WorldWideScience

Sample records for hallam nuclear power facility

  1. Technical support to environmental restoration division for groundwater level monitoring effort at entombed Hallam Nuclear Power Facility. Final report, August 1, 1993--July 31, 1993

    International Nuclear Information System (INIS)

    1994-01-01

    This report provides an interim summary of information from a water-level monitoring program. The information was collected by the US Geological Survey (USGS) over a 6-month period. The monitoring program between the US DOE and the USGS was set up to measure water levels in 16 observation wells at the Hallam Nuclear Facility in Hallam, Nebraska. The summary of USGS data includes: (1) a description of the USGS monitoring program; (2) a description of the collection of continuous water-level data; (3) a description of the collection of monthly water-level data; (4) table of observation well number, latitude, longitude, and depth; (5) table of monthly ground-water levels data; (6) table of recorder wells, rainfall, and barometric pressure values; (7) table of recorder well, rainfall, and barometric pressure daily values; and (8) hydrographs of selected wells. 7 figs., 3 tabs

  2. Description of the U.S. Geological Survey's water-quality sampling and water-level monitoring program at the Hallam Nuclear Facility, August through September 1997

    International Nuclear Information System (INIS)

    1997-01-01

    A water-quality and water-level program between the US Department of Energy (USDOE) and the US Geological Survey (USGS) was re-established in August 1997 to (1) collect one set of water-quality samples from 17 of the 19 USDOE monitor wells, and (2) make five water-level measurements during a 2-month period from the 19 USDOE monitor wells at the Hallam Nuclear Facility, Hallam, Nebraska. Data from these wells are presented

  3. Description of the U.S. Geological Survey's slug-tests at the Hallam Nuclear Facility, July to November 1994

    International Nuclear Information System (INIS)

    1995-01-01

    An aquifer test agreement between the US Department of Energy (USDOE) and the US Geological Survey (USGS) was set up to log and measure the aquifer response in two observation wells, IB and 4C at the Hallam Nuclear Facility, Hallam, Nebraska. Observation wells 1B and 4C are owned by the USDOE and were installed by HWS Technologies Inc. of Lincoln, Nebraska, in June 1993. These observation wells were measured monthly from September 1993 to August 1994 by using a graduated steel tape. The accuracy of these water-level measurements is approximately ±0.02 foot. Also well 1B contained a submersible pressure transducer to record hourly water-level data during this same period. During access of the wells, personnel wear clean disposable latex gloves, a hard hat, and safety glasses. Directly following each measurement the steel-tape was rinsed with deionized water and the effluent was disposed of in a 55-gallon drum. For the aquifer tests, observation wells 1B and 4C had submersible pressure transducers installed to monitor water-level responses. These pressure transducers were connected to an electronic data logger (edl) to record the water levels, atmospheric pressure from a barometric pressure gauge, and rainfall data from a tipping-bucket rain gauge. The data recorded on each edl was downloaded onto a field computer during each site visit, processed in the field, and then stored on the USGS's Data General workstations upon return to the District Office

  4. Description of the U.S. Geological Survey's water-quality sampling and water-level monitoring program at the Hallam Nuclear Facility, June through September 1996

    International Nuclear Information System (INIS)

    1997-01-01

    A water-quality and water-level program of the US Department of Energy (USDOE) in cooperation with the US Geological Survey (USGS) was re-established in June 1996 to develop six new USDOE observation wells, collect one set of water-quality samples from 17 of the 19 USDOE observation wells, and take monthly water-level measurements for a 3-month period in all 19 USDOE observation wells at the Hallam Nuclear Facility, Hallam, Nebraska. Thirteen of the observation wells were installed by HWS Consulting Group, Inc., in June 1993 and the remaining six were installed by Applied Research Associates in August 1995

  5. Sodium removal from Hallam Reactor components

    International Nuclear Information System (INIS)

    Huntsman, L.K.; Meservey, R.H.

    1979-08-01

    This report discussed the removal of sodium from major components of the Hallam Nuclear Power Facility. This facility contained the experimental ractor used to test the feasibility of sodium coolant. The Idaho Operations Office of the Department of Energy assigned EG and G Idaho, Inc., the task of carrying out this decontamination and decommissioning program at the Idaho National Engineering Laboratory (INEL). Since their shipment to the INEL from Lincoln, Nebraska in 1968, the Hallam Reactor components had been stored in inert nitrogen to prevent the sodium in the components from reacting with moisture in the air. The procedure used to react the sodium in the components and to decontaminate them is discussed. Problems and unusual occurrences in the decontamination and decommissioning process are also reported

  6. Nuclear power generation facility

    International Nuclear Information System (INIS)

    Kubo, Mitsuji.

    1996-01-01

    Main steams are introduced from a moisture separation device for removing moisture content of the main steams to a low pressure turbine passing through a cross-around pipe. A condensate desalter comprising a mixed floor-type desalting tower using granular ion exchange resins is disposed at the downstream of the main condensator by way of condensate pipelines, and a feedwater heater is disposed at the downstream. Structural members of the main condensator are formed by weather proof steels. Low alloy steels are used partially or entirely for the cross-around pipe, gas extraction pipelines, heat draining pipelines, inner structural members other than pipelines in the feedwater heater, and the body and the inner structural members of the moisture separator. Titanium or a titanium alloy is used for the pipelines in the main condensator. With such a constitution, BWR type reactor facilities, in which the concentration of cruds inflown to the condensate cleanup system is reduced to simplify the condensate cleanup device can be obtained. (I.N.)

  7. Decommissioning of nuclear power facilities

    International Nuclear Information System (INIS)

    Nosovskij, A.V.; Vasil'chenko, V.N.; Klyuchnikov, A.A.; Yashchenko, Ya.V.

    2005-01-01

    This is the first manual in Ukraine giving the complete review of the decommissioning process of the nuclear power facilities including the issues of the planning, design documentation development, advanced technology description. On the base of the international and domestic experience, the issues on the radwaste management, the decontamination methods, the equipment dismantling, the remote technology application, and also the costs estimate at decommissioning are considered. The special attention to the personnel safety provision, population and environment at decommissioning process is paid

  8. Data Validation Package, June 2016 Groundwater Sampling at the Hallam, Nebraska, Decommissioned Reactor Site, August 2016

    Energy Technology Data Exchange (ETDEWEB)

    Surovchak, Scott [USDOE Office of Legacy Management, Washington, DC (United States); Miller, Michele [Navarro Research and Engineering, Oak Ridge, TN (United States)

    2016-08-01

    The 2008 Long-Term Surveillance Plan [LTSP] for the Decommissioned Hallam Nuclear Power Facility, Hallam, Nebraska (http://www.lm.doe.gov/Hallam/Documents.aspx) requires groundwater monitoring once every 2 years. Seventeen monitoring wells at the Hallam site were sampled during this event as specified in the plan. Planned monitoring locations are shown in Attachment 1, Sampling and Analysis Work Order. Water levels were measured at all sampled wells and at two additional wells (6A and 6B) prior to the start of sampling. Additionally, water levels of each sampled well were measured at the beginning of sampling. See Attachment 2, Trip Report, for additional details. Sampling and analysis were conducted as specified in Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated, http://energy.gov/lm/downloads/sampling-and-analysis-plan-us-department- energy-office-legacy-management-sites). Gross alpha and gross beta are the only parameters that were detected at statistically significant concentrations. Time/concentration graphs of the gross alpha and gross beta data are included in Attachment 3, Data Presentation. The gross alpha and gross beta activity concentrations observed are consistent with values previously observed and are attributed to naturally occurring radionuclides (e.g., uranium and uranium decay chain products) in the groundwater.

  9. Post-Construction Testing of the Elk River, Hallam and Piqua Power Reactor Plants; Essais apres construction des centrales nucleaires d'Elk River, de Hallam et de Piqua; Predehkspluatatsionnoe ispytanie Ehlk-riverskoj, Khehlpemskoj i Pikuaskoj ehnergeticheskikh reaktornykh ustanovok; Ensayos posteriores a la construccion de las centrales nucleoelectricas de Elk River, Hallam y Piqua

    Energy Technology Data Exchange (ETDEWEB)

    Pursel, C. A. [United States Atomic Energy Commission, Argonne, IL (United States)

    1963-10-15

    Actual experience gained during the post-construction testing of three nuclear power plants, under the USAEC Power Reactor Demonstration Program, may permit some generalizations concerning this phase of plant construction and operation. The three plants, Elk River Reactor (ERR), Hallam Nuclear Power Facility (HNPF), and the Piqua Nuclear Power Facility (PNPF), represent three different reactor concepts: natural-circulation boiling water, sodiumgraphite, and organic cooled and moderated, respectively. The post-construction testing period included the time between the end of construction (erection of structures and installation of equipment) and the beginning of power operation (generation of significant net electrical power). The tests were intended to: (a) verify the performance characteristics of the as-installed equipment; (b) obtain initial criticality and reactivity coefficient measurements; and (c) determine reactor physics and plant performance characteristics at a sequence of increasing power levels. .The experience gained can be reported in six separate but interrelated categories: (1) schedule; (2) costs; (3) staffing requirements; (4) procedures; (5) equipment performance (including malfunctions); and (6) actual, as compared to predicted, system performance characteristics. The average project staffing, including craftsmen, operators, supervisors, technical support and trainees, was approximately 50 for ERR, 115 for HNPF, and 60 for PNPF. Detailed written Pre-operational Test Procedures were prepared for each major component and system. To the maximum possible extent, all tests were performed before fuel loading and operation of the integrated plant. Authorization procedures (duplicates of the licensing procedures for non-USAEC-owned plants) were in progress during almost all of the post-construction testing periods. The time required for post-construction testing of each of these plants significantly exceeded the original estimates. The tests disclosed

  10. Base isolation for nuclear power and nuclear material facilities

    International Nuclear Information System (INIS)

    Eidinger, J.M.; Kircher, C.A.; Vaidya, N.; Constantinou, M.; Kelly, J.M.; Seidensticker, R.; Tajirian, F.F.; Ovadia, D.

    1989-01-01

    This report serves to document the status of the practice for the use of base isolation systems in the design and construction of nuclear power and nuclear material facilities. The report first describes past and current (1989) applications of base isolation in nuclear facilities. The report then provides a brief discussion of non-nuclear applications. Finally, the report summarizes the status of known base-isolation codes and standards

  11. Nuclear power plant simulation facility evaluation methodology

    International Nuclear Information System (INIS)

    Haas, P.M.; Carter, R.J.; Laughery, K.R. Jr.

    1985-01-01

    A methodology for evaluation of nuclear power plant simulation facilities with regard to their acceptability for use in the US Nuclear Regulatory Commission (NRC) operator licensing exam is described. The evaluation is based primarily on simulator fidelity, but incorporates some aspects of direct operator/trainee performance measurement. The panel presentation and paper discuss data requirements, data collection, data analysis and criteria for conclusions regarding the fidelity evaluation, and summarize the proposed use of direct performance measurment. While field testing and refinement of the methodology are recommended, this initial effort provides a firm basis for NRC to fully develop the necessary methodology

  12. No nuclear power. No disposal facility?

    Energy Technology Data Exchange (ETDEWEB)

    Feinhals, J. [DMT GmbH und Co.KG, Hamburg (Germany)

    2016-07-01

    Countries with a nuclear power programme are making strong efforts to guarantee the safe disposal of radioactive waste. The solutions in those countries are large disposal facilities near surface or in deep geological layers depending on the activity and half-life of the nuclides in the waste. But what will happen with the radioactive waste in countries that do not have NPPs but have only low amounts of radioactive waste from medical, industrial and research facilities as well as from research reactors? Countries producing only low amounts of radioactive waste need convincing solutions for the safe and affordable disposal of their radioactive waste. As they do not have a fund by an operator of nuclear power plants, those countries need an appropriate and commensurate solution for the disposal of their waste. In a first overview five solutions seem to be appropriate: (i) the development of multinational disposal facilities by using the existing international knowhow; (ii) common disposal with hazardous waste; (iii) permanent storage; (iv) use of an existing mine or tunnel; (v) extension of the borehole disposal concept for all the categories of radioactive wastes.

  13. Governments' role in decommissioning nuclear power facilities

    International Nuclear Information System (INIS)

    Guindon, S.; Wendling, R.D.; Gordelier, S.; Soederberg, O.; Averous, J.; Orlando, D.

    2005-01-01

    Many nuclear power plants will reach the end of their operating lives over the next 20 years; some may be life-extended, others may not. This development will precipitate enhanced industrial and regulatory activities in the area of decommissioning. We are also witnessing in many countries a significant shift in the role of government itself: new pressures on governments, such as enhanced attention on environmental impact/mitigation and strategies to implement market-oriented approaches in a variety of sectors, including the energy sector are driving the public policy agenda. The paper will examine the range of policy issues, drawing from recent NEA studies on decommissioning policies and the recent NEA study on Government and Nuclear Energy and, strategies and costs, and other current trends and developments in the nuclear industry and in the nuclear policy fields. The paper will reflect on issues to be addressed during the conference and draw conclusions on the appropriate role of government in this area. Decommissioning policy is very specific and focused: it is not a high level policy/political issue in most instances and rarely gets the same attention as the issue surrounding the future of nuclear energy itself and public concerns regarding safety, waste and economics. One reason why decommissioning does not get the same attention as for example disposal of spent nuclear fuel might be the fact that technology is available for decommissioning, while technology for disposal of spent nuclear fuel is under development. High profile or not, it will remain an important issue for governments and industry alike particularly because of the cost and long lead times involved. In some instances, governments are the owners of the facilities to be decommissioned. In addition, decommissioning factors into issues surrounding the economics of nuclear energy and the sustainability of the nuclear option. Based on results of the Tarragona Seminar (Spain, September 2-4, 2003) and

  14. Water intaking facility of nuclear power plant

    International Nuclear Information System (INIS)

    Koyama, Kazuhito; Iwata, Nobukatsu; Ochiai, Kanehiro.

    1994-01-01

    In a water intaking facility of a nuclear power plant, a dam is disposed at a position near a sea shore for preventing sea water introduced in open conduit from flowing to the outer sea upon ebbing of tsunamis. The upper end of the dam is set lower than the lower end of a water-intake pipe of a sea water pump of an ordinary system. A water-intake pipe is disposed to such a length that a sea water pump of an emergency system continues to suck the sea water when the water level of the introduced sea water is lowered than the upper end of the dam during the ebb tide. In addition, a means for stopping the operation of the sea water pump of the ordinary system upon starting of the ebb is disposed. Upon reactor scram for occurrence of earthquakes and the like, either the sea water pump in the ordinary system or the seawater pump in the emergency system operates to ensure required amount of sea water for cooling the reactor. In addition, even if the level of the sea water is lowered than the upper end of the dam, since the sea water pump in the emergency system continues to suck sea water, unnecessary suction for sea water by the ordinary sea water pumps can be eliminated. (N.H.)

  15. Proceeding of the 7. Seminar on Technology and Safety of Nuclear Power Plants and Nuclear Facilities

    International Nuclear Information System (INIS)

    Hastowo, Hudi; Antariksawan, Anhar R.; Soetrisnanto, Arnold Y; Jujuratisbela, Uju; Aziz, Ferhat; Su'ud, Zaki; Suprawhardana, M. Salman

    2002-02-01

    The seventh proceedings of seminar safety and technology of nuclear power plant and nuclear facilities, held by National Nuclear Energy Agency. The Aims of seminar is to exchange and disseminate information about safety and nuclear Power Plant Technology and Nuclear Facilities consist of technology; high temperature reactor and application for national development sustain able and high technology. This seminar level all aspects technology, Power Reactor research reactor, high temperature reactor and nuclear facilities. The article is separated by index

  16. Economic benefits of power factor correction at a nuclear facility

    International Nuclear Information System (INIS)

    Boger, R.M.; Dalos, W.; Juguilon, M.E.

    1986-01-01

    The economic benefits of correcting poor power factor at an operating nuclear facility are shown. A project approach for achieving rapid return of investment without disrupting plant availability is described. Examples of technical problems associated with using capacitors for power factor correction are presented

  17. Cooling facility of nuclear power plant

    International Nuclear Information System (INIS)

    Arai, Kenji; Nagasaki, Hideo.

    1992-01-01

    In a cooling device of a nuclear power plant, an exhaust pipe for an incondensible gas is branched. One of the branched exhaust pipes is opened in a pressure suppression pool water in a suppression chamber containing pool water and the other is opened at a lower portion of a dry well incorporating a pressure vessel. In a state where the pressure in the dry well is higher than that in the suppression chamber, an off-gas is exhausted effectively by way of the exhaustion pipe in communication with the suppression chamber. In a state where there is no difference between the pressures and the opening end of the exhaustion pipe in communication with the suppression chamber is sealed with water, off-gas is exhausted by way of the exhaustion pipe in communication with the lower portion of the dry well. Then, since the incondensible gas in a heat transfer pipe is not accumulated, after-heat can be removed efficiently. Satisfactory cooling is maintained even after the coincidence of the pressures in the dry well with that in the suppression chamber, to decrease a pressure in a reactor container. (N.H.)

  18. Nuclear space power safety and facility guidelines study

    International Nuclear Information System (INIS)

    Mehlman, W.F.

    1995-01-01

    This report addresses safety guidelines for space nuclear reactor power missions and was prepared by The Johns Hopkins University Applied Physics Laboratory (JHU/APL) under a Department of Energy grant, DE-FG01-94NE32180 dated 27 September 1994. This grant was based on a proposal submitted by the JHU/APL in response to an open-quotes Invitation for Proposals Designed to Support Federal Agencies and Commercial Interests in Meeting Special Power and Propulsion Needs for Future Space Missionsclose quotes. The United States has not launched a nuclear reactor since SNAP 10A in April 1965 although many Radioisotope Thermoelectric Generators (RTGs) have been launched. An RTG powered system is planned for launch as part of the Cassini mission to Saturn in 1997. Recently the Ballistic Missile Defense Office (BMDO) sponsored the Nuclear Electric Propulsion Space Test Program (NEPSTP) which was to demonstrate and evaluate the Russian-built TOPAZ II nuclear reactor as a power source in space. As of late 1993 the flight portion of this program was canceled but work to investigate the attributes of the reactor were continued but at a reduced level. While the future of space nuclear power systems is uncertain there are potential space missions which would require space nuclear power systems. The differences between space nuclear power systems and RTG devices are sufficient that safety and facility requirements warrant a review in the context of the unique features of a space nuclear reactor power system

  19. Management of the high-level nuclear power facilities

    International Nuclear Information System (INIS)

    Preda, Marin

    2003-05-01

    This thesis approaches current issues in the management of the high power nuclear facilities and as such it appears to be important particularly for nuclear power plant operation topics. Of special interest are the failure events entailing possible catastrophic situations. The contents is structured onto ten chapters. The first chapter describes the operation regimes of the nuclear high power facilities. Highlighted here are the thesis scope and the original features of the work. The second chapter deals with operational policies developed in order to ensure the preventive maintenance of the nuclear installations. Also managing structures are described devoted to practical warranting the equipment safety function of non-classical power stations. In the third chapter cases of nuclear accidents are analyzed especially stressing the probabilistic risk and the operation regimes having in view the elimination of catastrophic events. In the fourth and fifth chapters the control of nuclear radiation emission is treated focusing the quality issue of nuclear installations required to avoid hazardous effects at level of nuclear reactor operation stage. At the same time set of operational measures is given here for preventing risks, catastrophes and chaotic situations. The chapter five presents both theoretical and practical approaches of the nuclear reactor core management concerning particularly the fuel testing, the water primary system and the quality of the involved equipment. In the sixth and seventh chapters issues of risk-quality correlations are approached as well as the structure of expert systems for monitoring the operational regimes of nuclear facilities. The efficiency of the power systems with nuclear injection is discussed and some original ideas developed in this work are evidenced in the eighth and ninth chapters. Presented are here both the operational principles and models of raising the efficiency of the interconnected nuclear stations and prices' policy

  20. Summarisation of construction and commissioning experience for nuclear power integrated test facility

    International Nuclear Information System (INIS)

    Xiao Zejun; Jia Dounan; Jiang Xulun; Chen Bingde

    2003-01-01

    Since the foundation of Nuclear Power Institute of China, it has successively designed various engineering experimental facilities, and constructed nuclear power experimental research base, and accumulated rich construction experiences of nuclear power integrated test facility. The author presents experience on design, construction and commissioning of nuclear power integrated test facility

  1. Study on system integration of robots operated in nuclear fusion facility and nuclear power plant facilities

    International Nuclear Information System (INIS)

    Oka, Kiyoshi

    2004-07-01

    A present robot is required to apply to many fields such as amusement, welfare and protection against disasters. The are however only limited numbers of the robots, which can work under the actual conditions as a robot system. It is caused by the following reasons: (1) the robot system cannot be realized by the only collection of the elemental technologies, (2) the performance of the robot is determined by that of the integrated system composed of the complicated elements with many functions, and (3) the respective elements have to be optimized in the integrated robot system with a well balance among them, through their examination, adjustment and improvement. Therefore, the system integration of the robot composed of a large number of elements is the most critical issue to realize the robot system for actual use. In the present paper, I describe the necessary approaches and elemental technologies to solve the issues on the system integration of the typical robot systems for maintenance in the nuclear fusion facility and rescue in the accident of the nuclear power plant facilities. These robots work under the intense radiation condition and restricted space in place of human. In particular, I propose a new approach to realize the system integration of the robot for actual use from the viewpoints of not only the environment and working conditions but also the restructure and optimization of the required elemental technologies with a well balance in the robot system. Based on the above approach, I have a contribution to realize the robot systems working under the actual conditions for maintenance in the nuclear fusion facility and rescue in the accident of the nuclear power plant facilities. (author)

  2. Training of nuclear power facility personnel. Part 1

    International Nuclear Information System (INIS)

    1989-06-01

    The proceedings of the conference entitled ''Training of Nuclear Power Facility Personnel'' and held in Tale, Czechoslovakia, on 24 - 27 April 1989, contain full texts of 58 contributions, 57 of which fall in the INIS subject scope. The aim of the conference was to summarize experience gained during the training and education of Czechoslovak nuclear power plants operating personnel, to put forth new suggestions for increasing the safety and reliability of nuclear power plants, and to establish the needs and new trends in the training and education of nuclear power plants personnel. The topics treated at the conference can be divided into three basic groups as follows: 1. professional qualification of nuclear power plant staff members; 2. development of technical means for the nuclear power plants personnel training; and 3. training of maintenance personnel, the system and organization of this training and education. The proceedings are published in two volumes. Part 1 contains the texts of 25 papers falling in the INIS subject scope. (Z.M.)

  3. Radioactive waste from nuclear power stations and other nuclear facilities

    International Nuclear Information System (INIS)

    Jelinek-Fink, P.

    1976-01-01

    After estimating the amounts of liquid and solid radioactive wastes that will be produced in nuclear power plants, reprocessing plants, by the fuel cycle industry, and in the nuclear research centers in the FRG until 1990, it is reported on the state of technology and on the tendencies in the development of processing radioactive waste. The paper also describes, how waste disposal is managed by those producing radioactive waste (see above), and discusses the future development of the complex of waste disposal from the industry's point of view. (HR/LN) [de

  4. Technology standards for structure, etc. concerning nuclear power generating facilities

    International Nuclear Information System (INIS)

    1977-01-01

    Based on the Ordinance for the Technology Standards concerning Nuclear Power Generating Facilities, the technology standards are established for the vessels of class 1 to 4 (including reactor pressure vessels, reactor containment vessels, etc.), the pipes of class 1 to 3, safety valves, pressure test and monitoring test specimens. Those specified are materials, nondestructive tests, structures, shapes, shells, flanges, etc. for the vessels and the pipes, and so on. (Mori, K.)

  5. Laser peening applications for next generation of nuclear power facilities

    International Nuclear Information System (INIS)

    Rankin, J.; Truong, C.; Walter, M.; Chen, H.-L.; Hackel, L.

    2008-01-01

    Generation of electricity by nuclear power can assist in achieving goals of reduced greenhouse gas emissions. Increased safety and reliability are necessary attributes of any new nuclear power plants. High pressure, hot water and radiation contribute to operating environments where Stress Corrosion Cracking (SCC) and hydrogen embrittlement can lead to potential component failures. Desire for improved steam conversion efficiency pushes the fatigue stress limits of turbine blades and other rotating equipment. For nuclear reactor facilities now being designed and built and for the next generations of designs, laser peening could be incorporated to provide significant performance life to critical subsystems and components making them less susceptible to fatigue, SCC and radiation induced embrittlement. These types of components include steam turbine blades, hubs and bearings as well as reactor components including cladding material, housings, welded assemblies, fittings, pipes, flanges, vessel penetrations, nuclear waste storage canisters. Laser peening has proven to be a commercial success in aerospace applications and has recently been put into use for gas and steam turbine generators and light water reactors. An expanded role for this technology for the broader nuclear power industry would be a beneficial extension. (author)

  6. Dry spent fuel storage facility at Kozloduy Nuclear Power Plant

    International Nuclear Information System (INIS)

    Goehring, R.; Stoev, M.; Davis, N.; Thomas, E.

    2004-01-01

    The Dry Spent Fuel Storage Facility (DSF) is financed by the Kozloduy International Decommissioning Support Fund (KIDSF) which is managed by European Bank for Reconstruction and Development (EBRD). On behalf of the Employer, the Kozloduy Nuclear Power Plant, a Project Management Unit (KPMU) under lead of British Nuclear Group is managing the contract with a Joint Venture Consortium under lead of RWE NUKEM mbH. The scope of the contract includes design, manufacturing and construction, testing and commissioning of the new storage facility for 2800 VVER-440 spent fuel assemblies at the KNPP site (turn-key contract). The storage technology will be cask storage of CONSTOR type, a steel-concrete-steel container. The licensing process complies with the national Bulgarian regulations and international rules. (authors)

  7. Proceedings of the 9. National Seminar on Technology and Safety of Nuclear Power Plants and Nuclear Facilities

    International Nuclear Information System (INIS)

    Antariksawan, Anhar R.; Soetrisnanto, Arnold Y; Aziz, Ferhat; Untoro, Pudji; Su'ud, Zaki; Zarkasi, Amin Santoso; Lasman, As Natio

    2003-08-01

    The ninth proceedings of seminar safety and technology of nuclear power plant and nuclear facilities held by National Nuclear Energy Agency and PLN-JTK. The aims of seminar is to exchange and disseminate information about Safety and Nuclear Power Plant Technology and Nuclear Facilities consist of Technology High Temperature Reactor and Application for National Development Sustainable and High Technology. This seminar cover all aspects Technology, Power Reactor, Research Reactor High Temperature Reactor and Nuclear Facilities. There are 20 articles have separated index

  8. On-site electric power source facility for Japanese nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Oohara, T. [Incident/Failure Analysis and Evaluation Office, Nuclear Power Safety Information Research Centre, Nuclear Power Engineering Test Centre, 2nd Floor, Shuwa-Kamiyacho Bldg., 3-13, 4-Chome, Toranomon Minato-ku, Tokyo 105 (Japan)

    1986-02-15

    Trends of construction of nuclear power plants in Japan, occurrence rate of incidents/failures of electric facilities, major example of incidents/failures, their countermeasure to prevent recurrence are introduced. Furthermore, safety administration system of the Government, electric utilities and manufacturers, and various countermeasures to prevent incident/ failure of electrical facilities from the hardware and software sides are discussed. (author)

  9. On-site electric power source facility for Japanese nuclear power plant

    International Nuclear Information System (INIS)

    Oohara, T.

    1986-01-01

    Trends of construction of nuclear power plants in Japan, occurrence rate of incidents/failures of electric facilities, major example of incidents/failures, their countermeasure to prevent recurrence are introduced. Furthermore, safety administration system of the Government, electric utilities and manufacturers, and various countermeasures to prevent incident/ failure of electrical facilities from the hardware and software sides are discussed. (author)

  10. Multimegawatt space nuclear power open-cycle MHD-facility

    International Nuclear Information System (INIS)

    Pavshuk, V.A.; Panchenko, V.P.

    2008-01-01

    Paper presents the results of the efforts to calculate the characteristics, the layout and the engineering design of the open cycle space power propulsion on the basis of the high-temperature nuclear reactor for a nuclear rocket engine and the Faraday 20 MW capacity MHD-generator. The IVG-1 heterogeneous channel-vessel reactor ensuring in the course of the experiments hydrogen heating up to 3100 K, up to 5 MPa pressure at the reactor core outlet, up to 5 kg/s flowsheet, up to 220 MW thermal power served as a reactor is considered. One determined the MHD-generator basic parameters, namely: the portion of Cs dope was equal to 20%, the outlet stagnation pressure - 2 MPa, the electric conductivity - ≅30 S/m, the Mach number - ≅0.7, the magnetic field induction - 6 T, the capacity - 20 MW, the specific power removal - ∼4 MJ/kg. Paper describes the design of the MHD-facility with the working fluid momentless discharge and its basic characteristics [ru

  11. Ground Shock Resistant of Buried Nuclear Power Plant Facility

    International Nuclear Information System (INIS)

    Ornai, D.; Adar, A.; Gal, E.

    2014-01-01

    Nuclear Power Plant (NPP) might be subjected to hostile attacks such as Earth Penetrating Weapons (EPW) that carry explosive charges. Explosions of these weapons near buried NPP facility might cause collapse, breaching, spalling, deflection, shear, rigid body motion (depending upon the foundations), and in-structure shock. The occupants and the equipment in the buried facilities are exposed to the in-structure motions, and if they are greater than their fragility values than occupants might be wounded or killed and the equipment might be damaged, unless protective measures will be applied. NPP critical equipment such as pumps are vital for the normal safe operation since it requires constant water circulation between the nuclear reactor and the cooling system, including in case of an immediate shut down. This paper presents analytical- semi empirical formulation and analysis of the explosion of a penetrating weapon with a warhead of 100kgs TNT (Trinitrotoluene) that creates ground shock effect on underground NPP structure containing equipment, such as a typical pump. If the in-structure spectral shock is greater than the pump fragility values than protective measures are required, otherwise a real danger to the NPP safety might occur

  12. Reliability centred maintenance of nuclear power plant facilities

    International Nuclear Information System (INIS)

    Kovacs, Zoltan; Novakova, Helena; Hlavac, Pavol; Janicek, Frantisek

    2011-01-01

    A method for the optimization of preventive maintenance nuclear power plant equipment, i.e. reliability centred maintenance, is described. The method enables procedures and procedure schedules to be defined such as allow the maintenance cost to be minimized without compromising operational safety or reliability. Also, combinations of facilities which remain available and ensure reliable operation of the reactor unit during the maintenance of other pieces of equipment are identified. The condition-based maintenance concept is used in this process, thereby preventing unnecessary operator interventions into the equipment, which are often associated with human errors. Where probabilistic safety assessment is available, the most important structures, systems and components with the highest maintenance priority can be identified. (orig.)

  13. 75 FR 76055 - Nebraska Public Power District Cooper Nuclear Station; Notice of Issuance of Renewed Facility...

    Science.gov (United States)

    2010-12-07

    ... NUCLEAR REGULATORY COMMISSION Docket No. 50-298; NRC-2008-0617] Nebraska Public Power District Cooper Nuclear Station; Notice of Issuance of Renewed Facility Operating License No. DPR-46 for an... Power District (NPPD), the operator of the Cooper Nuclear Station (CNS). Renewed facility operating...

  14. Cooling and heating facility for nuclear power plant

    International Nuclear Information System (INIS)

    Kakuta, Atsuro

    1994-01-01

    The present invention concerns a cooling and heating facility for a nuclear power plant. Namely, a cooling water supply system supplies cooling water prepared by a refrigerator for cooling the inside of the plant. A warm water supply system supplies warm water having its temperature elevated by using an exhausted heat from a reactor water cleanup system. The facility comprises a heat pump-type refrigerator disposed in a cold water supply system for producing cold water and warm water, and warm water pipelines for connecting the refrigerator and the warm water supply system. With such a constitution, when the exhaust heat from the reactor water cleanup system can not be used, warm water prepared by the heat pump type refrigerator is supplied to the warm water supply system by way of the warm water pipelines. Accordingly, when the exhaust heat from the reactor water cleanup system can not be used such as upon inspection of the plant, a portion of the refrigerators in a not-operated state can be used for heating. Supply of boiler steams in the plant is no more necessary or extremely reduced. (I.S.)

  15. Yearly program of safety research in nuclear power facilities from fiscal 1981 to 1985

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    Nuclear safety research plans for nuclear power facilities and others from fiscal 1981 to 1985 are presented for the following areas: the safety of LWR fuel, loss-of-coolant accidents, the structural safety of LWR installations, the reduction of radioactive material release from nuclear power facilities, the stochastic safety evaluation of nuclear power facilities, the aseismicity of nuclear power facilities, the safety of nuclear fuel facilities, and the safety of nuclear fuel transport vessels. In the respective areas, the needs for research and the outline of research works are summarized. Then, about the major research works in each area, the purpose, contents, term and responsible institution of the research are given. (Mori, K.)

  16. Proceedings of the 8. National Seminar on Technology and Safety of Nuclear Power Plants and Nuclear Facilities

    International Nuclear Information System (INIS)

    Antariksawan, Anhar R.; Soetrisnanto, Arnold Y.; Aziz, Ferhat; Untoro, Pudji; Su'ud, Zaki; Zarkasi, Amin Santosa; Umar, Faraz H.; Teguh Bambang; Hafnan, M.; Mustafa, Bustani; Rosfian, H.

    2002-10-01

    The eight proceeding of National Seminar on Technology and Safety of Nuclear Power Plant and Nuclear Facilities held by National Atomic Energy Agency and University of Trisakti. The aims of Seminar is to exchange and disseminate information about safety and nuclear Power Plant Temperature Reactor and Application for National Development sustain able and High Technology. This Seminar covers all aspect Technology, Power Reactor : Research Reactor; High Temperature Reactor and Nuclear Facilities. There are 33 articles have separated index

  17. Conference on the research facilities for future nuclear power engineering

    International Nuclear Information System (INIS)

    Arkhangel'skij, N.V.

    1996-01-01

    The activity of the European nuclear society Conference (Belgium, June, 1996) is described. The main topics of 60 presented reports are the following ones: necessity of developing new experimental facilities and their parameters; financing prospects and international cooperation in this field

  18. Nuclear facilities

    International Nuclear Information System (INIS)

    Anon.

    2002-01-01

    During September and October 2001, 15 events were recorded on the first grade and 1 on the second grade of the INES scale. The second grade event is in fact a re-classification of an incident that occurred on the second april 2001 at Dampierre power plant. This event happened during core refueling, a shift in the operation sequence led to the wrong positioning of 113 assemblies. A preliminary study of this event shows that this wrong positioning could have led, in other circumstances, to the ignition of nuclear reactions. Even in that case, the analysis made by EDF shows that the consequences on the staff would have been limited. Nevertheless a further study has shown that the existing measuring instruments could not have detected the power increase announcing the beginning of the chain reaction. The investigation has shown that there were deficiencies in the control of the successive operations involved in refueling. EDF has proposed a series of corrective measures to be implemented in all nuclear power plants. The other 15 events are described in the article. During this period 121 inspections have been made in nuclear facilities. (A.C.)

  19. Temporary storage facility for spent nuclear fuels at the Atucha I nuclear power station (CNA)

    International Nuclear Information System (INIS)

    Wasinger, K.

    1983-01-01

    According to plans of the Argentine Atomic Energy Commission (CNEA), the spent nuclear fuel elements of the Atucha I Nuclear Power Station are to be stored temporarily pending a decision about the ultimate disposal concept. The holding capacity of the first fuel storage facility built by the German KWU together with the whole power plant had been expanded in 1978 to a level good until mid-1982. In 1977, KWU drafted the concept of another fuel storage facility. Like the first one, it was designed as a wet storage system attached to the power plant installations and had a holding capacity of 6944 fuel elements, which corresponds to some 1100 te of uranium. This extends the storage capacity up until 1996. In 1978, KWU was commissioned by CNEA to plan the whole facility and deliver the mechanical and electrical equipment. CNEA themselves assumed responsibility for the construction work. The second fuel storage facility was commissioned three years after the start of construction. (orig.) [de

  20. Automatization of welding for nuclear power equipments and facilities

    International Nuclear Information System (INIS)

    Tamai, Yasumasa; Matsumoto, Teruo; Koyama, Takaichi

    1980-01-01

    For the requirement of high reliability in the construction of nuclear power plants and the reduction of radiation exposure in the modefying works of existing plants, the automation and remote operation of welding have increased their necessity. In this paper, the present state of the automation of welding for making machines, equipments and pipings for nuclear power plants in Hitachi Ltd. is described, and the aim of developing the automation, the features of the equipments and the state of application to actual plants are introduced, centering around the automation of welding for large structures such as reactor containment vessels and the remote type automatic welding system for pipings. By these automations, the large outcomes were obtained in the improvement of welding quality required for the machines and equipments for atomic energy. Moreover, the conspicuous results were also obtained in case of the peculiar works to nuclear power plants, in which the reduction of the radiation exposure related to human bodies and the welding of high quality are demanded. The present state of the automation of welding for nuclear installations in Hitachi Ltd., the development of automatic welding equipments and the present state of application to actual plants, and the development and application of the automatic pipe working machine for reducing radiation exposure are explained. (Kako, I.)

  1. Qualification and actuation of the independent technical supervision organisms in nuclear power plants and others facilities

    International Nuclear Information System (INIS)

    1999-09-01

    This norm presents the following objectives: establishment of the Brazilian National Nuclear Energy Commission requirements for qualifying an institution as independent technical supervision organization, in a specific area of activity related to nuclear power plants and others nuclear or radioactive facilities as appropriated; regulation of the independent technical supervision and others complementary activities to be executed by an independent technical supervision organism

  2. Issues of improving quality of training personnel for nuclear power facilities

    International Nuclear Information System (INIS)

    Jacko, J.

    1987-01-01

    The basic stages are characterized of the development of a standard system of personnel training for the start-up, operation and maintenance of nuclear power facilities. The experience is analyzed gained by the Branch Training Centre of the Nuclear Power Plant Research Institute. Suggestions are submitted for improving the quality of personnel training based on Czechoslovak and foreign experiences. (author). 3 refs

  3. Low-power critical facilities: their role in the nuclear renaissance

    International Nuclear Information System (INIS)

    Didsbury, R.

    2011-01-01

    This paper discusses the role of low power critical facilities and their role in the nuclear renaissance. It outline the role of human capital in some detail. sufficient conditions for the renaissance are that nuclear power is safe, sustainable, economical and proliferation resistant.

  4. Deployment of Radioactive Waste Disposal Facility with the Introduction of Nuclear Power Plants in Kenya

    Energy Technology Data Exchange (ETDEWEB)

    Shadrack, Antoony; Kim, Changlak [KEPCO International Nuclear Graduate School, Uljin (Korea, Republic of)

    2013-07-01

    The nuclear power program will inevitably generate radioactive wastes including low-and intermediate radioactive waste and spent fuel. These wastes are hazardous to human health and the environment and therefore, a reliable radioactive waste disposal facility becomes a necessity. This paper describes Kenya's basic plans for the disposal of radioactive wastes expected from the nuclear program. This plan is important as an initial implementation of a national Low to intermediate level wastes storage facility in Kenya. In Kenya, radioactive waste is generated from the use of radioactive materials in medicine, industry, education and research and development. Future radioactive waste is expected to arise from nuclear reactors, oil exploration, radioisotope and fuel production, and research reactors as shown in table 1. The best strategy is to store the LILW and spent fuel temporarily within reactor sites pending construction of a centralized interim storage facility or final disposal facility. The best philosophy is to introduce both repository and nuclear power programs concurrently. Research and development on volume reduction technology and conceptual design of disposal facility of LILW should be pursued. Safe management of radioactive waste is a national responsibility for sustainable generation of nuclear power. The republic of Kenya is set to become the second African nuclear power generation country after South Africa.

  5. Spare parts management for nuclear power generation facilities

    Science.gov (United States)

    Scala, Natalie Michele

    With deregulation, utilities in the power sector face a much more urgent imperative to emphasize cost efficiencies as compared to the days of regulation. One major opportunity for cost savings is through reductions in spare parts inventories. Most utilities are accustomed to carrying large volumes of expensive, relatively slow-moving parts because of a high degree of risk-averseness. This attitude towards risk is rooted in the days of regulation. Under regulation, companies recovered capital inventory costs by incorporating them into the base rate charged to their customers. In a deregulated environment, cost recovery is no longer guaranteed. Companies must therefore reexamine their risk profile and develop policies for spare parts inventory that are appropriate for a competitive business environment. This research studies the spare parts inventory management problem in the context of electric utilities, with a focus on nuclear power. It addresses three issues related to this problem: criticality, risk, and policy. With respect to criticality and risk, a methodology is presented that incorporates the use of influence diagrams and the Analytic Hierarchy Process (AHP). A new method is developed for group aggregation in the AHP when Saaty and Vargas' (2007) dispersion test fails and decision makers are unwilling or unable to revise their judgments. With respect to policy, a quantitative model that ranks the importance of keeping a part in inventory and recommends a corresponding stocking policy through the use of numerical simulation is developed. This methodology and its corresponding models will enable utilities that have transitioned from a regulated to a deregulated environment become more competitive in their operations while maintaining safety and reliability standards. Furthermore, the methodology developed is general enough so that other utility plants, especially those in the nuclear sector, will be able to use this approach. In addition to regulated

  6. Consideration of external events in the design of nuclear facilities other than nuclear power plants, with emphasis on earthquakes

    International Nuclear Information System (INIS)

    2003-03-01

    The design of nuclear facilities other than nuclear power plants in relation to external events is not a well harmonized practice around the world. Traditionally, the design of these facilities has either been left to the provisions collected in national building codes and other industrial codes not specifically intended for nuclear facilities, or it has been the subject of complex analyses of the type usually performed for nuclear power plants. The IAEA has recently started a programme of development of safety standards for such facilities. The need to define the appropriate safety requirements for nuclear installations prompted a generic review of siting and design approaches for these facilities in relation to external events. Therefore the assessment methods for siting and design were reviewed by the engineering community to provide the overall design of such facilities with the necessary reliability level. This report aims to provide guidelines for the assessment of the safety of nuclear facilities other than nuclear power plants in relation to external events through the application of simplified methods and procedures for their siting and design. The approach adopted is both simplified and conservative compared with that used for power reactors. It seeks to provide a rational balance for a suitable combination of sustainable effort in site investigations and refinement in design procedures, compatible with the assigned safety objectives. This publication is related to IAEA-TECDOC-348 'Earthquake Resistant Design of Nuclear Facilities with Limited Radioactive Inventory' (1985) which focused on the seismic design of nuclear facilities with limited radioactive inventory. After some 17 years, parts of IAEA-TECDOC-348 needed modification, as new operational data have become available from many facilities. In addition, sophisticated design methodologies are now more easily obtainable, and experts felt that the trade-off between sustainable investment in the

  7. Nuclear safety and radiation protection report of the basic nuclear facilities of the Tricastin nuclear power plant - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Tricastin nuclear power plant (INB 87 and 88, Saint-Paul-Trois-Chateaux, Drome (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  8. Introduction to structural failure modes for nuclear power facilities

    International Nuclear Information System (INIS)

    Reed, J.W.; Gurbuz, O.

    1993-01-01

    This introduction provides a background of the evaluation methods for earthquakes larger than design basis. Seismic probabilistic risk assessment (SPRA) and seismic margin assessment (SMA) methods are introduced to the reader. The basic parameters used to define seismic capacity for each method are explained. The objectives of both evaluation methods and how they can be used to evaluate the adequacy of a seismic design are discussed. General issues related to computing seismic capacity are reviewed relative to SPRA and SMA. Four companion papers presented in the journal following this introduction discuss the types of information (i.e., dynamic tests, earthquake experience, and analytical data) that are used to determine the real capacity of structures and equipment in nuclear power plants to resist earthquakes. The motivation for discussing these three types of information is presented as an introduction to these papers that following in this journal edition. The purpose of the present paper is to lay the groundwork and provide motivation for these papers

  9. The concept of electro-nuclear facility for useful power generation and minor actinides transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Bergelson, B.R.; Balyuk, S.A. [ITEP, Moscow (Russian Federation)

    1995-10-01

    The possibility is shown to design in principle the double-purpose liquid fuel electro nuclear facility for useful power generation and minor actinides transmutation in U-Pu fuel cycle conditions. D{sub 2}O and a melt of fluorine salts are considered as a working media for liquid fuel. Such facility replenished with depicted or natural uranium only makes it possible to generate power of 900 MW (c) for external consumers and serve 20 WWER-1000 reactors for transmutation of MA. The facility could be thought as an alternative to fast reactors since appr. 30% of the total power confined in uranium is utilized in it.

  10. Nuclear facilities

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    Here is given the decree (2000-1065) of the 25. of October 2000 reporting the publication of the convention between the Government of the French Republic and the CERN concerning the safety of the LHC (Large Hadron Collider) and the SPS (Proton Supersynchrotron) facilities, signed in Geneva on July 11, 2000. By this convention, the CERN undertakes to ensure the safety of the LHC and SPS facilities and those of the operations of the LEP decommissioning. The French legislation and regulations on basic nuclear facilities (concerning more particularly the protection against ionizing radiations, the protection of the environment and the safety of facilities) and those which could be decided later on apply to the LHC, SPS and auxiliary facilities. (O.M.)

  11. Design Basis Provisions for New and Existing Nuclear Power Plants and Nuclear Fuel Cycle Facilities in India

    International Nuclear Information System (INIS)

    Soni, R.S.

    2013-01-01

    India has 3-Stage Nuclear Power Program. • Various facilities under design, construction or operation. • Design Basis Knowledge Management (DBKM) is an important and challenging task. • Design Basis Knowledge contributes towards: - Safe operation of running plants; - Design and construction of new facilities; - Addresses issues related to future decommissioning activities

  12. Nuclear EMP induced chaos. [Effect of nuclear explosion on power and communication facilities

    Energy Technology Data Exchange (ETDEWEB)

    Dance, B

    1983-04-01

    It is anticipated that a single nuclear explosion, of adequate size, on the outside of the atmosphere would generate a pulse of sufficient intensity to damage communications equipment (including telephones, radio transmitters and receivers), and to disrupt main power supplies. This damage could be done by a very intense, short duration electro-magnetic pulse (EMP). The article discusses the generation and history of EMP, the test facilities that are needed for EMP test, and techniques that can be used to harden equipment against EMP. It is also important to protect extensive systems against EMP. The article points out that fibre-optics are very useful, because they are EMP resistant and a single fibre can also carry a very high data rate.

  13. International inventory of training facilities in nuclear power and its fuel cycle

    International Nuclear Information System (INIS)

    1977-01-01

    Because the development of trained manpower is important for full use of nuclear power, the International Atomic Energy Agency has compiled this first inventory of training facilities and programs. It is based on information submitted by Member States and received up to 31 January 1977. The inventory is arranged by country, type of training organization, and by subject

  14. State-of-the-art WEB -technologies and ecological safety of nuclear power engineering facilities

    International Nuclear Information System (INIS)

    Batij, V.G.; Batij, E.V.; Rud'ko, V.M.; Kotlyarov, V.T.

    2004-01-01

    Prospects of web-technologies using in the field of improvement radiation safety level of nuclear power engineering facilities is seen. It is shown that application of such technologies will enable entirely using the data of all information systems of radiation control

  15. Facilities for treatment of radioactive contaminated water in nuclear power plants

    International Nuclear Information System (INIS)

    1981-02-01

    The standard applies to processes applied in facilities for treatment of radioactive contaminated water in nuclear power plants with LWR- and HTR-type reactors. It does not apply to the treatment of concentrates obtained in the decontamination of water. (orig.) [de

  16. The regulation for delivery of subsidies for measures of promoting power source location for nuclear power generating facilities

    International Nuclear Information System (INIS)

    1977-01-01

    The Regulation is based on the prescriptions of the Enforcement Order for the Law for Arrangement of Surrounding Areas of Power Generating Facilities, the Law for Proper Budget Enforcement Concerning Subsidies and its Enforcement Order. These rules apply to the subsidies concerning nuclear power generating facilities, reprocessing facilities and test and examination facilities for nuclear fuel materials used for power generating reactors, reactors used for research on the safety of power generating reactors, and experimental reactors for fast breeder reactors. The limits of subsidies are specified respectively for the cases that a unit of power generating facility or two and more units of such facilities are set up in a local municipality. The subsidies are delivered for the expenses occurred in the period, beginning from the fiscal year when construction of the generating facility concerned starts or the arrangement plan of the concerned project is approved, and ending in the fiscal year when such construction comes to an end. The subsidies are given as evenly as possible in each fiscal year. The applicants of the subsidies file the applications attached with the explanations of the projects to the chief of the competent ministry (Director General of the Science and Technology Agency or the Minister of International Trade and Industry). Terms of delivery, reports submitted by the receivers of the subsidies and other related matters are specified. (Okada, K.)

  17. Dose reduction and optimization studies (ALARA) at nuclear power facilities

    International Nuclear Information System (INIS)

    Baum, J.W.; Meinhold, C.B.

    1983-01-01

    Brookhaven National Laboratory (BNL) has been commissioned by the Nuclear Regulatory Commission (NRC) to study dose-reduction techniques and effectiveness of as low as reasonably achievable (ALARA) planning at LWR plants. These studies have the following objectives: identify high-dose maintenance tasks; identify dose-reduction techniques; examine incentives for dose reduction; evaluate cost-effectiveness and optimization of dose-reduction techniques; and compile an ALARA handbook on data, engineering modifications, cost-effectiveness calculations, and other information of interest to ALARA practioners

  18. Outline of construction and facility features of Onagawa nuclear power station Unit No. 2

    International Nuclear Information System (INIS)

    Umimura, Yoshiharu; Tsunoda, Ryohei; Watanabe, Kazunori

    1996-01-01

    Tohoku Electric Power Company promotes development of various power sources to provide a stable supply of electricity in the future, and nuclear power takes a leading part. In August 1989, construction of Onagawa nuclear power plant Unit No. 2 (825MW) was started, following Unit No. 1 (524MW) which went on line in 1984 as Tohoku Electric's first nuclear power plant unit. Unit No. 2 began commercial operation in July 1995 through satisfactory construction work such as RPV hydraulic test in March 1994, fuel loading in October 1994, and various startup tests in each power stage. The design and construction of Unit No. 2 reflect construction and operation experience gained from Unit No. 1, and the latest technology, including that of the LWR Improvement and Standardization Program, was adopted to enhance facility reliability, improve operation and maintenance performance, and reduce worker dosage. Features of the facility, construction techniques, and a description of preoperation of Onagawa nuclear power plant Unit No. 2 are described in this paper. (author)

  19. Aseismatic design and safety of nuclear power generation facilities. On aseismatic capability of commercial nuclear power stations

    International Nuclear Information System (INIS)

    Kato, Muneaki

    1995-01-01

    In view of the great Hanshin earthquake, the aseismatic safety of the important facilities in nuclear power stations is ensured by the location direct on base rocks, the design with the earthquake force at least three times as large as that in the building standard, and the consideration of the earthquakes due to active faults as design earthquake. The basic policy of the aseismatic design of nuclear power stations is described. The determination of the earthquake motions due to strongest earthquake and utmost limit earthquake for design, the survey of the geological features and ground of the sites and so on are explained. In the aseismatic design of buildings and structures, structural planning, the modeling for the aseismatic analysis of buildings, the analysis of time historical response and so on are carried out. In the aseismatic design of equipment and piping systems, the planning of aseismatic support structures, the aseismatic design and the analysis of time historical response, the spectral modal analysis for other systems such as multiple material point system and so on are described. The tests and researches related to the aseismatic design are reported. (K.I.)

  20. Administrative limits for tritium concentrations found in non-potable groundwater at nuclear power facilities

    International Nuclear Information System (INIS)

    Parker, R.; Hart, D.; WIllert, C.

    2012-01-01

    Currently, there is a regulatory limit available for tritium in drinking water, but no such limit for non-potable groundwater. Voluntary administrative limits for site groundwater may be established at nuclear power facilities to ensure minimal risk to human health and the environment, and provide guidance for investigation or other actions intended to prevent exceedances of future regulatory or guideline limits. This work presents a streamlined approach for nuclear power facilities to develop three tiers of administrative limits for tritium in groundwater so that facilities can identify abnormal/uncontrolled releases of tritium at an early stage, and take appropriate actions to investigate, control, and protect groundwater. Tier 1 represents an upper limit of background, Tier 2 represents a level between background and Tier 3, and Tier 3 represents a risk-based concentration protective of down-gradient receptors. (author)

  1. Evaluation of nuclear facility decommissioning projects. Status report. Humboldt Bay Power Plant Unit 3, SAFSTOR decommissioning

    International Nuclear Information System (INIS)

    Baumann, B.L.; Haffner, D.R.; Miller, R.L.; Scotti, K.S.

    1986-06-01

    This document explains the purpose of the US Nuclear Regulatory Commission's (NRC) Evaluation of Nuclear Facility Decommissioning Projects (ENFDP) program and summarizes information concerning the decommissioning of the Humboldt Bay Power Plant (HBPP) Unit 3 facility. Preparations to put this facility into a custodial safe storage (SAFSTOR) mode are currently scheduled for completion by June 30, 1986. This report gives the status of activities as of June 1985. A final summary report will be issued after completion of this SAFSTOR decommissioning activity. Information included in this status report has been collected from the facility decommissioning plan, environmental report, and other sources made available by the licensee. This data has been placed in a computerized data base system which permits data manipulation and summarization. A description of the computer reports that can be generated by the decommissioning data system (DDS) for Humboldt Bay and samples of those reports are included in this document

  2. Occupational radiation exposure at commercial nuclear power reactors and other facilities, 1991

    International Nuclear Information System (INIS)

    Raddatz, C.T.

    1993-07-01

    This report summarizes the occupational radiation exposure information that has been reported to the NRC's Radiation Exposure Information Reporting System (REIRS) by nuclear power facilities and certain other categories of NRC licensees during the years 1969 through 1991. The bulk of the data presented in the report was obtained from annual radiation exposure reports submitted in accordance with the requirements of 10 CFR 20.407 and the technical specifications of nuclear power plants. Data on workers terminating their employment at certain NRC licensed facilities were obtained from reports submitted pursuant to 10 CFR 20.408. The 1991 annual reports submitted by about 436 licensees indicated that approximately 206,732 individuals were monitored, 182,334 of whom were monitored by nuclear power facilities. They incurred an average individual dose of 0.15 rem (cSv) and an average measurable dose of about 0.31 (cSv). Termination radiation exposure reports were analyzed to reveal that about 96,231 individuals completed their employment with one or more of the 436 covered licensees during 1991. Some 68,115 of these individuals terminated from power reactor facilities, and about 7,763 of them were considered to be transient workers who received an average dose of 0.52 rem (cSv)

  3. Occupational radiation exposure at commercial nuclear power reactors and other facilities, 1989

    International Nuclear Information System (INIS)

    Raddatz, C.T.

    1992-04-01

    This report summarizes the occupational radiation exposure information that has been reported to the NRC's Radiation Exposure Information Reporting System (REIRS) by nuclear power facilities and certain other categories of NRC 1 licensees during the years 1969 through 1989. The bulk of the data presented in the report was obtained from annual radiation exposure reports submitted in accordance with the requirements of 10 CFR 20.407 and the technical specifications of nuclear power plants. Data on workers terminating their employment at certain NRC 1 licensed facilities were obtained from reports submitted pursuant to 10 CFR 20.408. The 1989 annual reports submitted by about 448 licensees indicated that approximately 216,294 individuals were monitored 111,000 of whom were monitored by nuclear power facilities. They incurred an average individual does of 0.18 rem (cSv) and an average measurable dose of 0.36 (cSv). Termination radiation exposure reports were analyzed to reveal that about 113,535 individuals completed their employment with one or more of the 448 covered licensees during 1989. Some 76,561 of these individuals terminated from power reactor facilities, and about 10, 344 of them were considered to be transient workers who received an average dose of 0.64 rem (cSv)

  4. Occupational radiation exposure at commercial nuclear power reactors and other facilities, 1988

    International Nuclear Information System (INIS)

    Raddatz, C.T.

    1991-07-01

    This report summarizes the occupational radiation exposure information that has been reported to the NRC's Radiation Exposure Information Reporting System (REIRS) by nuclear power facilities and certain other categories of NRC licensees during the years 1969 through 1988. The bulk of the data presented in the report was obtained from annual radiation exposure reports submitted in accordance with the requirements of 10 CFR 20.407 and the technical specifications of nuclear power plants. Data on workers terminating their employment at certain NRC licensed facilities were obtained from reports submitted pursuant to 10 CFR 20.408. The 1988 annual reports submitted by about 429 licensees indicated that approximately 220,048 individuals were monitored, 113,00 of whom were monitored by nuclear power facilities. They incurred an average individual dose of 0.20 rem (cSv) and an average measurable dose of 0.41 (cSv). Termination radiation exposure reports were analyzed to reveal that about 113,072 individuals completed their employment with one or more of the 429 covered licensees during 1988. Some 80,211 of these individuals terminated from power reactor facilities, and about 8,760 of them were considered to be transient workers who received an average dose of 0.27 rem (cSv). 17 refs., 11 figs., 29 tabs

  5. Report on emergency electrical power supply systems for nuclear fuel cycle and reactor facilities security systems

    International Nuclear Information System (INIS)

    1977-01-01

    The report includes information that will be useful to those responsible for the planning, design and implementation of emergency electric power systems for physical security and special nuclear materials accountability systems. Basic considerations for establishing the system requirements for emergency electric power for security and accountability operations are presented. Methods of supplying emergency power that are available at present and methods predicted to be available in the future are discussed. The characteristics of capacity, cost, safety, reliability and environmental and physical facility considerations of emergency electric power techniques are presented. The report includes basic considerations for the development of a system concept and the preparation of a detailed system design

  6. Report on emergency electrical power supply systems for nuclear fuel cycle and reactor facilities security systems

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    The report includes information that will be useful to those responsible for the planning, design and implementation of emergency electric power systems for physical security and special nuclear materials accountability systems. Basic considerations for establishing the system requirements for emergency electric power for security and accountability operations are presented. Methods of supplying emergency power that are available at present and methods predicted to be available in the future are discussed. The characteristics of capacity, cost, safety, reliability and environmental and physical facility considerations of emergency electric power techniques are presented. The report includes basic considerations for the development of a system concept and the preparation of a detailed system design.

  7. Considerations in the development and implementation of a maintenance robot for nuclear power facilities

    International Nuclear Information System (INIS)

    Rohrabacher, A.; Carlton, R.; Gelhaus, F.

    1987-01-01

    The Nuclear Power Division of the Electric Power Research Institute (EPRI) began its automated nuclear plant maintenance research (research project 2232) in 1982 with surveys of domestic and Japanese ongoing and potential uses of robotic systems in nuclear power facilities. After studying these potential research areas, EPRI initiated a three-pronged effort. All surveys concluded that a mobile system for general environmental, visual, and auto surveillance would be beneficial, and EPRI contracted for the development and evaluation of the Surveyor robot. Work also began to catalog existing systems and to quantify the methodology that a utility could use to optimally complete the plant-mission, robot-system selection process. The conceptualizing phase of the effort defined the necessary physical attributes for the machine to perform a variety of maintenance tasks. Characteristics such as mobility, strength, conditions of service, materials of construction, tool functional requirements, facility interfaces, and operator interface were defined to the extent practical. Substantial versatility is required for the variability of the targeted maintenance tasks and for the variability of facility layouts and designs found throughout the nuclear industry. A key contribution to this development effort comes from the project's Utility Advisors Group. The contract's host utility provides membership to lead this group, and that company will train in the use of the machine for 6 months prior to utilizing it in their power plant for 2 yr

  8. Experiences in the development of an emergency response facility (ERF) system for a nuclear power plant

    International Nuclear Information System (INIS)

    Seisdedos, A.; Sanchez-Fornie, M.A.

    1985-01-01

    The TMI-2 accident gave rise to a series of new requirements with which Nuclear Power Plants must comply and amongst which the implementation of emergency response facilities, particularly the SPDS, has received special attention. This paper covers the experience and problems encountered in the developing of the engineering necessary for the detailed definition of the ERF in a Nuclear Power Plant in the commercial operation phase. Also, a real example is provided for the case of a plant in the last phase of construction and installation. This will serve to illustrate each of the topics covered. (author)

  9. A distributed process monitoring system for nuclear powered electrical generating facilities

    International Nuclear Information System (INIS)

    Sweney, A.D.

    1991-01-01

    Duke Power Company is one of the largest investor owned utilities in the United States, with a service area of 20,000 square miles extending across North and South Carolina. Oconee Nuclear Station, one of Duke Power's three nuclear generating facilities, is a three unit pressurized water reactor site and has, over the course of its 15-year operating lifetime, effectively run out of plant processing capability. From a severely overcrowded cable spread room to an aging overtaxed Operator Aid Computer, the problems with trying to add additional process variables to the present centralized Operator Aid Computer are almost insurmountable obstacles. This paper reports that for this reason, and to realize the inherent benefits of a distributed process monitoring and control system, Oconee has embarked on a project to demonstrate the ability of a distributed system to perform in the nuclear power plant environment

  10. Nuclear power economic database

    International Nuclear Information System (INIS)

    Ding Xiaoming; Li Lin; Zhao Shiping

    1996-01-01

    Nuclear power economic database (NPEDB), based on ORACLE V6.0, consists of three parts, i.e., economic data base of nuclear power station, economic data base of nuclear fuel cycle and economic database of nuclear power planning and nuclear environment. Economic database of nuclear power station includes data of general economics, technique, capital cost and benefit, etc. Economic database of nuclear fuel cycle includes data of technique and nuclear fuel price. Economic database of nuclear power planning and nuclear environment includes data of energy history, forecast, energy balance, electric power and energy facilities

  11. Control and data processing systems in UK nuclear power plant and nuclear facilities

    International Nuclear Information System (INIS)

    Baldwin, J.A.; Wall, D.N.

    1997-01-01

    This note identifies some of the data processing and control systems in UK nuclear power plant, with emphasis on direct digital control systems and sequence control. A brief indication is also given of some of the associated research activities on control systems and software. (author). 2 figs

  12. Control and data processing systems in UK nuclear power plant and nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, J A; Wall, D N [AEA Technology, Winfrith, Dorchester (United Kingdom)

    1997-07-01

    This note identifies some of the data processing and control systems in UK nuclear power plant, with emphasis on direct digital control systems and sequence control. A brief indication is also given of some of the associated research activities on control systems and software. (author). 2 figs.

  13. Annual monitoring and surveillance report for Piqua Nuclear Power Facility, Piqua, Ohio

    International Nuclear Information System (INIS)

    Mosho, G.D.

    1991-12-01

    This report discusses the decommissioned Piqua Nuclear Power Facility which is located in Piqua, Ohio near the Greater Miami River. The Facility was built by the US Atomic Energy Commission (now U. S. Department of Energy) and was operated from 1963 to 1966. The reactor was retired prior to 1970 and the facility was leased to the city of Piqua for use as offices and equipment storage. In December 1991, a radiological survey was done of the facility to document its radiological condition. The data show that all radiological parameters measured were essentially the same as that found in the natural environment. The only exception was that low levels of radioactive contamination were detected in one drain on the 56.5 ft elevation, but the radiation exposure rate in that area was also typical of natural background

  14. The state of radioactive waste management and of personnel radiation exposure in nuclear power generating facilities in fiscal 1983

    International Nuclear Information System (INIS)

    1985-01-01

    (1) The state of radioactive waste management in nuclear power generating facilities: In the nuclear power stations, the released quantities of radioactive gaseous and liquid wastes are all below the control objective levels. For the respective nuclear power stations, the released quantities of radioactive gaseous and liquid wastes in fiscal 1983 and the objective levels are given in table. And, the quantities of solid wastes taken into storage and the cumulative amounts are given. For reference, the results each year since fiscal 1974 are shown. (2) The state of personnel radiation exposure in nuclear power generating facilities: In the nuclear power stations, the personnel radiation exposures are all below the permissible levels. The dose distribution etc. in the respective nuclear power stations are given in table. For reference, the results each year since fiscal 1974 are shown. (Mori, K.)

  15. Catalogue and classification of technical safety standards, rules and regulations for nuclear power reactors and nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Fichtner, N.; Becker, K.; Bashir, M.

    1977-01-01

    The present report is an up-dated version of the report 'Catalogue and Classification of Technical Safety Rules for Light-water Reactors and Reprocessing Plants' edited under code No EUR 5362e, August 1975. Like the first version of the report, it constitutes a catalogue and classification of standards, rules and regulations on land-based nuclear power reactors and fuel cycle facilities. The reasons for the classification system used are given and discussed

  16. The performance of the Armenia Nuclear Power Plant and power facilities in the 1988 Armenia earthquake

    International Nuclear Information System (INIS)

    Yanev, P.I.

    1989-01-01

    The speaker presents the geology, seismology, and effects of the Armenian earthquake which occured on December 7,1988. This is a highly industrialized area with numerous power plants, including one nuclear power plant in addition to several conventional plants. The response of the nuclear plant to the earthquake is described in detail, and the speaker concludes with an outline of suggestions which could help with earthquake preparedness in the United States, particularly in Puget Sound, Washington; along the New Madrid in Missouri and Tennessee;in the Charleston ,South Carolina area; and in the Salt Lake City region of Utah. All of these areas have similar earthquake potential, building types, absence of earthquake preparedness programs, the possibility of an earthquake of comparable proportions as Armenia

  17. Safety at basic nuclear facilities other than nuclear power plants. Lessons learned from significant events reported in 2011 and 2012

    International Nuclear Information System (INIS)

    2014-01-01

    The third report on the safety of basic nuclear installations in France other than power reactors presents an IRSN's analysis of significant events reported to the Nuclear Safety Authority in the years 2011 and 2012. It covers plants, laboratories, research reactors and facilities for the treatment, storage or disposal of waste. This report aims to contribute to a better understanding by stakeholders and more widely by the public of the safety and radiation protection issues associated with the operation of nuclear facilities, the progress made in terms of safety as well as the identified deficiencies. The main trend shows, once again, the significant role of organizational and human factors in the significant events that occurred in 2011 and 2012, of which the vast majority are without noteworthy consequences. Aging mechanisms are another major cause of equipment failure and require special attention. The report also provides IRSN's analysis of specific events that are particularly instructive for facility safety and a synthesis of assessments performed by IRSN on topics that are important for safety and radiation protection. IRSN also includes an overview of its analysis of measures proposed by licensees for increasing the safety of their facilities after the March 2011 accident at the Fukushima Daiichi nuclear power plant in Japan, which consist of providing a 'hardened safety core' to confront extreme situations (earthquake, flooding, etc.) that are unlikely but plausible and can bring about levels of hazards higher than those taken into account in the design of the facilities

  18. Decommissioning and decontamination of licensed reactor facilities and demonstration nuclear power plants

    International Nuclear Information System (INIS)

    Lear, G.; Erickson, P.B.

    1975-01-01

    Decommissioning of licensed reactors and demonstration nuclear power plants has been accomplished by mothballing (protective storage), entombment, and dismantling or a combination of these three. The alternative selected by a licensee seems to be primarily based on cost. A licensee must, however, show that the decommissioning process provides adequate protection of the health and safety of the public and no adverse impact on the environment. To date the NRC has approved each of the alternatives in the decommissioning of different facilities. The decommissioning of small research reactors has been accomplished primarily by dismantling. Licensed nuclear power plants, however, have been decommissioned primarily by being placed in a mothballed state in which they continue to retain a reactor license and the associated licensee responsibilities

  19. Test facility for investigation of heat transfer of promising coolants for the nuclear power industry

    Science.gov (United States)

    Belyaev, I. A.; Sviridov, V. G.; Batenin, V. M.; Biryukov, D. A.; Nikitina, I. S.; Manchkha, S. P.; Pyatnitskaya, N. Yu.; Razuvanov, N. G.; Sviridov, E. V.

    2017-11-01

    The results are presented of experimental investigations into liquid metal heat transfer performed by the joint research group consisting of specialist in heat transfer and hydrodynamics from NIU MPEI and JIHT RAS. The program of experiments has been prepared considering the concept of development of the nuclear power industry in Russia. This concept calls for, in addition to extensive application of water-cooled, water-moderated (VVER-type) power reactors and BN-type sodium cooled fast reactors, development of the new generation of BREST-type reactors, fusion power reactors, and thermonuclear neutron sources. The basic coolants for these nuclear power installations will be heavy liquid metals, such as lead and lithium-lead alloy. The team of specialists from NRU MPEI and JIHT RAS commissioned a new RK-3 mercury MHD-test facility. The major components of this test facility are a unique electrical magnet constructed at Budker Nuclear Physics Institute and a pressurized liquid metal circuit. The test facility is designed for investigating upward and downward liquid metal flows in channels of various cross-sections in a transverse magnetic field. A probe procedure will be used for experimental investigation into heat transfer and hydrodynamics as well as for measuring temperature, velocity, and flow parameter fluctuations. It is generally adopted that liquid metals are the best coolants for the Tokamak reactors. However, alternative coolants should be sought for. As an alternative to liquid metal coolants, molten salts, such as fluorides of lithium and beryllium (so-called FLiBes) or fluorides of alkali metals (so-called FLiNaK) doped with uranium fluoride, can be used. That is why the team of specialists from NRU MPEI and JIHT RAS, in parallel with development of a mercury MHD test facility, is designing a test facility for simulating molten salt heat transfer and hydrodynamics. Since development of this test facility requires numerical predictions and verification

  20. Present state of inspection robot technology in nuclear power facilities. Case of fast breeder reactors

    International Nuclear Information System (INIS)

    Ara, Kuniaki

    1995-01-01

    In the maintenance works in nuclear power facilities such as checkup, inspection and repair, for the main purpose of radiation protection, remote operation technology was introduced since relatively early stage, and at present, the robots that carry out the inspection works for confirming the soundness of main equipment have been developed and put to practical use. At the time of introducing these technologies, in addition to the research and development of robots proper, the coordination with the design of plant machinery and equipment facilities as the premise of introducing robots is an important requirement. In this report, the present state of the development of remote inspection technology for fast breeder reactors is introduced, and the matters to which attention is paid in the plant design for introducing robots are explained. First, fast breeder reactors are described. The needs of robotizing and adopting remote operation in nuclear power facilities are explained, using the examples of the inspection system for a reactor vessel and the inspection system for steam generator heat transfer tubes. (K.I.)

  1. Intellectual decision-making system in the context of potentially dangerous nuclear power facilities

    Directory of Open Access Journals (Sweden)

    Danilov Alexander

    2018-01-01

    Full Text Available The article deals with intelligent operation decision support system under condition of potentially hazardous nuclear facilities. The proposed system is referred to the class of advising systems and does not make final decisions in case of deviations of parameters to be analyzed, but generates general ways to solve an encountered problem and issues a set of recommendations for the plant personnel. In the article a fuzzy logic tool is used as mathematic tool. Lessons learnt from operation of nuclear facilities demonstrate that existing critical components (parts, areas, welding joints are subject to increased failure under conditions of high operational loads, including beyond design loads and negative environmental impact. Usually in that situation there is probability of equipment integrity failure, when the unit is at power, with severe defect downing. For instance, the coolant leak and potential development of initial penetration defect to critical dimensions. In other words, in fact, the final observable result is always one – formation and development of operational crack which jeopardizes design integrity of the component and, accordingly, seriously compromises the nuclear power unit operation. The proposed situational model is linked with real knowledge data base where generated situational pairs are stored. The expert system is used for knowledge data base formation. Actually the proposed system consists of two independent fuzzy systems. From mathematical tool point of view, the advantage of such systems combination is lack of defuzzification unit in the first system and fuzzification unit in the second one.

  2. Current status of personnel exposure at nuclear power plants and other medical, industrial and educational facilities in JAPAN

    International Nuclear Information System (INIS)

    Sasaki, Fumiaki

    1991-01-01

    The state of radiation exposure of the workers engaging in radiation works in Japanese nuclear power stations, the factors of the radiation exposure of the workers engaging in radiation works, the countermeasures for reducing exposure in nuclear power stations, the state of radiation exposure of doctors, the workers engaging in radiation works, researchers and others in medical, industrial, research and educational and other facilities in Japan, the factors of their radiation exposure and the countermeasures for reducing the exposure, and the comparison of the exposure in nuclear power stations with that in medical, industrial, research and educational facilities are reported. (K.I.)

  3. Pumps for nuclear facilities

    International Nuclear Information System (INIS)

    1999-01-01

    The guide describes how the Finnish Radiation and Nuclear Safety Authority (STUK) controls pumps and their motors at nuclear power plants and other nuclear facilities. The scope of the control is determined by the Safety Class of the pump in question. The various phases of the control are: (1) review of construction plan, (2) control of manufacturing, and construction inspection, (3) commissioning inspection, and (4) control during operation. STUK controls Safety Class 1, 2 and 3 pumps at nuclear facilities as described in this guide. STUK inspects Class EYT (non-nuclear) pumps separately or in connection with the commissioning inspections of the systems. This guide gives the control procedure and related requirements primarily for centrifugal pumps. However, it is also applied to the control of piston pumps and other pump types not mentioned in this guide

  4. Active seismic response control systems for nuclear power plant equipment facilities

    International Nuclear Information System (INIS)

    Kobori, Takuji; Kanayama, Hiroo; Kamagata, Shuichi

    1989-01-01

    To sustain severe earthquake ground motion, a new type of anti-seismic structure is proposed, called a Dynamic Intelligent Building (DIB) system, which is positioned as an active seismic response controlled the structure. The structural concept starts from a new recognition of earthquake ground motion, and the structural natural frequency is actively adjusted to avoid resonant vibration, and similarly the external counter-force cancels the resonant force which comes from the dynamic structural motion energy. These concepts are verified using an analytical simulator program. The advanced application of the DIB system, is the Active Supporting system and the Active Stabilizer system for nuclear power plant equipment facilities. (orig.)

  5. Nuclear Power

    International Nuclear Information System (INIS)

    Douglas-Hamilton, J.; Home Robertson, J.; Beith, A.J.

    1987-01-01

    In this debate the Government's policy on nuclear power is discussed. Government policy is that nuclear power is the safest and cleanest way of generating electricity and is cheap. Other political parties who do not endorse a nuclear energy policy are considered not to be acting in the people's best interests. The debate ranged over the risks from nuclear power, the UK safety record, safety regulations, and the environmental effects of nuclear power. The Torness nuclear power plant was mentioned specifically. The energy policy of the opposition parties is strongly criticised. The debate lasted just over an hour and is reported verbatim. (UK)

  6. A personal computer code for seismic evaluations of nuclear power plant facilities

    International Nuclear Information System (INIS)

    Xu, J.; Graves, H.

    1991-01-01

    In the process of review and evaluation of licensing issues related to nuclear power plants, it is essential to understand the behavior of seismic loading, foundation and structural properties and their impact on the overall structural response. In most cases, such knowledge could be obtained by using simplified engineering models which, when properly implemented, can capture the essential parameters describing the physics of the problem. Such models do not require execution on large computer systems and could be implemented through a personal computer (PC) based capability. Recognizing the need for a PC software package that can perform structural response computations required for typical licensing reviews, the US Nuclear Regulatory Commission sponsored the development of a PC operated computer software package CARES (Computer Analysis for Rapid Evaluation of Structures) system. This development was undertaken by Brookhaven National Laboratory (BNL) during FY's 1988 and 1989. A wide range of computer programs and modeling approaches are often used to justify the safety of nuclear power plants. It is often difficult to assess the validity and accuracy of the results submitted by various utilities without developing comparable computer solutions. Taken this into consideration, CARES is designed as an integrated computational system which can perform rapid evaluations of structural behavior and examine capability of nuclear power plant facilities, thus CARES may be used by the NRC to determine the validity and accuracy of analysis methodologies employed for structural safety evaluations of nuclear power plants. CARES has been designed to operate on a PC, have user friendly input/output interface, and have quick turnaround. This paper describes the various features which have been implemented into the seismic module of CARES version 1.0

  7. Nuclear power

    International Nuclear Information System (INIS)

    Abd Khalik Wood

    2005-01-01

    This chapter discussed the following topics related to the nuclear power: nuclear reactions, nuclear reactors and its components - reactor fuel, fuel assembly, moderator, control system, coolants. The topics titled nuclear fuel cycle following subtopics are covered: , mining and milling, tailings, enrichment, fuel fabrication, reactor operations, radioactive waste and fuel reprocessing. Special topic on types of nuclear reactor highlighted the reactors for research, training, production, material testing and quite detail on reactors for electricity generation. Other related topics are also discussed: sustainability of nuclear power, renewable nuclear fuel, human capital, environmental friendly, emission free, impacts on global warming and air pollution, conservation and preservation, and future prospect of nuclear power

  8. The regulation for delivery of subsidies for measures of promoting power source location for nuclear power generating facilities

    International Nuclear Information System (INIS)

    1984-01-01

    According to the law for the arrangement of surrounding areas of power generating facilities, the regulations concern the allocation of subsidies to promote the most efficient way of siting nuclear power facilities. The contents consist of the following: limits on the subsidies, terms of subsidy allocations, the sum of subsidies for each respective year, applications for subsidies, determination of subsidy allocations, withdrawal of applications, the conditions attached to the allocations, a report on the work proceedings, a report on the results, confirmation on the sum of the subsidies, withdrawal of the decision for subsidies, limitations for disposal of the properties, payment of subsidies, accounting of the subsidy operations, a record of the subsidies, and the chief in the governmental office concerned. (Mori, K.)

  9. A personal computer code for seismic evaluations of nuclear power plant facilities

    International Nuclear Information System (INIS)

    Xu, J.; Graves, H.

    1990-01-01

    A wide range of computer programs and modeling approaches are often used to justify the safety of nuclear power plants. It is often difficult to assess the validity and accuracy of the results submitted by various utilities without developing comparable computer solutions. Taken this into consideration, CARES is designed as an integrated computational system which can perform rapid evaluations of structural behavior and examine capability of nuclear power plant facilities, thus CARES may be used by the NRC to determine the validity and accuracy of analysis methodologies employed for structural safety evaluations of nuclear power plants. CARES has been designed to: operate on a PC, have user friendly input/output interface, and have quick turnaround. The CARES program is structured in a modular format. Each module performs a specific type of analysis. The basic modules of the system are associated with capabilities for static, seismic and nonlinear analyses. This paper describes the various features which have been implemented into the Seismic Module of CARES version 1.0. In Section 2 a description of the Seismic Module is provided. The methodologies and computational procedures thus far implemented into the Seismic Module are described in Section 3. Finally, a complete demonstration of the computational capability of CARES in a typical soil-structure interaction analysis is given in Section 4 and conclusions are presented in Section 5. 5 refs., 4 figs

  10. Proceedings of the first international seminar on seismic base isolation for nuclear power facilities

    International Nuclear Information System (INIS)

    1989-01-01

    The First International Seminar on Seismic Base Isolation of Nuclear Power Facilities was organized by the authors of this paper. It was held in San Francisco, California, USA, on August 21--22, 1989, in conjunction with the tenth International Conference on Structural Mechanics in Reactor Technology (SMiRT-10). The purpose of the seminar was to provide an international forum for discussion on the application of base isolation to nuclear power plants and of its effectiveness in reducing seismic loads and permitting standard plant designs. It also provided an opportunity for technical interchange between base isolation system designers, structural engineers, and nuclear power plant engineers. Seismic isolation is certainly one of the most significant earthquake engineering developments in recent years. This was clearly demonstrated by the very large attendance at this seminar and the various papers presented. Isolation system act as filters that reduce the seismic forces and increase the ability of isolated structures and their contents to withstand the damaging effects of earthquake motions. Each individual paper has been cataloged separately

  11. Facilities and medical care for on-site nuclear power plant radiological emergencies

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    The operation of a nuclear power plant introduces risks of injury or accidents that could also result in the exposure of personnel to radiation or radioactive materials. It is important in such an event to have adequate first aid and medical facilities, supplies, equipment, transportation capabilities and trained personnel available to provide necessary care. This standard provides guidance for first aid during an emergency and for initial medical care of those overexposed to penetrating radiation or contaminated with radioactive material or radionuclides. Recommendations cover facilities, supplies, equipment and the extent of care on-site, where first aid and initial care may be provided, and off-site at a local hospital, where further medical and surgical care may be provided. Additional recommendations are also provided for the transportation of patients and the training of personnel. A brief discussion of specialized care is provided in an appendix

  12. Community attitudes toward a proposed nuclear power generating facility as a function of expected outcomes

    International Nuclear Information System (INIS)

    Sundstrom, E.; Lounsbury, J.W.; Schuller, C.R.; Fowler, J.R.; Mattingly, T.J. Jr.

    1977-01-01

    The relationship between attitudes toward a proposed nuclear power generating facility and the outcomes expected to accompany it are examined. In a survey of 350 residents of a small rural community, approximately 2/3 expressed favorable attitudes toward the proposed nuclear plant. A principal components factor analysis of the anticipated likelihoods of outcomes of the plant revealed five factors: hazards, economic growth, lower costs, social disruption, and community visibility. Using these factors as predictors, a simple multiple regression equation accounted for 52% of the variation in attitudes toward the plant. The strongest predictor was the perceived likelihood of hazards. These findings are discussed in terms of the relationship between attitudes and expectations, and in relation to decisions regarding public policy

  13. Conditioning and handling of tritiated wastes at Canadian nuclear power facilities

    International Nuclear Information System (INIS)

    Krochmalnek, L.S.; Krasznai, J.P.; Carney, M.

    1987-04-01

    Ontario Hydro operates a 10,000 MW capacity nuclear power system utilizing the CANDU pressurized heavy water reactor design. The use of D 2 O as moderator and coolant results in the production of about 2400 Ci of tritium per MWe-yr. As a result, there is significant Canadian experience in the treatment, handling, transport and storage of tritiated wastes. Ontario Hydro operates its own reactor waste storage site which includes systems for volume reduction, immobilization and packaging of wastes. In addition, a facility to remove tritium from heavy water is presently being commissioned at the Darlington nuclear site. This facility will generate tritiated liquid and solid waste that will have to be properly conditioned prior to storage or disposal. The nature of these various wastes and the processes/packaging required to meet storage/disposal criteria are judged to have relevance to investigations in fusion facility waste arisings. Experience to date, planned operational procedures and ongoing R and D in this area are described

  14. The International Remote Monitoring Project: Results of the Swedish Nuclear Power Facility field trial

    International Nuclear Information System (INIS)

    Johnson, C.S.; af Ekenstam, G.; Sallstrom, M.

    1995-01-01

    The Swedish Nuclear Power Inspectorate (SKI) and the US Department of Energy (DOE) sponsored work on a Remote Monitoring System (RMS) that was installed in August 1994 at the Barseback Works north of Malmo, Sweden. The RMS was designed to test the front end detection concept that would be used for unattended remote monitoring activities. Front end detection reduces the number of video images recorded and provides additional sensor verification of facility operations. The function of any safeguards Containment and Surveillance (C/S) system is to collect information which primarily is images that verify the operations at a nuclear facility. Barseback is ideal to test the concept of front end detection since most activities of safeguards interest is movement of spent fuel which occurs once a year. The RMS at Barseback uses a network of nodes to collect data from microwave motion detectors placed to detect the entrance and exit of spent fuel casks through a hatch. A video system using digital compression collects digital images and stores them on a hard drive and a digital optical disk. Data and images from the storage area are remotely monitored via telephone from Stockholm, Sweden and Albuquerque, NM, USA. These remote monitoring stations operated by SKI and SNL respectively, can retrieve data and images from the RMS computer at the Barseback Facility. The data and images are encrypted before transmission. This paper presents details of the RMS and test results of this approach to front end detection of safeguard activities

  15. Radioactivity measuring and control method and the system for facility of nuclear power plant

    International Nuclear Information System (INIS)

    Urata, Megumu.

    1996-01-01

    In measurement and control for radioactivity in an inspection operation in radiation circumstance for nuclear power plant facilities, radioactive materials in air are sometimes suspended together with ordinary dusts. Then, when a radiation level is low, light is applied to the suspended dusts to measure the quantity and the number of the dusts thereby estimating the radiation level based on the amount of the dusts. Then, the level of the equipments is informed to an operator based on the estimated value, and an operation time is determined. Since the optical dust monitor is inexpensive, a number of dust monitors can be brought into an operation chamber. In addition, they are reduced in the size and the weight, an operator can carry and bring them into the operation chamber. A distribution of dusts can be determined by measuring the concentration of dusts using a plurality of dust monitors thereby enabling to improve safety and economical property of periodical inspection for nuclear power plant facilities. (T.M.)

  16. Radioactivity measuring and control method and the system for facility of nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Urata, Megumu

    1996-12-03

    In measurement and control for radioactivity in an inspection operation in radiation circumstance for nuclear power plant facilities, radioactive materials in air are sometimes suspended together with ordinary dusts. Then, when a radiation level is low, light is applied to the suspended dusts to measure the quantity and the number of the dusts thereby estimating the radiation level based on the amount of the dusts. Then, the level of the equipments is informed to an operator based on the estimated value, and an operation time is determined. Since the optical dust monitor is inexpensive, a number of dust monitors can be brought into an operation chamber. In addition, they are reduced in the size and the weight, an operator can carry and bring them into the operation chamber. A distribution of dusts can be determined by measuring the concentration of dusts using a plurality of dust monitors thereby enabling to improve safety and economical property of periodical inspection for nuclear power plant facilities. (T.M.)

  17. Accidents and failures related to nuclear fuel facilities and nuclear power stations in fiscal 1982

    International Nuclear Information System (INIS)

    1983-01-01

    In the chemical preparation room of the reprocessing plant in the Tokai Establishment, Power Reactor and Nuclear Fuel Development Corp., the nasal contamination of small amount (3.6 pCi at maximum) was detected on two workers in June, 1982, but abnormality was not observed in the Lung-monitor of the workers themselves. There was not the effect to the surrounding environment. The failures reported by electric power companies to the Agency of Natural Resources and Energy in accordance with the laws related to atomic energy were 26 cases. The main causes were 5 cases due to improper design management, 2 cases due to improper manufacture management, 4 cases due to improper construction management, 11 cases due to improper maintenance management and 4 other cases. Among those 26 cases, 17 cases occurred in operation, and 9 cases occurred or were detected during shutdown such as regular inspection. Among the 17 cases, 7 cases were the automatic stop by reactor protection system, and 10 cases were the finding by regular in-operation inspection. Among the 9 cases, 5 cases were the breaking of steam generator tubes, 2 cases the breaking of bumper plates at feed heater entrance, and 2 cases other troubles. Moreover, there were 41 minor troubles. (Kako, I.)

  18. Current summary of international extreme load design requirements for nuclear power plant facilities

    International Nuclear Information System (INIS)

    Stevenson, J.D.

    1980-01-01

    The development of extreme load design criteria both as to rate and depth within any national jurisdiction as applied to nuclear power plant design is a function of several factors. The prime factor is the number of nuclear power plant facilities which are operating, under construction or planned in a given country. The second most important factor seems to be the degree of development of a domestic independent nuclear steam system supplier, NSSS vendor. Finally, countries whose domestic NSSS firms are active in the export market appear to have more active criteria development programs or at least they appear more visible to the foreign observer. For the purposes of this paper, extreme loads are defined as those loads having probability of occurence less than 10 -1 /yr and whose occurence could result in radiological consequences in excess of those permitted by national health standards. The specific loads considered include earthquake, extreme wind (tornado), airplane crash, detonation, and high energy system rupture. The paper identifies five national centers for extreme load criteria development; Canada, Great Britian, USA, USSR, and West Germany with both France and Japan also about to appear as independent centers of criteria development. Criteria under development by each national center are discussed in detail. (orig.)

  19. Dismantling of nuclear facilities

    International Nuclear Information System (INIS)

    Tallec, Michele; Kus, Jean-Pierre; Mogavero, Robert; Genelot, Gabriel

    2009-01-01

    Although the operational life of nuclear plants is long (around 60 years for French reactors) it is nonetheless limited in time, the stopping of it being essentially due to the obsolescence of materials and processes or to economic or safety considerations. The nuclear power plants are then subjected to cleanup and dismantling operations which have different objectives and require specific techniques. The cleanup and/or dismantling of a nuclear power produces significant quantities of waste which is generally of a different nature to that produced during the operation of the concerned plant. The radioactive waste produced by these operations is destined to be sent to the waste disposal facilities of the French National Agency for the Management of Nuclear Waste. (authors)

  20. Nuclear power

    International Nuclear Information System (INIS)

    Porter, Arthur.

    1980-01-01

    This chapter of the final report of the Royal Commission on Electric Power Planning in Ontario updates its interim report on nuclear power in Ontario (1978) in the light of the Three Mile Island accident and presents the commission's general conclusions and recommendations relating to nuclear power. The risks of nuclear power, reactor safety with special reference to Three Mile Island and incidents at the Bruce generating station, the environmental effects of uranium mining and milling, waste management, nuclear power economics, uranium supplies, socio-political issues, and the regulation of nuclear power are discussed. Specific recommendations are made concerning the organization and public control of Ontario Hydro, but the commission concluded that nuclear power is acceptable in Ontario as long as satisfactory progress is made in the disposal of uranium mill tailings and spent fuel wastes. (LL)

  1. Dictionary of nuclear power

    International Nuclear Information System (INIS)

    Koelzer, W.

    2012-04-01

    The actualized version (April 2012) of the dictionary on nuclear power includes all actualizations and new inputs since the last version of 2001. The original publication dates from 1980. The dictionary includes definitions, terms, measuring units and helpful information on the actual knowledge concerning nuclear power, nuclear facilities, and radiation protection.

  2. Nuclear power

    International Nuclear Information System (INIS)

    1987-01-01

    ''Nuclear Power'' describes how a reactor works and examines the different designs including Magnox, AGR, RBMK and PWR. It charts the growth of nuclear generation in the world and its contributions to world energy resources. (author)

  3. Nuclear power

    International Nuclear Information System (INIS)

    King, P.

    1990-01-01

    Written from the basis of neutrality, neither for nor against nuclear power this book considers whether there are special features of nuclear power which mean that its development should be either promoted or restrained by the State. The author makes it dear that there are no easy answers to the questions raised by the intervention of nuclear power but calls for openness in the nuclear decision making process. First, the need for energy is considered; most people agree that energy is the power to progress. Then the historicalzed background to the current position of nuclear power is given. Further chapters consider the fuel cycle, environmental impacts including carbon dioxide emission and the greenhouse effect, the costs, safety and risks and waste disposal. No conclusion either for or against nuclear power is made. The various shades of opinion are outlined and the arguments presented so that readers can come to their own conclusions. (UK)

  4. Dictionary of nuclear power

    International Nuclear Information System (INIS)

    Koelzer, W.

    2012-06-01

    The actualized version (June 2012) of the dictionary on nuclear power includes all actualizations and new inputs since the last version of 2001. The original publication dates from 1980. The dictionary includes definitions, terms, measuring units and helpful information on the actual knowledge concerning nuclear power, nuclear fuel cycle, nuclear facilities, radioactive waste management, nuclear physics, reactor physics, isotope production, biological radiation effects, and radiation protection.

  5. Facilities for the treatment of radioactively contaminated water in nuclear power plants

    International Nuclear Information System (INIS)

    1978-01-01

    The regulation is to be applied to design, construction and operation of facilities for the treatment of contaminated water in stationary nuclear power plants with LWR and HTR. The facilities are to be designed, constructed and operated in such manner that (a) imcontrolled discharge of contaminated water is avoided (Paragraph 46 section 1, no. 1 Radiation Protection Regulation) (b) the activity discharged with water is as low as possible ( paragraph 46, section 2, no. 2 Radiation Protection Regulation) (c)contaminated water will not get into the ground, unless this is permitted by a license (paragraph 46 section 6 Radiation Protection Regulation) (d) the radiation exposure resulting from direct radiation, contamination and inhalation of the personnel working with the facility is as low as possible and, at the most, corresponds to the values fixed in the regulation (paragraph 28 section 1 Radiation Protection Regulation) or the values given in the discharge permit. The regulation is not to be applied to installations for reactor coolant or fuel pit clean-up. (orig./HP) [de

  6. Nuclear power

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The committee concludes that the nature of the proliferation problem is such that even stopping nuclear power completely could not stop proliferation completely. Countries can acquire nuclear weapons by means independent of commercial nuclear power. It is reasonable to suppose if a country is strongly motivated to acquire nuclear weapons, it will have them by 2010, or soon thereafter, no matter how nuclear power is managed in the meantime. Unilateral and international diplomatic measures to reduce the motivations that lead to proliferation should be high on the foreign policy agenda of the United States. A mimimum antiproliferation prescription for the management of nuclear power is to try to raise the political barriers against proliferation through misuse of nuclear power by strengthening the Non-Proliferation Treaty, and to seek to raise the technological barriers by placing fuel-cycle operations involving weapons-usable material under international control. Any such measures should be considered tactics to slow the spread of nuclear weapons and thus earn time for the exercise of statesmanship. The committee concludes the following about technical factors that should be considered in formulating nuclear policy: (1) rate of growth of electricity use is a primary factor; (2) growth of conventional nuclear power will be limited by producibility of domestic uranium sources; (3) greater contribution of nuclear power beyond 400 GWe past the year 2000 can only be supported by advanced reactor systems; and (4) several different breeder reactors could serve in principle as candidates for an indefinitely sustainable source of energy

  7. Proceeding of 26th domestic symposium on present and future of integrity monitoring technology in nuclear power generation facilities

    International Nuclear Information System (INIS)

    2000-06-01

    As the 26th domestic symposium of Atomic Energy Research Committee, the Japan Welding Engineering Society, the symposium was held titled as 'Current status and future of integrity monitoring techniques in nuclear power facilities'. Six speakers gave lectures titled as 'Maintenance and integrity monitoring in nuclear power plants', 'Present status of fatigue and creep-fatigue monitoring techniques in the US', 'Fatigue monitoring system in Tsuruga-1 nuclear power station', 'Vibration monitoring technique of rotational machine', 'SCC monitoring with electrochemical noise analysis' and Monitoring technique for corrosive environments and crack shape'. (T. Tanaka)

  8. Integration of distributed plant process computer systems to nuclear power generation facilities

    International Nuclear Information System (INIS)

    Bogard, T.; Finlay, K.

    1996-01-01

    Many operating nuclear power generation facilities are replacing their plant process computer. Such replacement projects are driven by equipment obsolescence issues and associated objectives to improve plant operability, increase plant information access, improve man machine interface characteristics, and reduce operation and maintenance costs. This paper describes a few recently completed and on-going replacement projects with emphasis upon the application integrated distributed plant process computer systems. By presenting a few recent projects, the variations of distributed systems design show how various configurations can address needs for flexibility, open architecture, and integration of technological advancements in instrumentation and control technology. Architectural considerations for optimal integration of the plant process computer and plant process instrumentation ampersand control are evident from variations of design features

  9. Thermohydraulic investigations of nuclear power facilities (to the 60-th anniversary of the First NPP start)

    International Nuclear Information System (INIS)

    Rachkov, V.I.; Efanov, A.D.; Zhukov, A.V.; Kalyakin, S.G.; Sorokin, A.P.

    2014-01-01

    The investigations conducting in SSC RF - IPPE are aimed to develop theory and create calculational programs which allow to obtain the detailed description of coolant velocity fields and temperatures in any channels and equipment units of nuclear power facilities. Specially developed sensors for measuring various parameters are used in the experiments. Mathematical models and numerical methods are generalized for description and numerical solution of compressible fluids, multiphase and multifluid systems. The programs which allow to determine hydrodynamic and thermotechnical characteristics with account for melting, solidification, boiling processes are established. The obtained data is the base for creating the two-phase media flow theory. The study of the processes of impurity formation, transport and precipitation in liquid metal coolants has been allowed to develop the methods of impurity mass transfer simulation in circuits. For solving the fast reactor safety problem the series of investigations on liquid metals physics, boiling and condensation have been carried out [ru

  10. Aseismatic design and safety of nuclear power generation facilities. Research in Central Research Institute of Electric Power Industry

    International Nuclear Information System (INIS)

    1995-01-01

    In order to contribute to the aseismatic design of nuclear power generation facilities, this Research Institute has carried out the observation on the site of buildings in Matsushiro earthquake, the experiment on a large vibration table, the vibration experiment on actual buildings and so on, thus made clear the method of evaluating the dynamic model of buildings and foundation grounds. Also it cooperated in the determination of input earthquake motion which is important for aseismatic design by carrying out the evaluation of the activity of faults the observation of strong earthquakes, and the elucidation and evaluation of the characteristics of earthquake motion. It has made the standard for evaluating the fault activity and the stability in earthquakes of the foundation and surrounding grounds of power stations. The development of new underground location technology, the location on Quaternary grounds and the location on the sea, and the research on developing the aseismatic construction of FBRs are in progress. The survey and evaluation of fault activities, the evaluation of earthquake input, the limit state design of important outdoor structures, the new location technology for nuclear power stations, and the development of the buckling and base isolation design of FBRs are reported. (K.I.)

  11. Policies to deal with reactionary factors in the location of nuclear power facilities

    International Nuclear Information System (INIS)

    Lee, Yong Soo

    2000-01-01

    Energy is very important for daily life. But the prevailing fossil fuels are almost running out and moore over, the global warming caused by fossil fuel threatens all lives on the earth. Yet in reality, there are almost no choices to take the place fossil fuels beside nuclear energy. Nuclear energy is the only practical new energy resource that can be produced in Korea, which possesses nearly no energy resources and imports 98% do its energy supplies annually. Fortunately the rate of self-reliance of Korean nuclear technology is up to 95%, which is almost at top level in the world. However, many people think that nuclear energy is dangerous and uneconomical, thus social tension and dispute often a rises regarding nuclear energy, To minimize these discords, those in charge of the facility should provide an acceptable strategy to the publics, especially concerning the location of the facility. The strategy should include the followings: (1) The publics should participate in the planning stage of the nuclear facility, not only symbolically but also practically, and all information should be opened to publics so that cost-effectiveness and safety of the facility can be evaluated. (2) For the people who lose their land, home and work, an appropriate compensation should be considered from the planning stage. (3) The person in charge of the facility has to show that people in neighborhood of the facility enjoy better life than before and should help people to recognize it. (4) Continuous campaign enhancing public understanding of the need and safety for nuclear facility must be implemented. (5) South Korea's nuclear facilities could be set up in North Korea as the relationships between two Koreas improve. (author)

  12. Nuclear power

    International Nuclear Information System (INIS)

    Abd Khalik Wood

    2003-01-01

    This chapter discuss on nuclear power and its advantages. The concept of nucleus fission, fusion, electric generation are discussed in this chapter. Nuclear power has big potential to become alternative energy to substitute current conventional energy from coal, oil and gas

  13. Nuclear power

    International Nuclear Information System (INIS)

    Bupp, I.C.

    1991-01-01

    Is a nuclear power renaissance likely to occur in the United States? This paper investigates the many driving forces that will determine the answer to that question. This analysis reveals some frequently overlooked truths about the current state of nuclear technology: An examination of the issues also produces some noteworthy insights concerning government regulations and related technologies. Public opinion will play a major role in the unfolding story of the nuclear power renaissance. Some observers are betting that psychological, sociological, and political considerations will hod sway over public attitudes. Others wager that economic and technical concerns will prevail. The implications for the nuclear power renaissance are striking

  14. ARC: A compact, high-field, disassemblable fusion nuclear science facility and demonstration power plant

    Science.gov (United States)

    Sorbom, Brandon; Ball, Justin; Palmer, Timothy; Mangiarotti, Franco; Sierchio, Jennifer; Bonoli, Paul; Kasten, Cale; Sutherland, Derek; Barnard, Harold; Haakonsen, Christian; Goh, Jon; Sung, Choongki; Whyte, Dennis

    2014-10-01

    The Affordable, Robust, Compact (ARC) reactor conceptual design aims to reduce the size, cost, and complexity of a combined Fusion Nuclear Science Facility (FNSF) and demonstration fusion pilot power plant. ARC is a 270 MWe tokamak reactor with a major radius of 3.3 m, a minor radius of 1.1 m, and an on-axis magnetic field of 9.2 T. ARC has Rare Earth Barium Copper Oxide (REBCO) superconducting toroidal field coils with joints to allow disassembly, allowing for removal and replacement of the vacuum vessel as a single component. Inboard-launched current drive of 25 MW LHRF power and 13.6 MW ICRF power is used to provide a robust, steady state core plasma far from disruptive limits. ARC uses an all-liquid blanket, consisting of low pressure, slowly flowing Fluorine Lithium Beryllium (FLiBe) molten salt. The liquid blanket acts as a working fluid, coolant, and tritium breeder, and minimizes the solid material that can become activated. The large temperature range over which FLiBe is liquid permits blanket operation at 800-900 K with single phase fluid cooling and allows use of a high-efficiency Brayton cycle for electricity production in the secondary coolant loop.

  15. Childhood leukemia around nuclear facilities

    International Nuclear Information System (INIS)

    1991-01-01

    This Information Bulletin highlights the conclusion made from an Atomic Energy Control Board of Canada (AECB) study on the incidence of childhood leukemia near nuclear facilities. All of the locations with the nuclear facilities are located in Ontario, the nuclear generating stations at Pickering and Bruce; the uranium mines and mills in Elliot Lake; the uranium refining facility in Port Hope; and nuclear research facilities located at Chalk River plus the small nuclear power plant in Rolphton. Two conclusions are drawn from the study: 1) while the rate of childhood leukemias made be higher or lower than the provincial average, there is no statistical evidence that the difference is due to anything but the natural variation in the occurrence of the disease; and 2) the rate of occurrence of childhood leukemia around the Pickering nuclear power station was slightly greater than the Ontario average both before and after the plant opened, but this, too , could be due to the natural variation

  16. Radiological characterization of the TAN-IET facility

    Energy Technology Data Exchange (ETDEWEB)

    Koeppen, L.D.; Rodriguez, S.V.; Wheeler, O.A.; Cadwell, E.D.; Simpson, O.D.

    1982-06-01

    The Initial Engine Test (IET) facility is located on the Idaho National Engineering Laboratory (INEL) site at the north end of Test Area North (TAN). The IET facility was constructed and used for the Aircraft Nuclear Propulsion Program during the 1950's and was later used for two other programs: the Space Nuclear Auxiliary Power Transient (SNAP-TRAN) and the Hallam Decontamination and Decommissioning Project. The facility is no longer in use, therefore, a complete radiological characterization was conducted at the IET site. The characterization included measurements of beta-gamma dose rates; beta-gamma and alpha surface contamination; concentrations of selected radionuclides in subsurface storage tanks, surface soil, the exhaust duct, stack and test pad; and a walk-over surface survey of the entire facility. The information contained in this report will be of great value as the IET facility goes through the decommissioning and decontamination process.

  17. Characteristics of SUS-MI cables and it's application to wiring in nuclear power facilities

    International Nuclear Information System (INIS)

    Okuno, Michio; Sato, Toshio; Handa, Katsue; Ohya, Shingo; Ioroi, Masaya

    1984-01-01

    SUS-MI cables are the inorganic insulation cables using austenitic stainless steel SUS 321 as the sheath, oxygen-free copper as the conductor and high purity magnesium oxide as the insulatingmaterial. Because of the excellent characteristics of the composing materials, the properties withstanding radiation, fire and heat, and sodium of the cables are superior. In the nuclear power facilities being developed such as fast breeder reactors and nuclear fusion reactors, there is the environment the cables with organic materials as the components cannot meet. As the cables to be applied to such places, the SUS-MI cables are most suitable. In this report, the electric properties and the mechanical strength of the cables and the examples of practical use are described. The highest temperature of using the SUS-MI cables is 800 deg C. The form and the composing materials of the SUS-MI cables, the characteristics and the cable laying are reported. Ceramic connectors and heat-resistant wall penetration parts were developed. The characteristics of the cables for the preheaters of fast breeder reactors are compared. (Kako, I.)

  18. International inventory of training facilities in nuclear power and its fuel cycle 1978

    International Nuclear Information System (INIS)

    1979-01-01

    The revised inventory is arranged according to the following subject areas: nuclear power plant (NPP) engineering, nuclear safety, quality assurance, NPP operation and maintenance, NPP instrumentation and control, nuclear fuel management, nuclear materials control. Training in each subject area is classified into five groups depending on the type of organization offering the training courses. Each course is briefly described by its name or purpose, institution and location, duration, frequency, language, and content

  19. Security culture for nuclear facilities

    Science.gov (United States)

    Gupta, Deeksha; Bajramovic, Edita

    2017-01-01

    Natural radioactive elements are part of our environment and radioactivity is a natural phenomenon. There are numerous beneficial applications of radioactive elements (radioisotopes) and radiation, starting from power generation to usages in medical, industrial and agriculture applications. But the risk of radiation exposure is always attached to operational workers, the public and the environment. Hence, this risk has to be assessed and controlled. The main goal of safety and security measures is to protect human life, health, and the environment. Currently, nuclear security considerations became essential along with nuclear safety as nuclear facilities are facing rapidly increase in cybersecurity risks. Therefore, prevention and adequate protection of nuclear facilities from cyberattacks is the major task. Historically, nuclear safety is well defined by IAEA guidelines while nuclear security is just gradually being addressed by some new guidance, especially the IAEA Nuclear Security Series (NSS), IEC 62645 and some national regulations. At the overall level, IAEA NSS 7 describes nuclear security as deterrence and detection of, and response to, theft, sabotage, unauthorized access, illegal transfer or other malicious acts involving nuclear, other radioactive substances and their associated facilities. Nuclear security should be included throughout nuclear facilities. Proper implementation of a nuclear security culture leads to staff vigilance and a high level of security posture. Nuclear security also depends on policy makers, regulators, managers, individual employees and members of public. Therefore, proper education and security awareness are essential in keeping nuclear facilities safe and secure.

  20. Earthquake engineering for nuclear facilities

    CERN Document Server

    Kuno, Michiya

    2017-01-01

    This book is a comprehensive compilation of earthquake- and tsunami-related technologies and knowledge for the design and construction of nuclear facilities. As such, it covers a wide range of fields including civil engineering, architecture, geotechnical engineering, mechanical engineering, and nuclear engineering, for the development of new technologies providing greater resistance against earthquakes and tsunamis. It is crucial both for students of nuclear energy courses and for young engineers in nuclear power generation industries to understand the basics and principles of earthquake- and tsunami-resistant design of nuclear facilities. In Part I, "Seismic Design of Nuclear Power Plants", the design of nuclear power plants to withstand earthquakes and tsunamis is explained, focusing on buildings, equipment's, and civil engineering structures. In Part II, "Basics of Earthquake Engineering", fundamental knowledge of earthquakes and tsunamis as well as the dynamic response of structures and foundation ground...

  1. Alteration in reactor installations (Unit 1 and 2 reactor facilities) in the Hamaoka Nuclear Power Station of The Chubu Electric Power Co., Inc. (report)

    International Nuclear Information System (INIS)

    1982-01-01

    A report by the Nuclear Safety Commission to the Ministry of International Trade and Industry concerning the alteration in Unit 1 and 2 reactor facilities in the Hamaoka Nuclear Power Station, Chubu Electric Power Co., Inc., was presented. The technical capabilities for the alteration of reactor facilities in Chubu Electric Power Co., Inc., were confirmed to be adequate. The safety of the reactor facilities after the alteration was confirmed to be adequate. The items of examination made for the confirmation of the safety are as follows: reactor core design (nuclear design, mechanical design, mixed reactor core), the analysis of abnormal transients in operation, the analysis of various accidents, the analysis of credible accidents for site evaluation. (Mori, K.)

  2. Design and development of microcontroller based programmable ramp generator for AC-DC converter for simulating decay power transient in experimental facility for nuclear power plants

    International Nuclear Information System (INIS)

    Srivastava, Gaurava Deep; Kulkarni, R.D.

    2015-01-01

    In nuclear power plants, fuel is subjected to a wide range of power and temperature transients during normal and abnormal conditions. The reactor setback and step-back power pattern, fast temperature profile occurred during Loss of Coolant Accident and decay power followed by shutdown of power plant are the typical transients in nuclear power plant. For a variety of reactor engineering and reactor safety related study, one needs to simulate these transients in experimental facility. In experimental facilities, high response AC-DC converters are used to handle these power and temperature transients safely in a controlled manner for generating a database which is utilized for design of thermal hydraulic system, development of computer codes, study of reliability of reactor safety system, etc. for nuclear power plants. The paper presents the methodology developed for simulating the typical reactor decay power transient in an experimental facility. The design and simulation of AC-DC power electronic converter of 3 MW capacity is also presented. The microcontroller based programmable ramp generator is designed and hardware implemented for feeding reference voltage to the closed loop control system of AC-DC converter for obtaining the decay power profile at the converter output. The typical decay power transient of the nuclear power plant is divided into several small power ramps for simulating the transient. The signal corresponding to each power ramp is generated by programmable ramp generator and fed to the comparator for generating control signal for the converter. The actual decay power transient obtained from the converter is compared with the theoretical decay power transient. (author)

  3. Occupational radiation exposure at commercial nuclear power reactors and other facilities, 1990: Twenty-third annual report

    International Nuclear Information System (INIS)

    Raddatz, C.T.

    1993-01-01

    This report summarizes the occupational radiation exposure information that has been reported to the NRC's Radiation Exposure Information Reporting System (REIRS) by nuclear power facilities and certain other categories of NRC licensees during the years 1969 through 1990. The bulk of the data presented in the report was obtained from annual radiation exposure reports submitted in accordance with the requirements of 10 CFR 20.407 and the technical specifications of nuclear power plants. Data on workers terminating their employment at certain NRC licensed facilities were obtained from reports submitted pursuant to 10 CFR 20.408. The 1990 annual reports submitted by about 443 licensees indicated that approximately 214,568 individuals were monitored, 110,204 of whom were monitored by nuclear power facilities. They incurred an average individual dose of 0.19 rem (cSv) and an average measurable dose of about 0.36 (cSv). Termination radiation exposure reports were analyzed to reveal that about 113,361 individuals completed their employment with one or more of the 443 covered licensees during 1990. Some 77,633 of these individuals terminated from power reactor facilities, and about 11,083 of them were considered to be transient workers who received an average dose of 0.67 rem (cSv)

  4. Occupational radiation exposure at commercial nuclear power reactors and other facilities 1992. Twenty-fifth annual report, Volume 14

    International Nuclear Information System (INIS)

    Raddatz, C.T.

    1993-12-01

    This report summarizes the occupational radiation exposure information that has been reported to the NRC's Radiation Exposure Information Reporting System (REIRS) by nuclear power facilities and certain other categories of NRC licensees during the years 1969 through 1992. The bulk of the data presented in the report was obtained from annual radiation exposure reports submitted in accordance with the requirements of 10CFR20.407 and the technical specifications of nuclear power plants. Data on workers terminating their employment at certain NRC licensed facilities were obtained from reports submitted pursuant to 10CFR20.408. The 1992 annual reports submitted by about 364 licensees indicated that approximately 204,365 individuals were monitored, 183,927 of whom were monitored by nuclear power facilities. They incurred an average individual dose of 0.16 rem (cSv) and an average measurable dose of about 0.30 (cSv). Termination radiation exposure reports were analyzed to reveal that about 74,566 individuals completed their employment with one or more of the 364 covered licensees during 1992. Some 71,846 of these individuals terminated from power reactor facilities, and about 9,724 of them were considered to be transient workers who received an average dose of 0.50 rem (cSv)

  5. Occupational radiation exposure at commercial nuclear power reactors and other facilities, 1993. Volume 15, Twenty-six annual report

    International Nuclear Information System (INIS)

    Raddatz, C.T.

    1995-01-01

    This report the occupational radiation exposure information that has been reported to the NRC's Radiation Exposure Information Reporting System (REIRS) by nuclear power facilities and certain other categories of NRC licensees during the years 1969 through 1993. The bulk of the data presented in the report was obtained from annual radiation exposure reports submitted in accordance with the requirements of 10 CFR 20.407 and the technical specifications of nuclear power plants. Data on workers terminating their employment at certain NRC licensed facilities were obtained from reports submitted pursuant to 10 CFR 20.408. The 1993 annual reports submitted by about 360 licensees indicated that approximately 189,711 individuals were monitored, 169,872 of whom were monitored by nuclear power facilities. They incurred an average individual dose of 0.16 rem (cSv) and an average measured dose of about 0.31 (cSv). Termination radiation exposure reports were analyzed to reveal that about 99,749 individuals completed their employment with one or more of the 360 covered licensees during 1993. Some 91,000 of these individuals terminated from power reactor facilities, and about 12,685 of them were considered to be transient workers who received an average dose of 0.49 rem (cSv)

  6. Nuclear proliferation and civilian nuclear power. Report of the Nonproliferation Alternative Systems Assessment Program. Volume III. Resources and fuel cycle facilities

    International Nuclear Information System (INIS)

    1980-06-01

    The ability of uranium supply and the rest of the nuclear fuel cycle to meet the demand for nuclear power is an important consideration in future domestic and international planning. Accordingly, the purpose of this assessment is to evaluate the adequacy of potential supply for various nuclear resources and fuel cycle facilities in the United States and in the world outside centrally planned economy areas (WOCA). Although major emphasis was placed on uranium supply and demand, material resources (thorium and heavy water) and facility resources (separative work, spent fuel storage, and reprocessing) were also considered

  7. The reality of nuclear power

    International Nuclear Information System (INIS)

    Murphy, D.

    1979-01-01

    The following matters are discussed in relation to the nuclear power programmes in USA and elsewhere: siting of nuclear power plants in relation to a major geological fault; public attitudes to nuclear power; plutonium, radioactive wastes and transfrontier contamination; radiation and other hazards; economics of nuclear power; uranium supply; fast breeder reactors; insurance of nuclear facilities; diversion of nuclear materials and weapons proliferation; possibility of manufacture of nuclear weapons by developing countries; possibility of accidents on nuclear power plants in developing countries; radiation hazards from use of uranium ore tailings; sociological alternative to use of nuclear power. (U.K.)

  8. Socioeconomic impacts of nuclear power plants: a paired comparison of operating facilities

    International Nuclear Information System (INIS)

    Shields, M.A.; Cowan, J.T.; Bjornstad, D.J.

    1979-07-01

    This study compares the social, economic, and political effects of constructing and operating two nuclear power plants in the rural Southeast: Brunswick 1 and 2 in Brunswick County, North Carolina, and Hatch 1 and 2 in Appling County, Georgia. It is a comparative, post-licensing case study designed to analyze variations in the range and magnitude of impacts experienced by the areas in which the plants were constructed. The study is intended to assist the Nuclear Regulatory Commission in the preparation of socioeconomic impact sections of environmental impact statements for proposed nuclear power stations

  9. Evolution of Technology Laser Scanner. Implications for use in Nuclear Power and Radioactive Facilities

    International Nuclear Information System (INIS)

    Sarti Fernandez, F.; Bonet, J.

    2012-01-01

    The main technical factors affecting these teams their actual implementation in nuclear power plants will be analyzed: data acquisition speed, sensitivity, laser power, autonomy, contamination of equipment, radiation effect, etc. In conclusion, the real difference is displayed in the data collection in function of various technologies, embodied in field time, and costs.

  10. Report of third regular inspection of Tokai reprocessing facilities, Power Reactor and Nuclear Fuel Development Corp

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    The reprocessing facilities passed the inspection before use on December 25, 1980, and started the full operation. Since then, this is the third regular inspection. It was begun on April 1, 1986, and finished on August 18, 1986, with the inspection of the rate of recovery of products. The reprocessing facilities which became the object of inspection were the facilities for accepting and storing spent fuel, the reprocessing facilities proper (the facilities of shearing, dissolution, separation, refining, denitration and recovery of acid and solvent), the facilities for storing products, measurement and control system, radioactive waste facilities, radiation control facilities and attached facilities (power, water, steam and testing). The main works carried out during the period of this regular inspection were the repair of an enriched uranium dissolution tank by welding, the renewal of a piping for a low activity waste liquid storing tank, and the removal of a washing tank. The total exposure dose in the first half of fiscal year 1986 was about 30.81 man-rem. (Kako, I.)

  11. The state of improvement of security management setup in the Japan Atomic Power Company and improvement of facilities in its Tsuruga Nuclear Power Station

    International Nuclear Information System (INIS)

    1982-01-01

    In connection with the series of accidents in the Tsuruga Nuclear Power Station of the Japan Atomic Power Company, the state of security management in JAPC and the safety of facilities in the Tsuruga Nuclear Power Station, which have resulted from improvement efforts, are described on the following items: security management setup - communication and reporting in emergency, the management of inspection and maintenance records, work control and supervision in repair, improvement, etc., functional authority and responsibility in maintenance management, operation management, radiation control, personnel education; improvement of facilities - feed water heaters, laundry waste-water filter room, radioactive waste treatment facility, general drainage, concentrated waste liquid storage tanks in newly-built waste treatment building, etc. (Mori, K.)

  12. Environmental risks of power generation from fossil fuels and nuclear facilities

    International Nuclear Information System (INIS)

    Probert, D.; Tarrant, C.

    1989-01-01

    The nuclear power industry, when considered via statistical arguments, is far less dangerous than the average 'man in the street' in the UK perceives it to be. To support this assertion, an elementary analysis of the risk factors associated with commonplace hazards (e.g. road accidents and smoking) is presented. The radiological risks resulting from the Chernobyl nuclear power station accident, even in the most badly affected areas of the UK and at the times of highest intensity, were much less than those due to natural background radiation. Radioactive elements occur naturally in coal and are released as a result of combustion into the UK environment via flue gases and ash in significantly greater amounts than those from nuclear power stations. (author)

  13. Environmental safety aspects of the new solid radioactive waste management and storage facility at the Ignalina Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Ragaisis, Valdas; Poskas, Povilas; Simonis, Vytautas; Adomaitis, Jonas Erdvilas [Lithuanian Energy Institute, Kaunas (Lithuania). Nuclear Engineering Lab.

    2011-11-15

    New solid radioactive waste management and interim storage facilities will be constructed for the Ignalina Nuclear Power Plant to support ongoing decommissioning activities, including removal and treatment of operational waste from the existing storage buildings. The paper presents approach and methods that have been used to assess radiological impacts to the general public potentially arising under normal operation and accident conditions and to demonstrate compliance with regulations in force. The assessment of impacts from normal operation includes evaluation of exposure arising from release of airborne radioactive material and from facilities and packages containing radioactive material. In addition, radiological impacts from other nearby operating and planned nuclear facilities are taken into consideration. The assessment of impacts under accident conditions includes evaluation of exposure arising from the selected design and beyond design basis accidents. (orig.)

  14. Nuclear power-related facilities and neighboring land price: a case study on the Mutsu-Ogawara region, Japan.

    Science.gov (United States)

    Yamane, Fumihiro; Ohgaki, Hideaki; Asano, Kota

    2011-12-01

    From the perspective of risk, nuclear-power-related facilities (NPRFs) are often regarded as locally undesirable land use. However, construction of NPRFs contributes to social infrastructural improvement and job creation in the host communities. This raises a question: How large are these positive and negative effects? To approach this question from an economic viewpoint, we estimated the hedonic land price function for the Mutsu-Ogawara region of Japan from 1976 to 2004 and analyzed year-by-year fluctuations in land prices around the NPRFs located there. Land prices increased gradually in the neighborhood of the nuclear fuel cycle facilities (NFCFs) in Rokkasho Village, except for some falling (i) from 1982 to 1983 (the first official announcement of the project of construction came in 1983), (ii) from 1987 to 1988 (in 1988, the construction began and opposition movements against the project reached their peak), and (iii) from 1998 to 1999 (the pilot carry-in of spent fuels into the reprocessing plant began in 1998). Land prices around the Higashidori Nuclear Power Plant decreased during the period 1981-1982, when the Tohoku Electric Power Corp. and Tokyo Electric Power Corp. announced their joint construction plan. On the other hand, we obtained some results, even though not significant, indicating that land prices around Ohminato and Sekinehama harbors changed with the arrival and departure of the nuclear ship Mutsu, which suffered a radiation leak in 1974. © 2011 Society for Risk Analysis.

  15. Change in plan for installation of nuclear reactor in Genkai Nuclear Power Plant of Kyushu Electric Power Co., Inc. (change in plan for No.3 and No.4 nuclear reactor facilities) (report)

    International Nuclear Information System (INIS)

    1987-01-01

    This report, compiled by the Nuclear Safety Commission to be submitted to the Minister of International Trade and Industry, deals with studies on a proposed change in the plan for the installation of nuclear reactors in the Genkai Nuclear Power Plant of Kyushu Electric Power Co., Inc. (change in the plan for the No.3 and No.4 nuclear reactor facilities). The conclusions of and principles for the examination and evaluation are described first. The studies carried out are focused on the safety of the facilities, and it is concluded that part of the proposed change is appropriate with respect to the required technical capability and that part of the change will not have adverse effects on the safety design of the facilities. The examination of the safety design of the reactor facilities cover the reactivity control, new material for the steam generator, design of chemical and volume control systems, design of liquid waste treatment facilities, integration of all confinement vessel spray rings, and design of the diesel power generator. It is confirmed that all of them can meet the safety requirements. Studies and analyses are also made of the emission of radiations to the surrounding environment, abnormal transient changes during operations, and possible accidents. (Nogami, K.)

  16. The Texts of the Instruments Concerning the Agency's Assistance to Mexico in Establishing a Nuclear Power Facility

    International Nuclear Information System (INIS)

    1974-01-01

    The texts of the Supply Agreement between the Agency and the Governments of Mexico and the United States of America, and of the Project Agreement between the Agency and the Government of Mexico concerning the Agency's assistance to that Government in establishing a nuclear power facility, are reproduced herein for the information of all Members. The Agreements entered into force on 12 February 1974, pursuant to Articles VIII and IX respectively.

  17. The Texts of the Instruments Concerning the Agency's Assistance to Mexico in Establishing a Nuclear Power Facility

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1974-04-05

    The texts of the Supply Agreement between the Agency and the Governments of Mexico and the United States of America, and of the Project Agreement between the Agency and the Government of Mexico concerning the Agency's assistance to that Government in establishing a nuclear power facility, are reproduced herein for the information of all Members. The Agreements entered into force on 12 February 1974, pursuant to Articles VIII and IX respectively.

  18. Summary of international extreme load design requirements for nuclear power plant facilities

    International Nuclear Information System (INIS)

    Stevenson, J.D.

    1978-01-01

    An attempt is made to trace the development of extreme load criteria as it applies to earthquakes, extreme wind, high energy system rupture (LOCA), floods and other manmade and natural external hazards, from 1965 until the present, in the leading nuclear power nations throughout the world. (Author)

  19. Nuclear power in Korea

    International Nuclear Information System (INIS)

    Rim, C.S.

    1990-01-01

    Before addressing the issue of public and utility acceptance of nuclear power in Korea, let me briefly explain the Korean nuclear power program and development plan for a passively safe nuclear power plant in Korea. At present, there are eight PWRs and one CANDU in operation; two PWRs are under construction, and contract negotiations are underway for one more CANDU and two more PWRs, which are scheduled to be completed by 1997,1998 and 1999, respectively. According to a recent forecast for electricity demand in Korea, about fifty additional nuclear power plants with a generating capacity of 1000MWe are required by the year 2030. Until around 2006, Korean standardized nuclear power plants with evolutionary features such as those in the ALWR program are to be built, and a new type of nuclear power plant with passive safety features is expected to be constructed after 2006. The Korean government is making a serious effort to increase public understanding of the safety of nuclear power plants and radioactive waste storage and disposal. In addition, the Korean government has recently introduced a program of benefits for residents near nuclear power plants. By this program, common facilities such as community centers and new roads are constructed, and scholarships are given to the local students. Nuclear power is accepted positively by the utility and reasonably well by the public in Korea

  20. Nuclear power in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Rim, C S [Radioactive Waste Management Centre, Korea Atomic Energy Research Institute, Taejon, Choong-Nam (Korea, Republic of)

    1990-07-01

    Before addressing the issue of public and utility acceptance of nuclear power in Korea, let me briefly explain the Korean nuclear power program and development plan for a passively safe nuclear power plant in Korea. At present, there are eight PWRs and one CANDU in operation; two PWRs are under construction, and contract negotiations are underway for one more CANDU and two more PWRs, which are scheduled to be completed by 1997,1998 and 1999, respectively. According to a recent forecast for electricity demand in Korea, about fifty additional nuclear power plants with a generating capacity of 1000MWe are required by the year 2030. Until around 2006, Korean standardized nuclear power plants with evolutionary features such as those in the ALWR program are to be built, and a new type of nuclear power plant with passive safety features is expected to be constructed after 2006. The Korean government is making a serious effort to increase public understanding of the safety of nuclear power plants and radioactive waste storage and disposal. In addition, the Korean government has recently introduced a program of benefits for residents near nuclear power plants. By this program, common facilities such as community centers and new roads are constructed, and scholarships are given to the local students. Nuclear power is accepted positively by the utility and reasonably well by the public in Korea.

  1. Nuclear power in Europe

    International Nuclear Information System (INIS)

    Perera, J.

    2000-01-01

    Currently nuclear power accounts for more than 25% of total electricity production in Europe (including Eastern Europe and the former Soviet Union) However, significant new construction is planned in Central and Eastern Europe only, apart from some in France and, possibly in Finland. Many countries in Western Europe have put nuclear construction plans on hold and several have cancelled their nuclear programs. This report looks at the history of nuclear power and its current status in both Eastern and Western Europe. It provides an outline of nuclear fuel cycle facilities, from uranium procurement to final waste disposal. Economic and environmental issues are discussed, as well as the prospect of increased East-West trade and cooperation in the new poso-cold war world. Detailed profiles are provided of all the countries in Western Europe with significant nuclear power programs, as well as profiles of major energy and nuclear companies

  2. Early site reviews for nuclear power facilities: procedures and possible technical review options. Draft

    International Nuclear Information System (INIS)

    1978-02-01

    The document provides guidance for utility companies, State and other governmental agencies, and others who may request or may wish to participate in an early review of site suitability issues related to a site proposed for a nuclear power or test reactor. Although the emphasis of this document is on a nuclear electric generating station, the guidance provided can be used for a test reactor or other kinds of reactors. The procedures to be followed by applicants for construction permits and by others are described and the possible significant areas of technical review are delineated

  3. A personal computer code for seismic evaluations of nuclear power plants facilities

    International Nuclear Information System (INIS)

    Xu, J.; Philippacopoulos, A.J.; Graves, H.

    1990-01-01

    The program CARES (Computer Analysis for Rapid Evaluation of Structures) is an integrated computational system being developed by Brookhaven National Laboratory (BNL) for the U.S. Nuclear Regulatory Commission. It is specifically designed to be a personal computer (PC) operated package which may be used to determine the validity and accuracy of analysis methodologies used for structural safety evaluations of nuclear power plants. CARES is structured in a modular format. Each module performs a specific type of analysis i.e., static or dynamic, linear or nonlinear, etc. This paper describes the various features which have been implemented into the Seismic Module of CARES

  4. Nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Hodgson, P.

    1985-01-01

    The question 'Do we really need nuclear power' is tackled within the context of Christian beliefs. First, an estimate is made of the energy requirements in the future and whether it can be got in conventional ways. The dangers of all the ways of supplying energy (eg coal mining, oil and gas production) are considered scientifically. Also the cost of each source and its environmental effects are debated. The consequences of developing a new energy source, as well as the consequences of not developing it, are considered. Decisions must also take into account a belief about the ultimate purpose of life, the relation of men to each other and to nature. Each issue is raised and questions for discussion are posed. On the whole the book comes down in favour of nuclear power.

  5. Nuclear physics accelerator facilities

    International Nuclear Information System (INIS)

    1988-12-01

    This paper describes many of the nuclear physics heavy-ion accelerator facilities in the US and the research programs being conducted. The accelerators described are: Argonne National Laboratory--ATLAS; Brookhaven National Laboratory--Tandem/AGS Heavy Ion Facility; Brookhaven National Laboratory--Relativistic Heavy Ion Collider (RHIC) (Proposed); Continuous Electron Beam Accelerator Facility; Lawrence Berkeley Laboratory--Bevalac; Lawrence Berkeley Laboratory--88-Inch Cyclotron; Los Alamos National Laboratory--Clinton P. Anderson Meson Physics Facility (LAMPF); Massachusetts Institute of Technology--Bates Linear Accelerator Center; Oak Ridge National Laboratory--Holifield Heavy Ion Research Facility; Oak Ridge National Laboratory--Oak Ridge Electron Linear Accelerator; Stanford Linear Accelerator Center--Nuclear Physics Injector; Texas AandM University--Texas AandM Cyclotron; Triangle Universities Nuclear Laboratory (TUNL); University of Washington--Tandem/Superconducting Booster; and Yale University--Tandem Van de Graaff

  6. Revision of 'JASS 5N reinforced concrete work for nuclear power facilities'

    International Nuclear Information System (INIS)

    Masuda, Yoshihiro; Kitagawa, Takashi

    2013-01-01

    'JASS 5N, Reinforced Concrete Work at Nuclear Power Plants,' is part of the 'Japanese Architectural Standard Specification and Its Interpretation' established by the Architectural Institute of Japan. It is the stipulation to establish the standards for the implementation of reinforced concrete work and quality control for the major buildings of nuclear power plants, and to ensure the safety related to the construction work. The original specification was established in 1985, and its third revised edition was published in February 2013. This 2013 edition is composed of 15 sections and four items of appendices. This paper introduces the major revisions of each section, and explains the newly added section 'Section 14: Small-scale Reinforced Concrete Work.' In addition, this paper describes the newly added 'Appendix: Quality Standards for Heavy Mortal (tentative draft),' and the minor change that part of the appendix related to reinforced concrete was taken into the interpretation of 'Section 10: Reinforced Concrete Work.' (O.A.)

  7. Dynamic interaction of components, structure, and foundation of nuclear power facilities

    International Nuclear Information System (INIS)

    Pajuhesh, J.; Hadjian, A.H.

    1977-01-01

    A solution is formulated for the dynamic analysis of structures and components with different stiffness and damping characteristics, including the consideration of soil-structure interaction effects. Composite structures are often analysed approximately, in particular with regards to damping. For example, the reactor and other equipment in nuclear power plant structures are often analysed by assuming them uncoupled from the supporting structures. To achieve a better accuracy, the coupled system is hereby analysed as a composite component-structure-soil system. To demonstrate the assembly technique, two examples are considered: (a) a steel structure sitting on a concrete stem and linked by a steel bridge to another concrete structure, and (b) an actual model of a nuclear power plant containment structure. (Auth.)

  8. Data support system for controlling decentralised nuclear power industry facilities through uninterruptible condition monitoring

    Directory of Open Access Journals (Sweden)

    Povarov Vladimir

    2018-01-01

    Full Text Available The article describes the automated uninterruptible multi-parameter system for monitoring operational vulnerability of critical NPP components, which differs from existing ones by being universally applicable for analysing mechanical damage of nuclear power unit components. The system allows for performing routine assessment of metal structures. The assessment of strained condition of a deteriorating component is based on three-dimensional finite element simulation with calculations adjusted with reference to in-situ measurements. A program for calculation and experimental analysis of maximum load and durability of critical area forms the core of uninterruptible monitoring system. The knowledge base on performance of the monitored components in different operating conditions and the corresponding comprehensive analysis of strained condition and deterioration rates compose the basis of control system data support, both for operating nuclear power units and robotic maintenance and repair systems.

  9. Introduction to structural and mechanical failure modes for nuclear power facilities

    International Nuclear Information System (INIS)

    Reed, J.W.

    1991-01-01

    The three papers presented in this section discuss the types of information (i.e., dynamic tests, earthquake experience and analytical data) which are used in predicting the capacity of structures and equipment in nuclear power plants to resist earthquakes. The background and motivation for discussing these three types of information is presented in this paper as an introduction to the papers which follow in this section

  10. Disaster countermeasures around nuclear facilities

    International Nuclear Information System (INIS)

    Tatsuta, Yoshinori

    1982-01-01

    The following matters are described. Safety regulation administration for nuclear power plants; nuclear disaster countermeasures in the United States; disaster countermeasures around nuclear facilities (a report of the ad hoc committee in Nuclear Safety Commission), including general requirements, the scope of areas to take the countermeasures, emergency environmental monitoring, guidelines for taking the countermeasures, and emergency medical treatment. In the nuclear safety administration, the system of stationing safety expert personnel on the sites of nuclear power generation and qualifying the persons in charge of reactor operation in the control room is also introduced. As for the disaster countermeasures, such as the detection of an abnormal state, the notification of the abnormality to various organs concerned, the starting of emergency environmental monitoring, the establishment of the countermeasure headquarters, and emergency measures for the local people. (Mori, K.)

  11. Design and construction of solidification and dewatering facility at Alabama Power Company's Farley Nuclear Plant

    International Nuclear Information System (INIS)

    Farnsworth, P.

    1988-01-01

    The approximate total cost of the structure and supporting piping systems is estimated to be 4.1 million dollars. Total dose savings per year could be as high as 70 man Rem for resin processing alone. The ability to store refueling equipment, process contaminated oils, load and unload trucks and containers regardless of weather conditions and support repair work on equipment greatly enhances the cost effectiveness of the project. It will take at least one year of operation of the facility to accurately assess the true cost savings to Alabama Power Company. The morale factor for the Waste and Decon Group has escalated measurably due to the dose reduction to our personnel. Plant and company management are well pleased due to the possibility of a spill or release to the environment has been eliminated which was on intangible cost. Facility construction has been completed as of this date and resin transfer anticipated within the next few days. Some of the problems encountered in planning and constructing this solidification and dewatering facility are presented. A safety evaluation for the facility is included in the appendix

  12. Nuclear fuel treatment facility for 'Mutsu'

    International Nuclear Information System (INIS)

    Kanazawa, Toshio; Fujimura, Kazuo; Horiguchi, Eiji; Kobayashi, Tetsuji; Tamekiyo, Yoshizou

    1989-01-01

    A new fixed mooring harbor in Sekinehama and surrounding land facilities to accommodate a test voyage for the nuclear-powered ship 'Mutsu' in 1990 were constructed by the Japan Atomic Energy Research Institute. Kobe Steel took part in the construction of the nuclear fuel treatment process in various facilities, beginning in October, 1988. This report describes the outline of the facility. (author)

  13. Nuclear facilities licensing

    International Nuclear Information System (INIS)

    Carvalho, A.J.M. de.

    1978-01-01

    The need for the adoption of a legal and normative system, defining objectives, pescriptions and the process of nuclear licensing and building of nuclear power plants in Brazil is enphasized. General rules for the development of this system are presented. The Brazilian rules on the matter are discussed. A general view of the German legal system for nuclear power plant licensing and the IAEA recommendations on the subject are finally presented. (A.L.S.L.) [pt

  14. Decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Lunning, W.H.

    1977-01-01

    Collaborative studies are in progress in the U.K. between the U.K.A.E.A., the Generating Boards and other outside bodies, to identify the development issues and practical aspects of decommissioning redundant nuclear facilities. The various types of U.K.A.E.A. experimental reactors (D.F.R., W.A.G.R , S.G.H.W.R.) in support of the nuclear power development programme, together with the currently operating commercial 26 Magnox reactors in 11 stations, totalling some 5 GW will be retired before the end of the century and attention is focussed on these. The actual timing of withdrawal from service will be dictated by development programme requirements in the case of experimental reactors and by commercial and technical considerations in the case of electricity production reactors. Decommissioning studies have so far been confined to technical appraisals including the sequence logic of achieving specific objectives and are based on the generally accepted three stage progression. Stage 1, which is essentially a defuelling and coolant removal operation, is an interim phase. Stage 2 is a storage situation, the duration of which will be influenced by environmental pressures or economic factors including the re-use of existing sites. Stage 3, which implies removal of all active and non-active waste material and returning the site to general use, must be the ultimate objective. The engineering features and the radioactive inventory of the system must be assessed in detail to avoid personnel or environmental hazards during Stage 2. These factors will also influence decisions on the degree of Stage 2 decommissioning and its duration, bearing in mind that for Stage 3 activation may govern the waste disposal route and the associated radiation man-rem exposure during dismantling. Ideally, planning for decommissioning should be considered at the design stage of the facility. An objective of present studies is to identify features which would assist decommissioning of future systems

  15. The regulation for delivery of subsidies for measures of promoting power source location for nuclear power generating facilities

    International Nuclear Information System (INIS)

    1979-01-01

    The regulation is defined under the law for arrangement of surrounding areas of power generating facilities and the law concerning subsidies and others. Limits of the subsidies are stipulated respectively for establishment of a unit and simultaneous construction of more than 2 units of power generating facilities in the area of self-governing bodies concerned. Limits of the subsidies for an arrangement business out of the area of self-governing bodies where the facilities are set up shall be equal to those of the subsidies for such bodies. The Director General of Science and Technology Agency and the Minister of International Trade and Industry may make the amounts otherwise determined the limits of the subsidies, when considered necessary successfully to build the facilities. The term of delivery is from a fiscal year in which a later one of either the day of beginning of the construction concerned or the day of acknowledgment of the arrangement program of the business is included, through a fiscal year when the work finishes. An application for subsidies shall be filed to the head of the authorities concerned with gists of the business according to the forms attached. Receiving the application, the head of the authorities shall examine it and notify to the applicant without delay in writing the decision of delivery and its conditions, when such settlement is made. (Okada, K.)

  16. Consideration for a tritium removal facility at the Cernavoda Nuclear Power Station

    International Nuclear Information System (INIS)

    2006-01-01

    Full text: A pre-feasibility study considering process options for a Tritium Removal Facility at the Cernavoda Nuclear Power Station has been completed by ICIT and AECL. Three different process options were considered. These three options differ in the front-end process used to transfer tritium from heavy water to deuterium gas. All three options use cryogenic distillation (CD) as a back end process to extract tritium from the deuterium gas stream and concentrate it into a small volume stream of pure DT or T 2 that can be immobilized on a titanium sponge. The first option for the front-end process is Liquid Phase Catalytic Exchange (LPCE). The LPCE column is used to transfer the tritium from the heavy water to a recirculating stream of deuterium gas. The separation of hydrogen isotopes takes place in the cryogenic distillation column. Tritium-depleted deuterium gas from the CD system is fed back to the LPCE column. The cryogenic distillation system concentrates the tritium into a small volume of elemental tritium for storage. Tritiated heavy water that has been purified to remove catalyst poisons is fed to the top of the LPCE column. The heavy water leaving the column is depleted in deuterium. Both existing detritiation plants built to detritiate CANDU reactors (the Darlington TRF in Canada and the Wolsung TRF in Korea) use variations of the LPCE-CD process. The second option uses electrolysis to convert tritiated heavy water into oxygen and tritiated deuterium gas. The deuterium gas is sent to the Cryogenic Distillation system to extract and concentrate the tritium. The tritium depleted deuterium gas is recombined with the electrolytic oxygen to give a tritium-depleted heavy water product. The third option uses a Combined Electrolysis and Catalytic Exchange (CECE) front end. A CECE process concentrates the tritium in the water and, using water electrolysis, converts the concentrated tritium into deuterium gas. An overhead catalytic recombiner converts the

  17. Facility for processing the condensates from nuclear power plants (BWR and PWR)

    International Nuclear Information System (INIS)

    Lucker, Georges.

    1975-01-01

    A plant for the processing of the condensates from boiling water or pressurized water nuclear power plants is presented. A series of couples of units for the processing of the condensates through mixed beds of ion exchange resins simultaneously ensures the filtration and demineralization of the condensates. When the resins are saturated, each mixed bed is transferred into a unit of regeneration of said resins. Each processing unit is a sphere made of a stainless material, and provided with a plurality of air and water pipes allowing the admission and evacuation of the various elements to be successively controlled [fr

  18. Feasibility Study on The Modulization of Structure and System Facility for Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.S. [Korea Electric Power Research Institute, Taejon (Korea)

    2002-07-01

    This final report is a results of Study on applicable to SC(Steel Concrete) structure for NPPS and experimentation of SC wall-Support joint carried out by KEPRI from 2001.7.1 to 2000.3.27. The major objectives is to study on application of SC structure and behavior of SC wall-support joint. This result is applicable to plan a main project for ''Development of Modular Construction System in the Nuclear Power Plant''. (author). 45 refs., 19 figs., 23 tabs.

  19. Quadruped locomotion system of prototype advanced robot for nuclear power plant facilities

    International Nuclear Information System (INIS)

    Sugiyama, Sakae

    1991-01-01

    The development of the robots for the works in nuclear power stations has been promoted. The demonstration machine developed comprises subsystems so that the design, manufacture, operation, maintenance and so on of the robots are simplified and made convenient, that is, the command for all actions, visual information processing subsystem, manipulation subsystem and movement subsystem. In this report, the elementary technology of movement and the movement subsystem are described. Quadruped walking, intelligent type motion control, and the target specification, movement subsystem and test of the demonstration machine are explained. (K.I.)

  20. Results of special security inspection on improvement of security management setup in Head Office and Tsuruga Nuclear Power Station of the Japan Atomic Power Company and improvement of facilities in Tsuruga Nuclear Power Station

    International Nuclear Information System (INIS)

    1982-01-01

    In connection with the series of accidents in the Tsuruga Nuclear Power Station, the Agency of Natural Resources and Energy had instructed JAPC to make comprehensive inspection on the security management setup and to take improvement measures in the nuclear power station. The results of the subsequent inspection by ANRE confirmed that the improvements made by JAPC are adequate, and the following items are described: improvement of security management setup - communication and reporting in emergency, the management of inspection and maintenance records, work control and supervision in repair, improvement, etc., functional authority and responsibility in maintenance management, operation management, radiation control, personnel education; improvement of facilities - feed water heaters, laundry waste-water filter room, radioactive waste treatment facility, general drainage, concentrated waste liquid storage tanks in newly-built waste treatment building, etc. (J.P.N.)

  1. Proceeding of 31st domestic symposium on failure events and integrity evaluation of nuclear power generation facilities

    International Nuclear Information System (INIS)

    2003-07-01

    As the 31st domestic symposium of Atomic Energy Research Committee, the Japan Welding Engineering Society, the symposium was held titled as 'Damage events and integrity evaluations of nuclear power facilities'. Six speakers gave lectures titled as 'Damages of structural materials in the LWR plants and their measures', 'Inspection and integrity evaluation method of SCC in the BWR plants', 'Measures with chloride SCC of piping', 'High cycle fatigue damage events of small diameter pipes and their measures', 'Management of SCC in in-core instrumentation thimbles' and 'Japanese lost ten years and American and other leaps'. (T. Tanaka)

  2. Regulations on the allocating of subsidies to promote the development of radiation exposure reduction technology for nuclear power facilities

    International Nuclear Information System (INIS)

    1984-01-01

    The regulations provide for subsidies for the research and development of radiation exposure reduction technology for nuclear power facilities and evaluation of the results. The subsidies are for purchase of equipment, materials, etc. and other expendures approved. The contents are as follows: applications for subsidies, determination of subsidy allocations, withdrawal of applications, a report on the work proceedings, a report on the results, confirmation on the sum of the subsidies, payment of subsidies, approval of alterations in the plans, withdrawal of the decision for subsidies, patent rights, payment of the earnings, management of the properties, etc. (Mori, K.)

  3. Regulations on allocating the sums of money regarding of development of radiation exposure reduction technology for nuclear power facilities

    International Nuclear Information System (INIS)

    1984-01-01

    The regulations provide for the sums of money regarding research and development of radiation exposure reduction technology for nuclear power facilities and evaluation of the results. Expenses cover the purchase of equipment, personnel expenditures, travelling expenses, communication, etc. The contents are as follows: the application for subsidy allocations, determination of subsidy allocations, withdrawal of applications, a report on the work proceedings, a report on the results, approval of alterations in the plans, withdrawal of the decision for a subsidy allocation, patent rights, utilization etc. of the results, management of the properties, etc. (Mori, K.)

  4. Space Power Facility (SPF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Space Power Facility (SPF) houses the world's largest space environment simulation chamber, measuring 100 ft. in diameter by 122 ft. high. In this chamber, large...

  5. A facility for the testing and repair of primary collectors of steam generators at WWER nuclear power plants

    International Nuclear Information System (INIS)

    Herman, M.; Kuna, M.

    1990-01-01

    A facility labelled ZOKPG-1 has been developed for in-service inspection and repair of steam generator collectors in WWER-440 nuclear power plants. The facility makes possible visual, capillary, luminescence and ultrasonic inspection and eddy current testing of the internal surface, base material and welded joints of the collector. The repair modules of the ZOKPG-1 manipulator enable electroerosive elimination of surface defects of the material and local electrochemical decontamination of the internal surfaces. The manipulator can be operated at temperatures up to 40 degC, humidity up to 100%, and in conditions of radiation load up to 15 mGy/h and of surface contamination on the order of 100 Bq/cm 2 . (Z.M.). 16 figs

  6. Concerning results of environmental monitoring around the reprocessing facilities of Power Reactor and Nuclear Fuel Development Corporation

    International Nuclear Information System (INIS)

    1989-01-01

    The Central Evaluation Expert Group for Environmental radiation Monitoring has been engaged in examinations of plants for and results of the environmental radiation monitoring performed by Power Reactor and Nuclear Fuel Development Corporation around its reprocessing facilities. The present report outlines an examination of the results of monitoring carried out in 1987 (January to December). It is concluded that the methods used for the monitoring and its technical level are satisfactory in meeting the objectives of the monitoring plans. Expept for tritium in seawater, the level of radiations stays within the normal variation determined based on preliminary measurements of the background radiation. The procedure used for the calculation of exposure dose is also satisfactory in meeting the requirements specified in the monitoring plants. It is confirmed that the exposure dose of the residents around the facilities is well below the permissible exposure dose limite specified in law. (Nogami. K.)

  7. Nuclear power generation

    International Nuclear Information System (INIS)

    Hirao, Katumi; Sato, Akira; Kaimori, Kimihiro; Kumano, Tetsuji

    2001-01-01

    Nuclear power generation for commercial use in Japan has passed 35 years since beginning of operation in the Tokai Nuclear Power Station in 1966, and has 51 machines of reactor and about 44.92 MW of total output of equipment scale in the 21st century. However, an environment around nuclear energy becomes severer at present, and then so many subjects to be overcome are remained such as increased unreliability of the public on nuclear energy at a chance of critical accident of the JCO uranium processing facility, delay of pull-thermal plan, requirement for power generation cost down against liberalization of electric power, highly aging countermeasure of power plant begun its operation as its Genesis, and so on. Under such conditions, in order that nuclear power generation in Japan survives as one of basic electric source in future, it is necessary not only to pursue safety and reliability of the plant reliable to the public, but also to intend to upgrade its operation and maintenance by positively adopting good examples on operational management method on abroad and to endeavor further upgrading of application ratio of equipments and reduction of generation cost. Here were outlined on operation conditions of nuclear power stations in Japan, and introduced on upgrading of their operational management and maintenance management. (G.K.)

  8. Nuclear power and nuclear weapons

    International Nuclear Information System (INIS)

    Vaughen, V.C.A.

    1983-01-01

    The proliferation of nuclear weapons and the expanded use of nuclear energy for the production of electricity and other peaceful uses are compared. The difference in technologies associated with nuclear weapons and nuclear power plants are described

  9. Operational status of nuclear facilities in Japan. 2008 edition

    International Nuclear Information System (INIS)

    2008-01-01

    This document is a summary of the outline of the safety regulation administration of nuclear facilities as well as various data on the commercial nuclear power reactor facilities, research and development nuclear power reactor facilities, fabrication facilities, reprocessing facilities, and disposal facilities in fiscal year 2007 (from April 2007 to March 2008). I sincerely hope this document is used widely by many people engaged in work related to ensuring nuclear safety. (J.P.N.)

  10. Operational status of nuclear facilities in Japan. 2010 edition

    International Nuclear Information System (INIS)

    2010-01-01

    This document is a summary of the outline of the safety regulation administration of nuclear facilities as well as various data on the commercial nuclear power reactor facilities, research and development nuclear power reactor facilities, fabrication facilities, reprocessing facilities, and disposal facilities in fiscal year 2009 (from April 2009 to March 2010). We sincerely hope this document is used widely by many people engaged in work related to ensuring nuclear safety. (author)

  11. Checking the special professional qualification of selected personnel of Czechoslovak nuclear power facilities

    International Nuclear Information System (INIS)

    Kovar, P.; Bahnova, V.

    1990-01-01

    The system of examinations of selected staff members of Czechoslovak nuclear power plants for their special professional quanlification is described in detail. This selected personnel includes secondary circuit operators, primary circuit operators, graduate shift leaders as well as reactor unit managers. Attention is paid to the structure, methodology, contents and criteria of evaluation of the written, oral and practical parts of the examination, which is sat for before the State Examination Commission. Based on the results of the examinations, the Czechoslovak Atomic Energy Commission grants, prolongs or cancels licenses for the particular functions. Over the period from 1985 to March 1989, 394 new licenses were issued, 93 licenses were prolonged and 4 were withdrawn. (Z.M.). 7 figs., 3 tabs., 3 refs

  12. Nuclear power plants

    International Nuclear Information System (INIS)

    1985-01-01

    Data concerning the existing nuclear power plants in the world are presented. The data was retrieved from the SIEN (Nuclear and Energetic Information System) data bank. The information are organized in table forms as follows: nuclear plants, its status and type; installed nuclear power plants by country; nuclear power plants under construction by country; planned nuclear power plants by country; cancelled nuclear power plants by country; shut-down nuclear power plants by country. (E.G.) [pt

  13. Facilities inventory protection for nuclear facilities

    International Nuclear Information System (INIS)

    Schmitt, F.J.

    1989-01-01

    The fact that shut-down applications have been filed for nuclear power plants, suggests to have a scrutinizing look at the scopes of assessment and decision available to administrations and courts for the protection of facilities inventories relative to legal and constitutional requirements. The paper outlines the legal bases which need to be observed if purposeful calculation is to be ensured. Based on the different actual conditions and legal consequences, the author distinguishes between 1) the legal situation of facilities licenced already and 2) the legal situation of facilities under planning during the licencing stage. As indicated by the contents and restrictions of the pertinent provisions of the Atomic Energy Act and by the corresponding compensatory regulation, the object of the protection of facilities inventor in the legal position of the facility owner within the purview of the Atomic Energy Act, and the licensing proper. Art. 17 of the Atomic Energy Act indicates the legislators intent that, once issued, the licence will be the pivotal point for regulations aiming at protection and intervention. (orig./HSCH) [de

  14. No to nuclear power

    International Nuclear Information System (INIS)

    2006-01-01

    Kim Beazley has again stated a Labor Government would not pursue nuclear power because the economics 'simply don't stack up'. 'We have significant gas, coal and renewable energy reserves and do not have a solution for the disposal of low-level nuclear waste, let alone waste from nuclear power stations.' The Opposition Leader said developing nuclear power now would have ramifications for Australia's security. 'Such a move could result in our regional neighbours fearing we will use it militarily.' Instead, Labor would focus on the practical measures that 'deliver economic and environmental stability while protecting our national security'. Mr Beazley's comments on nuclear power came in the same week as Prime Minister John Howard declined the request of Indian Prime Minister Manmohan Singh for uranium exports, although seemingly not ruling out a policy change at some stage. The Prime Ministers held talks in New Delhi over whether Australia would sell uranium to India without it signing the Nuclear Non-Proliferation Treaty. An agreement reached during a visit by US President George W. Bush gives India access to long-denied nuclear technology and guaranteed fuel in exchange for allowing international inspection of some civilian nuclear facilities. Copyright (2006) Crown Content Pty Ltd

  15. A basis for standardized seismic design (SSD) for nuclear power plants/critical facilities

    International Nuclear Information System (INIS)

    O'Hara, T.F.; Jacobson, J.P.; Bellini, F.X.

    1991-01-01

    US Nuclear Power Plants (NPP's) are designed, engineered and constructed to stringent standards. Their seismic adequacy is assured by compliance with regulatory standards and demonstrated by both probabilistic risk assessments (PRAs) and seismic margin studies. However, present seismic siting criteria requires improvement. Proposed changes to siting criteria discussed here will provide a predictable licensing process and a stable regulatory environment. Two recent state-of-the-art studies evaluate the seismic design for all eastern US (EUS) NPP'S: a Lawrence Livermore National Labs study (LLNL, 1989) funded by the NRC and similar research by the Electric Power Research Institute (EPRI, 1989) supported by the utilities. Both confirm that Appendix A 10CFR Part 100 has not provided consistent seismic design levels for all sites. Standardized Seismic Design (SSD) uses a probabilistic framework to accommodate alternative deterministic interpretations. It uses seismic hazard input from EPRI or LLNL to produce consistent bases for future seismic design. SSD combines deterministic and probabilistic insights to provide a comprehensive approach for determining a future site's acceptable seismic design basis

  16. Interactive simulation of nuclear power systems using a dedicated minicomputer - computer graphics facility

    International Nuclear Information System (INIS)

    Tye, C.; Sezgen, A.O.

    1980-01-01

    The design of control systems and operational procedures for large scale nuclear power plant poses a difficult optimization problem requiring a lot of computational effort. Plant dynamic simulation using digital minicomputers offers the prospect of relatively low cost computing and when combined with graphical input/output provides a powerful tool for studying such problems. The paper discusses the results obtained from a simulation study carried out at the Computer Graphics Unit of the University of Manchester using a typical station control model for an Advanced Gas Cooled reactor. Particular reference is placed on the use of computer graphics for information display, parameter and control system optimization and techniques for using graphical input for defining and/or modifying the control system topology. Experience gained from this study has shown that a relatively modest minicomputer system can be used for simulating large scale dynamic systems and that highly interactive computer graphics can be used to advantage to relieve the designer of many of the tedious aspects of simulation leaving him free to concentrate on the more creative aspects of his work. (author)

  17. Power source facility

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Kazuhiro; Kinoshita, Shoichiro

    1998-09-29

    The present invention concerns a power plant, in which power is supplied from an ordinary system battery to an ordinary DC bus system when all of the AC power sources should be lost and a generator is driven by a steam turbine. A generator is connected with an ordinary system battery charger by way of a channel. If all of power sources should be lost, the ordinary system battery charger is driven by using emergency steam turbine generator facilities, and reactor steams are supplied thereby enabling to supply power to the ordinary system DC bus system for a long period of time. (N.H.)

  18. Nuclear Station Facilities Improvement Planning

    International Nuclear Information System (INIS)

    Hooks, R. W.; Lunardini, A. L.; Zaben, O.

    1991-01-01

    An effective facilities improvement program will include a plan for the temporary relocation of personnel during the construction of an adjoining service building addition. Since the smooth continuation of plant operation is of paramount importance, the phasing plan is established to minimize the disruptions in day-to-day station operation and administration. This plan should consider the final occupancy arrangements and the transition to the new structure; for example, computer hookup and phase-in should be considered. The nuclear industry is placing more emphasis on safety and reliability of nuclear power plants. In order to do this, more emphasis is placed on operations and maintenance. This results in increased size of managerial, technical and maintenance staffs. This in turn requires improved office and service facilities. The facilities that require improvement may include training areas, rad waste processing and storage facilities, and maintenance facilities. This paper discusses an approach for developing an effective program to plan and implement these projects. These improvement projects can range in magnitude from modifying a simple system to building a new structure to allocating space for a future project. This paper addresses the planning required for the new structures with emphasis on site location, space allocation, and internal layout. Since facility planning has recently been completed by Sargent and Leyden at six U. S. nuclear stations, specific examples from some of those plants are presented. Site planning and the establishment of long-range goals are of the utmost importance when undertaking a facilities improvement program for a nuclear station. A plan that considers the total site usage will enhance the value of both the new and existing facilities. Proper planning at the beginning of the program can minimize costs and maximize the benefits of the program

  19. Decommissioning nuclear facilities

    International Nuclear Information System (INIS)

    Harmon, K.M.; Jenkins, C.E.; Waite, D.A.; Brooksbank, R.E.; Lunis, B.C.; Nemec, J.F.

    1976-01-01

    This paper describes the currently accepted alternatives for decommissioning retired light water reactor fuel cycle facilities and the current state of decommissioning technology. Three alternatives are recognized: Protective Storage; Entombment; and Dismantling. Application of these alternatives to the following types of facilities is briefly described: light water reactors; fuel reprocessing plants, and mixed oxide fuel fabrication plants. Brief descriptions are given of decommissioning operations and results at a number of sites, and recent studies of the future decommissioning of prototype fuel cycle facilities are reviewed. An overview is provided of the types of operations performed and tools used in common decontamination and decommissioning techniques and needs for improved technology are suggested. Planning for decommissioning a nuclear facility is dependent upon the maximum permitted levels of residual radioactive contamination. Proposed guides and recently developed methodology for development of site release criteria are reviewed. 21 fig, 32 references

  20. Occupational radiation exposure at commercial nuclear power reactors and other facilities 1986

    International Nuclear Information System (INIS)

    Brooks, B.G.; Hagemeyer, D.

    1989-08-01

    This report summarizes the occupational exposure data that are maintained in the US Nuclear Regulatory Commission's Radiation Exposure Information and Reporting System (REIRS). The bulk of the information contained in the report was extracted from the 1986 annual statistical reports submitted by six of the seven categories of NRC licensees subject to the reporting requirements of 10 CFR section 20.407. Since there are no geologic repositories for high level waste currently licensed, only six categories will be considered in this report. These six categories of licensees also submit personal identification and exposure information for terminating employees pursuant to 10 CFR section 20.408, and some analysis of this ''termination'' data is also presented in this report. Annual report for 1986 were received from a total of 482 NRC licensees, 101 of whom were licensed nuclear power reactors. Compilations of the 482 reports indicated that some 227,652 individuals were monitored, 116,241 of whom received a measurable dose (Table 3.1). The collective dose incurred by these individuals was calculated to be 46,366 person-rems (person-cSv) which represents a decrease of 23% from the 1985 value. The number of workers receiving a measurable dose increased while the collective dose decreased slightly, causing the average measurable dose to decrease from 0.43 rem (cSv) to 0.40 rem (cSv). About 13% of the monitored individuals were found to have received doses greater than 0.50 rem (cSv), which is about the same as the value for 1985. 16 refs., 11 figs., 26 tabs

  1. EPRI/NRC-RES fire PRA guide for nuclear power facilities. Volume 1, summary and overview

    International Nuclear Information System (INIS)

    2004-01-01

    This report documents state-of-the-art methods, tools, and data for the conduct of a fire Probabilistic Risk Assessment (PRA) for a commercial nuclear power plant (NPP) application. The methods have been developed under the Fire Risk Re-quantification Study. This study was conducted as a joint activity between EPRI and the U. S. NRC Office of Nuclear Regulatory Research (RES) under the terms of an EPRI/RES Memorandum of Understanding (RS.1) and an accompanying Fire Research Addendum (RS.2). Industry participants supported demonstration analyses and provided peer review of this methodology. The documented methods are intended to support future applications of Fire PRA, including risk-informed regulatory applications. The documented method reflects state-of-the-art fire risk analysis approaches. The primary objective of the Fire Risk Study was to consolidate recent research and development activities into a single state-of-the-art fire PRA analysis methodology. Methodological issues raised in past fire risk analyses, including the Individual Plant Examination of External Events (IPEEE) fire analyses, have been addressed to the extent allowed by the current state-of-the-art and the overall project scope. Methodological debates were resolved through a consensus process between experts representing both EPRI and RES. The consensus process included a provision whereby each major party (EPRI and RES) could maintain differing technical positions if consensus could not be reached. No cases were encountered where this provision was invoked. While the primary objective of the project was to consolidate existing state-of-the-art methods, in many areas, the newly documented methods represent a significant advancement over previously documented methods. In several areas, this project has, in fact, developed new methods and approaches. Such advances typically relate to areas of past methodological debate.

  2. Nuclear power

    International Nuclear Information System (INIS)

    d'Easum, Lille.

    1976-03-01

    An environmentalist's criticism of nuclear energy is given, on a layman's level. Such subjects as conflict of interest in controlling bodies, low-level radiation, reactor safety, liability insurance, thermal pollution, economics, heavy water production, export of nuclear technology, and the history of the anti-nuclear movement are discussed in a sensationalistic tone. (E.C.B.)

  3. Laundry monitor for nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Ishibashi, Mitsuo (Toshiba Corp., Fuchu (Japan). Fuchu Works)

    1984-06-01

    A laundry monitor has been developed for the detection and cleansification of radiation contamination on the clothes, headgear, footgear, etc. of workers in nuclear facilities. With this monitor, measurement is made irrespective of the size and shape of the objects; a large-area plastic scintillation detector is incorporated; it has stable and highly sensitive characteristics, with the merits of swift measurement, economical operation and easy maintenance. Connected with a folding machine, automatic carrying and storing compartment through a conveyor, it is capable of saving energy and man power, contributing to scheduled operation, and improving the efficiency of the facilities.

  4. Laundry monitor for nuclear facilities

    International Nuclear Information System (INIS)

    Ishibashi, Mitsuo

    1984-01-01

    A laundry monitor has been developed for the detection and cleansification of radiation contamination on the clothes, headgear, footgear, etc. of workers in nuclear facilities. With this monitor, measurement is made irrespective of the size and shape of the objects ; a large-area plastic scintillation detector is incorporated ; it has stable and highly sensitive characteristics, with the merits of swift measurement, economical operation and easy maintenance. Connected with a folding machine, automatic carrying and storing compartment through a conveyor, it is capable of saving energy and man power, contributing to scheduled operation, and improving the efficiency of the facilities. (author)

  5. Nuclear power in East Asia

    International Nuclear Information System (INIS)

    Abelson, P.H.

    1996-01-01

    This editorial discusses the shifting dominance in the nuclear reactor technology from the USA to new leadership in East Asia. With the expanding economies and electricity demand, Design, construction and operation of a large number of nuclear power plants in east Asia will support nuclear engineers, technologist, manufacturing facilities, and potential weapons experts. In contrast, the cessation of construction of power reactors in the US is leading to deminished nuclear capabilities

  6. International nuclear power status 2002

    International Nuclear Information System (INIS)

    Lauritzen, B.; Majborn, B.; Nonboel, E.; Oelgaard, P.L.

    2003-03-01

    This report is the ninth in a series of annual reports on the international development of nuclear power with special emphasis on reactor safety. For 2002, the report contains: 1) General trends in the development of nuclear power; 2) Decommissioning of the nuclear facilities at Risoe National Laboratory: 3) Statistical information on nuclear power production (in 2001); 4) An overview of safety-relevant incidents in 2002; 5) The development in West Europe; 6) The development in East Europe; 7) The development in the rest of the world; 8) Development of reactor types; 9) The nuclear fuel cycle; 10) International nuclear organisations. (au)

  7. Severe weather data near nuclear power station and reprocessing fuel facility in Japan

    International Nuclear Information System (INIS)

    Nagata, Tadahisa

    2017-01-01

    The main weather data are updated at any time. The strong wind and tornado (strong wind/tornado) data are opened until March 2016 in Japan. The main weather and the strong wind/tornado data near the nuclear power station (NPS) were investigated. The earthquake, Tunami and volcano were not mentioned on this report. The main weather data might not be severe. The maximum temperature had not been considered in the safety analysis of NPS. The weather data of some small observation posts near NPSs had not been considered. The unusual high temperature and the local severe rain near NPS by the global warming may be considered in future. The maximum intensities of the strong wind/tornado in Japan and near NPS were Fujita-scale 3 and 2, respectively. The maximum intensities of almost half NPSs were Fujita-scale 1. The intensity and the number of the strong winds/tornados differed depending on NPS. The Japanese main weather and strong wind/tornado might not be severe compared with other country. (author)

  8. Cooling water intake and discharge facilities for Ikata Nuclear Power Station

    International Nuclear Information System (INIS)

    Ishihara, Hisashi; Iwabe, Masakazu

    1977-01-01

    Igata Nuclear Power Station is located at the root of Sadamisaki peninsula in the western part of Ehime Prefecture, Japan, and faces the Iyonada sea area in Seto Inland Sea. The most part of the shoreline forms the cliffs, and the bottom of the sea is rather steep, reaching 60 m depth at 300 m offshore. Considering warm water discharge measures in addition to the natural conditions of tide and current, temperature of sea water, water quality and wave data, it was decided that the deep layer intake system using bottom laid intake pipes and the submerged discharge system with caisson penetrable dike would be adopted for cooling water. The latter was first employed in Japan, and the submerged discharge system with caisson penetrable dike had been developed. The intake was designed to take sea water of about 38 m 3 per sec for each condenser unit at the depth of approximately 17 m with 4.8 m diameter and 116 m length pipes and its calculation details and construction are described. The discharge system was designed to provide a horseshoe-shaped discharge pond with inner diameter of approximately 50 m, surrounded by 17 concrete caissons, and to spout warm water discharge from eight openings of 1.58 m diameter, at the location of approximately 300 m eastward of the intake. Its hydraulic studies and model experiments and its construction are reported. (Wakatsuki, Y.)

  9. Robotics for nuclear facilities

    International Nuclear Information System (INIS)

    Abe, Akira; Nakayama, Ryoichi; Kubo, Katsumi

    1988-01-01

    It is highly desirable that automatic or remotely controlled machines perform inspection and maintenance tasks in nuclear facilities. Toshiba has been working to develop multi-functional robots, with one typical example being a master-slave manipulator for use in reprocessing facilities. At the same time, the company is also working on the development of multi-purpose intelligent robots. One such device, an automatic inspection robot, to be deployed along a monorail, performs inspection by means of image processing technology, while and advanced intelligent maintenance robot is equipped with a special wheel-locomotion mechanism and manipulator and is designed to perform maintenance tasks. (author)

  10. Nuclear physics accelerator facilities

    International Nuclear Information System (INIS)

    1985-01-01

    The Department of Energy's Nuclear Physics program is a comprehensive program of interdependent experimental and theoretical investigation of atomic nuclei. Long range goals are an understanding of the interactions, properties, and structures of atomic nuclei and nuclear matter at the most elementary level possible and an understanding of the fundamental forces of nature by using nuclei as a proving ground. Basic ingredients of the program are talented and imaginative scientists and a diversity of facilities to provide the variety of probes, instruments, and computational equipment needed for modern nuclear research. Approximately 80% of the total Federal support of basic nuclear research is provided through the Nuclear Physics program; almost all of the remaining 20% is provided by the National Science Foundation. Thus, the Department of Energy (DOE) has a unique responsibility for this important area of basic science and its role in high technology. Experimental and theoretical investigations are leading us to conclude that a new level of understanding of atomic nuclei is achievable. This optimism arises from evidence that: (1) the mesons, protons, and neutrons which are inside nuclei are themselves composed of quarks and gluons and (2) quantum chromodynamics can be developed into a theory which both describes correctly the interaction among quarks and gluons and is also an exact theory of the strong nuclear force. These concepts are important drivers of the Nuclear Physics program

  11. Occupational Radiation Exposure at Commercial Nuclear Power Reactors and Other Facilities 2010, Prepared for the Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, May 2012

    Energy Technology Data Exchange (ETDEWEB)

    D. E. Lewis D. A. Hagemeyer Y. U. McCormick

    2012-07-07

    This report summarizes the occupational exposure data that are maintained in the U.S. Nuclear Regulatory Commission’s (NRC) Radiation Exposure Information and Reporting System (REIRS). The bulk of the information contained in the report was compiled from the 2010 annual reports submitted by five of the seven categories of NRC licensees subject to the reporting requirements of 10 CFR 20.2206. Because there are no geologic repositories for high-level waste currently licensed and no NRC-licensed low-level waste disposal facilities currently in operation, only five categories will be considered in this report. The annual reports submitted by these licensees consist of radiation exposure records for each monitored individual. These records are analyzed for trends and presented in this report in terms of collective dose and the distribution of dose among the monitored individuals. Annual reports for 2010 were received from a total of 190 NRC licensees. The summation of reports submitted by the 190 licensees indicated that 192,424 individuals were monitored, 81,961 of whom received a measurable dose. When adjusted for transient workers who worked at more than one licensee during the year, there were actually 142,471 monitored individuals and 62,782 who received a measurable dose. The collective dose incurred by these individuals was 10,617 person-rem, which represents a 12% decrease from the 2009 value. This decrease was primarily due to the decrease in collective dose at commercial nuclear power reactors, as well as a decrease in the collective dose for most of the other categories of NRC licensees. The number of individuals receiving a measurable dose also decreased, resulting in an average measurable dose of 0.13 rem for 2010. The average measurable dose is defined as the total effective dose equivalent (TEDE) divided by the number of individuals receiving a measurable dose. In calendar year 2010, the average annual collective dose per reactor for light water reactor

  12. Dynamic interactions of components, structure, and foundation of nuclear power facilities

    International Nuclear Information System (INIS)

    Pajuhesh, J.; Hadjian, A.H.

    1977-01-01

    A solution is formulated for the dynamic analysis of structures and components with different stiffness and damping characteristics, including the consideration of soil-structure interaction effects. Composite structures are often analysed approximately, in particular with regards to damping. For example, the reactor and other equipment in nuclear power plant structures are often analysed by assuming them uncoupled from the supporting structures. To achieve a better accuracy, the coupled system is hereby analysed as a composite component-structure-soil system. Although derivation of mass and stiffness matrices for the component-structure-soil system is a simple problem, the determination of the damping characteristics of such a system is more complex. This emphasis on the proper evaluation of system damping is warranted on the grounds that, when resonance conditions occur, the response amplitude is governed to a significant degree by the system damping. The damping information is usually available for each sub-structure separately with its based fixed or devoid of rigid-body modes of motion. The rigid-body motions are often free of damping resistance but sometimes, such as in the case of soil-structure interaction, or in the case of aerodynamic resistance, are uniquely defined. The composite damping matrix for the complete structure is hereby derived from the above-mentioned information. Thus, the damping matrix is first obtained for the free-free model of each sub-structure (the model containing the structural degrees of freedom together with rigid-body modes of motion), and then the submatrices for the free-free models are assembled to form the composite damping matrix in acccordance with an assembly technique relating the sub-structure coordinates to the global coordinates of the composite structure

  13. Dismantling of nuclear facilities

    International Nuclear Information System (INIS)

    Tallec, M.; Kus, J.P.

    2009-01-01

    Nuclear facilities have a long estimable lifetime but necessarily limited in time. At the end of their operation period, basic nuclear installations are the object of cleansing operations and transformations that will lead to their definitive decommissioning and then to their dismantling. Because each facility is somewhere unique, cleansing and dismantling require specific techniques. The dismantlement consists in the disassembly and disposing off of big equipments, in the elimination of radioactivity in all rooms of the facility, in the demolition of buildings and eventually in the reconversion of all or part of the facility. This article describes these different steps: 1 - dismantling strategy: main de-construction guidelines, expected final state; 2 - industries and sites: cleansing and dismantling at the CEA, EDF's sites under de-construction; 3 - de-construction: main steps, definitive shutdown, preparation of dismantling, electromechanical dismantling, cleansing/decommissioning, demolition, dismantling taken into account at the design stage, management of polluted soils; 4 - waste management: dismantlement wastes, national policy of radioactive waste management, management of dismantlement wastes; 5 - mastery of risks: risk analysis, conformability of risk management with reference documents, main risks encountered at de-construction works; 6 - regulatory procedures; 7 - international overview; 8 - conclusion. (J.S.)

  14. Seismic evaluation of existing nuclear power plants and other facilities V. 1. Proceedings of the technical committee meeting. Working material

    International Nuclear Information System (INIS)

    2002-01-01

    The objectives of this Tcm are: to review the IAEA Safety Report on Seismic Evaluation of Existing Nuclear Power Plants in order to achieve a consensus among Member States on this matter and to discuss the outlines of an IAEA Co-ordinated Research Programme on specific topics related to this subject. Today the nuclear industry relies much more on existing facilities than on the design of new ones. Nevertheless it appears that safety evaluation against external hazards is not a decreasing activity. The reason being that maintaining an acceptable level of nuclear safety requires periodic re-assessments of facilities, either because of modifications of the environment due to human activity or because of new data or new approaches in the assessment of natural hazards. In this regard, seismic re-evaluation has increasingly become a key issue for several existing nuclear facilities, including not only nuclear power plants but also other plants of the fuel cycle, as well as research reactors or laboratories. The IAEA has already supported development of engineering practices in this field by managing a Co-ordinated Research Programme, launched in 1992, on a Benchmark Study for the seismic analysis and testing of WWER 1000 type NPPs. It is now proposed to investigate other aspects of this issue. Many of these facilities were built according to older standards which did not take into account seismic hazard. Consequently, the seismic re-evaluation of existing facilities is a real challenge for earthquake engineers. In most of the cases, it is impossible to re-evaluate according to the up to date standards because entering these standards implies that some design rules are met, what is generally not the case for older facilities. In the best cases some rules exist for non nuclear buildings. In order to achieve a consensus on this matter, the IAEA intends to edit a Safety Report on 'Seismic Evaluation of existing NPPs'. The TCM will offer the opportunity to review the draft of

  15. Nuclear power's burdened future

    International Nuclear Information System (INIS)

    Flavin, C.

    1987-01-01

    Although governments of the world's leading nations are reiterating their faith in nuclear power, Chernobyl has brought into focus the public's overwhelming feeling that the current generation of nuclear technology is simple not working. Despite the drastic slowdown, however, the global nuclear enterprise is large. As of mid-1986, the world had 366 nuclear power plants in operation, with a generating capacity of 255,670 MW. These facilities generate about 15% of the world's electricity, ranging from 65% in France to 31% in West Germany, 23% in Japan, 16% in the United States, 10% in the Soviet Union, and non in most developing nations. Nuclear development is clearly dominated by the most economically powerful and technologically advanced nations. The United States, France, the Soviet Union, Japan, and West Germany has 72% of the world's generating capacity and set the international nuclear pace. The reasons for scaling back nuclear programs are almost as diverse as the countries themselves. High costs, slowing electricity demand growth, technical problems, mismanagement, and political opposition have all had an effect. Yet these various factors actually form a complex web of inter-related problems. For example, rising costs usually represent some combination of technical problems and mismanagement, and political opposition often occurs because of safety concerns or rising costs. 13 references

  16. Backup power sources for DOE facilities

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    This standard establishes fundamental requirements and guidance for backup power sources at DOE facilities. Purpose is to document good engineering practices for installation, testing, and maintenance of these backup power sources, which also covers emergency power sources. Examples are those which supply power to nuclear safety systems, radiation monitors and alarms, fire protection systems, security systems, and emergency lighting.

  17. Radiation protection in nuclear facilities

    International Nuclear Information System (INIS)

    Piechowski, J.; Lochard, J.; Lefaure, Ch.; Schieber, C.; Schneider, Th; Lecomte, J.F.; Delmont, D.; Boitel, S.; Le Fauconnier, J.P.; Sugier, A; Zerbib, J.C.; Barbey, P.

    1998-01-01

    Close ties exist between nuclear safety and radiation protection. Nuclear safety is made up of all the arrangements taken to prevent accidents occurring in nuclear facilities, these accidents would certainly involved a radiological aspect. Radiation protection is made up of all the arrangements taken to evaluate and reduce the impact of radiation on workers or population in normal situations or in case of accident. In the fifties the management of radiological hazards was based on the quest for minimal or even zero risk. This formulation could lead to call some activities in question whereas the benefits for the whole society were evident. Now a new attitude more aware of the real risks and of no wasting resources prevails. This attitude is based on the ALARA principle whose purpose is to maintain the exposure to radiation as low as reasonably achievable taking into account social and economic concerns. This document regroups articles illustrating different aspects of the radiation protection in nuclear facilities such as a research center, a waste vitrification workshop and a nuclear power plant. The surveillance of radiological impacts of nuclear sites on environment is examined, a point is made about the pending epidemiologic studies concerning La Hague complex. (A.C.)

  18. History on foundation of Korea nuclear power

    International Nuclear Information System (INIS)

    Park, Ik Su

    1999-12-01

    This reports the history on foundation of Korea nuclear power from 1955 to 1980, which is divided ten chapters. The contents of this book are domestic and foreign affairs before foundation of nuclear power center, establishment of nuclear power and research center, early activity and internal conflict about nuclear power center, study for nuclear power business and commercialization of the studying ordeal over nuclear power administration and new phase, dispute for jurisdiction on nuclear power business and the process, permission for nuclear reactor, regulation and local administration, the process of deliberation and decision of reactor 3. 4 in Yonggwang, introduction of nuclear reprocessing facilities and activities for social organization.

  19. Nuclear power in Asia

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, Ronald E.

    1998-08-01

    Contains Executive Summary and Chapters on: Nuclear Energy in the Asian context; Types of nuclear power reactors used in Asia; A survey of nuclear power by country; The economics of nuclear power; Fuels, fuel cycles and reprocessing; Environmental issues and waste disposal; The weapons issues and nuclear power; Conclusions. (Author)

  20. Power Systems Development Facility

    International Nuclear Information System (INIS)

    1993-06-01

    The objective of the PSDF would be to provide a modular facility which would support the development of advanced, pilot-scale, coal-based power systems and hot gas clean-up components. These pilot-scale components would be designed to be large enough so that the results can be related and projected to commercial systems. The facility would use a modular approach to enhance the flexibility and capability for testing; consequently, overall capital and operating costs when compared with stand-alone facilities would be reduced by sharing resources common to different modules. The facility would identify and resolve technical barrier, as well as-provide a structure for long-term testing and performance assessment. It is also intended that the facility would evaluate the operational and performance characteristics of the advanced power systems with both bituminous and subbituminous coals. Five technology-based experimental modules are proposed for the PSDF: (1) an advanced gasifier module, (2) a fuel cell test module, (3) a PFBC module, (4) a combustion gas turbine module, and (5) a module comprised of five hot gas cleanup particulate control devices. The final module, the PCD, would capture coal-derived ash and particles from both the PFBC and advanced gasifier gas streams to provide for overall particulate emission control, as well as to protect the combustion turbine and the fuel cell

  1. Particulate filtration in nuclear facilities

    International Nuclear Information System (INIS)

    1991-01-01

    The removal of particulate radioactive material from exhaust air or gases is an essential feature of virtually all nuclear facilities. Recent IAEA publications have covered the broad designs of off-gas and air cleaning systems for the range of nuclear power plants and other facilities. This report is a complementary guidebook that examines in detail the latest developments in the design, operation, maintenance and testing of fibrous air filters. The original draft of the report was prepared by three consultants, M.W. First, of the School of Public Health, Harvard University, United States of America, K.S. Robinson, from the UKAEA Harwell Laboratory, United Kingdom, and H.G. Dillmann, of the Kernforschungzentrum, Karlsruhe, Germany. The Technical Committee Meeting (TCM), at which the report was reviewed and much additional information contributed, was attended by 11 experts and was held in Vienna, from 30 May to 3 June 1988. 64 refs, 41 figs, 10 tabs

  2. Nuclear Propulsion and Power Non-Nuclear Test Facility (NP2NTF): Preliminary Analysis and Feasibility Assessment

    Data.gov (United States)

    National Aeronautics and Space Administration — Nuclear thermal propulsion (NTP) has been identified as a high NASA technology priority area by the National Research Council because nuclear thermal rockets (NTRs)...

  3. Nuclear power - facts, trends, problems

    International Nuclear Information System (INIS)

    Spickermann, W.

    1981-01-01

    An attempt has been made to describe the state-of-the-art of nuclear power utilization, particularly for energy production. On the basis of information obtained from study tours through the USSR a rather comprehensive review of nuclear power plants and research establishments in the Soviet Union, of desalination reactors, ship propulsion reactors and fast breeder reactors is given, including nuclear facilities of other countries, e.g. France, USA, GDR. Heat generation, radiation-induced chemical processes and aspects associated with nuclear energy uses, such as risks, environmental protection or radioactive wastes, are also considered. Moreover, the author attempts to outline the social relevance of nuclear power

  4. Beloyarsk Nuclear Power Plant

    International Nuclear Information System (INIS)

    1997-01-01

    The Beloyarsk Nuclear Power Plant (BNPP) is located in Zarechny, approximately 60 km east of Ekaterinberg along the Trans-Siberian Highway. Zarechny, a small city of approximately 30,000 residents, was built to support BNPP operations. It is a closed city to unescorted visitors. Residents must show identification for entry. BNPP is one of the first and oldest commercial nuclear power plants in Russia and began operations in 1964. As for most nuclear power plants in the Russian Federation, BNPP is operated by Rosenergoatom, which is subordinated to the Ministry of Atomic Energy of the Russian Federation (Minatom). BNPP is the site of three nuclear reactors, Units 1, 2, and 3. Units 1 and 2, which have been shut-down and defueled, were graphite moderated reactors. The units were shut-down in 1981 and 1989. Unit 3, a BN-600 reactor, is a 600 MW(electric) sodium-cooled fast breeder reactor. Unit 3 went on-line in April 1980 and produces electric power which is fed into a distribution grid and thermal power which provides heat to Zarechny. The paper also discusses the SF NIKIET, the Sverdiovsk Branch of NIKIET, Moscow, which is the research and development branch of the parent NIKEIT and is primarily a design institute responsible for reactor design. Central to its operations is a 15 megawatt IVV research reactor. The paper discusses general security and fissile material control and accountability at these two facilities

  5. Filters in nuclear facilities

    International Nuclear Information System (INIS)

    Berg, K.H.; Wilhelm, J.G.

    1985-01-01

    The topics of the nine papers given include the behavior of HEPA filters during exposure to air flows of high humidity as well as of high differential pressure, the development of steel-fiber filters suitable for extreme operating conditions, and the occurrence of various radioactive iodine species in the exhaust air from boiling water reactors. In an introductory presentation the German view of the performance requirements to be met by filters in nuclear facilities as well as the present status of filter quality assurance are discussed. (orig.) [de

  6. Decommissioning nuclear facilities

    International Nuclear Information System (INIS)

    Buck, S.

    1996-01-01

    Nuclear facilities present a number of problems at the end of their working lives. They require dismantling and removal but public and environmental protection remain a priority. The principles and strategies are outlined. Experience of decommissioning in France and the U.K. had touched every major stage of the fuel cycle by the early 1990's. Decommissioning projects attempt to restrict waste production and proliferation as waste treatment and disposal are costly. It is concluded that technical means exist to deal with present civil plant and costs are now predictable. Strategies for decommissioning and future financial provisions are important. (UK)

  7. Nuclear reactor facility

    International Nuclear Information System (INIS)

    Wampole, N.C.

    1978-01-01

    In order to improve the performance of manitenance and inspections it is proposed for a nuclear reactor facility with a primary circuit containing liquid metal to provide a thermally insulated chamber, within which are placed a number of components of the primary circuit, as e.g. valves, recirculation pump, heat exchangers. The isolated placement permit controlled preheating on one hand, but prevents undesirable heating of adjacent load-bearing elements on the other. The chamber is provided with heating devices and, on the outside, with cooling devices; it is of advantage to fill it with an inert gas. (UWI) 891 HP [de

  8. Computer Security at Nuclear Facilities

    International Nuclear Information System (INIS)

    Cavina, A.

    2013-01-01

    This series of slides presents the IAEA policy concerning the development of recommendations and guidelines for computer security at nuclear facilities. A document of the Nuclear Security Series dedicated to this issue is on the final stage prior to publication. This document is the the first existing IAEA document specifically addressing computer security. This document was necessary for 3 mains reasons: first not all national infrastructures have recognized and standardized computer security, secondly existing international guidance is not industry specific and fails to capture some of the key issues, and thirdly the presence of more or less connected digital systems is increasing in the design of nuclear power plants. The security of computer system must be based on a graded approach: the assignment of computer system to different levels and zones should be based on their relevance to safety and security and the risk assessment process should be allowed to feed back into and influence the graded approach

  9. U.S. Department of Energy facilities needed to advance nuclear power.

    Science.gov (United States)

    Ahearne, John F

    2011-01-01

    This talk is based upon a November 2008 report by the U.S. Department of Energy (DOE) Nuclear Energy Advisory Committee (NEAC). The report has two parts, a policy section and a technology section. Here extensive material from the Technical Subcommittee section of the NEAC report is used. Copyright © 2010 Health Physics Society

  10. Conceptual study of nuclear power generation facilities life-cycle support versatile engineering database. Procedure of development and consideration of fundamental functions

    International Nuclear Information System (INIS)

    Endo, Hidetoshi

    2009-05-01

    International Atomic Energy Agency (IAEA) stands out the activity of the knowledge management of nuclear safety and the movement to introduce the idea of the life cycle management into the quality control of maintenance of the nuclear power generation facilities to assure the knowledge preservation and to succeed the technology of facilities. Japan Atomic Energy Agency (JAEA) also has such activities as the knowledge preservation of research and development, and related information. The facilities' performance reliability can be easily checked with the technology of data processing in the general industry and the results of the knowledge repository, transmitting technology and knowledge management by referring to the information and knowledge if the information and knowledge at each step of the life-cycle of facilities can be built. This report shows the strategy of the construction of the engineering database to support the life cycle of facilities and the basic function of the management system. (author)

  11. Steel structures for nuclear facilities

    International Nuclear Information System (INIS)

    1993-01-01

    In the guide the requirements concerning design and fabrication of steel structures for nuclear facilities and documents to be submitted to the Finnish Centre for Radiation and Nuclear Safety (STUK) are presented. Furthermore, regulations concerning inspection of steel structures during construction of nuclear facilities and during their operation are set forth

  12. Nuclear power

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    The Single Channel Trip System for the Dungeness B AGRs in the United Kingdom has enabled Nuclear Electric to enhance the performance of each of the twin reactors progressively towards the design figure of 660MW. The unique self-testing dynamic nature of the microprocessor-based ISAT system was one of the key factors in satisfying the UK Regulator that the system met the demanding requirements of the Dungeness B application, and current operational and maintenance experience is very encouraging. Systems based on the ISAT principle have application in reactor protection systems throughout the world. (Author)

  13. Power Systems Development Facility

    Energy Technology Data Exchange (ETDEWEB)

    Southern Company Services

    2009-01-31

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, has routinely demonstrated gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This final report summarizes the results of the technology development work conducted at the PSDF through January 31, 2009. Twenty-one major gasification test campaigns were completed, for a total of more than 11,000 hours of gasification operation. This operational experience has led to significant advancements in gasification technologies.

  14. The Texts of the Instruments Concerning the Agency's assistance to Mexico in Establishing a Nuclear Power Facility. A Second Supply Agreement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1974-10-31

    As a sequel to the assistance which the Agency provided to the Government of Mexico in establishing a nuclear power facility, a Second Supply Agreement has been concluded between the Agency and that Government. The Agreement entered into force on 14 June 1974, pursuant to Article IX, and the text thereof is reproduced herein for the information of all Members.

  15. The Texts of the Instruments Concerning the Agency's assistance to Mexico in Establishing a Nuclear Power Facility. A Second Supply Agreement

    International Nuclear Information System (INIS)

    1974-01-01

    As a sequel to the assistance which the Agency provided to the Government of Mexico in establishing a nuclear power facility, a Second Supply Agreement has been concluded between the Agency and that Government. The Agreement entered into force on 14 June 1974, pursuant to Article IX, and the text thereof is reproduced herein for the information of all Members.

  16. Submarine nuclear power plant

    International Nuclear Information System (INIS)

    Enohara, Masami; Araragi, Fujio.

    1980-01-01

    Purpose: To provide a ballast tank, and nuclear power facilities within the containment shell of a pressure resistance structure and a maintenance operator's entrance and a transmission cable cut-off device at the outer part of the containment shell, whereby after the construction, the shell is towed, and installed by self-submerging, and it can be refloated for repairs by its own strength. Constitution: Within a containment shell having a ballast tank and a pressure resisting structure, there are provided nuclear power facilities including a nuclear power generating chamber, a maintenance operator's living room and the like. Furthermore, a maintenance operator's entrance and exit device and a transmission cable cut-off device are provided within the shell, whereby when it is towed to a predetermined a area after the construction, it submerges by its own strength and when any repair inspection is necessary, it can float up by its own strength, and can be towed to a repair dock or the like. (Yoshihara, H.)

  17. Nuclear power plant operator licensing

    International Nuclear Information System (INIS)

    1997-01-01

    The guide applies to the nuclear power plant operator licensing procedure referred to the section 128 of the Finnish Nuclear Energy Degree. The licensing procedure applies to shift supervisors and those operators of the shift teams of nuclear power plant units who manipulate the controls of nuclear power plants systems in the main control room. The qualification requirements presented in the guide also apply to nuclear safety engineers who work in the main control room and provide support to the shift supervisors, operation engineers who are the immediate superiors of shift supervisors, heads of the operational planning units and simulator instructors. The operator licensing procedure for other nuclear facilities are decided case by case. The requirements for the basic education, work experience and the initial, refresher and complementary training of nuclear power plant operating personnel are presented in the YVL guide 1.7. (2 refs.)

  18. Economics of nuclear power

    International Nuclear Information System (INIS)

    Reichle, L.F.C.

    1977-01-01

    Mr. Reichle feels that the economic advantages of pursuing nuclear power should prompt Congress and the administration to seek ways of eliminating undue delays and enabling industry to proceed with the design, construction, and management of nuclear plants and facilities. Abundant, low-cost energy, which can only be supplied by coal and nuclear, is vital to growth in our gross national product, he states. While conservation efforts are commendable, we must have more energy if we are to maintain our standard of living. Current energy resources projections into the next century indicate an energy gap of 42 quads with a 3 percent growth and 72 quads with a 4 percent growth. Comparisons of fuel prices, plant capital investment, and electric generation costs are developed for both coal and nuclear energy; these show that nuclear energy has a clear advantage economically as long as light water reactors are supplemented by breeder reactor development and the nuclear industry can demonstrate that these reactors are safe, reliable, and compatible with the environment. Mr. Reichle says excessive regulation and legal challenges combined with public apathy toward developing nuclear energy are delaying decisions and actions that should be taken now

  19. Nuclear power - the Hydra's head

    Energy Technology Data Exchange (ETDEWEB)

    Bunyard, P

    1986-01-01

    Following the accident at Chernobyl, the nuclear policies of many governments have been reconsidered and restated. Those in favour of nuclear power are those with highly centralised state bureaucracies, such as France and the USSR, where public opinion is disregarded. In more democratic countries, where referenda are held, such as Austria and Sweden, the people have chosen to do away with nuclear power. Indeed, the author states that nuclear power represents the State against the people, the State against democracy. Reference is made to the IAEA Reactor Safety Conference held in September, 1986, in Vienna, and the declaration sent to it by AntiAtom International. This called for the United Nations to promote the phasing out of nuclear power facilities throughout the world. It also called on the IAEA to support the phasing out of nuclear power and promote benign energy forms instead.

  20. Nuclear power - the Hydra's head

    International Nuclear Information System (INIS)

    Bunyard, Peter.

    1986-01-01

    Following the accident at Chernobyl, the nuclear policies of many governments have been reconsidered and restated. Those in favour of nuclear power are those with highly centralised state bureaucracies, such as France and the USSR, where public opinion is disregarded. In more democratic countries, where referenda are held, such as Austria and Sweden, the people have chosen to do away with nuclear power. Indeed, the author states that nuclear power represents the State against the people, the State against democracy. Reference is made to the IAEA Reactor Safety Conference held in September, 1986, in Vienna, and the declaration sent to it by AntiAtom International. This called for the United Nations to promote the phasing out of nuclear power facilities throughout the world. It also called on the IAEA to support the phasing out of nuclear power and promote benign energy forms instead. (UK)

  1. Insurance and nuclear power

    International Nuclear Information System (INIS)

    Whipple, C.

    1985-01-01

    The Price-Anderson Act is discussed, which establishes procedures for insuring nuclear facilities (including nuclear power plants). The act was enacted with the dual purpose of protecting the public and encouraging the development of a private nuclear energy industry. Criticisms that can generally be grouped into four categories regarding the Act are presented, the most controversial aspect being that should an accident occur, the aggregate liability of the reactor operator, the NRC, or any others who might be at fault is limited to $560 million. Lawsuits for amounts in excess of $560 million are prohibited. The 1975 renewal of the Price-Anderson Act does provide that damages in excess of the $560 million prompt Congress to review the particular incident and take action to protect the public from the consequences of a disaster of such magnitude

  2. Decree of the Czech Labor Safety Office No. 263/1991 amending the Decree No. 76/1989 on ensuring safety of technical facilities in the nuclear power sector

    International Nuclear Information System (INIS)

    1995-01-01

    Some provisions of the Decree of the Czech Labor Safety Office No. 76/1989 on ensuring safety of technical facilities in the nuclear power sector are amended, particularly in the field of construction activities, assembling, reconstruction and repair of nuclear power facilities. The Decree entered into force on 28 June 1991. (J.B.)

  3. Nuclear fuel storage facility

    International Nuclear Information System (INIS)

    Matsumoto, Takashi; Isaka, Shinji.

    1987-01-01

    Purpose: To increase the spent fuel storage capacity and reduce the installation cost in a nuclear fuel storage facility. Constitution: Fuels handled in the nuclear fuel storage device of the present invention include the following four types: (1) fresh fuels, (2) 100 % reactor core charged fuels, (3) spent fuels just after taking out and (4) fuels after a certain period (for example one half-year) from taking out of the reactor. Reactivity is high for the fuels (1), and some of fuels (2), while low in the fuels (3) (4), Source intensity is strong for the fuels (3) and some of the fuels (2), while it is low for the fuels (1) and (4). Taking notice of the fact that the reactivity, radioactive source intensity and generated after heat are different in the respective fuels, the size of the pool and the storage capacity are increased by the divided storage control. While on the other hand, since the division is made in one identical pool, the control method becomes important, and the working range is restricted by means of a template, interlock, etc., the operation mode of the handling machine is divided into four, etc. for preventing errors. (Kamimura, M.)

  4. Nuclear power in Canada

    International Nuclear Information System (INIS)

    1980-01-01

    The Canadian Nuclear Association believes that the CANDU nuclear power generation system can play a major role in achieving energy self-sufficiency in Canada. The benefits of nuclear power, factors affecting projections of electric power demand, risks and benefits relative to other conventional and non-conventional energy sources, power economics, and uranium supply are discussed from a Canadian perspective. (LL)

  5. Safety aspects of reprocessing and plutonium fuel facilities in power reactor and nuclear fuel development corporation

    International Nuclear Information System (INIS)

    Sato, S.; Akutsu, H.; Nakajima, K.; Kono, K.; Muto, T.

    1977-01-01

    PNC completed the construction of the first Japanese reprocessing plant in 1974, and the startup is now under way. The plant will have a capacity of 0.7 metric tons of spent fuel per day. Various safety measures for earthquake, radiation, criticality, fire, explosion and leakage of radioactive materials are provided in the plant. 8,000 Ci of Kr-85 and 50 Ci of H-3 per day will be released from the plant to enviroment. Skin dose is conservatively estimated to be about 30 mrem per year. Liquid waste containing 0.7 Ci per day will be discharged into the sea. Whole body dose is conservatively estimated to be 10 mrem per year. R and D for removal of Kr-85 and reducing radioactivity released into the sea are being carried out. Developmental works for solidification of radioactive liquid waste are also being conducted. Safety control in plutonium handling work for both R and D and fuel fabrication has been successfully conducted without significant abnormal occurrence in these ten years. By ''zero-contamination control policy'', surface contamination and airborne contamination in operation rooms are maintained at the background level in usual operation. The intake of plutonium was found at the maximum about one-hundredths of the MPB. External exposure has been generally controlled below three-tenths rem for three months, by shielding and mechanization of process. The radioactivity concentration of exhaust air and liquid effluent disposal is ensured far below the regulation level. Nuclear material control is maintained by a computer system, and no criticality problem has occurred. The safeguard system and installation has been improved, and is sufficient to satisfy the IAEA regulation

  6. American National Standard: for facilities and medical care for on-site nuclear-power-plant radiological emergencies

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    This standard provides guidance for first aid during an emergency and for initial medical care of those persons on-site who are overexposed to penetrating radiation (irradiated). It also provides guidance for medical care of persons contaminated with radioactive material or radionuclides who may also be irradiated or injured as a result of an accident at a nuclear power plant. It provides recommendations for facilities, supplies, equipment, and the extent of care both on-site where first aid and initial care may be provided and off-site at a local hospital where further medical and surgical care may be provided. This initial care continues until either the patient is released or admitted, or referred to another, possibly distant, medical center for definitive care. Recommendations are also provided for the transportation of patients and the training of personnel. Recommendations for specialized care are considered to be beyond the scope of this standard on emergency medical care; however, since emergency and specialized care are related, a brief discussion of specialized care is provided in the Appendix

  7. ARC: A compact, high-field, fusion nuclear science facility and demonstration power plant with demountable magnets

    Energy Technology Data Exchange (ETDEWEB)

    Sorbom, B.N., E-mail: bsorbom@mit.edu; Ball, J.; Palmer, T.R.; Mangiarotti, F.J.; Sierchio, J.M.; Bonoli, P.; Kasten, C.; Sutherland, D.A.; Barnard, H.S.; Haakonsen, C.B.; Goh, J.; Sung, C.; Whyte, D.G.

    2015-11-15

    Highlights: • ARC reactor designed to have 500 MW fusion power at 3.3 m major radius. • Compact, simplified design allowed by high magnetic fields and jointed magnets. • ARC has innovative plasma physics solutions such as inboardside RF launch. • High temperature superconductors allow high magnetic fields and jointed magnets. • Liquid immersion blanket and jointed magnets greatly simplify tokamak reactor design. - Abstract: The affordable, robust, compact (ARC) reactor is the product of a conceptual design study aimed at reducing the size, cost, and complexity of a combined fusion nuclear science facility (FNSF) and demonstration fusion Pilot power plant. ARC is a ∼200–250 MWe tokamak reactor with a major radius of 3.3 m, a minor radius of 1.1 m, and an on-axis magnetic field of 9.2 T. ARC has rare earth barium copper oxide (REBCO) superconducting toroidal field coils, which have joints to enable disassembly. This allows the vacuum vessel to be replaced quickly, mitigating first wall survivability concerns, and permits a single device to test many vacuum vessel designs and divertor materials. The design point has a plasma fusion gain of Q{sub p} ≈ 13.6, yet is fully non-inductive, with a modest bootstrap fraction of only ∼63%. Thus ARC offers a high power gain with relatively large external control of the current profile. This highly attractive combination is enabled by the ∼23 T peak field on coil achievable with newly available REBCO superconductor technology. External current drive is provided by two innovative inboard RF launchers using 25 MW of lower hybrid and 13.6 MW of ion cyclotron fast wave power. The resulting efficient current drive provides a robust, steady state core plasma far from disruptive limits. ARC uses an all-liquid blanket, consisting of low pressure, slowly flowing fluorine lithium beryllium (FLiBe) molten salt. The liquid blanket is low-risk technology and provides effective neutron moderation and shielding, excellent

  8. 75 FR 7628 - Davis-Besse Nuclear Power Station; Notice of Consideration of Issuance of Amendment to Facility...

    Science.gov (United States)

    2010-02-22

    ...; Notice of Consideration of Issuance of Amendment to Facility Operating License, Proposed No Significant Hazards Consideration Determination, and Opportunity for a Hearing The U.S. Nuclear Regulatory Commission... involves no significant hazards consideration. Under the Commission's regulations in Title 10 of the Code...

  9. On present situation of radioactive waste management and exposure of workers in nuclear reactor facilities for commercial power generation in fiscal 1988

    International Nuclear Information System (INIS)

    1989-01-01

    The article summarizes the contents of some reports including the Report on Radiation Management in 1988 that were submitted by the operators of nuclear reactor facilities for commercial power generation according to the requirements specified in the Law Concerning Regulation on Nuclear Material, Nuclear Fuel and Nuclear Reactor. According to these reports, the annual radiation release in all nuclear power generation plants was well below the radiation release limits set up in the report 'On Guidelines for Target Dose in Areas around Light Water Reactor Facilities for Power Generation'. Data submitted also show that there are no significant problems with the management of radioactive solid waste. In all nuclear generation plants, the personal exposure of workers is below the permissible exposure dose specified in law. The Agency of Natural Resources and Energy is planned to further promote the development of advanced techniques for automatization and remote control of light water reactors and to provide effective guidance to electrical contractors for positive radiation management. (N.K.)

  10. Power program and nuclear power

    International Nuclear Information System (INIS)

    Chernilin, Yu.F.

    1990-01-01

    Main points of the USSR power program and the role of nuclear power in fuel and power complex of the country are considered. Data on dynamics of economic indices of electric power generation at nuclear power plants during 1980-1988 and forecasts till 2000 are presented. It is shown that real cost of 1 kW/h of electric power is equal to 1.3-1.8 cop., and total reduced cost is equal to 1.8-2.4 cop

  11. Nuclear power of Korea

    International Nuclear Information System (INIS)

    Chun Bee-Ho

    2011-01-01

    National nuclear is presented. Nuclear energy safety after Fukushima, international cooperation in nuclear energy is discussed. Nuclear projects with the United Arab Emirates have been developed to build 4 nuclear power plants in the UAE - APR 1400. At the Korea-Bulgaria Industrial Committee Meeting in Sofia (March 2011) Korean side proposed Nuclear Safety Training Program in Korea for Bulgarian government officials and experts transfer of know-how and profound expertise on world-class nuclear technology and nuclear safety

  12. Concrete structures for nuclear facilities

    International Nuclear Information System (INIS)

    1996-01-01

    The detailed requirements for the design and fabrication of the concrete structures for nuclear facilities and for the documents to be submitted to the Finnish Centre for Radiation and Nuclear Safety (STUK) are given in the guide. It also sets the requirements for the inspection of concrete structures during the construction and operation of facilities. The requirements of the guide primarily apply to new construction. As regards the repair and modification of nuclear facilities built before its publication, the guide is followed to the extent appropriate. The regulatory activities of the Finnish Centre for Radiation and Nuclear Safety during a nuclear facility's licence application review and during the construction and operation of the facility are summarised in the guide YVL 1.1

  13. Alteration of installation of nuclear reactors (alteration of No. 1 and No. 2 reactor facilities) in Shimane Nuclear Power Station, Chugoku Electric Power Co. , Inc. (report)

    Energy Technology Data Exchange (ETDEWEB)

    1987-07-01

    The Nuclear Safety Commission reported to the Minister of International Trade and Industry after prudent deliberation on this alteration problem which had been inquired on August 28, 1986. It was recognized that the technical capability of the applicant is appropriate, as the result of deliberation. It was judged that the safety after this alteration of the installation of the reactor facilities can be ensured. As the result of examining new type 8 x 8 zirconium liner fuel, there was no problem in its mechanical design, the analysis of dynamical characteristics, and the analysis of abnormal transient change and accident in operation. As to the change of the average degree of enrichment of replacement fuel, the thermonuclear design of the reactor core was adequate. In the incineration of spent resin and filter sludge, the effect of radioactive substances to the environment was negligible. The safety after abolishing the auxiliary protection function against exhaust radioactivity is ensured with a rare gas holdup equipment. The soundness of fuel and the soundness of reactor coolant pressure boundary are maintained in abnormal transient change and accident. (Kako, I.).

  14. Alteration of installation of nuclear reactors (alteration of No.1 and No.2 reactor facilities) in Shimane Nuclear Power Station, Chugoku Electric Power Co., Inc. (report)

    International Nuclear Information System (INIS)

    1987-01-01

    The Nuclear Safety Commission reported to the Minister of International Trade and Industry after prudent deliberation on this alteration problem which had been inquired on August 28, 1986. It was recognized that the technical capability of the applicant is appropriate, as the result of deliberation. It was judged that the safety after this alteration of the installation of the reactor facilities can be ensured. As the result of examining new type 8 x 8 zirconium liner fuel, there was no problem in its mechanical design, the analysis of dynamical characteristics, and the analysis of abnormal transient change and accident in operation. As to the change of the average degree of enrichment of replacement fuel, the thermonuclear design of the reactor core was adequate. In the incineration of spent resin and filter sludge, the effect of radioactive substances to the environment was negligible. The safety after abolishing the auxiliary protection function against exhaust radioactivity is ensured with a rare gas holdup equipment. The soundness of fuel and the soundness of reactor coolant pressure boundary are maintained in abnormal transient change and accident. (Kako, I.)

  15. Nuclear facilities in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    1991-01-01

    The information brochure is a survey of installed nuclear facilities in Germany, presenting on one page each a picture of a nuclear power plant together with the main relevant data, or of other type of nuclear facilities belonging to the nuclear fuel cycle (such as fuel production plant, fuel production plant, fuel element storage facilities, and facilities for spent fuel and waste management). (UA) [de

  16. China and nuclear power

    International Nuclear Information System (INIS)

    Fouquoire-Brillet, E.

    1999-01-01

    This book presents the history of nuclear power development in China from the first research works started in the 1950's for the manufacturing of nuclear weapons to the recent development of nuclear power plants. This study tries to answer the main questions raised by the attitude of China with respect to the civil and military nuclear programs. (J.S.)

  17. Nuclear power revisited

    International Nuclear Information System (INIS)

    Grear, B.

    2008-01-01

    Modern development of nuclear power technology and the established framework of international agreements and conventions are responding to the major political, economic and environmental issues - high capital costs, the risks posed by nuclear wastes and accidents, and the proliferation of nuclear weaponry - that until recently hindered the expansion of nuclear power.

  18. Nuclear power in perspective

    International Nuclear Information System (INIS)

    Addinall, E.; Ellington, H.

    1982-01-01

    The subject is covered in chapters: (the nature of nuclear power) the atomic nucleus - a potential source of energy; how nuclear reactors work; the nuclear fuel cycle; radioactivity - its nature and biological effects; (why we need nuclear power) use of energy in the non-communist world -the changing pattern since 1950; use of energy - possible future scenarios; how our future energy needs might be met; (a possible long term nuclear strategy) the history of nuclear power; a possible nuclear power strategy for the Western World; (social and environmental considerations) the hazards to workers in the nuclear power industry; the hazards to the general public (nuclear power industry; reactor operation; transport of radioactive materials; fuel reprocessing; radioactive waste disposal; genetic hazards); the threat to democratic freedom and world peace. (U.K.)

  19. Power Systems Development Facility

    Energy Technology Data Exchange (ETDEWEB)

    None

    2003-07-01

    This report discusses Test Campaign TC12 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (SW) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using a particulate control device (PCD). While operating as a gasifier, either air or oxygen can be used as the oxidant. Test run TC12 began on May 16, 2003, with the startup of the main air compressor and the lighting of the gasifier start-up burner. The Transport Gasifier operated until May 24, 2003, when a scheduled outage occurred to allow maintenance crews to install the fuel cell test unit and modify the gas clean-up system. On June 18, 2003, the test run resumed when operations relit the start-up burner, and testing continued until the scheduled end of the run on July 14, 2003. TC12 had a total of 733 hours using Powder River Basin (PRB) subbituminous coal. Over the course of the entire test run, gasifier temperatures varied between 1,675 and 1,850 F at pressures from 130 to 210 psig.

  20. Nuclear power. The Windscale controversy

    International Nuclear Information System (INIS)

    Boyle, G.

    1978-01-01

    The aims of this unit are: (1) to provide a basic understanding of nuclear technology and of the associated technical and environmental problems; (2) to provide an understanding of: (a) the historical growth of the nuclear industry; (b) the arguments for the continued development of nuclear power, and the institutions promoting that development; (3) to provide a basic understanding of the mechanisms and institutions which officially regulate the nuclear power programme in the UK; (4) to provide an understanding of the main issues - technical, economic, social and political - involved in the controversy over the proposed expansion of British Nuclear Fuels Ltd's reprocessing facilities at Windscale, and the events leading up to the Public Inquiry on the proposal which began in June 1977; and (5) to examine (a) the reason for the growth in opposition to nuclear power in various countries and the different approaches taken by the opposition groups; (b) the political impact and effectiveness of that opposition. (author)

  1. Separation of nuclear power from nuclear proliferation

    International Nuclear Information System (INIS)

    Starr, C.

    1978-01-01

    A successful development of the proposed combination of the Fast Breeder Reactor and the CIVEX fuel reprocessing facility would provide an economical nuclear power source for many centuries which inherently separates nuclear power from the issue of weapons material diversion and proliferation. Further, by so doing, it permits great flexibility in international and national planning for nuclear power, as the issues of fuel dependence and terrorist and subnational diversions disappear. In addition, the expansion of the FBR/CIVEX system would eat into the LWR spent fuel stockpile, diminishing steadily this relatively accessible plutonium source. And finally, a rapid development of the FBR/CIVEX for the above reasons would substantially reduce the worldwide concern as to the adequacy of uranium ore supply. From a historical view, it would restore fast reactor development to the path originally foreseen in the programs of worldwide nuclear energy authorities, including the Atomic Energy Commission during its first two decades of existence

  2. Emergency power systems at nuclear power plants

    International Nuclear Information System (INIS)

    1982-01-01

    This Guide applies to nuclear power plants for which the total power supply comprises normal power supply (which is electric) and emergency power supply (which may be electric or a combination of electric and non-electric). In its present form the Guide provides general guidance for all types of emergency power systems (EPS) - electric and non-electric, and specific guidance (see Appendix A) on the design principles and the features of the emergency electric power system (EEPS). Future editions will include a second appendix giving specific guidance on non-electric power systems. Section 3 of this Safety Guide covers information on considerations that should be taken into account relative to the electric grid, the transmission lines, the on-site electrical supply system, and other alternative power sources, in order to provide high overall reliability of the power supply to the EPS. Since the nuclear power plant operator does not usually control off-site facilities, the discussion of methods of improving off-site reliability does not include requirements for facilities not under the operator's control. Sections 4 to 11 of this Guide provide information, recommendations and requirements that would apply to any emergency power system, be it electric or non-electric

  3. Nuclear power regional analysis

    International Nuclear Information System (INIS)

    Parera, María Delia

    2011-01-01

    In this study, a regional analysis of the Argentine electricity market was carried out considering the effects of regional cooperation, national and international interconnections; additionally, the possibilities of insertion of new nuclear power plants in different regions were evaluated, indicating the most suitable areas for these facilities to increase the penetration of nuclear energy in national energy matrix. The interconnection of electricity markets and natural gas due to the linkage between both energy forms was also studied. With this purpose, MESSAGE program was used (Model for Energy Supply Strategy Alternatives and their General Environmental Impacts), promoted by the International Atomic Energy Agency (IAEA). This model performs a country-level economic optimization, resulting in the minimum cost for the modelling system. Regionalization executed by the Wholesale Electricity Market Management Company (CAMMESA, by its Spanish acronym) that divides the country into eight regions. The characteristics and the needs of each region, their respective demands and supplies of electricity and natural gas, as well as existing and planned interconnections, consisting of power lines and pipelines were taken into account. According to the results obtained through the model, nuclear is a competitive option. (author) [es

  4. Nuclear power prospects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1960-09-15

    A survey of the nuclear power needs of the less-developed countries and a study of the technology and economics of small and medium scale power reactors are envisioned by the General Conference. Agency makes its services available to Member States to assist them for their future nuclear power plans, and in particular in studying the technical and economic aspects of their power programs. The Agency also undertakes general studies on the economics of nuclear power, including the collection and analysis of cost data, in order to assist Member States in comparing and forecasting nuclear power costs in relation to their specific situations

  5. POWER SYSTEMS DEVELOPMENT FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2002-11-01

    This report discusses test campaign GCT4 of the Kellogg Brown & Root, Inc. (KBR) transport reactor train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The transport reactor is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using one of two possible particulate control devices (PCDs). The transport reactor was operated as a pressurized gasifier during GCT4. GCT4 was planned as a 250-hour test run to continue characterization of the transport reactor using a blend of several Powder River Basin (PRB) coals and Bucyrus limestone from Ohio. The primary test objectives were: Operational Stability--Characterize reactor loop and PCD operations with short-term tests by varying coal-feed rate, air/coal ratio, riser velocity, solids-circulation rate, system pressure, and air distribution. Secondary objectives included the following: Reactor Operations--Study the devolatilization and tar cracking effects from transient conditions during transition from start-up burner to coal. Evaluate the effect of process operations on heat release, heat transfer, and accelerated fuel particle heat-up rates. Study the effect of changes in reactor conditions on transient temperature profiles, pressure balance, and product gas composition. Effects of Reactor Conditions on Synthesis Gas Composition--Evaluate the effect of air distribution, steam/coal ratio, solids-circulation rate, and reactor temperature on CO/CO{sub 2} ratio, synthesis gas Lower Heating Value (LHV), carbon conversion, and cold and hot gas efficiencies. Research Triangle Institute (RTI) Direct Sulfur Recovery Process (DSRP) Testing--Provide syngas in support of the DSRP commissioning. Loop Seal Operations--Optimize loop seal operations and investigate increases to previously achieved maximum solids-circulation rate.

  6. Decision no. 2011-DC-0215 of the French nuclear safety authority from May 5, 2011, ordering ITER Organization to proceed to a complementary safety evaluation of its basic nuclear facility in the eyes of the Fukushima Daiichi nuclear power plant accident

    International Nuclear Information System (INIS)

    2011-01-01

    As a consequence of the accident of the Fukushima Daiichi nuclear power plant (Japan), the French Prime Minister entrusted the French nuclear safety authority (ASN) with the mission to carry out a safety analysis re-evaluation of the French nuclear facilities, and in particular the nuclear power plants. A decision has been addressed by the ASN to each nuclear operator with the specifications of this safety re-evaluation analysis and the list of facilities in concern. This document is the decision addressed to the ITER Organization, operator of the ITER tokamak facility of Cadarache (France). (J.S.)

  7. Decision no. 2011-DC-0214 of the French nuclear safety authority from May 5, 2011, ordering CIS bio international company to proceed to a complementary safety evaluation of its basic nuclear facility in the eyes of the Fukushima Daiichi nuclear power plant accident

    International Nuclear Information System (INIS)

    2011-01-01

    As a consequence of the accident of the Fukushima Daiichi nuclear power plant (Japan), the French Prime Minister entrusted the French nuclear safety authority (ASN) with the mission to carry out a safety analysis re-evaluation of the French nuclear facilities, and in particular the nuclear power plants. A decision has been addressed by the ASN to each nuclear operator with the specifications of this safety re-evaluation analysis and the list of facilities in concern. This document is the decision addressed to CIS bio international company, operator of the radiopharmaceuticals fabrication facility (INB 29) of Saclay (France). (J.S.)

  8. Environmental monitoring of nuclear facilities

    International Nuclear Information System (INIS)

    Winter, M.

    1983-01-01

    The objectives of one environmental monitoring program for nuclear facilities, are presented. The program in Federal Republic of Germany, its goals, its basic conditions, its regulations, and its dose limits are emphasized. (E.G.) [pt

  9. Nuclear power status 1999

    International Nuclear Information System (INIS)

    2000-01-01

    The document gives statistical information on nuclear power plants status in the world in 1999, including the number of reactors in operation or under construction, the electricity supplied by nuclear power reactors and the respective percentage of electricity produced by nuclear energy in 1999, and the total operating experience to 31 December 1999, by country

  10. Nuclear safeguards control in nuclear power stations

    International Nuclear Information System (INIS)

    Boedege, R.; Braatz, U.; Heger, H.

    1976-01-01

    The execution of the Non-Proliferation Treaty (NPT) has initiated a third phase in the efforts taken to ensure peace by limiting the number of atomic powers. In this phase it is important, above all, to turn into workable systems the conditions imposed upon technology by the different provisions of the Verification Agreement of the NPT. This is achieved mainly by elaborating annexes to the Agreement specifically geared to certain model plants, typical representatives selected for LWR power stations being the plants at Garigliano, Italy (BWR), and Stade, Federal Republic of Germany (PWR). The surveillance measures taken to prevent any diversion of special nuclear material for purposes of nuclear weapons manufacture must be effective in achieving their specific objective and must not impede the circumspect management of operations of the plants concerned. A VDEW working party has studied the technical details of the planned surveillance measures in nuclear power stations in the Federal Republic of Germany and now presents a concept of material balancing by units which meets the conditions imposed by the inspection authority and could also be accepted by the operators of nuclear power stations. The concept provides for uninterrupted control of the material balance areas of the nuclear power stations concerned, allows continuous control of the whole nuclear fuel cycle, is based exclusively on existing methods and facilities, and can be implemented at low cost. (orig.) [de

  11. Nuclear power publications

    International Nuclear Information System (INIS)

    1982-01-01

    This booklet lists 69 publications on nuclear energy available free from some of the main organisations concerned with its development and operation in the UK. Headings are: general information; the need for nuclear energy; the nuclear industry; nuclear power stations; fuel cycle; safety; waste management. (U.K.)

  12. Significant incidents in nuclear fuel cycle facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    In contrast to nuclear power plants, events in nuclear fuel cycle facilities are not well documented. The INES database covers all the nuclear fuel cycle facilities; however, it was developed in the early 1990s and does not contain information on events prior to that. The purpose of the present report is to collect significant events and analyze them in order to give a safety related overview of nuclear fuel cycle facilities. Significant incidents were selected using the following criteria: release of radioactive material or exposure to radiation; degradation of items important to safety; and deficiencies in design, quality assurance, etc. which include criticality incidents, fire, explosion, radioactive release and contamination. This report includes an explanation, where possible, of root causes, lessons learned and action taken. 4 refs, 4 tabs.

  13. Significant incidents in nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    1996-03-01

    In contrast to nuclear power plants, events in nuclear fuel cycle facilities are not well documented. The INES database covers all the nuclear fuel cycle facilities; however, it was developed in the early 1990s and does not contain information on events prior to that. The purpose of the present report is to collect significant events and analyze them in order to give a safety related overview of nuclear fuel cycle facilities. Significant incidents were selected using the following criteria: release of radioactive material or exposure to radiation; degradation of items important to safety; and deficiencies in design, quality assurance, etc. which include criticality incidents, fire, explosion, radioactive release and contamination. This report includes an explanation, where possible, of root causes, lessons learned and action taken. 4 refs, 4 tabs

  14. Starting of nuclear power stations

    International Nuclear Information System (INIS)

    Kotyza, V.

    1988-01-01

    The procedure is briefly characterized of jobs in nuclear power plant start-up and the differences are pointed out from those used in conventional power generation. Pressure tests are described oriented to tightness, tests of the secondary circuit and of the individual nodes and facilities. The possibility is shown of increased efficiency of such jobs on an example of the hydraulic tests of the second unit of the Dukovany nuclear power plant where the second and the third stages were combined in the so-colled integrated hydraulic test. (Z.M.). 5 figs

  15. Building a medical system for nuclear facilities

    International Nuclear Information System (INIS)

    Maeda, Mitsuya

    2016-01-01

    To build a medical system for nuclear facilities, I explained what kinds of actions were performed with the TEPCO Fukushima Daiichi Nuclear Power Plant Accident and what kinds of actions are going to be performed in the future. We examined the health and medical care of the emergency workers in nuclear facilities including TEPCO Fukushima Daiichi Nuclear Power Plant from 2014 to 2015 in the Ministry of Health, Labour and Welfare (MHLW). We carried out a detailed hearing from stakeholders of electric companies and medical institutions about the medical system in nuclear facilities carrying out urgent activities. It has been said that the electric company is responsible to maintain the medical system for affected workers in nuclear facilities. However, TEPCO could not find the medical staff, such as doctors, by their own effort at the TEPCO Fukushima Daiichi Nuclear Power Plant Accident. The network of doctors familiar with emergency medical care support dispatched the medical staff after July of 2011. The stakeholders indicated that the following six tasks must be resolved: (1) the fact that no electric company performs the action of bringing up medical staff who can be dispatched into nuclear facilities in emergencies in 2015; (2) bringing up personnel in charge of radiation management and logistics other than the medical staff, such as doctors; (3) cooperation with the community medicine system given the light and shade by nuclear facilities; (4) performing training for the many concurrent wounded based on the scenario of a severe accident; (5) indicating both the condition of the contract and the guarantee of status that is appropriate for dispatched medical staffs; and (6) clarifying the organization of the network of stakeholders. The stakeholders showed the future directionality as follows: (1) To recruit the medical staff expected to be dispatched into nuclear facilities, (2) to carry out the discussion and conveyance training to strengthen cooperation with

  16. Decision no. 2011-DC-0219 of the French nuclear safety authority from May 5, 2011, ordering the SOCATRI company to proceed to a complementary safety evaluation of some of its basic nuclear facilities in the eyes of the Fukushima Daiichi nuclear power plant accident

    International Nuclear Information System (INIS)

    2011-01-01

    As a consequence of the accident of the Fukushima Daiichi nuclear power plant (Japan), the French Prime Minister entrusted the French nuclear safety authority (ASN) with the mission to carry out a safety analysis re-evaluation of the French nuclear facilities, and in particular the nuclear power plants. A decision has been addressed by the ASN to each nuclear operator with the specifications of this safety re-evaluation analysis and the list of facilities in concern. This document is the decision addressed to the SOCATRI company, operator of the nuclear dismantling and waste processing plants of the Tricastin site (France). (J.S.)

  17. Nuclear power development

    International Nuclear Information System (INIS)

    Nealey, S.

    1990-01-01

    The objective of this study is to examine factors and prospects for a resumption in growth of nuclear power in the United States over the next decade. The focus of analysis on the likelihood that current efforts in the United States to develop improved and safer nuclear power reactors will provide a sound technical basis for improved acceptance of nuclear power, and contribute to a social/political climate more conducive to a resumption of nuclear power growth. The acceptability of nuclear power and advanced reactors to five social/political sectors in the U.S. is examined. Three sectors highly relevant to the prospects for a restart of nuclear power plant construction are the financial sector involved in financing nuclear power plant construction, the federal nuclear regulatory sector, and the national political sector. For this analysis, the general public are divided into two groups: those who are knowledgeable about and involved in nuclear power issues, the involved public, and the much larger body of the general public that is relatively uninvolved in the controversy over nuclear power

  18. On PA of nuclear power

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    Present state of things relating to the nuclear power generation are described first, focusing on the Chernobyl accident, power control test, old-wave and new-wave antinuclear movements, move toward elimination of nuclear power plants, and trend in government-level argument concerning nuclear power generation. Then the importance of public relations activities for nuclear power generation is emphasized. It is stressed that information should be supplied positively to the public to obtain public understanding and confidence. Various activities currently made to promote public relations for nuclear power generation are also outlined, focusing on the improvement in the nuclear power public relations system and practical plans for these activities. Activities for improvement in the public relations system include the organization of public relations groups, establishment and effective implementation of an overall public relations plan, training of core workers for public relations, and management of the public relations system. Other practical activities include the encouragement of the public to come and see the power generation facilities and distribution of pamphlets, and use of the media. (N.K.)

  19. Fatigue damage of nuclear facilities

    International Nuclear Information System (INIS)

    2001-01-01

    The conference on the fatigue damage of nuclear facilities, organized by the SFEN (french society of nuclear energy), took place at Paris the 23. of november 2000. Eleven papers were presented, showing the state of the art and the research programs in the domain of the sizing rules, safety, installations damage, examination and maintenance. (A.L.B.)

  20. Research Facilities for the Future of Nuclear Energy

    International Nuclear Information System (INIS)

    Ait Abderrahim, H.

    1996-01-01

    The proceedings of the ENS Class 1 Topical Meeting on Research facilities for the Future of Nuclear Energy include contributions on large research facilities, designed for tests in the field of nuclear energy production. In particular, issues related to facilities supporting research and development programmes in connection to the operation of nuclear power plants as well as the development of new concepts in material testing, nuclear data measurement, code validation, fuel cycle, reprocessing, and waste disposal are discussed. The proceedings contain 63 papers

  1. Decontamination of nuclear facilities

    International Nuclear Information System (INIS)

    1982-01-01

    Thirty-seven papers were presented at this conference in five sessions. Topics covered include regulation, control and consequences of decontamination; decontamination of components and facilities; chemical and non-chemical methods of decontamination; and TMI decontamination experience

  2. Dictionary of nuclear power. January 2013 ed.

    International Nuclear Information System (INIS)

    Koelzer, Winfried

    2013-01-01

    The actualized version (January 2013) of the dictionary on nuclear power includes all actualizations and new inputs since the last version of 2001. The original publication dates from 1980. The dictionary includes definitions, terms, measuring units and helpful information on the actual knowledge concerning nuclear power, nuclear fuel cycle, nuclear facilities, radioactive waste management, nuclear physics, reactor physics, isotope production, biological radiation effects, and radiation protection.

  3. Nuclear power flies high

    International Nuclear Information System (INIS)

    Friedman, S.T.

    1983-01-01

    Nuclear power in aircraft, rockets and satellites is discussed. No nuclear-powered rockets or aircraft have ever flown, but ground tests were successful. Nuclear reactors are used in the Soviet Cosmos serles of satellites, but only one American satellite, the SNAP-10A, contained a reactor. Radioisotope thermoelectric generators, many of which use plutonium 238, have powered more than 20 satellites launched into deep space by the U.S.A

  4. Worldwide nuclear power

    International Nuclear Information System (INIS)

    Royen, J.

    1981-01-01

    Worldwide nuclear power (WNP) is a companion volume to UPDATE. Our objective in the publication of WNP is to provide factual information on nuclear power programs and policies in foreign countries to U.S. policymakers in the Federal Government who are instrumental in defining the direction of nuclear power in the U.S. WNP is prepared by the Office of the Assistant Secretary for Nuclear Energy from reports obtained from foreign Embassies in Washington, U.S. Embassies overseas, foreign and domestic publications, participation in international studies, and personal communications. Domestic nuclear data is included only where its presence is needed to provide easy and immediate comparisons with foreign data

  5. Nuclear power controversy

    International Nuclear Information System (INIS)

    Murphy, A.W.

    1976-01-01

    Arthur W. Murphy in the introductory chapter cites the issues, pro and con, concerning nuclear power. In assessing the present stance, he first looks back to the last American Assembly on nuclear power, held October 1957 and notes its accomplishments. He summarizes the six papers of this book, which focus on nuclear power to the end of this century. Chapter I, Safety Aspects of Nuclear Energy, by David Bodansky and Fred Schmidt, deals with the technical aspects of reactor safety as well as waste storage and plutonium diversion. Chapter 2, The Economics of Electric Power Generation--1975-2000, by R. Michael Murray, Jr., focuses specifically on coal-fired and nuclear plants. Chapter 3, How Can We Get the Nuclear Job Done, by Fritz Heimann, identifies actions that must take place to develop nuclear power in the U.S. and who should build the reprocessing plants. Chapter 4, by Arthur Murphy, Nuclear Power Plant Regulation, discusses the USNRC operation and the Price-Anderson Act specifically. Chapter 5, Nuclear Exports and Nonproliferation Strategy, by John G. Palfrey, treats the international aspects of the problem with primary emphasis upon the situation of the U.S. as an exporter of technology. Chapter 6, by George Kistiakowsky, Nuclear Power: How Much Is Too Much, expresses doubt about the nuclear effort, at least in the short run

  6. Nuclear power generation and nuclear nonproliferation

    International Nuclear Information System (INIS)

    Walske, C.

    1978-01-01

    In the future outlook around year 2000 of nuclear power, thought must be given to fuel reprocessing and plutonium utilization. The adverse utilization of plutonium may be prevented by the means balanced with its economical value. As the method of less cost with lower effect of nonproliferation, combination of fuel reprocessing and fuel fabrication facilities and mixed plutonium/uranium processing are possible. As the method of more cost with higher effect of nonproliferation the maintenance of high radioactivity and inaccessibility of plutonium is conceivable. As for the agreeable methods in 2000, seven principles may be mentioned, such as the dependence upon the agreements among major nations and upon nuclear exporting countries. These are still inadequate, however. What is important is to provide with the sufficient safeguards to countries concerned to negate the need for nuclear weapons. Efforts are then necessary for leading nuclear countries to extend aids to other nuclear-oriented countries. (Mori, K.)

  7. Socket welds in nuclear facilities

    International Nuclear Information System (INIS)

    Anderson, P.A.; Torres, L.L.

    1995-01-01

    Socket welds are easier and faster to make than are butt welds. However, they are often not used in nuclear facilities because the crevices between the pipes and the socket sleeves may be subject to crevice corrosion. If socket welds can be qualified for wider use in facilities that process nuclear materials, the radiation exposures to welders can be significantly reduced. The current tests at the Idaho Chemical Processing Plant (ICPP) are designed to determine if socket welds can be qualified for use in the waste processing system at a nuclear fuel processing plant

  8. The decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Niel, J.Ch.; Rieu, J.; Lareynie, O.; Delrive, L.; Vallet, J.; Girard, A.; Duthe, M.; Lecomte, C.; Rozain, J.P.; Nokhamzon, J.G.; Davoust, M.; Eyraud, J.L.; Bernet, Ph.; Velon, M.; Gay, A.; Charles, Th.; Leschaeva, M.; Dutzer, M.; Maocec, Ch.; Gillet, G.; Brut, F.; Dieulot, M.; Thuillier, D.; Tournebize, F.; Fontaine, V.; Goursaud, V.; Birot, M.; Le Bourdonnec, Th.; Batandjieva, B.; Theis, St.; Walker, St.; Rosett, M.; Cameron, C.; Boyd, A.; Aguilar, M.; Brownell, H.; Manson, P.; Walthery, R.; Wan Laer, W.; Lewandowski, P.; Dorms, B.; Reusen, N.; Bardelay, J.; Damette, G.; Francois, P.; Eimer, M.; Tadjeddine, A.; Sene, M.; Sene, R.

    2008-01-01

    This file includes five parts: the first part is devoted to the strategies of the different operators and includes the following files: the decommissioning of nuclear facilities Asn point of view, decommissioning of secret nuclear facilities, decommissioning at the civil Cea strategy and programs, EDF de-construction strategy, Areva strategy for decommissioning of nuclear facilities; the second one concerns the stakes of dismantling and includes the articles as follow: complete cleanup of buildings structures in nuclear facilities, decommissioning of nuclear facilities and safety assessment, decommissioning wastes management issues, securing the financing of long-term decommissioning and waste management costs, organizational and human factors in decommissioning projects, training for the decommissioning professions: the example of the Grenoble University master degree; the third part is devoted to the management of dismantling work sites and includes the different articles as follow: decommissioning progress at S.I.C.N. plant, example of decommissioning work site in Cea Grenoble: Siloette reactor decommissioning, matters related to decommissioning sites, decommissioning of french nuclear installations: the viewpoint of a specialist company, specificities of inspections during decommissioning: the Asn inspector point of view; the fourth part is in relation with the international approach and includes as follow: IAEA role in establishing a global safety regime on decommissioning, towards harmonization of nuclear safety practices in Europe: W.E.N.R.A. and the decommissioning of nuclear facilities, EPA superfund program policy for decontamination and decommissioning, progress with remediation at Sellafield, progress and experiences from the decommissioning of the Eurochemic reprocessing plant in Belgium, activities of I.R.S.N. and its daughter company Risk-audit I.r.s.n./G.r.s. international in the field of decommissioning of nuclear facilities in eastern countries

  9. Role of nuclear power

    International Nuclear Information System (INIS)

    Eklund, S.

    1982-01-01

    A survey of world nuclear installations, the operating experiences of power reactors, and estimates of future nuclear growth leads to the conclusion that nuclear power's share of world electric power supply will grow slowly, but steadily during this decade. This growth will lead advanced countries to use the commercial breeder by the end of the century. Nuclear power is economically viable for most industrialized and many developing countries if public acceptance problems can be resolved. A restructuring of operational safety and regulations must occur first, as well as a resolution of the safeguards and technology transfer issue. 7 figures, 7 tables

  10. Nuclear power in Asia

    International Nuclear Information System (INIS)

    2007-01-01

    The Australian Uranium Association reports that Asia is the only region in the world where electricity generating capacity and specifically nuclear power is growing significantly. In East and South Asia, there are over 109 nuclear power reactors in operation, 18 under construction and plans to build about a further 100. The greatest growth in nuclear generation is expected in China, Japan, South Korea and India. As a member of the SE Asian community, Australia cannot afford to ignore the existence and growth of nuclear power generation on its door step, even if it has not, up to now, needed to utilise this power source

  11. The future of nuclear power

    International Nuclear Information System (INIS)

    Corak, Z.

    2004-01-01

    Energy production and use will contribute to global warming through greenhouse gas emissions in the next 50 years. Although nuclear power is faced with a lot of problems to be accepted by the public, it is still a significant option for the world to meet future needs without emitting carbon dioxide (CO 2 ) and other atmospheric pollutants. In 2002, nuclear power provided approximately 17% of world energy consumption. There is belief that worldwide electricity consumption will increase in the next few years, especially in the developing countries followed by economic growth and social progress. Official forecasts shows that there will be a mere increase of 5% in nuclear electricity worldwide by 2020. There are also predictions that electricity use may increase at 75%. These predictions require a necessity for construction of new nuclear power plants. There are only a few realistic options for reducing carbon dioxide emissions from electricity generation: Increase efficiency in electricity generation and use; Expand use of renewable energy sources such as wind, solar, biomass and geothermal; Capture carbon dioxide emissions at fossil-fuelled electric generating plants and permanently sequester the carbon; Increase use of nuclear power. In spite of the advantages that nuclear power has, it is faced with stagnation and decline today. Nuclear power is faced with four critical problems that must be successfully defeat for the large expansion of nuclear power to succeed. Those problems are cost, safety, waste and proliferation. Disapproval of nuclear power is strengthened by accidents that occurred at Three Mile Island in 1979, at Chernobyl in 1986 and by accidents at fuel cycle facilities in Japan, Russia and in the United States of America. There is also great concern about the safety and security of transportation of nuclear materials and the security of nuclear facilities from terrorist attack. The paper will provide summarized review regarding cost, safety, waste and

  12. Power Burst Facility: power oscillation problem

    International Nuclear Information System (INIS)

    Lussie, W.G.; Wadkins, R.P.; Wells, R.A.

    1975-01-01

    In late 1973 PBF achieved a power level of 15 MW. During this period of operation fluctuations in reactor power were observed. Many possible causes of these fluctuations were considered and a number of nuclear and non-nuclear tests were conducted. Initial instrumentation installed in the core showed coolant outlet temperature variations of 10 0 F for several fuel cannisters and approximately 10 percent power variations at 15 MW. Power spectral density analysis showed a predominant frequency of 0.05 to 0.06 HZ. The testing program to determine the cause of the power oscillations is described

  13. Environmental aspects of nuclear power

    International Nuclear Information System (INIS)

    Feates, F.

    1981-01-01

    The subject is discussed under the headings: background (scope of paper is a consideration of the radioactive by-products that arise from normal operation of nuclear power generating facilities; how regulated and their relative significance); legislation and regulation; the fuel cycle - fuel fabrication; use (of the fuel in the reactor; wastes from a typical CEGB Magnox power station); reprocessing (wastes from reprocessing); other wastes; disposal (including sea disposal). (U.K.)

  14. Development of nuclear power

    International Nuclear Information System (INIS)

    1960-01-01

    The discussion on the development of nuclear power took place on 28 September 1960 in Vienna. In his opening remarks, Director General Cole referred to the widespread opinion that 'the prospect of cheap electricity derived from nuclear energy offers the most exciting prospect for improving the lot of mankind of all of the opportunities for uses of atomic energy'. He then introduced the four speakers and the moderator of the discussion, Mr. H. de Laboulaye, IAEA Deputy Director General for Technical Operations. n the first part of the discussion the experts addressed themselves in turn to four topics put forward by the moderator. These were: the present technical status of nuclear power, the present costs of nuclear power, prospects for future reductions in the cost of nuclear power, and applications of nuclear power in less-developed areas

  15. Nuclear power debate

    International Nuclear Information System (INIS)

    Hunwick, Richard

    2005-01-01

    A recent resurgence of interest in Australia in the nuclear power option has been largely attributed to growing concerns over climate change. But what are the real pros and cons of nuclear power? Have advances in technology solved the sector's key challenges? Do the economics stack up for Australia where there is so much coal, gas and renewable resources? Is the greenhouse footprint' of nuclear power low enough to justify its use? During May and June, the AIE hosted a series of Branch events on nuclear power across Sydney, Adelaide and Perth. In the interest of balance, and at risk of being a little bit repetitive, here we draw together four items that resulted from these events and that reflect the opposing views on nuclear power in Australia. Nuclear Power for Australia: Irrelevant or Inevitable? - a summary of the presentations to the symposium held by Sydney Branch on 8 June 2005. Nuclear Reactors Waste the Planet - text from the flyer distributed by The Greens at their protest gathering outside the symposium venue on 8 June 2005. The Case For Nuclear Power - an edited transcript of Ian Hore-Lacy's presentation to Adelaide Branch on 19 May 2005 and to Perth Branch on 28 June 2005. The Case Against Nuclear Power - an article submitted to Energy News by Robin Chappie subsequent to Mr Hore-Lacy's presentation to Perth Branch

  16. Nuclear power - a reliable future

    International Nuclear Information System (INIS)

    Valeca, Serban

    2002-01-01

    The Ministry of Education and Research - Department of Research has implemented a national Research and Development program taking into consideration the following: - the requirements of the European Union on research as a factor of development of the knowledge-based society; - the commitments to the assimilation and enforcement of the recommendations of the European Union on nuclear power prompted by the negotiations of the sections 'Science and Research' and ' Energy' of the aquis communautaire; - the major lines of interest in Romania in the nuclear power field established by National Framework Program of Cooperation with IAEA, signed on April 2001; - the short and medium term nuclear options of the Romanian Government; - the objectives of the National Nuclear Plan. The major elements of the nuclear research and development program MENER (Environment, Energy, Resources) supported by the Department of Research of the Ministry of Education and Research are the following: - reactor physics and nuclear fuel management; - operation safety of the Power Unit 1 of Cernavoda Nuclear Electric Power Station; - improved nuclear technological solutions at the Cernavoda NPP; - development of technologies for nuclear fuel cycle; - operation safety of the other nuclear plants in Romania; - assessment of nuclear risks and estimation of the radiological impact on the environment; - behavior of materials under the reactor service conditions and environmental conditions; - design of nuclear systems and equipment for the nuclear power stations and nuclear facilities; - radiological safety; - application of nuclear techniques and technologies in industry, agriculture, medicine and other fields of social life. Research to develop high performance methods and equipment for monitoring nuclear impact on environment are conducted to endorse the measures for radiation protection. Also mentioned are the research on implementing a new type of nuclear fuel cycle in CANDU reactors as well as

  17. The nuclear power decisions

    International Nuclear Information System (INIS)

    Williams, R.

    1980-01-01

    Nuclear power has now become highly controversial and there is violent disagreement about how far this technology can and should contribute to the Western energy economy. More so than any other energy resource, nuclear power has the capacity to provide much of our energy needs but the risk is now seen to be very large indeed. This book discusses the major British decisions in the civil nuclear field, and the way they were made, between 1953 and 1978. That is, it spans the period between the decision to construct Calder Hall - claimed as the world's first nuclear power station - and the Windscale Inquiry - claimed as the world's most thorough study of a nuclear project. For the period up to 1974 this involves a study of the internal processes of British central government - what the author terms 'private' politics to distinguish them from the very 'public' or open politics which have characterised the period since 1974. The private issues include the technical selection of nuclear reactors, the economic arguments about nuclear power and the political clashes between institutions and individuals. The public issues concern nuclear safety and the environment and the rights and opportunities for individuals and groups to protest about nuclear development. The book demonstrates that British civil nuclear power decision making has had many shortcomings and concludes that it was hampered by outdated political and administrative attitudes and machinery and that some of the central issues in the nuclear debate were misunderstood by the decision makers themselves. (author)

  18. Helium heater design for the helium direct cycle component test facility. [for gas-cooled nuclear reactor power plant

    Science.gov (United States)

    Larson, V. R.; Gunn, S. V.; Lee, J. C.

    1975-01-01

    The paper describes a helium heater to be used to conduct non-nuclear demonstration tests of the complete power conversion loop for a direct-cycle gas-cooled nuclear reactor power plant. Requirements for the heater include: heating the helium to a 1500 F temperature, operating at a 1000 psia helium pressure, providing a thermal response capability and helium volume similar to that of the nuclear reactor, and a total heater system helium pressure drop of not more than 15 psi. The unique compact heater system design proposed consists of 18 heater modules; air preheaters, compressors, and compressor drive systems; an integral control system; piping; and auxiliary equipment. The heater modules incorporate the dual-concentric-tube 'Variflux' heat exchanger design which provides a controlled heat flux along the entire length of the tube element. The heater design as proposed will meet all system requirements. The heater uses pressurized combustion (50 psia) to provide intensive heat transfer, and to minimize furnace volume and heat storage mass.

  19. Ventilation of nuclear facilities

    International Nuclear Information System (INIS)

    1982-01-01

    In this work an examination is made of ventilation problems in nuclear installations, of the fuel cycle or the handling of radioactive compounds. The study covers the detection of radioactive aerosols, purification, iodine trapping, ventilation equipment and its maintenance, engineering, safety of ventilation, fire efficiency, operation, regulations and normalization [fr

  20. Financing nuclear power

    International Nuclear Information System (INIS)

    Sheriffah Noor Khamseah Al-Idid Syed Ahmad Idid

    2009-01-01

    Global energy security and climate change concerns sparked by escalating oil prices, high population growth and the rapid pace of industrialization are fueling the current interest and investments in nuclear power. Globally, a significant number policy makers and energy industry leaders have identified nuclear power as a favorable alternative energy option, and are presently evaluating either a new or an expanded role for nuclear power. The International Atomic Energy Agency (IAEA) has reported that as of October 2008, 14 countries have plans to construct 38 new nuclear reactors and about 100 more nuclear power plants have been written into the development plans of governments for the next three decades. Hence as new build is expected to escalate, issues of financing will become increasingly significant. Energy supply, including nuclear power, considered as a premium by government from the socio-economic and strategic perspective has traditionally been a sector financed and owned by the government. In the case for nuclear power, the conventional methods of financing include financing by the government or energy entity (utility or oil company) providing part of the funds from its own resources with support from the government. As national financing is, as in many cases, insufficient to fully finance the nuclear power plants, additional financing is sourced from international sources of financing including, amongst others, Export Credit Agencies (ECAs) and Multilateral Development Institutions. However, arising from the changing dynamics of economics, financing and business model as well as increasing concerns regarding environmental degradation , transformations in methods of financing this energy sector has been observed. This paper aims to briefly present on financing aspects of nuclear power as well as offer some examples of the changing dynamics of financing nuclear power which is reflected by the evolution of ownership and management of nuclear power plants

  1. Nuclear power status 1998

    International Nuclear Information System (INIS)

    1999-01-01

    The document gives general statistical information (by country) about electricity produced by nuclear power plants in the world in 1998, and in a table the number of nuclear reactors in operation, under construction, nuclear electricity supplied in 1998, and total operating experience as of 31 December 1998

  2. Nuclear Power Plants. Revised.

    Science.gov (United States)

    Lyerly, Ray L.; Mitchell, Walter, III

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. Among the topics discussed are: Why Use Nuclear Power?; From Atoms to Electricity; Reactor Types; Typical Plant Design Features; The Cost of Nuclear Power; Plants in the United States; Developments in Foreign…

  3. Balakovo nuclear power station

    International Nuclear Information System (INIS)

    1996-01-01

    A key means of improving the safety and reliability of nuclear power plants is through effective training of plant personnel. The goal of this paper is to show the progress of the training at the Balakovo Nuclear Power Plant, and the important role that international cooperation programs have played in that progress

  4. Nuclear power economics

    International Nuclear Information System (INIS)

    Moynet, G.

    1987-01-01

    The economical comparison of nuclear power plants with coal-fired plants in some countries or areas are analyzed. It is not difficult to show that nuclear power will have a significant and expanding role to play in providing economic electricity in the coming decades. (Liu)

  5. Nuclear power: Pt. 3

    International Nuclear Information System (INIS)

    Van Wyk, A.

    1985-01-01

    The use of nuclear power in warfare is viewed from the point of use usefullness, essentiality and demolition. The effects of a H-bomb explosion are discussed as well as the use of nuclear power in warfare, with a Christian ethical background

  6. Consideration of nuclear power

    International Nuclear Information System (INIS)

    Smart, I.

    1982-01-01

    Mr. Smart notes that the optimistic promise of nuclear energy for developing countries has not been met, but feels that nuclear power can still provide a growing share of energy during the transition from oil dependence. He observes that cost-benefit analyses vary for each country, but good planning and management can give nuclear power a positive future for those developing countries which can establish a need for it; have access to the economic, technological, and human resources necessary to develop and operate it; and can make nuclear power compatible with the social, economic, and cultural structure. 11 references

  7. Decision no. 2011-DC-0216 of the French nuclear safety authority from May 5, 2011, ordering the Laue Langevin Institute to proceed to a complementary safety evaluation of its basic nuclear facility (high flux reactor - INB no. 67) in the eyes of the Fukushima Daiichi nuclear power plant accident

    International Nuclear Information System (INIS)

    2011-01-01

    As a consequence of the accident of the Fukushima Daiichi nuclear power plant (Japan), the French Prime Minister entrusted the French nuclear safety authority (ASN) with the mission to carry out a safety analysis re-evaluation of the French nuclear facilities, and in particular the nuclear power plants. A decision has been addressed by the ASN to each nuclear operator with the specifications of this safety re-evaluation analysis and the list of facilities in concern. This document is the decision addressed to the Laue Langevin Institute, operator of the high flux research reactor (RHF) of Grenoble (France). (J.S.)

  8. Decision no. 2011-DC-0222 of the French nuclear safety authority from May 5, 2011, ordering the Comurhex company to proceed to a complementary safety evaluation of some of its basic nuclear facilities in the eyes of the Fukushima Daiichi nuclear power plant accident

    International Nuclear Information System (INIS)

    2011-01-01

    As a consequence of the accident of the Fukushima Daiichi nuclear power plant (Japan), the French Prime Minister entrusted the French nuclear safety authority (ASN) with the mission to carry out a safety analysis re-evaluation of the French nuclear facilities, and in particular the nuclear power plants. A decision has been addressed by the ASN to each nuclear operator with the specifications of this safety re-evaluation analysis and the list of facilities in concern. This document is the decision addressed to Comurhex company, operator of the Tricastin uranium conversion plant (France). (J.S.)

  9. Decision no. 2011-DC-0223 of the French nuclear safety authority from May 5, 2011, ordering the MELOX SA company to proceed to a complementary safety evaluation of some of its basic nuclear facilities in the eyes of the Fukushima Daiichi nuclear power plant accident

    International Nuclear Information System (INIS)

    2011-01-01

    As a consequence of the accident of the Fukushima Daiichi nuclear power plant (Japan), the French Prime Minister entrusted the French nuclear safety authority (ASN) with the mission to carry out a safety analysis re-evaluation of the French nuclear facilities, and in particular the nuclear power plants. A decision has been addressed by the ASN to each nuclear operator with the specifications of this safety re-evaluation analysis and the list of facilities in concern. This document is the decision addressed to MELOX SA company, operator of the Melox MOX fuel fabrication plant of Marcoule (France). (J.S.)

  10. Decision no. 2011-DC-0218 of the French nuclear safety authority from May 5, 2011, ordering the EURODIF SA company to proceed to a complementary safety evaluation of some of its basic nuclear facilities in the eyes of the Fukushima Daiichi nuclear power plant accident

    International Nuclear Information System (INIS)

    2011-01-01

    As a consequence of the accident of the Fukushima Daiichi nuclear power plant (Japan), the French Prime Minister entrusted the French nuclear safety authority (ASN) with the mission to carry out a safety analysis re-evaluation of the French nuclear facilities, and in particular the nuclear power plants. A decision has been addressed by the ASN to each nuclear operator with the specifications of this safety re-evaluation analysis and the list of facilities in concern. This document is the decision addressed to the EURODIF SA company, operator of the George Besse I uranium enrichment plant of the Tricastin site (France). (J.S.)

  11. Decision no. 2011-DC-0224 of the French nuclear safety authority from May 5, 2011, ordering the French atomic energy and alternative energies commission (CEA) to proceed to a complementary safety evaluation of some of its basic nuclear facilities in the eyes of the Fukushima Daiichi nuclear power plant accident

    International Nuclear Information System (INIS)

    2011-01-01

    As a consequence of the accident of the Fukushima Daiichi nuclear power plant (Japan), the French Prime Minister entrusted the French nuclear safety authority (ASN) with the mission to carry out a safety analysis re-evaluation of the French nuclear facilities, and in particular the nuclear power plants. A decision has been addressed by the ASN to each nuclear operator with the specifications of this safety re-evaluation analysis and the list of facilities in concern. This document is the decision addressed to the French atomic energy commission (CEA). (J.S.)

  12. AECL's strategy for decommissioning Canadian nuclear facilities

    International Nuclear Information System (INIS)

    Joubert, W.M.; Pare, F.E.; Pratapagiri, G.

    1992-01-01

    The Canadian policy on decommissioning of nuclear facilities as defined in the Atomic Energy Control Act and Regulations is administered by the Atomic Energy Control Board (AECB), a Federal Government agency. It requires that these facilities be decommissioned according to approved plans which are to be developed by the owner of the nuclear facility during its early stages of design and to be refined during its operating life. In this regulatory environment, Atomic Energy of Canada (AECL) has developed a decommissioning strategy for power stations which consists of three distinctive phases. After presenting AECL's decommissioning philosophy, its foundations are explained and it is described how it has and soon will be applied to various facilities. A brief summary is provided of the experience gained up to date on the implementation of this strategy. (author) 3 figs.; 1 tab

  13. Nuclear power in crisis

    International Nuclear Information System (INIS)

    Blowers, Andrew.; Pepper, David.

    1987-01-01

    Six themes run through this book: nuclear decision making and democratic accountability, nuclear bias and a narrow-based energy policy, scientific discredit and popular expertise, fusing science with social values, managerial competence and the geography of nuclear power. These are covered in thirteen chapters (all indexed separately) grouped into four parts -the political and planning context, nuclear waste, risk and impact - the social dimension and the future of nuclear power. It considers aspects in France, the United States and the United Kingdom with particular references to the Sizewell-B inquiry and the Sellafield reprocessing plant. (UK)

  14. Nuclear power plant outages

    International Nuclear Information System (INIS)

    1998-01-01

    The Finnish Radiation and Nuclear Safety Authority (STUK) controls nuclear power plant safety in Finland. In addition to controlling the design, construction and operation of nuclear power plants, STUK also controls refuelling and repair outages at the plants. According to section 9 of the Nuclear Energy Act (990/87), it shall be the licence-holder's obligation to ensure the safety of the use of nuclear energy. Requirements applicable to the licence-holder as regards the assurance of outage safety are presented in this guide. STUK's regulatory control activities pertaining to outages are also described

  15. Nuclear power plants

    International Nuclear Information System (INIS)

    Margulova, T.Ch.

    1976-01-01

    The textbook focuses on the technology and the operating characteristics of nuclear power plants equiped with pressurized water or boiling water reactors, which are in operation all over the world at present. The following topics are dealt with in relation to the complete plant and to economics: distribution and consumption of electric and thermal energy, types and equipment of nuclear power plants, chemical processes and material balance, economical characteristics concerning heat and energy, regenerative preheating of feed water, degassing and condenser systems, water supply, evaporators, district heating systems, steam generating systems and turbines, coolant loops and pipes, plant siting, ventilation and decontamination systems, reactor operation and management, heat transfer including its calculation, design of reactor buildings, and nuclear power plants with gas or sodium cooled reactors. Numerous technical data of modern Soviet nuclear power plants are included. The book is of interest to graduate and post-graduate students in the field of nuclear engineering as well as to nuclear engineers

  16. Environmental aspects of nuclear power

    International Nuclear Information System (INIS)

    Warner, Sir F.

    1984-01-01

    The paper discusses the environmental aspects of nuclear power, including the problems of waste, with special reference to the effect on humans. The following aspects are covered: the public fear of the risk of cancer, the kind of exposure that people are likely to have, what can be and is being done about it; recommendations and activities of the International Commission on Radiological Protection, the UK Health and Safety Executive, the Nuclear Installations Inspectorate, the National Radiological Protection Board and other relevant organisations; public relations in relation to nuclear facilities' operations. (U.K.)

  17. Standard format and content for the physical protection section of a license application (for facilities other than nuclear power plants)

    International Nuclear Information System (INIS)

    1976-06-01

    The document presented has been prepared as an aid to uniformity and completeness in the preparation and review of the physical protection section of license applications. It is applicable to fuel reprocessing plants, fuel manufacturing plants, SNM tranportation, or other special nuclear material operations involving the possession and use of uranium 235 (contained in uranium enriched to 20 percent or more in the U-235 isotope), uranium 233, or plutonium alone or in any combination in a quantity of 5000 grams or more computed by the formula: grams = (grams contained U-235) + 2.5 (grams U-233 + grams plutonium). The document is not intended to be used for nuclear power plants. The information specified is the minimum needed for a license application. Additional information may be required for completion of the staff review of a particular application

  18. Mobile nuclear power systems

    International Nuclear Information System (INIS)

    Andersson, B.

    1988-11-01

    This report is meant to present a general survey of the mobile nuclear power systems and not a detailed review of their technical accomplishments. It is based in published material mainly up to 1987. Mobile nuclear power systems are of two fundamentally different kinds: nuclear reactors and isotopic generators. In the reactors the energy comes from nuclear fission and in the isotopic generators from the radioactive decay of suitable isotopes. The reactors are primarily used as power sourves on board nuclear submarines and other warships but have also been used in the space and in remote places. Their thermal power has ranged from 30 kWth (in a satellite) to 175 MWth (on board an aircraft carrier). Isotopic generators are suitable only for small power demands and have been used on board satellites and spaceprobes, automatic weatherstations, lighthouses and marine installations for navigation and observation. (author)

  19. Investor perceptions of nuclear power

    International Nuclear Information System (INIS)

    Hewlett, J.G.

    1984-05-01

    Evidence is provided that investor concerns about nuclear power have recently been reflected in the common stock returns of all utilities with such facilities and have resulted in a risk premium. In particular, over the 1978-1982 period, three nuclear-related events occurred at the same time as, and therefore appear to have caused, significant drops in the market values of nuclear utilities relative to their non-nuclear counterparts. The three events were as follows: the accident at TMI, which occurred in March 1979; the realization in the summer of 1980 that an accident of the magnitude of TMI could result in cleanup costs of over $1 billion, which are not completely insurable and could therefore result in substantial losses; and the summer 1982 decision by the Tennessee Valley Authority (TVA) to cancel some if its nuclear power plant construction projects, and the Nuclear Regulatory Commission (NRC) decision to stop work on the construction of the Zimmer reactor, followed by a warning that it might close the Indian Point 2 and 3 reactors. If an individual had invested $100 in an average nuclear utility on the day before the TMI accident and reinvested all dividends, the value of this investment would have fallen by 10% relative to an identical investment in the average non-nuclear utility. The risk of investments in nuclear power versus conventional generating technologies shows nuclear power to be a relatively risky investment. However, relative to all investments, nuclear power was less risky in terms of the type of risk that would cause investors to require a premium before purchasing their securities. 6 figures, 6 tables

  20. Nuclear power development

    International Nuclear Information System (INIS)

    Povolny, M.

    1980-01-01

    The development and uses of nuclear power in Czechoslovakia and other countries are briefly outlined. In the first stage, the Czechoslovak nuclear programme was oriented to the WWER 440 type reactor while the second stage of the nuclear power plant construction is oriented to the WWER 10O0 type reactor. It is envisaged that 12 WWER 440 type reactors and four to five WWER 1000 type reactors will be commissioned till 1990. (J.P.)

  1. The nuclear power station

    International Nuclear Information System (INIS)

    Plettner, B.

    1987-04-01

    The processes taking place in a nuclear power plant and the dangers arising from a nuclear power station are described. The means and methods of controlling, monitoring, and protecting the plant and things that can go wrong are presented. There is also a short discourse on the research carried out in the USA and Germany, aimed at assessing the risks of utilising nuclear energy by means of the incident tree analysis and probability calculations. (DG) [de

  2. Nuclear power in Spain

    International Nuclear Information System (INIS)

    1979-01-01

    the plans of the Spanish Government to reduce their dependence on oil over the next ten years by a considerable increase in nuclear generating capacity are outlined. Data on the type, generating power, location and commissioning data of a number of nuclear power stations in Spain are tabulated. The use of foreign companies for the design and construction of the nuclear stations and the national organisations responsible for different aspects of the programme are considered. (UK)

  3. Nuclear power in space

    International Nuclear Information System (INIS)

    Aftergood, S.; Hafemeister, D.W.; Prilutsky, O.F.; Rodionov, S.N.; Primack, J.R.

    1991-01-01

    Nuclear reactors have provided energy for satellites-with nearly disastrous results. Now the US government is proposing to build nuclear-powered boosters to launch Star Wars defenses. These authors represent scientific groups that are opposed to the use of nuclear power in near space. The authors feel that the best course for space-borne reactors is to ban them from Earth orbit and use them in deep space

  4. Nuclear power experience

    International Nuclear Information System (INIS)

    Daglish, J.

    1982-01-01

    A report is given of a recent international conference convened by the IAEA to consider the technical and economic experience acquired by the nuclear industry during the past 30 years. Quotations are given from a number of contributors. Most authors shared the opinion that nuclear power should play a major role in meeting future energy needs and it was considered that the conference had contributed to make nuclear power more viable. (U.K.)

  5. Governance of nuclear power

    International Nuclear Information System (INIS)

    Allison, G.; Carnesale, A.; Zigman, P.; DeRosa, F.

    1981-01-01

    Utility decisions on whether to invest in nuclear power plants are complicated by uncertainties over future power demand, regulatory changes, public perceptions of nuclear power, and capital costs. A review of the issues and obstacles confronting nuclear power also covers the factors affecting national policies, focusing on three institutional questions: regulating the industry, regulating the regulators, and regulatory procedures. The specific recommendations made to improve safety, cost, and public acceptance will still not eliminate uncertainties unless the suggested fundamental changes are made. 29 references

  6. LAMPF: a nuclear research facility

    International Nuclear Information System (INIS)

    Livingston, M.S.

    1977-09-01

    A description is given of the recently completed Los Alamos Meson Physics Facility (LAMPF) which is now taking its place as one of the major installations in this country for the support of research in nuclear science and its applications. Descriptions are given of the organization of the Laboratory, the Users Group, experimental facilities for research and for applications, and procedures for carrying on research studies

  7. Seismic evaluation of existing nuclear power plants and other facilities V. 2. Proceedings of the technical committee meeting. Working material

    International Nuclear Information System (INIS)

    2002-01-01

    The objectives of this TCM are: to review the IAEA Safety Report on Seismic Evaluation of Existing Nuclear Power Plants in order to achieve a consensus among Member States on this matter and to discuss the outlines of an IAEA Co-ordinated Research Programme on specific topics related to this subject. This volume includes presentations of the member states describing the practical approach to evaluation of seismic equipment of the existing NPPs, validation of innovative systems for earthquake protection; seismic re-evaluation of the NPPs, seismic regulations and safety standards; and other activities related to seismic safety in Member States

  8. Seismic evaluation of existing nuclear power plants and other facilities V. 2. Proceedings of the technical committee meeting. Working material

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-01-01

    The objectives of this TCM are: to review the IAEA Safety Report on Seismic Evaluation of Existing Nuclear Power Plants in order to achieve a consensus among Member States on this matter and to discuss the outlines of an IAEA Co-ordinated Research Programme on specific topics related to this subject. This volume includes presentations of the member states describing the practical approach to evaluation of seismic equipment of the existing NPPs, validation of innovative systems for earthquake protection; seismic re-evaluation of the NPPs, seismic regulations and safety standards; and other activities related to seismic safety in Member States.

  9. Nuclear power under strain

    International Nuclear Information System (INIS)

    1978-08-01

    The German citizen faces the complex problem of nuclear power industry with slight feeling of uncertainty. The topics in question can only be briefly dealt with in this context, e.g.: 1. Only nuclear energy can compensate the energy shortage. 2. Coal and nuclear energy. 3. Keeping the risk small. 4. Safety test series. 5. Status and tendencies of nuclear energy planning in the East and West. (GL) [de

  10. Nuclear power and public opinion

    International Nuclear Information System (INIS)

    Kazanikov, I.A.; Klykov, S.A.

    2000-01-01

    The public opinion on Nuclear Power is not favorable. A purposeful work with public perception is necessary. One way to create a positive image of the nuclear industry is to improve public radiological education. This challenge can be resolved in the close cooperation with state school and preschool education. The formation about nuclear power should be simple and symbolical. Our society can be divided into 4 parts which can be called as target groups: First group - People from the nuclear industry with special education working at nuclear facilities or related to the industry. Second group - People working in the fields connected with nuclear power. Third group - People not related to nuclear power or even with negative impression to the industry. This group is the largest and the work required is the most difficult. Fourth group - The number of this group's members is the least, but it has strong influence on public opinion. 'Greens' and a broad spectrum of ecological organizations can be included in this group. (Authors)

  11. Strategy of nuclear power in Korea, non-nuclear-weapon state and peaceful use of nuclear power

    International Nuclear Information System (INIS)

    Nagasaki, Takao

    2005-01-01

    The nuclear power plant started at Kori in Korea in April, 1978. Korea has carried out development of nuclear power as a national policy. The present capacity of nuclear power plants takes the sixes place in the world. It supplies 42% total power generation. The present state of nuclear power plant, nuclear fuel cycle facility, strategy of domestic production of nuclear power generation, development of next generation reactor and SMART, strategy of export in corporation with industry, government and research organization, export of nuclear power generation in Japan, nuclear power improvement project with Japan, Korea and Asia, development of nuclear power system with nuclear diffusion resistance, Hybrid Power Extraction Reactor System, radioactive waste management and construction of joint management and treatment system of spent fuel in Asia are stated. (S.Y.)

  12. Nuclear power and public health

    International Nuclear Information System (INIS)

    1974-01-01

    The nuclear power industry has always emphasized the health and safety aspects of the various stages of power production. Nevertheless, the question of public acceptance is becoming increasingly important in the expansion of nuclear power programmes. Objections may arise partly from the tendency to accept familiar hazards but to react violently to unfamiliar ones such as radiation, which is not obvious to the senses and may result in delayed adverse effects, sometimes manifested only in the descendants of the individuals subjected to the radiation. The public health authorities therefore have an important role in educating the public to overcome these fears. However, they also have the duty to reassure the public and convince it that proper care has been taken to protect man and his environment. This duty can be fulfilled by means of independent evaluation and control to ensure that safe nuclear facilities are built, care is taken with their siting, they are operated safely, and the effects of possible accidents are minimized. The selection and development of a nuclear power facility should be carried out with a sound understanding of the factors involved. WHO has collaborated with the International Atomic Energy Agency (IAEA) in the preparation of a booklet summarizing the available information on the subject. It deals with the role of atomic energy in meeting future power needs, radiation protection standards, the safe handling of radioactive materials, disturbances of the environment arising from plant construction and ancillary operations, and the public health implications

  13. Nuclear power and public health

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1974-07-01

    The nuclear power industry has always emphasized the health and safety aspects of the various stages of power production. Nevertheless, the question of public acceptance is becoming increasingly important in the expansion of nuclear power programmes. Objections may arise partly from the tendency to accept familiar hazards but to react violently to unfamiliar ones such as radiation, which is not obvious to the senses and may result in delayed adverse effects, sometimes manifested only in the descendants of the individuals subjected to the radiation. The public health authorities therefore have an important role in educating the public to overcome these fears. However, they also have the duty to reassure the public and convince it that proper care has been taken to protect man and his environment. This duty can be fulfilled by means of independent evaluation and control to ensure that safe nuclear facilities are built, care is taken with their siting, they are operated safely, and the effects of possible accidents are minimized. The selection and development of a nuclear power facility should be carried out with a sound understanding of the factors involved. WHO has collaborated with the International Atomic Energy Agency (IAEA) in the preparation of a booklet summarizing the available information on the subject. It deals with the role of atomic energy in meeting future power needs, radiation protection standards, the safe handling of radioactive materials, disturbances of the environment arising from plant construction and ancillary operations, and the public health implications.

  14. Power Electronics and Electric Machines Facilities | Transportation

    Science.gov (United States)

    Research | NREL Facilities Power Electronics and Electric Machines Facilities NREL's power electronics and electric machines thermal management experimentation facilities feature a wide range of four researchers in discussion around a piece of laboratory equipment. Power electronics researchers

  15. A Swedish nuclear fuel facility and public acceptance

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Bengt A [ABB Atom (Sweden)

    1989-07-01

    For more than ten years the ABB Atom Nuclear Fuel Facility has gained a lot of public attention in Sweden. When the nuclear power debate was coming up in the middle of the seventies, the Nuclear Fuel Facility very soon became a spectacular object. It provided a possibility to bring factual information about nuclear power to the public. Today that public interest still exists. For ABB Atom the Facility works as a tool of information activities in several ways, as a solid base for ABB Atom company presentations. but also as a very practical demonstration of the nuclear power technology to the public. This is valid especially to satisfy the local school demand for a real life object complementary to the theoretical nuclear technology education. Beyond the fact that the Nuclear Fuel Facility is a very effective fuel production plant, it is not too wrong to see it as an important resource for education as well as a tool for improved public relations.

  16. A Swedish nuclear fuel facility and public acceptance

    International Nuclear Information System (INIS)

    Andersson, Bengt A.

    1989-01-01

    For more than ten years the ABB Atom Nuclear Fuel Facility has gained a lot of public attention in Sweden. When the nuclear power debate was coming up in the middle of the seventies, the Nuclear Fuel Facility very soon became a spectacular object. It provided a possibility to bring factual information about nuclear power to the public. Today that public interest still exists. For ABB Atom the Facility works as a tool of information activities in several ways, as a solid base for ABB Atom company presentations. but also as a very practical demonstration of the nuclear power technology to the public. This is valid especially to satisfy the local school demand for a real life object complementary to the theoretical nuclear technology education. Beyond the fact that the Nuclear Fuel Facility is a very effective fuel production plant, it is not too wrong to see it as an important resource for education as well as a tool for improved public relations

  17. Worldwide nuclear power

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    Worldwide Nuclear Power (WNP) is a companion volume to Update. Our objective in the publication of WNP is to provide factual information on nuclear power programs and policies in foreign countries to U.S. policymakers in the Federal Government. Facts about the status of nuclear activities abroad should be available to those who are instrumental in defining the direction of nuclear power in the U.S. WNP is prepared by the Office of Nuclear Energy from reports obtained from foreign embassies in Washington, U.S. Embassies overseas, foreign and domestic publications, participation in international studies, and personal communications. It consists of two types of information, tabular and narrative. Domestic nuclear data is included only where its presence is needed to provide easy and immediate comparisons with foreign data. In general, complete U.S. information will be found in Update

  18. Nuclear power statistics 1985

    International Nuclear Information System (INIS)

    Oelgaard, P.L.

    1986-06-01

    In this report an attempt is made to collect literature data on nuclear power production and to present it on graphical form. Data is given not only for 1985, but for a number of years so that the trends in the development of nuclear power can be seen. The global capacity of nuclear power plants in operation and those in operation, under construction, or on order is considered. Further the average capacity factor for nuclear plants of a specific type and for various geographical areas is given. The contribution of nuclear power to the total electricity production is considered for a number of countries and areas. Finally, the accumulated years of commercial operation for the various reactor types up to the end of 1985 is presented. (author)

  19. Nuclear facility safeguards as specified by the Czechoslovak administrative law

    International Nuclear Information System (INIS)

    Elias, J.; Svab, J.

    1978-01-01

    A study is presented of the legal aspects of nuclear safeguards for the operation of nuclear power facilities evaluating the development of the legal arrangement over the past five years, i.e., encoding nuclear safeguards for nuclear facilities in the new building regulations (Act No. 50/1976 Coll. of Laws on Urban Planning and Building Regulations and implementing provisions). It also discusses the juridical position of State surveillance over the nuclear safety of nuclear facilities and its relation to surveillance carried out by specialized bodies of the State work safety inspection and to surveillance carried out by hygiene inspection bodies. (J.S.)

  20. Nuclear power: European report

    International Nuclear Information System (INIS)

    Anon.

    2005-01-01

    In 2004, nuclear power plants were operated and/or built in eighteen European countries. Thirteen of these countries are members of EU-25. Five of the ten countries joining the European Union on May 1, 2004 operate nuclear power stations. A total of 206 power reactors with a gross power of 181,941 MWe and a net power of 172,699 MWe were in operation at the end of the year. In 2004, one nuclear power plant was commissioned in Russia (Kalinin 3), two (Kmelnitzki 2 and Rowno 4) in Ukraine. Five nuclear power plants were decommissioned in Europe in the course of 2004. As announced in 2000, the Chapelcross 1 to Chapelcross 4 plants in Britain were shut down for economic reasons. In Lithuania, the Ignalina 1 unit was disconnected from the power grid, as had been demanded by the EU Commission within the framework of the negotiations about the country's accession to the EU. As a result of ongoing technical optimization in some plants, involving increases in reactor power or generator power as well as commissioning of plants of higher capacity, nuclear generating capacity increased by approx. 1.5 GW. In late 2004, four nuclear generating units were under construction in Finland (1), Romania (1), and Russia (2). 150 nuclear power plants were operated in thirteen states of the European Union (EU-25), which is sixteen more than the year before as a consequence of the accession of new countries. They had an aggregate gross power of 137,943 MWe and a net power of 131,267 MWe, generating approx. 983 billion gross kWh of electricity in 2003, thus again contributing some 32% to the public electricity supply in the EU-25. In largest share of nuclear power in electricity generation is found in Lithuania (80%), followed by 78% in France, 57% in the Slovak Republic, 56% in Belgium, and 46% in Ukraine. In several countries not operating nuclear power plants of their own, such as Italy, Portugal, and Austria, nuclear power makes considerable contributions to public electricity supply as

  1. The nuclear power cycle

    International Nuclear Information System (INIS)

    2004-01-01

    Fifty years after the first nuclear reactor come on-line, nuclear power is fourth among the world's primary energy sources, after oil, coal and gas. In 2002, there were 441 reactors in operation worldwide. The United States led the world with 104 reactors and an installed capacity of 100,000 MWe, or more than one fourth of global capacity. Electricity from nuclear energy represents 78% of the production in France, 57% in Belgium, 46% in Sweden, 40% in Switzerland, 39% in South Korea, 34% in Japan, 30% in Germany, 30% in Finland, 26% in Spain, 22% in Great Britain, 20% in the United States and 16% in Russia. Worldwide, 32 reactors are under construction, including 21 in Asia. This information document presents the Areva activities in the nuclear power cycle: the nuclear fuel, the nuclear reactors, the spent fuel reprocessing and recycling and nuclear cleanup and dismantling. (A.L.B.)

  2. Commercial nuclear power 1990

    International Nuclear Information System (INIS)

    1990-01-01

    This report presents the status at the end of 1989 and the outlook for commercial nuclear capacity and generation for all countries in the world with free market economies (FME). The report provides documentation of the US nuclear capacity and generation projections through 2030. The long-term projections of US nuclear capacity and generation are provided to the US Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) for use in estimating nuclear waste fund revenues and to aid in planning the disposal of nuclear waste. These projections also support the Energy Information Administration's annual report, Domestic Uranium Mining and Milling Industry: Viability Assessment, and are provided to the Organization for Economic Cooperation and Development. The foreign nuclear capacity projections are used by the DOE uranium enrichment program in assessing potential markets for future enrichment contracts. The two major sections of this report discuss US and foreign commercial nuclear power. The US section (Chapters 2 and 3) deals with (1) the status of nuclear power as of the end of 1989; (2) projections of nuclear capacity and generation at 5-year intervals from 1990 through 2030; and (3) a discussion of institutional and technical issues that affect nuclear power. The nuclear capacity projections are discussed in terms of two projection periods: the intermediate term through 2010 and the long term through 2030. A No New Orders case is presented for each of the projection periods, as well as Lower Reference and Upper Reference cases. 5 figs., 30 tabs

  3. Operational status of nuclear facilities in Japan. 2012 edition

    International Nuclear Information System (INIS)

    2012-01-01

    This document is a compilation which provides an outline of the administration of nuclear facility safety regulations as well as various data including operational status, the status of periodical and safety inspections, the status of issues, and radiation management on nuclear power reactor facilities, reactor facilities in the research and development stage, and fabrication, reprocessing, disposal, and storage facilities in fiscal year 2011 (from April 2011 to March 2012). (J.P.N.)

  4. Nuclear power in India

    International Nuclear Information System (INIS)

    Bose, D.K.

    1980-01-01

    India has now nine years of experience with her in nuclear power generation. The system has been acclaimed on various grounds by the authority concerned with its organization in the country. The present paper intends to examine critically the claim for economic superiority of the nuclear power over the thermal power which is asserted often by the spokesmen for the former. Information about the cost of nuclear power that is available to researchers in India is very meagre. Whatever appears in official publications is hardly adequate for working out reasonable estimates for scrutiny. One is therefore left to depend on the public statements made by dignitaries from time to time to form an idea about the economics of nuclear power. Due to gaps in information we are constrained to rely on the foreign literature and make careful guesses about possible costs applicable to India

  5. Radioiodine removal in nuclear facilities

    International Nuclear Information System (INIS)

    1980-01-01

    Technical means are reviewed available for the retention of radioiodine in nuclear power plants and fuel reprocessing plants, its immobilization, storage, and disposal. The removal of iodine species from gaseous effluents of nuclear power plants using impregnated activated charcoal is dealt with. Various scrubbing techniques for trapping iodine from the head-end and dissolver off-gases are discussed as well as solid adsorbents for iodine which may be used to clean up other gaseous streams. Current practices and activities for radioiodine treatment and management in Belgian, Dutch, Swedish, USSR and UK nuclear installations are presented

  6. LDC nuclear power: Brazil

    International Nuclear Information System (INIS)

    Johnson, V.

    1982-01-01

    Brazil has been expanding its nuclear power since 1975, following the Bonn-Brasilia sales agreement and the 1974 denial of US enriched uranium, in an effort to develop an energy mix that will reduce dependence and vulnerability to a single energy source or supplier. An overview of the nuclear program goes on to describe domestic non-nuclear alternatives, none of which has an adequate base. The country's need for transfers of capital, technology, and raw materials raises questions about the advisability of an aggressive nuclear program in pursuit of great power status. 33 references

  7. Nuclear power - the future

    International Nuclear Information System (INIS)

    Hann, J.

    1991-01-01

    It is asserted by the author that nuclear power is the only available resource - indeed the only solution to an ever-increasing demand for energy in the United Kingdom over the next 50-100 years. It must be the cornerstone of a practical integrated energy policy, covering that sort of time-scale. In fact, it is going to be a strategic necessity. In this paper the background to establishing a policy is sketched. An explanation is given of what the nuclear industry is doing so as to ensure that the nuclear option is very definitely retained as a result of the 1994 Review of nuclear power in the UK. (author)

  8. Introduction to nuclear facilities engineering

    International Nuclear Information System (INIS)

    Sapy, Georges

    2012-06-01

    Engineering, or 'engineer's art', aims at transforming simple principle schemes into operational facilities often complex especially when they concern the nuclear industry. This transformation requires various knowledge and skills: in nuclear sciences and technologies (nuclear physics, neutronics, thermal-hydraulics, material properties, radiation protection..), as well as in non-nuclear sciences and technologies (civil engineering, mechanics, electricity, computer sciences, instrumentation and control..), and in the regulatory, legal, contractual and financial domains. This book explains how this huge body of knowledge and skills must be organized and coordinated to create a reliable, exploitable, available, profitable and long-lasting facility, together with respecting extremely high safety, quality, and environmental impact requirements. Each aspect of the problem is approached through the commented presentation of nuclear engineering macro-processes: legal procedures and administrative authorizations, nuclear safety/radiation protection/security approach, design and detailed studies, purchase of equipments, on-site construction, bringing into operation, financing, legal, contractual and logistic aspects, all under the global control of a project management. The 'hyper-complexness' of such an approach leads to hard points and unexpected events. The author identifies the most common ones and proposes some possible solutions to avoid, mitigate or deal with them. In a more general way, he proposes some thoughts about the performance factors of a nuclear engineering process

  9. Meteorological instrumentation for nuclear facilities

    International Nuclear Information System (INIS)

    Costa, A.C.L. da.

    1983-01-01

    The main requirements of regulatory agencies, concerning the meteorological instrumentation needed for the licensing of nuclear facilities are discussed. A description is made of the operational principles of sensors for the various meteorological parameters and associated electronic systems. An analysis of the problems associated with grounding of a typical meteorological station is presented. (Author) [pt

  10. Nuclear reactor containing facility

    International Nuclear Information System (INIS)

    Hidaka, Masataka; Murase, Michio.

    1994-01-01

    In a reactor containing facility, a condensation means is disposed above the water level of a cooling water pool to condensate steams of the cooling water pool, and return the condensated water to the cooling water pool. Upon occurrence of a pipeline rupture accident, steams generated by after-heat of a reactor core are caused to flow into a bent tube, blown from the exit of the bent tube into a suppression pool and condensated in a suppression pool water, thereby suppressing the pressure in the reactor container. Cooling water in the cooling water pool is boiled by heat conduction due to the condensation of steams, then the steams are exhausted to the outside of the reactor container to remove the heat of the reactor container to the outside of the reactor. In addition, since cooling water is supplied to the cooling water pool quasi-permanently by gravity as a natural force, the reactor container can be cooled by the cooling water pool for a long period of time. Since the condensation means is constituted with a closed loop and interrupted from the outside, radioactive materials are never released to the outside. (N.H.)

  11. Nuclear power project management information system

    International Nuclear Information System (INIS)

    Zou Lailong; Zhang Peng; Xiao Ziyan; Chun Zengjun; Huang Futong

    2001-01-01

    Project Management Information System is an important infrastructure facility for the construction and operation of Nuclear Power Station. Based on the practice of Lingao nuclear power project management information system (NPMIS), the author describes the NPMIS design goals, system architecture and software functionality, points out the outline issues during the development and deployment of NPMIS

  12. Ensuring radiation safety during construction of the facility ''Ukrytie'' and restoration of unit 3 of the Chernobyl nuclear power station

    International Nuclear Information System (INIS)

    Belovodsky, L.F.; Panfilov, A.P.

    1997-01-01

    On April 26, 1986, an accident at the fourth power unit of the Chernobyl NPS (ChNPS) destroyed the reactor core and part of the power unit building, whereby sizeable amounts of radioactive materials, stored in reactor at operation, were released into the environment, and there were also highly active fragments of fuel elements and pieces of graphite from reactor spread on ChNPS site near to safety block. Information on the accident at ChNPS, including its cause and consequences, was considered at special meeting, conducted by IAEA on August 25-29, 1986, in Vienna. In final report of International Advisory Group for Nuclear Safety (IAGNS), prepared by results of meeting activities, the main stages of the accident effects elimination (AEE) immediately on the station site according to the data, received before August 1, 1986, were discussed. In 1987-1990 the published materials on the later period of AEE, completed by building ''Ukrytie'' installation at the fourth power unit of ChNPS

  13. 8. High power laser and ignition facilities

    International Nuclear Information System (INIS)

    Bayramian, A.J.; Beach, R.J.; Bibeau, C.

    2002-01-01

    This document gives a review of the various high power laser projects and ignition facilities in the world: the Mercury laser system and Electra (Usa), the krypton fluoride (KrF) laser and the HALNA (high average power laser for nuclear-fusion application) project (Japan), the Shenguang series, the Xingguang facility and the TIL (technical integration line) facility (China), the Vulcan peta-watt interaction facility (UK), the Megajoule project and its feasibility phase: the LIL (laser integration line) facility (France), the Asterix IV/PALS high power laser facility (Czech Republic), and the Phelix project (Germany). In Japan the 100 TW Petawatt Module Laser, constructed in 1997, is being upgraded to the world biggest peta-watt laser. Experiments have been performed with single-pulse large aperture e-beam-pumped Garpun (Russia) and with high-current-density El-1 KrF laser installation (Russia) to investigate Al-Be foil transmittance and stability to multiple e-beam irradiations. An article is dedicated to a comparison of debris shield impacts for 2 experiments at NIF (national ignition facility). (A.C.)

  14. Environmental hazards from nuclear power plants

    International Nuclear Information System (INIS)

    Bockelmann, D.

    1973-04-01

    The article discusses the radiation exposure due to nuclear power stations in normal operation and after reactor incidents. Also mentioned is the radiation exposure to the emissions from fuel reprocessing plants and radioactive waste facilities. (RW/AK) [de

  15. Collaborative Russian-US work in nuclear material protection, control and accounting at the Institute of Physics and Power Engineering. II. extension to additional facilities

    International Nuclear Information System (INIS)

    Kuzin, V.V.; Pshakin, G.M.; Belov, A.P.

    1996-01-01

    During 1995, collaborative Russian-US nuclear material protection, control and accounting (MPC ampersand A) tasks at the Institute of Physics and Power Engineering (IPPE) in Obninsk, Russia focused on improving the protection of nuclear materials at the BFS Fast Critical Facility. BFS has thousands of fuel disks containing highly enriched uranium and weapons-grade plutonium that are used to simulate the core configurations of experimental reactors in two critical assemblies. Completed tasks culminated in demonstrations of newly implemented equipment and methods that enhanced the MPC ampersand A at BFS through computerized accounting, nondestructive inventory verification measurements, personnel identification and assess control, physical inventory taking, physical protection, and video surveillance. The collaborative work is now being extended. The additional tasks encompass communications and tamper-indicating devices; new storage alternatives; and systemization of the MPC ampersand A elements that are being implemented

  16. Report on operation of nuclear facilities in Slovenia in 1991

    International Nuclear Information System (INIS)

    1992-11-01

    Slovenian Nuclear Safety Administration (SNSA) is responsible for: nuclear safety, transport of nuclear and radioactive materials, safeguarding nuclear materials, and conducting regulatory process related to liability for nuclear damage, qualification and training of operators at nuclear facilities, quality assurance and inspection of nuclear facilities. The major nuclear facility supervised by SNSA is the Nuclear Power Plant in Krsko with a pressurized water reactor of 632 MW electric power. Beside the nuclear power plant, TRIGA Mark 11 Research Reactor of 250 kW thermal power operates within the Reactor Center of Jozef Stefan Institute. There is an interim storage of low and medium radioactive waste at the Reactor Center. Also the Uranium mine Zirovski Vrh was supervised by SNSA. All the nuclear power facilities in Republic of Slovenia were operating safely in 1991. There were no significant events that could be evaluated as a safety problem or a breach of technical specifications. A great part of activities of SNSA was focused on the next visit of the IAEA OSART team (Operational Safety Assessment Review Team) in Krsko Nuclear Power Plant and on the visit of the INSARR mission (Integrated Safety Assessment of Research Reactors) for the TRIGA Mark 11 Research Reactor. (author)

  17. Development of nuclear power

    International Nuclear Information System (INIS)

    1962-01-01

    An extensive discussion of problems concerning the development of nuclear power took place at the fifth regular session of the IAEA General Conference in September-October 1961. Not only were there many references in plenary meetings to the nuclear power plans of Member States, but there was also a more specific and detailed debate on the subject, especially on nuclear power costs, in the Program, Technical and Budget Committee of the Conference. The Conference had before it a report from the Board of Governors on the studies made by the Agency on the economics of nuclear power. In addition, it had been presented with two detailed documents, one containing a review of present-day costs of nuclear power and the other containing technical and economic information on several small and medium-sized power reactors in the United States. The Conference was also informed of the report on methods of estimating nuclear power costs, prepared with the assistance of a panel of experts convened by the Agency, which was reviewed in the July 1961 issue of this Bulletin

  18. Development of nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1962-01-15

    An extensive discussion of problems concerning the development of nuclear power took place at the fifth regular session of the IAEA General Conference in September-October 1961. Not only were there many references in plenary meetings to the nuclear power plans of Member States, but there was also a more specific and detailed debate on the subject, especially on nuclear power costs, in the Program, Technical and Budget Committee of the Conference. The Conference had before it a report from the Board of Governors on the studies made by the Agency on the economics of nuclear power. In addition, it had been presented with two detailed documents, one containing a review of present-day costs of nuclear power and the other containing technical and economic information on several small and medium-sized power reactors in the United States. The Conference was also informed of the report on methods of estimating nuclear power costs, prepared with the assistance of a panel of experts convened by the Agency, which was reviewed in the July 1961 issue of this Bulletin

  19. 600 MW nuclear power database

    International Nuclear Information System (INIS)

    Cao Ruiding; Chen Guorong; Chen Xianfeng; Zhang Yishu

    1996-01-01

    600 MW Nuclear power database, based on ORACLE 6.0, consists of three parts, i.e. nuclear power plant database, nuclear power position database and nuclear power equipment database. In the database, there are a great deal of technique data and picture of nuclear power, provided by engineering designing units and individual. The database can give help to the designers of nuclear power

  20. Life Management and Safety of Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Fabbri, S.; Diluch, A.; Vega, G., E-mail: fabbri@cnea.gov.ar [Comisión Nacional de Energía Atómica, Buenos Aires (Argentina)

    2014-10-15

    The nuclear programme in Argentina includes: nuclear power and related supplies, medical and industrial applications, waste management, research and development and human training. Nuclear facilities require life management programs that allow a safe operation. Safety is the first priority for designers and operators. This can be attained with defence in depth: regular inspections and maintenance procedures to minimize failure risks. CNEA objectives in this area are to possess the necessary capability to give safe and fast technical support. Within this scheme, one of the main activities undertaken by CNEA is to provide technological assistance to the nuclear plants and research reactors. As a consequence of an increasing concern about safety and ageing a Life Management Department for safe operation was created to take care of these subjects. The goal is to elaborate a Safety Evaluation Process for the critical components of nuclear plants and other facilities. The overall objectives of a safety process are to ensure a continuous safe, reliable and effective operation of nuclear facilities and it means the implementation of the defence in deep concept to enhance safety for the protection of the public, the workers and the environment. (author)

  1. Nuclear power experience

    International Nuclear Information System (INIS)

    1983-01-01

    The International Conference on Nuclear Power Experience, organized by the International Atomic Energy Agency, was held at the Hofburg Conference Center, Vienna, Austria, from 13 to 17 September 1982. Almost 1200 participants and observers from 63 countries and 20 organizations attended the conference. The 239 papers presented were grouped under the following seven main topics: planning and development of nuclear power programmes; technical and economic experience of nuclear power production; the nuclear fuel cycle; nuclear safety experience; advanced systems; international safeguards; international co-operation. The proceedings are published in six volumes. The sixth volume contains a complete Contents of Volume 1 to 5, a List of Participants, Authors and Transliteration Indexes, a Subject Index and an Index of Papers by Number

  2. The nuclear power generation

    International Nuclear Information System (INIS)

    Serres, R.

    1999-01-01

    The French nuclear generating industry is highly competitive. The installations have an average age of fifteen years and are half way through their expected life. Nuclear power accounts for 70% of the profits of the French generating company, EDF. Nuclear generation has a minimal effect on the atmosphere and France has a level of CO 2 emissions, thought to be the main cause of the greenhouse effect, half that of Europe as a whole. The air in France is purer than in neighbouring countries, mainly because 75% of all electrical power is generated in nuclear plants and 15% in hydroelectric stations. The operations and maintenance of French nuclear power plants in the service and distribution companies out of a total of 100 000 employees in all, 90 % of whom are based in mainland France. (authors)

  3. Canada's nuclear power programme

    International Nuclear Information System (INIS)

    Peden, W.

    1976-01-01

    Although Canada has developed the CANDU type reactor, and has an ambitious programme of nuclear power plant construction, there has been virtually no nuclear controversy. This progress was seen as a means to bring Canada out of the 'resource cow' era, and onto a more equal footing with technologically elite nations. However the Indian nuclear explosion test, waste storage problems, contamination problems arising from use of uranium ore processing waste as land fill and subsidised sale of nuclear power plants to Argentina and South Korea have initiated public and parliamentary interest. Some economists have also maintained that Canada is approaching over-supply of nuclear power and over-investment in plant. Canada has no official overall energy production plan and alternative sources have not been evaluated. (JIW)

  4. Without nuclear power

    International Nuclear Information System (INIS)

    1987-01-01

    The arguments put forward by the SPD point to the following: Backing out of nuclear power is a must, because of the awful quality of the hazards involved; because there can be no real separation guaranteed between civil and military utilisation of nuclear energy; for reasons of international responsibility; because we must not pass the buck on to the next generation; because social compatibility must be achieved; because the story of the 'cheap' nuclear generation of electricity is a fairy tale; because nuclear power pushes back coal as an energy source; because current ecological conditions call for abandonment of nuclear power, and economic arguments do not really contradict them. A reform of our energy system has to fulfill four requirements: Conserve energy; reduce and avoid environmental pollution; use renewable energy sources as the main sources; leave to the next generation the chance of choosing their own way of life. (HSCH) [de

  5. Nuclear power and safety

    International Nuclear Information System (INIS)

    Saunders, P.; Tasker, A.

    1991-01-01

    Nuclear power currently provides about a fifth of both Britain's and the world's electricity. It is the largest single source of electricity in Western Europe; in France three quarters of electricity is generated by nuclear power stations. This booklet is about the safety of those plants. It approaches the subject by outlining the basic principles and approaches behind nuclear safety, describing the protective barriers and safety systems that are designed to prevent the escape of radioactive material, and summarising the regulations that govern the construction and operation of nuclear power stations. The aim is to provide a general understanding of the subject by explaining the general principles of the Advanced Gas Cooled Reactor and setting out the UKAEA strategy for nuclear safety, the objective being always to minimize risk. (author)

  6. Nuclear Power in Korea

    International Nuclear Information System (INIS)

    Ha, Duk-Sang

    2009-01-01

    Full text: Korea's nuclear power program has been promoted by step-by-step approach; the first stage was 1970's when it depended on the foreign contractors' technology and the second was 1980's when it accumulated lots of technology and experience by jointly implementing the project. Lastly in the third stage in 1990's, Korea successfully achieved the nuclear power technological self-reliance and developed its standard nuclear power plant, so-called Optimized Power Reactor 1000 (OPR 1000). Following the development of OPR 1000, Korea has continued to upgrade the design, known as the Advanced Power Reactor 1400 (APR 1400) and APR+. Korea is one of the countries which continuously developed the nuclear power plant projects during the last 30 years while the other advanced countries ceased the project, and therefore, significant reduction of project cost and construction schedule were possible which benefits from the repetition of construction project. And now, its nuclear industry infrastructure possesses the strong competitiveness in this field.The electricity produced from the nuclear power is 150,958 MWh in 2008, which covers approximately 36% of the total electricity demand in Korea, while the installed capacity of nuclear power is 17,716 MW which is 24% of the total installed capacity. We are currently operating 20 units of nuclear power plants in Korea, and also are constructing 8 additional units (9,600 MW). Korea's nuclear power plants have displayed their excellent operating performance; the average plant capacity factor was 93.4% in 2008, which are about 15% higher than the world average of 77.8%. Moreover, the number of unplanned trips per unit was only 0.35 in 2008, which is the world top class performance. Also currently we are operating four CANDU nuclear units in Korea which are the same reactor type and capacity as the Cernavoda Units. They have been showing the excellent operating performance, of which capacity in 2008 is 92.8%. All the Korean

  7. The future of nuclear power

    International Nuclear Information System (INIS)

    Zeile, H.J.

    1987-01-01

    Present conditions and future prospects for the nuclear power industry in the United States are discussed. The presentation includes a review of trends in electrical production, the safety of coal as compared to nuclear generating plants, the dangers of radiation, the economics of nuclear power, the high cost of nuclear power in the United States, and the public fear of nuclear power. 20 refs

  8. Does nuclear power-related facility siting always lower the local property Values? Comparative analysis among the sites in Japan

    International Nuclear Information System (INIS)

    Yamane, Fumihiro; Ohgaki, Hideaki; Asano, Kota

    2011-01-01

    Yamane et al. (2011) carried out hedonic house rent analyses for several nuclear power plant sites in Japan, compared the result for each plant, and obtained some empirical results indicating that the local residents' marginal willingness-to-pay (MWTP) for living near the plant was not necessarily positive and that the MWTP was correlated with operation years of the plants and some of the host communities' attributes (i.e., population density, financial condition and public service improvement). However, these results may suffer from biases and inefficiency in estimating hedonic functions, caused by spatial dependency: spatial autoregression and spatial autocorrelation. In this paper, we introduce spatial econometric techniques to settle this problem. As a revised result, it is indicated that the local residents' MWTP is correlated with past accidents in the plants, education service improvement in the host communities and so on. (author)

  9. Nuclear power industry, 1981

    International Nuclear Information System (INIS)

    1981-12-01

    The intent of this publication is to provide a single volume of resource material that offers a timely, comprehensive view of the nuclear option. Chapter 1 discusses the development of commercial nuclear power from a historical perspective, reviewing the factors and events that have and will influence its progress. Chapters 2 through 5 discuss in detail the nuclear powerplant and its supporting fuel cycle, including various aspects of each element from fuel supply to waste management. Additional dimension is brought to the discussion by Chapters 6 and 7, which cover the Federal regulation of nuclear power and the nuclear export industry. This vast body of thoroughly documented information offers the reader a useful tool in evaluating the record and potential of nuclear energy in the United States

  10. Safety and nuclear power

    International Nuclear Information System (INIS)

    Gittus, John; Gunning, Angela.

    1988-01-01

    Representatives of the supporters and opponents of civil nuclear power put forward the arguments they feel the public should consider when making up their mind about the nuclear industry. The main argument in favour of nuclear power is about the low risk in comparison with other risks and the amount of radiation received on average by the population in the United Kingdom from different sources. The aim is to show that the nuclear industry is fully committed to the cause of safety and this has resulted in a healthy workforce and a safe environment for the public. The arguments against are that the nuclear industry is deceitful, secretive and politically motivated and thus its arguments about safety, risks, etc, cannot be trusted. The question of safety is considered further - in particular the perceptions, definitions and responsibility. The economic case for nuclear electricity is not accepted. (U.K.)

  11. Nuclear power training courses

    International Nuclear Information System (INIS)

    1977-01-01

    The training of technical manpower for nuclear power projects in developing countries is now a significant part of the IAEA Technical Assistance Programme. Two basic courses are the cornerstones of the Agency's training programme for nuclear power: a course in planning and implementation, and a course in construction and operation management. These two courses are independent of each other. They are designed to train personnel for two distinct phases of project implementation. The nuclear power project training programme has proven to be successful. A considerable number of highly qualified professionals from developing countries have been given the opportunity to learn through direct contact with experts who have had first-hand experience. It is recognized that the courses are not a substitute for on-the-job training, but their purpose is achieved if they have resulted in the transfer of practical, reliable information and have helped developing countries to prepare themselves for the planning, construction and operation management of nuclear power stations

  12. Nuclear power plant construction

    International Nuclear Information System (INIS)

    Lima Moreira, Y.M. de.

    1979-01-01

    The legal aspects of nuclear power plant construction in Brazil, derived from governamental political guidelines, are presented. Their evolution, as a consequence of tecnology development is related. (A.L.S.L.) [pt

  13. Nuclear power plant siting

    International Nuclear Information System (INIS)

    Sulkiewicz, M.; Navratil, J.

    The construction of a nuclear power plant is conditioned on territorial requirements and is accompanied by the disturbance of the environment, land occupation, population migration, the emission of radioactive wastes, thermal pollution, etc. On the other hand, a nuclear power plant makes possible the introduction of district heating and increases the economic and civilization activity of the population. Due to the construction of a nuclear power plant the set limits of negative impacts must not be exceeded. The locality should be selected such as to reduce the unfavourable effects of the plant and to fully use its benefits. The decision on the siting of the nuclear power plant is preceded by the processing of a number of surveys and a wide range of documentation to which the given criteria are strictly applied. (B.H.)

  14. Nuclear power in Pakistan

    International Nuclear Information System (INIS)

    Siddiqui, Z.H.; Qureshi, I.H.

    2005-01-01

    Pakistan started its nuclear power program by installing a 137 M We Canadian Deuterium Reactor (Candu) at Karachi in 1971 which became operational in 1972. The post-contract technical support for the Karachi Nuclear Power Plant (KANUPP) was withdrawn by Canada in 196 as a consequence of Indian nuclear device test in 1974. In spite of various difficulties PAEC resolved to continue to operate KANUPP and started a process for the indigenous fabrication of spare parts and nuclear fuel. The first fuel bundle fabricated in Pakistan was loaded in the core in 1980. Since then KANUPP has been operating on the indigenously fabricated fuel. The plant computer systems and the most critical instrumentation and Control system were also replaced with up-to date technology. In 2002 KANUPP completed its original design life of 30 year. A program for the life extension of the plant had already been started. The second nuclear power plant of 300 M We pressurized water reactor purchased from China was installed in Chashma in 1997, which started commercial operations in 2001. Another unit of 300 M We will be installed at Chashma in near future. These nuclear power plants have been operating under IAEA safeguards agreements. PAEC through the long-term performance of the two power plants has demonstrated its competence to safely and successfully operate and maintain nuclear power plants. Pakistan foresees an increasingly important and significant share of nuclear power in the energy sector. The Government has recently allocated a share of 8000 MWe for nuclear energy in the total energy scenario of Pakistan by the year 2025. (author)

  15. The Korean nuclear power program

    International Nuclear Information System (INIS)

    Choi, Chang Tong

    1996-01-01

    Although the world nuclear power industry may appear to be in decline, continued nuclear power demand in Korea indicates future opportunities for growth and prosperity in this country. Korea has one of the world's most vigorous nuclear power programs. Korea has been an active promoter of nuclear power generation since 1978, when the country introduced nuclear power as a source of electricity. Korea now takes pride in the outstanding performance of its nuclear power plants, and has established a grand nuclear power scheme. This paper is aimed at introducing the nuclear power program of Korea, including technological development, international cooperation, and CANDU status in Korea. (author). 2 tabs

  16. Commercial nuclear power 1989

    International Nuclear Information System (INIS)

    1989-01-01

    This report presents historical data on commercial nuclear power in the United States, with projections of domestic nuclear capacity and generation through the year 2020. The report also gives country-specific projections of nuclear capacity and generation through the year 2010 for other countries in the world outside centrally planned economic areas (WOCA). Information is also presented regarding operable reactors and those under construction in countries with centrally planned economies. 39 tabs

  17. [Nuclear News -- Power

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-11-01

    The topics discussed in this section are: (1) NU(Northeast Utilities) receives largest court fine levied for false records. (2) ComEd nuclear fleet has best-ever performance. (3) Perry and Beaver Valley now run by First Energy Nuclear. (4) Slight reactor power increases may save dollars; (5) Nuclear plants shares to change hands. (6) Y2K nonsafety-related work scheduled for completion. (7) New NRC plan for reviewing plant license transfers with foreign ownership.

  18. Nuclear power and acceptation

    International Nuclear Information System (INIS)

    Speelman, J.E.

    1990-01-01

    In 1989 a workshop was held organized by the IAEA and the Argonne National Laboratory. The purpose was to investigate under which circumstances a large-scale extension of nuclear power can be accepted. Besides the important technical information, the care for the environment determined the atmosphere during the workshop. The opinion dominated that nuclear power can contribute in tackling the environment problems, but that the social and political climate this almost makes impossible. (author). 7 refs.; 1 fig.; 1 tab

  19. Discounting and nuclear power

    International Nuclear Information System (INIS)

    Jones, P.M.S.

    1984-01-01

    The paper describes the practice of discounting and its applicability to nuclear power, and the choice of discount rates. Opportunity cost of capital; risk; social time preference; intergenerational equity; non-monetary aspects; and discounting and nuclear energy; are all discussed. (U.K.)

  20. Nuclear power and leukaemia

    International Nuclear Information System (INIS)

    Grimston, M.

    1991-03-01

    This booklet describes the nature of leukaemia, disease incidence in the UK and the possible causes. Epidemiological studies observing rates of leukaemia near nuclear power stations in the UK and other parts of the world are discussed. Possible causes of leukaemia excesses near nuclear establishments include radioactive discharges into the environment, paternal radiation exposure and viral causes. (UK)

  1. Nuclear Power Plant Technician

    Science.gov (United States)

    Randall, George A.

    1975-01-01

    The author recognizes a body of basic knowledge in nuclear power plant technoogy that can be taught in school programs, and lists the various courses, aiming to fill the anticipated need for nuclear-trained manpower--persons holding an associate degree in engineering technology. (Author/BP)

  2. Nuclear power for beginners

    International Nuclear Information System (INIS)

    Croall, S.; Sempler, K.

    1978-01-01

    A 'comic strip' account of nuclear power, covering weapons and weapons proliferation, reactor accidents involving human errors, radiation hazards, radioactive waste management and the fuel cycle, fast breeder reactors and plutonium, security, public relations and sociological aspects, energy consumption patterns, energy conservation and alternative energy sources, environmental aspects and anti-nuclear activities. (U.K.)

  3. Progress by nuclear power

    International Nuclear Information System (INIS)

    Creamer, A.

    1980-01-01

    United States scientist Petr Beckmann predicts that there will eventually be nuclear power stations in the Transvaal in South Africa. This will take place for two reasons: to decrease pollution problems and to ensure economic advancement. He also refers to the the toxicity of nuclear wastes and coal wastes

  4. World status - nuclear power

    International Nuclear Information System (INIS)

    Holmes, A.

    1984-01-01

    The problems of nuclear power are not so much anti-nuclear public opinion, but more the decrease of electricity consumption growth rate and the high cost of building reactors. Because of these factors, forecasts of world nuclear capacity have had to be reduced considerably over the last three years. The performance of reactors is considered. The CANDU reactor remains the world's best performer and overall tends to out-perform larger reactors. The nuclear plant due to come on line in 1984 are listed by country; this shows that nuclear capacity will increase substantially over a short period. At a time of stagnant demand this will make nuclear energy an important factor in the world energy balance. Nuclear power stations in operation and under construction in 1983 are listed and major developments in commercial nuclear power in 1983 are taken country by country. In most, the report is the same; national reactor ordering cut back because the expected increase in energy demand has not happened. Also the cost-benefit of nuclear over other forms of energy is no longer as favourable. The export opportunities have also declined as many of the less developed countries are unable to afford reactors. (U.K.)

  5. Remote handling technology for nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Sakai, Akira; Maekawa, Hiromichi; Ohmura, Yutaka

    1997-01-01

    Design and R and D on nuclear fuel cycle facilities has intended development of remote handling and maintenance technology since 1977. IHI has completed the design and construction of several facilities with remote handling systems for Power Reactor and Nuclear Fuel Development Corporation (PNC), Japan Atomic Energy Research Institute (JAERI), and Japan Nuclear Fuel Ltd. (JNFL). Based on the above experiences, IHI is now undertaking integration of specific technology and remote handling technology for application to new fields such as fusion reactor facilities, decommissioning of nuclear reactors, accelerator testing facilities, and robot simulator-aided remote operation systems in the future. (author)

  6. Nuclear power costs

    International Nuclear Information System (INIS)

    1963-01-01

    A report prepared by the IAEA Secretariat and presented to the seventh session of the Agency's General Conference says that information on nuclear power costs is now rapidly moving from the domain of uncertain estimates to that of tested factual data. As more and more nuclear power stations are being built and put into operation, more information on the actual costs incurred is becoming available. This is the fourth report on nuclear power costs to be submitted to the IAEA General Conference. The report last year gave cost information on 38 nuclear power projects, 17 of which have already gone into operation. Certain significant changes in the data given last year are included-in the present report; besides, information is given on seven new plants. The report is divided into two parts, the first on recent developments and current trends in nuclear power costs and the second on the use of the cost data for economic comparisons. Both stress the fact that the margin of uncertainty in the basic data has lately been drastically reduced. At the same time, it is pointed out, some degree of uncertainty is inherent in the assumptions made in arriving at over-all generating cost figures, especially when - as is usually the case - a nuclear plant is part of an integrated power system

  7. Nuclear power in space

    International Nuclear Information System (INIS)

    Anghaie, S.

    2007-01-01

    The development of space nuclear power and propulsion in the United States started in 1955 with the initiation of the ROVER project. The first step in the ROVER program was the KIWI project that included the development and testing of 8 non-flyable ultrahigh temperature nuclear test reactors during 1955-1964. The KIWI project was precursor to the PHOEBUS carbon-based fuel reactor project that resulted in ground testing of three high power reactors during 1965-1968 with the last reactor operated at 4,100 MW. During the same time period a parallel program was pursued to develop a nuclear thermal rocket based on cermet fuel technology. The third component of the ROVER program was the Nuclear Engine for Rocket Vehicle Applications (NERVA) that was initiated in 1961 with the primary goal of designing the first generation of nuclear rocket engine based on the KIWI project experience. The fourth component of the ROVER program was the Reactor In-Flight Test (RIFT) project that was intended to design, fabricate, and flight test a NERVA powered upper stage engine for the Saturn-class lunch vehicle. During the ROVER program era, the Unites States ventured in a comprehensive space nuclear program that included design and testing of several compact reactors and space suitable power conversion systems, and the development of a few light weight heat rejection systems. Contrary to its sister ROVER program, the space nuclear power program resulted in the first ever deployment and in-space operation of the nuclear powered SNAP-10A in 1965. The USSR space nuclear program started in early 70's and resulted in deployment of two 6 kWe TOPAZ reactors into space and ground testing of the prototype of a relatively small nuclear rocket engine in 1984. The US ambition for the development and deployment of space nuclear powered systems was resurrected in mid 1980's and intermittently continued to date with the initiation of several research programs that included the SP-100, Space Exploration

  8. Tritium surveillance around nuclear facilities in Japan

    International Nuclear Information System (INIS)

    Inoue, Y.; Kasida, Y.

    1978-01-01

    In order to measure the tritium levels in the environmental water around the nuclear facilities, the tritium surveillance program began in 1967 locally at Tsuruga and Mihama districts. Nowadays it has been expanded to the ten commercial nuclear power stations and three nuclear facilities. For samples whose tritium concentration is believed less than about 100 pCi/l, they were electrolytically enriched, and then counted by the liquid scintillation counter. Some of samples believed higher than 100 pCi/l were analysed without any enrichment by the low background liquid scintillation counters, Aloka LB 600 or Aloka LB 1. The results of each station are listed in Table. The sampling points corresponding to each results are shown in Figure. Tritium from the effluent was not reflected in all the land water and the tap water around the nuclear power stations and the nuclear facilities. Tritium concentration in rivers, streams, and reservoirs (pools) decreased exponentially from about 600 pCi/l in 1967 to about 150 pCi/l in 1972 at Tsuruga and Mihama, and 360 pCi/l in 1968 to 120 pCi/l in 1973 at Genkai, with the half life of about 2.5 years in both cases. After around 1972, tritium levels of river system in all districts of Japan kept nearly constant up to the end of 1975 and they were in the range from 100 to 300 pCi/l corresponding to the districts. Thereafter, it seems to start to decrease again in 1976. Sea water sampled at the intake of the station or on the seashore far from the outlet was regarded not to be influenced by the effluent from the nuclear reactors or facilities. Tritium concentration in these coastal waters decreased from 100 - 300 pCi/l in 1971 to 30 - 40 pCi/l in 1972 in Fukushima, Ibaraki and Fukui prefectures. (author)

  9. Nuclear power for beginners

    International Nuclear Information System (INIS)

    Croall, S.; Sempler, K.

    1979-01-01

    Witty, critically, and with expert knowledge, 'Atomic power for beginners' describes the development of nuclear power for military purposes and its 'peaceful uses' against the will of the population. Atomic power, the civil baby of the bomb is not only a danger to our lives - it is enemy to all life as all hard technologies are on which economic systems preoccupied with growth put their hopes. Therefore, 'Atomic power for beginners' does not stop at nuclear engineering but proceeds to investigate its consequences, nationally and with a view to the Third World. And since the consequences are so fatal and it is not enough to say no to nuclear power, it gives some thoughts to a better future - with soft technology and alternative production. (orig.) 891 HP/orig. 892 MKO [de

  10. Nuclear materials facility safety initiative

    International Nuclear Information System (INIS)

    Peddicord, K.L.; Nelson, P.; Roundhill, M.; Jardine, L.J.; Lazarev, L.; Moshkov, M.; Khromov, V.V.; Kruchkov, E.; Bolyatko, V.; Kazanskij, Yu.; Vorobeva, I.; Lash, T.R.; Newton, D.; Harris, B.

    2000-01-01

    Safety in any facility in the nuclear fuel cycle is a fundamental goal. However, it is recognized that, for example, should an accident occur in either the U.S. or Russia, the results could seriously delay joint activities to store and disposition weapons fissile materials in both countries. To address this, plans are underway jointly to develop a nuclear materials facility safety initiative. The focus of the initiative would be to share expertise which would lead in improvements in safety and safe practices in the nuclear fuel cycle.The program has two components. The first is a lab-to-lab initiative. The second involves university-to-university collaboration.The lab-to-lab and university-to-university programs will contribute to increased safety in facilities dealing with nuclear materials and related processes. These programs will support important bilateral initiatives, develop the next generation of scientists and engineers which will deal with these challenges, and foster the development of a safety culture

  11. Cathodic protection of a nuclear fuel facility

    International Nuclear Information System (INIS)

    Corbett, R.A.

    1989-01-01

    This article discusses corrosion on buried process piping and tanks at a nuclear fuel facility and the steps taken to design a system to control underground corrosion. Collected data have indicated that cathodic protection is needed to supplement the regular use of high-integrity, corrosion-resistant coatings; wrapping systems; special backfills; and insulation material. The technical approach discussed in this article is generally applicable to other types of power and/or industrial plants with extensive networks of underground steel piping

  12. Physical security of nuclear facilities

    International Nuclear Information System (INIS)

    Dixon, H.

    1987-01-01

    A serious problem with present security systems at nuclear facilities is that the threats and standards prepared by the NRC and DOE are general, and the field offices are required to develop their own local threats and, on that basis, to prepared detailed specifications for security systems at sites in their jurisdiction. As a result, the capabilities of the systems vary across facilities. Five steps in particular are strongly recommended as corrective measures: 1. Those agencies responsible for civil nuclear facilities should jointly prepare detailed threat definitions, operational requirements, and equipment specifications to protect generic nuclear facilities, and these matters should be issued as policy. The agencies should provide sufficient detail to guide the design of specific security systems and to identify candidate components. 2. The DOE, NRC, and DOD should explain to Congress why government-developed security and other military equipment are not used to upgrade existing security systems and to stock future ones. 3. Each DOE and NRC facility should be assessed to determine the impact on the size of the guard force and on warning time when personnel-detecting radars and ground point sensors are installed. 4. All security guards and technicians should be investigated for the highest security clearance, with reinvestigations every four years. 5. The processes and vehicles used in intrafacility transport of nuclear materials should be evaluated against a range of threats and attack scenarios, including violent air and vehicle assaults. All of these recommendations are feasible and cost-effective. The appropriate congressional subcommittees should direct that they be implemented as soon as possible

  13. Childhood leukaemia around nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Wojcik, Andrzej (Centre for Radiation Protection Research, GMT Dept., Stockholm Univ., Stockholm (Sweden)); Feychting, Maria (Inst. of Environmental Medicine, Karolinska Inst., Stockholm (Sweden))

    2010-06-15

    In December 2007 the German Federal Office for Radiation Protection (BfS) published a report on the incidence of childhood cancers among children living in the vicinity of 16 German nuclear power plants. The results show a significantly enhanced risk of leukaemia in children aged below 5 years, who live within 5 km from a nuclear power plant. The study is known as KiKK (Epidemiologische Studie zu Kinderkrebs in der Umgebung von Kernkraftwerken) and stirred considerable concern about the safety of nuclear installations. In this review we summarise the present state-of-the art regarding childhood leukaemia in the vicinity of nuclear installations and present the main results of the KiKK study with a critical evaluation

  14. Childhood leukaemia around nuclear facilities

    International Nuclear Information System (INIS)

    Wojcik, Andrzej; Feychting, Maria

    2010-06-01

    In December 2007 the German Federal Office for Radiation Protection (BfS) published a report on the incidence of childhood cancers among children living in the vicinity of 16 German nuclear power plants. The results show a significantly enhanced risk of leukaemia in children aged below 5 years, who live within 5 km from a nuclear power plant. The study is known as KiKK (Epidemiologische Studie zu Kinderkrebs in der Umgebung von Kernkraftwerken) and stirred considerable concern about the safety of nuclear installations. In this review we summarise the present state-of-the art regarding childhood leukaemia in the vicinity of nuclear installations and present the main results of the KiKK study with a critical evaluation

  15. Nuclear power for tomorrow

    International Nuclear Information System (INIS)

    Csik, B.J.; Konstantinov, L.V.; Dastidar, P.

    1989-09-01

    The evolution of nuclear power has established this energy source as a viable mature technology, producing at comparative costs more than 16% of the electricity generated world-wide. After outlining the current status of nuclear power, extreme future scenarios are presented, corresponding respectively to maximum penetration limited by technical-economic characteristics, and nuclear phase-out at medium term. The situation is complex and country specific. The relative perception of the importance of different factors and the compensation of advantages vs. disadvantages, or risk vs. benefits, has predominant influence. In order to proceed with an objective and realistic estimate of the future role of nuclear power worldwide, the fundamental factors indicated below pro nuclear power and against are assessed, including expected trends regarding their evolution: Nuclear safety risk; reduction to levels of high improbability but not zero risk. Reliable source of energy; improvements towards uniform standards of excellence. Economic competitiveness vs. alternatives; stabilization and possible reduction of costs. Financing needs and constraints; availability according to requirements. Environmental effects; comparative analysis with alternatives. Public and political acceptance; emphasis on reason and facts over emotions. Conservation of fossil energy resources; gradual deterioration but no dramatic crisis. Energy supply assurance; continuing concerns. Infrastructure requirements and availability; improvements in many countries due to overall development. Non-proliferation in military uses; separation of issues from nuclear power. IAEA forecasts to the year 2005 are based on current projects, national plans and policies and on prevailing trends. Nuclear electricity generation is expected to reach about 18% of total worldwide electricity generation, with 500 to 580 GW(e) installed capacity. On a longer term, to 2030, a stabilized role and place among available viable

  16. Country nuclear power profiles

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The preparation of Country Nuclear Power Profiles was initiated within the framework of the IAEA`s programme for nuclear power plant performance assessment and feedback. It responded to a need for a database and a technical document containing a description of the energy and economic situation and the primary organizations involved in nuclear power in IAEA Member States. The task was included in the IAEA`s programmes for 1993/1994 and 1995/1996. In March 1993, the IAEA organized a Technical Committee meeting to discuss the establishment of country data ``profiles``, to define the information to be included in the profiles and to review the information already available in the IAEA. Two expert meetings were convened in November 1994 to provide guidance to the IAEA on the establishment of the country nuclear profiles, on the structure and content of the profiles, and on the preparation of the publication and the electronic database. In June 1995, an Advisory Group meeting provided the IAEA with comprehensive guidance on the establishment and dissemination of an information package on industrial and organizational aspects of nuclear power to be included in the profiles. The group of experts recommended that the profiles focus on the overall economic, energy and electricity situation in the country and on its nuclear power industrial structure and organizational framework. In its first release, the compilation would cover all countries with operating power plants by the end of 1995. It was also recommended to further promote information exchange on the lessons learned from the countries engaged in nuclear programmes. For the preparation of this publication, the IAEA received contributions from the 29 countries operating nuclear power plants and Italy. A database has been implemented and the profiles are supporting programmatic needs within the IAEA; it is expected that the database will be publicly accessible in the future. Refs, figs, tabs.

  17. Country nuclear power profiles

    International Nuclear Information System (INIS)

    1998-03-01

    The preparation of Country Nuclear Power Profiles was initiated within the framework of the IAEA's programme for nuclear power plant performance assessment and feedback. It responded to a need for a database and a technical document containing a description of the energy and economic situation and the primary organizations involved in nuclear power in IAEA Member States. The task was included in the IAEA's programmes for 1993/1994 and 1995/1996. In March 1993, the IAEA organized a Technical Committee meeting to discuss the establishment of country data ''profiles'', to define the information to be included in the profiles and to review the information already available in the IAEA. Two expert meetings were convened in November 1994 to provide guidance to the IAEA on the establishment of the country nuclear profiles, on the structure and content of the profiles, and on the preparation of the publication and the electronic database. In June 1995, an Advisory Group meeting provided the IAEA with comprehensive guidance on the establishment and dissemination of an information package on industrial and organizational aspects of nuclear power to be included in the profiles. The group of experts recommended that the profiles focus on the overall economic, energy and electricity situation in the country and on its nuclear power industrial structure and organizational framework. In its first release, the compilation would cover all countries with operating power plants by the end of 1995. It was also recommended to further promote information exchange on the lessons learned from the countries engaged in nuclear programmes. For the preparation of this publication, the IAEA received contributions from the 29 countries operating nuclear power plants and Italy. A database has been implemented and the profiles are supporting programmatic needs within the IAEA; it is expected that the database will be publicly accessible in the future

  18. Economics of nuclear power

    International Nuclear Information System (INIS)

    Bupp, I.C.; Derian, J.C.; Donsimoni, M.P.; Treitel, R.

    1975-01-01

    Present trends in nuclear reactor costs are interpreted as the economic result of a fundamental debate regarding the social acceptability of nuclear power. Rising capital costs for nuclear power plants are evaluated through statistical analysis of time-related factors, characteristics of licensing and construction costs, physical characteristics of reactors, and geographic and site-related factors. Conclusions are drawn regarding the impact of social acceptability on reactor costs, engineering estimates of future costs, and the possibility of increased potential relative competitiveness for coal-fueled plants. 7 references. (U.S.)

  19. Decommissioning of nuclear facilities: a growing activity in the world

    International Nuclear Information System (INIS)

    Anasco, Raul

    2001-01-01

    Nuclear power plants and nuclear facilities are no different from normal buildings and factories. Eventually, they become worn-out or old fashioned, too expensive to maintain or remodel. Decommissioning a nuclear facility is different from retiring other types because of the radioactivity involved. The most important consideration in nuclear decommissioning is to protect workers and the public from exposure to harmful levels of radiation. General criteria and strategies for the decommissioning of nuclear facilities are described as well as the present decommissioning activities of the Argentine CNEA (author)

  20. NUCLEAR POWER PLANT

    Science.gov (United States)

    Carter, J.C.; Armstrong, R.H.; Janicke, M.J.

    1963-05-14

    A nuclear power plant for use in an airless environment or other environment in which cooling is difficult is described. The power plant includes a boiling mercury reactor, a mercury--vapor turbine in direct cycle therewith, and a radiator for condensing mercury vapor. (AEC)

  1. Nuclear power prospects

    International Nuclear Information System (INIS)

    Staebler, K.

    1994-01-01

    The technical, economic and political prospects of nuclear power are described with regard to ecological aspects. The consensus talks, which failed in spite of the fact that they were stripped of emotional elements and in spite of major concessions on the part of the power industry, are discussed with a view to the political and social conditions. (orig.) [de

  2. Management of tritium at nuclear facilities

    International Nuclear Information System (INIS)

    1984-01-01

    This report presents extending summaries of the works of the participants to an IAEA co-ordinated research programme, ''Handling Tritium - bearing effluents and wastes''. The subjects covered include production of tritium in nuclear power plants (mainly heavy water and light water reactors), as well as at reprocessing plants; removal and enrichment of tritium at nuclear facilities; conditioning methods and characteristics of immobilized tritium of low and high concentration; some potential methods of storage and disposal of tritium. In addition to the conclusions of this three-years work, possible activities in the field are recommended

  3. Performing a nuclear facility EMI audit

    International Nuclear Information System (INIS)

    White, D.R.J.

    1993-01-01

    This paper addresses several questions which may arise when performing a nuclear facility EMI audit. Among the issues addressed are how a nuclear electrical power plant can ensure that it has taken adequate EMC measures to protect it from hostile electromagnetic ambient environments, means by which these measures can be implemented with sufficient integrity and reliability, and how often an inspection or audit should be performed to assess the EMC measures. Means of assessing EMI hardening and effective control of aging effects are also discussed. 2 figs

  4. The nuclear power alternative

    International Nuclear Information System (INIS)

    Blix, H.

    1989-04-01

    The Director General of the IAEA stressed the need for energy policies and other measures which would help to slow and eventually halt the present build-up of carbon dioxide, methane and other so-called greenhouse gases, which are held to cause global warming. He urged that nuclear power and various other sources of energy, none of which contribute to global warming, should not be seen as alternatives, but should all be used to counteract the greenhouse effect. He pointed out that the commercially used renewable energies, apart from hydropower, currently represent only 0.3% of the world's energy consumption and, by contrast, the 5% of the world's energy consumption coming from nuclear power is not insignificant. Dr. Blix noted that opposition for nuclear power stems from fear of accidents and concern about the nuclear wastes. But no generation of electricity, whether by coal, hydro, gas or nuclear power, is without some risk. He emphasized that safety can never be a static concept, and that many new measures are being taken by governments and by the IAEA to further strengthen the safety of nuclear power

  5. Future nuclear power generation

    International Nuclear Information System (INIS)

    Mosbah, D.S.; Nasreddine, M.

    2006-01-01

    The book includes an introduction then it speaks about the options to secure sources of energy, nuclear power option, nuclear plants to generate energy including light-water reactors (LWR), heavy-water reactors (HWR), advanced gas-cooled reactors (AGR), fast breeder reactors (FBR), development in the manufacture of reactors, fuel, uranium in the world, current status of nuclear power generation, economics of nuclear power, nuclear power and the environment and nuclear power in the Arab world. A conclusion at the end of the book suggests the increasing demand for energy in the industrialized countries and in a number of countries that enjoy special and economic growth such as China and India pushes the world to search for different energy sources to insure the urgent need for current and anticipated demand in the near and long-term future in light of pessimistic and optimistic outlook for energy in the future. This means that states do a scientific and objective analysis of the currently available data for the springboard to future plans to secure the energy required to support economy and welfare insurance.

  6. Physics and nuclear power

    International Nuclear Information System (INIS)

    Buttery, N E

    2008-01-01

    Nuclear power owes its origin to physicists. Fission was demonstrated by physicists and chemists and the first nuclear reactor project was led by physicists. However as nuclear power was harnessed to produce electricity the role of the engineer became stronger. Modern nuclear power reactors bring together the skills of physicists, chemists, chemical engineers, electrical engineers, mechanical engineers and civil engineers. The paper illustrates this by considering the Sizewell B project and the role played by physicists in this. This covers not only the roles in design and analysis but in problem solving during the commissioning of first of a kind plant. Looking forward to the challenges to provide sustainable and environmentally acceptable energy sources for the future illustrates the need for a continuing synergy between physics and engineering. This will be discussed in the context of the challenges posed by Generation IV reactors

  7. Nuclear power in perspective

    International Nuclear Information System (INIS)

    Ringwood, A.E.

    1980-01-01

    The nuclear power debate hinges upon three major issues: radioactive waste disposal, reactor safety and proliferation. An alternative strategy for waste disposal is advocated which involves disposing of the radwaste (immobilized in SYNROC, a titanate ceramic waste form) in deep (4 km) drill-holes widely dispersed throughout the entire country. It is demonstrated that this strategy possesses major technical (safety) advantages over centralized, mined repositories. The comparative risks associated with coal-fired power generation and with the nuclear fuel cycle have been evaluated by many scientists, who conclude that nuclear power is far less hazardous. Considerable improvements in reactor design and safety are readily attainable. The nuclear industry should be obliged to meet these higher standards. The most hopeful means of limiting proliferation lies in international agreements, possibly combined with international monitoring and control of key segments of the fuel cycle, such as reprocessing

  8. LDC nuclear power: Egypt

    International Nuclear Information System (INIS)

    Selim, M.E.S.

    1982-01-01

    This chapter reviews the evolution of Egypt's nuclear program, the major factors that influenced the successive series of nuclear decisions, and the public debate over the far-reaching program attempted by the late President Anwar El-Sadat. Egypt's program is important, not only because it was the first Arab country to enter the nuclear age, but because it is an ambitious program that includes the installation of eight reactors at a time when many countries are reducing their commitment to nuclear power. Major obstacles remain in terms of human, organizational, and natural resource constraints. 68 references, 1 table

  9. Nuclear power economics

    Energy Technology Data Exchange (ETDEWEB)

    Emsley, Ian; Cobb, Jonathan [World Nuclear Association, London (United Kingdom)

    2017-04-15

    Many countries recognize the substantial role which nuclear power has played in providing energy security of supply, reducing import dependence and reducing greenhouse gas and polluting emissions. Nevertheless, as such considerations are far from being fully accounted for in liberalized or deregulated power markets, nuclear plants must demonstrate their viability in these markets on commercial criteria as well as their lifecycle advantages. Nuclear plants are operating more efficiently than in the past and unit operating costs are low relative to those of alternative generating technologies. The political risk facing the economic functioning of nuclear in a number of countries has increased with the imposition of nuclear-specific taxes that in some cases have deprived operators of the economic incentive to continue to operate existing plants.

  10. Nuclear power economics

    International Nuclear Information System (INIS)

    Emsley, Ian; Cobb, Jonathan

    2017-01-01

    Many countries recognize the substantial role which nuclear power has played in providing energy security of supply, reducing import dependence and reducing greenhouse gas and polluting emissions. Nevertheless, as such considerations are far from being fully accounted for in liberalized or deregulated power markets, nuclear plants must demonstrate their viability in these markets on commercial criteria as well as their lifecycle advantages. Nuclear plants are operating more efficiently than in the past and unit operating costs are low relative to those of alternative generating technologies. The political risk facing the economic functioning of nuclear in a number of countries has increased with the imposition of nuclear-specific taxes that in some cases have deprived operators of the economic incentive to continue to operate existing plants.

  11. Neutron fluence measurement in nuclear facilities

    International Nuclear Information System (INIS)

    Camacho L, M.E.

    1997-01-01

    The objective of present work is to determine the fluence of neutrons in nuclear facilities using two neutron detectors designed and built at Instituto Nacional de Investigaciones Nucleares (ININ), Mexico. The two neutron detectors are of the passive type, based on solid state nuclear tracks detectors (SSNTD). One of the two neutron detectors was used to determine the fluence distribution of the ports at the nuclear research reactor TRIGA Mark III, which belongs to ININ. In these facilities is important to know the neutron fluence distribution characteristic to carried out diverse kind of research activities. The second neutron detector was employed in order to carry out environmental neutron surveillance. The detector has the property to separate the thermal, intermediate and fast components of the neutron fluence. This detector was used to measure the neutron fluence at hundred points around the primary container of the first Mexican Nuclear Power plant 'Laguna Verde'. This last detector was also used to determine the neutron fluence in some points of interest, around and inside a low scattering neutron room at the 'Centro de Metrologia de Radiaciones Ionizantes' of the ININ, to know the background neutron field produced by the neutron sources used there. The design of the two neutron detector and the results obtained for each of the surveying facilities, are described in this work. (Author)

  12. Regulatory control of nuclear facility valves and their actuators

    International Nuclear Information System (INIS)

    1993-01-01

    The methods and procedures by which the Finnish Centre for Radiation and Nuclear Safety (STUK) regulates valves and their actuators in nuclear power plants and in other nuclear facilities are specified in the guide. The scope of regulation depends on the Safety Class of the valve and the actuator in question. The Safety Classification principles for the systems, structures and components of the nuclear power plants are described in the guide YVL 2.1 and the regulatory control of the nuclear facility safety valves is described in the guide YVL 5.4

  13. Nuclear power in Japan

    International Nuclear Information System (INIS)

    Kishida, J.

    1990-01-01

    The Japanese movement against nuclear energy reached a climax in its upsurge in 1988 two years after the Chernobyl accident. At the outset of that year, this trend was triggered by the government acknowledgement that the Tokyo market was open to foods contaminated by the fallout from Chernobyl. Anti-nuclear activists played an agitating role and many housewives were persuaded to join them. Among many public opinion surveys conducted at that time by newspapers and broadcasting networks, I would like to give you some figures of results from the poll carried out by NHK: Sixty percent of respondents said that nuclear power 'should be promoted', either 'vigorously' 7 or 'carefully' 53%). Sixty-six percent doubted the 'safety of nuclear power', describing it as either 'very dangerous' 20%) or 'rather dangerous' (46%). Only 27% said it was 'safe'. In other words, those who acknowledged the need for nuclear power were almost equal in number with those who found it dangerous. What should these figures be taken to mean? I would take note of the fact that nearly two-thirds of valid responses were in favor of nuclear power even at the time when public opinion reacted most strongly to the impact of the Chernobyl accident. This apparently indicates that the majority of the Japanese people are of the opinion that they would 'promote nuclear power though it is dangerous' or that they would 'promote it, but with the understanding that it is dangerous'. But the anti-nuclear movement is continuing. It remains a headache for both the government and the electric utilities. But we can regard the anti-nuclear movement in Japan as not so serious as that faced by other industrial nations

  14. Nuclear power in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Kishida, J [Japan Research Institute, Ltd., Tokyo (Japan)

    1990-07-01

    The Japanese movement against nuclear energy reached a climax in its upsurge in 1988 two years after the Chernobyl accident. At the outset of that year, this trend was triggered by the government acknowledgement that the Tokyo market was open to foods contaminated by the fallout from Chernobyl. Anti-nuclear activists played an agitating role and many housewives were persuaded to join them. Among many public opinion surveys conducted at that time by newspapers and broadcasting networks, I would like to give you some figures of results from the poll carried out by NHK: Sixty percent of respondents said that nuclear power 'should be promoted', either 'vigorously' 7 or 'carefully' 53%). Sixty-six percent doubted the 'safety of nuclear power', describing it as either 'very dangerous' 20%) or 'rather dangerous' (46%). Only 27% said it was 'safe'. In other words, those who acknowledged the need for nuclear power were almost equal in number with those who found it dangerous. What should these figures be taken to mean? I would take note of the fact that nearly two-thirds of valid responses were in favor of nuclear power even at the time when public opinion reacted most strongly to the impact of the Chernobyl accident. This apparently indicates that the majority of the Japanese people are of the opinion that they would 'promote nuclear power though it is dangerous' or that they would 'promote it, but with the understanding that it is dangerous'. But the anti-nuclear movement is continuing. It remains a headache for both the government and the electric utilities. But we can regard the anti-nuclear movement in Japan as not so serious as that faced by other industrial nations.

  15. Occupational radiation exposure at commercial nuclear power reactors and other facilities 1996: Twenty-ninth annual report. Volume 18

    International Nuclear Information System (INIS)

    Thomas, M.L.

    1998-02-01

    This report summarizes the occupational exposure data that are maintained in the US Nuclear Regulatory Commission's (NRC) Radiation Exposure Information and Reporting System (REIRS). The bulk of the information contained in the report was compiled from the 1996 annual reports submitted by six of the seven categories of NRC licensees subject to the reporting requirements of 10 CFR 20.2206. Since there are no geologic repositories for high level waste currently licensed, only six categories will be considered in this report. Annual reports for 1996 were received from a total of 300 NRC licensees, of which 109 were operators of nuclear power reactors in commercial operation. Compilations of the reports submitted by the 300 licensees indicated that 138,310 individuals were monitored, 75,139 of whom received a measurable dose. The collective dose incurred by these individuals was 21,755 person-cSv (person-rem) 2 which represents a 13% decrease from the 1995 value. The number of workers receiving a measurable dose also decreased, resulting in the average measurable dose of 0.29 cSv (rem) for 1996. The average measurable dose is defined to be the total collective dose (TEDE) divided by the number of workers receiving a measurable dose. These figures have been adjusted to account for transient reactor workers. Analyses of transient worker data indicate that 22,348 individuals completed work assignments at two or more licensees during the monitoring year. The dose distributions are adjusted each year to account for the duplicate reporting of transient workers by multiple licensees. In 1996, the average measurable dose calculated from reported was 0.24 cSv (rem). The corrected dose distribution resulted in an average measurable dose of 0.29 cSv (rem)

  16. Occupational radiation exposure at commercial nuclear power reactors and other facilities 1996: Twenty-ninth annual report. Volume 18

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, M.L. [Nuclear Regulatory Commission, Washington, DC (United States). Div. of Regulatory Applications; Hagemeyer, D. [Science Applications International Corp., Oak Ridge, TN (United States)

    1998-02-01

    This report summarizes the occupational exposure data that are maintained in the US Nuclear Regulatory Commission`s (NRC) Radiation Exposure Information and Reporting System (REIRS). The bulk of the information contained in the report was compiled from the 1996 annual reports submitted by six of the seven categories of NRC licensees subject to the reporting requirements of 10 CFR 20.2206. Since there are no geologic repositories for high level waste currently licensed, only six categories will be considered in this report. Annual reports for 1996 were received from a total of 300 NRC licensees, of which 109 were operators of nuclear power reactors in commercial operation. Compilations of the reports submitted by the 300 licensees indicated that 138,310 individuals were monitored, 75,139 of whom received a measurable dose. The collective dose incurred by these individuals was 21,755 person-cSv (person-rem){sup 2} which represents a 13% decrease from the 1995 value. The number of workers receiving a measurable dose also decreased, resulting in the average measurable dose of 0.29 cSv (rem) for 1996. The average measurable dose is defined to be the total collective dose (TEDE) divided by the number of workers receiving a measurable dose. These figures have been adjusted to account for transient reactor workers. Analyses of transient worker data indicate that 22,348 individuals completed work assignments at two or more licensees during the monitoring year. The dose distributions are adjusted each year to account for the duplicate reporting of transient workers by multiple licensees. In 1996, the average measurable dose calculated from reported was 0.24 cSv (rem). The corrected dose distribution resulted in an average measurable dose of 0.29 cSv (rem).

  17. Nuclear power : exploding the myths

    International Nuclear Information System (INIS)

    Edwards, G.

    2001-01-01

    A critique of the Canadian government's unaccountability in terms of nuclear decisions was presented. The federal government has spent more than $13 billion building dozens of nuclear facilities, and spreading Canadian nuclear technology to India, Pakistan, Taiwan, Korea, Argentina and Romania. The author argued that this was done without any public consultation or public debate. In addition, the federal government announced in 1996 that it will play a role in nuclear disarmament and would accept tonnes of leftover plutonium from dismantled nuclear warheads to be used as fuel in CANDU reactors. Samples of weapons plutonium fuels from Russia and the United States are currently being tested in a reactor at Chalk River, Ontario. In addition, China received a $1.5 billion loan from the Treasury of Canada to help finance a CANDU reactor. It was the largest loan in Canadian history, yet had no procedure to obtain taxpayer's permission. Turkey was promised an equal amount if it would build a CANDU reactor. Despite this activity, the nuclear industry is in a dying state. No reactors have been ordered in North America for the past 25 years and there are no future prospects. Nuclear expansion has also ground to a halt in western Europe, Germany, Sweden, Switzerland and France. The author discussed the association of nuclear energy with nuclear weapons and dispelled the myth that the nuclear energy programs have nothing to do with nuclear weapons. He also dispelled the myth that plutonium extracted from dismantled warheads can be destroyed by burning it as fuel in civilian reactors. The author emphasized that nuclear warheads are rendered useless when their plutonium cores are removed, but there is no method for destroying the plutonium, which constitutes a serious danger. The third myth which he dispelled was that nuclear power can significantly reduce greenhouse gas emissions. Studies show that each dollar invested in energy efficiency saves 5 to 7 times as much carbon

  18. Steps to nuclear power

    International Nuclear Information System (INIS)

    1975-01-01

    The recent increase in oil prices will undoubtedly cause the pace at which nuclear power is introduced in developing countries to quicken in the next decade, with many new countries beginning to plan nuclear power programmes. The guidebook is intended for senior government officials, policy makers, economic and power planners, educationalists and economists. It assumes that the reader has relatively little knowledge of nuclear power systems or of nuclear physics but does have a general technical or management background. Nuclear power is described functionally from the point of view of an alternative energy source in power system expansion. The guidebook is based on an idealized approach. Variations on it are naturally possible and will doubtless be necessary in view of the different organizational structures that already exist in different countries. In particular, some countries may prefer an approach with a stronger involvement of their Atomic Energy Commission or Authority, for which this guidebook has foreseen mainly a regulatory and licensing role. It is intended to update this booklet as more experience becomes available. Supplementary guidebooks will be prepared on certain major topics, such as contracting for fuel supply and fuel cycle requirements, which the present book does not go into very deeply

  19. Nuclear power generating costs

    International Nuclear Information System (INIS)

    Srinivasan, M.R.; Kati, S.L.; Raman, R.; Nanjundeswaran, K.; Nadkarny, G.V.; Verma, R.S.; Mahadeva Rao, K.V.

    1983-01-01

    Indian experience pertaining to investment and generation costs of nuclear power stations is reviewed. The causes of investment cost increases are analysed and the increases are apportioned to escalation, design improvements and safety related adders. The paper brings out the fact that PHWR investment costs in India compare favourably with those experienced in developed countries in spite of the fact that the programme and the unit size are relatively much smaller in India. It brings out that in India at current prices a nuclear power station located over 800 km from coal reserves and operating at 75% capacity factor is competitive with thermal power at 60% capacity factor. (author)

  20. PROJECTIZING AN OPERATING NUCLEAR FACILITY

    International Nuclear Information System (INIS)

    Adams, N

    2007-01-01

    This paper will discuss the evolution of an operations-based organization to a project-based organization to facilitate successful deactivation of a major nuclear facility. It will describe the plan used for scope definition, staff reorganization, method estimation, baseline schedule development, project management training, and results of this transformation. It is a story of leadership and teamwork, pride and success. Workers at the Savannah River Site's (SRS) F Canyon Complex (FCC) started with a challenge--take all the hazardous byproducts from nearly 50 years of operations in a major, first-of-its-kind nuclear complex and safely get rid of them, leaving the facility cold, dark, dry and ready for whatever end state is ultimately determined by the United States Department of Energy (DOE). And do it in four years, with a constantly changing workforce and steadily declining funding. The goal was to reduce the overall operating staff by 93% and budget by 94%. The facilities, F Canyon and its adjoined sister, FB Line, are located at SRS, a 310-square-mile nuclear reservation near Aiken, S.C., owned by DOE and managed by Washington Group International subsidiary Washington Savannah River Company (WSRC). These facilities were supported by more than 50 surrounding buildings, whose purpose was to provide support services during operations. The radiological, chemical and industrial hazards inventory in the old buildings was significant. The historical mission at F Canyon was to extract plutonium-239 and uranium-238 from irradiated spent nuclear fuel through chemical processing. FB Line's mission included conversion of plutonium solutions into metal, characterization, stabilization and packaging, and storage of both metal and oxide forms. The plutonium metal was sent to another DOE site for use in weapons. Deactivation in F Canyon began when chemical separations activities were completed in 2002, and a cross-functional project team concept was implemented to successfully

  1. Nuclear power indices and safety

    International Nuclear Information System (INIS)

    Bennet, L.L.; Fizher, D.; Nechaev, A.

    1987-01-01

    Problems discussed at the IAEA International Conference on nuclear power indices and safety held in Vienna from 28 September to 2 October, 1987 are considered. Representatives from 40 countries and 12 international organizations participated in the conference. It is marked that by the end of this century nuclear power plant capacities in developing countries will increase by more than twice. In developed countries increase of installed capacity by 65 % is forecasted. It is stressed that competently constructed and operated NPPs will be successfully competing with coal-fueled power plants in the majority of the world regions. Much attention was paid to reports on measures taken after Chernobyl' accident and its radiation effects on people helth. It is shown that parallel with fundamental theoretical studies on NPP safety as a complex engineering system much attention is paid to some problems of designing and operation of such facilities. Fuel cycle problems, radioactive waste and spent fuel storage and disposal in particular, are considered

  2. Environmental monitoring of nuclear facilities

    International Nuclear Information System (INIS)

    Koelzer, W.

    1988-01-01

    Environmental monitoring of nuclear facilities is part of general monitoring for environmental radioactivity all over the territory of the Federal Republic of Germany. General principles of environmental monitoring were formulated by the ICRP in 1965. In 1974 guidelines for measures of monitoring the environment of NPP incorporating LWR were drafted, which helped to standardize environmental monitoring programs. Since 1958, data on environmental radioactivity from measurements by authorized laboratories have been published in reports. (DG)

  3. Current status of ground motions evaluation in seismic design guide for nuclear power facilities. Investigation on IAEA and US.NRC

    International Nuclear Information System (INIS)

    Nakajima, Masato; Ito, Hiroshi; Hirata, Kazuta

    2009-01-01

    Recently, IAEA (International Atomic Energy Agency) and US.NRC (US. Nuclear Regulatory Commission) published several standards and technical reports on seismic design and safety evaluation for nuclear power facilities. This report summarizes the current status of the international guidelines on seismic design and safety evaluation for nuclear power facilities in order to explore the future research topics. The main results obtained are as follows: 1 IAEA: (1) In the safety standard series, two levels are defined as seismic design levels, and design earthquake ground motion is determined corresponding to each seismic design level. (2) A new framework on seismic design which consists of conventional deterministic method and risk-based method is discussed in the technical report although the framework is not adopted in the safety guidelines. 2 USA: (1) US.NRC discusses a performance-based seismic design framework which has been originally developed by the private organization (American Society of Civil Engineers). (2) Design earthquakes and earthquake ground motion are mainly evaluated and determined based on probabilistic seismic hazard evaluations. 3 Future works: It should be emphasized that IAEA and US.NRC have investigated the implementation of risk-based concept into seismic design. The implementation of risk-based concept into regulation and seismic design makes it possible to consider various uncertainties and to improve accountability. Therefore, we need to develop the methods for evaluating seismic risk of structures, and to correlate seismic margin and seismic risk quantitatively. Moreover, the probabilistic method of earthquake ground motions, that is required in the risk-based design, should be applied to sites in Japan. (author)

  4. Commercial nuclear power 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-28

    This report presents the status at the end of 1989 and the outlook for commercial nuclear capacity and generation for all countries in the world with free market economies (FME). The report provides documentation of the US nuclear capacity and generation projections through 2030. The long-term projections of US nuclear capacity and generation are provided to the US Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) for use in estimating nuclear waste fund revenues and to aid in planning the disposal of nuclear waste. These projections also support the Energy Information Administration's annual report, Domestic Uranium Mining and Milling Industry: Viability Assessment, and are provided to the Organization for Economic Cooperation and Development. The foreign nuclear capacity projections are used by the DOE uranium enrichment program in assessing potential markets for future enrichment contracts. The two major sections of this report discuss US and foreign commercial nuclear power. The US section (Chapters 2 and 3) deals with (1) the status of nuclear power as of the end of 1989; (2) projections of nuclear capacity and generation at 5-year intervals from 1990 through 2030; and (3) a discussion of institutional and technical issues that affect nuclear power. The nuclear capacity projections are discussed in terms of two projection periods: the intermediate term through 2010 and the long term through 2030. A No New Orders case is presented for each of the projection periods, as well as Lower Reference and Upper Reference cases. 5 figs., 30 tabs.

  5. Fire protection at nuclear power plants

    International Nuclear Information System (INIS)

    1999-11-01

    The guide presents specific requirements for the design and implementation of fire protection arrangements at nuclear power plants and for the documents relating to the fire protection that are to be submitted to STUK (Finnish Radiation and Nuclear Safety Authority). Inspections of the fire protection arrangements to be conducted by STUK during the construction and operation of the power plants are also described in this guide. The guide can also be followed at other nuclear facilities

  6. Nuclear power industry

    International Nuclear Information System (INIS)

    1999-01-01

    This press dossier presented in Shanghai (China) in April 1999, describes first the activities of the Framatome group in the people's republic of China with a short presentation of the Daya Bay power plant and of the future Ling Ao project, and with a description of the technological cooperation with China in the nuclear domain (technology transfers, nuclear fuels) and in other industrial domains (mechanics, oil and gas, connectors, food and agriculture, paper industry etc..). The general activities of the Framatome group in the domain of energy (nuclear realizations in France, EPR project, export activities, nuclear services, nuclear fuels, nuclear equipments, industrial equipments) and of connectors engineering are presented in a second and third part with the 1998 performances. (J.S.)

  7. The Canadian nuclear power industry. Background paper

    International Nuclear Information System (INIS)

    Nixon, A.

    1993-12-01

    Nuclear power, the production of electricity from uranium through nuclear fission, is by far the most prominent segment of the nuclear industry. The value of the electricity produced, $3.7 billion in Canada in 1992, far exceeds the value of any other product of the civilian nuclear industry. Power production employs many more people than any other sector, the capital investment is much greater, and nuclear power plants are much larger and more visible than uranium mining and processing facilities. They are also often located close to large population centres. This paper provides an overview of some of the enormously complex issues surrounding nuclear power. It describes the Canadian nuclear power industry, addressing i particular its performance so far and future prospects. (author). 1 tab

  8. The Canadian nuclear power industry. Background paper

    Energy Technology Data Exchange (ETDEWEB)

    Nixon, A [Library of Parliament, Ottawa, ON (Canada). Science and Technology Div.

    1993-12-01

    Nuclear power, the production of electricity from uranium through nuclear fission, is by far the most prominent segment of the nuclear industry. The value of the electricity produced, $3.7 billion in Canada in 1992, far exceeds the value of any other product of the civilian nuclear industry. Power production employs many more people than any other sector, the capital investment is much greater, and nuclear power plants are much larger and more visible than uranium mining and processing facilities. They are also often located close to large population centres. This paper provides an overview of some of the enormously complex issues surrounding nuclear power. It describes the Canadian nuclear power industry, addressing i particular its performance so far and future prospects. (author). 1 tab.

  9. Considerations about the licensing process of special nuclear industrial facilities

    Energy Technology Data Exchange (ETDEWEB)

    Talarico, M.A., E-mail: talaricomarco@hotmail.com [Marinha do Brasil, Rio de Janeiro, RJ (Brazil). Coordenacao do Porgrama de Submarino com Propulsao Nuclear; Melo, P.F. Frutuoso e [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear

    2015-07-01

    This paper brings a discussion about the challenges involved in the development of a new kind of nuclear facility in Brazil, a naval base for nuclear submarines, with attention to the licensing process and considerations about the risk-informed decision making application to the licensing process. Initially, a model of such a naval base, called in this work, special industrial facility, is proposed, with its systems and respective sets of basic requirements, in order to make it possible the accomplishment of the special industrial facility support function to the nuclear submarine. A discussion about current challenges to overcome in this project is presented: the challenges due to the new characteristics of this type of nuclear facility; existence of several interfaces between the special industrial facilities systems and nuclear submarine systems in design activities; lack of specific regulation in Brazil to allow the licensing process of special industrial facilities by the nuclear safety authority; and comments about the lack of information from reference nuclear facilities, as is the case with nuclear power reactors (for example, the German Grafenrheinfeld nuclear plant is the reference plant for the Brazilian Angra 2 nuclear plant). Finally, in view of these challenges, an analysis method of special industrial facility operational scenarios to assist the licensing process is proposed. Also, considerations about the application of risk-informed decision making to the special industrial facility activity and licensing process in Brazil are presented. (author)

  10. Considerations about the licensing process of special nuclear industrial facilities

    International Nuclear Information System (INIS)

    Talarico, M.A.; Melo, P.F. Frutuoso e

    2015-01-01

    This paper brings a discussion about the challenges involved in the development of a new kind of nuclear facility in Brazil, a naval base for nuclear submarines, with attention to the licensing process and considerations about the risk-informed decision making application to the licensing process. Initially, a model of such a naval base, called in this work, special industrial facility, is proposed, with its systems and respective sets of basic requirements, in order to make it possible the accomplishment of the special industrial facility support function to the nuclear submarine. A discussion about current challenges to overcome in this project is presented: the challenges due to the new characteristics of this type of nuclear facility; existence of several interfaces between the special industrial facilities systems and nuclear submarine systems in design activities; lack of specific regulation in Brazil to allow the licensing process of special industrial facilities by the nuclear safety authority; and comments about the lack of information from reference nuclear facilities, as is the case with nuclear power reactors (for example, the German Grafenrheinfeld nuclear plant is the reference plant for the Brazilian Angra 2 nuclear plant). Finally, in view of these challenges, an analysis method of special industrial facility operational scenarios to assist the licensing process is proposed. Also, considerations about the application of risk-informed decision making to the special industrial facility activity and licensing process in Brazil are presented. (author)

  11. Abuse of nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Hill, J [UKAEA

    1976-09-01

    This paper reproduces an address by Sir John Hill, Chairman of the United Kingdom Atomic Energy Authority, at a conference in London organised by the Financial Times in July 1976. Actions that, in the author's view, could be regarded as constituting abuse of nuclear power are first summarised, and the various aspects of the use and abuse of nuclear power are discussed. The author considers that achieving the maximum degree of acceptance of the Non-Proliferation Treaty is the most important political objective in nuclear power, but considers that nuclear terrorism would be abortive and that, so far as the UK is concerned, the present precautions are adequate and will remain so. It is considered that much abuse of nuclear power arises from the prevalence of its critics, particularly with reference to Pu hazards, the health of nuclear employees, and possible damage to the health of the public. The Pu problem is considered to be far more emotive than rational. The possibility of lung cancer and leukaemia is discussed. It is concluded that atomic energy is one of the best of industries in which to work, both from the health and interest points of view.

  12. Nuclear power plant safety

    International Nuclear Information System (INIS)

    Otway, H.J.

    1974-01-01

    Action at the international level will assume greater importance as the number of nuclear power plants increases, especially in the more densely populated parts of the world. Predictions of growth made prior to October 1973 [9] indicated that, by 1980, 14% of the electricity would be supplied by nuclear plants and by the year 2000 this figure would be about 50%. This will make the topic of international co-operation and standards of even greater importance. The IAEA has long been active in providing assistance to Member States in the siting design and operation of nuclear reactors. These activities have been pursued through advisory missions, the publication of codes of practice, guide books, technical reports and in arranging meetings to promote information exchange. During the early development of nuclear power, there was no well-established body of experience which would allow formulation of internationally acceptable safety criteria, except in a few special cases. Hence, nuclear power plant safety and reliability matters often received an ad hoc approach which necessarily entailed a lack of consistency in the criteria used and in the levels of safety required. It is clear that the continuation of an ad hoc approach to safety will prove inadequate in the context of a world-wide nuclear power industry, and the international trade which this implies. As in several other fields, the establishment of internationally acceptable safety standards and appropriate guides for use by regulatory bodies, utilities, designers and constructors, is becoming a necessity. The IAEA is presently planning the development of a comprehensive set of basic requirements for nuclear power plant safety, and the associated reliability requirements, which would be internationally acceptable, and could serve as a standard frame of reference for nuclear plant safety and reliability analyses

  13. Nuclear power in Germany

    International Nuclear Information System (INIS)

    Beckurts, K.H.

    1985-01-01

    On the occasion of the retirement of the Editor-in-chief of 'atomwirtschaft', the author gave a keynote speech on the development of nuclear power in the Federal Republic of Germany at the headquarters of the Handelsblatt Verlag in Duesseldorf on October 30, 1984. He subdivided the period under discussion into five phases, the first of which comprises the 'founding years' of 1955 to 1960. This was the time when activities in nuclear research and nuclear technology in Germany, which were permitted again in mid-1955, began with the establishment of the national research centers, the first Atomic Power Program, the promulgation of the Atomic Energy Act, the foundation of government organizations, including the Federal Ministry for Atomic Energy, etc. In the second phase, between 1960 and 1970, a solid foundation was laid for the industrial peaceful uses of nuclear power in the construction of the first LWR experimental nuclear power stations, the first successful export contracts, the beginnings of the first nuclear fuel cycle plants, such as the WAK reprocessing plant, the Asse experimental repository, the Almelo agreement on centrifuge enrichment. The third phase, between 1970 and 1975, was a period of euphoria, full of programs and forecasts of a tremendous boom in nuclear generating capacities, which were further enhanced by the 1973 oil squeeze. In 1973 and 1974, construction permits for ten nuclear power plants were applied for. The fourth phase, between 1975 and 1980, became a period of crisis. The fifth phase, the eighties, give rise to hope for a return to reason. (orig./UA) [de

  14. Nuclear power safety

    International Nuclear Information System (INIS)

    1991-11-01

    This paper reports that since the Chernobyl nuclear plant accident in 1986, over 70 of the International Atomic Energy Agency's 112 member states have adopted two conventions to enhance international cooperation by providing timely notification of an accident and emergency assistance. The Agency and other international organizations also developed programs to improve nuclear power plant safety and minimize dangers from radioactive contamination. Despite meaningful improvements, some of the measures have limitations, and serious nuclear safety problems remain in the design and operation of the older, Soviet-designed nuclear power plants. The Agency's ability to select reactors under its operational safety review program is limited. Also, information on the extent and seriousness of safety-related incidents at reactors in foreign countries is not publicly available. No agreements exist among nuclear power countries to make compliance with an nuclear safety standards or principles mandatory. Currently, adherence to international safety standards or principles is voluntary and nonbinding. Some states support the concept of mandatory compliance, but others, including the United States, believe that mandatory compliance infringes on national sovereignty and that the responsibility for nuclear reactor safety remains with each nation

  15. Nuclear power: Europa report

    International Nuclear Information System (INIS)

    Anon.

    2004-01-01

    Last year, 2003, nuclear power plants were available for energy supply, respectively, in 18 countries all over Europe. In 8 of the 15 member countries of the European Union (EU-15) nuclear power plants have been operation. In 7 of the 13 EU Candidate Countries (incl. Turkey) nuclear energy was used for power production. A total of 208 plants with an aggregate net capacity of 171 031 MWe and an aggregate gross capacity of 180 263 MWe were in operation at the end of 2003. No unit reached first criticality in 2003 or was connected to the grid. The unit Calder Hall 1 to Calder Hall 4 have been permanently shut down in Great Britain due to economical reasons and an earlier decision. In Germany the NPP Stade was closed. The utility E.ON has decided to shut down the plant due to the efforts of the liberalisation of the electricity markets. Last year, 8 plants were under construction in Romania (1), Russia (3), Slovakia (2 - suspended), and the Ukraine (2), that is only in East European Countries. The Finnish parliament approved plans for the construction of the country's fifth nuclear power reactor by a majority of 107 votes to 92. The consortium led by Framatome ANP was awarded the contract to build the new nuclear power plant (EPR, 1 600 MW) in Olkiluoto. In eight countries of the European Union 136 nuclear power plants have been operated with an aggregate gross capacity of 127 708 MWe and an aggregate net capacity of 121 709 MWe. Net electricity production in 2003 in the EU amounts to approx. 905 TWh gross, which means a share of about 33 per cent of the total production in the whole EU. Shares of nuclear power differ widely among the operator countries. They reach 80% in Lithuania, 78% in France, 57% in the Slovak Republic, 57% in Belgium, and 46% in the Ukraine. Nuclear power also provides a noticeable share in the electricity supply of countries, which operate no own nuclear power plants, e.g. Italy, Portugal, and Austria. (orig.)

  16. Nuclear power. Europe report

    International Nuclear Information System (INIS)

    Anon.

    2002-01-01

    Last year, 2001, nuclear power plants were available for energy supply, respectively, in 18 countries all over Europe. In 8 of the 15 member countries of the European Union nuclear power plants have been in operation. In 7 of the 13 EU Candidate Countries nuclear energy was used for power production. A total of 216 plants with an aggregate net capacity of 171 802 MWe and an aggregate gross capacity of 181 212 MWe were in operation. One unit, i.e. Volgodonsk-1 in Russia went critical for the first time and started test operation after having been connected to the grid. Volgodonsk-1 adds about 1 000 MWe (gross) nd 953 MWe (net) to the electricity production capacity. The operator of the Muehlheim-Kaerlich NPP field an application to decommission and dismantle the plant; this plant was only 13 months in operation and has been shut down since 1988 for legal reasons. Last year, 10 plants were under construction in Romania (1), Russia (4), Slovakia (2), the Czech Republic (1) and the Ukraine (2), that is only in East European Countries. In eight countries of the European Union 143 nuclear power plants have been operated with an aggregate gross capacity of 128 758 MWe and an aggregate net capacity of 122 601 MWe. Net electricity production in 2001 in the EU amounts to approx. 880.3 TWh gross, which means a share of 33,1 per cent of the total production in the whole EU. Shares of nuclear power differ widely among the operator countries. The reach 75.6% in France, 74.2% in Lithuania, 58.2% in Belgium, 53.2% in the Slovak Republic, and 47.4% in the Ukraine. Nuclear power also provides a noticeable share in the electricity supply of countries, which operate no own nuclear power plants, e.g. Italy, Portugal, and Austria. On May 24th, 2002 the Finnish Parliament voted for the decision in principle to build a fifth nuclear power plant in the country. This launches the next stage in the nuclear power plant project. The electric output of the plant unit will be 1000-1600 MW

  17. Safety in connection with the request for approval of the installation alteration in the fuel reprocessing facilities of Power Reactor and Nuclear Fuel Development Corporation (report)

    International Nuclear Information System (INIS)

    1982-01-01

    A report to the Prime Minister by the Nuclear Safety Commission was presented concerning the safety in the installation alteration of the fuel reprocessing facilities, as PNC had requested its approval to the Prime Minister. The safety was confirmed. The items of examination on the safety made by the committee on Examination of Nuclear Fuel Safety of NSC were the aseismic design of liquid waste storage, uranium denitration facility, intermediate gate and radioactive solid waste storage; the criticality safety design of the denitration facility; the radiation shielding design of the liquid waste storage, denitration facility and solid waste storage; the function of radioactive material containment of the liquid waste storage and denitration facility; the radiation control in the liquid waste storage, denitration facility and solid waste storage; the waste management in the liquid waste storage and denitration facility; fire and explosion prevention in the liquid waste storage; exposure dose from the liquid waste storage and denitration facility. (Mori, K.)

  18. France without nuclear power

    International Nuclear Information System (INIS)

    Barre, B.; Charmant, A.; Devezeaux, J.G.; Ladoux, N.; Vielle, M.

    1995-01-01

    As environmental issues (particularly questions associated with the greenhouse effect) become a matter of increasing current concern, the French nuclear power programme can, in retrospect, be seen to have had a highly positive impact upon emissions of atmospheric pollutants. The most spectacular effect of this programme was the reduction of carbon dioxide emissions from 530 million tonnes per annum in 1973 to 387 million tonnes per annum today. Obviously, this result cannot be considered in isolation from the economic consequences of the nuclear power programme, which have been highly significant.The most obvious consequence of nuclear power has been the production of cheap electricity, while a further consequence has been the stability of electricity prices resulting from the increasing self-sufficiency of France in energy supplies (from 22% in 1973 to 49.% in 1992). Moreover, French nuclear industry exports. In 1993, 61.7 TW·h from nuclear production were exported, which contributed F.Fr. 14.2 billion to the credit side of the balance of payment. For the same year, Framatome exports are assessed at about F.Fr. 2 billion, corresponding to manufacturing and erection of heavy components, and maintenance services. Cogema, the French nuclear fuel operator, sold nuclear materials and services for F.Fr. 9.3 billion. Thus, nuclear activities contributed more than F.Fr. 25 billion to the balance of payment. Therefore, a numerical assessment of the macroeconomic impact of the nuclear power programme is essential for any accurate evaluation of the environmental consequences of that programme. For this assessment, which is presented in the paper, the Micro-Melodie macroeconomic and energy supply model developed by the Commissariat a l'energie atomique has been used. (author). 6 refs, 4 figs, 1 tab

  19. Nuclear Power after Fukushima

    International Nuclear Information System (INIS)

    Bigot, B.

    2011-01-01

    On 11 March 2011 Japan suffered an earthquake of very high magnitude, followed by a tsunami that left thousands dead in the Sendai region, the main consequence of which was a major nuclear disaster at the Fukushima power station. The accident ranked at the highest level of severity on the international scale of nuclear events, making it the biggest since Chernobyl in 1986. It is still impossible to gauge the precise scope of the consequences of the disaster, but it has clearly given rise to the most intense renewed debates on the nuclear issue. Futuribles echoes this in the 'Forum' feature of this summer issue which is entirely devoted to energy questions. Bernard Bigot, chief executive officer of the technological research organization CEA, looks back on the Fukushima disaster and what it changes (or does not change) so far as the use of nuclear power is concerned, particularly in France. After recalling the lessons of earlier nuclear disasters, which led to the development of the third generation of power stations, he reminds us of the currently uncontested need to free ourselves from dependence on fossil fuels, which admittedly involves increased use of renewables, but can scarcely be envisaged without nuclear power. Lastly, where the Fukushima disaster is concerned, Bernard Bigot shows how it was, in his view, predominantly the product of a management error, from which lessons must be drawn to improve the safety conditions of existing or projected power stations and enable the staff responsible to deliver the right response as quickly as possible when an accident occurs. In this context and given France's high level of dependence on nuclear power, the level of use of this energy source ought not to be reduced on account of the events of March 2011. (author)

  20. France without nuclear power

    International Nuclear Information System (INIS)

    Charmant, A.; Devezeaux, J.G.; Ladoux, N.; Vielle, M.

    1991-01-01

    As coal production declined and France found herself in a condition of energy dependency, the country decided to turn to nuclear power and a major construction program was undertaken in 1970. The consequences of this step are examined in this article, by imagining where France would be without its nuclear power. At the end of the sixties, fuel-oil incontestably offered the cheapest way of producing electricity; but the first petroleum crisis was to upset the order of economic performance, and coal then became the more attractive fuel. The first part of this article therefore presents coal as an alternative to nuclear power, describing the coal scenario first and then comparing the relative costs of nuclear and coal investment strategies and operating costs (the item that differs most is the price of the fuel). The second part of the article analyzes the consequences this would have on the electrical power market, from the supply and demand point of view, and in terms of prices. The third part of the article discusses the macro-economic consequences of such a step: the drop in the level of energy dependency, increased costs and the disappearance of electricity exports. The article ends with an analysis of the environmental consequences, which are of greater and greater concern today. The advantage here falls very much in favor of nuclear power, if we judge by the lesser emissions of sulfur dioxide, nitrogen oxides and especially carbon dioxide. 22 refs.; 13 figs.; 10 tabs

  1. Reviewing nuclear power

    International Nuclear Information System (INIS)

    Robinson, Colin

    1990-01-01

    The UK government has proposed a review of the prospects for nuclear power as the Sizewell B pressurized water reactor project nears completion in 1994. However, a delay in the completion of Sizewell B or a change of government could put off the review for some years beyond the mid 1990s. Anticipating, though, that such a review will eventually take place, issues which it should consider are addressed. Three broad categories of possible benefit claimed for nuclear power are examined. These are that nuclear power contributes to the security of energy supply, that it provides protection against long run fossil fuel price increases and that it is a means of mitigating the greenhouse effect. Arguments are presented which cost doubt over the reality of these benefits. Even if these benefits could be demonstrated, they would have to be set against the financial, health and accident costs attendant on nuclear power. It is concluded that the case may be made that nuclear power imposes net costs on society that are not justified by the net benefits conferred. Some comments are made on how a government review, if and when it takes place, should be conducted. (UK)

  2. Childhood leukemia around nuclear facilities

    International Nuclear Information System (INIS)

    Hatch, M.

    1992-01-01

    Epidemiologic studies on health effects of living near nuclear facilities have been rare and, indeed, radiobiological models would not predict any detectable increase in cancer risk to the general public from very low levels of radioactivity emitted by nuclear installations. Thus recent evidence suggesting an excess of childhood leukemias in the vicinity of certain nuclear sites in the United Kingdom has generated considerable controversy. To help resolve the uncertainty and enhance interpretability of results, future epidemiologic studies will need to be designed with great care (and within realistic cost limits). This commentary suggests three areas for methodologic consideration: 1. definition and modelling of radiation exposure; 2. selection of cancer sites and sensitive subgroups, and 3. use of incidence of mortality data. Specific suggestions for further epidemiologic research are offered as well. (author). 8 refs

  3. Gas separation techniques in nuclear facilities

    International Nuclear Information System (INIS)

    Hioki, Hideaki; Morisue, Tetsuo; Ohno, Masayoshi

    1983-01-01

    The literatures concerning the gas separation techniques which are applied to the waste gases generated from nuclear power plants and nuclear fuel reprocessing plants, uranium enrichment and the instrumentation of nuclear facilities are reviewed. The gas permeability and gas separation performance of membranes are discussed in terms of rare gas separation. The investigation into the change of the gas permeability and mechanical properties of membranes with exposure to radiation is reported. The theoretical investigation of the separating cells used for the separation of rare gas and the development of various separating cells are described, and the theoretical and experimental investigations concerning rare gas separation using cascades are described. The application of membrane method to nuclear facilities is explained showing the examples of uranium enrichment, the treatment of waste gases from nuclear reactor buildings and nuclear fuel reprocessing plants, the monitoring of low level β-emitters in stacks, the detection of failed fuels and the detection of water leak in fast breeder reactors. (Yoshitake, I.)

  4. Building of nuclear power plant

    International Nuclear Information System (INIS)

    Saito, Takashi.

    1997-01-01

    A first nuclear plant and a second nuclear power plant are disposed in adjacent with each other in a building for a nuclear reactor. A reactor container is disposed in each of the plants, and each reactor container is surrounded by a second containing facility. A repairing chamber capable of communicating with the secondary containing facilities for both of the secondary containing facilities is disposed being in contact with the second containing facility of each plant for repairing control rod driving mechanisms or reactor incorporated-type recycling pumps. Namely, the repairing chamber is in adjacent with the reactor containers of both plants, and situated between both of the plants as a repairing chamber to be used in common for both plants. Air tight inlet/exit doors are formed to the inlets/exits of both plants of the repairing chamber. Space for the repairing chamber can be reduced to about one half compared with a case where the repairing chamber is formed independently on each plant. (I.N.)

  5. The politics of nuclear power

    International Nuclear Information System (INIS)

    Elliott, D.

    1978-01-01

    The contents of the book are: introduction; (part 1, the economy of nuclear power) nuclear power and the growth of state corporatism, ownership and control - the power of the multi-nationals, economic and political goals - profit or control, trade union policy and nuclear power; (part 2, nuclear power and employment) nuclear power and workers' health and safety, employment and trade union rights, jobs, energy and industrial strategy, the alternative energy option; (part 3, political strategies) the anti-nuclear movement, trade unions and nuclear power; further reading; UK organisations. (U.K.)

  6. Nuclear power in Russia: status, problems, prospects

    International Nuclear Information System (INIS)

    Ponomarev-Stepnoy, N.

    1992-01-01

    To solve the problem of atomic bomb, a powerful nuclear industrial complex has been established in the Soviet Union. This complex has developed a high scientific and engineering potential and enlisted the best science and engineering experts. Strict administration, rigid discipline in execution and operation, to secrecy limiting both internal and external interactions were typical of the complex which presented a state within the state with the inside divide by rigid barriers and protected from the outside by iron curtain. When the atomic bomb was designed and tested the search for a field of application for the nuclear potential available was started: nuclear power plants, nuclear power facilities for submarines and ships, nuclear aircraft and rocket engines, space nuclear facilities. Such were the conditions of forming the nuclear power in USSR. But this nuclear military complex has failed to prevent the Chelyabinsk accident which involved considerable radiological effects. The national industry could not adopt quickly the work style established in a nuclear complex and relative high technologies because of low educational and technical level and poor technological discipline. The results are known: the Chernobyl accident coincided in time with the beginning of the reconstruction of the System, the result of which was this accident. This paper describes the current status of the nuclear park, shows the problems of safety, maintenance, retrofitting, reconstruction or decommissioning. Statistical data on nuclear power in the power production program are also given

  7. Nuclear power and other energy

    International Nuclear Information System (INIS)

    Doederlein, J.M.

    1975-01-01

    A comparison is made between nuclear power plants, gas-fuelled thermal power plants and oil-fired thermal power plants with respect to health factors, economy, environment and resource exploitation, with special reference to the choice of power source to supplement Norwegian hydroelectric power. Resource considerations point clearly to nuclear power, but, while nuclear power has an overall economic advantage, the present economic situation makes its heavy capital investment a disadvantage. It is maintained that nuclear power represents a smaller environmental threat than oil or gas power. Finally, statistics are given showing that nuclear power involves smaller fatality risks for the population than many other hazards accepted without question. (JIW)

  8. Decommissioning of nuclear power plant

    International Nuclear Information System (INIS)

    Sato, Tadamichi

    2002-01-01

    On nuclear energy facilities, an abolished one is often difficult to reuse, and is difficult to subdivide because of its strong structure and its inclusion of many apparatus and constructions containing radioactive materials in them. And, it is required to consider radiation management under dismantling operation and radioactive wastes forming at its subdivision. Abolishment of nuclear power station is a measure carrying out subdivision removing of a facility ended its role to a condition unnecessary for its radiation administration, and is defined as all of measures to be done after unused condition before reaching green field condition. Here were described on basic principle on abolishment measure in Japan, processing and disposition of subdivided wastes, and system preparation. (G.K.)

  9. Industrial complex for solid radwaste management (ICSRM) at Chernobyl nuclear power plant pre-commissioning of the facilities

    Energy Technology Data Exchange (ETDEWEB)

    Pietsch, Thomas [NUKEM Technologies GmbH, Alzenau (Germany); NUKEM Technologies GmbH, Slavutich (Ukraine)

    2009-07-01

    NUKEM was awarded to build the industrial complex for solid radwaste management (ICSRM) at the NPP Chernobyl. ICSRM consists of four facilities: SLWS (solid low waste storage), solid waste retrieval facility, solid waste processing plant, repository for the disposal of short-lived waste. The contribution describes the approach for testing and pre-commissioning the following systems: sorting, compaction, incineration, transport systems, monitoring, tracking and retrieval. Start-up of the facilities is planned for 2009.

  10. Industrial complex for solid radwaste management (ICSRM) at Chernobyl nuclear power plant pre-commissioning of the facilities

    International Nuclear Information System (INIS)

    Pietsch, Thomas

    2009-01-01

    NUKEM was awarded to build the industrial complex for solid radwaste management (ICSRM) at the NPP Chernobyl. ICSRM consists of four facilities: SLWS (solid low waste storage), solid waste retrieval facility, solid waste processing plant, repository for the disposal of short-lived waste. The contribution describes the approach for testing and pre-commissioning the following systems: sorting, compaction, incineration, transport systems, monitoring, tracking and retrieval. Start-up of the facilities is planned for 2009.

  11. Nuclear power production costs

    International Nuclear Information System (INIS)

    Erramuspe, H.J.

    1988-01-01

    The economic competitiveness of nuclear power in different highly developed countries is shown, by reviewing various international studies made on the subject. Generation costs (historical values) of Atucha I and Embalse Nuclear Power Plants, which are of the type used in those countries, are also included. The results of an international study on the economic aspects of the back end of the nuclear fuel cycle are also reviewed. This study shows its relatively low incidence in the generation costs. The conclusion is that if in Argentina the same principles of economic racionality were followed, nuclear energy would be economically competitive in the future, as it is today. This is of great importance in view of its almost unavoidable character of alternative source of energy, and specially since we have to expect an important growth in the consumption of electricity, due to its low share in the total consumption of energy, and the low energy consumption per capita in Argentina. (Author) [es

  12. Environment and nuclear power

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Aimed at the general public this leaflet, one of a series prepared by AEA Technology, on behalf of the British Nuclear Industry Forum, seeks to put the case for generating electricity to meet United Kingdom and world demand using nuclear power. It examines the environmental problems linked to the use of fossil-fuels in power stations and other uses, such as the Greenhouse Effect. Problems associated with excess carbon dioxide emissions are also discussed, such as acid rain, the effects of deforestation and lead in petrol. The role of renewable energy sources is mentioned briefly. The leaflet also seeks to reassure on issues such as nuclear waste managements and the likelihood and effects of nuclear accidents. (UK)

  13. Thai Nuclear Power Program

    International Nuclear Information System (INIS)

    Namwong, Ratanachai

    2011-01-01

    The Electricity Generating Authority of Thailand (EGAT), the main power producer in Thailand, was first interested in nuclear power as an electricity option in 1967 when the electricity demand increased considerably for the first time as a result of the economic and industrial growth. Its viability had been assessed several times during the early seventies in relation to the changing factors. Finally in the late 1970s, the proceeding with nuclear option was suspended for a variety of reasons, for instance, public opposition, economic repercussion and the uncovering of the indigenous petroleum resources. Nonetheless, EGAT continued to maintain a core of nuclear expertise. During 1980s, faced with dwindling indigenous fossil fuel resources and restrictions on the use of further hydro as an energy source, EGAT had essentially reconsidered introducing nuclear power plants to provide a significant fraction to the long term future electricity demand. The studies on feasibility, siting and environmental impacts were conducted. However, the project was never implemented due to economics crisis in 1999 and strong opposition by environmentalists and activists groups. The 1986 Chernobyl disaster was an important cause. After a long dormant period, the nuclear power is now reviewed as one part of the solution for future energy supply in the country. Thailand currently relies on natural gas for 70 percent of its electricity, with the rest coming from oil, coal and hydro-power. One-third of the natural gas consumed in Thailand is imported, mainly from neighbouring Myanmar. According to Power Development Plan (PDP) 2007 rev.2, the total installed electricity capacity will increase from 28,530.3 MW in 2007 to 44,281 MW by the end of plan in 2021. Significantly increasing energy demand, concerns over climate change and dependence on overseas supplies of fossil fuels, all turn out in a favor of nuclear power. Under the current PDP (as revised in 2009), two 1,000- megawatt nuclear

  14. Nuclear Power Plants (Rev.)

    Energy Technology Data Exchange (ETDEWEB)

    Lyerly, Ray L.; Mitchell III, Walter [Southern Nuclear Engineering, Inc.

    1973-01-01

    Projected energy requirements for the future suggest that we must employ atomic energy to generate electric power or face depletion of our fossil-fuel resources—coal, oil, and gas. In short, both conservation and economic considerations will require us to use nuclear energy to generate the electricity that supports our civilization. Until we reach the time when nuclear power plants are as common as fossil-fueled or hydroelectric plants, many people will wonder how the nuclear plants work, how much they cost, where they are located, and what kinds of reactors they use. The purpose of this booklet is to answer these questions. In doing so, it will consider only central station plants, which are those that provide electric power for established utility systems.

  15. Pulsed nuclear power plant

    International Nuclear Information System (INIS)

    David, C.V.

    1986-01-01

    This patent describes a nuclear power plant. This power plant consists of: 1.) a cavity; 2.) a detonatable nuclear device in a central region of the cavity; 3.) a working fluid inside of the cavity; 4.) a method to denote a nuclear device inside of the cavity; 5.) a mechanical projection from an interior wall of the cavity for recoiling to absorb a shock wave produced by the detonation of the nuclear device and thereby protecting the cavity from damage. A plurality of segments defines a shell within the cavity and a plurality of shock absorbers, each connecting a corresponding segment to a corresponding location on the wall of the cavity. Each of these shock absorbers regulate the recoil action of the segments; and 6.) means for permitting controlled extraction of a quantity of hot gases from the cavity produced by the vaporization of the working fluid upon detonation of the nuclear device. A method of generating power is also described. This method consists of: 1.) introducing a quantity of water in an underground cavity; 2.) heating the water in the cavity to form saturated steam; 3.) detonating a nuclear device at a central location inside the cavity; 4.) recoiling plate-like elements inside the cavity away from the central location in a mechanically regulated and controlled manner to absorb a shock wave produced by the nuclear device detonation and thereby protect the underground cavity against damage; 5.) extracting a quantity of superheated steam produced by the detonation of the nuclear device; and 6.) Converting the energy in the extracted superheated steam into electrical power

  16. Misunderstanding nuclear power

    International Nuclear Information System (INIS)

    Tombs, F.

    1981-01-01

    The inaugural lecture of Sir Francis Tombs as newly installed President of the Institution of Electrical Engineers, on the reasons for the widely differing perceptions of opposing factions in the nuclear debate, is reviewed with extensive quotations. The lecturer pointed out that development of nuclear power as an energy source requires the consent of the majority and the uncommitted must be persuaded to spend the time necessary to understand the issues and to evaluate the arguments in an objective way. (U.K.)

  17. Nuclear power in Germany

    International Nuclear Information System (INIS)

    Schaefer, A.

    1990-01-01

    I want to give some ideas on the situation of public and utility acceptance of nuclear power in the Federal Republic of Germany and perhaps a little bit on Europe. Let me start with public perception. I think in Germany we have a general trend in the public perception of technology during the last decade that has been investigated in a systematic manner in a recent study. It is clear that the general acceptance of technology decreased substantially during the last twenty years. We can also observe during this time that aspects of the benefits of technology are much less reported in the media, that most reporting by the media now is related to the consequences of technologies, such as negative environmental consequences. hat development has led to a general opposition against new technological projects, in particular unusual and large. That trend is related not only to nuclear power, we see it also for new airports, trains, coal-fired plants. here is almost no new technological project in Germany where there is not very strong opposition against it, at least locally. What is the current public opinion concerning nuclear power? Nuclear power certainly received a big shock after Chernobyl, but actually, about two thirds of the German population wants to keep the operating plants running. Some people want to phase the plants out as they reach the end-of-life, some want to substitute newer nuclear technology, and a smaller part want to increase the use of nuclear power. But only a minority of the German public would really like to abandon nuclear energy

  18. Seismic safety assessment of nuclear facilities other than NPPs

    International Nuclear Information System (INIS)

    Coman, O.; Dragomirescu, A.; Kope, F.; Zemtev, N.

    2003-01-01

    Many research nuclear facilities are much simpler as compared with a Nuclear Power Plant (NPP) and the accident scenarios corresponding to an external initiating events and the relevant shutdown paths are much easier to be identified. Therefore, simpler methods than an EE-PSA can be often involved in the evaluation of the overall risk associated to such nuclear facilities in respect to External Event Hazards. (author)

  19. Nuclear power: Europe report

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    Last year, 1999, nuclear power plants were available for energy supply, respectively, in 18 countries all over Europe. In eight of the fifteen member countries of the European Union nuclear power plants have been in operation. A total of 218 plants with an aggregate net capacity of 181,120 MWe and an aggregate gross capacity of 171,802 MWe were in operation. Two units, i.e. Civaux 2 in France and Mochovce-2 in Slovakia went critical for the first time and started commercial operation after having been connected to the grid. Three further units in France, Chooz 1 and 2 and Civaux 1, started commercial operation in 1999 after the completion of technical measures in the primary circuit. Last year, 13 plants were under construction in Romania, Russia, Slovakia and the Czech Republic, that is only in East European countries. In eight countries of the European Union 146 nuclear power plants have been operated with an aggregate gross capacity of 129.772 MWe and an aggregate net capacity of 123.668 MWe. Net electricity production in 1999 in the EU amounts to approx. 840.2 TWh, which means a share of 35 per cent of the total production. Shares of nuclear power differ widely among the operator countries. They reach 75 per cent in France, 73 per cent in Lithuania, 58 per cent in Belgium and 47 per cent in Bulgaria, Sweden and Slovakia. Nuclear power also provides a noticeable share in the electricity supply of countries, which operate no own nuclear power plants, e.g. Italy, Portugal and Austria. (orig.) [de

  20. Nuclear power: Europe report

    International Nuclear Information System (INIS)

    Anon.

    2001-01-01

    Last year, 2000, nuclear power plants were available for energy supply, respectively, in 18 countries all over Europe. In eight of the fifteen member countries of the European Union nuclear power plants have been in operation. A total of 218 plants with an aggregate net capacity of 172 259 MWe and an aggregate gross capacity of 181 642 MWe were in operation (31.12.2000; 215 plants, 180 067 MWe (gross), 172 259 MWe (net)). One unit, i.e. Temelin in the Czech Republic went critical for the first time and started test operation after having been connected to the grid. Temelin adds about 981 MWe (gross) and 912 MWe (net) to the electricity production capacity. Three units, Hinkley Point A1 and A2 in United Kingdom, and Chernobyl 3 in the Ukraine have been shut down during the year 2000. This means a loss of 1534 MWe gross capacity and 1420 MWe net capacity. Last year, 12 plants (31.12.2000: 11 plants) were under construction in Romania, Russia, Slovakia, the Czech Republic and the Ukraine, that is only in east european countries. In eight countries of the European Union 146 nuclear power plants have been operated with an aggregate gross capacity of 129 188 MWe and an aggregate net capacity of 123 061 MWe (31.12.2000: 144 plants, 128 613 MWe (gross), 122 627 MWe (net)). Net electricity production in 2000 in the EU amounts to approx. 818.8 TWh, which means a share of 35 per cent of the total production in the whole EU. Shares of nuclear power differ widely among the operator countries. The reach 76 per cent in France, 74 per cent in Lithuania, 57 per cent in Belgium and 47 per cent in the Ukraine. Nuclear power also provides an noticeable share in the electricity supply of countries, which operate no own nuclear power plants, e. g. Italy, Portugal and Austria. (orig.) [de

  1. How nuclear power began

    International Nuclear Information System (INIS)

    Gowing, M.

    1987-01-01

    Many of the features of the story of nuclear power, both in nuclear weapons and nuclear power stations, derive from their timing. Usually, in the history of science the precise timing of discovery does not make much difference, but in the case of nuclear fission there was the coincidence that crucial discoveries were made and openly published in the same year, 1939, as the outbreak of the Second World War. It is these events of the 1930s and the early post-war era that are mainly discussed. However, the story began a lot earlier and even in the early 1900s the potential power within the atom had been foreseen by Soddy and Rutherford. In the 1930s Enrico Fermi and his team saw the technological importance of their discoveries and took out a patent on their process to produce artificial radioactivity from slow neutron beams. The need for secrecy because of the war, and the personal trusts and mistrusts run through the story of nuclear power. (UK)

  2. Nuclear power safety

    International Nuclear Information System (INIS)

    1988-01-01

    The International Atomic Energy Agency, the organization concerned with worldwide nuclear safety has produced two international conventions to provide (1) prompt notification of nuclear accidents and (2) procedures to facilitate mutual assistance during an emergency. IAEA has also expanded operational safety review team missions, enhanced information exchange on operational safety events at nuclear power plants, and planned a review of its nuclear safety standards to ensure that they include the lessons learned from the Chernobyl nuclear plant accident. However, there appears to be a nearly unanimous belief among IAEA members that may attempt to impose international safety standards verified by an international inspection program would infringe on national sovereignty. Although several Western European countries have proposed establishing binding safety standards and inspections, no specific plant have been made; IAEA's member states are unlikely to adopt such standards and an inspection program

  3. Nuclear power and physics

    International Nuclear Information System (INIS)

    Xu Mi

    2006-01-01

    During the 30s and 40s of the last century atomic physicists discovered the fission of uranium nuclei bombarded by neutrons and realized the first self-sustaining controlled fission chain reaction, which ushered in the atomic age. After 50 years of electricity production, in 2003 nuclear power plants were generating 16% of the total electricity in the world. Of these, thermal neutron reactors make up over 99%. For the large scale production of nuclear power, say up to hundreds of GWe, it is very important to speed up the development and deployment of fast breeder reactors to avoid the future lack of uranium resources. (authors)

  4. Nuclear power plants maintenance

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    Nuclear power plants maintenance now appears as an important factor contributing to the competitivity of nuclea energy. The articles published in this issue describe the way maintenance has been organized in France and how it led to an actual industrial activity developing and providing products and services. An information note about Georges Besse uranium enrichment plant (Eurodif) recalls that maintenance has become a main data not only for power plants but for all nuclear industry installations. (The second part of this dossier will be published in the next issue: vol. 1 January-February 1989) [fr

  5. Nuclear power safety economics

    International Nuclear Information System (INIS)

    Legasov, V.A.; Demin, V.F.; Shevelev, Ya.V.

    1984-01-01

    The existing conceptual and methodical basis for the decision-making process insuring safety of the nuclear power and other (industrial and non-industrial) human activities is critically analyzed. Necessity of development a generalized economic safety analysis method (GESAM) is shown. Its purpose is justifying safety measures. Problems of GESAM development are considered including the problem of costing human risk. A number of suggestions on solving them are given. Using the discounting procedure in the assessment of risk or detriment caused by harmful impact on human health is substantiated. Examples of analyzing some safety systems in the nuclear power and other spheres of human activity are given

  6. Terrorist threats of nuclear facilities

    International Nuclear Information System (INIS)

    Jozsef Solymosi; Jozser Ronaky; Zoltan Levai; Arpad Vincze; Laszlo Foldi

    2004-01-01

    More than one year has passed since the terrible terrorist attacks against the United States. The tragic event fundamentally restructured our security policy approach and made requirements of countering terrorism a top priority of the 21st century. In one year a lot of studies were published and the majority of them analyses primarily the beginnings of terrorism then focus on the interrelations of causes and consequences of the attacks against the WTC. In most of the cases the authors can only put their questions most of which have remained unanswered to date. Meanwhile, in a short while after the attacks the secret assessments of threat levels of potential targets and areas were also prepared. One of the high priority fields is the issue of nuclear, biological, and chemical security, in short NBC-security. Here and now we focus on component N, that is the assessment techniques of nuclear security in short, without aiming at completeness. Our definite objective is to make non-expert readers understand - and present a concrete example as it is done in risk analysis - the real danger-level of nuclear facilities and especially the terrorist threat. Our objective is not to give tips to terrorists but to provide them with deterring arguments and at the same time calm worried people. In our communique we give an overview of international practice of nuclear antiterrorism and of preventive nuclear protection in Hungary. (author)

  7. Decommissioning of nuclear fuel cycle facilities. Safety guide

    International Nuclear Information System (INIS)

    2001-01-01

    The objective of this Safety Guide is to provide guidance to regulatory bodies and operating organizations on planning and provision for the safe management of the decommissioning of non-reactor nuclear fuel cycle facilities. While the basic safety considerations for the decommissioning of nuclear fuel cycle facilities are similar to those for nuclear power plants, there are important differences, notably in the design and operating parameters for the facilities, the type of radioactive material and the support systems available. It is the objective of this Safety Guide to provide guidance for the shutdown and eventual decommissioning of such facilities, their individual characteristics being taken into account

  8. Development of an evaluation method for seismic isolation systems of nuclear power facilities. Development of crossover piping design method for seismic isolation systems

    International Nuclear Information System (INIS)

    Otoyo, Teruyoshi; Otani, Akihito; Otani, Akihito; Fukushima, Shunsuke; Jimbo, Masakazu; Yamamoto, Tomofumi; Sakakida, Takaaki; Onishi, Shigenobu

    2014-01-01

    In the conceptual design of seismic isolation systems of nuclear power facilities, there exist two types of installation. The first type is to isolate both the reactor and the turbine buildings, the other is to isolate only the reactor building. In the latter type, the crossover piping, which installed between the isolated and the non-isolated buildings, is excited and deformed by the different motions of those buildings. In this study, shaking tests of 1/10 scaled model of the main steam piping and FEM analyses under multiple support excitation conditions have been performed to investigate the vibration behavior of the crossover piping. It was confirmed that modal time-history analyses could be in good agreement with the shaking test results. Also, Numerous combination methods were investigated by comparing response spectrum analyses and modal time-history analyses. In conclusion, response spectrum analyses using SRSS combinations could correspond to time-history analyses. (author)

  9. Nuclear power plant decommissioning

    International Nuclear Information System (INIS)

    Yaziz Yunus

    1986-01-01

    A number of issues have to be taken into account before the introduction of any nuclear power plant in any country. These issues include reactor safety (site and operational), waste disposal and, lastly, the decommissioning of the reactor inself. Because of the radioactive nature of the components, nuclear power plants require a different approach to decommission compared to other plants. Until recently, issues on reactor safety and waste disposal were the main topics discussed. As for reactor decommissioning, the debates have been academic until now. Although reactors have operated for 25 years, decommissioning of retired reactors has simply not been fully planned. But the Shippingport Atomic Power Plant in Pennysylvania, the first large scale power reactor to be retired, is now being decommissioned. The work has rekindled the debate in the light of reality. Outside the United States, decommissioning is also being confronted on a new plane. (author)

  10. Nuclear power and modern society

    International Nuclear Information System (INIS)

    Komarek, A.

    1999-01-01

    A treatise consisting of the following sections: Development of modern society (Origin of modern society; Industrial society; The year 1968; Post-industrial society; Worldwide civic society); Historic breaks in the development of the stationary power sector (Stationary thermal power; Historic breaks in the development of nuclear power); Czech nuclear power engineering in the globalization era (Major causes of success of Czech nuclear power engineering; Future of Czech nuclear power engineering). (P.A.)

  11. Nuclear power, society and environment

    International Nuclear Information System (INIS)

    Anon.

    1999-01-01

    2 subjects are treated: the regular public opinion poll ordered by CEA, EdF, COGEMA and FRAMATOME and the denuclearization of one of the nuclear research center belonging to CEA. Every year in december the BVA polling institute leads a public opinion poll about how nuclear activities are perceived by people. This year about 1000 people have been questioned about the French nuclear power program, radioactivity, safety in nuclear facilities, nuclear wastes, information and public debates. The most meaningful result is that now fewer people think that nuclear energy will play a major role in 10 or 20 years. More people now think that radioactivity even at very low doses is dangerous. In 1946 the ZOE reactor was built on the site of the ancient stronghold of Chatillon which became the nuclear research center of Fontenay-aux-roses in april 1957. From 1958 to 1962 ZOE and a pilot unit of spent fuel reprocessing were dismantled. The test reactor Triton whose definitive shutdown took place in 1982, underwent a complete decontamination, as for Minerve reactor it was removed to Cadarache. The hot laboratories in which methods concerning the fabrication of plutonium fuels, the reprocessing and the handling of high activity wastes have been settled and tested, are due to be dismantled. 20 hot cells, 134 glove boxes and about 100 tanks of liquid effluents are involved. CEA has budgeted 910 millions of francs for the complete denuclearization of this site, it will be over in 2010. (A.C.)

  12. Power generation by nuclear power plants

    International Nuclear Information System (INIS)

    Bacher, P.

    2004-01-01

    Nuclear power plays an important role in the world, European (33%) and French (75%) power generation. This article aims at presenting in a synthetic way the main reactor types with their respective advantages with respect to the objectives foreseen (power generation, resources valorization, waste management). It makes a fast review of 50 years of nuclear development, thanks to which the nuclear industry has become one of the safest and less environmentally harmful industry which allows to produce low cost electricity: 1 - simplified description of a nuclear power generation plant: nuclear reactor, heat transfer system, power generation system, interface with the power distribution grid; 2 - first historical developments of nuclear power; 3 - industrial development and experience feedback (1965-1995): water reactors (PWR, BWR, Candu), RBMK, fast neutron reactors, high temperature demonstration reactors, costs of industrial reactors; 4 - service life of nuclear power plants and replacement: technical, regulatory and economical lifetime, problems linked with the replacement; 5 - conclusion. (J.S.)

  13. LDC nuclear power: Argentina

    International Nuclear Information System (INIS)

    Tweedale, D.L.

    1982-01-01

    Argentina's 31-year-old nuclear research and power program makes it a Third World leader and the preeminent Latin American country. Easily accessible uranium fuels the heavy water reactor, Atucha I, which provides 10% of the country's electric power. Atucha II and III are under construction. Several domestic and international factors combined to make Argentina's program succeed, but achieving fuel-cycle independence and the capacity to divert fissionable material to military uses is a cause for some concern. 60 references

  14. Nuclear power: Pt. 6

    International Nuclear Information System (INIS)

    Janse van Rensburg, H.J.

    1985-01-01

    Based on the annual growthrate of 2,5% in the need for energy and the present coal, oil, gas and uranium reserves, it is expected that there will be an energy deficiency early in the twentieth century. Coal-fired power stations have the disadvantage of pollution and a high water consumption. The use of nuclear power in South Africa is backed-up by its uranium reserves

  15. Modern tornado design of nuclear and other potentially hazardous facilities

    International Nuclear Information System (INIS)

    Stevenson, J.D.; Zhao, Y.

    1996-01-01

    Tornado wind loads and other tornado phenomena, including tornado missiles and differential pressure effects, have not usually been considered in the design of conventional industrial, commercial, or residential facilities in the United States; however, tornado resistance has often become a design requirement for certain hazardous facilities, such as large nuclear power plants and nuclear materials and waste storage facilities, as well as large liquefied natural gas storage facilities. This article provides a review of current procedures for the design of hazardous industrial facilities to resist tornado effects. 23 refs., 19 figs., 13 tabs

  16. Power Reactor Thoria Reprocessing Facility (PRTRF), Trombay

    International Nuclear Information System (INIS)

    Dhami, P.S; Yadav, J.S; Agarwal, K.

    2017-01-01

    Exploitation of the abundant thorium resources to meet sustained energy demand forms the basis of the Indian nuclear energy programme. To gain reprocessing experience in thorium fuel cycle, thoria was irradiated in research reactor CIRUS in early sixties. Later in eighties, thoria bundles were used for initial flux flattening in some of the pressurized heavy water reactors (PHWRs). The research reactor irradiated thoria contained small content (∼ 2-3ppm) of "2"3"2U in "2"3"3U product, which did not pose any significant radiological problems during processing in Uranium Thorium Separation Facility (UTSF), Trombay. Thoria irradiated in PHWRs on discharge contained (∼ 0.5-1.5% "2"3"3U with significant "2"3"2U content (100-500 ppm) requiring special radiological attention. Based on the experience from UTSF, a new facility viz. Power Reactor Thoria Reprocessing Facility (PRTRF), Trombay was built which was hot commissioned in the year 2015

  17. Environmental monitoring of nuclear facilities

    International Nuclear Information System (INIS)

    Papadopoulos, D.; Winter, M.

    1982-01-01

    Environmental monitoring adds to the control of emissions of radioactive substances from nuclear facilities. The radioactive substances released with the exhaust air and the liquid effluent result in impact levels in the immediate vicinity, which must be ascertained by measurement. Impact control serves for the quantitative assessment of man-made radioactivity in different media of relevant pathways and for the direct assessment of the radiation exposure of the public living in the vicinity. In this way, the radiation exposure of the environment, which can be calculated if the emission data and the meteorological diffusion parameters are known, is controlled directly. (orig./RW)

  18. The abuse of nuclear power

    International Nuclear Information System (INIS)

    Hill, J.

    1977-01-01

    Different aspects of possible abuse of nuclear power by countries or individuals are discussed. Special attention is paid to the advantage of nuclear power, despite the risk of weapon proliferation or terrorism. The concepts of some nuclear power critics, concerning health risks in the nuclear sector are rejected as untrue and abusive

  19. Nuclear power plant analyzer

    International Nuclear Information System (INIS)

    Stritar, A.

    1986-01-01

    The development of Nuclear Power Plant Analyzers in USA is described. There are two different types of Analyzers under development in USA, the forst in Idaho and Los Alamos national Lab, the second in brookhaven National lab. That one is described in detail. The computer hardware and the mathematical models of the reactor vessel thermalhydraulics are described. (author)

  20. Benchmarking Nuclear Power Plants

    International Nuclear Information System (INIS)

    Jakic, I.

    2016-01-01

    One of the main tasks an owner have is to keep its business competitive on the market while delivering its product. Being owner of nuclear power plant bear the same (or even more complex and stern) responsibility due to safety risks and costs. In the past, nuclear power plant managements could (partly) ignore profit or it was simply expected and to some degree assured through the various regulatory processes governing electricity rate design. It is obvious now that, with the deregulation, utility privatization and competitive electricity market, key measure of success used at nuclear power plants must include traditional metrics of successful business (return on investment, earnings and revenue generation) as well as those of plant performance, safety and reliability. In order to analyze business performance of (specific) nuclear power plant, benchmarking, as one of the well-established concept and usual method was used. Domain was conservatively designed, with well-adjusted framework, but results have still limited application due to many differences, gaps and uncertainties. (author).

  1. Nuclear power and safety

    International Nuclear Information System (INIS)

    Chidambaram, R.

    1992-01-01

    Some aspects of safety of nuclear power with special reference to Indian nuclear power programme are discussed. India must develop technology to protect herself from the adverse economic impact arising out of the restrictive regime which is being created through globalization of safety and environmental issues. Though the studies done and experience gained so far have shown that the PHWR system adopted by India has a number of superior safety features, research work is needed in the field of operation and maintenance of reactors and also in the field of reactor life extension through delaying of ageing effects. Public relations work must be pursued to convince the public at large of the safety of nuclear power programme. The new reactor designs in the second stage of evolution are based on either further improvement of existing well-proven designs or adoptions of more innovative ideas based on physical principles to ensure a higher level of safety. The development of Indian nuclear power programme is characterised by a balanced approach in the matter of assuring safety. Safety enforcement is not just looked upon as a pure administrative matter, but experts with independent minds are also involved in safety related matters. (M.G.B.)

  2. Nuclear Power in Space.

    Science.gov (United States)

    Department of Energy, Washington, DC. Nuclear Energy Office.

    Research has shown that nuclear radioisotope power generators can supply compact, reliable, and efficient sources of energy for a broad range of space missions. These missions range from televising views of planetary surfaces to communicating scientific data to Earth. This publication presents many applications of the advancing technology and…

  3. Captivated by nuclear power

    International Nuclear Information System (INIS)

    Kaageson, P.; Kjellstroem, B.

    1984-01-01

    The Swedish decision to discontinue nuclear power production is discussed. The basis of the referendum is presented. A number of cases where the decision to stop production in the year 2010 is counteracted, are described. The political and technical steps to facilitate the settlement are presented. (GB)

  4. Nuclear power reactors

    International Nuclear Information System (INIS)

    1982-11-01

    After an introduction and general explanation of nuclear power the following reactor types are described: magnox thermal reactor; advanced gas-cooled reactor (AGR); pressurised water reactor (PWR); fast reactors (sodium cooled); boiling water reactor (BWR); CANDU thermal reactor; steam generating heavy water reactor (SGHWR); high temperature reactor (HTR); Leningrad (RMBK) type water-cooled graphite moderated reactor. (U.K.)

  5. Aspect of nuclear power

    International Nuclear Information System (INIS)

    Haghighi Oskoei, R.; Raeis Hosseiny, N.

    2004-01-01

    Over the next 50 years, unless patterns change dramatically, energy production and use will contribute to global warming through large-scale greenhouse gas emissions-hundreds of billions of tonnes of carbon in the form of carbon dioxide. Nuclear power would be one option for reducing carbon emissions. At present, however, this is unlikely: nuclear power faces stagnation and decline. We decided to study the future of nuclear power because we believe this technology , despite the changes it faces, is an important option for the world to meet future energy needs without emitting carbon dioxide and other atmospheric pollutants. Other options include increased efficiency, renewable and sequestration. We believe that all options should be preserved as nations develop strategies at provide energy while meeting important environmental challenges. The nuclear power option will only be exercised, however if the technology demonstrates better economics, improved safety, successful waste management, and low proliferation risk, and if public policies place a significant value on electricity production that does not produce carbon dioxide

  6. Safe nuclear power

    International Nuclear Information System (INIS)

    Cady, K.B.

    1992-01-01

    Nearly 22 percent of the electricity generated in the United States already comes from nuclear power plants, but no new plants have been ordered since 1978. This paper reports that the problems that stand in the way of further development have to do with complexity and perceived risk. Licensing, construction management, and waste disposal are complex matters, and the possibility of accident has alienated a significant portion of the public. But a national poll conducted by Bruskin/Goldring at the beginning of February shows that opposition to nuclear energy is softening. Sixty percent of the American people support (strongly or moderately) the use of nuclear power, and 18 percent moderately oppose it. Only 15 percent remain obstinately opposed. Perhaps they are not aware of recent advances in reactor technology

  7. Insurance of nuclear power stations

    International Nuclear Information System (INIS)

    Debaets, M.

    1992-01-01

    Electrical utility companies have invested large sums in the establishment of nuclear facilities. For this reason it is normal for these companies to attempt to protect their investments as much as possible. One of the methods of protection is recourse to insurance. For a variety of reasons traditional insurance markets are unable to function normally for a number of reasons including, the insufficient number of risks, an absence of meaningful accident statistics, the enormous sums involved and a lack of familiarity with nuclear risks on the part of insurers, resulting in a reluctance or even refusal to accept such risks. Insurers have, in response to requests for coverage from nuclear power station operators, established an alternative system of coverage - insurance through a system of insurance pools. Insurers in every country unite in a pool, providing a net capacity for every risk which is a capacity covered by their own funds, and consequently without reinsurance. All pools exchange capacity. The inconvenience of this system, for the operators in particular, is that it involves a monopolistic system in which there are consequently few possibilities for the negotiation of premiums and conditions of coverage. The system does not permit the establishment of reserves which could, over time, reduce the need for insurance on the part of nuclear power station operators. Thus the cost of nuclear insurance remains high. Alternatives to the poor system of insurance are explored in this article. (author)

  8. Nuclear power and nuclear safety 2006

    International Nuclear Information System (INIS)

    Lauritzen, B.; Oelgaard, P.L.; Kampmann, D.; Majborn, B.; Nonboel, E.; Nystrup, P.E.

    2007-04-01

    The report is the fourth report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe National Laboratory and the Danish Emergency Management Agency. The report for 2006 covers the following topics: status of nuclear power production, regional trends, reactor development and development of emergency management systems, safety related events of nuclear power, and international relations and conflicts. (LN)

  9. Nuclear power and nuclear safety 2004

    International Nuclear Information System (INIS)

    2005-03-01

    The report is the second report in a new series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe National Laboratory and the Danish Emergency Management Agency. The report for 2004 covers the following topics: status of nuclear power production, regional trends, reactor development and development of emergency management systems, safety related events of nuclear power and international relations and conflicts. (ln)

  10. Nuclear power and nuclear safety 2005

    International Nuclear Information System (INIS)

    Lauritzen, B.; Oelgaard, P.L.; Kampman, D.; Majborn, B.; Nonboel, E.; Nystrup, P.E.

    2006-03-01

    The report is the third report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe National Laboratory and the Danish Emergency Management Agency. The report for 2005 covers the following topics: status of nuclear power production, regional trends, reactor development and development of emergency management systems, safety related events of nuclear power and international relations and conflicts. (ln)

  11. Nuclear power and nuclear safety 2008

    International Nuclear Information System (INIS)

    Lauritzen, B.; Oelgaard, P.L.; Kampmann, D.

    2009-06-01

    The report is the fifth report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe DTU and the Danish Emergency Management Agency. The report for 2008 covers the following topics: status of nuclear power production, regional trends, reactor development, safety related events of nuclear power, and international relations and conflicts. (LN)

  12. Nuclear power. [Contains glossary

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, W.C.

    1983-01-01

    Lay language brings an understanding of nuclear technology and nuclear politics to the non-specialist reader. The author notes that there has been little change in the technology during the four decades of the nuclear age, but mankind has still to learn how to live with it. Part One explains how reactors work, identifies different reactor types, and describes the fuel cycle. Part two follows research developments during the pre-Manhatten Project days, the war effort, and the decision to pursue commercial nuclear power. He traces the development of policies to secure fission materials and international efforts to prevent the proliferation of weapons grade material and the safe handling of radioactive wastes on a global as well as national scale. There are four appendices, including an annotated reference to other publications. 9 figures.

  13. Nuclear-powered submarines

    International Nuclear Information System (INIS)

    Curren, T.

    1989-01-01

    The proposed acquisition of nuclear-powered submarines by the Canadian Armed Forces raises a number of legitimate concerns, including that of their potential impact on the environment. The use of nuclear reactors as the propulsion units in these submarines merits special consideration. Radioactivity, as an environmental pollutant, has unique qualities and engenders particular fears among the general population. The effects of nuclear submarines on the environment fall into two distinct categories: those deriving from normal operations of the submarine (the chief concern of this paper), and those deriving from a reactor accident. An enormous body of data must exist to support the safe operation of nuclear submarines; however, little information on this aspect of the proposed submarine program has been made available to the Canadian public. (5 refs.)

  14. Can nuclear power compete?

    International Nuclear Information System (INIS)

    Jones, P.M.S.

    1993-01-01

    The competitiveness of electricity generation from new nuclear plant with that from fossil-fired plant depends on a number of factors, the most important of which are the future costs of fossil fuels and the required rate of return on capital. Nuclear power is generally expected to remain competitive for baseload generation in OECD countries except in regions with direct access to cheap fossil fuels, based on the economic criteria and price expectations prevailing in the different countries. The situation in the United Kingdom will be clearer later in 1993 when comparisons prepared for the Government's Nuclear Review are published, but on the basis of the information available new nuclear plants should be competitive with the other technical options available for deployment around the year 2000. (author)

  15. LDC nuclear power: Philippines

    International Nuclear Information System (INIS)

    Scherr, S.J.

    1982-01-01

    The US created the need for nuclear power in the Phillipines and then provided the means to fill it, but the 20-year nuclear program was reversed in 1976 because of public opposition to heavy-handed government policies. The situation illustrates the overriding importance of foreign influence and political judgment. Despite substantial investments in the training of Filipino nuclear scientists and technicians, nuclear energy continues to be viewed as an alien technology by the people. Even the protracted debate over the first reactor has been dominated by US experts and advisers because the traditional transnational cooperation was extended beyond government to nongovernmental citizen organizations when Filipno protestors sought help from US groups. 120 references

  16. Concerning safety issue associated with approval of modification of plan for reprocessing facilities of Power Reactor and Nuclear Fuel Development Corporation (reply to inquiry)

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    In response to an inquiry on the title issue received on Sept. 16, 1988, the Nuclear Safety Commission made an adequate study and submitted the findings to the Prime Minister on Oct. 20. the relevant modifications include the installation of combustion facilities comprising two furnaces to replace the existing facilities, and the addition of uranyl nitrate solution receiving equipment to the existing facilities for plutonium conversion technology development. The study addressed the effect of the modifications on the safety of the facilities and the environment. The combustion facilities, equipment and underground seepage water tank are designed in accordance with the applicable anti-earthquake standards. The facilities will be constructed of incombustible of flame-retardant materials. Equipment in the facilities will be used under negative pressure to prevent counterflow. Adequate measures will be taken for shielding, exposure control, waste disposal, etc. It is concluded that the modifications will not affect the safety of the reprocessing facilities. (Nogami, K.).

  17. Concerning safety issue associated with approval of modification of plan for reprocessing facilities of Power Reactor and Nuclear Fuel Development Corporation (reply to inquiry)

    International Nuclear Information System (INIS)

    1989-01-01

    In response to an inquiry on the title issue received on Sept. 16, 1988, the Nuclear Safety Commission made an adequate study and submitted the findings to the Prime Minister on Oct. 20. the relevant modifications include the installation of combustion facilities comprising two furnaces to replace the existing facilities, and the addition of uranyl nitrate solution receiving equipment to the existing facilities for plutonium conversion technology development. The study addressed the effect of the modifications on the safety of the facilities and the environment. The combustion facilities, equipment and underground seepage water tank are designed in accordance with the applicable anti-earthquake standards. The facilities will be constructed of incombustible of flame-retardant materials. Equipment in the facilities will be used under negative pressure to prevent counterflow. Adequate measures will be taken for shielding, exposure control, waste disposal, etc. It is concluded that the modifications will not affect the safety of the reprocessing facilities. (Nogami, K.)

  18. Facts about nuclear power

    International Nuclear Information System (INIS)

    Muench, E.

    1980-01-01

    The argument concerning the introduction and the further expansion of nuclear energy in the Federal Republic of Germany has been existing for several years in differing intensities and most different forms. The arguments and theses of the discussion deal with the various aspects of the reciprocity between nuclear energy and environment. This is the key-note for the scientists to treat the relevant problems and questions in the discussion about nuclear energy. The controversy in which often emotional theses are stated instead of reasonably deliberating the pros and contras includes civil initiatives, societies, and environment protection organisations on the one hand and authorities, producers, and operators of nuclear-technical plants on the other. And the scale of the different opinions reaches from real agreement to deep condemnation of a technology which represents an option to meet the energy need in the future. In this situation, this book is an attempt to de-emotionalize the whole discussion. Most of the authors of the articles come from research centres and have been working on the problems they deal with for years. The spectrum of the topics includes the energy-political coherences of nuclear energy, the technical fundaments of the individual reactor types, safety and security of nuclear-technical plants the fuel cycle, especially the waste management in nuclear power plants, environmental aspects of energy generation in general and nuclear energy in special, the question of Plutonium and the presentation of alternative energy sources including nuclear fusion. The arrangement of these topics is meant to help to clarify the complex coherences of nuclear energy and to help those interested in problems of energy policy to make their own personal decisions. (orig./RW) [de

  19. Economics of nuclear power

    International Nuclear Information System (INIS)

    Roth, B.F.

    1977-01-01

    The economics of electricity supply and production in the FRG is to see on the background of the unique European interconnected grid system which makes very significant contributions to the availability of standby energy and peak load power. On this basis and the existing high voltage grid system, we can build large nuclear generating units and realise the favorable cost aspects per installed KW and reduced standby power. An example of calculating the overall electricity generating costs based on the present worth method is explained. From the figures shown, the sensitivity of the generating costs with respect to the different cost components can be derived. It is apparent from the example used, that the major advantage of nuclear power stations compared with fossil fired stations lies in the relatively small percentage fraction contributed by the fuel costs to the electricity generating costs. (orig.) [de

  20. Nuclear power and weapons proliferation

    International Nuclear Information System (INIS)

    Greenwood, T.; Rathjens, C.W.; Ruina, J.

    1977-01-01

    The relationship between nuclear weapons development and nuclear electric power is examined. A brief description of nuclear weapons design is first given. This is then followed by a discussion of various aspects of nuclear power technology and of how they affect a nuclear weapon programme. These include fuel cycles, chemical reprocessing of spent fuel, uranium enrichment, and the control of dissemination of nuclear technology. In conclusion there is a discussion of possible political and institutional controls for limiting nuclear proliferation. (U.K.)

  1. Is nuclear power competitive

    International Nuclear Information System (INIS)

    Brandfon, W.W.

    1984-01-01

    The first phase of a two-phase study of the competitiveness of electricity from new coal and nuclear plants with oil and natural gas in common markets concludes that, with few exceptions throughout the country, overall levelized nuclear generating cost could be lower than coal generating costs by more than 40%. The study shows a wider margin of economic superiority for nuclear than has been seen in other recent studies. Capital and fuel costs are the major determinants of relative nuclear and coal economics. The only substantial difference in the input assumptions has related to a shorter lead time for both coal and nuclear units, which reduces capital costs. The study gives substance to the charge that delaying tactics by intervenors and an unstable licensing environment drove up lifetime costs of both coal and nuclear plants. This caused an increase in electric rates and affected the entire economy. The study shows that nuclear power is competitive when large baseload capacity is required. 14 figures

  2. The problem of nuclear power

    International Nuclear Information System (INIS)

    Heimbrecht, J.; Kade, G.; Krusewitz, K.; Moldenhauer, B.; Steinhaus, K.; Weish, P.

    1977-01-01

    The battle over the problems of nuclear power has gone on in the Federal Republic for several years. The Buergerinitiativen, which used to be small and largely unpolitical, have become a major social force during this time. Subjects: 1) Dangers of nuclear power - can the risk be justified; 2)The necessity of nuclear power; 3) The enforcement of nuclear power - political and economic background; 4) Limits of power generation - limits of growth or limits of the system. (orig./HP) [de

  3. Nuclear Power Prospects

    International Nuclear Information System (INIS)

    Cintra do Prado, L.

    1966-01-01

    The present trend is to construct larger plants: the average power of the plants under construction at present, including prototypes, is 300 MW(e), i.e. three times higher than in the case of plants already in operation. Examples of new large-scale plants ares (a) Wylfa, Anglesey, United Kingdom - scheduled power of 1180 MW(e) (800 MW to be installed by 1967), to be completed in 1968; (b) ''Dungeness B'', United Kingdom - scheduled power of 1200 MW(e); (c) second unit for United States Dresden power plant - scheduled power of 715 MW(e) minimum to almost 800 MW(e). Nuclear plants on the whole serve the same purpose as conventional thermal plants

  4. The nuclear power debate

    International Nuclear Information System (INIS)

    Woerndl, B.

    1992-01-01

    This material-intensive analysis of the public dispute about nuclear power plants uses the fundamental thoughts of the conflict theory approach by Georg Simmel, linking them to results of recent value change research. Through the medium of a qualitative content analysis of arguments in favour of and against nuclear energy it is shown how values are expressed and move, how they differentiate and get modified, in conflicting argumentation patterns. The first part reconstructs the history of the nuclear power conflict under the aspect of its subject priorities changing from time to time. The second part shows, based on three debate priorities, how social value patterns recognized for the moment changed in and by the conflict: the argumentation is that the nuclear power controversy has led to a relativization of its scientific claim for recognition; it has created a problem awareness with regard to purely quantitatively oriented growth objectives and developed criteria of an ecologically controlled satisfaction of needs; the debate has paved the way, in the area of political regulation models, for the advancement of basic democratic elements within a representative democracy. (orig./HP) [de

  5. Nuclear power for desalination

    International Nuclear Information System (INIS)

    Patil, Siddhanth; Lanjekar, Sanket; Jagdale, Bhushan; Srivastava, V.K.

    2015-01-01

    Water is one of the most important assets to mankind and without which the human race would cease to exist. Water is required by us right from domestic to industrial levels. As notified by the 'American Nuclear Society' and 'World Nuclear Association' about 1/5 th of the world population does not access to portable water especially in the Asian and African subcontinent. The situation is becoming adverse day by day due to rise in population and industrialization. The need of alternative water resource is thus becoming vital. About 97.5% of Earth is covered by oceans. Desalination of saline water to generate potable water is thus an important topic of research. Currently about 12,500 desalination plants are operating worldwide with a capacity of about 35 million m 3 /day using mainly fossil fuels for generation of large amount of energy required for processing water. These thermal power station release large amount of carbon dioxide and other green house gases. Nuclear reactors are capable of delivering energy to the high energy-intensive processes without any environmental concerns for climate change etc., giving a vision to sustainable growth of desalination process. These projects are currently employed in Kazakhstan, India, Japan, and Pakistan and are coupled to the nuclear reactor for generating electricity and potable water as well. The current climatic scenario favors the need for expanding dual purpose nuclear power plants producing energy and water at the same location. (author)

  6. Should nuclear be feared ... ... or is it nuclear power's hour?

    International Nuclear Information System (INIS)

    Diesendorf, Mark; Sevior, Martin

    2006-01-01

    This is a debate for and against nucl era power. Some people think that nuclear power is not as clean, green or cheap as its supporters would like us to think. Nuclear waste disposal is the biggest problem. There is not a single country which has built a facility for the long-term management of high-level nuclear wastes. United States is the only country in the world is most advanced in this regard, is building a waste repository at yucca Mountains, Nevada. The cost of nuclear activity is even higher than previously estimated

  7. 10 CFR Appendix R to Part 50 - Fire Protection Program for Nuclear Power Facilities Operating Prior to January 1, 1979

    Science.gov (United States)

    2010-01-01

    ... service-water/fire-water uses the minimum volume for fire uses shall be ensured by means of dedicated... knowledge of his or her role in the fire fighting strategy for the area assumed to contain the fire... LICENSING OF PRODUCTION AND UTILIZATION FACILITIES Pt. 50, App. R Appendix R to Part 50—Fire Protection...

  8. Economics of nuclear power projects

    International Nuclear Information System (INIS)

    Chu, I.H.

    1985-01-01

    Nuclear power development in Taiwan was initiated in 1956. Now Taipower has five nuclear units in smooth operation, one unit under construction, two units under planning. The relatively short construction period, low construction costs and twin unit approach had led to the significant economical advantage of our nuclear power generation. Moreover betterment programmes have further improved the availability and reliability factors of our nuclear power plants. In Taipower, the generation cost of nuclear power was even less than half of that of oil-fired thermal power in the past years ever since the nuclear power was commissioned. This made Taipower have more earnings and power rates was even dropped down in March 1983. As Taiwan is short of energy sources and nuclear power is so well-demonstrated nuclear power will be logically the best choice for Taipower future projects

  9. The effect of nuclear facilities operation on fish populations and the Dukovany-Dalesice power complex under construction

    International Nuclear Information System (INIS)

    Penaz, M.

    1979-01-01

    The scope and the main results are described of the hydrobiological and ichthyological research into the Jihlava river in the neighbourhood of the Dukovany - Dalesice power plant complex. The effect of the power plant complex on the ecosystem of the affected river stretch is predicted, mainly on the fish community. (author)

  10. Prospects for nuclear power

    International Nuclear Information System (INIS)

    Kaplan, G.

    1983-01-01

    Describes how the nuclear power industry is improving plant operation and safety procedures and is reducing maintenance costs as it hopes for a brighter political climate. Points out that most of the efforts focus on key areas, such as improvements in control rooms and operator training and studies of physical processes within the reactor and associated systems. Discusses the increasing complexity of nuclear plants, the use of computers to process data in BWR plants, the decommissioning of old plants, and plant safety research activities worldwide. Offers an annotated bibliography

  11. Economics of nuclear power

    International Nuclear Information System (INIS)

    Marwah, O.S.

    1982-01-01

    There can be no precise economic measures, in the abstract, of the costs of nuclear power production in the less-developed countries (LDCs). The conditions that affect the calculations have to be evaluated specifically for each country and individually for each nuclear-related project in that country. These conditions are a combination of internal and external factors, and their mix for one project can change during the course of construction. The author lists 21 factors that may vary according to individual national costs. 6 references, 4 tables

  12. Radioactive waste management from nuclear facilities

    International Nuclear Information System (INIS)

    2005-06-01

    This report has been published as a NSA (Nuclear Systems Association, Japan) commentary series, No. 13, and documents the present status on management of radioactive wastes produced from nuclear facilities in Japan and other countries as well. Risks for radiation accidents coming from radioactive waste disposal and storage together with risks for reactor accidents from nuclear power plants are now causing public anxiety. This commentary concerns among all high-level radioactive waste management from nuclear fuel cycle facilities, with including radioactive wastes from research institutes or hospitals. Also included is wastes produced from reactor decommissioning. For low-level radioactive wastes, the wastes is reduced in volume, solidified, and removed to the sites of storage depending on their radioactivities. For high-level radioactive wastes, some ten thousand years must be necessary before the radioactivity decays to the natural level and protection against seismic or volcanic activities, and terrorist attacks is unavoidable for final disposals. This inevitably results in underground disposal at least 300 m below the ground. Various proposals for the disposal and management for this and their evaluation techniques are described in the present document. (S. Ohno)

  13. Thermal analysis of the modified Hallum Nuclear Power Facility cask using experimentally obtained thermal boundary conditions corresponding to an engulfing open pool fire

    International Nuclear Information System (INIS)

    Longenbaugh, R.S.; Sanchez, L.C.; Gregory, J.J.

    1987-08-01

    This report presents the two-dimensional heat transfer analysis of an open pool fire surrounding a modified radioactive materials transport cask. The cask is an older cask that was used by the Hallum Nuclear Power Facility (HNPF). The HNPF cask did not have a neutron shielding region but was modified to include one for testing purposes. Analysis of the thermal effects of an engulfing open pool fire was performed with the use of the heat transfer code Q/TRAN, which had previously been used in thermal benchmarking problems for spent nuclear fuel casks. Boundary condition data for the analysis were derived from experimental open pool fire tests of large-scale calorimeter test articles performed at SNL that produced information about cask surface heat flux versus surface temperature relationships. Data analysis was directed toward a determination of the thermal response of the cask, particularly the extent of lead melt since lead is used within the HNPF cask's gamma-shielding region. Parameters, such as surface emissivity and internal heat generation rate, can affect the results of the thermal analysis which control the amount of lead melt. A parameter sensitivity analysis was performed using a one-dimensional model to describe how surface emissivity and internal heat generation rates affect the temperature distribution within the cask. The information from this analysis was used to determine the range of parameters for the two-dimensional thermal analysis. 13 refs., 57 figs., 8 tabs

  14. Socioeconomic impacts: nuclear power station siting

    International Nuclear Information System (INIS)

    1977-06-01

    The rural industrial development literature is used to gain insights on the socioeconomic effects of nuclear power stations. Previous studies of large industrial facilities in small towns have important implications for attempts to understand and anticipate the impacts of nuclear stations. Even a cursory review of the nuclear development literature, however, reveals that industrialization research in rural sociology, economic geography and agricultural economics has been largely ignored

  15. The nuclear power implications of OPEC prices

    International Nuclear Information System (INIS)

    Brookes, L.G.

    1975-01-01

    It is generally assumed - not unreasonably - that quadrupling oil prices offers a great opportunity to nuclear power and that installation rates should now be much than if prices had stayed down. It is argued that this view is too facile: the effect of raised oil prices on Western economies is complex and longlasting; nuclear power prospects are at least as likely to be depressed as enhanced - unless more weight is given to long-term strategic factors. (author)

  16. Nuclear power and the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Hardy, C.J.; Silver, J.M.

    1985-09-01

    The report provides data and assessments of the status and prospects of nuclear power and the nuclear fuel cycle. The report discusses the economic competitiveness of nuclear electricity generation, the extent of world uranium resources, production and requirements, uranium conversion and enrichment, fuel fabrication, spent fuel treatment and radioactive waste management. A review is given of the status of nuclear fusion research

  17. Making nuclear power sustainable

    International Nuclear Information System (INIS)

    Barre, B

    2003-01-01

    According to the present data, we must double our energy production while dividing by a factor of two the greenhouse gases emissions, knowing that today, 80% of our energy comes from the combustion of coal, gas and oil, all of which produce CO, released in the atmosphere. This is the toughest challenge facing us in the next few decades, and I include the water challenge, since producing drinking water will also increase our energy needs. This formidable challenge will not be easily met. No magic bullet is in sight, not even a nuclear bullet. To have any chance of success, we must actually implement all the available measures, and invent some more. In fact, we shall certainly need a three-pronged approach: Increase energy efficiency to limit energy consumption in our developed countries; Diversify our energy mix to reduce the share supplied by fossil fuels and that translates into increasing nuclear and renewable energy source; Trap and sequester CO 2 wherever and whenever economically possible. This article focuses on the nuclear issue. According to International Energy Agency (lEA) statistics, nuclear energy accounts today for 6.8% of the world energy supply. Is it realistic to expect this share to grow, when many forecasts (including lEA's own) predict a slow reduction? The future is not engraved in marble, it is ours to make; the future role of nuclear power will depend on the results of our present efforts to expand or overcome its limitations. It is quite possible that, within four decades, 40% of the electric power generated in all OECD countries, plus Russia, China, India and Brazil, comes from nuclear reactors. It is not far-fetched, when you consider that it took only two decades for France to increase its nuclear share of electricity from 8% to 80%. More ambitious, let's assume that in the same time frame and within the same countries 15% of the fuels for transportation come from nuclear produced hydrogen and that 10% of the space heating is supplied by

  18. Shielding analysis in the design phase of the new Emergency Operation Facility for Tihange Nuclear Power Plant

    OpenAIRE

    Genard Gilles; Portal Romain; Bouchat Virginie; Vanderperre Serge

    2017-01-01

    In the framework of the design studies for a new Emergency Operation Facility (EOF) for Tihange NPP, radiation protection analyses are needed to comply with effective dose rate criteria. In this aim, the shielding performed by, at the one hand, external walls and roof of the building and, on the other hand, internal walls, has been sized by means of MicroShield calculations. This paper explains how the calculations for external walls, doors, roof, floor and internal walls are made. The assump...

  19. Nuclear power system

    International Nuclear Information System (INIS)

    Yampolsky, J.S.; Cavallaro, L.; Paulovich, K.F.; Schleicher, R.W.

    1989-01-01

    This patent describes an inherently safe modular nuclear power system for producing electrical power at acceptable efficiency levels using working fluids at relatively low temperatures and pressures. The system comprising: a reactor module for heating a first fluid; a heat exchanger module for transferring heat from the first fluid to a second fluid; a first piping system effecting flow of the first fluid in a first fluid circuit successively through the reactor module and the heat exchanger module; a power conversion module comprising a turbogenerator driven by the second fluid, and means for cooling the second fluid upon emergence thereof from the turbogenerator; a second piping system comprising means for effecting flow of the second fluid in a second fluid circuit successively through the heat exchanger module and the power conversion module; and a plurality of pits for receiving the modules

  20. Storage facilities of spent nuclear fuel in dry for Mexican nuclear facilities

    International Nuclear Information System (INIS)

    Salmeron V, J. A.; Camargo C, R.; Nunez C, A.; Mendoza F, J. E.; Sanchez J, J.

    2013-10-01

    In this article the relevant aspects of the spent fuel storage and the questions that should be taken in consideration for the possible future facilities of this type in the country are approached. A brief description is proposed about the characteristics of the storage systems in dry, the incorporate regulations to the present Nuclear Regulator Standard, the planning process of an installation, besides the approaches considered once resolved the use of these systems; as the modifications to the system, the authorization periods for the storage, the type of materials to store and the consequent environmental impact to their installation. At the present time the Comision Nacional de Seguridad Nuclear y Salvaguardias (CNSNS) considers the possible generation of two authorization types for these facilities: Specific, directed to establish a new nuclear installation with the authorization of receiving, to transfer and to possess spent fuel and other materials for their storage; and General, focused to those holders that have an operation license of a reactor that allows them the storage of the nuclear fuel and other materials that they possess. Both authorizations should be valued according to the necessities that are presented. In general, this installation type represents a viable solution for the administration of the spent fuel and other materials that require of a temporary solution previous to its final disposal. Its use in the nuclear industry has been increased in the last years demonstrating to be appropriate and feasible without having a significant impact to the health, public safety and the environment. Mexico has two main nuclear facilities, the nuclear power plant of Laguna Verde of the Comision Federal de Electricidad (CFE) and the facilities of the TRIGA Reactor of the Instituto Nacional de Investigaciones Nucleares (ININ) that will require in a future to use this type of disposition installation of the spent fuel and generated wastes. (Author)