than those averaged over all halo orientations, over all scales from 0.1 to 100 Mpc h-1 we studied. While the orientation dependence at small scales is ascribed to the halo triaxiality, our results indicate even stronger orientation dependence in the so-called two-halo regime, up to 100 Mpc h-1. The orientation dependence for the two-halo term is well approximated by a multiplicative shift of the amplitude and therefore a shift in the halo bias parameter value. The halo bias from the two-halo term can be overestimated or underestimated by up to {˜ } 30 per cent depending on the viewing angle, which translates into the bias in estimated halo masses by up to a factor of 2 from halo bias measurements. The orientation dependence at large scales originates from the anisotropic halo-matter correlation function, which has an elliptical shape with the axis ratio of ˜0.55 up to 100 Mpc h-1. We discuss potential impacts of halo orientation bias on other observables such as optically selected cluster samples and a clustering analysis of large-scale structure tracers such as quasars.

  9. Study of fusion probabilities with halo nuclei using different proximity based potentials

    International Nuclear Information System (INIS)

    Kumari, Raj

    2013-01-01

    We study fusion of halo nuclei with heavy targets using proximity based potentials due to Aage Winther (AW) 95, Bass 80 and Proximity 2010. In order to consider the extended matter distribution of halo nuclei, the nuclei radii borrowed from cross section measurements are included in these potentials. Our study reveals that the barrier heights are effectively reduced and fusion cross sections are appreciably enhanced by including extended radii of these nuclei. We also find that the extended sizes of halos contribute towards enhancement of fusion probabilities in case of proton halo nuclei, but, contribute to transfer or break-up process rather than fusion yield in case of neutron halo nuclei

  10. The impact of particle production on gravitational baryogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Lima, J.A.S., E-mail: jas.lima@iag.usp.br [Departamento de Astronomia, Universidade de São Paulo, Rua do Matão 1226, 05508-900, São Paulo (Brazil); Singleton, D., E-mail: dougs@csufresno.edu [Department of Physics, California State University Fresno, Fresno, CA 93740-8031 (United States); ICTP South American Institute for Fundamental Research, UNESP – Univ. Estadual Paulista, Rua Dr. Bento T. Ferraz 271, 01140-070, São Paulo, SP (Brazil); Institute of Experimental and Theoretical Physics Al-Farabi KazNU, Almaty, 050040 (Kazakhstan)

    2016-11-10

    Baryogenesis driven by curvature effects is investigated by taking into account gravitationally induced particle production in the very early Universe. In our scenario, the baryon asymmetry is generated dynamically during an inflationary epoch powered by ultra-relativistic particles. The adiabatic particle production rate provides both the needed negative pressure to accelerate the radiation dominated Universe and a non-zero chemical potential which distinguishes baryons and anti-baryons thereby producing a baryon asymmetry in agreement with the observed value. Reciprocally, the present day asymmetry may be used to determine the inflationary scale at early times. Successful gravitational baryogenesis is dynamically generated for many different choices of the relevant model parameters.

  11. Exploring the liminality: properties of haloes and subhaloes in borderline f(R) gravity

    Science.gov (United States)

    Shi, Difu; Li, Baojiu; Han, Jiaxin; Gao, Liang; Hellwing, Wojciech A.

    2015-09-01

    We investigate the properties of dark matter haloes and subhaloes in an f(R) gravity model with |fR0| = 10-6, using a very-high-resolution N-body simulation. The model is a borderline between being cosmologically interesting and yet still consistent with current data. We find that the halo mass function in this model has a maximum 20 per cent enhancement compared with the Λ-cold-dark-matter (ΛCDM) predictions between z = 1 and 0. Because of the chameleon mechanism which screens the deviation from standard gravity in dense environments, haloes more massive than 1013 h-1 M⊙ in this f(R) model have very similar properties to haloes of similar mass in ΛCDM, while less massive haloes, such as that of the Milky Way, can have steeper inner density profiles and higher velocity dispersions due to their weaker screening. The halo concentration is remarkably enhanced for low-mass haloes in this model due to a deepening of the total gravitational potential. Contrary to the naive expectation, the halo formation time zf is later for low-mass haloes in this model, a consequence of these haloes growing faster than their counterparts in ΛCDM at late times and the definition of zf. Subhaloes, especially those less massive than 1011 h-1 M⊙, are substantially more abundant in this f(R) model for host haloes less massive than 1013 h-1 M⊙. We discuss the implications of these results for the Milky Way satellite abundance problem. Although the overall halo and subhalo properties in this borderline f(R) model are close to their ΛCDM predictions, our results suggest that studies of the Local Group and astrophysical systems, aided by high-resolution simulations, can be valuable for further tests of it.

  12. Particle production in the new inflationary cosmology

    International Nuclear Information System (INIS)

    Abbott, L.F.; Farhi, E.; Massachusetts Inst. of Tech., Cambridge; Massachusetts Inst. of Tech., Cambridge; Wise, M.B.

    1982-01-01

    Techniques are developed for computing particle production due to the time dependence of a scalar field expectation value during a phase transition. We review the new version of the inflationary universe and discuss baryon production in this model. (orig.)

  13. A two-point correlation function for Galactic halo stars

    NARCIS (Netherlands)

    Cooper, A. P.; Cole, S.; Frenk, C. S.; Helmi, A.

    2011-01-01

    We describe a correlation function statistic that quantifies the amount of spatial and kinematic substructure in the stellar halo. We test this statistic using model stellar halo realizations constructed from the Aquarius suite of six high-resolution cosmological N-body simulations, in combination

  14. Fission product released experiment of coated fuel particles

    Energy Technology Data Exchange (ETDEWEB)

    Shijiang, Xu; Bing, Yang; Chunhe, Tang; Junguo, Zhu; Jintao, Huang; Binzhong, Zhang [Inst. of Nucl. Energy Technology, Tsinghua Univ., Beijing (China); Jinghan, Luo [Inst. of Atomic Energy, Beijing (China)

    1992-01-15

    Four samples of coated fuel particles were irradiated in the Heavy-Water Research Reactor of the Institute of Atomic Energy. Each of them was divided into two groups and irradiated to the burn up of 0.394% fima and 0.788% fima in two static capsules, respectively. After irradiation and cooling, post irradiation annealing experiment was carried out, the release ratios of the fission product {sup 133}Xe and {sup 131}I were measured, they are in the order of 10{sup -6}{approx}10{sup -7}. The fission product release ratio of naked kernel was also measured under the same conditions as for the coated fuel particles, the ratio of the fission product release of the coated fuel particles and of the naked kernel was in the order of 10{sup -5}{approx}10{sup -4}.

  15. Halo histories versus Galaxy properties at z = 0 - I. The quenching of star formation

    Science.gov (United States)

    Tinker, Jeremy L.; Wetzel, Andrew R.; Conroy, Charlie; Mao, Yao-Yuan

    2017-12-01

    We test whether halo age and galaxy age are correlated at fixed halo and galaxy mass. The formation histories, and thus ages, of dark matter haloes correlate with their large-scale density ρ, an effect known as assembly bias. We test whether this correlation extends to galaxies by measuring the dependence of galaxy stellar age on ρ. To clarify the comparison between theory and observation, and to remove the strong environmental effects on satellites, we use galaxy group catalogues to identify central galaxies and measure their quenched fraction, fQ, as a function of large-scale environment. Models that match halo age to central galaxy age predict a strong positive correlation between fQ and ρ. However, we show that the amplitude of this effect depends on the definition of halo age: assembly bias is significantly reduced when removing the effects of splashback haloes - those haloes that are central but have passed through a larger halo or experienced strong tidal encounters. Defining age using halo mass at its peak value rather than current mass removes these effects. In Sloan Digital Sky Survey data, at M* ≳ 1010 M⊙ h-2, there is a ∼5 per cent increase in fQ from low-to-high densities, which is in agreement with predictions of dark matter haloes using peak halo mass. At lower stellar mass there is little to no correlation of fQ with ρ. For these galaxies, age matching is inconsistent with the data across the range of halo formation metrics that we tested. This implies that halo formation history has a small but statistically significant impact on quenching of star formation at high masses, while the quenching process in low-mass central galaxies is uncorrelated with halo formation history.

  16. INTERACTION BETWEEN DARK MATTER SUB-HALOS AND A GALACTIC GASEOUS DISK

    International Nuclear Information System (INIS)

    Kannan, Rahul; Macciò, Andrea V.; Walter, Fabian; Pasquali, Anna; Moster, Benjamin P.

    2012-01-01

    We investigate the idea that the interaction of dark matter (DM) sub-halos with the gaseous disks of galaxies can be the origin for the observed holes and shells found in their neutral hydrogen (H I) distributions. We use high-resolution hydrodynamic simulations to show that pure DM sub-halos impacting a galactic disk are not able to produce holes; on the contrary, they result in high-density regions in the disk. However, sub-halos containing a small amount of gas (a few percent of the total DM mass of the sub-halo) are able to displace the gas in the disk and form holes and shells. The sizes and lifetimes of these holes depend on the sub-halo gas mass, density, and impact velocity. A DM sub-halo, of mass 10 8 M ☉ and a gas mass fraction of ∼3%, is able to create a kiloparsec-scale hole with a lifetime similar to those observed in nearby galaxies. We also register an increase in the star formation rate at the rim of the hole, again in agreement with observations. Even though the properties of these simulated structures resemble those found in observations, we find that the number of predicted holes (based on mass and orbital distributions of DM halos derived from cosmological N-body simulations) falls short compared to the observations. Only a handful of holes are produced per gigayear. This leads us to conclude that DM halo impact is not the major channel through which these holes are formed.

  17. HOT GAS HALOS IN EARLY-TYPE FIELD GALAXIES

    International Nuclear Information System (INIS)

    Mulchaey, John S.; Jeltema, Tesla E.

    2010-01-01

    We use Chandra and XMM-Newton to study the hot gas content in a sample of field early-type galaxies. We find that the L X -L K relationship is steeper for field galaxies than for comparable galaxies in groups and clusters. The low hot gas content of field galaxies with L K ∼ * suggests that internal processes such as supernovae-driven winds or active galactic nucleus feedback expel hot gas from low-mass galaxies. Such mechanisms may be less effective in groups and clusters where the presence of an intragroup or intracluster medium can confine outflowing material. In addition, galaxies in groups and clusters may be able to accrete gas from the ambient medium. While there is a population of L K ∼ * galaxies in groups and clusters that retain hot gas halos, some galaxies in these rich environments, including brighter galaxies, are largely devoid of hot gas. In these cases, the hot gas halos have likely been removed via ram pressure stripping. This suggests a very complex interplay between the intragroup/intracluster medium and hot gas halos of galaxies in rich environments, with the ambient medium helping to confine or even enhance the halos in some cases and acting to remove gas in others. In contrast, the hot gas content of more isolated galaxies is largely a function of the mass of the galaxy, with more massive galaxies able to maintain their halos, while in lower mass systems the hot gas escapes in outflowing winds.

  18. International conference on production of particles with new quantum numbers: Proceedings

    International Nuclear Information System (INIS)

    1976-01-01

    This report contains papers on the following topics: mechanisms of new particle production; the total cross section for e + e/sup /minus// → hadrons and its associated spectroscopy; recent results on the new particle states below 3.7 GeV produced in e + e/sup /minus// annihilations; new results on J//psi/ and /psi/' decays from DASP; excess muons and new results in /psi/ photoproduction; probing the new particles with hadron beams; properties of prompt leptons; muon production in hadron-hadron collisions; large transverse momentum photons from high energy proton proton collisions; dimuon and trimuon production in deep inelastic muon interactions; streamer chamber search for narrow hadrons with a muon-enriched trigger; threshold effects of new particle production by high energy neutrinos and antineutrinos; the observation of neutrino induced μ/sup /minus//e + events in the Fermilab bubble chamber; search for antineutrino induced μ + e/sup /minus// events; observation of muon-neutrino reactions producing a positron and a strange particle; observation of the reaction ν/sub μ/ + p → ν/sub μ/ + p; search for muonic pairs; strange particle production in neutrino interactions; neutral currents---the structure of the coupling; evidence for parity non-conservation in the weak neutral current; observation of elastic neutrino-proton scattering; threshold and other properties of U particle production in e + e/sup /minus// annihilation; anomalous muon production in e + e/sup /minus// collisions; electron production; strongly interacting heavy lepton; and /psi/'s without charm

  19. Gaia reveals a metal-rich in-situ component of the local stellar halo

    Science.gov (United States)

    Bonaca, Ana; Conroy, Charlie; Wetzel, Andrew; Hopkins, Philip; Keres, Dusan

    2018-01-01

    We use the first Gaia data release, combined with RAVE and APOGEE spectroscopic surveys, to investigate the origin of halo stars within ~3 kpc from the Sun. We identify halo stars kinematically, as moving with a relative speed of at least 220 km/s with respect to the local standard of rest. These stars are in general more metal-poor than the disk, but surprisingly, half of our halo sample is comprised of stars with [Fe/H]>-1. The orbital directions of these metal-rich halo stars are preferentially aligned with the disk rotation, in sharp contrast with the isotropic orbital distribution of the more metal-poor halo stars. We find similar properties in the Latte cosmological zoom-in simulation of a Milky Way-like galaxy from the FIRE project. In Latte, metal-rich halo stars formed primarily inside of the solar circle, while lower-metallicity halo stars preferentially formed at larger distances (extending beyond the virial radius). This suggests that metal-rich halo stars in the Solar neighborhood in fact formed in situ within the Galactic disk rather than having been accreted from satellite systems. These stars, currently on halo-like orbits, therefore have likely undergone substantial radial migration/heating.

  20. Gaia Reveals a Metal-rich, in situ Component of the Local Stellar Halo

    Science.gov (United States)

    Bonaca, Ana; Conroy, Charlie; Wetzel, Andrew; Hopkins, Philip F.; Kereš, Dušan

    2017-08-01

    We use the first Gaia data release, combined with the RAVE and APOGEE spectroscopic surveys, to investigate the origin of halo stars within ≲ 3 kpc from the Sun. We identify halo stars kinematically as moving at a relative speed of at least 220 km s-1 with respect to the local standard of rest. These stars are generally less metal-rich than the disk, but surprisingly, half of our halo sample is comprised of stars with [{Fe}/{{H}}]> -1. The orbital directions of these metal-rich halo stars are preferentially aligned with the disk rotation, in sharp contrast with the intrinsically isotropic orbital distribution of the metal-poor halo stars. We find similar properties in the Latte cosmological zoom-in simulation of a Milky Way-like galaxy from the FIRE project. In Latte, metal-rich halo stars formed primarily inside of the solar circle, whereas lower-metallicity halo stars preferentially formed at larger distances (extending beyond the virial radius). This suggests that metal-rich halo stars in the solar neighborhood actually formed in situ within the Galactic disk, rather than having been accreted from satellite systems. These stars, currently on halo-like orbits, therefore have likely undergone substantial radial migration/heating.

  1. The Halo Boundary of Galaxy Clusters in the SDSS

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, Eric; Jain, Bhuvnesh; Sheth, Ravi K. [Center for Particle Cosmology, Department of Physics, University of Pennsylvania, Philadelphia, PA 19104 (United States); Chang, Chihway; Kravtsov, Andrey [Kavli Institute for Cosmological Physics, The University of Chicago, Chicago, IL 60637 (United States); Adhikari, Susmita; Dalal, Neal [Department of Astronomy, University of Illinois at Urbana-Champaign, Champaign, IL 61801 (United States); More, Surhud [Kavli Institute for the Physics and Mathematics of the Universe (WPI), Tokyo Institutes for Advanced Study, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba, 277-8583 (Japan); Rozo, Eduardo [Department of Physics, University of Arizona, Tucson, AZ 85721 (United States); Rykoff, Eli, E-mail: ebax@sas.upenn.edu [Kavli Institute for Particle Astrophysics and Cosmology, P.O. Box 2450, Stanford University, Stanford, CA 94305 (United States)

    2017-05-20

    Analytical models and simulations predict a rapid decline in the halo density profile associated with the transition from the “infalling” regime outside the halo to the “collapsed” regime within the halo. Using data from SDSS, we explore evidence for such a feature in the density profiles of galaxy clusters using several different approaches. We first estimate the steepening of the outer galaxy density profile around clusters, finding evidence for truncation of the halo profile. Next, we measure the galaxy density profile around clusters using two sets of galaxies selected on color. We find evidence of an abrupt change in galaxy colors that coincides with the location of the steepening of the density profile. Since galaxies that have completed orbits within the cluster are more likely to be quenched of star formation and thus appear redder, this abrupt change in galaxy color can be associated with the transition from single-stream to multi-stream regimes. We also use a standard model comparison approach to measure evidence for a “splashback”-like feature, but find that this approach is very sensitive to modeling assumptions. Finally, we perform measurements using an independent cluster catalog to test for potential systematic errors associated with cluster selection. We identify several avenues for future work: improved understanding of the small-scale galaxy profile, lensing measurements, identification of proxies for the halo accretion rate, and other tests. With upcoming data from the DES, KiDS, and HSC surveys, we can expect significant improvements in the study of halo boundaries.

  2. The Halo Boundary of Galaxy Clusters in the SDSS

    International Nuclear Information System (INIS)

    Baxter, Eric; Jain, Bhuvnesh; Sheth, Ravi K.; Chang, Chihway; Kravtsov, Andrey; Adhikari, Susmita; Dalal, Neal; More, Surhud; Rozo, Eduardo; Rykoff, Eli

    2017-01-01

    Analytical models and simulations predict a rapid decline in the halo density profile associated with the transition from the “infalling” regime outside the halo to the “collapsed” regime within the halo. Using data from SDSS, we explore evidence for such a feature in the density profiles of galaxy clusters using several different approaches. We first estimate the steepening of the outer galaxy density profile around clusters, finding evidence for truncation of the halo profile. Next, we measure the galaxy density profile around clusters using two sets of galaxies selected on color. We find evidence of an abrupt change in galaxy colors that coincides with the location of the steepening of the density profile. Since galaxies that have completed orbits within the cluster are more likely to be quenched of star formation and thus appear redder, this abrupt change in galaxy color can be associated with the transition from single-stream to multi-stream regimes. We also use a standard model comparison approach to measure evidence for a “splashback”-like feature, but find that this approach is very sensitive to modeling assumptions. Finally, we perform measurements using an independent cluster catalog to test for potential systematic errors associated with cluster selection. We identify several avenues for future work: improved understanding of the small-scale galaxy profile, lensing measurements, identification of proxies for the halo accretion rate, and other tests. With upcoming data from the DES, KiDS, and HSC surveys, we can expect significant improvements in the study of halo boundaries.

  3. Charm and particle production in neutrino interactions

    International Nuclear Information System (INIS)

    Cazzoli, E.G.; Cnops, A.M.; Connolly, P.L.; Louttit, R.I.; Murtagh, M.J.; Palmer, R.B.; Samios, N.P.; Tso, T.T.; Williams, H.H.

    1976-01-01

    Ten strange particles were observed in a total of 1086 charged current neutrino interactions obtained in the analysis of 482,000 pictures taken in the Brookhaven Cryogenic 7' Bubble Chamber filled with hydrogen and deuterium. Details of these events are presented together with rates for associated strange particle and ΔS = +-ΔQ production in neutrino interactions

  4. Deep brain transcranial magnetic stimulation using variable "Halo coil" system

    Science.gov (United States)

    Meng, Y.; Hadimani, R. L.; Crowther, L. J.; Xu, Z.; Qu, J.; Jiles, D. C.

    2015-05-01

    Transcranial Magnetic Stimulation has the potential to treat various neurological disorders non-invasively and safely. The "Halo coil" configuration can stimulate deeper regions of the brain with lower surface to deep-brain field ratio compared to other coil configurations. The existing "Halo coil" configuration is fixed and is limited in varying the site of stimulation in the brain. We have developed a new system based on the current "Halo coil" design along with a graphical user interface system that enables the larger coil to rotate along the transverse plane. The new system can also enable vertical movement of larger coil. Thus, this adjustable "Halo coil" configuration can stimulate different regions of the brain by adjusting the position and orientation of the larger coil on the head. We have calculated magnetic and electric fields inside a MRI-derived heterogeneous head model for various positions and orientations of the coil. We have also investigated the mechanical and thermal stability of the adjustable "Halo coil" configuration for various positions and orientations of the coil to ensure safe operation of the system.

  5. Level-1 trigger rate from beam halo muons in the end-cap

    CERN Document Server

    Robins, S

    1998-01-01

    Previous detectors at $p$-$\\bar{p}$ machines have experienced problems with high muon trigger rates in the forward region due to muons produced in interactions between the beam and the machine. The se `beam halo' muons typically have a very small angle to the beam direction, and are dominated by muons of several GeV energy and at low radius relative to the beam line. The response of the ATLA S end-cap muon trigger to them has been investigated using a complete simulation of both the LHC machine components and the ATLAS detector and trigger. It is seen that the total flux of such muon s in the end-cap trigger counters is $\\sim$ 60 kHz, in high luminosity LHC running, and the acceptance of the Level-1 end-cap muon trigger to these particles is $\\sim$1\\%. The overall Level-1 trig ger rate from such muons will be small compared to rates from the products of the $p$-$p$ collision. The total rates from low- and high-\\pt triggers at 6 and 20 GeV are 250 and 16 Hz respectively. Whilst these rates are negligible in co...

  6. Galaxy formation with BECDM - I. Turbulence and relaxation of idealized haloes.

    Science.gov (United States)

    Mocz, Philip; Vogelsberger, Mark; Robles, Victor H; Zavala, Jesús; Boylan-Kolchin, Michael; Fialkov, Anastasia; Hernquist, Lars

    2017-11-01

    We present a theoretical analysis of some unexplored aspects of relaxed Bose-Einstein condensate dark matter (BECDM) haloes. This type of ultralight bosonic scalar field dark matter is a viable alternative to the standard cold dark matter (CDM) paradigm, as it makes the same large-scale predictions as CDM and potentially overcomes CDM's small-scale problems via a galaxy-scale de Broglie wavelength. We simulate BECDM halo formation through mergers, evolved under the Schrödinger-Poisson equations. The formed haloes consist of a soliton core supported against gravitational collapse by the quantum pressure tensor and an asymptotic r -3 NFW-like profile. We find a fundamental relation of the core-to-halo mass with the dimensionless invariant Ξ ≡ | E |/ M 3 /( Gm/ħ ) 2 or M c / M ≃ 2.6Ξ 1/3 , linking the soliton to global halo properties. For r ≥ 3.5 r c core radii, we find equipartition between potential, classical kinetic and quantum gradient energies. The haloes also exhibit a conspicuous turbulent behaviour driven by the continuous reconnection of vortex lines due to wave interference. We analyse the turbulence 1D velocity power spectrum and find a k -1.1 power law. This suggests that the vorticity in BECDM haloes is homogeneous, similar to thermally-driven counterflow BEC systems from condensed matter physics, in contrast to a k -5/3 Kolmogorov power law seen in mechanically-driven quantum systems. The mode where the power spectrum peaks is approximately the soliton width, implying that the soliton-sized granules carry most of the turbulent energy in BECDM haloes.

  7. Nongaussian Features from Inflationary Particle Production

    International Nuclear Information System (INIS)

    Barnaby, Neil

    2010-01-01

    The inflaton field can be expected to couple to a number of additional fields whose energy density does not play any significant role in driving inflation. Such couplings may lead to isolated bursts of particle production during inflation, for example via parametric resonance or a phase transition, and leave observable imprints in the cosmological fluctuations. I illustrate this effect for a simple prototype interaction g 2 (φ - φ 0 ) 2 χ between the inflaton, φ, and iso-inflaton, χ. Using both classical lattice simulations and analytical quantum field theory computations, I show that this mechanism generates localized bump-like features in the power spectrum and also a completely new type of nongaussianity. Observations are consistent with relatively large features of this type and the nongaussianity from particle production may be observable in future missions.

  8. The Peculiar Behavior of Halo Coronal Mass Ejections in Solar Cycle 24

    Science.gov (United States)

    Gopalswamy, N.; Xie, H.; Akiyama, S.; Makela, P.; Yashiro, S.; Michalek, G.

    2015-01-01

    We report on the remarkable finding that the halo coronal mass ejections (CMEs) in cycle 24 are more abundant than in cycle 23, although the sunspot number in cycle 24 has dropped by approx. 40%. We also find that the distribution of halo-CME source locations is different in cycle 24: the longitude distribution of halos is much flatter with the number of halos originating at a central meridian distance greater than or equal to 60deg twice as large as that in cycle 23. On the other hand, the average speed and associated soft X-ray flare size are the same in both cycles, suggesting that the ambient medium into which the CMEs are ejected is significantly different. We suggest that both the higher abundance and larger central meridian longitudes of halo CMEs can be explained as a consequence of the diminished total pressure in the heliosphere in cycle 24. The reduced total pressure allows CMEs to expand more than usual making them appear as halos.

  9. Dynamical evolution of quintessence dark energy in collapsing dark matter halos

    International Nuclear Information System (INIS)

    Wang Qiao; Fan Zuhui

    2009-01-01

    In this paper, we analyze the dynamical evolution of quintessence dark energy induced by the collapse of dark matter halos. Different from other previous studies, we develop a numerical strategy which allows us to calculate the dark energy evolution for the entire history of the spherical collapse of dark matter halos, without the need of separate treatments for linear, quasilinear, and nonlinear stages of the halo formation. It is found that the dark energy perturbations evolve with redshifts, and their specific behaviors depend on the quintessence potential as well as the collapsing process. The overall energy density perturbation is at the level of 10 -6 for cluster-sized halos. The perturbation amplitude decreases with the decrease of the halo mass. At a given redshift, the dark energy perturbation changes with the radius to the halo center, and can be either positive or negative depending on the contrast of ∂ t φ, ∂ r φ, and φ with respect to the background, where φ is the quintessence field. For shells where the contrast of ∂ r φ is dominant, the dark energy perturbation is positive and can be as high as about 10 -5 .

  10. The Local Group in LCDM - Shapes and masses of dark halos

    Science.gov (United States)

    Vera-Ciro, Carlos Andrés

    2013-01-01

    In dit proefschrift bestuderen we de eigenschappen van donkere materie halo's in het LCDM paradigma. Het eerste deel richt zich op de vorm van de massadistributie van dergelijke objecten. We hebben gevonden dat de vorm van ge"isoleerde Melkweg-achtige donkere materie halo's significant afwijkt van bolsymmetrie. De lokale omgeving heeft invloed op de halo's en deze worden daarbij sterk be"invloed door de manier waarop massa aangroeit. We hebben ook de structuur en de baanstructuur van de satellieten van dergelijke halo's in detail onderzocht. In het algemeen zijn deze objecten sferischer dan de halo's zelf. Ze vertonen ook duidelijke afdrukken van getijdenwerking in zowel hun geometrische vorm als in de baanstructuur. Daarna gebruiken we het aantal massieve objecten rond de Melkweg om limieten te zetten op de totale massa van de donkere materie halo van de Melkweg. De eigenschappen van de massaverdeling van de Melkweg worden verder onderzocht in het laatste hoofdstuk. Daar maken we gebruik van de Sagittarius sterstroom om de vorm van de galactische potentiaal beter te bepalen. We komen met een nieuw model dat rekening houdt met de galactische schijf en de invloed van satellietstelsels en die bovendien consistent is met het LCDM paradigma.

  11. The reversed halo sign: update and differential diagnosis

    Science.gov (United States)

    Godoy, M C B; Viswanathan, C; Marchiori, E; Truong, M T; Benveniste, M F; Rossi, S; Marom, E M

    2012-01-01

    The reversed halo sign is characterised by a central ground-glass opacity surrounded by denser air–space consolidation in the shape of a crescent or a ring. It was first described on high-resolution CT as being specific for cryptogenic organising pneumonia. Since then, the reversed halo sign has been reported in association with a wide range of pulmonary diseases, including invasive pulmonary fungal infections, paracoccidioidomycosis, pneumocystis pneumonia, tuberculosis, community-acquired pneumonia, lymphomatoid granulomatosis, Wegener granulomatosis, lipoid pneumonia and sarcoidosis. It is also seen in pulmonary neoplasms and infarction, and following radiation therapy and radiofrequency ablation of pulmonary malignancies. In this article, we present the spectrum of neoplastic and non-neoplastic diseases that may show the reversed halo sign and offer helpful clues for assisting in the differential diagnosis. By integrating the patient's clinical history with the presence of the reversed halo sign and other accompanying radiological findings, the radiologist should be able to narrow the differential diagnosis substantially, and may be able to provide a presumptive final diagnosis, which may obviate the need for biopsy in selected cases, especially in the immunosuppressed population. PMID:22553298

  12. TSC plasma halo simulation of a DIII-D vertical displacement episode

    International Nuclear Information System (INIS)

    Sayer, R.O.; Peng, Y.K.M.; Jardin, S.C.

    1993-01-01

    A benchmark of the Tokamak Simulation Code (TSC) plasma halo model has been achieved by calibration against a DIII-D vertical displacement episode (VDE) consisting of vertical drift, thermal quench and current quench. With a suitable halo surrounding the main plasma, the TSC predictions are in good agreement with experimental results for the plasma current decay, plasma trajectory, toroidal and poloidal vessel currents, and for the magnetic probe and flux loop values for the entire VDE. Simulations with no plasma halo yield much faster vertical motion and significantly worse agreement with the magnetics and flux loop data than do halo simulations. (author). 12 refs, 13 figs

  13. Radio halo sources in clusters of galaxies

    International Nuclear Information System (INIS)

    Hanisch, R.J.

    1986-01-01

    Radio halo sources remain one of the most enigmatic of all phenomena related to radio emission from galaxies in clusters. The morphology, extent, and spectral structure of these sources are not well known, and the models proposed to explain them suffer from this lack of observational detail. However, recent observations suggest that radio halo sources may be a composite of relic radio galaxies. The validity of this model could be tested using current and planned high resolutions, low-frequency radio telescopes. 31 references

  14. Particle production in higher derivative theory

    Indian Academy of Sciences (India)

    Lemaitre–Robertson–Walker cosmological model during the early stages of the universe is analysed in the framework of higher derivative theory. The universe has been considered as an open thermodynamic system where particle production ...

  15. ZOMG - II. Does the halo assembly history influence central galaxies and gas accretion?

    Science.gov (United States)

    Romano-Díaz, Emilio; Garaldi, Enrico; Borzyszkowski, Mikolaj; Porciani, Cristiano

    2017-08-01

    The growth rate and the internal dynamics of galaxy-sized dark-matter haloes depend on their location within the cosmic web. Haloes that sit at the nodes grow in mass till the present time and are dominated by radial orbits. Conversely, haloes embedded in prominent filaments do not change much in size and are dominated by tangential orbits. Using zoom hydrodynamical simulations including star formation and feedback, we study how gas accretes on to these different classes of objects, which, for simplicity, we dub 'accreting' and 'stalled' haloes. We find that all haloes get a fresh supply of newly accreted gas in their inner regions, although this slowly decreases with time, in particular for the stalled haloes. The inflow of new gas is always higher than (but comparable with) that of recycled material. Overall, the cold-gas fraction increases (decreases) with time for the accreting (stalled) haloes. In all cases, a stellar disc and a bulge form at the centre of the simulated haloes. The total stellar mass is in excellent agreement with expectations based on the abundance-matching technique. Many properties of the central galaxies do not seem to correlate with the large-scale environment in which the haloes reside. However, there are two notable exceptions that characterize stalled haloes with respect to their accreting counterparts: (I) The galaxy disc contains much older stellar populations. (II) Its vertical scaleheight is larger by a factor of 2 or more. This thickening is likely due to the heating of the long-lived discs by mergers and close flybys.

  16. Possible existence of wormholes in the central regions of halos

    Energy Technology Data Exchange (ETDEWEB)

    Rahaman, Farook, E-mail: rahaman@iucaa.ernet.in [Department of Mathematics, Jadavpur University, Kolkata 700032, West Bengal (India); Salucci, P., E-mail: salucci@sissa.it [SISSA, International School for Advanced Studies, Via Bonomea 265, 34136, Trieste (Italy); INFN, Sezione di Trieste, Via Valerio 2, 34127, Trieste (Italy); Kuhfittig, P.K.F., E-mail: kuhfitti@msoe.edu [Department of Mathematics, Milwaukee School of Engineering, Milwaukee, WI 53202-3109 (United States); Ray, Saibal, E-mail: saibal@iucaa.ernet.in [Department of Physics, Government College of Engineering and Ceramic Technology, Kolkata 700010, West Bengal (India); Rahaman, Mosiur, E-mail: mosiurju@gmail.com [Department of Mathematics, Meghnad Saha Institute of Technology, Kolkata 700150 (India)

    2014-11-15

    An earlier study (Rahaman, et al., 2014 and Kuhfittig, 2014) has demonstrated the possible existence of wormholes in the outer regions of the galactic halo, based on the Navarro–Frenk–White (NFW) density profile. This paper uses the Universal Rotation Curve (URC) dark matter model to obtain analogous results for the central parts of the halo. This result is an important compliment to the earlier result, thereby confirming the possible existence of wormholes in most of the spiral galaxies. - Highlights: • Earlier we showed possible existence of wormholes in the outer regions of halo. • We obtain here analogous results for the central parts of the galactic halo. • Our result is an important compliment to the earlier result. • This confirms possible existence of wormholes in most of the spiral galaxies.

  17. Influence of halo doping profiles on MOS transistor mismatch

    NARCIS (Netherlands)

    Andricciola, P.; Tuinhout, H.

    2009-01-01

    Halo implants are used in modern CMOS technology to reduce the short channel effect. However, the lateral non-uniformity of the channel doping has been proven to degenerate the mismatch performance. With this paper we want to discuss the influence of the halo profile on MOS transistor mismatch. The

  18. Measurement of charmed particle production in hadronic reactions

    CERN Multimedia

    2002-01-01

    The aim of the experiment is to measure the production cross-section for charmed particles in hadronic reactions, study their production mechanism, and search for excited charmed hadrons.\\\\ \\\\ Charmed Mesons and Baryons will be measured in $\\pi$ and $p$ interactions on Beryllium between 100 and 200 GeV/c. The trigger will be on an electron from the leptonic decay of one charmed particle by signals from the Cerenkov counter (Ce), the electron trigger calorimeter (eCal), scintillation counters, and proportional wire chambers. The accompanying charmed particle will be measured via its hadronic decay in a two-stage magnetic spectrometer with drift chambers (arms 2, 3a, 3b, 3c), two large-area multicell Cerenkov counters (C2, C3) and a large-area shower counter ($\\gamma$-CAL). The particles which can be measured and identified include $\\gamma, e, \\pi^{\\pm}, \\pi^{0}, K^{\\pm}, p, \\bar{p}$ so that a large number of hadronic decay modes of charmed particles can be studied. \\\\ \\\\ A silicon counter telescope with 5 $\\m...

  19. Subthreshold particle production in heavy-ion collisions

    International Nuclear Information System (INIS)

    Mosel, U.

    1991-01-01

    Subthreshold production processes are discussed in the theoretical framework, checking data obtained from hard-photon production in the energy range from 20 to 100 MeV/u. The reactions at higher energies are described and the predictions for particle production cross sections are discussed. A particular attention to properties of hadrons (nucleons and mesons) in the nuclear medium is given. (M.C.K.)

  20. A new type of cascading synchronization for halo-chaos and its potential for communication applications

    International Nuclear Information System (INIS)

    Fang Jinqing; Yu Xinghuo

    2004-01-01

    Study of beam halo-chaos has become a key issue of concern for many future important applications. Control of halo-chaos has been researched intensively. This is the first time that the synchronization of beam halo-chaos has been realized in this field so far. Two nonlinear feedback control methods are proposed for the cascading synchronizing halo-chaos in coupled lattices of a periodic focusing channel. The simulation results show that the methods are effective. The realization of the synchronization of beam halo-chaos is significant not only for halo-chaos control itself but also for halo-chaos-based secure communication which may become an innovative technique

  1. Calcination of kaolinite clay particles for cement production

    DEFF Research Database (Denmark)

    Gebremariam, Abraham Teklay; Yin, Chungen; Rosendahl, Lasse

    2014-01-01

    Kaolinite rich clay particles calcined under certain conditions can attain favorable pozzolanic properties and can be used to substitute part of the CO2 intensive clinker in cement production. To better guide calcination of a clay material, a transient one-dimensional single particle model...

  2. Properties of the ISM - Gas in the halo

    Science.gov (United States)

    Savage, Blair D.

    1990-01-01

    The properties of interstellar gas in the galactic halo are reviewed. Halo gas is found to have a wide range of physical conditions with temperatures ranging from less than 170 K to more than 200,000 K. The gas extending away from the plane of the Milky Way has density scale heights ranging from less than 300 pc for certain species in the neutral medium to approximately 3000 pc for the most highly ionized gas. The complex kinematical characteristics of the gas provides important clues about its origin. The gas phase elemental abundances in the neutral halo gas are closer to solar than is found for the highly depleted gas of the Milky Way disk. The possible origin of gas at large distances away from the galactic plane is discussed.

  3. [α/Fe] ABUNDANCES OF FOUR OUTER M31 HALO STARS

    International Nuclear Information System (INIS)

    Vargas, Luis C.; Geha, Marla; Tollerud, Erik J.; Gilbert, Karoline M.; Kirby, Evan N.; Guhathakurta, Puragra

    2014-01-01

    We present alpha element to iron abundance ratios, [α/Fe], for four stars in the outer stellar halo of the Andromeda Galaxy (M31). The stars were identified as high-likelihood field halo stars by Gilbert et al. and lie at projected distances between 70 and 140 kpc from M31's center. These are the first alpha abundances measured for a halo star in a galaxy beyond the Milky Way. The stars range in metallicity between [Fe/H] = –2.2 and [Fe/H] = –1.4. The sample's average [α/Fe] ratio is +0.20 ± 0.20. The best-fit average value is elevated above solar, which is consistent with rapid chemical enrichment from Type II supernovae. The mean [α/Fe] ratio of our M31 outer halo sample agrees (within the uncertainties) with that of Milky Way inner/outer halo stars that have a comparable range of [Fe/H

  4. Blazars with arcminute-scale radio halos

    International Nuclear Information System (INIS)

    Ulvestad, J.S.; Antonucci, R.R.J.; Space Telescope Science Institute, Baltimore, MD)

    1986-01-01

    About 10-arcsec resolution 20-cm wavelength maps are presented for three nearby BL Lac objects: Mkn 180, whose halo has a linear size of 85 kpc, 2155-304, with a halo about 375 kpc across, and 1727 + 502, whose one-sided diffuse emission extends to a distance of about 145 kpc from its radio core. Little evidence is found for strong radio variability in the cores of the three blazars; these and other results obtained are consistent with the assertion that the three objects should be classified as normal low luminosity double radio galaxies with optically dull nuclei, if seen from other directions. 20 references

  5. Halo-independent determination of the unmodulated WIMP signal in DAMA: the isotropic case

    Energy Technology Data Exchange (ETDEWEB)

    Gondolo, Paolo [Department of Physics, University of Utah, 115 South 1400 East #201, Salt Lake City, Utah 84112-0830 (United States); Scopel, Stefano, E-mail: paolo.gondolo@utah.edu, E-mail: scopel@sogang.ac.kr [Department of Physics, Sogang University, Seoul 121-742 (Korea, Republic of)

    2017-09-01

    We present a halo-independent determination of the unmodulated signal corresponding to the DAMA modulation if interpreted as due to dark matter weakly interacting massive particles (WIMPs). First we show how a modulated signal gives information on the WIMP velocity distribution function in the Galactic rest frame from which the unmodulated signal descends. Then we describe a mathematically-sound profile likelihood analysis in which the likelihood is profiled over a continuum of nuisance parameters (namely, the WIMP velocity distribution). As a first application of the method, which is very general and valid for any class of velocity distributions, we restrict the analysis to velocity distributions that are isotropic in the Galactic frame. In this way we obtain halo-independent maximum-likelihood estimates and confidence intervals for the DAMA unmodulated signal. We find that the estimated unmodulated signal is in line with expectations for a WIMP-induced modulation and is compatible with the DAMA background+signal rate. Specifically, for the isotropic case we find that the modulated amplitude ranges between a few percent and about 25% of the unmodulated amplitude, depending on the WIMP mass.

  6. The shape of dark matter haloes in the Aquarius simulations: Evolution and memory

    Directory of Open Access Journals (Sweden)

    Sales L.V.

    2012-02-01

    Full Text Available We use the high resolution cosmological N-body simulations from the Aquarius project to investigate in detail the mechanisms that determine the shape of Milky Way-type dark matter haloes. We find that, when measured at the instantaneous virial radius, the shape of individual haloes changes with time, evolving from a typically prolate configuration at early stages to a more triaxial/oblate geometry at the present day. This evolution in halo shape correlates well with the distribution of the infalling material: prolate configurations arise when haloes are fed through narrow filaments, which characterizes the early epochs of halo assembly, whereas triaxial/oblate configurations result as the accretion turns more isotropic at later times. Interestingly, at redshift z = 0, clear imprints of the past history of each halo are recorded in their shapes at different radii, which also exhibit a variation from prolate in the inner regions to triaxial/oblate in the outskirts. Provided that the Aquarius haloes are fair representatives of Milky Way-like 1012M☉ objects, we conclude that the shape of such dark matter haloes is a complex, time-dependent property, with each radial shell retaining memory of the conditions at the time of collapse.

  7. Phase models of galaxies consisting of a disk and halo

    International Nuclear Information System (INIS)

    Osipkov, L.P.; Kutuzov, S.A.

    1988-01-01

    A method is developed for finding the phase density of a two-component model of a distribution of masses. The equipotential surfaces and potential law are given. The equipotentials are lenslike surfaces with a sharp edge in the equatorial plane, this ensuring the existence of a vanishingly thin embedded disk. The equidensity surfaces of the halo coincide with the equipotentials. Phase models are constructed separately for the halo and for the disk on the basis of the spatial and surface mass densities by the solution of the corresponding integral equations. In particular, models with a halo having finite dimensions can be constructed. For both components, the part of the phase density even with respect to the velocities is found. For the halo, it depends only on the energy integral. Two examples, for which exact solutions are found, are considered

  8. Group support system and explanatory feedback: An experimental study of mitigating halo effect

    Directory of Open Access Journals (Sweden)

    Intiyas Utami

    2015-12-01

    Full Text Available Comprehensive assessment potentially leads to halo effect that will affect accuracy of auditors decision-making process. Biased initial audit decision will potentially influence final audit decision. It is there-fore necessary to mitigate halo effect that is the consequence of auditors good impression on clients initial condition. This re-search aims to empirically show that halo effect can be mitigated by explanatory feedback and Group Support System (GSS. The researchers experimentally mani-pulate explanatory feedback and GSS using online web-site. The subjects are stu-dents who have already taken auditing courses. The results show that: 1 explanato-ry feedback can mitigate halo effect so that audit decision will be more accurate 2 GSS can also mitigate halo effect 3 explanatory feedback and GSS are the best me-thods to mitigate halo effect.

  9. HaloTag protein-mediated specific labeling of living cells with quantum dots

    International Nuclear Information System (INIS)

    So, Min-kyung; Yao Hequan; Rao Jianghong

    2008-01-01

    Quantum dots emerge as an attractive alternative to small molecule fluorophores as fluorescent tags for in vivo cell labeling and imaging. This communication presents a method for specific labeling of live cells using quantum dots. The labeling is mediated by HaloTag protein expressed at the cell surface which forms a stable covalent adduct with its ligand (HaloTag ligand). The labeling can be performed in one single step with quantum dot conjugates that are functionalized with HaloTag ligand, or in two steps with biotinylated HaloTag ligand first and followed by streptavidin coated quantum dots. Live cell fluorescence imaging indicates that the labeling is specific and takes place at the cell surface. This HaloTag protein-mediated cell labeling method should facilitate the application of quantum dots for live cell imaging

  10. Multipole analysis of IceCube data to search for dark matter accumulated in the Galactic halo

    Energy Technology Data Exchange (ETDEWEB)

    Aartsen, M.G.; Hill, G.C.; Robertson, S.; Whelan, B.J. [University of Adelaide, School of Chemistry and Physics, Adelaide, SA (Australia); Ackermann, M.; Berghaus, P.; Bernardini, E.; Bretz, H.P.; Cruz Silva, A.H.; Gluesenkamp, T.; Gora, D.; Jacobi, E.; Kaminsky, B.; Karg, T.; Middell, E.; Mohrmann, L.; Nahnhauer, R.; Schoenwald, A.; Shanidze, R.; Spiering, C.; Stoessl, A.; Terliuk, A.; Yanez, J.P. [DESY, Zeuthen (Germany); Adams, J.; Brown, A.M.; Hickford, S.; Macias, O. [University of Canterbury, Department of Physics and Astronomy, Christchurch (New Zealand); Aguilar, J.A.; Altmann, D.; Christov, A.; Montaruli, T.; Rameez, M.; Vallecorsa, S. [Universite de Geneve, Departement de physique nucleaire et corpusculaire, Geneva (Switzerland); Ahlers, M.; Arguelles, C.; BenZvi, S.; Chirkin, D.; Day, M.; Desiati, P.; Diaz-Velez, J.C.; Eisch, J.; Fadiran, O.; Feintzeig, J.; Gladstone, L.; Halzen, F.; Hoshina, K.; Jacobsen, J.; Jero, K.; Karle, A.; Kauer, M.; Kelley, J.L.; Kheirandish, A.; Kopper, C.; Kurahashi, N.; Larsen, D.T.; Maruyama, R.; McNally, F.; Middlemas, E.; Morse, R.; Rees, I.; Riedel, B.; Rodrigues, J.P.; Santander, M.; Tobin, M.N.; Tosi, D.; Vandenbroucke, J.; Van Santen, J.; Weaver, C.; Wellons, M.; Wendt, C.; Westerhoff, S.; Whitehorn, N. [University of Wisconsin, Department of Physics, Wisconsin IceCube Particle Astrophysics Center, Madison, WI (United States); Ahrens, M.; Bohm, C.; Danninger, M.; Finley, C.; Flis, S.; Hulth, P.O.; Hultqvist, K.; Walck, C.; Wolf, M.; Zoll, M. [Stockholm University, Department of Physics, Oskar Klein Centre, Stockholm (Sweden); Anderson, T.; Arlen, T.C.; De Andre, J.P.A.M.; DeYoung, T.; Dunkman, M.; Eagan, R.; Groh, J.C.; Huang, F.; Quinnan, M.; Smith, M.W.E.; Stanisha, N.A.; Tesic, G. [Pennsylvania State University, Department of Physics, University Park, PA (United States); Auffenberg, J.; Bissok, M.; Blumenthal, J.; Gier, D.; Gretskov, P.; Haack, C.; Hallen, P.; Heinen, D.; Hellwig, D.; Jagielski, K.; Koob, A.; Kriesten, A.; Krings, K.; Leuermann, M.; Paul, L.; Penek, Oe.; Puetz, J.; Raedel, L.; Reimann, R.; Rongen, M.; Schoenen, S.; Schukraft, A.; Vehring, M.; Wallraff, M.; Wichary, C.; Wiebusch, C.H.; Zierke, S. [RWTH Aachen University, III. Physikalisches Institut, Aachen (Germany); Bai, X. [South Dakota School of Mines and Technology, Physics Department, Rapid City, SD (United States); Barwick, S.W.; Yodh, G. [University of California, Department of Physics and Astronomy, Irvine, CA (United States); Baum, V.; Eberhardt, B.; Koepke, L.; Kroll, G.; Luenemann, J.; Sander, H.G.; Schatto, K.; Wiebe, K. [University of Mainz, Institute of Physics, Mainz (Germany); Beatty, J.J. [Ohio State University, Department of Physics, Center for Cosmology and Astro-Particle Physics, Columbus, OH (United States); Ohio State University, Department of Astronomy, Columbus, OH (United States); Becker Tjus, J.; Bos, F.; Eichmann, B.; Fedynitch, A.; Kroll, M.; Saba, S.M.; Schoeneberg, S.; Unger, E. [Ruhr-Universitaet Bochum, Fakultaet fuer Physik und Astronomie, Bochum (Germany); Becker, K.H.; Bindig, D.; Fischer-Wasels, T.; Helbing, K.; Hoffmann, R.; Klaes, J.; Kopper, S.; Naumann, U.; Obertacke, A.; Omairat, A.; Posselt, J.; Soldin, D.; Tepe, A. [University of Wuppertal, Department of Physics, Wuppertal (Germany); Berley, D.; Blaufuss, E.; Christy, B.; Felde, J.; Goodman, J.A.; Hellauer, R.; Hoffman, K.D.; Huelsnitz, W.; Meagher, K.; Olivas, A.; Redl, P.; Richman, M.; Schmidt, T.; Sullivan, G.W.; Wissing, H. [University of Maryland, Department of Physics, College Park, MD (United States); Bernhard, A.; Coenders, S.; Gross, A.; Jurkovic, M.; Leute, J.; Resconi, E.; Schulz, O.; Sestayo, Y. [Technische Universitaet Muenchen, Garching (Germany); Besson, D.Z. [University of Kansas, Department of Physics and Astronomy, Lawrence, KS (United States); Binder, G.; Gerhardt, L.; Ha, C.; Klein, S.R.; Miarecki, S. [University of California, Department of Physics, Berkeley, CA (United States); Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Boersma, D.J.; Botner, O.; Euler, S.; Hallgren, A.; Perez de los Heros, C.; Stroem, R.; Taavola, H. [Uppsala University, Department of Physics and Astronomy, Uppsala (Sweden); Bose, D.; Rott, C. [Sungkyunkwan University, Department of Physics, Suwon (Korea, Republic of); Collaboration: IceCube Collaboration; and others

    2015-01-01

    Dark matter which is bound in the Galactic halo might self-annihilate and produce a flux of stable final state particles, e.g. high energy neutrinos. These neutrinos can be detected with IceCube, a cubic-kilometer sized Cherenkov detector. Given IceCube's large field of view, a characteristic anisotropy of the additional neutrino flux is expected. In this paper we describe a multipole method to search for such a large-scale anisotropy in IceCube data. This method uses the expansion coefficients of a multipole expansion of neutrino arrival directions and incorporates signal-specific weights for each expansion coefficient. We apply the technique to a high-purity muon neutrino sample from the Northern Hemisphere. The final result is compatible with the nullhypothesis. As no signal was observed, we present limits on the self-annihilation cross-section averaged over the relative velocity distribution left angle σ{sub A}υ right angle down to 1.9 x 10{sup -23} cm{sup 3} s{sup -1} for a dark matter particle mass of 700-1,000 GeV and direct annihilation into ν anti ν. The resulting exclusion limits come close to exclusion limits from γ-ray experiments, that focus on the outer Galactic halo, for high dark matter masses of a few TeV and hard annihilation channels. (orig.)

  11. Detecting the Disruption of Dark-Matter Halos with Stellar Streams.

    Science.gov (United States)

    Bovy, Jo

    2016-03-25

    Narrow stellar streams in the Milky Way halo are uniquely sensitive to dark-matter subhalos, but many of these subhalos may be tidally disrupted. I calculate the interaction between stellar and dark-matter streams using analytical and N-body calculations, showing that disrupting objects can be detected as low-concentration subhalos. Through this effect, we can constrain the lumpiness of the halo as well as the orbit and present position of individual dark-matter streams. This will have profound implications for the formation of halos and for direct- and indirect-detection dark-matter searches.

  12. Studies of halo distributions under beam-beam interaction

    International Nuclear Information System (INIS)

    Chen, T.; Irwin, J.; Siemann, R.H.

    1995-01-01

    The halo distribution due to the beam-beam interaction in circular electron-positron colliders is simulated with a program which uses a technique that saves a factor of hundreds to thousands of CPU time. The distribution and the interference between the beam-beam interaction and lattice nonlinearities has been investigated. The effects on the halo distribution due to radiation damping misalignment at the collision point, and chromatic effect are presented

  13. On slow particle production in hadron-nucleus interactions

    International Nuclear Information System (INIS)

    Stenlund, E.; Otterlund, I.

    1982-01-01

    A model for slow particle production in hadron-nucleus interactions is presented. The model succesfully predicts correlations between the number of knock-on particles and the number of particles associated with the evaporation process as well as correlations with the number of collisions, ν, between the incident hadron and the nucleons inside the target nucleus. The model provides two independent possibilities to determine the number of primary intranuclear collisions, ν, i.e. by its correlation to the number of knock-on particles or to the number of evaporated particles. The good agreement indicates that the model gives an impact-parameter sensitive description of hardron nucleus reactions. (orig.)

  14. BROKEN AND UNBROKEN: THE MILKY WAY AND M31 STELLAR HALOS

    International Nuclear Information System (INIS)

    Deason, A. J.; Belokurov, V.; Evans, N. W.; Johnston, K. V.

    2013-01-01

    We use the Bullock and Johnston suite of simulations to study the density profiles of L*-type galaxy stellar halos. Observations of the Milky Way and M31 stellar halos show contrasting results: the Milky Way has a 'broken' profile, where the density falls off more rapidly beyond ∼25 kpc, while M31 has a smooth profile out to 100 kpc with no obvious break. Simulated stellar halos, built solely by the accretion of dwarf galaxies, also exhibit this behavior: some halos have breaks, while others do not. The presence or absence of a break in the stellar halo profile can be related to the accretion history of the galaxy. We find that a break radius is strongly related to the buildup of stars at apocenters. We relate these findings to observations, and find that the 'break' in the Milky Way density profile is likely associated with a relatively early (∼6-9 Gyr ago) and massive accretion event. In contrast, the absence of a break in the M31 stellar halo profile suggests that its accreted satellites have a wide range of apocenters. Hence, it is likely that M31 has had a much more prolonged accretion history than the Milky Way.

  15. The cosmology/particle physics interface

    International Nuclear Information System (INIS)

    Olive, K.A.; Schramm, D.N.

    1985-01-01

    The paper reviews the interface between elementary particle physics and cosmology; and concentrates on inflation and the dark matter problem. Inflationary models of the Universe are examined, including phase transitions and supergravity. The three classes of dark matter problems discussed are: dynamical halos, galaxy formation and clustering, and the Ω=1 of inflation. Possible solutions to the cosmological dark matter problems are considered. (U.K.)

  16. Painting galaxies into dark matter halos using machine learning

    Science.gov (United States)

    Agarwal, Shankar; Davé, Romeel; Bassett, Bruce A.

    2018-05-01

    We develop a machine learning (ML) framework to populate large dark matter-only simulations with baryonic galaxies. Our ML framework takes input halo properties including halo mass, environment, spin, and recent growth history, and outputs central galaxy and halo baryonic properties including stellar mass (M*), star formation rate (SFR), metallicity (Z), neutral (H I) and molecular (H_2) hydrogen mass. We apply this to the MUFASA cosmological hydrodynamic simulation, and show that it recovers the mean trends of output quantities with halo mass highly accurately, including following the sharp drop in SFR and gas in quenched massive galaxies. However, the scatter around the mean relations is under-predicted. Examining galaxies individually, at z = 0 the stellar mass and metallicity are accurately recovered (σ ≲ 0.2 dex), but SFR and H I show larger scatter (σ ≳ 0.3 dex); these values improve somewhat at z = 1, 2. Remarkably, ML quantitatively recovers second parameter trends in galaxy properties, e.g. that galaxies with higher gas content and lower metallicity have higher SFR at a given M*. Testing various ML algorithms, we find that none perform significantly better than the others, nor does ensembling improve performance, likely because none of the algorithms reproduce the large observed scatter around the mean properties. For the random forest algorithm, we find that halo mass and nearby (˜200 kpc) environment are the most important predictive variables followed by growth history, while halo spin and ˜Mpc scale environment are not important. Finally we study the impact of additionally inputting key baryonic properties M*, SFR, and Z, as would be available e.g. from an equilibrium model, and show that particularly providing the SFR enables H I to be recovered substantially more accurately.

  17. Three-body halo nuclei in an effective theory framework

    Energy Technology Data Exchange (ETDEWEB)

    Canham, David L.

    2009-05-20

    The universal properties and structure of halo nuclei composed of two neutrons (2n) and a core are investigated within an effective quantum mechanics framework. We construct an effective interaction potential that exploits the separation of scales in halo nuclei and treat the nucleus as an effective three-body system, which to leading order is described by the large S-wave scattering lengths in the underlying two-body subsystems. The uncertainty from higher orders in the expansion is quantified through theoretical error bands. First, we investigate the possibility to observe excited Efimov states in 2n halo nuclei. Based on the experimental data, {sup 20}C is the only halo nucleus candidate to possibly have an Efimov excited state, with an energy less than 7 keV below the scattering threshold. Second, we study the structure of {sup 20}C and other 2n halo nuclei. In particular, we calculate their matter density form factors, radii, and two-neutron opening angles. We then make a systematic improvement upon these calculations by extending the effective potential to the next-to-leading order. To this order, we require an additional two-body parameter, which we tune to the effective range of the interaction. In addition to range corrections to the 2n halo nuclei results, we show corrections to the Efimov effect in the three-boson system. Furthermore, we explore universality in the linear range corrections to the Efimov spectrum. Finally, we study the scattering of D{sup 0} and D{sup *0} mesons and their antiparticles off the X(3872) in an effective field theory for short-range interactions. We present results for the S-wave scattering amplitude, total interaction cross section and S-wave scattering length. (orig.)

  18. Three-body halo nuclei in an effective theory framework

    International Nuclear Information System (INIS)

    Canham, David L.

    2009-01-01

    The universal properties and structure of halo nuclei composed of two neutrons (2n) and a core are investigated within an effective quantum mechanics framework. We construct an effective interaction potential that exploits the separation of scales in halo nuclei and treat the nucleus as an effective three-body system, which to leading order is described by the large S-wave scattering lengths in the underlying two-body subsystems. The uncertainty from higher orders in the expansion is quantified through theoretical error bands. First, we investigate the possibility to observe excited Efimov states in 2n halo nuclei. Based on the experimental data, 20 C is the only halo nucleus candidate to possibly have an Efimov excited state, with an energy less than 7 keV below the scattering threshold. Second, we study the structure of 20 C and other 2n halo nuclei. In particular, we calculate their matter density form factors, radii, and two-neutron opening angles. We then make a systematic improvement upon these calculations by extending the effective potential to the next-to-leading order. To this order, we require an additional two-body parameter, which we tune to the effective range of the interaction. In addition to range corrections to the 2n halo nuclei results, we show corrections to the Efimov effect in the three-boson system. Furthermore, we explore universality in the linear range corrections to the Efimov spectrum. Finally, we study the scattering of D 0 and D *0 mesons and their antiparticles off the X(3872) in an effective field theory for short-range interactions. We present results for the S-wave scattering amplitude, total interaction cross section and S-wave scattering length. (orig.)

  19. High-energy particle production in solar flares (SEP, gamma-ray and neutron emissions). [solar energetic particles

    Science.gov (United States)

    Chupp, E. L.

    1987-01-01

    Electrons and ions, over a wide range of energies, are produced in association with solar flares. Solar energetic particles (SEPs), observed in space and near earth, consist of electrons and ions that range in energy from 10 keV to about 100 MeV and from 1 MeV to 20 GeV, respectively. SEPs are directly recorded by charged particle detectors, while X-ray, gamma-ray, and neutron detectors indicate the properties of the accelerated particles (electrons and ions) which have interacted in the solar atmosphere. A major problem of solar physics is to understand the relationship between these two groups of charged particles; in particular whether they are accelerated by the same mechanism. The paper reviews the physics of gamma-rays and neutron production in the solar atmosphere and the method by which properties of the primary charged particles produced in the solar flare can be deduced. Recent observations of energetic photons and neutrons in space and at the earth are used to present a current picture of the properties of impulsively flare accelerated electrons and ions. Some important properties discussed are time scale of production, composition, energy spectra, accelerator geometry. Particular attention is given to energetic particle production in the large flare on June 3, 1982.

  20. On the absence of radio haloes in clusters with double relics

    Science.gov (United States)

    Bonafede, A.; Cassano, R.; Brüggen, M.; Ogrean, G. A.; Riseley, C. J.; Cuciti, V.; de Gasperin, F.; Golovich, N.; Kale, R.; Venturi, T.; van Weeren, R. J.; Wik, D. R.; Wittman, D.

    2017-09-01

    Pairs of radio relics are believed to form during cluster mergers, and are best observed when the merger occurs in the plane of the sky. Mergers can also produce radio haloes, through complex processes likely linked to turbulent re-acceleration of cosmic ray electrons. However, only some clusters with double relics also show a radio halo. Here, we present a novel method to derive upper limits on the radio halo emission, and analyse archival X-ray Chandra data, as well as galaxy velocity dispersions and lensing data, in order to understand the key parameter that switches on radio halo emission. We place upper limits on the halo power below the P1.4 GHz-M500 correlation for some clusters, confirming that clusters with double relics have different radio properties. Computing X-ray morphological indicators, we find that clusters with double relics are associated with the most disturbed clusters. We also investigate the role of different mass-ratios and time-since-merger. Data do not indicate that the merger mass-ratio has an impact on the presence or absence of radio haloes (the null hypothesis that the clusters belong to the same group cannot be rejected). However, the data suggest that the absence of radio haloes could be associated with early and late mergers, but the sample is too small to perform a statistical test. Our study is limited by the small number of clusters with double relics. Future surveys with LOFAR, ASKAP, MeerKat and SKA will provide larger samples to better address this issue.

  1. THE CONTRIBUTION OF HALO WHITE DWARF BINARIES TO THE LASER INTERFEROMETER SPACE ANTENNA SIGNAL

    International Nuclear Information System (INIS)

    Ruiter, Ashley J.; Belczynski, Krzysztof; Benacquista, Matthew; Holley-Bockelmann, Kelly

    2009-01-01

    Galactic double white dwarfs were postulated as a source of confusion limited noise for the Laser Interferometer Space Antenna (LISA), the future space-based gravitational wave observatory. Until very recently, the Galactic population consisted of a relatively well-studied disk population, a somewhat studied smaller bulge population and a mostly unknown, but potentially large halo population. It has been argued that the halo population may produce a signal that is much stronger (factor of ∼5 in spectral amplitude) than the disk population. However, this surprising result was not based on an actual calculation of a halo white dwarf population, but was derived on (1) the assumption that one can extrapolate the halo population properties from those of the disk population and (2) the postulated (unrealistically) high number of white dwarfs in the halo. We perform the first calculation of a halo white dwarf population using population synthesis models. Our comparison with the signal arising from double white dwarfs in the Galactic disk+bulge clearly shows that it is impossible for the double white dwarf halo signal to exceed that of the rest of the Galaxy. Using microlensing results to give an upper limit on the content of white dwarfs in the halo (∼30% baryonic mass in white dwarfs), our predicted halo signal is a factor of 10 lower than the disk+bulge signal. Even in the implausible case, where all of the baryonic halo mass is found in white dwarfs, the halo signal does not become comparable to that of the disk+bulge, and thus would still have a negligible effect on the detection of other LISA sources.

  2. Mismatch and misalignment: dark haloes and satellites of disc galaxies

    Science.gov (United States)

    Deason, A. J.; McCarthy, I. G.; Font, A. S.; Evans, N. W.; Frenk, C. S.; Belokurov, V.; Libeskind, N. I.; Crain, R. A.; Theuns, T.

    2011-08-01

    We study the phase-space distribution of satellite galaxies associated with late-type galaxies in the GIMIC suite of simulations. GIMIC consists of resimulations of five cosmologically representative regions from the Millennium Simulation, which have higher resolution and incorporate baryonic physics. Whilst the disc of the galaxy is well aligned with the inner regions (r˜ 0.1r200) of the dark matter halo, both in shape and angular momentum, there can be substantial misalignments at larger radii (r˜r200). Misalignments of >45° are seen in ˜30 per cent of our sample. We find that the satellite population aligns with the shape (and angular momentum) of the outer dark matter halo. However, the alignment with the galaxy is weak owing to the mismatch between the disc and dark matter halo. Roughly 20 per cent of the satellite systems with 10 bright galaxies within r200 exhibit a polar spatial alignment with respect to the galaxy - an orientation reminiscent of the classical satellites of the Milky Way. We find that a small fraction (˜10 per cent) of satellite systems show evidence for rotational support which we attribute to group infall. There is a bias towards satellites on prograde orbits relative to the spin of the dark matter halo (and to a lesser extent with the angular momentum of the disc). This preference towards co-rotation is stronger in the inner regions of the halo where the most massive satellites accreted at relatively early times are located. We attribute the anisotropic spatial distribution and angular momentum bias of the satellites at z= 0 to their directional accretion along the major axes of the dark matter halo. The satellite galaxies have been accreted relatively recently compared to the dark matter mass and have experienced less phase-mixing and relaxation - the memory of their accretion history can remain intact to z= 0. Understanding the phase-space distribution of the z= 0 satellite population is key for studies that estimate the host halo

  3. Behind the scenes of HALO, a large-scale art installation conceived at CERN and inspired by ATLAS data will be exhibited during Art Basel

    CERN Multimedia

    marcelloni, claudia

    2018-01-01

    A large-scale immersive art installation entitled HALO is the artistic interpretation of the Large Hadron Collider’s ATLAS experiment and celebrates the links between art, science and technology. Inspired by raw data generated by ATLAS, the artwork has been conceived and executed by CERN’s former artists-in-residence, the “Semiconductor” duo Ruth Jarman and Joe Gerhardt, in collaboration with Mónica Bello, curator and head of Arts at CERN. The artwork is part of the 4th Audemars Piguet Art Commission. HALO is a cylindrical structure, measuring ten metres in diameter and surrounded by 4-metre-long vertical piano wires. On the inside, an enormous 360-degree screen creates an immersive visual experience. Using kaleidoscopic images of slowed-down particle collisions, which trigger piano wires to create sound, the experience takes the visitors into the realm of subatomic matter through the multiple patterns generated in the space. HALO is conceived as an experiential reworking of the ATLAS experiment. Its...

  4. 40 CFR 721.10063 - Halo substituted hydroxy nitrophenyl amide (generic).

    Science.gov (United States)

    2010-07-01

    ... amide (generic). 721.10063 Section 721.10063 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10063 Halo substituted hydroxy nitrophenyl amide (generic). (a) Chemical... as halo substituted hydroxy nitrophenyl amide (PMN P-04-792) is subject to reporting under this...

  5. The team behind HALO, a large-scale art installation conceived at CERN and inspired by ATLAS data, exhibited at 2018 Art Basel.

    CERN Multimedia

    Marcelloni, Claudia

    2018-01-01

    Merging particle physics and art, a CERN-inspired artwork is being featured for the first time at Art Basel, the international art fair in Basel, Switzerland from 13 to 17 June. A large-scale immersive art installation entitled HALO is the artistic interpretation of the Large Hadron Collider’s ATLAS experiment and celebrates the links between art, science and technology. Inspired by raw data generated by ATLAS, the artwork has been conceived and executed by CERN’s former artists-in-residence, the “Semiconductor” duo Ruth Jarman and Joe Gerhardt, in collaboration with Mónica Bello, curator and head of Arts at CERN. During their three-month Arts at CERN residency in 2015, Semiconductor had the chance to explore particle-collision data in collaboration with scientists from the University of Sussex ATLAS group and work with them on the data later used in the artwork. HALO is a cylindrical structure, measuring ten metres in diameter and surrounded by 4-metre-long vertical piano wires. On the inside, an en...

  6. Remarks on the spherical scalar field halo in galaxies

    International Nuclear Information System (INIS)

    Nandi, Kamal K.; Valitov, Ildar; Migranov, Nail G.

    2009-01-01

    Matos, Guzman, and Nunez proposed a model for the galactic halo within the framework of scalar field theory. We argue that an analysis involving the full metric can reveal the true physical nature of the halo only when a certain condition is maintained. We fix that condition and also calculate its impact on observable parameters of the model.

  7. The edges of dark matter halos: theory and observations

    OpenAIRE

    More, Surhud

    2017-01-01

    I discuss recent theoretical advances which have led us to suggest a physical definition for the boundary of dark matter halos. We propose using the "splashback radius" which corresponds to the apocenter of recently infalling material as a physical boundary for dark matter halos. We also present how the splashback radius can be detected in observations.

  8. The Edges Of Dark Matter Halos: Theory And Observations

    Science.gov (United States)

    More, Surhud

    2017-06-01

    I discuss recent theoretical advances which have led us to suggest a physical definition for the boundary of dark matter halos. We propose using the "splashback radius" which corresponds to the apocenter of recently infalling material as a physical boundary for dark matter halos. We also present how the splashback radius can be detected in observations.

  9. Halo formation in three-dimensional bunches with various phase space distributions

    Directory of Open Access Journals (Sweden)

    A. V. Fedotov

    1999-01-01

    Full Text Available A realistic treatment of halo formation must take into account 3D beam bunches and 6D phase space distributions. We recently constructed, analytically and numerically, a new class of self-consistent 6D phase space stationary distributions, which allowed us to study the halo development mechanism without being obscured by the effect of beam redistribution. In this paper we consider nonstationary distributions and study how the halo characteristics compare with those obtained using the stationary distribution. We then discuss the effect of redistribution on the halo development mechanism. In contrast to bunches with a large aspect ratio, we find that the effect of coupling between the r and z planes is especially important as the bunch shape becomes more spherical.

  10. Frozen Hydrocarbon Particles of Cometary Halos as Carriers of ...

    Indian Academy of Sciences (India)

    coma temperature and pressure, bombardment with charged particles, or collisions with gaseous neutrals of cometary atmosphere. The width of each FHP luminescence spectral line seems to depend on the heliocentric distance, since the cometary sub- stance temperature changes with the distance from the sun. Lines of ...

  11. La abundancia de galaxias y halos de materia oscura en el universo CDM

    Science.gov (United States)

    Abadi, M. G.; Benítez-Llambay, A.; Ferrero, I.

    A long-standing puzzle of CDM cosmological model concerns to the different shape of the galaxy stellar mass function and the halo mass function on dwarf galaxy scales. Dwarf galaxies are much less numerous than halos massive enough to host them; suggesting a complex non-linear relation between the mass of a galaxy and the mass of its surrounding halo. Usually; this is reconciled by appealing to baryonic processes that can reduce the efficiency of galaxy formation in low-mass halos. Recent work applying the abundance matching technique require that virtually no dwarf galaxies form in halos with virial mass below . We use rotation curves of dwarf galaxies compiled from the literature to explore whether their total enclosed mass is consistent with these constraints. Almost one-half of the dwarfs in our sample are at odds with this restriction; they are in halos with masses substantially below . Using a cosmological simulation of the formation of the Local Group of galaxies we found that ram-pressure stripping against the cosmic web removes baryons from low-mass halos without appealing to feedback or reionization. This mechanism may help to explain the scarcity of dwarf galaxies compared with the numerous low-mass halos expected in CDM and the large diversity of star formation histories and morphologies characteristic of faint galaxies. FULL TEXT IN SPANISH

  12. Particle dark matter searches in the anisotropic sky

    Science.gov (United States)

    Fornengo, Nicolao; Regis, Marco

    2014-02-01

    Anisotropies in the electromagnetic emission produced by dark matter annihilation or decay in the extragalactic sky are a recent tool in the quest for a particle dark matter evidence. We review the formalism to compute the two-point angular power spectrum in the halo-model approach and discuss the features and the relative size of the various auto- and cross-correlation signals that can be envisaged for anisotropy studies. From the side of particle dark matter signals, we consider the full multi-wavelength spectrum, from the radio emission to X-ray and gamma-ray productions. We discuss the angular power spectra of the auto-correlation of each of these signals and of the cross-correlation between any pair of them. We then extend the search to comprise specific gravitational tracers of dark matter distribution in the Universe: weak-lensing cosmic shear, large-scale-structure matter distribution and CMB-lensing. We have shown that cross-correlating a multi-wavelength dark matter signal (which is a direct manifestation of its particle physics nature) with a gravitational tracer (which is a manifestation of the presence of large amounts of unseen matter in the Universe) may offer a promising tool to demonstrate that what we call DM is indeed formed by elementary particles.

  13. Particle dark matter searches in the anisotropic sky

    Directory of Open Access Journals (Sweden)

    Nicolao eFornengo

    2014-02-01

    Full Text Available Anisotropies in the electromagnetic emission produced by dark matter annihilation or decay in the extragalactic sky are a recent tool in the quest for a particle dark matter evidence. We review the formalism to compute the two-point angular power spectrum in the halo-model approach and discuss the features and the relative size of the various auto- and cross-correlation signals that can be envisaged for anisotropy studies. From the side of particle dark matter signals, we consider the full multi-wavelength spectrum, from the radio emission to X-ray and gamma-ray productions. We discuss the angular power spectra of the auto-correlation of each of these signals and of the cross-correlation between any pair of them. We then extend the search to comprise specific gravitational tracers of dark matter distribution in the Universe: weak-lensing cosmic shear, large-scale-structure matter distribution and CMB-lensing. We have shown that cross-correlating a multi-wavelength dark matter signal (which is a direct manifestation of its particle physics nature with a gravitational tracer (which is a manifestation of the presence of large amounts of unseen matter in the Universe may offer a promising tool to demonstrate that what we call DM is indeed formed by elementary particles.

  14. Large-scale gas dynamical processes affecting the origin and evolution of gaseous galactic halos

    Science.gov (United States)

    Shapiro, Paul R.

    1991-01-01

    Observations of galactic halo gas are consistent with an interpretation in terms of the galactic fountain model in which supernova heated gas in the galactic disk escapes into the halo, radiatively cools and forms clouds which fall back to the disk. The results of a new study of several large-scale gas dynamical effects which are expected to occur in such a model for the origin and evolution of galactic halo gas will be summarized, including the following: (1) nonequilibrium absorption line and emission spectrum diagnostics for radiatively cooling halo gas in our own galaxy, as well the implications of such absorption line diagnostics for the origin of quasar absorption lines in galactic halo clouds of high redshift galaxies; (2) numerical MHD simulations and analytical analysis of large-scale explosions ad superbubbles in the galactic disk and halo; (3) numerical MHD simulations of halo cloud formation by thermal instability, with and without magnetic field; and (4) the effect of the galactic fountain on the galactic dynamo.

  15. Investigation of the production of cobalt-60 via particle accelerator

    Directory of Open Access Journals (Sweden)

    Artun Ozan

    2017-01-01

    Full Text Available The production process of cobalt-60 was simulated by a particle accelerator in the energy range of 5 to 100 MeV, particle beam current of 1 mA, and irradiation time of 1 hour to perform yield, activity of reaction, and integral yield for charged particle-induced reactions. Based on nuclear reaction processes, the obtained results in the production process of cobalt-60 were also discussed in detail to determine appropriate target material, optimum energy ranges, and suitable reactions.

  16. Session 6: Catalytic hydro-dehalogenation as a remediation methodology: a consideration of Pd and Ni activity and halo-arene reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Keane, M.A.; Amorim, C. [Kentucky Univ., Dept. of Chemical and Materials Engineering (United States); Patterson, P.M. [Kentucky Univ., Center for Applied Energy Research, Lexington, KY (United States)

    2004-07-01

    In this presentation, we consider the action of Ni/SiO{sub 2} and Pd/SiO{sub 2} bearing the same (ca. 5% w/w) metal loading and probe the intrinsic activity/selectivity of the metal site. Characterization pre- and post- reaction has drawn on HRTEM-EDX, SEM, XRD, TPR, H{sub 2} chemisorption/TPD. Reduction of Pd/SiO{sub 2} is far more facile than that of Ni/SiO{sub 2} to generate a narrower distribution of smaller Pd particles that exhibit significantly (up to three orders of magnitude) higher specific hydro-dehalogenation activities. The latter is manifest in a predominant complete dehalogenation of poly-halogenated aromatics. The role of the support in modifying the hydro-dehalogenation activity of the metal site will be addressed by considering carbon supported Pd and Ni, employing graphite, activated carbon and carbon nano-fibers as substrates. While the use of carbon nano-fibers/nano-tubes as metal supports is attracting the interest of the catalysis community, their application in halo-arene hydro-dehalogenation has yet to be reported in the literature. Carbon nano-fibers offer a high aspect ratio surface on which to disperse the active metal phase, as is illustrated by the representative TEM. The highly crystalline faceted Pd phase is a morphological feature that is consistent with a strong interaction between the metal particles and the support medium. This translates into high specific hydro-dehalogenation activities that are maintained over prolonged reaction cycles, a feature that will be discussed. The conversion of a range of halo-arenes (mono-, di- and tri- chloro-, bromo-, fluoro and iodo- benzenes, phenols and toluenes) under clearly defined reaction conditions will be presented where the differences in halo-arene reactivity are identified. Halo-arene reactivity is determined by inductive and steric effects, the former evident in the enhancement of hydro-dehalogenation by electron donating (-OH and -CH{sub 3}) substituents, the latter in the

  17. Photoionization in the halo of the Galaxy

    Science.gov (United States)

    Bregman, Joel N.; Harrington, J. Patrick

    1986-01-01

    The ionizing radiation field in the halo is calculated and found to be dominated in the 13.6-45 eV range by light from O-B stars that escapes the disk, by planetary nebulae at 45-54 eV, by quasars and the Galactic soft X-ray background at 54-2000 eV, and by the extragalactic X-ray background at higher energies. Photoionization models are calculated with this radiation field incident on halo clouds of constant density for a variety of densities, for normal and depleted abundances, and with variations of the incident spectrum. For species at least triply ionized, such as Si IV, C IV, N V, and O VI, the line ratios are determined by intervening gas with the greatest volume, which is not necessarily the greatest mass component. Column densities from doubly ionized species like Si III should be greater than from triply ionized species. The role of photoionized gas in cosmic ray-supported halos and Galactic fountains is discussed. Observational tests of photoionization models are suggested.

  18. Mergers and mass accretion for infalling halos both end well outside cluster virial radii

    International Nuclear Information System (INIS)

    Behroozi, Peter S.; Wechsler, Risa H.; Lu, Yu; Busha, Michael T.; Hahn, Oliver; Klypin, Anatoly; Primack, Joel R.

    2014-01-01

    We find that infalling dark matter halos (i.e., the progenitors of satellite halos) begin losing mass well outside the virial radius of their eventual host halos. The peak mass occurs at a range of clustercentric distances, with median and 68th percentile range of 1.8 −1.0 +2.3 R vir,host for progenitors of z = 0 satellites. The peak circular velocity for infalling halos occurs at significantly larger distances (3.7 −2.2 +3.3 R vir,host at z = 0). This difference arises because different physical processes set peak circular velocity (typically, ∼1:5 and larger mergers which cause transient circular velocity spikes) and peak mass (typically, smooth accretion) for infalling halos. We find that infalling halos also stop having significant mergers well before they enter the virial radius of their eventual hosts. Mergers larger than a 1:40 ratio in halo mass end for infalling halos at similar clustercentric distances (∼1.9 R vir, host ) as the end of overall mass accretion. However, mergers larger than 1:3 typically end for infalling halos at more than four virial radial away from their eventual hosts. This limits the ability of mergers to affect quenching and morphology changes in clusters. We also note that the transient spikes which set peak circular velocity may lead to issues with abundance matching on that parameter, including unphysical galaxy stellar mass growth profiles near clusters; we propose a simple observational test to check if a better halo proxy for galaxy stellar mass exists.

  19. Mergers and mass accretion for infalling halos both end well outside cluster virial radii

    Energy Technology Data Exchange (ETDEWEB)

    Behroozi, Peter S.; Wechsler, Risa H.; Lu, Yu; Hahn, Oliver; Busha, Michael T.; Klypin, Anatoly; Primack, Joel R.

    2014-05-14

    We find that infalling dark matter halos (i.e., the progenitors of satellite halos) begin losing mass well outside the virial radius of their eventual host halos. The peak mass occurs at a range of clustercentric distances, with median and 68th percentile range of $1.8^{+2.3}_{-1.0} \\,R_\\mathrm{vir,host}$ for progenitors of z = 0 satellites. The peak circular velocity for infalling halos occurs at significantly larger distances ($3.7^{+3.3}_{-2.2} \\,R_\\mathrm{vir,host}$ at z = 0). This difference arises because different physical processes set peak circular velocity (typically, ~1:5 and larger mergers which cause transient circular velocity spikes) and peak mass (typically, smooth accretion) for infalling halos. We find that infalling halos also stop having significant mergers well before they enter the virial radius of their eventual hosts. Mergers larger than a 1:40 ratio in halo mass end for infalling halos at similar clustercentric distances (~1.9 R vir, host) as the end of overall mass accretion. However, mergers larger than 1:3 typically end for infalling halos at more than four virial radial away from their eventual hosts. This limits the ability of mergers to affect quenching and morphology changes in clusters. We also note that the transient spikes which set peak circular velocity may lead to issues with abundance matching on that parameter, including unphysical galaxy stellar mass growth profiles near clusters; we propose a simple observational test to check if a better halo proxy for galaxy stellar mass exists.

  20. Effect of limestone particle size on egg production and eggshell ...

    African Journals Online (AJOL)

    Different limestone particle sizes had no effect on any of the tested egg production and eggshell quality parameters. These results suggested that larger particles limestone are not necessarily essential to provide sufficient Ca2+ to laying hens for egg production and eggshell quality at end-of-lay, provided that the dietary Ca ...

  1. Spectrum of Sprite Halos

    Czech Academy of Sciences Publication Activity Database

    Gordillo-Vázquez, F.J.; Luque, A.; Šimek, Milan

    2011-01-01

    Roč. 116, č. 9 (2011), A09319-A09319 ISSN 0148-0227 Institutional research plan: CEZ:AV0Z20430508 Keywords : sprites * halos * spectroscopy Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.021, year: 2011 http://www.trappa.iaa.es/sites/all/files/papers/isi_journal_papers/2011/2011_08.pdf

  2. Synthesis, Properties and Stereochemistry of 2-Halo-1,2λ5-oxaphosphetanes

    Directory of Open Access Journals (Sweden)

    Anastasy O. Kolodiazhna

    2016-10-01

    Full Text Available Results of research into four-membered 2-halo-1,2λ5-oxaphosphetane phosphorus(V-heterocycles are presented. The preparation of 2-halo-1,2λ5-oxaphosphetanes by reaction of P-haloylides with carbonyl compounds is described. The mechanism of asynchronous [2+2]-сycloaddition of ylides to aldehydes was proposed on the base of low-temperature NMR investigations. 2-Halo-1,2λ5-oxaphosphetanes were isolated as individual compounds and their structures were confirmed by 1Н-, 13C-, 19F- and 31Р-NMR spectra. These compounds are convenient reagents for preparing of various organic and organophosphorus compounds hardly available by other methods. Chemical and physical properties of the 2-halo-1,2λ5-oxaphosphetanes are reviewed. The 2-chloro-1,2λ5-oxaphosphetanes, rearrange with formation of 2-chloroalkyl-phosphonates or convert into trans-phosphorylated alkenes depending on the substituents at the α-carbon atom. Prospective synthetic applications of 2-halo-1,2λ5-oxaphosphetanes are analyzed. The 2-halo-1,2λ5-oxaphosphetanes may be easily converted to various alkenylphosphonates: allyl- or vinylphosphonates, phosphorus ketenes, thioketenes, ketenimines.

  3. Main Injector Particle Production Experiment Status

    International Nuclear Information System (INIS)

    Lebedev, Andre

    2007-01-01

    MIPP (FNAL-E907) is a large acceptance spectrometer to measure hadronic particle production - TPC and wire chambers to measure track parameters - TPC dE/dx, ToF, differential Cherenkov and ring imaging Cherenkov give π/K/p separation up to 100 GeV/c

  4. Particle size distribution of selected electronic nicotine delivery system products.

    Science.gov (United States)

    Oldham, Michael J; Zhang, Jingjie; Rusyniak, Mark J; Kane, David B; Gardner, William P

    2018-03-01

    Dosimetry models can be used to predict the dose of inhaled material, but they require several parameters including particle size distribution. The reported particle size distributions for aerosols from electronic nicotine delivery system (ENDS) products vary widely and don't always identify a specific product. A low-flow cascade impactor was used to determine the particle size distribution [mass median aerodynamic diameter (MMAD); geometric standard deviation (GSD)] from 20 different cartridge based ENDS products. To assess losses and vapor phase amount, collection efficiency of the system was measured by comparing the collected mass in the impactor to the difference in ENDS product mass. The levels of nicotine, glycerin, propylene glycol, water, and menthol in the formulations of each product were also measured. Regardless of the ENDS product formulation, the MMAD of all tested products was similar and ranged from 0.9 to 1.2 μm with a GSD ranging from 1.7 to 2.2. There was no consistent pattern of change in the MMAD and GSD as a function of number of puffs (cartridge life). The collection efficiency indicated that 9%-26% of the generated mass was deposited in the collection system or was in the vapor phase. The particle size distribution data are suitable for use in aerosol dosimetry programs. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. 77 FR 75672 - Manufacturer of Controlled Substances, Notice of Registration, Halo Pharmaceutical, Inc.

    Science.gov (United States)

    2012-12-21

    ..., Notice of Registration, Halo Pharmaceutical, Inc. By Notice dated July 30, 2012, and published in the Federal Register on August 7, 2012, 77 FR 47114, Halo Pharmaceutical, Inc., 30 North Jefferson Road... 21 U.S.C. 823(a), and determined that the registration of Halo Pharmaceutical, Inc., to manufacture...

  6. Dark matter and halo bispectrum in redshift space: theory and applications

    Energy Technology Data Exchange (ETDEWEB)

    Gil-Marín, Héctor; Percival, Will [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Portsmouth PO1 3FX (United Kingdom); Wagner, Christian [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild Str. 1, 85741 Garching (Germany); Noreña, Jorge [Department of Theoretical Physics and Center for Astroparticle Physics (CAP), 24 quai E. Ansermet, CH-1211 Geneva 4 (Switzerland); Verde, Licia, E-mail: hector.gil@port.ac.uk, E-mail: cwagner@mpa-garching.mpg.de, E-mail: jorge.norena@unige.ch, E-mail: liciaverde@icc.ub.edu, E-mail: will.percival@port.ac.uk [ICREA Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, E-08010 Barcelona (Spain)

    2014-12-01

    We present a phenomenological modification of the standard perturbation theory prediction for the bispectrum in redshift space that allows us to extend the model to mildly non-linear scales over a wide range of redshifts, z≤1.5. Our model require 18 free parameters that are fitted to N-body simulations using the shapes k{sub 2}/k{sub 1}=1, 1.5, 2.0, 2.5. We find that we can describe the bispectrum of dark matter particles with ∼5% accuracy for k{sub i}∼<0.10 h/Mpc at z=0, for k{sub i}∼<0.15 h/Mpc at z=0.5, for k{sub i}∼<0.17 h/Mpc at z=1.0 and for k{sub i}∼<0.20 h/Mpc at z=1.5. For very squeezed triangles with k{sub 1}=k{sub 2}∼>0.1 hMpc{sup -1} and k{sub 3}≤0.02 hMpc{sup -1}, however, neither SPT nor the proposed fitting formula are able to describe the measured dark matter bispectrum with this accuracy. We show that the fitting formula is sufficiently general that can be applied to other intermediate shapes such as k{sub 2}/k{sub 1}=1.25, 1.75, and 2.25. We also test that the fitting formula is able to describe with similar accuracy the bispectrum of cosmologies with different Ω{sub m}, in the range 0.2∼< Ω{sub m} ∼< 0.4, and consequently with different values of the logarithmic grow rate f at z=0, 0.4∼< f(z=0) ∼< 0.6. We apply this new formula to recover the bias parameters, f and σ{sub 8}, by combining the redshift space power spectrum monopole and quadrupole with the bispectrum monopole for both dark matter particles and haloes. We find that the combination of these three statistics can break the degeneracy between b{sub 1}, f and σ{sub 8}. For dark matter particles the new model can be used to recover f and σ{sub 8} with ∼1% accuracy. For dark matter haloes we find that f and σ{sub 8} present larger systematic shifts, ∼10%. The systematic offsets arise because of limitations in the modelling of the interplay between bias and redshift space distortions, and represent a limitation as the statistical errors of

  7. Halo and space charge issues in the SNS Ring

    International Nuclear Information System (INIS)

    Fedotov, A.V.; Abell, D.T.; Beebe-Wang, J.; Lee, Y.Y.; Malitsky, N.; Wei, J.; Gluckstern, R.L.

    2000-01-01

    The latest designs for high-intensity proton rings require minimizing beam-induced radioactivation of the vacuum chamber. Although the tune depression in the ring is much smaller than in high-intensity linacs, space-charge contributions to halo formation and, hence, beam loss may be significant. This paper reviews our current understanding of halo formation issues for the Spallation Neutron Source (SNS) accumulator ring

  8. Halo and space charge issues in the SNS Ring

    Energy Technology Data Exchange (ETDEWEB)

    Fedotov, A.V.; Abell, D.T.; Beebe-Wang, J.; Lee, Y.Y.; Malitsky, N.; Wei, J.; Gluckstern, R.L.

    2000-06-30

    The latest designs for high-intensity proton rings require minimizing beam-induced radioactivation of the vacuum chamber. Although the tune depression in the ring is much smaller than in high-intensity linacs, space-charge contributions to halo formation and, hence, beam loss may be significant. This paper reviews our current understanding of halo formation issues for the Spallation Neutron Source (SNS) accumulator ring.

  9. A similar local immune and oxidative stress phenotype in vitiligo and halo nevus.

    Science.gov (United States)

    Yang, Yuqi; Li, Shuli; Zhu, Guannan; Zhang, Qian; Wang, Gang; Gao, Tianwen; Li, Chunying; Wang, Lin; Jian, Zhe

    2017-07-01

    Vitiligo and halo nevus are two common T-cell-mediated skin disorders. Although autoimmunity has been suggested to be involved in both diseases, the relationship between vitiligo and halo nevus is not fully understood. The aim of the current study was to investigate whether vitiligo and halo nevus share the same immunological and oxidative stress response. Infiltrations of T cells, and expressions of chemokine receptors (CXCR3, CCR4, CCR5) and cytotoxic markers (Granzyme B, Perforin) in the lesions of vitiligo and halo nevus were examined by immunohistochemistry. Enzyme-linked immunosorbent assay was performed to analyze the expressions of chemokines in the serum samples and cytotoxic markers secreted by CD8 + T cells which were sorted from the peripheral blood mononuclear cells in healthy donors, vitiligo and halo nevus patients. Tissue levels of chemokine receptors and CXCR3 ligands in healthy controls, vitiligo patients and halo nevus patients were determined by qRT-PCR analysis. The percentages of CXCR3 + CD4 + T and CXCR3 + CD8 + T cells from the peripheral blood samples were examined by flow cytometry. Tissue and serum hydrogen peroxide (H 2 O 2 ) concentrations were measured using H 2 O 2 assay kit. Immunohistochemistry revealed a significant T-cell response, with pronounced dermal infiltrates of CD8 + T cells in vitiligo and halo nevus. The inflammatory cytotoxic markers such as Granzyme B and Perforin were also elevated in vitiligo and halo nevus, suggesting inflammatory responses in situ. By qRT-PCR and ELISA assay, we found significantly increased expressions of the chemokine receptor CXCR3 and its ligands, especially the accumulated CXCL10 in the skin lesions of vitiligo and halo nevus. Moreover, the level of H 2 O 2 , a key player involved in regulation of the immune response was significantly upregulated in the skin lesions of vitiligo and halo nevus. In addition, the increased H 2 O 2 concentration correlated positively with CXCL10 level in skin

  10. Insight into particle production mechanisms from angular correlations of identified particles in pp collisions measured by ALICE

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Two-particle angular correlations are a robust tool which provide access to the underlying physics phenomena of particle production in collisions of both protons and heavy ions by studying distributions of particles in pseudorapidity and azimuthal angle difference. The correlation measurement is sensitive to several phenomena, including mini-jets, elliptic flow, Bose-Einstein correlations, resonance decays, conservation laws, which can be separated by selections of momentum, particle type and by analysing the shapes of the correlation structures. In this talk, we report measurements of the correlations of identified particles and their antiparticles (for pions, kaons, protons, and lambdas) at low transverse momenta in pp collisions at sqrt(s) = 7 TeV, recently submitted for publication by the ALICE Collaboration [arXiv:1612.08975]. The analysis reveals differences in particle production between baryons and mesons. The correlation functions for mesons exhibit the expected peak dominated by effects of mini-jet...

  11. 77 FR 16264 - Manufacturer of Controlled Substances, Notice of Registration; Halo Pharmaceutical Inc.

    Science.gov (United States)

    2012-03-20

    ..., Notice of Registration; Halo Pharmaceutical Inc. By Notice dated December 2, 2011, and published in the Federal Register on December 14, 2011, 76 FR 77850, Halo Pharmaceutical Inc., 30 North Jefferson Road... considered the factors in 21 U.S.C. 823(a) and determined that the registration of Halo Pharmaceutical Inc...

  12. Production of particles by a variable scalar field

    International Nuclear Information System (INIS)

    Dolgov, A.D.; Kirilova, D.P.

    1990-01-01

    The probability of particle production by a spatially homogeneous scalar field χ(t) is calculated. Explicit analytic expressions are obtained in two opposite limiting cases: in perturbation theory and in the quasiclassical approximation. It is shown that if the mass of the produced particles is determined by the field χ(t) is accordance with the expression gχ(t) anti ψψ, then for an oscillatory field χ(t) = χ 0 cos(ωt) the production probability in the limit of small ω is suppressed not exponentially, but only as ω 1/2 . Cosmological applications of these results are discussed

  13. Double folding model analysis of elastic scattering of halo nucleus ...

    Indian Academy of Sciences (India)

    carried out which provide valuable insight for improving our understanding of nuclear reactions. One of the interesting aspects is to understand the effect of the halo structure, on elastic scattering cross-sections at near-Coulomb barrier energies in reactions induced by neutron halo nuclei and weakly bound radioactive ...

  14. Mergers and mass accretion for infalling halos both end well outside cluster virial radii

    Energy Technology Data Exchange (ETDEWEB)

    Behroozi, Peter S. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Wechsler, Risa H.; Lu, Yu; Busha, Michael T. [Physics Department, Stanford University, Department of Particle and Particle Astrophysics, SLAC National Accelerator Laboratory, Kavli Institute for Particle Astrophysics and Cosmology Stanford, CA 94305 (United States); Hahn, Oliver [Institute for Astronomy, ETH Zurich, 8093-CH Zurich (Switzerland); Klypin, Anatoly [Astronomy Department, New Mexico State University, Las Cruces, NM 88003 (United States); Primack, Joel R., E-mail: behroozi@stsci.edu [Department of Physics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States)

    2014-06-01

    We find that infalling dark matter halos (i.e., the progenitors of satellite halos) begin losing mass well outside the virial radius of their eventual host halos. The peak mass occurs at a range of clustercentric distances, with median and 68th percentile range of 1.8{sub −1.0}{sup +2.3} R{sub vir,host} for progenitors of z = 0 satellites. The peak circular velocity for infalling halos occurs at significantly larger distances (3.7{sub −2.2}{sup +3.3} R{sub vir,host} at z = 0). This difference arises because different physical processes set peak circular velocity (typically, ∼1:5 and larger mergers which cause transient circular velocity spikes) and peak mass (typically, smooth accretion) for infalling halos. We find that infalling halos also stop having significant mergers well before they enter the virial radius of their eventual hosts. Mergers larger than a 1:40 ratio in halo mass end for infalling halos at similar clustercentric distances (∼1.9 R {sub vir,} {sub host}) as the end of overall mass accretion. However, mergers larger than 1:3 typically end for infalling halos at more than four virial radial away from their eventual hosts. This limits the ability of mergers to affect quenching and morphology changes in clusters. We also note that the transient spikes which set peak circular velocity may lead to issues with abundance matching on that parameter, including unphysical galaxy stellar mass growth profiles near clusters; we propose a simple observational test to check if a better halo proxy for galaxy stellar mass exists.

  15. A study of 11 Be an 11 Li halo nuclei by core breakup reactions

    International Nuclear Information System (INIS)

    Grevy, S.

    1997-01-01

    The study of light nuclei with large neutron excess are very useful for the understanding of nuclear matter far from stability. The nuclear halo phenomenon has been observed for the first time for Z 11 Be and 11 Li halo nuclei. In this channel, the neutron is supposed not to participate to the reaction and then, when detected, to carry out the same properties as in the halo nucleus. The deduced widths of the neutron momentum distributions are different from the one extracted from the core distributions and with the more recent theoretical models. From these studies, it is also stressed that the properties of the core are essential to understand the halo phenomenon. In particular, the correlation between the core vibrations and the halo neutron are able to explain the emergence of the halo in 11 Be. (author)

  16. The Mass and Absorption Columns of Galactic Gaseous Halos

    Science.gov (United States)

    Qu, Zhijie; Bregman, Joel N.

    2018-01-01

    The gaseous halo surrounding the galaxy is a reservoir for the gas on the galaxy disk, supplying materials for the star formation. We developed a gaseous halo model connecting the galactic disk and the gaseous halo by assuming the star formation rate is equal to the radiative cooling rate. Besides the single-phase collisional gaseous halo, we also consider the photoionization effect and a time-independent cooling model that assumes the mass cooling rate is constant over all temperatures. The photoionization dominates the low mass galaxy and the outskirts of the massive galaxy due to the low-temperature or low-density nature. The multi-phase cooling model dominates the denser region within the cooling radius, where the efficient radiative cooling must be included. Applying these two improvements, our model can reproduce the most of observed high ionization state ions (i.e., O VI, O VII, Ne VIII and Mg X). Our models show that the O VI column density is almost a constant of around 10^14 cm^-2 over a wide stellar mass from M_\\star ~10^8 M_Sun to 10^11 M_Sun, which is constant with current observations. This model also implies the O VI is photoionized for the galaxy with a halo mass fraction function of the EAGLE simulation. Finally, our model predicts plateaus of the Ne VIII and the Mg X column densities above the sub-L^* galaxy, and the possibly detectable O VII and O VIII column densities for low-mass galaxies, which help to determine the required detection limit for the future observations and missions.

  17. Black Hole Space-time In Dark Matter Halo

    OpenAIRE

    Xu, Zhaoyi; Hou, Xian; Gong, Xiaobo; Wang, Jiancheng

    2018-01-01

    For the first time, we obtain the analytical form of black hole space-time metric in dark matter halo for the stationary situation. Using the relation between the rotation velocity (in the equatorial plane) and the spherical symmetric space-time metric coefficient, we obtain the space-time metric for pure dark matter. By considering the dark matter halo in spherical symmetric space-time as part of the energy-momentum tensors in the Einstein field equation, we then obtain the spherical symmetr...

  18. Halo Models of Large Scale Structure and Reliability of Cosmological N-Body Simulations

    Directory of Open Access Journals (Sweden)

    José Gaite

    2013-05-01

    Full Text Available Halo models of the large scale structure of the Universe are critically examined, focusing on the definition of halos as smooth distributions of cold dark matter. This definition is essentially based on the results of cosmological N-body simulations. By a careful analysis of the standard assumptions of halo models and N-body simulations and by taking into account previous studies of self-similarity of the cosmic web structure, we conclude that N-body cosmological simulations are not fully reliable in the range of scales where halos appear. Therefore, to have a consistent definition of halos is necessary either to define them as entities of arbitrary size with a grainy rather than smooth structure or to define their size in terms of small-scale baryonic physics.

  19. Possible existence of wormholes in the galactic halo region

    Energy Technology Data Exchange (ETDEWEB)

    Rahaman, Farook [Jadavpur University, Department of Mathematics, Kolkata, West Bengal (India); Kuhfittig, P.K.F. [Milwaukee School of Engineering, Department of Mathematics, Milwaukee, WI (United States); Ray, Saibal [Government College of Engineering and Ceramic Technology, Department of Physics, Kolkata, West Bengal (India); Islam, Nasarul [Danga High Madrasah, Department of Mathematics, Kolkata, West Bengal (India)

    2014-02-15

    Two observational results, the density profile from simulations performed in the ΛCDM scenario and the observed flat galactic rotation curves, are taken as input with the aim of showing that the galactic halo possesses some of the characteristics needed to support traversable wormholes. This result should be sufficient to provide an incentive for scientists to seek observational evidence for wormholes in the galactic halo region. (orig.)

  20. The Structure and Dark Halo Core Properties of Dwarf Spheroidal Galaxies

    Science.gov (United States)

    Burkert, A.

    2015-08-01

    The structure and dark matter halo core properties of dwarf spheroidal galaxies (dSphs) are investigated. A double-isothermal (DIS) model of an isothermal, non-self-gravitating stellar system embedded in an isothermal dark halo core provides an excellent fit to the various observed stellar surface density distributions. The stellar core scale length a* is sensitive to the central dark matter density ρ0,d. The maximum stellar radius traces the dark halo core radius {r}c,d. The concentration c* of the stellar system, determined by a King profile fit, depends on the ratio of the stellar-to-dark-matter velocity dispersion {σ }*/{σ }d. Simple empirical relationships are derived that allow us to calculate the dark halo core parameters ρ0,d, {r}c,d, and σd given the observable stellar quantities σ*, a*, and c*. The DIS model is applied to the Milky Way’s dSphs. All dSphs closely follow the same universal dark halo scaling relations {ρ }0,d× {r}c,d={75}-45+85 M⊙ pc-2 that characterize the cores of more massive galaxies over a large range in masses. The dark halo core mass is a strong function of core radius, {M}c,d˜ {r}c,d2. Inside a fixed radius of ˜400 pc the total dark matter mass is, however, roughly constant with {M}d=2.6+/- 1.4× {10}7 M⊙, although outliers are expected. The dark halo core densities of the Galaxy’s dSphs are very high, with {ρ }0,d ≈ 0.2 M⊙ pc-3. dSphs should therefore be tidally undisturbed. Evidence for tidal effects might then provide a serious challenge for the CDM scenario.

  1. Electron beam halo monitor for a compact x-ray free-electron laser

    Directory of Open Access Journals (Sweden)

    Hideki Aoyagi

    2013-03-01

    Full Text Available An electron beam halo monitor using diamond-based detectors, which are operated in the ionization mode, has been developed for the SPring-8 Angstrom compact free-electron laser (SACLA to protect its undulator magnets from radiation damage. Diamond-based detectors are inserted in a beam duct to measure the intensity of the beam halo directly. To suppress the degradation of the electron beam due to the installation of the beam halo monitor, rf fingers with aluminum windows are newly employed. We evaluated the effect of radiation from the Al windows on the output signal both experimentally and by simulation. The operational results of the beam halo monitor employed in SACLA are presented.

  2. Numerical modeling of 3D halo current path in ITER structures

    Energy Technology Data Exchange (ETDEWEB)

    Bettini, Paolo; Marconato, Nicolò; Furno Palumbo, Maurizio; Peruzzo, Simone [Consorzio RFX, EURATOM-ENEA Association, C.so Stati Uniti 4, 35127 Padova (Italy); Specogna, Ruben, E-mail: ruben.specogna@uniud.it [DIEGM, Università di Udine, Via delle Scienze, 208, 33100 Udine (Italy); Albanese, Raffaele; Rubinacci, Guglielmo; Ventre, Salvatore; Villone, Fabio [Consorzio CREATE, EURATOM-ENEA Association, Via Claudio 21, 80125 Napoli (Italy)

    2013-10-15

    Highlights: ► Two numerical codes for the evaluation of halo currents in 3D structures are presented. ► A simplified plasma model is adopted to provide the input (halo current injected into the FW). ► Two representative test cases of ITER symmetric and asymmetric VDEs have been analyzed. ► The proposed approaches provide results in excellent agreement for both cases. -- Abstract: Disruptions represent one of the main concerns for Tokamak operation, especially in view of fusion reactors, or experimental test reactors, due to the electro-mechanical loads induced by halo and eddy currents. The development of a predictive tool which allows to estimate the magnitude and spatial distribution of the halo current forces is of paramount importance in order to ensure robust vessel and in-vessel component design. With this aim, two numerical codes (CARIDDI, CAFE) have been developed, which allow to calculate the halo current path (resistive distribution) in the passive structures surrounding the plasma. The former is based on an integral formulation for the eddy currents problem particularized to the static case; the latter implements a pair of 3D FEM complementary formulations for the solution of the steady-state current conduction problem. A simplified plasma model is adopted to provide the inputs (halo current injected into the first wall). Two representative test cases (ITER symmetric and asymmetric VDEs) have been selected to cross check the results of the proposed approaches.

  3. Halo-independent methods for inelastic dark matter scattering

    International Nuclear Information System (INIS)

    Bozorgnia, Nassim; Schwetz, Thomas; Herrero-Garcia, Juan; Zupan, Jure

    2013-01-01

    We present halo-independent methods to analyze the results of dark matter direct detection experiments assuming inelastic scattering. We focus on the annual modulation signal reported by DAMA/LIBRA and present three different halo-independent tests. First, we compare it to the upper limit on the unmodulated rate from XENON100 using (a) the trivial requirement that the amplitude of the annual modulation has to be smaller than the bound on the unmodulated rate, and (b) a bound on the annual modulation amplitude based on an expansion in the Earth's velocity. The third test uses the special predictions of the signal shape for inelastic scattering and allows for an internal consistency check of the data without referring to any astrophysics. We conclude that a strong conflict between DAMA/LIBRA and XENON100 in the framework of spin-independent inelastic scattering can be established independently of the local properties of the dark matter halo

  4. On the core-halo structure of NGC 604

    CERN Document Server

    Melnick, Yu M

    1980-01-01

    A detailed study is presented of the core-halo structure of the largest H II region in M 33, NGC 604, using newly obtained multi- aperture H/sub beta / photometry and Fabry-Perot interferometry, in conjunction with published radio continuum observations. Based on a comparison between the radio continuum and H/sub beta / luminosities of NGC 604, a dust density of rho /sub d/=6 10/sup -25/ g cm/sup -3/ is derived for the nebular core, in good agreement with published far- infrared results. By contrast, the halo of NGC 604 appears to contain virtually no dust. It is also shown that the turbulent component of the H/sub alpha /-line profile width of the halo of NGC 604 is significantly lower than that of the nebular core. This result is found to be inconsistent with models in which the highly supersonic velocities implied by the observed emission line profile widths in both nebular components are interpreted in terms of expansion motions. (14 refs).

  5. Halo-independence with quantified maximum entropy at DAMA/LIBRA

    Energy Technology Data Exchange (ETDEWEB)

    Fowlie, Andrew, E-mail: andrew.j.fowlie@googlemail.com [ARC Centre of Excellence for Particle Physics at the Tera-scale, Monash University, Melbourne, Victoria 3800 (Australia)

    2017-10-01

    Using the DAMA/LIBRA anomaly as an example, we formalise the notion of halo-independence in the context of Bayesian statistics and quantified maximum entropy. We consider an infinite set of possible profiles, weighted by an entropic prior and constrained by a likelihood describing noisy measurements of modulated moments by DAMA/LIBRA. Assuming an isotropic dark matter (DM) profile in the galactic rest frame, we find the most plausible DM profiles and predictions for unmodulated signal rates at DAMA/LIBRA. The entropic prior contains an a priori unknown regularisation factor, β, that describes the strength of our conviction that the profile is approximately Maxwellian. By varying β, we smoothly interpolate between a halo-independent and a halo-dependent analysis, thus exploring the impact of prior information about the DM profile.

  6. Hadronic J/psi and charmed particle production and correlating quark rearrangement model

    International Nuclear Information System (INIS)

    Nishitani, Tadashi

    1979-01-01

    On the basis of the correlating quark rearrangement model, the exclusive and inclusive production cross sections of J/psi and charmed particles in hadron collisions are calculated. It is shown that the inclusive production cross section of charmed particles is several tens of μb at p sub( l) -- 100 GeV/c in hadron collisions. The OZI rule is discussed in connection with the production mechanism of J/psi particles. (author)

  7. Production and propagation of secondary particles near the earth

    International Nuclear Information System (INIS)

    Derome, L.

    2008-01-01

    A few years ago the AMS01 embarked experiment showed a particular high component of the cosmic particle flux detected below the geo-magnetic cut which was surprising because this cut represents the minimal energy that is required for cosmic radiation to reach the earth and any cosmic ray below the cut is pushed away by the earth's magnetic field. This work is based on Monte-Carlo simulations involving the generation of primary cosmic particles, their propagation in the earth magnetic field, their interaction with earth's atmosphere and the production of secondary particles. These simulations have shown that the particles below the cut are in fact particles generated in the upper part of the atmosphere, escaping from it and being trapped by the earth's magnetic field. These Monte-Carlo simulations have also been used to assess the composition of below-the-cut flux in terms of protons, electrons, positrons and light nuclei, to check the production of anti-matter in the atmosphere, and to estimate the flux of atmospheric neutrinos. (A.C.)

  8. The impact of feedback and the hot halo on the rates of gas accretion onto galaxies

    Science.gov (United States)

    Correa, Camila A.; Schaye, Joop; van de Voort, Freeke; Duffy, Alan R.; Wyithe, J. Stuart B.

    2018-04-01

    We investigate the physics that drives the gas accretion rates onto galaxies at the centers of dark matter haloes using the EAGLE suite of hydrodynamical cosmological simulations. We find that at redshifts z ≤ 2 the accretion rate onto the galaxy increases with halo mass in the halo mass range 1010 - 1011.7 M⊙, flattens between the halo masses 1011.7 - 1012.7 M⊙, and increases again for higher-mass haloes. However, the galaxy gas accretion does not flatten at intermediate halo masses when AGN feedback is switched off. To better understand these trends, we develop a physically motivated semi-analytic model of galaxy gas accretion. We show that the flattening is produced by the rate of gas cooling from the hot halo. The ratio of the cooling radius and the virial radius does not decrease continuously with increasing halo mass as generally thought. While it decreases up to ˜1013 M⊙ haloes, it increases for higher halo masses, causing an upturn in the galaxy gas accretion rate. This may indicate that in high-mass haloes AGN feedback is not sufficiently efficient. When there is no AGN feedback, the density of the hot halo is higher, the ratio of the cooling and virial radii does not decrease as much and the cooling rate is higher. Changes in the efficiency of stellar feedback can also increase or decrease the accretion rates onto galaxies. The trends can plausibly be explained by the re-accretion of gas ejected by progenitor galaxies and by the suppression of black hole growth, and hence AGN feedback, by stellar feedback.

  9. AUTOMATED CONTROL AND REAL-TIME DATA PROCESSING OF WIRE SCANNER/HALO SCRAPER MEASUREMENTS

    International Nuclear Information System (INIS)

    Day, L.A.; Gilpatrick, J.D.

    2001-01-01

    The Low-Energy Demonstration Accelerator (LEDA), assembled and operating at Los Alamos National Laboratory, provides the platform for obtaining measurements of high-power proton beam-halo formation. Control system software and hardware have been integrated and customized to enable the production of real-time beam-halo profiles. The Experimental Physics and Industrial Control System (EPICS) hosted on a VXI platform, Interactive Data Language (IDL) programs hosted on UNIX platforms, and LabVIEW (LV) Virtual Instruments hosted on a PC platform have been integrated and customized to provide real-time, synchronous motor control, data acquisition, and data analysis of data acquired through specialized DSP instrumentation. These modules communicate through EPICS Channel Access (CA) communication protocol extensions to control and manage execution flow ensuring synchronous data acquisition and real-time processing of measurement data. This paper describes the software integration and management scheme implemented to produce these real-time beam profiles

  10. Production of heavy particles by protons on protons

    International Nuclear Information System (INIS)

    Afek, Y.; Margolis, B.; Polvani, L.

    1982-01-01

    We calculate the production of heavy particles in the multi-GeV energy range using parton-model and statistical considerations. We discuss both central production and fragmentation. Our picture has implications for the question of the existence of a limiting temperature in hardron interaction

  11. Two-halo term in stacked thermal Sunyaev-Zel'dovich measurements: Implications for self-similarity

    Science.gov (United States)

    Hill, J. Colin; Baxter, Eric J.; Lidz, Adam; Greco, Johnny P.; Jain, Bhuvnesh

    2018-04-01

    The relation between the mass and integrated electron pressure of galaxy group and cluster halos can be probed by stacking maps of the thermal Sunyaev-Zel'dovich (tSZ) effect. Perhaps surprisingly, recent observational results have indicated that the scaling relation between integrated pressure and mass follows the prediction of simple, self-similar models down to halo masses as low as 1 012.5 M⊙ . Hydrodynamical simulations that incorporate energetic feedback processes suggest that gas should be depleted from such low-mass halos, thus decreasing their tSZ signal relative to self-similar predictions. Here, we build on the modeling of V. Vikram, A. Lidz, and B. Jain, Mon. Not. R. Astron. Soc. 467, 2315 (2017), 10.1093/mnras/stw3311 to evaluate the bias in the interpretation of stacked tSZ measurements due to the signal from correlated halos (the "two-halo" term), which has generally been neglected in the literature. We fit theoretical models to a measurement of the tSZ-galaxy group cross-correlation function, accounting explicitly for the one- and two-halo contributions. We find moderate evidence of a deviation from self-similarity in the pressure-mass relation, even after marginalizing over conservative miscentering effects. We explore pressure-mass models with a break at 1 014 M⊙, as well as other variants. We discuss and test for sources of uncertainty in our analysis, in particular a possible bias in the halo mass estimates and the coarse resolution of the Planck beam. We compare our findings with earlier analyses by exploring the extent to which halo isolation criteria can reduce the two-halo contribution. Finally, we show that ongoing third-generation cosmic microwave background experiments will explicitly resolve the one-halo term in low-mass groups; our methodology can be applied to these upcoming data sets to obtain a clear answer to the question of self-similarity and an improved understanding of hot gas in low-mass halos.

  12. Particle production in e+e- annihilation at 29 GeV

    International Nuclear Information System (INIS)

    Derrick, M.

    1986-01-01

    Recent results on particle production in e + e - annihilation at 29 GeV are reviewed. The data were obtained using the High Resolution Spectrometer at PEP and correspond to an integrated luminosity of 300 pb -1 . The mean charged particle multiplicity in gluon jets from the three-jet events is found not to differ from that measured for quark jets. The production of the scalar meson S(975) and the tensor mesons f 0 (1270) and K*(1430) are observed and the rates are compared to the previously observed vector mesons, rho and K*(890). Finally, some of the global properties of charged particle production are presented and compared with similar results from soft hadronic collisions. 16 refs., 7 figs

  13. Resolution of vitiligo following excision of halo congenital melanocytic nevus: a rare case report.

    Science.gov (United States)

    Wang, Kai; Wang, Zhi; Huang, Weiqing

    2016-05-01

    Halo congenital melanocytic nevus (CMN) associated with vitiligo is rare, especially with regard to CMN excision. Only two reports of excision of halo CMN following repigmentation of vitiligo are found in the literature. We present a case of a girl with halo CMN and periorbital vitiligo. The halo CMN was excised and followed by spontaneous improvement of vitiligo. The result suggests excision of the inciting lesion may be a promising way to control vitiligo. © 2015 Wiley Periodicals, Inc.

  14. Accurate calculations of the WIMP halo around the Sun and prospects for its gamma-ray detection

    International Nuclear Information System (INIS)

    Sivertsson, Sofia; Edsjoe, Joakim

    2010-01-01

    Galactic weakly interacting massive particles (WIMPs) may scatter off solar nuclei to orbits gravitationally bound to the Sun. Once bound, the WIMPs continue to lose energy by repeated scatters in the Sun, eventually leading to complete entrapment in the solar interior. While the density of the bound population is highest at the center of the Sun, the only observable signature of WIMP annihilations inside the Sun is neutrinos. It has been previously suggested that although the density of WIMPs just outside the Sun is lower than deep inside, gamma rays from WIMP annihilation just outside the surface of the Sun, in the so-called WIMP halo around the Sun, may be more easily detected. We here revisit this problem using detailed Monte Carlo simulations and detailed composition and structure information about the Sun to estimate the size of the gamma-ray flux. Compared to earlier simpler estimates, we find that the gamma-ray flux from WIMP annihilations in the solar WIMP halo would be negligible; no current or planned detectors would be able to detect this flux.

  15. End-of-Fill Diffusion and Halo Population Measurements with Physics Beams at 6.5 TeV

    CERN Document Server

    Valentino, Gianluca; Gorzawski, Arkadiusz; Redaelli, Stefano; Trad, Georges; Wagner, Joschka; Xu, Chen; CERN. Geneva. ATS Department

    2017-01-01

    Beam halo measurements at 6.5 TeV in the LHC were conducted with a full physics beam via collimator scrapings in end-of-fill MDs carried out in May and July 2016. From the time evolution of the beam losses in a collimator scan, it is possible to extract information on the halo diffusion and population. In the first MD, six scans were performed with two collimators in the vertical and horizontal planes in B1 and B2 respectively. The scans were done with squeezed colliding beams, with and without a gentle continuous transverse blow-up with the ADT (transverse damper) on a non-colliding bunch train. In the second MD, four scans were performed with the same collimators with squeezed colliding beams. The beam losses observed with the standard ionization chamber BLMs are compared to the diamond BLMs, and parametric fits of the diffusion model are applied to temporal loss patterns from colliding and non-colliding bunch trains. The results presented in this note also include the particle escape times and frequency an...

  16. Particle production in higher derivative theory

    Indian Academy of Sciences (India)

    Cosmological models; particle production; higher derivative theory of gravitation. PACS No. 98.80. 1. ... is of singular models where the cosmic expansion is driven by the big-bang impulse; all ... According to Gibbs integrability condition, one cannot independently specify an equa- .... [3] B Hartle and S W Hawking Phys. Rev.

  17. Enrichment of r-Process Elements by Neutron Star Mergers through the Sub-Halo Clustering

    Science.gov (United States)

    Ishimaru, Yuhri; Ojima, Takuya; Wanajo, Shinya; Prantzos, Nikos

    Neutron star mergers (NSMs) are suggested to be the most plausible site of r-process by nucleosynthesis studies, while previous chemical evolution models pointed out that the long lifetimes of NS binaries are in conflict with the observed [r/Fe] of the Galactic halo stars. We attempt to solve this problem, assuming the Galactic halo was formed from merging sub-halos. We find that [r/Fe] start increasing at [Fe/H] < -3, if the star formation efficiencies are smaller for less massive sub-halos. We also show that small numbers of NSMs for least massive sub-halos could cause the large enhancement of [r/Fe]. Our results support NSMs as the major site of r-process.

  18. Neutral strange particle production in antineutrino-neon charged current interactions

    Science.gov (United States)

    Willocq, S.; Marage, P.; Aderholz, M.; Allport, P.; Baton, J. P.; Berggren, M.; Clayton, E. F.; Cooper-Sarkar, A. M.; Erriquez, O.; Faulkner, P. J. W.; Guy, J.; Hulth, P. O.; Jones, G. T.; Mobayyen, M. M.; Morrison, D. R. O.; Neveu, M.; O'Neale, S.; Sacton, J.; Sansum, R. A.; Varvell, K.; Venus, W.; Wells, J.; Wittek, W.

    1992-06-01

    Neutral strange particle production inbar v Ne charged current interactions is studied using the bubble chamber BEBC, exposed to the CERN SPS antineutrino wide band beam. From a sample of 1191 neutral strange particles, the inclusive production rates are determined to be (15.7±0.8)% for K 0 mesons, (8.2±0.5)% for Λ, (0.4±0.2)% forbar Λ and (0.6±0.3)% for Σ0 hyperons. The inclusive production properties of K 0 mesons and Λ hyperons are investigated. The Λ hyperons are found to be polarized in the production plane.

  19. The build up of the correlation between halo spin and the large-scale structure

    Science.gov (United States)

    Wang, Peng; Kang, Xi

    2018-01-01

    Both simulations and observations have confirmed that the spin of haloes/galaxies is correlated with the large-scale structure (LSS) with a mass dependence such that the spin of low-mass haloes/galaxies tend to be parallel with the LSS, while that of massive haloes/galaxies tend to be perpendicular with the LSS. It is still unclear how this mass dependence is built up over time. We use N-body simulations to trace the evolution of the halo spin-LSS correlation and find that at early times the spin of all halo progenitors is parallel with the LSS. As time goes on, mass collapsing around massive halo is more isotropic, especially the recent mass accretion along the slowest collapsing direction is significant and it brings the halo spin to be perpendicular with the LSS. Adopting the fractional anisotropy (FA) parameter to describe the degree of anisotropy of the large-scale environment, we find that the spin-LSS correlation is a strong function of the environment such that a higher FA (more anisotropic environment) leads to an aligned signal, and a lower anisotropy leads to a misaligned signal. In general, our results show that the spin-LSS correlation is a combined consequence of mass flow and halo growth within the cosmic web. Our predicted environmental dependence between spin and large-scale structure can be further tested using galaxy surveys.

  20. WEAK GALACTIC HALO-DWARF SPHEROIDAL CONNECTION FROM RR LYRAE STARS

    Energy Technology Data Exchange (ETDEWEB)

    Fiorentino, Giuliana [INAF-Osservatorio Astronomico di Bologna, via Ranzani 1, I-40127 Bologna (Italy); Bono, Giuseppe [Dipartimento di Fisica, Universitá di Roma Tor Vergata, Via della Ricerca Scientifica 1, I-00133 Roma (Italy); Monelli, Matteo; Gallart, Carme; Martínez-Vásquez, Clara E. [Instituto de Astrofísica de Canarias, Calle Via Lactea s/n, E-38205 La Laguna, Tenerife (Spain); Stetson, Peter B. [National Research Council, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Tolstoy, Eline [Kapteyn Astronomical Institute, University of Groningen, Postbus 800, 9700 AV Groningen (Netherlands); Salaris, Maurizio [Astrophysics Research Institute, Liverpool John Moores University IC2, Liverpool Science Park, 146 Brownlow Hill, Liverpool L35RF (United Kingdom); Bernard, Edouard J., E-mail: giuliana.fiorentino@oabo.inaf.it [SUPA, Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom)

    2015-01-01

    We discuss the role that dwarf galaxies may have played in the formation of the Galactic halo (Halo) using RR Lyrae stars (RRL) as tracers of their ancient stellar component. The comparison is performed using two observables (periods, luminosity amplitudes) that are reddening and distance independent. Fundamental mode RRL in 6 dwarf spheroidals (dSphs) and 11 ultra faint dwarf galaxies (∼1300) show a Gaussian period distribution well peaked around a mean period of (Pab) = 0.610 ± 0.001 days (σ = 0.03). The Halo RRL (∼15,000) are characterized by a broader period distribution. The fundamental mode RRL in all the dSphs apart from Sagittarius are completely lacking in High Amplitude Short Period (HASP) variables, defined as those having P ≲ 0.48 days and A{sub V} ≥ 0.75 mag. Such variables are not uncommon in the Halo and among the globular clusters and massive dwarf irregulars. To further interpret this evidence, we considered 18 globulars covering a broad range in metallicity (–2.3 ≲ [Fe/H] ≲ –1.1) and hosting more than 35 RRL each. The metallicity turns out to be the main parameter, since only globulars more metal-rich than [Fe/H] ∼ –1.5 host RRL in the HASP region. This finding suggests that dSphs similar to the surviving ones do not appear to be the major building-blocks of the Halo. Leading physical arguments suggest an extreme upper limit of ∼50% to their contribution. On the other hand, massive dwarfs hosting an old population with a broad metallicity distribution (Large Magellanic Cloud, Sagittarius) may have played a primary role in the formation of the Halo.

  1. High Angular Momentum Halo Gas: A Feedback and Code-independent Prediction of LCDM

    Science.gov (United States)

    Stewart, Kyle R.; Maller, Ariyeh H.; Oñorbe, Jose; Bullock, James S.; Joung, M. Ryan; Devriendt, Julien; Ceverino, Daniel; Kereš, Dušan; Hopkins, Philip F.; Faucher-Giguère, Claude-André

    2017-07-01

    We investigate angular momentum acquisition in Milky Way-sized galaxies by comparing five high resolution zoom-in simulations, each implementing identical cosmological initial conditions but utilizing different hydrodynamic codes: Enzo, Art, Ramses, Arepo, and Gizmo-PSPH. Each code implements a distinct set of feedback and star formation prescriptions. We find that while many galaxy and halo properties vary between the different codes (and feedback prescriptions), there is qualitative agreement on the process of angular momentum acquisition in the galaxy’s halo. In all simulations, cold filamentary gas accretion to the halo results in ˜4 times more specific angular momentum in cold halo gas (λ cold ≳ 0.1) than in the dark matter halo. At z > 1, this inflow takes the form of inspiraling cold streams that are co-directional in the halo of the galaxy and are fueled, aligned, and kinematically connected to filamentary gas infall along the cosmic web. Due to the qualitative agreement among disparate simulations, we conclude that the buildup of high angular momentum halo gas and the presence of these inspiraling cold streams are robust predictions of Lambda Cold Dark Matter galaxy formation, though the detailed morphology of these streams is significantly less certain. A growing body of observational evidence suggests that this process is borne out in the real universe.

  2. High Angular Momentum Halo Gas: A Feedback and Code-independent Prediction of LCDM

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Kyle R. [Department of Mathematical Sciences, California Baptist University, 8432 Magnolia Ave., Riverside, CA 92504 (United States); Maller, Ariyeh H. [Department of Physics, New York City College of Technology, 300 Jay St., Brooklyn, NY 11201 (United States); Oñorbe, Jose [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Bullock, James S. [Center for Cosmology, Department of Physics and Astronomy, The University of California at Irvine, Irvine, CA 92697 (United States); Joung, M. Ryan [Department of Astronomy, Columbia University, New York, NY 10027 (United States); Devriendt, Julien [Department of Physics, University of Oxford, The Denys Wilkinson Building, Keble Rd., Oxford OX1 3RH (United Kingdom); Ceverino, Daniel [Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany); Kereš, Dušan [Department of Physics, Center for Astrophysics and Space Sciences, University of California at San Diego, 9500 Gilman Dr., La Jolla, CA 92093 (United States); Hopkins, Philip F. [California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Faucher-Giguère, Claude-André [Department of Physics and Astronomy and CIERA, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208 (United States)

    2017-07-01

    We investigate angular momentum acquisition in Milky Way-sized galaxies by comparing five high resolution zoom-in simulations, each implementing identical cosmological initial conditions but utilizing different hydrodynamic codes: Enzo, Art, Ramses, Arepo, and Gizmo-PSPH. Each code implements a distinct set of feedback and star formation prescriptions. We find that while many galaxy and halo properties vary between the different codes (and feedback prescriptions), there is qualitative agreement on the process of angular momentum acquisition in the galaxy’s halo. In all simulations, cold filamentary gas accretion to the halo results in ∼4 times more specific angular momentum in cold halo gas ( λ {sub cold} ≳ 0.1) than in the dark matter halo. At z > 1, this inflow takes the form of inspiraling cold streams that are co-directional in the halo of the galaxy and are fueled, aligned, and kinematically connected to filamentary gas infall along the cosmic web. Due to the qualitative agreement among disparate simulations, we conclude that the buildup of high angular momentum halo gas and the presence of these inspiraling cold streams are robust predictions of Lambda Cold Dark Matter galaxy formation, though the detailed morphology of these streams is significantly less certain. A growing body of observational evidence suggests that this process is borne out in the real universe.

  3. Numerical Convergence in the Dark Matter Halos Properties Using Cosmological Simulations

    Science.gov (United States)

    Mosquera-Escobar, X. E.; Muñoz-Cuartas, J. C.

    2017-07-01

    Nowadays, the accepted cosmological model is the so called -Cold Dark Matter (CDM). In such model, the universe is considered to be homogeneous and isotropic, composed of diverse components as the dark matter and dark energy, where the latter is the most abundant one. Dark matter plays an important role because it is responsible for the generation of gravitational potential wells, commonly called dark matter halos. At the end, dark matter halos are characterized by a set of parameters (mass, radius, concentration, spin parameter), these parameters provide valuable information for different studies, such as galaxy formation, gravitational lensing, etc. In this work we use the publicly available code Gadget2 to perform cosmological simulations to find to what extent the numerical parameters of the simu- lations, such as gravitational softening, integration time step and force calculation accuracy affect the physical properties of the dark matter halos. We ran a suite of simulations where these parameters were varied in a systematic way in order to explore accurately their impact on the structural parameters of dark matter halos. We show that the variations on the numerical parameters affect the structural pa- rameters of dark matter halos, such as concentration, virial radius, and concentration. We show that these modifications emerged when structures become non- linear (at redshift 2) for the scale of our simulations, such that these variations affected the formation and evolution structure of halos mainly at later cosmic times. As a quantitative result, we propose which would be the most appropriate values for the numerical parameters of the simulations, such that they do not affect the halo properties that are formed. For force calculation accuracy we suggest values smaller or equal to 0.0001, integration time step smaller o equal to 0.005 and for gravitational softening we propose equal to 1/60th of the mean interparticle distance, these values, correspond to the

  4. Multifield stochastic particle production: beyond a maximum entropy ansatz

    Energy Technology Data Exchange (ETDEWEB)

    Amin, Mustafa A.; Garcia, Marcos A.G.; Xie, Hong-Yi; Wen, Osmond, E-mail: mustafa.a.amin@gmail.com, E-mail: marcos.garcia@rice.edu, E-mail: hxie39@wisc.edu, E-mail: ow4@rice.edu [Physics and Astronomy Department, Rice University, 6100 Main Street, Houston, TX 77005 (United States)

    2017-09-01

    We explore non-adiabatic particle production for N {sub f} coupled scalar fields in a time-dependent background with stochastically varying effective masses, cross-couplings and intervals between interactions. Under the assumption of weak scattering per interaction, we provide a framework for calculating the typical particle production rates after a large number of interactions. After setting up the framework, for analytic tractability, we consider interactions (effective masses and cross couplings) characterized by series of Dirac-delta functions in time with amplitudes and locations drawn from different distributions. Without assuming that the fields are statistically equivalent, we present closed form results (up to quadratures) for the asymptotic particle production rates for the N {sub f}=1 and N {sub f}=2 cases. We also present results for the general N {sub f} >2 case, but with more restrictive assumptions. We find agreement between our analytic results and direct numerical calculations of the total occupation number of the produced particles, with departures that can be explained in terms of violation of our assumptions. We elucidate the precise connection between the maximum entropy ansatz (MEA) used in Amin and Baumann (2015) and the underlying statistical distribution of the self and cross couplings. We provide and justify a simple to use (MEA-inspired) expression for the particle production rate, which agrees with our more detailed treatment when the parameters characterizing the effective mass and cross-couplings between fields are all comparable to each other. However, deviations are seen when some parameters differ significantly from others. We show that such deviations become negligible for a broad range of parameters when N {sub f}>> 1.

  5. Compression of dark halos by baryon infall - Self-similar solutions

    International Nuclear Information System (INIS)

    Ryden, B.S.

    1991-01-01

    The compression of dissipationless halos by dissipative baryon infall is examined through the use of self-similar models. The models are spherically symmetric, with asymptotic density profiles of given form. A fraction f of the matter consists of freely falling baryons; the remainder of the matter, consisting of dark matter with initial dispersion anisotropy beta is gravitationally compressed by the infalling baryons. Analytic results are presented in the limiting cases f = 1 and f = 0. Numerical results are given for halos with varying values of alpha, beta, and f. The compression of the dark matter is found to be adiabatic and has a Mach number less than 1 throughout the halo. 10 refs

  6. Recoiling black holes in static and evolving dark matter halo potential

    Directory of Open Access Journals (Sweden)

    Smole M.

    2015-01-01

    Full Text Available We follow trajectories of kicked black holes in static and evolving dark matter halo potential. We explore both NFW and Einasto dark matter density distributions. Considered dark matter halos represent hosts of massive spiral and elliptical field galaxies. We study critical amplitude of kick velocity necessary for complete black hole ejection at various redshifts and find that ~40% lower kick velocities can remove black holes from their host haloes at z = 7 compared to z = 1. The greatest difference between static and evolving potential occurs near the critical velocity for black hole ejection and at high redshifts. When NFW and Einasto density distributions are compared ~30% higher kick velocities are needed for complete removal of BHs from dark matter halo described by NFW profile. [Projekat Ministarstva nauke Republike Srbije, br. 176021: Visible and invisible matter in nearby galaxies: Theory and observations

  7. An atmospheric interaction above 10000 TeV accompanying big Halo

    International Nuclear Information System (INIS)

    Yamashita, S.

    1982-01-01

    An atmospheric interaction accompanying big Halo was detected in Chacaltaya emulsion chamber No.19. There are observed two peculiar characteristics. One is the existence of big Halo of a size 2 cm in radius at family center and the other rich in hadrons. Comparison is made with events of same nature including the biggest Andromeda event

  8. The Particle Habit Imaging and Polar Scattering probe PHIPS: First Stereo-Imaging and Polar Scattering Function Measurements of Ice Particles

    Science.gov (United States)

    Abdelmonem, A.; Schnaiter, M.; Schön, R.; Leisner, T.

    2009-04-01

    Cirrus clouds impact climate by their influence on the water vapour distribution in the upper troposphere. Moreover, they directly affect the radiative balance of the Earth's atmosphere by the scattering of incoming solar radiation and the absorption of outgoing thermal emission. The link between the microphysical properties of ice cloud particles and the radiative forcing of the clouds is not as yet well understood and the influence of the shapes of ice crystals on the radiative budget of cirrus clouds is currently under debate. PHIPS is a new experimental device for the stereo-imaging of individual cloud particles and the simultaneous measurement of the polar scattering function of the same particle. PHIPS uses an automated particle event triggering system that ensures that only those particles are captured which are located in the field of view - depth of field volume of the microscope unit. Efforts were made to improve the resolution power of the microscope unit down to about 3 µm and to facilitate a 3D morphology impression of the ice crystals. This is realised by a stereo-imaging set up composed of two identical microscopes which image the same particle under an angular viewing distance of 30°. The scattering part of PHIPS enables the measurement of the polar light scattering function of cloud particles with an angular resolution of 1° for forward scattering directions (from 1° to 10°) and 8° for side and backscattering directions (from 18° to 170°). For each particle the light scattering pulse per channel is stored either as integrated intensity or as time resolved intensity function which opens a new category of data analysis concerning details of the particle movement. PHIPS is the first step to PHIPS-HALO which is one of the in situ ice particle and water vapour instruments that are currently under development for the new German research aircraft HALO. The instrument was tested in the ice cloud characterisation campaign HALO-02 which was conducted

  9. Search for additional muons in hadronic production of J/psi particles

    International Nuclear Information System (INIS)

    Anderson, K.J.; Coleman, R.N.; Karhi, K.P.; Newman, C.B.; Pilcher, J.E.; Rosenberg, E.I.; Thaler, J.J.; Hogan, G.E.; McDonald, K.T.; Sanders, G.H.; Smith, A.J.S.

    1980-01-01

    A sample of J/psi → μ + μ - decays produced by a 225-GeV/c π - beam on nuclear targets has been analyzed for extra muons. Muons observed in coincidence with J/psi production could indicate either the production of charmed particles or the production of pairs of J/psi particles. We find 90% confidence limits of sigma/sub J/DD-bar/sigma/sub J/<0.016 for associated charm production and sigma/sub J/J/sigma/sub J/<0.005 for the production of J/psi pairs

  10. Particle production in heavy ion collisions

    International Nuclear Information System (INIS)

    Braun-Munzinger, P.; Redlich, K.; Wroclaw Univ.; Stachel, J.

    2003-04-01

    The status of thermal model descriptions of particle production in heavy ion collisions is presented. We discuss the formulation of statistical models with different implementation of the conservation laws and indicate their applicability in heavy ion and elementary particle collisions. We analyze experimental data on hadronic abundances obtained in ultra-relativistic heavy ion collisions, in a very broad energy range starting from RHIC/BNL (√(s) = 200 A GeV), SPS/CERN (√(s) ≅ 20 A GeV) up to AGS/BNL (√(s) ≅ 5 A GeV) and SIS/GSI (√(s) ≅ 2 A GeV) to test equilibration of the fireball created in the collision. We argue that the statistical approach provides a very satisfactory description of experimental data covering this wide energy range. Any deviations of the model predictions from the data are indicated. We discuss the unified description of particle chemical freeze-out and the excitation functions of different particle species. At SPS and RHIC energy the relation of freeze-out parameters with the QCD phase boundary is analyzed. Furthermore, the application of the extended statistical model to quantitative understanding of open and hidden charm hadron yields is considered. (orig.)

  11. Particle production at AGS energies

    International Nuclear Information System (INIS)

    Steadman, S.G.; Rothschild, P.J.; Sung, T.W.; Zachary, D.

    1995-01-01

    The authors discuss particle production from 14.6 A·GeV/c Si and 11.6 A·GeV/c Au projectiles on Al and Au targets. The second-level trigger utilized by E859 allows high precision measurements of K - , bar p, Λ and bar Λ. The bar Λ yield is larger than expected, and a surprisingly large fraction of the bar p's are observed to arise from the decay of bar Λ

  12. Synthesis, Properties and Stereochemistry of 2-Halo-1,2λ⁵-oxaphosphetanes.

    Science.gov (United States)

    Kolodiazhna, Anastasy O; Kolodiazhnyi, Oleg I

    2016-10-17

    Results of research into four-membered 2-halo-1,2λ⁵-oxaphosphetane phosphorus(V)-heterocycles are presented. The preparation of 2-halo-1,2λ⁵-oxaphosphetanes by reaction of P- haloylides with carbonyl compounds is described. The mechanism of asynchronous [2+2]-сycloaddition of ylides to aldehydes was proposed on the base of low-temperature NMR investigations. 2-Halo-1,2λ⁵-oxaphosphetanes were isolated as individual compounds and their structures were confirmed by ¹Н-, 13 C-, 19 F- and 31 Р-NMR spectra. These compounds are convenient reagents for preparing of various organic and organophosphorus compounds hardly available by other methods. Chemical and physical properties of the 2-halo-1,2λ⁵-oxaphosphetanes are reviewed. The 2-chloro-1,2λ⁵-oxaphosphetanes, rearrange with formation of 2-chloroalkyl-phosphonates or convert into trans -phosphorylated alkenes depending on the substituents at the α-carbon atom. Prospective synthetic applications of 2-halo-1,2λ⁵-oxaphosphetanes are analyzed. The 2-halo-1,2λ⁵-oxaphosphetanes may be easily converted to various alkenylphosphonates: allyl- or vinylphosphonates, phosphorus ketenes, thioketenes, ketenimines.

  13. NOT DEAD YET: COOL CIRCUMGALACTIC GAS IN THE HALOS OF EARLY-TYPE GALAXIES

    International Nuclear Information System (INIS)

    Thom, Christopher; Tumlinson, Jason; Sembach, Kenneth R.; Werk, Jessica K.; Xavier Prochaska, J.; Oppenheimer, Benjamin D.; Peeples, Molly S.; Tripp, Todd M.; Katz, Neal S.; O'Meara, John M.; Ford, Amanda Brady; Davé, Romeel; Weinberg, David H.

    2012-01-01

    We report new observations of circumgalactic gas in the halos of early-type galaxies (ETGs) obtained by the COS-Halos Survey with the Cosmic Origins Spectrograph on board the Hubble Space Telescope. We find that detections of H I surrounding ETGs are typically as common and strong as around star-forming galaxies, implying that the total mass of circumgalactic material is comparable in the two populations. For ETGs, the covering fraction for H I absorption above 10 16 cm –2 is ∼40%-50% within ∼150 kpc. Line widths and kinematics of the detected material show it to be cold (T ∼ 5 K) in comparison to the virial temperature of the host halos. The implied masses of cool, photoionized circumgalactic medium baryons may be up to 10 9 -10 11 M ☉ . Contrary to some theoretical expectations, strong halo H I absorbers do not disappear as part of the quenching of star formation. Even passive galaxies retain significant reservoirs of halo baryons that could replenish the interstellar gas reservoir and eventually form stars. This halo gas may feed the diffuse and molecular gas that is frequently observed inside ETGs.

  14. Measuring the Dust Grains and Distance to X Persei Via Its X-ray Halo

    Science.gov (United States)

    Smith, Randall

    2006-09-01

    We propose to observe the X-ray halo of the high mass X-ray binary pulsar X Per to measure interstellar dust grains along the line of sight (LOS) and to determine the distance to X Per. The X-ray halo is formed by scattering from grains along the LOS, which for X Per appear to be concentrated in one molecular cloud. Unlike many other X-ray halo observations, this low-absorption high-latitude sightline is well-characterized from absorption spectroscopy done with HST, Copernicus, and FUSE. This halo observation will measure the distance to the cloud and the dust size distribution in it. We will also be able to determine the distance to X Per by measuring the time delayed pulses in the X-ray halo.

  15. The warm dark matter halo mass function below the cut-off scale

    Science.gov (United States)

    Angulo, Raul E.; Hahn, Oliver; Abel, Tom

    2013-10-01

    Warm dark matter (WDM) cosmologies are a viable alternative to the cold dark matter (CDM) scenario. Unfortunately, an accurate scrutiny of the WDM predictions with N-body simulations has proven difficult due to numerical artefacts. Here, we report on cosmological simulations that, for the first time, are devoid of those problems, and thus are able to accurately resolve the WDM halo mass function well below the cut-off. We discover a complex picture, with perturbations at different evolutionary stages populating different ranges in the halo mass function. On the smallest mass scales we can resolve, identified objects are typically centres of filaments that are starting to collapse. On intermediate mass scales, objects typically correspond to fluctuations that have collapsed and are in the process of relaxation, whereas the high-mass end is dominated by objects similar to haloes identified in CDM simulations. We then explicitly show how the formation of low-mass haloes is suppressed, which translates into a strong cut-off in the halo mass function. This disfavours some analytic formulations that predict a halo mass function that would extend well below the free streaming mass. We argue for a more detailed exploration of the formation of the smallest structures expected to form in a given cosmology, which, we foresee, will advance our overall understanding of structure formation.

  16. Analytical shear and flexion of Einasto dark matter haloes

    OpenAIRE

    Retana-Montenegro, E.; Frutos-Alfaro, F.; Baes, M.

    2012-01-01

    N-body simulations predict that dark matter haloes are described by specific density profiles on both galactic- and cluster-sized scales. Weak gravitational lensing through the measurements of their first and second order properties, shear and flexion, is a powerful observational tool for investigating the true shape of these profiles. One of the three-parameter density profiles recently favoured in the description of dark matter haloes is the Einasto profile. We present exact expressions for...

  17. Integrated Marketing Communications (IMC) di PT Halo Rumah Bernyanyi

    OpenAIRE

    Rebekka Rismayanti

    2017-01-01

    Abstract: This research aims to describe the effectiveness of Integrated Marketing Communication (IMC) in PT Halo Rumah Bernyanyi which, from the perspective of marketing strategy, could be studied by analyzing the segmentation, targeting, and positioning. Using case-study method with in-depth interview, the result shows that the implementation of IMC at PT Halo Rumah Bernyayi is arranged in one single strategy and tend to neglect the complexities of running multi-brand family karaoke-house. ...

  18. Detection of Hot Halo Gets Theory Out of Hot Water

    Science.gov (United States)

    2006-02-01

    Scientists using NASA's Chandra X-ray Observatory have detected an extensive halo of hot gas around a quiescent spiral galaxy. This discovery is evidence that galaxies like our Milky Way are still accumulating matter from the gradual inflow of intergalactic gas. "What we are likely witnessing here is the ongoing galaxy formation process," said Kristian Pedersen of the University of Copenhagen, Denmark, and lead author of a report on the discovery. Chandra observations show that the hot halo extends more than 60,000 light years on either side of the disk of the galaxy known as NGC 5746. The detection of such a large halo alleviates a long-standing problem for the theory of galaxy formation. Spiral galaxies are thought to form from enormous clouds of intergalactic gas that collapse to form giant, spinning disks of stars and gas. Chandra X-ray Image of NGC 5746 Chandra X-ray Image of NGC 5746 One prediction of this theory is that large spiral galaxies should be immersed in halos of hot gas left over from the galaxy formation process. Hot gas has been detected around spiral galaxies in which vigorous star formation is ejecting matter from the galaxy, but until now hot halos due to infall of intergalactic matter have not been detected. "Our observations solve the mystery of the missing hot halos around spiral galaxies," said Pedersen. "The halos exist, but are so faint that an extremely sensitive telescope such as Chandra is needed to detect them." DSS Optical Image of NGC 5746 DSS Optical Image of NGC 5746 NGC 5746 is a massive spiral galaxy about a 100 million light years from Earth. Its disk of stars and gas is viewed almost edge-on. The galaxy shows no signs of unusual star formation, or energetic activity from its nuclear region, making it unlikely that the hot halo is produced by gas flowing out of the galaxy. "We targeted NGC 5746 because we thought its distance and orientation would give us the best chance to detect a hot halo caused by the infall of

  19. SEPARATION OF FISCHER-TROPSCH WAX PRODUCTS FROM ULTRAFINE IRON CATALYST PARTICLES

    Energy Technology Data Exchange (ETDEWEB)

    James K. Neathery; Gary Jacobs; Burtron H. Davis

    2004-03-31

    In this reporting period, a fundamental filtration study was started to investigate the separation of Fischer-Tropsch Synthesis (FTS) liquids from iron-based catalyst particles. Slurry-phase FTS in slurry bubble column reactor systems is the preferred mode of production since the reaction is highly exothermic. Consequently, heavy wax products must be separated from catalyst particles before being removed from the reactor system. Achieving an efficient wax product separation from iron-based catalysts is one of the most challenging technical problems associated with slurry-phase FTS. The separation problem is further compounded by catalyst particle attrition and the formation of ultra-fine iron carbide and/or carbon particles. Existing pilot-scale equipment was modified to include a filtration test apparatus. After undergoing an extensive plant shakedown period, filtration tests with cross-flow filter modules using simulant FTS wax slurry were conducted. The focus of these early tests was to find adequate mixtures of polyethylene wax to simulate FTS wax. Catalyst particle size analysis techniques were also developed. Initial analyses of the slurry and filter permeate particles will be used by the research team to design improved filter media and cleaning strategies.

  20. Neutral strange particle production in neutrino interactions at Tevatron energies

    International Nuclear Information System (INIS)

    De, K.

    1988-05-01

    This thesis reports on a study of neutral strange particle production by high energy muon-neutrinos. The neutrinos were obtained from a 800 GeV proton beam-dump at Fermilab. Neutrino events were observed using a hybrid bubble chamber detector system. The data contained deep inelastic neutrino-nucleon interactions with an average momentum transfer 2 > = 23 (GeV/c) 2 . Rates for K 0 and Λ production in neutrino and anti-neutrino charged current events are presented. The distributions of these particles in Feynman x and rapidity are also studied. Significant differences were observed in the production mechanism for the K 0 meson and the Λ baryon. The production rates of K 0 's were observed to increase with energy, whereas the rates for Λ production remained essentially constant. In Feynman x, the K 0 's were produced in the central region and the Λ's were produced backwards. The data are compared with the LUND monte carlo for string fragmentation. In the monte carlo, K 0 's are mostly produced from s/bar s/ pair production during fragmentation. The Λ's are generally produced through recombination with the diquark from the target nucleon. The data agree with this model for strange particle production. 39 refs., 24 figs., 10 tabs

  1. Halos around ellipticals and the environment dependence of Hubble type

    International Nuclear Information System (INIS)

    Zurek, W.H.; Quinn, P.J.; Salmon, J.K.

    1985-01-01

    It is not surprising that the baryonic material inside the more compact halos will tend to form a more compact, luminous elliptical. What needs to be explained is the difference in the value of the spin parameter (lambda). It might be tempting to speculate that more compact, dense halos have systematically smaller values of lambda. Such an effect is predicted by linear calculations. Our simulations show that it may exist but it appears to be too small compared to the random scatter of the values of lambda and rho to be decisive. It is more likely that the baryonic material has initially similar lambda both in the future spirals and elliptical but compact halos damp out the lambda of the dissipative, baryonic material more readily

  2. Semiclassical description of soliton-antisoliton pair production in particle collisions

    Energy Technology Data Exchange (ETDEWEB)

    Demidov, S.V.; Levkov, D.G. [Institute for Nuclear Research of the Russian Academy of Sciences,60th October Anniversary prospect 7a, Moscow 117312 (Russian Federation)

    2015-11-10

    We develop a consistent semiclassical method to calculate the probability of topological soliton-antisoliton pair production in collisions of elementary particles. In our method one adds an auxiliary external field pulling the soliton and antisoliton in the opposite directions. This transforms the original scattering process into a Schwinger pair creation of the solitons induced by the particle collision. One describes the Schwinger process semiclassically and recovers the original scattering probability in the limit of vanishing external field. We illustrate the method in (1+1)-dimensional scalar field model where the suppression exponents of soliton-antisoliton production in the multiparticle and two-particle collisions are computed numerically.

  3. Special role of neutron-halo nucleus on the momentum dissipation in heavy ion collisions

    International Nuclear Information System (INIS)

    Xing Yongzhong; Tianshui Normal Univ., Tianshui; Liu Jianye; Tianshui Normal Univ., Tianshui; Chinese Academy of Sciences, Lanzhou; Zuo Wei; Li Xiguo; Chinese Academy of Sciences, Lanzhou

    2005-01-01

    The special role of neutron-halo nucleus 19 B on the momentum dissipation was investigated by using isospin dependent quantum molecular dynamics. In order to compare and protrude the special role of neutron-halo-nucleus 19 B, the momentum dissipation induced by a same mass stable nucleus 19 F was investigated under the same incident channel condition. It is found that the weak bound neutron-halo structure of 19 B weakens the momentum dissipation process compared to those induced by stable nucleus 19 F in the lower energy region. However the nuclear stopping of colliding system with the neutron-halo nucleus 19 B decreases gradually with the increasing beam energy. For all of mass targets and impact parameters the neutron-halo nucleus 19 B weakens the momentum dissipation process. (authors)

  4. The acceleration of particles at propagating interplanetary shocks

    Science.gov (United States)

    Prinsloo, P. L.; Strauss, R. D. T.

    2017-12-01

    Enhancements of charged energetic particles are often observed at Earth following the eruption of coronal mass ejections (CMEs) on the Sun. These enhancements are thought to arise from the acceleration of those particles at interplanetary shocks forming ahead of CMEs, propagating into the heliosphere. In this study, we model the acceleration of these energetic particles by solving a set of stochastic differential equations formulated to describe their transport and including the effects of diffusive shock acceleration. The study focuses on how acceleration at halo-CME-driven shocks alter the energy spectra of non-thermal particles, while illustrating how this acceleration process depends on various shock and transport parameters. We finally attempt to establish the relative contributions of different seed populations of energetic particles in the inner heliosphere to observed intensities during selected acceleration events.

  5. Integrated Marketing Communications (IMC) Di PT Halo Rumah Bernyanyi

    OpenAIRE

    Rismayanti, Rebekka

    2016-01-01

    : This research aims to describe the effectiveness of Integrated Marketing Communication (IMC) in PT Halo Rumah Bernyanyi which, from the perspective of marketing strategy, could be studied by analyzing the segmentation, targeting, and positioning. Using case-study method with in-depth interview, the result shows that the implementation of IMC at PT Halo Rumah Bernyayi is arranged in one single strategy and tend to neglect the complexities of running multi-brand family karaoke-house. This con...

  6. Strong bimodality in the host halo mass of central galaxies from galaxy-galaxy lensing

    Science.gov (United States)

    Mandelbaum, Rachel; Wang, Wenting; Zu, Ying; White, Simon; Henriques, Bruno; More, Surhud

    2016-04-01

    We use galaxy-galaxy lensing to study the dark matter haloes surrounding a sample of locally brightest galaxies (LBGs) selected from the Sloan Digital Sky Survey. We measure mean halo mass as a function of the stellar mass and colour of the central galaxy. Mock catalogues constructed from semi-analytic galaxy formation simulations demonstrate that most LBGs are the central objects of their haloes, greatly reducing interpretation uncertainties due to satellite contributions to the lensing signal. Over the full stellar mass range, 10.3 10.7. Tests using the mock catalogues and on the data themselves clarify the effects of LBG selection and show that it cannot artificially induce a systematic dependence of halo mass on LBG colour. The bimodality in halo mass at fixed stellar mass is reproduced by the astrophysical model underlying our mock catalogue, but the sign of the effect is inconsistent with recent, nearly parameter-free age-matching models. The sign and magnitude of the effect can, however, be reproduced by halo occupation distribution models with a simple (few-parameter) prescription for type dependence.

  7. Halo Histories vs. Galaxy Properties at z=0, III: The Properties of Star-Forming Galaxies

    Science.gov (United States)

    Tinker, Jeremy L.; Hahn, ChangHoon; Mao, Yao-Yuan; Wetzel, Andrew R.

    2018-05-01

    We measure how the properties of star-forming central galaxies correlate with large-scale environment, δ, measured on 10 h-1Mpc scales. We use galaxy group catalogs to isolate a robust sample of central galaxies with high purity and completeness. The galaxy properties we investigate are star formation rate (SFR), exponential disk scale length Rexp, and Sersic index of the galaxy light profile, nS. We find that, at all stellar masses, there is an inverse correlation between SFR and δ, meaning that above-average star forming centrals live in underdense regions. For nS and Rexp, there is no correlation with δ at M_\\ast ≲ 10^{10.5} M⊙, but at higher masses there are positive correlations; a weak correlation with Rexp and a strong correlation with nS. These data are evidence of assembly bias within the star-forming population. The results for SFR are consistent with a model in which SFR correlates with present-day halo accretion rate, \\dot{M}_h. In this model, galaxies are assigned to halos using the abundance matching ansatz, which maps galaxy stellar mass onto halo mass. At fixed halo mass, SFR is then assigned to galaxies using the same approach, but \\dot{M}_h is used to map onto SFR. The best-fit model requires some scatter in the \\dot{M}_h-SFR relation. The Rexp and nS measurements are consistent with a model in which both of these quantities are correlated with the spin parameter of the halo, λ. Halo spin does not correlate with δ at low halo masses, but for higher mass halos, high-spin halos live in higher density environments at fixed Mh. Put together with the earlier installments of this series, these data demonstrate that quenching processes have limited correlation with halo formation history, but the growth of active galaxies, as well as other detailed galaxies properties, are influenced by the details of halo assembly.

  8. Test of internal halo targets in the HERA proton ring

    International Nuclear Information System (INIS)

    Hast, C.; Hofmann, W.; Khan, S.; Knoepfle, K.T.; Reber, M.; Rieling, J.; Spahn, M.; Spengler, J.; Lohse, T.; Pugatch, V.

    1994-07-01

    Internal wire targets in the halo of stored proton beams provide a line source of proton-nucleus interactions for highest-rate fixed target experiments. We have studied such internal halo targets at the 820 GeV proton ring of the HERA ep collider. The tests showed that most of the protons in the beam halo - which would otherwise hit the collimators - can be brought to interaction in a relatively thin target wire at distances of 7 to 8 beam widths from the center of the beam. At less than 10% of the HERA total design current, and less than 20% of the current per bunch, interaction rates up to 8 MHz were observed, corresponding to more than 2 interactions per bunch crossing. The halo targets were used in parallel to the HERA luminosity operation; no significant disturbances of the HERA ep experiments, of the machine stability or beam quality were observed. We present data on the steady-state and transient behaviour of interaction rates and discuss the interpretation in terms of a simple beam dynamics model. Issues of short-, medium- and long-term rate fluctuations and of rate stabilization by feedback are addressed. (orig.)

  9. Test of internal halo targets in the HERA proton ring

    International Nuclear Information System (INIS)

    Hast, C.; Hofmann, W.; Khan, S.; Knoepfle, K.T.; Reber, M.; Rieling, J.; Spahn, M.; Spengler, J.; Lohse, T.; Pugatch, V.

    1995-01-01

    Internal wire targets in the halo of stored proton beams provide a line source of proton-nucleus interactions for highest-rate fixed target experiments. We have studied such internal halo targets at the 820 GeV proton ring of the HERA ep collider. The tests showed that most of the protons in the beam halo - which would otherwise hit the collimators - can be brought to interaction in a relatively thin target wire at distances of 7 to 8 beam widths from the center of the beam. At less than 10% of the HERA total design current, and less than 20% of the current per bunch, interaction rates up to 8 MHz were observed, corresponding to more than 2 interactions per bunch crossing. The halo targets were used in parallel to the HERA luminosity operation; no significant disturbances of the HERA ep experiments, of the machine stability or beam quality were observed. We present data on the steady-state and transient behaviour of interaction rates and discuss the interpretation in terms of a simple beam dynamics model. Issues of short-, medium- and long-term rate fluctuations and of rate stabilization by feedback are addressed. ((orig.))

  10. Nuclear fuel particle and method of production

    International Nuclear Information System (INIS)

    Wagner-Loffler, M.

    1975-01-01

    The core consisting of fuel oxide (UO 2 or Th or Pu oxide) of a fuel particle coated with carbon-contained material is enriched with a small addition (max 6 wt.%) of a Ba or Sr compound (atomic ratio for nuclear fuel oxide Ba being 5 - 10 : 1) which is to prevent fission products breaking the protective carbon and/or silicon carbide coating; the Ba or Sr molybdate generated is to reduce the pressure of the carbon dioxide produced. Methods to manufacture such nuclear fuel particles are proposed where 1) an agglomerisation and shaping of the spheres in a fast cycling bowle and 2) a formation of drops from a colloidal solution which are made to congeal in a liquid paraffin column, take place followed by the pyrolytic coating of the particles. (UWI/LH) [de

  11. Null Environmental Effects of the Cosmic Web on Dark Matter Halo Properties

    Science.gov (United States)

    Goh, Tze; Primack, Joel; Aragon-Calvo, Miguel; Hellinger, Doug; Rodriguez-Puebla, Aldo; Lee, Christoph; Eckleholm, Elliot; Johnston, Kathryn

    2018-01-01

    We study the effects of the cosmic web environment (filaments, voids and walls) and environmental density on key properties of dark matter halos at redshift z = 0 using the Bolshoi-Planck ΛCDM. The z=0 Bolshoi-Planck simulation is analysed into filaments, voids and walls using the SpineWeb method, as well as VIDE method, both of which use Voronoi tessellation and the watershed transform. The key halo properties that we study are the mass accretion rate, spin parameter, concentration, prolateness, scale factor of the last major merger, and scale factor when the halo had half of its z=0 mass. For all these properties, we find that there is no discernible difference between the halo properties in filaments, walls or voids when compared at the same environmental density. As a result, we conclude that environmental density is the core attribute that affects these properties. This conclusion is in line with recent findings that properties of galaxies in redshift surveys are independent of their cosmic web environment at the same environmental density. We also find that the local web environment of the Milky Way and the Andromeda galaxy near the centre of a cosmic wall does not appear to have any effect on the key properties of these galaxies' dark matter halos, although we find that it is rather rare to have such massive halos near the centre of a relatively small cosmic wall.

  12. STRUCTURE AND POPULATION OF THE ANDROMEDA STELLAR HALO FROM A SUBARU/SUPRIME-CAM SURVEY

    International Nuclear Information System (INIS)

    Tanaka, Mikito; Chiba, Masashi; Komiyama, Yutaka; Iye, Masanori; Guhathakurta, Puragra; Kalirai, Jason S.

    2010-01-01

    We present a photometric survey of the stellar halo of the nearest giant spiral galaxy, Andromeda (M31), using Suprime-Cam on the Subaru Telescope. A detailed analysis of VI color-magnitude diagrams of the resolved stellar population is used to measure properties such as line-of-sight distance, surface brightness, metallicity, and age. These are used to isolate and characterize different components of the M31 halo: (1) the giant southern stream (GSS); (2) several other substructures; and (3) the smooth halo. First, the GSS is characterized by a broad red giant branch (RGB) and a metal-rich/intermediate-age red clump (RC). The I magnitude of the well-defined tip of the RGB suggests that the distance to the observed GSS field is (m - M) 0 = 24.73 ± 0.11 (883 ± 45 kpc) at a projected radius of R ∼ 30 kpc from M31's center. The GSS shows a high metallicity peaked at [Fe/H]∼>-0.5 with a mean (median) of -0.7 (-0.6), estimated via comparison with theoretical isochrones. Combined with the luminosity of the RC, we estimate the mean age of its stellar population to be ∼8 Gyr. The mass of its progenitor galaxy is likely in the range of 10 7 -10 9 M sun . Second, we study M31's halo substructure along the northwest/southeast minor axis out to R ∼ 100 kpc and the southwest major-axis region at R ∼ 60 kpc. We confirm two substructures in the southeast halo reported by Ibata et al. and discover two overdense substructures in the northwest halo. We investigate the properties of these four substructures as well as other structures including the western shelf and find that differences in stellar populations among these systems, thereby suggesting each has a different origin. Our statistical analysis implies that the M31 halo as a whole may contain at least 16 substructures, each with a different origin, so its outer halo has experienced at least this many accretion events involving dwarf satellites with mass 10 7 -10 9 M sun since a redshift of z ∼ 1. Third, we

  13. Stellar Mass-gap as a Probe of Halo Assembly History and Concentration: Youth Hidden among Old Fossils

    Science.gov (United States)

    Deason, A. J.; Conroy, C.; Wetzel, A. R.; Tinker, J. L.

    2013-11-01

    We investigate the use of the halo mass-gap statistic—defined as the logarithmic difference in mass between the host halo and its most massive satellite subhalo—as a probe of halo age and concentration. A cosmological N-body simulation is used to study N ~ 25, 000 group/cluster-sized halos in the mass range 1012.5 time and concentration. On average, older and more highly concentrated halos have larger halo mass-gaps, and this trend is stronger than the mass-concentration relation over a similar dynamic range. However, there is a large amount of scatter owing to the transitory nature of the satellite subhalo population, which limits the use of the halo mass-gap statistic on an object-by-object basis. For example, we find that 20% of very large halo mass-gap systems (akin to "fossil groups") are young and have likely experienced a recent merger between a massive satellite subhalo and the central subhalo. We relate halo mass-gap to the observable stellar mass-gap via abundance matching. Using a galaxy group catalog constructed from the Sloan Digital Sky Survey Data Release 7, we find that the star formation and structural properties of galaxies at fixed mass show no trend with stellar mass-gap. This is despite a variation in halo age of ≈2.5 Gyr over ≈1.2 dex in stellar mass-gap. Thus, we find no evidence to suggest that the halo formation history significantly affects galaxy properties.

  14. STRUCTURAL PROPERTIES OF NON-SPHERICAL DARK HALOS IN MILKY WAY AND ANDROMEDA DWARF SPHEROIDAL GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Kohei [Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), The University of Tokyo, Chiba 277-8583 (Japan); Chiba, Masashi, E-mail: kohei.hayashi@ipmu.jp, E-mail: chiba@astr.tohoku.ac.jp [Astronomical Institute, Tohoku University, Aoba-ku, Sendai 980-8578 (Japan)

    2015-09-01

    We investigate the non-spherical density structure of dark halos of the dwarf spheroidal (dSph) galaxies in the Milky Way and Andromeda galaxies based on revised axisymmetric mass models from our previous work. The models we adopt here fully take into account velocity anisotropy of tracer stars confined within a flattened dark halo. Applying our models to the available kinematic data of the 12 bright dSphs, we find that these galaxies associate with, in general, elongated dark halos, even considering the effect of this velocity anisotropy of stars. We also find that the best-fit parameters, especially for the shapes of dark halos and velocity anisotropy, are susceptible to both the availability of velocity data in the outer regions and the effect of the lack of sample stars in each spatial bin. Thus, to obtain more realistic limits on dark halo structures, we require photometric and kinematic data over much larger areas in the dSphs than previously explored. The results obtained from the currently available data suggest that the shapes of dark halos in the dSphs are more elongated than those of ΛCDM subhalos. This mismatch needs to be solved by theory including baryon components and the associated feedback to dark halos as well as by further observational limits in larger areas of dSphs. It is also found that more diffuse dark halos may have undergone consecutive star formation history, thereby implying that dark-halo structure plays an important role in star formation activity.

  15. Estimating the geoeffectiveness of halo CMEs from associated solar and IP parameters using neural networks

    Directory of Open Access Journals (Sweden)

    J. Uwamahoro

    2012-06-01

    Full Text Available Estimating the geoeffectiveness of solar events is of significant importance for space weather modelling and prediction. This paper describes the development of a neural network-based model for estimating the probability occurrence of geomagnetic storms following halo coronal mass ejection (CME and related interplanetary (IP events. This model incorporates both solar and IP variable inputs that characterize geoeffective halo CMEs. Solar inputs include numeric values of the halo CME angular width (AW, the CME speed (Vcme, and the comprehensive flare index (cfi, which represents the flaring activity associated with halo CMEs. IP parameters used as inputs are the numeric peak values of the solar wind speed (Vsw and the southward Z-component of the interplanetary magnetic field (IMF or Bs. IP inputs were considered within a 5-day time window after a halo CME eruption. The neural network (NN model training and testing data sets were constructed based on 1202 halo CMEs (both full and partial halo and their properties observed between 1997 and 2006. The performance of the developed NN model was tested using a validation data set (not part of the training data set covering the years 2000 and 2005. Under the condition of halo CME occurrence, this model could capture 100% of the subsequent intense geomagnetic storms (Dst ≤ −100 nT. For moderate storms (−100 < Dst ≤ −50, the model is successful up to 75%. This model's estimate of the storm occurrence rate from halo CMEs is estimated at a probability of 86%.

  16. STOCHASTIC MODEL OF THE SPIN DISTRIBUTION OF DARK MATTER HALOS

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Juhan [Center for Advanced Computation, Korea Institute for Advanced Study, Heogiro 85, Seoul 130-722 (Korea, Republic of); Choi, Yun-Young [Department of Astronomy and Space Science, Kyung Hee University, Gyeonggi 446-701 (Korea, Republic of); Kim, Sungsoo S.; Lee, Jeong-Eun [School of Space Research, Kyung Hee University, Gyeonggi 446-701 (Korea, Republic of)

    2015-09-15

    We employ a stochastic approach to probing the origin of the log-normal distributions of halo spin in N-body simulations. After analyzing spin evolution in halo merging trees, it was found that a spin change can be characterized by a stochastic random walk of angular momentum. Also, spin distributions generated by random walks are fairly consistent with those directly obtained from N-body simulations. We derived a stochastic differential equation from a widely used spin definition and measured the probability distributions of the derived angular momentum change from a massive set of halo merging trees. The roles of major merging and accretion are also statistically analyzed in evolving spin distributions. Several factors (local environment, halo mass, merging mass ratio, and redshift) are found to influence the angular momentum change. The spin distributions generated in the mean-field or void regions tend to shift slightly to a higher spin value compared with simulated spin distributions, which seems to be caused by the correlated random walks. We verified the assumption of randomness in the angular momentum change observed in the N-body simulation and detected several degrees of correlation between walks, which may provide a clue for the discrepancies between the simulated and generated spin distributions in the voids. However, the generated spin distributions in the group and cluster regions successfully match the simulated spin distribution. We also demonstrated that the log-normality of the spin distribution is a natural consequence of the stochastic differential equation of the halo spin, which is well described by the Geometric Brownian Motion model.

  17. Oxygen abundances in halo giants. I - Giants in the very metal-poor globular clusters M92 and M15 and the metal-poor halo field

    Science.gov (United States)

    Sneden, Christopher; Kraft, Robert P.; Prosser, Charles F.; Langer, G. E.

    1991-12-01

    Oxygen, iron, vanadium, and scandium abundances are derived for very metal-poor giants in the globular clusters M92 and M15, and giants of comparable metallicity in the local halo field. The forbidden O I line dublet (6300, 6363) and nearby metallic lines in spectra are analyzed using line analysis and spectral synthesis codes. The Fe/H abundance for M92 is estimated at -2.25 +/-0.02 based on nine giants with a range of 500 K in effective temperature. No evidence for star-to-star variations in the Fe/H abundance was found. O-rich and O-poor stars appear intermixed in the H-R diagram. O - N nuclear synthesis and mixing to the surface are proposed as the best explanation for the low-oxygen giants. The nitrogen abundances obtained earlier for nine of the ten halo field giants in this sample are incompatible with the very large nitrogen abundances expected of the O/Fe abundance of about + 1.2 in halo field subdwarfs, as found by Abia and Rebolo (1989), and not more than 0.6 in halo giants, as found in this and other studies.

  18. Reduction and processing of astrophysical data by visualization and creation of merger trees from dark matter particle simulations

    International Nuclear Information System (INIS)

    Riser, T.

    2012-01-01

    State of the art dark matter particle simulations of galaxy clusters produce vast amounts of raw data that need to be interpreted and scientifically understood. In this thesis two cornerstones involved in this process are presented. First, a unique and robust algorithm is shown, which extracts a so called ''merger tree'' from dark matter particle data. It represents the development and history of every galaxy that lives within the gravitational potential of the dark matter halos formed by the simulated structure formation process, with a special focus on the merging of smaller halos into bigger ones through the course of time. Second, a modern approach is discussed that facilitates the massively parallel calculative power of state of the art graphics cards to greatly improve the image quality of real-time particle visualizations without the requirement of additional geometric data. (author)

  19. Transverse Beam Halo Measurements at High Intensity Neutrino Source (HINS) using Vibrating Wire Monitor

    Energy Technology Data Exchange (ETDEWEB)

    Chung, M.; Hanna, B.; Scarpine, V.; Shiltsev, V.; Steimel, J.; Artinian, S.; Arutunian, S.

    2015-02-26

    The measurement and control of beam halos will be critical for the applications of future high-intensity hadron linacs. In particular, beam profile monitors require a very high dynamic range when used for the transverse beam halo measurements. In this study, the Vibrating Wire Monitor (VWM) with aperture 60 mm was installed at the High Intensity Neutrino Source (HINS) front-end to measure the transverse beam halo. A vibrating wire is excited at its resonance frequency with the help of a magnetic feedback loop, and the vibrating and sensitive wires are connected through a balanced arm. The sensitive wire is moved into the beam halo region by a stepper motor controlled translational stage. We study the feasibility of the vibrating wire for the transverse beam halo measurements in the low-energy front-end of the proton linac.

  20. One dark matter mystery: halos in the cosmic web

    International Nuclear Information System (INIS)

    Gaite, Jose

    2015-01-01

    The current cold dark matter cosmological model explains the large scale cosmic web structure but is challenged by the observation of a relatively smooth distribution of matter in galactic clusters. We consider various aspects of modeling the dark matter around galaxies as distributed in smooth halos and, especially, the smoothness of the dark matter halos seen in N-body cosmological simulations. We conclude that the problems of the cold dark matter cosmology on small scales are more serious than normally admitted

  1. One dark matter mystery: halos in the cosmic web

    Science.gov (United States)

    Gaite, Jose

    2015-01-01

    The current cold dark matter cosmological model explains the large scale cosmic web structure but is challenged by the observation of a relatively smooth distribution of matter in galactic clusters. We consider various aspects of modeling the dark matter around galaxies as distributed in smooth halos and, especially, the smoothness of the dark matter halos seen in N-body cosmological simulations. We conclude that the problems of the cold dark matter cosmology on small scales are more serious than normally admitted.

  2. Primordial black holes formation from particle production during inflation

    International Nuclear Information System (INIS)

    Erfani, Encieh

    2016-01-01

    We study the possibility that particle production during inflation can source the required power spectrum for dark matter (DM) primordial black holes (PBH) formation. We consider the scalar and the gauge quanta production in inflation models, where in the latter case, we focus in two sectors: inflaton coupled i) directly and ii) gravitationally to a U(1) gauge field. We do not assume any specific potential for the inflaton field. Hence, in the gauge production case, in a model independent way we show that the non-production of DM PBHs puts stronger upper bound on the particle production parameter. Our analysis show that this bound is more stringent than the bounds from the bispectrum and the tensor-to-scalar ratio derived by gauge production in these models. In the scenario where the inflaton field coupled to a scalar field, we put an upper bound on the amplitude of the generated scalar power spectrum by non-production of PBHs. As a by-product we also show that the required scalar power spectrum for PBHs formation is lower when the density perturbations are non-Gaussian in comparison to the Gaussian density perturbations

  3. The outskirts of spiral galaxies: touching stellar halos at z˜0 and z˜1

    Science.gov (United States)

    Bakos, J.; Trujillo, I.

    Taking advantage of ultra-deep imaging of SDSS Stripe82 and the Hubble Ultra Deep Field by HST, we explore the properties of stellar halos at two relevant epochs of cosmic history. At z˜0 we find that the radial surface brightness profiles of disks have a smooth continuation into the stellar halo that starts to affect the surface brightness profiles at mu r'˜28 {mag arcsec-2}, and at a radial distance of gtrsim 4-10 inner scale-lengths. The light contribution of the stellar halo to the total galaxy light varies from ˜1% to ˜5%, but in case of ongoing mergers, the halo light fraction can be as high as ˜10%. The integrated (g'-r') color of the stellar halo of our galaxies range from ˜0.4 to ˜1.2. By confronting these colors with model predictions, these halos can be attributed to moderately aged and metal-poor populations, however the extreme red colors (˜1) cannot be explained by populations of conventional IMFs. Very red halo colors can be attributed to stellar populations dominated by very low mass stars of low to intermediate metallicity produced by bottom-heavy IMFs. At z˜1 stellar halos appear to be ˜2 magnitudes brighter than their local counterparts, meanwhile they exhibit bluer colors ((g'-r')≲0.3 mag), as well. The stellar populations corresponding to these colors are compatible with having ages ≲1 Gyr. This latter observation strongly suggests the possibility that these halos were formed between z˜1 and z˜2. This result matches very well the theoretical predictions that locate most of the formation of the stellar halos at those early epochs. A pure passive evolutionary scenario, where the stellar populations of our high-z haloes simply fade to match the stellar halo properties found in the local universe, is consistent with our data.

  4. Particle dark matter constraints from the Draco dwarf galaxy

    International Nuclear Information System (INIS)

    Tyler, Craig

    2002-01-01

    It is widely thought that neutralinos, the lightest supersymmetric particles, could comprise most of the dark matter. If so, then dark halos will emit radio and gamma ray signals initiated by neutralino annihilation. A particularly promising place to look for these indicators is at the center of the local group dwarf spheroidal galaxy Draco, and recent measurements of the motion of its stars have revealed it to be an even better target for dark matter detection than previously thought. We compute limits on WIMP properties for various models of Draco's dark matter halo. We find that if the halo is nearly isothermal, as the new measurements indicate, then current gamma ray flux limits prohibit much of the neutralino parameter space. If Draco has a moderate magnetic field, then current radio limits can rule out more of it. These results are appreciably stronger than other current constraints, and so acquiring more detailed data on Draco's density profile may become one of the most promising avenues for identifying dark matter

  5. Combinative Particle Size Reduction Technologies for the Production of Drug Nanocrystals

    Directory of Open Access Journals (Sweden)

    Jaime Salazar

    2014-01-01

    Full Text Available Nanosizing is a suitable method to enhance the dissolution rate and therefore the bioavailability of poorly soluble drugs. The success of the particle size reduction processes depends on critical factors such as the employed technology, equipment, and drug physicochemical properties. High pressure homogenization and wet bead milling are standard comminution techniques that have been already employed to successfully formulate poorly soluble drugs and bring them to market. However, these techniques have limitations in their particle size reduction performance, such as long production times and the necessity of employing a micronized drug as the starting material. This review article discusses the development of combinative methods, such as the NANOEDGE, H 96, H 69, H 42, and CT technologies. These processes were developed to improve the particle size reduction effectiveness of the standard techniques. These novel technologies can combine bottom-up and/or top-down techniques in a two-step process. The combinative processes lead in general to improved particle size reduction effectiveness. Faster production of drug nanocrystals and smaller final mean particle sizes are among the main advantages. The combinative particle size reduction technologies are very useful formulation tools, and they will continue acquiring importance for the production of drug nanocrystals.

  6. Constituent quarks and charge particle production in heavy-ion collisions

    International Nuclear Information System (INIS)

    Mishra, Aditya Nath; Mazumder, Rakesh; Sahoo, Raghunath; Nandi, Basanta Kumar

    2012-01-01

    Relativistic heavy-ion collisions aims at producing a state of matter which is governed by partonic degree of freedom. The pseudorapidity density of particle multiplicity and transverse energy are the key observables which provide the properties of matter produced in heavy-ion collisions. Study of their dependence on centrality and collision energy is of paramount importance to understand the particle production mechanism. This may provide insight into the partonic phase that might be created in nuclear collisions. Here, in a constituent quarks framework, charged particle and transverse energy production in heavy-ion collisions are studied both as a function of centrality and collision energy, and hence the study gives a prediction for Pb + Pb collisions

  7. EWKino Production and Long-Lived particles at LHC

    CERN Document Server

    Verducci, M; The ATLAS collaboration

    2013-01-01

    The Large Hadron Collider has extended the reach of particle-physics experiments with a potential for discovery of new physics at the TeV scale and many searches have been carried out by both ATLAS and CMS. Searches for long-lived particles and electroweak “ino” production using 2012 LHV data have been carried by both ATLAS and CMS. The methodology of the searches (reconstruction techniques, background suppression, etc.) and the sensitivity of these searches are reviewed. Many models of physics beyond the Standard Model predict new particles with long lifetimes. Examples include Supersymmetry with R-parity violation, suppressed decays of the next-to-lightest Supersymmetric particle, or models with hidden sectors. The decay vertices of particles with lifetimes of order 10 ps to 10 ns can be efficiently identified by the ATLAS and CMS detectors. In addition, in quark and gluons collisions it is easy to produce coloured objects like gluinos and squarks, which decay typically to jets and MET, while the cross ...

  8. The crystallization processes in the aluminum particles production technology

    Directory of Open Access Journals (Sweden)

    Arkhipov Vladimir

    2015-01-01

    Full Text Available The physical and mathematical model of the crystallization process of liquid aluminum particles in the spray-jet of the ejection-type atomizer was proposed. The results of mathematical modeling of two-phase flow in the spray-jet and the crystallization process of fluid particles are given. The influence of the particle size, of the flow rate and the stagnation temperature gas in the ranges of industrial technology implemented for the production of powders aluminum of brands ASD, on the crystallization characteristics were investigated. The approximations of the characteristics of the crystallization process depending on the size of the aluminum particles on the basis of two approaches to the mathematical description of the process of crystallization of aluminum particles were obtained. The results allow to optimize the process parameters of ejection-type atomizer to produce aluminum particles with given morphology.

  9. Probing stochastic inter-galactic magnetic fields using blazar-induced gamma ray halo morphology

    Energy Technology Data Exchange (ETDEWEB)

    Duplessis, Francis [Physics Department, Arizona State University, Tempe, AZ 85287 (United States); Vachaspati, Tanmay, E-mail: fdupless@asu.edu, E-mail: tvachasp@asu.edu [Maryland Center for Fundamental Physics, University of Maryland, College Park, MD 20742 (United States)

    2017-05-01

    Inter-galactic magnetic fields can imprint their structure on the morphology of blazar-induced gamma ray halos. We show that the halo morphology arises through the interplay of the source's jet and a two-dimensional surface dictated by the magnetic field. Through extensive numerical simulations, we generate mock halos created by stochastic magnetic fields with and without helicity, and study the dependence of the halo features on the properties of the magnetic field. We propose a sharper version of the Q-statistics and demonstrate its sensitivity to the magnetic field strength, the coherence scale, and the handedness of the helicity. We also identify and explain a new feature of the Q-statistics that can further enhance its power.

  10. STIMULATION OF OXIDANT PRODUCTION IN ALVEOLAR MACROPHAGES BY POLLUTANT AND LATEX PARTICLES

    Science.gov (United States)

    Air pollutant dusts as well as chemically defined particles were examined for their activating effect on oxidant production (O2- and H2O2) in guinea pig alveolar macrophages (AM). Oxidant production was measured as chemiluminescence of albumin-bound luminol. All particles examine...

  11. Levy-Student distributions for halos in accelerator beams

    International Nuclear Information System (INIS)

    Cufaro Petroni, Nicola; De Martino, Salvatore; De Siena, Silvio; Illuminati, Fabrizio

    2005-01-01

    We describe the transverse beam distribution in particle accelerators within the controlled, stochastic dynamical scheme of stochastic mechanics (SM) which produces time reversal invariant diffusion processes. This leads to a linearized theory summarized in a Schroedinger-like (SL) equation. The space charge effects have been introduced in recent papers by coupling this S-L equation with the Maxwell equations. We analyze the space-charge effects to understand how the dynamics produces the actual beam distributions, and in particular we show how the stationary, self-consistent solutions are related to the (external and space-charge) potentials both when we suppose that the external field is harmonic (constant focusing), and when we a priori prescribe the shape of the stationary solution. We then proceed to discuss a few other ideas by introducing generalized Student distributions, namely, non-Gaussian, Levy infinitely divisible (but not stable) distributions. We will discuss this idea from two different standpoints: (a) first by supposing that the stationary distribution of our (Wiener powered) SM model is a Student distribution; (b) by supposing that our model is based on a (non-Gaussian) Levy process whose increments are Student distributed. We show that in the case (a) the longer tails of the power decay of the Student laws and in the case (b) the discontinuities of the Levy-Student process can well account for the rare escape of particles from the beam core, and hence for the formation of a halo in intense beams

  12. A New Determination of the Luminosity Function of the Galactic Halo.

    Science.gov (United States)

    Dawson, Peter Charles

    The luminosity function of the galactic halo is determined by subtracting from the observed numbers of proper motion stars in the LHS Catalogue the expected numbers of main-sequence, degenerate, and giant stars of the disk population. Selection effects are accounted for by Monte Carlo simulations based upon realistic colour-luminosity relations and kinematic models. The catalogue is shown to be highly complete, and a calibration of the magnitude estimates therein is presented. It is found that, locally, the ratio of disk to halo material is close to 950, and that the mass density in main sequence and subgiant halo stars with 3 account the possibility of a moderate rate of halo rotation, it is argued that the total density does not much exceed 5 x 10('-5) M(,o) pc('-3), in which case the total mass interior to the sun is of the order of 5 x 10('8) M(,o) for a density distribution which projects to a de Vaucouleurs r(' 1/4) law. It is demonstrated that if the Wielen luminosity function is a faithful representation of the stellar distribution in the solar neighbourhood, then the observed numbers of large proper motion stars are inconsistent with the presence of an intermediate popula- tion at the level, and with the kinematics advocated recently by Gilmore and Reid. The initial mass function (IMF) of the halo is considered, and weak evidence is presented that its slope is at least not shallower than that of the disk population IMF. A crude estimate of the halo's age, based on a comparison of the main sequence turnoff in the reduced proper motion diagram with theoretical models is obtained; a tentative lower limit is 15 Gyr with a best estimate of between 15 and 18 Gyr. Finally, the luminosity function obtained here is compared with those determined in other investigations.

  13. Gravitational lens effect and pregalactic halo objects

    International Nuclear Information System (INIS)

    Bontz, R.J.

    1979-01-01

    The changes in flux, position, and size of a distant extended (galaxy, etc.) source that result from the gravitational lens action of a massive opaque object are discussed. The flux increase is described by a single function of two parameters. One of these parameters characterizes the strength of the gravitational lens, the other describes the alignment of source and lens object. This function also describes the relative intensity of the images formed by lens. ( A similar formalism is discussed by Bourassa et al. for a point source). The formalism is applied to the problem of the galactic halo. It appears that a massive (10 1 2 M/sub sun/) spherical halo surrounding the visible part of the galaxy is consistent with the observable properties of extragalactic sources

  14. A mechanism for the production of ultrafine particles from concrete fracture.

    Science.gov (United States)

    Jabbour, Nassib; Rohan Jayaratne, E; Johnson, Graham R; Alroe, Joel; Uhde, Erik; Salthammer, Tunga; Cravigan, Luke; Faghihi, Ehsan Majd; Kumar, Prashant; Morawska, Lidia

    2017-03-01

    While the crushing of concrete gives rise to large quantities of coarse dust, it is not widely recognized that this process also emits significant quantities of ultrafine particles. These particles impact not just the environments within construction activities but those in entire urban areas. The origin of these ultrafine particles is uncertain, as existing theories do not support their production by mechanical processes. We propose a hypothesis for this observation based on the volatilisation of materials at the concrete fracture interface. The results from this study confirm that mechanical methods can produce ultrafine particles (UFP) from concrete, and that the particles are volatile. The ultrafine mode was only observed during concrete fracture, producing particle size distributions with average count median diameters of 27, 39 and 49 nm for the three tested concrete samples. Further volatility measurements found that the particles were highly volatile, showing between 60 and 95% reduction in the volume fraction remaining by 125 °C. An analysis of the volatile fraction remaining found that different volatile material is responsible for the production of particles between the samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Resummation for supersymmetric particle production at hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Brensing, Silja Christine

    2011-05-10

    The search for supersymmetry is among the most important tasks at current and future colliders. Especially the production of coloured supersymmetric particles would occur copiously in hadronic collisions. Since these production processes are of high relevance for experimental searches accurate theoretical predictions are needed. Higher-order corrections in quantum chromodynamics (QCD) to these processes are dominated by large logarithmic terms due to the emission of soft gluons from initial-state and final-state particles. A systematic treatment of these logarithms to all orders in perturbation theory is provided by resummation methods. We perform the resummation of soft gluons at next-to-leading-logarithmic (NLL) accuracy for all possible production processes in the framework of the Minimal Supersymmetric Standard Model. In particular we consider pair production processes of mass-degenerate light-flavour squarks and gluinos as well as the pair production of top squarks and non-mass-degenerate bottom squarks. We present analytical results for all considered processes including the soft anomalous dimensions. Moreover numerical predictions for total cross sections and transverse-momentum distributions for both the Large Hadron Collider (LHC) and the Tevatron are presented. We provide an estimate of the theoretical uncertainty due to scale variation and the parton distribution functions. The inclusion of NLL corrections leads to a considerable reduction of the theoretical uncertainty due to scale variation and to an enhancement of the next-to-leading order (NLO) cross section predictions. The size of the soft-gluon corrections and the reduction in the scale uncertainty are most significant for processes involving gluino production. At the LHC, where the sensitivity to squark and gluino masses ranges up to 3 TeV, the corrections due to NLL resummation over and above the NLO predictions can be as high as 35 % in the case of gluino-pair production, whereas at the

  16. POPULATION III STAR FORMATION IN LARGE COSMOLOGICAL VOLUMES. I. HALO TEMPORAL AND PHYSICAL ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    Crosby, Brian D.; O' Shea, Brian W.; Smith, Britton D. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Turk, Matthew J. [Department of Astronomy, Columbia University, New York, NY 10025 (United States); Hahn, Oliver, E-mail: crosbyb1@msu.edu [Institute for Astronomy, ETH Zurich, CH-8093 Zuerich (Switzerland)

    2013-08-20

    We present a semi-analytic, computationally inexpensive model to identify halos capable of forming a Population III star in cosmological simulations across a wide range of times and environments. This allows for a much more complete and representative set of Population III star forming halos to be constructed, which will lead to Population III star formation simulations that more accurately reflect the diversity of Population III stars, both in time and halo mass. This model shows that Population III and chemically enriched stars coexist beyond the formation of the first generation of stars in a cosmological simulation until at least z {approx} 10, and likely beyond, though Population III stars form at rates that are 4-6 orders of magnitude lower than chemically enriched stars by z = 10. A catalog of more than 40,000 candidate Population III forming halos were identified, with formation times temporally ranging from z = 30 to z = 10, and ranging in mass from 2.3 Multiplication-Sign 10{sup 5} M{sub Sun} to 1.2 Multiplication-Sign 10{sup 10} M{sub Sun }. At early times, the environment that Population III stars form in is very similar to that of halos hosting chemically enriched star formation. At later times Population III stars are found to form in low-density regions that are not yet chemically polluted due to a lack of previous star formation in the area. Population III star forming halos become increasingly spatially isolated from one another at later times, and are generally closer to halos hosting chemically enriched star formation than to another halo hosting Population III star formation by z {approx} 10.

  17. The Ongoing Growth of the M87 Halo through Accretion Events

    Directory of Open Access Journals (Sweden)

    Alessia Longobardi

    2015-12-01

    Full Text Available Planetary nebulas (PNs offer a unique tool to investigate the outer regions of massive galaxies because their strong [OIII]λ5007Å emission line makes them detectable out to several effective radii from the galaxy’s centre. We use a deep and extended spectroscopic survey of PNs (∼300 objects to study the spatial distribution, the kinematics and the stellar populations in the extended outer halo of the bright elliptical galaxy M87 (NGC 4486 in the Virgo cluster. We show that in the Virgo core, M87 stellar halo and the intracluster light are two distinct dynamical components, with different velocity distributions. Moreover the synergy of the PN kinematical information and the deep V/B-band photometry revealed an ongoing accretion event in the outer regions of M87. This satellite accretion represents a non-negligible perturbation of the halo properties: beyond 60 kpc the M87 halo is still growing with 60% of its light being added by the accretion event at the distance where it is detected.

  18. Universal behavior of charged particle production in heavy ion collisions

    Science.gov (United States)

    Phobos Collaboration; Steinberg, Peter A.; Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Ballintijn, M.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; Garcia, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2003-03-01

    The PHOBOS experiment at RHIC has measured the multiplicity of primary charged particles as a function of centrality and pseudorapidity in Au+Au collisions at sqrt(s_NN) = 19.6, 130 and 200 GeV. Two kinds of universal behavior are observed in charged particle production in heavy ion collisions. The first is that forward particle production, over a range of energies, follows a universal limiting curve with a non-trivial centrality dependence. The second arises from comparisons with pp/pbar-p and e+e- data. N_tot/(N_part/2) in nuclear collisions at high energy scales with sqrt(s) in a similar way as N_tot in e+e- collisions and has a very weak centrality dependence. This feature may be related to a reduction in the leading particle effect due to the multiple collisions suffered per participant in heavy ion collisions.

  19. On the magnitude and distribution of halo currents during disruptions on MAST

    International Nuclear Information System (INIS)

    Counsell, G F; Martin, R; Pinfold, T; Taylor, D

    2007-01-01

    Recent results from MAST in which all halo current paths are monitored suggest that, during disruptions, the plasma responsible for the generation of halo current acts more as a voltage source than a current source. As a result the resistance of the current path along which the halo current must flow has a profound impact on the magnitude of the current. This may provide opportunities for directing the current away from sensitive components in future devices such as ITER. Analysis of data from over 3800 disruptions shows that the halo currents on MAST are relatively benign, having a peak value less than 25% of the pre-disruption plasma current with a rather symmetric distribution near the centre column (average toroidal peaking factor ∼1.1). The low peaking factor favourably reduces the tilting/bending forces in the region of the centre column, which has limited space for bulky supports

  20. Magnetic spiral arms in galaxy haloes

    Science.gov (United States)

    Henriksen, R. N.

    2017-08-01

    We seek the conditions for a steady mean field galactic dynamo. The parameter set is reduced to those appearing in the α2 and α/ω dynamo, namely velocity amplitudes, and the ratio of sub-scale helicity to diffusivity. The parameters can be allowed to vary on conical spirals. We analyse the mean field dynamo equations in terms of scale invariant logarithmic spiral modes and special exact solutions. Compatible scale invariant gravitational spiral arms are introduced and illustrated in an appendix, but the detailed dynamical interaction with the magnetic field is left for another work. As a result of planar magnetic spirals `lifting' into the halo, multiple sign changes in average rotation measures forming a regular pattern on each side of the galactic minor axis, are predicted. Such changes have recently been detected in the Continuum Halos in Nearby Galaxies-an EVLA Survey (CHANG-ES) survey.

  1. Kinematic, Photometric, and Spectroscopic Properties of Faint White Dwarf Stars Discovered in the HALO7D Survey of the Milky Way Galaxy

    Science.gov (United States)

    Harris, Madison; Cunningham, Emily; Guhathakurta, Puragra; Cheshire, Ishani; Gupta, Nandita

    2018-01-01

    White dwarf (WD) stars represent the final phase in the life of solar-mass stars. The extreme low luminosity of WDs means that most detailed measurements of such stars are limited to samples in the immediate neighborhood of the Sun in the thin disk of the Milky Way galaxy. We present spectra, line-of-sight (LOS) velocities, and proper motions (PMs) of a sample of faint (m_V ~ 19.0–24.5) white dwarfs (WDs) from the HALO7D survey. HALO7D is a Keck II/DEIMOS spectroscopic survey of unprecedented depth (8–24 hour integrations) in the CANDELS fields of main sequence turnoff stars in the Milky Way's outer halo. Faint WD stars are rare but useful by-products of this survey. We identify the sample of WDs based on their characteristic broad spectral Balmer absorption features, and present a Bayesian method for measuring their LOS velocities. Using their broadband colors, LOS velocities and PMs measured with the Hubble Space Telescope, we identify candidate halo members among the WDs based on the predicted velocity distributions from the Besançon numerical model of stellar populations in the Milky Way galaxy. The WDs found in the HALO7D survey will yield new insights on the old stellar population associated with the Milky Way's thick disk and halo. Funding for this research was provided by the National Science Foundation and NASA/STScI. NG and IC's participation in this research was under the auspices of the Science Internship Program at the University of California Santa Cruz.

  2. What makes the family of barred disc galaxies so rich: damping stellar bars in spinning haloes

    Science.gov (United States)

    Collier, Angela; Shlosman, Isaac; Heller, Clayton

    2018-05-01

    We model and analyse the secular evolution of stellar bars in spinning dark matter (DM) haloes with the cosmological spin λ ˜ 0-0.09. Using high-resolution stellar and DM numerical simulations, we focus on angular momentum exchange between stellar discs and DM haloes of various axisymmetric shapes - spherical, oblate, and prolate. We find that stellar bars experience a diverse evolution that is guided by the ability of parent haloes to absorb angular momentum, J, lost by the disc through the action of gravitational torques, resonant and non-resonant. We confirm that dynamical bar instability is accelerated via resonant J-transfer to the halo. Our main findings relate to the long-term secular evolution of disc-halo systems: with an increasing λ, bars experience less growth and basically dissolve after they pass through vertical buckling instability. Specifically, with increasing λ, (1) the vertical buckling instability in stellar bars colludes with inability of the inner halo to absorb J - this emerges as the main factor weakening or destroying bars in spinning haloes; (2) bars lose progressively less J, and their pattern speeds level off; (3) bars are smaller, and for λ ≳ 0.06 cease their growth completely following buckling; (4) bars in λ > 0.03 haloes have ratio of corotation-to-bar radii, RCR/Rb > 2, and represent so-called slow bars without offset dust lanes. We provide a quantitative analysis of J-transfer in disc-halo systems, and explain the reasons for absence of growth in fast spinning haloes and its observational corollaries. We conclude that stellar bar evolution is substantially more complex than anticipated, and bars are not as resilient as has been considered so far.

  3. ACCURATE UNIVERSAL MODELS FOR THE MASS ACCRETION HISTORIES AND CONCENTRATIONS OF DARK MATTER HALOS

    International Nuclear Information System (INIS)

    Zhao, D. H.; Jing, Y. P.; Mo, H. J.; Boerner, G.

    2009-01-01

    A large amount of observations have constrained cosmological parameters and the initial density fluctuation spectrum to a very high accuracy. However, cosmological parameters change with time and the power index of the power spectrum dramatically varies with mass scale in the so-called concordance ΛCDM cosmology. Thus, any successful model for its structural evolution should work well simultaneously for various cosmological models and different power spectra. We use a large set of high-resolution N-body simulations of a variety of structure formation models (scale-free, standard CDM, open CDM, and ΛCDM) to study the mass accretion histories, the mass and redshift dependence of concentrations, and the concentration evolution histories of dark matter halos. We find that there is significant disagreement between the much-used empirical models in the literature and our simulations. Based on our simulation results, we find that the mass accretion rate of a halo is tightly correlated with a simple function of its mass, the redshift, parameters of the cosmology, and of the initial density fluctuation spectrum, which correctly disentangles the effects of all these factors and halo environments. We also find that the concentration of a halo is strongly correlated with the universe age when its progenitor on the mass accretion history first reaches 4% of its current mass. According to these correlations, we develop new empirical models for both the mass accretion histories and the concentration evolution histories of dark matter halos, and the latter can also be used to predict the mass and redshift dependence of halo concentrations. These models are accurate and universal: the same set of model parameters works well for different cosmological models and for halos of different masses at different redshifts, and in the ΛCDM case the model predictions match the simulation results very well even though halo mass is traced to about 0.0005 times the final mass, when

  4. A general explanation on the correlation of dark matter halo spin with the large-scale environment

    Science.gov (United States)

    Wang, Peng; Kang, Xi

    2017-06-01

    Both simulations and observations have found that the spin of halo/galaxy is correlated with the large-scale environment, and particularly the spin of halo flips in filament. A consistent picture of halo spin evolution in different environments is still lacked. Using N-body simulation, we find that halo spin with its environment evolves continuously from sheet to cluster, and the flip of halo spin happens both in filament and nodes. The flip in filament can be explained by halo formation time and migrating time when its environment changes from sheet to filament. For low-mass haloes, they form first in sheets and migrate into filaments later, so their mass and spin growth inside filament are lower, and the original spin is still parallel to filament. For high-mass haloes, they migrate into filaments first, and most of their mass and spin growth are obtained in filaments, so the resulted spin is perpendicular to filament. Our results well explain the overall evolution of cosmic web in the cold dark matter model and can be tested using high-redshift data. The scenario can also be tested against alternative models of dark matter, such as warm/hot dark matter, where the structure formation will proceed in a different way.

  5. Particle trapping by nonlinear resonances and space charge

    International Nuclear Information System (INIS)

    Franchetti, G.; Hofmann, I.

    2006-01-01

    In the FAIR [C.D.R. http://www.gsi.de/GSI Future/cdr/] facility planned at GSI high space charge effects and nonlinear dynamics may play an important role for limiting nominal machine performance. The most relevant interplay of these two effects on the single particle dynamics has been proposed in terms of trapping of particles into stable islands [G. Franchetti, I. Hofmann, AIP Conf. Proc. 642 (2002) 260]. Subsequent numerical studies and dedicated experiments have followed [G. Franchetti et al., Phys. Rev. ST Accel. Beams 6 (2003) 124201; G. Franchetti et al., AIP Conf. Proc. 773 (2005) 137]. We present here the effect of the chromaticity on the mechanisms of halo formation induced by particle trapping into resonances

  6. ELUCID—Exploring the Local Universe with the reConstructed Initial Density Field. II. Reconstruction Diagnostics, Applied to Numerical Halo Catalogs

    Energy Technology Data Exchange (ETDEWEB)

    Tweed, Dylan; Yang, Xiaohu; Li, Shijie; Jing, Y. P. [Center for Astronomy and Astrophysics, Shanghai Jiao Tong University, Shanghai 200240 (China); Wang, Huiyuan [Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Hefei, Anhui 230026 (China); Cui, Weiguang [Departamento de Física Teórica, Módulo 15, Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Zhang, Youcai [Shanghai Astronomical Observatory, Nandan Road 80, Shanghai 200030 (China); Mo, H. J., E-mail: dtweed@sjtu.edu.cn [Department of Astronomy, University of Massachusetts, Amherst MA, 01003-9305 (United States)

    2017-05-20

    The ELUCID project aims to build a series of realistic cosmological simulations that reproduce the spatial and mass distributions of the galaxies as observed in the Sloan Digital Sky Survey. This requires powerful reconstruction techniques to create constrained initial conditions (ICs). We test the reconstruction method by applying it to several N -body simulations. We use two medium-resolution simulations, which each produced three additional constrained N -body simulations. We compare the resulting friend-of-friend catalogs by using the particle indexes as tracers, and quantify the quality of the reconstruction by varying the main smoothing parameter. The cross-identification method we use proves to be efficient, and the results suggest that the most massive reconstructed halos are effectively traced from the same Lagrangian regions in the ICs. A preliminary time-dependence analysis indicates that high-mass-end halos converge only at a redshift close to the reconstruction redshift. This suggests that, for earlier snapshots, only collections of progenitors may be effectively cross-identified.

  7. Microfluidic Production of Alginate Hydrogel Particles for Antibody Encapsulation and Release.

    Science.gov (United States)

    Mazutis, Linas; Vasiliauskas, Remigijus; Weitz, David A

    2015-12-01

    Owing to their biocompatibility and reduced side effects, natural polymers represent an attractive choice for producing drug delivery systems. Despite few successful examples, however, the production of monodisperse biopolymer-based particles is often hindered by high viscosity of polymer fluids. In this work, we present a microfluidic approach for production of alginate-based particles carrying encapsulated antibodies. We use a triple-flow micro-device to induce hydrogel formation inside droplets before their collection off-chip. The fast mixing and gelation process produced alginate particles with a unique biconcave shape and dimensions of the mammalian cells. We show slow and fast dissolution of particles in different buffers and evaluate antibody release over time. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Resonant particle production during inflation: a full analytical study

    Energy Technology Data Exchange (ETDEWEB)

    Pearce, Lauren; Peloso, Marco [School of Physics and Astronomy, University of Minnesota, 116 Church Street S.E., Minneapolis, MN 55455 (United States); Sorbo, Lorenzo, E-mail: lpearce@physics.umn.edu, E-mail: peloso@physics.umn.edu, E-mail: sorbo@physics.umass.edu [Amherst Center for Fundamental Interactions, Department of Physics, University of Massachusetts, 1126 Lederle Graduate Research Tower (LGRT), Amherst, MA 01003 (United States)

    2017-05-01

    We revisit the study of the phenomenology associated to a burst of particle production of a field whose mass is controlled by the inflaton field and vanishes at one given instance during inflation. This generates a bump in the correlators of the primordial scalar curvature. We provide a unified formalism to compute various effects that have been obtained in the literature and confirm that the dominant effects are due to the rescattering of the produced particles on the inflaton condensate. We improve over existing results (based on numerical fits) by providing exact analytic expressions for the shape and height of the bump, both in the power spectrum and the equilateral bispectrum. We then study the regime of validity of the perturbative computations of this signature. Finally, we extend these computations to the case of a burst of particle production in a sector coupled only gravitationally to the inflaton.

  9. Evidence of lensing of the cosmic microwave background by dark matter halos.

    Science.gov (United States)

    Madhavacheril, Mathew; Sehgal, Neelima; Allison, Rupert; Battaglia, Nick; Bond, J Richard; Calabrese, Erminia; Caligiuri, Jerod; Coughlin, Kevin; Crichton, Devin; Datta, Rahul; Devlin, Mark J; Dunkley, Joanna; Dünner, Rolando; Fogarty, Kevin; Grace, Emily; Hajian, Amir; Hasselfield, Matthew; Hill, J Colin; Hilton, Matt; Hincks, Adam D; Hlozek, Renée; Hughes, John P; Kosowsky, Arthur; Louis, Thibaut; Lungu, Marius; McMahon, Jeff; Moodley, Kavilan; Munson, Charles; Naess, Sigurd; Nati, Federico; Newburgh, Laura; Niemack, Michael D; Page, Lyman A; Partridge, Bruce; Schmitt, Benjamin; Sherwin, Blake D; Sievers, Jon; Spergel, David N; Staggs, Suzanne T; Thornton, Robert; Van Engelen, Alexander; Ward, Jonathan T; Wollack, Edward J

    2015-04-17

    We present evidence of the gravitational lensing of the cosmic microwave background by 10(13) solar mass dark matter halos. Lensing convergence maps from the Atacama Cosmology Telescope Polarimeter (ACTPol) are stacked at the positions of around 12 000 optically selected CMASS galaxies from the SDSS-III/BOSS survey. The mean lensing signal is consistent with simulated dark matter halo profiles and is favored over a null signal at 3.2σ significance. This result demonstrates the potential of microwave background lensing to probe the dark matter distribution in galaxy group and galaxy cluster halos.

  10. HALO, a large-scale art installation conceived at CERN and inspired by ATLAS data and exhibited during 2018 Art Basel

    CERN Document Server

    marcelloni, claudia

    2018-01-01

    Celebrating the ties between art, science and technology, HALO is an immersive art installation inspired by raw data generated by ATLAS in 2015. It has been conceived and executed by CERN’s former artists-in-residence, the “Semiconductor” duo of Ruth Jarman and Joe Gerhardt, in collaboration with Mónica Bello, curator and head of Arts at CERN. Using kaleidoscopic images of slowed-down particle collisions, which trigger piano wires to create sound, the experience takes you on a magical voyage into the subatomic world of particles. The artwork is the annual commission of the Swiss watchmaking company Audemar Piguet and a collaboration with CERN. The exhibition is free entry and suitable for all audiences.

  11. Validity of the negative binomial distribution in particle production

    International Nuclear Information System (INIS)

    Cugnon, J.; Harouna, O.

    1987-01-01

    Some aspects of the clan picture for particle production in nuclear and in high-energy processes are examined. In particular, it is shown that the requirement of having logarithmic distribution for the number of particles within a clan in order to generate a negative binomial should not be taken strictly. Large departures are allowed without distorting too much the negative binomial. The question of the undetected particles is also studied. It is shown that, under reasonable circumstances, the latter do not affect the negative binomial character of the multiplicity distribution

  12. Rutile nanopowders for pigment production: Formation mechanism and particle size prediction

    Science.gov (United States)

    Zhang, Wu; Tang, Hongxin

    2018-01-01

    Formation mechanism and particle size prediction of rutile nanoparticles for pigment production were investigated. Anatase nanoparticles were observed by oriented attachment with parallel lattice fringe spaces of 0.2419 nm. Upon increasing the calcination temperature, the (1 1 0) plane of rutile was gradually observed, suggesting that the anatase (1 0 3) planes undergo internal structural rearrangement of oxygen and titanium ions into rutile phase due to ionic diffusion. Backpropagation neural network was used to predict particle size of rutile nanopowders, the prediction errors were all smaller than 2%, providing an efficient method to control particle size in pigment production.

  13. Localized massive halo properties in BAHAMAS and MACSIS simulations: scalings, log-normality, and covariance

    Science.gov (United States)

    Farahi, Arya; Evrard, August E.; McCarthy, Ian; Barnes, David J.; Kay, Scott T.

    2018-05-01

    Using tens of thousands of halos realized in the BAHAMAS and MACSIS simulations produced with a consistent astrophysics treatment that includes AGN feedback, we validate a multi-property statistical model for the stellar and hot gas mass behavior in halos hosting groups and clusters of galaxies. The large sample size allows us to extract fine-scale mass-property relations (MPRs) by performing local linear regression (LLR) on individual halo stellar mass (Mstar) and hot gas mass (Mgas) as a function of total halo mass (Mhalo). We find that: 1) both the local slope and variance of the MPRs run with mass (primarily) and redshift (secondarily); 2) the conditional likelihood, p(Mstar, Mgas| Mhalo, z) is accurately described by a multivariate, log-normal distribution, and; 3) the covariance of Mstar and Mgas at fixed Mhalo is generally negative, reflecting a partially closed baryon box model for high mass halos. We validate the analytical population model of Evrard et al. (2014), finding sub-percent accuracy in the log-mean halo mass selected at fixed property, ⟨ln Mhalo|Mgas⟩ or ⟨ln Mhalo|Mstar⟩, when scale-dependent MPR parameters are employed. This work highlights the potential importance of allowing for running in the slope and scatter of MPRs when modeling cluster counts for cosmological studies. We tabulate LLR fit parameters as a function of halo mass at z = 0, 0.5 and 1 for two popular mass conventions.

  14. A core-halo pattern of entropy creation in gravitational collapse

    Science.gov (United States)

    Wren, Andrew J.

    2018-03-01

    This paper presents a kinetic theory model of gravitational collapse due to a small perturbation. Solving the relevant equations yields a pattern of entropy destruction in a spherical core around the perturbation, and entropy creation in a surrounding halo. This indicates collisional "de-relaxation" in the core, and collisional relaxation in the halo. Core-halo patterns are ubiquitous in the astrophysics of gravitational collapse, and are found here without any of the prior assumptions of such a pattern usually made in analytical models. Motivated by this analysis, the paper outlines a possible scheme for identifying structure formation in a set of observations or a simulation. This scheme involves a choice of coarse-graining scale appropriate to the structure under consideration, and might aid exploration of hierarchical structure formation, supplementing the usual density-based methods for highlighting astrophysical and cosmological structure at various scales.

  15. Imprint of primordial non-Gaussianity on dark matter halo profiles

    Energy Technology Data Exchange (ETDEWEB)

    Dizgah, Azadeh Moradinezhad; Dodelson, Scott; Riotto, Antonio

    2013-09-01

    We study the impact of primordial non-Gaussianity on the density profile of dark matter halos by using the semi-analytical model introduced recently by Dalal {\\it et al.} which relates the peaks of the initial linear density field to the final density profile of dark matter halos. Models with primordial non-Gaussianity typically produce an initial density field that differs from that produced in Gaussian models. We use the path-integral formulation of excursion set theory to calculate the non-Gaussian corrections to the peak profile and derive the statistics of the peaks of non-Gaussian density field. In the context of the semi-analytic model for halo profiles, currently allowed values for primordial non-Gaussianity would increase the shapes of the inner dark matter profiles, but only at the sub-percent level except in the very innermost regions.

  16. Faraday rotation in the M87 radio/X-ray halo

    Science.gov (United States)

    Dennison, B.

    1980-01-01

    Comparison of polarization maps at various wavelengths demonstrates the existence of a large Faraday rotation uniform over the radio core of M87. Much of this rotation must be external to the core, lest it appear completely depolarized when the rotation is about 90 degrees. The Faraday rotation is shown to occur primarily in the surrounding radio/X-ray halo. Using the electron density inferred from X-ray observations, the magnetic field in the halo is found to be 2.5 microgauss. The deduced magnetic field strength permits an evaluation of the importance of Compton scattering of 3 K background photons by relativistic electrons in the radio halo. The emergent Compton-scattered spectrum is calculated, and its contribution to the observed X-ray flux is small, probably about a percent or so, while the rest is due to thermal bremsstrahlung.

  17. The Extended Baryonic Halo of NGC 3923

    Directory of Open Access Journals (Sweden)

    Bryan W. Miller

    2017-07-01

    Full Text Available Galaxy halos and their globular cluster systems build up over time by the accretion of small satellites. We can learn about this process in detail by observing systems with ongoing accretion events and comparing the data with simulations. Elliptical shell galaxies are systems that are thought to be due to ongoing or recent minor mergers. We present preliminary results of an investigation of the baryonic halo—light profile, globular clusters, and shells/streams—of the shell galaxy NGC 3923 from deep Dark Energy Camera (DECam g and i-band imaging. We present the 2D and radial distributions of the globular cluster candidates out to a projected radius of about 185 kpc, or ∼ 37 R e , making this one of the most extended cluster systems studied. The total number of clusters implies a halo mass of M h ∼ 3 × 10 13 M ⊙ . Previous studies had identified between 22 and 42 shells, making NGC 3923 the system with the largest number of shells. We identify 23 strong shells and 11 that are uncertain. Future work will measure the halo mass and mass profile from the radial distributions of the shell, N-body models, and line-of-sight velocity distribution (LOSVD measurements of the shells using the Multi Unit Spectroscopic Explorer (MUSE.

  18. THE AVERAGE STAR FORMATION HISTORIES OF GALAXIES IN DARK MATTER HALOS FROM z = 0-8

    International Nuclear Information System (INIS)

    Behroozi, Peter S.; Wechsler, Risa H.; Conroy, Charlie

    2013-01-01

    We present a robust method to constrain average galaxy star formation rates (SFRs), star formation histories (SFHs), and the intracluster light (ICL) as a function of halo mass. Our results are consistent with observed galaxy stellar mass functions, specific star formation rates (SSFRs), and cosmic star formation rates (CSFRs) from z = 0 to z = 8. We consider the effects of a wide range of uncertainties on our results, including those affecting stellar masses, SFRs, and the halo mass function at the heart of our analysis. As they are relevant to our method, we also present new calibrations of the dark matter halo mass function, halo mass accretion histories, and halo-subhalo merger rates out to z = 8. We also provide new compilations of CSFRs and SSFRs; more recent measurements are now consistent with the buildup of the cosmic stellar mass density at all redshifts. Implications of our work include: halos near 10 12 M ☉ are the most efficient at forming stars at all redshifts, the baryon conversion efficiency of massive halos drops markedly after z ∼ 2.5 (consistent with theories of cold-mode accretion), the ICL for massive galaxies is expected to be significant out to at least z ∼ 1-1.5, and dwarf galaxies at low redshifts have higher stellar mass to halo mass ratios than previous expectations and form later than in most theoretical models. Finally, we provide new fitting formulae for SFHs that are more accurate than the standard declining tau model. Our approach places a wide variety of observations relating to the SFH of galaxies into a self-consistent framework based on the modern understanding of structure formation in ΛCDM. Constraints on the stellar mass-halo mass relationship and SFRs are available for download online.

  19. The Average Star Formation Histories of Galaxies in Dark Matter Halos from z = 0-8

    Science.gov (United States)

    Behroozi, Peter S.; Wechsler, Risa H.; Conroy, Charlie

    2013-06-01

    We present a robust method to constrain average galaxy star formation rates (SFRs), star formation histories (SFHs), and the intracluster light (ICL) as a function of halo mass. Our results are consistent with observed galaxy stellar mass functions, specific star formation rates (SSFRs), and cosmic star formation rates (CSFRs) from z = 0 to z = 8. We consider the effects of a wide range of uncertainties on our results, including those affecting stellar masses, SFRs, and the halo mass function at the heart of our analysis. As they are relevant to our method, we also present new calibrations of the dark matter halo mass function, halo mass accretion histories, and halo-subhalo merger rates out to z = 8. We also provide new compilations of CSFRs and SSFRs; more recent measurements are now consistent with the buildup of the cosmic stellar mass density at all redshifts. Implications of our work include: halos near 1012 M ⊙ are the most efficient at forming stars at all redshifts, the baryon conversion efficiency of massive halos drops markedly after z ~ 2.5 (consistent with theories of cold-mode accretion), the ICL for massive galaxies is expected to be significant out to at least z ~ 1-1.5, and dwarf galaxies at low redshifts have higher stellar mass to halo mass ratios than previous expectations and form later than in most theoretical models. Finally, we provide new fitting formulae for SFHs that are more accurate than the standard declining tau model. Our approach places a wide variety of observations relating to the SFH of galaxies into a self-consistent framework based on the modern understanding of structure formation in ΛCDM. Constraints on the stellar mass-halo mass relationship and SFRs are available for download online.

  20. Phenomenology of supersymmetric particle production process at the LHC

    International Nuclear Information System (INIS)

    Trenkel, Maike Kristina

    2009-01-01

    We study the hadronic production of strongly interacting SUSY particles in the framework of the MSSM. In particular, we consider top-squark pair, gluino. squark pair, and same sign squark-squark pair production processes. Aiming at precise theoretical predictions, we calculate the cross section contributions of electroweak origin up to the one-loop level. We find sizable effects both from tree-level electroweak subprocesses and next-to-leading order electroweak corrections, reaching the 20% level in kinematical distributions. In a second part of this thesis, we investigate the phenomenology of R-parity violating B 3 SUSY models with the lightest stau (τ 1 ) being the LSP. We analyze the possible τ 1 decay modes, taking into account the dynamical generation of non-zero R-parity violating couplings at lower scales. As an application of our studies which is interesting for experiments at particle accelators, we discuss single slepton production at the LHC and give numerical results for single smuon production. (orig.)