WorldWideScience

Sample records for halloween genes phantom

  1. Identification, characterization and developmental expression of Halloween genes encoding P450 enzymes mediating ecdysone biosynthesis in the tobacco hornworm, Manduca sexta

    DEFF Research Database (Denmark)

    Rewitz, Kim; Rybczynski, Robert; Warren, James T.

    2006-01-01

    this work to the tobacco hornworm Manduca sexta, an established model for endocrinological and developmental studies. cDNA clones were obtained for three Manduca orthologs of CYP306A1 (phantom; phm, the 25-hydroxylase), CYP302A1 (disembodied; dib, the 22-hydroxylase) and CYP315A1 (shadow; sad, the 2...... in the developmentally varying steroidogenic capacities of the prothoracic glands during the fifth instar. The consistent expression of the Halloween genes confirms the importance of the prothoracic glands in pupal-adult development. These studies establish Manduca as an excellent model for examining the regulation...

  2. The Function and Evolution of the Halloween Genes; the Pathway to the Arthropod Molting Hormone. In Ecdysone, Structures and Functions

    DEFF Research Database (Denmark)

    Gilbert, Lawrence; Rewitz, Kim

    2009-01-01

    , Coleoptera, Hymenoptera and other Diptera allowed the development of a phylogenetic scheme for this gene family and suggests that the Halloween genes and vertebrate steroidogenic P450s originated from common ancestors that were perhaps destined for steroidogenesis, and arose before the deuterostome...

  3. Halloween High Jinks.

    Science.gov (United States)

    Andrews, Doreen; And Others

    1992-01-01

    Presents a collection of fall and Halloween activities for elementary students, including pumpkin poetry, batty bulletin boards (graphing), vegetable variety art, old time radio mysteries, paper doll Halloween safety, career dress-up day, imaginative Halloween writing, and matching animals with foods they eat. A student page offers a Dracula…

  4. Molecular evolution of the insect Halloween family of cytochrome P450s

    DEFF Research Database (Denmark)

    Rewitz, Kim; O'Connor, Michael B.; Gilbert, Lawrence I.

    2007-01-01

    . In the present study, we examine the phylogenetic relationships of these P450 genes in holometabolous insects belonging to the orders Hymenoptera, Coleoptera, Lepidoptera and Diptera. The analyzed insect genomes each contains single orthologs of Phantom (CYP306A1), Disembodied (CYP302A1), Shadow (CYP315A1...... of orthologous Halloween genes indicates selective constraint on these residues to prevent functional divergence. The results suggest that duplications of ancestral P450 genes that acquired novel functions may have been an important mechanism for evolving the ecdysteroidogenic pathway. © 2007 Elsevier B.V. All...

  5. Business Potential of Halloween: Sales and Trends

    Directory of Open Access Journals (Sweden)

    Wadim Strielkowski

    2014-12-01

    Full Text Available The paper assesses the business potential of Halloween by estimating the profits stemming from the sales of Halloween-related goods and activities. It also estimates two empirical models of Halloween spending with macroeconomic variables, using the sales data for the most traditional Halloween paraphernalia, the Halloween pumpkins, as well as for the three groups of products (candies, costumes and decorations, and finds that the share of more “consumer-oriented” products increases in relation to the share of “traditional” Halloween products. It comes to the conclusion that, as to its business potential, overall sales and economic significance, Halloween can now be only compared to Christmas.

  6. The Halloween Effect Evidence from Romania

    OpenAIRE

    Dragos Stefan Oprea

    2014-01-01

    This paper examines the Halloween effect in the Romanian stock market. The analysis is conducted for four stock indices using monthly returns. The Halloween effect is not identified for any of the indices. Therefore, an investment strategy based on the Halloween effect was not suitable for investors in this market.

  7. Celebra Halloween de manera segura (Halloween: Have Fun and Stay Safe and Healthy)

    Centers for Disease Control (CDC) Podcasts

    Las celebraciones de Halloween son muy divertidas para los niños, pero enfermarse o lastimarse por esta causa no debe ser parte de la diversión. En este podcast para niños, los personajes de Kidtastics ofrecen algunos consejos sencillos para mantenerse seguro y saludable en Halloween.

  8. The Halloween Lateral Canthotomy Model

    Directory of Open Access Journals (Sweden)

    Nur-Ain Nadir

    2017-04-01

    Full Text Available Audience: The Halloween Lateral Canthotomy Model” is designed to instruct Emergency Medicine residents PGY 1-4, as well as Emergency Medicine-bound students. Introduction: Although uncommon, retrobulbar hemorrhage associated with facial trauma is a potential cause of permanent vision loss due to orbital compartment syndrome. To prevent vision loss, treatment with lateral canthotomy is time-sensitive and to perform this procedure in an emergent setting requires properly trained practitioners. Objectives: The purpose of the model is to teach residents and students how to perform lateral canthotomy and to achieve competency in their skills. Method: Lateral canthotomy is an important skill to be proficient in for any Emergency Medicine Physician, as it is an uncommon, sight-saving procedure. It is indicated in scenarios of facial trauma that cause a retrobulbar hemorrhage. Patients are at risk for permanent vision loss due to acute orbital compartment syndrome if the procedure is not done expeditiously.1 A less likely cause of retrobulbar hemorrhage is spontaneous hemorrhage due to a bleeding disorder or anticoagulant use.2 The features of retrobulbar hemorrhage include acute loss of visual acuity, relative afferent pupillary defect, proptosis with resistance to retropulsion, increased intraocular pressure, and limited extra ocular movement.3 While the diagnosis is clinical, it can be confirmed by computed tomography (CT and measurement of intraocular pressure.2 When the diagnosis is established, lateral canthotomy and cantholysis should be performed emergently. Cantholysis is contraindicated when a globe rupture is suspected or with an orbital blowout fracture. Potential complications of this procedure include iatrogenic injury to the globe or lateral rectus muscle, damage to the elevator aponeurosis resulting in ptosis, injury to the lacrimal gland and lacrimal artery, bleeding and infection.3 This task trainer uses affordable materials to let

  9. Celebra Halloween de manera segura (Halloween: Have Fun and Stay Safe and Healthy)

    Centers for Disease Control (CDC) Podcasts

    2012-10-15

    Las celebraciones de Halloween son muy divertidas para los niños, pero enfermarse o lastimarse por esta causa no debe ser parte de la diversión. En este podcast para niños, los personajes de Kidtastics ofrecen algunos consejos sencillos para mantenerse seguro y saludable en Halloween.  Created: 10/15/2012 by CDC Office of Women’s Health.   Date Released: 10/15/2012.

  10. Halloween: Have Fun and Stay Safe and Healthy!

    Centers for Disease Control (CDC) Podcasts

    2010-10-25

    Halloween is a fun time for kids, but it's no fun if you get sick or hurt. In this podcast for kids, the Kidtastics offer some simple ways to stay safe and healthy on Halloween.  Created: 10/25/2010 by CDC Office of Women’s Health.   Date Released: 10/25/2010.

  11. Education in Disguise: Sanctioning Sexuality in Elementary School Halloween Celebrations

    Science.gov (United States)

    Boas, Erica Misako

    2016-01-01

    Halloween as celebrated in US elementary schools provides a rare opportunity to explore the more tangible manifestations of sexuality. A time of celebration, Halloween is perceived as a festive event for children, being both "innocent" and fun. Yet, because it is the one school day where sexuality is on display, sexuality becomes a…

  12. Identification of the Halloween Effect in Swedish Sectors

    OpenAIRE

    Lind, Oskar; Uddin, Md Rayhan

    2013-01-01

    Our thesis researches the Halloween effects in the Swedish stock market from a sector perspective. The notion Halloween effect refers to higher returns during the period November until April than the period May until October. The anomaly has been confirmed by previous researchers in Sweden among other countries. There has not been any definite explanation for this anomaly. The majority of explanations base on the assumption that the anomaly is a market wide and induced by changes in investmen...

  13. Perception of Scary Halloween Masks by Zoo Animals and Humans

    OpenAIRE

    Sinnott, Joan M.; Speaker, H. Anton; Powell, Laura A.; Mosteller, Kelly W.

    2012-01-01

    Zoo animals were tested to see if they perceived the scary nature of Halloween masks, using a procedure that measured the avoidance response latency to take food from a masked human experimenter. Human perception of the masks was also assessed using a rating scale, with results showing that a Bill Clinton mask was rated not scary, while a Vampire mask was rated very scary. Animal results showed that primate latencies correlated significantly with the human ratings, while non-primate latencies...

  14. Tokyo Halloween on the Street : Japanese Dressing Up Between Bricolage and Authenticity

    NARCIS (Netherlands)

    Groot, M.H.; Takagi, Yoko

    2017-01-01

    Drawing on perspectives related to fashion and consumerist cultures on the one hand and anthropology and appropriation on the other hand, this paper addresses dressing up on the streets during the celebration of Halloween in Tokyo, Japan. By relating commercially marketed Halloween fun-dress to

  15. Variations of ULF wave power throughout the Halloween 2003 superstorm

    Science.gov (United States)

    Daglis, I.; Balasis, G.; Papadimitriou, C.; Zesta, E.; Georgiou, M.; Mann, I.

    2013-09-01

    Focused on the exceptional 2003 Halloween geospace magnetic storm, when Dst reached a minimum of -383 nT, we examine data from topside ionosphere and two magnetospheric missions (CHAMP, Cluster, and Geotail) for signatures of ULF waves. We present the overall ULF wave activity through the six-day interval from 27 October to 1 November 2003 as observed by the three spacecraft and by the Andenes ground magnetic station of the IMAGE magnetometerer array in terms of time variations of the ULF wave power. The ULF wave activity is divided upon Pc3 and Pc5 wave power. Thus, we provide different ULF wave activity indices according to the wave frequency (Pc3 and Pc5) and location of observation (Earth’s magnetosphere, topside ionosphere and surface). We also look at three specific intervals during different phases of the storm when at least two of the satellites are in good local time (LT) conjunction and examine separately Pc3 and Pc4-5 ULF wave activity and its concurrence in the different regions of the magnetosphere and down to the topside ionosphere and on the ground. This work has received support from the European Community’s Seventh Framework Programme under grant agreement no. 284520 for the MAARBLE (Monitoring, Analyzing and Assessing Radiation Belt Energization and Loss) collaborative research project.

  16. Toil and Trouble Confirmed: The Demise of Hallowe'en in English Primary Schools

    Science.gov (United States)

    Plater, Mark

    2007-01-01

    The claim that Hallowe'en has been eliminated from English primary schools is tested through empirical research in south-east England. The reasons given by teachers for their inclusion or non-inclusion of the subject are then explored. Finally, questions are raised about the implications of the findings for children's ongoing personal development,…

  17. Symbol phantoms

    International Nuclear Information System (INIS)

    Yamaguchi, Hiroshi; Hongo, Syozo; Takeshita, Hiroshi

    1990-01-01

    We have developed Japanese phantoms in two procedures for computation of organ doses exposed to internal and/or external radiation sources. One method is to make mathematical phantoms on the basis of ORNL mathematical phantoms. Parameters to specify organs of Japanese mathematical phantom are determined by interpolations of the ORNL data, which define the organs of Caucasian males and females of various ages, i.e. new born, 1, 5, 10, 15 years and adult, with survey data for Japanese physiques. Another procedure is to build 'symbol phantoms' for the Japanese public. The concept and its method of the symbol phantom enables us to make a phantom for an individual when we have all of his transversal section images obtained by a medical imaging device like MRI, and thus we may achieve more realistic phantoms for Japanese public than the mathematical phantoms. Both studies are in progress in NIRS. (author)

  18. Halloween Drama Contest: A Didactic Approach to English Language Teaching in a non-Bilingual School

    Directory of Open Access Journals (Sweden)

    Sandra Camelo

    2008-12-01

    Full Text Available This article presents an action research project developed in Mayor de San Bartolomé School in 2007, when the authors’ teaching practice took place. The observation of 38 eighth graders, between 13 and 14 years old, highlighted their lack of motivation towards the English class. In the coming semester after the observation, the drama activities carried out in the English class made the students more eager to participate in the class activities and to use this language to communicate with their peers. The Halloween Drama Contest consisted of drama activities along with reading comprehension, writing production, vocabulary exercises and phonetics practice. Students were asked to prepare scripts of six horror movies to be performed on Halloween.

  19. Phantom Pain

    Science.gov (United States)

    ... Because this is yet another version of tangled sensory wires, the result can be pain. A number of other factors are believed to contribute to phantom pain, including damaged nerve endings, scar tissue at the site of the amputation and the physical memory of pre-amputation pain in the affected area. ...

  20. ULF wave activity during the 2003 Halloween superstorm: multipoint observations from CHAMP, Cluster and Geotail missions

    Directory of Open Access Journals (Sweden)

    G. Balasis

    2012-12-01

    Full Text Available We examine data from a topside ionosphere and two magnetospheric missions (CHAMP, Cluster and Geotail for signatures of ultra low frequency (ULF waves during the exceptional 2003 Halloween geospace magnetic storm, when Dst reached ~−380 nT. We use a suite of wavelet-based algorithms, which are a subset of a tool that is being developed for the analysis of multi-instrument multi-satellite and ground-based observations to identify ULF waves and investigate their properties. Starting from the region of topside ionosphere, we first present three clear and strong signatures of Pc3 ULF wave activity (frequency 15–100 mHz in CHAMP tracks. We then expand these three time intervals for purposes of comparison between CHAMP, Cluster and Geotail Pc3 observations but also to be able to search for Pc4–5 wave signatures (frequency 1–10 mHz into Cluster and Geotail measurements in order to have a more complete picture of the ULF wave occurrence during the storm. Due to the fast motion through field lines in a low Earth orbit (LEO we are able to reliably detect Pc3 (but not Pc4–5 waves from CHAMP. This is the first time, to our knowledge, that ULF wave observations from a topside ionosphere mission are compared to ULF wave observations from magnetospheric missions. Our study provides evidence for the occurrence of a number of prominent ULF wave events in the Pc3 and Pc4–5 bands during the storm and offers a platform to study the wave evolution from high altitudes to LEO. The ULF wave analysis methods presented here can be applied to observations from the upcoming Swarm multi-satellite mission of ESA, which is anticipated to enable joint studies with the Cluster mission.

  1. Phantom position dependence

    International Nuclear Information System (INIS)

    Thorson, M.R.; Endres, G.W.R.

    1981-01-01

    Sensitivity of the Hanford dosimeter response to its position relative to the phantom and the neutron source has always been recognized. A thorough investigation was performed to quantify dosimeter response according to: (a) dosimeter position on phantom, (b) dosimeter distance from phantom, and (c) angular relationship of dosimeter relative to neutron source and phantom. Results were obtained for neutron irradiation at several different energies

  2. Computer tomographic phantom

    International Nuclear Information System (INIS)

    Lonn, A.H.R.; Jacobsen, D.R.; Zech, D.J.

    1988-01-01

    A reference phantom for computer tomography employs a flexible member with means for urging the flexible member into contact along the curved surface of the lumbar region of a human patient. In one embodiment, the reference phantom is pre-curved in an arc greater than required. Pressure from the weight of a patient laying upon the reference phantom is effective for straightening out the curvature sufficiently to achieve substantial contact along the lumbar region. The curvature of the reference phantom may be additionally distorted by a resilient pad between the resilient phantom and a table for urging it into contact with the lumbar region. In a second embodiment of the invention, a flexible reference phantom is disposed in a slot in the top of a resilient cushion. The resilient cushion and reference phantom may be enclosed in a flexible container. A partially curved reference phantom in a slot in a resilient cushion is also contemplated. (author)

  3. Evolution of dosimetric phantoms

    International Nuclear Information System (INIS)

    Reddy, A.R.

    2010-01-01

    In this oration evolution of the dosimetric phantoms for radiation protection and for medical use is briefly reviewed. Some details of the development of Indian Reference Phantom for internal dose estimation are also presented

  4. Phantom cosmologies and fermions

    International Nuclear Information System (INIS)

    Chimento, Luis P; Forte, Monica; Devecchi, Fernando P; Kremer, Gilberto M

    2008-01-01

    Form invariance transformations can be used for constructing phantom cosmologies starting with conventional cosmological models. In this work we reconsider the scalar field case and extend the discussion to fermionic fields, where the 'phantomization' process exhibits a new class of possible accelerated regimes. As an application we analyze the cosmological constant group for a fermionic seed fluid

  5. 21. Phantom pain.

    NARCIS (Netherlands)

    Wolff, A.P.; Vanduynhoven, E.; Kleef, M. van; Huygen, F.; Pope, J.E.; Mekhail, N.

    2011-01-01

    Phantom pain is pain caused by elimination or interruption of sensory nerve impulses by destroying or injuring the sensory nerve fibers after amputation or deafferentation. The reported incidence of phantom limb pain after trauma, injury or peripheral vascular diseases is 60% to 80%. Over half the

  6. An extraordinary ULF wave episode during the 2003 Halloween superstorm revealed by wavelet transforms of multipoint observations

    Science.gov (United States)

    Balasis, G.; Daglis, I. A.; Georgiou, M.; Papadimitriou, C.; Zesta, E.; Mann, I.

    2013-09-01

    We investigate a rare concurrent observation of an ultra low frequency (ULF) wave event in the Earth's magnetosphere, topside ionosphere and surface employing a time-frequency analysis technique. We have examined the ULF wave activity in the Pc3 (22-100 mHz) and Pc4-5 (1-22 mHz) frequency bands within a short time interval during the Halloween 2003 magnetic storm, when the Cluster and CHAMP spacecraft were in good local time (LT) conjunction near the dayside noon-midnight meridian. A key finding of the wavelet spectral analysis of data collected from the Geotail, Cluster and CHAMP spacecraft, and the CARISMA and GIMA magnetometer networks was a remarkably clear transition of the waves' frequency into a higher regime within the Pc3 range. Our study offers insights into the energy transfer traced all the way from the solar wind through the magnetosphere and ionosphere to the ground. This work has received support from the European Community's Seventh Framework Programme under grant agreement no. 284520 for the MAARBLE (Monitoring, Analyzing and Assessing Radiation Belt Energization and Loss) collaborative research project.

  7. Outreach for Families and Girls- Astronomy at Outdoor Concerts and at Super Bowl or Halloween Star Parties

    Science.gov (United States)

    Lubowich, Donald A.

    2011-05-01

    Bring telescope to where the people are! Music and Astronomy Under the Stars (MAUS) is a NASA-funded as astronomy outreach program at community parks and music festivals (1000 - 25,000 people/event). While there have been many astronomy outreach activities and telescope observations at sidewalks and parks, this program targets a different audience - music lovers who are attending concerts in community parks or festivals. These music lovers who may not have visited science museums, planetariums, or star parties are exposed to telescope observations and astronomy information with no additional travel costs. MAUS includes solar observing, telescope observations including a live imaging system, an astronomical video, astronomy banners/posters, and hands-on activities. MAUS increased awareness, engagement, and interest in astronomy at classical, pop, rock, and ethnic music concerts. Since 2009 over 50,000 people have participated in these outreach activities including a significant number of families and young girls. In addition to concerts in local Long Island parks, there were MUAS events at Tanglewood (summer home of the Boston Symphony Orchestra), Jazz in Central Park, and Astronomy Night on the National Mall (co-sponsored by the White House Office of Science and Technology Policy). In 2011 MUAS will be expanded to include Ravinia (summer home of the Chicago Symphony Orchestra), the Newport Folk Festival, and the Bethel Woods Center for the Arts (site of the 1969 Woodstock festival). According to our survey results, music lovers became more informed about astronomy. Expanding Hofstra University's successful outreach programs, I propose the creation of a National Halloween Stars event targeting children and a National Super Bowl Star Party targeting girls, women, and the 2/3 of Americans who do not watch the Super Bowl. This can be combined with astronomers or amateur astronomers bringing telescopes to Super Bowl parties for football fans to stargaze during

  8. The Phantom Menace

    DEFF Research Database (Denmark)

    Vium, Christian

    2013-01-01

    as a phantom menace, which asserts itself through a form of omnipresent fear, nurtured by an inherent opaqueness. As this fundamental fear progressively permeates the nomadic landscape, it engenders a recasting of mobile strategies among the nomadic pastoralist groups who inhabit the interstitial desert spaces....

  9. Phantom crash confirms models

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    To test computer models of how a nuclear reactor's containment building would fare if an airplane crashed into it, the Muto Institute in Tokyo sponsored a 3.2 million dollar project at Sandia National Laboratory to slam an F-4 Phantom jet into a 500 ton concrete wall. The results showed that the computer calculations were accurate

  10. Anthropomorphic phantom materials

    International Nuclear Information System (INIS)

    White, D.R.; Constantinou, C.

    1982-01-01

    The need, terminology and history of tissue substitutes are outlined. Radiation properties of real tissues are described and simulation procedures are outlined. Recent tissue substitutes are described and charted, as are calculated radiation classifications. Manufacturing procedures and quality control are presented. Recent phantom studies are reviewed and a discussion recorded. Elemental compositions of the recommended tissue substitutes are charted with elemental composition given for each tissue substitute

  11. Solid water phantom

    International Nuclear Information System (INIS)

    Arguiropulo, M.Y.; Ghilardi Neto, T.; Pela, C.A.; Ghilardi, A.J.P.

    1992-01-01

    A phantom were developed for simulating water, based in plastics. The material was evaluated for different energies, and the measures of relative transmission showed that the transmission and the water were inside of 0,6% for gamma rays. The results of this new material were presented, showing that it could be used in photon beam calibration with energies on radiotherapy range. (C.G.C.)

  12. Phantom pain after eye amputation

    DEFF Research Database (Denmark)

    Rasmussen, Marie L R; Prause, Jan U; Toft, Peter B

    2011-01-01

    Purpose: To characterize the quality of phantom pain, its intensity and frequency following eye amputation. Possible triggers and relievers of phantom pain are investigated. Methods: The hospital database was searched using surgery codes for patients who received ocular evisceration, enucleation...... was conducted by a trained interviewer. Results: Of the 173 patients in the study, 39 experienced phantom pain. The median age of patients who had experienced phantom pain was 45 years (range: 19–88). Follow-up time from eye amputation to participation in the investigation was 4 years (range: 2–46). Phantom...... scale, ranging from 0 to 100, was 36 (range: 1–89). One-third of the patients experienced phantom pain every day. Chilliness, windy weather and psychological stress/fatigue were the most commonly reported triggers for pain. Conclusions: Phantom pain after eye amputation is relatively common. The pain...

  13. Phantom breast syndrome

    Directory of Open Access Journals (Sweden)

    Ramesh

    2009-01-01

    Full Text Available Phantom breast syndrome is a type of condition in which patients have a sensation of residual breast tissue and can include both non-painful sensations as well as phantom breast pain. The incidence varies in different studies, ranging from approximately 30% to as high as 80% of patients after mastectomy. It seriously affects quality of life through the combined impact of physical disability and emotional distress. The breast cancer incidence rate in India as well as Western countries has risen in recent years while survival rates have improved; this has effectively increased the number of women for whom post-treatment quality of life is important. In this context, chronic pain following treatment for breast cancer surgery is a significantly under-recognized and under-treated problem. Various types of chronic neuropathic pain may arise following breast cancer surgery due to surgical trauma. The cause of these syndromes is damage to various nerves during surgery. There are a number of assumed factors causing or perpetuating persistent neuropathic pain after breast cancer surgery. Most well-established risk factors for developing phantom breast pain and other related neuropathic pain syndromes are severe acute postoperative pain and greater postoperative use of analgesics. Based upon current evidence, the goals of prophylactic strategies could first target optimal peri-operative pain control and minimizing damage to nerves during surgery. There is some evidence that chronic pain and sensory abnormalities do decrease over time. The main group of oral medications studied includes anti-depressants, anticonvulsants, opioids, N-methyl-D-asparate receptor antagonists, mexilitine, topical lidocaine, cannabinoids, topical capsaicin and glysine antagonists. Neuromodulation techniques such as motor cortex stimulation, spinal cord stimulation, and intrathecal drug therapies have been used to treat various neuropathic pain syndromes.

  14. Atypical Odontalgia (Phantom Tooth Pain)

    Science.gov (United States)

    ... atypical facial pain, phantom tooth pain, or neuropathic orofacial pain, is characterized by chronic pain in a tooth ... such as a specialist in oral medicine or orofacial pain. The information contained in this monograph is for ...

  15. An improved Virtual Torso phantom

    International Nuclear Information System (INIS)

    Kramer, Gary H; Crowley, Paul

    2000-01-01

    The virtual phantom that was previously designed by the Human Monitoring Laboratory had some limitations. It contained no sternum and the ribs extended all the way round the torso, whereas in reality the central part of the chest is covered with a mixture of cartilage (ribs) and bone (sternum). The ribs were located below the chest wall which added to the thickness of the chest wall. The lungs did not touch the inner surface of the chest wall along their length due to the differences in curvature between the ellipsoidal lungs and the ellipsoidal cylinder that defined the torso. As a result there was extra intervening tissue between the lungs and the chest wall. This was shown to have a noticeable effect on the simulation of low energy photons. The virtual phantom has been redesigned and comparison of measured and calculated counting efficiencies shows that it is a good representation of both of LLNL or JAERI at all photon energies measured. The redesigned virtual phantom agrees to within 11% of the torsos' counting efficiency over the energy range 17 - 240 keV. Before modification, the virtual phantom's counting efficiency was a of factor three lower at 17 keV and a factor of two lower at 20 keV; now it is within 5% at 17 keV and within 10% at 20 keV. This phantom can now be reliably used to simulate lung counting. The virtual phantom still contains no sternum and the ribs extend all the way round the torso, whereas in reality the central part of the chest is covered with cartilage (ribs) and bone (sternum). However, the above results indicate that this is not a major flaw in the design of the virtual phantom, as agreement between the Monte Carlo results and experimental data is good. (author)

  16. Multi-satellite study of the excitation of Pc3 and Pc4-5 ULF waves and their penetration across the plasmapause during the 2003 Halloween superstorm

    Science.gov (United States)

    Balasis, G.; Daglis, I. A.; Mann, I. R.; Papadimitriou, C.; Zesta, E.; Georgiou, M.; Haagmans, R.; Tsinganos, K.

    2015-10-01

    We use multi-satellite and ground-based magnetic data to investigate the concurrent characteristics of Pc3 (22-100 mHz) and Pc4-5 (1-22 mHz) ultra-low-frequency (ULF) waves on the 31 October 2003 during the Halloween magnetic superstorm. ULF waves are seen in the Earth's magnetosphere, topside ionosphere, and Earth's surface, enabling an examination of their propagation characteristics. We employ a time-frequency analysis technique and examine data from when the Cluster and CHAMP spacecraft were in good local time (LT) conjunction near the dayside noon-midnight meridian. We find clear evidence of the excitation of both Pc3 and Pc4-5 waves, but more significantly we find a clear separation in the L shell of occurrence of the Pc4-5 and Pc3 waves in the equatorial inner magnetosphere, separated by the density gradients at the plasmapause boundary layer. A key finding of the wavelet spectral analysis of data collected from the Geotail, Cluster, and CHAMP spacecraft and the CARISMA and GIMA magnetometer networks was a remarkably clear transition of the waves' frequency into dominance in a higher-frequency regime within the Pc3 range. Analysis of the local field line resonance frequency suggests that the separation of the Pc4-5 and Pc3 emissions across the plasmapause is consistent with the structure of the inhomogeneous field line resonance Alfvén continuum. The Pc4-5 waves are consistent with direct excitation by the solar wind in the plasma trough, as well as Pc3 wave absorption in the plasmasphere following excitation by upstream waves originating at the bow shock in the local noon sector. However, despite good solar wind coverage, our study was not able to unambiguously identify a clear explanation for the sharp universal time (UT) onset of the discrete frequency and large-amplitude Pc3 wave power.

  17. Multi-satellite study of the excitation of Pc3 and Pc4-5 ULF waves and their penetration across the plasmapause during the 2003 Halloween superstorm

    Directory of Open Access Journals (Sweden)

    G. Balasis

    2015-10-01

    Full Text Available We use multi-satellite and ground-based magnetic data to investigate the concurrent characteristics of Pc3 (22–100 mHz and Pc4-5 (1–22 mHz ultra-low-frequency (ULF waves on the 31 October 2003 during the Halloween magnetic superstorm. ULF waves are seen in the Earth's magnetosphere, topside ionosphere, and Earth's surface, enabling an examination of their propagation characteristics. We employ a time–frequency analysis technique and examine data from when the Cluster and CHAMP spacecraft were in good local time (LT conjunction near the dayside noon–midnight meridian. We find clear evidence of the excitation of both Pc3 and Pc4-5 waves, but more significantly we find a clear separation in the L shell of occurrence of the Pc4-5 and Pc3 waves in the equatorial inner magnetosphere, separated by the density gradients at the plasmapause boundary layer. A key finding of the wavelet spectral analysis of data collected from the Geotail, Cluster, and CHAMP spacecraft and the CARISMA and GIMA magnetometer networks was a remarkably clear transition of the waves' frequency into dominance in a higher-frequency regime within the Pc3 range. Analysis of the local field line resonance frequency suggests that the separation of the Pc4-5 and Pc3 emissions across the plasmapause is consistent with the structure of the inhomogeneous field line resonance Alfvén continuum. The Pc4-5 waves are consistent with direct excitation by the solar wind in the plasma trough, as well as Pc3 wave absorption in the plasmasphere following excitation by upstream waves originating at the bow shock in the local noon sector. However, despite good solar wind coverage, our study was not able to unambiguously identify a clear explanation for the sharp universal time (UT onset of the discrete frequency and large-amplitude Pc3 wave power.

  18. Construction of Chinese reference female phantom

    International Nuclear Information System (INIS)

    Sheng Yinxiangzi; Liu Lixing; Xia Xiaobin

    2013-01-01

    In this study, a Voxel-based Chinese Reference female Phantom (VCRP-woman) is developed from an individual female phantom which was based on high resolution cross-sectional color photographs. An in-house C ++ program was developed to adjust the phantom. Finally, a reference female phantom with have the same height, weighte and similar organs masses with the Chinese reference adult female data. The adjusted phantom is then imported to MCNPX to calculate the organs absorbed dose and effective dose conversion coefficients. Results are compared between VCRP-woman and the ICRP adult reference female phantom. (authors)

  19. Contrast detail phantom for SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Cabrejas, M.L. de; Arashiro, J G; Giannone, C. [Comision Nacional de Energia Atomica, Buenos Aires (Argentina); Camuyrano, M; Nohara, G [Universidad de Buenos Aires, Buenos Aires (Argentina). Facultad Ciencias Exactas

    1996-06-01

    A new low variable contrast phantom for single photon emission computed tomography (SPECT) was constructed, tested and compared with other existing phantoms. It contains simulated cylindrical lesions of four different diameters (D{sub i}), embedded in a cylindrical scattering medium and a uniform section to evaluate tomographic uniformity. The concentration of tracer in the simulated lesions and the scattering medium (background) can be varied to simulate hot and cold lesions. Different applications of the phantom were tested, including determination of the minimum object contrast (OCm) necessary to detect lesions as a function of lesion size, lesion type (hot or cold) and acquisition and processing protocols by visual inspection. This parameter allows categorization of instruments comparing an `image quality index` (IQI). Preliminary comparison with the Britten contrast processing method showed that the detectable OCm was of the same order of magnitude, but the presented device seems more suitable for training and intercomparison purposes. The constructed phantom, of simple design, has proved to be useful for acquisition and processing condition evaluation, OCm estimation and external quality control. (author). 11 refs, 4 figs.

  20. A comparative study on patient specific absolute dosimetry using slab phantom, acrylic body phantom and goat head phantom

    Directory of Open Access Journals (Sweden)

    Om Prakash Gurjar

    2015-01-01

    Full Text Available Purpose: To compare the results of patient specific absolute dosimetry using slab phantom, acrylic body phantom and goat head phantom. Methods: Fifteen intensity modulated radiotherapy (IMRT plans already planned on treatment planning system (TPS for head-and-neck cancer patients were exported on all three kinds of phantoms viz. slab phantom, acrylic body phantom and goat head phantom, and dose was calculated using anisotropic analytic algorithm (AAA. All the gantry angles were set to zero in case of slab phantom while set to as it is in actual plan in case of other two phantoms. All the plans were delivered by linear accelerator (LA and dose for each plan was measured by 0.13 cc ion chamber. The percentage (% variations between planned and measured doses were calculated and analyzed. Results: The mean % variations between planned and measured doses of all IMRT quality assurance (QA plans were as 0.65 (Standard deviation (SD: 0.38 with confidence limit (CL 1.39, 1.16 (SD: 0.61 with CL 2.36 and 2.40 (SD: 0.86 with CL 4.09 for slab phantom, acrylic head phantom and goat head phantom respectively. Conclusion: Higher dose variations found in case of real tissue phantom compare to results in case of slab and acrylic body phantoms. The algorithm AAA does not calculate doses in heterogeneous medium as accurate as it calculates in homogeneous medium. Therefore the patient specific absolute dosimetry should be done using heterogeneous phantom mimicking density wise as well as design wise to the actual human body.  

  1. Composition Changes After the "Halloween" Solar Proton Event: The High-Energy Particle Precipitation in the Atmosphere (HEPPA) Model Versus MIPAS Data Intercomparison Study

    Science.gov (United States)

    Funke, B.; Baumgaertner, A.; Calisto, M.; Egorova, T.; Jackman, C. H.; Kieser, J.; Krivolutsky, A.; Lopez-Puertas, M.; Marsh. D. R.; Reddmann, T.; hide

    2010-01-01

    We have compared composition changes of NO, NO2, H2O2,O3, N2O, HNO3 , N2O5, HNO4, ClO, HOCl, and ClONO2 as observed by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on Envisat in the aftermath of the "Halloween" solar proton event (SPE) in October/November 2003 at 25-0.01 hPa in the Northern hemisphere (40-90 N) and simulations performed by the following atmospheric models: the Bremen 2D model (B2dM) and Bremen 3D Chemical Transport Model (B3dCTM), the Central Aerological Observatory (CAO) model, FinROSE, the Hamburg Model of the Neutral and Ionized Atmosphere (HAMMONIA), the Karlsruhe Simulation Model of the Middle Atmosphere (KASIMA), the ECHAM5/MESSY Atmospheric Chemistry (EMAC) model, the modeling tool for SO1ar Climate Ozone Links studies (SOCOL and SOCOLi), and the Whole Atmosphere Community Climate Model (WACCM4). The large number of participating models allowed for an evaluation of the overall ability of atmospheric models to reproduce observed atmospheric perturbations generated by SPEs, particularly with respect to NOS, and ozone changes. We have further assessed the meteorological conditions and their implications on the chemical response to the SPE in both the models and observations by comparing temperature and tracer (CH4 and CO) fields. Simulated SPE-induced ozone losses agree on average within 5% with the observations. Simulated NO(y) enhancements around 1 hPa, however, are typically 30% higher than indicated by the observations which can be partly attributed to an overestimation of simulated electron-induced ionization. The analysis of the observed and modeled NO(y) partitioning in the aftermath of the SPE has demonstrated the need to implement additional ion chemistry (HNO3 formation via ion-ion recombination and water cluster ions) into the chemical schemes. An overestimation of observed H2O2 enhancements by all models hints at an underestimation of the OH/HO2 ratio in the upper polar stratosphere during the SPE. The

  2. NMR-CT image and symbol phantoms

    International Nuclear Information System (INIS)

    Hongo, Syozo; Yamaguchi, Hiroshi; Takeshita, Hiroshi

    1990-01-01

    We have developed Japanese phantoms in two procedures. One is described as a mathematical expression. Another is 'symbol phantoms' in 3 dimensional picture-elements, each of which symbolize an organ name. The concept and the algorithm of the symbol phantom enables us to make a phantom for a individual in terms of all his transversal section images. We got 85 transversal section images of head and trunk parts, and those of 40 legs parts by using NMR-CT. We have made the individual phantom for computation of organ doses. The transversal section images were not so clear to identify all organs needed to dose estimation that we had to do hand-editing the shapes of organs with viewing a typical section images: we could not yet make symbol phantom in a automatic editing. Symbols were coded to be visual cords as ASCII characters. After we got the symbol phantom of the first stage, we can edit it easily using a word-processor. Symbol phantom could describe more freely the shape of organs than mathematical phantom. Symbol phantom has several advantages to be an individual phantom, but the only difficult point is how to determine its end-point as a reference man when we apply the method to build the reference man. (author)

  3. 3D Printing Openable Imaging Phantom Design

    International Nuclear Information System (INIS)

    Kim, Myoung Keun; Won, Jun Hyeok; Lee, Seung Wook

    2017-01-01

    The purpose of this study is to design an openable phantom that can replace the internal measurement bar used for contrast comparison in order to increase the efficiency of manufacturing imaging phantom used in the medical industry and to improve convenience using 3D printer. Phantom concept design, 3D printing, and Image reconstruction were defined as the scope of the thesis. Also, we study metal artifact reduction with openable phantom. We have designed a Openable phantom using 3D printing, and have investigated metal artifact reduction after inserting a metallic material inside the phantom. The openable phantom can be adjusted at any time to suit the user's experiment and can be easily replaced and useful.

  4. Conversion of ICRP male reference phantom to polygon-surface phantom

    Science.gov (United States)

    Yeom, Yeon Soo; Han, Min Cheol; Kim, Chan Hyeong; Jeong, Jong Hwi

    2013-10-01

    The International Commission on Radiological Protection (ICRP) reference phantoms, developed based on computed tomography images of human bodies, provide much more realism of human anatomy than the previously used MIRD5 (Medical Internal Radiation Dose) mathematical phantoms. It has been, however, realized that the ICRP reference phantoms have some critical limitations showing a considerable amount of holes for the skin and wall organs mainly due to the nature of voxels of which the phantoms are made, especially due to their low voxel resolutions. To address this problem, we are planning to develop the polygon-surface version of ICRP reference phantoms by directly converting the ICRP reference phantoms (voxel phantoms) to polygon-surface phantoms. The objective of this preliminary study is to see if it is indeed possible to construct the high-quality polygon-surface phantoms based on the ICRP reference phantoms maintaining identical organ morphology and also to identify any potential issues, and technologies to address these issues, in advance. For this purpose, in the present study, the ICRP reference male phantom was roughly converted to a polygon-surface phantom. Then, the constructed phantom was implemented in Geant4, Monte Carlo particle transport code, for dose calculations, and the calculated dose values were compared with those of the original ICRP reference phantom to see how much the calculated dose values are sensitive to the accuracy of the conversion process. The results of the present study show that it is certainly possible to convert the ICRP reference phantoms to surface phantoms with enough accuracy. In spite of using relatively less resources (original ICRP reference phantoms, it is believed that the polygon-surface version of ICRP reference phantoms properly developed will not only provide the same or similar dose values (say, difference <5 or 10%) for highly penetrating radiations, but also provide correct dose values for the weakly penetrating

  5. Effect of phantom voxelization in CT simulations

    International Nuclear Information System (INIS)

    Goertzen, Andrew L.; Beekman, Freek J.; Cherry, Simon R.

    2002-01-01

    In computer simulations of x-ray CT systems one can either use continuous geometrical descriptions for phantoms or a voxelized representation. The voxelized approach allows arbitrary phantoms to be defined without being confined to geometrical shapes. The disadvantage of the voxelized approach is that inherent errors are introduced due to the phantom voxelization. To study effects of phantom discretization, analytical CT simulations were run for a fan-beam geometry with phantom voxel sizes ranging from 0.0625 to 2 times the reconstructed pixel size and noise levels corresponding to 10 3 -10 7 photons per detector pixel prior to attenuation. The number of rays traced per detector element was varied from 1 to 16. Differences in the filtered backprojection images caused by changing the phantom matrix sizes and number of rays traced were assessed by calculating the difference between reconstructions based on the finest matrix and coarser matrix simulations. In noise free simulations, all phantom matrix sizes produced a measurable difference in comparison with the finest phantom matrix used. When even a small amount of noise was added to the projection data, the differences due to the phantom discretization were masked by the noise, and in all cases there was almost no improvement by using a phantom matrix that was more than twice as fine as the reconstruction matrix. No substantial improvement was achieved by tracing more than 4 rays per detector pixel

  6. A Software Phantom : Application in Digital Tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Lazos, D; Kolitsi, Z; Badea, C; Pallikarakis, N [Medical Physics Laboratory, School of Medicine, Univercity of Patras (Greece)

    1999-12-31

    A software phantom intended to be used in radiographic applications has been developed. The application was used for research in the field of Digital Tomosynthesis and specifically for studying tomographic noise removal methods. The application consists of a phantom design and a phantom imaging module. The radiation-matter interaction is based on the exponential relation of attenuation. Projections are formed by simulated irradiation with selectable geometrical parameters, source spectrum and detector response. Phantoms are defined either as sets containing certain geometrical objects or as groups of voxels. Comparison with real projections taken from a physical phantom with identical geometry and composition with the simulated one, showed good approximation with improved contrast due to the absence of scatter in the simulated projections. The software phantom proved to be a very useful tool for DTS investigations. Further development to include scatter is expected to expand the use of the application to more areas in radiological imaging research. (author) 4 refs., 3 figs

  7. A Software Phantom : Application in Digital Tomosynthesis

    International Nuclear Information System (INIS)

    Lazos, D.; Kolitsi, Z.; Badea, C.; Pallikarakis, N.

    1998-01-01

    A software phantom intended to be used in radiographic applications has been developed. The application was used for research in the field of Digital Tomosynthesis and specifically for studying tomographic noise removal methods. The application consists of a phantom design and a phantom imaging module. The radiation-matter interaction is based on the exponential relation of attenuation. Projections are formed by simulated irradiation with selectable geometrical parameters, source spectrum and detector response. Phantoms are defined either as sets containing certain geometrical objects or as groups of voxels. Comparison with real projections taken from a physical phantom with identical geometry and composition with the simulated one, showed good approximation with improved contrast due to the absence of scatter in the simulated projections. The software phantom proved to be a very useful tool for DTS investigations. Further development to include scatter is expected to expand the use of the application to more areas in radiological imaging research. (author)

  8. Composition changes after the "Halloween" solar proton event: the High Energy Particle Precipitation in the Atmosphere (HEPPA model versus MIPAS data intercomparison study

    Directory of Open Access Journals (Sweden)

    B. Funke

    2011-09-01

    Full Text Available We have compared composition changes of NO, NO2, H2O2, O3, N2O, HNO3, N2O5, HNO4, ClO, HOCl, and ClONO2 as observed by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS on Envisat in the aftermath of the "Halloween" solar proton event (SPE in late October 2003 at 25–0.01 hPa in the Northern Hemisphere (40–90° N and simulations performed by the following atmospheric models: the Bremen 2-D model (B2dM and Bremen 3-D Chemical Transport Model (B3dCTM, the Central Aerological Observatory (CAO model, FinROSE, the Hamburg Model of the Neutral and Ionized Atmosphere (HAMMONIA, the Karlsruhe Simulation Model of the Middle Atmosphere (KASIMA, the ECHAM5/MESSy Atmospheric Chemistry (EMAC model, the modeling tool for SOlar Climate Ozone Links studies (SOCOL and SOCOLi, and the Whole Atmosphere Community Climate Model (WACCM4. The large number of participating models allowed for an evaluation of the overall ability of atmospheric models to reproduce observed atmospheric perturbations generated by SPEs, particularly with respect to NOy and ozone changes. We have further assessed the meteorological conditions and their implications for the chemical response to the SPE in both the models and observations by comparing temperature and tracer (CH4 and CO fields.

    Simulated SPE-induced ozone losses agree on average within 5 % with the observations. Simulated NOy enhancements around 1 hPa, however, are typically 30 % higher than indicated by the observations which are likely to be related to deficiencies in the used ionization rates, though other error sources related to the models' atmospheric background state and/or transport schemes cannot be excluded. The analysis of the observed and modeled NOy partitioning in the aftermath of the SPE has demonstrated the need to implement

  9. Do you believe in phantoms?

    CERN Multimedia

    Rosaria Marraffino

    2015-01-01

    “Phantoms” are tools that simulate a therapy’s response by mimicking the conditions of the human body. They are required in hadron therapy in order to optimise and verify the therapy before performing it on the patient. The better the phantom, the more accurate the treatment plan and the more effective the therapy. In the framework of the EU-funded project ENTERVISION*, a team of CERN researchers has designed an innovative piece of equipment able to evaluate radiobiology-related parameters in a very accurate way.   The ENTERVISION phantom being tested at HIT. A key challenge in hadron therapy – i.e. the medical use of hadrons to treat cancer – is to evaluate the biological effect of the delivered radiation. This can be achieved by using accurate dosimetry techniques to study the biological response in terms of the dose deposited and other physical parameters of the beam, such as the Linear Energy Transfer (LET). The job of the “phan...

  10. Transorbital therapy delivery: phantom testing

    Science.gov (United States)

    Ingram, Martha-Conley; Atuegwu, Nkiruka; Mawn, Louise; Galloway, Robert L.

    2011-03-01

    We have developed a combined image-guided and minimally invasive system for the delivery of therapy to the back of the eye. It is composed of a short 4.5 mm diameter endoscope with a magnetic tracker embedded in the tip. In previous work we have defined an optimized fiducial placement for accurate guidance to the back of the eye and are now moving to system testing. The fundamental difficulty in testing performance is establishing a target in a manner which closely mimics the physiological task. We have to have a penetrable material which obscures line of sight, similar to the orbital fat. In addition we need to have some independent measure of knowing when a target has been reached to compare to the ideal performance. Lastly, the target cannot be rigidly attached to the skull phantom since the optic nerve lies buried in the orbital fat. We have developed a skull phantom with white cloth stellate balls supporting a correctly sized globe. Placed in the white balls are red, blue, orange and yellow balls. One of the colored balls has been soaked in barium to make it bright on CT. The user guides the tracked endoscope to the target as defined by the images and tells us its color. We record task accuracy and time to target. We have tested this with 28 residents, fellows and attending physicians. Each physician performs the task twice guided and twice unguided. Results will be presented.

  11. Phantom pain and phantom sensations in upper limb amputees : an epidemiological study

    NARCIS (Netherlands)

    Kooijman, CM; Dijkstra, PU; Geertzen, JHB; Elzinga, A; van der Schans, CP

    Phantom pain in subjects with an amputated limb is a well-known problem. However, estimates of the prevalence of phantom pain differ considerably in the literature. Various factors associated with phantom pain have been described including pain before the amputation, gender, dominance, and time

  12. The Japanese adult, child and infant phantoms

    International Nuclear Information System (INIS)

    Cristy, Mark; Egbert, Stephen D.

    1987-01-01

    The mathematical phantom for adult Japanese atomic-bomb survivors is a modification of the 57-kg ORNL (Oak Ridge National Laboratory) phantom for Western 15-year-old males and adult females. For younger Japanese survivors mathematical phantoms were similarly modified from the 18 and 9 kg ORNL phantoms for Western 5- and 1-year-olds, respectively. To make the phantom correspond more closely with dimensions and organ sizes recommended for Japanese adults by Maruyama and coworkers (cf E184), changes were made in the size of the lungs, the pancreas, the thyroid, and the testes and in the length of the legs. Also, the head-and-neck region was modified to improve the dose estimates for the thyroid from external radiation, after the ideas of Nagarajan et al. The arms were separated from the trunk to represent more accurately the shielding by the phantom in external exposures. Furthermore, provisions were made to provide a phantom in a kneeling posture. The elemental composition of the tissues was changed to that given by Kerr. The resulting phantom is slightly smaller in mass (55 kg). Details of these changes are given

  13. Enceladus' 101 Geysers: Phantoms? Hardly

    Science.gov (United States)

    Porco, C.; Nimmo, F.; DiNino, D.

    2015-12-01

    The discovery by the Cassini mission of present-day geysering activity capping the southern hemisphere of Saturn's moon Enceladus (eg, Porco, C. C. et al. Science 311, 1393, 2006) and sourced within a subsurface body of liquid water (eg, Postberg, F. et al. Nature 459, 1098, 2009; Porco, C.C. et al. AJ 148, 45, 2014, hereafter PEA], laced with organic compounds (eg, Waite, J.H. et al. Science 311, 1419, 2006), has been a significant one, with far-reaching astrobiological implications. In an extensive Cassini imaging survey of the moon's south polar terrain (SPT), PEA identified 101 distinct, narrow jets of small icy particles erupting, with varying strengths, from the four major fractures crossing the SPT. A sufficient spread in stereo angles of the 107 images used in that work allowed (in some cases, many) pair-wise triangulations to be computed; precise surface locations were derived for 98 jets. Recently, it has been claimed (Spitale, J.N. et al. Nature 521, 57, 2015) that the majority of the geysers are not true discrete jets, but are "phantoms" that appear in shallow-angle views of a dense continuous curtain of material with acute bends in it. These authors also concluded that the majority of the eruptive material is not in the form of jets but in the form of fissure-style 'curtain' eruptions. We argue below the contrary, that because almost all the moon's geysers were identified by PEA using multiple images with favorable viewing geometries, the vast majority of them, and likely all, are discrete jets. Specifically, out of 98 jets, no fewer than 90 to 95 were identified with viewing geometries that preclude the appearance of phantoms. How the erupting solids (i.e., icy particles) that are seen in Cassini images are partitioned between jets and inter-jet curtains is still an open question.

  14. A phantom for quality control in mammography

    International Nuclear Information System (INIS)

    Gambaccini, M.; Rimondi, O.; Marziani, M.; Toti, A.

    1989-01-01

    A phantom for evaluating image quality in mammography has been designed and will be used in the Italian national programme ''Dose and Quality in Mammography''. The characteristics of the phantom are (a) about the same X-ray transmission as a 5 cm 50% fat and 50% water breast for energies between 15 and 50 keV and (b) optimum energies for imaging of the test objects (included in the phantom) in very close agreement with the optimum energies for imaging of calcifications and tumours in a 5 cm 50% fat and 50% water breast. An experimental comparison between the prototype and some commercial phantoms was carried out. Measurements are in progress to test the phantom's ability to evaluate the performances of mammographic systems quantitatively. (author)

  15. A statistically defined anthropomorphic software breast phantom

    International Nuclear Information System (INIS)

    Lau, Beverly A.; Reiser, Ingrid; Nishikawa, Robert M.; Bakic, Predrag R.

    2012-01-01

    Purpose: Digital anthropomorphic breast phantoms have emerged in the past decade because of recent advances in 3D breast x-ray imaging techniques. Computer phantoms in the literature have incorporated power-law noise to represent glandular tissue and branching structures to represent linear components such as ducts. When power-law noise is added to those phantoms in one piece, the simulated fibroglandular tissue is distributed randomly throughout the breast, resulting in dense tissue placement that may not be observed in a real breast. The authors describe a method for enhancing an existing digital anthropomorphic breast phantom by adding binarized power-law noise to a limited area of the breast. Methods: Phantoms with (0.5 mm) 3 voxel size were generated using software developed by Bakic et al. Between 0% and 40% of adipose compartments in each phantom were replaced with binarized power-law noise (β = 3.0) ranging from 0.1 to 0.6 volumetric glandular fraction. The phantoms were compressed to 7.5 cm thickness, then blurred using a 3 × 3 boxcar kernel and up-sampled to (0.1 mm) 3 voxel size using trilinear interpolation. Following interpolation, the phantoms were adjusted for volumetric glandular fraction using global thresholding. Monoenergetic phantom projections were created, including quantum noise and simulated detector blur. Texture was quantified in the simulated projections using power-spectrum analysis to estimate the power-law exponent β from 25.6 × 25.6 mm 2 regions of interest. Results: Phantoms were generated with total volumetric glandular fraction ranging from 3% to 24%. Values for β (averaged per projection view) were found to be between 2.67 and 3.73. Thus, the range of textures of the simulated breasts covers the textures observed in clinical images. Conclusions: Using these new techniques, digital anthropomorphic breast phantoms can be generated with a variety of glandular fractions and patterns. β values for this new phantom are comparable

  16. Development of digital phantom for DRR evaluation

    International Nuclear Information System (INIS)

    Ikeda, Tsuyoshi; Katsuta, Shoichi; Oyama, Masaya; Ogino, Takashi

    2009-01-01

    Generally, digitally reconstructed radiograph (DRR) is evaluated by physical phantom. The CT image is camouflaged by the performance of the radiation treatment planning system and contains a variety of error factors. The CT image (as follows the digital phantom), where an arbitrary CT value is arranged in the matrix, is necessary to evaluate the pure performance of the radiation treatment planning system. In this study, the development of a digital phantom is described, and the utility is discussed. CTport and the radiation treatment planning system are evaluated with the use of a digital phantom as follows: geometrical accuracy evaluation of DRR, consisting of the center position, size of irradiation field, distortion, extension of X-ray, and beam axis, and the image quality evaluation of DRR, which consists of the contrast resolution. As for DRR made with CTport and the treatment planning system, the part that shifted geometrically was confirmed. In the image quality evaluation, there was a remarkable difference. Because the making accuracy and the installation accuracy of the phantom do not influence the digital phantom, the geometrical accuracy of the DRR is reliable. Because the CT conditions and the phantom factor have no influence, the peculiar DRR image quality can be evaluated and used to evaluate the best image processing parameters. (author)

  17. Charged black holes in phantom cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Jamil, Mubasher; Qadir, Asghar; Rashid, Muneer Ahmad [National University of Sciences and Technology, Center for Advanced Mathematics and Physics, Rawalpindi (Pakistan)

    2008-11-15

    In the classical relativistic regime, the accretion of phantom-like dark energy onto a stationary black hole reduces the mass of the black hole. We have investigated the accretion of phantom energy onto a stationary charged black hole and have determined the condition under which this accretion is possible. This condition restricts the mass-to-charge ratio in a narrow range. This condition also challenges the validity of the cosmic-censorship conjecture since a naked singularity is eventually produced due to accretion of phantom energy onto black hole. (orig.)

  18. Wormholes supported by phantom energy

    International Nuclear Information System (INIS)

    Gonzalez, J. A.; Guzman, F. S.; Montelongo-Garcia, N.; Zannias, T.

    2009-01-01

    By a combination of analytical and numerical techniques, we demonstrate the existence of spherical, asymptotically flat traversable wormholes supported by exotic matter whose stress tensor relative to the orthonormal frame of Killing observers takes the form of a perfect fluid possessing anisotropic pressures and subject to linear equations of state: τ=λρc 2 , P=μρc 2 . We show that there exists a four parameter family of asymptotically flat spherical wormholes parametrized by the area of the throat A(0), the gradient Λ(0) of the red shift factor evaluated on the throat as well as the values of (λ,μ). The latter are subject to restrictions: λ>1 and 2μ>λ or λ<0 and 2μ<-|λ|. For particular values of (λ,μ), the stress tensor may be interpreted as representing a phantom configuration, while for other values represents exotic matter. All solutions have the property that the two asymptotically flat ends possess finite Arnowitt-Deser-Misner mass.

  19. Phantom cosmology without Big Rip singularity

    Energy Technology Data Exchange (ETDEWEB)

    Astashenok, Artyom V. [Baltic Federal University of I. Kant, Department of Theoretical Physics, 236041, 14, Nevsky st., Kaliningrad (Russian Federation); Nojiri, Shin' ichi, E-mail: nojiri@phys.nagoya-u.ac.jp [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Kobayashi-Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Nagoya 464-8602 (Japan); Odintsov, Sergei D. [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Institucio Catalana de Recerca i Estudis Avancats - ICREA and Institut de Ciencies de l' Espai (IEEC-CSIC), Campus UAB, Facultat de Ciencies, Torre C5-Par-2a pl, E-08193 Bellaterra (Barcelona) (Spain); Tomsk State Pedagogical University, Tomsk (Russian Federation); Yurov, Artyom V. [Baltic Federal University of I. Kant, Department of Theoretical Physics, 236041, 14, Nevsky st., Kaliningrad (Russian Federation)

    2012-03-23

    We construct phantom energy models with the equation of state parameter w which is less than -1, w<-1, but finite-time future singularity does not occur. Such models can be divided into two classes: (i) energy density increases with time ('phantom energy' without 'Big Rip' singularity) and (ii) energy density tends to constant value with time ('cosmological constant' with asymptotically de Sitter evolution). The disintegration of bound structure is confirmed in Little Rip cosmology. Surprisingly, we find that such disintegration (on example of Sun-Earth system) may occur even in asymptotically de Sitter phantom universe consistent with observational data. We also demonstrate that non-singular phantom models admit wormhole solutions as well as possibility of Big Trip via wormholes.

  20. Phantom inflation and the 'Big Trip'

    International Nuclear Information System (INIS)

    Gonzalez-Diaz, Pedro F.; Jimenez-Madrid, Jose A.

    2004-01-01

    Primordial inflation is regarded to be driven by a phantom field which is here implemented as a scalar field satisfying an equation of state p=ωρ, with ω-1. Being even aggravated by the weird properties of phantom energy, this will pose a serious problem with the exit from the inflationary phase. We argue, however, in favor of the speculation that a smooth exit from the phantom inflationary phase can still be tentatively recovered by considering a multiverse scenario where the primordial phantom universe would travel in time toward a future universe filled with usual radiation, before reaching the big rip. We call this transition the 'Big Trip' and assume it to take place with the help of some form of anthropic principle which chooses our current universe as being the final destination of the time transition

  1. Phantom cosmology without Big Rip singularity

    International Nuclear Information System (INIS)

    Astashenok, Artyom V.; Nojiri, Shin'ichi; Odintsov, Sergei D.; Yurov, Artyom V.

    2012-01-01

    We construct phantom energy models with the equation of state parameter w which is less than -1, w<-1, but finite-time future singularity does not occur. Such models can be divided into two classes: (i) energy density increases with time (“phantom energy” without “Big Rip” singularity) and (ii) energy density tends to constant value with time (“cosmological constant” with asymptotically de Sitter evolution). The disintegration of bound structure is confirmed in Little Rip cosmology. Surprisingly, we find that such disintegration (on example of Sun-Earth system) may occur even in asymptotically de Sitter phantom universe consistent with observational data. We also demonstrate that non-singular phantom models admit wormhole solutions as well as possibility of Big Trip via wormholes.

  2. Pediatric phantoms for use in dosimetric calculations

    International Nuclear Information System (INIS)

    Shoup, R.L.; Hwang, J.L.; Poston, J.W.; Warner, G.G.

    1976-01-01

    Estimating absorbed doses to children from external and internal radiation sources has become important to the nuclear industry and pediatric nuclear medicine. The Medical Physics and Internal Dosimetry Section at ORNL has recently completed the design of mathematical representations of children of ages newborn, 1 year, and 5 years old. These mathematical representations will be referred to as pediatric phantoms. Using these phantoms, relevant energy deposition data have been developed which establish a meaningful model for use in estimating radiation dose to children

  3. Development of realistic physical breast phantoms matched to virtual breast phantoms based on human subject data

    International Nuclear Information System (INIS)

    Kiarashi, Nooshin; Nolte, Adam C.; Sturgeon, Gregory M.; Ghate, Sujata V.; Segars, William P.; Nolte, Loren W.; Samei, Ehsan

    2015-01-01

    Purpose: Physical phantoms are essential for the development, optimization, and evaluation of x-ray breast imaging systems. Recognizing the major effect of anatomy on image quality and clinical performance, such phantoms should ideally reflect the three-dimensional structure of the human breast. Currently, there is no commercially available three-dimensional physical breast phantom that is anthropomorphic. The authors present the development of a new suite of physical breast phantoms based on human data. Methods: The phantoms were designed to match the extended cardiac-torso virtual breast phantoms that were based on dedicated breast computed tomography images of human subjects. The phantoms were fabricated by high-resolution multimaterial additive manufacturing (3D printing) technology. The glandular equivalency of the photopolymer materials was measured relative to breast tissue-equivalent plastic materials. Based on the current state-of-the-art in the technology and available materials, two variations were fabricated. The first was a dual-material phantom, the Doublet. Fibroglandular tissue and skin were represented by the most radiographically dense material available; adipose tissue was represented by the least radiographically dense material. The second variation, the Singlet, was fabricated with a single material to represent fibroglandular tissue and skin. It was subsequently filled with adipose-equivalent materials including oil, beeswax, and permanent urethane-based polymer. Simulated microcalcification clusters were further included in the phantoms via crushed eggshells. The phantoms were imaged and characterized visually and quantitatively. Results: The mammographic projections and tomosynthesis reconstructed images of the fabricated phantoms yielded realistic breast background. The mammograms of the phantoms demonstrated close correlation with simulated mammographic projection images of the corresponding virtual phantoms. Furthermore, power

  4. Development of realistic physical breast phantoms matched to virtual breast phantoms based on human subject data

    Energy Technology Data Exchange (ETDEWEB)

    Kiarashi, Nooshin [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710 and Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708 (United States); Nolte, Adam C. [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710 and Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708 (United States); Sturgeon, Gregory M.; Ghate, Sujata V. [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710 (United States); Segars, William P. [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710 and Medical Physics Graduate Program, Duke University, Durham, North Carolina 27708 (United States); Nolte, Loren W. [Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708 and Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708 (United States); Samei, Ehsan [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710 (United States); Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708 (United States); Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708 (United States); Medical Physics Graduate Program, Duke University, Durham, North Carolina 27708 (United States); Department of Physics, Duke University, Durham, North Carolina 27708 (United States); and others

    2015-07-15

    Purpose: Physical phantoms are essential for the development, optimization, and evaluation of x-ray breast imaging systems. Recognizing the major effect of anatomy on image quality and clinical performance, such phantoms should ideally reflect the three-dimensional structure of the human breast. Currently, there is no commercially available three-dimensional physical breast phantom that is anthropomorphic. The authors present the development of a new suite of physical breast phantoms based on human data. Methods: The phantoms were designed to match the extended cardiac-torso virtual breast phantoms that were based on dedicated breast computed tomography images of human subjects. The phantoms were fabricated by high-resolution multimaterial additive manufacturing (3D printing) technology. The glandular equivalency of the photopolymer materials was measured relative to breast tissue-equivalent plastic materials. Based on the current state-of-the-art in the technology and available materials, two variations were fabricated. The first was a dual-material phantom, the Doublet. Fibroglandular tissue and skin were represented by the most radiographically dense material available; adipose tissue was represented by the least radiographically dense material. The second variation, the Singlet, was fabricated with a single material to represent fibroglandular tissue and skin. It was subsequently filled with adipose-equivalent materials including oil, beeswax, and permanent urethane-based polymer. Simulated microcalcification clusters were further included in the phantoms via crushed eggshells. The phantoms were imaged and characterized visually and quantitatively. Results: The mammographic projections and tomosynthesis reconstructed images of the fabricated phantoms yielded realistic breast background. The mammograms of the phantoms demonstrated close correlation with simulated mammographic projection images of the corresponding virtual phantoms. Furthermore, power

  5. Conversion of ICRP male reference phantom to polygon-surface phantom

    International Nuclear Information System (INIS)

    Yeom, Yeon Soo; Han, Min Cheol; Kim, Chan Hyeong; Jeong, Jong Hwi

    2013-01-01

    The International Commission on Radiological Protection (ICRP) reference phantoms, developed based on computed tomography images of human bodies, provide much more realism of human anatomy than the previously used MIRD5 (Medical Internal Radiation Dose) mathematical phantoms. It has been, however, realized that the ICRP reference phantoms have some critical limitations showing a considerable amount of holes for the skin and wall organs mainly due to the nature of voxels of which the phantoms are made, especially due to their low voxel resolutions. To address this problem, we are planning to develop the polygon-surface version of ICRP reference phantoms by directly converting the ICRP reference phantoms (voxel phantoms) to polygon-surface phantoms. The objective of this preliminary study is to see if it is indeed possible to construct the high-quality polygon-surface phantoms based on the ICRP reference phantoms maintaining identical organ morphology and also to identify any potential issues, and technologies to address these issues, in advance. For this purpose, in the present study, the ICRP reference male phantom was roughly converted to a polygon-surface phantom. Then, the constructed phantom was implemented in Geant4, Monte Carlo particle transport code, for dose calculations, and the calculated dose values were compared with those of the original ICRP reference phantom to see how much the calculated dose values are sensitive to the accuracy of the conversion process. The results of the present study show that it is certainly possible to convert the ICRP reference phantoms to surface phantoms with enough accuracy. In spite of using relatively less resources (<2 man-months), we were able to construct the polygon-surface phantom with the organ masses perfectly matching the ICRP reference values. The analysis of the calculated dose values also implies that the dose values are indeed not very sensitive to the detailed morphology of the organ models in the phantom

  6. A dynamic phantom for radionuclide renography

    International Nuclear Information System (INIS)

    Heikkinen, J.O.

    1999-01-01

    The aim of the study was to develop and test a dynamic phantom simulating radionuclide renography. The phantom consisted of five partly lead covered plastic containers simulating kidneys, heart, bladder and background (soft tissues, liver and spleen). Dynamics were performed with multiple movable steel plates between containers and a gamma camera. Control of the plates is performed manually with a stopwatch following exact time schedules. The containers were filled with activities ( 99m Tc) which produce count rates close to clinical situations. Count rates produced by the phantom were compared with ten clinical renography cases: five 99m Tc MAG3 and five 99m Tc DTPA examinations. Two phantom simulations were repeated three times with separate fillings, acquisitions and analyses. Precision errors as a coefficient of variation (CV) of repeated measurements were calculated and theoretical values were compared with the corresponding measured ones. A multicentre comparison was made between 19 nuclear medicine laboratories and three clinical cases were simulated with the phantom. Correlations between count rates produced by the phantom and clinical studies were r=0.964 for 99m Tc MAG3 (p 99m Tc DTPA (p max was 4.0±1.6%. Images and curves of the scanned phantom were close to a real patient in all 19 laboratories but calculated parameters varied: the difference between theoretical and measured values for T max was 6.8±6.2%. The difference between laboratories is most probably due to variations in acquisition protocols and analysis programs: 19 laboratories with 18 different protocols and 8 different programs. The dynamics were found to be repeatable and suitable for calibration purposes for radionuclide renography programs and protocols as well as for multicentre comparisons. (author)

  7. The Influence of Pickup Protons, from Interstellar Neutral Hydrogen, on the Propagation of Interplanetary Shocks from the Halloween 2003 Solar Events to ACE and Ulysses: A 3-D MHD Modeling Study

    Science.gov (United States)

    Detman, T. R.; Intriligator, D. S.; Dryer, M.; Sun, W.; Deehr, C. S.; Intriligator, J.

    2012-01-01

    We describe our 3-D, time ]dependent, MHD solar wind model that we recently modified to include the physics of pickup protons from interstellar neutral hydrogen. The model has a time-dependent lower boundary condition, at 0.1 AU, that is driven by source surface map files through an empirical interface module. We describe the empirical interface and its parameter tuning to maximize model agreement with background (quiet) solar wind observations at ACE. We then give results of a simulation study of the famous Halloween 2003 series of solar events. We began with shock inputs from the Fearless Forecast real ]time shock arrival prediction study, and then we iteratively adjusted input shock speeds to obtain agreement between observed and simulated shock arrival times at ACE. We then extended the model grid to 5.5 AU and compared those simulation results with Ulysses observations at 5.2 AU. Next we undertook the more difficult tuning of shock speeds and locations to get matching shock arrival times at both ACE and Ulysses. Then we ran this last case again with neutral hydrogen density set to zero, to identify the effect of pickup ions. We show that the speed of interplanetary shocks propagating from the Sun to Ulysses is reduced by the effects of pickup protons. We plan to make further improvements to the model as we continue our benchmarking process to 10 AU, comparing our results with Cassini observations, and eventually on to 100 AU, comparing our results with Voyager 1 and 2 observations.

  8. Individual virtual phantom reconstruction for organ dosimetry based on standard available phantoms

    International Nuclear Information System (INIS)

    Babapour Mofrad, F.; Aghaeizadeh Zoroofi, R.; Abbaspour Tehran Fard, A.; Akhlaghpoor, Sh.; Chen, Y. W.; Sato, Y.

    2010-01-01

    In nuclear medicine application often it is required to use computational methods for evaluation of organ absorbed dose. Monte Carlo Simulation and phantoms have been used in many works before. The shape, size and volume In organs are varied, and this variation will produce error in dose calculation if no correction is applied. Materials and Methods: A computational framework for constructing individual phantom for dosimetry was performed on five liver CT scan data sets of Japanese normal individuals. The Zubal phantom was used as an original phantom to be adjusted by each individual data set. This registration was done by Spherical Harmonics and Thin-Plate Spline methods. Hausdorff distance was calculated for each case. Results: Result of Hausdorff distance for five lndividual phantoms showed that before registration ranged from 140.9 to 192.1, and after registration it changed to 52.5 to 76.7. This was caused by Index similarity ranged from %56.4 to %70.3. Conclusion: A new and automatic three-dimensional (3D) phantom construction approach was-suggested for individual internal dosimetry simulation via Spherical Harmonics and Thin-Plate Spline methods. The results showed that the Individual comparable phantom can be calculated with acceptable accuracy using geometric registration. This method could be used for race-specific statistical phantom modeling with major application in nuclear medicine for absorbed dose calculation.

  9. Dose distribution in organs: patient-specific phantoms versus reference phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Lacerda, I.V.B., E-mail: isabelle.lacerda@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife (Brazil); Vieira, J.W. [Instituto Federal de Pernambuco (IFPE), Recife (Brazil); Oliveira, M.L.; Lima, F.R.A. [Centro Regional de Ciências Nucleares do Nordeste (CRCN-NE/CNEN-PB), Recife (Brazil)

    2017-07-01

    Discrepancies between ICRP phantoms and real patients lead to disparities on patient-dose estimations. This paper aims to compare distribution of dose in organs of male/female specific-phantoms and ICRP reference phantoms. The absorbed dose estimation was performed using the EGSnrc Monte Carlo code and a parallel source algorithm. In this work were used a patient-specific phantom for a man (1.73m/70.3kg) and another for a woman (1.63m/60.3kg) and the male and female ICRP reference phantoms. The comparison of the absorbed dose from each phantom gender was performed using the relative error. The results were expressed in terms of conversion coefficients to brain, lungs, liver and kidneys. The greatest absolute relative error between the organs of the patient-specific phantom and the reference phantom was 22.92% in the liver and 62.84% in the kidneys, respectively for man and woman. There are errors that cannot be disregarded. This paper shows the need for a specific study for each patient or for the population of each country, since there are different body types, which affects the distribution of the organ doses. (author)

  10. Dose distribution in organs: patient-specific phantoms versus reference phantoms

    International Nuclear Information System (INIS)

    Lacerda, I.V.B.; Vieira, J.W.; Oliveira, M.L.; Lima, F.R.A.

    2017-01-01

    Discrepancies between ICRP phantoms and real patients lead to disparities on patient-dose estimations. This paper aims to compare distribution of dose in organs of male/female specific-phantoms and ICRP reference phantoms. The absorbed dose estimation was performed using the EGSnrc Monte Carlo code and a parallel source algorithm. In this work were used a patient-specific phantom for a man (1.73m/70.3kg) and another for a woman (1.63m/60.3kg) and the male and female ICRP reference phantoms. The comparison of the absorbed dose from each phantom gender was performed using the relative error. The results were expressed in terms of conversion coefficients to brain, lungs, liver and kidneys. The greatest absolute relative error between the organs of the patient-specific phantom and the reference phantom was 22.92% in the liver and 62.84% in the kidneys, respectively for man and woman. There are errors that cannot be disregarded. This paper shows the need for a specific study for each patient or for the population of each country, since there are different body types, which affects the distribution of the organ doses. (author)

  11. Cosmological perturbations in transient phantom inflation scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Richarte, Martin G. [Universidade Federal do Parana, Departamento de Fisica, Caixa Postal 19044, Curitiba (Brazil); Universidad de Buenos Aires, Ciudad Universitaria 1428, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina); Kremer, Gilberto M. [Universidade Federal do Parana, Departamento de Fisica, Caixa Postal 19044, Curitiba (Brazil)

    2017-01-15

    We present a model of inflation where the inflaton is accommodated as a phantom field which exhibits an initial transient pole behavior and then decays into a quintessence field which is responsible for a radiation era. We must stress that the present unified model only deals with a single field and that the transition between the two eras is achieved in a smooth way, so the model does not suffer from the eternal inflation issue. We explore the conditions for the crossing of the phantom divide line within the inflationary era along with the structural stability of several critical points. We study the behavior of the phantom field within the slow-climb approximation along with the necessary conditions to have sufficient inflation. We also examine the model at the level of classical perturbations within the Newtonian gauge and determine the behavior of the gravitational potential, contrast density and perturbed field near the inflation stage and the subsequent radiation era. (orig.)

  12. Designing a compact MRI motion phantom

    Directory of Open Access Journals (Sweden)

    Schmiedel Max

    2016-09-01

    Full Text Available Even today, dealing with motion artifacts in magnetic resonance imaging (MRI is a challenging task. Image corruption due to spontaneous body motion complicates diagnosis. In this work, an MRI phantom for rigid motion is presented. It is used to generate motion-corrupted data, which can serve for evaluation of blind motion compensation algorithms. In contrast to commercially available MRI motion phantoms, the presented setup works on small animal MRI systems. Furthermore, retrospective gating is performed on the data, which can be used as a reference for novel motion compensation approaches. The motion of the signal source can be reconstructed using motor trigger signals and be utilized as the ground truth for motion estimation. The proposed setup results in motion corrected images. Moreover, the importance of preprocessing the MRI raw data, e.g. phase-drift correction, is demonstrated. The gained knowledge can be used to design an MRI phantom for elastic motion.

  13. Gene

    Data.gov (United States)

    U.S. Department of Health & Human Services — Gene integrates information from a wide range of species. A record may include nomenclature, Reference Sequences (RefSeqs), maps, pathways, variations, phenotypes,...

  14. New mechanism to cross the phantom divide

    OpenAIRE

    Du, Yunshuang; Zhang, Hongsheng; Li, Xin-Zhou

    2010-01-01

    Recently, type Ia supernovae data appear to support a dark energy whose equation of state $w$ crosses -1, which is a much more amazing problem than the acceleration of the universe. We show that it is possible for the equation of state to cross the phantom divide by a scalar field in the gravity with an additional inverse power-law term of Ricci scalar in the Lagrangian. The necessary and sufficient condition for a universe in which the dark energy can cross the phantom divide is obtained. So...

  15. Computational anthropomorphic phantoms for radiation protection dosimetry: evolution and prospects

    International Nuclear Information System (INIS)

    Lee, Choonsik; Lee, Jaiki

    2006-01-01

    Computational anthropomorphic phantoms are computer models of human anatomy used in the calculation of radiation dose distribution in the human body upon exposure to a radiation source. Depending on the manner to represent human anatomy, they are categorized into two classes: stylized and tomographic phantoms. Stylized phantoms, which have mainly been developed at the Oak Ridge National Laboratory (ORNL), describe human anatomy by using simple mathematical equations of analytical geometry. Several improved stylized phantoms such as male and female adults, pediatric series, and enhanced organ models have been developed following the first hermaphrodite adult stylized phantom, Medical Internal Radiation Dose (MIRD)-5 phantom. Although stylized phantoms have significantly contributed to dosimetry calculation, they provide only approximations of the true anatomical features of the human body and the resulting organ dose distribution. An alternative class of computational phantom, the tomographic phantom, is based upon three-dimensional imaging techniques such as Magnetic Resonance (MR) imaging and Computed Tomography (CT). The tomographic phantoms represent the human anatomy with a large number of voxels that are assigned tissue type and organ identity. To date, a total of around 30 tomographic phantoms including male and female adults, pediatric phantoms, and even a pregnant female, have been developed and utilized for realistic radiation dosimetry calculation. They are based on MRI/CT images or sectional color photos from patients, volunteers or cadavers. Several investigators have compared tomographic phantoms with stylized phantoms, and demonstrated the superiority of tomographic phantoms in terms of realistic anatomy and dosimetry calculation. This paper summarizes the history and current status of both stylized and tomographic phantoms, including Korean computational phantoms. Advantages, limitations, and future prospects are also discussed

  16. Ultrasonographic Quantification of Fat Content in Fatty Liver Phantoms

    International Nuclear Information System (INIS)

    Kim, Il Young; Kim, Pyo Nyun; Joo, Gyung Soo; Kim, Ho Jung; Kim, Young Beom; Lee, Byoung Ho

    1995-01-01

    Assuming that the fat content of certain tissue might be quantified by measurirrg the ultrasound echo level, we analyzed the ultrasound histograms obtained from the fatty liver phantoms that contained various amount of fat. Various amount of margarine(Mazola. Cliff wood. USA) was mixed with 2% of agarin solution state to produce fatty liver phantoms that contained 5, 10, 20, 30 and 40% of fat. We obtained ultrasound histogram from each fatty liver phantom in gel state. We used 2% agar gel as a control. The ultrasound histograms from the control phantom showed gradual increase in echo level as the depth from the surface increased. The echo level from the phantom that contained 5% of fat showed gradual increase and subsequent decrease with the peak echo level at the depth of 3cm. The echo levels from the phantoms that contained more in 5% of fat gradually decreased as the depth from the surface increased; the change becoming more pronounced as the fat content of the phantom increased. The echo levels measured at the depth of 1cm were 9.3(control), 29.6(5%phantom), 3l.3 (10% phantom), 26.3 (20% phantom), l8.8 (30% phantom), and l6dB (40% phantom). Fat content of fatty phantoms can not be quantified by measuring only echo level. Simultaneous measurement of attenuation of ultrasound, which is not easy to do and not done in this study, is prerequisite to quantify fat content

  17. Tissue quantification for development of pediatric phantom

    International Nuclear Information System (INIS)

    Alves, A.F.F.; Miranda, J.R.A.; Pina, D.R.

    2013-01-01

    The optimization of the risk- benefit ratio is a major concern in the pediatric radiology, due to the greater vulnerability of children to the late somatic effects and genetic effects of exposure to radiation compared to adults. In Brazil, it is estimated that the causes of death from head trauma are 18 % for the age group between 1-5 years and the radiograph is the primary diagnostic test for the detection of skull fracture . Knowing that the image quality is essential to ensure the identification of structures anatomical and minimizing errors diagnostic interpretation, this paper proposed the development and construction of homogeneous phantoms skull, for the age group 1-5 years. The construction of the phantoms homogeneous was performed using the classification and quantification of tissue present in the skull of pediatric patients. In this procedure computational algorithms were used, using Matlab, to quantify distinct biological tissues present in the anatomical regions studied , using pictures retrospective CT scans. Preliminary data obtained from measurements show that between the ages of 1-5 years, assuming an average anteroposterior diameter of the pediatric skull region of the 145.73 ± 2.97 mm, can be represented by 92.34 mm ± 5.22 of lucite and 1.75 ± 0:21 mm of aluminum plates of a provision of PEP (Pacient equivalent phantom). After its construction, the phantoms will be used for image and dose optimization in pediatric protocols process to examinations of computerized radiography

  18. PHANTOM: Smoothed particle hydrodynamics and magnetohydrodynamics code

    Science.gov (United States)

    Price, Daniel J.; Wurster, James; Nixon, Chris; Tricco, Terrence S.; Toupin, Stéven; Pettitt, Alex; Chan, Conrad; Laibe, Guillaume; Glover, Simon; Dobbs, Clare; Nealon, Rebecca; Liptai, David; Worpel, Hauke; Bonnerot, Clément; Dipierro, Giovanni; Ragusa, Enrico; Federrath, Christoph; Iaconi, Roberto; Reichardt, Thomas; Forgan, Duncan; Hutchison, Mark; Constantino, Thomas; Ayliffe, Ben; Mentiplay, Daniel; Hirsh, Kieran; Lodato, Giuseppe

    2017-09-01

    Phantom is a smoothed particle hydrodynamics and magnetohydrodynamics code focused on stellar, galactic, planetary, and high energy astrophysics. It is modular, and handles sink particles, self-gravity, two fluid and one fluid dust, ISM chemistry and cooling, physical viscosity, non-ideal MHD, and more. Its modular structure makes it easy to add new physics to the code.

  19. Homemade ultrasound phantom for simulation of hydronephrosis

    Directory of Open Access Journals (Sweden)

    Ana Karine Brandao Novaes

    2018-05-01

    Full Text Available Abstract In this article, we describe the development of a simple and inexpensive simulation phantom as a surrogate of human hydronephrosis for the identification of urinary tract obstruction at bedside to be used in undergraduate training of medical students.

  20. The "Phantom Costs" of Florida's Citrus Industry

    OpenAIRE

    Muraro, Ronald P.; Roka, Fritz M.; Spreen, Thomas H.

    2006-01-01

    Regulatory compliance, the "phantom costs of production," is an increasingly "fact-of-life" for U.S. agriculture. A survey was developed and implemented to enumerate regulatory compliance costs for Florida's 748,500 acres citrus industry. Complying with 61 production related regulations, 643,757 hours were expended at a total annual cost of over $24.3 million.

  1. IMRT delivery verification using a spiral phantom

    International Nuclear Information System (INIS)

    Richardson, Susan L.; Tome, Wolfgang A.; Orton, Nigel P.; McNutt, Todd R.; Paliwal, Bhudatt R.

    2003-01-01

    In this paper we report on the testing and verification of a system for IMRT delivery quality assurance that uses a cylindrical solid water phantom with a spiral trajectory for radiographic film placement. This spiral film technique provides more complete dosimetric verification of the entire IMRT treatment than perpendicular film methods, since it samples a three-dimensional dose subspace rather than using measurements at only one or two depths. As an example, the complete analysis of the predicted and measured spiral films is described for an intracranial IMRT treatment case. The results of this analysis are compared to those of a single field perpendicular film technique that is typically used for IMRT QA. The comparison demonstrates that both methods result in a dosimetric error within a clinical tolerance of 5%, however the spiral phantom QA technique provides a more complete dosimetric verification while being less time consuming. To independently verify the dosimetry obtained with the spiral film, the same IMRT treatment was delivered to a similar phantom in which LiF thermoluminescent dosimeters were arranged along the spiral trajectory. The maximum difference between the predicted and measured TLD data for the 1.8 Gy fraction was 0.06 Gy for a TLD located in a high dose gradient region. This further validates the ability of the spiral phantom QA process to accurately verify delivery of an IMRT plan

  2. Phantom breast sensations are frequent after mastectomy

    DEFF Research Database (Denmark)

    Hansen, Dorthe Marie Helbo; Kehlet, Henrik; Gærtner, Rune

    2011-01-01

    Phantom breast sensation (PBS) following mastectomy has been recognized for many years. PBS is a feeling that the removed breast is still there. The reported prevalence and risk factors have not been established in large well-defined patient series. The purpose of this study was to examine...... the prevalence of PBS following mastectomy and associated risk factors....

  3. Deep brain stimulation for phantom limb pain.

    Science.gov (United States)

    Bittar, Richard G; Otero, Sofia; Carter, Helen; Aziz, Tipu Z

    2005-05-01

    Phantom limb pain is an often severe and debilitating phenomenon that has been reported in up to 85% of amputees. Its pathophysiology is poorly understood. Peripheral and spinal mechanisms are thought to play a role in pain modulation in affected individuals; however central mechanisms are also likely to be of importance. The neuromatrix theory postulates a genetically determined representation of body image, which is modified by sensory input to create a neurosignature. Persistence of the neurosignature may be responsible for painless phantom limb sensations, whereas phantom limb pain may be due to abnormal reorganisation within the neuromatrix. This study assessed the clinical outcome of deep brain stimulation of the periventricular grey matter and somatosensory thalamus for the relief of chronic neuropathic pain associated with phantom limb in three patients. These patients were assessed preoperatively and at 3 month intervals postoperatively. Self-rated visual analogue scale pain scores assessed pain intensity, and the McGill Pain Questionnaire assessed the quality of the pain. Quality of life was assessed using the EUROQOL EQ-5D scale. Periventricular gray stimulation alone was optimal in two patients, whilst a combination of periventricular gray and thalamic stimulation produced the greatest degree of relief in one patient. At follow-up (mean 13.3 months) the intensity of pain was reduced by 62% (range 55-70%). In all three patients, the burning component of the pain was completely alleviated. Opiate intake was reduced in the two patients requiring morphine sulphate pre-operatively. Quality of life measures indicated a statistically significant improvement. This data supports the role for deep brain stimulation in patients with phantom limb pain. The medical literature relating to the epidemiology, pathogenesis, and treatment of this clinical entity is reviewed in detail.

  4. Image fusion tool: Validation by phantom measurements

    International Nuclear Information System (INIS)

    Zander, A.; Geworski, L.; Richter, M.; Ivancevic, V.; Munz, D.L.; Muehler, M.; Ditt, H.

    2002-01-01

    Aim: Validation of a new image fusion tool with regard to handling, application in a clinical environment and fusion precision under different acquisition and registration settings. Methods: The image fusion tool investigated allows fusion of imaging modalities such as PET, CT, MRI. In order to investigate fusion precision, PET and MRI measurements were performed using a cylinder and a body contour-shaped phantom. The cylinder phantom (diameter and length 20 cm each) contained spheres (10 to 40 mm in diameter) which represented 'cold' or 'hot' lesions in PET measurements. The body contour-shaped phantom was equipped with a heart model containing two 'cold' lesions. Measurements were done with and without four external markers placed on the phantoms. The markers were made of plexiglass (2 cm diameter and 1 cm thickness) and contained a Ga-Ge-68 core for PET and Vitamin E for MRI measurements. Comparison of fusion results with and without markers was done visually and by computer assistance. This algorithm was applied to the different fusion parameters and phantoms. Results: Image fusion of PET and MRI data without external markers yielded a measured error of 0 resulting in a shift at the matrix border of 1.5 mm. Conclusion: The image fusion tool investigated allows a precise fusion of PET and MRI data with a translation error acceptable for clinical use. The error is further minimized by using external markers, especially in the case of missing anatomical orientation. Using PET the registration error depends almost only on the low resolution of the data

  5. Reconstruction of voxel phantoms for skin dosimetry

    International Nuclear Information System (INIS)

    Antunes, Paula Cristina Guimaraes

    2010-01-01

    Radiotherapy is a therapeutic modality that utilizes ionizing radiation for the destruction of neoplastic human cells. One of the requirements for this treatment methodology success lays on the appropriate use of planning systems, which performs, among other information, the patient's dose distribution estimate. Nowadays, transport codes have been providing huge subsidies to these planning systems, once it enables specific and accurate patient organ and tissue dosimetry. The model utilized by these codes to describe the human anatomy in a realistic way is known as voxel phantoms, which are represented by discrete volume elements (voxels) directly associated to tomographic data. Nowadays, voxel phantoms doable of being inserted and processed by the transport code MCNP (Monte Carlo N-Particle) presents a 3-4 mm image resolution; however, such resolution limits some thin body structure discrimination, such as skin. In this context, this work proposes a calculus routine that discriminates this region with thickness and localization in the voxel phantoms similar to the real, leading to an accurate dosimetric skin dose assessment by the MCNP code. Moreover, this methodology consists in manipulating the voxel phantoms volume elements by segmenting and subdividing it in different skin thickness. In addition to validate the skin dose calculated data, a set of experimental evaluations with thermoluminescent dosimeters were performed in an anthropomorphic phantom. Due to significant differences observed on the dose distribution of several skin representations, it was found that is important to discriminate the skin thickness similar to the real. The presented methodology is useful to obtain an accurate skin dosimetric evaluation for several radiotherapy procedures, with particular interest on the electron beam radiotherapy, in which highlights the whole body irradiation therapy (TSET), a procedure under implementation at the Hospital das Clinicas da Faculdade de Medicina da

  6. Phantom Sensations, Supernumerary Phantom Limbs and Apotemnophilia: Three Body Representation Disorders.

    Science.gov (United States)

    Tatu, Laurent; Bogousslavsky, Julien

    2018-01-01

    Body representation disorders continue to be mysterious and involve the anatomical substrate that underlies the mental representation of the body. These disorders sit on the boundaries of neurological and psychiatric diseases. We present the main characteristics of 3 examples of body representation disorders: phantom sensations, supernumerary phantom limb, and apotemnophilia. The dysfunction of anatomical circuits that regulate body representation can sometimes have paradoxical features. In the case of phantom sensations, the patient feels the painful subjective sensation of the existence of the lost part of the body after amputation, surgery or trauma. In case of apotemnophilia, now named body integrity identity disorder, the subject wishes for the disappearance of the existing and normal limb, which can occasionally lead to self-amputation. More rarely, a brain-damaged patient with 4 existing limbs can report the existence of a supernumerary phantom limb. © 2018 S. Karger AG, Basel.

  7. Phantom energy accretion onto black holes in a cyclic universe

    International Nuclear Information System (INIS)

    Sun Chengyi

    2008-01-01

    Black holes pose a serious problem in cyclic or oscillating cosmology. It is speculated that, in the cyclic universe with phantom turnarounds, black holes will be torn apart by phantom energy prior to turnaround before they can create any problems. In this paper, using the mechanism of phantom accretion onto black holes, we find that black holes do not disappear before phantom turnaround. But the remanent black holes will not cause any problems due to Hawking evaporation.

  8. Hybrid pregnant reference phantom series based on adult female ICRP reference phantom

    Science.gov (United States)

    Rafat-Motavalli, Laleh; Miri-Hakimabad, Hashem; Hoseinian-Azghadi, Elie

    2018-03-01

    This paper presents boundary representation (BREP) models of pregnant female and her fetus at the end of each trimester. The International Commission on Radiological Protection (ICRP) female reference voxel phantom was used as a base template in development process of the pregnant hybrid phantom series. The differences in shape and location of the displaced maternal organs caused by enlarging uterus were also taken into account. The CT and MR images of fetus specimens and pregnant patients of various ages were used to replace the maternal abdominal pelvic organs of template phantom and insert the fetus inside the gravid uterus. Each fetal model contains 21 different organs and tissues. The skeletal model of the fetus also includes age-dependent cartilaginous and ossified skeletal components. The replaced maternal organ models were converted to NURBS surfaces and then modified to conform to reference values of ICRP Publication 89. The particular feature of current series compared to the previously developed pregnant phantoms is being constructed upon the basis of ICRP reference phantom. The maternal replaced organ models are NURBS surfaces. With this great potential, they might have the feasibility of being converted to high quality polygon mesh phantoms.

  9. ICRU activity in the field of phantoms in diagnostic radiology

    International Nuclear Information System (INIS)

    Wambersie, A.

    1992-01-01

    The ICRU Report on 'Phantoms and Computational Models in Radiation Therapy, Diagnosis and Protection' is presented. Different types of phantoms may be defined. They may be broadly categorized according to their primary function: dosimetry, calibration and imaging. Within each functional category, there are 3 types or designs of phantoms: body phantoms (anthropomorphic), standard phantoms and reference phantoms (used in the definition and specification of certain radiation quantities). In radiological imaging, anthropomorphic body phantoms are used for measuring the absorbed dose distribution resulting from imaging procedures. Standard phantoms have simple reproducible geometry and are used for comparing measurements under standard conditions of exposure. Imaging phantoms are useful for evaluating a given imaging system; they contain different types of test pieces. The report contains a major section on human anatomy, from fetus to adult with the variations due to ethnic origin. Tolerance levels for the phantoms (composition, dimensions) are proposed and quality assurance programs are outlined. The report contains extensive appendices; human anatomical data and full specification of over 80 phantoms and computational models. ICRU Report 46 on 'Photon, electron, proton and neutron interaction data for body tissues' is closely related to the field of phantoms. It is a logical continuation on ICRU Report 44 (1989) on 'Tissue substitutes in radiation dosimetry and measurements' and contains the interaction data for more than 100 tissues, from fetal to adult, including some diseased tissues

  10. The subresolution DaTSCAN phantom: a cost-effective, flexible alternative to traditional phantom technology.

    Science.gov (United States)

    Taylor, Jonathan C; Vennart, Nicholas; Negus, Ian; Holmes, Robin; Bandmann, Oliver; Lo, Christine; Fenner, John

    2018-03-01

    The Alderson striatal phantom is frequently used to assess I-FP-CIT (Ioflupane) image quality and to test semi-quantification software. However, its design is associated with a number of limitations, in particular: unrealistic image appearances and inflexibility. A new physical phantom approach is proposed on the basis of subresolution phantom technology. The design incorporates thin slabs of attenuating material generated through additive manufacturing, and paper sheets with radioactive ink patterns printed on their surface, created with a conventional inkjet printer. The paper sheets and attenuating slabs are interleaved before scanning. Use of thin layers ensures that they cannot be individually resolved on reconstructed images. An investigation was carried out to demonstrate the performance of such a phantom in producing simplified I-FP-CIT uptake patterns. Single photon emission computed tomography imaging was carried out on an assembled phantom designed to mimic a healthy patient. Striatal binding ratio results and linear striatal dimensions were calculated from the reconstructed data and compared with that of 22 clinical patients without evidence of Parkinsonian syndrome, determined from clinical follow-up. Striatal binding ratio results for the fully assembled phantom were: 3.1, 3.3, 2.9 and 2.6 for the right caudate, left caudate, right putamen and right caudate, respectively. All were within two SDs of results derived from a cohort of clinical patients. Medial-lateral and anterior-posterior dimensions of the simulated striata were also within the range of values seen in clinical data. This work provides the foundation for the generation of a range of more clinically realistic, physical phantoms.

  11. Photoacoustic microscopy of bilirubin in tissue phantoms

    Science.gov (United States)

    Zhou, Yong; Zhang, Chi; Yao, Da-Kang; Wang, Lihong V.

    2012-12-01

    Determining both bilirubin's concentration and its spatial distribution are important in disease diagnosis. Here, for the first time, we applied quantitative multiwavelength photoacoustic microscopy (PAM) to detect bilirubin concentration and distribution simultaneously. By measuring tissue-mimicking phantoms with different bilirubin concentrations, we showed that the root-mean-square error of prediction has reached 0.52 and 0.83 mg/dL for pure bilirubin and for blood-mixed bilirubin detection (with 100% oxygen saturation), respectively. We further demonstrated the capability of the PAM system to image bilirubin distribution both with and without blood. Finally, by underlaying bilirubin phantoms with mouse skins, we showed that bilirubin can be imaged with consistent accuracy down to >400 μm in depth. Our results show that PAM has potential for noninvasive bilirubin monitoring in vivo, as well as for further clinical applications.

  12. New mechanism to cross the phantom divide

    International Nuclear Information System (INIS)

    Du, Yunshuang; Zhang, Hongsheng; Li, Xin-Zhou

    2011-01-01

    Recently, type Ia supernova data appear to support a dark energy whose equation of state w crosses -1, which is a much more amazing problem than the acceleration of the universe. We show that it is possible for the equation of state to cross the phantom divide by a scalar field in gravity with an additional inverse power-law term of the Ricci scalar in the Lagrangian. The necessary and sufficient condition for a universe in which the dark energy can cross the phantom divide is obtained. Some analytical solutions with w -1 are obtained. A minimally coupled scalar with different potentials, including quadratic, cubic, quantic, exponential and logarithmic potentials are investigated via numerical methods, respectively. All these potentials lead to the crossing behavior. We show that it is a robust result which is hardly dependent on the concrete form of the potential of the scalar. (orig.)

  13. Phantoms for Radiation Measurements of Mobile Phones

    DEFF Research Database (Denmark)

    Pedersen, Gert Frølund

    2001-01-01

    Measurements of radiation efficiency for a handheld phone equipped with a patch and a helical antenna operated near the human user have been performed. Both measurements include a simple head plus hand phantom and live persons are considered. The position of the hand on the phone is found...... to be the main reason for the large variation in radiation efficiency among persons. The tilt angle of the phone and the distance between the head and phone only play a minor role...

  14. Development of phantom periapical for control quality

    International Nuclear Information System (INIS)

    Mendes, J.M.S.; Sales Junior, E.S.; Ferreira, F.C.L.; Paschoal, C.M.M.

    2015-01-01

    This study aimed to develop a dental phantom with cysts for evaluation of periapical radiographs that was tested in private dental offices in the city of Maraba, northern Brazil. Through some tests with the object simulator (phantom) were obtained 12 periapical radiographs (one in each of the offices visited) that waking up to the standards of Ordinance No. 453 were visually evaluated by observing the physical parameters of exposure (kVp and mA), time revelation of the radiographic film, later the other radiographs were visually compared with C6 ray set as the default. Among the results, it was found that only two of the twelve rays cysts could not be viewed and, therefore, these two images were deemed unsuitable for accurate diagnosis in the 10 images the cysts could be displayed, however according the images have different qualities comparisons. In addition, it can be concluded that the performance of the phantom was highly satisfactory showing to be efficient for use in quality control testing of dental X-rays, the quality control of radiographs and continuing education of dental professionals for a price much more accessible. (authors)

  15. Patient specific 3D printed phantom for IMRT quality assurance

    International Nuclear Information System (INIS)

    Ehler, Eric D; Higgins, Patrick D; Dusenbery, Kathryn E; Barney, Brett M

    2014-01-01

    The purpose of this study was to test the feasibility of a patient specific phantom for patient specific dosimetric verification. Using the head and neck region of an anthropomorphic phantom as a substitute for an actual patient, a soft-tissue equivalent model was constructed with the use of a 3D printer. Calculated and measured dose in the anthropomorphic phantom and the 3D printed phantom was compared for a parallel-opposed head and neck field geometry to establish tissue equivalence. A nine-field IMRT plan was constructed and dose verification measurements were performed for the 3D printed phantom as well as traditional standard phantoms. The maximum difference in calculated dose was 1.8% for the parallel-opposed configuration. Passing rates of various dosimetric parameters were compared for the IMRT plan measurements; the 3D printed phantom results showed greater disagreement at superficial depths than other methods. A custom phantom was created using a 3D printer. It was determined that the use of patient specific phantoms to perform dosimetric verification and estimate the dose in the patient is feasible. In addition, end-to-end testing on a per-patient basis was possible with the 3D printed phantom. Further refinement of the phantom construction process is needed for routine use. (paper)

  16. Toxicology Analysis of Tissue-Mimicking Phantom Made From Gelatin

    Science.gov (United States)

    Dolbashid, A. S.; Hamzah, N.; Zaman, W. S. W. K.; Mokhtar, M. S.

    2017-06-01

    Skin phantom mimics the biological skin tissues as it have the ability to respond to changes in its environment. The development of tissue-mimicking phantom could contributes towards the reduce usage of animal in cosmetics and pharmacokinetics. In this study, the skin phantoms made from gelatin were tested with four different commonly available cosmetic products to determine the toxicity of each substance. The four substances used were; mercury-based whitening face cream, carcinogenic liquid make-up foundation, paraben-based acne cleanser, and organic lip balm. Toxicity test were performed on all of the phantoms. For toxicity testing, topographical and electrophysiological changes of the phantoms were evaluated. The ability of each respective phantom to react with mild toxic substances and its electrical resistance were analysed in to determine the toxicity of all the phantom models. Four-electrode method along with custom made electrical impedance analyser was used to differentiate electrical resistance between intoxicated phantom and non-intoxicated phantom in this study. Electrical resistance values obtained from the phantom models were significantly higher than the control group. The result obtained suggests the phantom as a promising candidate to be used as alternative for toxicology testing in the future.

  17. Composition of MRI phantom equivalent to human tissues

    International Nuclear Information System (INIS)

    Kato, Hirokazu; Kuroda, Masahiro; Yoshimura, Koichi; Yoshida, Atsushi; Hanamoto, Katsumi; Kawasaki, Shoji; Shibuya, Koichi; Kanazawa, Susumu

    2005-01-01

    We previously developed two new MRI phantoms (called the CAG phantom and the CAGN phantom), with T1 and T2 relaxation times equivalent to those of any human tissue at 1.5 T. The conductivity of the CAGN phantom is equivalent to that of most types of human tissue in the frequency range of 1 to 130 MHz. In this paper, the relaxation times of human tissues are summarized, and the composition of the corresponding phantoms are provided in table form. The ingredients of these phantoms are carrageenan as the gelling agent, GdCl 3 as a T1 modifier, agarose as a T2 modifier, NaCl (CAGN phantom only) as a conductivity modifier, NaN 3 as an antiseptic, and distilled water. The phantoms have T1 values of 202-1904 ms and T2 values of 38-423 ms when the concentrations of GdCl 3 and agarose are varied from 0-140 μmol/kg, and 0%-1.6%, respectively, and the CAGN phantom has a conductivity of 0.27-1.26 S/m when the NaCl concentration is varied from 0%-0.7%. These phantoms have sufficient strength to replicate a torso without the use of reinforcing agents, and can be cut by a knife into any shape. We anticipate the CAGN phantom to be highly useful and practical for MRI and hyperthermia-related research

  18. A computer-simulated liver phantom (virtual liver phantom) for multidetector computed tomography evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Funama, Yoshinori [Kumamoto University, Department of Radiological Sciences, School of Health Sciences, Kumamoto (Japan); Awai, Kazuo; Nakayama, Yoshiharu; Liu, Da; Yamashita, Yasuyuki [Kumamoto University, Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto (Japan); Miyazaki, Osamu; Goto, Taiga [Hitachi Medical Corporation, Tokyo (Japan); Hori, Shinichi [Gate Tower Institute of Image Guided Therapy, Osaka (Japan)

    2006-04-15

    The purpose of study was to develop a computer-simulated liver phantom for hepatic CT studies. A computer-simulated liver phantom was mathematically constructed on a computer workstation. The computer-simulated phantom was calibrated using real CT images acquired by an actual four-detector CT. We added an inhomogeneous texture to the simulated liver by referring to CT images of chronically damaged human livers. The mean CT number of the simulated liver was 60 HU and we added numerous 5-to 10-mm structures with 60{+-}10 HU/mm. To mimic liver tumors we added nodules measuring 8, 10, and 12 mm in diameter with CT numbers of 60{+-}10, 60{+-}15, and 60{+-}20 HU. Five radiologists visually evaluated similarity of the texture of the computer-simulated liver phantom and a real human liver to confirm the appropriateness of the virtual liver images using a five-point scale. The total score was 44 in two radiologists, and 42, 41, and 39 in one radiologist each. They evaluated that the textures of virtual liver were comparable to those of human liver. Our computer-simulated liver phantom is a promising tool for the evaluation of the image quality and diagnostic performance of hepatic CT imaging. (orig.)

  19. Development of a physical 3D anthropomorphic breast phantom

    Energy Technology Data Exchange (ETDEWEB)

    Carton, Ann-Katherine; Bakic, Predrag; Ullberg, Christer; Derand, Helen; Maidment, Andrew D. A. [Department of Radiology, University of Pennsylvania, 1 Silverstein Building, 3400 Spruce Street, Philadelphia, Pennsylvania 19104-4206 (United States); XCounter AB, Svaerdvaegen 11, SE-182 33 Danderyd (Sweden); Department of Radiology, University of Pennsylvania, 1 Silverstein Building, 3400 Spruce Street, Philadelphia, Pennsylvania 19104-4206 (United States)

    2011-02-15

    Purpose: Develop a technique to fabricate a 3D anthropomorphic breast phantom with known ground truth for image quality assessment of 2D and 3D breast x-ray imaging systems. Methods: The phantom design is based on an existing computer model that can generate breast voxel phantoms of varying composition, size, and shape. The physical phantom is produced in two steps. First, the portion of the voxel phantom consisting of the glandular tissue, skin, and Cooper's ligaments is separated into sections. These sections are then fabricated by high-resolution rapid prototyping using a single material with 50% glandular equivalence. The remaining adipose compartments are then filled using an epoxy-based resin (EBR) with 100% adipose equivalence. The phantom sections are stacked to form the physical anthropomorphic phantom. Results: The authors fabricated a prototype phantom corresponding to a 450 ml breast with 45% dense tissue, deformed to a 5 cm compressed thickness. Both the rapid prototype (RP) and EBR phantom materials are radiographically uniform. The coefficient of variation (CoV) of the relative attenuation between RP and EBR phantom samples was <1% and the CoV of the signal intensity within RP and EBR phantom samples was <1.5% on average. Digital mammography and reconstructed digital breast tomosynthesis images of the authors' phantom were reviewed by two radiologists; they reported that the images are similar in appearance to clinical images, noting there are still artifacts from air bubbles in the EBR. Conclusions: The authors have developed a technique to produce 3D anthropomorphic breast phantoms with known ground truth, yielding highly realistic x-ray images. Such phantoms may serve both qualitative and quantitative performance assessments for 2D and 3D breast x-ray imaging systems.

  20. Experimental phantom verification studies for simulations of light interactions with skin: liquid phantoms

    CSIR Research Space (South Africa)

    Karsten, A

    2010-09-01

    Full Text Available stream_source_info Karsten_2010_P.pdf.txt stream_content_type text/plain stream_size 5080 Content-Encoding UTF-8 stream_name Karsten_2010_P.pdf.txt Content-Type text/plain; charset=UTF-8 Experimental phantom verification... studies for simulations of light interactions with skin: Solid Phantoms Aletta E Karsten, A Singh Presented by: J E Smit National Laser Center CSIR South Africa akarsten@csir.co.za Slide 2 © CSIR 2009 www.csir.co.za Where...

  1. Mathematical human phantoms and their application to radiation protection

    International Nuclear Information System (INIS)

    Yamaguchi, Yasuhiro

    1998-01-01

    This review described the characteristics of mathematical phantoms, their history over 30 years and their application. Mathematical phantoms are classified into two models of formula and voxel types. In the former, human body and organs are described by 2- and/or 3-D mathematical formula and can be seen as a combination of solid bodies like spheres, cubes and ovals. The phantom is composed from three tissue components (bone, lung and soft tissue) and made on data on Reference Man in ICRP Publ. 23. The latter voxel (volume pixel) phantom consists from a number of small cubes based on CT and MRI images of a certain man. For instance, the phantom CHILD, 1.54 x 1.54 x 8.00 mm 3 in size, is based on a 7-year old child, which consisting from about one million voxels. The mathematical phantom was first made in Oak Ridge National Laboratory in the middle of the nineteen-sixties, which have undergone various improvements to reach MIRD-5 phantom. Thereafter, many similitude phantoms have been made as a variation of MIRD-5, depending on age and sex (e.g., ADAM and EVA). Voxel phantom was made in the middle of nineteen-eighties and have undergone improvements which are continued even currently in Japan, U.S. etc. The mathematical phantoms are used for calculation of radiation transport program by Monte Carlo method in the field of radiation protection. Also in the field of medicine, the phantom is used for calculation of internal and external exposure doses, of correction constants of externally measuring instruments, of doses for neutron capture therapy and of A-bomb exposure doses in Hiroshima and Nagasaki for reevaluation. Recently, the development of phantom is in the current from formula phantom to voxel one due to the purpose of precision and standardization. (K.H.)

  2. Influence of Manufacturing Processes on the Performance of Phantom Lungs

    International Nuclear Information System (INIS)

    Traub, Richard J.

    2008-01-01

    Chest counting is an important tool for estimating the radiation dose to individuals who have inhaled radioactive materials. Chest counting systems are calibrated by counting the activity in the lungs of phantoms where the activity in the phantom lungs is known. In the United States a commonly used calibration phantom was developed at the Lawrence Livermore National Laboratory and is referred to as the Livermore Torso Phantom. An important feature of this phantom is that the phantom lungs can be interchanged so that the counting system can be challenged by different combinations of radionuclides and activity. Phantom lungs are made from lung tissue substitutes whose constituents are foaming plastics and various adjuvants selected to make the lung tissue substitute similar to normal healthy lung tissue. Some of the properties of phantom lungs cannot be readily controlled by phantom lung manufacturers. Some, such as density, are a complex function of the manufacturing process, while others, such as elemental composition of the bulk plastic are controlled by the plastics manufacturer without input, or knowledge of the phantom manufacturer. Despite the fact that some of these items cannot be controlled, they can be measured and accounted for. This report describes how manufacturing processes can influence the performance of phantom lungs. It is proposed that a metric that describes the brightness of the lung be employed by the phantom lung manufacturer to determine how well the phantom lung approximates the characteristics of a human lung. For many purposes, the linear attenuation of the lung tissue substitute is an appropriate surrogate for the brightness

  3. Phantom models for neutron capture therapy

    International Nuclear Information System (INIS)

    Storr, G.J.

    1990-08-01

    The development of a two-dimensional phantom model using the neutron and photon transport code DOT-IV is detailed. The effects of varying basic parameters such as aperture width, neutron source energy and tissue composition have been studied. One important conclusion from the study is that narrow beam apertures will give little or no advantage for tumour dose over tissue dose even in the 'ideal beam' range of 2-7 keV. The model may be used for future filter and beam studies with confidence. 10 refs., 7 tabs., 13 figs

  4. Getting started with PhantomJS

    CERN Document Server

    Beltran, Aries

    2013-01-01

    The book will follow aA standard tutorial approach, and will beas a complete guide detailing the major aspects of PhantomJS with particular focus on Website website Testingtesting.This book is written forIf you are a JavaScript developers who are is interested in developing applications that interact with various web services, and doing that using a headless browser, then this book is ideal for you. This book iswill also be good for you if you are planning to create a headless browser testing for your web application. Basic understanding of JavaScript is assumed.

  5. Dynamics of coupled phantom and tachyon fields

    Energy Technology Data Exchange (ETDEWEB)

    Shahalam, M. [Zhejiang University of Technology, Institute for Advanced Physics and Mathematics, Hangzhou (China); Pathak, S.D.; Li, Shiyuan [Shandong University, School of Physics, Jinan (China); Myrzakulov, R. [Eurasian National University, Department of General and Theoretical Physics, Eurasian International Center for Theoretical Physics, Astana (Kazakhstan); Wang, Anzhong [Zhejiang University of Technology, Institute for Advanced Physics and Mathematics, Hangzhou (China); Baylor University, Department of Physics, GCAP-CASPER, Waco, TX (United States)

    2017-10-15

    In this paper, we apply the dynamical analysis to a coupled phantom field with scaling potential taking particular forms of the coupling (linear and combination of linear), and present phase space analysis. We investigate if there exists a late time accelerated scaling attractor that has the ratio of dark energy and dark matter densities of the order one. We observe that the scrutinized couplings cannot alleviate the coincidence problem, however, they acquire stable late time accelerated solutions. We also discuss a coupled tachyon field with inverse square potential assuming linear coupling. (orig.)

  6. Digital luminescence radiography using a chest phantom

    International Nuclear Information System (INIS)

    Lyttkens, K.; Kehler, M.; Andersson, B.; Carlsen, S.; Ebbesen, A.; Hochbergs, P.; Stroembaeck, A.

    1993-01-01

    With the introduction of picture and archiving communicating systems an alternative image display for the wards might be a personal computer (PC). The intention with this study was to evaluate the diagnostic image quality of the monitor of a PC compared to that of a workstation. Eighty-five digital radiographs of a chest phantom with simulated tumors in the mediastinum and right lung were saved on optical discs. The examinations were reviewed by 4 radiologists on a monitor at a workstation and at a PC, and receiver operating characteristic (ROC) curves were constructed. No significant difference was found between performance of the PC and the workstation. (orig.)

  7. Dynamics of coupled phantom and tachyon fields

    International Nuclear Information System (INIS)

    Shahalam, M.; Pathak, S.D.; Li, Shiyuan; Myrzakulov, R.; Wang, Anzhong

    2017-01-01

    In this paper, we apply the dynamical analysis to a coupled phantom field with scaling potential taking particular forms of the coupling (linear and combination of linear), and present phase space analysis. We investigate if there exists a late time accelerated scaling attractor that has the ratio of dark energy and dark matter densities of the order one. We observe that the scrutinized couplings cannot alleviate the coincidence problem, however, they acquire stable late time accelerated solutions. We also discuss a coupled tachyon field with inverse square potential assuming linear coupling. (orig.)

  8. Mathematical phantoms for evaluation of age-specific internal dose

    International Nuclear Information System (INIS)

    Cristy, M.

    1980-01-01

    A series of mathematical phantoms representing children has been developed for use with photon transport codes. These phantoms, patterned after the Fisher-Snyder adult phantom, consist of simple mathematical expressions for the boundaries of the major organs and body sections. The location and shape of the organs are consistent with drawings depicting developmental anatomy, with the organ volumes assigned such that the masses at the various ages conform closely with the data presented in Reference Man. The explicit mathematical expressions for the various ages overcome the potential misrepresentation of organ sizes that occurred in phantoms derived from simple mathematical transformations of the adult phantom. Female breast tissue has been added to the phantoms, including the adult, now allowing assessment of doses to this organ

  9. Development of thyroid anthropomorphic phantoms for use in nuclear medicine

    Science.gov (United States)

    Cerqueira, R. A. D.; Maia, A. F.

    2014-02-01

    The objective of this study was to develop thyroid anthropomorphic phantoms to be used in control tests of medical images in scintillation cameras. The main difference among the phantoms was the neck shape: in the first, called OSCT, it was geometrically shaped, while in the second, called OSAP, it was anthropomorphically shaped. In both phantoms, thyroid gland prototypes, which were made of acrylic and anthropomorphically shaped, were constructed to allow the simulation of a healthy thyroid and of thyroids with hyperthyroidism and hypothyroidism. Images of these thyroid anthropomorphic phantoms were obtained using iodine 131 with an activity of 8.695 MBq. The iodine 131 was chosen because it is widely used in studies of thyroid scintigraphy. The images obtained proved the effectiveness of the phantoms to simulate normal or abnormal thyroids function. These phantoms can be used in medical imaging quality control programs and, also in the training of professionals involved in the analysis of images in nuclear medicine centers.

  10. Coupled oscillators as models of phantom and scalar field cosmologies

    International Nuclear Information System (INIS)

    Faraoni, Valerio

    2004-01-01

    We study a toy model for phantom cosmology recently introduced in the literature and consisting of two oscillators, one of which carries negative kinetic energy. The results are compared with the exact phase space picture obtained for similar dynamical systems describing, respectively, a massive canonical scalar field conformally coupled to the spacetime curvature and a conformally coupled massive phantom. Finally, the dynamical system describing exactly a minimally coupled phantom is studied and compared with the toy model

  11. Creating 3D gelatin phantoms for experimental evaluation in biomedicine

    Directory of Open Access Journals (Sweden)

    Stein Nils

    2015-09-01

    Full Text Available We describe and evaluate a setup to create gelatin phantoms by robotic 3D printing. Key aspects are the large workspace, reproducibility and resolution of the created phantoms. Given its soft tissue nature, the gelatin is kept fluid during inside the system and we present parameters for additive printing of homogeneous, solid objects. The results indicate that 3D printing of gelatin can be an alternative for quickly creating larger soft tissue phantoms without the need for casting a mold.

  12. Phantom black holes and critical phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Azreg-Aïnou, Mustapha [Engineering Faculty, Başkent University, Bağlıca Campus, Ankara (Turkey); Marques, Glauber T. [Universidade Federal Rural da Amazônia ICIBE-LASIC, Av. Presidente Tancredo Neves 2501, CEP 66077-901—Belém/PA (Brazil); Rodrigues, Manuel E., E-mail: azreg@baskent.edu.tr, E-mail: gtadaiesky@hotmail.com, E-mail: esialg@gmail.com [Faculdade de Ciências Exatas e Tecnologia, Universidade Federal do Pará, Campus Universitário de Abaetetuba, CEP 68440-000, Abaetetuba, Pará (Brazil)

    2014-07-01

    We consider the two classes cosh and sinh of normal and phantom black holes of Einstein-Maxwell-dilaton theory. The thermodynamics of these holes is characterized by heat capacities that may have both signs depending on the parameters of the theory. Leaving aside the normal Reissner-Nordström black hole, it is shown that only some phantom black holes of both classes exhibit critical phenomena. The two classes share a nonextremality, but special, critical point where the transition is continuous and the heat capacity, at constant charge, changes sign with an infinite discontinuity. This point yields a classification scheme for critical points. It is concluded that the two unstable and stable phases coexist on one side of the criticality state and disappear on the other side, that is, there is no configuration where only one phase exists. The sinh class has an extremality critical point where the entropy diverges. The transition from extremality to nonextremality with the charge held constant is accompanied by a loss of mass and an increase in the temperature. A special case of this transition is when the hole is isolated (microcanonical ensemble), it will evolve by emission of energy, which results in a decrease of its mass, to the final state of minimum mass and vanishing heat capacity. The Ehrenfest scheme of classification is inaccurate in this case but the generalized one due to Hilfer leads to conclude that the transition is of order less than unity. Fluctuations near criticality are also investigated.

  13. Dual Energy Tomosynthesis breast phantom imaging

    Science.gov (United States)

    Koukou, V.; Martini, N.; Fountos, G.; Messaris, G.; Michail, C.; Kandarakis, I.; Nikiforidis, G.

    2017-12-01

    Dual energy (DE) imaging technique has been applied to many theoretical and experimental studies. The aim of the current study is to evaluate dual energy in breast tomosynthesis using commercial tomosynthesis system in terms of its potential to better visualize microcalcifications (μCs). The system uses a tungsten target X-ray tube and a selenium direct conversion detector. Low-energy (LE) images were acquired at different tube voltages (28, 30, 32 kV), while high-energy images at 49 kV. Fifteen projections, for the low- and high-energy respectively, were acquired without grid while tube scanned continuously. Log-subtraction algorithm was used in order to obtain the DE images with the weighting factor, w, derived empirically. The subtraction was applied to each pair of LE and HE slices after reconstruction. The TORMAM phantom was imaged with the different settings. Four regions-of-interest including μCs were identified in the inhomogeneous part of the phantom. The μCs in DE images were more clearly visible compared to the low-energy images. Initial results showed that DE tomosynthesis imaging is a promising modality, however more work is required.

  14. Characterization of tracked radiofrequency ablation in phantom

    International Nuclear Information System (INIS)

    Chen, Chun-Cheng R.; Miga, Michael I.; Galloway, Robert L.

    2007-01-01

    In radiofrequency ablation (RFA), successful therapy requires accurate, image-guided placement of the ablation device in a location selected by a predictive treatment plan. Current planning methods rely on geometric models of ablations that are not sensitive to underlying physical processes in RFA. Implementing plans based on computational models of RFA with image-guided techniques, however, has not been well characterized. To study the use of computational models of RFA in planning needle placement, this work compared ablations performed with an optically tracked RFA device with corresponding models of the ablations. The calibration of the tracked device allowed the positions of distal features of the device, particularly the tips of the needle electrodes, to be determined to within 1.4±0.6 mm of uncertainty. Ablations were then performed using the tracked device in a phantom system based on an agarose-albumin mixture. Images of the sliced phantom obtained from the ablation experiments were then compared with the predictions of a bioheat transfer model of RFA, which used the positional data of the tracked device obtained during ablation. The model was demonstrated to predict 90% of imaged pixels classified as being ablated. The discrepancies between model predictions and observations were analyzed and attributed to needle tracking inaccuracy as well as to uncertainties in model parameters. The results suggest the feasibility of using finite element modeling to plan ablations with predictable outcomes when implemented using tracked RFA

  15. Deformable and durable phantoms with controlled density of scatterers

    Energy Technology Data Exchange (ETDEWEB)

    Bisaillon, Charles-Etienne; Lamouche, Guy; Dufour, Marc; Monchalin, Jean-Pierre [Industrial Materials Institute, National Research Council Canada, 75 de Mortagne, Boucherville, Quebec J4B 6Y4 (Canada); Maciejko, Romain [Optoelectronics Laboratory, Engineering Physics, Ecole Polytechnique de Montreal, PO Box 6079, Station ' Centre-ville' Montreal, Quebec H3C 3A7 (Canada)], E-mail: charles-etienne.bisaillon@cnrc-nrc.gc.ca, E-mail: guy.lamouche@cnrc-nrc.gc.ca, E-mail: marc.dufour@cnrc-nrc.gc.ca, E-mail: jean-pierre.monchalin@cnrc-nrc.gc.ca, E-mail: romain.maciejko@polytml.ca

    2008-07-07

    We have developed deformable and durable optical tissue phantoms with a simple and well-defined microstructure including a novel combination of scatterers and a matrix material. These were developed for speckle and elastography investigations in optical coherence tomography, but should prove useful in many other fields. We present in detail the fabrication process which involves embedding silica microspheres in a silicone matrix. We also characterize the resulting phantoms with scanning electron microscopy and optical measurements. To our knowledge, no such phantoms were proposed in the literature before. Our technique has a wide range of applicability and could also be adapted to fabricate phantoms with various optical and mechanical properties. (note)

  16. Phantom Eye Syndrome: A Review of the Literature

    Directory of Open Access Journals (Sweden)

    Agda M. Andreotti

    2014-01-01

    Full Text Available The purpose of this literature review was to describe the main features of phantom eye syndrome in relation to their possible causes, symptoms, treatments, and influence of eye amputation on quality of life of anophthalmic patients. For this, a bibliographical research was performed in Pubmed database using the following terms: “eye amputation,” “eye trauma,” “phantom eye syndrome,” “phantom pain,” and “quality of life,” associated or not. Thirteen studies were selected, besides some relevant references contained in the selected manuscripts and other studies hallowed in the literature. Thus, 56 articles were included in this review. The phantom eye syndrome is defined as any sensation reported by the patient with anophthalmia, originated anophthalmic cavity. In phantom eye syndrome, at least one of these three symptoms has to be present: phantom vision, phantom pain, and phantom sensations. This syndrome has a direct influence on the quality of life of the patients, and psychological support is recommended before and after the amputation of the eyeball as well as aid in the treatment of the syndrome. Therefore, it is suggested that, for more effective treatment of phantom eye syndrome, drug therapy should be associated with psychological approach.

  17. Phantoms for IMRT dose distribution measurement and treatment verification

    International Nuclear Information System (INIS)

    Low, Daniel A.; Gerber, Russell L.; Mutic, Sasa; Purdy, James A.

    1998-01-01

    Background: The verification of intensity-modulated radiation therapy (IMRT) patient treatment dose distributions is currently based on custom-built or modified dose measurement phantoms. The only commercially available IMRT treatment planning and delivery system (Peacock, NOMOS Corp.) is supplied with a film phantom that allows accurate spatial localization of the dose distribution using radiographic film. However, measurements using other dosimeters are necessary for the thorough verification of IMRT. Methods: We have developed a phantom to enable dose measurements using a cylindrical ionization chamber and the localization of prescription isodose curves using a matrix of thermoluminescent dosimetry (TLD) chips. The external phantom cross-section is identical to that of the commercial phantom, to allow direct comparisons of measurements. A supplementary phantom has been fabricated to verify the IMRT dose distributions for pelvis treatments. Results: To date, this phantom has been used for the verification of IMRT dose distributions for head and neck and prostate cancer treatments. Designs are also presented for a phantom insert to be used with polymerizing gels (e.g., BANG-2) to obtain volumetric dose distribution measurements. Conclusion: The phantoms have proven useful in the quantitative evaluation of IMRT treatments

  18. Development of thyroid anthropomorphic phantoms for use in nuclear medicine

    International Nuclear Information System (INIS)

    Cerqueira, R.A.D.; Maia, A.F.

    2014-01-01

    The objective of this study was to develop thyroid anthropomorphic phantoms to be used in control tests of medical images in scintillation cameras. The main difference among the phantoms was the neck shape: in the first, called OSCT, it was geometrically shaped, while in the second, called OSAP, it was anthropomorphically shaped. In both phantoms, thyroid gland prototypes, which were made of acrylic and anthropomorphically shaped, were constructed to allow the simulation of a healthy thyroid and of thyroids with hyperthyroidism and hypothyroidism. Images of these thyroid anthropomorphic phantoms were obtained using iodine 131 with an activity of 8.695 MBq. The iodine 131 was chosen because it is widely used in studies of thyroid scintigraphy. The images obtained proved the effectiveness of the phantoms to simulate normal or abnormal thyroids function. These phantoms can be used in medical imaging quality control programs and, also in the training of professionals involved in the analysis of images in nuclear medicine centers. - Highlights: ► Two thyroid phantoms were developed (OSCT and OSAP) with different types of acrylics. ► Thyroid glands were represented anthropomorphically in the both phantoms. ► Different prototypes of thyroid were built of simulate healthy or unhealthy glands. ► Images indicate that anthropomorphic phantoms correctly simulate the thyroid gland

  19. Breast phantom for mammary tissue characterization by near infrared spectroscopy

    International Nuclear Information System (INIS)

    Miranda, D A; Cristiano, K L; Gutiérrez, J C

    2013-01-01

    Breast cancer is a disease associated to a high morbidity and mortality in the entire world. In the study of early detection of breast cancer the development of phantom is so important. In this research we fabricate a breast phantom using a ballistic gel with special modifications to simulate a normal and abnormal human breast. Optical properties of woman breast in the near infrared region were modelled with the phantom we developed. The developed phantom was evaluated with near infrared spectroscopy in order to study its relation with breast tissue. A good optical behaviour was achieved with the model fabricated

  20. Usefulness of a functional tracheobronchial phantom for interventional procedure

    International Nuclear Information System (INIS)

    Kim, Tae Hyung; Lim, Cheong Hwan; Kim, Jeong Koo

    2003-01-01

    To evaluate usefulness of a functional tracheobronchial phantom for interventional procedure. The functional phantom was made as a actual size with human normal anatomy used silicone and a paper clay mold. A tracheobronchial-shape clay mold was placed inside a square box and liquid silicone was poured. After the silicone was formed, the clay was removed. We measured film density and tracheobronchial angle at the human, animal and phantom respectively. The film density of trachea part were 0.76 (± 0.011) in human, 0.97 (± 0.015) in animal, 0.45 (± 0.016) in phantom. The tracheobronchial bifurcation part measured 0.51 (± 0.006) in human, 0.65 (± 0.005) in animal, 0.65 (± 0.008) in phantom. The right bronchus part measured 0.14 (± 0.008) in human, 0.59 (± 0.014) in animal and 0.04 (± 0.007) in phantom. The left bronchus were 0.54 (± 0.004) in human, 0.54 (± 0.008) in animal and 0.08 (± 0.008) in phantom. At the stent part were 0.54 (± 0.004) in human, 0.59 (± 0.011) in animal and 0.04 (± 0.007) in phantom, respectively. The tracheobronchial angle of the left bronchus site were 42.6 (± 2.07).deg. in human, 43.4 (± 2.40).deg. in animal and 35 (± 2.00).deg. in phantom, respectively. The right bronchus site were 32.8 (± 2.77).deg. in human, 34.6 (± 1.94).deg. in animal and 50.2 (± 1.30).deg. in phantom, respectively. The phantom was useful for in-vitro testing of tracheobronchial interventional procedure, since it was easy to reproduce

  1. Digital subtraction angiography system evaluation with phantoms

    International Nuclear Information System (INIS)

    Wenstrup, R.S.; Sweeney, K.P.; Scholz, F.J.

    1985-01-01

    Advances in digital subtraction angiography imaging demonstrate the need for critical evaluation of the performance of digital subtraction equipment. The design of a phantom set for noninvasive assessment of the imaging quality of digital subtraction equipment is described; components include a remotely controlled transport system and individual patterns to evaluate the contrast and detail properties of the image intensifier, low-contrast sensitivity and resolution of the system, geometric distortion of image, linearity, mechanical and electronic stability of equipment, and effects of bone and bowel gas on iodine perception. The performance of an add-on digital radiographic system is presented, along with radiation exposure levels at the image intensifier for a range of radiographic techniques

  2. Phantom Limb Pain in Pediatric Oncology

    Directory of Open Access Journals (Sweden)

    Patrick DeMoss

    2018-04-01

    Full Text Available Phantom limb pain (PLP is a prevalent problem for children and adolescents undergoing amputation due to cancer treatment. The symptoms are wide ranging from sharp to tingling. PLP in children typically lasts for a few minutes but can be almost constant and can be highly distressing. This focused review describes the characteristics, epidemiology, mechanisms, and evidence-based treatment of PLP in pediatric populations, focusing on pediatric cancer. In pediatric oncology, the administration of chemotherapy is a risk factor that potentially sensitizes the nervous system and predisposes pediatric cancer patients to develop PLP after amputation. Gabapentin, tricyclic antidepressants, opiates, nerve blocks, and epidural catheters have shown mixed success in adults and case reports document potential utility in pediatric patients. Non-pharmacologic treatments, such as mirror therapy, psychotherapy, and acupuncture have also been used in pediatric PLP with success. Prospective controlled trials are necessary to advance care for pediatric patients with PLP.

  3. Comparison of different phantoms used in digital diagnostic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bor, Dogan, E-mail: bor@eng.ankara.edu.tr [Ankara University, Faculty of Engineering, Department of Engineering Physics. Tandogan, 06100 Ankara (Turkey); Unal, Elif, E-mail: elf.unall@gmail.com [Radat Dosimetry Laboratory Services, 06830, Golbasi, Ankara (Turkey); Uslu, Anil, E-mail: m.aniluslu@gmail.com [Radat Dosimetry Laboratory Services, 06830, Golbasi, Ankara (Turkey)

    2015-09-21

    The organs of extremity, chest, skull and lumbar were physically simulated using uniform PMMA slabs with different thicknesses alone and using these slabs together with aluminum plates and air gaps (ANSI Phantoms). The variation of entrance surface air kerma and scatter fraction with X-ray beam qualities was investigated for these phantoms and the results were compared with those measured from anthropomorphic phantoms. A flat panel digital radiographic system was used for all the experiments. Considerable variations of entrance surface air kermas were found for the same organs of different designs, and highest doses were measured for the PMMA slabs. A low contrast test tool and a contrast detail test object (CDRAD) were used together with each organ simulation of PMMA slabs and ANSI phantoms in order to test the clinical image qualities. Digital images of these phantom combinations and anthropomorphic phantoms were acquired in raw and clinically processed formats. Variation of image quality with kVp and post processing was evaluated using the numerical metrics of these test tools and measured contrast values from the anthropomorphic phantoms. Our results indicated that design of some phantoms may not be efficient enough to reveal the expected performance of the post processing algorithms.

  4. Anisotropic Bianchi-I universe with phantom field and cosmological ...

    Indian Academy of Sciences (India)

    India. *Corresponding author. E-mail: bcpaul@iucaa.ernet.in. MS received 23 May ... We study an anisotropic Bianchi-I universe in the presence of a phantom ... The phantom cosmology has been analysed adopting phase space analysis ... the second part we study the critical points corresponding to the set of autonomous.

  5. Phantom jam avoidance through in-car speed advice

    NARCIS (Netherlands)

    Suijs, L.C.W.; Wismans, Luc Johannes Josephus; Krol, L.; van Berkum, Eric C.

    2015-01-01

    The existence of phantom jams can be explained following the definition of Kerner & Konhäuser (1993) who state that a phantom jam occurs without the existence of a physical bottleneck and is caused by the imperfect driving style of road users under metastable traffic conditions. In order to prevent

  6. Phantom limb phenomenon as an example of body image distortion

    Directory of Open Access Journals (Sweden)

    Razmus Magdalena

    2017-06-01

    Full Text Available Introduction: The perception of one’s own body, its mental representation, and emotional attitude to it are the components of so-called “body image” [1]. The aim of the research was to analyse phantom pain and non-painful phantom sensations as results of limb loss and to explain them in terms of body image distortion.

  7. Nonvisualized ('Phantom') renal calyx: Causes and radiological approach to diagnosis

    International Nuclear Information System (INIS)

    Brennan, R.E.; Pollack, H.M.

    1979-01-01

    A calyx which fails completely to opacify on excretory urography (phantom calyx) is often the harbinger of serious underlying renal disease. Causes of a phantom calyx include tuberculosis, tumor, calculus, ischemia, trauma, and congenital anomaly. The pathololgic basis for the radiographic findings in each of these entities is described and an overall approach to diagnosis is set forth. (orig.) [de

  8. Evaluation of DQA for tomography using 3D volumetric phantom

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Uk [Dept. of Radiation Oncology, Catholic University of Incheon St. Mary' s Hospital, Incheon (Korea, Republic of); Kim, Jeong Koo [Dept. of Radiological Science, Hanseo University, Seosan (Korea, Republic of)

    2016-12-15

    The study investigates the necessity of 3 dimensional dose distribution evaluation instead of point dose and 2 dimensional dose distribution evaluation. Treatment plans were generated on the RANDO phantom to measure the precise dose distribution of the treatment site 0.5, 1, 1.5, 2, 2.5, 3 cm with the prescribed dose; 1,200 cGy, 5 fractions. Gamma analysis (3%/3 mm, 2%/2 mm) of dose distribution was evaluated with gafchromic EBT2 film and ArcCHECK phantom. The average error of absolute dose was measured at 0.76±0.59% and 1.37±0.76% in cheese phantom and ArcCHECK phantom respectively. The average passing ratio for 3%/3 mm were 97.72±0.02% and 99.26±0.01% in gafchromic EBT2 film and ArcCHECK phantom respectively. The average passing ratio for 2%/2 mm were 94.21±0.02% and 93.02±0.01% in gafchromic EBT2 film and ArcCHECK phantom respectively. There was a more accurate dose distribution of 3D volume phantom than cheese phantom in patients DQA using tomotherapy. Therefor it should be evaluated simultaneously 3 dimensional dose evaluation on target and peripheral area in rotational radiotherapy such as tomotherapy.

  9. Anisotropic Bianchi-I universe with phantom field and cosmological ...

    Indian Academy of Sciences (India)

    We study an anisotropic Bianchi-I universe in the presence of a phantom field and a cosmological constant. Cosmological solutions are obtained when the kinetic energy of the phantom field is of the order of anisotropy and dominates over the potential energy of the field. The anisotropy of the universe decreases and the ...

  10. Development of the Reference Korean Female Voxel Phantom

    International Nuclear Information System (INIS)

    Ham, Bo Kyoung; Cho, Kun Woo; Yeom, Yoen Soo; Jeong, Jong Hwi; Kim, Chan Hyeong; Han, Min Cheol

    2012-01-01

    The objective of this study is for development of the reference Korean female phantom, HDRK-Woman. The phantom was constructed by adjusting a Korean woman voxel phantom to the Reference Korean data. The Korean woman phantom had been developed based on the high-resolution color slice images obtained from an adult Korean female cadaver. There were a total of 39 organs including the 27 organs specified in ICRP 103 for effective dose calculation. The voxel resolution of the phantom was 1.967 X 1.967 X X 2.0619 mm 3 and the voxel array size is 261 X 109 X 825 in the x, y and z directions. Then, the voxel resolution was changed to 2.0351 X 2.0351 X 2.0747 mm 3 for adjustment of the height and total bone mass of the phantom to the Reference Korean data. Finally, the internal organs and tissue were adjusted using in-house software program developed for 3D volume adjustment of the organs and tissue. The effective dose values of HDRK phantoms were calculated for broad parallel photon beams using MCNPX Monte Carlo code and compared with those of ICRP phantoms.

  11. Development of the Reference Korean Female Voxel Phantom

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Bo Kyoung; Cho, Kun Woo [University of Science and Technology, Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Yeom, Yoen Soo; Jeong, Jong Hwi; Kim, Chan Hyeong; Han, Min Cheol [Hanyang University, Seoul (Korea, Republic of)

    2012-03-15

    The objective of this study is for development of the reference Korean female phantom, HDRK-Woman. The phantom was constructed by adjusting a Korean woman voxel phantom to the Reference Korean data. The Korean woman phantom had been developed based on the high-resolution color slice images obtained from an adult Korean female cadaver. There were a total of 39 organs including the 27 organs specified in ICRP 103 for effective dose calculation. The voxel resolution of the phantom was 1.967 X 1.967 X X 2.0619 mm{sup 3} and the voxel array size is 261 X 109 X 825 in the x, y and z directions. Then, the voxel resolution was changed to 2.0351 X 2.0351 X 2.0747 mm{sup 3} for adjustment of the height and total bone mass of the phantom to the Reference Korean data. Finally, the internal organs and tissue were adjusted using in-house software program developed for 3D volume adjustment of the organs and tissue. The effective dose values of HDRK phantoms were calculated for broad parallel photon beams using MCNPX Monte Carlo code and compared with those of ICRP phantoms.

  12. The impact of anthropometric patient-phantom matching on organ dose: A hybrid phantom study for fluoroscopy guided interventions

    International Nuclear Information System (INIS)

    Johnson, Perry B.; Geyer, Amy; Borrego, David; Ficarrotta, Kayla; Johnson, Kevin; Bolch, Wesley E.

    2011-01-01

    Purpose: To investigate the benefits and limitations of patient-phantom matching for determining organ dose during fluoroscopy guided interventions. Methods: In this study, 27 CT datasets representing patients of different sizes and genders were contoured and converted into patient-specific computational models. Each model was matched, based on height and weight, to computational phantoms selected from the UF hybrid patient-dependent series. In order to investigate the influence of phantom type on patient organ dose, Monte Carlo methods were used to simulate two cardiac projections (PA/left lateral) and two abdominal projections (RAO/LPO). Organ dose conversion coefficients were then calculated for each patient-specific and patient-dependent phantom and also for a reference stylized and reference hybrid phantom. The coefficients were subsequently analyzed for any correlation between patient-specificity and the accuracy of the dose estimate. Accuracy was quantified by calculating an absolute percent difference using the patient-specific dose conversion coefficients as the reference. Results: Patient-phantom matching was shown most beneficial for estimating the dose to heavy patients. In these cases, the improvement over using a reference stylized phantom ranged from approximately 50% to 120% for abdominal projections and for a reference hybrid phantom from 20% to 60% for all projections. For lighter individuals, patient-phantom matching was clearly superior to using a reference stylized phantom, but not significantly better than using a reference hybrid phantom for certain fields and projections. Conclusions: The results indicate two sources of error when patients are matched with phantoms: Anatomical error, which is inherent due to differences in organ size and location, and error attributed to differences in the total soft tissue attenuation. For small patients, differences in soft tissue attenuation are minimal and are exceeded by inherent anatomical differences

  13. Cosmological perturbations on the phantom brane

    Energy Technology Data Exchange (ETDEWEB)

    Bag, Satadru; Sahni, Varun [Inter-University Centre for Astronomy and Astrophysics, Pune (India); Viznyuk, Alexander; Shtanov, Yuri, E-mail: satadru@iucaa.in, E-mail: viznyuk@bitp.kiev.ua, E-mail: shtanov@bitp.kiev.ua, E-mail: varun@iucaa.in [Bogolyubov Institute for Theoretical Physics, Kiev 03680 (Ukraine)

    2016-07-01

    We obtain a closed system of equations for scalar perturbations in a multi-component braneworld. Our braneworld possesses a phantom-like equation of state at late times, w {sub eff} < −1, but no big-rip future singularity. In addition to matter and radiation, the braneworld possesses a new effective degree of freedom—the 'Weyl fluid' or 'dark radiation'. Setting initial conditions on super-Hubble spatial scales at the epoch of radiation domination, we evolve perturbations of radiation, pressureless matter and the Weyl fluid until the present epoch. We observe a gradual decrease in the amplitude of the Weyl-fluid perturbations after Hubble-radius crossing, which results in a negligible effect of the Weyl fluid on the evolution of matter perturbations on spatial scales relevant for structure formation. Consequently, the quasi-static approximation of Koyama and Maartens provides a good fit to the exact results during the matter-dominated epoch. We find that the late-time growth of density perturbations on the brane proceeds at a faster rate than in ΛCDM. Additionally, the gravitational potentials Φ and Ψ evolve differently on the brane than in ΛCDM, for which Φ = Ψ. On the brane, by contrast, the ratio Φ/Ψ exceeds unity during the late matter-dominated epoch ( z ∼< 50). These features emerge as smoking gun tests of phantom brane cosmology and allow predictions of this scenario to be tested against observations of galaxy clustering and large-scale structure.

  14. Benchmark calculations with simple phantom for neutron dosimetry (2)

    International Nuclear Information System (INIS)

    Yukio, Sakamoto; Shuichi, Tsuda; Tatsuhiko, Sato; Nobuaki, Yoshizawa; Hideo, Hirayama

    2004-01-01

    Benchmark calculations for high-energy neutron dosimetry were undertaken after SATIF-5. Energy deposition in a cylindrical phantom with 100 cm radius and 30 cm depth was calculated for the irradiation of neutrons from 100 MeV to 10 GeV. Using the ICRU four-element loft tissue phantom and four single-element (hydrogen, carbon, nitrogen and oxygen) phantoms, the depth distributions of deposition energy and those total at the central region of phantoms within l cm radius and at the whole region of phantoms within 100 cm radius were calculated. The calculated results of FLUKA, MCNPX, MARS, HETC-3STEP and NMTC/JAM codes were compared. It was found that FLUKA, MARS and NMTC/JAM showed almost the same results. For the high-energy neutron incident, the MCNP-X results showed the largest ones in the total deposition energy and the HETC-3STEP results show'ed smallest ones. (author)

  15. Simplified spinal cord phantom for evaluation of SQUID magnetospinography

    International Nuclear Information System (INIS)

    Adachi, Y; Oyama, D; Uehara, G; Somchai, N; Kawabata, S

    2014-01-01

    Spinal cord functional imaging by magnetospinography (MSG) is a noninvasive diagnostic method for spinal cord diseases. However, the accuracy and spatial resolution of lesion localization by MSG have barely been evaluated in detail so far. We developed a simplified spinal cord phantom for MSG evaluation. The spinal cord phantom is composed of a cylindrical vessel filled with saline water, which acts as a model of a neck. A set of modeled vertebrae is arranged in the cylindrical vessel, which has a neural current model made from catheter electrodes. The neural current model emulates the current distribution around the activated site along the axon of the spinal cord nerve. Our MSG system was used to observe the magnetic field from the phantom; a quadrupole-like pattern of the magnetic field distribution, which is a typical distribution pattern for spinal cord magnetic fields, was successfully reproduced by the phantom. Hence, the developed spinal cord phantom can be used to evaluate MSG source analysis methods.

  16. Construction of cardiac anthropomorphic phantom for simulation of radiological exams

    International Nuclear Information System (INIS)

    Bandeira, C.K.; Vieira Neto, H.; Vieira, M.P.M.M.

    2017-01-01

    Phantoms are simulating objects of structures of the human body and can be applied in the quality control and calibration of radiological equipment. The aim of the work is the development of a cardiac anthropomorphic phantom to assist in the elaboration of protocols of dynamic studies that demonstrate the blood circulation inside the cardiac chambers. For the construction of the phantom was used latex, applied in layers on an anatomical model of heart, having been constructed the cardiac chambers and atrioventricular valves. Cardiac chambers were connected to the cannulas for fluid injection and simulation of the circulatory system. The constructed phantom presents anthropomorphic characteristics and allows the circulation of the fluid without reflux, but the thickness of the catheters used does not yet allow flows of greater order of magnitude. This phantom has the potential to be used in the dynamic simulation of cardiac exams, contributing to the elaboration and adequacy of computed tomography protocols

  17. Assembling of a phantom for quality control in pediatric radiodiagnosis

    International Nuclear Information System (INIS)

    Oliveira, Silvana Carvalho de; Ghilardi Netto, Thomaz; Trad, Clovis Simao; Brochi, Marco Aurelio Corte; Rocha, Sergio Luis

    1996-01-01

    The adaptation of an homogeneous phantom equivalent to an adult patient is presented for the valuation of pediatric radiologic images. The phantom consists basically of two plastic (methyl methacrylate) slabs, each 2.5 cm tick and two aluminium slabs, 0.5 and 1.0 mm thick. The system can simulate the chest, the skull or pelvis, and the extremities. The phantom also enables the equipment calibration, in order to reach the best radiographic image. After calibration of the equipment for several kVp and m As combinations, a phantom with known details and equivalent thickness was used to produce images. These radiographs allowed the choice of the best combination to be used. The entrance surface doses are presented for several combinations used with the pelvis and chest phantoms

  18. Quantitative magnetic resonance imaging phantoms: A review and the need for a system phantom.

    Science.gov (United States)

    Keenan, Kathryn E; Ainslie, Maureen; Barker, Alex J; Boss, Michael A; Cecil, Kim M; Charles, Cecil; Chenevert, Thomas L; Clarke, Larry; Evelhoch, Jeffrey L; Finn, Paul; Gembris, Daniel; Gunter, Jeffrey L; Hill, Derek L G; Jack, Clifford R; Jackson, Edward F; Liu, Guoying; Russek, Stephen E; Sharma, Samir D; Steckner, Michael; Stupic, Karl F; Trzasko, Joshua D; Yuan, Chun; Zheng, Jie

    2018-01-01

    The MRI community is using quantitative mapping techniques to complement qualitative imaging. For quantitative imaging to reach its full potential, it is necessary to analyze measurements across systems and longitudinally. Clinical use of quantitative imaging can be facilitated through adoption and use of a standard system phantom, a calibration/standard reference object, to assess the performance of an MRI machine. The International Society of Magnetic Resonance in Medicine AdHoc Committee on Standards for Quantitative Magnetic Resonance was established in February 2007 to facilitate the expansion of MRI as a mainstream modality for multi-institutional measurements, including, among other things, multicenter trials. The goal of the Standards for Quantitative Magnetic Resonance committee was to provide a framework to ensure that quantitative measures derived from MR data are comparable over time, between subjects, between sites, and between vendors. This paper, written by members of the Standards for Quantitative Magnetic Resonance committee, reviews standardization attempts and then details the need, requirements, and implementation plan for a standard system phantom for quantitative MRI. In addition, application-specific phantoms and implementation of quantitative MRI are reviewed. Magn Reson Med 79:48-61, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  19. Construction of average adult Japanese voxel phantoms for dose assessment

    International Nuclear Information System (INIS)

    Sato, Kaoru; Takahashi, Fumiaki; Satoh, Daiki; Endo, Akira

    2011-12-01

    The International Commission on Radiological Protection (ICRP) adopted the adult reference voxel phantoms based on the physiological and anatomical reference data of Caucasian on October, 2007. The organs and tissues of these phantoms were segmented on the basis of ICRP Publication 103. In future, the dose coefficients for internal dose and dose conversion coefficients for external dose calculated using the adult reference voxel phantoms will be widely used for the radiation protection fields. On the other hand, the body sizes and organ masses of adult Japanese are generally smaller than those of adult Caucasian. In addition, there are some cases that the anatomical characteristics such as body sizes, organ masses and postures of subjects influence the organ doses in dose assessment for medical treatments and radiation accident. Therefore, it was needed to use human phantoms with average anatomical characteristics of Japanese. The authors constructed the averaged adult Japanese male and female voxel phantoms by modifying the previously developed high-resolution adult male (JM) and female (JF) voxel phantoms. It has been modified in the following three aspects: (1) The heights and weights were agreed with the Japanese averages; (2) The masses of organs and tissues were adjusted to the Japanese averages within 10%; (3) The organs and tissues, which were newly added for evaluation of the effective dose in ICRP Publication 103, were modeled. In this study, the organ masses, distances between organs, specific absorbed fractions (SAFs) and dose conversion coefficients of these phantoms were compared with those evaluated using the ICRP adult reference voxel phantoms. This report provides valuable information on the anatomical and dosimetric characteristics of the averaged adult Japanese male and female voxel phantoms developed as reference phantoms of adult Japanese. (author)

  20. Hubungan Phantom Vibration Syndrome Terhadap Sleep Disorder dan Kondisi Stress

    Directory of Open Access Journals (Sweden)

    Ajeng Yeni Setianingrum

    2017-10-01

    Full Text Available Phantom vibration syndrome is a condition where a person would feel the sensation of vibration of a cell phone as if there were incoming notification but the fact is not. This research investigated the relationship between phantom vibration syndromes, sleep disorder and stress condition. Questionnaires were distributed to 120 participants with age range 18 to 23 years old. Data of participants showed that all of participants using a smart mobile phone and 24% of them have more than one cell phone. Time usage of cell phone is at least 1 hour. 23% of participants using a cell phone for social media activity, followed by 21% related to entertainment (music, video and games. The results showed a positive relationship between phantom vibration syndrome, sleep disorder and stress condition. Insomnia contributed a greater influence on stress condition. However, the phantom vibration syndrome is more directly affecting the sleep apnea compared to insomnia and stress condition. Therefore, the phantom vibration syndrome more affects stress condition indirectly, through sleep disorder (sleep apnea and insomnia. Consequently, phantom vibration syndrome has a strong relationship with stress condition at the time of the phantom vibration syndrome can cause sleep disorder.

  1. Studies on Phantom Vibration and Ringing Syndrome among Postgraduate Students

    Directory of Open Access Journals (Sweden)

    Atul Kumar Goyal

    2015-03-01

    Full Text Available Phantom vibrations and ringing of mobile phones are prevalent hallucinations in the general population. They might be considered as a normal brain mechanism. The aim of this study was to establish the prevalence of Phantom vibrations and ringing syndrome among students and to assess factors associated it. The survey of 300 postgraduate students belonging to different field of specialization was conducted at Kurukshetra University. 74% of students were found to have both Phantom vibrations and ringing syndrome. Whereas 17% of students felt Phantom vibration exclusively and 4% students face only Phantom ringing syndrome. Both the syndrome occurs more fervent in students who kept their mobile phone in shirt or jean pocket than to who kept mobile in handbag. 75% of students felt vibration or ringing even when the phone is switched off or phone was not in their pocket. Also the frequency of both the syndrome is directly proportional to the duration of mobile phone use and person emotional behavior. Although most of students agree that the Phantom syndrome did not bother them but some students deals with anxiety when they feel symptoms associated with Phantom syndrome. By using mobile phones in proper way, one can avoid these syndromes, or at least can ameliorate the symptoms.

  2. Rapid prototyping of biomimetic vascular phantoms for hyperspectral reflectance imaging

    Science.gov (United States)

    Ghassemi, Pejhman; Wang, Jianting; Melchiorri, Anthony J.; Ramella-Roman, Jessica C.; Mathews, Scott A.; Coburn, James C.; Sorg, Brian S.; Chen, Yu; Joshua Pfefer, T.

    2015-12-01

    The emerging technique of rapid prototyping with three-dimensional (3-D) printers provides a simple yet revolutionary method for fabricating objects with arbitrary geometry. The use of 3-D printing for generating morphologically biomimetic tissue phantoms based on medical images represents a potentially major advance over existing phantom approaches. Toward the goal of image-defined phantoms, we converted a segmented fundus image of the human retina into a matrix format and edited it to achieve a geometry suitable for printing. Phantoms with vessel-simulating channels were then printed using a photoreactive resin providing biologically relevant turbidity, as determined by spectrophotometry. The morphology of printed vessels was validated by x-ray microcomputed tomography. Channels were filled with hemoglobin (Hb) solutions undergoing desaturation, and phantoms were imaged with a near-infrared hyperspectral reflectance imaging system. Additionally, a phantom was printed incorporating two disjoint vascular networks at different depths, each filled with Hb solutions at different saturation levels. Light propagation effects noted during these measurements-including the influence of vessel density and depth on Hb concentration and saturation estimates, and the effect of wavelength on vessel visualization depth-were evaluated. Overall, our findings indicated that 3-D-printed biomimetic phantoms hold significant potential as realistic and practical tools for elucidating light-tissue interactions and characterizing biophotonic system performance.

  3. Puzzles of dark energy in the Universe—phantom

    International Nuclear Information System (INIS)

    Dabrowski, Mariusz P

    2015-01-01

    This paper is devoted to some simple approach based on general physics tools to describe the physical properties of a hypothetical particle which can be the source of dark energy in the Universe known as phantom. Phantom is characterized by the fact that it possesses negative momentum and kinetic energy and that it gives dominant negative pressure which acts as antigravity. We consider a phantom harmonic oscillator in comparison to a standard harmonic oscillator. By using the first law of thermodynamics we explain why the energy density of the Universe grows when it is filled with phantom. We also show how the collision of phantom with a standard particle leads to extraction of energy from the former by the latter (i.e. from phantom to the standard) if their masses are different. The most striking of our conclusions is that the collision of phantom and standard particles of the same mass is impossible unless both of them are at rest and suddenly start moving with opposite velocities and kinetic energies. This effect is a classic analog of quantum mechanical particle pair creation in a strong electric field or physical vacuum. (paper)

  4. Fabrication of subcutaneous veins phantom for vessel visualization system

    Science.gov (United States)

    Cheng, Kai; Narita, Kazuyuki; Morita, Yusuke; Nakamachi, Eiji; Honda, Norihiro; Awazu, Kunio

    2013-09-01

    The technique of subcutaneous veins imaging by using NIR (Near Infrared Radiation) is widely used in medical applications, such as the intravenous injection and the blood sampling. In the previous study, an automatic 3D blood vessel search and automatic blood sampling system was newly developed. In order to validate this NIR imaging system, we adopted the subcutaneous vein in the human arm and its artificial phantom, which imitate the human fat and blood vessel. The human skin and subcutaneous vein is characterized as the uncertainty object, which has the individual specificity, non-accurate depth information, non-steady state and hardly to be fixed in the examination apparatus. On the other hand, the conventional phantom was quite distinct from the human's characteristics, such as the non-multilayer structure, disagreement of optical property. In this study, we develop a multilayer phantom, which is quite similar with human skin, for improvement of NIR detection system evaluation. The phantom consists of three layers, such as the epidermis layer, the dermis layer and the subcutaneous fat layer. In subcutaneous fat layer, we built a blood vessel. We use the intralipid to imitate the optical scattering characteristics of human skin, and the hemoglobin and melanin for the optical absorption characteristics. In this study, we did two subjects. First, we decide the fabrication process of the phantom. Second, we compared newly developed phantoms with human skin by using our NIR detecting system, and confirm the availability of these phantoms.

  5. Regional heating patterns of RF hyperthermia applicators in phantoms

    International Nuclear Information System (INIS)

    Kantor, G.; Ruggera, P.S.; Samulski, T.V.

    1984-01-01

    An elliptical phantom (20 cm by 30 cm cross-section and 40 cm long) with a 1 cm fat layer filled with muscle material was used to compare the induced heating patterns of the NCDRH helical coil, a Henry Medical Magnetrode coil, both with a diameter of 35.6 cm, and the BSD Annular Phased Array System (APAS). Temperature profiles were taken in the midplane cross-sectional slice along the major and minor axes of the phantom. These profiles were measured with a Vitek thermistor probe and the associated specific absorption rates (SAR) were determined from this data. SAR curves for each applicator were obtained along the major and minor axes of the phantom. The depths of heating of the Magnetrode applicator are considerably smaller than those for the helical applicator. Heating patterns for the APAS can be highly variable and asymmetric depending on the frequency of operation and the location of the phantom within the APAS aperture. While the APAS requires a water bolus for good coupling, the NCDRH and Magnetrode coils need only to be air coupled for good phantom coupling. Both the helical applicator and APAS can provide significant heating in the central region of the phantom. However, the heating of the helical coil does not critically depend on the phantom loading

  6. Rapid prototyping of biomimetic vascular phantoms for hyperspectral reflectance imaging

    Science.gov (United States)

    Ghassemi, Pejhman; Wang, Jianting; Melchiorri, Anthony J.; Ramella-Roman, Jessica C.; Mathews, Scott A.; Coburn, James C.; Sorg, Brian S.; Chen, Yu; Joshua Pfefer, T.

    2015-01-01

    Abstract. The emerging technique of rapid prototyping with three-dimensional (3-D) printers provides a simple yet revolutionary method for fabricating objects with arbitrary geometry. The use of 3-D printing for generating morphologically biomimetic tissue phantoms based on medical images represents a potentially major advance over existing phantom approaches. Toward the goal of image-defined phantoms, we converted a segmented fundus image of the human retina into a matrix format and edited it to achieve a geometry suitable for printing. Phantoms with vessel-simulating channels were then printed using a photoreactive resin providing biologically relevant turbidity, as determined by spectrophotometry. The morphology of printed vessels was validated by x-ray microcomputed tomography. Channels were filled with hemoglobin (Hb) solutions undergoing desaturation, and phantoms were imaged with a near-infrared hyperspectral reflectance imaging system. Additionally, a phantom was printed incorporating two disjoint vascular networks at different depths, each filled with Hb solutions at different saturation levels. Light propagation effects noted during these measurements—including the influence of vessel density and depth on Hb concentration and saturation estimates, and the effect of wavelength on vessel visualization depth—were evaluated. Overall, our findings indicated that 3-D-printed biomimetic phantoms hold significant potential as realistic and practical tools for elucidating light–tissue interactions and characterizing biophotonic system performance. PMID:26662064

  7. Neutron production in a spherical phantom aboard ISS

    International Nuclear Information System (INIS)

    Tasbaz, A.; Machrafi, R.

    2012-01-01

    As part of an ongoing research program on radiation monitoring on International Space Station (ISS) that was established to analyze the radiation exposure levels onboard the ISS using different radiation instruments and a spherical phantom to simulate human body. Monte Carlo transport code was used to simulate the interaction of high energy protons and neutrons with the spherical phantom currently onboard ISS. The phantom has been exposed to individual proton energies and to a spectrum of neutrons. The internal to external neutron flux ratio was calculated and compared to the experimental data, recently, measured on the ISS. (author)

  8. Phantom shocks in patients with implantable cardioverter defibrillator

    DEFF Research Database (Denmark)

    Berg, Selina Kikkenborg; Moons, Philip; Zwisler, Ann-Dorthe

    2013-01-01

    of phantom shocks.METHODS AND RESULTS: The design was secondary explorative analyses of data from a randomized controlled trial. One hundred and ninety-six patients with first-time ICD implantation (79% male, mean age 58 years) were randomized (1 : 1) to either combined rehabilitation or a control group...... questions regarding the experience of phantom shocks, date, time, and place. Twelve patients (9.4%) experienced a phantom shock, 7 in the intervention group and 5 in the control group (NS). Neither age, sex, quality of life nor perceived health at baseline was significantly related to the probability...

  9. Water phantom explorer regulated by computer

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, G [Centre Henri Becquerel, 76 - Rouen (France); Sarrau, J M; Bouet, M [ERA CNRS, UER Sciences et Techniques de Rouen, 76 - Mont-Saint-Aignan (France)

    1983-01-01

    A water phantom device is meant to work directly with a Hewlett-Packard 9825 T small computer. The purpose of this work is to read the distribution of absorbed dose released into a perspex container of water with the help of a semiconductor detector which can move in the three dimensions of space. Above the container a second detector situated on the edge of the beam is used as a monitor. The execution of the programmes written in HPL (Hewlett-Packard Language) offers the possibility either to carry out a preprogrammed cycle of displacements and measures or to work in interacting mode. The collected measures (space, co-ordinates and dose measures) are visualized by a plotter and recorded on a cassette tape. The signals delivered by the detectors are amplified separately then a dividing circuit delivers a tension in proportion with the ratio of these two signals. This tension is independent of the dose rate fluctuations of the irradiation beam and can be read by the computer. The examples of study of photon and electron beams that are described hereafter are meant to show the interest of a command that can be programmed.

  10. Segmented phantoms reconstruction for skin dosimetry

    International Nuclear Information System (INIS)

    Antunes, Paula C.G.; Siqueira, Paulo T.D.; Yoriyaz, Helio; Fonseca, Gabriel P.; Furnari, Laura; Reis, Gabriela S.

    2009-01-01

    There are several radio-sensitive skin diseases. Skin dosimetry is a difficult task to be properly performed, not only due to skin extension and small thickness, but also because it is usually submitted to high dose gradients. High-resolution medical images along with methods that simulate the interaction of radiation with matter, as the Monte Carlo radiation transport codes, have been widely used in medical physics procedures. These images provide the construction of realistic computational anatomical models, which after being coupled to these codes, retrieve reliable dosimetric assessments. However, present day regular images are unsuitable to correctly perform skin dose distribution evaluations. This inability is due to improper skin discrimination in most of current medical images, once its thickness stands below image resolution, i.e. pixel characteristic sizes are larger than skin thickness. This paper proposes a methodology of voxelized phantom reconstruction and segmentation, by subdividing their basic elements - voxels. It is done in order to better discriminate the skin by assigning more adequate value for skin thickness and its actual localization. Aiming at a more realistic skin modeling one is expected to get more accurate skin dose evaluations. This task is an important issue in many radiotherapy procedures. A particular interest lays in Total Skin Electron Therapy (TSET), which highlights the treatment of the whole body irradiation, a radiotherapy procedure under implementation in the Hospital das Clinicas da Universidade de Sao Paulo (HC-USP). (author)

  11. Doses mammography: from phantom to the patient

    Energy Technology Data Exchange (ETDEWEB)

    Cross, P [Gammasonic Radiological Services, Pty., Ltd., Five Dock, NSW (Australia)

    1994-02-01

    While the use of a reference phantom is essential for dosimetry in acceptance testing and in regular quality control checks of a mammographic X-ray unit, it is also of importance to be able to estimate the patient dose in each individual investigation. Radiographic and physical data were analysed for a total of 212 women who were screened at three locations participating in a breast screening programme. The radiologists made estimates of the individual breast composition (%glandular/adipose ratio) at the film reporting sessions, and then the glandular doses were calculated by the auditor according to the NCRP 85 methodology. Arising from the data analysis of this dosimetry survey, a method is proposed to determine objectively patient breast composition from the photo-timed mAs for a given film optical density setting. This permits the NCRP calculations to be extended from breasts of 'average' (50/50) composition to breasts of individually determined composition. The diversity of the results between the three locations emphasises the need for regular audits of a mammographic X-ray unit's performance by an experienced radiological physicists, at least annually or after any major interventional service on the unit. 11 refs., 6 tabs., 4 figs.

  12. Primary motor cortex changes after amputation correlate with phantom limb pain and the ability to move the phantom limb

    DEFF Research Database (Denmark)

    Raffin, Estelle; Richard, Nathalie; Giraux, Pascal

    2016-01-01

    A substantial body of evidence documents massive reorganization of primary sensory and motor cortices following hand amputation, the extent of which is correlated with phantom limb pain. Many therapies for phantom limb pain are based upon the idea that plastic changes after amputation...... for the maladaptative plasticity model, we demonstrate for the first time that motor capacities of the phantom limb correlate with post-amputation reorganization, and that this reorganization is not limited to the face and hand representations but also includes the proximal upper-limb....

  13. [Phantoms for the collection of genital secretions in stallions].

    Science.gov (United States)

    Klug, E; Brinkhoff, D; Flüge, A; Scherbarth, R; Essich, G; Kienzler, M

    1977-10-05

    Practical experiences of the phantom method for collection of genital secretions from stallions are reported. Taking a phantom used in the Richard-Götze-Haus Tierärztliche Hochschule Hannover as a prototype two further models slightly modified have been constructed, baring a flat hollow in the right side of the caudal phantom body for manual inserting of the Artificial Vagina. These three models fulfill four important conditions for routine use: (1) sufficient sexual attractivity for the stallions; 80-85% successful collections of presecretions out of a total of 1050 using the dummy and 70% successful semen collections from more than 240 in total; (2) solid and resistant construction; (3) easy cleaning and desinfection of the surface of the phantom to get representative samples; (4) firm installation on a hygienic floor.

  14. Determination of optimum filter in myocardial SPECT: A phantom study

    International Nuclear Information System (INIS)

    Takavar, A.; Shamsipour, Gh.; Sohrabi, M.; Eftekhari, M.

    2004-01-01

    Background: In myocardial perfusion SPECT images are degraded by photon attenuation, the distance-dependent collimator, detector response and photons scatter. Filters greatly affect quality of nuclear medicine images. Materials and Methods: A phantom simulating heart left ventricle was built. About 1mCi of 99m Tc was injected into the phantom. Images was taken from this phantom. Some filters including Parzen, Hamming, Hanning, Butter worth and Gaussian were exerted on the phantom images. By defining some criteria such as contrast, signal to noise ratio, and defect size detectability, the best filter can be determined. Results: 0.325 Nyquist frequency and 0.5 nq was obtained as the optimum cut off frequencies respectively for hamming and handing filters. Order 11, cut off 0.45 Nq and order 20 cut off 0.5 Nq obtained optimum respectively for Butter worth and Gaussian filters. Conclusion: The optimum member of every filter's family was obtained

  15. A solid tissue phantom for photon migration studies

    International Nuclear Information System (INIS)

    Cubeddu, Rinaldo; Pifferi, Antonio; Taroni, Paola; Torricelli, Alessandro; Valentini, Gianluca

    1997-01-01

    A solid tissue phantom made of agar, Intralipid and black ink is described and characterized. The preparation procedure is fast and easily implemented with standard laboratory equipment. An instrumentation for time-resolved transmittance measurements was used to determine the optical properties of the phantom. The absorption and the reduced scattering coefficients are linear with the ink and Intralipid concentrations, respectively. A systematic decrease of the reduced scattering coefficient dependent on the agar content is observed, but can easily be managed. The phantom is highly homogeneous and shows good repeatability among different preparations. Moreover, agar inclusions can be easily embedded in either solid or liquid matrixes, and no artefacts are caused by the solid - solid or solid - liquid interfaces. This allows one to produce reliable and realistic inhomogeneous phantoms with known optical properties, particularly interesting for studies on optical imaging through turbid media. (author)

  16. Bioassay Phantoms Using Medical Images and Computer Aided Manufacturing

    International Nuclear Information System (INIS)

    Xu, X. Geroge

    2011-01-01

    A radiation bioassay program relies on a set of standard human phantoms to calibrate and assess radioactivity levels inside a human body for radiation protection and nuclear medicine imaging purposes. However, the methodologies in the development and application of anthropomorphic phantoms, both physical and computational, had mostly remained the same for the past 40 years. We herein propose a 3-year research project to develop medical image-based physical and computational phantoms specifically for radiation bioassay applications involving internally deposited radionuclides. The broad, long-term objective of this research was to set the foundation for a systematic paradigm shift away from the anatomically crude phantoms in existence today to realistic and ultimately individual-specific bioassay methodologies. This long-term objective is expected to impact all areas of radiation bioassay involving nuclear power plants, U.S. DOE laboratories, and nuclear medicine clinics.

  17. Phantom inflation and the 'Big Trip'

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Diaz, Pedro F. [Colina de los Chopos, Instituto de Matematicas y Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 121, 28006 Madrid (Spain)]. E-mail: p.gonzalezdiaz@imaff.cfmac.csic.es; Jimenez-Madrid, Jose A. [Colina de los Chopos, Instituto de Matematicas y Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 121, 28006 Madrid (Spain)

    2004-08-19

    Primordial inflation is regarded to be driven by a phantom field which is here implemented as a scalar field satisfying an equation of state p={omega}{rho}, with {omega}-1. Being even aggravated by the weird properties of phantom energy, this will pose a serious problem with the exit from the inflationary phase. We argue, however, in favor of the speculation that a smooth exit from the phantom inflationary phase can still be tentatively recovered by considering a multiverse scenario where the primordial phantom universe would travel in time toward a future universe filled with usual radiation, before reaching the big rip. We call this transition the 'Big Trip' and assume it to take place with the help of some form of anthropic principle which chooses our current universe as being the final destination of the time transition.

  18. A model for ultrasound contrast agent in a phantom vessel

    KAUST Repository

    Qamar, Adnan; Samtaney, Ravi

    2014-01-01

    A theoretical framework to model the dynamics of Ultrasound Contrast Agent (UCA) inside a phantom vessel is presented. The model is derived from the reduced Navier-Stokes equation and is coupled with the evolving flow field solution inside

  19. BOMAB phantom manufacturing quality assurance study using Monte Carlo computations

    International Nuclear Information System (INIS)

    Mallett, M.W.

    1994-01-01

    Monte Carlo calculations have been performed to assess the importance of and quantify quality assurance protocols in the manufacturing of the Bottle-Manikin-Absorption (BOMAB) phantom for calibrating in vivo measurement systems. The parameters characterizing the BOMAB phantom that were examined included height, fill volume, fill material density, wall thickness, and source concentration. Transport simulation was performed for monoenergetic photon sources of 0.200, 0.662, and 1,460 MeV. A linear response was observed in the photon current exiting the exterior surface of the BOMAB phantom due to variations in these parameters. Sensitivity studies were also performed for an in vivo system in operation at the Pacific Northwest Laboratories in Richland, WA. Variations in detector current for this in vivo system are reported for changes in the BOMAB phantom parameters studied here. Physical justifications for the observed results are also discussed

  20. ICRU activity in the field of phantoms in diagnostic radiology

    International Nuclear Information System (INIS)

    Wambersie, A.; White, D.R.

    1992-01-01

    The ICRU Report on 'Phantoms and Computational Models in Radiation Therapy, Diagnosis and Protection' is presented. The Report contains a major section on human anatomy, from fetus to adult with the variations due to ethnic origin. Tolerance levels for the phantoms (composition, dimensions) are proposed and quality assurance programs are outlined. The report contains extensive appendices: human anatomical data and full specification of over 80 phantoms and computational models. ICRU Report 46 on 'Photon, electron, proton and neutron interaction data for body tissues' is closely related to the field of phantoms. It is a logical continuation on ICRU Report 44 (1989) on 'Tissue substitutes in radiation dosimetry and measurements' and contains the interaction data for more than 100 tissues, from fetal to adult, including some diseased tissues. (author)

  1. Phantom dark ghost in Einstein-Cartan gravity

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yu-Chiao [National Taiwan University, Department of Physics, Taipei (China); National Taiwan University, LeCosPA, Taipei (China); Bouhmadi-Lopez, Mariam [University of the Basque Country UPV/EHU, Department of Theoretical Physics, P.O. Box 644, Bilbao (Spain); Basque Foundation for Science, IKERBASQUE, Bilbao (Spain); Chen, Pisin [National Taiwan University, Department of Physics, Taipei (China); National Taiwan University, LeCosPA, Taipei (China); National Taiwan University, Graduate Institute of Astrophysics, Taipei (China); SLAC National Accelerator Laboratory, Stanford University, Kavli Institute for Particle Astrophysics and Cosmology, Stanford, CA (United States)

    2017-05-15

    A class of dynamical dark energy models is constructed through an extended version of fermion fields corresponding to phantom dark ghost spinors, which are spin 1/2 with mass dimension 1. We find that if these spinors interact with torsion fields in a homogeneous and isotropic universe, then it does not imply any future dark energy singularity or any abrupt event, though the fermion has a negative kinetic energy. In fact, the equation of state of this dark energy model will asymptotically approach the value w = -1 from above without crossing the phantom divide and inducing therefore a de Sitter state. Consequently, we expect the model to be stable because no real phantom fields will be created. At late time, the torsion fields will vanish as the corresponding phantom dark ghost spinors dilute. As would be expected, intuitively, this result is unaffected by the presence of cold dark matter although the proof is not as straightforward as in general relativity. (orig.)

  2. Phantom's construction for dose measurement in brachytherapy

    International Nuclear Information System (INIS)

    Tri Harjanto; Hidayat Joko Puspito; Joko Triyanto

    2009-01-01

    In nuclear medicine, dose rate validation is the key for a successful process in therapy and diagnose of any deases. Therefore, the brachytherapy equipment being designed and constructed is to be validated its dose rate received by the radiated object. A phantom for such validation purpose is designed and constructed as a correct as if on site geometrical position of sources. The design of phantom consists of seven layers of flexi glass plates: 10 mm thick, 105 mm wide, and 280 mm length. All the plates are to be holed according to the size of the applicator to be used. Every surface of the flexi glass layers is grooved 1 mm wide, 1 mm depth, and 10 mm distance between the groove. The applicator inside the phantom is positioned at a certain reference for measurement. Every TLD installed has a fix position toward the reference coordinate and has an index number. By this system of phantom, the isodose system can be plotted. (author)

  3. [Psychotherapies for the Treatment of Phantom Limb Pain].

    Science.gov (United States)

    Cárdenas, Katherine; Aranda, Mariana

    The phantom limb pain has been described as a condition in which patients experience a feeling of itching, spasm or pain in a limb or body part that has been previously amputated. Such pain can be induced by a conflict between the representation of the visual and proprioceptive feedback of the previously healthy limb. The phantom limb pain occurs in at least 42 to 90% of amputees. Regular drug treatment of phantom limb pain is almost never effective. A systematic review of the literature was conducted in Medline and Cochrane using the MESH terms "phantom limb pain" and "psychotherapy", published in the last 10 years, in English and Spanish, finding 49 items. After reviewing the abstracts, 25 articles were excluded for not being related to the objective of the research. Additionally cross references of included articles and literature were reviewed. To describe the psychotherapies used in the management of phantom limb pain, their effectiveness and clinical application reported in the literature. The mechanisms underlying phantom limb pain were initially explained, as were the published studies on the usefulness of some psychotherapies such as mirror visual feedback and immersive virtual reality, visual imagery, desensitization and reprocessing eye movements and hypnosis. The phantom limb pain is a complex syndrome that requires pharmacological and psychotherapeutic intervention. The psychotherapies that have been used the most as adjuvants in the treatment of phantom limb pain are mirror visual feedback, desensitization and reprocessing eye movements, imagery and hypnosis. Studies with more representative samples, specifically randomized trials are required. Copyright © 2016 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  4. Computational hybrid anthropometric paediatric phantom library for internal radiation dosimetry

    Science.gov (United States)

    Xie, Tianwu; Kuster, Niels; Zaidi, Habib

    2017-04-01

    Hybrid computational phantoms combine voxel-based and simplified equation-based modelling approaches to provide unique advantages and more realism for the construction of anthropomorphic models. In this work, a methodology and C++ code are developed to generate hybrid computational phantoms covering statistical distributions of body morphometry in the paediatric population. The paediatric phantoms of the Virtual Population Series (IT’IS Foundation, Switzerland) were modified to match target anthropometric parameters, including body mass, body length, standing height and sitting height/stature ratio, determined from reference databases of the National Centre for Health Statistics and the National Health and Nutrition Examination Survey. The phantoms were selected as representative anchor phantoms for the newborn, 1, 2, 5, 10 and 15 years-old children, and were subsequently remodelled to create 1100 female and male phantoms with 10th, 25th, 50th, 75th and 90th body morphometries. Evaluation was performed qualitatively using 3D visualization and quantitatively by analysing internal organ masses. Overall, the newly generated phantoms appear very reasonable and representative of the main characteristics of the paediatric population at various ages and for different genders, body sizes and sitting stature ratios. The mass of internal organs increases with height and body mass. The comparison of organ masses of the heart, kidney, liver, lung and spleen with published autopsy and ICRP reference data for children demonstrated that they follow the same trend when correlated with age. The constructed hybrid computational phantom library opens up the prospect of comprehensive radiation dosimetry calculations and risk assessment for the paediatric population of different age groups and diverse anthropometric parameters.

  5. Prevalent hallucinations during medical internships: phantom vibration and ringing syndromes.

    Directory of Open Access Journals (Sweden)

    Yu-Hsuan Lin

    Full Text Available BACKGROUND: Phantom vibration syndrome is a type of hallucination reported among mobile phone users in the general population. Another similar perception, phantom ringing syndrome, has not been previously described in the medical literature. METHODS: A prospective longitudinal study of 74 medical interns (46 males, 28 females; mean age, 24.8±1.2 years was conducted using repeated investigations of the prevalence and associated factors of phantom vibration and ringing. The accompanying symptoms of anxiety and depression were evaluated with the Beck Anxiety and Depression Inventories before the internship began, and again at the third, sixth, and twelfth internship months, and two weeks after the internship ended. RESULTS: The baseline prevalence of phantom vibration was 78.1%, which increased to 95.9% and 93.2% in the third and sixth internship months. The prevalence returned to 80.8% at the twelfth month and decreased to 50.0% 2 weeks after the internship ended. The baseline prevalence of phantom ringing was 27.4%, which increased to 84.9%, 87.7%, and 86.3% in the third, sixth, and twelfth internship months, respectively. This returned to 54.2% two weeks after the internship ended. The anxiety and depression scores also increased during the internship, and returned to baseline two weeks after the internship. There was no significant correlation between phantom vibration/ringing and symptoms of anxiety or depression. The incidence of both phantom vibration and ringing syndromes significantly increased during the internship, and subsequent recovery. CONCLUSION: This study suggests that phantom vibration and ringing might be entities that are independent of anxiety or depression during evaluation of stress-associated experiences during medical internships.

  6. Simulation analysis of radiation fields inside phantoms for neutron irradiation

    International Nuclear Information System (INIS)

    Satoh, Daiki; Takahashi, Fumiaki; Endo, Akira; Ohmachi, Y.; Miyahara, N.

    2007-01-01

    Radiation fields inside phantoms have been calculated for neutron irradiation. Particle and heavy-ion transport code system PHITS was employed for the calculation. Energy and size dependences of neutron dose were analyzed using tissue equivalent spheres of different size. A voxel phantom of mouse was developed based on CT images of an 8-week-old male C3H/HeNs mouse. Deposition energy inside the mouse was calculated for 2- and 10-MeV neutron irradiation. (author)

  7. Influence of lucite phantoms on calibration of dosimetric pens

    International Nuclear Information System (INIS)

    Oliveira, E.C.; Xavier, M.; Caldas, L.E.V.

    1992-01-01

    Dosimetrical pens were studied for the answer repetition and were tested in gamma radiation fields ( 60 Co and 137 Cs) in air and in front of a lucite phantom, obtaining a backscattering contribution. The medium backscattering factors were 1,053 and 1,108 for respectively 60 Co and 137 Cs. The pens were placed behind the phantom for verifying the radiation attenuation. (C.G.C.)

  8. Liver phantom for quality control and training in nuclear medicine

    International Nuclear Information System (INIS)

    Lima Ferreira, Fernanda Carla; Nascimento Souza, Divanizia do

    2011-01-01

    In nuclear medicine, liver scintigraphy aims to verify organ function based on the radionuclide concentration in the liver and bile flow and is also used to detect tumors. Therefore it is necessary to perform quality control tests in the gamma camera before running the exam to prevent false results. Quality control tests of the gamma camera should thus be performed before running the exam to prevent false results. Such tests generally use radioactive material inside phantoms for evaluation of gamma camera parameters in quality control procedures. Phantoms can also be useful for training doctors and technicians in nuclear medicine procedures. The phantom proposed here has artifacts that simulate nodules; it may take on different quantities, locations and sizes and it may also be mounted without the introduction of nodules. Thus, its images may show hot or cold nodules or no nodules. The phantom consists of acrylic plates hollowed out in the centre, with the geometry of an adult liver. Images for analyses of simulated liver scintigraphy were obtained with the detector device at 5 cm from the anterior surface of the phantom. These simulations showed that this object is suitable for quality control in nuclear medicine because it was possible to visualize artifacts larger than 7.9 mm using a 256x256 matrix and 1000 kcpm. The phantom constructed in this work will also be useful for training practitioners and technicians in order to prevent patients from repeat testing caused by error during examinations.

  9. Liver phantom for quality control and training in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Lima Ferreira, Fernanda Carla [Departamento de Fisica, Universidade Federal de Sergipe, Sao Cristovao, SE, 49100 000 (Brazil); Nascimento Souza, Divanizia do, E-mail: divanizi@ufs.br [Departamento de Fisica, Universidade Federal de Sergipe, Sao Cristovao, SE, 49100 000 (Brazil)

    2011-10-01

    In nuclear medicine, liver scintigraphy aims to verify organ function based on the radionuclide concentration in the liver and bile flow and is also used to detect tumors. Therefore it is necessary to perform quality control tests in the gamma camera before running the exam to prevent false results. Quality control tests of the gamma camera should thus be performed before running the exam to prevent false results. Such tests generally use radioactive material inside phantoms for evaluation of gamma camera parameters in quality control procedures. Phantoms can also be useful for training doctors and technicians in nuclear medicine procedures. The phantom proposed here has artifacts that simulate nodules; it may take on different quantities, locations and sizes and it may also be mounted without the introduction of nodules. Thus, its images may show hot or cold nodules or no nodules. The phantom consists of acrylic plates hollowed out in the centre, with the geometry of an adult liver. Images for analyses of simulated liver scintigraphy were obtained with the detector device at 5 cm from the anterior surface of the phantom. These simulations showed that this object is suitable for quality control in nuclear medicine because it was possible to visualize artifacts larger than 7.9 mm using a 256x256 matrix and 1000 kcpm. The phantom constructed in this work will also be useful for training practitioners and technicians in order to prevent patients from repeat testing caused by error during examinations.

  10. Liver phantom for quality control and training in nuclear medicine

    Science.gov (United States)

    Lima Ferreira, Fernanda Carla; Souza, Divanizia do Nascimento

    2011-10-01

    In nuclear medicine, liver scintigraphy aims to verify organ function based on the radionuclide concentration in the liver and bile flow and is also used to detect tumors. Therefore it is necessary to perform quality control tests in the gamma camera before running the exam to prevent false results. Quality control tests of the gamma camera should thus be performed before running the exam to prevent false results. Such tests generally use radioactive material inside phantoms for evaluation of gamma camera parameters in quality control procedures. Phantoms can also be useful for training doctors and technicians in nuclear medicine procedures. The phantom proposed here has artifacts that simulate nodules; it may take on different quantities, locations and sizes and it may also be mounted without the introduction of nodules. Thus, its images may show hot or cold nodules or no nodules. The phantom consists of acrylic plates hollowed out in the centre, with the geometry of an adult liver. Images for analyses of simulated liver scintigraphy were obtained with the detector device at 5 cm from the anterior surface of the phantom. These simulations showed that this object is suitable for quality control in nuclear medicine because it was possible to visualize artifacts larger than 7.9 mm using a 256×256 matrix and 1000 kcpm. The phantom constructed in this work will also be useful for training practitioners and technicians in order to prevent patients from repeat testing caused by error during examinations.

  11. Measurement of TLD Albedo response on various calibration phantoms

    International Nuclear Information System (INIS)

    Momose, T.; Tsujimura, N.; Shinohara, K.; Ishiguro, H.; Nakamura, T.

    1996-01-01

    The International Commission on Radiation Units and Measurements (ICRU) has recommended that individual dosemeter should be calibrated on a suitable phantom and has pointed out that the calibration factor of a neutron dosemeter is strongly influenced by the the exact size and shape of the body and the phantom to which the dosemeter is attached. As the principle of an albedo type thermoluminescent personal dosemeter (albedo TLD) is essentially based on a detection of scattered and moderated neutron from a human body, the sensitivity of albedo TLD is strongly influenced by the incident neutron energy and the calibration phantom. (1) Therefore for albedo type thermoluminescent personal dosemeter (albedo TLD), the information of neutron albedo response on the calibration phantom is important for appropriate dose estimation. In order to investigate the effect of phantom type on the reading of the albedo TLD, measurement of the TLD energy response and angular response on some typical calibration phantoms was performed using dynamitron accelerator and 252 Cf neutron source. (author)

  12. Phantoms and computational models in therapy, diagnosis and protection

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    The development of realistic body phantoms and computational models is strongly dependent on the availability of comprehensive human anatomical data. This information is often missing, incomplete or not easily available. Therefore, emphasis is given in the Report to organ and body masses and geometries. The influence of age, sex and ethnic origins in human anatomy is considered. Suggestions are given on how suitable anatomical data can be either extracted from published information or obtained from measurements on the local population. Existing types of phantoms and computational models used with photons, electrons, protons and neutrons are reviewed in this Report. Specifications of those considered important to the maintenance and development of reliable radiation dosimetry and measurement are given. The information provided includes a description of the phantom or model, together with diagrams or photographs and physical dimensions. The tissues within body sections are identified and the tissue substitutes used or recommended are listed. The uses of the phantom or model in radiation dosimetry and measurement are outlined. The Report deals predominantly with phantom and computational models representing the human anatomy, with a short Section devoted to animal phantoms in radiobiology

  13. Heterogeneous Breast Phantom Development for Microwave Imaging Using Regression Models

    Directory of Open Access Journals (Sweden)

    Camerin Hahn

    2012-01-01

    Full Text Available As new algorithms for microwave imaging emerge, it is important to have standard accurate benchmarking tests. Currently, most researchers use homogeneous phantoms for testing new algorithms. These simple structures lack the heterogeneity of the dielectric properties of human tissue and are inadequate for testing these algorithms for medical imaging. To adequately test breast microwave imaging algorithms, the phantom has to resemble different breast tissues physically and in terms of dielectric properties. We propose a systematic approach in designing phantoms that not only have dielectric properties close to breast tissues but also can be easily shaped to realistic physical models. The approach is based on regression model to match phantom's dielectric properties with the breast tissue dielectric properties found in Lazebnik et al. (2007. However, the methodology proposed here can be used to create phantoms for any tissue type as long as ex vivo, in vitro, or in vivo tissue dielectric properties are measured and available. Therefore, using this method, accurate benchmarking phantoms for testing emerging microwave imaging algorithms can be developed.

  14. Energy Efficient Resource Allocation for Phantom Cellular Networks

    KAUST Repository

    Abdelhady, Amr

    2016-04-01

    Multi-tier heterogeneous networks have become an essential constituent for next generation cellular networks. Meanwhile, energy efficiency (EE) has been considered a critical design criterion along with the traditional spectral efficiency (SE) metric. In this context, we study power and spectrum allocation for the recently proposed two-tier network architecture known as phantom cellular networks. The optimization framework includes both EE and SE. First, we consider sparsely deployed cells experiencing negligible interference and assume perfect channel state information (CSI). For this setting, we propose an algorithm that finds the SE and EE resource allocation strategies. Then, we compare the performance of both design strategies versus number of users, and phantom cells share of the total available resource units (RUs). We aim to investigate the effect of some system parameters to achieve improved SE performance at a non-significant loss in EE performance, or vice versa. It is found that increasing phantom cells share of RUs decreases the SE performance loss due to EE optimization when compared with the optimized SE performance. Second, we consider the densely deployed phantom cellular networks and model the EE optimization problem having into consideration the inevitable interference and imperfect channel estimation. To this end, we propose three resource allocation strategies aiming at optimizing the EE performance metric of this network. Furthermore, we investigate the effect of changing some of the system parameters on the performance of the proposed strategies, such as phantom cells share of RUs, number of deployed phantom cells within a macro cell coverage, number of pilots and the maximum power available for transmission by the phantom cells BSs. It is found that increasing the number of pilots deteriorates the EE performance of the whole setup, while increasing maximum power available for phantom cells transmissions reduces the EE of the whole setup in a

  15. [Mirror, mirror of the wall: mirror therapy in the treatment of phantom limbs and phantom limb pain].

    Science.gov (United States)

    Casale, Roberto; Furnari, Anna; Lamberti, Raul Coelho; Kouloulas, Efthimios; Hagenberg, Annegret; Mallik, Maryam

    2015-01-01

    Phantom limb and phantom limb pain control are pivotal points in the sequence of intervention to bring the amputee to functional autonomy. The alterations of perception and sensation, the pain of the residual limb and the phantom limb are therefore aspects of amputation that should be taken into account in the "prise en charge" of these patients. Within the more advanced physical therapies to control phantom and phantom limb pain there is the use of mirrors (mirror therapy). This article willfocus on its use and on the possible side effects induced by the lack of patient selection and a conflict of body schema restoration through mirror therapy with concurrent prosthetic training and trauma acceptance. Advice on the need to select patients before treatment decisions, with regard to their psychological as well as clinical profile (including time since amputation and clinical setting), and the need to be aware of the possible adverse effects matching different and somehow conflicting therapeutic approaches, are put forward. Thus a coordinated sequence of diagnostic, prognostic and therapeutic procedures carried out by an interdisciplinary rehabilitation team that works globally on all patients' problems is fundamental in the management of amputees and phantom limb pain. Further studies and the development of a multidisciplinary network to study this and other applications of mirror therapy are needed.

  16. Skin Dosimetry in Breast Teletherapy on a Phantom Anthropomorphic and Anthropometric Phantom

    International Nuclear Information System (INIS)

    Batista Nogueira, Luciana; Lemos Silva, Hugo Leonardo; Donato da Silva, Sabrina; Passos Ribeiro Campos, Tarcisio

    2015-01-01

    This paper addresses the breast teletherapy dosimetry. The goal is to evaluate and compare absorbed doses in equivalent skin tissue, TE-skin, of an anthropomorphic and anthropometric breast phantom submitted to breast radiotherapy. The methodology involved the reproduction of a set of tomographic images of the phantom; the elaboration of conformational radiotherapy planning in the SOMAVISION and CadPlan (TPS) software; and the synthetic breast irradiation by parallel opposed fields in 3D conformal teletherapy at 6 MV linear accelerator Clinac-2100 C from VARIAN with prescribed dose (PD) of 180 cGy to the target volume (PTV), referent to the glandular tissue. Radiochromic films EBT2 were selected as dosimeters. Two independent calibration processes of films with solid water Gammex 457 plates and water filled box were produced. Curves of optical density (OD) versus absorbed dose were produced. Dosimeters were positioned in the external region of the breast phantom in contact with TE-skin, area of 4.0 cm 2 each. The irradiation process was prepared in duplicate to check the reproducibility of the technique. The radiochromic films were scanned and their response in RGB (Red, Green, Blue) analyzed by the ImageJ software. The optical density was obtained and converted to dose based on the calibration curves. Thus, the spatial dose distribution in the skin was reproduced. The absorbed doses measured on the radiochromic films in TE-skin showed values between upper and lower quadrants at 9 o'clock in the range of 54% of PD, between the upper and lower quadrants 3 o'clock in the range of 72% and 6 o'clock at the lower quadrant in the range of 68 % of PD. The values are ±64% (p <0.05) according to the TPS. It is concluded that the depth dose measured in solid water plates or water box reproduce equivalent dose values for both calibration processes of the radiochromic films. It was observed that the skin received doses ranging from 50% to 78% of the prescribed

  17. Skin Dosimetry in Breast Teletherapy on a Phantom Anthropomorphic and Anthropometric Phantom

    Energy Technology Data Exchange (ETDEWEB)

    Batista Nogueira, Luciana [Anatomy and Imaging Department, Federal University of Minas Gerais, Belo Horizonte (Brazil); Lemos Silva, Hugo Leonardo [Santa Casa Hospital, Belo Horizonte (Brazil); Donato da Silva, Sabrina; Passos Ribeiro Campos, Tarcisio [Nuclear Engineering Department, Federal University of Minas Gerais, Belo Horizonte (Brazil)

    2015-07-01

    This paper addresses the breast teletherapy dosimetry. The goal is to evaluate and compare absorbed doses in equivalent skin tissue, TE-skin, of an anthropomorphic and anthropometric breast phantom submitted to breast radiotherapy. The methodology involved the reproduction of a set of tomographic images of the phantom; the elaboration of conformational radiotherapy planning in the SOMAVISION and CadPlan (TPS) software; and the synthetic breast irradiation by parallel opposed fields in 3D conformal teletherapy at 6 MV linear accelerator Clinac-2100 C from VARIAN with prescribed dose (PD) of 180 cGy to the target volume (PTV), referent to the glandular tissue. Radiochromic films EBT2 were selected as dosimeters. Two independent calibration processes of films with solid water Gammex 457 plates and water filled box were produced. Curves of optical density (OD) versus absorbed dose were produced. Dosimeters were positioned in the external region of the breast phantom in contact with TE-skin, area of 4.0 cm{sup 2} each. The irradiation process was prepared in duplicate to check the reproducibility of the technique. The radiochromic films were scanned and their response in RGB (Red, Green, Blue) analyzed by the ImageJ software. The optical density was obtained and converted to dose based on the calibration curves. Thus, the spatial dose distribution in the skin was reproduced. The absorbed doses measured on the radiochromic films in TE-skin showed values between upper and lower quadrants at 9 o'clock in the range of 54% of PD, between the upper and lower quadrants 3 o'clock in the range of 72% and 6 o'clock at the lower quadrant in the range of 68 % of PD. The values are ±64% (p <0.05) according to the TPS. It is concluded that the depth dose measured in solid water plates or water box reproduce equivalent dose values for both calibration processes of the radiochromic films. It was observed that the skin received doses ranging from 50% to 78% of the

  18. Fabrication of a set of realistic torso phantoms for calibration of transuranic nuclide lung counting facilities

    International Nuclear Information System (INIS)

    Griffith, R.V.; Anderson, A.L.; Sundbeck, C.W.; Alderson, S.W.

    1983-01-01

    A set of 16 tissue equivalent torso phantoms has been fabricated for use by major laboratories involved in counting transuranic nuclides in the lung. These phantoms, which have bone equivalent plastic rib cages, duplicate the performance of the DOE Realistic Phantom set. The new phantoms (and their successors) provide the user laboratories with a highly realistic calibration tool. Moreover, use of these phantoms will allow participating laboratories to intercompare calibration information, both on formal and informal bases. 3 refs., 2 figs

  19. Fuzzy classification of phantom parent groups in an animal model

    Directory of Open Access Journals (Sweden)

    Fikse Freddy

    2009-09-01

    Full Text Available Abstract Background Genetic evaluation models often include genetic groups to account for unequal genetic level of animals with unknown parentage. The definition of phantom parent groups usually includes a time component (e.g. years. Combining several time periods to ensure sufficiently large groups may create problems since all phantom parents in a group are considered contemporaries. Methods To avoid the downside of such distinct classification, a fuzzy logic approach is suggested. A phantom parent can be assigned to several genetic groups, with proportions between zero and one that sum to one. Rules were presented for assigning coefficients to the inverse of the relationship matrix for fuzzy-classified genetic groups. This approach was illustrated with simulated data from ten generations of mass selection. Observations and pedigree records were randomly deleted. Phantom parent groups were defined on the basis of gender and generation number. In one scenario, uncertainty about generation of birth was simulated for some animals with unknown parents. In the distinct classification, one of the two possible generations of birth was randomly chosen to assign phantom parents to genetic groups for animals with simulated uncertainty, whereas the phantom parents were assigned to both possible genetic groups in the fuzzy classification. Results The empirical prediction error variance (PEV was somewhat lower for fuzzy-classified genetic groups. The ranking of animals with unknown parents was more correct and less variable across replicates in comparison with distinct genetic groups. In another scenario, each phantom parent was assigned to three groups, one pertaining to its gender, and two pertaining to the first and last generation, with proportion depending on the (true generation of birth. Due to the lower number of groups, the empirical PEV of breeding values was smaller when genetic groups were fuzzy-classified. Conclusion Fuzzy

  20. Development of breast phantom for quality assessment of mammographic images

    Energy Technology Data Exchange (ETDEWEB)

    Arvelos, Jeniffer Miranda; Flores, Mabel Bustos; Amaral, Fernando; Rio, Margarita Chevalier del; Mourao, Arnaldo Prata, E-mail: jenifferarvelos00@gmail.com [Centro Federal de Educação Tecnológica de Minas Gerais (CEFET-MG), Belo Horizonte, MG (Brazil). Centro de Engenharia Biomedica; Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Universidad Complutense de Madrid (UCM), Madrid (Spain). Faculdad de Medicina. Departmento de Radiologia

    2017-11-01

    Diagnosis of breast cancer in young women may be impaired by the tissue composition of breast in this age group, as fibroglandular tissue is present in greater amount in young women and it has higher density than fibrous and fatty tissues which predominate in women older than 40 years old. The higher density of breast tissue makes it difficult to identify nodules in two-dimensional techniques, due to the overlapping of dense layers. Breast phantoms are used in evaluation and quality control of clinical images, and therefore, it is important to develop non-homogeneous phantoms that may better simulate a real breast. Grouped microcalcifications are often the earliest changes associated with malignant neoplasm of breast. In this work, a phantom was developed in the form of a compressed breast using acrylic resin blend. The resin blend used to fulfill the interior of the phantom has similar mammographic density to the one in fibroglandular tissue, representing a dense breast. The lesions were made of acrylic resin blend and calcium compounds that might simulate breast abnormalities, representing nodules, macrocalcifications and microcalcifications of different dimensions and densities. They were distributed into the ma-terial representing fibroglandular tissue. The developed phantom has a thickness of 1 cm, and it may be matched with other plates to represent a dense breast of thickness between 5 and 6 cm. The main goal of the project is to evaluate the sensitivity of detection of these calcifications in relation to their density and location in the breast in two-dimensional images generated in mammography equipment. Mammographic images allow the visualization of the changes implemented in the phantom. The developed phantom may be used in evaluation of diagnostic images generated through two-dimensional and three-dimensional images. (author)

  1. Development of breast phantom for quality assessment of mammographic images

    International Nuclear Information System (INIS)

    Arvelos, Jeniffer Miranda; Flores, Mabel Bustos; Amaral, Fernando; Rio, Margarita Chevalier del; Mourao, Arnaldo Prata; Universidade Federal de Minas Gerais; Universidad Complutense de Madrid

    2017-01-01

    Diagnosis of breast cancer in young women may be impaired by the tissue composition of breast in this age group, as fibroglandular tissue is present in greater amount in young women and it has higher density than fibrous and fatty tissues which predominate in women older than 40 years old. The higher density of breast tissue makes it difficult to identify nodules in two-dimensional techniques, due to the overlapping of dense layers. Breast phantoms are used in evaluation and quality control of clinical images, and therefore, it is important to develop non-homogeneous phantoms that may better simulate a real breast. Grouped microcalcifications are often the earliest changes associated with malignant neoplasm of breast. In this work, a phantom was developed in the form of a compressed breast using acrylic resin blend. The resin blend used to fulfill the interior of the phantom has similar mammographic density to the one in fibroglandular tissue, representing a dense breast. The lesions were made of acrylic resin blend and calcium compounds that might simulate breast abnormalities, representing nodules, macrocalcifications and microcalcifications of different dimensions and densities. They were distributed into the ma-terial representing fibroglandular tissue. The developed phantom has a thickness of 1 cm, and it may be matched with other plates to represent a dense breast of thickness between 5 and 6 cm. The main goal of the project is to evaluate the sensitivity of detection of these calcifications in relation to their density and location in the breast in two-dimensional images generated in mammography equipment. Mammographic images allow the visualization of the changes implemented in the phantom. The developed phantom may be used in evaluation of diagnostic images generated through two-dimensional and three-dimensional images. (author)

  2. WE-D-303-00: Computational Phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, John [Duke University Medical Center, Durham, NC (United States); Brigham and Women’s Hospital and Dana-Farber Cancer Institute, Boston, MA (United States)

    2015-06-15

    Modern medical physics deals with complex problems such as 4D radiation therapy and imaging quality optimization. Such problems involve a large number of radiological parameters, and anatomical and physiological breathing patterns. A major challenge is how to develop, test, evaluate and compare various new imaging and treatment techniques, which often involves testing over a large range of radiological parameters as well as varying patient anatomies and motions. It would be extremely challenging, if not impossible, both ethically and practically, to test every combination of parameters and every task on every type of patient under clinical conditions. Computer-based simulation using computational phantoms offers a practical technique with which to evaluate, optimize, and compare imaging technologies and methods. Within simulation, the computerized phantom provides a virtual model of the patient’s anatomy and physiology. Imaging data can be generated from it as if it was a live patient using accurate models of the physics of the imaging and treatment process. With sophisticated simulation algorithms, it is possible to perform virtual experiments entirely on the computer. By serving as virtual patients, computational phantoms hold great promise in solving some of the most complex problems in modern medical physics. In this proposed symposium, we will present the history and recent developments of computational phantom models, share experiences in their application to advanced imaging and radiation applications, and discuss their promises and limitations. Learning Objectives: Understand the need and requirements of computational phantoms in medical physics research Discuss the developments and applications of computational phantoms Know the promises and limitations of computational phantoms in solving complex problems.

  3. Monte Carlo dose calculations for phantoms with hip prostheses

    International Nuclear Information System (INIS)

    Bazalova, M; Verhaegen, F; Coolens, C; Childs, P; Cury, F; Beaulieu, L

    2008-01-01

    Computed tomography (CT) images of patients with hip prostheses are severely degraded by metal streaking artefacts. The low image quality makes organ contouring more difficult and can result in large dose calculation errors when Monte Carlo (MC) techniques are used. In this work, the extent of streaking artefacts produced by three common hip prosthesis materials (Ti-alloy, stainless steel, and Co-Cr-Mo alloy) was studied. The prostheses were tested in a hypothetical prostate treatment with five 18 MV photon beams. The dose distributions for unilateral and bilateral prosthesis phantoms were calculated with the EGSnrc/DOSXYZnrc MC code. This was done in three phantom geometries: in the exact geometry, in the original CT geometry, and in an artefact-corrected geometry. The artefact-corrected geometry was created using a modified filtered back-projection correction technique. It was found that unilateral prosthesis phantoms do not show large dose calculation errors, as long as the beams miss the artefact-affected volume. This is possible to achieve in the case of unilateral prosthesis phantoms (except for the Co-Cr-Mo prosthesis which gives a 3% error) but not in the case of bilateral prosthesis phantoms. The largest dose discrepancies were obtained for the bilateral Co-Cr-Mo hip prosthesis phantom, up to 11% in some voxels within the prostate. The artefact correction algorithm worked well for all phantoms and resulted in dose calculation errors below 2%. In conclusion, a MC treatment plan should include an artefact correction algorithm when treating patients with hip prostheses

  4. WE-D-303-00: Computational Phantoms

    International Nuclear Information System (INIS)

    Lewis, John

    2015-01-01

    Modern medical physics deals with complex problems such as 4D radiation therapy and imaging quality optimization. Such problems involve a large number of radiological parameters, and anatomical and physiological breathing patterns. A major challenge is how to develop, test, evaluate and compare various new imaging and treatment techniques, which often involves testing over a large range of radiological parameters as well as varying patient anatomies and motions. It would be extremely challenging, if not impossible, both ethically and practically, to test every combination of parameters and every task on every type of patient under clinical conditions. Computer-based simulation using computational phantoms offers a practical technique with which to evaluate, optimize, and compare imaging technologies and methods. Within simulation, the computerized phantom provides a virtual model of the patient’s anatomy and physiology. Imaging data can be generated from it as if it was a live patient using accurate models of the physics of the imaging and treatment process. With sophisticated simulation algorithms, it is possible to perform virtual experiments entirely on the computer. By serving as virtual patients, computational phantoms hold great promise in solving some of the most complex problems in modern medical physics. In this proposed symposium, we will present the history and recent developments of computational phantom models, share experiences in their application to advanced imaging and radiation applications, and discuss their promises and limitations. Learning Objectives: Understand the need and requirements of computational phantoms in medical physics research Discuss the developments and applications of computational phantoms Know the promises and limitations of computational phantoms in solving complex problems

  5. Localization of the phantom force induced by the tunneling current

    Science.gov (United States)

    Wutscher, Thorsten; Weymouth, Alfred J.; Giessibl, Franz J.

    2012-05-01

    The phantom force is an apparently repulsive force, which can dominate the atomic contrast of an AFM image when a tunneling current is present. We described this effect with a simple resistive model, in which the tunneling current causes a voltage drop at the sample area underneath the probe tip. Because tunneling is a highly local process, the areal current density is quite high, which leads to an appreciable local voltage drop that in turn changes the electrostatic attraction between tip and sample. However, Si(111)-7×7 has a metallic surface state and it might be proposed that electrons should instead propagate along the surface state, as through a thin metal film on a semiconducting surface, before propagating into the bulk. In this paper, we first measure the phantom force on a sample that displays a metallic surface state [here, Si(111)-7×7] using tips with various radii. If the metallic surface state would lead to a constant electrostatic potential on the surface, we would expect a direct dependence of the phantom force with tip radius. In a second set of experiments, we study H/Si(100), a surface that does not have a metallic surface state. We conclude that a metallic surface state does not suppress the phantom force, but that the local resistance Rs has a strong effect on the magnitude of the phantom force.

  6. Whole-body detector calibrating with a modular phantom

    International Nuclear Information System (INIS)

    Minev, L.; Boshkova, T.; Uzunov, P.

    1995-01-01

    Human body models (phantoms) of various size and weight are produced in order to calibrate gamma spectrometers for accurate activity measurement. The phantoms are built of separate modules with mass of 0.5 kg and size 20 x 14 x 2 cm. There are modules with standard Eu-152 and Am-241 radioactivity designed for homogenous radioactivity imitating and critical organs moulding, as well as 'zero' -phantom modules without activity imitating a standard human body. Human organs are modelled by 11 x 9 x 0.5 cm modules with 0.16 kg mass. The phantoms have been used to obtain calibration curves and absolute efficiencies for selected energies of radionuclides expected to be found in the Kozloduy NPP staff. It is shown that the efficiency depends not only on the mass but on the geometric size of the measured object. Scanning of phantoms has been carried out and a profile of activity obtained. The profile consists of an abrupt rising of the sum of pulses (measuring time - 20 s) when the detector passes from neck to chest, a plateau when it moves over the head or the trunk and gradual decrease over the legs. Profiles of activity in organs are best obtained with a lead collimator. 4 refs., 7 figs., 2 tabs

  7. Radiological equipment analyzed by specific developed phantoms and software

    International Nuclear Information System (INIS)

    Soto, M.; Campayo, J. M.; Mayo, P.; Verdu, G.; Rodenas, F.

    2010-10-01

    The use of radiographic phantoms specifically designed to evaluate the operation of the radiographic equipment lets the study of the image quality obtained by this equipment in an objective way. In digital radiographic equipment, the analysis of the image quality can be computerized because the acquisition of the image is possible in different technologies that are, computerized radiography or phosphor plate and direct radiography or detector. In case of film-screen equipment s this analysis could be applied digitalising the image in a professional scanner. In this work we have shown an application to assess automatically the constancy quality image in the image chain of the radiographic equipment s. This application is integrated by designed radiographic phantoms which are adapted to conventional, dental equipment s and specific developed software for the automatic evaluation of the phantom image quality. The software is based on digital image processing techniques that let the automatic detection of the different phantom tests by edge detector, morphological operators, threshold histogram techniques... etc. The utility developed is enough sensitive to the radiographic equipment of operating conditions of voltage (kV) and charge (m As). It is a friendly user programme connected with a data base of the hospital or clinic where it has been used. After the phantom image processing the user can obtain an inform with a resume of the imaging system state with accepting and constancy results. (Author)

  8. Whole-body detector calibrating with a modular phantom

    Energy Technology Data Exchange (ETDEWEB)

    Minev, L; Boshkova, T; Uzunov, P [Sofia Univ. (Bulgaria). Fizicheski Fakultet

    1996-12-31

    Human body models (phantoms) of various size and weight are produced in order to calibrate gamma spectrometers for accurate activity measurement. The phantoms are built of separate modules with mass of 0.5 kg and size 20 x 14 x 2 cm. There are modules with standard Eu-152 and Am-241 radioactivity designed for homogenous radioactivity imitating and critical organs moulding, as well as `zero` -phantom modules without activity imitating a standard human body. Human organs are modelled by 11 x 9 x 0.5 cm modules with 0.16 kg mass. The phantoms have been used to obtain calibration curves and absolute efficiencies for selected energies of radionuclides expected to be found in the Kozloduy NPP staff. It is shown that the efficiency depends not only on the mass but on the geometric size of the measured object. Scanning of phantoms has been carried out and a profile of activity obtained. The profile consists of an abrupt rising of the sum of pulses (measuring time - 20 s) when the detector passes from neck to chest, a plateau when it moves over the head or the trunk and gradual decrease over the legs. Profiles of activity in organs are best obtained with a lead collimator. 4 refs., 7 figs., 2 tabs.

  9. Capturing the Perceived Phantom Limb through Virtual Reality

    Directory of Open Access Journals (Sweden)

    Christian Rogers

    2016-01-01

    Full Text Available Phantom limb is the sensation amputees may feel when the missing limb is still attached to the body and is still moving as it would if it still existed. Despite there being between 50 and 80% of amputees who report neuropathic pain, also known as phantom limb pain (PLP, there is still little understanding of why PLP occurs. There are no fully effective long-term treatments available. One of the struggles with PLP is the difficulty for amputees to describe the sensations of their phantom limbs. The sensations may be of a limb that is in a position that is impossible for a normal limb to attain. The goal of this project was to treat those with PLP by developing a system to communicate the sensations those with PLP were experiencing accurately and easily through various hand positions using a model arm with a user friendly interface. The system was developed with Maya 3D animation software, the Leap Motion input device, and the Unity game engine. The 3D modeled arm was designed to mimic the phantom sensation being able to go beyond normal joint extensions of regular arms. The purpose in doing so was to obtain a true 3D visualization of the phantom limb.

  10. Development of the new phantom for evaluation of SPECT performance

    International Nuclear Information System (INIS)

    Fukukita, H.; Oyamada, H.; Nagaiwa, K.; Kawai, H.; Terui, S.

    1984-01-01

    The authors developed a new Phantom designed to evaluate the SPECT system performances of rotational gamma cameras. This phantom is composed of 5 parts, and each of them has its own purpose; such as measurements of 1) spatial resolution 2) slice thickness, 3) dose linearity, 4) uniformity, and 5) image distortion. These parts are made of Acrylic (0.8 cm in thickness) and each of them has the same disc-shape, measuring 28.4 cm in inner diameter and 7 cm in inner length. For the large field of view cameras, it is possible to set up-to 4 parts together if necessary. Therefore, 4 different parameters can be obtained at one rotation. The phantom was filled with Tc-99m solution, and SPET data were obtained as follows: for the determination of spatial resolution and slice thickness, 128 linear sampling with every 5 0 angular rotation was performed, and 64 linear sampling with every 10 0 angular rotation for dose linearity uniformity, and image distortion. The values obtained with the phantom were FWHM of 19.1 mm for spatial resolution, FWHM of 19.9 mm for slice thickness, and integral uniformity of 36.4%. For dose linearity a good correlating (r=0.99) was obtained. For image distortion it was easy to detect the misalignment of the electrical and mechanical axes. The authors found that this phantom was a suitable tool as a routine quality control and daily maintenance of SPECT system

  11. Radiological equipment analyzed by specific developed phantoms and software

    Energy Technology Data Exchange (ETDEWEB)

    Soto, M.; Campayo, J. M. [Logistica y Acondicionamientos Industriales SAU, Sorolla Center, Local 10, Av. de las Cortes Valencianas No. 58, 46015 Valencia (Spain); Mayo, P. [TITANIA Servicios Tecnologicos SL, Sorolla Center, Local 10, Av. de las Cortes Valencianas No. 58, 46015 Valencia (Spain); Verdu, G.; Rodenas, F., E-mail: m.soto@lainsa.co [ISIRYIM Universidad Politecnica de Valencia, Camino de Vera s/n, Valencia (Spain)

    2010-10-15

    The use of radiographic phantoms specifically designed to evaluate the operation of the radiographic equipment lets the study of the image quality obtained by this equipment in an objective way. In digital radiographic equipment, the analysis of the image quality can be computerized because the acquisition of the image is possible in different technologies that are, computerized radiography or phosphor plate and direct radiography or detector. In case of film-screen equipment s this analysis could be applied digitalising the image in a professional scanner. In this work we have shown an application to assess automatically the constancy quality image in the image chain of the radiographic equipment s. This application is integrated by designed radiographic phantoms which are adapted to conventional, dental equipment s and specific developed software for the automatic evaluation of the phantom image quality. The software is based on digital image processing techniques that let the automatic detection of the different phantom tests by edge detector, morphological operators, threshold histogram techniques... etc. The utility developed is enough sensitive to the radiographic equipment of operating conditions of voltage (kV) and charge (m As). It is a friendly user programme connected with a data base of the hospital or clinic where it has been used. After the phantom image processing the user can obtain an inform with a resume of the imaging system state with accepting and constancy results. (Author)

  12. A methodology for developing anisotropic AAA phantoms via additive manufacturing.

    Science.gov (United States)

    Ruiz de Galarreta, Sergio; Antón, Raúl; Cazón, Aitor; Finol, Ender A

    2017-05-24

    An Abdominal Aortic Aneurysm (AAA) is a permanent focal dilatation of the abdominal aorta at least 1.5 times its normal diameter. The criterion of maximum diameter is still used in clinical practice, although numerical studies have demonstrated the importance of biomechanical factors for rupture risk assessment. AAA phantoms could be used for experimental validation of the numerical studies and for pre-intervention testing of endovascular grafts. We have applied multi-material 3D printing technology to manufacture idealized AAA phantoms with anisotropic mechanical behavior. Different composites were fabricated and the phantom specimens were characterized by biaxial tensile tests while using a constitutive model to fit the experimental data. One composite was chosen to manufacture the phantom based on having the same mechanical properties as those reported in the literature for human AAA tissue; the strain energy and anisotropic index were compared to make this choice. The materials for the matrix and fibers of the selected composite are, respectively, the digital materials FLX9940 and FLX9960 developed by Stratasys. The fiber proportion for the composite is equal to 0.15. The differences between the composite behavior and the AAA tissue are small, with a small difference in the strain energy (0.4%) and a maximum difference of 12.4% in the peak Green strain ratio. This work represents a step forward in the application of 3D printing technology for the manufacturing of AAA phantoms with anisotropic mechanical behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Construction tool and suitability of voxel phantom for skin dosimetry

    International Nuclear Information System (INIS)

    Antunes, Paula C.G.; Siqueira, Paulo T.D.; Fonseca, Gabriel P.; Yoriyaz, Helio

    2011-01-01

    This paper describes a new software tool called 'SkinVop' which was developed to enable accurate voxel phantom skin dosimetry. A voxel phantom is a model used to describe human anatomy in a realistic way in radiation transport codes. This model is a three-dimensional representation of the human body in the form of an array of identification numbers that are arranged in a 3D matrix. Each entry in this array represents a voxel (volume element) directly associated to the units of picture resolution (pixel) of medical images. Currently, these voxel phantoms, in association with the transport code MCNP (Monte Carlo N-Particle), have provided subsidies to the planning systems used on the hospital routine, once they afford accurate and personalized estimative of dose distribution. However, these assessments are limited to geometric representations of organs and tissues in the voxel phantom, which do not discriminates some thin body structure, such as the skin. In this context, to enable accurate dosimetric skin dose assessment by the MCNP code, it was developed this new software tool that discriminates this region with thickness and localization in the voxel phantoms similar to the real. This methodology consists in manipulating the skin volume elements by segmenting and subdividing them in different thicknesses. A graphical user interface was designed to fulfill display the modified voxel model. This methodology is extremely useful once the skin dose is inaccurately assessed of current hospital system planning, justified justly by its small thickness. (author)

  14. Construction tool and suitability of voxel phantom for skin dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Antunes, Paula C.G.; Siqueira, Paulo T.D.; Fonseca, Gabriel P.; Yoriyaz, Helio, E-mail: ptsiquei@ipen.b, E-mail: hyoriyaz@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    This paper describes a new software tool called 'SkinVop' which was developed to enable accurate voxel phantom skin dosimetry. A voxel phantom is a model used to describe human anatomy in a realistic way in radiation transport codes. This model is a three-dimensional representation of the human body in the form of an array of identification numbers that are arranged in a 3D matrix. Each entry in this array represents a voxel (volume element) directly associated to the units of picture resolution (pixel) of medical images. Currently, these voxel phantoms, in association with the transport code MCNP (Monte Carlo N-Particle), have provided subsidies to the planning systems used on the hospital routine, once they afford accurate and personalized estimative of dose distribution. However, these assessments are limited to geometric representations of organs and tissues in the voxel phantom, which do not discriminates some thin body structure, such as the skin. In this context, to enable accurate dosimetric skin dose assessment by the MCNP code, it was developed this new software tool that discriminates this region with thickness and localization in the voxel phantoms similar to the real. This methodology consists in manipulating the skin volume elements by segmenting and subdividing them in different thicknesses. A graphical user interface was designed to fulfill display the modified voxel model. This methodology is extremely useful once the skin dose is inaccurately assessed of current hospital system planning, justified justly by its small thickness. (author)

  15. OSL Based Anthropomorphic Phantom and Real-Time Organ Dosimetry

    International Nuclear Information System (INIS)

    Hintenlang, David E.

    2009-01-01

    The overall objective of this project was the development of a dosimetry system that provides the direct measurement of organ doses in real-time with a sensitivity that makes it an effective tool for applications in a wide variety of health physics applications. The system included the development of a real-time readout system for fiber optic coupled (FOC) dosimeters that is integrated with a state-of-art anthropomorphic phantom to provide instantaneous measures of organ doses throughout the phantom. The small size of the FOC detectors and optical fibers allow the sensitive volume of the detector to be located at organ centroids (or multiple locations distributed through the organ) within a tissue equivalent, anthropomorphic phantom without perturbing the tissue equivalent features of the phantom. The developed phantom/dosimetry system can be used in any environment where personnel may be exposed to gamma or x-ray radiations to provide the most accurate determinations of organ and effective doses possible to date

  16. OSL Based Anthropomorphic Phantom and Real-Time Organ Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    David E. Hintenlang, Ph.D

    2009-02-10

    The overall objective of this project was the development of a dosimetry system that provides the direct measurement of organ does in real-time with a sensitivity that makes it an effective tool for applications in a wide variety of health physics applications. The system included the development of a real-time readout system for fiber optic coupled (FOC) dosimeters that is integrated with a state-of-art anthropomorphic phantom to provide instantaneous measures of organ doses throughout the phantom. The small size of the FOC detectors and optical fibers allow the sensitive volume of the detector to be located at organ centroids (or multiple locations distributed through the organ) within a tissue equivalent, anthropomorphic phantom without perturbing the tissue equivalent features of the phantom. The developed phantom/dosimetry system can be used in any environment where personnel may be exposed to gamma or x-ray radiations to provide the most accurate determinations of organ and effective doses possible to date.

  17. Intercomparison of JAERI Torso Phantom lung sets

    International Nuclear Information System (INIS)

    Kramer, Gary H.; Hauck, Barry M.

    2000-01-01

    During the course of an IAEA sponsored In Vivo intercomparison using the JAERI phantom the Human Monitoring Laboratory was able to intercompare thirteen lung sets made by three suppliers. One set consisted of sliced lungs with planar inserts containing different radionuclides. The others consisted of whole lung sets with the activity homogeneously distributed throughout the tissue substitute material. Radionuclides in the study were: natural uranium, 3% enriched uranium, 241 Am, 238 Pu, 239 Pu, 152 Eu, and 232 Th Except for the 241 Am (59.5 keV) and occasionally one of the 232 Th (209 keV) photopeaks, the lung sets that had radioactivity homogeneously distributed throughout the tissue equivalent lung tissue material showed good agreement. The 241 Am lung set gave a counting efficiency that appeared 25% too high for all overlay plate configurations. This was observed by other participants. It exemplifies that the manufacture of tissue substitute lung sets is still something of a black art. Despite all precautions, this lung set is either inhomogeneous or has had the wrong activity added. Heterogeneity can lead to an error in the activity estimate of a factor of three if the activity was severely localised due to improper mixing. A factor of 1.25, which appears to be the discrepancy, could easily be explained in this way. It will not be known for some time, however, what the true reason is as the participants are still waiting for the destructive analysis of this lung set to determine the 'true' activity. The sliced lungs ( 241 Am, 152 Eu, and U-nat) manufactured by the Human Monitoring Laboratory are in excellent agreement with the other lung sets. The advantages of sliced lung sets and planar sources are manifold. Activity can be distributed in a known and reproducible manner to mimic either a homogeneous or heterogeneous distribution in the lung. Short lived radionuclides can be used. Cost is much less than purchasing or manufacturing lung sets that have the

  18. [The treatment of the phantom pain syndrome with tizanidine].

    Science.gov (United States)

    Vorobeĭchik, Ia M; Kukushkin, M L; Reshetniak, V K; Ovechkin, A M; Gnezdilov, A V

    1997-01-01

    The authors carried out estimation of analgetic effect of tisanidin by double blind test in patients with phantom limb pain syndrome. 14 patients took the medicine in a dose of 12 mg/day and 5 patients took placebo at the same dose. Characteristics and intensity of pain were estimated in accordance with McGill pain questionnaire and visual analogue scale. Pain possessed more than one sensory characteristics in the majority of patients. Tisanidin had a significant analgetic influence on all type of phantom limb pain: "neuralgic"--acute, shooting, transitory, "causalgic"--hot, burning, searing, "cramping" pain. Pain sensation did not decrease only in one of 14 patients treated with tisanidin. The authors explain the effectivity of the drug for treatment of phantom limb pain of different sensory modality by variety of the mechanisms of its therapeutic action, the capacity to decrease the releasing of excitatory neurotransmitter amino acids and the influence on alpha 2-adrenoceptors.

  19. The internal radiation dose calculations based on Chinese mathematical phantom

    International Nuclear Information System (INIS)

    Wang Haiyan; Li Junli; Cheng Jianping; Fan Jiajin

    2006-01-01

    The internal radiation dose calculations built on Chinese facts become more and more important according to the development of nuclear medicine. the MIRD method developed and consummated by the society of Nuclear Medicine (America) is based on the European and American mathematical phantom and can't fit Chinese well. The transport of γ-ray in the Chinese mathematical phantom was simulated with Monte Carlo method in programs as MCNP4C. the specific absorbed fraction (Φ) of Chinese were calculated and the Chinese Φ database was created. The results were compared with the recommended values by ORNL. the method was proved correct by the coherence when the target organ was the same with the source organ. Else, the difference was due to the different phantom and the choice of different physical model. (authors)

  20. A Dynamic Compliance Cervix Phantom Robot for Latent Labor Simulation.

    Science.gov (United States)

    Luk, Michelle Jennifer; Lobb, Derek; Smith, James Andrew

    2018-05-09

    Physical simulation systems are commonly used in training of midwifery and obstetrics students, but none of these systems offers a dynamic compliance aspect that would make them more truly representative of cervix ripening. In this study, we introduce a unique soft robot phantom that simulates the cervix softening during the latent labor phase of birth. This proof-of-concept robotic phantom can be dilated by 1 cm and effaced by 35% through the application of a Foley catheter-like loading mechanism. Furthermore, psychophysics trials demonstrate how untrained subjects can identify hard and soft states of the phantom with specificities of 91% and 87%, respectively. Both results indicated the appropriateness for application of this soft robot technology to birth training simulators.

  1. A feasiblity study of an ultrasonic test phantom arm

    Science.gov (United States)

    Schneider, Philip

    This thesis is a feasibility study for the creation of a test phantom that replicates the physiological features, from an acoustic and mechanical standpoint, of that of a human arm. Physiological feature set includes; Heart, Arteries, Veins, Bone, Muscle, Fat, Skin, and Dermotographic Features (finger prints). Mechanical Aspects include, vascular compression and distention, elasticity of tissue layers, mechanics of human heart. The end goal of which to have a working understanding of each component in order to create a controllable, real time, physiologically accurate, test phantom for a wide range of ultrasonic based applications. These applications can range from devices like wearable technologies to medical training, to biometric "Liveness" detection methods. The proposed phantom would allow for a number of natural bodily functions to be measured including but not limited to vascular mapping, blood pressure, heart rate, subdermal imaging, and general ultrasonic imaging.

  2. Evaluation of DSA test phantoms commercially available in the UK

    International Nuclear Information System (INIS)

    Cowen, A.R.; Coleman, N.J.; HArtley, P.J.

    1985-01-01

    Several digital subtraction angiography systems have been installed in the United Kingdom. Many others will no doubt be installed over the next few years. Given the high cost and technical complexity of DSA systems it is natural that the purchasers of such equipment should be concerned that their machine has been adjusted correctly prior to clinical acceptance and continues to operate satisfactorily thereafter. In response to these concerns several companies in the U.K. are now selling DSA test phantoms. All DSA phantoms which are currently commercially available are manufactured in the U.S.A. Im order to assess the effectiveness of these phantoms the DHSS has initiated the assessment project described here. The findings are tabulated . Performance is indicated by a star rating system, based on the opinions of two X-ray engineers and one medical physicist. (author)

  3. Dosimetry using radiochromic film and planning algorithms in heterogeneous phantoms

    International Nuclear Information System (INIS)

    Leite, Vinicius Freitas

    2012-01-01

    This work analyzes, through the study of the interaction of electromagnetic radiation with matter, two schemes of heterogeneous phantoms schematised to simulate real cases of planning with different electronic densities through the Pencil Beam, Collapsed Cone and Analytical Anisotropic Algorithm algorithms and compare with measurements Of relative absorbed dose in an IBA CC13 ionization chamber and Gafchromic® EBT2 radiochromic film. Epichlorohydrin rubber and its compatibility in comparison with human bone has also been evaluated. The assembly of the heterogeneous phantoms was feasible and the results regarding the density and attenuation of the rubber presented consistent values. However, the study of PDPs in constructed phantoms showed a considerable percentage discrepancy between measurements and planning

  4. Detection of intracavitary masses on gated scans: a phantom study

    International Nuclear Information System (INIS)

    Cho, B.; Yasuda, Tsunehiro; Moore, R.H.; Boucher, C.A.; Strauss, H.W.

    1987-01-01

    A series of 1.5, 2.0 and 3.0 cm diameter paraffin balls were placed on a 3 cm tether within a simulated left ventricular balloon phantom to determine the maximal balloon volume that permitted identification of the lesion. When images were recorded with the phantom stationary, the lesions could be detected at 100, 280 and 360 ml volumes, respectively. When the phantom was set in motion with a fixed 80 ml stroke volume, the lesions were detected at 120, 320 and 360 ml, respectively. These findings suggest that gating does not decrease lesion detection even when the lesion is freely mobile, and a 1.5 cm lesion would be difficult to detect in an enlarged ventricle, but 2 and 3 cm lesions could be detected even in the presence of moderate ventricular enlargement. (author)

  5. Dark energy: Vacuum fluctuations, the effective phantom phase, and holography

    International Nuclear Information System (INIS)

    Elizalde, E.; Nojiri, S.; Odintsov, S. D.; Wang Peng

    2005-01-01

    We aim at the construction of dark energy models without exotic matter but with a phantomlike equation of state (an effective phantom phase). The first model we consider is decaying vacuum cosmology where the fluctuations of the vacuum are taken into account. In this case, the phantom cosmology (with an effective, observational ω being less than -1 ) emerges even for the case of a real dark energy with a physical equation of state parameter ω larger than -1. The second proposal is a generalized holographic model, which is produced by the presence of an infrared cutoff. It also leads to an effective phantom phase, which is not a transient one as in the first model. However, we show that quantum effects are able to prevent its evolution towards a big rip singularity

  6. Determination of photon conversion factors relating exposure and dose for several extremity phantom designs

    International Nuclear Information System (INIS)

    Roberson, P.L.; Eichner, F.N.; Reece, W.D.

    1986-09-01

    This report presents the results of measurements of dosimetric properties of simple extremity phantoms suitable for use in extremity dosimeter performance testing. Two sizes of phantoms were used in this study. One size represented the forearm or lower leg and the other size represented the finger or toe. For both phantom sizes, measurements were performed on solid plastic phantoms and on phantoms containing simulated bone material to determine the effect of backscattered radiations from the bone on the surface dose. Exposure-to-dose conversion factors (C/sub x/ factors) were determined for photon energies ranging from 16 to 1250 keV (average for 60 Co). The effect of the presence of a phantom was also measured for a 90 Sr/ 90 Y source. Significant differences in the measured C/sub x/ factors were found among the phantoms investigated. The factors for the finger-sized phantoms were uniformly less than for the arm-sized phantoms

  7. Realistic deformable 3D numeric phantom for transcutaneous ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Fernando Mitsuyama; Moraes, Matheus Cardoso; Furuie, Sergio Shiguemi, E-mail: fernando.okara@gmail.com [Universidade de Sao Paulo (USP), SP (Brazil). Escola de Engenharia

    2017-01-15

    Introduction: Numerical phantoms are important tools to design, calibrate and evaluate several methods in various image-processing applications, such as echocardiography and mammography. We present a framework for creating ultrasound numerical deformable phantoms based on Finite Element Method (FEM), Linear Isomorphism and Field II. The proposed method considers that the scatterers map is a property of the tissue; therefore, the scatterers should move according to the tissue strain. Methods: First, a volume representing the target tissue is loaded. Second, parameter values, such as Young's Modulus, scatterers density, attenuation and scattering amplitudes are inserted for each different regions of the phantom. Then, other parameters related to the ultrasound equipment, such as ultrasound frequency and number of transducer elements, are also defined in order to perform the ultrasound acquisition using Field II. Third, the size and position of the transducer and the pressures that are applied against the tissue are defined. Subsequently, FEM is executed and deformation is computed. Next, 3D linear isomorphism is performed to displace the scatterers according to the deformation. Finally, Field II is carried out to generate the non-deformed and deformed ultrasound data. Results: The framework is evaluated by comparing strain values obtained the numerical simulation and from the physical phantom from CIRS. The mean difference between both phantoms is lesser than 10%. Conclusion: The acoustic and deformation outcomes are similar to those obtained using a physical phantom. This framework led to a tool, which is available online and free of charges for educational and research purposes. (author)

  8. Design and development of an ultrasound calibration phantom and system

    Science.gov (United States)

    Cheng, Alexis; Ackerman, Martin K.; Chirikjian, Gregory S.; Boctor, Emad M.

    2014-03-01

    Image-guided surgery systems are often used to provide surgeons with informational support. Due to several unique advantages such as ease of use, real-time image acquisition, and no ionizing radiation, ultrasound is a common medical imaging modality used in image-guided surgery systems. To perform advanced forms of guidance with ultrasound, such as virtual image overlays or automated robotic actuation, an ultrasound calibration process must be performed. This process recovers the rigid body transformation between a tracked marker attached to the ultrasound transducer and the ultrasound image. A phantom or model with known geometry is also required. In this work, we design and test an ultrasound calibration phantom and software. The two main considerations in this work are utilizing our knowledge of ultrasound physics to design the phantom and delivering an easy to use calibration process to the user. We explore the use of a three-dimensional printer to create the phantom in its entirety without need for user assembly. We have also developed software to automatically segment the three-dimensional printed rods from the ultrasound image by leveraging knowledge about the shape and scale of the phantom. In this work, we present preliminary results from using this phantom to perform ultrasound calibration. To test the efficacy of our method, we match the projection of the points segmented from the image to the known model and calculate a sum squared difference between each point for several combinations of motion generation and filtering methods. The best performing combination of motion and filtering techniques had an error of 1.56 mm and a standard deviation of 1.02 mm.

  9. Polyvinyl chloride plastisol breast phantoms for ultrasound imaging.

    Science.gov (United States)

    de Carvalho, Isabela Miller; De Matheo, Lucas Lobianco; Costa Júnior, José Francisco Silva; Borba, Cecília de Melo; von Krüger, Marco Antonio; Infantosi, Antonio Fernando Catelli; Pereira, Wagner Coelho de Albuquerque

    2016-08-01

    Ultrasonic phantoms are objects that mimic some features of biological tissues, allowing the study of their interactions with ultrasound (US). In the diagnostic-imaging field, breast phantoms are an important tool for testing performance and optimizing US systems, as well as for training medical professionals. This paper describes the design and manufacture of breast lesions by using polyvinyl chloride plastisol (PVCP) as the base material. Among the materials available for this study, PVCP was shown to be stable, durable, and easy to handle. Furthermore, it is a nontoxic, nonpolluting, and low-cost material. The breast's glandular tissue (image background) was simulated by adding graphite powder with a concentration of 1% to the base material. Mixing PVCP and graphite powder in differing concentrations allows one to simulate lesions with different echogenicity patterns (anechoic, hypoechoic, and hyperechoic). From this mixture, phantom materials were obtained with speed of sound varying from 1379.3 to 1397.9ms(-1) and an attenuation coefficient having values between 0.29 and 0.94dBcm(-1) for a frequency of 1MHz at 24°C. A single layer of carnauba wax was added to the lesion surface in order to evaluate its applicability for imaging. The images of the phantoms were acquired using commercial ultrasound equipment; a specialist rated the images, elaborating diagnoses representative of both benign and malignant lesions. The results indicated that it was possible to easily create a phantom by using low-cost materials, readily available in the market and stable at room temperature, as the basis of ultrasonic phantoms that reproduce the image characteristics of fatty breast tissue and typical lesions of the breast. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Effective dose measurement at workplaces within an instrumented anthropomorphic phantom

    International Nuclear Information System (INIS)

    Villagrasa, C.; Darreon, J.; Martin-Burtat, N.; Clairand, I.; Colin, J.; Fontbonne, J. M.

    2011-01-01

    The Laboratory of Ionizing Radiation Dosimetry of the IRSN (France) is developing an instrumented anthropomorphic phantom in order to measure the effective dose for photon fields at workplaces. This anthropomorphic phantom will be equipped with small active detectors located inside at chosen positions. The aim of this paper is to present the development of these new detectors showing the results of the characterisation of the prototype under metrological conditions. New evaluations of the effective dose for standard and non-homogenous irradiation configurations taking into account the real constraints of the project have been done validating the feasibility and utility of the instrument. (authors)

  11. A Unified Model of Phantom Energy and Dark Matter

    Science.gov (United States)

    Chaves, Max; Singleton, Douglas

    2008-01-01

    To explain the acceleration of the cosmological expansion researchers have considered an unusual form of mass-energy generically called dark energy. Dark energy has a ratio of pressure over mass density which obeys w = p/ρ theories based on graded Lie algebras naturally have such a negative kinetic energy and thus give a model for phantom energy in a less ad hoc manner. We find that the model also contains ordinary scalar fields and anti-commuting (Grassmann) vector fields which act as a form of two component dark matter. Thus from a gauge theory based o! n a graded algebra we naturally obtained both phantom energy and dark matter.

  12. Dosimetry in a torso phantom during a mammography

    International Nuclear Information System (INIS)

    Hernandez O, M.; Duran M, H. A.; Pinedo S, A.; Salas L, M. A.; Hernandez D, V. M.; Vega C, H. R.; Rivera M, T.; Ventura M, J.

    2009-10-01

    Two dosimetric magnitudes, the absorbed dose and the kerma in air to the entrance of torso have been determined. These dosimetric magnitudes are due to the radiation that is dispersed in the mammary gland when the patient undergoes a mammography study. The kerma to the entrance of the torso and the absorbed dose by the torso was obtained in a phantom of paraffin and with thermoluminescent dosemeters of ZrO 2 . The dosemeters were placed on the surface of the torso phantom while the mammography was carried out. (author)

  13. Viscosity-Induced Crossing of the Phantom Barrier

    Directory of Open Access Journals (Sweden)

    Iver Brevik

    2015-09-01

    Full Text Available We show explicitly, by using astrophysical data plus reasonable assumptions for the bulk viscosity in the cosmic fluid, how the magnitude of this viscosity may be high enough to drive the fluid from its position in the quintessence region at present time t = 0 across the barrier w = −1 into the phantom region in the late universe. The phantom barrier is accordingly not a sharp mathematical divide, but rather a fuzzy concept. We also calculate the limiting forms of various thermodynamical quantities, including the rate of entropy production, for a dark energy fluid near the future Big Rip singularity.

  14. Introduction of a stack-phantom for PET

    International Nuclear Information System (INIS)

    Jonsson, C.; Schnell, P.O.; Jacobsson, H.; Engelin, L.; Danielsson, A.M.; Johansson, L.; Larsson, S.A.; Pagani, M.; Stone-Elander, S.

    2002-01-01

    Aim: We have previously developed a new flexible phantom system for SPECT, i.e. 'the stack phantom' (Eur. J. Nucl. Med. 27, No.2, 131-139, 2000). The unique feature of this phantom system is that it allows studies with, as well as without major degrading impacts from photon attenuation and Compton scattering. The specific aim of this work was to further develop the system with special reference to PET. Material and methods: The principle of the phantom concept is discrete sampling of 3D objects by a series of equidistant 2D planes. The 2D planes are a digitised set of 2D sections, representing the radioactivity distribution in the object of interest. Using a grey scale related to the radioactivity concentration, selected images are printed by radioactive ink on thin paper sheets and stacked into the 3D structure with low-density or with tissue equivalent material in between. Using positron emitting radionuclides, the paper sheets alone may not be sufficiently thick to avoid annihilation losses due to escaping positrons. In order to investigate the amount of additional material needed, a spot of radioactivity ( 18 F) was printed out and subsequently covered by adding thin plastic films (0.055mm) on both sides of the paper. Short PET scans (ECAT 921) were performed and the count-rate was registered after each additional layer of plastic cover. A first prototype, a cylindrical cold-spot phantom was constructed on the basis of these results. Nine identical sheets were printed out and first mounted in between 4 mm plates of polystyrene (density 1.04 g/cm 3 ). After a PET-scan, the paper sheets were re-mounted in between a low-density material (Divinycell, H30, density 0.03 g/cm 3 ) before repeating the PET scan. Results: For 18 F, the number of registered annihilation photons increased with increasing number of plastic sheets from 70% for the pure paper sheet to about 100% with 0.5 mm plastic cover on each side. PET of the low-density stacked cold spot phantom

  15. Development of PIMAL: Mathematical Phantom with Moving Arms and Legs

    Energy Technology Data Exchange (ETDEWEB)

    Akkurt, Hatice [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Eckerman, Keith F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2007-05-01

    The computational model of the human anatomy (phantom) has gone through many revisions since its initial development in the 1970s. The computational phantom model currently used by the Nuclear Regulatory Commission (NRC) is based on a model published in 1974. Hence, the phantom model used by the NRC staff was missing some organs (e.g., neck, esophagus) and tissues. Further, locations of some organs were inappropriate (e.g., thyroid).Moreover, all the computational phantoms were assumed to be in the vertical-upright position. However, many occupational radiation exposures occur with the worker in other positions. In the first phase of this work, updates on the computational phantom models were reviewed and a revised phantom model, which includes the updates for the relevant organs and compositions, was identified. This revised model was adopted as the starting point for this development work, and hence a series of radiation transport computations, using the Monte Carlo code MCNP5, was performed. The computational results were compared against values reported by the International Commission on Radiation Protection (ICRP) in Publication 74. For some of the organs (e.g., thyroid), there were discrepancies between the computed values and the results reported in ICRP-74. The reasons behind these discrepancies have been investigated and are discussed in this report.Additionally, sensitivity computations were performed to determine the sensitivity of the organ doses for certain parameters, including composition and cross sections used in the simulations. To assess the dose for more realistic exposure configurations, the phantom model was revised to enable flexible positioning of the arms and legs. Furthermore, to reduce the user time for analyses, a graphical user interface (GUI) was developed. The GUI can be used to visualize the positioning of the arms and legs as desired posture is achieved to generate the input file, invoke the computations, and extract the organ dose

  16. Phantom-based interactive simulation system for dental treatment training.

    Science.gov (United States)

    Sae-Kee, Bundit; Riener, Robert; Frey, Martin; Pröll, Thomas; Burgkart, Rainer

    2004-01-01

    In this paper, we propose a new interactive simulation system for dental treatment training. The system comprises a virtual reality environment and a force-torque measuring device to enhance the capabilities of a passive phantom of tooth anatomy in dental treatment training processes. The measuring device is connected to the phantom, and provides essential input data for generating the graphic animations of physical behaviors such as drilling and bleeding. The animation methods of those physical behaviors are also presented. This system is not only able to enhance interactivity and accessibility of the training system compared to conventional methods but it also provides possibilities of recording, evaluating, and verifying the training results.

  17. A catalogue of photon spectra inside water or lung phantoms

    International Nuclear Information System (INIS)

    Petoussi, N.; Zankl, M.; Panzer, W.; Drexler, G.

    1991-01-01

    This catalogue contains a large amount of photon spectra inside a cubic (30 cm side) and a cuboid (40x20x40 cm 3 ) water or lung phantom, calculated using the Monte Carlo program KASTENSPEC. The beams considered here are mainly those relevant to X-ray diagnosis, nuclear medicine and some other applications. The spectra are shown in tabular form for 10, 20 or 50 keV steps for different depths between the entrance surface and the exit surface and for one or two off-axis distances. The alteration of the spectrum with depth, field size and phantom size is discussed. (orig.)

  18. CT images of an anthropomorphic and anthropometric male pelvis phantom

    Energy Technology Data Exchange (ETDEWEB)

    Matos, Andrea S.D. de; Campos, Tarcisio P.R. de, E-mail: campos@nuclear.ufmg.b [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Programa de Pos-graduacao em Ciencias e Tecnicas Nucleares

    2009-07-01

    Actually, among of the most often neoplasm types are the cancer of prostate, bladder and intestine. The incidence of the intestine neoplasm in Brazil is at fourth among the most frequent tumors of the male sex, barely close to the stomach, lung and prostate incidences. Phantoms are objects used as simulators for investigating ionizing radiation transport on humans, especially during radiation therapy or radiological diagnostic. The purpose of this work is the achievement of a set of computerized tomography (CT) images of a male pelvis phantom, with anthropomorphic and anthropometric features. It investigates and analyses the set of phantom CT images in according to a correspondent human pelvis one. The reason to develop a pelvis phantom is the needs of reproducing well established spatial dose distribution in radiation therapy, especially during calibration and protocol setup for various pelvis neoplasms. It aims to produce dose optimization on radiation therapy, improving health tissue protection and keeping control tumor dose. A male pelvis phantom with similar shape made of equivalent tissues was built for simulating the ionizing radiation transport to the human body. At the phantom, pelvis organs were reproduced including the bladder, the intestine, the prostate, the muscular and greasy tissue, as well as the bone tissue and the skin. A set of CT images was carried out in axial thin sections of 2mm thickness. As results, the constituent tissues had a tomography response on Hounsfield scale similar to values found on the human pelvis. Each tissue has its respective Hounsfield value, demonstrated here. The CT images also show that the organs have equivalent anthropometric measures and anthropomorphic features of the radiological human anatomy. The anatomical physical arrangement of the organs is also similar to of the pelvis human male, having the scales of gray and numerical scale of Hounsfield compatible with the scale of the human tissue. The phantom presents

  19. Dosimetric characteristics of water equivalent for two solid water phantoms

    International Nuclear Information System (INIS)

    Wang Jianhua; Wang Xun; Ren Jiangping

    2011-01-01

    Objective: To investigate the water equivalent of two solid water phantoms. Methods: The X-ray and electron beam depth-ion curves were measured in water and two solid water phantoms, RW3 and Virtual Water. The water-equivalency correction factors for the two solid water phantoms were compared. We measured and calculated the range sealing factors and the fluence correction factors for the two solid water phantoms in the case of electron beams. Results: The average difference between the measured ionization in solid water phantoms and water was 0.42% and 0.16% on 6 MV X-ray (t=-6.15, P=0.001 and t=-1.65, P=0.419) and 0.21% and 0.31% on 10 MV X-ray (t=1.728, P=0.135 and t=-2.296, P=0.061), with 17.4% and 14.5% on 6 MeV electron beams (t=-1.37, P=0.208 and t=-1.47, P=0.179) and 7.0% and 6.0% on 15 MeV electron beams (t=-0.58, P=0.581 and t=-0.90, P=0.395). The water-equivalency correction factors for the two solid water phantoms varied slightly largely, F=58.54, P=0.000 on 6 MV X-ray, F=0.211, P=0.662 on 10 MV X-ray, F=0.97, P=0.353 on 6 MeV electron beams, F=0.14, P=0.717 on 15 MeV electron beams. However, they were almost equal to 1 near the reference depths. The two solid water phantoms showed a similar tread of C pl increasing (F=26.40, P=0.014) and h pl decreasing (F=7.45, P=0.072) with increasing energy. Conclusion: The solid water phantom should undergo a quality control test before being clinical use. (authors)

  20. CT images of an anthropomorphic and anthropometric male pelvis phantom

    International Nuclear Information System (INIS)

    Matos, Andrea S.D. de; Campos, Tarcisio P.R. de

    2009-01-01

    Actually, among of the most often neoplasm types are the cancer of prostate, bladder and intestine. The incidence of the intestine neoplasm in Brazil is at fourth among the most frequent tumors of the male sex, barely close to the stomach, lung and prostate incidences. Phantoms are objects used as simulators for investigating ionizing radiation transport on humans, especially during radiation therapy or radiological diagnostic. The purpose of this work is the achievement of a set of computerized tomography (CT) images of a male pelvis phantom, with anthropomorphic and anthropometric features. It investigates and analyses the set of phantom CT images in according to a correspondent human pelvis one. The reason to develop a pelvis phantom is the needs of reproducing well established spatial dose distribution in radiation therapy, especially during calibration and protocol setup for various pelvis neoplasms. It aims to produce dose optimization on radiation therapy, improving health tissue protection and keeping control tumor dose. A male pelvis phantom with similar shape made of equivalent tissues was built for simulating the ionizing radiation transport to the human body. At the phantom, pelvis organs were reproduced including the bladder, the intestine, the prostate, the muscular and greasy tissue, as well as the bone tissue and the skin. A set of CT images was carried out in axial thin sections of 2mm thickness. As results, the constituent tissues had a tomography response on Hounsfield scale similar to values found on the human pelvis. Each tissue has its respective Hounsfield value, demonstrated here. The CT images also show that the organs have equivalent anthropometric measures and anthropomorphic features of the radiological human anatomy. The anatomical physical arrangement of the organs is also similar to of the pelvis human male, having the scales of gray and numerical scale of Hounsfield compatible with the scale of the human tissue. The phantom presents

  1. Use of VAP3D software in the construction of pathological anthropomorphic phantoms for dosimetric evaluations

    International Nuclear Information System (INIS)

    Lima, Lindeval Fernandes de; Lima, Fernando R.A.

    2011-01-01

    This paper performs a new type of dosimetric evaluation, where it was used a phantom of pathological voxels (representative phantom of sick person). The software VAP3D (Visualization and Analysis of Phantoms 3D) were used for, from a healthy phantom (phantom representative of healthy person), to introduce three dimensional regions to simulate tumors. It was used the Monte Carlo ESGnrc code to simulate the X ray photon transport, his interaction with matter and evaluation of absorbed dose in organs and tissues from thorax region of the healthy phantom and his pathological version. This is a computer model of typical exposure for programming the treatments in radiodiagnostic

  2. Development of a phantom to test fully automated breast density software – A work in progress

    International Nuclear Information System (INIS)

    Waade, G.G.; Hofvind, S.; Thompson, J.D.; Highnam, R.; Hogg, P.

    2017-01-01

    Objectives: Mammographic density (MD) is an independent risk factor for breast cancer and may have a future role for stratified screening. Automated software can estimate MD but the relationship between breast thickness reduction and MD is not fully understood. Our aim is to develop a deformable breast phantom to assess automated density software and the impact of breast thickness reduction on MD. Methods: Several different configurations of poly vinyl alcohol (PVAL) phantoms were created. Three methods were used to estimate their density. Raw image data of mammographic images were processed using Volpara to estimate volumetric breast density (VBD%); Hounsfield units (HU) were measured on CT images; and physical density (g/cm 3 ) was calculated using a formula involving mass and volume. Phantom volume versus contact area and phantom volume versus phantom thickness was compared to values of real breasts. Results: Volpara recognized all deformable phantoms as female breasts. However, reducing the phantom thickness caused a change in phantom density and the phantoms were not able to tolerate same level of compression and thickness reduction experienced by female breasts during mammography. Conclusion: Our results are promising as all phantoms resulted in valid data for automated breast density measurement. Further work should be conducted on PVAL and other materials to produce deformable phantoms that mimic female breast structure and density with the ability of being compressed to the same level as female breasts. Advances in knowledge: We are the first group to have produced deformable phantoms that are recognized as breasts by Volpara software. - Highlights: • Several phantoms of different configurations were created. • Three methods to assess phantom density were implemented. • All phantoms were identified as breasts by the Volpara software. • Reducing phantom thickness caused a change in phantom density.

  3. Pre-evaluation study in SPECT images using a phantom

    International Nuclear Information System (INIS)

    Rebelo, Marina de Sa; Furuie, Sergio Shiguemi; Abe, Rubens; Moura, Lincoln

    1996-01-01

    An alternative solution for the reconstruction of SPECT images using a Poisson Noise Model is presented. The proposed algorithm was applied on a real phantom and compared to the standard clinical procedures. Results have shown that the proposed method improves the quality of the SPECT images

  4. Aliasing effects in digital images of line-pair phantoms

    International Nuclear Information System (INIS)

    Albert, Michael; Beideck, Daniel J.; Bakic, Predrag R.; Maidment, Andrew D.A.

    2002-01-01

    Line-pair phantoms are commonly used for evaluating screen-film systems. When imaged digitally, aliasing effects give rise to additional periodic patterns. This paper examines one such effect that medical physicists are likely to encounter, and which can be used as an indicator of super-resolution

  5. A Unified Model of Phantom Energy and Dark Matter

    Directory of Open Access Journals (Sweden)

    Douglas Singleton

    2008-01-01

    Full Text Available To explain the acceleration of the cosmological expansion researchers have considered an unusual form of mass-energy generically called dark energy. Dark energy has a ratio of pressure over mass density which obeys $w=p/ ho <-1/3$. This form of mass-energy leads to accelerated expansion. An extreme form of dark energy, called phantom energy, has been proposed which has $w=p/ ho <-1$. This possibility is favored by the observational data. The simplest model for phantom energy involves the introduction of a scalar field with a negative kinetic energy term. Here we show that theories based on graded Lie algebras naturally have such a negative kinetic energy and thus give a model for phantom energy in a less ad hoc manner. We find that the model also contains ordinary scalar fields and anti-commuting (Grassmann vector fields which act as a form of two component dark matter. Thus from a gauge theory based on a graded algebra we naturally obtained both phantom energy and dark matter.

  6. Quality assessment of brain images by Hoffman phantom

    International Nuclear Information System (INIS)

    Karimian, A.R.; Saddad, F.; Mosalla, B.; Moradkhani, S.; Degbankhan, R.; Pouladi, M.

    2002-01-01

    The purpose of this investigation is using Hoffman brain phantom for quality assessment of brian images in SPECT system. There are the following standards for quality control in nuclear medicine: American Association of Physicists in Medicine, National Electrical Manufacturers Association, International Electromechanical Commission, International Atomic Energy Agency. Each of the above standards has the following important orders: Physical inspection, Acceptance and Reference Testing, Periodic Q C tests (Daily, Weekly, Monthly, Quarterly, Annually). The above tests are simple physics measures. To more meaningful ones based on performance of some tasks related to clinical application it is better to use from organs' phantoms, such as: brain, cardiac, etc. In this research we made a comparison between normal and abnormal states of Hoffman brain phantom. Methods of Hoffman brain phantom was filled with a solution of Tc- 99 m (5 mCi) and water (1300 cc). this results: The investigation of small abnormalities strongly related to the operating conditions and deviation from best tuning state of the system

  7. Computational hybrid anthropometric paediatric phantom library for internal radiation dosimetry

    DEFF Research Database (Denmark)

    Xie, Tianwu; Kuster, Niels; Zaidi, Habib

    2017-01-01

    for children demonstrated that they follow the same trend when correlated with age. The constructed hybrid computational phantom library opens up the prospect of comprehensive radiation dosimetry calculations and risk assessment for the paediatric population of different age groups and diverse anthropometric...

  8. Gravitational Quasinormal Modes of Regular Phantom Black Hole

    Directory of Open Access Journals (Sweden)

    Jin Li

    2017-01-01

    Full Text Available We investigate the gravitational quasinormal modes (QNMs for a type of regular black hole (BH known as phantom BH, which is a static self-gravitating solution of a minimally coupled phantom scalar field with a potential. The studies are carried out for three different spacetimes: asymptotically flat, de Sitter (dS, and anti-de Sitter (AdS. In order to consider the standard odd parity and even parity of gravitational perturbations, the corresponding master equations are derived. The QNMs are discussed by evaluating the temporal evolution of the perturbation field which, in turn, provides direct information on the stability of BH spacetime. It is found that in asymptotically flat, dS, and AdS spacetimes the gravitational perturbations have similar characteristics for both odd and even parities. The decay rate of perturbation is strongly dependent on the scale parameter b, which measures the coupling strength between phantom scalar field and the gravity. Furthermore, through the analysis of Hawking radiation, it is shown that the thermodynamics of such regular phantom BH is also influenced by b. The obtained results might shed some light on the quantum interpretation of QNM perturbation.

  9. Control volume based hydrocephalus research; a phantom study

    Science.gov (United States)

    Cohen, Benjamin; Voorhees, Abram; Madsen, Joseph; Wei, Timothy

    2009-11-01

    Hydrocephalus is a complex spectrum of neurophysiological disorders involving perturbation of the intracranial contents; primarily increased intraventricular cerebrospinal fluid (CSF) volume and intracranial pressure are observed. CSF dynamics are highly coupled to the cerebral blood flows and pressures as well as the mechanical properties of the brain. Hydrocephalus, as such, is a very complex biological problem. We propose integral control volume analysis as a method of tracking these important interactions using mass and momentum conservation principles. As a first step in applying this methodology in humans, an in vitro phantom is used as a simplified model of the intracranial space. The phantom's design consists of a rigid container filled with a compressible gel. Within the gel a hollow spherical cavity represents the ventricular system and a cylindrical passage represents the spinal canal. A computer controlled piston pump supplies sinusoidal volume fluctuations into and out of the flow phantom. MRI is used to measure fluid velocity and volume change as functions of time. Independent pressure measurements and momentum flow rate measurements are used to calibrate the MRI data. These data are used as a framework for future work with live patients and normal individuals. Flow and pressure measurements on the flow phantom will be presented through the control volume framework.

  10. Poly(vinyl alcohol) gels as photoacoustic breast phantoms revisited.

    Science.gov (United States)

    Xia, Wenfeng; Piras, Daniele; Heijblom, Michelle; Steenbergen, Wiendelt; van Leeuwen, Ton G; Manohar, Srirang

    2011-07-01

    A popular phantom in photoacoustic imaging is poly(vinyl alcohol) (PVA) hydrogel fabricated by freezing and thawing (F-T) aqueous solutions of PVA. The material possesses acoustic and optical properties similar to those of tissue. Earlier work characterized PVA gels in small test specimens where temperature distributions during F-T are relatively homogeneous. In this work, in breast-sized samples we observed substantial temperature differences between the shallow regions and the interior during the F-T procedure. We investigated whether spatial variations were also present in the acoustic and optical properties. The speed of sound, acoustic attenuation, and optical reduced scattering coefficients were measured on specimens sampled at various locations in a large phantom. In general, the properties matched values quoted for breast tissue. But while acoustic properties were relatively homogeneous, the reduced scattering was substantially different at the surface compared with the interior. We correlated these variations with gel microstructure inspected using scanning electron microscopy. Interestingly, the phantom's reduced scattering spatial distribution matches the optical properties of the standard two-layer breast model used in x ray dosimetry. We conclude that large PVA samples prepared using the standard recipe make excellent breast tissue phantoms.

  11. Poly(vinyl alcohol) gels as photoacoustic breast phantoms revisited

    NARCIS (Netherlands)

    Xia, Wenfeng; Piras, Daniele; Heijblom, Michelle; Steenbergen, Wiendelt; van Leeuwen, Ton G.; Manohar, Srirang

    2011-01-01

    A popular phantom in photoacoustic imaging is poly(vinyl alcohol) (PVA) hydrogel fabricated by freezing and thawing (F-T) aqueous solutions of PVA. The material possesses acoustic and optical properties similar to those of tissue. Earlier work characterized PVA gels in small test specimens where

  12. Poly(vinyl alcohol) gels as photoacoustic breast phantoms revisited

    NARCIS (Netherlands)

    Xia, W.; Piras, D.; Heijblom, M.; Steenbergen, Wiendelt; van Leeuwen, Ton; Manohar, Srirang

    2011-01-01

    A popular phantom in photoacoustic imaging is poly(vinyl alcohol) (PVA) hydrogel fabricated by freezing and thawing (F–T) aqueous solutions of PVA. The material possesses acoustic and optical properties similar to those of tissue. Earlier work characterized PVA gels in small test specimens where

  13. Improvement of skeleton conversion in ICRP reference phantom conversion project

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhao Jun; Yeom, Yeon Soo; Thang, Nguyen Tat; Kim, Han Sung; Han, Min Cheol; Kim, Chan Hyeong [Dept. of Nuclear Engineering, Hanyang University, Seoul (Korea, Republic of); Kim, Seong Hoon [Dept. of Radiation Oncology, College of Medicine, Hanyang University, Seoul (Korea, Republic of)

    2014-11-15

    In the previous skeleton conversion, most bones were directly converted from the ICRP voxel phantoms by using the 3D rendering method whereas several complex-shape bones (cranium, ribs, spines, feet, and hands) were not able to be directly converted. We alternatively employed the corresponding well-defined polygonal models and attempted to adjust them to match the voxel models. However, this approach was unsatisfactory. The shapes of the alternative models were significantly different from those of the voxel models, making it virtually impossible to exactly match the voxel models as shown in Fig. 3 (left). In order to overcome the difficulty in the complex bone conversion, the present study developed a new conversion method and converted these complex bones voxel models of the ICRP male phantom to polygonal models. The present study developed the new conversion method and successfully improved polygonal models for cranium, ribs, and spines for the ICRP male phantom. The new conversion method will be also applied to the complex bone conversion for the ICRP female phantom as well as other complex organ conversion in the future.

  14. Improvement of skeleton conversion in ICRP reference phantom conversion project

    International Nuclear Information System (INIS)

    Wang, Zhao Jun; Yeom, Yeon Soo; Thang, Nguyen Tat; Kim, Han Sung; Han, Min Cheol; Kim, Chan Hyeong; Kim, Seong Hoon

    2014-01-01

    In the previous skeleton conversion, most bones were directly converted from the ICRP voxel phantoms by using the 3D rendering method whereas several complex-shape bones (cranium, ribs, spines, feet, and hands) were not able to be directly converted. We alternatively employed the corresponding well-defined polygonal models and attempted to adjust them to match the voxel models. However, this approach was unsatisfactory. The shapes of the alternative models were significantly different from those of the voxel models, making it virtually impossible to exactly match the voxel models as shown in Fig. 3 (left). In order to overcome the difficulty in the complex bone conversion, the present study developed a new conversion method and converted these complex bones voxel models of the ICRP male phantom to polygonal models. The present study developed the new conversion method and successfully improved polygonal models for cranium, ribs, and spines for the ICRP male phantom. The new conversion method will be also applied to the complex bone conversion for the ICRP female phantom as well as other complex organ conversion in the future

  15. Phantom dosimetry at 15 MV conformal radiation therapy

    International Nuclear Information System (INIS)

    Thompson, Larissa; Campos, Tarcisio P.R.; Dias, Humberto G.

    2013-01-01

    The main goal of this work was to evaluate the spatial dose distribution into a tumor simulator inside a head phantom exposed to a 15MV 3D conformal radiation therapy in order to validate internal doses. A head and neck phantom developed by the Ionizing Radiation Research Group (NRI) was used on the experiments. Therapy Radiation planning (TPS) was performed based on those CT images, satisfying a 200 cGy prescribed dose split in three irradiation fields. The TPS assumed 97% of prescribed dose cover the prescribed treatment volume (PTV). Radiochromic films in a solid water phantom provided dose response as a function of optical density. Spatial dosimetric distribution was generated by radiochromic film samples inserted into tumor simulator and brain. The spatial dose profiles held 70 to 120% of the prescribed dose. In spite of the stratified profile, as opposed to the smooth dose profile from TPS, the tumor internal doses were within a 5% deviation from 214.4 cGy evaluated by TPS. 83.2% of the points with a gamma value of less than 1 (3%/3mm) for TPS and experimental values, respectively. At the tumor, a few dark spots in the film caused the appearance of outlier points in 13-15% of dose deviation percentage. As final conclusion, such dosimeter choice and the physical anthropomorphic and anthropometric phantom provided an efficient method for validating radiotherapy protocols. (author)

  16. Phantom dosimetry at 15 MV conformal radiation therapy

    International Nuclear Information System (INIS)

    Thompson, Larissa; Campos, Tarcisio P.R.

    2015-01-01

    The main goal of this work was to evaluate the spatial dose distribution into a tumor simulator inside a head phantom exposed to a 15MV 3D conformal radiation therapy in order to validate internal doses. A head and neck phantom developed by the Ionizing Radiation Research Group (NRI) was used on the experiments. Therapy Radiation planning (TPS) was performed based on those CT images, satisfying a 200 cGy prescribed dose split in three irradiation fields. The TPS assumed 97% of prescribed dose cover the prescribed treatment volume (PTV). Radiochromic films in a solid water phantom provided dose response as a function of optical density. Spatial dosimetric distribution was generated by radiochromic film samples inserted into tumor simulator and brain. The spatial dose profiles held 70 to 120% of the prescribed dose. In spite of the stratified profile, as opposed to the smooth dose profile from TPS, the tumor internal doses were within a 5% deviation from 214.4 cGy evaluated by TPS. 83.2% of the points with a gamma value of less than 1 (3%/3mm) for TPS and experimental values, respectively. At the tumor, a few dark spots in the film caused the appearance of outlier points in 13-15% of dose deviation percentage. As final conclusion, such dosimeter choice and the physical anthropomorphic and anthropometric phantom provided an efficient method for validating radiotherapy protocols. (author)

  17. Development of a phantom for quality control of radiosurgery

    International Nuclear Information System (INIS)

    Scheidegger Soboll, D.; Reuters Schelin, H.

    2008-01-01

    The aim of this work was to build a phantom for quality control of stereotactic radiosurgery on linear accelerators. The outward appearance is a translucent human head filled with water and enclosing an insert with test objects of known shapes. The phantom was submitted to computerized tomography, magnetic resonance imaging and angiography exams, in order to perform a radiosurgery planning. Contours of the internal structures on the therapy planning system were drawn over the MRI images. Through the image fusion of CT and MRI, the contour data was transferred to CT images. Stereotactic registration of CT and angiography was made. One isocenter treatment was created, and using the stereotactic coordinates given by the therapy planning system, the phantom was placed on a linac. X-ray images were performed in order to verify the final positioning of the planned isocenter. In the whole process the phantom showed usefulness and adequacy for the positioning quality control of stereotactic radiosurgery with linacs, according to the main documents concerning the issue. (author)

  18. AdS Black Hole with Phantom Scalar Field

    Directory of Open Access Journals (Sweden)

    Limei Zhang

    2017-01-01

    Full Text Available We present an AdS black hole solution with Ricci flat horizon in Einstein-phantom scalar theory. The phantom scalar fields just depend on the transverse coordinates x and y, which are parameterized by the parameter α. We study the thermodynamics of the AdS phantom black hole. Although its horizon is a Ricci flat Euclidean space, we find that the thermodynamical properties of the black hole solution are qualitatively the same as those of AdS Schwarzschild black hole. Namely, there exists a minimal temperature and the large black hole is thermodynamically stable, while the smaller one is unstable, so there is a so-called Hawking-Page phase transition between the large black hole and the thermal gas solution in the AdS space-time in Poincare coordinates. We also calculate the entanglement entropy for a strip geometry dual to the AdS phantom black holes and find that the behavior of the entanglement entropy is qualitatively the same as that of the black hole thermodynamical entropy.

  19. Evaluation of rods and Jaszczak phantoms in Sergipe Nuclear Medicine

    International Nuclear Information System (INIS)

    Ferreira, F.C.L.; Souza, D.N.

    2008-01-01

    The objective of this study was to develop a bars and discs phantom for realization of quality control tests as spatial resolution, tomographic resolution and linearity in scintigraphic cameras. This object was developed and evaluated in the state of Sergipe, Brazil

  20. Optimization for PET imaging based on phantom study and NECdensity

    International Nuclear Information System (INIS)

    Daisaki, Hiromitsu; Shimada, Naoki; Shinohara, Hiroyuki

    2012-01-01

    In consideration of the requirement for global standardization and quality control of PET imaging, the present studies gave an outline of phantom study to decide both scan and reconstruction parameters based on FDG-PET/CT procedure guideline in Japan, and optimization of scan duration based on NEC density was performed continuously. In the phantom study, scan and reconstruction parameters were decided by visual assessment and physical indexes (N 10mm , NEC phantom , Q H,10mm /N 10mm ) to visualize hot spot of 10 mm diameter with standardized uptake value (SUV)=4 explicitly. Simultaneously, Recovery Coefficient (RC) was evaluated to recognize that PET images had enough quantifiably. Scan durations were optimized by Body Mass Index (BMI) based on retrospective analysis of NEC density . Correlation between visual score in clinical FDG-PET images and NEC density fell after the optimization of scan duration. Both Inter-institution and inter-patient variability were decreased by performing the phantom study based on the procedure guideline and the optimization of scan duration based on NEC density which seem finally useful to practice highly precise examination and promote high-quality controlled study. (author)

  1. Neutron measurements with a tissue-equivalent phantom

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J W [Health Physics Division, Atomic Energy Establishment, Harwell (United Kingdom)

    1962-03-15

    This Appendix 3E of the dosimetry experiment at the R-B reactor describes the apparatus used and presents the obtained results. The phantom used was a 1/4-inch thick polythene container, 60 cm high, of elliptical cross-section, with a major axis of 36 cm and a minor axis of 20 cm. This was filled with an approximately tissue-equivalent liquid. A light but rigid internal framework of Perspex supported a series of small detectors through the phantom. The detectors used in the first high-level run at Vinca, to measure flux above 0.5 MeV, were 0.5-cm wide track plates wrapped in cadmium foil. Each track plate was a sandwich of two Ilford El 50 - mu emulsions, with glass backing, separated by a 250-mu polythene radiator, and was oriented at an angle of 45 deg to the front surface of the phantom. Under these conditions the response is constant with neutron energy between 0.5 MeV and 8 MeV at 1.26 X 10 sup - sup 3 tracks/neutron to within +- 15%. The detectors used in the second high-level run were gold foils (260 mg/cm sup 2 thick) for determination of the show neutron distribution. Previous experiments with 0.13 MeV, 2.5 MeV, 14 MeV and Po-Be neutrons have shown that the shape of the curve through a phantom obtained from these gold foils is the same as that given by either manganese foils or sodium samples despite the difference in resonance integrals. From the relaxation length of the neutron flux in the phantom, as measured by the track plates, the mean energy of the neutrons with energies greater than 0.5 MeV may be found by comparison with the relaxation lengths obtained by irradiation of the phantom with monoenergetic neutrons. The results of these experiments are given. Track plate results from the Vinca experiment are shown. It can be seen that the backscattered fast flux is about one-third of the incident fast flux and that the energy indicated by the shape of the curve is considerably lower than the energy of the direct neutrons. It seems possible that the high

  2. Neutron measurements with a tissue-equivalent phantom

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J W [Health Physics Division, Atomic Energy Establishment, Harwell (United Kingdom)

    1962-03-01

    This Appendix 3E of the dosimetry experiment at the R-B reactor describes the apparatus used and presents the obtained results. The phantom used was a 1/4-inch thick polythene container, 60 cm high, of elliptical cross-section, with a major axis of 36 cm and a minor axis of 20 cm. This was filled with an approximately tissue-equivalent liquid. A light but rigid internal framework of Perspex supported a series of small detectors through the phantom. The detectors used in the first high-level run at Vinca, to measure flux above 0.5 MeV, were 0.5-cm wide track plates wrapped in cadmium foil. Each track plate was a sandwich of two Ilford El 50 - {mu} emulsions, with glass backing, separated by a 250-{mu} polythene radiator, and was oriented at an angle of 45 deg to the front surface of the phantom. Under these conditions the response is constant with neutron energy between 0.5 MeV and 8 MeV at 1.26 X 10{sup -3} tracks/neutron to within {+-} 15%. The detectors used in the second high-level run were gold foils (260 mg/cm{sup 2} thick) for determination of the show neutron distribution. Previous experiments with 0.13 MeV, 2.5 MeV, 14 MeV and Po-Be neutrons have shown that the shape of the curve through a phantom obtained from these gold foils is the same as that given by either manganese foils or sodium samples despite the difference in resonance integrals. From the relaxation length of the neutron flux in the phantom, as measured by the track plates, the mean energy of the neutrons with energies greater than 0.5 MeV may be found by comparison with the relaxation lengths obtained by irradiation of the phantom with monoenergetic neutrons. The results of these experiments are given. Track plate results from the Vinca experiment are shown. It can be seen that the backscattered fast flux is about one-third of the incident fast flux and that the energy indicated by the shape of the curve is considerably lower than the energy of the direct neutrons. It seems possible that the

  3. Internal dosimetry estimates using voxelized reference phantoms for thyroid agents

    International Nuclear Information System (INIS)

    Hoseinian-Azghadi, E.; Rafat-Motavalli, L.; Miri-Hakimabad, H.

    2014-01-01

    This work presents internal dosimetry estimates for diagnostic procedures performed for thyroid disorders by relevant radiopharmaceuticals. The organ doses for 131 Iodine, 123 Iodine and 99m Tc incorporated into the body were calculated for the International Commission on Radiological Protection (ICRP) reference voxel phantoms using the Monte Carlo transport method. A comparison between different thyroid uptakes of iodine in the range of 0–55% was made, and the effect of various techniques for administration of 99m Tc on organ doses was studied. To investigate the necessity of calculating organ dose from all source regions, the major source organ and its contribution to total dose were specified for each target organ. Moreover, we compared effective dose in ICRP voxel phantoms with that in stylized phantoms. In our method, we directly calculated the organ dose without using the S values or SAFs, as is commonly done. Hence, a distribution of the absorbed dose to entire tissues was obtained. The chord length distributions (CLDs) were also computed for the selected source–target pairs to make comparison across the genders. The results showed that the S values for radionuclides in the thyroid are not sufficient for calculating the organ doses, especially for 123 I and 99m Tc. The thyroid and its neighboring organs receive a greater dose as thyroid uptake increases. Our comparisons also revealed an underestimation of organ doses reported for the stylized phantoms compared with the values based on the ICRP voxel phantoms in the uptake range of 5–55%, and an overestimation of absorbed dose by up to 2-fold for Iodine administration using blocking agent and for 99m Tc incorporation. (author)

  4. A phantom for assessing the personal dose equivalent, HP(10)

    International Nuclear Information System (INIS)

    Santoro, C.; Filho, J.A

    2013-01-01

    Characteristics of a phantom designed to evaluate the personal dose equivalent, H P (10), and appropriate for photographic dosimetry are presented. It is called HP(10) phantom due to cavities constructed to insert dosimetric films at a depth of 10 mm. The H P (10) phantom is irradiated with ionizing radiation energy, E, from 45 to 1250 keV, with doses ranging from 0.2 to 50 mSv. It is positioned in the direction α = 0 °, and the radiation field focusing perpendicular to its front surface. So, are established calibration curves of dosimeters in the position conventionally true and quantities H P (10). It made a comparison between the responses obtained with the H P (10) phantom and responses obtained when using the calibration procedure recommended by ISO dosimeters. The ISO recommends getting the air kerma, Ka, for photons at test point of the radiation field by an ionization chamber. And through conversion coefficients, h pK (10; E, α), becomes the air kerma for H P (10). The ISO 4037-3 recommendation has been studied by researchers to ensure that the low energy spectral differences occur in radiation fields which are generated by various X-ray equipment, and induce changes in the percentages of conversion coefficients on the order of 10% to 90% . On the basis of the recommendations ISO, this article develops phantom able to assess the dose to the influence of scattering and absorption of radiation, its implications with respect to dosimetry, providing improvement in the assessment of doses. (author)

  5. A phantom design for assessment of detectability in PET imaging

    International Nuclear Information System (INIS)

    Wollenweber, Scott D.; Alessio, Adam M.; Kinahan, Paul E.

    2016-01-01

    Purpose: The primary clinical role of positron emission tomography (PET) imaging is the detection of anomalous regions of 18 F-FDG uptake, which are often indicative of malignant lesions. The goal of this work was to create a task-configurable fillable phantom for realistic measurements of detectability in PET imaging. Design goals included simplicity, adjustable feature size, realistic size and contrast levels, and inclusion of a lumpy (i.e., heterogeneous) background. Methods: The detection targets were hollow 3D-printed dodecahedral nylon features. The exostructure sphere-like features created voids in a background of small, solid non-porous plastic (acrylic) spheres inside a fillable tank. The features filled at full concentration while the background concentration was reduced due to filling only between the solid spheres. Results: Multiple iterations of feature size and phantom construction were used to determine a configuration at the limit of detectability for a PET/CT system. A full-scale design used a 20 cm uniform cylinder (head-size) filled with a fixed pattern of features at a contrast of approximately 3:1. Known signal-present and signal-absent PET sub-images were extracted from multiple scans of the same phantom and with detectability in a challenging (i.e., useful) range. These images enabled calculation and comparison of the quantitative observer detectability metrics between scanner designs and image reconstruction methods. The phantom design has several advantages including filling simplicity, wall-less contrast features, the control of the detectability range via feature size, and a clinically realistic lumpy background. Conclusions: This phantom provides a practical method for testing and comparison of lesion detectability as a function of imaging system, acquisition parameters, and image reconstruction methods and parameters.

  6. Evaluation of tomosynthesis elastography in a breast-mimicking phantom

    International Nuclear Information System (INIS)

    Engelken, Florian Jan; Sack, Ingolf; Klatt, Dieter; Fischer, Thomas; Fallenberg, Eva Maria; Bick, Ulrich; Diekmann, Felix

    2012-01-01

    Objective: To evaluate whether measurement of strain under static compression in tomosynthesis of a breast-mimicking phantom can be used to distinguish tumor-simulating lesions of different elasticities and to compare the results to values predicted by rheometric analysis as well as results of ultrasound elastography. Materials and methods: We prepared three soft breast-mimicking phantoms containing simulated tumors of different elasticities. The phantoms were imaged using a wide angle tomosynthesis system with increasing compression settings ranging from 0 N to 105 N in steps of 15 N. Strain of the inclusions was measured in two planes using a commercially available mammography workstation. The elasticity of the phantom matrix and inclusion material was determined by rheometric analysis. Ultrasound elastography of the inclusions was performed using two different ultrasound elastography algorithms. Results: Strain at maximal compression was 24.4%/24.5% in plane 1/plane 2, respectively, for the soft inclusion, 19.6%/16.9% for the intermediate inclusion, and 6.0%/10.2% for the firm inclusion. The strain ratios predicted by rheometrical testing were 0.41, 0.83 and 1.26 for the soft, intermediate, and firm inclusions, respectively. The strain ratios obtained for the soft, intermediate, and firm inclusions were 0.72 ± 0.13, 1.02 ± 0.21 and 2.67 ± 1.70, respectively for tomosynthesis elastography, 0.91, 1.64 and 2.07, respectively, for ultrasound tissue strain imaging, and 0.97, 2.06 and 2.37, respectively, for ultrasound real-time elastography. Conclusions: Differentiation of tumor-simulating inclusions by elasticity in a breast mimicking phantom may be possible by measuring strain in tomosynthesis. This method may be useful for assessing elasticity of breast lesions tomosynthesis of the breast

  7. Possible association between phantom vibration syndrome and occupational burnout

    Directory of Open Access Journals (Sweden)

    Chen CP

    2014-12-01

    Full Text Available Chao-Pen Chen,1 Chi-Cheng Wu,2 Li-Ren Chang,3 Yu-Hsuan Lin4 1Department of Education, National Taiwan University Hospital, 2Department of Family Medicine, Min-Sheng General Hospital, Taoyuan City, 3Department of Psychiatry, National Taiwan University, College of Medicine, 4Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan Background: Phantom vibration syndrome (PVS and phantom ringing syndrome (PRS occur in many cell phone users. Previous studies have indicated an association between PVS/PRS and job stress. The aim of this study was to determine if PVS/PRS were also associated with occupational burnout.Methods: This was a cross-sectional study of 384 employees of a high-tech company in northern Taiwan. They all completed a phantom vibration and ringing questionnaire, the Hospital Anxiety and Depression Scale, and the Chinese version of the Occupational Burnout Inventory.Results: Significantly more women and people with at least a college education were in the population with PRS and PVS, respectively. Anxiety and depression had no associations with PVS/PRS. Higher scores for personal fatigue, job fatigue, and service target fatigue had an independent impact on the presence of PVS, but only a higher score for service target fatigue had an independent impact on the presence of PRS.Conclusion: The independent association between work-related burnout and PVS/PRS suggests that PVS/PRS may be a harbinger of mental stress or a component of the clinical burnout syndrome, and may even be a more convenient and accurate predictor of occupational burnout. Keywords: phantom vibration syndrome, phantom ringing syndrome, occupational burnout

  8. Estimation of internal dose from radiocesium and phantom

    International Nuclear Information System (INIS)

    Uchiyama, Masafumi; Nakamura, Yuji

    1994-01-01

    A complicated model describing the movement of a radionuclide in both the natural environment and socioeconomical systems is usually used to estimate the internal dose to the public in terms of collective dose, taking demographic data into account. The result can be certified for reliability in some compartments of the model. One of the compartments is the body content. In the case of radiocesium, the individual body burden can be measured using a whole-body counter. The measurement must be calibrated with a phantom. The public is composed of individuals of various ages. Accordingly, the whole-body counter should be calibrated with a set of phantoms approximating individuals of different body sizes. Relationships between counting efficiency and body size were analyzed on 137 Cs 134 Cs or 40 K incorporated into the whole-body using a set of phantoms. Four sizes covering average Japanese physiques from infant to adult male, were chosen to prepare an anthropomorphic phantom system. The distribution of 137 Cs in aquatic solution was homogeneous through the phantom. A whole-body counter at the National Institute of Radiological Sciences, was used at a rate of 5 cm per minute in a scanning mode. The measurements were carried out in an iron room. Relations were analyzed between counting efficiency and some anthropometric parameters. The best fit was given by a linear equation of both reciprocals of height in cm and weight in kg, with a correlation coefficient of 1.00 for 137 Cs. The result indicates that radioactivity of 137 Cs can be determined for individuals with different anthropometric parameters using the whole-body counter system. This means that effective equivalent doses for individuals can be computed accurately from the measurements. Further, an estimate on the body content from an dose estimation model using measurements of radioactivity in environmental substances can be evaluated by comparing the body burden measured. (J.P.N.)

  9. A paper sheet phantom for scintigraphic planar imaging. Usefulness of pouch-laminated paper source

    International Nuclear Information System (INIS)

    Takaki, Akihiro; Soma, Tsutomu; Murase, Kenya; Teraoka, Satomi; Murakami, Tomonori; Kojima, Akihiro; Matsumoto, Masanori

    2007-01-01

    In order to perform experimental measurements for evaluation of imaging device's performance, data acquisition technique, and clinical images on scintigraphic imaging, many kinds of phantoms are employed. However, since these materials are acrylic and plastic, the thickness and quality of those materials cause attenuation and scatter in itself. We developed a paper sheet phantom sealed with a pouch laminator, which can be a true radioactive source in air. In this study, the paper sheet phantom was compared to the acrylic liver phantom, with the thickness of 2 cm, which is commercially available. The results showed that although some scatter counts were contained within the image of the acrylic liver phantom, there were few scattered photons in the paper sheet phantom image. Furthermore, this laminated paper sheet phantom made handling of the source and its waste easier. If the paper sheet phantom will be designed more sophisticatedly, it becomes a useful tool for planar imaging experiments. (author)

  10. Human torso phantom for imaging of heart with realistic modes of cardiac and respiratory motion

    Science.gov (United States)

    Boutchko, Rostyslav; Balakrishnan, Karthikayan; Gullberg, Grant T; O& #x27; Neil, James P

    2013-09-17

    A human torso phantom and its construction, wherein the phantom mimics respiratory and cardiac cycles in a human allowing acquisition of medical imaging data under conditions simulating patient cardiac and respiratory motion.

  11. Influence of different types of phantoms on the calibration of dosemeters for eye lens dosimetry

    International Nuclear Information System (INIS)

    Yoshitomi, H.; Kowatari, M.

    2016-01-01

    Both a cylinder and a slab phantom have been recommended to be used as calibration phantoms for eye lens dosimetry in the International Atomic Energy Agency TECDOC. This study describes investigations on the influence of the type of phantom on the calibration of dosemeters. In order to fulfil the purpose, backscatter radiation from practically used water-filled phantoms was evaluated by calculations and experiments. For photons, the calculations showed that the cylinder phantom had 10 % lower backscattered effect at maximum than a slab phantom, and simulated well the backscattered effect of the human head or neck to within ±10 %. The irradiation results of non-filtered optically stimulated luminescence and radio-photoluminescence glass dosemeters indicated that the differences of the calibration factors between the two types of phantoms were up to 20 and 10 %, respectively, reflecting the response to backscattered photons. For electrons, no difference was found between the two types of phantoms. (authors)

  12. Advanced Radiation DOSimetry phantom (ARDOS): a versatile breathing phantom for 4D radiation therapy and medical imaging

    Science.gov (United States)

    Kostiukhina, Natalia; Georg, Dietmar; Rollet, Sofia; Kuess, Peter; Sipaj, Andrej; Andrzejewski, Piotr; Furtado, Hugo; Rausch, Ivo; Lechner, Wolfgang; Steiner, Elisabeth; Kertész, Hunor; Knäusl, Barbara

    2017-10-01

    A novel breathing phantom was designed for being used in conventional and ion-beam radiotherapy as well as for medical imaging. Accurate dose delivery and patient safety are aimed to be verified for four-dimensional (4D) treatment techniques compensating for breathing-induced tumor motion. The phantom includes anthropomorphic components representing an average human thorax. It consists of real tissue equivalent materials to fulfill the requirements for dosimetric experiments and imaging purposes. The different parts of the torso (lungs, chest wall, and ribs) and the tumor can move independently. Simple regular movements, as well as more advanced patient-specific breathing cycles are feasible while a reproducible setup can be guaranteed. The phantom provides the flexibility to use different types of dosimetric devices and was designed in a way that it is robust, transportable and easy to handle. Tolerance levels and the reliability of the phantom setup were determined in combination with tests on motion accuracy and reproducibility by using infrared optical tracking technology. Different imaging was performed including positron emission tomography imaging, 4D computed tomography as well as real-time in-room imaging. The initial dosimetric benchmarking studies were performed in a photon beam where dose parameters are predictable and the dosimetric procedures well established.

  13. Advanced Radiation DOSimetry phantom (ARDOS): a versatile breathing phantom for 4D radiation therapy and medical imaging.

    Science.gov (United States)

    Kostiukhina, Natalia; Georg, Dietmar; Rollet, Sofia; Kuess, Peter; Sipaj, Andrej; Andrzejewski, Piotr; Furtado, Hugo; Rausch, Ivo; Lechner, Wolfgang; Steiner, Elisabeth; Kertész, Hunor; Knäusl, Barbara

    2017-10-04

    A novel breathing phantom was designed for being used in conventional and ion-beam radiotherapy as well as for medical imaging. Accurate dose delivery and patient safety are aimed to be verified for four-dimensional (4D) treatment techniques compensating for breathing-induced tumor motion. The phantom includes anthropomorphic components representing an average human thorax. It consists of real tissue equivalent materials to fulfill the requirements for dosimetric experiments and imaging purposes. The different parts of the torso (lungs, chest wall, and ribs) and the tumor can move independently. Simple regular movements, as well as more advanced patient-specific breathing cycles are feasible while a reproducible setup can be guaranteed. The phantom provides the flexibility to use different types of dosimetric devices and was designed in a way that it is robust, transportable and easy to handle. Tolerance levels and the reliability of the phantom setup were determined in combination with tests on motion accuracy and reproducibility by using infrared optical tracking technology. Different imaging was performed including positron emission tomography imaging, 4D computed tomography as well as real-time in-room imaging. The initial dosimetric benchmarking studies were performed in a photon beam where dose parameters are predictable and the dosimetric procedures well established.

  14. Preliminary Study on Hybrid Computational Phantom for Radiation Dosimetry Based on Subdivision Surface

    International Nuclear Information System (INIS)

    Jeong, Jong Hwi; Choi, Sang Hyoun; Cho, Sung Koo; Kim, Chan Hyeong

    2007-01-01

    The anthropomorphic computational phantoms are classified into two groups. One group is the stylized phantoms, or MIRD phantoms, which are based on mathematical representations of the anatomical structures. The shapes and positions of the organs and tissues in these phantoms can be adjusted by changing the coefficients of the equations in use. The other group is the voxel phantoms, which are based on tomographic images of a real person such as CT, MR and serially sectioned color slice images from a cadaver. Obviously, the voxel phantoms represent the anatomical structures of a human body much more realistically than the stylized phantoms. A realistic representation of anatomical structure is very important for an accurate calculation of radiation dose in the human body. Consequently, the ICRP recently has decided to use the voxel phantoms for the forthcoming update of the dose conversion coefficients. However, the voxel phantoms also have some limitations: (1) The topology and dimensions of the organs and tissues in a voxel model are extremely difficult to change, and (2) The thin organs, such as oral mucosa and skin, cannot be realistically modeled unless the voxel resolution is prohibitively high. Recently, a new approach has been implemented by several investigators. The investigators converted their voxel phantoms to hybrid computational phantoms based on NURBS (Non-Uniform Rational B-Splines) surface, which is smooth and deformable. It is claimed that these new phantoms have the flexibility of the stylized phantom along with the realistic representations of the anatomical structures. The topology and dimensions of the anatomical structures can be easily changed as necessary. Thin organs can be modeled without affecting computational speed or memory requirement. The hybrid phantoms can be also used for 4-D Monte Carlo simulations. In this preliminary study, the external shape of a voxel phantom (i.e., skin), HDRK-Man, was converted to a hybrid computational

  15. Experimental and computational development of a natural breast phantom for dosimetry studies

    International Nuclear Information System (INIS)

    Nogueira, Luciana B.; Campos, Tarcisio P.R.

    2013-01-01

    This paper describes the experimental and computational development of a natural breast phantom, anthropomorphic and anthropometric for studies in dosimetry of brachytherapy and teletherapy of breast. The natural breast phantom developed corresponding to fibroadipose breasts of women aged 30 to 50 years, presenting radiographically medium density. The experimental breast phantom was constituted of three tissue-equivalents (TE's): glandular TE, adipose TE and skin TE. These TE's were developed according to chemical composition of human breast and present radiological response to exposure. Completed the construction of experimental breast phantom this was mounted on a thorax phantom previously developed by the research group NRI/UFMG. Then the computational breast phantom was constructed by performing a computed tomography (CT) by axial slices of the chest phantom. Through the images generated by CT a computational model of voxels of the thorax phantom was developed by SISCODES computational program, being the computational breast phantom represented by the same TE's of the experimental breast phantom. The images generated by CT allowed evaluating the radiological equivalence of the tissues. The breast phantom is being used in studies of experimental dosimetry both in brachytherapy as in teletherapy of breast. Dosimetry studies by MCNP-5 code using the computational model of the phantom breast are in progress. (author)

  16. Alderson-Rando phantom 'voxelization' for use in numerical dosimetry

    International Nuclear Information System (INIS)

    Santos, A.M.; Vieira, J.W.

    2008-01-01

    This paper presents the methodology used for creating a voxel phantom from the tomographic physical Alderson-Rando phantom images (HR) and to develop a computer model formed by exposure of the resulting phantom 'voxelization' of AR coupled to the Monte Carlo code EGS4 plus algorithms to simulate radioactive sources in internal dosimetry

  17. Evaluation of the 1Shot Phantom dedicated to the mammography system using FCR

    International Nuclear Information System (INIS)

    Nagashima, Chieko; Uchiyama, Nachiko; Moriyama, Noriyuki; Nagata, Mio; Kobayashi, Hiroyuki; Sankoda, Katsuhiro; Saotome, Shigeru; Tagi, Masahiro; Kusunoki, Tetsurou

    2009-01-01

    Currently daily quality control (QC) tests for mammography systems are generally evaluated by using visual analysis phantoms, which of course means subjective measurement. In our study, however, we evaluated a novel digital phantom, the 1Shot Phantom M plus (1Shot Phantom), together with automatic analysis software dedicated for mammography systems using Fuji computed radiography (FCR). The digital phantom enables objective evaluation by providing for actual physical measurement rather than subjective visual assessment. We measured contrast to noise ratio (CNR), image receptor homogeneity, missed tissue at chest wall side, modulation transfer function (MTF), and geometric distortion utilizing the 1Shot Phantom. We then compared the values obtained using the 1Shot Phantom with values obtained from the European guidelines and International Electrotechnical Commission (IEC) standards. In addition, we evaluated the convenience of using the digital phantom. The values utilizing the 1Shot Phantom and those from the European guidelines and IEC standards were consistent, but the QC tests for the European guidelines and IEC standards methods took about six hours while the same QC tests using the 1Shot Phantom took 10 minutes or less including exposure of the phantom image, measurement, and analysis. In conclusion, the digital phantom and dedicated software proved very useful and produced improved analysis for mammography systems using FCR in clinical daily QC testing because of their objectivity and substantial time-saving convenience. (author)

  18. Design of a tracked ultrasound calibration phantom made of LEGO bricks

    Science.gov (United States)

    Walsh, Ryan; Soehl, Marie; Rankin, Adam; Lasso, Andras; Fichtinger, Gabor

    2014-03-01

    PURPOSE: Spatial calibration of tracked ultrasound systems is commonly performed using precisely fabricated phantoms. Machining or 3D printing has relatively high cost and not easily available. Moreover, the possibilities for modifying the phantoms are very limited. Our goal was to find a method to construct a calibration phantom from affordable, widely available components, which can be built in short time, can be easily modified, and provides comparable accuracy to the existing solutions. METHODS: We designed an N-wire calibration phantom made of LEGO® bricks. To affirm the phantom's reproducibility and build time, ten builds were done by first-time users. The phantoms were used for a tracked ultrasound calibration by an experienced user. The success of each user's build was determined by the lowest root mean square (RMS) wire reprojection error of three calibrations. The accuracy and variance of calibrations were evaluated for the calibrations produced for various tracked ultrasound probes. The proposed model was compared to two of the currently available phantom models for both electromagnetic and optical tracking. RESULTS: The phantom was successfully built by all ten first-time users in an average time of 18.8 minutes. It cost approximately $10 CAD for the required LEGO® bricks and averaged a 0.69mm of error in the calibration reproducibility for ultrasound calibrations. It is one third the cost of similar 3D printed phantoms and takes much less time to build. The proposed phantom's image reprojections were 0.13mm more erroneous than those of the highest performing current phantom model The average standard deviation of multiple 3D image reprojections differed by 0.05mm between the phantoms CONCLUSION: It was found that the phantom could be built in less time, was one third the cost, compared to similar 3D printed models. The proposed phantom was found to be capable of producing equivalent calibrations to 3D printed phantoms.

  19. A suitability study of the fission product phantom and the bottle manikin absorption phantom for calibration of in vivo bioassay equipment for the DOELAP accreditation testing program

    International Nuclear Information System (INIS)

    Olsen, P.C.; Lynch, T.P.

    1991-08-01

    Pacific Northwest laboratory (PNL) conducted an intercomparison study of the Fission Product phantom and the bottle manikin absorption (BOMAB) phantom for the US Department of Energy (DOE) to determine the consistency of calibration response of the two phantoms and their suitability for certification and use under a planned bioassay laboratory accreditation program. The study was initiated to determine calibration factors for both types of phantoms and to evaluate the suitability of their use in DOE Laboratory Accreditation Program (DOELAP) round-robin testing. The BOMAB was found to be more appropriate for the DOELAP testing program. 9 refs., 9 figs., 9 tabs

  20. Early and effective use of ketamine for treatment of phantom limb pain

    Directory of Open Access Journals (Sweden)

    Harsha Shanthanna

    2010-01-01

    Full Text Available Treatment for phantom limb pain is difficult and challenging. There is often suboptimum treatment with fewer than 10% receiving lasting relief. Treatments based broadly on other neuropathic pains may not be appropriate for a clinical success. We report a case of phantom limb pain, which proved resistant to multiple analgesics, including opioids and continuous epidural blockade. Treatment with intravenous (IV ketamine as an alternate day infusion, gave complete remission of phantom limb pain. This demonstrates an early and effective use of a potent NMDA antagonist for treatment of phantom limb pain. Mechanisms underlying phantom limb pain are briefly discussed.

  1. The UF family of reference hybrid phantoms for computational radiation dosimetry

    International Nuclear Information System (INIS)

    Lee, Choonsik; Lodwick, Daniel; Hurtado, Jorge; Pafundi, Deanna; Williams, Jonathan L; Bolch, Wesley E

    2010-01-01

    Computational human phantoms are computer models used to obtain dose distributions within the human body exposed to internal or external radiation sources. In addition, they are increasingly used to develop detector efficiencies for in vivo whole-body counters. Two classes of computational human phantoms have been widely utilized for dosimetry calculation: stylized and voxel phantoms that describe human anatomy through mathematical surface equations and 3D voxel matrices, respectively. Stylized phantoms are flexible in that changes to organ position and shape are possible given avoidance of region overlap, while voxel phantoms are typically fixed to a given patient anatomy, yet can be proportionally scaled to match individuals of larger or smaller stature, but of equivalent organ anatomy. Voxel phantoms provide much better anatomical realism as compared to stylized phantoms which are intrinsically limited by mathematical surface equations. To address the drawbacks of these phantoms, hybrid phantoms based on non-uniform rational B-spline (NURBS) surfaces have been introduced wherein anthropomorphic flexibility and anatomic realism are both preserved. Researchers at the University of Florida have introduced a series of hybrid phantoms representing the ICRP Publication 89 reference newborn, 15 year, and adult male and female. In this study, six additional phantoms are added to the UF family of hybrid phantoms-those of the reference 1 year, 5 year and 10 year child. Head and torso CT images of patients whose ages were close to the targeted ages were obtained under approved protocols. Major organs and tissues were segmented from these images using an image processing software, 3D-DOCTOR(TM). NURBS and polygon mesh surfaces were then used to model individual organs and tissues after importing the segmented organ models to the 3D NURBS modeling software, Rhinoceros(TM). The phantoms were matched to four reference datasets: (1) standard anthropometric data, (2) reference

  2. Efficiency factors for Phoswich based lung monitor using ICRP Voxel phantoms

    International Nuclear Information System (INIS)

    Manohari, M.; Mathiyarasu, R.; Rajagopal, V.; Jose, M.T.; Venkatraman, B.

    2016-01-01

    The actinide contamination in lungs is measured either using array of HPGe detector or Phoswich based lung monitors. This paper discusses the results obtained during numerical calibration of Phoswich based lung counting system using ICRP VOXEL phantoms. The results are also compared with measured efficiency values obtained using LLNL phantom. The efficiency factors of 241 Am present in the lungs for phoswich detector was simulated using ICRP male voxel phantom and compared with experimentally observed values using LLNL Phantom. The observed deviation is 12%. The efficiency of the same for female subjects was estimated using ICRP female voxel phantom for both supine and posterior geometries

  3. Survey of potential use of dynamic line phantom for quality control of Gamma camera

    International Nuclear Information System (INIS)

    Trindev, P.; Ozturk, N.

    2004-01-01

    Different phantoms, used to evaluate the essential for image quality parameters of gamma cameras in order to avoid artefacts, are presented. The prices are significant and it is a sensible approach to optimise the type and number of phantoms necessary for quality control. Among all phantoms the price of 'Dynamic Line Phantom' (DLP) is impressive, but it is announced to substitute several 'passive' and 'active' phantoms. The goal of this paper is to justify this statement. The programs, based on image profile are discussed in the paper and the practical uses of the different programs are given

  4. Observational constraints on phantom power-law cosmology

    International Nuclear Information System (INIS)

    Kaeonikhom, Chakkrit; Gumjudpai, Burin; Saridakis, Emmanuel N.

    2011-01-01

    We investigate phantom cosmology in which the scale factor is a power law, and we use cosmological observations from Cosmic Microwave Background (CMB), Baryon Acoustic Oscillations (BAO) and observational Hubble data, in order to impose complete constraints on the model parameters. We find that the power-law exponent is β∼-6.51 -0.25 +0.24 , while the Big Rip is realized at t s ∼104.5 -2.0 +1.9 Gyr, in 1σ confidence level. Providing late-time asymptotic expressions, we find that the dark-energy equation-of-state parameter at the Big Rip remains finite and equal to w DE ∼-1.153, with the dark-energy density and pressure diverging. Finally, we reconstruct the phantom potential.

  5. Crossing the phantom divide: Dark energy internal degrees of freedom

    International Nuclear Information System (INIS)

    Hu, Wayne

    2005-01-01

    Dark energy constraints have forced viable alternatives that differ substantially from a cosmological constant Λ to have an equation of state w that evolves across the phantom divide set by Λ. Naively, crossing this divide makes the dark energy gravitationally unstable, a problem that is typically finessed by unphysically ignoring the perturbations. While this procedure does not affect constraints near the favored cosmological constant model it can artificially enhance the confidence with which alternative models are rejected. Similar to the general problem of stability for w<0, the solution lies in the internal degrees of freedom in the dark energy sector. We explicitly show how to construct a two scalar field model that crosses the phantom divide and mimics the single field behavior on either side to substantially better than 1% in all observables. It is representative of models where the internal degrees of freedom keep the dark energy smooth out to the horizon scale independently of the equation of state

  6. Noncontact ultrasound imaging applied to cortical bone phantoms.

    Science.gov (United States)

    Bulman, J B; Ganezer, K S; Halcrow, P W; Neeson, Ian

    2012-06-01

    The purpose of this paper was to take the first steps toward applying noncontact ultrasound (NCU) to the tasks of monitoring osteoporosis and quantitative ultrasound imaging (QUS) of cortical bone. The authors also focused on the advantages of NCU, such as its lack of reliance on a technologist to apply transducers and a layer of acoustical coupling gel, the ability of the transducers to operate autonomously as specified by preprogrammed software, and the likely reduction in statistical and systematic errors associated with the variability in the pressure applied by the clinician to the transmitting transducer that NCU might provide. The authors also undertook this study in order to find additional applications of NCU beyond its past limited usage in assessing the severity of third degree burns. A noncontact ultrasound imaging system using a pair of specially designed broadband, 1.5 MHz noncontact piezoelectric transducers and cortical bone phantoms, were used to determine bone mineral density (BMD), speed of sound (SOS), integrated response (IR), and ultrasonic transmittance. Air gaps of greater than 3 cm, two transmission and two reflection paths, and a digital signal processor were also used in the collection of data from phantoms of nominal mass densities that varied from 1.17 to 2.25 g/cm(3) and in bone mineral density from 0 to 1.7 g/cm(3). Good correlations between known BMD and measured SOS, IR, and transmittance were obtained for all 17 phantoms, and methods for quantifying and minimizing sources of systematic errors were outlined. The BMD of the phantom sets extended through most of the in vivo range found in cortical bone. A total of 16-20 repeated measurements of the SOS, thickness, and IR for the phantom set that were conducted over a period of several months showed a small variation in the range of measurements of ±1%-2%. These NCU data were shown to be in agreement with similar results using contact ultrasound to be within 1%-2%. Transmittance

  7. Development of Phantom Limb Pain after Femoral Nerve Block

    Directory of Open Access Journals (Sweden)

    Sadiah Siddiqui

    2014-01-01

    Full Text Available Historically, phantom limb pain (PLP develops in 50–80% of amputees and may arise within days following an amputation for reasons presently not well understood. Our case involves a 29-year-old male with previous surgical amputation who develops PLP after the performance of a femoral nerve block. Although there have been documented cases of reactivation of PLP in amputees after neuraxial technique, there have been no reported events associated with femoral nerve blockade. We base our discussion on the theory that symptoms of phantom limb pain are of neuropathic origin and attempt to elaborate the link between regional anesthesia and PLP. Further investigation and understanding of PLP itself will hopefully uncover a relationship between peripheral nerve blocks targeting an affected limb and the subsequent development of this phenomenon, allowing physicians to take appropriate steps in prevention and treatment.

  8. Phantom Limbs, Neuroprosthetics, and the Developmental Origins of Embodiment.

    Science.gov (United States)

    Blumberg, Mark S; Dooley, James C

    2017-10-01

    Amputees who wish to rid themselves of a phantom limb must weaken the neural representation of the absent limb. Conversely, amputees who wish to replace a lost limb must assimilate a neuroprosthetic with the existing neural representation. Whether we wish to remove a phantom limb or assimilate a synthetic one, we will benefit from knowing more about the developmental process that enables embodiment. A potentially critical contributor to that process is the spontaneous activity - in the form of limb twitches - that occurs exclusively and abundantly during active (REM) sleep, a particularly prominent state in early development. The sensorimotor circuits activated by twitching limbs, and the developmental context in which activation occurs, could provide a roadmap for creating neuroprosthetics that feel as if they are part of the body. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Application of a sitting MIRD phantom for effective dose calculations

    International Nuclear Information System (INIS)

    Olsher, R. H.; Van Riper, K. A.

    2005-01-01

    In typical realistic scenarios, dose factors due to 60 Co contaminated steel, used in consumer products, cannot be approximated by standard exposure geometries. It is then necessary to calculate the effective dose using an appropriate anthropomorphic phantom. MCNP calculations were performed using a MIRD human model in two settings. In the first, a male office worker is sitting in a chair containing contaminated steel, surrounded by contaminated furniture. In the second, a male driver is seated inside an automobile, the steel of which is uniformly contaminated. To accurately calculate the dose to lower body organs, especially the gonads, it was essential to modify the MIRD model to simulate two sitting postures: chair and driving position. The phantom modifications are described, and the results of the calculations are presented. In the case of the automobile scenarios, results are compared to those obtained using an isotropic fluence-to-dose conversion function. (authors)

  10. Monte Carlo simulation of a mammographic test phantom

    International Nuclear Information System (INIS)

    Hunt, R. A.; Dance, D. R.; Pachoud, M.; Carlsson, G. A.; Sandborg, M.; Ullman, G.

    2005-01-01

    A test phantom, including a wide range of mammographic tissue equivalent materials and test details, was imaged on a digital mammographic system. In order to quantify the effect of scatter on the contrast obtained for the test details, calculations of the scatter-to-primary ratio (S/P) have been made using a Monte Carlo simulation of the digital mammographic imaging chain, grid and test phantom. The results show that the S/P values corresponding to the imaging conditions used were in the range 0.084-0.126. Calculated and measured pixel values in different regions of the image were compared as a validation of the model and showed excellent agreement. The results indicate the potential of Monte Carlo methods in the image quality-patient dose process optimisation, especially in the assessment of imaging conditions not available on standard mammographic units. (authors)

  11. Radiographic test phantom for computed tomographic lung nodule analysis

    International Nuclear Information System (INIS)

    Zerhouni, E.A.

    1987-01-01

    This patent describes a method for evaluating a computed tomograph scan of a nodule in a lung of a human or non-human animal. The method comprises generating a computer tomograph of a transverse section of the animal containing lung and nodule tissue, and generating a second computer tomograph of a test phantom comprising a device which simulates the transverse section of the animal. The tissue simulating portions of the device are constructed of materials having radiographic densities substantially identical to those of the corresponding tissue in the simulated transverse section of the animal and have voids therein which simulate, in size and shape, the lung cavities in the transverse section and which contain a test reference nodule constructed of a material of predetermined radiographic density which simulates in size, shape and position within a lung cavity void of the test phantom the nodule in the transverse section of the animal and comparing the respective tomographs

  12. Mathematical phantom of Indian adult for radiation dosimetry

    International Nuclear Information System (INIS)

    Jain, S.C.; Tyagi, K.

    2000-01-01

    Various countries have either developed or are in process of developing their own reference man for radiation protection purposes. Efforts are made to develop Indian Reference Man, especially by scientific groups at DRDO and BARC. The proposed mathematical phantom of Indian adult will be useful for estimation of radiation dose to various organs from radiation sources from external as well as internal, and compute the effective dose

  13. Hierarchy in fermion masses and the phantom axion

    International Nuclear Information System (INIS)

    Nanopoulos, D.V.

    1981-01-01

    An SU(5) model is presented with hierarchical fermion masses without strong CP violation and with an almost unobservable axion. The key point is to ''tie'' the highly desirable U(1)sub(P-Q) symmetry to the symmetry needed for the fermion mass hierarchy. Since the symmetry is broken at super-high energies (10 15 GeV), the axion becomes super-difficult to detect. This is the Phantom Axion. (author)

  14. Supernovae type Ia data favour coupled phantom energy

    OpenAIRE

    Majerotto, Elisabetta; Sapone, Domenico; Amendola, Luca

    2004-01-01

    We estimate the constraints that the recent high-redshift sample of supernovae type Ia put on a phenomenological interaction between dark energy and dark matter. The interaction can be interpreted as arising from the time variation of the mass of dark matter particles. We find that the coupling correlates with the equation of state: roughly speaking, a negative coupling (in our sign convention) implies phantom energy ($w_{\\phi}

  15. Hopkins syndrome and phantom hernia: a rare association.

    Science.gov (United States)

    Elizabeth, K E; Guruprasad, C S; Sindhu, T G

    2011-06-01

    Acute flaccid paralysis (AFP), other than paralytic poliomyelitis, are usually due to demyelination like Guillian Barre syndrome (GBS), transverse myelitis and traumatic neuritis. Poliomyelitis like illness, Hopkins syndrome or Post Asthmatic Amotrophy, associated with bronchial asthma and hyperIgEemia has been reported in literature. We present a two and a half year old child who developed AFP with phantom hernia following an episode of bronchial asthma.

  16. Preparing a voxel-simulator of Alderson Rando physical phantom

    International Nuclear Information System (INIS)

    Boia, Leonardo S.; Martins, Maximiano C.; Silva, Ademir X.; Salmon Junior, Helio A.; Soares, Alessandro F.N.S.

    2011-01-01

    There are, nowadays, sorts of anthropomorphycal phantoms which are used for simulation of radiation transport by the matter and also the deposition of energy in such radiation in human tissues and organs, because an in-vitro dosimetry becomes very either complicated or even impossible in some cases. In the present work we prepared a computational phantom in voxels based on computational tomography of Rando-Alderson. This phantom is one of the most known human body simulators on the scope of ionizing radiation dosimetry, and it is used for radioprotection issues and dosimetry from radiotherapy and brachytherapy treatments as well. The preparation of a voxel simulator starts with the image acquisition by a tomograph found at COI/RJ (Clinicas Oncologicas Integradas). The images were generated with 1mm cuts and collected for analysis. After that step the images were processed in SAPDI (Sistema Automatizado de Processamento Digital de Imagem) in order to amplify the images regions intending to facilitate the task in their segmentation. SAPDI is based on parameters described by Hounsfield scale. After that, it has begun discretization of elements in IDs voxels using Scan2MCNP software - which converts images to a sequential text file containing the voxels' IDs ready to be introduced into MCNPX input; however, this set can be turned to a voxel's IDs matrix and used in other Monte Carlo codes, such as Geant4, PENELOPE and EGSnrc. Finished this step, the simulator is able to simulate with accurate geometry the physical phantom. It's possible to study a large number of cases by computational techniques of geometry's insertions of tumors and TLDs, which makes this simulator a research material useful for a lot of subjects. (author)

  17. Reflective terahertz (THz) imaging: system calibration using hydration phantoms

    Science.gov (United States)

    Bajwa, Neha; Garritano, James; Lee, Yoon Kyung; Tewari, Priyamvada; Sung, Shijun; Maccabi, Ashkan; Nowroozi, Bryan; Babakhanian, Meghedi; Sanghvi, Sajan; Singh, Rahul; Grundfest, Warren; Taylor, Zachary

    2013-02-01

    Terahertz (THz) hydration sensing continues to gain traction in the medical imaging community due to its unparalleled sensitivity to tissue water content. Rapid and accurate detection of fluid shifts following induction of thermal skin burns as well as remote corneal hydration sensing have been previously demonstrated in vivo using reflective, pulsed THz imaging. The hydration contrast sensing capabilities of this technology were recently confirmed in a parallel 7 Tesla Magnetic Resonance (MR) imaging study, in which burn areas are associated with increases in local mobile water content. Successful clinical translation of THz sensing, however, still requires quantitative assessments of system performance measurements, specifically hydration concentration sensitivity, with tissue substitutes. This research aims to calibrate the sensitivity of a novel, reflective THz system to tissue water content through the use of hydration phantoms for quantitative comparisons of THz hydration imagery.Gelatin phantoms were identified as an appropriate tissue-mimicking model for reflective THz applications, and gel composition, comprising mixtures of water and protein, was varied between 83% to 95% hydration, a physiologically relevant range. A comparison of four series of gelatin phantom studies demonstrated a positive linear relationship between THz reflectivity and water concentration, with statistically significant hydration sensitivities (p hydration). The THz-phantom interaction is simulated with a three-layer model using the Transfer Matrix Method with agreement in hydration trends. Having demonstrated the ability to accurately and noninvasively measure water content in tissue equivalent targets with high sensitivity, reflective THz imaging is explored as a potential tool for early detection and intervention of corneal pathologies.

  18. Preparing a voxel-simulator of Alderson Rando physical phantom

    Energy Technology Data Exchange (ETDEWEB)

    Boia, Leonardo S.; Martins, Maximiano C.; Silva, Ademir X., E-mail: lboia@con.ufrj.br, E-mail: ademir@con.ufrj.br [Programa de Engenharia Nuclear (PEN/COPPE/UFRJ). Universidade Federal do Rio de Janeiro, RJ (Brazil); Salmon Junior, Helio A., E-mail: heliosalmon@coinet.com.br [COI - Clinicas Oncologicas Integradas, MD.X Barra Medical Center, Rio de Janeiro, RJ (Brazil); Soares, Alessandro F.N.S., E-mail: afacure@cnen.gov.br [Comissao Nacional de Engenharia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    There are, nowadays, sorts of anthropomorphycal phantoms which are used for simulation of radiation transport by the matter and also the deposition of energy in such radiation in human tissues and organs, because an in-vitro dosimetry becomes very either complicated or even impossible in some cases. In the present work we prepared a computational phantom in voxels based on computational tomography of Rando-Alderson. This phantom is one of the most known human body simulators on the scope of ionizing radiation dosimetry, and it is used for radioprotection issues and dosimetry from radiotherapy and brachytherapy treatments as well. The preparation of a voxel simulator starts with the image acquisition by a tomograph found at COI/RJ (Clinicas Oncologicas Integradas). The images were generated with 1mm cuts and collected for analysis. After that step the images were processed in SAPDI (Sistema Automatizado de Processamento Digital de Imagem) in order to amplify the images regions intending to facilitate the task in their segmentation. SAPDI is based on parameters described by Hounsfield scale. After that, it has begun discretization of elements in IDs voxels using Scan2MCNP software - which converts images to a sequential text file containing the voxels' IDs ready to be introduced into MCNPX input; however, this set can be turned to a voxel's IDs matrix and used in other Monte Carlo codes, such as Geant4, PENELOPE and EGSnrc. Finished this step, the simulator is able to simulate with accurate geometry the physical phantom. It's possible to study a large number of cases by computational techniques of geometry's insertions of tumors and TLDs, which makes this simulator a research material useful for a lot of subjects. (author)

  19. Possible association between phantom vibration syndrome and occupational burnout

    Science.gov (United States)

    Chen, Chao-Pen; Wu, Chi-Cheng; Chang, Li-Ren; Lin, Yu-Hsuan

    2014-01-01

    Background Phantom vibration syndrome (PVS) and phantom ringing syndrome (PRS) occur in many cell phone users. Previous studies have indicated an association between PVS/PRS and job stress. The aim of this study was to determine if PVS/PRS were also associated with occupational burnout. Methods This was a cross-sectional study of 384 employees of a high-tech company in northern Taiwan. They all completed a phantom vibration and ringing questionnaire, the Hospital Anxiety and Depression Scale, and the Chinese version of the Occupational Burnout Inventory. Results Significantly more women and people with at least a college education were in the population with PRS and PVS, respectively. Anxiety and depression had no associations with PVS/PRS. Higher scores for personal fatigue, job fatigue, and service target fatigue had an independent impact on the presence of PVS, but only a higher score for service target fatigue had an independent impact on the presence of PRS. Conclusion The independent association between work-related burnout and PVS/PRS suggests that PVS/PRS may be a harbinger of mental stress or a component of the clinical burnout syndrome, and may even be a more convenient and accurate predictor of occupational burnout. PMID:25750984

  20. Membership function used to construction of a hand homogeneous phantom

    International Nuclear Information System (INIS)

    Pavan, Ana Luiza Menegatti; Alvarez, Matheus; Alves, Allan Felipe Fattori; Rosa, Maria Eugenia Dela; Miranda, Jose Ricardo de Arruda

    2014-01-01

    Fractures and dislocations of the hand are some injuries most frequently encountered in trauma of the musculoskeletal system. In evaluating these lesions, in addition to physical examination, radiography, in at least two incidents, is the investigation of choice, and rarely is necessary the help of other images to establish the diagnosis and treatment. The image quality of X-ray examination is therefore essential. In this study, a homogeneous phantom hand was developed to be used in the optimization of images from hand using computed radiography system process. In this procedure were quantified thicknesses of different tissues that constitute an anthropomorphic phantom hand. To perform the classification and quantification of tissue was applied membership functions for histograms of CT scans. The same procedure was adopted for retrospective examinations of 30 patients of the Hospital das Clinicas, Botucatu Medicine School, UNESP (HCFMB-UNESP). The results showed agreement between the thicknesses of tissues that make up the anthropomorphic phantom and sampling of patients, presenting variations between 12.63% and 6.48% for soft tissue and bone, respectively. (author)

  1. Somatic and movement inductions phantom limb in non-amputees

    Science.gov (United States)

    Casas, D. M.; Gentiletti, G. G.; Braidot, A. A.

    2016-04-01

    The illusion of the mirror box is a tool for phantom limb pain treatment; this article proposes the induction of phantom limb syndrome on non-amputees upper limb, with a neurological trick of the mirror box. With two study situations: a) Somatic Induction is a test of the literature reports qualitatively, and novel proposal b) Motor Induction, which is an objective report by recording surface EEG. There are 3 cases proposed for Motor illusion, for which grasped movement is used: 1) Control: movement is made, 2) illusion: the mirror box is used, and 3) Imagination: no movement is executed; the subject only imagines its execution. Three different tasks are registered for each one of them (left hand, right hand, and both of them). In 64% of the subjects for somatic experience, a clear response to the illusion was observed. In the experience of motor illusion, cortical activation is detected in both hemispheres of the primary motor cortex during the illusion, where the hidden hand remains motionless. These preliminary findings in phantom limb on non-amputees can be a tool for neuro-rehabilitation and neuro-prosthesis control training.

  2. Computed tomography scan optimization using head phantom and radiochromic films

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Lorena C.; Santana, P.C.; Velasquez, Carlos E.; Mourao, Arnaldo P., E-mail: lorena.cfernandes@hotmail.com, E-mail: carlosvelcab@hotmail.com, E-mail: pridili@gmail.com, E-mail: apmourao@gmail.com [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte (Brazil). Departamento de Engenharia Nuclear; Centro de Imagem Molecular do INCT-Medicina Molecular (CIMol/UFMG) Belo Horizonte (Brazil); Centro Federal de Educação Tecnológica de Minas Gerais (CEFET-MG), Belo Horizonte (Brazil)

    2017-11-01

    The research and development in technology applied to computed tomography has been improve in the image quality, resulting in the best identification of diseases, and therefore an increase in the number of exams, among them the head exams can be highlighted. In order to promote a radioprotection and reduction on the dose of the general public some international agencies have stipulated dose limits to be followed and the implementation of the principles of ALARA in all establishments that use ionizing radiation. One of these principles is the optimization that should be treated with substantial attention, because the reduction of radiation doses can be feasible as long as it does not compromise the tomographic images; such practice is difficult to perform due to the lack of proper guidance. In optimization of the CT exams, not only the lowest dose is evaluated to obtain diagnostic image, but also should be knowledge the dose distribution throughout the scanned area. In this work were used a cylindrical head phantom of PMMA, a GE Discovery CT scan with 64 channels, and radiochromic films. The films were positioned in the phantom in their central region for the dose evaluation using the automatic control for the voltages of 80, 100 and 120 kV. The images were acquired from the scan of the phantom and the film readings were obtained through digital images. The results show an evaluation of the longitudinal kerma profiles, dose delivered, and the image noise was also observed using the central slice images. (author)

  3. Possible association between phantom vibration syndrome and occupational burnout.

    Science.gov (United States)

    Chen, Chao-Pen; Wu, Chi-Cheng; Chang, Li-Ren; Lin, Yu-Hsuan

    2014-01-01

    Phantom vibration syndrome (PVS) and phantom ringing syndrome (PRS) occur in many cell phone users. Previous studies have indicated an association between PVS/PRS and job stress. The aim of this study was to determine if PVS/PRS were also associated with occupational burnout. This was a cross-sectional study of 384 employees of a high-tech company in northern Taiwan. They all completed a phantom vibration and ringing questionnaire, the Hospital Anxiety and Depression Scale, and the Chinese version of the Occupational Burnout Inventory. Significantly more women and people with at least a college education were in the population with PRS and PVS, respectively. Anxiety and depression had no associations with PVS/PRS. Higher scores for personal fatigue, job fatigue, and service target fatigue had an independent impact on the presence of PVS, but only a higher score for service target fatigue had an independent impact on the presence of PRS. The independent association between work-related burnout and PVS/PRS suggests that PVS/PRS may be a harbinger of mental stress or a component of the clinical burnout syndrome, and may even be a more convenient and accurate predictor of occupational burnout.

  4. Sulfates as chromophores for multiwavelength photoacoustic imaging phantoms

    Science.gov (United States)

    Fonseca, Martina; An, Lu; Beard, Paul; Cox, Ben

    2017-12-01

    As multiwavelength photoacoustic imaging becomes increasingly widely used to obtain quantitative estimates, the need for validation studies conducted on well-characterized experimental phantoms becomes ever more pressing. One challenge that such studies face is the design of stable, well-characterized phantoms and absorbers with properties in a physiologically realistic range. This paper performs a full experimental characterization of aqueous solutions of copper and nickel sulfate, whose properties make them close to ideal as chromophores in multiwavelength photoacoustic imaging phantoms. Their absorption varies linearly with concentration, and they mix linearly. The concentrations needed to yield absorption values within the physiological range are below the saturation limit. The shape of their absorption spectra makes them useful analogs for oxy- and deoxyhemoglobin. They display long-term photostability (no indication of bleaching) as well as resistance to transient effects (no saturable absorption phenomena), and are therefore suitable for exposure to typical pulsed photoacoustic light sources, even when exposed to the high number of pulses required in scanning photoacoustic imaging systems. In addition, solutions with tissue-realistic, predictable, and stable scattering can be prepared by mixing sulfates and Intralipid, as long as an appropriate emulsifier is used. Finally, the Grüneisen parameter of the sulfates was found to be larger than that of water and increased linearly with concentration.

  5. Dose calculation on voxels phantoms using the GEANT4 code

    International Nuclear Information System (INIS)

    Martins, Maximiano C.; Santos, Denison S.; Queiroz Filho, Pedro P.; Begalli, Marcia

    2009-01-01

    This work implemented an anthropomorphic phantom of voxels on the structure of Monte Carlo GEANT4, for utilization by professionals from the radioprotection, external dosimetry and medical physics. This phantom allows the source displacement that can be isotropic punctual, plain beam, linear or radioactive gas, in order to obtain diverse irradiation geometries. In them, the radioactive sources exposure is simulated viewing the determination of effective dose or the dose in each organ of the human body. The Zubal head and body trunk phantom was used, and we can differentiate the organs and tissues by the chemical constitution in soft tissue, lung tissue, bone tissue, water and air. The calculation method was validated through the comparison with other well established method, the Visual Monte Carlo (VMC). Besides, a comparison was done with the international recommendation for the evaluation of dose by exposure to punctual sources, described in the document TECDOC - 1162- Generic Procedures for Assessment and Response During a Radiological Emergency, where analytical expressions for this calculation are given. Considerations are made on the validity limits of these expressions for various irradiation geometries, including linear sources, immersion into clouds and contaminated soils

  6. Low earth orbit radiation dose distribution in a phantom head

    International Nuclear Information System (INIS)

    Konradi, A.; Badhwar, G.D.; Cash, B.L.; Hardy, K.A.

    1992-01-01

    In order to compare analytical methods with data obtained during exposure to space radiation, a phantom head instrumented with a large number of radiation detectors was flown on the Space Shuttle on three occasions: 8 August 1989 (STS-28), 28 February 1990 (STS-36), and 24 April 1990 (STS-31). The objective of this experiment was to obtain a measurement of the inhomogeneity in the dose distribution within a phantom head volume. The orbits of these missions were complementary-STS-28 and STS-36 had high inclination and low altitude, while STS-31 had a low inclination and high altitude. In the cases of STS-28 and STS-36, the main contribution to the radiation dose comes from galactic cosmic rays (GCR) with a minor to negligible part supplied by the inner belt through the South Atlantic Anomaly (SAA), and for STS-28 an even smaller one from a proton enhancement during a solar flare-associated proton event. For STS-31, the inner belt protons dominate and the GCR contribution is almost negligible. The internal dose distribution is consistent with the mass distribution of the orbiter and the self-shielding and physical location of the phantom head. (author)

  7. Fan edits and the legacy of The Phantom Edit

    Directory of Open Access Journals (Sweden)

    Joshua Wille

    2014-09-01

    Full Text Available A fan edit can generally be defined as an alternative version of a film or television text created by a fan. It offers a different viewing experience, much as a song remix offers a different listening experience. The contemporary wave of fan edits has emerged during the remix zeitgeist of digital media and at a time when digital video editing technology has become more affordable and popular. The increasing number of alternative versions of films and the works of revisionist Hollywood filmmakers such as George Lucas have contributed to a greater public understanding of cinema as a fluid medium instead of one that exists in a fixed form. The Phantom Edit (2000, a seminal fan edit based on Lucas's Star Wars Episode I: The Phantom Menace (1999, inspired new ranks of fan editors. However, critics have misunderstood fan edits as merely the work of disgruntled fans. In order to provide a critical and historical basis for studies in fan editing as a creative practice, I examine previous interpretations of fan edits in the context of relevant contemporary works, and I use an annotated chronology of The Phantom Edit to trace its influence on subsequent fan editing communities and uncover their relationship with intellectual property disputes.

  8. Hydrodynamic effects in laser cutting of biological tissue phantoms

    Science.gov (United States)

    Zhigarkov, V. S.; Yusupov, V. I.; Tsypina, S. I.; Bagratashvili, V. N.

    2017-11-01

    We study the thermal and transport processes that occur in the course of incision formation at the surface of a biological tissue phantom under the action of near-IR, moderate-power, continuous-wave laser radiation (λ = 1.94 μm) delivered by means of an optical fibre with an absorbing coating on its exit face. It is shown that in addition to the thermal effect, the laser-induced hydrodynamic effects caused by the explosive boiling of the interstitial water make a large contribution to the phantom destruction mechanism. These effects lead to the tissue rupture accompanied by the ejection of part of the fragmented substance from the site of laser impact and the formation of highly porous structure near the incision surface. We have found that the depth, the width and the relief of the laser incision wall in the case of using the optical fibre moving with a constant velocity, depend on the fibre tilt angle with respect to the phantom surface, as well as the direction of the fibre motion.

  9. A phantom study of tumor contouring on PET imaging

    International Nuclear Information System (INIS)

    Chen Song; Li Xuena; Li Yaming; Yin Yafu; Li Na; Han Chunqi

    2010-01-01

    Objective: To explore an algorithm to define the threshold value for tumor contouring on 18 F-fluorodeoxyglucose (FDG) PET imaging. Methods: A National Electrical Manufacturing Association (NEMA)NU 2 1994 PET phantom with 5 spheres of different diameters were filled with 18 F-FDG. Seven different sphere-to-background ratios were obtained and the phantom was scanned by Discovery LS 4. For each sphere-to-background ratio, the maximum standardized uptake value (SUV max ) of each sphere, the SUV of the border of each sphere (SUV border ), the mean SUV of a 1 cm region of background (SUV bg ) and the diameter (D) of each sphere were measured. SPSS 13.0 software was used for curve fitting and regression analysis to obtain the threshold algorithm. The calculated thresholds were applied to delineate 29 pathologically confirmed lung cancer lesions on PET images and the obtained volumes were compared with the volumes contoured on CT images in lung window. Results: The algorithm for defining contour threshold is TH% = 33.1% + 46.8% SUV bg /SUV max + 13.9%/D (r = 0.994) by phantom studies. For 29 lung cancer lesions, the average gross tumor volumes (GTV) delineated on PET and CT are (7.36±1.62) ml and (8.31±2.05) ml, respectively (t = -1.26, P>0.05). Conclusion: The proposed threshold algorithm for tumor contouring on PET image could provide comparable GTV with CT. (authors)

  10. Reconstruction of segmented human voxel phantoms for skin dosimetry

    International Nuclear Information System (INIS)

    Antunes, Paula C.G.; Siqueira, Paulo de Tarso D.; Yoriyaz, Helio; Fonseca, Gabriel P.; Reis, Gabriela; Furnari, Laura

    2009-01-01

    High-resolution medical images along with methods that simulate the interaction of radiation with matter, as the Monte Carlo radiation transport codes, have been widely used in medical physics procedures. These images provide the construction of realistic anatomical models, which after being coupled to these codes, may drive to better assessments of dose distributions on the patient. These anatomical models constructed from medical images are known as voxel phantoms (voxel - volume element of an image). Present day regular images are unsuitable to correctly perform skin dose distribution evaluations. This inability is due to improper skin discrimination in most of the current medical images, once its thickness stands below the resolution of the pixels that form the image. This paper proposes the voxel phantom reconstruction by subdividing and segmenting the elements that form the phantom. It is done in order to better discriminate the skin by assigning it more adequate thickness and actual location, allowing a better dosimetric evaluation of the skin. This task is an important issue in many radiotherapy procedures. Particular interest lays in Total Skin Irradiation (TSI) with electron beams, where skin dose evaluation stands as the treatment key point of the whole body irradiation. This radiotherapy procedure is under implementation at the Hospital das Clinicas da Universidade de Sao Paulo (HC-USP). (author)

  11. Calibration of clinical dosemeters in the IAEA water phantom

    International Nuclear Information System (INIS)

    Caldas, L.V.E.; Albuquerque, M.P.P.

    1994-01-01

    The procedures recommended by the IAEA Code of Practice were applied at the Calibration Laboratory of Sao Paulo in order to provide in the future the clinical dosemeters users with absorbed dose to water calibration factors for Cobalt 60 radiation beams. In this work the clinical dosemeters were calibrated free in air and in water, and the results were compared, using conversion factors. The several tested clinical dosemeters of different manufacturers and models belong to the laboratory and to hospitals. For the measurements in water the IAEA cubic water phantom was used. The dosemeters were all calibrated free in air in terms of air kerma, and the calibration factors in terms of absorbed dose to water were obtained through conversion factors. the same dosemeters were also calibrated into the water phantom. Good agreement was found between the two methods, the differences were always less than 0.5%. The data obtained during this work show that when the dosemeters are used only in Cobalt 60 radiation and the users apply in the hospital routine work the IAEA Code of Practice, the calibration can be performed directly in the water phantom. This procedure provides the useful calibration factors in terms of absorbed dose to water

  12. Computed tomography scan optimization using head phantom and radiochromic films

    International Nuclear Information System (INIS)

    Fernandes, Lorena C.; Santana, P.C.; Velasquez, Carlos E.; Mourao, Arnaldo P.

    2017-01-01

    The research and development in technology applied to computed tomography has been improve in the image quality, resulting in the best identification of diseases, and therefore an increase in the number of exams, among them the head exams can be highlighted. In order to promote a radioprotection and reduction on the dose of the general public some international agencies have stipulated dose limits to be followed and the implementation of the principles of ALARA in all establishments that use ionizing radiation. One of these principles is the optimization that should be treated with substantial attention, because the reduction of radiation doses can be feasible as long as it does not compromise the tomographic images; such practice is difficult to perform due to the lack of proper guidance. In optimization of the CT exams, not only the lowest dose is evaluated to obtain diagnostic image, but also should be knowledge the dose distribution throughout the scanned area. In this work were used a cylindrical head phantom of PMMA, a GE Discovery CT scan with 64 channels, and radiochromic films. The films were positioned in the phantom in their central region for the dose evaluation using the automatic control for the voltages of 80, 100 and 120 kV. The images were acquired from the scan of the phantom and the film readings were obtained through digital images. The results show an evaluation of the longitudinal kerma profiles, dose delivered, and the image noise was also observed using the central slice images. (author)

  13. Radiation dose verification using real tissue phantom in modern radiotherapy techniques

    International Nuclear Information System (INIS)

    Gurjar, Om Prakash; Mishra, S.P.; Bhandari, Virendra; Pathak, Pankaj; Patel, Prapti; Shrivastav, Garima

    2014-01-01

    In vitro dosimetric verification prior to patient treatment has a key role in accurate and precision radiotherapy treatment delivery. Most of commercially available dosimetric phantoms have almost homogeneous density throughout their volume, while real interior of patient body has variable and varying densities inside. In this study an attempt has been made to verify the physical dosimetry in actual human body scenario by using goat head as 'head phantom' and goat meat as 'tissue phantom'. The mean percentage variation between planned and measured doses was found to be 2.48 (standard deviation (SD): 0.74), 2.36 (SD: 0.77), 3.62 (SD: 1.05), and 3.31 (SD: 0.78) for three-dimensional conformal radiotherapy (3DCRT) (head phantom), intensity modulated radiotherapy (IMRT; head phantom), 3DCRT (tissue phantom), and IMRT (tissue phantom), respectively. Although percentage variations in case of head phantom were within tolerance limit (< ± 3%), but still it is higher than the results obtained by using commercially available phantoms. And the percentage variations in most of cases of tissue phantom were out of tolerance limit. On the basis of these preliminary results it is logical and rational to develop radiation dosimetry methods based on real human body and also to develop an artificial phantom which should truly represent the interior of human body. (author)

  14. Fat ViP MRI: Virtual Phantom Magnetic Resonance Imaging of water-fat systems.

    Science.gov (United States)

    Salvati, Roberto; Hitti, Eric; Bellanger, Jean-Jacques; Saint-Jalmes, Hervé; Gambarota, Giulio

    2016-06-01

    Virtual Phantom Magnetic Resonance Imaging (ViP MRI) is a method to generate reference signals on MR images, using external radiofrequency (RF) signals. The aim of this study was to assess the feasibility of ViP MRI to generate complex-data images of phantoms mimicking water-fat systems. Various numerical phantoms with a given fat fraction, T2* and field map were designed. The k-space of numerical phantoms was converted into RF signals to generate virtual phantoms. MRI experiments were performed at 4.7T using a multi-gradient-echo sequence on virtual and physical phantoms. The data acquisition of virtual and physical phantoms was simultaneous. Decomposition of the water and fat signals was performed using a complex-based water-fat separation algorithm. Overall, a good agreement was observed between the fat fraction, T2* and phase map values of the virtual and numerical phantoms. In particular, fat fractions of 10.5±0.1 (vs 10% of the numerical phantom), 20.3±0.1 (vs 20%) and 30.4±0.1 (vs 30%) were obtained in virtual phantoms. The ViP MRI method allows for generating imaging phantoms that i) mimic water-fat systems and ii) can be analyzed with water-fat separation algorithms based on complex data. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Radiation dose verification using real tissue phantom in modern radiotherapy techniques

    Directory of Open Access Journals (Sweden)

    Om Prakash Gurjar

    2014-01-01

    Full Text Available In vitro dosimetric verification prior to patient treatment has a key role in accurate and precision radiotherapy treatment delivery. Most of commercially available dosimetric phantoms have almost homogeneous density throughout their volume, while real interior of patient body has variable and varying densities inside. In this study an attempt has been made to verify the physical dosimetry in actual human body scenario by using goat head as "head phantom" and goat meat as "tissue phantom". The mean percentage variation between planned and measured doses was found to be 2.48 (standard deviation (SD: 0.74, 2.36 (SD: 0.77, 3.62 (SD: 1.05, and 3.31 (SD: 0.78 for three-dimensional conformal radiotherapy (3DCRT (head phantom, intensity modulated radiotherapy (IMRT; head phantom, 3DCRT (tissue phantom, and IMRT (tissue phantom, respectively. Although percentage variations in case of head phantom were within tolerance limit (< ± 3%, but still it is higher than the results obtained by using commercially available phantoms. And the percentage variations in most of cases of tissue phantom were out of tolerance limit. On the basis of these preliminary results it is logical and rational to develop radiation dosimetry methods based on real human body and also to develop an artificial phantom which should truly represent the interior of human body.

  16. Development of realistic chest phantom for calibration of in-vivo plutonium counting facilities

    International Nuclear Information System (INIS)

    Shirotani, Takashi

    1987-06-01

    We have developed realistic chest phantom with removable model organs. The phantom is a torso and is terminated just above the femoral region. Tissue equivalent materials used in the phantom have been made of polyurethane with different amounts of ester of phosphoric acid, in order to simulate human soft tissues such as muscle, muscle-adipose mixtures and cartilage. Lung simulant has been made of foamed polyurethane. Capsulized small sources can be inserted into the holes, drilled in each sliced section of the model organ. Counting efficiencies, obtained with a pair of 12 cm diameter phoswich detectors set above the phantom chest, are 0.195 cpm/nCi for Pu-239 and 44.07 cpm/nCi for Am-241, respectively. The results agree well with efficiencies obtained with IAEA-Phantom. We conclude that the phantom can be used as a standard phantom for the calibration of Pu chest counting equipment. (author)

  17. Absorbed fractions in a voxel-based phantom calculated with the MCNP-4B code.

    Science.gov (United States)

    Yoriyaz, H; dos Santos, A; Stabin, M G; Cabezas, R

    2000-07-01

    A new approach for calculating internal dose estimates was developed through the use of a more realistic computational model of the human body. The present technique shows the capability to build a patient-specific phantom with tomography data (a voxel-based phantom) for the simulation of radiation transport and energy deposition using Monte Carlo methods such as in the MCNP-4B code. MCNP-4B absorbed fractions for photons in the mathematical phantom of Snyder et al. agreed well with reference values. Results obtained through radiation transport simulation in the voxel-based phantom, in general, agreed well with reference values. Considerable discrepancies, however, were found in some cases due to two major causes: differences in the organ masses between the phantoms and the occurrence of organ overlap in the voxel-based phantom, which is not considered in the mathematical phantom.

  18. Voxel anthropomorphic phantoms: review of models used for ionising radiation dosimetry

    International Nuclear Information System (INIS)

    Lemosquet, A.; Carlan, L. de; Clairand, I.

    2003-01-01

    Computational anthropomorphic phantoms have been used since the 1970's for dosimetric calculations. Realistic geometries are required for this operation, resulting in the development of ever more accurate phantoms. Voxel phantoms, consisting of a set of small-volume elements, appeared towards the end of the 1980's, and significantly improved on the original mathematical models. Voxel phantoms are models of the human body, obtained using computed tomography (CT) or magnetic resonance images (MRI). These phantoms are an extremely accurate representation of the human anatomy. This article provides a review of the literature available on the development of these phantoms and their applications in ionising radiation dosimetry. The bibliographical study has shown that there is a wide range of phantoms, covering various characteristics of the general population in terms of sex, age or morphology, and that they are used in applications relating to all aspects of ionising radiation. (author)

  19. SU-E-P-59: A Graphical Interface for XCAT Phantom Configuration, Generation and Processing

    International Nuclear Information System (INIS)

    Myronakis, M; Cai, W; Dhou, S; Cifter, F; Lewis, J; Hurwitz, M

    2015-01-01

    Purpose: To design a comprehensive open-source, publicly available, graphical user interface (GUI) to facilitate the configuration, generation, processing and use of the 4D Extended Cardiac-Torso (XCAT) phantom. Methods: The XCAT phantom includes over 9000 anatomical objects as well as respiratory, cardiac and tumor motion. It is widely used for research studies in medical imaging and radiotherapy. The phantom generation process involves the configuration of a text script to parameterize the geometry, motion, and composition of the whole body and objects within it, and to generate simulated PET or CT images. To avoid the need for manual editing or script writing, our MATLAB-based GUI uses slider controls, drop-down lists, buttons and graphical text input to parameterize and process the phantom. Results: Our GUI can be used to: a) generate parameter files; b) generate the voxelized phantom; c) combine the phantom with a lesion; d) display the phantom; e) produce average and maximum intensity images from the phantom output files; f) incorporate irregular patient breathing patterns; and f) generate DICOM files containing phantom images. The GUI provides local help information using tool-tip strings on the currently selected phantom, minimizing the need for external documentation. The DICOM generation feature is intended to simplify the process of importing the phantom images into radiotherapy treatment planning systems or other clinical software. Conclusion: The GUI simplifies and automates the use of the XCAT phantom for imaging-based research projects in medical imaging or radiotherapy. This has the potential to accelerate research conducted with the XCAT phantom, or to ease the learning curve for new users. This tool does not include the XCAT phantom software itself. We would like to acknowledge funding from MRA, Varian Medical Systems Inc

  20. SU-E-P-59: A Graphical Interface for XCAT Phantom Configuration, Generation and Processing

    Energy Technology Data Exchange (ETDEWEB)

    Myronakis, M; Cai, W; Dhou, S; Cifter, F; Lewis, J [Brigham and Women’s Hospital, Boston, MA (United States); Hurwitz, M [Newton, MA (United States)

    2015-06-15

    Purpose: To design a comprehensive open-source, publicly available, graphical user interface (GUI) to facilitate the configuration, generation, processing and use of the 4D Extended Cardiac-Torso (XCAT) phantom. Methods: The XCAT phantom includes over 9000 anatomical objects as well as respiratory, cardiac and tumor motion. It is widely used for research studies in medical imaging and radiotherapy. The phantom generation process involves the configuration of a text script to parameterize the geometry, motion, and composition of the whole body and objects within it, and to generate simulated PET or CT images. To avoid the need for manual editing or script writing, our MATLAB-based GUI uses slider controls, drop-down lists, buttons and graphical text input to parameterize and process the phantom. Results: Our GUI can be used to: a) generate parameter files; b) generate the voxelized phantom; c) combine the phantom with a lesion; d) display the phantom; e) produce average and maximum intensity images from the phantom output files; f) incorporate irregular patient breathing patterns; and f) generate DICOM files containing phantom images. The GUI provides local help information using tool-tip strings on the currently selected phantom, minimizing the need for external documentation. The DICOM generation feature is intended to simplify the process of importing the phantom images into radiotherapy treatment planning systems or other clinical software. Conclusion: The GUI simplifies and automates the use of the XCAT phantom for imaging-based research projects in medical imaging or radiotherapy. This has the potential to accelerate research conducted with the XCAT phantom, or to ease the learning curve for new users. This tool does not include the XCAT phantom software itself. We would like to acknowledge funding from MRA, Varian Medical Systems Inc.

  1. Development of polygonal surface version of ICRP reference phantoms: Preliminary study for posture change

    International Nuclear Information System (INIS)

    Nguyen, Tat Thang; Yeom, Yeon Soo; Han, Min Cheol; Kim, Chan Hyeong

    2013-01-01

    Even though International Commission on Radiological Protection (ICRP) officially adopted a set of adult male and female voxel phantoms as the ICRP reference phantoms, there are several critical limitations due to the nature of voxel geometry and their low voxel resolutions. In order to overcome these limitations of the ICRP phantoms, we are currently developing polygonal surface version of ICRP reference phantoms by directly converting the ICRP voxel phantoms to polygonal surface geometries. Among the many advantages of the ICRP polygonal surface phantom, especially, it is flexible and deformable. In principle, it is, therefore, possible to make the posture-changed ICRP phantoms which can provide more accurate dose values for exposure situations strongly relevant to worker's postures. As a preliminary study for developing the posture-changed ICRP phantoms, in this work we changed the posture of the preliminary version of ICRP male polygon-surface phantom constructed in the previous study. Organ doses were then compared between original and posture-changed phantoms. In the present study, we successfully changed a posture of the preliminary version of ICRP male polygon-surface phantom to the walking posture. From this results, it was explicitly shown that the polygon-surface version of the ICRP phantoms can be sufficiently modified to be various postures with the posture-changing method used in this study. In addition, it was demonstrated that phantom's posture must be considered in certain exposure situations, which can differ dose values from the conventional standing-posture phantom

  2. An externally and internally deformable, programmable lung motion phantom

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, Yam; Sawant, Amit, E-mail: amit.sawant@utsouthwestern.edu [UT Southwestern Medical Center, University of Texas, Dallas, Texas 75390 (United States)

    2015-05-15

    Purpose: Most clinically deployed strategies for respiratory motion management in lung radiotherapy (e.g., gating and tracking) use external markers that serve as surrogates for tumor motion. However, typical lung phantoms used to validate these strategies are based on a rigid exterior and a rigid or a deformable-interior. Such designs do not adequately represent respiration because the thoracic anatomy deforms internally as well as externally. In order to create a closer approximation of respiratory motion, the authors describe the construction and experimental testing of an externally as well as internally deformable, programmable lung phantom. Methods: The outer shell of a commercially available lung phantom (RS-1500, RSD, Inc.) was used. The shell consists of a chest cavity with a flexible anterior surface, and embedded vertebrae, rib-cage and sternum. A custom-made insert was designed using a piece of natural latex foam block. A motion platform was programmed with sinusoidal and ten patient-recorded lung tumor trajectories. The platform was used to drive a rigid foam “diaphragm” that compressed/decompressed the phantom interior. Experimental characterization comprised of determining the reproducibility and the external–internal correlation of external and internal marker trajectories extracted from kV x-ray fluoroscopy. Experiments were conducted to illustrate three example applications of the phantom—(i) validating the geometric accuracy of the VisionRT surface photogrammetry system; (ii) validating an image registration tool, NiftyReg; and (iii) quantifying the geometric error due to irregular motion in four-dimensional computed tomography (4DCT). Results: The phantom correctly reproduced sinusoidal and patient-derived motion, as well as realistic respiratory motion-related effects such as hysteresis. The reproducibility of marker trajectories over multiple runs for sinusoidal as well as patient traces, as characterized by fluoroscopy, was within 0

  3. Comparison of the ANSI, RSD, KKH, and BRMD thyroid-neck phantoms for 125I thyroid monitoring.

    Science.gov (United States)

    Kramer, G H; Olender, G; Vlahovich, S; Hauck, B M; Meyerhof, D P

    1996-03-01

    The Human Monitoring Laboratory, which acts as the Canadian National Calibration Reference Centre for In Vivo Monitoring, has determined the performance characteristics of four thyroid phantoms for 125I thyroid monitoring. The phantoms were a phantom built to the specifications of the American National Standards Institute Standard N44.3; the phantom available from Radiology Support Devices; the phantom available from Kyoto Kagaku Hyohon; the phantom manufactured by the Human Monitoring Laboratory and known as the BRMD phantom. The counting efficiencies of the phantoms for 125I were measured at different phantom-to-detector distances. The anthropomorphic characteristics of the phantoms have been compared with the average man parameters. It was concluded that the BRMD, American National Standards Institute, and Radiology Support Devices phantoms have the same performance characteristics when the neck-to-detector distances are greater than 12 cm and all phantoms are essentially equivalent at 30 cm or more. The Kyoto Kagaku Hyohon phantom showed lower counting efficiencies at phantom-to-detector distances less than 30 cm. This was attributed to the design of the phantom. This study has also shown that the phantom need not be highly anthropomorphic provided the calibration is not performed at short neck-detector distances. Indeed, it might be possible to use t simple point source of 125I placed behind a 1.5 cm block of lucite at neck detector distances of 12 cm or more.

  4. Design of a head phantom produced on a 3D rapid prototyping printer and comparison with a RANDO and 3M lucite head phantom in eye dosimetry applications.

    Science.gov (United States)

    Homolka, Peter; Figl, Michael; Wartak, Andreas; Glanzer, Mathias; Dünkelmeyer, Martina; Hojreh, Azadeh; Hummel, Johann

    2017-04-21

    An anthropomorphic head phantom including eye inserts allowing placement of TLDs 3 mm below the cornea has been produced on a 3D printer using a photo-cured acrylic resin to best allow tissue equivalence. Thus H p (3) can be determined in radiological and interventional photon radiation fields. Eye doses and doses to the forehead have been compared to an Alderson RANDO head and a 3M Lucite skull phantom in terms of surface dose per incident air kerma for frontal irradiation since the commercial phantoms do not allow placement of TLDs 3 mm below the corneal surface. A comparison of dose reduction factors (DRFs) of a common lead glasses model has also been performed. Eye dose per incident air kerma were comparable between all three phantoms (printed phantom: 1.40, standard error (SE) 0.04; RANDO: 1.36, SE 0.03; 3M: 1.37, SE 0.03). Doses to the forehead were identical to eye surface doses for the printed phantom and the RANDO head (ratio 1.00 SE 0.04, and 0.99 SE 0.03, respectively). In the 3M Lucite skull phantom dose on the forehead was 15% lower than dose to the eyes attributable to phantom properties. DRF of a sport frame style leaded glasses model with 0.75 mm lead equivalence measured were 6.8 SE 0.5, 9.3 SE 0.4 and 10.5 SE 0.5 for the RANDO head, the printed phantom, and the 3M Lucite head phantom, respectively, for frontal irradiation. A comparison of doses measured in 3 mm depth and on the surface of the eyes in the printed phantom revealed no difference larger than standard errors from TLD dosimetry. 3D printing offers an interesting opportunity for phantom design with increasing potential as printers allowing combinations of tissue substitutes will become available. Variations between phantoms may provide a useful indication of uncertainty budgets when using phantom measurements to estimate individual personnel doses.

  5. Standardization of calibration method of whole-body counter. 1. Calibration by using anthropometric phantoms

    International Nuclear Information System (INIS)

    Ishikawa, Tetsuo; Matsumoto, Masaki; Uchiyama, Masafumi; Kobayashi, Sadayoshi; Mizushita, Seiichi.

    1995-01-01

    To standardize the calibration methods of whole-body counters, three anthropometric phantoms were manufactured based on dozens of Japanese average value of body size data. Using these phantoms, the calibrations of some whole-body counters were carried out and the comparison of counting efficiency between anthropometric phantoms and block phantoms, which used to be used for the calibration of whole-body counters generally, was implemented. Five whole-body counters, one scanning system, two stationary systems and two chair systems, were used for this study. The following results were derived: As an example, in NIRS scanning system, the counting efficiency of anthropometric phantom of 162cm height was 12.7% greater than that of block phantom of the same height. This means 137 Cs body burdens in adult men used to be estimated with the excess of about 10%. Body burdens tended to be estimated excessively in adult because the difference of counting efficiency between anthropometric phantom and block phantom increases with increase of height. To standardize body burden data measured with various whole-body counters, the calibration of each whole-body counter should be conducted using anthropometric phantoms and phantoms which used to be used for the calibration of that whole-body counter. (author)

  6. Design and fabrication of a realistic anthropomorphic heterogeneous head phantom for MR purposes.

    Directory of Open Access Journals (Sweden)

    Sossena Wood

    Full Text Available The purpose of this study is to design an anthropomorphic heterogeneous head phantom that can be used for MRI and other electromagnetic applications.An eight compartment, physical anthropomorphic head phantom was developed from a 3T MRI dataset of a healthy male. The designed phantom was successfully built and preliminarily evaluated through an application that involves electromagnetic-tissue interactions: MRI (due to it being an available resource. The developed phantom was filled with media possessing electromagnetic constitutive parameters that correspond to biological tissues at ~297 MHz. A preliminary comparison between an in-vivo human volunteer (based on whom the anthropomorphic head phantom was created and various phantoms types, one being the anthropomorphic heterogeneous head phantom, were performed using a 7 Tesla human MRI scanner.Echo planar imaging was performed and minimal ghosting and fluctuations were observed using the proposed anthropomorphic phantom. The magnetic field distributions (during MRI experiments at 7 Tesla and the scattering parameter (measured using a network analyzer were most comparable between the anthropomorphic heterogeneous head phantom and an in-vivo human volunteer.The developed anthropomorphic heterogeneous head phantom can be used as a resource to various researchers in applications that involve electromagnetic-biological tissue interactions such as MRI.

  7. Agency over Phantom Limb Enhanced by Short-Term Mirror Therapy.

    Science.gov (United States)

    Imaizumi, Shu; Asai, Tomohisa; Koyama, Shinichi

    2017-01-01

    Most amputees experience phantom limb, whereby they feel that the amputated limb is still present. In some cases, these experiences include pain that can be alleviated by "mirror therapy." Mirror therapy consists of superimposing a mirrored image of the moving intact limb onto the phantom limb. This therapy provides a closed loop between the motor command to the amputated limb and its predicted visual feedback. This loop is also involved in the sense of agency, a feeling of controlling one's own body. However, it is unclear how mirror therapy is related to the sense of agency over a phantom limb. Using mirror therapy, we investigated phantom limb pain and the senses of agency and ownership (i.e., a feeling of having one's own body) of the phantom limb. Nine upper-limb amputees, five of whom reported recent phantom limb pain, underwent a single 15-min trial of mirror therapy. Before and after the trial, the participants completed a questionnaire regarding agency, ownership, and pain related to their phantom limb. They reported that the sense of agency over the phantom limb increased following the mirror therapy trial, while the ownership slightly increased but not as much as did the agency. The reported pain did not change; that is, it was comparably mild before and after the trial. These results suggest that short-term mirror therapy can, at least transiently, selectively enhance the sense of agency over a phantom limb, but may not alleviate phantom limb pain.

  8. Simultaneous calibration phantom commission and geometry calibration in cone beam CT

    Science.gov (United States)

    Xu, Yuan; Yang, Shuai; Ma, Jianhui; Li, Bin; Wu, Shuyu; Qi, Hongliang; Zhou, Linghong

    2017-09-01

    Geometry calibration is a vital step for describing the geometry of a cone beam computed tomography (CBCT) system and is a prerequisite for CBCT reconstruction. In current methods, calibration phantom commission and geometry calibration are divided into two independent tasks. Small errors in ball-bearing (BB) positioning in the phantom-making step will severely degrade the quality of phantom calibration. To solve this problem, we propose an integrated method to simultaneously realize geometry phantom commission and geometry calibration. Instead of assuming the accuracy of the geometry phantom, the integrated method considers BB centers in the phantom as an optimized parameter in the workflow. Specifically, an evaluation phantom and the corresponding evaluation contrast index are used to evaluate geometry artifacts for optimizing the BB coordinates in the geometry phantom. After utilizing particle swarm optimization, the CBCT geometry and BB coordinates in the geometry phantom are calibrated accurately and are then directly used for the next geometry calibration task in other CBCT systems. To evaluate the proposed method, both qualitative and quantitative studies were performed on simulated and realistic CBCT data. The spatial resolution of reconstructed images using dental CBCT can reach up to 15 line pair cm-1. The proposed method is also superior to the Wiesent method in experiments. This paper shows that the proposed method is attractive for simultaneous and accurate geometry phantom commission and geometry calibration.

  9. A low-cost phantom for simple routine testing of single photon emission computed tomography (SPECT) cameras

    International Nuclear Information System (INIS)

    Ng, A.H.; Ng, K.H.; Dharmendra, H.; Perkins, A.C.

    2009-01-01

    A simple sphere test phantom has been developed for routine performance testing of SPECT systems in situations where expensive commercial phantoms may not be available. The phantom was based on a design with six universal syringe hubs set in the frame to support a circular array of six glass blown spheres of different sizes. The frame was then placed into a water-filled CT abdomen phantom and scanned with a triple head camera system (Philips IRIX TM , USA). Comparison was made with a commercially available phantom (Deluxe Jaszczak phantom). Whereas the commercial phantom demonstrates cold spot resolution, an important advantage of the sphere test phantom was that hot spot resolution could be easily measured using almost half (370 MBq) of the activity recommended for use in the commercial phantom. Results showed that the contrast increased non-linearly with sphere volume and radionuclide concentration. The phantom was found to be suitable as an inexpensive option for daily performance tests.

  10. Magnetoencephalography Phantom Comparison and Validation: Hospital Universiti Sains Malaysia (HUSM) Requisite.

    Science.gov (United States)

    Omar, Hazim; Ahmad, Alwani Liyan; Hayashi, Noburo; Idris, Zamzuri; Abdullah, Jafri Malin

    2015-12-01

    Magnetoencephalography (MEG) has been extensively used to measure small-scale neuronal brain activity. Although it is widely acknowledged as a sensitive tool for deciphering brain activity and source localisation, the accuracy of the MEG system must be critically evaluated. Typically, on-site calibration with the provided phantom (Local phantom) is used. However, this method is still questionable due to the uncertainty that may originate from the phantom itself. Ideally, the validation of MEG data measurements would require cross-site comparability. A simple method of phantom testing was used twice in addition to a measurement taken with a calibrated reference phantom (RefPhantom) obtained from Elekta Oy of Helsinki, Finland. The comparisons of two main aspects were made in terms of the dipole moment (Qpp) and the difference in the dipole distance from the origin (d) after the tests of statistically equal means and variance were confirmed. The result of Qpp measurements for the LocalPhantom and RefPhantom were 978 (SD24) nAm and 988 (SD32) nAm, respectively, and were still optimally within the accepted range of 900 to 1100 nAm. Moreover, the shifted d results for the LocalPhantom and RefPhantom were 1.84 mm (SD 0.53) and 2.14 mm (SD 0.78), respectively, and these values were below the maximum acceptance range of within 5.0 mm of the nominal dipole location. The Local phantom seems to outperform the reference phantom as indicated by the small standard error of the former (SE 0.094) compared with the latter (SE 0.138). The result indicated that HUSM MEG system was in excellent working condition in terms of the dipole magnitude and localisation measurements as these values passed the acceptance limits criteria of the phantom test.

  11. A methodology to develop computational phantoms with adjustable posture for WBC calibration

    Science.gov (United States)

    Ferreira Fonseca, T. C.; Bogaerts, R.; Hunt, John; Vanhavere, F.

    2014-11-01

    A Whole Body Counter (WBC) is a facility to routinely assess the internal contamination of exposed workers, especially in the case of radiation release accidents. The calibration of the counting device is usually done by using anthropomorphic physical phantoms representing the human body. Due to such a challenge of constructing representative physical phantoms a virtual calibration has been introduced. The use of computational phantoms and the Monte Carlo method to simulate radiation transport have been demonstrated to be a worthy alternative. In this study we introduce a methodology developed for the creation of realistic computational voxel phantoms with adjustable posture for WBC calibration. The methodology makes use of different software packages to enable the creation and modification of computational voxel phantoms. This allows voxel phantoms to be developed on demand for the calibration of different WBC configurations. This in turn helps to study the major source of uncertainty associated with the in vivo measurement routine which is the difference between the calibration phantoms and the real persons being counted. The use of realistic computational phantoms also helps the optimization of the counting measurement. Open source codes such as MakeHuman and Blender software packages have been used for the creation and modelling of 3D humanoid characters based on polygonal mesh surfaces. Also, a home-made software was developed whose goal is to convert the binary 3D voxel grid into a MCNPX input file. This paper summarizes the development of a library of phantoms of the human body that uses two basic phantoms called MaMP and FeMP (Male and Female Mesh Phantoms) to create a set of male and female phantoms that vary both in height and in weight. Two sets of MaMP and FeMP phantoms were developed and used for efficiency calibration of two different WBC set-ups: the Doel NPP WBC laboratory and AGM laboratory of SCK-CEN in Mol, Belgium.

  12. A methodology to develop computational phantoms with adjustable posture for WBC calibration

    International Nuclear Information System (INIS)

    Fonseca, T C Ferreira; Vanhavere, F; Bogaerts, R; Hunt, John

    2014-01-01

    A Whole Body Counter (WBC) is a facility to routinely assess the internal contamination of exposed workers, especially in the case of radiation release accidents. The calibration of the counting device is usually done by using anthropomorphic physical phantoms representing the human body. Due to such a challenge of constructing representative physical phantoms a virtual calibration has been introduced. The use of computational phantoms and the Monte Carlo method to simulate radiation transport have been demonstrated to be a worthy alternative. In this study we introduce a methodology developed for the creation of realistic computational voxel phantoms with adjustable posture for WBC calibration. The methodology makes use of different software packages to enable the creation and modification of computational voxel phantoms. This allows voxel phantoms to be developed on demand for the calibration of different WBC configurations. This in turn helps to study the major source of uncertainty associated with the in vivo measurement routine which is the difference between the calibration phantoms and the real persons being counted. The use of realistic computational phantoms also helps the optimization of the counting measurement. Open source codes such as MakeHuman and Blender software packages have been used for the creation and modelling of 3D humanoid characters based on polygonal mesh surfaces. Also, a home-made software was developed whose goal is to convert the binary 3D voxel grid into a MCNPX input file. This paper summarizes the development of a library of phantoms of the human body that uses two basic phantoms called MaMP and FeMP (Male and Female Mesh Phantoms) to create a set of male and female phantoms that vary both in height and in weight. Two sets of MaMP and FeMP phantoms were developed and used for efficiency calibration of two different WBC set-ups: the Doel NPP WBC laboratory and AGM laboratory of SCK-CEN in Mol, Belgium. (paper)

  13. Design, manufacture, and evaluation of an anthropomorphic pelvic phantom purpose-built for radiotherapy dosimetric intercomparison

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, K. M.; Ebert, M. A.; Kron, T.; Howlett, S. J.; Cornes, D.; Hamilton, C. S.; Denham, J. W. [Department of Radiation Oncology, Calvary Mater Newcastle, Waratah, New South Wales 2298, Australia and School of Physics, University of Newcastle, New South Wales 2308 (Australia); Department of Radiation Oncology, Sir Charles Gairdner Hospital, Western Australia, Australia and School of Physics, University of Western Australia, Western Australia 6009 (Australia); Department of Physical Sciences, Peter MacCallum Cancer Centre, Victoria 8006 (Australia); Australiasian College of Physical Scientists and Engineers in Medicine, Sydney, New South Wales 2020 (Australia); Trans-Tasman Radiation Oncology Group, Calvary Mater Newcastle, New South Wales 2298 (Australia); Heidelberg Repatriation Hospital, Victoria 3081 (Australia); Department of Radiation Oncology, Calvary Mater Newcastle, Waratah, New South Wales 2298, Australia and School of Medicine and Population Health, University of Newcastle, New South Wales 2308 (Australia)

    2011-10-15

    Purpose: An anthropomorphic pelvic phantom was designed and constructed to meet specific criteria for multicenter radiotherapy dosimetric intercomparison. Methods: Three dimensional external and organ outlines were generated from a computed tomography image set of a male pelvis, forming the basis of design for an anatomically realistic phantom. Clinically relevant points of interest were selected throughout the dataset where point-dose values could be measured with thermoluminescence dosimeters and a small-volume ionization chamber. Following testing, three materials were selected and the phantom was manufactured using modern prototyping techniques into five separate coronal slices. Time lines and resource requirements for the phantom design and manufacture were recorded. The ability of the phantom to mimic the entire treatment chain was tested. Results: The phantom CT images indicated that organ densities and geometries were comparable to those of the original patient. The phantom proved simple to load for dosimetry and rapid to assemble. Due to heat release during manufacture, small air gaps and density heterogeneities were present throughout the phantom. The overall cost for production of the prototype phantom was comparable to other commercial anthropomorphic phantoms. The phantom was shown to be suitable for use as a ''patient'' to mimic the entire treatment chain for typical external beam radiotherapy for prostate and rectal cancer. Conclusions: The phantom constructed for the present study incorporates all characteristics necessary for accurate Level III intercomparison studies. Following use in an extensive Level III dosimetric comparison over a large time scale and geographic area, the phantom retained mechanical stability and did not show signs of radiation-induced degradation.

  14. Genes and Gene Therapy

    Science.gov (United States)

    ... correctly, a child can have a genetic disorder. Gene therapy is an experimental technique that uses genes to ... or prevent disease. The most common form of gene therapy involves inserting a normal gene to replace an ...

  15. Phantom motor execution facilitated by machine learning and augmented reality as treatment for phantom limb pain: a single group, clinical trial in patients with chronic intractable phantom limb pain.

    Science.gov (United States)

    Ortiz-Catalan, Max; Guðmundsdóttir, Rannveig A; Kristoffersen, Morten B; Zepeda-Echavarria, Alejandra; Caine-Winterberger, Kerstin; Kulbacka-Ortiz, Katarzyna; Widehammar, Cathrine; Eriksson, Karin; Stockselius, Anita; Ragnö, Christina; Pihlar, Zdenka; Burger, Helena; Hermansson, Liselotte

    2016-12-10

    Phantom limb pain is a debilitating condition for which no effective treatment has been found. We hypothesised that re-engagement of central and peripheral circuitry involved in motor execution could reduce phantom limb pain via competitive plasticity and reversal of cortical reorganisation. Patients with upper limb amputation and known chronic intractable phantom limb pain were recruited at three clinics in Sweden and one in Slovenia. Patients received 12 sessions of phantom motor execution using machine learning, augmented and virtual reality, and serious gaming. Changes in intensity, frequency, duration, quality, and intrusion of phantom limb pain were assessed by the use of the numeric rating scale, the pain rating index, the weighted pain distribution scale, and a study-specific frequency scale before each session and at follow-up interviews 1, 3, and 6 months after the last session. Changes in medication and prostheses were also monitored. Results are reported using descriptive statistics and analysed by non-parametric tests. The trial is registered at ClinicalTrials.gov, number NCT02281539. Between Sept 15, 2014, and April 10, 2015, 14 patients with intractable chronic phantom limb pain, for whom conventional treatments failed, were enrolled. After 12 sessions, patients showed statistically and clinically significant improvements in all metrics of phantom limb pain. Phantom limb pain decreased from pre-treatment to the last treatment session by 47% (SD 39; absolute mean change 1·0 [0·8]; p=0·001) for weighted pain distribution, 32% (38; absolute mean change 1·6 [1·8]; p=0·007) for the numeric rating scale, and 51% (33; absolute mean change 9·6 [8·1]; p=0·0001) for the pain rating index. The numeric rating scale score for intrusion of phantom limb pain in activities of daily living and sleep was reduced by 43% (SD 37; absolute mean change 2·4 [2·3]; p=0·004) and 61% (39; absolute mean change 2·3 [1·8]; p=0·001), respectively. Two of four

  16. Image based Monte Carlo modeling for computational phantom

    International Nuclear Information System (INIS)

    Cheng, M.; Wang, W.; Zhao, K.; Fan, Y.; Long, P.; Wu, Y.

    2013-01-01

    Full text of the publication follows. The evaluation on the effects of ionizing radiation and the risk of radiation exposure on human body has been becoming one of the most important issues for radiation protection and radiotherapy fields, which is helpful to avoid unnecessary radiation and decrease harm to human body. In order to accurately evaluate the dose on human body, it is necessary to construct more realistic computational phantom. However, manual description and verification of the models for Monte Carlo (MC) simulation are very tedious, error-prone and time-consuming. In addition, it is difficult to locate and fix the geometry error, and difficult to describe material information and assign it to cells. MCAM (CAD/Image-based Automatic Modeling Program for Neutronics and Radiation Transport Simulation) was developed as an interface program to achieve both CAD- and image-based automatic modeling. The advanced version (Version 6) of MCAM can achieve automatic conversion from CT/segmented sectioned images to computational phantoms such as MCNP models. Imaged-based automatic modeling program(MCAM6.0) has been tested by several medical images and sectioned images. And it has been applied in the construction of Rad-HUMAN. Following manual segmentation and 3D reconstruction, a whole-body computational phantom of Chinese adult female called Rad-HUMAN was created by using MCAM6.0 from sectioned images of a Chinese visible human dataset. Rad-HUMAN contains 46 organs/tissues, which faithfully represented the average anatomical characteristics of the Chinese female. The dose conversion coefficients (Dt/Ka) from kerma free-in-air to absorbed dose of Rad-HUMAN were calculated. Rad-HUMAN can be applied to predict and evaluate dose distributions in the Treatment Plan System (TPS), as well as radiation exposure for human body in radiation protection. (authors)

  17. Maladaptive plasticity: imprinting of past experiences onto phantom limb schemata.

    Science.gov (United States)

    Giummarra, Melita Joy; Georgiou-Karistianis, Nellie; Nicholls, Michael E R; Gibson, Stephen J; Chou, Michael; Bradshaw, John L

    2011-10-01

    Phantom limb perception is common following amputation, and is sometimes characterised by pain that resembles the characteristics, intensity or location of past pain. We tested Flor's model that phantom pain results from memory for long-lasting znoxious input. We report a questionnaire study of 283 amputees, that explored the experience of painful, non-painful and postural somatosensory memories in the phantom. We explore the impact of pre-amputation pain and impairment duration, and complications in the limb (eg, infection, gangrene, surgery, and vascular disease). Differences in mood, coping and adjustment to amputation are also explored in those with somatosensory pain memories. Our findings support Flor's model, as amputation-related and non-amputation-related pain memories, and non-painful memories comprised pains or sensations that were either enduring/recurring pains or sensations (eg, ingrown toenail, corns, chilblains, arthritis-type pain in winter, night-cramps, or holding a tennis racquet), or resulted from a painful event with a "core-trauma" element (eg, fracture, crushing/penetration injury). Pain memories related to amputation were more common following functional impairment before amputation; infection or surgery prior to amputation; or having diabetic or vascular amputations-which are associated with multiple complications, including neuropathic changes, infection and prior surgery. Furthermore, participants with amputation-related pain memories exhibited higher sensory pain ratings, as well as poorer mood and adjustment to the limitations of amputation. We propose that somatosensory pain memories likely relate to the generation and maintenance of limb representations upon which intense or emotionally powerful past experiences have been imprinted.

  18. Magnetic navigation in a coronary phantom: experimental results.

    Science.gov (United States)

    García-García, Héctor M; Tsuchida, Keiichi; Meulenbrug, Hans; Ong, Andrew T L; Van der Giessen, Willem J; Serruys, Patrick W

    2005-11-01

    The objective was to investigate the efficacy of a magnetic navigation system (MNS) in a coronary phantom. The number of coronary interventional procedures performed is steadily increasing with the availability of new devices to treat more complex lesions. Vessel tortuosity remains an important limiting factor in percutaneous coronary intervention. The MNS can orient the tip of magnetized wire. The coronary phantom is a representation of the coronary tree. Two operators using both a magnetic wire and a standard wire, measured the procedural time (PT), the fluoroscopic time (FT) and the radiation exposure/area product (DAP) required to navigate through to fourteen segments. Ten wire advancements were performed per segment. In all but two segments, the PT was significantly longer using magnetic navigation than using manual navigation. The median FT in the left main artery (LMA) - first septal segment was 7 seconds vs. 18 seconds, with magnetic and manual navigation respectively, (p=0.05); in the LMA - obtuse marginal segment the median FT was 15 seconds with magnetic navigation vs. 29.5 seconds with manual navigation, (p=0.01); in the segment from proximal right coronary artery (RCA1) to the acute marginal branch, the median FT was 8 seconds with magnetic vs. 11 seconds with manual navigation, (p=0.05); and in the RCA1 -posterior descending segment the median FT was 9.5 seconds with magnetic vs. 15 seconds with manual navigation, (p=0.006). The MNS facilitates wire access to distal segments in a coronary phantom, with a reduction in FT and radiation exposure using magnetic navigation in tortuous segments.

  19. Realistic phantoms to characterize dosimetry in pediatric CT

    Energy Technology Data Exchange (ETDEWEB)

    Carver, Diana E.; Kost, Susan D.; Fraser, Nicholas D.; Pickens, David R.; Price, Ronald R.; Stabin, Michael G. [Vanderbilt University Medical Center, Department of Radiology and Radiological Sciences, Nashville, TN (United States); Segars, W.P. [Duke University, Carl E. Ravin Advanced Imaging Laboratories, Durham, NC (United States)

    2017-05-15

    The estimation of organ doses and effective doses for children receiving CT examinations is of high interest. Newer, more realistic anthropomorphic body models can provide information on individual organ doses and improved estimates of effective dose. Previously developed body models representing 50th-percentile individuals at reference ages (newborn, 1, 5, 10 and 15 years) were modified to represent 10th, 25th, 75th and 90th height percentiles for both genders and an expanded range of ages (3, 8 and 13 years). We calculated doses for 80 pediatric reference phantoms from simulated chest-abdomen-pelvis exams on a model of a Philips Brilliance 64 CT scanner. Individual organ and effective doses were normalized to dose-length product (DLP) and fit as a function of body diameter. We calculated organ and effective doses for 80 reference phantoms and plotted them against body diameter. The data were well fit with an exponential function. We found DLP-normalized organ dose to correlate strongly with body diameter (R{sup 2}>0.95 for most organs). Similarly, we found a very strong correlation with body diameter for DLP-normalized effective dose (R{sup 2}>0.99). Our results were compared to other studies and we found average agreement of approximately 10%. We provide organ and effective doses for a total of 80 reference phantoms representing normal-stature children ranging in age and body size. This information will be valuable in replacing the types of vendor-reported doses available. These data will also permit the recording and tracking of individual patient doses. Moreover, this comprehensive dose database will facilitate patient matching and the ability to predict patient-individualized dose prior to examination. (orig.)

  20. Technical Note: Characterization of custom 3D printed multimodality imaging phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Bieniosek, Matthew F. [Department of Electrical Engineering, Stanford University, 350 Serra Mall, Stanford, California 94305 (United States); Lee, Brian J. [Department of Mechanical Engineering, Stanford University, 440 Escondido Mall, Stanford, California 94305 (United States); Levin, Craig S., E-mail: cslevin@stanford.edu [Departments of Radiology, Physics, Bioengineering and Electrical Engineering, Stanford University, 300 Pasteur Dr., Stanford, California 94305-5128 (United States)

    2015-10-15

    Purpose: Imaging phantoms are important tools for researchers and technicians, but they can be costly and difficult to customize. Three dimensional (3D) printing is a widely available rapid prototyping technique that enables the fabrication of objects with 3D computer generated geometries. It is ideal for quickly producing customized, low cost, multimodal, reusable imaging phantoms. This work validates the use of 3D printed phantoms by comparing CT and PET scans of a 3D printed phantom and a commercial “Micro Deluxe” phantom. This report also presents results from a customized 3D printed PET/MRI phantom, and a customized high resolution imaging phantom with sub-mm features. Methods: CT and PET scans of a 3D printed phantom and a commercial Micro Deluxe (Data Spectrum Corporation, USA) phantom with 1.2, 1.6, 2.4, 3.2, 4.0, and 4.8 mm diameter hot rods were acquired. The measured PET and CT rod sizes, activities, and attenuation coefficients were compared. A PET/MRI scan of a custom 3D printed phantom with hot and cold rods was performed, with photon attenuation and normalization measurements performed with a separate 3D printed normalization phantom. X-ray transmission scans of a customized two level high resolution 3D printed phantom with sub-mm features were also performed. Results: Results show very good agreement between commercial and 3D printed micro deluxe phantoms with less than 3% difference in CT measured rod diameter, less than 5% difference in PET measured rod diameter, and a maximum of 6.2% difference in average rod activity from a 10 min, 333 kBq/ml (9 μCi/ml) Siemens Inveon (Siemens Healthcare, Germany) PET scan. In all cases, these differences were within the measurement uncertainties of our setups. PET/MRI scans successfully identified 3D printed hot and cold rods on PET and MRI modalities. X-ray projection images of a 3D printed high resolution phantom identified features as small as 350 μm wide. Conclusions: This work shows that 3D printed

  1. Technical Note: Characterization of custom 3D printed multimodality imaging phantoms

    International Nuclear Information System (INIS)

    Bieniosek, Matthew F.; Lee, Brian J.; Levin, Craig S.

    2015-01-01

    Purpose: Imaging phantoms are important tools for researchers and technicians, but they can be costly and difficult to customize. Three dimensional (3D) printing is a widely available rapid prototyping technique that enables the fabrication of objects with 3D computer generated geometries. It is ideal for quickly producing customized, low cost, multimodal, reusable imaging phantoms. This work validates the use of 3D printed phantoms by comparing CT and PET scans of a 3D printed phantom and a commercial “Micro Deluxe” phantom. This report also presents results from a customized 3D printed PET/MRI phantom, and a customized high resolution imaging phantom with sub-mm features. Methods: CT and PET scans of a 3D printed phantom and a commercial Micro Deluxe (Data Spectrum Corporation, USA) phantom with 1.2, 1.6, 2.4, 3.2, 4.0, and 4.8 mm diameter hot rods were acquired. The measured PET and CT rod sizes, activities, and attenuation coefficients were compared. A PET/MRI scan of a custom 3D printed phantom with hot and cold rods was performed, with photon attenuation and normalization measurements performed with a separate 3D printed normalization phantom. X-ray transmission scans of a customized two level high resolution 3D printed phantom with sub-mm features were also performed. Results: Results show very good agreement between commercial and 3D printed micro deluxe phantoms with less than 3% difference in CT measured rod diameter, less than 5% difference in PET measured rod diameter, and a maximum of 6.2% difference in average rod activity from a 10 min, 333 kBq/ml (9 μCi/ml) Siemens Inveon (Siemens Healthcare, Germany) PET scan. In all cases, these differences were within the measurement uncertainties of our setups. PET/MRI scans successfully identified 3D printed hot and cold rods on PET and MRI modalities. X-ray projection images of a 3D printed high resolution phantom identified features as small as 350 μm wide. Conclusions: This work shows that 3D printed

  2. Technical Note: Characterization of custom 3D printed multimodality imaging phantoms.

    Science.gov (United States)

    Bieniosek, Matthew F; Lee, Brian J; Levin, Craig S

    2015-10-01

    Imaging phantoms are important tools for researchers and technicians, but they can be costly and difficult to customize. Three dimensional (3D) printing is a widely available rapid prototyping technique that enables the fabrication of objects with 3D computer generated geometries. It is ideal for quickly producing customized, low cost, multimodal, reusable imaging phantoms. This work validates the use of 3D printed phantoms by comparing CT and PET scans of a 3D printed phantom and a commercial "Micro Deluxe" phantom. This report also presents results from a customized 3D printed PET/MRI phantom, and a customized high resolution imaging phantom with sub-mm features. CT and PET scans of a 3D printed phantom and a commercial Micro Deluxe (Data Spectrum Corporation, USA) phantom with 1.2, 1.6, 2.4, 3.2, 4.0, and 4.8 mm diameter hot rods were acquired. The measured PET and CT rod sizes, activities, and attenuation coefficients were compared. A PET/MRI scan of a custom 3D printed phantom with hot and cold rods was performed, with photon attenuation and normalization measurements performed with a separate 3D printed normalization phantom. X-ray transmission scans of a customized two level high resolution 3D printed phantom with sub-mm features were also performed. Results show very good agreement between commercial and 3D printed micro deluxe phantoms with less than 3% difference in CT measured rod diameter, less than 5% difference in PET measured rod diameter, and a maximum of 6.2% difference in average rod activity from a 10 min, 333 kBq/ml (9 μCi/ml) Siemens Inveon (Siemens Healthcare, Germany) PET scan. In all cases, these differences were within the measurement uncertainties of our setups. PET/MRI scans successfully identified 3D printed hot and cold rods on PET and MRI modalities. X-ray projection images of a 3D printed high resolution phantom identified features as small as 350 μm wide. This work shows that 3D printed phantoms can be functionally equivalent to

  3. Comparison of methods for individualized astronaut organ dosimetry: Morphometry-based phantom library versus body contour autoscaling of a reference phantom

    Science.gov (United States)

    Sands, Michelle M.; Borrego, David; Maynard, Matthew R.; Bahadori, Amir A.; Bolch, Wesley E.

    2017-11-01

    One of the hazards faced by space crew members in low-Earth orbit or in deep space is exposure to ionizing radiation. It has been shown previously that while differences in organ-specific and whole-body risk estimates due to body size variations are small for highly-penetrating galactic cosmic rays, large differences in these quantities can result from exposure to shorter-range trapped proton or solar particle event radiations. For this reason, it is desirable to use morphometrically accurate computational phantoms representing each astronaut for a risk analysis, especially in the case of a solar particle event. An algorithm was developed to automatically sculpt and scale the UF adult male and adult female hybrid reference phantom to the individual outer body contour of a given astronaut. This process begins with the creation of a laser-measured polygon mesh model of the astronaut's body contour. Using the auto-scaling program and selecting several anatomical landmarks, the UF adult male or female phantom is adjusted to match the laser-measured outer body contour of the astronaut. A dosimetry comparison study was conducted to compare the organ dose accuracy of both the autoscaled phantom and that based upon a height-weight matched phantom from the UF/NCI Computational Phantom Library. Monte Carlo methods were used to simulate the environment of the August 1972 and February 1956 solar particle events. Using a series of individual-specific voxel phantoms as a local benchmark standard, autoscaled phantom organ dose estimates were shown to provide a 1% and 10% improvement in organ dose accuracy for a population of females and males, respectively, as compared to organ doses derived from height-weight matched phantoms from the UF/NCI Computational Phantom Library. In addition, this slight improvement in organ dose accuracy from the autoscaled phantoms is accompanied by reduced computer storage requirements and a more rapid method for individualized phantom generation

  4. Geometrothermodynamics of phantom AdS black holes

    Energy Technology Data Exchange (ETDEWEB)

    Quevedo, Hernando [Universidad Nacional Autonoma de Mexico, Instituto de Ciencias Nucleares, Mexico (Mexico); Universita di Roma ' ' La Sapienza' ' , Dipartimento di Fisica ed ICRANet, Rome (Italy); Quevedo, Maria N. [Facultad de Ciencias Basicas, Universidad Militar Nueva Granada, Departamento de Matematicas, Bogota (Colombia); Sanchez, Alberto [CIIDET, Departamento de Posgrado, Queretaro (Mexico)

    2016-03-15

    We show that to investigate the thermodynamic properties of charged phantom spherically symmetric anti-de Sitter black holes, it is necessary to consider the cosmological constant as a thermodynamic variable so that the corresponding fundamental equation is a homogeneous function defined on an extended equilibrium space. We explore all the thermodynamic properties of this class of black holes by using the classical physical approach, based upon the analysis of the fundamental equation, and the alternative mathematical approach as proposed in geometrothermodynamics. We show that both approaches are compatible and lead to equivalent results. (orig.)

  5. Optical response of the FXG solution to different phantom materials

    International Nuclear Information System (INIS)

    Cavinato, C.C.; Sakuraba, R.K.; Cruz, J.C.; Campos, L.L.

    2011-01-01

    The purpose of this work is to evaluate the performance of the Fricke xylenol gel (FXG) solution developed at IPEN, prepared with 270 Bloom gelatine (made in Brazil), for clinical electron beams to the reference depth, using different phantom materials. The colour change, optical absorption spectra, intra and inter-batches reproducibility, dose-response, lower detection limit, energy and dose rate dependent response and response uniformity were studied. The excellent results obtained indicate the viability of employing this solution in 2D spectrophotometric dosimetry (could be extended to 3D MRI dosimetry) to be applied in quality assurance for clinical radiotherapy treatment planning of superficial tumours being treated with clinical electron beams.

  6. Code system to compute radiation dose in human phantoms

    International Nuclear Information System (INIS)

    Ryman, J.C.; Cristy, M.; Eckerman, K.F.; Davis, J.L.; Tang, J.S.; Kerr, G.D.

    1986-01-01

    Monte Carlo photon transport code and a code using Monte Carlo integration of a point kernel have been revised to incorporate human phantom models for an adult female, juveniles of various ages, and a pregnant female at the end of the first trimester of pregnancy, in addition to the adult male used earlier. An analysis code has been developed for deriving recommended values of specific absorbed fractions of photon energy. The computer code system and calculational method are described, emphasizing recent improvements in methods

  7. A new head phantom with realistic shape and spatially varying skull resistivity distribution.

    Science.gov (United States)

    Li, Jian-Bo; Tang, Chi; Dai, Meng; Liu, Geng; Shi, Xue-Tao; Yang, Bin; Xu, Can-Hua; Fu, Feng; You, Fu-Sheng; Tang, Meng-Xing; Dong, Xiu-Zhen

    2014-02-01

    Brain electrical impedance tomography (EIT) is an emerging method for monitoring brain injuries. To effectively evaluate brain EIT systems and reconstruction algorithms, we have developed a novel head phantom that features realistic anatomy and spatially varying skull resistivity. The head phantom was created with three layers, representing scalp, skull, and brain tissues. The fabrication process entailed 3-D printing of the anatomical geometry for mold creation followed by casting to ensure high geometrical precision and accuracy of the resistivity distribution. We evaluated the accuracy and stability of the phantom. Results showed that the head phantom achieved high geometric accuracy, accurate skull resistivity values, and good stability over time and in the frequency domain. Experimental impedance reconstructions performed using the head phantom and computer simulations were found to be consistent for the same perturbation object. In conclusion, this new phantom could provide a more accurate test platform for brain EIT research.

  8. Development of mathematical pediatric phantoms for internal dose calculations: designs, limitations, and prospects

    International Nuclear Information System (INIS)

    Cristy, M.

    1980-01-01

    Mathematical phantoms of the human body at various ages are employed with Monte Carlo radiation transport codes for calculation of photon specific absorbed fractions. The author has developed a pediatric phantom series based on the design of the adult phantom, but with explicit equations for each organ so that organ sizes and marrow distributions could be assigned properly. Since the phantoms comprise simple geometric shapes, predictive dose capability is limited when geometry is critical to the calculation. Hence, there is a demand for better phantom design in situations where geometry is critical, such as for external irradiation or for internal emitters with low energy photons. Recent advances in computerized axial tomography (CAT) present the potential for derivation of anatomical information, which is so critical to development of phantoms, and ongoing developmental work on compuer architecture to handle large arrays for Monte Carlo calculations should make complex-geometry dose calculations economically feasible within this decade

  9. Quantification of breast density using dual-energy mammography with liquid phantom calibration

    International Nuclear Information System (INIS)

    Lam, Alfonso R; Ding, Huanjun; Molloi, Sabee

    2014-01-01

    Breast density is a widely recognized potential risk factor for breast cancer. However, accurate quantification of breast density is a challenging task in mammography. The current use of plastic breast-equivalent phantoms for calibration provides limited accuracy in dual-energy mammography due to the chemical composition of the phantom. We implemented a breast-equivalent liquid phantom for dual-energy calibration in order to improve the accuracy of breast density measurement. To design these phantoms, three liquid compounds were chosen: water, isopropyl alcohol, and glycerol. Chemical compositions of glandular and adipose tissues, obtained from NIST database, were used as reference materials. Dual-energy signal of the liquid phantom at different breast densities (0% to 100%) and thicknesses (1 to 8 cm) were simulated. Glandular and adipose tissue thicknesses were estimated from a higher order polynomial of the signals. Our results indicated that the linear attenuation coefficients of the breast-equivalent liquid phantoms match those of the target material. Comparison between measured and known breast density data shows a linear correlation with a slope close to 1 and a non-zero intercept of 7%, while plastic phantoms showed a slope of 0.6 and a non-zero intercept of 8%. Breast density results derived from the liquid calibration phantoms showed higher accuracy than those derived from the plastic phantoms for different breast thicknesses and various tube voltages. We performed experimental phantom studies using liquid phantoms and then compared the computed breast density with those obtained using a bovine tissue model. The experimental data and the known values were in good correlation with a slope close to 1 (∼1.1). In conclusion, our results indicate that liquid phantoms are a reliable alternative for calibration in dual-energy mammography and better reproduce the chemical properties of the target material. (paper)

  10. Influence of variation in eumelanin content on absorbance spectra of liquid skin-like phantoms

    CSIR Research Space (South Africa)

    Smit, Jacoba E

    2011-01-01

    Full Text Available are often always limited. Hence the use of skin-like phantoms. Bashkatov et al. (25) measured the optical properties of gelatin skin-like phantoms prepared from different concentrations of synthetic and natural (from Sepia officianalis) melanin. Fat... emulsions like Intralipid are commonly used to mimic light propagation in turbit media (26) and hence Shimada et al. (27) used similar gelatin and Sepia melanin phantoms and added Intralipid to mimic the scattering properties of human skin. The purpose...

  11. Adult phantoms as function of body mass, height and posture by using caucasian anthropomorphic statistics

    International Nuclear Information System (INIS)

    Kramer, Richard; Cassola, Vagner Ferreira; Lira, Carlos Alberto Brayner de Oliveira; Khoury, Helen Jamil; Milian, Felix Mas

    2011-01-01

    The CALLDose X 4.0 computer program uses conversion coefficients for the MASH and FASH adult phantoms on the vertical and supine postures, representing the standard man and woman according to ICRP 90 and are called 'basic phantoms'. For improving the representation of real patients in the CALLDose X , this paper developed adults phantoms as function of mass and height by using anthropometric data from nine of them prevailing caucasian countries

  12. Anthropomorphic Phantoms for Confirmation of Linear Accelerator-Based Small Animal Irradiation.

    Science.gov (United States)

    Perks, Julian R; Lucero, Steven; Monjazeb, Arta M; Li, Jian Jian

    2015-03-01

    Three dimensional (3D) scanning and printing technology is utilized to create phantom models of mice in order to assess the accuracy of ionizing radiation dosing from a clinical, human-based linear accelerator. Phantoms are designed to simulate a range of research questions, including irradiation of lung tumors and primary subcutaneous or orthotopic tumors for immunotherapy experimentation. The phantoms are used to measure the accuracy of dose delivery and then refine it to within 1% of the prescribed dose.

  13. Breast internal dose measurements in a physical thoracic phantom

    Energy Technology Data Exchange (ETDEWEB)

    Silva, S.D.; Oliveira, M.A.; Castro, A.L.S.; Dias, H.G.; Nogueira, L.B.; Campos, T.P.R., E-mail: sadonatosilva@hotmail.com [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Hospital das Clinicas de Uberlandia, MG (Brazil). Departamento de Oncologia; Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Anatomia e Departamento de Imagem

    2017-10-01

    Radiotherapy is a cancer treatment intended to deposit the entire prescribed dose homogeneously into a target volume in order to eliminate the tumor and to spare the surrounding healthy tissues. This paper aimed to provide a dosimetric comparison between the treatment planning system (TPS) ECLIPSE from Varian Medical Systems and the internal dosimetric measurements in a breast phantom. The methodology consisted in performing a 3D conformal radiotherapy planning with two tangential opposite parallel fields applied to the synthetic breast in a thoracic phantom. The irradiation was reproduced in the Varian Linear accelerator, model SL - 20 Precise, 6 MV energy. EBT2 Radiochromic films, placed into the glandular equivalent tissue of the breast, were used to measure the spatial dose distribution. The absorbed dose was compared to those values predicted by the treatment planning system; besides, the dosimetric uncertainties were analyzed. The modal absorbed dose was in agreement with the prescribed value of 180 cGy, although few high dose points between 180 and 220 cGy were detected. The findings suggested a non-uniform dose distribution in the glandular tissue of the synthetic breast, similar to those found in the TPS, associated with the irregular anatomic breast shape and presence of inhomogeneities next to the thoracic wall generated by the low lung density. (author)

  14. Synthesized interstitial lung texture for use in anthropomorphic computational phantoms

    Science.gov (United States)

    Becchetti, Marc F.; Solomon, Justin B.; Segars, W. Paul; Samei, Ehsan

    2016-04-01

    A realistic model of the anatomical texture from the pulmonary interstitium was developed with the goal of extending the capability of anthropomorphic computational phantoms (e.g., XCAT, Duke University), allowing for more accurate image quality assessment. Contrast-enhanced, high dose, thorax images for a healthy patient from a clinical CT system (Discovery CT750HD, GE healthcare) with thin (0.625 mm) slices and filtered back- projection (FBP) were used to inform the model. The interstitium which gives rise to the texture was defined using 24 volumes of interest (VOIs). These VOIs were selected manually to avoid vasculature, bronchi, and bronchioles. A small scale Hessian-based line filter was applied to minimize the amount of partial-volumed supernumerary vessels and bronchioles within the VOIs. The texture in the VOIs was characterized using 8 Haralick and 13 gray-level run length features. A clustered lumpy background (CLB) model with added noise and blurring to match CT system was optimized to resemble the texture in the VOIs using a genetic algorithm with the Mahalanobis distance as a similarity metric between the texture features. The most similar CLB model was then used to generate the interstitial texture to fill the lung. The optimization improved the similarity by 45%. This will substantially enhance the capabilities of anthropomorphic computational phantoms, allowing for more realistic CT simulations.

  15. CT dose profiles and MSAD calculation in a chest phantom

    International Nuclear Information System (INIS)

    Oliveira, Bruno Beraldo; Silva, Teogenes Augusto da

    2011-01-01

    For optimizing patient doses in computed tomography (CT), the Brazilian legislation has only established diagnostic reference levels (DRLs) in terms of Multiple Scan Average Dose (MSAD) in a typical adult as a quality control parameter for CT scanners. Compliance with the DRLs can be verified by measuring the Computed Tomography Air Kerma Index with a calibrated pencil ionization chamber or by obtaining the dose distribution in CT scans. An analysis of the quality of five CT scanners in Belo Horizonte was done in terms of dose profile of chest scans and MSAD determinations. Measurements were done with rod shape lithium fluoride thermoluminescent dosimeters (TLD-100) distributed in cylinders positioned in peripheral and central regions of a polymethylmethacrylate chest phantom. The peripheral regions presented higher dose values. The longitudinal dose variation can be observed and the maximum dose was recorded at the edges of the phantom at the midpoint of the longitudinal axis. The MSAD results were in according to the DRL of 25 mGy established by Brazilian legislation. The results contribute to disseminate to hospitals and radiologists the proper procedure to use the thermoluminescent dosimeters for the calculation of the MSAD from the CT dose profiles and to notice the compliance with the DRLs. (author)

  16. Simulation of computed tomography dose based on voxel phantom

    Science.gov (United States)

    Liu, Chunyu; Lv, Xiangbo; Li, Zhaojun

    2017-01-01

    Computed Tomography (CT) is one of the preferred and the most valuable imaging tool used in diagnostic radiology, which provides a high-quality cross-sectional image of the body. It still causes higher doses of radiation to patients comparing to the other radiological procedures. The Monte-Carlo method is appropriate for estimation of the radiation dose during the CT examinations. The simulation of the Computed Tomography Dose Index (CTDI) phantom was developed in this paper. Under a similar conditions used in physical measurements, dose profiles were calculated and compared against the measured values that were reported. The results demonstrate a good agreement between the calculated and the measured doses. From different CT exam simulations using the voxel phantom, the highest absorbed dose was recorded for the lung, the brain, the bone surface. A comparison between the different scan type shows that the effective dose for a chest scan is the highest one, whereas the effective dose values during abdomen and pelvis scan are very close, respectively. The lowest effective dose resulted from the head scan. Although, the dose in CT is related to various parameters, such as the tube current, exposure time, beam energy, slice thickness and patient size, this study demonstrates that the MC simulation is a useful tool to accurately estimate the dose delivered to any specific organs for patients undergoing the CT exams and can be also a valuable technique for the design and the optimization of the CT x-ray source.

  17. I-125 seed dose estimates in heterogeneous phantom

    International Nuclear Information System (INIS)

    Branco, Isabela S.L.; Antunes, Paula C.G.; Cavalieri, Tassio A.; Moura, Eduardo S.; Zeituni, Carlos A.; Yoriyaz, Helio

    2015-01-01

    Brachytherapy plays an important role in the healing process involving tumors in a variety of diseases. Several studies are currently conducted to examine the heterogeneity effects of different tissues and organs in brachytherapy clinical situations and a great effort has been made to incorporate new methodologies to estimate doses with greater accuracy. The objective of this study is to contribute to the assessment of heterogeneous effects on dose due to I-125 brachytherapy source in the presence of different materials with different densities and chemical compositions. The study was performed in heterogeneous phantoms using materials that simulate human tissues. Among these is quoted: breast, fat, muscle, lungs (exhaled and inhaled) and bones with different densities. Monte Carlo simulations for dose calculation in these phantoms were held and subsequently validated. The model 6711 I-125 seed was considered because it is widely used as a brachytherapy permanent implant and the one used in clinics and hospitals in Brazil. Thermoluminescent dosimeters TLD-700 (LiF: Mg, Ti) were simulated for dose assess. Several tissue configurations and positioning of I-125 sources were studied by simulations for future dose measurements. The methodology of this study so far shall be suitable for accurate dosimetric evaluation for different types of brachytherapy treatments, contributing to brachytherapy planning systems complementation allowing a better assessment of the dose actually delivered to the patient. (author)

  18. Annihilation photon acollinearity in PET: volunteer and phantom FDG studies

    Energy Technology Data Exchange (ETDEWEB)

    Shibuya, Kengo [Department of Biophysics, Molecular Imaging Center, National Institute of Radiological Sciences, Anagawa 4-9-1, Inage, Chiba 263-8555 (Japan); Yoshida, Eiji [Department of Biophysics, Molecular Imaging Center, National Institute of Radiological Sciences, Anagawa 4-9-1, Inage, Chiba 263-8555 (Japan); Nishikido, Fumihiko [Department of Biophysics, Molecular Imaging Center, National Institute of Radiological Sciences, Anagawa 4-9-1, Inage, Chiba 263-8555 (Japan); Suzuki, Toshikazu [Department of Dose Assessment, Research Center for Radiation Emergency Medicine, National Institute of Radiological Sciences, Anagawa 4-9-1, Inage, Chiba 263-8555 (Japan); Tsuda, Tomoaki [Department of Biophysics, Molecular Imaging Center, National Institute of Radiological Sciences, Anagawa 4-9-1, Inage, Chiba 263-8555 (Japan); Inadama, Naoko [Department of Biophysics, Molecular Imaging Center, National Institute of Radiological Sciences, Anagawa 4-9-1, Inage, Chiba 263-8555 (Japan); Yamaya, Taiga [Department of Biophysics, Molecular Imaging Center, National Institute of Radiological Sciences, Anagawa 4-9-1, Inage, Chiba 263-8555 (Japan); Murayama, Hideo [Department of Biophysics, Molecular Imaging Center, National Institute of Radiological Sciences, Anagawa 4-9-1, Inage, Chiba 263-8555 (Japan)

    2007-09-07

    Annihilation photon acollinearity is a fundamental but little investigated problem in positron emission tomography (PET). In this paper, the cause of the angular deviation from 180.00{sup 0} is described as well as how to evaluate it under conditions of a spatially distributed radiation source and a limited acquisition time for the human body. A relationship between the shape of the photopeak spectrum and the angular distribution is formulated using conservation laws of momentum and energy over the pair annihilation. Then the formula is used to evaluate the acollinearity for a pool phantom and the human body with FDG injected. The angular distribution for the pool phantom agrees well with that for pure water which had been directly measured by Colombino et al in 1965 (Nuovo Cimento 38 707-23), and also with that for the human body determined in this study. Pure water can be considered as a good approximation of the human body regarding the angular deviation. The blurring coefficient to be multiplied by the ring diameter in calculations of the PET spatial resolution is experimentally determined for the first time as 0.00243 {+-} 0.00014; this is 10% larger than the value widely used by investigators.

  19. Bulk viscosity, interaction and the viability of phantom solutions

    Energy Technology Data Exchange (ETDEWEB)

    Leyva, Yoelsy; Sepulveda, Mirko [Universidad de Tarapaca, Departamento de Fisica, Facultad de Ciencias, Arica (Chile)

    2017-06-15

    We study the dynamics of a bulk viscosity model in the Eckart approach for a spatially flat Friedmann-Robertson-Walker (FRW) Universe. We have included radiation and dark energy, assumed as perfect fluids, and dark matter treated as an imperfect fluid having bulk viscosity. We also introduce an interaction term between the dark matter and dark energy components. Considering that the bulk viscosity is proportional to the dark matter energy density and imposing a complete cosmological dynamics, we find bounds on the bulk viscosity in order to reproduce a matter-dominated era (MDE). This constraint is independent of the interaction term. Some late time phantom solutions are mathematically possible. However, the constraint imposed by a MDE restricts the interaction parameter, in the phantom solutions, to a region consistent with a null value, eliminating the possibility of late time stable solutions with w < -1. From the different cases that we study, the only possible scenario, with bulk viscosity and interaction term, belongs to the quintessence region. In the latter case, we find bounds on the interaction parameter compatible with latest observational data. (orig.)

  20. I-125 seed dose estimates in heterogeneous phantom

    Energy Technology Data Exchange (ETDEWEB)

    Branco, Isabela S.L.; Antunes, Paula C.G.; Cavalieri, Tassio A.; Moura, Eduardo S.; Zeituni, Carlos A.; Yoriyaz, Helio, E-mail: isabela.slbranco@gmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Brachytherapy plays an important role in the healing process involving tumors in a variety of diseases. Several studies are currently conducted to examine the heterogeneity effects of different tissues and organs in brachytherapy clinical situations and a great effort has been made to incorporate new methodologies to estimate doses with greater accuracy. The objective of this study is to contribute to the assessment of heterogeneous effects on dose due to I-125 brachytherapy source in the presence of different materials with different densities and chemical compositions. The study was performed in heterogeneous phantoms using materials that simulate human tissues. Among these is quoted: breast, fat, muscle, lungs (exhaled and inhaled) and bones with different densities. Monte Carlo simulations for dose calculation in these phantoms were held and subsequently validated. The model 6711 I-125 seed was considered because it is widely used as a brachytherapy permanent implant and the one used in clinics and hospitals in Brazil. Thermoluminescent dosimeters TLD-700 (LiF: Mg, Ti) were simulated for dose assess. Several tissue configurations and positioning of I-125 sources were studied by simulations for future dose measurements. The methodology of this study so far shall be suitable for accurate dosimetric evaluation for different types of brachytherapy treatments, contributing to brachytherapy planning systems complementation allowing a better assessment of the dose actually delivered to the patient. (author)

  1. 3-Form Cosmology: Phantom Behaviour, Singularities and Interactions

    Directory of Open Access Journals (Sweden)

    João Morais

    2017-03-01

    Full Text Available The latest cosmological observations by the Planck collaboration (and combined with others are compatible with a phantom-like behaviour ( w < − 1 for the dark energy equation of state that drives the current acceleration of the Universe. With this mindset, we look into models where dark energy is described by a 3-form field minimally coupled to gravity. When compared to a scalar field, these models have the advantage of more naturally accommodating a cosmological-constant and phantom-like behaviours. We show how the latter happens for a fairly general class of positive-valued potentials, and through a dynamical system approach, we find that in such cases the 3-form field leads the Universe into a Little Sibling of the Big Rip singular event into the future. In this work, we explore the possibility of avoiding such singularity via an interaction in the dark sector between cold dark matter and the 3-form field. For the kind of interactions considered, we deduce a condition for replacing the LSBR by a late time de Sitter phase. For specific examples of interactions that meet this condition, we look for distinctive imprints in the statefinder hierarchy { S 3 ( 1 ; S 4 ( 1 } , { S 3 ( 1 ; S 5 ( 1 } , and in the growth rate of matter, ϵ ( z , through the composite null diagnostic (CND.

  2. PVAL breast phantom for dual energy calcification detection

    International Nuclear Information System (INIS)

    Koukou, V; Martini, N; Velissarakos, K; Gkremos, D; Michail, C; Kandarakis, I; Fountos, G; Fountzoula, C; Bakas, A

    2015-01-01

    Microcalcifications are the main indicator for breast cancer. Dual energy imaging can enhance the detectability of calcifications by suppressing the tissue background. Two digital images are obtained using two different spectra, for the low- and high-energy respectively, and a weighted subtracted image is produced. In this study, a dual energy method for the detection of the minimum breast microcalcification thickness was developed. The used integrated prototype system consisted of a modified tungsten anode X-ray tube combined with a high resolution CMOS sensor. The breast equivalent phantom used was an elastically compressible gel of polyvinyl alcohol (PVAL). Hydroxyapatite was used to simulate microcalcifications with thicknesses ranging from 50 to 500 μm. The custom made phantom was irradiated with 40kVp and 70kVp. Tungsten (W) anode spectra filtered with 100μm Cadmium and 1000pm Copper, for the low- and high-energy, respectively. Microcalcifications with thicknesses 300μm or higher can be detected with mean glandular dose (MGD) of 1.62mGy. (paper)

  3. A novel composite material specifically developed for ultrasound bone phantoms: cortical, trabecular and skull

    International Nuclear Information System (INIS)

    Wydra, A; Maev, R Gr

    2013-01-01

    In the various stages of developing diagnostic and therapeutic equipment, the use of phantoms can play a very important role in improving the process, help in implementation, testing and calibrations. Phantoms are especially useful in developing new applications and training new doctors in medical schools. However, devices that use different physical factors, such as MRI, Ultrasound, CT Scan, etc will require the phantom to be made of different physical properties. In this paper we introduce the properties of recently designed new materials for developing phantoms for ultrasonic human body investigation, which in today's market make up more than 30% in the world of phantoms. We developed a novel composite material which allows fabrication of various kinds of ultrasound bone phantoms to mimic most of the acoustical properties of human bones. In contrast to the ex vivo tissues, the proposed material can maintain the physical and acoustical properties unchanged for long periods of time; moreover, these properties can be custom designed and created to suit specific needs. As a result, we introduce three examples of ultrasound phantoms that we manufactured in our laboratory: cortical, trabecular and skull bone phantoms. The paper also presents the results of a comparison study between the acoustical and physical properties of actual human bones (reported in the referenced literatures) and the phantoms manufactured by us. (note)

  4. Phantom positioning variation in the Gamma Knife® Perfexion dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Nathalia Almeida; Potiens, Maria da Penha Albuquerque [Instituto de Pesquisas Energeticas e Nucleres (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Saraiva, Crystian [Hospital do Coracao, Sao Paulo, SP (Brazil)

    2015-07-01

    The use of small volume ionization chamber has become required for the dosimetry of equipment that use small radiation fields. A pinpoint ionization chamber is ideal for the dosimetry of a Gamma Knife® Perfexion (GKP) unit. In this work, this chamber was inserted into the phantom, and measurements were performed with the phantom in different positions, in order to verify if the change in the phantom positioning affects the dosimetry of the GKP. Three different phantom positions were performed. The variation in the result is within the range allowed for the dosimetry of a GKP equipment. (author)

  5. Design of a phantom multitrous for a gamma camera quality control

    International Nuclear Information System (INIS)

    Ben Krir, Wafa; Ben Ameur, Narjes

    2009-01-01

    In this study we presented the technique of scintigraphy in its various theoretical and practical aspects. We have also shown the importance the quality control procedure according to international standards, as NEMA. Starting from different phantoms currently used, developed according to standards, we designed our phantom. On the other part, this implementation has helped to highlight our expectations in Concerning the functionality of the phantom. Indeed, these results were very conclusive since they made it possible to make a very fast cost and quality control without ambiguity lower. We have thus proved the very advanced stage of reliability of our phantom.

  6. Disappearance of "phantom limb" and amputated arm usage during dreaming in REM sleep behaviour disorder.

    Science.gov (United States)

    Vetrugno, Roberto; Arnulf, Isabelle; Montagna, Pasquale

    2009-01-01

    Limb amputation is followed, in approximately 90% of patients, by "phantom limb" sensations during wakefulness. When amputated patients dream, however, the phantom limb may be present all the time, part of the time, intermittently or not at all. Such dreaming experiences in amputees have usually been obtained only retrospectively in the morning and, moreover, dreaming is normally associated with muscular atonia so the motor counterpart of the phantom limb experience cannot be observed directly. REM sleep behaviour disorder (RBD), in which muscle atonia is absent during REM sleep and patients act out their dreams, allows a more direct analysis of the "phantom limb" phenomena and their modifications during sleep.

  7. Solid tissue simulating phantoms having absorption at 970 nm for diffuse optics

    Science.gov (United States)

    Kennedy, Gordon T.; Lentsch, Griffin R.; Trieu, Brandon; Ponticorvo, Adrien; Saager, Rolf B.; Durkin, Anthony J.

    2017-07-01

    Tissue simulating phantoms can provide a valuable platform for quantitative evaluation of the performance of diffuse optical devices. While solid phantoms have been developed for applications related to characterizing exogenous fluorescence and intrinsic chromophores such as hemoglobin and melanin, we report the development of a poly(dimethylsiloxane) (PDMS) tissue phantom that mimics the spectral characteristics of tissue water. We have developed these phantoms to mimic different water fractions in tissue, with the purpose of testing new devices within the context of clinical applications such as burn wound triage. Compared to liquid phantoms, cured PDMS phantoms are easier to transport and use and have a longer usable life than gelatin-based phantoms. As silicone is hydrophobic, 9606 dye was used to mimic the optical absorption feature of water in the vicinity of 970 nm. Scattering properties are determined by adding titanium dioxide, which yields a wavelength-dependent scattering coefficient similar to that observed in tissue in the near-infrared. Phantom properties were characterized and validated using the techniques of inverse adding-doubling and spatial frequency domain imaging. Results presented here demonstrate that we can fabricate solid phantoms that can be used to simulate different water fractions.

  8. A Novel Simple Phantom for Verifying the Dose of Radiation Therapy

    Directory of Open Access Journals (Sweden)

    J. H. Lee

    2015-01-01

    Full Text Available A standard protocol of dosimetric measurements is used by the organizations responsible for verifying that the doses delivered in radiation-therapy institutions are within authorized limits. This study evaluated a self-designed simple auditing phantom for use in verifying the dose of radiation therapy; the phantom design, dose audit system, and clinical tests are described. Thermoluminescent dosimeters (TLDs were used as postal dosimeters, and mailable phantoms were produced for use in postal audits. Correction factors are important for converting TLD readout values from phantoms into the absorbed dose in water. The phantom scatter correction factor was used to quantify the difference in the scattered dose between a solid water phantom and homemade phantoms; its value ranged from 1.084 to 1.031. The energy-dependence correction factor was used to compare the TLD readout of the unit dose irradiated by audit beam energies with 60Co in the solid water phantom; its value was 0.99 to 1.01. The setup-condition factor was used to correct for differences in dose-output calibration conditions. Clinical tests of the device calibrating the dose output revealed that the dose deviation was within 3%. Therefore, our homemade phantoms and dosimetric system can be applied for accurately verifying the doses applied in radiation-therapy institutions.

  9. NURBS-based 3-d anthropomorphic computational phantoms for radiation dosimetry applications

    International Nuclear Information System (INIS)

    Lee, Choonsik; Lodwick, Daniel; Lee, Choonik; Bolch, Wesley E.

    2007-01-01

    Computational anthropomorphic phantoms are computer models used in the evaluation of absorbed dose distributions within the human body. Currently, two classes of the computational phantoms have been developed and widely utilised for dosimetry calculation: (1) stylized (equation-based) and (2) voxel (image-based) phantoms describing human anatomy through the use of mathematical surface equations and 3-D voxel matrices, respectively. However, stylized phantoms have limitations in defining realistic organ contours and positioning as compared to voxel phantoms, which are themselves based on medical images of human subjects. In turn, voxel phantoms that have been developed through medical image segmentation have limitations in describing organs that are presented in low contrast within either magnetic resonance or computed tomography image. The present paper reviews the advantages and disadvantages of these existing classes of computational phantoms and introduces a hybrid approach to a computational phantom construction based on non-uniform rational B-Spline (NURBS) surface animation technology that takes advantage of the most desirable features of the former two phantom types. (authors)

  10. Population of anatomically variable 4D XCAT adult phantoms for imaging research and optimization

    Energy Technology Data Exchange (ETDEWEB)

    Segars, W. P.; Bond, Jason; Frush, Jack; Hon, Sylvia; Eckersley, Chris; Samei, E. [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Williams, Cameron H.; Frush, D. [Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710 (United States); Feng Jianqiao; Tward, Daniel J.; Ratnanather, J. T.; Miller, M. I. [Center for Imaging Science, Johns Hopkins University, Baltimore, Maryland 21218 (United States)

    2013-04-15

    Purpose: The authors previously developed the 4D extended cardiac-torso (XCAT) phantom for multimodality imaging research. The XCAT consisted of highly detailed whole-body models for the standard male and female adult, including the cardiac and respiratory motions. In this work, the authors extend the XCAT beyond these reference anatomies by developing a series of anatomically variable 4D XCAT adult phantoms for imaging research, the first library of 4D computational phantoms. Methods: The initial anatomy of each phantom was based on chest-abdomen-pelvis computed tomography data from normal patients obtained from the Duke University database. The major organs and structures for each phantom were segmented from the corresponding data and defined using nonuniform rational B-spline surfaces. To complete the body, the authors manually added on the head, arms, and legs using the original XCAT adult male and female anatomies. The structures were scaled to best match the age and anatomy of the patient. A multichannel large deformation diffeomorphic metric mapping algorithm was then used to calculate the transform from the template XCAT phantom (male or female) to the target patient model. The transform was applied to the template XCAT to fill in any unsegmented structures within the target phantom and to implement the 4D cardiac and respiratory models in the new anatomy. Each new phantom was refined by checking for anatomical accuracy via inspection of the models. Results: Using these methods, the authors created a series of computerized phantoms with thousands of anatomical structures and modeling cardiac and respiratory motions. The database consists of 58 (35 male and 23 female) anatomically variable phantoms in total. Like the original XCAT, these phantoms can be combined with existing simulation packages to simulate realistic imaging data. Each new phantom contains parameterized models for the anatomy and the cardiac and respiratory motions and can, therefore, serve

  11. Population of anatomically variable 4D XCAT adult phantoms for imaging research and optimization

    International Nuclear Information System (INIS)

    Segars, W. P.; Bond, Jason; Frush, Jack; Hon, Sylvia; Eckersley, Chris; Samei, E.; Williams, Cameron H.; Frush, D.; Feng Jianqiao; Tward, Daniel J.; Ratnanather, J. T.; Miller, M. I.

    2013-01-01

    Purpose: The authors previously developed the 4D extended cardiac-torso (XCAT) phantom for multimodality imaging research. The XCAT consisted of highly detailed whole-body models for the standard male and female adult, including the cardiac and respiratory motions. In this work, the authors extend the XCAT beyond these reference anatomies by developing a series of anatomically variable 4D XCAT adult phantoms for imaging research, the first library of 4D computational phantoms. Methods: The initial anatomy of each phantom was based on chest–abdomen–pelvis computed tomography data from normal patients obtained from the Duke University database. The major organs and structures for each phantom were segmented from the corresponding data and defined using nonuniform rational B-spline surfaces. To complete the body, the authors manually added on the head, arms, and legs using the original XCAT adult male and female anatomies. The structures were scaled to best match the age and anatomy of the patient. A multichannel large deformation diffeomorphic metric mapping algorithm was then used to calculate the transform from the template XCAT phantom (male or female) to the target patient model. The transform was applied to the template XCAT to fill in any unsegmented structures within the target phantom and to implement the 4D cardiac and respiratory models in the new anatomy. Each new phantom was refined by checking for anatomical accuracy via inspection of the models. Results: Using these methods, the authors created a series of computerized phantoms with thousands of anatomical structures and modeling cardiac and respiratory motions. The database consists of 58 (35 male and 23 female) anatomically variable phantoms in total. Like the original XCAT, these phantoms can be combined with existing simulation packages to simulate realistic imaging data. Each new phantom contains parameterized models for the anatomy and the cardiac and respiratory motions and can, therefore

  12. Development of skeletal system for mesh-type ICRP reference adult phantoms

    Science.gov (United States)

    Yeom, Yeon Soo; Wang, Zhao Jun; Tat Nguyen, Thang; Kim, Han Sung; Choi, Chansoo; Han, Min Cheol; Kim, Chan Hyeong; Lee, Jai Ki; Chung, Beom Sun; Zankl, Maria; Petoussi-Henss, Nina; Bolch, Wesley E.; Lee, Choonsik

    2016-10-01

    The reference adult computational phantoms of the international commission on radiological protection (ICRP) described in Publication 110 are voxel-type computational phantoms based on whole-body computed tomography (CT) images of adult male and female patients. The voxel resolutions of these phantoms are in the order of a few millimeters and smaller tissues such as the eye lens, the skin, and the walls of some organs cannot be properly defined in the phantoms, resulting in limitations in dose coefficient calculations for weakly penetrating radiations. In order to address the limitations of the ICRP-110 phantoms, an ICRP Task Group has been recently formulated and the voxel phantoms are now being converted to a high-quality mesh format. As a part of the conversion project, in the present study, the skeleton models, one of the most important and complex organs of the body, were constructed. The constructed skeleton models were then tested by calculating red bone marrow (RBM) and endosteum dose coefficients (DCs) for broad parallel beams of photons and electrons and comparing the calculated values with those of the original ICRP-110 phantoms. The results show that for the photon exposures, there is a generally good agreement in the DCs between the mesh-type phantoms and the original voxel-type ICRP-110 phantoms; that is, the dose discrepancies were less than 7% in all cases except for the 0.03 MeV cases, for which the maximum difference was 14%. On the other hand, for the electron exposures (⩽4 MeV), the DCs of the mesh-type phantoms deviate from those of the ICRP-110 phantoms by up to ~1600 times at 0.03 MeV, which is indeed due to the improvement of the skeletal anatomy of the developed skeleton mesh models.

  13. 4D XCAT phantom for multimodality imaging research

    Energy Technology Data Exchange (ETDEWEB)

    Segars, W. P.; Sturgeon, G.; Mendonca, S.; Grimes, Jason; Tsui, B. M. W. [Department of Radiology, Carl E. Ravin Advanced Imaging Laboratories, Duke University Medical Center, 2424 Erwin Road, Hock Plaza, Suite 302, Durham, North Carolina 27705 (United States); Department of Radiology, Carl E. Ravin Advanced Imaging Laboratories, Duke University Medical Center, 2424 Erwin Road, Hock Plaza, Suite 302, Durham, North Carolina 27705 and Department of Biomedical Engineering, University of North Carolina, Chapel Hill, North Carolina 27599 (United States); Department of Radiology, Carl E. Ravin Advanced Imaging Laboratories, Duke University Medical Center, 2424 Erwin Road, Hock Plaza, Suite 302, Durham, North Carolina 27705 (United States); The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, Maryland 21287 (United States)

    2010-09-15

    Purpose: The authors develop the 4D extended cardiac-torso (XCAT) phantom for multimodality imaging research. Methods: Highly detailed whole-body anatomies for the adult male and female were defined in the XCAT using nonuniform rational B-spline (NURBS) and subdivision surfaces based on segmentation of the Visible Male and Female anatomical datasets from the National Library of Medicine as well as patient datasets. Using the flexibility of these surfaces, the Visible Human anatomies were transformed to match body measurements and organ volumes for a 50th percentile (height and weight) male and female. The desired body measurements for the models were obtained using the PEOPLESIZE program that contains anthropometric dimensions categorized from 1st to the 99th percentile for US adults. The desired organ volumes were determined from ICRP Publication 89 [ICRP, ''Basic anatomical and physiological data for use in radiological protection: reference values,'' ICRP Publication 89 (International Commission on Radiological Protection, New York, NY, 2002)]. The male and female anatomies serve as standard templates upon which anatomical variations may be modeled in the XCAT through user-defined parameters. Parametrized models for the cardiac and respiratory motions were also incorporated into the XCAT based on high-resolution cardiac- and respiratory-gated multislice CT data. To demonstrate the usefulness of the phantom, the authors show example simulation studies in PET, SPECT, and CT using publicly available simulation packages. Results: As demonstrated in the pilot studies, the 4D XCAT (which includes thousands of anatomical structures) can produce realistic imaging data when combined with accurate models of the imaging process. With the flexibility of the NURBS surface primitives, any number of different anatomies, cardiac or respiratory motions or patterns, and spatial resolutions can be simulated to perform imaging research. Conclusions: With the

  14. 4D XCAT phantom for multimodality imaging research

    International Nuclear Information System (INIS)

    Segars, W. P.; Sturgeon, G.; Mendonca, S.; Grimes, Jason; Tsui, B. M. W.

    2010-01-01

    Purpose: The authors develop the 4D extended cardiac-torso (XCAT) phantom for multimodality imaging research. Methods: Highly detailed whole-body anatomies for the adult male and female were defined in the XCAT using nonuniform rational B-spline (NURBS) and subdivision surfaces based on segmentation of the Visible Male and Female anatomical datasets from the National Library of Medicine as well as patient datasets. Using the flexibility of these surfaces, the Visible Human anatomies were transformed to match body measurements and organ volumes for a 50th percentile (height and weight) male and female. The desired body measurements for the models were obtained using the PEOPLESIZE program that contains anthropometric dimensions categorized from 1st to the 99th percentile for US adults. The desired organ volumes were determined from ICRP Publication 89 [ICRP, ''Basic anatomical and physiological data for use in radiological protection: reference values,'' ICRP Publication 89 (International Commission on Radiological Protection, New York, NY, 2002)]. The male and female anatomies serve as standard templates upon which anatomical variations may be modeled in the XCAT through user-defined parameters. Parametrized models for the cardiac and respiratory motions were also incorporated into the XCAT based on high-resolution cardiac- and respiratory-gated multislice CT data. To demonstrate the usefulness of the phantom, the authors show example simulation studies in PET, SPECT, and CT using publicly available simulation packages. Results: As demonstrated in the pilot studies, the 4D XCAT (which includes thousands of anatomical structures) can produce realistic imaging data when combined with accurate models of the imaging process. With the flexibility of the NURBS surface primitives, any number of different anatomies, cardiac or respiratory motions or patterns, and spatial resolutions can be simulated to perform imaging research. Conclusions: With the ability to produce

  15. Simulation of a Quality Control Jaszczak Phantom with SIMIND Monte Carlo and Adding the Phantom as an Accessory to the Program

    International Nuclear Information System (INIS)

    Pirayesh Islamian, J.; Bahreyni Toosi, M. T.; Momennezhad, M.; Naseri, Sh.; Ljungberg, M.

    2012-01-01

    Quality control is an important phenomenon in nuclear medicine imaging. A Jaszczak SPECT Phantom provides consistent performance information for any SPECT or PET system. This article describes the simulation of a Jaszczak phantom and creating an executable phantom file for comparing assessment of SPECT cameras using SIMIND Monte Carlo simulation program which is well-established for SPECT. The simulation was based on a Deluxe model of Jaszczak Phantom with defined geometry. Quality control tests were provided together with initial imaging example and suggested use for the assessment of parameters such as spatial resolution, limits of lesion detection, and contrast comparing with a Siemens E.Cam SPECT system. The phantom simulation was verified by matching tomographic spatial resolution, image contrast, and also uniformity compared with the experiment SPECT of the phantom from filtered backprojection reconstructed images of the spheres and rods. The calculated contrasts of the rods were 0.774, 0.627, 0.575, 0.372, 0.191, and 0.132 for an experiment with the rods diameters of 31.8, 25.4, 19.1, 15.9, 12.7, and 9.5 mm, respectively. The calculated contrasts of simulated rods were 0.661, 0.527, 0.487, 0.400, 0.23, and 0.2 for cold rods and also 0.92, 0.91, 0.88, 0.81, 0.76, and 0.56 for hot rods. Reconstructed spatial tomographic resolution of both experiment and simulated SPECTs of the phantom obtained about 9.5 mm. An executable phantom file and an input phantom file were created for the SIMIND Monte Carlo program. This phantom may be used for simulated SPECT systems and would be ideal for verification of the simulated systems with real ones by comparing the results of quality control and image evaluation. It is also envisaged that this phantom could be used with a range of radionuclide doses in simulation situations such as cold, hot, and background uptakes for the assessment of detection characteristics when a new similar clinical SPECT procedure is being simulated.

  16. Simulation of a Quality Control Jaszczak Phantom with SIMIND Monte Carlo and Adding the Phantom as an Accessory to the Program

    Directory of Open Access Journals (Sweden)

    Jalil Pirayesh Islamian

    2012-03-01

    Full Text Available Introduction Quality control is an important phenomenon in nuclear medicine imaging. A Jaszczak SPECT Phantom provides consistent performance information for any SPECT or PET system. This article describes the simulation of a Jaszczak phantom and creating an executable phantom file for comparing assessment of SPECT cameras using SIMIND Monte Carlo simulation program which is well-established for SPECT. Materials and Methods The simulation was based on a Deluxe model of Jaszczak Phantom with defined geometry. Quality control tests were provided together with initial imaging example and suggested use for the assessment of parameters such as spatial resolution, limits of lesion detection, and contrast comparing with a Siemens E.Cam SPECT system. Results The phantom simulation was verified by matching tomographic spatial resolution, image contrast, and also uniformity compared with the experiment SPECT of the phantom from filtered backprojection reconstructed images of the spheres and rods. The calculated contrasts of the rods were 0.774, 0.627, 0.575, 0.372, 0.191, and 0.132 for an experiment with the rods diameters of 31.8, 25.4, 19.1, 15.9, 12.7, and 9.5 mm, respectively. The calculated contrasts of simulated rods were 0.661, 0.527, 0.487, 0.400, 0.23, and 0.2 for cold rods and also 0.92, 0.91, 0.88, 0.81, 0.76, and 0.56 for hot rods. Reconstructed spatial tomographic resolution of both experiment and simulated SPECTs of the phantom obtained about 9.5 mm. An executable phantom file and an input phantom file were created for the SIMIND Monte Carlo program. Conclusion This phantom may be used for simulated SPECT systems and would be ideal for verification of the simulated systems with real ones by comparing the results of quality control and image evaluation. It is also envisaged that this phantom could be used with a range of radionuclide doses in simulation situations such as cold, hot, and background uptakes for the assessment of detection

  17. Heart dosimetry in radiotherapy with hybrid computational phantoms

    International Nuclear Information System (INIS)

    Moignier, Cyril

    2014-01-01

    Cardiovascular diseases following radiotherapy are major secondary late effects raising questions among the scientific community, especially regarding the dose-effect relationship and confounding risk factors (chemotherapy, cholesterolemia, age at treatment, blood pressure,..). Post-radiation coronary diseases are one of the main causes of cardiac morbidity. Some approximations are made when coronary doses due to radiotherapy are estimated, especially regarding the morphology. For retrospective studies with old medical records, only radiographs are usually available with sometimes some contours made with a simulator. For recent medical records, CT scans displaying the anatomy in 3D are used for radiotherapy simulation but do not allow the coronary artery visualization due to low resolution and contrast. Currently, coronary doses are barely assessed in clinical practice, and when it is done, anatomical prior knowledge is generally used. This thesis proposes an original approach based on hybrid computational phantoms to study coronary artery doses following radiotherapy for left-side breast cancer and Hodgkin lymphoma. During the thesis, a method inserting hybrid computational phantoms in a DICOM format into the treatment planning system has been developed and validated. It has been adapted and tested in conditions where only radiographs provide anatomical information, as with old medical records for left side breast radiotherapy. The method has also been adapted to perform precise dose reconstructions to the coronary artery for patients treated for a mediastinal Hodgkin lymphoma and diagnosed with coronary stenosis through a coroscanner. A case-control study was carried out and the risk of coronary stenosis on a coronary artery segment was assessed to be multiplied by 1.049 at each additional gray on the median dose to the coronary artery segment. For recent medical records, coronary doses uncertainties related to an approach by anatomical prior knowledge

  18. Austrian WBC intercomparison by means of a BOMAB phantom

    Energy Technology Data Exchange (ETDEWEB)

    Castellani, C.M.; Battisti, P.; Tarroni [ENEA, Centro Ricerche Ezio Clementel, Bologna (Italy). Dipt. Ambiente; Edelmeier, R. [Bundesamt fuer Eich- und Vermessungswesen, Wien (Austria)

    1998-07-01

    The paper discusses the results obtained in the intercomparison between the Austrian Institute for Legal Metrology and the ENEA (National Agency for New Technology, Energy and the Environment) Institute for Radiation Protection, which gave a BOMAB phantom. Values related to potassium content and MBA (minimum detectable activity) for each identified nuclide are also discussed. [Italian] L'Istituto Austriaco di Metrologia Legale ha organizzato l'interconfronto usando un fantoccio gelificato di tipo BOMAB fornito dall'Istituto di Radioprotezione dell'ENEA nel periodo marzo-giugno 1996. Vengono riportati i risultati ottenuti relativi al contenuto di potassio e all'attivita' minima rilevabile (MDA) per ogni nuclide identificato.

  19. In-phantom spectrometry of medical diagnostic x rays

    International Nuclear Information System (INIS)

    Stansbury, P.S.

    1977-10-01

    A program of measurements was made to determine the spectral fluence distributions at locations of significance in a heterogeneous, hominoid phantom exposed to x rays in a manner simulating medical diagnostic radiology. The measurements were made with a specially constructed NaI(Tl) scintillation detector. The detector had a spherically shaped active volume 0.6 cm in diameter. The resolution of this detector was five times worse than that of a more conventional NaI(Tl) spectrometer. Resolution broadening and other distortions were removed from the observed pulse height spectra with a computer-coded, iterative unfolding technique. The performance of the spectrometer and the unfolding scheme was assessed by comparing, in a few cases, the unfolded NaI(Tl) spectra with spectra determined with a high resolution Ge(Li) spectrometer. The measurements were made in a physical model of an idealized representation of an average adult patient

  20. Dynamics of micro-bubble sonication inside a phantom vessel

    KAUST Repository

    Qamar, Adnan; Samtaney, Ravi; Bull, Joseph L.

    2013-01-01

    A model for sonicated micro-bubble oscillations inside a phantom vessel is proposed. The model is not a variant of conventional Rayleigh-Plesset equation and is obtained from reduced Navier-Stokes equations. The model relates the micro-bubble oscillation dynamics with geometric and acoustic parameters in a consistent manner. It predicts micro-bubble oscillation dynamics as well as micro-bubble fragmentation when compared to the experimental data. For large micro-bubble radius to vessel diameter ratios, predictions are damped, suggesting breakdown of inherent modeling assumptions for these cases. Micro-bubble response with acoustic parameters is consistent with experiments and provides physical insight to the micro-bubble oscillation dynamics.

  1. Porous silicon phantoms for high-resolution scintillation imaging

    Energy Technology Data Exchange (ETDEWEB)

    Di Francia, G. [Portici Research Centre, ENEA, Via Vecchio Macello, 80055 Portici, Naples (Italy); Scafe, R. [Casaccia Research Centre, ENEA, 00060 S.Maria di Galeria, Rome (Italy)]. E-mail: scafe@casaccia.enea.it; De Vincentis, G. [Department of Radiological Sciences, University of Rome ' La Sapienza' , V.le Regina Elena, 324, 00161 Rome (Italy); La Ferrara, V. [Portici Research Centre, ENEA, Via Vecchio Macello, 80055 Portici, Naples (Italy); Iurlaro, G. [Casaccia Research Centre, ENEA, 00060 S.Maria di Galeria, Rome (Italy); Nasti, I. [Portici Research Centre, ENEA, Via Vecchio Macello, 80055 Portici, Naples (Italy); Montani, L. [Casaccia Research Centre, ENEA, 00060 S.Maria di Galeria, Rome (Italy); Pellegrini, R. [Department of Experimental Medicine, University of Rome ' La Sapienza' , V.le Regina Elena, 324, 00161 Rome (Italy); Betti, M. [Department of Experimental Medicine, University of Rome ' La Sapienza' , V.le Regina Elena, 324, 00161 Rome (Italy); Martucciello, N. [Portici Research Centre, ENEA, Via Vecchio Macello, 80055 Portici, Naples (Italy); Pani, R. [Department of Experimental Medicine, University of Rome ' La Sapienza' , V.le Regina Elena, 324, 00161 Rome (Italy)

    2006-12-20

    High resolution radionuclide imaging requires phantoms with precise geometries and known activities using either Anger cameras equipped with pinhole collimators or dedicated small animal devices. Porous silicon samples, having areas of different shape and size, can be made and loaded with a radioactive material, obtaining: (a) precise radio-emitting figures corresponding to the porous areas geometry (b) a radioactivity of each figure depending on the pore's specifications, and (c) the same emission energy to be used in true exams. To this aim a sample with porous circular areas has been made and loaded with a {sup 99m}TcO{sub 4} {sup -} solution. Imaging has been obtained using both general purpose and pinhole collimators. This first sample shows some defects that are analyzed and discussed.

  2. In-phantom spectrometry of medical diagnostic x rays

    Energy Technology Data Exchange (ETDEWEB)

    Stansbury, P. S.

    1977-10-01

    A program of measurements was made to determine the spectral fluence distributions at locations of significance in a heterogeneous, hominoid phantom exposed to x rays in a manner simulating medical diagnostic radiology. The measurements were made with a specially constructed NaI(Tl) scintillation detector. The detector had a spherically shaped active volume 0.6 cm in diameter. The resolution of this detector was five times worse than that of a more conventional NaI(Tl) spectrometer. Resolution broadening and other distortions were removed from the observed pulse height spectra with a computer-coded, iterative unfolding technique. The performance of the spectrometer and the unfolding scheme was assessed by comparing, in a few cases, the unfolded NaI(Tl) spectra with spectra determined with a high resolution Ge(Li) spectrometer. The measurements were made in a physical model of an idealized representation of an average adult patient.

  3. A model for ultrasound contrast agent in a phantom vessel

    KAUST Repository

    Qamar, Adnan

    2014-02-01

    A theoretical framework to model the dynamics of Ultrasound Contrast Agent (UCA) inside a phantom vessel is presented. The model is derived from the reduced Navier-Stokes equation and is coupled with the evolving flow field solution inside the vessel by a similarity transformation approach. The results are computed, and compared with experiments available in literature, for the initial UCA radius of Ro=1.5 μm and 2 μm for the vessel diameter of D=12 μm and 200 μm with the acoustic parameters as utilized in the experiments. When compared to other models, better agreement on smaller vessel diameter is obtained with the proposed coupled model. The model also predicts, quite accurately, bubble fragmentation in terms of acoustic and geometric parameters. © 2014 IEEE.

  4. Dynamics of micro-bubble sonication inside a phantom vessel

    KAUST Repository

    Qamar, Adnan

    2013-01-10

    A model for sonicated micro-bubble oscillations inside a phantom vessel is proposed. The model is not a variant of conventional Rayleigh-Plesset equation and is obtained from reduced Navier-Stokes equations. The model relates the micro-bubble oscillation dynamics with geometric and acoustic parameters in a consistent manner. It predicts micro-bubble oscillation dynamics as well as micro-bubble fragmentation when compared to the experimental data. For large micro-bubble radius to vessel diameter ratios, predictions are damped, suggesting breakdown of inherent modeling assumptions for these cases. Micro-bubble response with acoustic parameters is consistent with experiments and provides physical insight to the micro-bubble oscillation dynamics.

  5. Parallel imaging enhanced MR colonography using a phantom model.

    LENUS (Irish Health Repository)

    Morrin, Martina M

    2008-09-01

    To compare various Array Spatial and Sensitivity Encoding Technique (ASSET)-enhanced T2W SSFSE (single shot fast spin echo) and T1-weighted (T1W) 3D SPGR (spoiled gradient recalled echo) sequences for polyp detection and image quality at MR colonography (MRC) in a phantom model. Limitations of MRC using standard 3D SPGR T1W imaging include the long breath-hold required to cover the entire colon within one acquisition and the relatively low spatial resolution due to the long acquisition time. Parallel imaging using ASSET-enhanced T2W SSFSE and 3D T1W SPGR imaging results in much shorter imaging times, which allows for increased spatial resolution.

  6. Cardiovascular dosimetry using hybrid computational phantoms after external radiotherapy

    International Nuclear Information System (INIS)

    Moignier, Alexandra

    2014-01-01

    Cardiovascular diseases following radiotherapy are major secondary late effects raising questions among the scientific community, especially regarding the dose-effect relationship and confounding risk factors (chemotherapy, cholesterolemia, age at treatment, blood pressure,..). Post-radiation coronary diseases are one of the main causes of cardiac morbidity. Some approximations are made when coronary doses due to radiotherapy are estimated, especially regarding the morphology. For retrospective studies with old medical records, only radiographs are usually available with sometimes some contours made with a simulator. For recent medical records, CT scans displaying the anatomy in 3D are used for radiotherapy simulation but do not allow the coronary artery visualization due to low resolution and contrast. Currently, coronary doses are barely assessed in clinical practice, and when it is done, anatomical prior knowledge is generally used. This thesis proposes an original approach based on hybrid computational phantoms to study coronary artery doses following radiotherapy for left-side breast cancer and Hodgkin lymphoma. During the thesis, a method inserting hybrid computational phantoms in a DICOM format into the treatment planning system has been developed and validated. It has been adapted and tested in conditions where only radiographs provide anatomical information, as with old medical records for left side breast radiotherapy. The method has also been adapted to perform precise dose reconstructions to the coronary artery for patients treated for a mediastinal Hodgkin lymphoma and diagnosed with coronary stenosis through a coro-scanner. A case-control study was carried out and the risk of coronary stenosis on a coronary artery segment was assessed to be multiplied by 1.049 at each additional gray on the median dose to the coronary artery segment. For recent medical records, coronary doses uncertainties related to an approach by anatomical prior knowledge

  7. Evaluating the loudness of phantom auditory perception (tinnitus) in rats.

    Science.gov (United States)

    Jastreboff, P J; Brennan, J F

    1994-01-01

    Using our behavioral paradigm for evaluating tinnitus, the loudness of salicylate-induced tinnitus was evaluated in 144 rats by comparing their behavioral responses induced by different doses of salicylate to those induced by different intensities of a continuous reference tone mimicking tinnitus. Group differences in resistance to extinction were linearly related to salicylate dose and, at moderate intensities, to the reference tone as well. Comparison of regression equations for salicylate versus tone effects permitted estimation of the loudness of salicylate-induced tinnitus. These results extend the animal model of tinnitus and provide evidence that the loudness of phantom auditory perception is expressed through observable behavior, can be evaluated, and its changes detected.

  8. Efficiency Calibration of Phantom Family for Use in Direct Bioassay of Radionuclide in the Body

    International Nuclear Information System (INIS)

    Kim, Ji Seok; Ha, Wi Ho; Kim, Hyun Ki; Park, Gyung Deok; Lee, Jai Ki

    2008-01-01

    A major source of uncertainties of in vivo bioassay using a whole body counter calibrated against a body phantom containing known radioactivities is variation of counting geometry caused by the differences in body size of the subject from that of the phantom. Phantoms such as the BOMAB phantom are based on the body size of the reference man and usually single phantom is used in usual calibration of the counter. This is because it is difficult to apply a set of phantoms having different sizes. In order to reduce the potential errors due to variation of counting geometry, use of a set of phantoms having different body-shapes have been attempted. The efficiency files are stored in the computer analyzing the measurement data and a suitable one is retrieved for the specific subject. Experimental or computational approach can be employed in generation of the efficiency files. Carlan et al. demonstrated that Monte Carlo simulations can provide acceptable efficiencies by use of the IGOR phantom family. The body size of the individual subject undergoing in vivo bioassay should be determined by an appropriate method

  9. Characterisation of an anthropomorphic chest phantom for dose measurements in radiology beams

    Science.gov (United States)

    Henriques, L. M. S.; Cerqueira, R. A. D.; Santos, W. S.; Pereira, A. J. S.; Rodrigues, T. M. A.; Carvalho Júnior, A. B.; Maia, A. F.

    2014-02-01

    The objective of this study was to characterise an anthropomorphic chest phantom for dosimetric measurements of conventional radiology beams. This phantom was developed by a previous research project at the Federal University of Sergipe for image quality control tests. As the phantom consists of tissue-equivalent material, it is possible to characterise it for dosimetric studies. For comparison, a geometric chest phantom, consisting of PMMA (polymethylmethacrylate) with dimensions of 30×30×15 cm³ was used. Measurements of incident air kerma (Ki) and entrance surface dose (ESD) were performed using ionisation chambers. From the results, backscatter factors (BSFs) of the two phantoms were determined and compared with values estimated by CALDose_X software, based on a Monte Carlo simulation. For the technical parameters evaluated in this study, the ESD and BSF values obtained experimentally showed a good similarity between the two phantoms, with minimum and maximum difference of 0.2% and 7.0%, respectively, and showed good agreement with the results published in the literature. Organ doses and effective doses for the anthropomorphic phantom were also estimated by the determination of conversion coefficients (CCs) using the visual Monte Carlo (VMC) code. Therefore, the results of this study prove that the anthropomorphic thorax phantom proposed is a good tool to use in dosimetry and can be used for risk evaluation of X-ray diagnostic procedures.

  10. Usefulness of ACR MRI phantom for quality assurance of MRI instruments

    International Nuclear Information System (INIS)

    Lee, Jung Whee; Ahn, Kook Jin; Lee, Seung Koo; Na, Dong Gyu; Oh, Chang Hyun; Chang, Yong Min; Lim, Tae Hwan

    2006-01-01

    To examine whether the ACR phantom could be used in quality standards for magnetic resonance imaging (MRI) instruments in Korea. We conducted the phantom test using the ACR MRI phantom in 20 MRI instruments currently used in Korea. According to ACR criteria, we acquired the phantom images which were then assessed by the following seven tests: geometric accuracy, high spatial resolution, slice thickness accuracy, slice position accuracy, image intensity uniformity, percent signal ghosting, and low contrast object detectability. The phantom images were interpreted by three experienced radiologists according to ACR criteria. Then, we examined the failure rate of each test and evaluated the inter-observer variation in the measurements and test failure. The failure rate of each test could be broken into the following components: geometric accuracy (11-21%), high contrast spatial resolution (10-15%), slice thickness accuracy(6-22%), slice position accuracy (5-17%), image intensity uniformity (6%), percent signal ghosting (16%), and low contrast object detectability (8-10%). In this series, all the failure rates were less than 30%. In addition, no inter-observer variation was seen in the measurements and test failure. ACR MRI phantom promises to be established as the standard phantom for MRI instruments in Korea because of its objectivity in assessing the phantom images

  11. Average glandular dose in digital mammography and digital breast tomosynthesis: comparison of phantom and patient data

    NARCIS (Netherlands)

    Bouwman, R. W.; van Engen, R. E.; Young, K. C.; den Heeten, G. J.; Broeders, M. J. M.; Schopphoven, S.; Jeukens, C. R. L. P. N.; Veldkamp, W. J. H.; Dance, D. R.

    2015-01-01

    For the evaluation of the average glandular dose (AGD) in digital mammography (DM) and digital breast tomosynthesis (DBT) phantoms simulating standard model breasts are used. These phantoms consist of slabs of polymethyl methacrylate (PMMA) or a combination of PMMA and polyethylene (PE). In the last

  12. Optimization of phantom backscatter thickness and lateral scatter volume for radiographic film dosimetry

    International Nuclear Information System (INIS)

    Srivastava, R.P.; De Wagter, C.

    2012-01-01

    The aim of this study is to determine the optimal backscatter thickness and lateral phantom dimension beyond the irradiated volume for the dosimetric verification with radiographic film when applying large field sizes. Polystyrene and Virtual Water™ phantoms were used to study the influence of the phantom backscatter thickness. EDR2 and XV films were used in 6 and 18 MV photon beams. The results show 11.4% and 6.4% over-response of the XV2 film when compared to the ion chamber for 6 MV 30×30 and 10×10 cm 2 field sizes, respectively, when the phantom backscatter thickness is 5 cm. For the same setup, measurements with EDR2 films indicate 8.5% and 1.7% over-response. The XV2 film response in the polystyrene phantom is about 2.0% higher than in the Virtual Water™ phantom for the 6 MV beam and 20 cm backscatter thickness. Similar results were obtained for EDR2 film. In the lateral scatter study, film response was nearly constant within 5 cm of lateral thickness and it increases when lateral thickness increases due to more multiple scatter of low energy photons. The backscatter thickness of the phantom should be kept below 7 cm for the accuracy of the film dosimetry. The lateral extension of the phantom should not be more than 5 cm from the field boundary in case of large irradiated volumes.

  13. Tracked ultrasound calibration studies with a phantom made of LEGO bricks

    Science.gov (United States)

    Soehl, Marie; Walsh, Ryan; Rankin, Adam; Lasso, Andras; Fichtinger, Gabor

    2014-03-01

    In this study, spatial calibration of tracked ultrasound was compared by using a calibration phantom made of LEGO® bricks and two 3-D printed N-wire phantoms. METHODS: The accuracy and variance of calibrations were compared under a variety of operating conditions. Twenty trials were performed using an electromagnetic tracking device with a linear probe and three trials were performed using varied probes, varied tracking devices and the three aforementioned phantoms. The accuracy and variance of spatial calibrations found through the standard deviation and error of the 3-D image reprojection were used to compare the calibrations produced from the phantoms. RESULTS: This study found no significant difference between the measured variables of the calibrations. The average standard deviation of multiple 3-D image reprojections with the highest performing printed phantom and those from the phantom made of LEGO® bricks differed by 0.05 mm and the error of the reprojections differed by 0.13 mm. CONCLUSION: Given that the phantom made of LEGO® bricks is significantly less expensive, more readily available, and more easily modified than precision-machined N-wire phantoms, it prompts to be a viable calibration tool especially for quick laboratory research and proof of concept implementations of tracked ultrasound navigation.

  14. Design, development, and implementation of the Radiological Physics Center's pelvis and thorax anthropomorphic quality assurance phantoms

    International Nuclear Information System (INIS)

    Followill, David S.; Radford Evans, DeeAnn; Cherry, Christopher; Molineu, Andrea; Fisher, Gary; Hanson, William F.; Ibbott, Geoffrey S.

    2007-01-01

    The Radiological Physics Center (RPC) developed two heterogeneous anthropomorphic quality assurance phantoms for use in verifying the accuracy of radiation delivery: one for intensity-modulated radiation therapy (IMRT) to the pelvis and the other for stereotactic body radiation therapy (SBRT) to the thorax. The purpose of this study was to describe the design and development of these two phantoms and to demonstrate the reproducibility of measurements generated with them. The phantoms were built to simulate actual patient anatomy. They are lightweight and water-fillable, and they contain imageable targets and organs at risk of radiation exposure that are of similar densities to their human counterparts. Dosimetry inserts accommodate radiochromic film for relative dosimetry and thermoluminesent dosimetry capsules for absolute dosimetry. As a part of the commissioning process, each phantom was imaged, treatment plans were developed, and radiation was delivered at least three times. Under these controlled irradiation conditions, the reproducibility of dose delivery to the target TLD in the pelvis and thorax phantoms was 3% and 0.5%, respectively. The reproducibility of radiation-field localization was less than 2.5 mm for both phantoms. Using these anthropomorphic phantoms, pelvic IMRT and thoracic SBRT radiation treatments can be verified with a high level of precision. These phantoms can be used to effectively credential institutions for participation in specific NCI-sponsored clinical trials

  15. The design and fabrication of two portal vein flow phantoms by different methods

    Energy Technology Data Exchange (ETDEWEB)

    Yunker, Bryan E., E-mail: bryan.yunker@ucdenver.edu; Lanning, Craig J.; Shandas, Robin; Hunter, Kendall S. [Department of Bioengineering, University of Colorado – Denver/Anschutz, 12700 East 19th Avenue, MS 8607, Aurora, Colorado 80045 (United States); Dodd, Gerald D., E-mail: gerald.dodd@ucdenver.edu; Chang, Samuel; Scherzinger, Ann L. [Department of Radiology, University of Colorado – SOM, 12401 East 17th Avenue, Mail Stop L954, Aurora, Colorado 80045 (United States); Chen, S. James, E-mail: james.chen@ucdenver.edu [Department of Medicine, University of Colorado Denver, Colorado 80045 and Department of Medicine/Cardiology, University of Colorado – SOM, 12401 East 17th Avenue, Mail Stop B132, Aurora, Colorado 80045 (United States); Feng, Yusheng, E-mail: yusheng.feng@utsa.edu [Department of Mechanical Engineering, University of Texas – San Antonio, One UTSA Circle, Mail Stop: AET 2.332, San Antonio, Texas 78249–0670 (United States)

    2014-02-15

    Purpose: This study outlines the design and fabrication techniques for two portal vein flow phantoms. Methods: A materials study was performed as a precursor to this phantom fabrication effort and the desired material properties are restated for continuity. A three-dimensional portal vein pattern was created from the Visual Human database. The portal vein pattern was used to fabricate two flow phantoms by different methods with identical interior surface geometry using computer aided design software tools and rapid prototyping techniques. One portal flow phantom was fabricated within a solid block of clear silicone for use on a table with Ultrasound or within medical imaging systems such as MRI, CT, PET, or SPECT. The other portal flow phantom was fabricated as a thin walled tubular latex structure for use in water tanks with Ultrasound imaging. Both phantoms were evaluated for usability and durability. Results: Both phantoms were fabricated successfully and passed durability criteria for flow testing in the next project phase. Conclusions: The fabrication methods and materials employed for the study yielded durable portal vein phantoms.

  16. Monte Carlo-based investigation of water-equivalence of solid phantoms at 137Cs energy

    International Nuclear Information System (INIS)

    Vishwakarma, Ramkrushna S.; Palani Selvam, T.; Sahoo, Sridhar; Mishra, Subhalaxmi; Chourasiya, Ghanshyam

    2013-01-01

    Investigation of solid phantom materials such as solid water, virtual water, plastic water, RW1, polystyrene, and polymethylmethacrylate (PMMA) for their equivalence to liquid water at 137 Cs energy (photon energy of 662 keV) under full scatter conditions is carried out using the EGSnrc Monte Carlo code system. Monte Carlo-based EGSnrc code system was used in the work to calculate distance-dependent phantom scatter corrections. The study also includes separation of primary and scattered dose components. Monte Carlo simulations are carried out using primary particle histories up to 5 x 10 9 to attain less than 0.3% statistical uncertainties in the estimation of dose. Water equivalence of various solid phantoms such as solid water, virtual water, RW1, PMMA, polystyrene, and plastic water materials are investigated at 137 Cs energy under full scatter conditions. The investigation reveals that solid water, virtual water, and RW1 phantoms are water equivalent up to 15 cm from the source. Phantom materials such as plastic water, PMMA, and polystyrene phantom materials are water equivalent up to 10 cm. At 15 cm from the source, the phantom scatter corrections are 1.035, 1.050, and 0.949 for the phantoms PMMA, plastic water, and polystyrene, respectively. (author)

  17. SU-F-BRE-04: Construction of 3D Printed Patient Specific Phantoms for Dosimetric Verification Measurements

    International Nuclear Information System (INIS)

    Ehler, E; Higgins, P; Dusenbery, K

    2014-01-01

    Purpose: To validate a method to create per patient phantoms for dosimetric verification measurements. Methods: Using a RANDO phantom as a substitute for an actual patient, a model of the external features of the head and neck region of the phantom was created. A phantom was used instead of a human for two reasons: to allow for dosimetric measurements that would not be possible in-vivo and to avoid patient privacy issues. Using acrylonitrile butadiene styrene thermoplastic as the building material, a hollow replica was created using the 3D printer filled with a custom tissue equivalent mixture of paraffin wax, magnesium oxide, and calcium carbonate. A traditional parallel-opposed head and neck plan was constructed. Measurements were performed with thermoluminescent dosimeters in both the RANDO phantom and in the 3D printed phantom. Calculated and measured dose was compared at 17 points phantoms including regions in high and low dose regions and at the field edges. On-board cone beam CT was used to localize both phantoms within 1mm and 1° prior to radiation. Results: The maximum difference in calculated dose between phantoms was 1.8% of the planned dose (180 cGy). The mean difference between calculated and measured dose in the anthropomorphic phantom and the 3D printed phantom was 1.9% ± 2.8% and −0.1% ± 4.9%, respectively. The difference between measured and calculated dose was determined in the RANDO and 3D printed phantoms. The differences between measured and calculated dose in each respective phantom was within 2% for 12 of 17 points. The overlap of the RANDO and 3D printed phantom was 0.956 (Jaccard Index). Conclusion: A custom phantom was created using a 3D printer. Dosimetric calculations and measurements showed good agreement between the dose in the RANDO phantom (patient substitute) and the 3D printed phantom

  18. SU-F-BRE-04: Construction of 3D Printed Patient Specific Phantoms for Dosimetric Verification Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ehler, E; Higgins, P; Dusenbery, K [University of Minnesota, Minneapolis, MN (United States)

    2014-06-15

    Purpose: To validate a method to create per patient phantoms for dosimetric verification measurements. Methods: Using a RANDO phantom as a substitute for an actual patient, a model of the external features of the head and neck region of the phantom was created. A phantom was used instead of a human for two reasons: to allow for dosimetric measurements that would not be possible in-vivo and to avoid patient privacy issues. Using acrylonitrile butadiene styrene thermoplastic as the building material, a hollow replica was created using the 3D printer filled with a custom tissue equivalent mixture of paraffin wax, magnesium oxide, and calcium carbonate. A traditional parallel-opposed head and neck plan was constructed. Measurements were performed with thermoluminescent dosimeters in both the RANDO phantom and in the 3D printed phantom. Calculated and measured dose was compared at 17 points phantoms including regions in high and low dose regions and at the field edges. On-board cone beam CT was used to localize both phantoms within 1mm and 1° prior to radiation. Results: The maximum difference in calculated dose between phantoms was 1.8% of the planned dose (180 cGy). The mean difference between calculated and measured dose in the anthropomorphic phantom and the 3D printed phantom was 1.9% ± 2.8% and −0.1% ± 4.9%, respectively. The difference between measured and calculated dose was determined in the RANDO and 3D printed phantoms. The differences between measured and calculated dose in each respective phantom was within 2% for 12 of 17 points. The overlap of the RANDO and 3D printed phantom was 0.956 (Jaccard Index). Conclusion: A custom phantom was created using a 3D printer. Dosimetric calculations and measurements showed good agreement between the dose in the RANDO phantom (patient substitute) and the 3D printed phantom.

  19. SU-G-206-05: A Comparison of Head Phantoms Used for Dose Determination in Imaging Procedures

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Z; Vijayan, S; Kilian-Meneghin, J; Rudin, S; Bednarek, D [Toshiba Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY (United States)

    2016-06-15

    Purpose: To determine similarities and differences between various head phantoms that might be used for dose measurements in diagnostic imaging procedures. Methods: We chose four frequently used anthropomorphic head phantoms (SK-150, PBU-50, RS-240T and Alderson Rando), a computational patient phantom (Zubal) and the CTDI head phantom for comparison in our study. We did a CT scan of the head phantoms using the same protocol and compared their dimensions and CT numbers. The scan data was used to calculate dose values for each of the phantoms using EGSnrc Monte Carlo software. An .egsphant file was constructed to describe these phantoms using a Visual C++ program for DOSXYZnrc/EGSnrc simulation. The lens dose was calculated for a simulated CBCT scan using DOSXYZnrc/EGSnrc and the calculated doses were validated with measurements using Gafchromic film and an ionization chamber. Similar calculations and measurements were made for PA radiography to investigate the attenuation and backscatter differences between these phantoms. We used the Zubal phantom as the standard for comparison since it was developed based on a CT scan of a patient. Results: The lens dose for the Alderson Rando phantom is around 9% different than the Zubal phantom, while the lens dose for the PBU-50 phantom was about 50% higher, possibly because its skull thickness and the density of bone and soft tissue are lower than anthropometric values. The lens dose for the CTDI phantom is about 500% higher because of its totally different structure. The entrance dose profiles are similar for the five anthropomorphic phantoms, while that for the CTDI phantom was distinctly different. Conclusion: The CTDI and PBU-50 head phantoms have substantially larger lens dose estimates in CBCT. The other four head phantoms have similar entrance dose with backscatter hence should be preferred for dose measurement in imaging procedures of the head. Partial support from NIH Grant R01-EB002873 and Toshiba Medical Systems

  20. A set of 4D pediatric XCAT reference phantoms for multimodality research

    International Nuclear Information System (INIS)

    Norris, Hannah; Zhang, Yakun; Bond, Jason; Sturgeon, Gregory M.; Samei, E.; Segars, W. P.; Minhas, Anum; Frush, D.; Tward, Daniel J.; Ratnanather, J. T.; Miller, M. I.

    2014-01-01

    Purpose: The authors previously developed an adult population of 4D extended cardiac-torso (XCAT) phantoms for multimodality imaging research. In this work, the authors develop a reference set of 4D pediatric XCAT phantoms consisting of male and female anatomies at ages of newborn, 1, 5, 10, and 15 years. These models will serve as the foundation from which the authors will create a vast population of pediatric phantoms for optimizing pediatric CT imaging protocols. Methods: Each phantom was based on a unique set of CT data from a normal patient obtained from the Duke University database. The datasets were selected to best match the reference values for height and weight for the different ages and genders according to ICRP Publication 89. The major organs and structures were segmented from the CT data and used to create an initial pediatric model defined using nonuniform rational B-spline surfaces. The CT data covered the entire torso and part of the head. To complete the body, the authors manually added on the top of the head and the arms and legs using scaled versions of the XCAT adult models or additional models created from cadaver data. A multichannel large deformation diffeomorphic metric mapping algorithm was then used to calculate the transform from a template XCAT phantom (male or female 50th percentile adult) to the target pediatric model. The transform was applied to the template XCAT to fill in any unsegmented structures within the target phantom and to implement the 4D cardiac and respiratory models in the new anatomy. The masses of the organs in each phantom were matched to the reference values given in ICRP Publication 89. The new reference models were checked for anatomical accuracy via visual inspection. Results: The authors created a set of ten pediatric reference phantoms that have the same level of detail and functionality as the original XCAT phantom adults. Each consists of thousands of anatomical structures and includes parameterized models

  1. A set of 4D pediatric XCAT reference phantoms for multimodality research

    Energy Technology Data Exchange (ETDEWEB)

    Norris, Hannah, E-mail: Hannah.norris@duke.edu; Zhang, Yakun; Bond, Jason; Sturgeon, Gregory M.; Samei, E.; Segars, W. P. [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Minhas, Anum; Frush, D. [Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710 (United States); Tward, Daniel J.; Ratnanather, J. T.; Miller, M. I. [Center for Imaging Science, Johns Hopkins University, Baltimore, Maryland 21218 (United States)

    2014-03-15

    Purpose: The authors previously developed an adult population of 4D extended cardiac-torso (XCAT) phantoms for multimodality imaging research. In this work, the authors develop a reference set of 4D pediatric XCAT phantoms consisting of male and female anatomies at ages of newborn, 1, 5, 10, and 15 years. These models will serve as the foundation from which the authors will create a vast population of pediatric phantoms for optimizing pediatric CT imaging protocols. Methods: Each phantom was based on a unique set of CT data from a normal patient obtained from the Duke University database. The datasets were selected to best match the reference values for height and weight for the different ages and genders according to ICRP Publication 89. The major organs and structures were segmented from the CT data and used to create an initial pediatric model defined using nonuniform rational B-spline surfaces. The CT data covered the entire torso and part of the head. To complete the body, the authors manually added on the top of the head and the arms and legs using scaled versions of the XCAT adult models or additional models created from cadaver data. A multichannel large deformation diffeomorphic metric mapping algorithm was then used to calculate the transform from a template XCAT phantom (male or female 50th percentile adult) to the target pediatric model. The transform was applied to the template XCAT to fill in any unsegmented structures within the target phantom and to implement the 4D cardiac and respiratory models in the new anatomy. The masses of the organs in each phantom were matched to the reference values given in ICRP Publication 89. The new reference models were checked for anatomical accuracy via visual inspection. Results: The authors created a set of ten pediatric reference phantoms that have the same level of detail and functionality as the original XCAT phantom adults. Each consists of thousands of anatomical structures and includes parameterized models

  2. Computer phantoms for simulating ultrasound B-mode and CFM images

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Munk, Peter

    1997-01-01

    in a file that defines their position and amplitude. Adjusting the number of scatterers and their relative amplitude yields the proper image.Five different computer phantoms are described. The first one consists of a number of point targets. It is used for studying the point spread function as a function...... of spatial position, and can give an indication of sidelobe levels and focusing abilities. The second phantom contains a number of cysts and point tagets along with a homogeneous speckle pattern. This is used for investigating image contrast, and the system's ability to detect low-contrast objects. The third...... phantom is for realistic clinical imaging. It contains the image of a 12 week old fetus, where the placenta and the upper body of the fetus is visible. This phantom gives an indication of the whole system's capability for real imaging. The current fetus phantom is only two-dimensional, as it is constant...

  3. Fabrication of a phantom and its application for checking gamma camera performance

    International Nuclear Information System (INIS)

    Yesmin, S; Ahmad, G. U.; Afroz, S.; Hossain, S.; Rashid, H.

    2004-01-01

    The primary aim of the present work is to fabricate a total performance phantom, which could be used for checking the performance characteristics of gamma camera. The phantom was locally fabricated at machine shop of Bangladesh University of Engineering and Technology (BUET) and used for checking the performance characteristics of gamma camera LF-61 of Centre for Nuclear Medicine and Ultrasound, Dhaka. With 10 mCi of Tc-99m, imaging of the phantom acquired with a reasonable counts. The image was inspected physically for evaluation of the camera performances. The visual inspection of the phantom image revealed that the performance characteristics like: spatial resolution, linearity, uniformity and lesion detection capability of the gamma camera could clearly be evaluated with reasonable acceptance level. This phantom is expected to be useful for checking performance characteristics of SPECT system as well. (author)

  4. Distributions of neutron and gamma doses in phantom under a mixed field

    International Nuclear Information System (INIS)

    Beraud-Sudreau, E.

    1982-06-01

    A calculation program, based on Monte Carlo method, allowed to estimate the absorbed doses relatives to the reactor primary radiation, in a water cubic phantom and in cylindrical phantoms modelized from tissue compositions. This calculation is a theoretical approach of gamma and neutron dose gradient study in an animal phantom. PIN junction dosimetric characteristics have been studied experimentally. Air and water phantom radiation doses measured by PIN junction and lithium 7 fluoride, in reactor field have been compared to doses given by dosimetry classical techniques as tissue equivalent plastic and aluminium ionization chambers. Dosimeter responses have been employed to evaluate neutron and gamma doses in plastinaut (tissue equivalent plastic) and animal (piglet). Dose repartition in the piglet bone medulla has been also determined. This work has been completed by comparisons with Doerschell, Dousset and Brown results and by neutron dose calculations; the dose distribution related to lineic energy transfer in Auxier phantom has been also calculated [fr

  5. Using NURBS type phantoms for the investigation of morphological factors affecting pulmonary anthropo-radiometry

    International Nuclear Information System (INIS)

    Farah, J.; Broggio, D.; Franck, D.

    2010-01-01

    As existing phantoms used for the calibration of dosimetry measurements, notably in anthropo-radiometry, exhibit a poor anatomic realism because of their crude geometries, compositions and densities, and some other drawbacks, the authors, within the frame of improvement of calibration techniques, report the combined use of Mesh and NURBS-type phantoms (Non Uniform Rational B-Splines) which allow smooth shapes and finer geometries to be replicated. More precisely, they report the application of this type of phantoms to the modelling of a thorax and of a ribcage. They describe the protocols used to generate these phantoms and how some variations are introduced to take morphological characteristics (for example a female thorax) as well as various gamma ray distributions into account. Results are discussed in terms of validation of phantoms, and morphology variation

  6. Spherical phantom for research of radiation situation in outer space. Design-structural special features

    International Nuclear Information System (INIS)

    Kartsev, I.S.; Eremenko, V.G.; Petrov, V.I.; Polenov, B.V.; Yudin, V.N.; Akatov, Yu.A.; Petrov, V.M.; Shurshakov, V.A.

    2005-01-01

    The design-structural features of the updated spherical phantom applied within the frameworks of the space experiment Matreshka-R at the Russian segment of International space station during ISS-8 and ISS-9 expeditions are described. The replacement of 48 polyethylene containers with TLD and STD assemblies by 16 cases installed from external side of the phantom and 4 tissue-equivalent caps of the central disk by 4 cases with detector assemblies is carried out. The updated tissue-equivalent phantom contains the active dosemeter based on 5 MOS detectors. The phantom cover is made from the non-flammable material NT-7. The basic characteristics of the flight specimen of the phantom are presented. The results of its on-Earth testing and real space flights are analyzed [ru

  7. Quantitative evaluation in tumor SPECT and the effect of tumor size. Fundamental study with phantom

    International Nuclear Information System (INIS)

    Togawa, Takashi; Yui, Nobuharu; Kinoshita, Fujimi; Yanagisawa, Masamichi

    1997-01-01

    An experimental study with phantoms was performed in order to evaluate the effect of the tumor volume on the quantitative estimation in tumor SPECT. The ratio of mean count/pixel in the phantom to that of the background (T/N ratio) was well correlated with the size of the phantom; even when the concentration of the Tc-99m O 4 - solution of globular phantoms with diameters of 29, 37 and 46 mm was constant, the greater the size of the phantom, the higher was the T/N ratio. This study showed that we should understand that the T/N ratio was certainly affected by the reduction of the tumor size itself whenever we evaluate treatment response or assess tumor viability after treatment by reference to the T/N ratio. (author)

  8. Comparison of organ doses in human phantoms: variations due to body size and posture

    International Nuclear Information System (INIS)

    Feng, Xu; Xiang-Hong, Jia; Xue-Jun, Yu; Zhan-Chun, Pan; Qian, Liu; Chun-Xin, Yang

    2017-01-01

    Organ dose calculations performed using human phantoms can provide estimates of astronauts' health risks due to cosmic radiation. However, the characteristics of such phantoms strongly affect the estimation precision. To investigate organ dose variations with body size and posture in human phantoms, a non-uniform rational B-spline boundary surfaces model was constructed based on cryo-section images. This model was used to establish four phantoms with different body size and posture parameters, whose organs parameters were changed simultaneously and which were voxelised with 4x4x4 mm"3 resolution. Then, using Monte Carlo transport code, the organ doses caused by ≤500 MeV isotropic incident protons were calculated. The dose variations due to body size differences within a certain range were negligible, and the doses received in crouching and standing-up postures were similar. Therefore, a standard Chinese phantom could be established, and posture changes cannot effectively protect astronauts during solar particle events. (authors)

  9. Phantom sensations in people with complete spinal cord lesions: a grounded theory perspective.

    Science.gov (United States)

    Drysdale, Daren G; Shem, Kazuko; Walbom, Agnes; Miner, Maureen D; Maclachlan, Malcolm

    2009-01-01

    Phantom sensations are somatic phenomena arising from denervated parts of the body. There is very little research, and much diagnostic confusion, regarding such experiences in people with spinal cord injuries. In the case of 'complete' spinal cord lesions, phantom experiences may challenge, and indeed, contradict, the understanding that both clinicians and patients have of such injuries. This paper seeks to provide a better understanding of such 'phantom' sensations in spinal cord injury. We used grounded theory methods to explore 'phantom' sensations as experienced by individuals with complete (ASIA A) spinal lesions. Eight people with complete lesions, who were selected through theoretical sampling, participated in a semi-structured interview. Emergent themes included injury context, sensations experienced, the meaning of sensations, body connectivity, attitude and communication about sensations. Our results provide an enhanced understanding of the embodied experience of phantom sensations, and important insights regarding self-construction and rehabilitative processes in people with spinal cord injury who experience such anomalous sensations.

  10. Application of double-layered skin phantoms for optical flow imaging during laser tattoo treatments

    Science.gov (United States)

    Lee, Byeong-il; Song, Woosub; Kim, Hyejin; Kang, Hyun Wook

    2016-05-01

    The feasible application of double-layered skin phantoms was evaluated to identify artificial blood flow with a Doppler optical coherence tomography (DOCT) system for laser tattoo treatments. Polydimethylsiloxane (PDMS) was used to fabricate the artificial phantoms with flow channels embedded. A double-integrating sphere system with an inverse adding-doubling method quantified both the absorption and the reduced scattering coefficients for epidermis and dermis phantoms. Both OCT and caliper measurements confirmed the double-layered phantom structure (epidermis = 136 ± 17 µm vs. dermis = 3.0 ± 0.1 mm). The DOCT method demonstrated that high flow rates were associated with high image contrast, visualizing the position and the shape of the flow channel. Application of the channel-embedded skin phantoms in conjunction with DOCT can be a reliable technique to assess dynamic variations in the blood flow during and after laser tattoo treatments.

  11. Realistic torso phantom for calibration of in-vivo transuranic-nuclide counting facilities

    Energy Technology Data Exchange (ETDEWEB)

    Shirotani, Takashi

    1988-11-01

    A realistic torso phantom with average body size of Japanese adult males has been developed for the calibration of counting systems used for in-vivo measurements of plutonium and other actinides. The phantom contains removable model organs (lungs, liver, kidneys and heart), model trachea and artificial rib cage, and also includes chest plates that can be placed over the chest to simulate wide range adipose/muscle ratio in the human chest. Tissue substitutes used in the phantom were made of polyurethane with different concentrations of ester of phosphoric acid. Model lungs were made of foamed polyurethane with small quantities of the additive, and the artificial rib cage was made of epoxy resin with calcium carbonate. The experimental data have shown that the phantom can be used as a standard phantom for the calibration.

  12. A Topographically and anatomically unified phantom model for organ dose determination in radiation hygiene

    International Nuclear Information System (INIS)

    Servomaa, A.; Rannikko, S.; Ermakov, I.; Masarskyi, L.; Saltukova, L.

    1989-08-01

    The effective dose equivalent is used as a risk-related factor for assessing radiation impact on patients. In order to assess the effective dose equivalent, data on organ doses in several organs are needed. For calculation of the collective effective dose equivalent, data on the sex and size distribution of the exposed population are also needed. A realistic phantom model based on the Alderson-Rando anatomical phantom has been developed for these purposes. The phantom model includes 22 organs and takes into account the deflections due to sex, height, weight and other anatomical features. Coordinates of the outer contours of inner organs are given in different slabs of the phantom. The images of cross sections of different slabs realistically depict the distribution of the organs in the phantom. Statistics about height and weight distribution as a function of the age of the Finnish population are also given. (orig.)

  13. A deformable head and neck phantom with in-vivo dosimetry for adaptive radiotherapy quality assurance

    Energy Technology Data Exchange (ETDEWEB)

    Graves, Yan Jiang [Center for Advanced Radiotherapy Technologies and Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California 92037-0843 and Department of Physics, University of California San Diego, La Jolla, California 92093 (United States); Smith, Arthur-Allen; Mcilvena, David; Manilay, Zherrina; Lai, Yuet Kong [Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California 92093 (United States); Rice, Roger; Mell, Loren; Cerviño, Laura, E-mail: lcervino@ucsd.edu, E-mail: steve.jiang@utsouthwestern.edu [Center for Advanced Radiotherapy Technologies and Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California 92037-0843 (United States); Jia, Xun; Jiang, Steve B., E-mail: lcervino@ucsd.edu, E-mail: steve.jiang@utsouthwestern.edu [Center for Advanced Radiotherapy Technologies and Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California 92037-0843 and Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75235 (United States)

    2015-04-15

    Purpose: Patients’ interfractional anatomic changes can compromise the initial treatment plan quality. To overcome this issue, adaptive radiotherapy (ART) has been introduced. Deformable image registration (DIR) is an important tool for ART and several deformable phantoms have been built to evaluate the algorithms’ accuracy. However, there is a lack of deformable phantoms that can also provide dosimetric information to verify the accuracy of the whole ART process. The goal of this work is to design and construct a deformable head and neck (HN) ART quality assurance (QA) phantom with in vivo dosimetry. Methods: An axial slice of a HN patient is taken as a model for the phantom construction. Six anatomic materials are considered, with HU numbers similar to a real patient. A filled balloon inside the phantom tissue is inserted to simulate tumor. Deflation of the balloon simulates tumor shrinkage. Nonradiopaque surface markers, which do not influence DIR algorithms, provide the deformation ground truth. Fixed and movable holders are built in the phantom to hold a diode for dosimetric measurements. Results: The measured deformations at the surface marker positions can be compared with deformations calculated by a DIR algorithm to evaluate its accuracy. In this study, the authors selected a Demons algorithm as a DIR algorithm example for demonstration purposes. The average error magnitude is 2.1 mm. The point dose measurements from the in vivo diode dosimeters show a good agreement with the calculated doses from the treatment planning system with a maximum difference of 3.1% of prescription dose, when the treatment plans are delivered to the phantom with original or deformed geometry. Conclusions: In this study, the authors have presented the functionality of this deformable HN phantom for testing the accuracy of DIR algorithms and verifying the ART dosimetric accuracy. The authors’ experiments demonstrate the feasibility of this phantom serving as an end

  14. Computational high-resolution heart phantoms for medical imaging and dosimetry simulations

    Energy Technology Data Exchange (ETDEWEB)

    Gu Songxiang; Kyprianou, Iacovos [Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD (United States); Gupta, Rajiv, E-mail: songxiang.gu@fda.hhs.gov, E-mail: rgupta1@partners.org, E-mail: iacovos.kyprianou@fda.hhs.gov [Massachusetts General Hospital, Boston, MA (United States)

    2011-09-21

    Cardiovascular disease in general and coronary artery disease (CAD) in particular, are the leading cause of death worldwide. They are principally diagnosed using either invasive percutaneous transluminal coronary angiograms or non-invasive computed tomography angiograms (CTA). Minimally invasive therapies for CAD such as angioplasty and stenting are rendered under fluoroscopic guidance. Both invasive and non-invasive imaging modalities employ ionizing radiation and there is concern for deterministic and stochastic effects of radiation. Accurate simulation to optimize image quality with minimal radiation dose requires detailed, gender-specific anthropomorphic phantoms with anatomically correct heart and associated vasculature. Such phantoms are currently unavailable. This paper describes an open source heart phantom development platform based on a graphical user interface. Using this platform, we have developed seven high-resolution cardiac/coronary artery phantoms for imaging and dosimetry from seven high-quality CTA datasets. To extract a phantom from a coronary CTA, the relationship between the intensity distribution of the myocardium, the ventricles and the coronary arteries is identified via histogram analysis of the CTA images. By further refining the segmentation using anatomy-specific criteria such as vesselness, connectivity criteria required by the coronary tree and image operations such as active contours, we are able to capture excellent detail within our phantoms. For example, in one of the female heart phantoms, as many as 100 coronary artery branches could be identified. Triangular meshes are fitted to segmented high-resolution CTA data. We have also developed a visualization tool for adding stenotic lesions to the coronaries. The male and female heart phantoms generated so far have been cross-registered and entered in the mesh-based Virtual Family of phantoms with matched age/gender information. Any phantom in this family, along with user

  15. MO-F-CAMPUS-T-01: IROC Houston QA Center’s Anthropomorphic Proton Phantom Program

    International Nuclear Information System (INIS)

    Lujano, C; Hernandez, N; Keith, T; Nguyen, T; Taylor, P; Molineu, A; Followill, D

    2015-01-01

    Purpose: To describe the proton phantoms that IROC Houston uses to approve and credential proton institutions to participate in NCI-sponsored clinical trials. Methods: Photon phantoms cannot necessarily be used for proton measurements because protons react differently than photons in some plastics. As such plastics that are tissue equivalent for protons were identified. Another required alteration is to ensure that the film dosimeters are housed in the phantom with no air gap to avoid proton streaming. Proton-equivalent plastics/materials used include RMI Solid Water, Techron HPV, blue water, RANDO soft tissue material, balsa wood, compressed cork and polyethylene. Institutions wishing to be approved or credentialed request a phantom and are prioritized for delivery. At the institution, the phantom is imaged, a treatment plan is developed, positioned on the treatment couch and the treatment is delivered. The phantom is returned and the measured dose distributions are compared to the institution’s electronically submitted treatment plan dosimetry data. Results: IROC Houston has developed an extensive proton phantom approval/credentialing program consisting of five different phantoms designs: head, prostate, lung, liver and spine. The phantoms are made with proton equivalent plastics that have HU and relative stopping powers similar (within 5%) of human tissues. They also have imageable targets, avoidance structures, and heterogeneities. TLD and radiochromic film are contained in the target structures. There have been 13 head, 33 prostate, 18 lung, 2 liver and 16 spine irradiations with either passive scatter, or scanned proton beams. The pass rates have been: 100%, 69.7%, 72.2%, 50%, and 81.3%, respectively. Conclusion: IROC Houston has responded to the recent surge in proton facilities by developing a family of anthropomorphic phantoms that are able to be used for remote audits of proton beams. Work supported by PHS grant CA10953 and CA081647

  16. MO-F-CAMPUS-T-01: IROC Houston QA Center’s Anthropomorphic Proton Phantom Program

    Energy Technology Data Exchange (ETDEWEB)

    Lujano, C; Hernandez, N; Keith, T; Nguyen, T; Taylor, P; Molineu, A; Followill, D [UT MD Anderson Cancer Center, Houston, TX (United States)

    2015-06-15

    Purpose: To describe the proton phantoms that IROC Houston uses to approve and credential proton institutions to participate in NCI-sponsored clinical trials. Methods: Photon phantoms cannot necessarily be used for proton measurements because protons react differently than photons in some plastics. As such plastics that are tissue equivalent for protons were identified. Another required alteration is to ensure that the film dosimeters are housed in the phantom with no air gap to avoid proton streaming. Proton-equivalent plastics/materials used include RMI Solid Water, Techron HPV, blue water, RANDO soft tissue material, balsa wood, compressed cork and polyethylene. Institutions wishing to be approved or credentialed request a phantom and are prioritized for delivery. At the institution, the phantom is imaged, a treatment plan is developed, positioned on the treatment couch and the treatment is delivered. The phantom is returned and the measured dose distributions are compared to the institution’s electronically submitted treatment plan dosimetry data. Results: IROC Houston has developed an extensive proton phantom approval/credentialing program consisting of five different phantoms designs: head, prostate, lung, liver and spine. The phantoms are made with proton equivalent plastics that have HU and relative stopping powers similar (within 5%) of human tissues. They also have imageable targets, avoidance structures, and heterogeneities. TLD and radiochromic film are contained in the target structures. There have been 13 head, 33 prostate, 18 lung, 2 liver and 16 spine irradiations with either passive scatter, or scanned proton beams. The pass rates have been: 100%, 69.7%, 72.2%, 50%, and 81.3%, respectively. Conclusion: IROC Houston has responded to the recent surge in proton facilities by developing a family of anthropomorphic phantoms that are able to be used for remote audits of proton beams. Work supported by PHS grant CA10953 and CA081647.

  17. SU-C-209-07: Phantoms for Digital Breast Tomosynthesis Imaging System Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, D; Liu, Y [Medical College of Wisconsin, Milwaukee, WI (United States)

    2016-06-15

    Purpose: Digital Breast Tomosynthesis (DBT) is gaining importance in breast imaging. There is a need for phantoms that can be used for image evaluation and comparison. Existing commercially available phantoms for DBT are expensive and may lack clinically relevant test objects. The purpose of this study is to develop phantoms for DBT evaluation. Methods Four phantoms have been designed and constructed to assess the image quality (IQ) of two DBT systems. The first contains a spiral of 0.3 mm SiC beads in gelatin to measure the tomographic slice thickness profile and uniformity of coverage in a series of tomographic planes. The second contains simulated tumors inclined with respect to the phantom base to assess tomographic image quality. The third has a tilted array of discs with varying contrast and diameter. This phantom was imaged alone and in a stack of TE slabs giving 2 to 10 cm thickness. The fourth has a dual wedge of glandular and adipose simulating materials. One wedge contains discs with varying diameter and thickness; the other supports a mass with six simulated spicules of varying size and a cluster of simulated calcifications. The simulated glandular tissue material varies between 35 and 100% of the total thickness (5.5 cm). Results: All phantoms were scanned successfully. The best IQ comparison was achieved with the dual wedge phantom as demonstrated by the spiculated mass and calcifications. Images were evaluated by two radiologists and one physicist. The projection images and corresponding set of tomographic planes were comparable and the synthesized projection images were inferior to the projection images for both systems. Conclusion: Four phantoms were designed, constructed and imaged on two DBT systems. They successfully demonstrated performance differences between two systems, and between true and synthesized projection images. Future work will incorporate these designs into a single phantom.

  18. Computational high-resolution heart phantoms for medical imaging and dosimetry simulations

    International Nuclear Information System (INIS)

    Gu Songxiang; Kyprianou, Iacovos; Gupta, Rajiv

    2011-01-01

    Cardiovascular disease in general and coronary artery disease (CAD) in particular, are the leading cause of death worldwide. They are principally diagnosed using either invasive percutaneous transluminal coronary angiograms or non-invasive computed tomography angiograms (CTA). Minimally invasive therapies for CAD such as angioplasty and stenting are rendered under fluoroscopic guidance. Both invasive and non-invasive imaging modalities employ ionizing radiation and there is concern for deterministic and stochastic effects of radiation. Accurate simulation to optimize image quality with minimal radiation dose requires detailed, gender-specific anthropomorphic phantoms with anatomically correct heart and associated vasculature. Such phantoms are currently unavailable. This paper describes an open source heart phantom development platform based on a graphical user interface. Using this platform, we have developed seven high-resolution cardiac/coronary artery phantoms for imaging and dosimetry from seven high-quality CTA datasets. To extract a phantom from a coronary CTA, the relationship between the intensity distribution of the myocardium, the ventricles and the coronary arteries is identified via histogram analysis of the CTA images. By further refining the segmentation using anatomy-specific criteria such as vesselness, connectivity criteria required by the coronary tree and image operations such as active contours, we are able to capture excellent detail within our phantoms. For example, in one of the female heart phantoms, as many as 100 coronary artery branches could be identified. Triangular meshes are fitted to segmented high-resolution CTA data. We have also developed a visualization tool for adding stenotic lesions to the coronaries. The male and female heart phantoms generated so far have been cross-registered and entered in the mesh-based Virtual Family of phantoms with matched age/gender information. Any phantom in this family, along with user

  19. Estimation of computed tomography dose in various phantom shapes and compositions

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Lae [Dept. of Radiological Science, Yonsei University, Seoul (Korea, Republic of)

    2017-03-15

    The purpose of this study was to investigate CTDI (computed tomography dose index at center) for various phantom shapes, sizes, and compositions by using GATE (geant4 application for tomographic emission) simulations. GATE simulations were performed for various phantom shapes (cylinder, elliptical, and hexagonal prism PMMA phantoms) and phantom compositions (water, PMMA, polyethylene, polyoxymethylene) with various diameters (1-50 cm) at various kVp and mAs levels. The CTDI100center values of cylinder, elliptical, and hexagonal prism phantom at 120 kVp, 200 mAs resulted in 11.1, 13.4, and 12.2 mGy, respectively. The volume is the same, but CTDI{sub 100center} values are different depending on the type of phantom. The water, PMMA, and polyoxymethylene phantom CTDI{sub 100center} values were relatively low as the material density increased. However, in the case of Polyethylene, the CTDI{sub 100center} value was higher than that of PMMA at diameters exceeding 15 cm (CTDI{sub 100center} : 35.0 mGy). And a diameter greater than 30 cm (CTDI{sub 100center} : 17.7 mGy) showed more CTDI{sub 100center} than Water. We have used limited phantoms to evaluate CT doses. In this study, CTDI{sub 100center} values were estimated and simulated by GATE simulation according to the material and shape of the phantom. CT dosimetry can be estimated more accurately by using various materials and phantom shapes close to human body.

  20. A tissue phantom for visualization and measurement of ultrasound-induced cavitation damage.

    Science.gov (United States)

    Maxwell, Adam D; Wang, Tzu-Yin; Yuan, Lingqian; Duryea, Alexander P; Xu, Zhen; Cain, Charles A

    2010-12-01

    Many ultrasound studies involve the use of tissue-mimicking materials to research phenomena in vitro and predict in vivo bioeffects. We have developed a tissue phantom to study cavitation-induced damage to tissue. The phantom consists of red blood cells suspended in an agarose hydrogel. The acoustic and mechanical properties of the gel phantom were found to be similar to soft tissue properties. The phantom's response to cavitation was evaluated using histotripsy. Histotripsy causes breakdown of tissue structures by the generation of controlled cavitation using short, focused, high-intensity ultrasound pulses. Histotripsy lesions were generated in the phantom and kidney tissue using a spherically focused 1-MHz transducer generating 15 cycle pulses, at a pulse repetition frequency of 100 Hz with a peak negative pressure of 14 MPa. Damage appeared clearly as increased optical transparency of the phantom due to rupture of individual red blood cells. The morphology of lesions generated in the phantom was very similar to that generated in kidney tissue at both macroscopic and cellular levels. Additionally, lesions in the phantom could be visualized as hypoechoic regions on a B-mode ultrasound image, similar to histotripsy lesions in tissue. High-speed imaging of the optically transparent phantom was used to show that damage coincides with the presence of cavitation. These results indicate that the phantom can accurately mimic the response of soft tissue to cavitation and provide a useful tool for studying damage induced by acoustic cavitation. Copyright © 2010 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  1. Are phantoms useful for predicting the potential of dose reduction in full-field digital mammography?

    International Nuclear Information System (INIS)

    Gennaro, Gisella; Katz, Luc; Souchay, Henri; Alberelli, Claudio; Maggio, Cosimo di

    2005-01-01

    A phantom study was performed in full-field digital mammography to investigate the opportunity and the magnitude of a possible dose reduction that would leave the image quality above the accepted thresholds associated with some classical phantoms. This preliminary work is intended to lay the groundwork for a future clinical study on the impact of dose reduction on clinical results. Three different mammography phantoms (ACR RMI 156, CIRS 11A and CDMAM 3.4) were imaged by a full-field digital mammography unit (GE Senographe 2000D) at different dose levels. Images were rated by three observers with softcopy reading and scoring methods specific to each phantom. Different types of data analysis were applied to the ACR (American College of Radiology) and the other two phantoms, respectively. With reference to the minimum acceptance score in screen/film accreditation programmes, the ACR phantom showed that about 45% dose reduction could be applied, while keeping the phantom scores above that threshold. A relative comparison was done for CIRS and CDMAM, for which no threshold is defined. CIRS scoring remained close to the reference level down to 40% dose reduction, the inter- and intra-observer variability being the main source of uncertainty. Contrast-detail curves provided by CDMAM overlapped down to 50% dose reduction, at least for object contrast values ranging between 30% and 3%. This multi-phantom study shows the potential of further reducing the dose in full-field digital mammography beyond the current values. A common dose reduction factor around 50% seems acceptable for all phantoms. However, caution is required before extrapolating the results for clinical use, given the limitations of these widely used phantoms, mainly related to their limited dynamic range and uniform background

  2. Determination of mammography images constancy parameters for C R system using Phantom Mama and mammographic accreditation phantom

    International Nuclear Information System (INIS)

    Santos, Andre U. dos; Souza, Wedla P. de; Hoff, Gabriela

    2009-01-01

    In the diagnostic imaging services is common to find the analogical image acquiring method in transition to the digital acquiring method. However it is necessary to define the appropriate techniques for acquisition of images. For that achievement the reference parameter of image must be determinate and based on that, determine the constancy and diagnostic image quality tests. Annually, for each imaging system, it is recommended the technical parameters review for different types of breast, reducing the dose on the mammary gland and preserving the image quality. It should be done based on national regulations and in accordance to the requirements of the medical team. The methodological proposes of this work has the objective of realize the constancy analysis for the image quality, using the PhantonMama and Mamographic Accreditation Phantom model 18-220 (recommended by ACR) and the software. Both protocols suggested were adequate for the analysis proposed. (author)

  3. Computational voxel phantom, associated to anthropometric and anthropomorphic real phantom for dosimetry in human male pelvis radiotherapy

    International Nuclear Information System (INIS)

    Silva, Cleuza Helena Teixeira; Campos, Tarcisio Passos Ribeiro de

    2005-01-01

    This paper addresses a computational model of voxels through MCNP5 Code and the experimental development of an anthropometric and anthropomorphic phantom for dosimetry in human male pelvis brachytherapy focusing prostatic tumors. For elaboration of the computational model of the human male pelvis, anatomical section images from the Visible Man Project were applied. Such selected and digital images were associated to a numeric representation, one for each section. Such computational representation of the anatomical sections was transformed into a bi-dimensional mesh of equivalent tissue. The group of bidimensional meshes was concatenated forming the three-dimensional model of voxels to be used by the MCNP5 code. In association to the anatomical information, data from the density and chemical composition of the basic elements, representatives of the organs and involved tissues, were setup in a material database for the MCNP-5. The model will be applied for dosimetric evaluations in situations of irradiation of the human masculine pelvis. Such 3D model of voxel is associated to the code of transport of particles MCNP5, allowing future simulations. It was also developed the construction of human masculine pelvis phantom, based on anthropometric and anthropomorphic dates and in the use of representative equivalent tissues of the skin, fatty, muscular and glandular tissue, as well as the bony structure.This part of work was developed in stages, being built the bony cast first, later the muscular structures and internal organs. They were then jointly mounted and inserted in the skin cast. The representative component of the fatty tissue was incorporate and accomplished the final retouchings in the skin. The final result represents the development of two important essential tools for elaboration of computational and experimental dosimetry. Thus, it is possible its use in calibrations of pre-existent protocols in radiotherapy, as well as for tests of new protocols, besides

  4. SU-F-BRE-08: Feasibility of 3D Printed Patient Specific Phantoms for IMRT/IGRT QA

    International Nuclear Information System (INIS)

    Ehler, E; Higgins, P; Dusenbery, K

    2014-01-01

    Purpose: Test the feasibility of 3D printed, per-patient phantoms for IMRT QA to analyze the treatment delivery quality within the patient geometry. Methods: Using the head and neck region of an anthropomorphic phantom as a substitute for an actual patient, a soft-tissue equivalent model was constructed with the use of a 3D printer. A nine-field IMRT plan was constructed and dose verification measurements were performed for the 3D printed phantom. During the delivery of the IMRT QA on to the 3D printed phantom, the same patient positioning indexing system was used on the phantom and image guidance (cone beam CT) was used to localize the phantom, serving as a test of the IGRT system as well. The 3D printed phantom was designed to accommodate four radiochromic film planes (two axial, one coronal and one sagittal) and an ionization chamber measurement. As a frame of comparison, the IMRT QA was also performed on traditional phantoms. Dosimetric tolerance levels such as 3mm / 3% Gamma Index as well as 3% and 5% dose difference were considered. All detector systems were calibrated against a NIST traceable ionization chamber. Results: Comparison of results 3D printed patient phantom with the standard IMRT QA systems showed similar passing rates for the 3D printed phantom and the standard phantoms. However, the locations of the failing regions did not necessarily correlate. The 3D printed phantom was localized within 1 mm and 1° using on-board cone beam CT. Conclusion: A custom phantom was created using a 3D printer. It was determined that the use of patient specific phantoms to perform dosimetric verification and estimate the dose in the patient is feasible. In addition, end-to-end testing on a per-patient basis was possible with the 3D printed phantom. Further refinement of the phantom construction process is needed for routine clinical use

  5. SU-F-BRE-08: Feasibility of 3D Printed Patient Specific Phantoms for IMRT/IGRT QA

    Energy Technology Data Exchange (ETDEWEB)

    Ehler, E; Higgins, P; Dusenbery, K [University of Minnesota, Minneapolis, MN (United States)

    2014-06-15

    Purpose: Test the feasibility of 3D printed, per-patient phantoms for IMRT QA to analyze the treatment delivery quality within the patient geometry. Methods: Using the head and neck region of an anthropomorphic phantom as a substitute for an actual patient, a soft-tissue equivalent model was constructed with the use of a 3D printer. A nine-field IMRT plan was constructed and dose verification measurements were performed for the 3D printed phantom. During the delivery of the IMRT QA on to the 3D printed phantom, the same patient positioning indexing system was used on the phantom and image guidance (cone beam CT) was used to localize the phantom, serving as a test of the IGRT system as well. The 3D printed phantom was designed to accommodate four radiochromic film planes (two axial, one coronal and one sagittal) and an ionization chamber measurement. As a frame of comparison, the IMRT QA was also performed on traditional phantoms. Dosimetric tolerance levels such as 3mm / 3% Gamma Index as well as 3% and 5% dose difference were considered. All detector systems were calibrated against a NIST traceable ionization chamber. Results: Comparison of results 3D printed patient phantom with the standard IMRT QA systems showed similar passing rates for the 3D printed phantom and the standard phantoms. However, the locations of the failing regions did not necessarily correlate. The 3D printed phantom was localized within 1 mm and 1° using on-board cone beam CT. Conclusion: A custom phantom was created using a 3D printer. It was determined that the use of patient specific phantoms to perform dosimetric verification and estimate the dose in the patient is feasible. In addition, end-to-end testing on a per-patient basis was possible with the 3D printed phantom. Further refinement of the phantom construction process is needed for routine clinical use.

  6. Porous phantoms for PET and SPECT performance evaluation and quality assurance

    International Nuclear Information System (INIS)

    DiFilippo, Frank P.; Price, James P.; Kelsch, Daniel N.; Muzic, Raymond F. Jr.

    2004-01-01

    Characterization of PET and SPECT imaging performance often requires phantoms with complex radionuclide distributions. For example, lesion detection studies use multiple spherical regions of specific target-to-background ratios to simulate cancerous lesions. Such complex distributions are typically created using phantoms with multiple fillable chambers. However, such phantoms are typically difficult and time-consuming to prepare accurately and reproducibly. A new approach using a single-chamber phantom with a porous core can overcome these difficulties. Methods: Prototypes of two designs of porous core phantoms were produced and evaluated. The 'hot spheres' phantom contained a multitude of simulated spherical lesions with diameters ranging from 6.35 to 25.4 mm ('multi-resolution' slice) and with lesion-to-background ratios ranging from 1.6 to 4.4 ('multi-contrast' slice). The 'multi-attenuation' phantom consisted of two halves. One half contained a porous core to produce regions of different attenuation but uniform activity. The other half mimicked the NEMA-94 design with cold inserts of different attenuation. Results: Both phantoms produced the expected radionuclide distributions while requiring the preparation of only a single radionuclide solution and with much reduced preparation time. In images taken on clinical PET and SPECT scanners, the porous core structures were found to contribute negligible background noise or artifact. The measured lesion-to-background ratios from the hot spheres phantom differed slightly from calculated values, with the differences attributed mainly to uncertainty in pore diameter. The measured attenuation coefficients from the multi-attenuation phantom agreed well with expected values. However, it was found that trapped air bubbles due to manufacturing defects in the porous core could potentially cause quantitative errors. Conclusion: The hot spheres and multi-attenuation porous phantoms exhibited a wide range of imaging features

  7. Technical Note: A new phantom design for routine testing of Doppler ultrasound.

    Science.gov (United States)

    Grice, J V; Pickens, D R; Price, R R

    2016-07-01

    The objective of this project is to demonstrate the principle and operation for a simple, inexpensive, and highly portable Doppler ultrasound quality assurance (QA) phantom intended for routine QA testing. A prototype phantom has been designed, fabricated, and evaluated. The phantom described here is powered by gravity alone, requires no external equipment for operation, and produces a stable fluid velocity useful for quality assurance. Many commercially available Doppler ultrasound testing systems can suffer from issues such as a lengthy setup, prohibitive cost, nonportable size, or difficulty in use. This new phantom design aims to address some of these problems and create a phantom appropriate for assessing Doppler ultrasound stability. The phantom was fabricated using a 3D printer. The basic design of the phantom is to provide gravity-powered flow of a Doppler fluid between two reservoirs. The printed components were connected with latex tubing and then seated in a tissue mimicking gel. Spectral Doppler waveforms were sampled to evaluate variations in the data, and the phantom was evaluated using high frame rate video to find an alternate measure of mean fluid velocity flowing in the phantom. The current system design maintains stable flow from one reservoir to the other for approximately 7 s. Color Doppler imaging of the phantom was found to be qualitatively consistent with laminar flow. Using pulsed spectral Doppler, the average fluid velocity from a sample volume approximately centered in the synthetic vessel was measured to be 56 cm/s with a standard deviation of 3.2 cm/s across 118 measurements. An independent measure of the average fluid velocity was measured to be 51.9 cm/s with a standard deviation of 0.7 cm/s over 4 measurements. The developed phantom provides stable fluid flow useful for frequent clinical Doppler ultrasound testing and attempts to address several obstacles facing Doppler phantom testing. Such an ultrasound phantom can make routine

  8. Hybrid computational phantoms of the male and female newborn patient: NURBS-based whole-body models

    International Nuclear Information System (INIS)

    Lee, Choonsik; Lodwick, Daniel; Hasenauer, Deanna; Williams, Jonathan L; Lee, Choonik; Bolch, Wesley E

    2007-01-01

    Anthropomorphic computational phantoms are computer models of the human body for use in the evaluation of dose distributions resulting from either internal or external radiation sources. Currently, two classes of computational phantoms have been developed and widely utilized for organ dose assessment: (1) stylized phantoms and (2) voxel phantoms which describe the human anatomy via mathematical surface equations or 3D voxel matrices, respectively. Although stylized phantoms based on mathematical equations can be very flexible in regard to making changes in organ position and geometrical shape, they are limited in their ability to fully capture the anatomic complexities of human internal anatomy. In turn, voxel phantoms have been developed through image-based segmentation and correspondingly provide much better anatomical realism in comparison to simpler stylized phantoms. However, they themselves are limited in defining organs presented in low contrast within either magnetic resonance or computed tomography images-the two major sources in voxel phantom construction. By definition, voxel phantoms are typically constructed via segmentation of transaxial images, and thus while fine anatomic features are seen in this viewing plane, slice-to-slice discontinuities become apparent in viewing the anatomy of voxel phantoms in the sagittal or coronal planes. This study introduces the concept of a hybrid computational newborn phantom that takes full advantage of the best features of both its stylized and voxel counterparts: flexibility in phantom alterations and anatomic realism. Non-uniform rational B-spline (NURBS) surfaces, a mathematical modeling tool traditionally applied to graphical animation studies, was adopted to replace the limited mathematical surface equations of stylized phantoms. A previously developed whole-body voxel phantom of the newborn female was utilized as a realistic anatomical framework for hybrid phantom construction. The construction of a hybrid

  9. Monte Carlo Simulations for Homeland Security Using Anthropomorphic Phantoms

    International Nuclear Information System (INIS)

    Burns, Kimberly A.

    2008-01-01

    A radiological dispersion device (RDD) is a device which deliberately releases radioactive material for the purpose of causing terror or harm. In the event that a dirty bomb is detonated, there may be airborne radioactive material that can be inhaled as well as settle on an individuals leading to external contamination. Monte Carlo calculations were performed to simulate healthcare workers in the operating room or trauma room at a hospital. The Monte Carlo Neutral Particle transport code MCNP5 was used for the modeling. The human body was modeled using Medical Internal Radiation Dose (MIRD-V) anthropomorphic phantoms originally developed at Oak Ridge National Laboratory (ORNL) under the specifications of International Commission on Radiation Protection (ICRP) Publication 23 and later altered at Georgia Tech (17). This study considered two possible contamination scenarios: uniform external contamination with no internal contamination and inhaled radioactive material without any external contamination. For both scenarios, the patients isotopes considered were 60 Co, 137 Cs, 131 I, 192 Ir, and 241 Am. For the externally contaminated patient, a uniform volume source two millimeters thick was placed around the skin of each anthropomorphic phantom to simulate a uniform source on the surface of the body. For the internally contaminated patients, the Dose and Risk Calculation software, DCAL, was used to determine the distribution of the isotopes in the internal organs. For both of the scenarios, the healthcare provider was placed 20-cm from the middle of the torso of the contaminated patient. The amount of energy deposited to the tissues and organs of the healthcare provider due to the internally and externally contaminated patients and in the patient in the case of external contamination was determined. The effective dose rate was calculated using the masses of the tissues and organ and tissue weighting factors from ICRP Publication 60. The effective dose rate for the

  10. Development of Adjustable 3D computational phantoms for breast radiotherapy

    International Nuclear Information System (INIS)

    Emam, Zohal Alnour Ahmed

    2016-06-01

    Radiotherapy has become an essential part of breast cancer treatment and it was given a great concern during last decades due to aspects of managing breast cancer successfully, reducing recurrence and breast cancer mortality. Monte Carlo simulation has been used heavily in this issue. To use monte Carlo the suitable data set must be found to perform the study. This process is not straight forward and difficult to achieve and an effort is needed to obtain it. In this work we aimed to develop a methodology for obtaining 3D adjustable computational phantoms with different breast sizes to treat this problem. At first make human software was used to generate outer surfaces models with desired anthropomorphic features for our purpose. Three breasts cup sizes have been developed: small (A), medium (C) and large (D) according to European standardization system of dress, then blender software was used to join skeleton and internal organs outer surfaces of the body models in correct anatomical positions and the results were poly mesh anthropomorphic phantom has three breast sizes easy to manipulate positioning and modifying, the prepared models have been voxelised in 3D matrixes (256*256*256) using Binvox software, then voxelised models prepared in suitable formats for Gate (mhd/raw) in 70 axial slice with voxel dimension of 1.394*1.394*5 mm 3 for width, depth and length respectively. Gate monte Carlo was used to simulate the irradiation of virtual tumor bed site in left breasts with direct field electron beam, each breast size was treated with five energies 6, 9, 12, 15, and 18 MeV by field size 5*5 cm 2 , and 100 cm source surface distance (SSD). The results were studied to evaluate the effect of breast size variation on dose distribution. According to criteria of tumor bed coverage by 100% 90% normalised maximum dose and minimum dose to heart and lug which are considering the organs at risks, results show the energy 6 MeV give under cover to tumor bed in the small, medium

  11. Experimental IMRT breast dosimetry in a thorax phantom

    Energy Technology Data Exchange (ETDEWEB)

    Pimenta, Elsa B.; Campos, Tarcisio P.R.; Nogueira, Luciana B.; Lima, Andre C.S., E-mail: elsabpimenta@gmail.com, E-mail: tprcampos@pq.cnpq.br, E-mail: lucibn19@yahoo.com.br, E-mail: radioterapia.andre@gmail.com [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil); Centro de Tratamento em Radioterapia, Betim, MG (Brazil)

    2017-11-01

    Radiation therapy (RT) is an essential therapeutic method. RT is often used as adjuvant therapy in the treatment of breast cancer. The dose-volume restrictions of the organs at risk limit the prescribed dose to the target volume and biological and clinical effects may influence the final treatment outcome. The breast RT provides large risks to the adjacent organs and consequently the recommended dosimetry to the prescribed dose volume (PTV) is 50 Gy, lower than the most prescribed dose in other treatments (70-85 Gy). Such values implies in less tumor control compared to other sites. The present research proposal aimed to measure absorbed dose in a thorax phantom with synthetic breasts provided by an Intensity-Modulate Radiation Therapy (IMRT) protocol in a RT center. On the methodology, IMRT protocol was selected following recommendations from the Radiation Therapy Oncology Group (RTOG). Radiochromic films and a thorax simulator were prepared by the Ionizing Radiation Research Group (NRI). Dosimeters were calibrated on a selected linear accelerator (LINAC). The comparison of the dosimetry from treatment planning system (TPS), Xio (Elekta) and from experimental data was performed. The spatial distribution of the breast internal dose and in the adjacent organs was depicted by the experimental data. In the film's calibration, the quadratic polynomial fit presented a satisfactory coefficient. Two-dimensional dose profiles were obtained in the breast suggesting that films can supply details and information that TPS does not provide. At the phantom's dosimetry, the internal mean doses taken at the synthetic breast presented usual values above the prescribed dose, besides overall values were within the dosimetric MSKCC criterion. The non full reproduction of the build-up region in the films had occurred due to the asymmetrical positioning of the films in the inner breast, in addition to their non constant distance from the skin. The hot regions were present may

  12. PhantomNet: Exploring Optimal Multicellular Multiple Antenna Systems

    Directory of Open Access Journals (Sweden)

    Foschini Gerard J

    2004-01-01

    Full Text Available We present a network framework for evaluating the theoretical performance limits of wireless data communication. We address the problem of providing the best possible service to new users joining the system without affecting existing users. Since, interference-wise, new users are required to be invisible to existing users, the network is dubbed PhantomNet. The novelty is the generality obtained in this context. Namely, we can deal with multiple users, multiple antennas, and multiple cells on both the uplink and the downlink. The solution for the uplink is effectively the same as for a single cell system since all the base stations (BSs simply amount to one composite BS with centralized processing. The optimum strategy, following directly from known results, is successive decoding (SD, where the new user is decoded before the existing users so that the new users' signal can be subtracted out to meet its invisibility requirement. Only the BS needs to modify its decoding scheme in the handling of new users, since existing users continue to transmit their data exactly as they did before the new arrivals. The downlink, even with the BSs operating as one composite BS, is more problematic. With multiple antennas at each BS site, the optimal coding scheme and the capacity region for this channel are unsolved problems. SD and dirty paper (DP are two schemes previously reported to achieve capacity in special cases. For PhantomNet, we show that DP coding at the BS is equal to or better than SD. The new user is encoded before the existing users so that the interference caused by his signal to existing users is known to the transmitter. Thus the BS modifies its encoding scheme to accommodate new users so that existing users continue to operate as before: they achieve the same rates as before and they decode their signal in precisely the same way as before. The solutions for the uplink and the downlink are particularly interesting in the way they exhibit a

  13. Experimental IMRT breast dosimetry in a thorax phantom

    International Nuclear Information System (INIS)

    Pimenta, Elsa B.; Campos, Tarcisio P.R.; Nogueira, Luciana B.; Lima, Andre C.S.

    2017-01-01

    Radiation therapy (RT) is an essential therapeutic method. RT is often used as adjuvant therapy in the treatment of breast cancer. The dose-volume restrictions of the organs at risk limit the prescribed dose to the target volume and biological and clinical effects may influence the final treatment outcome. The breast RT provides large risks to the adjacent organs and consequently the recommended dosimetry to the prescribed dose volume (PTV) is 50 Gy, lower than the most prescribed dose in other treatments (70-85 Gy). Such values implies in less tumor control compared to other sites. The present research proposal aimed to measure absorbed dose in a thorax phantom with synthetic breasts provided by an Intensity-Modulate Radiation Therapy (IMRT) protocol in a RT center. On the methodology, IMRT protocol was selected following recommendations from the Radiation Therapy Oncology Group (RTOG). Radiochromic films and a thorax simulator were prepared by the Ionizing Radiation Research Group (NRI). Dosimeters were calibrated on a selected linear accelerator (LINAC). The comparison of the dosimetry from treatment planning system (TPS), Xio (Elekta) and from experimental data was performed. The spatial distribution of the breast internal dose and in the adjacent organs was depicted by the experimental data. In the film's calibration, the quadratic polynomial fit presented a satisfactory coefficient. Two-dimensional dose profiles were obtained in the breast suggesting that films can supply details and information that TPS does not provide. At the phantom's dosimetry, the internal mean doses taken at the synthetic breast presented usual values above the prescribed dose, besides overall values were within the dosimetric MSKCC criterion. The non full reproduction of the build-up region in the films had occurred due to the asymmetrical positioning of the films in the inner breast, in addition to their non constant distance from the skin. The hot regions were present may be due to

  14. Developing optimized CT scan protocols: Phantom measurements of image quality

    International Nuclear Information System (INIS)

    Zarb, Francis; Rainford, Louise; McEntee, Mark F.

    2011-01-01

    Purpose: The increasing frequency of computerized tomography (CT) examinations is well documented, leading to concern about potential radiation risks for patients. However, the consequences of not performing the CT examination and missing injuries and disease are potentially serious, impacting upon correct patient management. The ALARA principle of dose optimization must be employed for all justified CT examinations. Dose indicators displayed on the CT console as either CT dose index (CTDI) and/or dose length product (DLP), are used to indicate dose and can quantify improvements achieved through optimization. Key scan parameters contributing to dose have been identified in previous literature and in previous work by our group. The aim of this study was to optimize the scan parameters of mA; kV and pitch, whilst maintaining image quality and reducing dose. This research was conducted using psychophysical image quality measurements on a CT quality assurance (QA) phantom establishing the impact of dose optimization on image quality parameters. Method: Current CT scan parameters for head (posterior fossa and cerebrum), abdomen and chest examinations were collected from 57% of CT suites available nationally in Malta (n = 4). Current scan protocols were used to image a Catphan 600 CT QA phantom whereby image quality was assessed. Each scan parameter: mA; kV and pitch were systematically reduced until the contrast resolution (CR), spatial resolution (SR) and noise were significantly lowered. The Catphan 600 images, produced by the range of protocols, were evaluated by 2 expert observers assessing CR, SR and noise. The protocol considered as the optimization threshold was just above the setting that resulted in a significant reduction in CR and noise but not affecting SR at the 95% confidence interval. Results: The limit of optimization threshold was determined for each CT suite. Employing optimized parameters, CTDI and DLP were both significantly reduced (p ≤ 0.001) by

  15. A review of the benefits and pitfalls of phantoms in ultrasound-guided regional anesthesia.

    Science.gov (United States)

    Hocking, Graham; Hebard, Simon; Mitchell, Christopher H

    2011-01-01

    With the growth of ultrasound-guided regional anesthesia, so has the requirement for training tools to practice needle guidance skills and evaluate echogenic needles. Ethically, skills in ultrasound-guided needle placement should be gained in a phantom before performance of nerve blocks on patients in clinical practice. However, phantom technology is varied, and critical evaluation of the images is needed to understand their application to clinical use. Needle visibility depends on the echogenicity of the needle relative to the echogenicity of the tissue adjacent the needle. We demonstrate this point using images of echogenic and nonechogenic needles in 5 different phantoms at both shallow angles (20 degrees) and steep angles (45 degrees). The echogenicity of phantoms varies enormously, and this impacts on how needles are visualized. Water is anechoic, making all needles highly visible, but does not fix the needle to allow practice placement. Gelatin phantoms and Blue Phantoms provide tactile feedback but have very low background echogenicity, which greatly exaggerates needle visibility. This makes skill acquisition easier but can lead to false confidence in regard to clinical ability. Fresh-frozen cadavers retain much of the textural feel of live human tissue and are nearly as echogenic. Similar to clinical practice, this makes needles inserted at steep angles practically invisible, unless they are highly echogenic. This review describes the uses and pitfalls of phantoms that have been described or commercially produced. Copyright © 2011 by American Society of Regional Anesthesia and Pain Medicine

  16. ANTHROPOMORPHIC PHANTOMS FOR ASSESSMENT OF STRAIN IMAGING METHODS INVOLVING SALINE-INFUSED SONOHYSTEROGRAPHY

    Science.gov (United States)

    Hobson, Maritza A.; Madsen, Ernest L.; Frank, Gary R.; Jiang, Jingfeng; Shi, Hairong; Hall, Timothy J.; Varghese, Tomy

    2008-01-01

    Two anthropomorphic uterine phantoms were developed which allow assessment and comparison of strain imaging systems adapted for use with saline-infused sonohysterography (SIS). Tissue-mimicking (TM) materials consist of dispersions of safflower oil in gelatin. TM fibroids are stiffer than the TM myometrium/cervix and TM polyps are softer. The first uterine phantom has 3-mm diameter TM fibroids randomly distributed in TM myometrium. The second uterine phantom has a 5-mm and an 8-mm spherical TM fibroid in addition to a 5-mm spherical and a 12.5-mm long (medicine-capsule-shaped) TM endometrial polyp protruding into the endometrial cavity; also, a 10-mm spherical TM fibroid projects from the serosal surface. Strain images using the first phantom show the stiffer 3-mm TM fibroids in the myometrium. Results from the second uterine phantom show that, as expected, parts of inclusions projecting into the uterine cavity will appear very stiff, whether they are stiff or soft. Results from both phantoms show that even though there is a five-fold difference in the Young’s moduli values, there is not a significant difference in the strain in the transition from the TM myometrium to the TM fat. These phantoms allow for realistic comparison and evolution of SIS strain imaging techniques and can aid clinical personnel to develop skills for SIS strain imaging. PMID:18514999

  17. Balloon sheaths for gastrointestinal guidance and access: a preliminary phantom study

    International Nuclear Information System (INIS)

    He, Xu; Shin, Ji Hoon; Kim, Hyo Cheol; Woo, Cheol Woong; Woo, Sung Ha; Choi, Won Chan; Kim, Jong Gyu; Lim, Jin Oh; Kim, Tae Hyung; Yoon, Chang Jin; Song, Ho Young; Kang, Wee Chang

    2005-01-01

    We wanted to evaluate the feasibility and usefulness of a newly designed balloon sheath for gastrointestinal guidance and access by conducting a phantom study. The newly designed balloon sheath consisted of an introducer sheath and a supporting balloon. A coil catheter was advanced over a guide wire into two gastroduodenal phantoms (one was with stricture and one was without stricture); group I was without a balloon sheath, group II was with a deflated balloon sheath, and groups III and IV were with an inflated balloon and with the balloon in the fundus and body, respectively. Each test was performed for 2 minutes and it was repeated 10 times in each group by two researchers, and the positions reached by the catheter tip were recorded. Both researchers had better performances with both phantoms in order of group IV, III, II and I. In group IV, both researchers advanced the catheter tip through the fourth duodenal segment in both the phantoms. In group I, however, the catheter tip never reached the third duodenal segment in both the phantoms by both the researchers. The numeric values for the four study groups were significantly different for both the phantoms (ρ < 0.001). A significant difference was also found between group III and IV for both phantoms (ρ < 0.001). The balloon sheath seems to be feasible for clinical use, and it has good clinical potential for gastrointestinal guidance and access, particularly when the inflated balloon is placed in the gastric body

  18. Energy-Efficient Resource Allocation for Phantom Cellular Networks with Imperfect CSI

    KAUST Repository

    Abdelhady, Amr Mohamed Abdelaziz

    2017-03-28

    Multi-tier heterogeneous networks have become an essential constituent for next generation cellular networks. Meanwhile, energy efficiency (EE) has been considered a critical design criterion along with the traditional spectral efficiency (SE) metric. In this context, we study power and spectrum allocation for a two-tier phantom cellular network, The optimization framework includes both EE and SE. We consider densely deployed phantom cellular networks and model the EE optimization problem taking into consideration the inevitable interference in this setup and imperfect channel estimation impairments. To this end, we propose three resource allocation strategies aiming at optimizing this network EE performance metric. Furthermore, we investigate the effect of changing some system parameters on the performance of these strategies, such as phantom cells resource units share, number of deployed phantom cells within a macro cell , number of pilots, and the phantom cells transmission power budget. It is found that increasing the number of pilots will deteriorate the EE performance of the whole setup, while increasing phantom cells transmission power budget will not affect the EE of the whole setup significantly. In addition, we observed that it is always useful to allocate most of the network resource units to the phantom cells tier.

  19. Development of age-specific Japanese physical phantoms for dose evaluation in infant CT examinations

    International Nuclear Information System (INIS)

    Yamauchi-Kawaura, C.; Fujii, K.; Imai, K.; Ikeda, M.; Akahane, K.; Obara, S.; Yamauchi, M.; Narai, K.; Katsu, T.

    2016-01-01

    Secondary to the previous development of age-specific Japanese head phantoms, the authors designed Japanese torso phantoms for dose assessment in infant computed tomography (CT) examinations and completed a Japanese 3-y-old head-torso phantom. For design of age-specific torso phantoms (0, 0.5, 1 and 3 y old), anatomical structures were measured from CT images of Japanese infant patients. From the CT morphometry, it was found that rib cages of Japanese infants were smaller than those in Europeans and Americans. Radiophotoluminescence glass dosemeters were used for dose measurement of a 3-y-old head-torso phantom. To examine the validity of the developed phantom, organ and effective doses by the in-phantom dosimetry system were compared with simulation values in a web-based CT dose calculation system (WAZA-ARI). The differences in doses between the two systems were <20 % at the doses of organs within scan regions and effective doses in head, chest and abdomino-pelvic CT examinations. (authors)

  20. ``Phantom'' Modes in Ab Initio Tunneling Calculations: Implications for Theoretical Materials Optimization, Tunneling, and Transport

    Science.gov (United States)

    Barabash, Sergey V.; Pramanik, Dipankar

    2015-03-01

    Development of low-leakage dielectrics for semiconductor industry, together with many other areas of academic and industrial research, increasingly rely upon ab initio tunneling and transport calculations. Complex band structure (CBS) is a powerful formalism to establish the nature of tunneling modes, providing both a deeper understanding and a guided optimization of materials, with practical applications ranging from screening candidate dielectrics for lowest ``ultimate leakage'' to identifying charge-neutrality levels and Fermi level pinning. We demonstrate that CBS is prone to a particular type of spurious ``phantom'' solution, previously deemed true but irrelevant because of a very fast decay. We demonstrate that (i) in complex materials, phantom modes may exhibit very slow decay (appearing as leading tunneling terms implying qualitative and huge quantitative errors), (ii) the phantom modes are spurious, (iii) unlike the pseudopotential ``ghost'' states, phantoms are an apparently unavoidable artifact of large numerical basis sets, (iv) a presumed increase in computational accuracy increases the number of phantoms, effectively corrupting the CBS results despite the higher accuracy achieved in resolving the true CBS modes and the real band structure, and (v) the phantom modes cannot be easily separated from the true CBS modes. We discuss implications for direct transport calculations. The strategy for dealing with the phantom states is discussed in the context of optimizing high-quality high- κ dielectric materials for decreased tunneling leakage.

  1. Dose conversion coefficients calculated using a series of adult Japanese voxel phantoms against external photon exposure

    International Nuclear Information System (INIS)

    Sato, Kaoru; Endo, Akira; Saito, Kimiaki

    2008-10-01

    This report presents a complete set of conversion coefficients of organ doses and effective doses calculated for external photon exposure using five Japanese adult voxel phantoms developed at the Japan Atomic Energy Agency (JAEA). At the JAEA, high-resolution Japanese voxel phantoms have been developed to clarify the variation of organ doses due to the anatomical characteristics of Japanese, and three male phantoms (JM, JM2 and Otoko) and two female phantoms (JF and Onago) have been constructed up to now. The conversion coefficients of organ doses and effective doses for the five voxel phantoms have been calculated for six kinds of idealized irradiation geometries from monoenergetic photons ranging from 0.01 to 10 MeV using EGS4, a Monte Carlo code for the simulation of coupled electron-photon transport. The dose conversion coefficients are given as absorbed dose and effective dose per unit air-kerma free-in-air, and are presented in tables and figures. The calculated dose conversion coefficients are compared with those of voxel phantoms based on the Caucasian and the recommended values in ICRP74 in order to discuss (1) variation of organ dose due to the body size and individual anatomy, such as position and shape of organs, and (2) effect of posture on organ doses. The present report provides valuable data to study the influence of the body characteristics of Japanese upon the organ doses and to discuss developing reference Japanese and Asian phantoms. (author)

  2. Trial making of a positive drawing phantom and its application to whole-body imaging devices

    International Nuclear Information System (INIS)

    Saegusa, Kenji; Arimizu, Noboru; Nakata, Tsuneo; Toyama, Haruo; Shiina, Isamu.

    1980-01-01

    In whole-body RI imaging, there are more instances of the positive pictures detecting the radioisotopes accumulating in morbid positions, such as Tc-99m bone scanning. The phantoms used to mutually compare RI imaging devices and to test their performance employ negative drawing targets embedded rather than positive ones. A simple positive drawing phantom has been made for trial, and applying this to whole-body scanning devices, the performance and the target drawing ability under different scanning conditions were comparatively examined. Though similar to Rollo's phantom, the phantom made for positive drawing uses acryl plate for its outer structure and target portions. The positive targets are cylindrical, and the diameters are 2, 4, 6, 8, 10, and 20 mm, and the subject contrasts are 5, 2, 1, 0.5 and 0.2. The aqueous solution of Tc-99m of about 2 mCi was injected into the phantom, and this was scanned with a whole-body camera and a multi-detector type whole-body scanner. With the phantom pictures close to actual clinical condition, the positive drawing phantom is conveniently capable of comparing the respective imaging devices for intended purposes. (J.P.N.)

  3. Skin and cutaneous melanocytic lesion simulation in biomedical optics with multilayered phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Urso, P [Department of Occupational and Environmental Health, Hospital L. Sacco Unit, University of Milan, Via G B Grassi, 74-20157 Milan (Italy); Lualdi, M [Medical Physics Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori, Via Venezian 1-20133 Milan (Italy); Colombo, A [Medical Physics Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori, Via Venezian 1-20133 Milan (Italy); Carrara, M [Medical Physics Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori, Via Venezian 1-20133 Milan (Italy); Tomatis, S [Medical Physics Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori, Via Venezian 1-20133 Milan (Italy); Marchesini, R [Medical Physics Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori, Via Venezian 1-20133 Milan (Italy)

    2007-05-21

    The complex inner layered structure of skin influences the photon diffusion inside the cutaneous tissues and determines the reflectance spectra formation. Phantoms are very useful tools to understand the biophysical meaning of parameters involved in light propagation through the skin. To simulate the skin reflectance spectrum, we realized a multilayered skin-like phantom and a multilayered skin phantom with a melanoma-like phantom embedded inside. Materials used were Al{sub 2}O{sub 3} particles, melanin of sepia officinalis and a calibrator for haematology systems dispersed in transparent silicon. Components were optically characterized with indirect techniques. Reflectance phantom spectra were compared with average values of in vivo spectra acquired on a sample of 573 voluntary subjects and 132 pigmented lesions. The phantoms' reflectance spectra agreed with those measured in vivo, mimicking the optical behaviour of the human skin. Further, the phantoms were optically stable and easily manageable, and represented a valid resource in spectra formation comprehension, in diagnostic laser applications and simulation model implementation, such as the Monte Carlo code for non-homogeneous media. (note)

  4. Energy-Efficient Resource Allocation for Phantom Cellular Networks with Imperfect CSI

    KAUST Repository

    Abdelhady, Amr Mohamed Abdelaziz; Amin, Osama; Alouini, Mohamed-Slim

    2017-01-01

    Multi-tier heterogeneous networks have become an essential constituent for next generation cellular networks. Meanwhile, energy efficiency (EE) has been considered a critical design criterion along with the traditional spectral efficiency (SE) metric. In this context, we study power and spectrum allocation for a two-tier phantom cellular network, The optimization framework includes both EE and SE. We consider densely deployed phantom cellular networks and model the EE optimization problem taking into consideration the inevitable interference in this setup and imperfect channel estimation impairments. To this end, we propose three resource allocation strategies aiming at optimizing this network EE performance metric. Furthermore, we investigate the effect of changing some system parameters on the performance of these strategies, such as phantom cells resource units share, number of deployed phantom cells within a macro cell , number of pilots, and the phantom cells transmission power budget. It is found that increasing the number of pilots will deteriorate the EE performance of the whole setup, while increasing phantom cells transmission power budget will not affect the EE of the whole setup significantly. In addition, we observed that it is always useful to allocate most of the network resource units to the phantom cells tier.

  5. Skin and cutaneous melanocytic lesion simulation in biomedical optics with multilayered phantoms

    International Nuclear Information System (INIS)

    Urso, P; Lualdi, M; Colombo, A; Carrara, M; Tomatis, S; Marchesini, R

    2007-01-01

    The complex inner layered structure of skin influences the photon diffusion inside the cutaneous tissues and determines the reflectance spectra formation. Phantoms are very useful tools to understand the biophysical meaning of parameters involved in light propagation through the skin. To simulate the skin reflectance spectrum, we realized a multilayered skin-like phantom and a multilayered skin phantom with a melanoma-like phantom embedded inside. Materials used were Al 2 O 3 particles, melanin of sepia officinalis and a calibrator for haematology systems dispersed in transparent silicon. Components were optically characterized with indirect techniques. Reflectance phantom spectra were compared with average values of in vivo spectra acquired on a sample of 573 voluntary subjects and 132 pigmented lesions. The phantoms' reflectance spectra agreed with those measured in vivo, mimicking the optical behaviour of the human skin. Further, the phantoms were optically stable and easily manageable, and represented a valid resource in spectra formation comprehension, in diagnostic laser applications and simulation model implementation, such as the Monte Carlo code for non-homogeneous media. (note)

  6. Halloween Safety: Costumes, Candy, and Colored Contact Lenses

    Science.gov (United States)

    ... aren’t so long that you’re in danger of tripping. Wear makeup and hats rather than ... لعربية | Kreyòl Ayisyen | Français | Polski | Português | Italiano | Deutsch | 日本語 | ف ...

  7. Reversible induction of phantom auditory sensations through simulated unilateral hearing loss.

    Directory of Open Access Journals (Sweden)

    Roland Schaette

    Full Text Available Tinnitus, a phantom auditory sensation, is associated with hearing loss in most cases, but it is unclear if hearing loss causes tinnitus. Phantom auditory sensations can be induced in normal hearing listeners when they experience severe auditory deprivation such as confinement in an anechoic chamber, which can be regarded as somewhat analogous to a profound bilateral hearing loss. As this condition is relatively uncommon among tinnitus patients, induction of phantom sounds by a lesser degree of auditory deprivation could advance our understanding of the mechanisms of tinnitus. In this study, we therefore investigated the reporting of phantom sounds after continuous use of an earplug. 18 healthy volunteers with normal hearing wore a silicone earplug continuously in one ear for 7 days. The attenuation provided by the earplugs simulated a mild high-frequency hearing loss, mean attenuation increased from 30 dB at 3 and 4 kHz. 14 out of 18 participants reported phantom sounds during earplug use. 11 participants presented with stable phantom sounds on day 7 and underwent tinnitus spectrum characterization with the earplug still in place. The spectra showed that the phantom sounds were perceived predominantly as high-pitched, corresponding to the frequency range most affected by the earplug. In all cases, the auditory phantom disappeared when the earplug was removed, indicating a causal relation between auditory deprivation and phantom sounds. This relation matches the predictions of our computational model of tinnitus development, which proposes a possible mechanism by which a stabilization of neuronal activity through homeostatic plasticity in the central auditory system could lead to the development of a neuronal correlate of tinnitus when auditory nerve activity is reduced due to the earplug.

  8. Shooting with sound: optimizing an affordable ballistic gelatin recipe in a graded ultrasound phantom education program.

    Science.gov (United States)

    Tanious, Shariff F; Cline, Jamie; Cavin, Jennifer; Davidson, Nathan; Coleman, J Keegan; Goodmurphy, Craig W

    2015-06-01

    The goal of this study was to investigate the durability and longevity of gelatin formulas for the production of staged ultrasound phantoms for education. Gelatin phantoms were prepared from Knox gelatin (Kraft Foods, Northfield, IL) and a standard 10%-by-mass ordinance gelatin solution. Phantoms were durability tested by compressing to a 2-cm depth until cracking was visible. Additionally, 16 containers with varying combinations of phenol, container type, and storage location were tested for longevity against desiccation and molding. Once formulation was determined, 4 stages of phantoms from novice to clinically relevant were poured, and clinicians with ultrasound training ranked them on a 7-point Likert scale based on task difficulty, phantom suitability, and fidelity. On durability testing, the ballistic gelatin outperformed the Knox gelatin by more than 200 compressions. On longevity testing, gelatin with a 0.5% phenol concentration stored with a lid and refrigeration lasted longest, whereas containers without a lid had desiccation within 1 month, and those without phenol became moldy within 6 weeks. Ballistic gelatin was more expensive when buying in small quantities but was 7.4% less expensive when buying in bulk. The staged phantoms were deemed suitable for training, but clinicians did not consistently rank the phantoms in the intended order of 1 to 4 (44%). Refrigerated and sealed ballistic gelatin with phenol was a cost-effective method for creating in-house staged ultrasound phantoms suitable for large-scale ultrasound educational training needs. Clinician ranking of phantoms may be influenced by current training methods that favor biological tissue scanning as easier. © 2015 by the American Institute of Ultrasound in Medicine.

  9. Radiation protection to the eye and thyroid during diagnostic cerebral angiography: a phantom study.

    LENUS (Irish Health Repository)

    Shortt, C P

    2008-08-01

    We measured radiation doses to the eye and thyroid during diagnostic cerebral angiography to assess the effectiveness of bismuth and lead shields at dose reduction. Phantom head angiographic studies were performed with bismuth (study 1) and lead shields (study 2). In study 1 (12 phantoms), thermoluminescent dosimeters (TLD) were placed over the eyes and thyroid in three groups: (i) no shields (four phantoms); (ii) anterior bismuth shields (four phantoms) and (iii) anterior and posterior bismuth shields (four phantoms). In a second study (eight phantoms), lead shields were placed over the thyroid only and TLD dose measurements obtained in two groups: (i) no shielding (four phantoms) and (ii) thyroid lead shielding (four phantoms). A standard 4-vessel cerebral angiogram was performed on each phantom. Study 1 (bismuth shields) showed higher doses to the eyes compared with thyroid (mean 13.03 vs 5.98 mSv, P < 0.001) and a higher eye dose on the X-ray tube side. Overall, the use of bismuth shielding did not significantly reduce dose to either eyes or thyroid in the measured TLD positions. In study 2, a significant thyroid dose reduction was found with the use of lead shields (47%, mean 2.46 vs 4.62 mSv, P < 0.001). Considerable doses to the eyes and thyroid highlight the need for increased awareness of patient protection. Eye shielding is impractical and interferes with diagnostic capability. Thyroid lead shielding yields significant protection to the thyroid, is not in the field of view and should be used routinely.

  10. SU-E-T-124: Anthropomorphic Phantoms for Confirmation of Linear Accelerator Based Small Animal Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Perks, J; Benedict, S [UC Davis Cancer Center, Sacramento, CA (United States); Lucero, S [UC Davis, Davis, CA (United States)

    2015-06-15

    Purpose: To document the support of radiobiological small animal research by a modern radiation oncology facility. This study confirms that a standard, human use linear accelerator can cover the range of experiments called for by researchers performing animal irradiation. A number of representative, anthropomorphic murine phantoms were made. The phantoms confirmed the small field photon and electron beams dosimetry validated the use of the linear accelerator for rodents. Methods: Laser scanning a model, CAD design and 3D printing produced the phantoms. The phantoms were weighed and CT scanned to judge their compatibility to real animals. Phantoms were produced to specifically mimic lung, gut, brain, and othotopic lesion irradiations. Each phantom was irradiated with the same protocol as prescribed to the live animals. Delivered dose was measured with small field ion chambers, MOS/FETs or TLDs. Results: The density of the phantom material compared to density range across the real mice showed that the printed material would yield sufficiently accurate measurements when irradiated. The whole body, lung and gut irradiations were measured within 2% of prescribed doses with A1SL ion chamber. MOSFET measurements of electron irradiations for the orthotopic lesions allowed refinement of the measured small field output factor to better than 2% and validated the immunology experiment of irradiating one lesion and sparing another. Conclusion: Linacs are still useful tools in small animal bio-radiation research. This work demonstrated a strong role for the clinical accelerator in small animal research, facilitating standard whole body dosing as well as conformal treatments down to 1cm field. The accuracy of measured dose, was always within 5%. The electron irradiations of the phantom brain and flank tumors needed adjustment; the anthropomorphic phantoms allowed refinement of the initial output factor measurements for these fields which were made in a large block of solid water.

  11. Average glandular dose in digital mammography and digital breast tomosynthesis: comparison of phantom and patient data

    International Nuclear Information System (INIS)

    Bouwman, R W; Van Engen, R E; Den Heeten, G J; Broeders, M J M; Veldkamp, W J H; Young, K C; Dance, D R; Schopphoven, S; Jeukens, C R L P N

    2015-01-01

    For the evaluation of the average glandular dose (AGD) in digital mammography (DM) and digital breast tomosynthesis (DBT) phantoms simulating standard model breasts are used. These phantoms consist of slabs of polymethyl methacrylate (PMMA) or a combination of PMMA and polyethylene (PE). In the last decades the automatic exposure control (AEC) increased in complexity and became more sensitive to (local) differences in breast composition. The question is how well the AGD estimated using these simple dosimetry phantoms agrees with the average patient AGD. In this study the AGDs for both dosimetry phantoms and for patients have been evaluated for 5 different x-ray systems in DM and DBT modes. It was found that the ratios between patient and phantom AGD did not differ considerably using both dosimetry phantoms. These ratios averaged over all breast thicknesses were 1.14 and 1.15 for the PMMA and PMMA-PE dosimetry phantoms respectively in DM mode and 1.00 and 1.02 in the DBT mode. These ratios were deemed to be sufficiently close to unity to be suitable for dosimetry evaluation in quality control procedures. However care should be taken when comparing systems for DM and DBT since depending on the AEC operation, ratios for particular breast thicknesses may differ substantially (0.83–1.96). Although the predictions of both phantoms are similar we advise the use of PMMA  +  PE slabs for both DM and DBT to harmonize dosimetry protocols and avoid any potential issues with the use of spacers with the PMMA phantoms. (paper)

  12. Radiation protection to the eye and thyroid during diagnostic cerebral angiography : a phantom study

    International Nuclear Information System (INIS)

    Shortt, C. P.; Malone, L.; Thornton, J.; Brennan, P.; Lee, M. J.

    2008-01-01

    Full text: We measured radiation doses to the eye and thyroid during diagnostic cerebral angiography to assess the effectiveness of bismuth and lead shields at dose reduction. Phantom head angiographic studies were performed with bismuth (study 1) and lead shields (study 2). In study 1 (12 phantoms), thermoluminescent dosimeters (TLD) were placed over the eyes and thyroid in three groups: (i) no shields (four phantoms); (ii) anterior bismuth shields (four phantoms) and (iii) anterior and posterior bismuth shields (four phantoms). In a second study (eight phantoms), lead shields were placed over the thyroid only and TLD dose measurements obtained in two groups: (i) no shielding (four phantoms) and (ii) thyroid lead shielding (four phantoms). A standard 4-vessel cerebral angiogram was performed on each phantom. Study 1 (bismuth shields) showed higher doses to the eyes compared with thyroid (mean 13.03 vs 5.98 mSv, P < 0.001) and a higher eye dose on the X-ray tube side. Overall, the use of bismuth shielding did not significantly reduce dose to either eyes or thyroid in the measured TLD positions. In study 2, a significant thyroid dose reduction was found with the use of lead shields (47%, mean 2.46 vs 4.62 mSv, P < 0.001). Considerable doses to the eyes and thyroid highlight the need for increased awareness of patient protection. Eye shielding is impractical and interferes with diagnostic capability. Thyroid lead shielding yields significant protection to the thyroid, is not in the field of view and should be used routinely.

  13. A 4D digital phantom for patient-specific simulation of brain CT perfusion protocols.

    Science.gov (United States)

    van den Boom, Rieneke; Manniesing, Rashindra; Oei, Marcel T H; van der Woude, Willem-Jan; Smit, Ewoud J; Laue, Hendrik O A; van Ginneken, Bram; Prokop, Mathias

    2014-07-01

    Optimizing CT brain perfusion protocols is a challenge because of the complex interaction between image acquisition, calculation of perfusion data, and patient hemodynamics. Several digital phantoms have been developed to avoid unnecessary patient exposure or suboptimum choice of parameters. The authors expand this idea by using realistic noise patterns and measured tissue attenuation curves representing patient-specific hemodynamics. The purpose of this work is to validate that this approach can realistically simulate mean perfusion values and noise on perfusion data for individual patients. The proposed 4D digital phantom consists of three major components: (1) a definition of the spatial structure of various brain tissues within the phantom, (2) measured tissue attenuation curves, and (3) measured noise patterns. Tissue attenuation curves were measured in patient data using regions of interest in gray matter and white matter. By assigning the tissue attenuation curves to the corresponding tissue curves within the phantom, patient-specific CTP acquisitions were retrospectively simulated. Noise patterns were acquired by repeatedly scanning an anthropomorphic skull phantom at various exposure settings. The authors selected 20 consecutive patients that were scanned for suspected ischemic stroke and constructed patient-specific 4D digital phantoms using the individual patients' hemodynamics. The perfusion maps of the patient data were compared with the digital phantom data. Agreement between phantom- and patient-derived data was determined for mean perfusion values and for standard deviation in de perfusion data using intraclass correlation coefficients (ICCs) and a linear fit. ICCs ranged between 0.92 and 0.99 for mean perfusion values. ICCs for the standard deviation in perfusion maps were between 0.86 and 0.93. Linear fitting yielded slope values between 0.90 and 1.06. A patient-specific 4D digital phantom allows for realistic simulation of mean values and

  14. A heterogeneous human tissue mimicking phantom for RF heating and MRI thermal monitoring verification.

    Science.gov (United States)

    Yuan, Yu; Wyatt, Cory; Maccarini, Paolo; Stauffer, Paul; Craciunescu, Oana; Macfall, James; Dewhirst, Mark; Das, Shiva K

    2012-04-07

    This paper describes a heterogeneous phantom that mimics a human thigh with a deep-seated tumor, for the purpose of studying the performance of radiofrequency (RF) heating equipment and non-invasive temperature monitoring with magnetic resonance imaging (MRI). The heterogeneous cylindrical phantom was constructed with an outer fat layer surrounding an inner core of phantom material mimicking muscle, tumor and marrow-filled bone. The component materials were formulated to have dielectric and thermal properties similar to human tissues. The dielectric properties of the tissue mimicking phantom materials were measured with a microwave vector network analyzer and impedance probe over the frequency range of 80-500 MHz and at temperatures of 24, 37 and 45 °C. The specific heat values of the component materials were measured using a differential scanning calorimeter over the temperature range of 15-55 °C. The thermal conductivity value was obtained from fitting the curves obtained from one-dimensional heat transfer measurement. The phantom was used to verify the operation of a cylindrical four-antenna annular phased array extremity applicator (140 MHz) by examining the proton resonance frequency shift (PRFS) thermal imaging patterns for various magnitude/phase settings (including settings to focus heating in tumors). For muscle and tumor materials, MRI was also used to measure T1/T2* values (1.5 T) and to obtain the slope of the PRFS phase change versus temperature change curve. The dielectric and thermal properties of the phantom materials were in close agreement to well-accepted published results for human tissues. The phantom was able to successfully demonstrate satisfactory operation of the tested heating equipment. The MRI-measured thermal distributions matched the expected patterns for various magnitude/phase settings of the applicator, allowing the phantom to be used as a quality assurance tool. Importantly, the material formulations for the various tissue types

  15. Development of a high resolution voxelised head phantom for medical physics applications.

    Science.gov (United States)

    Giacometti, V; Guatelli, S; Bazalova-Carter, M; Rosenfeld, A B; Schulte, R W

    2017-01-01

    Computational anthropomorphic phantoms have become an important investigation tool for medical imaging and dosimetry for radiotherapy and radiation protection. The development of computational phantoms with realistic anatomical features contribute significantly to the development of novel methods in medical physics. For many applications, it is desirable that such computational phantoms have a real-world physical counterpart in order to verify the obtained results. In this work, we report the development of a voxelised phantom, the HIGH_RES_HEAD, modelling a paediatric head based on the commercial phantom 715-HN (CIRS). HIGH_RES_HEAD is unique for its anatomical details and high spatial resolution (0.18×0.18mm 2 pixel size). The development of such a phantom was required to investigate the performance of a new proton computed tomography (pCT) system, in terms of detector technology and image reconstruction algorithms. The HIGH_RES_HEAD was used in an ad-hoc Geant4 simulation modelling the pCT system. The simulation application was previously validated with respect to experimental results. When compared to a standard spatial resolution voxelised phantom of the same paediatric head, it was shown that in pCT reconstruction studies, the use of the HIGH_RES_HEAD translates into a reduction from 2% to 0.7% of the average relative stopping power difference between experimental and simulated results thus improving the overall quality of the head phantom simulation. The HIGH_RES_HEAD can also be used for other medical physics applications such as treatment planning studies. A second version of the voxelised phantom was created that contains a prototypic base of skull tumour and surrounding organs at risk. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  16. Investigation of partial volume effect in different PET/CT systems: a comparison of results using the madeira phantom and the NEMA NU-2 2001 phantom

    International Nuclear Information System (INIS)

    Chipiga, L.; Sydoff, M.; Zvonova, I.; Bernhardsson, C.

    2016-01-01

    Positron emission tomography combined with computed tomography (PET/CT) is a quantitative technique used for diagnosing various diseases and for monitoring treatment response for different types of tumours. However, the accuracy of the data is limited by the spatial resolution of the system. In addition, the so-called partial volume effect (PVE) causes a blurring of image structures, which in turn may cause an underestimation of activity of a structure with high-activity content. In this study, a new phantom, MADEIRA (Minimising Activity and Dose with Enhanced Image quality by Radiopharmaceutical Administrations) for activity quantification in PET and single photon emission computed tomography (SPECT) was used to investigate the influence on the PVE by lesion size and tumour-to-background activity concentration ratio (TBR) in four different PET/CT systems. These measurements were compared with data from measurements with the NEMA NU-2 2001 phantom. The results with the MADEIRA phantom showed that the activity concentration (AC) values were closest to the true values at low ratios of TBR (<10) and reduced to 50 % of the actual AC values at high TBR (30-35). For all scanners, recovery of true values became closer to 1 with an increasing diameter of the lesion. The MADEIRA phantom showed good agreement with the results obtained from measurements with the NEMA NU-2 2001 phantom but allows for a wider range of possibilities in measuring image quality parameters. (authors)

  17. Mixing formula for tissue-mimicking silicone phantoms in the near infrared

    Science.gov (United States)

    Böcklin, C.; Baumann, D.; Stuker, F.; Fröhlich, Jürg

    2015-03-01

    The knowledge of accurate optical parameters of materials is paramount in biomedical optics applications and numerical simulations of such systems. Phantom materials with variable but predefined parameters are needed to optimise these systems. An optimised integrating sphere measurement setup and reconstruction algorithm are presented in this work to determine the optical properties of silicone rubber based phantoms whose absorption and scattering properties are altered with TiO2 and carbon black particles. A mixing formula for all constituents is derived and allows to create phantoms with predefined optical properties.

  18. Modelling of UWB Antenna Perturbed by Human Phantom in Spherical Harmonics Space

    DEFF Research Database (Denmark)

    Mhedhbi, Meriem; Avrillon, Stephane; Pedersen, Troels

    2014-01-01

    is attractive for simulation purposes. We propose a simple model for the spherical harmonics coefficients allowing to predict the antenna behavior perturbed by a human phantom. The model is based on knowledge of the spherical harmonic coefficients of antenna in free space and the antenna-phantom distance.......In this paper we study how the antenna radiation pattern is perturbed in the presence of a human phantom in terms of changes in the coefficients of the spherical harmonic antenna representation. The spherical harmonic basis allows for a compact representation of the antenna pattern which...

  19. A survey of images of a phantom produced by radioisotope scanners and cameras

    International Nuclear Information System (INIS)

    1976-01-01

    A working party of the Department of Health and Social Security (DHSS) concerned with the assessment of performance of radioisotope-imaging equipment designed a test pattern called the Williams Phantom. The criteria and design are discussed. It consists of four 'cold' and four 'hot' areas. One Williams Phantom was sent to each radioisotope-imaging centre in Great Britain: the images produced were sent to the DHSS. The variation in image quality was large. A comprehensive sample of the images of the phantom produced on a variety of radioisotope scanners and γ cameras is presented to illustrate a number of general observations made by the working party. (U.K.)

  20. Mammography dosimetry using an in-house developed polymethyl methacrylate phantom

    International Nuclear Information System (INIS)

    Sharma, R.; Sharma, S. D.; Mayya, Y. S.; Chourasiya, G.

    2012-01-01

    Phantom-based measurements in mammography are well-established for quality assurance (QA) and quality control (QC) procedures involving equipment performance and comparisons of X-ray machines. Polymethyl methacrylate (PMMA) is among the best suitable materials for simulation of the breast. For carrying out QA/QC exercises in India, a mammographic PMMA phantom with engraved slots for keeping thermoluminescence dosemeters (TLD) has been developed. The radiation transmission property of the developed phantom was compared with the commercially available phantoms for verifying its suitability for mammography dosimetry. The breast entrance exposure (BEE), mean glandular dose (MGD), percentage depth dose (PDD), percentage surface dose distribution (PSDD), calibration testing of automatic exposure control (AEC) and density control function of a mammography machine were measured using this phantom. MGD was derived from the measured BEE following two different methodologies and the results were compared. The PDD and PSDD measurements were carried out using LiF: Mg, Cu, P chips. The in-house phantom was found comparable with the commercially available phantoms. The difference in the MGD values derived using two different methods were found in the range of 17.5-32.6 %. Measured depth ranges in the phantom lie between 0.32 and 0.40 cm for 75 % depth dose, 0.73 and 0.92 cm for 50 % depth dose, and 1.54 and 1.78 cm for 25 % depth dose. Higher PSDD value was observed towards chest wall edge side of the phantom, which is due to the orientation of cathode-anode axis along the chest wall to the nipple direction. Results obtained for AEC configuration testing shows that the observed mean optical density (O.D) of the phantom image was 1.59 and O.D difference for every successive increase in thickness of the phantom was within ±0.15 O.D. Under density control function testing, at -2 and -1 density settings, the variation in film image O.D was within ±0.15 O.D of the normal density

  1. Verification of gamma knife based fractionated radiosurgery with newly developed head-thorax phantom

    International Nuclear Information System (INIS)

    Bisht, Raj Kishor; Kale, Shashank Sharad; Natanasabapathi, Gopishankar; Singh, Manmohan Jit; Agarwal, Deepak; Garg, Ajay; Rath, Goura Kishore; Julka, Pramod Kumar; Kumar, Pratik; Thulkar, Sanjay; Sharma, Bhawani Shankar

    2016-01-01

    Objective: Purpose of the study is to verify the Gamma Knife Extend™ system (ES) based fractionated stereotactic radiosurgery with newly developed head-thorax phantom. Methods: Phantoms are extensively used to measure radiation dose and verify treatment plan in radiotherapy. A human upper body shaped phantom with thorax was designed to simulate fractionated stereotactic radiosurgery using Extend™ system of Gamma Knife. The central component of the phantom aids in performing radiological precision test, dosimetric evaluation and treatment verification. A hollow right circular cylindrical space of diameter 7.0 cm was created at the centre of this component to place various dosimetric devices using suitable adaptors. The phantom is made of poly methyl methacrylate (PMMA), a transparent thermoplastic material. Two sets of disk assemblies were designed to place dosimetric films in (1) horizontal (xy) and (2) vertical (xz) planes. Specific cylindrical adaptors were designed to place thimble ionization chamber inside phantom for point dose recording along xz axis. EBT3 Gafchromic films were used to analyze and map radiation field. The focal precision test was performed using 4 mm collimator shot in phantom to check radiological accuracy of treatment. The phantom head position within the Extend™ frame was estimated using encoded aperture measurement of repositioning check tool (RCT). For treatment verification, the phantom with inserts for film and ion chamber was scanned in reference treatment position using X-ray computed tomography (CT) machine and acquired stereotactic images were transferred into Leksell Gammaplan (LGP). A patient treatment plan with hypo-fractionated regimen was delivered and identical fractions were compared using EBT3 films and in-house MATLAB codes. Results: RCT measurement showed an overall positional accuracy of 0.265 mm (range 0.223 mm–0.343 mm). Gamma index analysis across fractions exhibited close agreement between LGP and film

  2. Tissue Equivalent Phantom Design for Characterization of a Coherent Scatter X-ray Imaging System

    Science.gov (United States)

    Albanese, Kathryn Elizabeth

    Scatter in medical imaging is typically cast off as image-related noise that detracts from meaningful diagnosis. It is therefore typically rejected or removed from medical images. However, it has been found that every material, including cancerous tissue, has a unique X-ray coherent scatter signature that can be used to identify the material or tissue. Such scatter-based tissue-identification provides the advantage of locating and identifying particular materials over conventional anatomical imaging through X-ray radiography. A coded aperture X-ray coherent scatter spectral imaging system has been developed in our group to classify different tissue types based on their unique scatter signatures. Previous experiments using our prototype have demonstrated that the depth-resolved coherent scatter spectral imaging system (CACSSI) can discriminate healthy and cancerous tissue present in the path of a non-destructive x-ray beam. A key to the successful optimization of CACSSI as a clinical imaging method is to obtain anatomically accurate phantoms of the human body. This thesis describes the development and fabrication of 3D printed anatomical scatter phantoms of the breast and lung. The purpose of this work is to accurately model different breast geometries using a tissue equivalent phantom, and to classify these tissues in a coherent x-ray scatter imaging system. Tissue-equivalent anatomical phantoms were designed to assess the capability of the CACSSI system to classify different types of breast tissue (adipose, fibroglandular, malignant). These phantoms were 3D printed based on DICOM data obtained from CT scans of prone breasts. The phantoms were tested through comparison of measured scatter signatures with those of adipose and fibroglandular tissue from literature. Tumors in the phantom were modeled using a variety of biological tissue including actual surgically excised benign and malignant tissue specimens. Lung based phantoms have also been printed for future

  3. Monte Carlo simulation of dose calculation in voxel and geometric phantoms using GEANT4 code

    International Nuclear Information System (INIS)

    Martins, Maximiano C.; Santos, Denison de S.; Queiroz Filho, Pedro P. de; Silva, Rosana de S. e; Begalli, Marcia

    2009-01-01

    Monte Carlo simulation techniques have become a valuable tool for scientific purposes. In radiation protection many quantities are obtained by means of the simulation of particles passing through human body models, also known as phantoms, allowing the calculation of doses deposited in an individual's organs exposed to ionizing radiation. These information are very useful from the medical viewpoint, as they are used in the planning of external beam radiotherapy and brachytherapy treatments. The goal of this work is the implementation of a voxel phantom and a geometrical phantom in the framework of the Geant4 tool kit, aiming at a future use of this code by professionals in the medical area. (author)

  4. Development of 5 and 10 years old infant phantoms based on polygonal meshes

    International Nuclear Information System (INIS)

    Lima, Vanildo Junior de Melo; Kramer, Richard; Cassola, Vagner Ferreira; Lira, Carlos Alberto Brayner de Oliveira; Khoury, Helen Jamil; Vieira, Jose Wilson; Universidade de Pernambuco

    2011-01-01

    This paper focuses the development of reference infant phantoms of 5 and 10 years old to be used in calculation of equivalent doses in the area of radiological protection. The method uses tools developed for the modelling of 3D objects. The forms and positions are available in the literature. The mass values of each organ and tissue were adjusted according to the reference data published by the International Commission Radiological Protection. The results are presented in image of organs and tissues, and in tables. Dosimetric calculations show concordance with adult and infant phantoms, considering the differences among phantoms

  5. 3D printed optical phantoms and deep tissue imaging for in vivo applications including oral surgery

    Science.gov (United States)

    Bentz, Brian Z.; Costas, Alfonso; Gaind, Vaibhav; Garcia, Jose M.; Webb, Kevin J.

    2017-03-01

    Progress in developing optical imaging for biomedical applications requires customizable and often complex objects known as "phantoms" for testing, evaluation, and calibration. This work demonstrates that 3D printing is an ideal method for fabricating such objects, allowing intricate inhomogeneities to be placed at exact locations in complex or anatomically realistic geometries, a process that is difficult or impossible using molds. We show printed mouse phantoms we have fabricated for developing deep tissue fluorescence imaging methods, and measurements of both their optical and mechanical properties. Additionally, we present a printed phantom of the human mouth that we use to develop an artery localization method to assist in oral surgery.

  6. The development of a population of 4D pediatric XCAT phantoms for imaging research and optimization

    Energy Technology Data Exchange (ETDEWEB)

    Segars, W. P., E-mail: paul.segars@duke.edu; Norris, Hannah; Sturgeon, Gregory M.; Zhang, Yakun; Bond, Jason; Samei, E. [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Minhas, Anum; Frush, D. [Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Tward, Daniel J.; Ratnanather, J. T.; Miller, M. I. [Center for Imaging Science, Johns Hopkins University, Baltimore, Maryland 21218 (United States)

    2015-08-15

    Purpose: We previously developed a set of highly detailed 4D reference pediatric extended cardiac-torso (XCAT) phantoms at ages of newborn, 1, 5, 10, and 15 yr with organ and tissue masses matched to ICRP Publication 89 values. In this work, we extended this reference set to a series of 64 pediatric phantoms of varying age and height and body mass percentiles representative of the public at large. The models will provide a library of pediatric phantoms for optimizing pediatric imaging protocols. Methods: High resolution positron emission tomography-computed tomography data obtained from the Duke University database were reviewed by a practicing experienced radiologist for anatomic regularity. The CT portion of the data was then segmented with manual and semiautomatic methods to form a target model defined using nonuniform rational B-spline surfaces. A multichannel large deformation diffeomorphic metric mapping algorithm was used to calculate the transform from the best age matching pediatric XCAT reference phantom to the patient target. The transform was used to complete the target, filling in the nonsegmented structures and defining models for the cardiac and respiratory motions. The complete phantoms, consisting of thousands of structures, were then manually inspected for anatomical accuracy. The mass for each major tissue was calculated and compared to linearly interpolated ICRP values for different ages. Results: Sixty four new pediatric phantoms were created in this manner. Each model contains the same level of detail as the original XCAT reference phantoms and also includes parameterized models for the cardiac and respiratory motions. For the phantoms that were 10 yr old and younger, we included both sets of reproductive organs. This gave them the capability to simulate both male and female anatomy. With this, the population can be expanded to 92. Wide anatomical variation was clearly seen amongst the phantom models, both in organ shape and size, even for

  7. An Inexpensive and Easy Ultrasound Phantom: A Novel Use for SPAM.

    Science.gov (United States)

    Nolting, Laura; Hunt, Patrick; Cook, Thomas; Douglas, Barton

    2016-04-01

    Ultrasound models, commonly referred to as "phantoms," are simulation tools for ultrasound education. Commercially produced phantoms are available, but there are "homemade" alternatives such as raw poultry and gelatin molds. Precooked, processed meat, better known as SPAM (Hormel Foods Corporation, Austin, MN), can be used as an ultrasound phantom to teach several ultrasound applications. It is a versatile, hygienic, and easily manipulated medium that does not require refrigeration or preparatory work and can be easily discarded at the end of use. © 2016 by the American Institute of Ultrasound in Medicine.

  8. Low cost phantom for computed radiology; Objeto de teste de baixo custo para radiologia computadorizada

    Energy Technology Data Exchange (ETDEWEB)

    Travassos, Paulo Cesar B.; Magalhaes, Luis Alexandre G., E-mail: pctravassos@ufrj.br [Universidade do Estado do Rio de Janeiro (IBRGA/UERJ), RJ (Brazil). Laboratorio de Ciencias Radiologicas; Augusto, Fernando M.; Sant' Yves, Thalis L.A.; Goncalves, Elicardo A.S. [Instituto Nacional de Cancer (INCA), Rio de Janeiro, RJ (Brazil); Botelho, Marina A. [Hospital Universitario Pedro Ernesto (UERJ), Rio de Janeiro, RJ (Brazil)

    2012-08-15

    This article presents the results obtained from a low cost phantom, used to analyze Computed Radiology (CR) equipment. The phantom was constructed to test a few parameters related to image quality, as described in [1-9]. Materials which can be easily purchased were used in the construction of the phantom, with total cost of approximately U$100.00. A bar pattern was placed only to verify the efficacy of the grids in the spatial resolution determination, and was not included in the budget because the data was acquired from the grids. (author)

  9. Phantom-like behavior of a DGP-inspired Scalar-Gauss-Bonnet gravity

    International Nuclear Information System (INIS)

    Nozari, Kourosh; Azizi, Tahereh; Setare, M.R.

    2009-01-01

    We study the phantom-like behavior of a DGP-inspired braneworld scenario where curvature correction on the brane is taken into account. We include a possible modification of the induced gravity on the brane by incorporating higher order curvature terms of Gauss-Bonnet type. We investigate the cosmological implications of the model and we show that the normal branch of the scenario self-accelerates in this modified scenario without introducing any dark energy component. Also, a phantom-like behavior can be realized in this model without introducing any phantom field that suffers from serious difficulties such as violation of the null energy condition

  10. Thermodynamics of Phantom Energy Accreting onto a Black Hole in Einstein—Power—Maxwell Gravity

    International Nuclear Information System (INIS)

    Abbas, G.; Ramzan, R. M.

    2013-01-01

    We investigate the phantom energy accretion onto a 3D black hole formulated in the Einstein—Power—Maxwell theory, and present the conditions for critical accretion of phantom energy onto the black hole. Further, we discuss the thermodynamics of phantom energy accreting onto the black hole and find that the first law of thermodynamics is easily satisfied while the second law and the generalized second law of thermodynamics remain invalid and conditionally valid, respectively. The results for the Banados—Teitelboim—Zanelli black hole can be recovered by taking Maxwellian contribution equal to zero

  11. Construction of Chinese adult male phantom library and its application in the virtual calibration of in vivo measurement

    International Nuclear Information System (INIS)

    Chen, Yizheng; Qiu, Rui; Li, Chunyan; Wu, Zhen; Li, Junli

    2016-01-01

    In vivo measurement is a main method of internal contamination evaluation, particularly for large numbers of people after a nuclear accident. Before the practical application, it is necessary to obtain the counting efficiency of the detector by calibration. The virtual calibration based on Monte Carlo simulation usually uses the reference human computational phantom, and the morphological difference between the monitored personnel with the calibrated phantom may lead to the deviation of the counting efficiency. Therefore, a phantom library containing a wide range of heights and total body masses is needed. In this study, a Chinese reference adult male polygon surface (CRAM-S) phantom was constructed based on the CRAM voxel phantom, with the organ models adjusted to match the Chinese reference data. CRAM-S phantom was then transformed to sitting posture for convenience in practical monitoring. Referring to the mass and height distribution of the Chinese adult male, a phantom library containing 84 phantoms was constructed by deforming the reference surface phantom. Phantoms in the library have 7 different heights ranging from 155 cm to 185 cm, and there are 12 phantoms with different total body masses in each height. As an example of application, organ specific and total counting efficiencies of Ba-133 were calculated using the MCNPX code, with two series of phantoms selected from the library. The influence of morphological variation on the counting efficiency was analyzed. The results show only using the reference phantom in virtual calibration may lead to an error of 68.9% for total counting efficiency. Thus the influence of morphological difference on virtual calibration can be greatly reduced using the phantom library with a wide range of masses and heights instead of a single reference phantom. (paper)

  12. Construction of Chinese adult male phantom library and its application in the virtual calibration of in vivo measurement

    Science.gov (United States)

    Chen, Yizheng; Qiu, Rui; Li, Chunyan; Wu, Zhen; Li, Junli

    2016-03-01

    In vivo measurement is a main method of internal contamination evaluation, particularly for large numbers of people after a nuclear accident. Before the practical application, it is necessary to obtain the counting efficiency of the detector by calibration. The virtual calibration based on Monte Carlo simulation usually uses the reference human computational phantom, and the morphological difference between the monitored personnel with the calibrated phantom may lead to the deviation of the counting efficiency. Therefore, a phantom library containing a wide range of heights and total body masses is needed. In this study, a Chinese reference adult male polygon surface (CRAM_S) phantom was constructed based on the CRAM voxel phantom, with the organ models adjusted to match the Chinese reference data. CRAMS phantom was then transformed to sitting posture for convenience in practical monitoring. Referring to the mass and height distribution of the Chinese adult male, a phantom library containing 84 phantoms was constructed by deforming the reference surface phantom. Phantoms in the library have 7 different heights ranging from 155 cm to 185 cm, and there are 12 phantoms with different total body masses in each height. As an example of application, organ specific and total counting efficiencies of Ba-133 were calculated using the MCNPX code, with two series of phantoms selected from the library. The influence of morphological variation on the counting efficiency was analyzed. The results show only using the reference phantom in virtual calibration may lead to an error of 68.9% for total counting efficiency. Thus the influence of morphological difference on virtual calibration can be greatly reduced using the phantom library with a wide range of masses and heights instead of a single reference phantom.

  13. Application of phantom type compensating filter in tomography

    Energy Technology Data Exchange (ETDEWEB)

    Okayama, A.; Mukae, H.; Itoh, M. (Yamaguchi Univ., Ube (Japan). School of Medicine)

    1981-01-01

    We reported a new device of phantom type compensating filters for pulmonary hilar tomography with polytome U at the 35th annual meeting of the Japanese Society of Radiological Technology. This report is to show application of this compensated method to the head, the hip joint and the lower thoracic spine in tomography. Using the filters optimal density can be obtained in all area of aim part on a X-ray film, and thus makes to get more information. 1) In the head clear shadow of pars nasalis, sinus paranasales and sella turcica is obtained. Destruction or defect of bone contour is easily detected. It is also useful to differentiate the disorders and to determine the expansivity of the lesion. 2) In the hip joint this method has advantages over the ordinary method. There is a few misdiagnosis in trochanteric lesions such as tuberculosis or bone tumor, because of high density at the trochanteric region in ordinary method, but in this method optimal density can be obtained, and misdiagnosis is improved. Soft tissue is sharply visualized, indicating usefulness in diagnosis of existence of hematoma or abscess. 3) In the lower thoracic vertebra it is useful to diagnosis of the thoracic spondylosis, tuberculous spondylitis and compression fracture of the vertebral body, since optimal density of the spine can be obtained. It is also quite useful to detect small ossifications in the vertebral foraman in ossification of the flavum ligament.

  14. Application of phantom type compensating filter in tomography

    International Nuclear Information System (INIS)

    Okayama, Akio; Mukae, Hideki; Itoh, Mitsuo

    1981-01-01

    We reported a new device of phantom type compensating filters for pulmonary hilar tomography with polytome U at the 35th annual meeting of the Japanese Society of Radiological Technology. This report is to show application of this compensated method to the head, the hip joint and the lower thoracic spine in tomography. Using the filters optimal density can be obtained in all area of aim part on a X-ray film, and thus makes to get more information. 1) In the head clear shadow of pars nasalis, sinus paranasales and sella turcica is obtained. Destruction or defect of bone contour is easily detected. It is also useful to differentiate the disorders and to determine the expansivity of the lesion. 2) In the hip joint this method has advantages over the ordinary method. There is a few misdiagnosis in trochanteric lesions such as tuberculosis or bone tumor, because of high density at the trochanteric region in ordinary method, but in this method optimal density can be obtained, and misdiagnosis is improved. Soft tissue is sharply visualized, indicating usefulness in diagnosis of existence of hematoma or abscess. 3) In the lower thoracic vertebra it is useful to diagnosis of the thoracic spondylosis, tuberculous spondylitis and compression fracture of the vertebral body, since optimal density of the spine can be obtained. It is also quite useful to detect small ossifications in the vertebral foraman in ossification of the flavum ligament. (author)

  15. A three-dimensional breast software phantom for mammography simulation

    International Nuclear Information System (INIS)

    Bliznakova, K; Bliznakov, Z; Bravou, V; Kolitsi, Z; Pallikarakis, N

    2003-01-01

    This paper presents a methodology for three-dimensional (3D) computer modelling of the breast, using a combination of 3D geometrical primitives and voxel matrices that can be further subjected to simulated x-ray imaging, to produce synthetic mammograms. The breast phantom is a composite model of the breast and includes the breast surface, the duct system and terminal ductal lobular units, Cooper's ligaments, the pectoral muscle, the 3D mammographic background and breast abnormalities. A second analytical x-ray matter interaction modelling module is used to generate synthetic images from monoenergetic fan beams. Mammographic images of various synthesized breast models differing in size, shape and composition were produced. A preliminary qualitative assessment performed by three radiologists and a quantitative evaluation study using fractal and grey-level histogram analysis were conducted. A comparative study of extracted features with published data has also been performed. The evaluation results indicated good correlation of characteristics between synthetic and actual radiographs. Applications foreseen are not only in the area of breast imaging experimentation but also in education and training

  16. Characterization of Materials for Use as Optical Phantoms

    International Nuclear Information System (INIS)

    Rascon, E. Ortiz; Bruce, N. C.; Flores Flores, J. O.; Berru, R. Sato

    2010-01-01

    We present the results of optical characterization of silicon dioxide nanoparticle solutions. These are spherical particles with a controlled diameter between 100 nm and 600 nm. The importance of this work lies in using these solutions to develop a phantom with optical properties that closely match those of human breast tissue at near-IR wavelengths. Characterization involves illuminating the solution with a laser beam transmitted through a recipient of known width containing the solution. Resulting intensity profiles from the light spot are measured as function of the detector position. The experiments were realized using light with wavelengths 633 nm and 820 nm. Measured intensity profiles were fitted to the calculated profiles obtained from diffusion theory, using the method of images. Fitting results give us the absorption and transport scatter coefficients. These coefficients can be modified by changing the particle concentration of the solution. We found that these coefficients are the same order of magnitude as those of human tissue reported in published studies.

  17. PHANTOMS: Nanotechnology network for information processing and storage*

    Science.gov (United States)

    Correia, Antonio

    2001-06-01

    It is now accepted that nanotechnology is one of the key enabling technologies for sustainable and competitive growth in Europe. Nanoelectronics is certainly the branch with the most significant commercial impact and covers a huge range of interdisciplinary areas of research and development such as molecular electronics, bioelectronics, spintronics, nanoimprint, nanoscale optics, lithography, architecture and nanoprobes. It is also accepted that a significant investment will be required to ensure Europe's competitiveness in nanotechnology. At this stage it is impossible to predict the exact course that the nanoelectronics revolution will take and, therefore, its effect on our daily lives. We can, however, be resonably sure that nanotechnology will have a profound impact on the future development of many commercial sectors. The greatest impact is likely to be in the electronics sector, where the demand for technologies permitting faster processing of data at lower costs will remain undiminished. In order to avoid European industry and R & D being left behind the United States and Japan in this fast emerging nanoelectronics field, the PHANTOMS Network Scheme will promote European science and research through a pluri-national networking action, put together research capacities present in the various European regions and stimulate commercial nanoelectronic applications.

  18. Construction of a homogeneous phantom for radiographic image standardization

    International Nuclear Information System (INIS)

    Pina, Diana Rodrigues de

    1996-01-01

    The principle of radiodiagnosis consists in the fact the X-ray beam is attenuated at different degrees by distinct tissues. For this reason, the anatomical structures have distinct radiological opacities, that produce the radiographic image. The progresses in radiology are related to the development if new radiographic image formation systems that enable an amplification in the quality, with low dose and/or risk to the patient. The objective of this work is the sensitometric valuation of a screen-film combination, that is still the most used, for the standardization, of radiographic images. Thinking about this, were constructed homogeneous phantoms of the chest, skull and pelvis, for the calibration of X-ray beams, with the purpose of obtaining radiographic images of good quality, basing in the routine of a radiodiagnosis service and in the scientific knowledge. Questions were approached about the choice of the suitable equipment, that allow the obtention of k Vp and m As combinations, to produce radiographic images of good quality, and the reproduction of these combinations to any conventional equipment of diagnostic X-rays. Also presented are the comparison of the doses imparted by these combinations and those used in routine of the Hospital das Clinicas da Faculdade de Medicina de Ribeirao Preto's radiodiagnosis service. (author)

  19. Turnover in intracranial aneurysm phantoms: its relation to neck size

    International Nuclear Information System (INIS)

    Chung, Tae Sub; Lee, Young Jun; Rhim, Yoon Chul

    2003-01-01

    To evaluate the physiologic background of aneurysms poorly visualized during 3D-TOF MRA, contrast-enhanced MRA (CEMRA) and DSA due to hemodynamic isolation. Using handmade elastic silicon phantoms to represent terminal basilar tip aneurysms, 3D-TOF MRA, CEMRA and DSA were used to determine blood turnover. Aneurysmal neck size was 2 mm and 10 mm, and the use of a pulsatile pump also helped recreate human physiologic parameters. We compared the results with those of computational fluid dynamics. DSA images of the narrow-necked aneurysm showed that a small volume of contrast medium washed into it during the systolic phase. As the width of its neck increased, the turnover volume of fragments of contrast bolus also increased. At CEMRA, the broad-necked aneurysm was visualized as the main bolus of Gd-DTPA passed through it, and at delayed CEMRA, the narrow-necked aneurysm was visualized faintly after the passage of bolus Gd-DTPA. The results correlated closely with those of 3D-TOF MRA and computational fluid dynamics. The visualization of intracranial aneurysms at 3D-TOF MRA, CEMRA and DSA was greatly dependent upon blood turnover, which varied according to aneurysmal neck size. A narrow-necked aneurysm might be missed at 3D-TOF MRA, CEMRA and DSA due to hemodynamic isolation

  20. Phantom auditory perception (tinnitus): mechanisms of generation and perception.

    Science.gov (United States)

    Jastreboff, P J

    1990-08-01

    Phantom auditory perception--tinnitus--is a symptom of many pathologies. Although there are a number of theories postulating certain mechanisms of its generation, none have been proven yet. This paper analyses the phenomenon of tinnitus from the point of view of general neurophysiology. Existing theories and their extrapolation are presented, together with some new potential mechanisms of tinnitus generation, encompassing the involvement of calcium and calcium channels in cochlear function, with implications for malfunction and aging of the auditory and vestibular systems. It is hypothesized that most tinnitus results from the perception of abnormal activity, defined as activity which cannot be induced by any combination of external sounds. Moreover, it is hypothesized that signal recognition and classification circuits, working on holographic or neuronal network-like representation, are involved in the perception of tinnitus and are subject to plastic modification. Furthermore, it is proposed that all levels of the nervous system, to varying degrees, are involved in tinnitus manifestation. These concepts are used to unravel the inexplicable, unique features of tinnitus and its masking. Some clinical implications of these theories are suggested.

  1. Phantom auditory sensation in rats: an animal model for tinnitus.

    Science.gov (United States)

    Jastreboff, P J; Brennan, J F; Coleman, J K; Sasaki, C T

    1988-12-01

    In order to measure tinnitus induced by sodium salicylate injections, 84 pigmented rats, distributed among 14 groups in five experiments, were used in a conditioned suppression paradigm. In Experiment 1, all groups were trained with a conditioned stimulus (CS) consisting of the offset of a continuous background noise. One group began salicylate injections before Pavlovian training, a second group started injections after training, and a control group received daily saline injections. Resistance to extinction was profound when injections started before training, but minimal when initiated after training, which suggests that salicylate-induced effects acquired differential conditioned value. In Experiment 2 we mimicked the salicylate treatments by substituting a 7 kHz tone in place of respective injections, resulting in effects equivalent to salicylate-induced behavior. In a third experiment we included a 3 kHz CS, and again replicated the salicylate findings. In Experiment 4 we decreased the motivational level, and the sequential relation between salicylate-induced effects and suppression training was retained. Finally, no salicylate effects emerged when the visual modality was used. These findings support the demonstration of phantom auditory sensations in animals.

  2. Monte Carlo dose calculation of microbeam in a lung phantom

    International Nuclear Information System (INIS)

    Company, F.Z.; Mino, C.; Mino, F.

    1998-01-01

    Full text: Recent advances in synchrotron generated X-ray beams with high fluence rate permit investigation of the application of an array of closely spaced, parallel or converging microplanar beams in radiotherapy. The proposed techniques takes advantage of the hypothesised repair mechanism of capillary cells between alternate microbeam zones, which regenerates the lethally irradiated endothelial cells. The lateral and depth doses of 100 keV microplanar beams are investigated for different beam dimensions and spacings in a tissue, lung and tissue/lung/tissue phantom. The EGS4 Monte Carlo code is used to calculate dose profiles at different depth and bundles of beams (up to 20x20cm square cross section). The maximum dose on the beam axis (peak) and the minimum interbeam dose (valley) are compared at different depths, bundles, heights, widths and beam spacings. Relatively high peak to valley ratios are observed in the lung region, suggesting an ideal environment for microbeam radiotherapy. For a single field, the ratio at the tissue/lung interface will set the maximum dose to the target volume. However, in clinical application, several fields would be involved allowing much greater doses to be applied for the elimination of cancer cells. We conclude therefore that multifield microbeam therapy has the potential to achieve useful therapeutic ratios for the treatment of lung cancer

  3. [The model of geometrical human body phantom for calculating tissue doses in the service module of the International Space Station].

    Science.gov (United States)

    Bondarenko, V A; Mitrikas, V G

    2007-01-01

    The model of a geometrical human body phantom developed for calculating the shielding functions of representative points of the body organs and systems is similar to the anthropomorphic phantom. This form of phantom can be integrated with the shielding model of the ISS Russian orbital segment to make analysis of radiation loading of crewmembers in different compartments of the vehicle. Calculation of doses absorbed by the body systems in terms of the representative points makes it clear that doses essentially depend on the phantom spatial orientation (eye direction). It also enables the absorbed dose evaluation from the shielding functions as the mean of the representative points and phantom orientation.

  4. Comparison of the automated evaluation of phantom mama in digital and digitalized images; Comparacao da avaliacao automatizada do phantom mama em imagens digitais e digitalizadas

    Energy Technology Data Exchange (ETDEWEB)

    Santana, Priscila do Carmo, E-mail: pcs@cdtn.b [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Nuclear. Programa de Pos-Graduacao em Ciencias e Tecnicas Nucleares; Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Fac. de Medicina. Dept. de Propedeutica Complementar; Gomes, Danielle Soares; Oliveira, Marcio Alves; Nogueira, Maria do Socorro, E-mail: mnogue@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    Mammography is an essential tool for diagnosis and early detection of breast cancer if it is provided as a very good quality service. The process of evaluating the quality of radiographic images in general, and mammography in particular, can be much more accurate, practical and fast with the help of computer analysis tools. This work compare the automated methodology for the evaluation of scanned digital images the phantom mama. By applied the DIP method techniques was possible determine geometrical and radiometric images evaluated. The evaluated parameters include circular details of low contrast, contrast ratio, spatial resolution, tumor masses, optical density and background in Phantom Mama scanned and digitized images. The both results of images were evaluated. Through this comparison was possible to demonstrate that this automated methodology is presented as a promising alternative for the reduction or elimination of subjectivity in both types of images, but the Phantom Mama present insufficient parameters for spatial resolution evaluation. (author)

  5. Design and evaluation of corn starch-bonded Rhizophora spp. particleboard phantoms for SPECT/CT imaging

    Science.gov (United States)

    Hamid, Puteri Nor Khatijah Abd; Yusof, Mohd Fahmi Mohd; Aziz Tajuddin, Abd; Hashim, Rokiah; Zainon, Rafidah

    2018-01-01

    The aim of this study was to design and evaluate of corn starch-bonded Rhizophora spp. particleboards as phantom for SPECT/CT imaging. The phantom was designed according to the Jaszczak phantom commonly used in SPECT imaging with dimension of 22 cm diameter and 18 cm length. Six inserts with different diameter were made for insertion of vials filled with 1.6 µCi/ml of 99mTc unsealed source. The particleboard phantom was scanned using SPECT/CT imaging protocol. The contrast of each vial for particleboards phantom were calculated based on the ratio of counts in radionuclide volume and phantom background and compared to Perspex® and water phantom. The results showed that contrast values for each vial in particleboard phantomis near to 1.0 and in good agreement with Perspex® and water phantoms as common phantom materials for SPECT/CT. The paired sample t-test result showed no significant difference of contrast values between images in particleboard phantoms and that in water. The overall results showed the potential of corn starch-bonded Rhizophora spp. as phantom for quality control and dosimetry works in SPECT/CT imaging.

  6. Combined mirror visual and auditory feedback therapy for upper limb phantom pain: a case report

    Directory of Open Access Journals (Sweden)

    Yan Kun

    2011-01-01

    Full Text Available Abstract Introduction Phantom limb sensation and phantom limb pain is a very common issue after amputations. In recent years there has been accumulating data implicating 'mirror visual feedback' or 'mirror therapy' as helpful in the treatment of phantom limb sensation and phantom limb pain. Case presentation We present the case of a 24-year-old Caucasian man, a left upper limb amputee, treated with mirror visual feedback combined with auditory feedback with improved pain relief. Conclusion This case may suggest that auditory feedback might enhance the effectiveness of mirror visual feedback and serve as a valuable addition to the complex multi-sensory processing of body perception in patients who are amputees.

  7. An Alternative Method of Evaluating 1540NM Exposure Laser Damage using an Optical Tissue Phantom

    National Research Council Canada - National Science Library

    Jindra, Nichole M; Figueroa, Manuel A; Rockwell, Benjamin A; Chavey, Lucas J; Zohner, Justin J

    2006-01-01

    An optical phantom was designed to physically and optically resemble human tissue, in an effort to provide an alternative for detecting visual damage resulting from inadvertent exposure to infrared lasers...

  8. A note on crossing the phantom divide in hybrid dark energy model

    International Nuclear Information System (INIS)

    Wei Hao; Cai Ronggen

    2006-01-01

    Recently a lot of attention has been given to building dark energy models in which the equation-of-state parameter w can cross the phantom divide w=-1. However, to our knowledge, these models with crossing the phantom divide only provide the possibility that w can cross -1. They do not answer another question: why crossing phantom divide occurs recently? Since in many existing models whose equation-of-state parameter can cross the phantom divide, w undulates around -1 randomly, why are we living in an epochw<-1? This can be regarded as the second cosmological coincidence problem. In this Letter, we propose a possible approach to alleviate this problem within a hybrid dark energy model

  9. The role of phantom parameters on the response of the AEOI Neutriran Albedo Neutron Personnel Dosemeter

    International Nuclear Information System (INIS)

    Sohrabi, M.; Katouzi, M.

    1992-01-01

    The response of the AEOI Neutriran Albedo Neutron Personnel Dosemeter (NANPD) which can also be used for other albedo dosemeter types was determined on 18 different phantom configurations. The effects of type, geometry, material, thickness, dosemeter-to-phantom angle in particular with the presence of legs were investigated using a Pu-Be neutron source. It was concluded that the slab phantoms (single or double) and circular and elliptical cylinder phantoms seemed to provide a better response, whereas the ICRU sphere geometry does not seem to be appropriate for the calibration of albedo dosemeters. It is interesting to note that the presence of legs maintains the constancy of the response in a situation when a radiation worker bends down during work. (author)

  10. Design and fabrication of a multipurpose thyroid phantom for medical dosimetry and calibration

    International Nuclear Information System (INIS)

    Naderi, Simin Mehdizadeh; Sina, Sedigheh; Karimipoorfard, Mehrnoosh; Lotfalizadeh, Fatemeh; Moradi, Hamed; Faghihi, Reza; Entezarmahdi, Mohammad

    2016-01-01

    A multipurpose anthropomorphic neck phantom was designed and fabricated for use in medical applications. The designed neck phantom is composed of seven elliptic cylindrical slices with a semi-major axis of 14 cm and a semi-minor axis of 12.5 cm, each having the thickness of 2 cm. The thyroid gland, bony part of the neck, and the windpipe were also built inside the neck phantom. For the purpose of medical dosimetry, some holes were drilled inside the phantom to accommodate the thermoluminescence dosemeters with different shapes and dimensions. For testing the quality of images in nuclear medicine, the thyroid gland was built separately to accommodate the radioactive iodine. Finally, the nuclear medicine images were obtained by inserting 131 I in both male and female thyroid parts. (authors)

  11. Development and performance evaluation of a dynamic phantom for biological dosimetry of moving targets

    Science.gov (United States)

    Gemmel, A.; Bert, C.; Saito, N.; von Neubeck, C.; Iancu, G.; K-Weyrather, W.; Durante, M.; Rietzel, E.

    2010-06-01

    A dynamic phantom has been developed to allow for measurement of 3D cell survival distributions and the corresponding distributions of the RBE-weighted dose (RBED) in the presence of motion. The phantom consists of two 96-microwell plates holding Chinese hamster ovary cells inside a container filled with culture medium and is placed on a movable stage. Basic biological properties of the phantom were investigated without irradiation and after irradiation with a carbon ion beam, using both a stationary (reference) exposure and exposure during motion of the phantom perpendicular to the beam with beam tracking. There was no statistically significant difference between plating efficiency measured in the microwells with and without motion (0.75) and values reported in the literature. Mean differences between measured and calculated cell survival for these two irradiation modes were within ±5% of the target dose of 6 Gy (RBE).

  12. Characteristics of 3D gamma evaluation according to phantom rotation error and dose gradient

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyeong Hyun; Kim, Dong Su; Kim, Tae Ho; Kang, Seong Hee; Shin, Dong Seok; Noh, Yu Yoon; Suh, Tae Seok [Dept. of Biomedical Engineering, Research Institute of Biomedical Engineering, College of Medicine, the Catholic University of Korea, Seoul (Korea, Republic of); Cho, Min Seok [Dept. of Radiation Oncology, Asan Medical Center, Seoul (Korea, Republic of)

    2016-12-15

    In intensity modulated radiation therapy (IMRT) quality assurance (QA) using dosimetric phantom, a spatial uncertainty induced from phantom set-up inevitably occurs and gamma index that is used to evaluate IMRT plan quality can be affected differently by a combination of the spatial uncertainty and magnitude of dose gradient. In this study, we investigated the impacts of dose gradient and the phantom set-up error on 3D gamma evaluation. In this study, we investigated the characteristics of gamma evaluation according to dose gradient and phantom rotation axis. As a result, 3D gamma had better performance than 2D gamma. Therefore, it can be useful for IMRT QA analysis at clinical field.

  13. Establishing a framework to implement 4D XCAT Phantom for 4D radiotherapy research

    Directory of Open Access Journals (Sweden)

    Raj K Panta

    2012-01-01

    Conclusions: An integrated computer program has been developed to generate, review, analyse, process, and export the 4D XCAT images. A framework has been established to implement the 4D XCAT phantom for 4D RT research.

  14. Development and performance evaluation of a dynamic phantom for biological dosimetry of moving targets

    Energy Technology Data Exchange (ETDEWEB)

    Gemmel, A; Bert, C; Saito, N; Von Neubeck, C; Iancu, G; K-Weyrather, W; Durante, M; Rietzel, E, E-mail: alexander.ag.gemmel@siemens.co [GSI Helmholtzzentrum fuer Schwerionenforschung, Planckstr 1, 64291 Darmstadt (Germany)

    2010-06-07

    A dynamic phantom has been developed to allow for measurement of 3D cell survival distributions and the corresponding distributions of the RBE-weighted dose (RBED) in the presence of motion. The phantom consists of two 96-microwell plates holding Chinese hamster ovary cells inside a container filled with culture medium and is placed on a movable stage. Basic biological properties of the phantom were investigated without irradiation and after irradiation with a carbon ion beam, using both a stationary (reference) exposure and exposure during motion of the phantom perpendicular to the beam with beam tracking. There was no statistically significant difference between plating efficiency measured in the microwells with and without motion (0.75) and values reported in the literature. Mean differences between measured and calculated cell survival for these two irradiation modes were within {+-}5% of the target dose of 6 Gy (RBE).

  15. A 4D Digital Phantom for Patient-Specific Simulation of Brain CT Perfusion Protocols

    NARCIS (Netherlands)

    Boom, R. van den; Manniesing, R.; Oei, M.T.H.; Woude, W.J. van der; Smit, E.J.; Laue, H.O.A.; Ginneken, B. van; Prokop, M.

    2014-01-01

    Purpose Optimizing CT brain perfusion protocols is a challenge because of the complex interaction between image acquisition, calculation of perfusion data and patient hemodynamics. Several digital phantoms have been developed to avoid unnecessary patient exposure or suboptimum choice of parameters.

  16. Study of the optical properties of solid tissue phantoms using single and double integrating sphere systems

    CSIR Research Space (South Africa)

    Monem, S

    2015-12-01

    Full Text Available light propagation mechanisms inside the tissues. In this work, two calibration models based on measurements adopting integrating sphere systems have been used to determine the optical properties of the studied solid phantoms. Integrating sphere...

  17. Effect of phantom dimension variation on Monte Carlo simulation speed and precision

    International Nuclear Information System (INIS)

    Lin Hui; Xu Yuanying; Xu Liangfeng; Li Guoli; Jiang Jia

    2007-01-01

    There is a correlation between Monte Carlo simulation speed and the phantom dimension. The effect of the phantom dimension on the Monte Carlo simulation speed and precision was studied based on a fast Monte Carlo code DPM. The results showed that when the thickness of the phantom was reduced, the efficiency would increase exponentially without compromise of its precision except for the position at the tailor. When the width of the phantom was reduced to outside the penumbra, the effect on the efficiency would be neglectable. However when it was reduced to within the penumbra, the efficiency would be increased at some extent without precision loss. This result was applied to a clinic head case, and the remarkable increased efficiency was acquired. (authors)

  18. Calibration of lung counter using a CT model of Torso phantom and Monte Carlo method

    International Nuclear Information System (INIS)

    Zhang Binquan; Ma Jizeng; Yang Duanjie; Liu Liye; Cheng Jianping

    2006-01-01

    Tomography image of a Torso phantom was obtained from CT-Scan. The Torso phantom represents the trunk of an adult man that is 170 cm high and weight of 65 kg. After these images were segmented, cropped, and resized, a 3-dimension voxel phantom was created. The voxel phantom includes more than 2 million voxels, which size was 2.73 mm x 2.73 mm x 3 mm. This model could be used for the calibration of lung counter with Monte Carlo method. On the assumption that radioactive material was homogeneously distributed throughout the lung, counting efficiencies of a HPGe detector in different positions were calculated as Adipose Mass fraction (AMF) was different in the soft tissue in chest. The results showed that counting efficiencies of the lung counter changed up to 67% for 17.5 keV γ ray and 20% for 25 keV γ ray when AMF changed from 0 to 40%. (authors)

  19. Computational investigation of nonlinear microwave tomography on anatomically realistic breast phantoms

    DEFF Research Database (Denmark)

    Jensen, P. D.; Rubæk, Tonny; Mohr, J. J.

    2013-01-01

    The performance of a nonlinear microwave tomography algorithm is tested using simulated data from anatomically realistic breast phantoms. These tests include several different anatomically correct breast models from the University of Wisconsin-Madison repository with and without tumors inserted....

  20. Integral test phantom for dosimetric quality assurance of image guided and intensity modulated stereotactic radiotherapy

    International Nuclear Information System (INIS)

    Letourneau, Daniel; Keller, Harald; Sharpe, Michael B.; Jaffray, David A.

    2007-01-01

    The objective of this work is to develop a dosimetric phantom quality assurance (QA) of linear accelerators capable of cone-beam CT (CBCT) image guided and intensity-modulated radiotherapy (IG-IMRT). This phantom is to be used in an integral test to quantify in real-time both the performance of the image guidance and the dose delivery systems in terms of dose localization. The prototype IG-IMRT QA phantom consisted of a cylindrical imaging phantom (CatPhan) combined with an array of 11 radiation diodes mounted on a 10 cm diameter disk, oriented perpendicular to the phantom axis. Basic diode response characterization was performed for 6 and 18 MV photons. The diode response was compared to planning system calculations in the open and penumbrae regions of simple and complex beam arrangements. The clinical use of the QA phantom was illustrated in an integral test of an IG-IMRT treatment designed for a clinical spinal radiosurgery case. The sensitivity of the phantom to multileaf collimator (MLC) calibration and setup errors in the clinical setting was assessed by introducing errors in the IMRT plan or by displacing the phantom. The diodes offered good response linearity and long-term reproducibility for both 6 and 18 MV. Axial dosimetry of coplanar beams (in a plane containing the beam axes) was made possible with the nearly isoplanatic response of the diodes over 360 deg. of gantry (usually within ±1%). For single beam geometry, errors in phantom placement as small as 0.5 mm could be accurately detected (in gradient ≥1%/mm). In clinical setting, MLC systematic errors of 1 mm on a single MLC bank introduced in the IMRT plan were easily detectable with the QA phantom. The QA phantom demonstrated also sufficient sensitivity for the detection of setup errors as small as 1 mm for the IMRT delivery. These results demonstrated that the prototype can accurately and efficiently verify the entire IG-IMRT process. This tool, in conjunction with image guidance capabilities