Generation of Alfvén wave energy during magnetic reconnection in Hall MHD
Li, Lingjie; Ma, Zhiwei; Wang, Licheng
2017-10-01
The effect of the reconnection rate on the generation of Alfvén wave energy is systematically investigated using Hall magnetohydrodynamics (MHD). It is well known that a decrease in magnetic energy is proportional to the reconnection rate. It is found that an instantaneous increase in Alfvén wave energy in unit Alfvén time is the square dependence on the reconnection rate. The converted Alfvén wave energy is strongly enhanced due to the large increase in the reconnection rate in Hall MHD. For solar-terrestrial plasmas, the maximum converted Alfvén wave energy in unit Alfvén time with the Hall effect can be over 50 times higher than that without the Hall effect during magnetic reconnection.
Bhattacharjee, A.; Germaschewski, K.; Wang, X.; Linde, T.; Rosner, R.; Siegel, A.
2002-12-01
There has been considerable interest in recent years in collisionless reconnection dynamics governed by the generalized Ohm's law in which electron inertia provides the mechanism for breaking field lines. It has been suggested in several theoretical studies that the nonlinear reconnection dynamics, to leading order, is independent of the mechanism that breaks field lines (that is, electron inertia). We test this suggestion carefully using the new Magnetic Reconnection Code (MRC) developed at the Center for Magnetic Reconnection Studies. The MRC is a new massively parallel code with Adaptive Mesh Refinement (AMR) that integrates the equations of Hall MHD. The use of AMR enables unprecedented levels of resolution of the current and vorticity layers and uncovers interesting secondary dynamics not seen in previous studies. We apply the MRC to the study of two problems, one involving free reconnection caused by a spontaneous and fast collisionless instability, the other involving forced reconnection induced by boundary perturbations on a stable plasma. In the case of free reconnection, over the range of parameters covered by our simulations, it is shown that the nonlinear reconnection rate is near-explosive, and furthermore, that the nonlinear magnetic island width is an invariant function of a dimensionless variable which is the product of the linear growth rate and time. Now, since the linear growth rate is a function of the ion sound radius as well as the electron skin depth, we conclude that the nonlinear reconnection rate is not independent of electron inertia. In the case of forced reconnection, after a slow growth phase, the dynamics exhibits an impulsive growth in the amplitude of the thin current sheet, and a subsequent current disruption mediated by secondary instabilities. These results, in which electron inertia provides the mechanism for breaking field lines, are contrasted with resistive Hall MHD simulations in which resistivity provides the mechanism for
On the properties and limitations of magnetic reconnection in Hall MHD
Chacon, L.; Simakov, A. N.; Zocco, A.
2008-12-01
Magnetic reconnection is a key process in nature whereby magnetic energy is converted into kinetic and thermal energy. Magnetic reconnection fundamentally affects space, astrophysical, and laboratory plasmas, and usually happens on very fast time scales, possibly unrelated to underlying dissipation mechanisms. However, despite substantial theoretical progress in the understanding of fast reconnection (J. Birn et al., , J. Geophys. Res. 106, 3715, 2001). A fundamental analytical model capable of explaining these time scales has been lacking. Developing such a model is of the essence not only to further the basic understanding of reconnection, but also to provide resolution to controversies arising from numerical computations, which by necessity can only cover a limited region in parametric space. In this presentation, we will discuss a recently- developed analytical framework for describing the dynamics of a 2D diffusion region in Hall MHD. Equations controlling the diffusion region can be coupled to those modeling a macroscopic driver, thus providing a time- dependent description of the reconnection process (A. N. Simakov, L. Chacón, D. A. Knoll, Phys. Plasmas, 13, 082103, 2006). A steady-state analysis of the microscopic equations gives insight into the properties and limitations of the 2D reconnecting system. Despite the steady-state assumption, such insight has been shown to be applicable to predict maximum reconnection rates of highly dynamic systems.c,d,f Furthermore, we have found that the steady-state model adequately describes all regimes of interest of the ion inertial length di (A. N. Simakov and L. Chacón, Phys. Rev. Lett., accepted (2008)), recovering the resistive (Sweet-Parker) and electron MHD solutions in the appropriate limits (L. Chacón, A. N. Simakov, and A. Zocco, Phys. Rev. Lett. 99, 235001 (2007)). It also describes finite electron inertia effects (A. Zocco, L. Chacón, A. N. Simakov, "Electron inertia effects in 2D driven reconnection in
Bessho, N.; Bhattacharjee, A.; Chandran, B.
2003-10-01
We present results of two new studies on magnetic reconnection dynamics obtained from two-dimensional fully electromagnetic particle-in-cell (PIC) simulations, and compare them with results obtained from earlier Hall MHD theory and simulations using the same initial conditions. Our studies include realistic values of me/mi. The first study involves the scaling of the maximum electron outflow velocity from the reconnnection region in the GEM Reconnection Challenge as a function of the electron mass, which Hall MHD models predict to scale as the electron Alfven speed. (This study has significant implications for particle detectors from the upcoming NASA MMS mission.) The PIC simulations exhibit flows that are uniformly smaller than the electron Alfven speed, with deviations that increase in magnitude as the mass ratio reaches its actual physical value. The second study involves forced magnetic reconnection in a Harris sheet driven by external electric fields which produce inward boundary flows. It is observed in the PIC simulations that the reconnection rate in the linear regime increases algebraically in time, and is followed by a sudden near-explosive enhancement in the nonlinear regime, qualitatively similar to that seen in earlier Hall MHD simulations. Quantitative comparisons between PIC and previous Hall MHD theory and simulations will be reported.
Magnetic Reconnection in a Compressible MHD Plasma
Hesse, Michael; Birn, Joachim; Zenitani, Seiji
2011-01-01
Using steady-state resistive MHD, magnetic reconnection is reinvestigated for conditions of high resistivity/low magnetic Reynolds number, when the thickness of the diffusion region is no longer small compared to its length. Implicit expressions for the reconnection rate and other reconnection parameters are derived based on the requirements of mass, momentum, and energy conservation. These expressions are solved via simple iterative procedures. Implications specifically for low Reynolds number/high resistivity are being discussed
Activation of MHD reconnection on ideal timescales
Landi, S; Del Zanna, L; Tenerani, A; Pucci, F
2016-01-01
Magnetic reconnection in laboratory, space and astrophysical plasmas is often invoked to explain explosive energy release and particle acceleration. However, the timescales involved in classical models within the macroscopic MHD regime are far too slow to match the observations. Here we revisit the tearing instability by performing visco-resistive two-dimensional numerical simulations of the evolution of thin current sheets, for a variety of initial configurations and of values of the Lunquist number $S$, up to $10^7$. Results confirm that when the critical aspect ratio of $S^{1/3}$ is reached in the reconnecting current sheets, the instability proceeds on ideal (Alfv\\'enic) macroscopic timescales, as required to explain observations. Moreover, the same scaling is seen to apply also to the local, secondary reconnection events triggered during the nonlinear phase of the tearing instability, thus accelerating the cascading process to increasingly smaller spatial and temporal scales. The process appears to be ro...
Influence of the Hall term on KH instability and reconnection inside KH vortices
Directory of Open Access Journals (Sweden)
K. Nykyri
2004-03-01
Full Text Available The Kelvin-Helmholtz instability (KHI in its nonlinear stage can develop small-scale filamentary field and current structures at the flank boundaries of the magnetosphere. It has been shown previously with MHD simulations that magnetic reconnection can occur inside these narrow current layers, resulting in plasma transport from the solar wind into the magnetosphere. During periods of northward IMF, this transport is sufficient to generate a cold, dense plasma sheet on time scales consistent with satellite observations. However, when the length scales of these narrow current layers approach the ion inertia scale, the MHD approximation is not valid anymore and the Hall term in the Ohm's law must be included. We will study the influence of the Hall term on the KHI with 2-D Hall-MHD simulations and compare our results with corresponding MHD simulations. We estimate plasma transport velocities of the order of ~1.5km/s, thus confirming the results of the MHD approximation. However, the fine structure and the growth rates differ from the MHD approximation in an interesting way.
Key words. Magnetospheric physics (magnetopause, cusp and boundary layers; plasma waves and instabilities, Space plasma physics (transport processes; magnetic reconnection; numerical simulation studies; nonlinear phenomena; turbulence
Magnetic reconnection: from MHD to QED
Bulanov, S V
2016-01-01
The paper examines the prospects of using laser plasmas for studying novel regimes of the magnetic field line reconnection and charged particle acceleration. Basic features of plasma dynamics in the three-dimensional configurations relevant to the formation of current sheets in a plasma are addressed by analyzing exact self-similar solutions of the magneto-hydrodynamics and electron magneto-hydrodynamics equations. Then the magnetic field annihilation in the ultrarelativistic limit is considered, when the opposite polarity magnetic field is generated in collisionless plasma by multiple laser pulses, in the regime with a dominant contribution of the displacement current exciting a strong large-scale electric field. This field leads to the conversion of the magnetic energy into the kinetic energy of accelerated particles inside a thin current sheet. Charged particle acceleration during magnetic field reconnection is discussed when radiation friction and quantum electrodynamics effects become dominant.
Magnetic Reconnection in MHD and Kinetic Turbulence
Loureiro, Nuno; Boldyrev, Stanislav
2017-10-01
Recent works have revisited the current understanding of Alfvénic turbulence to account for the role of magnetic reconnection. Theoretical arguments suggest that reconnection inevitably becomes important in the inertial range, at the scale where it becomes faster than the eddy turnover time. This leads to a transition to a new sub-inertial interval, suggesting a route to energy dissipation that is fundamentally different from that envisioned in the usual Kolmogorov-like phenomenology. These concepts can be extended to collisionless plasmas, where reconnection is enabled by electron inertia rather than resistivity. Although several different cases must then be considered, a common result is that the energy spectrum exhibits a scaling with the perpendicular wave number that scales between k⊥- 8 / 3 and k⊥- 3 , in favourable agreement with many numerical results and observations. Work supported by NSF-DOE Partnership in Basic Plasma Science and Engineering, Award No. DE-SC0016215, and by NSF CAREER Award No. 1654168 (NFL); and by NSF Grant NSF AGS- 1261659 and by the Vilas Associates Award of UWM (SB).
Porting a Hall MHD Code to a Graphic Processing Unit
Dorelli, John C.
2011-01-01
We present our experience porting a Hall MHD code to a Graphics Processing Unit (GPU). The code is a 2nd order accurate MUSCL-Hancock scheme which makes use of an HLL Riemann solver to compute numerical fluxes and second-order finite differences to compute the Hall contribution to the electric field. The divergence of the magnetic field is controlled with Dedner?s hyperbolic divergence cleaning method. Preliminary benchmark tests indicate a speedup (relative to a single Nehalem core) of 58x for a double precision calculation. We discuss scaling issues which arise when distributing work across multiple GPUs in a CPU-GPU cluster.
Tearing mode dynamics and sawtooth oscillation in Hall-MHD
Ma, Zhiwei; Zhang, Wei; Wang, Sheng
2017-10-01
Tearing mode instability is one of the most important dynamic processes in space and laboratory plasmas. Hall effects, resulted from the decoupling of electron and ion motions, could cause the fast development and perturbation structure rotation of the tearing mode and become non-negligible. We independently developed high accuracy nonlinear MHD code (CLT) to study Hall effects on the dynamic evolution of tearing modes with Tokamak geometries. It is found that the rotation frequency of the mode in the electron diamagnetic direction is in a good agreement with analytical prediction. The linear growth rate increases with increase of the ion inertial length, which is contradictory to analytical solution in the slab geometry. We further find that the self-consistently generated rotation largely alters the dynamic behavior of the double tearing mode and the sawtooth oscillation. National Magnetic Confinement Fusion Science Program of China under Grant No. 2013GB104004 and 2013GB111004.
Forced Reconnection in the Near Magnetotail: Onset and Energy Conversion in PIC and MHD Simulations
Birn, J.; Hesse, Michael
2014-01-01
Using two-dimensional particle-in-cell (PIC) together with magnetohydrodynamic (MHD) Q1 simulations of magnetotail dynamics, we investigate the evolution toward onset of reconnection and the subsequent energy transfer and conversion. In either case, reconnection onset is preceded by a driven phase, during which magnetic flux is added to the tail at the high-latitude boundaries, followed by a relaxation phase, during which the configuration continues to respond to the driving. The boundary deformation leads to the formation of thin embedded current sheets, which are bifurcated in the near tail, converging to a single sheet farther out in the MHD simulations. The thin current sheets in the PIC simulation are carried by electrons and are associated with a strong perpendicular electrostatic field, which may provide a connection to parallel potentials and auroral arcs and an ionospheric signal even prior to the onset of reconnection. The PIC simulation very well satisfies integral entropy conservation (intrinsic to ideal MHD) during this phase, supporting ideal ballooning stability. Eventually, the current intensification leads to the onset of reconnection, the formation and ejection of a plasmoid, and a collapse of the inner tail. The earthward flow shows the characteristics of a dipolarization front: enhancement of Bz, associated with a thin vertical electron current sheet in the PIC simulation. Both MHD and PIC simulations show a dominance of energy conversion from incoming Poynting flux to outgoing enthalpy flux, resulting in heating of the inner tail. Localized Joule dissipation plays only a minor role.
Coalescence of magnetic islands in the low-resistivity, Hall-MHD regime.
Knoll, D A; Chacón, L
2006-04-07
The coalescence of magnetic islands in the low-resistivity eta, Hall-MHD regime is studied. The interaction between the ion inertial length d(i) and the dynamically evolving current sheet scale length deltaJ is established. Initially, d(i) MHD model.
Vekstein, G.
2017-10-01
This is a tutorial-style selective review explaining basic concepts of forced magnetic reconnection. It is based on a celebrated model of forced reconnection suggested by J. B. Taylor. The standard magnetohydrodynamic (MHD) theory of this process has been pioneered by Hahm & Kulsrud (Phys. Fluids, vol. 28, 1985, p. 2412). Here we also discuss several more recent developments related to this problem. These include energetics of forced reconnection, its Hall-mediated regime, and nonlinear effects with the associated onset of the secondary tearing (plasmoid) instability.
Algorithm and exploratory study of the Hall MHD Rayleigh-Taylor instability.
Energy Technology Data Exchange (ETDEWEB)
Gardiner, Thomas Anthony
2010-09-01
This report is concerned with the influence of the Hall term on the nonlinear evolution of the Rayleigh-Taylor (RT) instability. This begins with a review of the magnetohydrodynamic (MHD) equations including the Hall term and the wave modes which are present in the system on time scales short enough that the plasma can be approximated as being stationary. In this limit one obtains what are known as the electron MHD (EMHD) equations which support two characteristic wave modes known as the whistler and Hall drift modes. Each of these modes is considered in some detail in order to draw attention to their key features. This analysis also serves to provide a background for testing the numerical algorithms used in this work. The numerical methods are briefly described and the EMHD solver is then tested for the evolution of whistler and Hall drift modes. These methods are then applied to study the nonlinear evolution of the MHD RT instability with and without the Hall term for two different configurations. The influence of the Hall term on the mixing and bubble growth rate are analyzed.
Limitations of Hall MHD as a model for turbulence in weakly collisional plasmas
Directory of Open Access Journals (Sweden)
G. G. Howes
2009-03-01
Full Text Available The limitations of Hall MHD as a model for turbulence in weakly collisional plasmas are explored using quantitative comparisons to Vlasov-Maxwell kinetic theory over a wide range of parameter space. The validity of Hall MHD in the cold ion limit is shown, but spurious undamped wave modes exist in Hall MHD when the ion temperature is finite. It is argued that turbulence in the dissipation range of the solar wind must be one, or a mixture, of three electromagnetic wave modes: the parallel whistler, oblique whistler, or kinetic Alfvén waves. These modes are generally well described by Hall MHD. Determining the applicability of linear kinetic damping rates in turbulent plasmas requires a suite of fluid and kinetic nonlinear numerical simulations. Contrasting fluid and kinetic simulations will also shed light on whether the presence of spurious wave modes alters the nonlinear couplings inherent in turbulence and will illuminate the turbulent dynamics and energy transfer in the regime of the characteristic ion kinetic scales.
Soret and Hall effects on unsteady MHD free convection flow of ...
African Journals Online (AJOL)
International Journal of Engineering, Science and Technology ... Abstract. Investigation of Soret and Hall effects on unsteady MHD free convection heat and mass transfer flow of a viscous, incompressible, electrically conducting and optically thick radiating fluid past an impulsively moving infinite vertical plate with ramped ...
The Foggy EUV Corona and Coronal Heating by MHD Waves from Explosive Reconnection Events
Moore, Ron L.; Cirtain, Jonathan W.; Falconer, David A.
2008-01-01
In 0.5 arcsec/pixel TRACE coronal EUV images, the corona rooted in active regions that are at the limb and are not flaring is seen to consist of (1) a complex array of discrete loops and plumes embedded in (2) a diffuse ambient component that shows no fine structure and gradually fades with height. For each of two not-flaring active regions, found that the diffuse component is (1) approximately isothermal and hydrostatic and (2) emits well over half of the total EUV luminosity of the active-region corona. Here, from a TRACE Fe XII coronal image of another not-flaring active region, the large sunspot active region AR 10652 when it was at the west limb on 30 July 2004, we separate the diffuse component from the discrete loop component by spatial filtering, and find that the diffuse component has about 60% of the total luminosity. If under much higher spatial resolution than that of TRACE (e. g., the 0.1 arcsec/pixel resolution of the Hi-C sounding-rocket experiment proposed by J. W. Cirtain et al), most of the diffuse component remains diffuse rather being resolved into very narrow loops and plumes, this will raise the possibility that the EUV corona in active regions consists of two basically different but comparably luminous components: one being the set of discrete bright loops and plumes and the other being a truly diffuse component filling the space between the discrete loops and plumes. This dichotomy would imply that there are two different but comparably powerful coronal heating mechanisms operating in active regions, one for the distinct loops and plumes and another for the diffuse component. We present a scenario in which (1) each discrete bright loop or plume is a flux tube that was recently reconnected in a burst of reconnection, and (2) the diffuse component is heated by MHD waves that are generated by these reconnection events and by other fine-scale explosive reconnection events, most of which occur in and below the base of the corona where they are
3D simulations of fluctuation spectra in the hall-MHD plasma.
Shaikh, Dastgeer; Shukla, P K
2009-01-30
Turbulent spectral cascades are investigated by means of fully three-dimensional (3D) simulations of a compressible Hall-magnetohydrodynamic (H-MHD) plasma in order to understand the observed spectral break in the solar wind turbulence spectra in the regime where the characteristic length scales associated with electromagnetic fluctuations are smaller than the ion gyroradius. In this regime, the results of our 3D simulations exhibit that turbulent spectral cascades in the presence of a mean magnetic field follow an omnidirectional anisotropic inertial-range spectrum close to k(-7/3). The latter is associated with the Hall current arising from nonequal electron and ion fluid velocities in our 3D H-MHD plasma model.
Fast Magnetic Reconnection: “Ideal” Tearing and the Hall Effect
Pucci, Fulvia; Velli, Marco; Tenerani, Anna
2017-08-01
One of the main questions in magnetic reconnection is the origin of triggering behavior with on/off properties that, once it is activated, accounts for the fast magnetic energy conversion to kinetic and thermal energies at the heart of explosive events in astrophysical and laboratory plasmas. Over the past decade, progress has been made on the initiation of fast reconnection via the plasmoid instability and what has been called “ideal” tearing, which sets in once current sheets thin to a critical inverse aspect ratio {(a/L)}c. As shown by Pucci & Velli, at {(a/L)}c˜ {S}-1/3, the timescale for the instability to develop becomes of the order of the Alfvén time and independent of the Lundquist number (here defined in terms of current sheet length L). However, given the large values of S in natural plasmas, this transition might occur for thicknesses of the inner resistive singular layer that are comparable to the ion inertial length d I . When this occurs, Hall currents produce a three-dimensional quadrupole structure of the magnetic field, and the dispersive waves introduced by the Hall effect accelerate the instability. Here we present a linear study showing how the “ideal” tearing mode critical aspect ratio is modified when Hall effects are taken into account, including more general scaling laws of the growth rates in terms of sheet inverse aspect ratio: the critical inverse aspect ratio is amended to a/L≃ {({di}/L)}0.29{(1/S)}0.19, at which point the instability growth rate becomes Alfvénic and does not depend on either of the (small) parameters {d}I/L,1/S. We discuss the implications of this generalized triggering aspect ratio for recently developed phase diagrams of magnetic reconnection.
Eastwood, J P; Shay, M A; Phan, T D; Øieroset, M
2010-05-21
In situ measurements of magnetic reconnection in the Earth's magnetotail are presented showing that even a moderate guide field (20% of the reconnecting field) considerably distorts ion diffusion region structure. The Hall magnetic and electric fields are asymmetric and shunted away from the current sheet; an appropriately scaled particle-in-cell simulation is found to be in excellent agreement with the data. The results show the importance of correctly accounting for the effects of the magnetic shear when attempting to identify and study magnetic reconnection diffusion regions in nature.
Hall MHD Stability and Turbulence in Magnetically Accelerated Plasmas
Energy Technology Data Exchange (ETDEWEB)
H. R. Strauss
2012-11-27
The object of the research was to develop theory and carry out simulations of the Z pinch and plasma opening switch (POS), and compare with experimental results. In the case of the Z pinch, there was experimental evidence of ion kinetic energy greatly in excess of the ion thermal energy. It was thought that this was perhaps due to fine scale turbulence. The simulations showed that the ion energy was predominantly laminar, not turbulent. Preliminary studies of a new Z pinch experiment with an axial magnetic field were carried out. The axial magnetic is relevant to magneto - inertial fusion. These studies indicate the axial magnetic field makes the Z pinch more turbulent. Results were also obtained on Hall magnetohydrodynamic instability of the POS.
Reasoning and choice in the Monty Hall Dilemma (MHD): implications for improving Bayesian reasoning.
Tubau, Elisabet; Aguilar-Lleyda, David; Johnson, Eric D
2015-01-01
The Monty Hall Dilemma (MHD) is a two-step decision problem involving counterintuitive conditional probabilities. The first choice is made among three equally probable options, whereas the second choice takes place after the elimination of one of the non-selected options which does not hide the prize. Differing from most Bayesian problems, statistical information in the MHD has to be inferred, either by learning outcome probabilities or by reasoning from the presented sequence of events. This often leads to suboptimal decisions and erroneous probability judgments. Specifically, decision makers commonly develop a wrong intuition that final probabilities are equally distributed, together with a preference for their first choice. Several studies have shown that repeated practice enhances sensitivity to the different reward probabilities, but does not facilitate correct Bayesian reasoning. However, modest improvements in probability judgments have been observed after guided explanations. To explain these dissociations, the present review focuses on two types of causes producing the observed biases: Emotional-based choice biases and cognitive limitations in understanding probabilistic information. Among the latter, we identify a crucial cause for the universal difficulty in overcoming the equiprobability illusion: Incomplete representation of prior and conditional probabilities. We conclude that repeated practice and/or high incentives can be effective for overcoming choice biases, but promoting an adequate partitioning of possibilities seems to be necessary for overcoming cognitive illusions and improving Bayesian reasoning.
Jia, X.; Slavin, J. A.; Poh, G.; Toth, G.; Gombosi, T. I.
2016-12-01
It has long been suggested that two processes, i.e., erosion of the dayside magnetosphere due to strong magnetopause reconnection and the shielding effect of the induction currents at the planetary core, compete against each other in governing the structure of Mercury's magnetosphere. We have combined analysis of MESSENGER data during extreme solar wind conditions with global MHD simulations to assess the relative importance of the two processes. Following the study of Slavin et al. (2014), we have analyzed an additional set of MESSENGER magnetopause crossings to determine the dependence of the magnetopause standoff distance on solar wind parameters. We have also employed the global MHD model of Jia et al. (2015) that electromagnetically couples Mercury's interior to the surrounding space environment to simulate the response of the system to solar wind forcing for a wide range of solar wind and IMF conditions. We find that while the magnetopause standoff distance decreases with increasing solar wind pressure, just as expected, its dependence on the external pressure follows closely a power-law relationship with an index of -1/6, rather than a steeper power-law falling-off expected for the case with only induction present. Our results suggest that for the external conditions examined, induction and magnetopause reconnection appear to play equally important roles in determining the global configuration of Mercury's magnetosphere, consistent with the finding obtained by Slavin et al. (2014). We also find that the magnetospheric current systems produce magnetic perturbations that are spatially non-uniform in nature, resulting in induced magnetic field at the core that contains significant power in both the dipole and high order moments. Based on the simulation results, we determine how the induced field varies with the solar wind conditions, and provide quantitative constraints on the ability of Mercury's core to shield the planetary surface from direct solar wind
Morrison, P. J.; Abdelhamid, H. M.; Grasso, D.; Hazeltine, R. D.; Lingam, M.; Tassi, E.
2015-11-01
Over the years various reduced fluid models have been obtained for modeling plasmas, with the goal of capturing important physics while maintaining computability. Such models have included the physics contained in various generalizations of Ohm's law, including Hall drift and electron inertia. In a recent publication it was shown that full 3D extended MHD is a Hamiltonian system by finding its noncanonical Poisson bracket. Subsequently, this bracket was shown to be derivable from that for Hall MHD by a series of remarkable transformations, which greatly simplifies the proof of the Jacobi identity and allows one to immediately obtain generalizations of the helicity and cross helicity. In this poster we use this structure to obtain exact reduced fluid models with the effects of full two-fluid theory. Results of numerical computations of collisionless reconnection using an exact reduced 4-field model will be presented and analytical comparisons of mode structure of previous reduced models will be made.
"Bursty" Reconnection Following Solar Eruptions: MHD Simulations and Comparison with Observations
Riley, Pete; Lionello, Roberto; Mikic, zoran; Linker, Jon; Clark, Eric; Lin, Jun; Ko, Yuan-Kuen
2007-01-01
Posteruptive arcades are frequently seen in the aftermath of coronal mass ejections (CMEs). The formation of these loops at successively higher altitudes, coupled with the classic "two-ribbon" flare seen in H-alpha, are interpreted as reconnection of the coronal magnetic field that has been dragged outward by the CME. White-light observations of "rays," which have been interpreted as being coincident with the current sheet at the reconnection site underneath the erupting CME, also provide evidence for its occurrence. "Blobs" occasionally seen within these rays suggest an even richer level of structure. In this report, we present numerical simulations that reproduce both the observed rays and the formation and evolution of the blobs. We compare their properties with SOHO/LASCO observations of similar structures, and relate their formation to standard theories of reconnection,
Beidler, M. T.; Cassak, P. A.; Jardin, S. C.; Ferraro, N. M.
2017-02-01
We diagnose local properties of magnetic reconnection during a sawtooth crash employing the three-dimensional toroidal, extended-magnetohydrodynamic (MHD) code M3D-C1. To do so, we sample simulation data in the plane in which reconnection occurs, the plane perpendicular to the helical (m,n)=(1,1) mode at the q = 1 surface, where m and n are the poloidal and toroidal mode numbers and q is the safety factor. We study the nonlinear evolution of a particular test equilibrium in a non-reduced field representation using both resistive-MHD and extended-MHD models. We find growth rates for the extended-MHD reconnection process exhibit a nonlinear acceleration and greatly exceed that of the resistive-MHD model, as is expected from previous experimental, theoretical, and computational work. We compare the properties of reconnection in the two simulations, revealing the reconnecting current sheets are locally different in the two models and we present the first observation of the quadrupole out-of-plane Hall magnetic field that appears during extended-MHD reconnection in a 3D toroidal simulation (but not in resistive-MHD). We also explore the dependence on toroidal angle of the properties of reconnection as viewed in the plane perpendicular to the helical magnetic field, finding qualitative and quantitative effects due to changes in the symmetry of the reconnection process. This study is potentially important for a wide range of magnetically confined fusion applications, from confirming simulations with extended-MHD effects are sufficiently resolved to describe reconnection, to quantifying local reconnection rates for purposes of understanding and predicting transport, not only at the q = 1 rational surface for sawteeth, but also at higher order rational surfaces that play a role in disruptions and edge-confinement degradation.
Denton, R.; Sonnerup, B. U. O.; Swisdak, M.; Birn, J.; Drake, J. F.; Heese, M.
2012-01-01
When analyzing data from an array of spacecraft (such as Cluster or MMS) crossing a site of magnetic reconnection, it is desirable to be able to accurately determine the orientation of the reconnection site. If the reconnection is quasi-two dimensional, there are three key directions, the direction of maximum inhomogeneity (the direction across the reconnection site), the direction of the reconnecting component of the magnetic field, and the direction of rough invariance (the "out of plane" direction). Using simulated spacecraft observations of magnetic reconnection in the geomagnetic tail, we extend our previous tests of the direction-finding method developed by Shi et al. (2005) and the method to determine the structure velocity relative to the spacecraft Vstr. These methods require data from four proximate spacecraft. We add artificial noise and calibration errors to the simulation fields, and then use the perturbed gradient of the magnetic field B and perturbed time derivative dB/dt, as described by Denton et al. (2010). Three new simulations are examined: a weakly three-dimensional, i.e., quasi-two-dimensional, MHD simulation without a guide field, a quasi-two-dimensional MHD simulation with a guide field, and a two-dimensional full dynamics kinetic simulation with inherent noise so that the apparent minimum gradient was not exactly zero, even without added artificial errors. We also examined variations of the spacecraft trajectory for the kinetic simulation. The accuracy of the directions found varied depending on the simulation and spacecraft trajectory, but all the directions could be found within about 10 for all cases. Various aspects of the method were examined, including how to choose averaging intervals and the best intervals for determining the directions and velocity. For the kinetic simulation, we also investigated in detail how the errors in the inferred gradient directions from the unmodified Shi et al. method (using the unperturbed gradient
Mishra, A.; Sharma, B. K.
2017-11-01
A numerical study of an oscillatory unsteady MHD flow and heat and mass transfer in a vertical rotating channel with an inclined uniform magnetic field and the Hall effect is carried out. The conservation equations of momentum, energy, and species are formulated in a rotating frame of reference with inclusion of the buoyancy effects and Lorentz forces. The Lorentz forces are determined by using the generalized Ohm law with the Hall parameter taken into account. The obtained coupled partial differential equations are nondimensionalized and solved numerically by using the explicit finite difference method. The effects of various model parameters, like the Hall parameter, Hartmann number, wall suction/injection parameter, rotation parameter, angle of magnetic field inclination, Prandtl number, Schmidt number, etc., on the channel velocities, skin friction coefficients, Nusselt number, and the Sherwood number are examined. It is found that the influence of the Hartmann number and Hall parameter on the channel velocities and skin friction coefficients is dependent on the value of the wall suction/injection parameter.
Das, S.; Patra, R. R.; Jana, R. N.; Makinde, O. D.
2017-09-01
This paper deals with the study of an unsteady magnetohydrodynamic (MHD) flow and heat transfer of a reactive, viscous, incompressible, electrically conducting fluid between two infinitely long parallel porous plates where one of the plates is set into impulsive/uniformly accelerated motion in the presence of a uniform transverse magnetic field at the Arrhenius reaction rate, with the Hall currents taken into account. The transient momentum equations are solved analytically with the use of the Laplace transform technique, and the velocity field and shear stresses are obtained in a unified closed form. The energy equation is tackled numerically using Matlab. The effects of the pertinent parameters on the fluid velocity, temperature, shear stresses, and the heat transfer rate at the plates are investigated. The results reveal that the combined effects of magnetic field, suction/injection, exothermic reaction, and variable thermal conductivity have a significant impact on the hydromagnetic flow and heat transfer.
Plasma dynamics and heating/acceleration during driven magnetic reconnection
Cheng, C. Z.; Ono, Y.; Inoue, S.; Horiuchi, R.
2016-12-01
Highlights of the plasma dynamics and energization during anti-parallel driven magnetic reconnection are presented. The MHD condition breaks down in the entire reconnection layer (the reconnection current layer, the separatrix region and the whole downstream), and the plasma dynamics is also significantly different from the results of the Hall-MHD model. In particular, we explain (1) how electron and ion dynamics decouple and how the charge separation and electrostatic electric field are produced in the reconnection current layer and outflow exhaust and around the separatrix regions, (2) how electrons and ions gain energy in the reconnection current layer, (3) why the electron outflow velocity in the reconnection exhaust reaches super-Alfvenic speed and the ion outflow velocity reaches Alfvenic speed and how the parallel electric field is produced around the separatrix region, (4) how electrons are accelerated by the parallel electric field to form electron beam around the separatrix region and flat-top distribution in the immediate upstream region of the current layer, and (5) how ions gain energy when they move across the separatrix region into the downstream. We will compare the simulation results with observations of MMS and Geotail satellites.
Energy Technology Data Exchange (ETDEWEB)
Ng, Jonathan; Huang, Yi-Min; Hakim, Ammar; Bhattacharjee, A. [Center for Heliophysics, Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540 (United States); Stanier, Adam; Daughton, William [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Wang, Liang; Germaschewski, Kai [Space Science Center and Physics Department, University of New Hampshire, Durham, New Hampshire 03824 (United States)
2015-11-15
As modeling of collisionless magnetic reconnection in most space plasmas with realistic parameters is beyond the capability of today's simulations, due to the separation between global and kinetic length scales, it is important to establish scaling relations in model problems so as to extrapolate to realistic scales. Recently, large scale particle-in-cell simulations of island coalescence have shown that the time averaged reconnection rate decreases with system size, while fluid systems at such large scales in the Hall regime have not been studied. Here, we perform the complementary resistive magnetohydrodynamic (MHD), Hall MHD, and two fluid simulations using a ten-moment model with the same geometry. In contrast to the standard Harris sheet reconnection problem, Hall MHD is insufficient to capture the physics of the reconnection region. Additionally, motivated by the results of a recent set of hybrid simulations which show the importance of ion kinetics in this geometry, we evaluate the efficacy of the ten-moment model in reproducing such results.
Najib, D.; Nagy, A. F.; Toth, G.; Combi, M. R.; Ma, Y. J.; Khurana, K.; Crary, F. F.; Coates, A. J.
2007-12-01
We have used our new multi-species, Hall MHD model to study the interaction of Saturn's magnetosphere with Enceladus. We used neutral densities, consistent with the values observed during the Cassini's July 14, 2005 flyby of Enceladus. We used a simple ion chemistry scheme and approximated the upstream conditions from CAPS and MAG observations. We compare our calculated plasma and magnetic field values with the observed ones.
Directory of Open Access Journals (Sweden)
Dev Krishan Singh
2015-01-01
Full Text Available An analysis of an unsteady MHD convective flow of an electrically conducting viscous incompressible fluid through porous medium filled in a vertical porous channel is carried out. The two porous plates are subjected to a constant injection and suction velocity as shown in Fig. 1a, b. The temperature of the plate at y*= + 9 2 is assumed to be varying in space and time as T*(y*, z*, t* = T1 (y* + (T2 - T1COS (πz*d -ω*t*. A magnetic field of uniform strength is applied perpendicular to the plates of the channel. The temperature difference between the plates is high enough to induce the heat due to radiation. It is also assumed that the conducting fluid is opticallythin gray gas, absorbing/ emitting radiation and non-scattering. The Hall current effects have also been taken into account. Exact solution of the partial differential equations governing the flow under the prescribed boundary conditions has been obtained for the velocity and the temperature fields. The primary and secondary velocities, temperature and the skin-friction and Nusselt number for the rate of heat transfer in terms of their amplitudes and phase angles have been shown graphically to observe the effects of suction parameter λ, Grashof number Gr, Hartmann number M, Hall parameter H, the permeability of the porous medium K, Prandtl number Pr, radiation parameter N, pressure gradient A and the frequency of oscillation ω. The final results are then discussed in detail in the last section of the paper with the help of figures.
Dorelli, J. C.; Glocer, Alex; Collinson, Glyn; Toth, Gabor
2015-01-01
We present high-resolution Hall MHD simulations of Ganymede's magnetosphere demonstrating that Hall electric fields in ion-scale magnetic reconnection layers have significant global effects not captured in resistive MHD simulations. Consistent with local kinetic simulations of magnetic reconnection, our global simulations show the development of intense field-aligned currents along the magnetic separatrices. These currents extend all the way down to the moon's surface, where they may contribute to Ganymede's aurora. Within the magnetopause and magnetotail current sheets, Hall J x B forces accelerate ions to the local Alfven speed in the out-of-plane direction, producing a global system of ion drift belts that circulates Jovian magnetospheric plasma throughout Ganymede's magnetosphere. We discuss some observable consequences of these Hall-induced currents and ion drifts: the appearance of a sub-Jovian 'double magnetopause' structure, an Alfvenic ion jet extending across the upstream magnetopause, and an asymmetric pattern of magnetopause Kelvin-Helmholtz waves.
MHD Flow with Hall Current and Ion-Slip Effects due to a Stretching Porous Disk
Directory of Open Access Journals (Sweden)
Faiza M. N. El-Fayez
2013-01-01
Full Text Available A partially ionized fluid is driven by a stretching disk, in the presence of a magnetic field that is strong enough to produce significant hall current and ion-slip effects. The limiting behavior of the flow is studied, as the magnetic field strength grows indefinitely. The flow variables are properly scaled, and uniformly valid asymptotic expansions of the velocity components are obtained. The leading order approximations show sinusoidal behavior that is decaying exponentially, as we move away from the disk surface. The two-term expansions of the radial and azimuthal surface shear stress components, as well as the far field inflow speed, compare well with the corresponding finite difference solutions, even at moderate magnetic fields. The effect of mass transfer (suction or injection through the disk is also considered.
Plasmoid Instability in High-Lundquist-Number Magnetic Reconnection
Huang, Yi-Min
2012-10-01
Our understanding of magnetic reconnection in resistive magnetohydrodynamics has gone through a fundamental change in recent years. The conventional wisdom is that magnetic reconnection mediated by resistivity is slow in high Lundquist (S) plasmas, due to the S-1/2 scaling of reconnection rate predicted by the classical Sweet-Parker theory. However, recent studies showed that when S exceeds a critical value ˜10^4, the Sweet-Parker current sheet is unstable to a super-Alfvenic plasmoid instability, with a growth rate that increases with S [1]. Consequently, the reconnection layer changes to a chain of plasmoids connected by secondary current sheets that, in turn, may become unstable again. Eventually the reconnection layer will tend to a statistical steady state governed by complex dynamics of plasmoid formation and plasmoid loss due to advection and coalescence. The averaged reconnection rate in this regime is nearly independent of S [2,3], and the distribution function f(ψ) of magnetic fluxes ψ in plasmoids follows a power-law f˜&-1circ;. When Hall effects are included, the plasmoid instability may trigger onset of Hall reconnection even when the conventional criterion for onset is not satisfied. In addition to the usual single X-point topology of Hall reconnection, our large-scale resistive Hall MHD simulations reveal a novel intermediate regime, where formation of new plasmoids is observed after onset of Hall reconnection [4]. Qualitatively similar results have also been found when resistivity is replaced by hyper-resistivity. Our findings suggest that plasmoid formation may be a generic feature of magnetic reconnection in large systems, regardless of the mechanism of breaking the frozen-in condition. (In collaboration with A. Bhattacharjee and B. P. Sullivan).[4pt] [1] N. F. Loureiro, A. A. Schekochihin, and S. C. Cowley, Phys. Plasmas 14, 100703 (2007).[0pt] [2] A. Bhattacharjee, Y.-M. Huang, H. Yang, and B. Rogers, Phys. Plasmas 16, 112102 (2009).[0pt] [3
Energy Technology Data Exchange (ETDEWEB)
Masaaki Yamada, Russell Kulsrud and Hantao Ji
2009-09-17
We review the fundamental physics of magnetic reconnection in laboratory and space plasmas, by discussing results from theory, numerical simulations, observations from space satellites, and the recent results from laboratory plasma experiments. After a brief review of the well-known early work, we discuss representative recent experimental and theoretical work and attempt to interpret the essence of significant modern findings. In the area of local reconnection physics, many significant findings have been made with regard to two- uid physics and are related to the cause of fast reconnection. Profiles of the neutral sheet, Hall currents, and the effects of guide field, collisions, and micro-turbulence are discussed to understand the fundamental processes in a local reconnection layer both in space and laboratory plasmas. While the understanding of the global reconnection dynamics is less developed, notable findings have been made on this issue through detailed documentation of magnetic self-organization phenomena in fusion plasmas. Application of magnetic reconnection physics to astrophysical plasmas is also brie y discussed.
Effects of electron inertia in collisionless magnetic reconnection
Energy Technology Data Exchange (ETDEWEB)
Andrés, Nahuel, E-mail: nandres@iafe.uba.ar; Gómez, Daniel [Instituto de Astronomía y Física del Espacio, CC. 67, suc. 28, 1428, Buenos Aires (Argentina); Departamento de Física, Facultad de Ciencias Exactas y Naturales, Univrsidad de Buenos Aires, Pabellón I, 1428, Buenos Aires (Argentina); Martin, Luis; Dmitruk, Pablo [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Univrsidad de Buenos Aires, Pabellón I, 1428, Buenos Aires (Argentina)
2014-07-15
We present a study of collisionless magnetic reconnection within the framework of full two-fluid MHD for a completely ionized hydrogen plasma, retaining the effects of the Hall current, electron pressure and electron inertia. We performed 2.5D simulations using a pseudo-spectral code with no dissipative effects. We check that the ideal invariants of the problem are conserved down to round-off errors. Our numerical results confirm that the change in the topology of the magnetic field lines is exclusively due to the presence of electron inertia. The computed reconnection rates remain a fair fraction of the Alfvén velocity, which therefore qualifies as fast reconnection.
Energy Technology Data Exchange (ETDEWEB)
Maleque, Kh. Abdul [Department of Mathematics, American International University-Bangladesh, House-53/B, 21, Kemal Ataturk Avenue, Banani, Dhaka-1213 (Bangladesh); Sattar, Md. Abdus [Department of CSE, North South University, 12 Kemal Ataturk Avenue, Banani, Dhaka-1213 (Bangladesh)
2005-11-01
The present investigation is concerned with the effects of variable properties [density (r), viscosity ({mu}) and thermal conductivity (k)], Hall current (m), magnetic field (M) and suction/injection (W{sub s}) on steady MHD laminar flow of an electrically conducting fluid on a porous rotating disk in presence of a uniform magnetic field. The fluid properties are taken to be strong functions of temperature. The induced magnetic field is neglected while the electron-atom collision frequency is assumed to be relatively high, so that the Hall effect is assumed to exist. The dimensionless steady governing equations are then solved numerically by using Runge-Kutta and Shooting method, and the effects of the relative parameters are examined. (author)
Directory of Open Access Journals (Sweden)
M.M. Bhatti
2017-09-01
Full Text Available In this article, heat and mass transfer with Joule heating on magnetohydrodynamic (MHD peristaltic blood under the influence of Hall effect is examined. Mathematical modelling is based on momentum, energy and concentration which are taken into account using ohms law. The governing partial differential equations are further simplified by neglecting the inertial forces and long wavelength approximations. Exact solutions have been presented for velocity, temperature and concentration profile. The influence of all the physical pertinent parameters is taken into account with the help graphs. It is found that Hartmann number and Hall parameter shows opposite behaviour on velocity, temperature and concentration profile. It is worth mentioning that pressure rise also depicts opposite behaviour for Hartmann number and Hall parameter. The present analysis is also presented for Newtonian fluid (α→0 as a special case for our study. It is observed that Hall Effect and magnetic field shows opposite behaviour on velocity and temperature profile. Temperature profile increases due to the increment in Prandtl number and Eckert number. Numerical comparison is also presented between the existing published results by taking α=0,M=0 as a special case of our study.
Ghosh, Sanjoy; Goldstein, Melvyn L.
2011-01-01
Recent analysis of the magnetic correlation function of solar wind fluctuations at 1 AU suggests the existence of two-component structure near the proton-cyclotron scale. Here we use two-and-one-half dimensional and three-dimensional compressible MHD models to look for two-component structure adjacent the proton-cyclotron scale. Our MHD system incorporates both Hall and Finite Larmor Radius (FLR) terms. We find that strong spectral anisotropies appear adjacent the proton-cyclotron scales depending on selections of initial condition and plasma beta. These anisotropies are enhancements on top of related anisotropies that appear in standard MHD turbulence in the presence of a mean magnetic field and are suggestive of one turbulence component along the inertial scales and another component adjacent the dissipative scales. We compute the relative strengths of linear and nonlinear accelerations on the velocity and magnetic fields to gauge the relative influence of terms that drive the system with wave-like (linear) versus turbulent (nonlinear) dynamics.
Magnetic Reconnection in Strongly Magnetized Regions of the Low Solar Chromosphere
Ni, Lei; Lukin, Vyacheslav S.; Murphy, Nicholas A.; Lin, Jun
2018-01-01
Magnetic reconnection in strongly magnetized regions around the temperature minimum region of the low solar atmosphere is studied by employing MHD-based simulations of a partially ionized plasma within a reactive 2.5D multi-fluid model. It is shown that in the absence of magnetic nulls in a low β plasma, the ionized and neutral fluid flows are well-coupled throughout the reconnection region. However, non-equilibrium ionization–recombination dynamics play a critical role in determining the structure of the reconnection region, leading to much lower temperature increases and a faster magnetic reconnection rate as compared to simulations that assume plasma to be in ionization–recombination equilibrium. The rate of ionization of the neutral component of the plasma is always faster than recombination within the current sheet region even when the initial plasma β is as high as {β }0=1.46. When the reconnecting magnetic field is in excess of a kilogauss and the plasma β is lower than 0.0145, the initially weakly ionized plasmas can become fully ionized within the reconnection region and the current sheet can be strongly heated to above 2.5× {10}4 K, even as most of the collisionally dissipated magnetic energy is radiated away. The Hall effect increases the reconnection rate slightly, but in the absence of magnetic nulls it does not result in significant asymmetries or change the characteristics of the reconnection current sheet down to meter scales.
Collisionless magnetic reconnection: analytical model and PIC simulation comparison
Directory of Open Access Journals (Sweden)
V. Semenov
2009-03-01
Full Text Available Magnetic reconnection is believed to be responsible for various explosive processes in the space plasma including magnetospheric substorms. The Hall effect is proved to play a key role in the reconnection process. An analytical model of steady-state magnetic reconnection in a collisionless incompressible plasma is developed using the electron Hall MHD approximation. It is shown that the initial complicated system of equations may split into a system of independent equations, and the solution of the problem is based on the Grad-Shafranov equation for the magnetic potential. The results of the analytical study are further compared with a two-dimensional particle-in-cell simulation of reconnection. It is shown that both methods demonstrate a close agreement in the electron current and the magnetic and electric field structures obtained. The spatial scales of the acceleration region in the simulation and the analytical study are of the same order. Such features like particles trajectories and the in-plane electric field structure appear essentially similar in both models.
Bhattacharjee, Amitava
2015-11-01
In recent years, new developments in reconnection theory have challenged classical nonlinear reconnection models. One of these developments is the so-called plasmoid instability of thin current sheets that grows at super-Alfvenic growth rates. Within the resistive MHD model, this instability alters qualitatively the predictions of the Sweet-Parker model, leading to a new nonlinear regime of fast reconnection in which the reconnection rate itself becomes independent of S. This regime has also been seen in Hall MHD as well as fully kinetic simulations, and thus appears to be a universal feature of thin current sheet dynamics, including applications to reconnection forced by the solar wind in the heliosphere and spontaneously unstable sawtooth oscillations in tokamaks. Plasmoids, which can grow by coalescence to large sizes, provide a powerful mechanism for coupling between global and kinetic scales as well as an efficient accelerator of particles to high energies. In two dimensions, the plasmoids are characterized by power-law distribution functions followed by exponential tails. In three dimensions, the instability produces self-generated and strongly anisotropic turbulence in which the reconnection rate for the mean-fields remain approximately at the two-dimensional value, but the energy spectra deviate significantly from anisotropic strong MHD turbulence phenomenology. A new phase diagram of fast reconnection has been proposed, guiding the design of future experiments in magnetically confined and high-energy-density plasmas, and have important implications for explorations of the reconnection layer in the recently launched Magnetospheric Multiscale (MMS) mission. This research is supported by DOE, NASA, and NSF.
Directory of Open Access Journals (Sweden)
S. Abdul Gaffar
2016-06-01
Full Text Available A mathematical study is presented to analyze the nonlinear, non-isothermal, magnetohydrodynamic (MHD free convection boundary layer flow, heat and mass transfer of non-Newtonian Eyring–Powell fluid from a vertical surface in a non-Darcy, isotropic, homogenous porous medium, in the presence of Hall currents and ionslip currents. The governing nonlinear coupled partial differential equations for momentum conservation in the x, and z directions, heat and mass conservation, in the flow regime are transformed from an (x, y, z coordinate system to a (ξ, η coordinate system in terms of dimensionless x-direction velocity (f′ and z-direction velocity (G, dimensionless temperature and concentration functions (θ and ϕ under appropriate boundary conditions. Both Darcian and Forchheimer porous impedances are incorporated in both momentum equations. Computations are also provided for the variation of the x and z direction shear stress components and also heat and mass transfer rates. It is observed that with increasing ɛ, primary velocity, secondary velocity, heat and mass transfer rates are decreased whereas, the temperature, concentration and skin friction are increased. An increasing δ is found to increase primary and secondary velocities, skin friction, heat and mass transfer rates. But the temperature and concentration decrease. Increasing βe and βi are seen to increase primary velocity, skin friction, heat and mass transfer rates whereas secondary velocity, temperature and concentration are decreased. Excellent correlation is achieved with a Nakamura tridiagonal finite difference scheme (NTM. The model finds applications in magnetic materials processing, MHD power generators and purification of crude oils.
Browning, P K; Evans, M; Lucini, F Arese; Lukin, V S; McClements, K G; Stanier, A
2015-01-01
Twisted magnetic flux ropes are ubiquitous in space and laboratory plasmas, and the merging of such flux ropes through magnetic reconnection is an important mechanism for restructuring magnetic fields and releasing free magnetic energy. The merging-compression scenario is one possible start up scheme for spherical tokamaks, which has been used on the Mega Amp Spherical Tokamak MAST. Two current-carrying plasma rings, or flux ropes, approach each other through the mutual attraction of their like currents, and merge, through magnetic reconnection, into a single plasma torus, with substantial plasma heating. 2D resistive MHD and Hall MHD simulations of this process are reported, and new results for the temperature distribution of ions and electrons are presented. A model of the based on relaxation theory is also described, which is now extended to tight aspect ratio geometry. This model allows prediction of the final merged state and the heating. The implications of the relaxation model for heating of the solar ...
The role of guide field in magnetic reconnection driven by island coalescence
Stanier, A; Simakov, Andrei N; Chacon, L; Le, A; Karimabadi, H; Ng, Jonathan; Bhattacharjee, A
2016-01-01
A number of studies have considered how the rate of magnetic reconnection scales in large and weakly collisional systems by the modelling of long reconnecting current sheets. However, this set-up neglects both the formation of the current sheet and the coupling between the diffusion region and a larger system that supplies the magnetic flux. Recent studies of magnetic island merging, which naturally include these features, have found that ion kinetic physics is crucial to describe the reconnection rate and global evolution of such systems. In this paper, the effect of a guide field on reconnection during island merging is considered. In contrast to the earlier current sheet studies, we identify a limited range of guide fields for which the reconnection rate, outflow velocity, and pile-up magnetic field increase in magnitude as the guide field increases. The Hall-MHD fluid model is found to reproduce kinetic reconnection rates only for a sufficiently strong guide field, for which ion inertia breaks the frozen-...
Babu, D. Dastagiri; Venkateswarlu, S.; Reddy, E. Keshava
2017-07-01
In this paper, we have considered the unsteady MHD free convection flow of an incompressible electrically conducting fluid through porous medium bounded by an infinite vertical porous surface in the presence of heat source and chemical reaction in a rotating system taking hall current into account. The flow through porous medium is governed by Brinkman's model for the momentum equation. In the undisturbed state, both the plate and fluid in porous medium are in solid body rotation with the same angular velocity about normal to the infinite vertical plane surface. The vertical surface is subjected to the uniform constant suction perpendicular to it and the temperature on the surface varies with time about a non-zero constant mean while the temperature of free stream is taken to be constant. The exact solutions for the velocity, temperature and concentration are obtained making use of perturbation technique. The velocity expression consists steady state and oscillatory state. It reveals that, the steady part of the velocity field has three layer characters while the oscillatory part of the fluid field exhibits a multi-layer character. The influence of various flow parameters on the velocity, temperature and concentration is analysed graphically, and computational results for the skin friction, Nusselt number and Sherwood number are also obtained in the tabular forms.
Frontiers for Laboratory Research of Magnetic Reconnection
Energy Technology Data Exchange (ETDEWEB)
Ji, Hantao [Princeton University; Guo, Fan [Los Alamos National Laboratory
2015-07-16
Magnetic reconnection occcurs throughout heliophysical and astrophysical plasmas as well as in laboratory fusion plasmas. Two broad categories of reconnection models exist: collisional MHD and collisionless kinetic. Eight major questions with respect to magnetic connection are set down, and past and future devices for studying them in the laboratory are described. Results of some computerized simulations are compared with experiments.
The Magnetic Reconnection Code: Framework and Application
Germaschewski, K.; Bhattacharjee, A.; Linde, T.; Rosner, R.; Siegel, A.
2002-11-01
One of the primary goals of the Center for Magnetic Reconnection Studies (CMRS) is the development of a fully three-dimensional compressible Hall-MHD Magnetic Reconnection Code (MRC) with options to run in slab, cylindrical and toroidal geometry. We detail the techniques used to make this code perform well in a number of massively parallel environments. One major ingredient is the use of adaptive mesh refinement (AMR), which enables us to employ high resolution where locally necessary while at the same time being able to resort to well-proven numerical algorithms on regularly spaced grids. One particular challenge in this project is to develop a computational framework that separates the actual numerical methods and the treatment of the adaptive grids in a way that allows for flexibility in the choice of the AMR package. This framework, which is built on significant extensions of the FLASH framework, will enable automated testing on a large number of platforms, parallel I/O, visualization, and the distribution of the code in the public domain. We will also present results on the application of the MRC to the m=1 collisionless tearing mode (in two dimensions) that exhibits nonlinear near-explosive behavior, relevant to the physics of the sawtooth crash.
Solving Elliptic Problems Using the Magnetic Reconnection Code
Germaschewski, K.; Bhattacharjee, A.; Ng, C. S.; Linde, T.; Malyshkin, L.; Rosner, R.; Dobrian, F.; Keyes, D.; Smith, B.
2003-10-01
The Magnetic Reconnection Code (MRC), developed at the Center for Magnetic Reconnection Studies, solves Hall MHD equations using Adaptive Mesh Refinement (AMR) methods in collisional as well as collisionless regimes. The Navier-Stokes/Euler equations of hydrodynamics also fit into the MRC framework. Much of the previous work on AMR methods has concentrated on solving hyperbolic equations with explicit timestepping. However, for many problems, either due to their physical nature (e.g., collisionless reconnection dynamics in which electron inertia breaks field lines and incompressible Euler flows) or for performance reasons (semi-implicit and implicit numerical methods), it becomes necessary to solve global equations (Poisson and/or Helmholtz). This paper investigates the application and performance of well-established preconditioned Krylov-Schwarz solvers in an AMR context, using a combination of an outer multi-level method (fast adaptive composite) and iterative Krylov-Schwarz smoothers. We present an implementation within the MRC which allows us to leverage the powerful toolkit of preconditioners and linear solvers from the PETSc library. We show two applications of this new adaptive elliptic solver: the problem of finite-time singularities of 3D Euler flows using a highly symmetric initial condition due to Kida and the collisionless reconnection problem for the m=1 sawtooth instability using so-called two-field and four-field models which have been derived from the full two-fluid equations using asymptotic ordering. In the reconnnection problem, it is demonstrated that these reduced models produce parametric scalings in the nonlinear regime that are qualitatively different than those obtained from recent studies such as the GEM Reconnection Challenge.
Electron and Ion Acceleration Associated with Magnetotail Reconnection
Liang, Haoming
This dissertation is dedicated to understanding electron and ion acceleration associated with magnetotail reconnection during substorms by using numerical simulations. Electron dynamics were investigated by using the UCLA global magnetohydrodynamic (MHD) model and large scale kinetic (LSK) simulations. The neutral line configurations and magnetotail flows modify the amounts of the adiabatic and non-adiabatic acceleration that electrons undergo. This causes marked differences in the temperature anisotropy for different substorms. In particular, one substorm event analyzed shows T⊥ > T∥ (T⊥ / T ∥ ≈ 2.3)at -10RE while another shows T ∥ > T⊥ (T ⊥ / T∥ ≈ 0.8), where T⊥ and T∥ (second order moments of the distribution functions) are defined with respect to the magnetic field. These differences determine the subsequent acceleration of the energetic electrons in the inner magnetosphere. Whether the acceleration is mostly parallel or perpendicular is determined by the location of dayside reconnection. A 2.5D implicit Particle-in-Cell simulation was used to study the effects produced by oxygen ions on magnetotail reconnection, and the associated acceleration of protons and oxygen ions. The inertia of oxygen ions reduces the reconnection rate and slows down the earthward propagation of dipolarization fronts (DFs). An ambipolar electric field in the oxygen diffusion region contributes to the smaller reconnection rate. This change in the reconnection rate affects the ion acceleration. In particular 67% of protons and 58% of oxygen ions were accelerated in the exhaust (between the X-point and the DF) in a simulation corresponding to a magnetic storm in which there was a 50% concentration of oxygen ions. In addition, 42% of lobe oxygen-ions are accelerated locally by the Hall electric field, far away from the X-point without entering the exhaust. Protons at the same locations experience Ex B drift. This finding extends previous knowledge that oxygen and
A domain-decomposed multi-model plasma simulation of collisionless magnetic reconnection
Datta, I. A. M.; Shumlak, U.; Ho, A.; Miller, S. T.
2017-10-01
Collisionless magnetic reconnection is a process relevant to many areas of plasma physics in which energy stored in magnetic fields within highly conductive plasmas is rapidly converted into kinetic and thermal energy. Both in natural phenomena such as solar flares and terrestrial aurora as well as in magnetic confinement fusion experiments, the reconnection process is observed on timescales much shorter than those predicted by a resistive MHD model. As a result, this topic is an active area of research in which plasma models with varying fidelity have been tested in order to understand the proper physics explaining the reconnection process. In this research, a hybrid multi-model simulation employing the Hall-MHD and two-fluid plasma models on a decomposed domain is used to study this problem. The simulation is set up using the WARPXM code developed at the University of Washington, which uses a discontinuous Galerkin Runge-Kutta finite element algorithm and implements boundary conditions between models in the domain to couple their variable sets. The goal of the current work is to determine the parameter regimes most appropriate for each model to maintain sufficient physical fidelity over the whole domain while minimizing computational expense. This work is supported by a Grant from US AFOSR.
Diagnostics of solar flare reconnection
Directory of Open Access Journals (Sweden)
M. Karlický
2004-01-01
Full Text Available We present new diagnostics of the solar flare reconnection, mainly based on the plasma radio emission. We propose that the high-frequency (600-2000 MHz slowly drifting pulsating structures map the flare magnetic field reconnection. These structures correspond to the radio emission from plasmoids which are formed in the extended current sheet due to tearing and coalescence processes. An increase of the frequency drift of the drifting structures is interpreted as an increase of the reconnection rate. Using this model, time scales of slowly drifting pulsating structure observed during the 12 April 2001 flare by the Trieste radiopolarimeter with high time resolution (1 ms are interpreted as a radio manifestation of electron beams accelerated in the multi-scale reconnection process. For short periods Fourier spectra of the observed structure have a power-law form with power-law indices in the 1.3-1.6 range. For comparison the 2-D MHD numerical modeling of the multi-scale reconnection is made and it is shown that Fourier spectrum of the reconnection dissipation power has also a power-law form, but with power-law index 2. Furthermore, we compute a time evolution of plasma parameters (density, magnetic field etc in the 2-D MHD model of the reconnection. Then assuming a plasma radio emission from locations, where the 'double-resonance' instability generates the upper-hybrid waves due to unstable distribution function of suprathermal electrons, we model radio spectra. Effects of the MHD turbulence are included. The resulting spectra are compared with those observed. It is found, that depending on model parameters the lace bursts and the decimetric spikes can be reproduced. Thus, it is shown that the model can be used for diagnostics of the flare reconnection process. We also point out possible radio signatures of reconnection outflow termination shocks. They are detected as type II-like herringbone structures in the 200-700 MHz frequency range. Finally
Structure and computation of two-dimensional incompressible extended MHD
Grasso, D; Abdelhamid, H M; Morrison, P J
2016-01-01
A comprehensive study of a reduced version of Lust's equations, the extended magnetohydrodynamic (XMHD) model obtained from the two-fluid theory for electrons and ions with the enforcement of quasineutrality, is given. Starting from the Hamiltonian structure of the fully three-dimensional theory, a Hamiltonian two-dimensional incompressible four-field model is derived. In this way energy conservation along with four families of Casimir invariants are naturally obtained. The construction facilitates various limits leading to the Hamiltonian forms of Hall, inertial, and ideal MHD, with their conserved energies and Casimir invariants. Basic linear theory of the four-field model is treated, and the growth rate for collisionless reconnection is obtained. Results from nonlinear simulations of collisionless tearing are presented and interpreted using, in particular normal fields, a product of the Hamiltonian theory that gives rise to simplified equations of motion.
Kelvin's Canonical Circulation Theorem in Hall Magnetohydrodynamics
Shivamoggi, B K
2016-01-01
The purpose of this paper is to show that, thanks to the restoration of the legitimate connection between the current density and the plasma flow velocity in Hall magnetohydrodynamics (MHD), Kelvin's Circulation Theorem becomes valid in Hall MHD. The ion-flow velocity in the usual circulation integral is now replaced by the canonical ion-flow velocity.
Toward laboratory torsional spine magnetic reconnection
Chesny, David L.; Orange, N. Brice; Oluseyi, Hakeem M.; Valletta, David R.
2017-12-01
Magnetic reconnection is a fundamental energy conversion mechanism in nature. Major attempts to study this process in controlled settings on Earth have largely been limited to reproducing approximately two-dimensional (2-D) reconnection dynamics. Other experiments describing reconnection near three-dimensional null points are non-driven, and do not induce any of the 3-D modes of spine fan, torsional fan or torsional spine reconnection. In order to study these important 3-D modes observed in astrophysical plasmas (e.g. the solar atmosphere), laboratory set-ups must be designed to induce driven reconnection about an isolated magnetic null point. As such, we consider the limited range of fundamental resistive magnetohydrodynamic (MHD) and kinetic parameters of dynamic laboratory plasmas that are necessary to induce the torsional spine reconnection (TSR) mode characterized by a driven rotational slippage of field lines - a feature that has yet to be achieved in operational laboratory magnetic reconnection experiments. Leveraging existing reconnection models, we show that within a 3$ apparatus, TSR can be achieved in dense plasma regimes ( 24~\\text{m}-3$ ) in magnetic fields of -1~\\text{T}$ . We find that MHD and kinetic parameters predict reconnection in thin current sheets on time scales of . While these plasma regimes may not explicitly replicate the plasma parameters of observed astrophysical phenomena, studying the dynamics of the TSR mode within achievable set-ups signifies an important step in understanding the fundamentals of driven 3-D magnetic reconnection and the self-organization of current sheets. Explicit control of this reconnection mode may have implications for understanding particle acceleration in astrophysical environments, and may even have practical applications to fields such as spacecraft propulsion.
Turbulent Plasmoid Reconnection
Widmer, Fabien; Yokoi, Nobumitsu
2016-01-01
The plasmoid instability may lead to fast magnetic reconnection through long current sheets(CS). It is well known that large-Reynolds-number plasmas easily become turbulent. We address the question whether turbulence enhances the energy conversion rate of plasmoid-unstable current sheets. We carry out appropriate numerical MHD simulations, but resolving simultaneously the relevant large-scale (mean-) fields and the corresponding small-scale, turbulent, quantities by means of direct numerical simulations (DNS) is not possible. Hence we investigate the influence of small scale turbulence on large scale MHD processes by utilizing a subgrid-scale (SGS) turbulence model. We verify the applicability of our SGS model and then use it to investigate the influence of turbulence on the plasmoid instability. We start the simulations with Harris-type and force-free CS equilibria in the presence of a finite guide field in the direction perpendicular to the reconnection plane. We use the DNS results to investigate the growt...
Acceleration during magnetic reconnection
Energy Technology Data Exchange (ETDEWEB)
Beresnyak, Andrey [Los Alamos National Laboratory; Li, Hui [Los Alamos National Laboratory
2015-07-16
The presentation begins with colorful depictions of solar x-ray flares and references to pulsar phenomena. Plasma reconnection is complex, could be x-point dominated or turbulent, field lines could break due to either resistivity or non-ideal effects, such as electron pressure anisotropy. Electron acceleration is sometimes observed, and sometimes not. One way to study this complex problem is to have many examples of the process (reconnection) and compare them; the other way is to simplify and come to something robust. Ideal MHD (E=0) turbulence driven by magnetic energy is assumed, and the first-order acceleration is sought. It is found that dissipation in big (length >100 ion skin depths) current sheets is universal and independent on microscopic resistivity and the mean imposed field; particles are regularly accelerated while experiencing curvature drift in flows driven by magnetic tension. One example of such flow is spontaneous reconnection. This explains hot electrons with a power-law tail in solar flares, as well as ultrashort time variability in some astrophysical sources.
Combined effects of radiation and chemical reaction on MHD flow ...
African Journals Online (AJOL)
Influence of radiation and chemical reaction on MHD flow past a moving plate with Hall current is studied here. Earlier, we (2016) have studied unsteady MHD flow in porous media over exponentially accelerated plate with variable wall temperature and mass transfer along with Hall current. To study further, we are changing ...
Directory of Open Access Journals (Sweden)
S. S. Motsa
2012-01-01
Full Text Available The problem of magnetomicropolar fluid flow, heat, and mass transfer with suction through a porous medium is numerically analyzed. The problem was studied under the effects of chemical reaction, Hall, ion-slip currents, and variable thermal diffusivity. The governing fundamental conservation equations of mass, momentum, angular momentum, energy, and concentration are converted into a system of nonlinear ordinary differential equations by means of similarity transformation. The resulting system of coupled nonlinear ordinary differential equations is the then solved using a fairly new technique known as the successive linearization method together with the Chebyshev collocation method. A parametric study illustrating the influence of the magnetic strength, Hall and ion-slip currents, Eckert number, chemical reaction and permeability on the Nusselt and Sherwood numbers, skin friction coefficients, velocities, temperature, and concentration was carried out.
How anomalous resistivity accelerates magnetic reconnection
Che, H.
2017-08-01
Whether turbulence induced anomalous resistivity (AR) can facilitate a fast magnetic reconnection in collisionless plasma is a subject of active debate for decades. Recent space observations suggest that the reconnection rate can be higher than the Hall-reconnection rate and turbulent dissipation is required. In this paper, using particle-in-cell simulations, we present a case study of how AR produced by Buneman instability accelerates magnetic reconnection. We first show that the AR/drag produced by Buneman instability in a thin electron current layer (1) can dissipate magnetic energy stored in the current layer through dissipation of the kinetic energy of electron beams; (2) the inhomogeneous drag caused by wave couplings spontaneously breaks the magnetic field lines and causes impulsive fast non-Hall magnetic reconnection on electron-scales with a mean rate reaching of 0.6 VA. We then show that a Buneman instability driven by intense electron beams around the x-point in a 3D magnetic reconnection significantly enhances the dissipation of the magnetic energy. Electron-scale magnetic reconnections driven by the inhomogeneous drag around the x-line enhance the reconnection electric field and the in-plane perpendicular magnetic field. About 40% of the released magnetic energy is converted into electron thermal energy by AR while 50% is converted into kinetic energy of the electron beams through the acceleration by the reconnection electric field. The enhanced magnetic energy dissipation is balanced by a net Poynting flux in-flow. About 10% of the released magnetic energy is brought out by an enhanced Poynting flux out-flow. These results suggest that AR with sufficient intensity and electron-scale inhomogeneity can significantly accelerate magnetic reconnection.
Plasmoid Instabilities Mediated Three-Dimensional Magnetohydrodynamic Turbulent Reconnection
Energy Technology Data Exchange (ETDEWEB)
Huang, Yi-min [Princeton University; Guo, Fan [Los Alamos National Laboratory
2015-07-21
After some introductory remarks on fast reconnection in resistive MHD due to plasmoid instability, oblique tearing modes in 3D, and previous studies on 3D turbulent reconnection, the subject is presented under the following topics: 3D simulation setup, time evolution of the 3D simulation, comparison with Sweet-Parker and 2D plasmoid reconnection, and diagnostics of the turbulent state (decomposition of mean fields and fluctuations, power spectra of energy fluctuations, structure function and eddy anisotropy with respect to local magnetic field). Three primary conclusions were reached: (1) The results suggest that 3D plasmoid instabilities can lead to self-generated turbulent reconnection (evidence of energy cascade and development of inertial range, energy fluctuations preferentially align with the local magnetic field, which is one of the characteristics of MHD turbulence); (2) The turbulence is highly inhomogeneous, due to the presence of magnetic shear and outflow jets (conventional MHD turbulence theories or phenomenologies may not be applicable – e.g. scale-dependent anisotropy as predicted by Goldreich & Sridhar is not found); (3) 3D turbulent reconnection is different from 2D plasmoid-dominated reconnection in many aspects. However, in fully developed state, reconnection rates in 2D and 3D are comparable — this result needs to be further checked in higher S.
Spectroscopic Signature of Bursty Reconnection
Schmit, D. J.; Innes, D.; Barta, M.
2013-12-01
Bursty reconnection is thought to play a central role in explosive events in the solar atmosphere. Time dependent reconnection occurs when a current sheet undergoes tearing and coalescence instabilities. We simulate these dynamics using a 2.5D adiabatic dimensionless single-fluid MHD model. We scale the model output into the regime appropriate for the upper chromosphere and forward model time dependent spectral profiles which incorporate the projection effects of viewing angle and temperature sensitivity. We find that the profiles are often bimodal and red wing dominant. Both red and blue shifted peaks are visible at velocities 40% of the Alfven speed outside the current sheet. This spectral modeling provides a platform for direct comparison with the novel dataset to be provided by IRIS, particularly in the context of jets and flares.
On the cessation of magnetic reconnection
Directory of Open Access Journals (Sweden)
M. Hesse
2004-01-01
Full Text Available Kinetic simulations of collisionless magnetic reconnection are used to study the effect on the reconnection rate of ion density enhancements in the inflow region. The goal of the investigation is to study a candidate mechanism for the slow-down of magnetic reconnection. The calculations involve either proton or oxygen additions in the inflow region, initially located at two distances from the current sheet. Protons are found to be much more tightly coupled into the evolution of the reconnecting system and, therefore, they effect an immediate slowdown of the reconnection process, as soon as the flux tubes they reside on become involved. Oxygen, on the other hand, has, within the limits of the calculations, a much less pronounced effect on the reconnection electric field. The difference is attributed to the lack of tight coupling to the magnetic field of the oxygen populations. Last, a study of proton and oxygen acceleration finds that protons respond primarily to the reconnection electric field, whereas the main oxygen electric field is achieved by Hall-type electric fields at the plasma sheet boundary. Key words. Space plasma physics (magnetic reconnection; numerical simulation studies; numerical simulation studies
Directory of Open Access Journals (Sweden)
Dulal Pal
2013-01-01
Full Text Available A theoretical study is carried out to obtain an analytic solution of heat and mass transfer in a vertical porous channel with rotation and Hall current. A constant suction and injection is applied to the two insulating porous plates. A strong magnetic field is applied in the transverse direction. The entire system rotates with uniform angular velocity Ω about the axis normal to the plates. The governing equations are solved by perturbation technique to obtain the analytical results for velocity, temperature, and concentration fields and shear stresses. The steady and unsteady resultant velocities along with the phase differences for various values of physical parameters are discussed in detail. The effects of rotation, buoyancy force, magnetic field, thermal radiation, and heat generation parameters on resultant velocity, temperature, and concentration fields are analyzed.
Directory of Open Access Journals (Sweden)
J.I. Oahimire
2014-07-01
Full Text Available Heat and mass transfer effects on an unsteady flow of a chemically reacting micropolar fluid over an infinite vertical porous plate through a porous medium in the presence of a transverse magnetic field with Hall effect and thermal radiation are studied. The governing system of partial differential equations is transformed to dimensionless equations using dimensionless variables. The dimensionless equations are then solved analytically using the perturbation technique to obtain the expressions for velocity, microrotation, temperature and concentration. With the help of graphs, the effects of the various important parameters entering into the problem on the velocity, microrotation, temperature and concentration fields within the boundary layer are discussed. Also the effects of the pertinent parameters on the skin friction coefficient and rates of heat and mass transfer in terms of the Nusselt number and Sherwood number are presented numerically in a tabular form. The results show that the observed parameters have a significant influence on the flow, heat and mass transfer.
Singular structure of magnetic islands resulting from reconnection
Jemella, B. D.; Drake, J. F.; Shay, M. A.
2004-12-01
Magnetic island equilibria resulting from reconnection in magnetohydrodynamic (MHD) simulations are explored in a two-dimensional slab geometry. Magnetic islands are evolved to finite amplitude with a nonzero resistivity. The resistivity and flows are then set to zero and the system is allowed to relax toward equilibrium. A y-type singular current layer in the equilibrium state is identified for all but systems with the smallest values of the tearing mode stability parameter Δ'. It is shown that the length of the equilibrium y line tracks the length of the Sweet-Parker current layer that develops during reconnection. This suggests that the formation of Sweet-Parker current layers during magnetic reconnection in the resistive MHD model is a consequence of the presence of a singularity in post-reconnection state. A threshold in Δ' for singular behavior is also identified.
Energy Technology Data Exchange (ETDEWEB)
Wang, Liang, E-mail: liang.wang@unh.edu; Germaschewski, K. [Space Science Center and Physics Department, University of New Hampshire, Durham, New Hampshire 03824 (United States); Hakim, Ammar H.; Bhattacharjee, A. [Center for Heliophysics, Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451 (United States)
2015-01-15
We introduce an extensible multi-fluid moment model in the context of collisionless magnetic reconnection. This model evolves full Maxwell equations and simultaneously moments of the Vlasov-Maxwell equation for each species in the plasma. Effects like electron inertia and pressure gradient are self-consistently embedded in the resulting multi-fluid moment equations, without the need to explicitly solving a generalized Ohm's law. Two limits of the multi-fluid moment model are discussed, namely, the five-moment limit that evolves a scalar pressures for each species and the ten-moment limit that evolves the full anisotropic, non-gyrotropic pressure tensor for each species. We first demonstrate analytically and numerically that the five-moment model reduces to the widely used Hall magnetohydrodynamics (Hall MHD) model under the assumptions of vanishing electron inertia, infinite speed of light, and quasi-neutrality. Then, we compare ten-moment and fully kinetic particle-in-cell (PIC) simulations of a large scale Harris sheet reconnection problem, where the ten-moment equations are closed with a local linear collisionless approximation for the heat flux. The ten-moment simulation gives reasonable agreement with the PIC results regarding the structures and magnitudes of the electron flows, the polarities and magnitudes of elements of the electron pressure tensor, and the decomposition of the generalized Ohm's law. Possible ways to improve the simple local closure towards a nonlocal fully three-dimensional closure are also discussed.
Directory of Open Access Journals (Sweden)
Uddin Ziya
2014-01-01
Full Text Available In this paper a numerical model is developed to examine the effect of thermal radiation on magnetohydrodynamic heat transfer flow of a micropolar fluid past a non-conducting wedge in presence of heat source/sink. In the model it is assumed that the fluid is viscous, incompressible and electrically conducting. The Hall and ion slip effects have also been taken into consideration. The model contains highly non-linear coupled partial differential equations which have been converted into ordinary differential equation by using the similarity transformations. These equations are then solved numerically by Shooting technique along with the Runge-Kutta-Fehlberg integration scheme for entire range of parameters with appropriate boundary conditions. The effects of various parameters involved in the problem have been studied with the help of graphs. Numerical values of skin friction coefficients and Nusselt number are presented in tabular form. The results showed that the micropolar fluids are better to reduce local skin drag as compared to Newtonian fluids and the presence of heat sink increases the heat transfer rate.
Reconnection and interchange instability in the near magnetotail
Birn, Joachim; Liu, Yi-Hsin; Daughton, William; Hesse, Michael; Schindler, Karl
2015-07-01
This paper provides insights into the possible coupling between reconnection and interchange/ballooning in the magnetotail related to substorms and flow bursts. The results presented are largely based on recent simulations of magnetotail dynamics, exploring onset and progression of reconnection. 2.5-dimensional particle-in-cell (PIC) simulations with different tail deformation demonstrate a clear boundary between stable and unstable cases depending on the amount of deformation, explored up to the real proton/electron mass ratio. The evolution prior to onset, as well as the evolution of stable cases, are governed by the conservation of integral flux tube entropy S as imposed in ideal MHD, maintaining a monotonic increase with distance downtail. This suggests that ballooning instability in the tail should not be expected prior to the onset of tearing and reconnection. 3-D MHD simulations confirm this conclusion, showing no indication of ballooning prior to reconnection, if the initial state is ballooning stable. The simulation also shows that, after imposing resistivity necessary to initiate reconnection, the reconnection rate and energy release initially remain slow. However, when S becomes reduced from plasmoid ejection and lobe reconnection, forming a negative slope in S as a function of distance from Earth, the reconnection rate and energy release increase drastically. The latter condition has been shown to be necessary for ballooning/interchange instability, and the cross-tail structures that develop subsequently in the MHD simulation are consistent with such modes. The simulations support a concept in which tail activity is initiated by tearing instability but significantly enhanced by the interaction with ballooning/interchange enabled by plasmoid loss and lobe reconnection.
CICART Center For Integrated Computation And Analysis Of Reconnection And Turbulence
Energy Technology Data Exchange (ETDEWEB)
Bhattacharjee, Amitava [Univ. of New Hampshire, Durham, NH (United States)
2016-03-27
CICART is a partnership between the University of New Hampshire (UNH) and Dartmouth College. CICART addresses two important science needs of the DoE: the basic understanding of magnetic reconnection and turbulence that strongly impacts the performance of fusion plasmas, and the development of new mathematical and computational tools that enable the modeling and control of these phenomena. The principal participants of CICART constitute an interdisciplinary group, drawn from the communities of applied mathematics, astrophysics, computational physics, fluid dynamics, and fusion physics. It is a main premise of CICART that fundamental aspects of magnetic reconnection and turbulence in fusion devices, smaller-scale laboratory experiments, and space and astrophysical plasmas can be viewed from a common perspective, and that progress in understanding in any of these interconnected fields is likely to lead to progress in others. The establishment of CICART has strongly impacted the education and research mission of a new Program in Integrated Applied Mathematics in the College of Engineering and Applied Sciences at UNH by enabling the recruitment of a tenure-track faculty member, supported equally by UNH and CICART, and the establishment of an IBM-UNH Computing Alliance. The proposed areas of research in magnetic reconnection and turbulence in astrophysical, space, and laboratory plasmas include the following topics: (A) Reconnection and secondary instabilities in large high-Lundquist-number plasmas, (B) Particle acceleration in the presence of multiple magnetic islands, (C) Gyrokinetic reconnection: comparison with fluid and particle-in-cell models, (D) Imbalanced turbulence, (E) Ion heating, and (F) Turbulence in laboratory (including fusion-relevant) experiments. These theoretical studies make active use of three high-performance computer simulation codes: (1) The Magnetic Reconnection Code, based on extended two-fluid (or Hall MHD) equations, in an Adaptive Mesh
Why does steady-state magnetic reconnection have a maximum local rate of order 0.1?
Liu, Yi-Hsin; Guo, F; Daughton, W; Li, H; Cassak, P A; Shay, M A
2016-01-01
Simulations suggest collisionless steady-state magnetic reconnection of Harris-type current sheets proceeds with a rate of order 0.1, independent of dissipation mechanism. We argue this long-standing puzzle is a result of constraints at the magnetohydrodynamic (MHD) scale. We perform a scaling analysis of the reconnection rate as a function of the opening angle made by the upstream magnetic fields, finding a maximum reconnection rate close to 0.2. The predictions compare favorably to particle-in-cell simulations of relativistic electron-positron and non-relativistic electron-proton reconnection. The fact that simulated reconnection rates are close to the predicted maximum suggests reconnection proceeds near the most efficient state allowed at the MHD-scale. The rate near the maximum is relatively insensitive to the opening angle, potentially explaining why reconnection has a similar fast rate in differing models.
Plasma compression in magnetic reconnection regions in the solar corona
Provornikova, Elena; Lukin, Vyacheslav S
2016-01-01
It has been proposed that particles bouncing between magnetized flows converging in a reconnection region can be accelerated by the first order Fermi mechanism. Analytical considerations of this mechanism have shown that the spectral index of accelerated particles is related to the total plasma compression within the reconnection region similarly to the case of diffusive shock acceleration mechanism. As a first step to investigate the efficiency of Fermi acceleration in reconnection regions in producing hard energy spectra of particles in the solar corona, we explore the degree of plasma compression that can be achieved at reconnection sites. In particular, we aim to determine the conditions for the strong compressions to form. Using a two-dimensional resistive MHD numerical model we consider a set of magnetic field configurations where magnetic reconnection can occur including a Harris current sheet, a force-free current sheet, and two merging flux ropes. Plasma parameters are taken to be characteristic of t...
Collisionless magnetic reconnection in a plasmoid chain
Directory of Open Access Journals (Sweden)
S. Markidis
2012-02-01
Full Text Available The kinetic features of plasmoid chain formation and evolution are investigated by two dimensional Particle-in-Cell simulations. Magnetic reconnection is initiated in multiple X points by the tearing instability. Plasmoids form and grow in size by continuously coalescing. Each chain plasmoid exhibits a strong out-of plane core magnetic field and an out-of-plane electron current that drives the coalescing process. The disappearance of the X points in the coalescence process are due to anti-reconnection, a magnetic reconnection where the plasma inflow and outflow are reversed with respect to the original reconnection flow pattern. Anti-reconnection is characterized by the Hall magnetic field quadrupole signature. Two new kinetic features, not reported by previous studies of plasmoid chain evolution, are here revealed. First, intense electric fields develop in-plane normally to the separatrices and drive the ion dynamics in the plasmoids. Second, several bipolar electric field structures are localized in proximity of the plasmoid chain. The analysis of the electron distribution function and phase space reveals the presence of counter-streaming electron beams, unstable to the two stream instability, and phase space electron holes along the reconnection separatrices.
Unsteady MHD flow in porous media past over exponentially ...
African Journals Online (AJOL)
... mass transfer along with Hall current. We have used Laplace-transform technique to find the solution of the equations in the flow model. The results obtained are discussed with the help of graphs. The drag force at the boundary has been tabulated. Keywords: MHD, unsteady flow, inclined plate, Hall current, skin friction ...
Survey of magnetic reconnection signatures in the Martian magnetotail with MAVEN
Harada, Y.; Halekas, J. S.; McFadden, J. P.; Espley, J.; DiBraccio, G. A.; Mitchell, D. L.; Mazelle, C.; Brain, D. A.; Andersson, L.; Ma, Y. J.; Larson, D. E.; Xu, S.; Hara, T.; Ruhunusiri, S.; Livi, R.; Jakosky, B. M.
2017-05-01
We conduct an extended survey of reconnection signatures observed in the Martian magnetotail by the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission. Although it is well established that magnetic reconnection plays a fundamental role in the dynamics of intrinsic magnetospheres, the role of reconnection in the dynamics of induced magnetospheres remains poorly understood. Based on comprehensive plasma and field measurements by MAVEN in the Martian magnetotail, we first identified 776 current sheet crossings and then selected 34 crossings with Hall magnetic field signatures, which are indicative of the ion diffusion region of tail reconnection. For the majority of the identified Hall field events, we observe ion flow enhancements in the directions consistent with the reconnection outflow directions expected from the Hall magnetic field polarity. The reconnection signatures are preferentially observed in the -E hemisphere of the near-Mars magnetotail at ˜1-2 Mars radii downstream from Mars. We have found no strong correlation of the likelihood of observing reconnection signatures with local crustal field strengths or with upstream drivers. The duty cycle of tail reconnection is estimated to be ˜1-10% or even higher. The MAVEN observations suggest that magnetic reconnection can play an important role in the dynamics of the Martian magnetotail.
Introduction to Plasma Dynamo, Reconnection and Shocks
Energy Technology Data Exchange (ETDEWEB)
Intrator, Thomas P. [Los Alamos National Laboratory
2012-08-30
In our plasma universe, most of what we can observe is composed of ionized gas, or plasma. This plasma is a conducting fluid, which advects magnetic fields when it flows. Magnetic structure occurs from the smallest planetary to the largest cosmic scales. We introduce at a basic level some interesting features of non linear magnetohydrodynamics (MHD). For example, in our plasma universe, dynamo creates magnetic fields from gravitationally driven flow energy in an electrically conducting medium, and conversely magnetic reconnection annihilates magnetic field and accelerates particles. Shocks occur when flows move faster than the local velocity (sonic or Alfven speed) for the propagation of information. Both reconnection and shocks can accelerate particles, perhaps to gigantic energies, for example as observed with 10{sup 20} eV cosmic rays.
Investigations of Magnetic Reconnection at the Dayside Magnetopause
Komar, C. M.; Cassak, P.; Dorelli, J.; Glocer, A.; Kuznetsova, M. M.; Chen, L. J.
2016-12-01
Magnetic reconnection at Earth's dayside magnetopause has traditionally been very difficult to analyze due the difficulty in locating where reconnection occurs for oblique IMF. However, new techniques make this possible by identifying magnetic separators, the curves that separate four regions of differing magnetic topology, and map the reconnection X-line. In this talk, we will discuss different methods for locating magnetic separators and apply them to 3-D resistive MHD simulations of the Earth's magnetosphere using the Block-Adaptive-Tree Solar-wind Roe-type Upwind Scheme code, although the methods described here are extensible to any global magnetospheric simulation model. Once the magnetic separators are found, one can calculate the electric field parallel to the separator and compare these results with a simple model of local two-dimensional asymmetric reconnection. To do so, plasma parameters that locally drive reconnection are measured in the magnetosheath and magnetosphere in planes perpendicular to the separator. We find that the predicted local reconnection rates scale well with the measured values in the simulations for oblique IMF with and without a dipole tilt. However, the absolute predictions differ by an undetermined constant of proportionality, whose magnitude increases as the IMF clock angle changes from southward to northward. Finally, we compare separators in global simulations with MMS observations and find that separators are consistent with observed reconnection signatures.
Sub-Grid-Scale Description of Turbulent Magnetic Reconnection in Magnetohydrodynamics
Widmer, Fabien; Yokoi, Nobumitsu
2015-01-01
Magnetic reconnection requires, at least locally, a non-ideal plasma response. In collisionless space and astrophysical plasmas, turbulence could permit this instead of the too rare binary collisions. We investigated the influence of turbulence on the reconnection rate in the framework of a single fluid compressible MHD approach. The goal is to find out, whether unresolved, sub-grid for MHD simulations, turbulence can enhance the reconnection process in high Reynolds number astrophysical plasma. We solve, simultaneously with the grid-scale MHD equations, evolution equations for the sub-grid turbulent energy and cross helicity according to Yokoi's model (Yokoi (2013)) where turbulence is self-generated and -sustained through the inhomogeneities of the mean fields. Simulations of Harris and force free sheets confirm the results of Higashimori et al. (2013) and new results are obtained about the dependence on resistivity for large Reynolds number as well as guide field effects. The amount of energy transferred f...
Fast magnetic reconnection supported by sporadic small-scale Petschek- type shocks
Shibayama, T.; Kusano, K.; Miyoshi, T.; Nakabou, T.; Vekstein, G.
2016-12-01
Magnetic reconnection is a process of changing connectivity of magnetic field lines, and thought to play a core role in explosive magnetic energy conversion events observed in magnetospheric substorms, solar flares, and tokamak disruptions. According to the classic Sweet-Parker theory, it is, however, problematic to conduct magnetic reconnection efficiently enough in a highly conductive plasma such as in the solar corona. Therefore, Petschek proposed another reconnection mechanism, in which small magnetic diffusion region enables fast reconnection while the energy conversion itself occurs in slow mode MHD shocks. However, recent numerical simulations indicate that Petschek reconnection is not stable in a system with spatially uniform resistivity. Some mechanism such as anomalous resistivity or kinetic physics is needed to sustain the localized diffusion region. It is, therefore, not yet clear how fast reconnection realizes in the reality. In order to address this problem, we performed 2-D resistive MHD simulation with a very high spatial resolution. It is found that small-scale slow mode MHD shocks predicted by Petschek spontaneously form (even under a uniform plasma resistivity) as a result of the secondary tearing (plasmoid) instability of the reconnecting current sheet. In this process, fast motion of large plasmoids in the current sheet play a role of the required localization in the diffusion region, so that slow mode shocks can form in front of the moving plasmoids. Thus, the rate of reconnection is intermittently and repeatedly enhanced up to 0.02 of the Alfven speed, which is sufficient to explain, for example, the time-scale of solar flares. Furthermore, our simulation suggests that the effective reconnection rate doesn't depend on the Lundquist number of a system. Therefore, this is quite a universal mechanism of fast magnetic reconnection. A part of this study is already published in Shibayama et al., Physics of Plasmas, 22, 100706, 2015.
Sub-grid-scale description of turbulent magnetic reconnection in magnetohydrodynamics
Energy Technology Data Exchange (ETDEWEB)
Widmer, F., E-mail: widmer@mps.mpg.de [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, 37077 Göttingen (Germany); Institut für Astrophysik, Georg-August-Universität, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Büchner, J. [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, 37077 Göttingen (Germany); Yokoi, N. [Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505 (Japan)
2016-04-15
Magnetic reconnection requires, at least locally, a non-ideal plasma response. In collisionless space and astrophysical plasmas, turbulence could transport energy from large to small scales where binary particle collisions are rare. We have investigated the influence of small scale magnetohydrodynamics (MHD) turbulence on the reconnection rate in the framework of a compressible MHD approach including sub-grid-scale (SGS) turbulence. For this sake, we considered Harris-type and force-free current sheets with finite guide magnetic fields directed out of the reconnection plane. The goal is to find out whether unresolved by conventional simulations MHD turbulence can enhance the reconnection process in high-Reynolds-number astrophysical plasmas. Together with the MHD equations, we solve evolution equations for the SGS energy and cross-helicity due to turbulence according to a Reynolds-averaged turbulence model. The SGS turbulence is self-generated and -sustained through the inhomogeneities of the mean fields. By this way, the feedback of the unresolved turbulence into the MHD reconnection process is taken into account. It is shown that the turbulence controls the regimes of reconnection by its characteristic timescale τ{sub t}. The dependence on resistivity was investigated for large-Reynolds-number plasmas for Harris-type as well as force-free current sheets with guide field. We found that magnetic reconnection depends on the relation between the molecular and apparent effective turbulent resistivity. We found that the turbulence timescale τ{sub t} decides whether fast reconnection takes place or whether the stored energy is just diffused away to small scale turbulence. If the amount of energy transferred from large to small scales is enhanced, fast reconnection can take place. Energy spectra allowed us to characterize the different regimes of reconnection. It was found that reconnection is even faster for larger Reynolds numbers controlled by the molecular
Onset of 2D magnetic reconnection in the solar photosphere, chromosphere, and corona
Snow, B.; Botha, G. J. J.; McLaughlin, J. A.; Hillier, A.
2018-01-01
Aims: We aim to investigate the onset of 2D time-dependent magnetic reconnection that is triggered using an external (non-local) velocity driver located away from, and perpendicular to, an equilibrium Harris current sheet. Previous studies have typically utilised an internal trigger to initiate reconnection, for example initial conditions centred on the current sheet. Here, an external driver allows for a more naturalistic trigger as well as the study of the earlier stages of the reconnection start-up process. Methods: Numerical simulations solving the compressible, resistive magnetohydrodynamic (MHD) equations were performed to investigate the reconnection onset within different atmospheric layers of the Sun, namely the corona, chromosphere and photosphere. Results: A reconnecting state is reached for all atmospheric heights considered, with the dominant physics being highly dependent on atmospheric conditions. The coronal case achieves a sharp rise in electric field (indicative of reconnection) for a range of velocity drivers. For the chromosphere, we find a larger velocity amplitude is required to trigger reconnection (compared to the corona). For the photospheric environment, the electric field is highly dependent on the inflow speed; a sharp increase in electric field is obtained only as the velocity entering the reconnection region approaches the Alfvén speed. Additionally, the role of ambipolar diffusion is investigated for the chromospheric case and we find that the ambipolar diffusion alters the structure of the current density in the inflow region. Conclusions: The rate at which flux enters the reconnection region is controlled by the inflow velocity. This determines all aspects of the reconnection start-up process, that is, the early onset of reconnection is dominated by the advection term in Ohm's law in all atmospheric layers. A lower plasma-β enhances reconnection and creates a large change in the electric field. A high plasma-β hinders the
Zuccher, S.; Caliari, M.; Baggaley, A. W.; Barenghi, C. F.
2012-12-01
We study reconnections of quantum vortices by numerically solving the governing Gross-Pitaevskii equation. We find that the minimum distance between vortices scales differently with time before and after the vortex reconnection. We also compute vortex reconnections using the Biot-Savart law for vortex filaments of infinitesimal thickness, and find that, in this model, reconnections are time symmetric. We argue that the likely cause of the difference between the Gross-Pitaevskii model and the Biot-Savart model is the intense rarefaction wave which is radiated away from a Gross-Pitaeveskii reconnection. Finally we compare our results to experimental observations in superfluid helium and discuss the different length scales probed by the two models and by experiments.
Onset of Reconnection in the near Magnetotail: PIC Simulations
Liu, Yi-Hsin; Birn, Joachim; Daughton, William; Hesse, Michael; Schindler, Karl
2014-01-01
Using 2.5-dimensional particle-in-cell (PIC) simulations of magnetotail dynamics, we investigate the onset of reconnection in two-dimensional tail configurations with finite Bz. Reconnection onset is preceded by a driven phase, during which magnetic flux is added to the tail at the high-latitude boundaries, followed by a relaxation phase, during which the configuration continues to respond to the driving. We found a clear distinction between stable and unstable cases, dependent on deformation amplitude and ion/electron mass ratio. The threshold appears consistent with electron tearing. The evolution prior to onset, as well as the evolution of stable cases, are largely independent of the mass ratio, governed by integral flux tube entropy conservation as imposed in MHD (magnetohydrodynamics). This suggests that ballooning instability in the tail should not be expected prior to the onset of tearing and reconnection. The onset time and other onset properties depend on the mass ratio, consistent with expectations for electron tearing. At onset,we found electron anisotropies T?/ T? (bottom tail divided by parallel tail) equals 1.1-1.3, raising growth rates and wavenumbers. Our simulations have provided a quantitative onset criterion that is easily evaluated in MHD simulations, provided the spatial resolution is sufficient. The evolution prior to onset and after the formation of a neutral line does not depend on the electron physics, which should permit an approximation by MHD simulations with appropriate dissipation terms.
Fast magnetic reconnection supported by sporadic small-scale Petschek-type shocks
Shibayama, Takuya; Kusano, Kanya; Miyoshi, Takahiro; Vekstein, Grigory
2017-10-01
Magnetic reconnection is thought to play a core role in explosive energy conversion. According to the Sweet-Parker theory, it is difficult to conduct magnetic reconnection efficiently in highly conductive plasma. Petschek proposed another reconnection theory. However, numerical simulations suggest that Petschek reconnection is not stable in a system with spatially uniform resistivity. Some mechanism is needed to sustain the localized diffusion region. We perform resistive 2D MHD simulation in a large system with a high spatial resolution, and find that small-scale slow mode MHD shocks predicted by Petschek spontaneously form even under a uniform resistivity. In this process, growth of plasmoids in the current sheet play a role of localizing the diffusion region, and slow mode shocks form next to plasmoids. These plasmoids enhance magnetic reconnection intermittently and repeatedly. As a result, the reconnection rate increases up to 0.02. Furthermore, our simulation suggests that the obtained reconnection rate doesn't depend on the Lundquist number. This is due to a similarity in the evolution of plasmoid in different scale. A part of this study is published in Physics of Plasmas.
Magnetic Reconnection: Theoretical and Observational Perspectives: Preface
Lewis, W. S.; Antiochos, S. K,; Drake, J. F.
2011-01-01
Magnetic reconnection is a fundamental plasma-physical process by which energy stored in a magnetic field is converted, often explosively, into heat and the kinetic energy of the charged particles that constitute the plasma. It occurs in a variety of astrophysical settings, ranging from the solar corona to pulsar magnetospheres and winds, as well as in laboratory fusion experiments, where it is responsible for sawtooth crashes. First proposed by R.G. Giovanelli in the late I 940s as the mechanism responsible for solar flares, magnetic reconnection was invoked at the beginning of the space age to explain not just solar flares but also the transfer of energy, mass, and momentum from the solar wind to Earth's magnetosphere and the subsequent storage and release of the transferred energy in the magnetotai\\. During the half century or so that has followed the seminal theoretical works by J.W. Dungey, P.A. Sweet, E.N. Parker, and H.E. Petschek, in-situ measurements by Earth-orbiting satellites and remote-sensing observations of the solar corona have provided a growing body of evidence for the occurrence of reconnection at the Sun, in the solar wind, and in the near-Earth space environment. The last thirty years have also seen the development of laboratory reconnection experiments at a number of institutions. In parallel with the efforts of experimentalists in both space and laboratory plasma physics, theorists have investigated, analytically and with the help of increasingly powerful MHD, hybrid, and kinetic numerical simulations, the structure of the diffusion region, the factors controlling the rate, onset, and cessation of reconnection, and the detailed physics that enables the demagnetization of the ions and electrons and the topological reconfiguration of the magnetic field. Moreover, the scope of theoretical reconnection studies has been extended well beyond solar system and laboratory plasmas to include more exotic astrophysical plasma systems whose strong (10
Kantrowitz, Arthur; Rosa, Richard J.
1975-01-01
Explains the operation of the Magnetohydrodynamic (MHD) generator and advantages of the system over coal, oil or nuclear powered generators. Details the development of MHD generators in the United States and Soviet Union. (CP)
Global and local disturbances in the magnetotail during reconnection
Directory of Open Access Journals (Sweden)
T. V. Laitinen
2007-05-01
Full Text Available We examine Cluster observations of a reconnection event at x_{GSM}=−15.7 R_{E} in the magnetotail on 11 October 2001, when Cluster recorded the current sheet for an extended period including the entire duration of the reconnection event. The onset of reconnection is associated with a sudden orientation change of the ambient magnetic field, which is also observed simultaneously by Goes-8 at geostationary orbit. Current sheet oscillations are observed both before reconnection and during it. The speed of the flapping motions is found to increase when the current sheet undergoes the transition from quiet to active state, as suggested by an earlier statistical result and now confirmed within one single event. Within the diffusion region both the tailward and earthward parts of the quadrupolar magnetic Hall structure are recorded as an x-line passes Cluster. We report the first observations of the Hall structure conforming to the kinks in the current sheet. This results in relatively strong fluctuations in B_{z}, which are shown to be the Hall signature tilted in the yz plane with the current sheet.
Studies of Magnetic Reconnection in Colliding Laser-Produced Plasmas
Rosenberg, Michael
2013-10-01
Novel images of magnetic fields and measurements of electron and ion temperatures have been obtained in the magnetic reconnection region of high- β, laser-produced plasmas. Experiments using laser-irradiated foils produce expanding, hemispherical plasma plumes carrying MG Biermann-battery magnetic fields, which can be driven to interact and reconnect. Thomson-scattering measurements of electron and ion temperatures in the interaction region of two colliding, magnetized plasmas show no thermal enhancement due to reconnection, as expected for β ~ 8 plasmas. Two different proton radiography techniques used to image the magnetic field structures show deformation, pileup, and annihilation of magnetic flux. High-resolution images reveal unambiguously reconnection-induced jets emerging from the interaction region and show instabilities in the expanding plasma plumes and supersonic, hydrodynamic jets due to the plasma collision. Quantitative magnetic flux data show that reconnection in experiments with asymmetry in the scale size, density, temperature, and plasma flow across the reconnection region occurs less efficiently than in similar, symmetric experiments. This result is attributed to disruption of the Hall mechanism mediating collisionless reconnection. The collision of plasmas carrying parallel magnetic fields has also been probed, illustrating the deformation of magnetic field structures in high-energy-density plasmas in the absence of reconnection. These experiments are particularly relevant to high- β reconnection environments, such as the magnetopause. This work was performed in collaboration with C. Li, F. Séguin, A. Zylstra, H. Rinderknecht, H. Sio, J. Frenje, and R. Petrasso (MIT), I. Igumenshchev, V. Glebov, C. Stoeckl, and D. Froula (LLE), J. Ross and R. Town (LLNL), W. Fox (UNH), and A. Nikroo (GA), and was supported in part by the NLUF, FSC/UR, U.S. DOE, LLNL, and LLE.
MHD contractors' review meeting
The following research programs on magnetohydrodynamic conversion were described at the contractors' review meeting: MHD integrated topping cycle project; Activity summary for DOE's component development and integration facility; MHD bottoming cycle component testing at the coal fired flow facility; MHD heat recovery seed recovery system development; Diagnostic development and support of MHD test facilities; Heat and seed recovery technology project; TRW Econoseed process for MHD seed recovery and regeneration; and MIT magnet. Papers describe the objectives, the work to date, and results obtained. Papers have been processed separately for inclusion on the data base.
Federal Laboratory Consortium — Hall C's initial complement of equipment (shown in the figure), includes two general-purpose magnetic spectrometers. The High Momentum Spectrometer (HMS) has a large...
Federal Laboratory Consortium — The instrumentation in Hall A at the Thomas Jefferson National Accelerator Facility was designed to study electroand photo-induced reactions at very high luminosity...
The physics of electron flow stagnation in collisionless magnetic reconnection
Hesse, Michael; Liu, Yi-Hsin; Chen, Li-Jen; Bessho, Naoki; Burch, James
2017-04-01
In addition to the in-plane null point of the magnetic field, the general in- and outflow geometry of magnetic reconnection requires the existence of stagnation points of the flow in the reconnection plane. This applies to any ion species, as well as to the electrons. In symmetric reconnection, the in-plane magnetic null closely coincides with the location of the flow stagnation point, so that physical processes at both critical points are identical or very nearly so. This is different in asymmetric reconnection, where even in MHD these locations do not coincide. In kinetic plasmas, it has been shown that electric field contributions at the flow stagnation point results from thermal inertia effects, i.e., from the divergence of the electron pressure tensor. The electric field at the magnetic null (the "X-point") involves contributions from bulk inertial effects, which increase by the degree of overall asymmetry. In order to understand the overall physical foundation of magnetic reconnection, the flow stagnation point is therefore of particular importance. In this presentation, we will show that population mixing, which is associated with nongyrotropic pressures, is a fundamental feature of the electron dynamics at the electron flow stagnation point. This result has implications for the role mixing and nongyrotropies play in facilitating collisionless magnetic
Unsteady MHD free convective flow past a vertical porous plate ...
African Journals Online (AJOL)
An attempt has been made to study the unsteady MHD free convective flow past a vertical porous plate immersed in a porous medium with Hall current, thermal diffusion and heat source. Analytical solution has been found depending on the physical parameters including the Hartmann number M, the Prandtl number Pr, the ...
Unsteady MHD free convective flow past a vertical porous plate ...
African Journals Online (AJOL)
user
been seen in MHD power generators, astrophysical and meteorological studies as well as in plasma physics. The Hall effect is due merely to ...... -3. Kg/ m ] fluid density in the boundary layer υ [ 2 -1. m s ] kinematic viscosity σ [ -1. -1. Ω m ] electrical conductivity θ [-] dimensionless temperature φ [. -3. Wm ] frictional heat. Ω [-].
Multi-region relaxed Hall magnetohydrodynamics with flow
Lingam, Manasvi; Hudson, Stuart R
2016-01-01
The recent formulations of multi-region relaxed magnetohydrodynamics (MRxMHD) have generalized the famous Woltjer-Taylor states by incorporating a collection of "ideal barriers" that prevent global relaxation, and flow. In this paper, we generalize MRxMHD with flow to include Hall effects (MRxHMHD), and thereby obtain the partially relaxed counterparts of the famous double Beltrami states as a special subset. The physical and mathematical consequences arising from the introduction of the Hall term are also presented. We demonstrate that our results (in the ideal MHD limit) constitute an important subset of ideal MHD equilibria, and we compare our approach against other variational principles proposed for deriving the relaxed states.
Inhibitory Control in a Notorious Brain Teaser: The Monty Hall Dilemma
Saenen, Lore; Heyvaert, Mieke; Van Dooren, Wim; Onghena, Patrick
2015-01-01
The Monty Hall dilemma (MHD) is a counterintuitive probability problem in which participants often use misleading heuristics, such as the equiprobability bias. Finding the optimal solution to the MHD requires inhibition of these heuristics. In the current study, we investigated the relation between participants' equiprobability bias and their MHD…
Magnetic field annihilation and reconnection driven by femtosecond lasers in inhomogeneous plasma
Wang, YouYuan; Li, FeiYu; Chen, Min; Weng, SuMing; Lu, QuanMing; Dong, QuanLi; Sheng, ZhengMing; Zhang, Jie
2017-11-01
The process of fast magnetic reconnection driven by intense ultra-short laser pulses in underdense plasma is investigated by particle-in-cell simulations. In the wakefield of such laser pulses, quasi-static magnetic fields at a few mega-Gauss are generated due to nonvanishing cross product Δ( n /γ) × p. Excited in an inhomogeneous plasma of decreasing density, the quasi-static magnetic field structure is shown to drift quickly both in lateral and longitudinal directions. When two parallel-propagating laser pulses with close focal spot separation are used, such field drifts can develop into magnetic reconnection (annihilation) in their overlapping region, resulting in the conversion of magnetic energy to kinetic energy of particles. The reconnection rate is found to be much higher than the value obtained in the Hall magnetic reconnection model. Our work proposes a potential way to study magnetic reconnection-related physics with short-pulse lasers of terawatt peak power only.
An Intrinsically Three-Dimensional Magnetic Reconnection Process in a Generalized Harris Sheet
Zhu, Ping; Wang, Zechen; Bonofiglo, Phillip
2016-01-01
A magnetic reconnection process in the generalized Harris sheet has been revealed to be intrinsically three-dimensional both geometrically and dynamically despite the spatial invariance of the original current sheet in the equilibrium current direction. The spatial distribution and structure of the quasi-separatrix layers, as well as their temporal emergence and evolution, indicate that the associated magnetic reconnection can only occur in a three-dimensional geometry which is irreducible to a two-dimensional reconnection process. Such a three-dimensional reconnection process is induced by the nonlinear development of an ideal MHD ballooning instability in the generalized Harris sheet, which is itself an intrinsically three-dimensional dynamic process.
Shock formation and structure in magnetic reconnection with a streaming flow.
Wu, Liangneng; Ma, Zhiwei; Zhang, Haowei
2017-08-18
The features of magnetic reconnection with a streaming flow have been investigated on the basis of compressible resistive magnetohydrodynamic (MHD) model. The super-Alfvenic streaming flow largely enhances magnetic reconnection. The maximum reconnection rate is almost four times larger with super-Alfvenic streaming flow than sub-Alfvénic streaming flow. In the nonlinear stage, it is found that there is a pair of shocks observed in the inflow region, which are manifested to be slow shocks for sub-Alfvénic streaming flow, and fast shocks for super-Alfvénic streaming flow. The quasi-period oscillation of reconnection rates in the decaying phase for super-Alfvénic streaming flow is resulted from the different drifting velocities of the shock and the X point.
Inertial-Range Reconnection in Magnetohydrodynamic Turbulence and in the Solar Wind
Lalescu, Cristian C; Eyink, Gregory L; Drivas, Theodore D; Vishniac, Ethan T; Lazarian, Alexander
2015-01-01
In situ spacecraft data on the solar wind show events identified as magnetic reconnection with outflows and apparent "`$X$-lines" $10^{3-4}$ times ion scales. To understand the role of turbulence at these scales, we make a case study of an inertial-range reconnection event in a magnetohydrodynamic (MHD) simulation. We observe stochastic wandering of field-lines in space, breakdown of standard magnetic flux-freezing due to Richardson dispersion, and a broadened reconnection zone containing many current sheets. The coarse-grain magnetic geometry is like large-scale reconnection in the solar wind, however, with a hyperbolic flux-tube or "$X$-line" extending over integral length-scales.
Effect of magnetic reconnection in stellar plasma
Hammoud, M.; El Eid, M.; Darwish, M.
2017-06-01
An important phenomenon in Astrophysics is the process of magnetic reconnection (MGR), which is envisaged to understand the solar flares, coronal mass ejection, interaction of the solar wind with the Earth’s magnetic field (so called geomagnetic storm) and other phenomena. In addition, it plays a role in the formation of stars. MGR involves topological change of a set of magnetic field lines leading to a new equilibrium configuration of lower magnetic energy. The MGR is basically described in the framework of the Maxwell’s equations linked to Navier-Stockes equations. Nevertheless, many details are still not understood. In this paper, we investigate the MGR process in the framework of the Magnetohydrodynamic (MHD) model of a single conducting fluid using a modern powerful computational tool (OpenFOAM). We will show that the MGR process takes place only if resistivity exists. However, despite the high conductivity of the plasma, resistivity becomes effective in a very thin layer generating sharp gradients of the magnetic field, and thus accelerating the reconnection process. The net effect of MGR is that magnetic energy is converted into thermal and kinetic energies leading to heating and acceleration of charged particles. The Sun’s coronal ejection is an example of the MGR process.
Trigger of Fast Reconnection via Collapsing Current Sheets
Tenerani, A.; Velli, M.; Rappazzo, A. F.; Pucci, F.
2015-12-01
It has been widely believed that reconnection is the underlying mechanism of many explosive processes observed both in astrophysical and laboratory plasmas. However, both the questions of how magnetic reconnection is triggered in high Lundquist (S) and Reynolds (R) number plasmas, and how it can then occur on fast, ideal, time-scales remain open. Indeed, it has been argued that fast reconnection rates could be achieved once kinetic scales are reached, or, alternatively, by the onset of the so-called plasmoid instability within Sweet-Parker current sheets. However, it has been shown recently that a tearing mode instability (the "ideal tearing") can grow on an ideal, i.e., S-independent, timescale once the width a of a current sheet becomes thin enough with respect to its macroscopic length L, a/L ~ S-1/3. This suggests that current sheet thinning down to such a threshold aspect ratio —much larger, for S>>1, than the Sweet-Parker one that scales as a/L ~ S-1/2— might provide the trigger for fast reconnection even within the fluid plasma framework. Here we discuss the transition to fast reconnection by studying with visco-resistive MHD simulations the onset and evolution of the tearing instability within a single collapsing current sheet. We indeed show that the transition to a fast tearing mode instability takes place when an inverse aspect ratio of the order of the threshold a/L ~ S-1/3 is reached, and that the secondary current sheets forming nonlinearly become the source of a succession of recursive tearing instabilities. The latter is reminiscent of the fractal reconnection model of flares, which we modify in the light of the "ideal tearing" scenario.
Moving grids for magnetic reconnection via Newton-Krylov methods
Yuan, Xuefei
2011-01-01
This paper presents a set of computationally efficient, adaptive grids for magnetic reconnection phenomenon where the current density can develop large gradients in the reconnection region. Four-field extended MagnetoHydroDynamics (MHD) equations with hyperviscosity terms are transformed so that the curvilinear coordinates replace the Cartesian coordinates as the independent variables, and moving grids\\' velocities are also considered in this transformed system as a part of interpolating the physical solutions from the old grid to the new grid as time advances. The curvilinear coordinates derived from the current density through the Monge-Kantorovich (MK) optimization approach help to reduce the resolution requirements during the computation. © 2010 Elsevier B.V. All rights reserved.
Energy release and conversion by reconnection in the magnetotail
Directory of Open Access Journals (Sweden)
J. Birn
2005-11-01
Full Text Available Magnetic reconnection is the crucial process in the release of magnetic energy previously stored in the magnetotail in association with substorms. However, energy transfer and dissipation in the vicinity of the reconnection site is only a minor part of the energy conversion. We discuss the energy release, transport, and conversion based on large-scale resistive MHD simulations of magnetotail dynamics and more localized full particle simulations of reconnection. We address in particular, where the energy is released, how it propagates and where and how it is converted from one form into another. We find that Joule (or ohmic dissipation plays only a minor role in the overall energy transfer. Bulk kinetic energy, although locally significant in the outflow from the reconnection site, plays a more important role as mediator or catalyst in the transfer between magnetic and thermal energy. Generator regions with potential auroral consequences are located primarily off the equatorial plane in the boundary regions of the plasma sheet.
Conditions for substorm onset by the fast reconnection mechanism
Directory of Open Access Journals (Sweden)
M. Ugai
2008-12-01
Full Text Available The fast reconnection mechanism, involving slow shocks and Alfvénic fast plasma jets, is most responsible for the explosive conversion of magnetic energy associated with geomagnetic substorms and solar flares. In this paper, the spontaneous fast reconnection model is applied to well-known phenomena of substorms. When the east-west width of the tail current sheet becomes 3–4 times larger than its north-south thickness, the fast reconnection mechanism can fully be established, which may lead to substorm onset. The resulting Alfvénic jet can exactly explain, both qualitatively and quantitatively, the in-situ satellite observations of the traveling compression regions (TCRs associated with large-scale plasmoids propagating down the tail. Also, the earthward fast reconnection jet causes drastic magnetic field dipolarization, so that the sheet current ahead of the magnetic loop of closed field lines suddenly turns its direction toward the loop footpoint and a large-scale current wedge is formed according to the growth of field-aligned currents. It is demonstrated that an MHD generator arises ahead of the magnetic loop and drives the current wedge to distinctly enhance the current density in a pair of thin layers of the loop footpoint, giving rise to drastic heating in the form of two ribbons.
Ball, David; Özel, Feryal; Psaltis, Dimitrios; Chan, Chi-Kwan; Sironi, Lorenzo
2018-02-01
Non-ideal magnetohydrodynamic (MHD) effects may play a significant role in determining the dynamics, thermal properties, and observational signatures of radiatively inefficient accretion flows onto black holes. In particular, particle acceleration during magnetic reconnection events may influence black hole spectra and flaring properties. We use representative general relativistic magnetohydrodynamic (GRMHD) simulations of black hole accretion flows to identify and explore the structures and properties of current sheets as potential sites of magnetic reconnection. In the case of standard and normal evolution (SANE) disks, we find that in the reconnection sites, the plasma beta ranges from 0.1 to 1000, the magnetization ranges from 10‑4 to 1, and the guide fields are weak compared with the reconnecting fields. In magnetically arrested (MAD) disks, we find typical values for plasma beta from 10‑2 to 103, magnetizations from 10‑3 to 10, and typically stronger guide fields, with strengths comparable to or greater than the reconnecting fields. These are critical parameters that govern the electron energy distribution resulting from magnetic reconnection and can be used in the context of plasma simulations to provide microphysics inputs to global simulations. We also find that ample magnetic energy is available in the reconnection regions to power the fluence of bright X-ray flares observed from the black hole in the center of the Milky Way.
Chiral Exact Relations for Helicities in Hall Magnetohydrodynamic Turbulence
Banerjee, Supratik
2016-01-01
Besides total energy, three-dimensional incompressible Hall magnetohydrodynamics (MHD) possesses two inviscid invariants which are the magnetic helicity and the generalized helicity. New exact relations are derived for homogeneous (non-isotropic) stationary Hall MHD turbulence (and also for its inertialess electron MHD limit) with non-zero helicities and in the asymptotic limit of large Reynolds numbers. The universal laws are written only in terms of mixed second-order structure functions, i.e. the scalar product of two different increments. It provides, therefore, a direct measurement of the dissipation rates for the corresponding invariant flux. This study shows that the generalized helicity cascade is strongly linked to the left polarized fluctuations while the magnetic helicity cascade is linked to the right polarized fluctuations.
Closed cycle MHD power generation experiments in the NASA Lewis facility
Sovie, R. J.; Nichols, L. D.
1974-01-01
Discussion of the performance improvements achieved through some modifications made in the closed cycle MHD facility. These modifications include a redesign of the MHD duct interior, addition of mixing bars, increased electrical isolation, and experimentation with various cesium seed vaporization and injection techniques. Uniform Faraday and Hall voltage profiles were obtained, and the Faraday open circuit voltage varied from 90 to 100% of the ideal uBh.
Magnetic Reconnection and Intermittent Turbulence
Osman, K.; Matthaeus, W. H.; Kiyani, K. H.; Gosling, J. T.; Chapman, S. C.; Hnat, B.; Greco, A.; Servidio, S.; Phan, T. D.; Khotyaintsev, Y. V.
2014-12-01
The relationship between magnetic reconnection and plasma turbulence is investigated using in-situ measurements both in the solar wind and within a high-speed reconnection jet in the terrestrial magnetotail. In the solar wind, reconnection events and current sheets are found for the first time to be concentrated in intervals of intermittent turbulence: within the most non-Gaussian 1% of magnetic field fluctuations, 87-92% of reconnection exhausts and about 9% of current sheets are found. Also, the likelihood that an identified current sheet will also correspond to a reconnection exhaust increases dramatically as the least intermittent fluctuations are removed. Hence, the turbulent solar wind contains a hierarchy of intermittent magnetic field structures that are increasingly linked to current sheets, which in turn are progressively more likely to correspond to sites of magnetic reconnection. In a magnetotail reconnection jet, the work done by electromagnetic fields on the particles, J·E, is found for the first time to have a non-Gaussian heavy tailed probability density function. Furthermore, J·E is non-uniform and concentrated in regions of high electric current density. This suggests magnetic energy is converted to kinetic energy within the reconnection jet in a manner that is intermittent, and could be analogous to fluid-like turbulent phenomenology where dissipation proceeds via coherent structures generated by an intermittent cascade. These results could have far reaching implications for space and astrophysical plasmas where turbulence and magnetic reconnection are ubiquitous.
Does fast magnetic reconnection exist?
Priest, E. R.; Forbes, T. G.
1992-01-01
The main features of the Priest-Forbes (1986) and Priest-Lee (1990) models of magnetic reconnection in astrophysical plasmas are discussed, and the Priest-Lee model is generalized to include inflow pressure gradients and thus different regimes of reconnection. It is shown that different scaling results can be obtained depending on the boundary conditions. These results are compared to the ones observed in the numerical experiments of Biskamp (1986) and Lee and Fu (1986). It is concluded that numerical experiments with suitably designed boundary conditions are likely to exhibit fast reconnection, and that such reconnection is a common process in astrophysical and space plasmas.
Ergun, R. E.; Chen, L.-J.; Wilder, F. D.; Ahmadi, N.; Eriksson, S.; Usanova, M. E.; Goodrich, K. A.; Holmes, J. C.; Sturner, A. P.; Malaspina, D. M.; Newman, D. L.; Torbert, R. B.; Argall, M. R.; Lindqvist, P.-A.; Burch, J. L.; Webster, J. M.; Drake, J. F.; Price, L.; Cassak, P. A.; Swisdak, M.; Shay, M. A.; Graham, D. B.; Strangeway, R. J.; Russell, C. T.; Giles, B. L.; Dorelli, J. C.; Gershman, D.; Avanov, L.; Hesse, M.; Lavraud, B.; Le Contel, O.; Retino, A.; Phan, T. D.; Goldman, M. V.; Stawarz, J. E.; Schwartz, S. J.; Eastwood, J. P.; Hwang, K.-J.; Nakamura, R.; Wang, S.
2017-04-01
Observations of magnetic reconnection at Earth's magnetopause often display asymmetric structures that are accompanied by strong magnetic field (B) fluctuations and large-amplitude parallel electric fields (E||). The B turbulence is most intense at frequencies above the ion cyclotron frequency and below the lower hybrid frequency. The B fluctuations are consistent with a thin, oscillating current sheet that is corrugated along the electron flow direction (along the X line), which is a type of electromagnetic drift wave. Near the X line, electron flow is primarily due to a Hall electric field, which diverts ion flow in asymmetric reconnection and accompanies the instability. Importantly, the drift waves appear to drive strong parallel currents which, in turn, generate large-amplitude ( 100 mV/m) E|| in the form of nonlinear waves and structures. These observations suggest that turbulence may be common in asymmetric reconnection, penetrate into the electron diffusion region, and possibly influence the magnetic reconnection process.
Annular MHD Physics for Turbojet Energy Bypass
Schneider, Steven J.
2011-01-01
The use of annular Hall type MHD generator/accelerator ducts for turbojet energy bypass is evaluated assuming weakly ionized flows obtained from pulsed nanosecond discharges. The equations for a 1-D, axisymmetric MHD generator/accelerator are derived and numerically integrated to determine the generator/accelerator performance characteristics. The concept offers a shockless means of interacting with high speed inlet flows and potentially offers variable inlet geometry performance without the complexity of moving parts simply by varying the generator loading parameter. The cycle analysis conducted iteratively with a spike inlet and turbojet flying at M = 7 at 30 km altitude is estimated to have a positive thrust per unit mass flow of 185 N-s/kg. The turbojet allowable combustor temperature is set at an aggressive 2200 deg K. The annular MHD Hall generator/accelerator is L = 3 m in length with a B(sub r) = 5 Tesla magnetic field and a conductivity of sigma = 5 mho/m for the generator and sigma= 1.0 mho/m for the accelerator. The calculated isentropic efficiency for the generator is eta(sub sg) = 84 percent at an enthalpy extraction ratio, eta(sub Ng) = 0.63. The calculated isentropic efficiency for the accelerator is eta(sub sa) = 81 percent at an enthalpy addition ratio, eta(sub Na) = 0.62. An assessment of the ionization fraction necessary to achieve a conductivity of sigma = 1.0 mho/m is n(sub e)/n = 1.90 X 10(exp -6), and for sigma = 5.0 mho/m is n(sub e)/n = 9.52 X 10(exp -6).
Exact solutions for reconnective annihilation in magnetic configurations with three sources
Tassi, E.; Titov, V. S.; Hornig, G.
2002-01-01
Exact solutions of the steady resistive three dimensional (3D) magnetohydrodynamics (MHD) equations in cylindrical coordinates for an incompressible plasma are presented. The solutions are translationally invariant along one direction and in general they describe a process of reconnective annihilation in a curved current layer with non vanishing magnetic field. In the derivation of the solutions the ideal case with vanishing resistivity and electric field is considered first and then generali...
Wendel, Deirdre E.; Reiff, Patricia H.; Goldstein, Melvyn L.
2010-01-01
We simulate a northward IMF cusp reconnection event at the magnetopause using the OpenGGCM resistive MHD code. The ACE input data, solar wind parameters, and dipole tilt belong to a 2002 reconnection event observed by IMAGE and Cluster. Based on a fully three-dimensional skeleton separators, nulls, and parallel electric fields, we show magnetic draping, convection, ionospheric field line tying play a role in producing a series of locally reconnecting nulls with flux ropes. The flux ropes in the cusp along the global separator line of symmetry. In 2D projection, the flux ropes the appearance of a tearing mode with a series of 'x's' and 'o's' but bearing a kind of 'guide field' that exists only within the magnetopause. The reconnecting field lines in the string of ropes involve IMF and both open and closed Earth magnetic field lines. The observed magnetic geometry reproduces the findings of a superposed epoch impact parameter study derived from the Cluster magnetometer data for the same event. The observed geometry has repercussions for spacecraft observations of cusp reconnection and for the imposed boundary conditions reconnection simulations.
Reconnections of Wave Vortex Lines
Berry, M. V.; Dennis, M. R.
2012-01-01
When wave vortices, that is nodal lines of a complex scalar wavefunction in space, approach transversely, their typical crossing and reconnection is a two-stage process incorporating two well-understood elementary events in which locally coplanar hyperbolas switch branches. The explicit description of this reconnection is a pedagogically useful…
Design Study: Rocket Based MHD Generator
1997-01-01
This report addresses the technical feasibility and design of a rocket based MHD generator using a sub-scale LOx/RP rocket motor. The design study was constrained by assuming the generator must function within the performance and structural limits of an existing magnet and by assuming realistic limits on (1) the axial electric field, (2) the Hall parameter, (3) current density, and (4) heat flux (given the criteria of heat sink operation). The major results of the work are summarized as follows: (1) A Faraday type of generator with rectangular cross section is designed to operate with a combustor pressure of 300 psi. Based on a magnetic field strength of 1.5 Tesla, the electrical power output from this generator is estimated to be 54.2 KW with potassium seed (weight fraction 3.74%) and 92 KW with cesium seed (weight fraction 9.66%). The former corresponds to a enthalpy extraction ratio of 2.36% while that for the latter is 4.16%; (2) A conceptual design of the Faraday MHD channel is proposed, based on a maximum operating time of 10 to 15 seconds. This concept utilizes a phenolic back wall for inserting the electrodes and inter-electrode insulators. Copper electrode and aluminum oxide insulator are suggested for this channel; and (3) A testing configuration for the sub-scale rocket based MHD system is proposed. An estimate of performance of an ideal rocket based MHD accelerator is performed. With a current density constraint of 5 Amps/cm(exp 2) and a conductivity of 30 Siemens/m, the push power density can be 250, 431, and 750 MW/m(sup 3) when the induced voltage uB have values of 5, 10, and 15 KV/m, respectively.
Turbulent reconnection and its implications.
Lazarian, A; Eyink, G; Vishniac, E; Kowal, G
2015-05-13
Magnetic reconnection is a process of magnetic field topology change, which is one of the most fundamental processes happening in magnetized plasmas. In most astrophysical environments, the Reynolds numbers corresponding to plasma flows are large and therefore the transition to turbulence is inevitable. This turbulence, which can be pre-existing or driven by magnetic reconnection itself, must be taken into account for any theory of magnetic reconnection that attempts to describe the process in the aforementioned environments. This necessity is obvious as three-dimensional high-resolution numerical simulations show the transition to the turbulence state of initially laminar reconnecting magnetic fields. We discuss ideas of how turbulence can modify reconnection with the focus on the Lazarian & Vishniac (Lazarian & Vishniac 1999 Astrophys. J. 517, 700-718 (doi:10.1086/307233)) reconnection model. We present numerical evidence supporting the model and demonstrate that it is closely connected to the experimentally proven concept of Richardson dispersion/diffusion as well as to more recent advances in understanding of the Lagrangian dynamics of magnetized fluids. We point out that the generalized Ohm's law that accounts for turbulent motion predicts the subdominance of the microphysical plasma effects for reconnection for realistically turbulent media. We show that one of the most dramatic consequences of turbulence is the violation of the generally accepted notion of magnetic flux freezing. This notion is a cornerstone of most theories dealing with magnetized plasmas, and therefore its change induces fundamental shifts in accepted paradigms, for instance, turbulent reconnection entails reconnection diffusion process that is essential for understanding star formation. We argue that at sufficiently high Reynolds numbers the process of tearing reconnection should transfer to turbulent reconnection. We discuss flares that are predicted by turbulent reconnection and relate
Nagata, Masayoshi; Fujita, Akihiro; Ibragi, Youhei; Matsui, Takahiro; Kikuchi, Yusuke; Fukumoto, Naoyuki; Kanki, Takashi
2017-10-01
Plasmoid magnetic reconnections have been examined in the Coaxial Helicity Injection (CHI) experiments on HIST. Magnetic reconnections are required for the formation of closed flux surfaces in the transient-CHI start-up plasmas. So far, we have observed formation of plasmoids inside an elongated current layer to create the multiple X-points during the CHI process. According to the MHD simulation by F. Ebrahimi and R. Raman, the reconnection rate based on the plasmoid instability is faster than that by Sweet-Parker (S-P) model. To estimate the Lundquist number S number, we have measured spatial profiles of magnetic field strength, electron density and temperature in the current layer. In this meeting, we will present the effect of the guide (toroidal) magnetic field and mass (H, D and He) on the current layer thickness and reconnection rates of plasmoids. It is found that behavior of plasmoids is synchronized with Ion Doppler temperature, leading to ion heating.
EVIDENCE OF POSTERUPTION RECONNECTION ASSOCIATED WITH CORONAL MASS EJECTIONS IN THE SOLAR WIND
Riley, Pete; Linker, J. A.; Mikic, Z.; Odstracil, D.; Pizzo, V. J.; Webb, D. F.
2002-01-01
Using a coupled 2.5-dimensional, time-dependent MHD model of the solar corona and inner heliosphere, we have simulated the eruption and evolution of a coronal mass ejection containing a flux rope all the way from the Sun to 1 AU. Although idealized, we find that the simulation reproduces many generic features of magnetic clouds. In this paper we report on a new, intriguing aspect of these comparisons. Specifically, the results suggest that jetted outflow, driven by posteruptive reconnection underneath the flux rope, occurs and may remain intact out to 1 AU and beyond. We present an example of a magnetic cloud with precisely these signatures and show that the velocity perturbations are consistent with reconnection outflow. We suggest that other velocity and/or density enhancements observed trailing magnetic clouds may be signatures of such reconnection and, in some cases, may not be associated with prominence material, as has previously been suggested.
On the ions acceleration via collisionless magnetic reconnection in laboratory plasmas
Cazzola, Emanuele; Markidis, Stefano; Lapenta, Giovanni
2016-01-01
This work presents an analysis of the ion outflow from magnetic reconnection throughout fully kinetic simulations with typical laboratory plasmas values. A symmetric initial configuration for the density and magnetic field is considered across the current sheet. After analyzing the behavior of a set of nine simulations with a reduced mass ratio and with a permuted value of three initial electron temperature and magnetic field intensity, the best ion acceleration scenario is further studied with a realistic mass ratio in terms of the ion dynamics and energy budget. Interestingly, a series of shock waves structures are observed in the outflow, resembling the shock discontinuities found in recent magnetohydrodynamic (MHD) simulations. An analysis of the ion outflow at several distances from the reconnection point is presented, in light of possible laboratory applications. The analysis suggests that magnetic reconnection could be used as a tool for plasma acceleration, with applications ranging from electric prop...
Exploring the statistics of magnetic reconnection X-points in kinetic particle-in-cell turbulence
Haggerty, C. C.; Parashar, T. N.; Matthaeus, W. H.; Shay, M. A.; Yang, Y.; Wan, M.; Wu, P.; Servidio, S.
2017-10-01
Magnetic reconnection is a ubiquitous phenomenon in turbulent plasmas. It is an important part of the turbulent dynamics and heating of space and astrophysical plasmas. We examine the statistics of magnetic reconnection using a quantitative local analysis of the magnetic vector potential, previously used in magnetohydrodynamics simulations, and now employed to fully kinetic particle-in-cell (PIC) simulations. Different ways of reducing the particle noise for analysis purposes, including multiple smoothing techniques, are explored. We find that a Fourier filter applied at the Debye scale is an optimal choice for analyzing PIC data. Finally, we find a broader distribution of normalized reconnection rates compared to the MHD limit with rates as large as 0.5 but with an average of approximately 0.1.
Variational Integration for Ideal MHD with Built-in Advection Equations
Energy Technology Data Exchange (ETDEWEB)
Zhou, Yao [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Qin, Hong [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Burby, J. W. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Bhattacharjee, A. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
2014-08-05
Newcomb's Lagrangian for ideal MHD in Lagrangian labeling is discretized using discrete exterior calculus. Variational integrators for ideal MHD are derived thereafter. Besides being symplectic and momentum preserving, the schemes inherit built-in advection equations from Newcomb's formulation, and therefore avoid solving them and the accompanying error and dissipation. We implement the method in 2D and show that numerical reconnection does not take place when singular current sheets are present. We then apply it to studying the dynamics of the ideal coalescence instability with multiple islands. The relaxed equilibrium state with embedded current sheets is obtained numerically.
Nonlinear Modeling of Forced Magnetic Reconnection with Transient Perturbations
Beidler, Matthew T.; Callen, James D.; Hegna, Chris C.; Sovinec, Carl R.
2017-10-01
Externally applied 3D magnetic fields in tokamaks can penetrate into the plasma and lead to forced magnetic reconnection, and hence magnetic islands, on resonant surfaces. Analytic theory has been reasonably successful in describing many aspects of this paradigm with regard to describing the time asymptotic-steady state. However, understanding the nonlinear evolution into a low-slip, field-penetrated state, especially how MHD events such as sawteeth and ELMs precipitate this transition, is in its early development. We present nonlinear computations employing the extended-MHD code NIMROD, building on previous work by incorporating a temporally varying external perturbation as a simple model for an MHD event that produces resonant magnetic signals. A parametric series of proof-of-principle computations and accompanying analytical theory characterize the transition into a mode-locked state with an emphasis on detailing the temporal evolution properties. Supported by DOE OFES Grants DE-FG02-92ER54139, DE-FG02-86ER53218, and the U.S. DOE FES Postdoctoral Research program administered by ORISE and managed by ORAU under DOE contract DE-SC0014664.
Colour reconnection in WW events
D'Hondt, J
2003-01-01
Preliminary results are presented for a measurement of the kappa parameter used in the JETSET SK-I model of colour reconnection in W /sup +/W/sup -/ to qq'qq' events at LEP2. An update on the investigation of colour reconnection effects in hadronic decays of W pairs, using the particle flow in DELPHI is presented. A second method is based on the observation that two different m/sub W/ estimators have different sensitivity to the parametrised colour reconnection effect. Hence the difference between them is an observable with information content about kappa. (6 refs).
Treumann, R. A.; Baumjohann, W.
2015-10-01
The present review concerns the relevance of collisionless reconnection in the astrophysical context. Emphasis is put on recent developments in theory obtained from collisionless numerical simulations in two and three dimensions. It is stressed that magnetic reconnection is a universal process of particular importance under collisionless conditions, when both collisional and anomalous dissipation are irrelevant. While collisional (resistive) reconnection is a slow, diffusive process, collisionless reconnection is spontaneous. On any astrophysical time scale, it is explosive. It sets on when electric current widths become comparable to the leptonic inertial length in the so-called lepton (electron/positron) "diffusion region", where leptons de-magnetise. Here, the magnetic field contacts its oppositely directed partner and annihilates. Spontaneous reconnection breaks the original magnetic symmetry, violently releases the stored free energy of the electric current, and causes plasma heating and particle acceleration. Ultimately, the released energy is provided by mechanical motion of either the two colliding magnetised plasmas that generate the current sheet or the internal turbulence cascading down to lepton-scale current filaments. Spontaneous reconnection in such extended current sheets that separate two colliding plasmas results in the generation of many reconnection sites (tearing modes) distributed over the current surface, each consisting of lepton exhausts and jets which are separated by plasmoids. Volume-filling factors of reconnection sites are estimated to be as large as {sheet. Lepton currents inside exhausts may be strong enough to excite Buneman and, for large thermal pressure anisotropy, also Weibel instabilities. They bifurcate and break off into many small-scale current filaments and magnetic flux ropes exhibiting turbulent magnetic power spectra of very flat power-law shape W_b∝ k^{-α } in wavenumber k with power becoming as low as α ≈ 2
Petrick, Michael; Pierson, Edward S.; Schreiner, Felix
1980-01-01
According to the present invention, coal combustion gas is the primary working fluid and copper or a copper alloy is the electrodynamic fluid in the MHD generator, thereby eliminating the heat exchangers between the combustor and the liquid-metal MHD working fluids, allowing the use of a conventional coalfired steam bottoming plant, and making the plant simpler, more efficient and cheaper. In operation, the gas and liquid are combined in a mixer and the resulting two-phase mixture enters the MHD generator. The MHD generator acts as a turbine and electric generator in one unit wherein the gas expands, drives the liquid across the magnetic field and thus generates electrical power. The gas and liquid are separated, and the available energy in the gas is recovered before the gas is exhausted to the atmosphere. Where the combustion gas contains sulfur, oxygen is bubbled through a side loop to remove sulfur therefrom as a concentrated stream of sulfur dioxide. The combustor is operated substoichiometrically to control the oxide level in the copper.
Steady convection in MHD Benard problem with Hall effects
Directory of Open Access Journals (Sweden)
Lidia Palese
2017-10-01
Full Text Available In this paper we apply some variants of the classical energy method to study the nonlinear Lyapunov stability of the thermodiffusive equilibrium for a viscous thermoelectroconducting fully ionized fluid in a horizontal layer heated from below. The classical L^2 norm, too weak to highlight some stabilizing or unstabilizing effects, can be used to dominate the nonlinear terms. A more fine Lyapunov function is obtained by reformulating the initial perturbation evolution problem, in terms of some independent scalar fields. In such a way, if the principle of exchange of stabilities holds, we obtain the coincidence of linear and nonlinear stability bounds.
Experimental aspects of colour reconnection
Watson, M F
1997-01-01
This report summarises experimental aspects of the phenomena of colour reconnection in W+W- production, concentrating on charged multiplicity and event shapes, which were carried out as part of the Phenomenology Workshop on LEP2 Physics, Oxford, Physics Department and Keble College, 14-18 April, 1997. The work includes new estimates of the systematic uncertainty which may be attributed to colour reconnection effects in experimental measurements of Mw.
Quasi-separatrix layers and three-dimensional reconnection diagnostics for line-tied tearing modes
Richardson, A. S.; Finn, J. M.
2012-05-01
In three-dimensional magnetic configurations for a plasma in which no closed field line or magnetic null exists, no magnetic reconnection can occur, by the strictest definition of reconnection. A finitely long pinch with line-tied boundary conditions, in which all the magnetic field lines start at one end of the system and proceed to the opposite end, is an example of such a system. Nevertheless, for a long system of this type, the physical behavior in resistive magnetohydrodynamics (MHD) essentially involves reconnection. This has been explained in terms comparing the geometric and tearing widths [1,2]. The concept of a quasi-separatrix layer [3,4] was developed for such systems. In this paper we study a model for a line-tied system in which the corresponding periodic system has an unstable tearing mode. We analyze this system in terms of two magnetic field line diagnostics, the squashing factor[5-7] and the electrostatic potential difference [8,9] which has been used in kinematic reconnection studies. We discuss the physical and geometric significance of these two diagnostics and compare them in the context of discerning tearing-like (reconnection-like) behavior in line-tied modes.
Proceedings of the workshop on nonlinear MHD and extended MHD
Energy Technology Data Exchange (ETDEWEB)
NONE
1998-12-01
Nonlinear MHD simulations have proven their value in interpreting experimental results over the years. As magnetic fusion experiments reach higher performance regimes, more sophisticated experimental diagnostics coupled with ever expanding computer capabilities have increased both the need for and the feasibility of nonlinear global simulations using models more realistic than regular ideal and resistive MHD. Such extended-MHD nonlinear simulations have already begun to produce useful results. These studies are expected to lead to ever more comprehensive simulation models in the future and to play a vital role in fully understanding fusion plasmas. Topics include the following: (1) current state of nonlinear MHD and extended-MHD simulations; (2) comparisons to experimental data; (3) discussions between experimentalists and theorists; (4) /equations for extended-MHD models, kinetic-based closures; and (5) paths toward more comprehensive simulation models, etc. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.
Rol del efecto Hall en la reconexión magnética: aplicación a la magnetopausa terreste
Morales, L. F.; Dasso, S.; Gómez, D. O.
The Earth's magnetosphere is generated by the interaction of the solar wind with the Earth's magnetic field. The structure that separates the solar wind from the magnetosphere is called magnetopause. Magnetic reconnection is believed to be the dominant process by which solar wind particles penetrate into the magnetosphere. These events give rise to a variety of different fenomena such as Geomagnetic storms and aurorae. There are several theorical models of magnetic reconnection within the magnetohydrodynamic framework. Nevertheless, in collisionless fluids like magnetospheric plasma, the Hall effect may be important and may sensibly change the reconnection rate. The present work is focused on the study of Hall magnetic reconnection using a two-and-a-half configuration. Analytical solutions are obtained for steady state and the unsteady ones are studied by means of Hall magnetohydrodynamic simulations.
Particle Acceleration by MHD Turbulence
Cho, Jungyeon; Lazarian, A.
2005-01-01
Recent advances in understanding of magnetohydrodynamic (MHD) turbulence call for revisions in the picture of particle acceleration. We make use of the recently established scaling of slow and fast MHD modes in strong and weak MHD turbulence to provide a systematic study of particle acceleration in magnetic pressure (low-$\\beta$) and gaseous pressure (high-$\\beta$) dominated plasmas. We consider the acceleration by large scale compressions in both slow and fast particle diffusion limits. We c...
Magnus: A New Resistive MHD Code with Heat Flow Terms
Navarro, Anamaría; Lora-Clavijo, F. D.; González, Guillermo A.
2017-07-01
We present a new magnetohydrodynamic (MHD) code for the simulation of wave propagation in the solar atmosphere, under the effects of electrical resistivity—but not dominant—and heat transference in a uniform 3D grid. The code is based on the finite-volume method combined with the HLLE and HLLC approximate Riemann solvers, which use different slope limiters like MINMOD, MC, and WENO5. In order to control the growth of the divergence of the magnetic field, due to numerical errors, we apply the Flux Constrained Transport method, which is described in detail to understand how the resistive terms are included in the algorithm. In our results, it is verified that this method preserves the divergence of the magnetic fields within the machine round-off error (˜ 1× {10}-12). For the validation of the accuracy and efficiency of the schemes implemented in the code, we present some numerical tests in 1D and 2D for the ideal MHD. Later, we show one test for the resistivity in a magnetic reconnection process and one for the thermal conduction, where the temperature is advected by the magnetic field lines. Moreover, we display two numerical problems associated with the MHD wave propagation. The first one corresponds to a 3D evolution of a vertical velocity pulse at the photosphere-transition-corona region, while the second one consists of a 2D simulation of a transverse velocity pulse in a coronal loop.
Multi-Hierarchy Simulation for Magnetic Reconnection - 2D Hierarchy-Interlocking Model
Usami, Shunsuke; Horiuchi, Ritoku; Ohtani, Hiroaki; den, Mitsue
2013-10-01
Toward the complete understanding of magnetic reconnection as a multi-hierarchy phenomenon, we have developed a multi-hierarchy simulation model which solves macro- and microscopic physics simultaneously and self-consistently. For this purpose, we pay attention to a hierarchical structure of magnetic reconnection phenomena, i.e. kinetic effects play crucial roles in the vicinity of the X point, while MHD model gives a good approximation as being away from the X point. Based on this feature, we divide a real space into macro- and microscopic domains and solve the physics in the macro- and microscopic domains with use of the MHD and PIC algorithms, respectively. In 2009, with the hierarchy-interlocking model in the upstream direction, we had successfully performed multi-hierarchy simulations of magnetic reconnection. In order to apply our model to much wider systems, we have extended it to a 2D hierarchy-interlocking one, namely an interlocking in the upstream and downstream directions. In our presentation, we will show simulation results with 2D hierarchy-interlocking models and talk about the future prospect of our multi-hierarchy model. This work was supported by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (Grant No. 23340182, No. 24740374).
Electron Jet of Asymmetric Reconnection
Khotyaintsev, Yu. V.; Graham, D. B.; Norgren, C.; Eriksson, E.; Li, W.; Johlander, A.; Vaivads, A.; Andre, M.; Pritchett, P. L.; Retino, A.;
2016-01-01
We present Magnetospheric Multiscale observations of an electron-scale current sheet and electron outflow jet for asymmetric reconnection with guide field at the subsolar magnetopause. The electron jet observed within the reconnection region has an electron Mach number of 0.35 and is associated with electron agyrotropy. The jet is unstable to an electrostatic instability which generates intense waves with E(sub parallel lines) amplitudes reaching up to 300 mV/m and potentials up to 20% of the electron thermal energy. We see evidence of interaction between the waves and the electron beam, leading to quick thermalization of the beam and stabilization of the instability. The wave phase speed is comparable to the ion thermal speed, suggesting that the instability is of Buneman type, and therefore introduces electron-ion drag and leads to braking of the electron flow. Our observations demonstrate that electrostatic turbulence plays an important role in the electron-scale physics of asymmetric reconnection.
MHD turbulence and distributed chaos
Bershadskii, A
2016-01-01
It is shown, using results of recent direct numerical simulations, that spectral properties of distributed chaos in MHD turbulence with zero mean magnetic field are similar to those of hydrodynamic turbulence. An exception is MHD spontaneous breaking of space translational symmetry, when the stretched exponential spectrum $\\exp(-k/k_{\\beta})^{\\beta}$ has $\\beta=4/7$.
Beresnyak, Andrey
2013-01-01
Astrophysical fluids are conductive, magnetized and turbulent. This entails a variety of phenomena, two most basic of which is the dynamo and the energy cascade. Very well known empirically in hydrodynamics so called "zeroth law of turbulence" states that even if viscosity goes to zero, energy dissipation does not, but goes to a constant. It turns out that in MHD not only this still holds true, but another basic law, which I call "zeroth law of dynamo", is valid, namely that if Reynolds numbers are sufficiently high and magnetic energy is low, the latter will grow at a constant rate, which is a fraction of the total dissipation rate. Another point of interest for an astrophysicist is the properties of MHD cascade in the inertial range. I will argue that both theory and numerics favor Kolmogorov -5/3 slope and not -3/2 slope that was reported earlier. The most challenging problem is so-called imbalanced, or cross-helical case which appear whenever there is a localized source of perturbations, such as the Sun for the solar wind turbulence or the central engine in AGN jets. The standard Goldreich-Sridhar model does not apply in this case and it eluded theoretical description for a long time. The keys to understand energy cascades in the imbalanced case are the anisotropies of the Elsasser fields which turn out to be different. I will show the results of one of the highest resolution simulations ever performed, which were very helpful in discriminating between various viable models of MHD turbulence.
Translationally symmetric extended MHD via Hamiltonian reduction: Energy-Casimir equilibria
Kaltsas, D. A.; Throumoulopoulos, G. N.; Morrison, P. J.
2017-09-01
The Hamiltonian structure of ideal translationally symmetric extended MHD (XMHD) is obtained by employing a method of Hamiltonian reduction on the three-dimensional noncanonical Poisson bracket of XMHD. The existence of the continuous spatial translation symmetry allows the introduction of Clebsch-like forms for the magnetic and velocity fields. Upon employing the chain rule for functional derivatives, the 3D Poisson bracket is reduced to its symmetric counterpart. The sets of symmetric Hall, Inertial, and extended MHD Casimir invariants are identified, and used to obtain energy-Casimir variational principles for generalized XMHD equilibrium equations with arbitrary macroscopic flows. The obtained set of generalized equations is cast into Grad-Shafranov-Bernoulli (GSB) type, and special cases are investigated: static plasmas, equilibria with longitudinal flows only, and Hall MHD equilibria, where the electron inertia is neglected. The barotropic Hall MHD equilibrium equations are derived as a limiting case of the XMHD GSB system, and a numerically computed equilibrium configuration is presented that shows the separation of ion-flow from electro-magnetic surfaces.
Energy Conservation and Conversion in NIMROD Computations of Magnetic Reconnection
Maddox, J. A.; Sovinec, C. R.
2017-10-01
Previous work modeling magnetic relaxation during non-inductive start-up at the Pegasus spherical tokamak indicates an order of magnitude gap between measured experimental temperature and simulated temperature in NIMROD. Potential causes of the plasma temperature gap include: insufficient transport modeling, too low modeled injector power input, and numerical loss of energy, as energy is not algorithmically conserved in NIMROD simulations. Simple 2D nonlinear MHD simulations explore numerical energy conservation discrepancies in NIMROD because understanding numerical loss of energy is fundamental to addressing the physical problems of the other potential causes of energy loss. Evolution of these configurations induces magnetic reconnection, which transfers magnetic energy to heat and kinetic energy. The kinetic energy is eventually damped so, magnetic energy loss must correspond to an increase in internal energy. Results in the 2D geometries indicate that numerical energy loss during reconnection depends on the temporal resolution of the dynamics. Work support from U.S. Department of Energy through a subcontract from the Plasma Science and Innovation Center.
Formation of fast shocks by magnetic reconnection in the solar corona
Hsieh, M. H.; Tsai, C. L.; Ma, Z. W.; Lee, L. C.
2009-09-01
Reconnections of magnetic fields over the solar surface are expected to generate abundant magnetohydrodynamic (MHD) discontinuities and shocks, including slow shocks and rotational discontinuities. However, the generation of fast shocks by magnetic reconnection process is relatively not well studied. In this paper, magnetic reconnection in a current sheet is studied based on two-dimensional resistive MHD numerical simulations. Magnetic reconnections in the current sheet lead to the formation of plasma jets and plasma bulges. It is further found that the plasma bulges, the leading part of plasma jets, in turn lead to the generation of fast shocks on flanks of the bulges. The simulation results show that during the magnetic reconnection process, the plasma forms a series of structures: plasma jets, plasma bulges, and fast shocks. As time increases, the bulges spread out along the current sheet (+/-z direction) and the fast shocks move just ahead of the bulges. The effects of initial parameters ρs/ρm, β∞, and trec on the fast shock generation are also examined, where ρs/ρm is the ratio of plasma densities on two sides of the initial current sheet, β∞=P∞/(B∞2/2μ0), P∞ is the plasma pressure and B∞ is the magnetic field magnitude far from the current sheet, and trec is the reconnection duration. In the asymmetric case with ρs/ρm=2, β∞=0.01 and trec=1000, the maximum Alfvén Mach number of fast shocks (MA1 max) is MA1 max≅1.1, where MA1=Vn1/VA1, and Vn1 and VA1 are, respectively, the normal upstream fluid velocity and the upstream Alfvén speed in the fast shocks frame. As the density ratio ρs/ρm (=1-8) and plasma beta β∞ (=0.0001-1) increase, MA1 max varies slightly. For the case with a large plasma beta β∞ (=5), the fast shock is very weak. As the reconnection duration trec increases, the bulges lead to generation of fast shocks with a higher MA1 max. The present results can be applied to the mechanism of coronal heating by fast shocks.
Energy budget and mechanisms of cold ion heating in asymmetric magnetic reconnection
Toledo-Redondo, Sergio; André, Mats; Khotyaintsev, Yuri V.; Lavraud, Benoit; Vaivads, Andris; Graham, Daniel B.; Li, Wenya; Perrone, Denise; Fuselier, Stephen; Gershman, Daniel J.; Aunai, Nicolas; Dargent, Jérémy; Giles, Barbara; Le Contel, Olivier; Lindqvist, Per-Arne; Ergun, Robert E.; Russell, Christopher T.; Burch, James L.
2017-09-01
Cold ions (few tens of eV) of ionospheric origin are commonly observed on the magnetospheric side of the Earth's dayside magnetopause. As a result, they can participate in magnetic reconnection, changing locally the reconnection rate and being accelerated and heated. We present four events where cold ion heating was observed by the Magnetospheric Multiscale mission, associated with the magnetospheric Hall E field region of magnetic reconnection. For two of the events the cold ion density was small compared to the magnetosheath density, and the cold ions were heated roughly to the same temperature as magnetosheath ions inside the exhaust. On the other hand, for the other two events the cold ion density was comparable to the magnetosheath density and the cold ion heating observed was significantly smaller. Magnetic reconnection converts magnetic energy into particle energy, and ion heating is known to dominate the energy partition. We find that at least 10-25% of the energy spent by reconnection into ion heating went into magnetospheric cold ion heating. The total energy budget for cold ions may be even higher when properly accounting for the heavier species, namely helium and oxygen. Large E field fluctuations are observed in this cold ion heating region, i.e., gradients and waves, that are likely the source of particle energization.
Directory of Open Access Journals (Sweden)
M. Schüssler
Full Text Available Two aspects of solar MHD are discussed in relation to the work of the MHD simulation group at KIS. Photospheric magneto-convection, the nonlinear interaction of magnetic field and convection in a strongly stratified, radiating fluid, is a key process of general astrophysical relevance. Comprehensive numerical simulations including radiative transfer have significantly improved our understanding of the processes and have become an important tool for the interpretation of observational data. Examples of field intensification in the solar photosphere ('convective collapse' are shown. The second line of research is concerned with the dynamics of flux tubes in the convection zone, which has far-reaching implications for our understanding of the solar dynamo. Simulations indicate that the field strength in the region where the flux is stored before erupting to form sunspot groups is of the order of 10^{5} G, an order of magnitude larger than previous estimates based on equipartition with the kinetic energy of convective flows.
Key words. Solar physics · astrophysics and astronomy (photosphere and chromosphere; stellar interiors and dynamo theory; numerical simulation studies.
Formation and Reconnection of Three-Dimensional Current Sheets in the Solar Corona
Edmondson, J. K.; Antiochos, S. K.; DeVore, C. R.; Zurbuchen, T. H.
2010-01-01
Current-sheet formation and magnetic reconnection are believed to be the basic physical processes responsible for much of the activity observed in astrophysical plasmas, such as the Sun s corona. We investigate these processes for a magnetic configuration consisting of a uniform background field and an embedded line dipole, a topology that is expected to be ubiquitous in the corona. This magnetic system is driven by a uniform horizontal flow applied at the line-tied photosphere. Although both the initial field and the driver are translationally symmetric, the resulting evolution is calculated using a fully three-dimensional magnetohydrodynamic (3D MHD) simulation with adaptive mesh refinement that resolves the current sheet and reconnection dynamics in detail. The advantage of our approach is that it allows us to apply directly the vast body of knowledge gained from the many studies of 2D reconnection to the fully 3D case. We find that a current sheet forms in close analogy to the classic Syrovatskii 2D mechanism, but the resulting evolution is different than expected. The current sheet is globally stable, showing no evidence for a disruption or a secondary instability even for aspect ratios as high as 80:1. The global evolution generally follows the standard Sweet- Parker 2D reconnection model except for an accelerated reconnection rate at a very thin current sheet, due to the tearing instability and the formation of magnetic islands. An interesting conclusion is that despite the formation of fully 3D structures at small scales, the system remains close to 2D at global scales. We discuss the implications of our results for observations of the solar corona. Subject Headings: Sun: corona Sun: magnetic fields Sun: reconnection
Abreu, P
2002-01-01
The preliminary results on the search of colour reconnection effects (CR) from the four experiments at LEP, ALEPH, DELPHI, L3 and OPAL, are reviewed. Extreme models are excluded by studies of standard variables, and on going studies of a method first suggested by L3, the particle flow method (D. Duchesneau, (2001)), are yet inconclusive. (22 refs).
Adding Drift Kinetics to a Global MHD Code
Lyon, J.; Merkin, V. G.; Zhang, B.; Ouellette, J.
2015-12-01
Global MHD models have generally been successful in describing thebehavior of the magnetosphere at large and meso-scales. An exceptionis the inner magnetosphere where energy dependent particle drifts areessential in the dynamics and evolution of the ring current. Even inthe tail particle drifts are a significant perturbation on the MHDbehavior of the plasma. The most common drift addition to MHD has beeninclusion of the Hall term in Faraday's Law. There have been attemptsin the space physics context to include gradient and curvature driftswithin a single fluid MHD picture. These have not been terriblysuccessful because the use of a single, Maxwellian distribution doesnot capture the energy dependent nature of the drifts. The advent ofmulti-fluid MHD codes leads to a reconsideration of this problem. TheVlasov equation can be used to define individual ``species'' whichcover a specific energy range. Each fluid can then be treated ashaving a separate evolution. We take the approach of the RiceConvection Model (RCM) that each energy channel can be described by adistribution that is essentially isotropic in the guiding centerpicture. In the local picture, this gives rise to drifts that can bedescribed in terms of the energy dependent inertial and diamagneticdrifts. By extending the MHD equations with these drifts we can get asystem which reduces to the RCM approach in the slow-flow innermagnetosphere but is not restricted to cases where the flow speed issmall. The restriction is that the equations can be expanded in theratio of the Larmor radius to the gradient scale lengths. At scalesapproaching di, the assumption of gyrotropic (or isotropic)distributions break down. In addition to the drifts, the formalism canalso be used to include finite Larmor radius effects on the pressuretensor (gyro-viscosity). We present some initial calculations with this method.
Kim, Bom Soo
2017-01-01
We discuss the contribution of magnetic Skyrmions to the Hall viscosity and propose a simple way to identify it in experiments. The topological Skyrmion charge density has a distinct signature in the electric Hall conductivity that is identified in existing experimental data. In an electrically neutral system, the Skyrmion charge density is directly related to the thermal Hall conductivity. These results are direct consequences of the field theory Ward identities, which relate various physica...
Secondary Instabilities in 3-D Magnetic Reconnection under a Strong Guide Field
Wang, Xueyi; Lin, Yu; Chen, Liu
2017-10-01
3-D magnetic reconnection is investigated using the gyrokinetic electron and fully-kinetic ion (GeFi) particle simulation model. The simulation is carried out for a force free current sheet with a strong guide field BG as occurring in solar and laboratory plasmas. It is found that secondary instabilities are excited in the separatrix region of the primary reconnection due to the 3-D effects associated with the finite kz, where kz is the wave number along the guide field direction. The instabilities are demonstrated as being of the MHD kink type, which lead to electron heating and acceleration in the parallel direction. The dependence of the growth rate of the secondary instabilities on the electron-ion resistivity, the ion-to-electron mass ratio mi /me , and the half-width of the current sheet are also investigated.
Energy Technology Data Exchange (ETDEWEB)
Santos-Lima, R.; De Gouveia Dal Pino, E. M. [Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo, R. do Matao, 1226, Sao Paulo, SP 05508-090 (Brazil); Lazarian, A. [Department of Astronomy, University of Wisconsin, Madison, WI 53706 (United States)
2012-03-01
The formation of protostellar disks out of molecular cloud cores is still not fully understood. Under ideal MHD conditions, the removal of angular momentum from the disk progenitor by the typically embedded magnetic field may prevent the formation of a rotationally supported disk during the main protostellar accretion phase of low-mass stars. This has been known as the magnetic braking problem and the most investigated mechanism to alleviate this problem and help remove the excess of magnetic flux during the star formation process, the so-called ambipolar diffusion (AD), has been shown to be not sufficient to weaken the magnetic braking at least at this stage of the disk formation. In this work, motivated by recent progress in the understanding of magnetic reconnection in turbulent environments, we appeal to the diffusion of magnetic field mediated by magnetic reconnection as an alternative mechanism for removing magnetic flux. We investigate numerically this mechanism during the later phases of the protostellar disk formation and show its high efficiency. By means of fully three-dimensional MHD simulations, we show that the diffusivity arising from turbulent magnetic reconnection is able to transport magnetic flux to the outskirts of the disk progenitor at timescales compatible with the collapse, allowing the formation of a rotationally supported disk around the protostar of dimensions {approx}100 AU, with a nearly Keplerian profile in the early accretion phase. Since MHD turbulence is expected to be present in protostellar disks, this is a natural mechanism for removing magnetic flux excess and allowing the formation of these disks. This mechanism dismisses the necessity of postulating a hypothetical increase of the ohmic resistivity as discussed in the literature. Together with our earlier work which showed that magnetic flux removal from molecular cloud cores is very efficient, this work calls for reconsidering the relative role of AD in the processes of star
Energy Technology Data Exchange (ETDEWEB)
Bernevig, B.Andrei; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.
2010-01-15
The quantum Hall liquid is a novel state of matter with profound emergent properties such as fractional charge and statistics. Existence of the quantum Hall effect requires breaking of the time reversal symmetry caused by an external magnetic field. In this work, we predict a quantized spin Hall effect in the absence of any magnetic field, where the intrinsic spin Hall conductance is quantized in units of 2 e/4{pi}. The degenerate quantum Landau levels are created by the spin-orbit coupling in conventional semiconductors in the presence of a strain gradient. This new state of matter has many profound correlated properties described by a topological field theory.
Lacey, James J.; Kurtzrock, Roy C.; Bienstock, Daniel
1976-08-24
A hot gaseous fluid of low ash content, suitable for use in open-cycle MHD (magnetohydrodynamic) power generation, is produced by means of a three-stage process comprising (1) partial combustion of a fossil fuel to produce a hot gaseous product comprising CO.sub.2 CO, and H.sub.2 O, (2) reformation of the gaseous product from stage (1) by means of a fluidized char bed, whereby CO.sub.2 and H.sub.2 O are converted to CO and H.sub.2, and (3) combustion of CO and H.sub.2 from stage (2) to produce a low ash-content fluid (flue gas) comprising CO.sub.2 and H.sub.2 O and having a temperature of about 4000.degree. to 5000.degree.F.
Resistive MHD reconstruction of two-dimensional coherent structures in space
Directory of Open Access Journals (Sweden)
W.-L. Teh
2010-11-01
Full Text Available We present a reconstruction technique to solve the steady resistive MHD equations in two dimensions with initial inputs of field and plasma data from a single spacecraft as it passes through a coherent structure in space. At least two components of directly measured electric fields (the spacecraft spin-plane components are required for the reconstruction, to produce two-dimensional (2-D field and plasma maps of the cross section of the structure. For convenience, the resistivity tensor η is assumed diagonal in the reconstruction coordinates, which allows its values to be estimated from Ohm's law, E+v×B=η·j. In the present paper, all three components of the electric field are used. We benchmark our numerical code by use of an exact, axi-symmetric solution of the resistive MHD equations and then apply it to synthetic data from a 3-D, resistive, MHD numerical simulation of reconnection in the geomagnetic tail, in a phase of the event where time dependence and deviations from 2-D are both weak. The resistivity used in the simulation is time-independent and localized around the reconnection site in an ellipsoidal region. For the magnetic field, plasma density, and pressure, we find very good agreement between the reconstruction results and the simulation, but the electric field and plasma velocity are not predicted with the same high accuracy.
MHD simulations of coronal dark downflows considering thermal conduction
Zurbriggen, E.; Costa, A.; Esquivel, A.; Schneiter, M.; Cécere, M.
2017-10-01
While several scenarios have been proposed to explain supra-arcade downflows (SADs) observed descending through turbulent hot regions, none of them have systematically addressed the consideration of thermal conduction. The SADs are known to be voided cavities. Our model assumes that SADs are triggered by bursty localized reconnection events that produce non-linear waves generating the voided cavity. These subdense cavities are sustained in time because they are hotter than their surrounding medium. Due to the low density and large temperature values of the plasma we expect the thermal conduction to be an important process. Our main aim here is to study if it is possible to generate SADs in the framework of our model considering thermal conduction. We carry on 2D MHD simulations including anisotropic thermal conduction, and find that if the magnetic lines envelope the cavities, they can be isolated from the hot environment and be identified as SADs.
Directory of Open Access Journals (Sweden)
V. I. Domrin
2004-07-01
Full Text Available By means of a simulation model, the earlier predicted nonlinear kinetic structure, a Forced Kinetic Current Sheet (FKCS, with extremely anisotropic ion distributions, is shown to appear as a result of a fast nonlinear process of transition from a previously existing equilibrium. This occurs under triggering action of a weak MHD disturbance that is applied at the boundary of the simulation box. In the FKCS, current is carried by initially cold ions which are brought into the CS by convection from both sides, and accelerated inside the CS. The process then appears to be spontaneously self-sustained, as a MHD disturbance of a rarefaction wave type propagates over the background plasma outside the CS. Comparable to the Alfvénic discontinuity in MHD, transformation of electromagnetic energy into the energy of plasma flows occurs at the FKCS. But unlike the MHD case, ``free" energy is produced here: dissipation should occur later, through particle interaction with turbulent waves generated by unstable ion distribution being formed by the FKCS action. In this way, an effect of magnetic field ``annihilation" appears, required for fast magnetic reconnection. Application of the theory to observations at the magnetopause and in the magnetotail is considered.
1990-10-01
The current magnetohydrodynamic MHD program being implemented is a result of a consensus established in public meetings held by the Department of Energy in 1984. The public meetings were followed by the formulation of a June 1984 Coal-Fired MHD Preliminary Transition and Program Plan. This plan focused on demonstrating the proof-of-concept (POC) of coal-fired MHD electric power plants by the early 1990s. MHD test data indicate that while there are no fundamental technical barriers impeding the development of MHD power plants, technical risk remains. To reduce the technical risk three key subsystems (topping cycle, bottoming cycle, and seed regeneration) are being assembled and tested separately. The program does not require fabrication of a complete superconducting magnet, but rather the development and testing of superconductor cables. The topping cycle system test objectives can be achieved using a conventional iron core magnet system already in place at a DOE facility. Systems engineering-derived requirements and analytical modeling to support scale-up and component design guide the program. In response to environmental, economic, engineering, and utility acceptance requirements, design choices and operating modes are tested and refined to provide technical specifications for meeting commercial criteria. These engineering activities are supported by comprehensive and continuing systems analyses to establish realistic technical requirements and cost data. Essential elements of the current program are to: develop technical and environmental data for the integrated MHD topping cycle and bottoming cycle systems through POC testing (1000 and 4000 hours, respectively); design, construct, and operate a POC seed regeneration system capable of processing spent seed materials from the MHD bottoming cycle; prepare conceptual designs for a site specific MHD retrofit plant; and continue supporting research necessary for system testing.
Reconnecting flux-rope dynamo.
Baggaley, Andrew W; Barenghi, Carlo F; Shukurov, Anvar; Subramanian, Kandaswamy
2009-11-01
We develop a model of the fluctuation dynamo in which the magnetic field is confined to thin flux ropes advected by a multiscale model of turbulence. Magnetic dissipation occurs only via reconnection of the flux ropes. This model can be viewed as an implementation of the asymptotic limit R_{m}-->infinity for a continuous magnetic field, where magnetic dissipation is strongly localized to small regions of strong-field gradients. We investigate the kinetic-energy release into heat mediated by the dynamo action, both in our model and by solving the induction equation with the same flow. We find that a flux-rope dynamo is an order of magnitude more efficient at converting mechanical energy into heat. The probability density of the magnetic energy release in reconnections has a power-law form with the slope -3 , consistent with the solar corona heating by nanoflares.
Characteristic speeds of reconnection processes
Lapenta, G.; Markidis, S.; Newman, D. L.; Goldman, M. V.
2012-12-01
Stimulated by the recent paper by Shay et al., (10.1103/PhysRevLett.107.065001), we developed a theory for the evolution of the reconnection process. The theory gives a new interpretation of the results in the aforementioned paper relative to the superlfvenic propagation of the signal of the out of plane magnetic field (and of other related fields). Additionally, it makes other important predictions about the scaling of the reconnection process. We then tested the theory predictions beyond the range considered in the paper mentioned above to ascertain the quantitative correctness of the theoretical prediction. To do so, we developed a new diagnostics based on the use of virtual probes dispersed uniformly in the simulation. Work Supported by the NASA MMS Mission and by SWIFF, a project funded by the European Commission under the grant agreement SWIFF (project n° 263340, www.swiff.eu).
Relativistic Magnetic Reconnection in Kerr Spacetime.
Asenjo, Felipe A; Comisso, Luca
2017-02-03
The magnetic reconnection process is analyzed for relativistic magnetohydrodynamical plasmas around rotating black holes. A simple generalization of the Sweet-Parker model is used as a first approximation to the problem. The reconnection rate, as well as other important properties of the reconnection layer, has been calculated taking into account the effect of spacetime curvature. Azimuthal and radial current sheet configurations in the equatorial plane of the black hole have been studied, and the case of small black hole rotation rate has been analyzed. For the azimuthal configuration, it is found that the black hole rotation decreases the reconnection rate. On the other hand, in the radial configuration, it is the gravitational force created by the black hole mass that decreases the reconnection rate. These results establish a fundamental interaction between gravity and magnetic reconnection in astrophysical contexts.
Laboratory observations of spontaneous magnetic reconnection.
Egedal, J; Fox, W; Katz, N; Porkolab, M; Reim, K; Zhang, E
2007-01-05
Detailed measurements of spontaneous magnetic reconnection are presented. The experimental data, which were obtained in the new closed Versatile Toroidal Facility magnetic configuration, document the profile evolution of the plasma density, magnetic flux function, reconnection rate, and the current density during a spontaneous reconnection event in the presence of a strong guide magnetic field. The reconnection process is at first slow, which allows magnetic stress to build in the system while the current channel becomes increasingly narrow and intense. The onset of a fast reconnection event occurs as the width of the current channel approaches the ion-sound-Larmor radius rho s. During the reconnection event magnetically stored energy is channeled into energetic ion outflows and a rapid increase in the electron temperature.
Nandakumar, Raja
2001-01-01
Colour reconnection is the final state interaction between quarks from different sources. It is not yet fully understood and is a source of systematic error for W-boson mass and width measurements in hadronic \\WW decays at LEP2. The methods of measuring this effect and the results of the 4 LEP experiments at $183\\gev\\leq\\rts\\leq 202\\gev$ will be presented.
Impulsive nature in collisional driven reconnection
Energy Technology Data Exchange (ETDEWEB)
Kitabata, Hideyuki; Hayashi, Takaya; Sato, Tetsuya
1995-11-01
Compressible magnetohydrodynamic simulation is carried out in order to investigate energy relaxation process of the driven magnetic reconnection in an open finite system through a long time calculation. It is found that a very impulsive energy release occurs in an intermittent fashion through magnetic reconnection for a continuous magnetic flux injection on the boundary. In the impulsive phase, the reconnection rate is remarkably enhanced up to more than ten times of the driving rate on the boundary. (author).
Status of power generation experiments in the NASA Lewis closed cycle MHD facility
Sovie, R. J.; Nichols, L. D.
1971-01-01
The design and operation of the closed cycle MHD facility is discussed and results obtained in recent experiments are presented. The main components of the facility are a compressor, recuperative heat exchanger, heater, nozzle, MHD channel with 28 pairs of thoriated tungsten electrodes, cesium condenser, and an argon cooler. The facility has been operated at temperatures up to 2100 K with a cesium-seeded argon working fluid. At low magnetic field strengths, the open circuit voltage, Hall voltage and short circuit current obtained are 90, 69, and 47 percent of the theoretical equilibrium values, respectively. Comparison of this data with a wall and boundary layer leakage theory indicates that the generator has shorting paths in the Hall direction.
New aspects of plasma sheet dynamics - MHD and kinetic theory
Directory of Open Access Journals (Sweden)
H. Wiechen
1999-05-01
Full Text Available Magnetic reconnection is a process of fundamental importance for the dynamics of the Earth's plasma sheet. In this context, the development of thin current sheets in the near-Earth plasma sheet is a topic of special interest because they could be a possible cause of microscopic fluctuations acting as collective non-idealness from a macroscopic point of view. Simulations of the near-Earth plasma sheet including boundary perturbations due to localized inflow through the northern (or southern plasma sheet boundary show developing thin current sheets in the near-Earth plasma sheet about 810 RE tailwards of the Earth. This location is largely independent from the localization of the perturbation. The second part of the paper deals with the problem of the macroscopic non-ideal consequences of microscopic fluctuations. A new model is presented that allows the quantitative calculation of macroscopic non-idealness without considering details of microscopic instabilities or turbulence. This model is only based on the assumption of a strongly fluctuating, mixing dynamics on microscopic scales in phase space. The result of this approach is an expression for anomalous non-idealness formally similar to the Krook resistivity but now describing the macroscopic consequences of collective microscopic fluctuations, not of collisions.Key words. Magnetospheric physics (plasma sheet · Space plasma physics (kinetic and MHD theory; magnetic reconnection
Ripperda, B.; Porth, O.; Xia, C.; Keppens, R.
2017-11-01
We analyse particle acceleration in explosive reconnection events in magnetically dominated proton-electron plasmas. Reconnection is driven by large-scale magnetic stresses in interacting current-carrying flux tubes. Our model relies on development of current-driven instabilities on macroscopic scales. These tilt-kink instabilities develop in an initially force-free equilibrium of repelling current channels. Using magnetohydrodynamics (MHD) methods we study a 3D model of repelling and interacting flux tubes in which we simultaneously evolve test particles, guided by electromagnetic fields obtained from MHD. We identify two stages of particle acceleration; initially particles accelerate in the current channels, after which the flux ropes start tilting and kinking and particles accelerate due to reconnection processes in the plasma. The explosive stage of reconnection produces non-thermal energy distributions with slopes that depend on plasma resistivity and the initial particle velocity. We also discuss the influence of the length of the flux ropes on particle acceleration and energy distributions. This study extends previous 2.5D results to 3D setups, providing all ingredients needed to model realistic scenarios like solar flares, black hole flares and particle acceleration in pulsar wind nebulae: formation of strong resistive electric fields, explosive reconnection and non-thermal particle distributions. By assuming initial energy equipartition between electrons and protons, applying low resistivity in accordance with solar corona conditions and limiting the flux rope length to a fraction of a solar radius, we obtain realistic energy distributions for solar flares with non-thermal power-law tails and maximum electron energies up to 11 MeV and maximum proton energies up to 1 GeV.
Computational Investigation of Extended-MHD Effects on Tokamak Plasmas
King, Jacob R.; Kruger, Scott E.
2013-10-01
We present studies with the extended-MHD NIMROD code of the tearing instability and edge-localized modes (ELMs). In our first study we use analytics and computations to examine tearing in a large-guide field with a nonzero pressure gradient where previous results show drift effects are stabilizing [Coppi, PoF (1964)]. Our work finds three new results: (1) At moderately large ion gyroradius the mode rotates at the electron drift velocity and there is no stabilization. (2) With collision-less drift reconnection, computations must also include electron gyroviscosity and advection. And (3) we derive a dispersion relation that exhibits diamagnetic stabilization and describes the transition between the electron-fluid-mediated regime of (1) and the semi-collisional regime [Drake and Lee, PoF (1977)]. Our second study investigates the transition from an ideal- to an extended-MHD model in an ELM unstable tokamak configuration. With the inclusion of a full generalized Ohm's law the growth rate is enhanced at intermediate wave-numbers and cut-off at large wave-numbers by diamagnetic effects consistent with analytics [Hastie et al., PoP (2003)]. Adding ion gyroviscosity to the model is stabilizing at large wave-numbers consistent with recent results [Xu et al., PoP (2013)]. Support provided by US DOE.
High Field Side MHD Activity During Local Helicity Injection
Pachicano, J. L.; Bongard, M. W.; Fonck, R. J.; Perry, J. M.; Reusch, J. A.; Richner, N. J.
2017-10-01
MHD is an essential part of understanding the mechanism for local helicity injection (LHI) current drive. The new high field side (HFS) LHI system on the Pegasus ST permits new tests of recent NIMROD simulations. In that model, LHI current streams in the plasma edge undergo large-scale reconnection events, leading to current drive. This produces bursty n = 1 activity around 30 kHz on low field side (LFS) Mirnov coils, consistent with experiment. The simulations also feature coherent injector streams winding down the center column. Improvements to the core high-resolution poloidal Mirnov array with Cat7A Ethernet cabling and differentially driven signal processing eliminated EMI-driven switching noise, enabling detailed spectral analysis. Preliminary results from the recovered HFS poloidal Mirnov coils suggest n = 1 activity is present at the top of the vessel core, but does not persist down the centerstack. HFS LHI experiments can exhibit an operating regime where the high amplitude MHD is abruptly reduced by more than an order of magnitude on LFS Mirnov coils, leading to higher plasma current and improved particle confinement. This reduction is not observed on the HFS midplane magnetics. Instead, they show broadband turbulence-like magnetic features with near consistent amplitude in a frequency range of 90-200 kHz. Work supported by US DOE Grant DE-FG02-96ER54375.
Dayside and nightside magnetic field responses at 780 km altitude to dayside reconnection.
Snekvik, Kristian; Østgaard, Nikolai; Tenfjord, Paul; Petter Reistad, Jone; Magnus Laundal, Karl; Milan, Stephen E.; Haaland, Stein E.
2017-04-01
During southward IMF, dayside reconnection will drive the Dungey cycle in the Earth's magnetosphere, which is manifested as a two cell convection pattern in the ionosphere. We address the response of the ionospheric convection to changes in the dayside reconnection rate. Previous studies have reported two apparently contradicting results. The first is that the ionospheric convection responds within one minute both near noon and near midnight. The second is that the response is 10-20 minutes delayed near midnight compared to near noon. To test these apparently contradicting scenarios, we have performed a statistical investigation of the response by examining the magnetic field perturbations at 780 km altitude due to dayside reconnection. The AMPERE data products derived from the Iridium constellation provide global maps of the disturbance magnetic field. The time development of the convection is modelled as the sum of an accelerating force and a decelerating force. Furthermore, the accelerating force is parametrised as a linear sum of past reconnection rates, while the decelerating force is proportional to the convection itself. This results in an asymptotic model which gradually reaches a steady-state value. By fitting the data to the model, we confirm previous reports of an almost immediate response both near noon and near midnight combined with a 10-20 minutes reconfiguration time of the two cell convection pattern. The e-folding time of the asymptotic model was found to be about 40 minutes. We present a new explanation of the response and reconfiguration times based on how MHD waves propagate in the magnetospheric lobes when newly reconnected open flux tubes are added to the lobes, and the magnetopause flaring angle increases.
Dayside and nightside magnetic field responses at 780 km altitude to dayside reconnection
Snekvik, K.; Østgaard, N.; Tenfjord, P.; Reistad, J. P.; Laundal, K. M.; Milan, S. E.; Haaland, S. E.
2017-02-01
During southward interplanetary magnetic field, dayside reconnection will drive the Dungey cycle in the magnetosphere, which is manifested as a two-cell convection pattern in the ionosphere. We address the response of the ionospheric convection to changes in the dayside reconnection rate by examining magnetic field perturbations at 780 km altitude. The Active Magnetosphere and Planetary Electrodynamics Response Experiment data products derived from the Iridium constellation provide global maps of the magnetic field perturbations. Cluster data just upstream of the Earth's bow shock have been used to estimate the dayside reconnection rate. By using a statistical model where the magnetic field can respond on several time scales, we confirm previous reports of an almost immediate response both near noon and near midnight combined with a 10-20 min reconfiguration time of the two-cell convection pattern. The response of the ionospheric convection has been associated with the expansion of the polar cap boundary in the Cowley-Lockwood paradigm. In the original formulation of this paradigm the expansion spreads from noon to midnight in 15-20 min. However, also an immediate global response has been shown to be consistent with the paradigm when the previous dayside reconnection history is considered. In this paper we present a new explanation for how the immediate response can be accommodated in the Cowley-Lockwood paradigm. The new explanation is based on how MHD waves propagate in the magnetospheric lobes when newly reconnected open flux tubes are added to the lobes, and the magnetopause flaring angle increases.
Barnes, P. R.; Vance, E. F.
A nuclear detonation at altitudes several hundred kilometers above the earth will severely distort the earth's magnetic field and result in a strong magnetohydrodynamic electromagnetic pulse (MHD-EMP). The geomagnetic disturbance interacts with the soil to induce current and horizontal electric gradients. MHD-EMP, also called E3 since it is the third component of the high-altitude EMP (HEMP), lasts over 100 s after an exoatmospheric burst. MHD-EMP is similar to solar geomagnetic storms in it's global and low frequency (less than 1 Hz) nature except that E3 can be much more intense with a far shorter duration. When the MHD-EMP gradients are integrated over great distances by power lines, communication cables, or other long conductors, the induced voltages are significant. (The horizontal gradients in the soil are too small to induce major responses by local interactions with facilities.) The long pulse waveform for MHD-EMP-induced currents on long lines has a peak current of 200 A and a time-to-half-peak of 100 s. If this current flows through transformer windings, it can saturate the magnetic circuit and cause 60 Hz harmonic production. To mitigate the effects of MHD-EMP on a facility, long conductors must be isolated from the building and the commercial power harmonics and voltage swings must be addressed. The transfer switch would be expected to respond to the voltage fluctuations as long as the harmonics have not interfered with the switch control circuitry. The major sources of MHD-EMP induced currents are the commercial power lines and neutral; neutral current indirect coupling to the facility power or ground system via the metal fence, powered gate, parking lights, etc; metal water pipes; phone lines; and other long conductors that enter or come near the facility. The major source of harmonics is the commercial power system.
Laser-Plasma Modeling Using PERSEUS Extended-MHD Simulation Code for HED Plasmas
Hamlin, Nathaniel; Seyler, Charles
2017-10-01
We discuss the use of the PERSEUS extended-MHD simulation code for high-energy-density (HED) plasmas in modeling the influence of Hall and electron inertial physics on laser-plasma interactions. By formulating the extended-MHD equations as a relaxation system in which the current is semi-implicitly time-advanced using the Generalized Ohm's Law, PERSEUS enables modeling of extended-MHD phenomena (Hall and electron inertial physics) without the need to resolve the smallest electron time scales, which would otherwise be computationally prohibitive in HED plasma simulations. We first consider a laser-produced plasma plume pinched by an applied magnetic field parallel to the laser axis in axisymmetric cylindrical geometry, forming a conical shock structure and a jet above the flow convergence. The Hall term produces low-density outer plasma, a helical field structure, flow rotation, and field-aligned current, rendering the shock structure dispersive. We then model a laser-foil interaction by explicitly driving the oscillating laser fields, and examine the essential physics governing the interaction. This work is supported by the National Nuclear Security Administration stewardship sciences academic program under Department of Energy cooperative agreements DE-FOA-0001153 and DE-NA0001836.
High magnetic field MHD generator program. Final report, July 1, 1976-December 31, 1979
Energy Technology Data Exchange (ETDEWEB)
Eustis, R. H.; Kruger, C. H.; Mitchner, M.; Self, S. A.; Koester, J. K.; Nakamura, T.
1980-04-01
A theoretical and experimental program was undertaken to investigate MHD channel phenomena which are important at high magnetic fields. The areas studied were inhomogeneity effects, boundary layers, Hall field breakdown and electrode configuration and current concentrations. In addition, a program was undertaken to study steady-state combustion disk and linear channels in an existing 6 Tesla magnet of small dimensions. The structure of the inhomogeneities in the Stanford M-2 was characterized and compared with theoretical results from a linearized perturbation analysis. General agreement was obtained and the analysis was used to compute stability regions for large size generators. The Faraday electrical connection was found to be more stable than the Hall or diagonal wall connections. Boundary layer profile measurements were compared with theoretical calculations with good agreement. Extrapolation of the calculations to pilot scale MHD channels indicates that Hartmann effects are important in the analysis of the sidewall, and Joule heating is important in calculating heat transfer and voltage drops for the electrode wall. Hall field breakdown was shown to occur both in the plasma and through the interelectrode insulator with the insulator breakdown threshold voltage lower than the plasma value. The threshold voltage was shown to depend on the interelectrode gap but was relatively independent of plasma conditions. Experiments were performed at 5.5 Tesla with both disk and linear MHD channels.
Magnetic reconnection in terms of catastrophe theory
Echkina, E. Y.; Inovenkov, I. N.; Nefedov, V. V.
2017-12-01
Magnetic field line reconnection (magnetic reconnection) is a phenomenon that occurs in space and laboratory plasma. Magnetic reconnection allows both the change the magnetic topology and the conversion of the magnetic energy into energy of fast particles. The critical point (critical line or plane in higher dimensional cases) of the magnetic field play an important role in process of magnetic reconnection, as in its neighborhood occurs a change of its topology of a magnetic field and redistribution of magnetic field energy. A lot of literature is devoted to the analytical and numerical investigation of the reconnection process. The main result of these investigations as the result of magnetic reconnection the current sheet is formed and the magnetic topology is changed. While the studies of magnetic reconnection in 2D and 3D configurations have a led to several important results, many questions remain open, including the behavior of a magnetic field in the neighborhood of a critical point of high order. The magnetic reconnection problem is closely related to the problem of the structural stability of vector fields. Since the magnetic field topology changes during both spontaneous and induced magnetic reconnection, it is natural to expect that the magnetic field should evolve from a structurally unstable into a structurally stable configuration. Note that, in this case, the phenomenon under analysis is more complicated since, during magnetic reconnection in a highly conducting plasma, we deal with the non-linear interaction between two vector fields: the magnetic field and the field of the plasma velocities. The aim of our article is to consider the process of magnetic reconnection and transformation of the magnetic topology from the viewpoint of catastrophe theory. Bifurcations in similar configurations (2D magnetic configuration with null high order point) with varying parameters were thoroughly discussed in a monograph by Poston and Stewart.
Collisionless Magnetic Reconnection in Space Plasmas
Directory of Open Access Journals (Sweden)
Rudolf A. Treumann
2013-12-01
Full Text Available Magnetic reconnection, the merging of oppositely directed magnetic fields that leads to field reconfiguration, plasma heating, jetting and acceleration, is one of the most celebrated processes in collisionless plasmas. It requires the violation of the frozen-in condition which ties gyrating charged particles to the magnetic field inhibiting diffusion. Ongoing reconnection has been identified in near-Earth space as being responsible for the excitation of substorms, magnetic storms, generation of field aligned currents and their consequences, the wealth of auroral phenomena. Its theoretical understanding is now on the verge of being completed. Reconnection takes place in thin current sheets. Analytical concepts proceeded gradually down to the microscopic scale, the scale of the electron skin depth or inertial length, recognizing that current layers that thin do preferentially undergo spontaneous reconnection. Thick current layers start reconnecting when being forced by plasma inflow to thin. For almost half a century the physical mechanism of reconnection has remained a mystery. Spacecraft in situ observations in combination with sophisticated numerical simulations in two and three dimensions recently clarified the mist, finding that reconnection produces a specific structure of the current layer inside the electron inertial (also called electron diffusion region around the reconnection site, the X line. Onset of reconnection is attributed to pseudo-viscous contributions of the electron pressure tensor aided by electron inertia and drag, creating a complicated structured electron current sheet, electric fields, and an electron exhaust extended along the current layer. We review the general background theory and recent developments in numerical simulation on collisionless reconnection. It is impossible to cover the entire field of reconnection in a short space-limited review. The presentation necessarily remains cursory, determined by our taste
Electron heating and acceleration during magnetic reconnection
Dahlin, Joel
2017-10-01
Magnetic reconnection is thought to be an important driver of energetic particles in a variety of astrophysical phenomena such as solar flares and magnetospheric storms. However, the observed fraction of energy imparted to a nonthermal component can vary widely in different regimes. We use kinetic particle-in-cell (PIC) simulations to demonstrate the important role of the non-reversing (guide) field in controlling the efficiency of electron acceleration in collisionless reconnection. In reconnection where the guide field is smaller than the reconnecting component, the dominant electron accelerator is a Fermi-type mechanism that preferentially energizes the most energetic particles. In strong guide field reconnection, the field-line contraction that drives the Fermi mechanism becomes weak. Instead, parallel electric fields are primarily responsible for driving electron heating but are ineffective in driving the energetic component of the spectrum. Three-dimensional simulations reveal that the stochastic magnetic field that develops during 3D guide field reconnection plays a vital role in particle acceleration and transport. The reconnection outflows that drive Fermi acceleration also expel accelerating particles from energization regions. In 2D reconnection, electrons are trapped in island cores and acceleration ceases, whereas in 3D the stochastic magnetic field enables energetic electrons to leak out of islands and freely sample regions of energy release. A finite guide field is required to break initial 2D symmetry and facilitate escape from island structures. We show that reconnection with a guide field comparable to the reconnecting field generates the greatest number of energetic electrons, a regime where both (a) the Fermi mechanism is an efficient driver and (b) energetic electrons may freely access acceleration sites. These results have important implications for electron acceleration in solar flares and reconnection-driven dissipation in turbulence.
Ripperda, B.; Porth, O.; Xia, C.; Keppens, R.
2017-05-01
Magnetic reconnection and non-thermal particle distributions associated with current-driven instabilities are investigated by means of resistive magnetohydrodynamics (MHD) simulations combined with relativistic test particle methods. We propose a system with two parallel, repelling current channels in an initially force-free equilibrium, as a simplified representation of flux ropes in a stellar magnetosphere. The current channels undergo a rotation and separation on Alfvénic time-scales, forming secondary islands and (up to tearing unstable) current sheets in which non-thermal energy distributions are expected to develop. Using the recently developed particle module of our open-source grid-adaptive mpi-amrvac software, we simulate MHD evolution combined with test particle treatments in MHD snapshots. We explore under which plasma-β conditions the fastest reconnection occurs in 2.5D scenarios, and in these settings, test particles are evolved. We quantify energy distributions, acceleration mechanisms, relativistic corrections to the particle equations of motion and effects of resistivity in magnetically dominated proton-electron plasmas. Due to large resistive electric fields and indefinite acceleration of particles in the infinitely long current channels, hard energy spectra are found in 2.5D configurations. Solutions to these numerical artefacts are proposed for both 2.5D setups and future 3D work. We discuss the MHD of an additional kink instability in 3D setups and the expected effects on energy distributions. The obtained results hold as a proof-of-principle for test particle approaches in MHD simulations, relevant to explore less idealized scenarios like solar flares and more exotic astrophysical phenomena, like black hole flares, magnetar magnetospheres and pulsar wind nebulae.
National Oceanic and Atmospheric Administration, Department of Commerce — Salt marsh habitats along the shoreline of Halls Lake are threatened by wave erosion, but the reconstruction of barrier islands to reduce this erosion will modify or...
MHD Integrated Topping Cycle Project
Energy Technology Data Exchange (ETDEWEB)
1992-03-01
The Magnetohydrodynamics (MHD) Integrated Topping Cycle (ITC) Project represents the culmination of the proof-of-concept (POC) development stage in the US Department of Energy (DOE) program to advance MHD technology to early commercial development stage utility power applications. The project is a joint effort, combining the skills of three topping cycle component developers: TRW, Avco/TDS, and Westinghouse. TRW, the prime contractor and system integrator, is responsible for the 50 thermal megawatt (50 MW{sub t}) slagging coal combustion subsystem. Avco/TDS is responsible for the MHD channel subsystem (nozzle, channel, diffuser, and power conditioning circuits), and Westinghouse is responsible for the current consolidation subsystem. The ITC Project will advance the state-of-the-art in MHD power systems with the design, construction, and integrated testing of 50 MW{sub t} power train components which are prototypical of the equipment that will be used in an early commercial scale MHD utility retrofit. Long duration testing of the integrated power train at the Component Development and Integration Facility (CDIF) in Butte, Montana will be performed, so that by the early 1990's, an engineering data base on the reliability, availability, maintainability and performance of the system will be available to allow scaleup of the prototypical designs to the next development level. This Sixteenth Quarterly Technical Progress Report covers the period May 1, 1991 to July 31, 1991.
General footage ISOLDE experimental hall
2016-01-01
Overview of the ISOLDE experimental hall. Equipment and experiments. Taken from the WITCH / EBIS platform: ISOLDE hall infrastructure, GHM line, LA1, LA2, LA0, central beamline, COLLAPS experiment, CRIS experiment, ISOLTRAP experiment, laser guidance from building 508 into the hall for laser spectroscopy COLLAPS and CRIS. Taken from the HIE ISOLDE shielding tunnel roof: ISOLDE hall infrastructure, WITCH experiment, VITO line, TAS experiment. General footage: High Tension room entrance and EBIS platform, staircases and passages in the experimental hall.
Recent Progress in Understanding Solar Magnetic Reconnection
Directory of Open Access Journals (Sweden)
Jeongwoo Lee
2015-06-01
Full Text Available Magnetic reconnection is a fundamental process occurring in a wide range of astrophysical, heliospheric and laboratory plasmas. This process alters magnetic topology and triggers rapid conversion of magnetic energy into thermal heating and nonthermal particle acceleration. Efforts to understand the physics of magnetic reconnection have been made across multiple disciplines using remote observations of solar flares and in-situ measurements of geomagnetic storms and substorms as well as laboratory and numerical experiments. This review focuses on the progress achieved with solar flare observations in which most reconnection-related signatures could be resolved in both space and time. The emphasis is on various observable emission features in the low solar atmosphere which manifest the coronal magnetic reconnection because these two regions are magnetically connected to each other. The research and application perspectives of solar magnetic reconnection are briefly discussed and compared with those in other plasma environments.
Lessons on collisionless reconnection from quantum fluids
Directory of Open Access Journals (Sweden)
Yasuhito eNarita
2014-12-01
Full Text Available Magnetic reconnection in space plasmas remains a challenge in physics in that the phenomenon is associated with the breakdown of frozen-in magnetic field in a collisionless medium. Such a topology change can also be found in superfluidity, known as the quantum vortex reconnection. We give a plasma physicists' view of superfluidity to obtain insights on essential processes in collisionless reconnection, including discussion of the kinetic and fluid pictures, wave dynamics, and time reversal asymmetry. The most important lesson from the quantum fluid is the scenario that reconnection is controlled by the physics of topological defects on the microscopic scale, and by the physics of turbulence on the macroscopic scale. Quantum vortex reconnection is accompanied by wave emission in the form of Kelvin waves and sound waves, which imprints the time reversal asymmetry.
Direct Observations of Coronal Magnetic Reconnection
Su, Yang; Veronig, Astrid; Dennis, Brian R.; Holman, Gordon D.; Wang, Tongjiang; Temmer, Manuela; Gan, Weiqun
2013-03-01
Magnetic field reconnection is believed to play a fundamental role in magnetized plasma systems throughout the universe, but never before has it been so clearly demonstrated as in the EUV and X-ray movies of a GOES-C-class solar flare presented here. The multiwavelength EUV observations from SDO/AIA show the predicted inflowing cool loops and newly formed outflowing hot loops while simultaneous RHESSI X-ray spectra and images show the appearance of plasma heated to >10 MK at the expected locations. These two data sets provide solid visual evidence of magnetic reconnection producing a solar flare. The non-uniform, nonsteady, and asymmetric nature of the observed process, together with the measured reconnection rates, supports the so called flux-pile-up reconnection. These new features of plasma inflows should be included in reconnection and flare studies.
Zhelyazkov, I.; Dimitrov, Z.
2018-01-01
We investigate the conditions under which the magnetohydrodynamic (MHD) modes in a cylindrical magnetic flux tube moving along its axis become unstable against the Kelvin-Helmholtz (KH) instability. We use the dispersion relations of MHD modes obtained from the linearized Hall MHD equations for cool (zero beta) plasma by assuming real wave numbers and complex angular wave frequencies/complex wave phase velocities. The dispersion equations are solved numerically at fixed input parameters and varying values of the ratio l_{Hall}/a, where l_{Hall} = c/ω_{pi} (c being the speed of light, and ω_{pi} the ion plasma frequency) and a is the flux tube radius. It is shown that the stability of the MHD modes depends upon four parameters: the density contrast between the flux tube and its environment, the ratio of external and internal magnetic fields, the ratio l_{Hall}/a, and the value of the Alfvén Mach number defined as the ratio of the tube axial velocity to Alfvén speed inside the flux tube. It is found that at high density contrasts, for small values of l_{Hall}/a, the kink (m = 1) mode can become unstable against KH instability at some critical Alfvén Mach number (or equivalently at critical flow speed), but a threshold l_{Hall}/a can suppress the onset of the KH instability. At small density contrasts, however, the magnitude of l_{Hall}/a does not affect noticeably the condition for instability occurrence - even though it can reduce the critical Alfvén Mach number. It is established that the sausage mode (m = 0) is not subject to the KH instability.
Magnetohydrodynamic (MHD) channel corner seal
Spurrier, Francis R.
1980-01-01
A corner seal for an MHD duct includes a compressible portion which contacts the duct walls and an insulating portion which contacts the electrodes, sidewall bars and insulators. The compressible portion may be a pneumatic or hydraulic gasket or an open-cell foam rubber. The insulating portion is segmented into a plurality of pieces of the same thickness as the electrodes, insulators and sidewall bars and aligned therewith, the pieces aligned with the insulator being of a different size from the pieces aligned with the electrodes and sidewall bars to create a stepped configuration along the corners of the MHD channel.
Problems in nonlinear resistive MHD
Energy Technology Data Exchange (ETDEWEB)
Turnbull, A.D.; Strait, E.J.; La Haye, R.J.; Chu, M.S.; Miller, R.L. [General Atomics, San Diego, CA (United States)
1998-12-31
Two experimentally relevant problems can relatively easily be tackled by nonlinear MHD codes. Both problems require plasma rotation in addition to the nonlinear mode coupling and full geometry already incorporated into the codes, but no additional physics seems to be crucial. These problems discussed here are: (1) nonlinear coupling and interaction of multiple MHD modes near the B limit and (2) nonlinear coupling of the m/n = 1/1 sawtooth mode with higher n gongs and development of seed islands outside q = 1.
Ji, Hantao; Bhattacharjee, A.; Goodman, A.; Prager, S.; Daughton, W.; Cutler, R.; Fox, W.; Hoffmann, F.; Kalish, M.; Kozub, T.; Jara-Almonte, J.; Myers, C.; Ren, Y.; Sloboda, P.; Yamada, M.; Yoo, J.; Bale, S. D.; Carter, T.; Dorfman, S.; Drake, J.; Egedal, J.; Sarff, J.; Wallace, J.
2017-10-01
The FLARE device (Facility for Laboratory Reconnection Experiments; flare.pppl.gov) is a new laboratory experiment under construction at Princeton for the studies of magnetic reconnection in the multiple X-line regimes directly relevant to space, solar, astrophysical, and fusion plasmas, as guided by a reconnection phase diagram. The whole device have been assembled with first plasmas expected in the fall of 2017. The main diagnostics is an extensive set of magnetic probe arrays, currently under construction, to cover multiple scales from local electron scales ( 2 mm), to intermediate ion scales ( 10 cm), and global MHD scales ( 1 m), simultaneously providing in-situ measurements over all these relevant scales. The planned procedures and example topics as a user facility will be discussed.
Ji, H.; Bhattacharjee, A.; Goodman, A.; Prager, S.; Daughton, W.; Cutler, R.; Fox, W.; Hoffmann, F.; Kalish, M.; Kozub, T.; Jara-Almonte, J.; Myers, C.; Ren, Y.; Sloboda, P.; Yamada, M.; Yoo, J.; Bale, S. D.; Carter, T.; Dorfman, S.; Drake, J.; Egedal, J.; Sarff, J.; Wallace, J.
2017-10-01
The FLARE device (Facility for Laboratory Reconnection Experiments; flare.pppl.gov) is a new laboratory experiment under construction at Princeton with first plasmas expected in the fall of 2017, based on the design of Magnetic Reconnection Experiment (MRX; mrx.pppl.gov) with much extended parameter ranges. Its main objective is to provide an experimental platform for the studies of magnetic reconnection and related phenomena in the multiple X-line regimes directly relevant to space, solar, astrophysical and fusion plasmas. The main diagnostics is an extensive set of magnetic probe arrays, simultaneously covering multiple scales from local electron scales ( 2 mm), to intermediate ion scales ( 10 cm), and global MHD scales ( 1 m). Specific example space physics topics which can be studied on FLARE will be discussed.
EMAPS: An Efficient Multiscale Approach to Plasma Systems with Non-MHD Scale Effects
Energy Technology Data Exchange (ETDEWEB)
Omelchenko, Yuri A. [Trinum Research, Inc., San Diego, CA (United States)
2016-08-08
Global interactions of energetic ions with magnetoplasmas and neutral gases lie at the core of many space and laboratory plasma phenomena ranging from solar wind entry into and transport within planetary magnetospheres and exospheres to fast-ion driven instabilities in fusion devices to astrophysics-in-lab experiments. The ability of computational models to properly account for physical effects that underlie such interactions, namely ion kinetic, ion cyclotron, Hall, collisional and ionization processes is important for the success and planning of experimental research in plasma physics. Understanding the physics of energetic ions, in particular their nonlinear resonance interactions with Alfvén waves, is central to improving the heating performance of magnetically confined plasmas for future energy generation. Fluid models are not adequate for high-beta plasmas as they cannot fully capture ion kinetic and cyclotron physics (e.g., ion behavior in the presence of magnetic nulls, shock structures, plasma interpenetration, etc.). Recent results from global reconnection simulations show that even in a MHD-like regime there may be significant differences between kinetic and MHD simulations. Therefore, kinetic modeling becomes essential for meeting modern day challenges in plasma physics. The hybrid approximation is an intermediate approximation between the fluid and fully kinetic approximations. It eliminates light waves, removes the electron inertial temporal and spatial scales from the problem and enables full-orbit ion kinetics. As a result, hybrid codes have become effective tools for exploring ion-scale driven phenomena associated with ion beams, shocks, reconnection and turbulence that control the large-scale behavior of laboratory and space magnetoplasmas. A number of numerical issues, however, make three-dimensional (3D) large-scale hybrid simulations of inhomogeneous magnetized plasmas prohibitively expensive or even impossible. To resolve these difficulties
Energy release and transfer in solar flares: simulations of three-dimensional reconnection
Energy Technology Data Exchange (ETDEWEB)
Birn, Joachim [Los Alamos National Laboratory; Fletches, L [UNIV OF GLASGOW; Hesse, M [HGSFC; Neukirch, T [UNIV OF ST. ANDREWS
2008-01-01
Using three-dimensional magnetohydrodynamic (MHD) simulations we investigate energy release and transfer in a three-dimensional extension of the standard two-ribbon flare picture. In this scenario reconnection is initiated in a thin current sheet (suggested to form below a departing coronal mass ejection) above a bipolar magnetic field. Two cases are contrasted: an initially force-free current sheet (low beta) and a finite-pressure current sheet (high beta). The energy conversion process from reconnect ion consists of incoming Poynting flux (from the release of magnetic energy) turned into up-and downgoing Poynting flux, enthalpy flux and bulk kinetic energy flux. In the low-beta case, the outgoing Poynting flux is the dominant contribution, whereas the outgoing enthalpy flux dominates in the high-beta case. The bulk kinetic energy flux is only a minor contribution, particularly in the downward direction. The dominance of the downgoing Poynting flux in the low-beta case is consistent with an alternative to the thick target electron beam model for solar flare energy transport, suggested recently by Fletcher and Hudson. For plausible characteristic parameters of the reconnecting field configuration, we obtain energy release time scales and and energy output rates that compare favorably with those inferred from observations for the impulsive phase of flares.
Matteucci, Jack; Moissard, Clément; Fox, Will; Bhattacharjee, Amitava
2016-10-01
The advent of high-energy-density physics facilities has introduced the opportunity to experimentally investigate magnetic field dynamics relevant to both ICF and astrophysical plasmas. Recent experiments have demonstrated magnetic reconnection between colliding plasma plumes, where the reconnecting magnetic fields were self-generated in the plasma by the Biermann battery effect. In this study, we simulate these experiments from first principles using 2-D and 3-D particle-in-cell simulations. Simulations self-consistently demonstrate magnetic field generation by the Biermann battery effect, followed by advection by the Hall effect and ion flow. In 2-D simulations, we find in both the collisionless case and the semi-collisional case, defined by eVi × B >> Rei /ne (where Rei is the electron ion momentum transfer) that quantitative agreement with the generalized Ohm's law is only obtained with the inclusion of the pressure tensor. Finally, we document that significant field is destroyed at the reconnection site by the Biermann term, an inverse, `anti-Biermann' effect, which has not been considered previously in analysis of the experiment. The role of the anti-Biermann effect will be compared to standard reconnection mechanisms in 3-D reconnection simulations. This research used resources of the ORLC Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. DoE under Contract No. DE-AC05-00OR22725.
Magnetic Reconnection in the Solar Chromosphere
Lukin, Vyacheslav S.; Ni, Lei; Murphy, Nicholas Arnold
2017-08-01
We report on the most recent efforts to accurately and self-consistently model magnetic reconnection processes in the context of the solar chromosphere. The solar chromosphere is a notoriously complex and highly dynamic boundary layer of the solar atmosphere where local variations in the plasma parameters can be of the order of the mean values. At the same time, the interdependence of the physical processes such as magnetic field evolution, local and global energy transfer between internal and electromagnetic plasma energy, radiation transport, plasma reactivity, and dissipation mechanisms make it a particularly difficult system to self-consistently model and understand. Several recent studies have focused on the micro-physics of multi-fluid magnetic reconnection at magnetic nulls in the weakly ionized plasma environment of the lower chromosphere[1-3]. Here, we extend the previous work by considering a range of spatial scales and magnetic field strengths in a configuration with component magnetic reconnection, i.e., for magnetic reconnection with a guide field. We show that in all cases the non-equilibrium reactivity of the plasma and the dynamic interaction among the plasma processes play important roles in determining the structure of the reconnection region. We also speculate as to the possible observables of chromospheric magnetic reconnection and the likely plasma conditions required for generation of Ellerman and IRIS bombs.[1] Leake, Lukin, Linton, and Meier, “Multi-fluid simulations of chromospheric magnetic reconnection in a weakly ionized reacting plasma,” ApJ 760 (2012).[2] Leake, Lukin, and Linton, “Magnetic reconnection in a weakly ionized plasma,” PoP 20 (2013).[3] Murphy and Lukin, “Asymmetric magnetic reconnection in weakly ionized chromospheric plasmas,” ApJ 805 (2015).[*Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National
Zhang, S. L.; Liu, Y.; Collins-McIntyre, L. J.; Hesjedal, T.; Zhang, J. Y.; Wang, S. G.; Yu, G. H.
2013-01-01
Magnetoresistance (MR) effects are at the heart of modern information technology. However, future progress of giant and tunnelling MR based storage and logic devices is limited by the usable MR ratios of currently about 200% at room-temperature. Colossal MR structures, on the other hand, achieve their high MR ratios of up to 106% only at low temperatures and high magnetic fields. We introduce the extraordinary Hall balance (EHB) and demonstrate room-temperature MR ratios in excess of 31,000%. The new device concept exploits the extraordinary Hall effect in two separated ferromagnetic layers with perpendicular anisotropy in which the Hall voltages can be configured to be carefully balanced or tipped out of balance. Reprogrammable logic and memory is realised using a single EHB element. PACS numbers: 85.75.Nn,85.70.Kh,72.15.Gd,75.60.Ej. PMID:23804036
Directory of Open Access Journals (Sweden)
F. Pitout
2012-03-01
Full Text Available On some rare occasions, data from the Cluster Ion Spectrometer (CIS in the mid-altitude cusp reveal overlapping ion populations under northward interplanetary magnetic field (IMF. While the poleward part of the cusp exhibits the expected reverse dispersion due to lobe reconnection, its equatorward part shows a second ion population at higher-energy that coexists with the low energy tail of the dispersion. This second population is either dispersionless or slightly dispersed with energies increasing with increasing latitudes, indicative of lobe reconnection as well. Our analysis of a case that occurred 3 September 2002 when the IMF stayed northward for more than two hours suggests that the second population comes from the opposite hemisphere and is very likely on newly-closed field lines. We interpret this overlap of cusp populations as a clear mid-altitude signature of re-closed magnetic field lines by double lobe reconnection (reconnection in both hemispheres under northward IMF. This interpretation is supported by modelling performed with the Cooling model and an MHD model.
New Expression for Collisionless Magnetic Reconnection Rate
Klimas, Alexander J.
2014-01-01
For 2D, symmetric, anti-parallel, collisionless magnetic reconnection, a new expression for the reconnection rate in the electron diffusion region is introduced. It is shown that this expression can be derived in just a few simple steps from a physically intuitive starting point; the derivation is given in its entirety and the validity of each step is confirmed. The predictions of this expression are compared to the results of several long-duration, open-boundary PIC reconnection simulations to demonstrate excellent agreement.
Afeyan, Bedros
2017-10-01
HEDSA will hold its Town Hall meeting on Wednesday October 25 at 12:30pm in the Wisconsin Center. The new steering committee members and HEDSA leadership will be announced. A report will be given on 2017 HEDSA activities. Program Managers from Federal Funding Agencies such as OFES, NNSA, AFOSR and NSF will provide updates on the state of sponsored research in HED plasmas, and to engage the community in an open dialogue. The HEDSA Town Hall is a ``bring your own lunch'' meeting. Current members of HEDSA and all graduate students are strongly encouraged to attend. To join HEDSA please visit HEDSA.org
MHD Turbulence and Magnetic Dynamos
Shebalin, John V
2014-01-01
Incompressible magnetohydrodynamic (MHD) turbulence and magnetic dynamos, which occur in magnetofluids with large fluid and magnetic Reynolds numbers, will be discussed. When Reynolds numbers are large and energy decays slowly, the distribution of energy with respect to length scale becomes quasi-stationary and MHD turbulence can be described statistically. In the limit of infinite Reynolds numbers, viscosity and resistivity become zero and if these values are used in the MHD equations ab initio, a model system called ideal MHD turbulence results. This model system is typically confined in simple geometries with some form of homogeneous boundary conditions, allowing for velocity and magnetic field to be represented by orthogonal function expansions. One advantage to this is that the coefficients of the expansions form a set of nonlinearly interacting variables whose behavior can be described by equilibrium statistical mechanics, i.e., by a canonical ensemble theory based on the global invariants (energy, cross helicity and magnetic helicity) of ideal MHD turbulence. Another advantage is that truncated expansions provide a finite dynamical system whose time evolution can be numerically simulated to test the predictions of the associated statistical mechanics. If ensemble predictions are the same as time averages, then the system is said to be ergodic; if not, the system is nonergodic. Although it had been implicitly assumed in the early days of ideal MHD statistical theory development that these finite dynamical systems were ergodic, numerical simulations provided sufficient evidence that they were, in fact, nonergodic. Specifically, while canonical ensemble theory predicted that expansion coefficients would be (i) zero-mean random variables with (ii) energy that decreased with length scale, it was found that although (ii) was correct, (i) was not and the expected ergodicity was broken. The exact cause of this broken ergodicity was explained, after much
Coxon, Bruce
2011-01-01
An account is given of the life, scientific contributions, and passing of Laurance David Hall (1938-2009), including his early history and education at the University of Bristol, UK, and the synthesis and NMR spectroscopy of carbohydrates and other natural products during ∼20 years of research and teaching at the University of British Columbia in Vancouver, Canada. Lists of graduate students, post-doctoral fellows, and sabbatical visitors are provided for this period. Following a generous endowment by Dr. Herchel Smith, Professor Hall built a new Department of Medicinal Chemistry at Cambridge University, UK, and greatly expanded his researches into the technology and applications of magnetic resonance imaging (MRI) and zero quantum NMR. MRI technology was applied both to medical problems such as the characterization of cartilage degeneration in knee joints, the measurement of ventricular function, lipid localization in animal models of atherosclerosis, paramagnetic metal complexes of polysaccharides as contrast agents, and studies of many other anatomical features, but also to several aspects of materials analysis, including food analyses, process control, and the elucidation of such physical phenomena as the flow of liquids through porous media, defects in concrete, and the visualization of fungal damage to wood. Professor Hall's many publications, patents, lectures, and honors and awards are described, and also his successful effort to keep the Asilomar facility in Pacific Grove, California as the alternating venue for the annual Experimental NMR Conference. Two memorial services for Professor Hall are remembered. Copyright © 2011 Elsevier Inc. All rights reserved.
Barteld Kooi, [No Value
2006-01-01
Samenvatting: In het begin van de jaren negentig brak een wereldwijde discussie los over een probleem dat in het Engels 'The Monty Hall Dilemma' wordt genoemd. Marilyn vos Savant, die in het Guinness Book of World Records wordt genoemd als degene met het
Indian Academy of Sciences (India)
Home; Fellowship. Fellow Profile. Elected: 1947 Honorary. Halle, Prof. Thore Gustaf. Date of birth: 25 September 1884. Date of death: 12 May 1964. YouTube; Twitter; Facebook; Blog. Academy News. IAS Logo. Theory Of Evolution. Posted on 23 January 2018. Joint Statement by the Three Science Academies of India on ...
Oguntoyinbo, Lekan
2011-01-01
Many urban and commuter universities have their sights set on students who are unlikely to connect with the college and likely to fail unless the right strategies are put in place to help them graduate. In efforts to improve retention rates, commuter colleges are looking to an unusual suspect: residence halls. The author discusses how these…
The Role of Geometry in Magnetic Reconnection
Hesse, Michael; Aunai, Nicholas; Birn, Joachim; Zenitani, Seiji
2012-01-01
Magnetic reconnection is arguably the most effective energy conversion and transport process in plasmas. Reconnection is subject to topological considerations in two ways. First, the process itself involves a change in topology of the combined plasma-magnetic field system. This change in topology transcends that of the magnetic field alone and accounts for flux transport relative to the motion of the plasma in the system under investigation. The second way topology is important to magnetic reconnection is through modifications of the diffUSion/dissipation physics brought about by the structure of the reconnecting system. This presentation will present an overview and summary of both past and recent results pertaining to both aspects.
Magnetic levitation and MHD propulsion
Tixador, P.
1994-04-01
Magnetic levitation and MHD propulsion are now attracting attention in several countries. Different superconducting MagLev and MHD systems will be described concentrating on, above all, the electromagnetic aspect. Some programmes occurring throughout the world will be described. Magnetic levitated trains could be the new high speed transportation system for the 21st century. Intensive studies involving MagLev trains using superconductivity have been carried out in Japan since 1970. The construction of a 43 km long track is to be the next step. In 1991 a six year programme was launched in the United States to evaluate the performances of MagLev systems for transportation. The MHD (MagnetoHydroDynamic) offers some interesting advantages (efficiency, stealth characteristics, ...) for naval propulsion and increasing attention is being paid towards it nowadays. Japan is also up at the top with the tests of Yamato I, a 260 ton MHD propulsed ship. Depuis quelques années nous assistons à un redémarrage de programmes concernant la lévitation et la propulsion supraconductrices. Différents systèmes supraconducteurs de lévitation et de propulsion seront décrits en examinant plus particulièrement l'aspect électromagnétique. Quelques programmes à travers le monde seront abordés. Les trains à sustentation magnétique pourraient constituer un nouveau mode de transport terrestre à vitesse élevée (500 km/h) pour le 21^e siècle. Les japonais n'ont cessé de s'intéresser à ce système avec bobine supraconductrice. Ils envisagent un stade préindustriel avec la construction d'une ligne de 43 km. En 1991 un programme américain pour une durée de six ans a été lancé pour évaluer les performances des systèmes à lévitation pour le transport aux Etats Unis. La MHD (Magnéto- Hydro-Dynamique) présente des avantages intéressants pour la propulsion navale et un regain d'intérêt apparaît à l'heure actuelle. Le japon se situe là encore à la pointe des d
The Diffusion Region in Collisionless Magnetic Reconnection
Hesse, Michael; Neukirch, Thomas; Schindler, Karl; Kuznetsova, Masha; Zenitani, Seiji
2011-01-01
A review of present understanding of the dissipation region in magnetic reconnection is presented. The review focuses on results of the thermal inertia-based dissipation mechanism but alternative mechanisms are mentioned as well. For the former process, a combination of analytical theory and numerical modeling is presented. Furthermore, a new relation between the electric field expressions for anti-parallel and guide field reconnection is developed.
MHD linear instability code user's manual. [MHD2V106
Energy Technology Data Exchange (ETDEWEB)
Hicks, H.R.; Wooten, J.W.
1976-06-01
This handbook tells the casual user how to run the program MHD2V106, a computer program to determine linear growth rates and eigenmodes for an ideal MHD plasma in a cylinder or toroid of rectangular cross section.
Broken Ergodicity in MHD Turbulence
Shebalin, John V.
2010-01-01
Ideal magnetohydrodynamic (MHD) turbulence may be represented by finite Fourier series, where the inherent periodic box serves as a surrogate for a bounded astrophysical plasma. Independent Fourier coefficients form a canonical ensemble described by a Gaussian probability density function containing a Hermitian covariance matrix with positive eigenvalues. The eigenvalues at lowest wave number can be very small, resulting in a large-scale coherent structure: a turbulent dynamo. This is seen in computations and a theoretical explanation in terms of 'broken ergodicity' contains Taylor s theory of force-free states. An important problem for future work is the case of real, i.e., dissipative flows. In real flows, broken ergodicity and coherent structure are still expected to occur in MHD turbulence at the largest scale, as suggested by low resolution simulations. One challenge is to incorporate coherent structure at the largest scale into the theory of turbulent fluctuations at smaller scales.
The ideal tearing mode: 2D MHD simulations in the linear and nonlinear regimes
Landi, Simone; Del Zanna, Luca; Pucci, Fulvia; Velli, Marco; Papini, Emanuele
2015-04-01
We present compressible, resistive MHD numerical simulations of the linear and nonlinear evolution of the tearing instability, for both Harris sheet and force-free initial equilibrium configurations. We analyze the behavior of a current sheet with aspect ratio S1/3, where S is the Lundquist number. This scaling has been recently recognized to be the threshold for fast reconnection occurring on the ideal Alfvenic timescale, with a maximum growth rate that becomes asymptotically independent on S. Our simulations clearly confirm that the tearing instability maximum growth rate and the full dispersion relation are exactly those predicted by the linear theory, at least for the values of S explored here. In the nonlinear stage, we notice the rapid onset and subsequent coalescence of plasmoids, as observed in previous simulations of the Sweet-Parker reconnection scenario. These findings strongly support the idea that in a fully dynamic regime, as soon as current sheets develop and reach the critical threshold in their aspect ratio of S1/3 (occurring well before the Sweet-Parker configuration is able to form), the tearing mode is able to trigger fast reconnection and plasmoids formation on Alfvenic timescales, as required to explain the violent flare activity often observed in solar and astrophysical plasmas.
3D Resistive MHD Simulations of Formation, Compression, and Acceleration of Compact Tori
Woodruff, Simon; Meyer, Thomas; Stuber, James; Romero-Talamas, Carlos; Brown, Michael; Kaur, Manjit; Schaffner, David
2017-10-01
We present results from extended resistive 3D MHD simulations (NIMROD) pertaining to a new formation method for toroidal plasmas using a reconnection region that forms in a radial implosion, and results from the acceleration of CTs along a drift tube that are accelerated by a coil and are allowed to go tilt unstable and form a helical minimum energy state. The new formation method results from a reconnection region that is generated between two magnetic compression coils that are ramped to 320kV in 2 μs. When the compressing field is aligned anti-parallel to a pre-existing CT, a current sheet and reconnection region forms that accelerates plasma radially inwards up to 500km/s which stagnates and directed energy converts to thermal, raising temperatures to 500eV. When field is aligned parallel to the pre-existing CT, the configuration can be accelerated along a drift tube. For certain ratios of magnetic field to density, the CT goes tilt-unstable forming a twisted flux rope, which can also be accelerated and stagnated on an end wall, where temperature and field increases as the plasma compresses. We compare simulation results with adiabatic scaling relations. Work supported by ARPA-E ALPHA program and DARPA.
Realistic radiative MHD simulation of a solar flare
Rempel, Matthias D.; Cheung, Mark; Chintzoglou, Georgios; Chen, Feng; Testa, Paola; Martinez-Sykora, Juan; Sainz Dalda, Alberto; DeRosa, Marc L.; Viktorovna Malanushenko, Anna; Hansteen, Viggo H.; De Pontieu, Bart; Carlsson, Mats; Gudiksen, Boris; McIntosh, Scott W.
2017-08-01
We present a recently developed version of the MURaM radiative MHD code that includes coronal physics in terms of optically thin radiative loss and field aligned heat conduction. The code employs the "Boris correction" (semi-relativistic MHD with a reduced speed of light) and a hyperbolic treatment of heat conduction, which allow for efficient simulations of the photosphere/corona system by avoiding the severe time-step constraints arising from Alfven wave propagation and heat conduction. We demonstrate that this approach can be used even in dynamic phases such as a flare. We consider a setup in which a flare is triggered by flux emergence into a pre-existing bipolar active region. After the coronal energy release, efficient transport of energy along field lines leads to the formation of flare ribbons within seconds. In the flare ribbons we find downflows for temperatures lower than ~5 MK and upflows at higher temperatures. The resulting soft X-ray emission shows a fast rise and slow decay, reaching a peak corresponding to a mid C-class flare. The post reconnection energy release in the corona leads to average particle energies reaching 50 keV (500 MK under the assumption of a thermal plasma). We show that hard X-ray emission from the corona computed under the assumption of thermal bremsstrahlung can produce a power-law spectrum due to the multi-thermal nature of the plasma. The electron energy flux into the flare ribbons (classic heat conduction with free streaming limit) is highly inhomogeneous and reaches peak values of about 3x1011 erg/cm2/s in a small fraction of the ribbons, indicating regions that could potentially produce hard X-ray footpoint sources. We demonstrate that these findings are robust by comparing simulations computed with different values of the saturation heat flux as well as the "reduced speed of light".
Fernández Pinto, Janeth
2010-01-01
Construímos um magnetômetro utilizando dois sensores Hall de GaAs (Toshiba- THS118) operando em um modo diferencial. Cada sensor tem um circuito préamplificador associado a ele e a diferencia de voltagem entre eles é amplificada com um ganho variável de 30 - 7000. Os sensores Hall têm dimensões típicas de 1,5 x 1,7 x 0,6 mm3 e foram montados separados um do outro de 0,71 mm, em uma configuração espacial planar. O magnetômetro foi testado usando tanto correntes dc (Idc) quant...
Bliokh, Konstantin Y; Nori, Franco
2012-03-23
We consider the relativistic deformation of quantum waves and mechanical bodies carrying intrinsic angular momentum (AM). When observed in a moving reference frame, the centroid of the object undergoes an AM-dependent transverse shift. This is the relativistic analogue of the spin-Hall effect, which occurs in free space without any external fields. Remarkably, the shifts of the geometric and energy centroids differ by a factor of 2, and both centroids are crucial for the Lorentz transformations of the AM tensor. We examine manifestations of the relativistic Hall effect in quantum vortices and mechanical flywheels and also discuss various fundamental aspects of this phenomenon. The perfect agreement of quantum and relativistic approaches allows applications at strikingly different scales, from elementary spinning particles, through classical light, to rotating black holes.
Nonlinear tearing mode study using the almost ideal magnetohydrodynamics (MHD) constraint
Energy Technology Data Exchange (ETDEWEB)
Ren, C.; Callen, J.D. [Univ. of Wisconsin, Madison, WI (United States); Jensen, T.H. [General Atomics, San Diego, CA (United States)
1998-12-31
The tearing mode is an important resistive magnetohydrodynamics (MHD) mode. It perturbs the initial equilibrium magnetic flux surfaces through magnetic field line reconnection to form new flux surfaces with magnetic islands. In the study of the tearing mode, usually the initial equilibria are one dimensional with two ignorable coordinates and the perturbed equilibria are two dimensional with one ignorable coordinate. The tearing mode can be linearly unstable and its growth saturates at a fine amplitude. The neoclassical tearing mode theory shows that the mode can be nonlinearly driven by the bootstrap current even when it is linearly stable to the classical tearing mode. It is important to study the nonlinear behavior of the tearing mode. As an intrinsically nonlinear approach, the use of the almost ideal MHD constraint is suited to study the nonlinear properties of the tearing mode. In this paper, as a validation of the method, the authors study two characteristics of the tearing mode using the almost ideal MHD constraint: (1) the linear stability condition for the initial one dimensional equilibrium; and (2) the final saturation level for the unstable case. In this work, they only consider the simplest case where no gradient of pressure or current density exists at the mode resonant surface.
Current structure and flow pattern on the electron separatrix in reconnection region
Guo, Ruilong; Pu, Zuyin; Wei, Yong
2017-12-01
Results from 2.5D Particle-in-cell (PIC) simulations of symmetric reconnection with negligible guide field reveal that the accessible boundary of the electrons accelerated in the magnetic reconnection region is displayed by enhanced electron nongyrotropy downstream from the X-line. The boundary, hereafter termed the electron separatrix, occurs at a few d e (electron inertial length) away from the exhaust side of the magnetic separatrix. On the inflow side of the electron separatrix, the current is mainly carried by parallel accelerated electrons, served as the inflow region patch of the Hall current. The out-of-plane current density enhances at the electron separatrix. The dominating current carriers are the electrons, nongyrotropic distribution functions of which contribute significantly to the perpendicular electron velocity by increasing the electron diamagnetic drift velocity. When crossing the separatrix region where the Hall electric field is enhanced, electron velocity orientation is changed dramatically, which could be a diagnostic indicator to detect the electron separatrix. In the exhaust region, ions are the main carriers for the out-of-plane current, while the parallel current is still mainly carried by electrons. The current density peak in the separatrix region implies that a thin current sheet is formed apart from the neutral line, which can evolve to the bifurcated current sheet.
CHAIN RECONNECTIONS OBSERVED IN SYMPATHETIC ERUPTIONS
Energy Technology Data Exchange (ETDEWEB)
Joshi, Navin Chandra; Magara, Tetsuya [School of Space Research, Kyung Hee University, Yongin, Gyeonggi-Do, 446-701 (Korea, Republic of); Schmieder, Brigitte; Aulanier, Guillaume [LESIA, Observatoire de Paris, PSL Research University, CNRS Sarbonne Universités, Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cité, 5 place Jules Jansson, F-92195 Meudon (France); Guo, Yang, E-mail: navin@khu.ac.kr, E-mail: njoshi98@gmail.com [School of Astronomy and Space Science, Nanjing University, 210023 Nanjing (China)
2016-04-01
The nature of various plausible causal links between sympathetic events is still a controversial issue. In this work, we present multiwavelength observations of sympathetic eruptions, associated flares, and coronal mass ejections (CMEs) occurring on 2013 November 17 in two close active regions. Two filaments, i.e., F1 and F2, are observed in between the active regions. Successive magnetic reconnections, caused for different reasons (flux cancellation, shear, and expansion) have been identified during the whole event. The first reconnection occurred during the first eruption via flux cancellation between the sheared arcades overlying filament F2, creating a flux rope and leading to the first double-ribbon solar flare. During this phase, we observed the eruption of overlying arcades and coronal loops, which leads to the first CME. The second reconnection is believed to occur between the expanding flux rope of F2 and the overlying arcades of filament F1. We suggest that this reconnection destabilized the equilibrium of filament F1, which further facilitated its eruption. The third stage of reconnection occurred in the wake of the erupting filament F1 between the legs of the overlying arcades. This may create a flux rope and the second double-ribbon flare and a second CME. The fourth reconnection was between the expanding arcades of the erupting filament F1 and the nearby ambient field, which produced the bi-directional plasma flows both upward and downward. Observations and a nonlinear force-free field extrapolation confirm the possibility of reconnection and the causal link between the magnetic systems.
Status of power generation experiments in the NASA Lewis closed-cycle MHD facility.
Sovie, R. J.; Nichols, L. D.
1972-01-01
In this paper the design and operation of the closed-cycle MHD facility is discussed and results obtained in recent experiments are presented. The main components of the facility are a compressor, recuperative heat exchanger (preheater), heater, nozzle, MHD channel with 28 pairs of thoriated tungsten electrodes, cesium condenser, and an argon cooler. The heater can supply 1.1 MW of thermal power to a 2.27 kg/sec gas stream. The facility has been operated at temperatures up to 2100 K with a cesium-seeded argon working fluid. At low magnetic field strengths (B = 0.2 T), the open circuit voltage, Hall voltage and short circuit current obtained are 90, 69, and 47 percent of the theoretical equilibrium values, respectively. The Hall voltage and short circuit current decrease sharply with increasing magnetic field strength, however. Comparison of these data with a wall and boundary layer leakage theory indicates that the generator has shorting paths in the Hall direction.
Quantum critical Hall exponents
Lütken, C A
2014-01-01
We investigate a finite size "double scaling" hypothesis using data from an experiment on a quantum Hall system with short range disorder [1-3]. For Hall bars of width w at temperature T the scaling form is w(-mu)T(-kappa), where the critical exponent mu approximate to 0.23 we extract from the data is comparable to the multi-fractal exponent alpha(0) - 2 obtained from the Chalker-Coddington (CC) model [4]. We also use the data to find the approximate location (in the resistivity plane) of seven quantum critical points, all of which closely agree with the predictions derived long ago from the modular symmetry of a toroidal sigma-model with m matter fields [5]. The value nu(8) = 2.60513 ... of the localisation exponent obtained from the m = 8 model is in excellent agreement with the best available numerical value nu(num) = 2.607 +/- 0.004 derived from the CC-model [6]. Existing experimental data appear to favour the m = 9 model, suggesting that the quantum Hall system is not in the same universality class as th...
3-D magnetic reconnection in colliding laser-produced plasmas
Matteucci, Jackson; Fox, Will; Moissard, Clement; Bhattacharjee, Amitava
2017-10-01
Recent experiments have demonstrated magnetic reconnection between colliding plasma plumes, where the reconnecting magnetic fields were self-generated in the expanding laser-produced plasmas by the Biermann battery effect. Using fully kinetic 3-D particle in cell simulations, we conduct the first end-to-end simulations of these experiments, including self-consistent magnetic field generation via the Biermann effect through driven magnetic field reconnection. The simulations show rich, temporally and spatially dependent magnetic field reconnection. First, we find fast, vertically-localized ``Biermann-mediated reconnection,'' an inherently 3-D reconnection mechanism where the sign of the Biermann term reverses in the reconnection layer, destroying incoming flux and reconnecting flux downstream. Reconnection then transitions to fast, collisionless reconnection sustained by the non-gyrotropic pressure tensor. To separate out the role 3-D mechanisms, 2-D simulations are initialized based on reconnection-plane cuts of the 3-D simulations. These simulations demonstrate: (1) suppression of Biermann-mediated reconnection in 2-D; (2) similar efficacy of pressure tensor mechanisms in 2-D and 3-D; and (3) plasmoids develop in the reconnection layer in 2-D, where-as they are suppressed in 3-D. Supported by NDSEG Fellowship. This research used resources of the OLCF at ORNL, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.
Extended MHD turbulence and its applications to the solar wind
Abdelhamid, Hamdi M; Mahajan, Swadesh M
2016-01-01
Extended MHD is a one-fluid model that incorporates two-fluid effects such as electron inertia and the Hall drift. This model is used to construct fully nonlinear Alfv\\'enic wave solutions, and thereby derive the kinetic and magnetic spectra by resorting to a Kolmogorov-like hypothesis based on the constant cascading rates of the energy and generalized helicities of this model. The magnetic and kinetic spectra are derived in the ideal $\\left(k 1/\\lambda_e\\right)$ regimes; $k$ is the wavenumber and $\\lambda_s = c/\\omega_{p s}$ is the skin depth of species `$s$'. In the Hall regime, it is shown that the emergent results are fully consistent with previous numerical and analytical studies, especially in the context of the solar wind. The focus is primarily on the electron inertia regime, where magnetic energy spectra with power-law indexes of $-11/3$ and $-13/3$ are always recovered. The latter, in particular, is quite close to recent observational evidence from the solar wind with a potential slope of approxima...
Characteristics of Linear MHD Generators with One or a Few Loads
Energy Technology Data Exchange (ETDEWEB)
Witalis, E.A.
1966-02-15
The theoretical performance of linear series segmented MHD generators with finite size electrodes and one or a few identical external loads is investigated. The analysis is an extension of our conformal mapping investigation previously reported. The electrical characteristics are evaluated as functions of the segmentation degree, the Hall parameter and the relative position of short-circuited electrodes. Special consideration is given to the influence of staggering the electrodes, i. e. shifting the relative positions of short-circuited electrodes. General electrical terminal characteristics, i. e. the full current-voltage relation, can not be obtained by the exact analytical method, which is applicable only to so-called design load conditions or infinitely long MHD channels. However, it is shown how the general properties can be explained qualitatively and calculated approximately by describing off-design modes of operation in terms of a fictitious 'effective' number of external loads.
The Dissipation Mechanism in Collisionless Magnetic Reconnection
Hesse, Michael; Kuznetsova, M.; Birn, J.; Schindler, K.
2006-01-01
The dissipation mechanism of magnetic reconnection remains a subject of intense scientific interest. On one hand, one set of recent studies have shown that particle inertia-based processes, which include thermal and bulk inertial effects, provide the reconnection electric field in the diffusion region. On the other hand, a second set of studies emphasizes the role of wave-particle interactions in providing anomalous resistivity in the diffusion region. In this presentation, we present analytical theory results, as well as PIC simulations of guide-field magnetic reconnection. We will show that the thermal electron inertia-based dissipation mechanism, expressed through nongyrotropic electron pressure tensors, remains viable in three dimensions. We will demonstrate the thermal inertia effect through studies of electron distribution functions. Furthermore, we will show that the reconnection electric field provides a transient acceleration on particles traversing the inner reconnection region. This inertial effect can be described as a diffusion-like term of the current density, which matches key features of electron distribution functions.
Kinetic modeling of particle acceleration in a solar null point reconnection region
DEFF Research Database (Denmark)
Baumann, Gisela; Haugbølle, Troels; Nordlund, Åke
2013-01-01
The primary focus of this paper is on the particle acceleration mechanism in solar coronal 3D reconnection null-point regions. Starting from a potential field extrapolation of a SOHO magnetogram taken on 2002 November 16, we first performed MHD simulations with horizontal motions observed by SOHO......-relativistic electron acceleration is mainly driven by a systematic electric field in the current sheet. A non-thermal population of electrons with a power-law distribution in energy forms, featuring a power-law index of about -1.75. This work provides a first step towards bridging the gap between macroscopic scales...... on the order of hundreds of Mm and kinetic scales on the order of cm in the solar corona, and explains how to achieve such a cross-scale coupling by utilizing either physical modifications or (equivalent) modifications of the constants of nature. With their exceptionally high resolution --- up to 135 billion...
Explosive Magnetic Reconnection in Double-current Sheet Systems: Ideal versus Resistive Tearing Mode
Baty, Hubert
2017-03-01
Magnetic reconnection associated with the tearing instability occurring in double-current sheet systems is investigated within the framework of resistive magnetohydrodynamics (MHD) in a two-dimensional Cartesian geometry. A special emphasis on the existence of fast and explosive phases is taken. First, we extend the recent theory on the ideal tearing mode of a single-current sheet to a double-current layer configuration. A linear stability analysis shows that, in long and thin systems with (length to shear layer thickness) aspect ratios scaling as {S}L9/29 (S L being the Lundquist number based on the length scale L), tearing modes can develop on a fast Alfvénic timescale in the asymptotic limit {S}L\\to ∞ . The linear results are confirmed by means of compressible resistive MHD simulations at relatively high S L values (up to 3× {10}6) for different current sheet separations. Moreover, the nonlinear evolution of the ideal double tearing mode (IDTM) exhibits a richer dynamical behavior than its single-tearing counterpart, as a nonlinear explosive growth violently ends up with a disruption when the two current layers interact trough the merging of plasmoids. The final outcome of the system is a relaxation toward a new state, free of magnetic field reversal. The IDTM dynamics is also compared to the resistive double tearing mode dynamics, which develops in similar systems with smaller aspect ratios, ≳ 2π , and exhibits an explosive secondary reconnection, following an initial slow resistive growth phase. Finally, our results are used to discuss the flaring activity in astrophysical magnetically dominated plasmas, with a particular emphasis on pulsar systems.
MHD simulation study of compact toroid injection into magnetized plasmas
Energy Technology Data Exchange (ETDEWEB)
Suzuki, Yoshio; Kishimoto, Yasuaki [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Hayashi, Takaya [National Inst. for Fusion Science, Toki, Gifu (Japan)
2000-06-01
To understand the fuelling process in a fusion device by a compact toroid (CT) plasmoid injection method, we have carried out MHD numerical simulations where a spheromak-like CT (SCT) is injected into a magnetized target plasma region. So far, we revealed that the penetration depth of the SCT plasma becomes shorter than that estimated from the conducting sphere (CS) model, because in the simulation the Lorentz force of the target magnetic field sequentially decelerates the injected SCT while in the CS model only the magnetic pressure force acts as the deceleration mechanism. In this study, we represent the new theoretical model where the injected SCT is decelerated by both the magnetic pressure force and the magnetic tension force (we call it the non-slipping sphere (NS) model) and investigate in detail the deceleration mechanism of the SCT by comparison with simulation results. As a result, it is found that the decrease of the SCT kinetic energy in the simulation coincides with that in the NS model more than in the CS model. It means that not only the magnetic pressure force but also the magnetic tension force acts as the deceleration mechanism of the SCT. Furthermore, it is revealed that magnetic reconnection between the SCT magnetic field and the target magnetic field plays a role to relax the SCT deceleration. (author)
Directory of Open Access Journals (Sweden)
S. Galtier
2001-01-01
Full Text Available We describe the fundamental differences between weak (wave turbulence in incompressible and weakly compressible MHD at the level of three-wave interactions. The main difference is in the structure of the resonant manifolds and the mechanisms of redistribution of spectral densities along the applied magnetic field B0. Similar to pure acoustic waves, a three-wave resonance between collinear wave vectors is observed but, in addition, we also have a resonance through tilted planes and spheres. The properties of resonances and their consequences for the asymptotics are also discussed.
Ceramic components for MHD electrode
Marchant, D.D.
A ceramic component which exhibits electrical conductivity down to near room temperatures has the formula: Hf/sub x/In/sub y/A/sub z/O/sub 2/ where x = 0.1 to 0.4, y = 0.3 to 0.6, z = 0.1 to 0.4 and A is a lanthanide rare earth or yttrium. The component is suitable for use in the fabrication of MHD electrodes or as the current leadout portion of a composite electrode with other ceramic components.
On Reconnection Phenomena in the Standard Nontwist Map
Wurm, A; Morrison, P J
2004-01-01
Separatrix reconnection in the standard nontwist map is described, including exact methods for determining the reconnection threshold in parameter space. These methods are implemented numerically for the case of odd-period orbit reconnection, where {\\it meanders} (invariant tori that are not graphs) appear. Nested meander structure is numerically demonstrated, and the idea of meander transport is discussed.
Szabo, James J.
2015-01-01
This Phase II project is developing a magnesium (Mg) Hall effect thruster system that would open the door for in situ resource utilization (ISRU)-based solar system exploration. Magnesium is light and easy to ionize. For a Mars- Earth transfer, the propellant mass savings with respect to a xenon Hall effect thruster (HET) system are enormous. Magnesium also can be combusted in a rocket with carbon dioxide (CO2) or water (H2O), enabling a multimode propulsion system with propellant sharing and ISRU. In the near term, CO2 and H2O would be collected in situ on Mars or the moon. In the far term, Mg itself would be collected from Martian and lunar regolith. In Phase I, an integrated, medium-power (1- to 3-kW) Mg HET system was developed and tested. Controlled, steady operation at constant voltage and power was demonstrated. Preliminary measurements indicate a specific impulse (Isp) greater than 4,000 s was achieved at a discharge potential of 400 V. The feasibility of delivering fluidized Mg powder to a medium- or high-power thruster also was demonstrated. Phase II of the project evaluated the performance of an integrated, highpower Mg Hall thruster system in a relevant space environment. Researchers improved the medium power thruster system and characterized it in detail. Researchers also designed and built a high-power (8- to 20-kW) Mg HET. A fluidized powder feed system supporting the high-power thruster was built and delivered to Busek Company, Inc.
Joglekar, A S; Fox, W; Bhattacharjee, A
2015-01-01
In the interaction of high-power laser beams with solid density plasma there are a number of mechanisms that generate strong magnetic fields. Such fields subsequently inhibit or redirect electron flows, but can themselves be advected by heat fluxes, resulting in complex interplay between thermal transport and magnetic fields.We show that for heating by multiple laser spots reconnection of magnetic field lines can occur, mediated by these heat fluxes, using a fully implicit 2D Vlasov-Fokker-Planck code. Under such conditions, the reconnection rate is dictated by heat flows rather than Alfv\\`enic flows. We find that this mechanism is only relevant in a high $\\beta$ plasma. However, the Hall parameter $\\omega_c \\tau_{ei}$ can be large so that thermal transport is strongly modified by these magnetic fields, which can impact longer time scale temperature homogeneity and ion dynamics in the system.
Joglekar, A S; Thomas, A G R; Fox, W; Bhattacharjee, A
2014-03-14
In the interaction of high-power laser beams with solid density plasma there are a number of mechanisms that generate strong magnetic fields. Such fields subsequently inhibit or redirect electron flows, but can themselves be advected by heat fluxes, resulting in complex interplay between thermal transport and magnetic fields. We show that for heating by multiple laser spots reconnection of magnetic field lines can occur, mediated by these heat fluxes, using a fully implicit 2D Vlasov-Fokker-Planck code. Under such conditions, the reconnection rate is dictated by heat flows rather than Alfvènic flows. We find that this mechanism is only relevant in a high β plasma. However, the Hall parameter ωcτei can be large so that thermal transport is strongly modified by these magnetic fields, which can impact longer time scale temperature homogeneity and ion dynamics in the system.
Feasibility of MHD submarine propulsion
Energy Technology Data Exchange (ETDEWEB)
Doss, E.D. (ed.) (Argonne National Lab., IL (United States)); Sikes, W.C. (ed.) (Newport News Shipbuilding and Dry Dock Co., VA (United States))
1992-09-01
This report describes the work performed during Phase 1 and Phase 2 of the collaborative research program established between Argonne National Laboratory (ANL) and Newport News Shipbuilding and Dry Dock Company (NNS). Phase I of the program focused on the development of computer models for Magnetohydrodynamic (MHD) propulsion. Phase 2 focused on the experimental validation of the thruster performance models and the identification, through testing, of any phenomena which may impact the attractiveness of this propulsion system for shipboard applications. The report discusses in detail the work performed in Phase 2 of the program. In Phase 2, a two Tesla test facility was designed, built, and operated. The facility test loop, its components, and their design are presented. The test matrix and its rationale are discussed. Representative experimental results of the test program are presented, and are compared to computer model predictions. In general, the results of the tests and their comparison with the predictions indicate that thephenomena affecting the performance of MHD seawater thrusters are well understood and can be accurately predicted with the developed thruster computer models.
MHD (Magnetohydrodynamics) recovery and regeneration
Energy Technology Data Exchange (ETDEWEB)
McIlroy, R. A. [Babcock and Wilcox Co., Alliance, OH (United States). Research Center; Probert, P. B. [Babcock and Wilcox Co., Alliance, OH (United States). Research Center; Lahoda, E. J. [Westinghouse Electric Corp., Pittsburgh, PA (United States); Swift, W. M. [Argonne National Lab. (ANL), Argonne, IL (United States); Jackson, D. M. [Univ. of Tennessee Space Inst. (UTSI), Tullahoma, TN (United States); Prasad, J. [Univ. of Tennessee Space Inst. (UTSI), Tullahoma, TN (United States); Martin, J. [Hudson Engineering (United States); Rogers, C. [Hudson Engineering (United States); Ho, K. K. [Babcock and Wilcox Co., Alliance, OH (United States). Research Center; Senary, M. K. [Babcock and Wilcox Co., Alliance, OH (United States). Research Center; Lee, S. [Univ. of Akron, OH (United States)
1988-10-01
A two-phase program investigating MHD seed regeneration is described. In Phase I, bench scale experiments were carried out to demonstrate the technical feasibility of a proposed Seed Regeneration Process. The Phase I data has been used for the preliminary design of a Proof-of-Concept (POC) plant which will be built and tested in Phase II. The Phase I data will also be used to estimate the costs of a 300 Mw(t) demonstration plant for comparison with other processes. The Seed Regeneration Process consists of two major subprocesses; a Westinghouse Dry Reduction process and a modified Tampella (sulfur) Recovery process. The Westinghouse process reduces the recovered spent seed (i.e., potassium sulfate) to potassium polysulfide in a rotary kiln. The reduction product is dissolved in water to form green liquor, clarified to remove residual coal ash, and sent to the Tampella sulfur release system. The sulfur is released using carbon dioxide from flue gas in a two stage reaction. The sulfur is converted to elemental sulfur as a marketable by product. The potassium is crystallized from the green liquor and dried to the anhydrous form for return to the MHD unit.
Synergy of Stochastic and Systematic Energization of Plasmas during Turbulent Reconnection
Pisokas, Theophilos; Vlahos, Loukas; Isliker, Heinz
2018-01-01
The important characteristic of turbulent reconnection is that it combines large-scale magnetic disturbances (δ B/B∼ 1) with randomly distributed unstable current sheets (UCSs). Many well-known nonlinear MHD structures (strong turbulence, current sheet(s), shock(s)) lead asymptotically to the state of turbulent reconnection. We analyze in this article, for the first time, the energization of electrons and ions in a large-scale environment that combines large-amplitude disturbances propagating with sub-Alfvénic speed with UCSs. The magnetic disturbances interact stochastically (second-order Fermi) with the charged particles and play a crucial role in the heating of the particles, while the UCSs interact systematically (first-order Fermi) and play a crucial role in the formation of the high-energy tail. The synergy of stochastic and systematic acceleration provided by the mixture of magnetic disturbances and UCSs influences the energetics of the thermal and nonthermal particles, the power-law index, and the length of time the particles remain inside the energy release volume. We show that this synergy can explain the observed very fast and impulsive particle acceleration and the slightly delayed formation of a superhot particle population.
Hall Potential Distribution in Anti-Hall bar Geometry
Tarquini, Vinicio; Knighton, Talbot; Wu, Zhe; Huang, Jian; Pfeiffer, Loren; West, Ken
A high quality system has been fabricated in an Anti-Hall bar geometry, by opening a 1.4 x 2.0 mm rectangular window using wet etching in the middle of a 2.4 x 3.0 mm two-dimensional high-mobility (μ = 2 . 6 × 106 cm2/(V .s)) hole system confined in a 20 nm wide (100) GaAs quantum well. Topologically this system is equivalent to a normal Hall bar even though there is an extra set of edges in the center. This configuration allows us to probe the Hall potential distribution in relation to the formation of edge channels. The Quantum Hall measurements at 30 mK show a standard behavior of the outer edges. At each Hall plateau the inner edge becomes an equipotential and the Hall voltage between the inner and outer edges exhibits a drastic asymmetry for the upper and lower arms of the sample. At various integer fillings, depending on the chirality, the voltage drop across one of the arms measures 0 while the drop across the other one is equal to the Hall voltage. This behavior will be explained in terms of the dynamical process of forming the edge channels which also will account for the more irregular behavior of the Hall potential in more disordered systems. NSF DMR-1410302.
Quantum Hall Electron Nematics
MacDonald, Allan
In 2D electron systems hosted by crystals with hexagonal symmetry, electron nematic phases with spontaneously broken C3 symmetry are expected to occur in the quantum Hall regime when triplets of Landau levels associated with three different Fermi surface pockets are partially filled. The broken symmetry state is driven by intravalley Coulombic exchange interactions that favor spontaneously polarized valley occupations. I will discuss three different examples of 2D electron systems in which this type of broken symmetry state is expected to occur: i) the SnTe (111) surface, ii) the Bi (111) surface. and iii) unbalanced bilayer graphene. This type of quantum Hall electron nematic state has so far been confirmed only in the Bi (111) case, in which the anisotropic quasiparticle wavefunctions of the broken symmetry state were directly imaged. In the SnTe case the nematic state phase boundary is controlled by a competition between intravalley Coulomb interactions and intervalley scattering processes that increase in relative strength with magnetic field. An in-plane Zeeman field alters the phase diagram by lifting the three-fold Landau level degeneracy, yielding a ground state energy with 2 π/3 periodicity as a function of Zeeman-field orientation angle. I will comment on the possibility of observing similar states in the absence of a magnetic field. Supported by DOE Division of Materials Sciences and Engineering Grant DE-FG03-02ER45958.
Maximilien Brice
2002-01-01
Since 1992, after its move from the 600 MeV SC, ISOLDE is a customer of the Booster (then 1 GeV, now 1.4 GeV). The intense Booster beam (some 3E13 protons per pulse) is directed onto a target, from which a mixture of isotopes emanates. After ionization and electrostatic acceleration to 60 keV, they enter one of the 2 spectrometers (General Purpose Separator: GPS, and High Resolution Separator: HRS) from which the selected ions are directed to the experiments. The photos show: the REX-ISOLDE post accelerator; the mini-ball experiment; an overview of the ISOLDE hall. In the picture (_12) of the hall, the separators are behind the wall. From either of them, beams can be directed into any of the many beamlines towards the experiments, some of which are visible in the foreground. The elevated cubicle at the left is EBIS (Electron Beam Ion Source), which acts as a charge-state multiplier for the REX facility. The ions are further mass analzyzed and passed on to the linac which accelerates them to higher energies. T...
Waves and electron acceleration in the separatrix regions of magnetic reconnection
Fujimoto, Keizo
dominant in the inflow side of the separatrices. The waves are generated mainly due to the electron beams that constitute the Hall current. The relatively weak beams before strong acceleration trigger the Buneman instability which results in the waves with a frequency of the lower hybrid range. The strong acceleration occurs along the field line due to a localized potential hump and causes the density cavity. The intense electron beams excite the electron two-stream instability and the beam driven whistler instability. The former mode gives the Langmuir waves and the flat-top electron distributions in the parallel direction, both of which have been observed frequently in the Earth's magnetotail. The latter mode, on the other hand, scatters the electrons in the perpendicular direction, forming isotropic distribution with non-thermal high-energy tail. Both the Buneman and electron two-stream instabilities evolve the ESWs in the nonlinear phases. In this paper, we present the generation mechanisms of the waves around the separatrices and their roles in magnetic reconnection. The mechanism of the intense electron acceleration along the field line will be discussed.
Application of Magnetohydrodynamics (MHD) and Recent Research Trend
Harada, Nobuhiro
As the applications of Magnetohydrodynamic (MHD) energy conversion, research and development for high-efficiency and low emission electric power generation system, MHD accelerations and/or MHD thrusters, and flow control around hypersonic and re-entry vehicles are introduced. For closed cycle MHD power generation, high-efficiency MHD single system is the most hopeful system and space power system using mixed inert gas (MIG) working medium is proposed. For open cycle MHD, high-efficiency coal fired MHD system with CO2 recovery has been proposed. As inverse process of MHD power generation, MHD accelerators/thrusters are expected as the next generation propulsion system. Heat flux reduction to protect re-entry vehicles is expected by an MHD process for safety return from space missions.
Araki, Keisuke
2016-01-01
In this study, the dynamics of a dissipationless incompressible Hall magnetohydrodynamic (HMHD) medium are formulated as geodesics on a direct product of two volume-preserving diffeomorphism groups. Examinations of the stabilities of the hydrodynamic (HD, $\\alpha=0$) and magnetohydrodynamic (MHD, $\\alpha\\to0$) motions and the $O(\\alpha)$ Hall-term effect in terms of the Jacobi equation and the Riemannian sectional curvature tensor are presented, where {\\alpha} represents the Hall-term strength parameter. Formulations are given for the geodesic and Jacobi equations based on a linear connection with physically desirable properties, which agrees with the Levi-Civita connection. Derivations of the explicit normal-mode expressions for the Riemannian metric, Levi-Civita connection, and related formulae and equations are also provided using the generalized Els\\"asser variables (GEVs). It is very interesting that the sectional curvatures of the MHD and HMHD systems between two GEV modes were found to take both the po...
Cosmopolitanism - Conversation with Stuart Hall
Hall, Stuart
2006-01-01
Forty minute conversation between Stuart Hall and Pnina Werbner, filmed and edited by Haim Bresheeth. Synopsis by Sarah Harrison. Conversation between Stuart Hall and Pnina Werbner on the theme of Cosmopolitanism (to be shown at the Association of Social Anthropologists Silver Jubilee conference in 2006), in March 2006
Effects on magnetic reconnection of a density asymmetry across the current sheet
Directory of Open Access Journals (Sweden)
K. G. Tanaka
2008-08-01
Full Text Available The magnetopause (MP reconnection is characterized by a density asymmetry across the current sheet. The asymmetry is expected to produce characteristic features in the reconnection layer. Here we present a comparison between the Cluster MP crossing reported by Retinò et al. (2006 and virtual observations in two-dimensional particle-in-cell simulation results. The simulation, which includes the density asymmetry but has zero guide field in the initial condition, has reproduced well the observed features as follows: (1 The prominent density dip region is detected at the separatrix region (SR on the magnetospheric (MSP side of the MP. (2 The intense electric field normal to the MP is pointing to the center of the MP at the location where the density dip is detected. (3 The ion bulk outflow due to the magnetic reconnection is seen to be biased towards the MSP side. (4 The out-of-plane magnetic field (the Hall magnetic field has bipolar rather than quadrupolar structure, the latter of which is seen for a density symmetric case. The simulation also showed rich electron dynamics (formation of field-aligned beams in the proximity of the separatrices, which was not fully resolved in the observations. Stepping beyond the simulation-observation comparison, we have also analyzed the electron acceleration and the field line structure in the simulation results. It is found that the bipolar Hall magnetic field structure is produced by the substantial drift of the reconnected field lines at the MSP SR due to the enhanced normal electric field. The field-aligned electrons at the same MSP SR are identified as the gun smokes of the electron acceleration in the close proximity of the X-line. We have also analyzed the X-line structure obtained in the simulation to find that the density asymmetry leads to a steep density gradient in the in-flow region, which may lead to a non-stationary behavior of the X-line when three-dimensional freedom is taken into account.
Cassidy, David C.
2013-03-01
It's July 1945. Germany is in defeat and the atomic bombs are on their way to Japan. Under the direction of Samuel Goudsmit, the Allies are holding some of the top German nuclear scientists-among them Heisenberg, Hahn, and Gerlach-captive in Farm Hall, an English country manor near Cambridge, England. As secret microphones record their conversations, the scientists are unaware of why they are being held or for how long. Thinking themselves far ahead of the Allies, how will they react to the news of the atomic bombs? How will these famous scientists explain to themselves and to the world their failure to achieve even a chain reaction? How will they come to terms with the horror of the Third Reich, their work for such a regime, and their behavior during that period? This one-act play is based upon the transcripts of their conversations as well as the author's historical work on the subject.
Cosmological AMR MHD with Enzo
Energy Technology Data Exchange (ETDEWEB)
Xu, Hao [Los Alamos National Laboratory; Li, Hui [Los Alamos National Laboratory; Li, Shengtai [Los Alamos National Laboratory
2009-01-01
In this work, we present EnzoMHD, the extension of the cosmological code Enzoto include magnetic fields. We use the hyperbolic solver of Li et al. (2008) for the computation of interface fluxes. We use constrained transport methods of Balsara & Spicer (1999) and Gardiner & Stone (2005) to advance the induction equation, the reconstruction technique of Balsara (2001) to extend the Adaptive Mesh Refinement of Berger & Colella (1989) already used in Enzo, though formulated in a slightly different way for ease of implementation. This combination of methods preserves the divergence of the magnetic field to machine precision. We use operator splitting to include gravity and cosmological expansion. We then present a series of cosmological and non cosmologjcal tests problems to demonstrate the quality of solution resulting from this combination of solvers.
Observation of turbulent intermittency scaling with magnetic helicity in an MHD plasma wind tunnel.
Schaffner, D A; Wan, A; Brown, M R
2014-04-25
The intermittency in turbulent magnetic field fluctuations has been observed to scale with the amount of magnetic helicity injected into a laboratory plasma. An unstable spheromak injected into the MHD wind tunnel of the Swarthmore Spheromak Experiment displays turbulent magnetic and plasma fluctuations as it relaxes into a Taylor state. The level of intermittency of this turbulence is determined by finding the flatness of the probability distribution function of increments for magnetic pickup coil fluctuations B˙(t). The intermittency increases with the injected helicity, but spectral indices are unaffected by this variation. While evidence is provided which supports the hypothesis that current sheets and reconnection sites are related to the generation of this intermittent signal, the true nature of the observed intermittency remains unknown.
Disk MHD Conversion System for Nerva Reactor
National Research Council Canada - National Science Library
Jackson, W
1992-01-01
The principal results of the study have been to: (1) confirm that cesium seeded hydrogen plasma disk MHD generator can meet its expected performance while operating in a stable plasma regime; and (2...
Open Boundary Conditions for Dissipative MHD
Energy Technology Data Exchange (ETDEWEB)
Meier, E T
2011-11-10
In modeling magnetic confinement, astrophysics, and plasma propulsion, representing the entire physical domain is often difficult or impossible, and artificial, or 'open' boundaries are appropriate. A novel open boundary condition (BC) for dissipative MHD, called Lacuna-based open BC (LOBC), is presented. LOBC, based on the idea of lacuna-based truncation originally presented by V.S. Ryaben'kii and S.V. Tsynkov, provide truncation with low numerical noise and minimal reflections. For hyperbolic systems, characteristic-based BC (CBC) exist for separating the solution into outgoing and incoming parts. In the hyperbolic-parabolic dissipative MHD system, such separation is not possible, and CBC are numerically unstable. LOBC are applied in dissipative MHD test problems including a translating FRC, and coaxial-electrode plasma acceleration. Solution quality is compared to solutions using CBC and zero-normal derivative BC. LOBC are a promising new open BC option for dissipative MHD.
Global MHD simulations of Neptune's magnetosphere
National Research Council Canada - National Science Library
Mejnertsen, L; Eastwood, J. P; Chittenden, J. P; Masters, A
2016-01-01
A global magnetohydrodynamic (MHD) simulation has been performed in order to investigate the outer boundaries of Neptune's magnetosphere at the time of Voyager 2's flyby in 1989 and to better understand the dynamics of magnetospheres...
Hall Effect Gyrators and Circulators
Directory of Open Access Journals (Sweden)
Giovanni Viola
2014-05-01
Full Text Available The electronic circulator and its close relative the gyrator are invaluable tools for noise management and signal routing in the current generation of low-temperature microwave systems for the implementation of new quantum technologies. The current implementation of these devices using the Faraday effect is satisfactory but requires a bulky structure whose physical dimension is close to the microwave wavelength employed. The Hall effect is an alternative nonreciprocal effect that can also be used to produce desired device functionality. We review earlier efforts to use an Ohmically contacted four-terminal Hall bar, explaining why this approach leads to unacceptably high device loss. We find that capacitive coupling to such a Hall conductor has much greater promise for achieving good circulator and gyrator functionality. We formulate a classical Ohm-Hall analysis for calculating the properties of such a device, and show how this classical theory simplifies remarkably in the limiting case of the Hall angle approaching 90°. In this limit, we find that either a four-terminal or a three-terminal capacitive device can give excellent circulator behavior, with device dimensions far smaller than the ac wavelength. An experiment is proposed to achieve GHz-band gyration in millimeter (and smaller scale structures employing either semiconductor heterostructure or graphene Hall conductors. An inductively coupled scheme for realizing a Hall gyrator is also analyzed.
Directory of Open Access Journals (Sweden)
N. Aunai
2011-09-01
Full Text Available Cluster data is analyzed to test the proton pressure tensor variations as a proxy of the proton decoupling region in collisionless magnetic reconnection. The Hall electric potential well created in the proton decoupling region results in bounce trajectories of the protons which appears as a characteristic variation of one of the in-plane off-diagonal components of the proton pressure tensor in this region. The event studied in this paper is found to be consistent with classical Hall field signatures with a possible 20% guide field. Moreover, correlations between this pressure tensor component, magnetic field and bulk flow are proposed and validated, together with the expected counterstreaming proton distribution functions.
Solar driven liquid metal MHD power generator
Lee, J. H.; Hohl, F. (Inventor)
1983-01-01
A solar energy collector focuses solar energy onto a solar oven which is attached to a mixer which in turn is attached to the channel of a MHD generator. Gas enters the oven and a liquid metal enters the mixer. The gas/liquid metal mixture is heated by the collected solar energy and moves through the MHD generator thereby generating electrical power. The mixture is then separated and recycled.
Topological Hall and spin Hall effects in disordered skyrmionic textures
Ndiaye, Papa Birame
2017-02-24
We carry out a thorough study of the topological Hall and topological spin Hall effects in disordered skyrmionic systems: the dimensionless (spin) Hall angles are evaluated across the energy-band structure in the multiprobe Landauer-Büttiker formalism and their link to the effective magnetic field emerging from the real-space topology of the spin texture is highlighted. We discuss these results for an optimal skyrmion size and for various sizes of the sample and find that the adiabatic approximation still holds for large skyrmions as well as for nanoskyrmions. Finally, we test the robustness of the topological signals against disorder strength and show that the topological Hall effect is highly sensitive to momentum scattering.
Topological Hall and Spin Hall Effects in Disordered Skyrmionic Textures
Ndiaye, Papa Birame; Akosa, Collins; Manchon, Aurelien; Spintronics Theory Group Team
We carry out a throughout study of the topological Hall and topological spin Hall effects in disordered skyrmionic systems: the dimensionless (spin) Hall angles are evaluated across the energy band structure in the multiprobe Landauer-Büttiker formalism and their link to the effective magnetic field emerging from the real space topology of the spin texture is highlighted. We discuss these results for an optimal skyrmion size and for various sizes of the sample and found that the adiabatic approximation still holds for large skyrmions as well as for few atomic size-nanoskyrmions. Finally, we test the robustness of the topological signals against disorder strength and show that topological Hall effect is highly sensitive to momentum scattering. This work was supported by the King Abdullah University of Science and Technology (KAUST) through the Award No OSR-CRG URF/1/1693-01 from the Office of Sponsored Research (OSR).
Measurements of nonlinear Hall-driven reconnection in the reversed field pinch
Tharp, Timothy D.
Complex organisms are able to develop because of the complex regulatory systems that control their gene expression. The first step in this regulation, transcription initiation, is controlled by transcription factors. Transcription factors are modular proteins composed of two distinct domains, the DNA binding domain and the regulatory domain. These molecules are involved in a plethora of important biological processes including embryogenesis, development, cell health, and cancer. Tissue enriched transcription factors Nkx-2.5 and Gata4 are involved in cardiac development and cardiac health. In this thesis the DNA binding specificity of Nkx-2.5 will be analyzed using a high throughput double stranded DNA platform called Cognate Site Identifier (CSI) arrays (Chapter 2). The full DNA binding specificity of Nkx-2.5 and Nkx-2.5 mutants will be visualized using Sequence Specificity Landscapes (SSLs). In Chapter 3, the definition of binding specificity will be investigated by evaluating a number of different DNA binding folds by CSI and SSLs. CSI and SSLs will also be used to evaluate different pyrrole/imidazole hairpin polyamides in order to better characterize these small molecule DNA binding domains. CSI and SSL data will be applied to the genome in order to explain the biological function an artificial transcription factor. Chapter 4 will discuss the mechanism of nonspecific DNA binding. The historical means of predicting DNA binding will be challenged by utilizing high throughput experiments. The effect of salt concentration on both specific and nonspecific binding will also be investigated. Finally, in Chapter 5, a generation of Protein DNA Dimerizer will be discussed. A PDD that regulates transcription on genomic DNA by binding cooperatively with the heart IF Gata4 will be characterized. These studies provide understanding of, and a means to control, how transcription factors sample the endless sea of DNA in the genome in order to regulate gene expression with such wonderful specificity.
Modeling of flow-dominated MHD instabilities at WiPPAL using NIMROD
Flanagan, K.; McCollam, K. J.; Milhone, J.; Mirnov, V. V.; Nornberg, M. D.; Peterson, E. E.; Siller, R.; Forest, C. B.
2017-10-01
Using the NIMROD (non-ideal MHD with rotation - open discussion) code developed at UW-Madison, we model two different flow scenarios to study the onset of MHD instabilities in flow-dominated plasmas in the Big Red Ball (BRB) and the Plasma Couette Experiment (PCX). Both flows rely on volumetric current drive, where a large current is drawn through the plasma across a weak magnetic field, injecting J × B torque across the whole volume. The first scenario uses a vertical applied magnetic field and a mostly radial injected current to create Couette-like flows which may excite the magnetorotational instability (MRI). In the other scenario, a quadrupolar field is applied to create counter-rotating von Karman-like flow that demonstrates a dynamo-like instability. For both scenarios, the differences between Hall and MHD Ohm's laws are explored. The implementation of BRB geometry in NIMROD, details of the observed flows, and instability results are shown. This work was funded by DoE and NSF.
Planar Hall effect bridge magnetic field sensors
DEFF Research Database (Denmark)
Henriksen, A.D.; Dalslet, Bjarke Thomas; Skieller, D.H.
2010-01-01
Until now, the planar Hall effect has been studied in samples with cross-shaped Hall geometry. We demonstrate theoretically and experimentally that the planar Hall effect can be observed for an exchange-biased ferromagnetic material in a Wheatstone bridge topology and that the sensor signal can...... Hall effect bridge sensors....
Magnetic reconnection in the near Venusian magnetotail.
Zhang, T L; Lu, Q M; Baumjohann, W; Russell, C T; Fedorov, A; Barabash, S; Coates, A J; Du, A M; Cao, J B; Nakamura, R; Teh, W L; Wang, R S; Dou, X K; Wang, S; Glassmeier, K H; Auster, H U; Balikhin, M
2012-05-04
Observations with the Venus Express magnetometer and low-energy particle detector revealed magnetic field and plasma behavior in the near-Venus wake that is symptomatic of magnetic reconnection, a process that occurs in Earth's magnetotail but is not expected in the magnetotail of a nonmagnetized planet such as Venus. On 15 May 2006, the plasma flow in this region was toward the planet, and the magnetic field component transverse to the flow was reversed. Magnetic reconnection is a plasma process that changes the topology of the magnetic field and results in energy exchange between the magnetic field and the plasma. Thus, the energetics of the Venus magnetotail resembles that of the terrestrial tail, where energy is stored and later released from the magnetic field to the plasma.
Nonlinear magnetic reconnection in low collisionality plasmas
Energy Technology Data Exchange (ETDEWEB)
Ottaviani, M. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Porcelli, F. [Politecnico di Torino, Turin (Italy)
1994-07-01
The magnetic reconnection in collisionless regimes, where electron inertia is responsible for the decoupling of the plasma motion from that of the field lines, is discussed. Since the linear theory of m=1 modes breaks down for very small magnetic island widths, a non linear analysis is called for. Thus, the behaviour of a collisionless, 2-D fluid slab model in the limit {rho}/d -> 0, is analyzed. The main result is that, when the island size is larger than the linear layer but smaller than the equilibrium scale length, the reconnection rate exhibits a quasi-explosive time behaviour, during which a current density sub-layer narrower than the skin depth is formed. It is believed that the inclusion of the electron initial term in Ohm`s law opens the possibility to understand the rapidity of relaxation process observed in low collisionality plasmas. 7 refs., 6 figs.
Trefoil knot timescales for reconnection and helicity
Kerr, Robert M.
2018-02-01
Three-dimensional images of evolving numerical trefoil vortex knots are used to study the growth and decay of the enstrophy and helicity. Negative helicity density (hpreserved through the first reconnection, as suggested theoretically (Laing et al 2015 Sci. Rep. 5 9224) and observed experimentally (Scheeler et al 2014a Proc. Natl Acad. Sci. 111 15350–5). Next, to maintain the growth of the enstrophy and positive helicity within the trefoil while { H } is preserved, hgood correspondence between the evolution of the simulated vortices and the reconnecting experimental trefoil of Kleckner and Irvine (2017 Nat. Phys. 9 253–8) when time is scaled by their respective nonlinear timescales t f . The timescales t f are based upon by the radii r f of the trefoils and their circulations Γ, so long as the strong camber of the experimental hydrofoil models is used to correct the published experimental circulations Γ that use only the flat-plate approximation.
"Hall mees" Linnateatris / Triin Sinissaar
Sinissaar, Triin
1999-01-01
Tallinn Linnateatri ja Raadioteatri ühislavastus "Hall mees" Gill Adamsi näidendi järgi, lavastaja Eero Spriit, osades Helene Vannari ja Väino Laes, kunstnik Kustav - Agu Püüman. Esietendus 22. okt
Herstructurering Stageprocessen Van Hall Larenstein
Schelvis-Smit, A.A.M.
2009-01-01
Verslag van de herstructurering van het stageproces bij het Onderwijsbureau van Hogelschool VanHall Larenstein. Uitgangspunt hierbij was het onderling uitwisselbaar worden van personeel bij het uitvoeren van werkzaamheden met betrekking tot stages.
Shared Magnetics Hall Thruster Project
National Aeronautics and Space Administration — In the proposed Phase II program, Busek Co. will demonstrate an innovative methodology for clustering Hall thrusters into a high performance, very high power...
A game generalizing Hall's theorem
Rabern, Landon
2012-01-01
We characterize the initial positions from which the first player has a winning strategy in a certain two-player game. This provides a generalization of Hall's theorem. Vizing's edge coloring theorem follows from a special case.
Shared Magnetics Hall Thruster Project
National Aeronautics and Space Administration — In the proposed Phase I program, Busek Co. will demonstrate an innovative methodology for clustering Hall thrusters into a high performance, very high power...
Directory of Open Access Journals (Sweden)
Bamshad Michael J
2009-03-01
Full Text Available Abstract Sheldon-Hall syndrome (SHS is a rare multiple congenital contracture syndrome characterized by contractures of the distal joints of the limbs, triangular face, downslanting palpebral fissures, small mouth, and high arched palate. Epidemiological data for the prevalence of SHS are not available, but less than 100 cases have been reported in the literature. Other common clinical features of SHS include prominent nasolabial folds, high arched palate, attached earlobes, mild cervical webbing, short stature, severe camptodactyly, ulnar deviation, and vertical talus and/or talipes equinovarus. Typically, the contractures are most severe at birth and non-progressive. SHS is inherited in an autosomal dominant pattern but about half the cases are sporadic. Mutations in either MYH3, TNNI2, or TNNT3 have been found in about 50% of cases. These genes encode proteins of the contractile apparatus of fast twitch skeletal muscle fibers. The diagnosis of SHS is based on clinical criteria. Mutation analysis is useful to distinguish SHS from arthrogryposis syndromes with similar features (e.g. distal arthrogryposis 1 and Freeman-Sheldon syndrome. Prenatal diagnosis by ultrasonography is feasible at 18–24 weeks of gestation. If the family history is positive and the mutation is known in the family, prenatal molecular genetic diagnosis is possible. There is no specific therapy for SHS. However, patients benefit from early intervention with occupational and physical therapy, serial casting, and/or surgery. Life expectancy and cognitive abilities are normal.
Observational Aspects of Magnetic Reconnection at the Earth's Magnetosphere
Souza, Vitor M.; Koga, Daiki; Gonzalez, Walter D.; Cardoso, Flavia R.
2017-08-01
Magnetic field reconnection has shown to be the dominant process in the solar wind-Earth's magnetosphere interaction. It enables mass, momentum, and energy exchange between different plasma regimes, and it is regarded as an efficient plasma acceleration and heating mechanism. Reconnection has been observed to occur in laboratory plasmas, at planetary magnetospheres in our Solar System, and the Sun. In this work, we focus on analyzing the characteristics of magnetic reconnection at the Earth's magnetosphere according to spaceborne observations in the vicinity of our planet. Firstly, the locations where magnetic field reconnection are expected to occur within the vast magnetospheric region are addressed, and is shown how they are influenced by changes in the interplanetary magnetic field direction. The main magnetic field and plasma signatures of magnetic reconnection are discussed from both theoretical and observational points of view. Spacecraft observations of ion inertial length scale reconnection are also presented.
Corotating Magnetic Reconnection Site in Saturn’s Magnetosphere
Yao, Z. H.; Coates, A. J.; Ray, L. C.; Rae, I. J.; Grodent, D.; Jones, G. H.; Dougherty, M. K.; Owen, C. J.; Guo, R. L.; Dunn, W. R.; Radioti, A.; Pu, Z. Y.; Lewis, G. R.; Waite, J. H.; Gérard, J.-C.
2017-09-01
Using measurements from the Cassini spacecraft in Saturn’s magnetosphere, we propose a 3D physical picture of a corotating reconnection site, which can only be driven by an internally generated source. Our results demonstrate that the corotating magnetic reconnection can drive an expansion of the current sheet in Saturn’s magnetosphere and, consequently, can produce Fermi acceleration of electrons. This reconnection site lasted for longer than one of Saturn’s rotation period. The long-lasting and corotating natures of the magnetic reconnection site at Saturn suggest fundamentally different roles of magnetic reconnection in driving magnetospheric dynamics (e.g., the auroral precipitation) from the Earth. Our corotating reconnection picture could also potentially shed light on the fast rotating magnetized plasma environments in the solar system and beyond.
Corotating Magnetic Reconnection Site in Saturn’s Magnetosphere
Energy Technology Data Exchange (ETDEWEB)
Yao, Z. H.; Coates, A. J.; Ray, L. C.; Rae, I. J.; Jones, G. H.; Owen, C. J.; Dunn, W. R.; Lewis, G. R. [UCL Mullard Space Science Laboratory, Dorking RH5 6NT (United Kingdom); Grodent, D.; Radioti, A.; Gérard, J.-C. [Laboratoire de Physique Atmosphérique et Planétaire, STAR institute, Université de Liège, B-4000 Liège (Belgium); Dougherty, M. K. [Imperial College of Science, Technology and Medicine, Space and Atmospheric Physics Group, Department of Physics, London SW7 2BW (United Kingdom); Guo, R. L. [Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing (China); Pu, Z. Y. [School of Earth and Space Sciences, Peking University, Beijing (China); Waite, J. H., E-mail: z.yao@ucl.ac.uk [Southwest Research Institute, San Antonio, TX (United States)
2017-09-10
Using measurements from the Cassini spacecraft in Saturn’s magnetosphere, we propose a 3D physical picture of a corotating reconnection site, which can only be driven by an internally generated source. Our results demonstrate that the corotating magnetic reconnection can drive an expansion of the current sheet in Saturn’s magnetosphere and, consequently, can produce Fermi acceleration of electrons. This reconnection site lasted for longer than one of Saturn’s rotation period. The long-lasting and corotating natures of the magnetic reconnection site at Saturn suggest fundamentally different roles of magnetic reconnection in driving magnetospheric dynamics (e.g., the auroral precipitation) from the Earth. Our corotating reconnection picture could also potentially shed light on the fast rotating magnetized plasma environments in the solar system and beyond.
Generation of Alfven Waves by Magnetic Reconnection
Kigure, Hiromitsu; Takahashi, Kunio; Shibata, Kazunari; Yokoyama, Takaaki; Nozawa, Satoshi
2010-01-01
In this paper, results of 2.5-dimensional magnetohydrodynamical simulations are reported for the magnetic reconnection of non-perfectly antiparallel magnetic fields. The magnetic field has a component perpendicular to the computational plane, that is, guide field. The angle theta between magnetic field lines in two half regions is a key parameter in our simulations whereas the initial distribution of the plasma is assumed to be simple; density and pressure are uniform except for the current s...
Electron Currents and Heating in the Ion Diffusion Region of Asymmetric Reconnection
Graham, D. B.; Khotyaintsev, Yu. V.; Norgren, C.; Vaivads, A.; Andre, M.; Lindqvist, P. A.; Marklund, G. T.; Ergun, R. E.; Paterson, W. R.; Gershman, D. J.;
2016-01-01
In this letter the structure of the ion diffusion region of magnetic reconnection at Earths magnetopause is investigated using the Magnetospheric Multiscale (MMS) spacecraft. The ion diffusion region is characterized by a strong DC electric field, approximately equal to the Hall electric field, intense currents, and electron heating parallel to the background magnetic field. Current structures well below ion spatial scales are resolved, and the electron motion associated with lower hybrid drift waves is shown to contribute significantly to the total current density. The electron heating is shown to be consistent with large-scale parallel electric fields trapping and accelerating electrons, rather than wave-particle interactions. These results show that sub-ion scale processes occur in the ion diffusion region and are important for understanding electron heating and acceleration.
Transport Signatures of the Hall Viscosity.
Delacrétaz, Luca V; Gromov, Andrey
2017-12-01
Hall viscosity is a nondissipative response function describing momentum transport in two-dimensional systems with broken parity. It is quantized in the quantum Hall regime, and contains information about the topological order of the quantum Hall state. Hall viscosity can distinguish different quantum Hall states with identical Hall conductances, but different topological order. To date, an experimentally accessible signature of Hall viscosity is lacking. We exploit the fact that Hall viscosity contributes to charge transport at finite wavelengths, and can therefore be extracted from nonlocal resistance measurements in inhomogeneous charge flows. We explain how to determine the Hall viscosity from such a transport experiment. In particular, we show that the profile of the electrochemical potential close to contacts where current is injected is sensitive to the value of the Hall viscosity.
Radiative Magnetic Reconnection Near Accreting Black Holes
Beloborodov, Andrei M.
2017-12-01
A radiative mechanism is proposed for magnetic flares near luminous accreting black holes. It is based on recent first-principle simulations of magnetic reconnection, which show a hierarchical chain of fast-moving plasmoids. The reconnection occurs in a compact region (comparable to the black hole radius), and the chain experiences fast Compton cooling accompanied by electron-positron pair creation. The distribution of plasmoid speeds is shaped by radiative losses, and the self-regulated chain radiates its energy in hard X-rays. The mechanism is illustrated by Monte-Carlo simulations of the transfer of seed soft photons through the reconnection layer. The emerging radiation spectrum has a cutoff near 100 keV similar to the hard-state spectra of X-ray binaries and AGN. We discuss how the chain cooling differs from previous phenomenological emission models, and suggest that it can explain the hard X-ray activity of accreting black holes from first principles. Particles accelerated at the X-points of the chain produce an additional high-energy component, explaining the “hybrid Comptonization” observed in Cyg X-1.
Plasmoid statistics in relativistic magnetic reconnection
Petropoulou, M.; Christie, I. M.; Sironi, L.; Giannios, D.
2018-01-01
Plasmoids, overdense blobs of plasma containing magnetic fields and high-energy particles, are a self-consistent outcome of the reconnection process in the relativistic regime. Recent two-dimensional particle-in-cell (PIC) simulations have shown that plasmoids can undergo a variety of processes (e.g. mergers, bulk acceleration, growth, and advection) within the reconnection layer. We developed a Monte Carlo (MC) code, benchmarked with the recent PIC simulations, to examine the effects of these processes on the steady-state size and momentum distributions of the plasmoid chain. The differential plasmoid size distribution is shown to be a power law, ranging from a few plasma skin depths to ˜0.1 of the reconnection layer's length. The power-law slope is shown to be linearly dependent upon the ratio of the plasmoid acceleration and growth rates, which slightly decreases with increasing plasma magnetization. We perform a detailed comparison of our results with those of recent PIC simulations and briefly discuss the astrophysical implications of our findings through the representative case of flaring events from blazar jets.
Realistic Modeling of Multi-Scale MHD Dynamics of the Solar Atmosphere
Kitiashvili, Irina; Mansour, Nagi N.; Wray, Alan; Couvidat, Sebastian; Yoon, Seokkwan; Kosovichev, Alexander
2014-01-01
Realistic 3D radiative MHD simulations open new perspectives for understanding the turbulent dynamics of the solar surface, its coupling to the atmosphere, and the physical mechanisms of generation and transport of non-thermal energy. Traditionally, plasma eruptions and wave phenomena in the solar atmosphere are modeled by prescribing artificial driving mechanisms using magnetic or gas pressure forces that might arise from magnetic field emergence or reconnection instabilities. In contrast, our 'ab initio' simulations provide a realistic description of solar dynamics naturally driven by solar energy flow. By simulating the upper convection zone and the solar atmosphere, we can investigate in detail the physical processes of turbulent magnetoconvection, generation and amplification of magnetic fields, excitation of MHD waves, and plasma eruptions. We present recent simulation results of the multi-scale dynamics of quiet-Sun regions, and energetic effects in the atmosphere and compare with observations. For the comparisons we calculate synthetic spectro-polarimetric data to model observational data of SDO, Hinode, and New Solar Telescope.
Energy Technology Data Exchange (ETDEWEB)
Russell Kulsrud; Hantao Ji; Will Fox; Masaaki Yamada
2005-06-07
The role which resistivity plays in breaking magnetic field lines, heating the plasma, and plasma field slippage during magnetic reconnection is discussed. Magnetic fluctuations are observed in the MRX (Magnetic Reconnection Experiment) that are believed to provide resistive friction or wave resistivity. A localized linear theory has been proposed for their origin as an obliquely propagating Lower Hybrid Drift Instability. In this paper, the linear theory of the instability is summarized, and the resulting heating and slippage are calculated from quasi-linear theory. Making use of measured amplitudes of the magnetic fluctuations in the MRX the amount of these effects is estimated. Within the experimental uncertainties they are shown to be quite important for the magnetic reconnection process.
General footage ISOLDE experimental hall HD
2016-01-01
Overview of the ISOLDE experimental hall. Equipment and experiments. Taken from the WITCH / EBIS platform: ISOLDE hall infrastructure, GHM line, LA1, LA2, LA0, central beamline, COLLAPS experiment, CRIS experiment, ISOLTRAP experiment, laser guidance from building 508 into the hall for laser spectroscopy COLLAPS and CRIS. Taken from the HIE ISOLDE shielding tunnel roof: ISOLDE hall infrastructure, WITCH experiment, VITO line, TAS experiment. General footage: High Tension room entrance and EBIS platform, staircases and passages in the experimental hall.
MHD equilibria with diamagnetic effects
Tessarotto, M.; Zorat, R.; Johnson, J. L.; White, R. B.
1997-11-01
An outstanding issue in magnetic confinement is the establishment of MHD equilibria with enhanced flow shear profiles for which turbulence (and transport) may be locally effectively suppressed or at least substantially reduced with respect to standard weak turbulence models. Strong flows develop in the presence of equilibrium E× B-drifts produced by a strong radial electric field, as well as due to diamagnetic contributions produced by steep equilibrium radial profiles of number density, temperature and the flow velocity itself. In the framework of a kinetic description, this generally requires the construction of guiding-center variables correct to second order in the relevant expansion parameter. For this purpose, the Lagrangian approach developed recently by Tessarotto et al. [1] is adopted. In this paper the conditions of existence of such equilibria are analyzed and their basic physical properties are investigated in detail. 1 - M. Pozzo, M. Tessarotto and R. Zorat, in Theory of fusion Plasmas, E.Sindoni et al. eds. (Societá Italiana di Fisica, Editrice Compositori, Bologna, 1996), p.295.
MHD Integrated Topping Cycle Project
Energy Technology Data Exchange (ETDEWEB)
1992-02-01
This fourteenth quarterly technical progress report of the MHD Integrated Topping Cycle Project presents the accomplishments during the period November 1, 1990 to January 31, 1991. Testing of the High Pressure Cooling Subsystem electrical isolator was completed. The PEEK material successfully passed the high temperature, high pressure duration tests (50 hours). The Combustion Subsystem drawings were CADAM released. The procurement process is in progress. An equipment specification and RFP were prepared for the new Low Pressure Cooling System (LPCS) and released for quotation. Work has been conducted on confirmation tests leading to final gas-side designs and studies to assist in channel fabrication.The final cathode gas-side design and the proposed gas-side designs of the anode and sidewall are presented. Anode confirmation tests and related analyses of anode wear mechanisms used in the selection of the proposed anode design are presented. Sidewall confirmation tests, which were used to select the proposed gas-side design, were conducted. The design for the full scale CDIF system was completed. A test program was initiated to investigate the practicality of using Avco current controls for current consolidation in the power takeoff (PTO) regions and to determine the cause of past current consolidation failures. Another important activity was the installation of 1A4-style coupons in the 1A1 channel. A description of the coupons and their location with 1A1 channel is presented herein.
Vortex reconnections in atomic condensates at finite temperature
Allen, A. J.; Zuccher, S.; Caliari, M.; Proukakis, N. P.; Parker, N. G.; Barenghi, C. F.
2014-07-01
The study of vortex reconnections is an essential ingredient of understanding superfluid turbulence, a phenomenon recently also reported in trapped atomic Bose-Einstein condensates. In this work we show that, despite the established dependence of vortex motion on temperature in such systems, vortex reconnections are actually temperature independent on the typical length and time scales of atomic condensates. Our work is based on a dissipative Gross-Pitaevskii equation for the condensate, coupled to a semiclassical Boltzmann equation for the thermal cloud (the Zaremba-Nikuni-Griffin formalism). Comparison to vortex reconnections in homogeneous condensates further shows reconnections to be insensitive to the inhomogeneity in the background density.
Szabo, James
2015-01-01
Iodine enables dramatic mass and cost savings for lunar and Mars cargo missions, including Earth escape and near-Earth space maneuvers. The demonstrated throttling ability of iodine is important for a singular thruster that might be called upon to propel a spacecraft from Earth to Mars or Venus. The ability to throttle efficiently is even more important for missions beyond Mars. In the Phase I project, Busek Company, Inc., tested an existing Hall thruster, the BHT-8000, on iodine propellant. The thruster was fed by a high-flow iodine feed system and supported by an existing Busek hollow cathode flowing xenon gas. The Phase I propellant feed system was evolved from a previously demonstrated laboratory feed system. Throttling of the thruster between 2 and 11 kW at 200 to 600 V was demonstrated. Testing showed that the efficiency of iodine fueled BHT-8000 is the same as with xenon, with iodine delivering a slightly higher thrust-to-power (T/P) ratio. In Phase II, a complete iodine-fueled system was developed, including the thruster, hollow cathode, and iodine propellant feed system. The nominal power of the Phase II system is 8 kW; however, it can be deeply throttled as well as clustered to much higher power levels. The technology also can be scaled to greater than 100 kW per thruster to support megawatt-class missions. The target thruster efficiency for the full-scale system is 65 percent at high specific impulse (Isp) (approximately 3,000 s) and 60 percent at high thrust (Isp approximately 2,000 s).
The role of MHD instabilities in the improved H-mode scenario
Energy Technology Data Exchange (ETDEWEB)
Flaws, Asher
2009-02-16
Recently a regime of tokamak operation has been discovered, dubbed the improved H-mode scenario, which simultaneously achieves increased energy confinement and stability with respect to standard H-mode discharges. It has been suggested that magnetohydrodynamic (MHD) instabilities play some role in establishing this regime. In this thesis MHD instabilities were identified, characterised, and catalogued into a database of improved H-mode discharges in order to statistically examine their behaviour. The onset conditions of MHD instabilities were compared to existing models based on previous H-mode studies. Slight differences were found, most notably a reduced {beta}{sub N} onset threshold for the frequently interrupted regime for neoclassical tearing modes (NTM). This reduced threshold is due to the relatively low magnetic shear of the improved H-mode regime. This study also provided a first-time estimate for the seed island size of spontaneous onset NTMs, a phenomenon characteristic of the improved H-mode scenario. Energy confinement investigations found that, although the NTM impact on confinement follows the same model applicable to other operating regimes, the improved H-mode regime acts to mitigate the impact of NTMs by limiting the saturated island sizes for NTMs with toroidal mode number n {>=} 2. Surprisingly, although a significant loss in energy confinement is observed during the sawtooth envelope, it has been found that discharges containing fishbones and low frequency sawteeth achieve higher energy confinement than those without. This suggests that fishbone and sawtooth reconnection may indeed play a role in establishing the high confinement regime. It was found that the time evolution of the central magnetic shear consistently locks in the presence of sawtooth and fishbone reconnection. Presumably this is due to the periodic redistribution of the central plasma current, an effect which is believed to help establish and maintain the characteristic current
Dipole Alignment in Rotating MHD Turbulence
Shebalin, John V.; Fu, Terry; Morin, Lee
2012-01-01
We present numerical results from long-term CPU and GPU simulations of rotating, homogeneous, magnetohydrodynamic (MHD) turbulence, and discuss their connection to the spherically bounded case. We compare our numerical results with a statistical theory of geodynamo action that has evolved from the absolute equilibrium ensemble theory of ideal MHD turbulence, which is based on the ideal MHD invariants are energy, cross helicity and magnetic helicity. However, for rotating MHD turbulence, the cross helicity is no longer an exact invariant, although rms cross helicity becomes quasistationary during an ideal MHD simulation. This and the anisotropy imposed by rotation suggests an ansatz in which an effective, nonzero value of cross helicity is assigned to axisymmetric modes and zero cross helicity to non-axisymmetric modes. This hybrid statistics predicts a large-scale quasistationary magnetic field due to broken ergodicity , as well as dipole vector alignment with the rotation axis, both of which are observed numerically. We find that only a relatively small value of effective cross helicity leads to the prediction of a dipole moment vector that is closely aligned (less than 10 degrees) with the rotation axis. We also discuss the effect of initial conditions, dissipation and grid size on the numerical simulations and statistical theory.
MHD Simulations of the Plasma Flow in the Magnetic Nozzle
Smith, T. E. R.; Keidar, M.; Sankaran, K.; olzin, K. A.
2013-01-01
The magnetohydrodynamic (MHD) flow of plasma through a magnetic nozzle is simulated by solving the governing equations for the plasma flow in the presence of an static magnetic field representing the applied nozzle. This work will numerically investigate the flow and behavior of the plasma as the inlet plasma conditions and magnetic nozzle field strength are varied. The MHD simulations are useful for addressing issues such as plasma detachment and to can be used to gain insight into the physical processes present in plasma flows found in thrusters that use magnetic nozzles. In the model, the MHD equations for a plasma, with separate temperatures calculated for the electrons and ions, are integrated over a finite cell volume with flux through each face computed for each of the conserved variables (mass, momentum, magnetic flux, energy) [1]. Stokes theorem is used to convert the area integrals over the faces of each cell into line integrals around the boundaries of each face. The state of the plasma is described using models of the ionization level, ratio of specific heats, thermal conductivity, and plasma resistivity. Anisotropies in current conduction due to Hall effect are included, and the system is closed using a real-gas equation of state to describe the relationship between the plasma density, temperature, and pressure.A separate magnetostatic solver is used to calculate the applied magnetic field, which is assumed constant for these calculations. The total magnetic field is obtained through superposition of the solution for the applied magnetic field and the self-consistently computed induced magnetic fields that arise as the flowing plasma reacts to the presence of the applied field. A solution for the applied magnetic field is represented in Fig. 1 (from Ref. [2]), exhibiting the classic converging-diverging field pattern. Previous research was able to demonstrate effects such as back-emf at a super-Alfvenic flow, which significantly alters the shape of the
Energy Technology Data Exchange (ETDEWEB)
Wendel, D. E.; Olson, D. K.; Hesse, M.; Kuznetsova, M.; Adrian, M. L. [NASA Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States); Aunai, N. [Institute for Research in Astrophysics and Planetology, University Paul Sabatier, Toulouse (France); Karimabadi, H. [SciberQuest, Inc., Del Mar, California 92014 (United States); Department of Computer and Electrical Engineering, University of California, San Diego, La Jolla, California 92093 (United States); Daughton, W. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)
2013-12-15
We investigate the distribution of parallel electric fields and their relationship to the location and rate of magnetic reconnection in a large particle-in-cell simulation of 3D turbulent magnetic reconnection with open boundary conditions. The simulation's guide field geometry inhibits the formation of simple topological features such as null points. Therefore, we derive the location of potential changes in magnetic connectivity by finding the field lines that experience a large relative change between their endpoints, i.e., the quasi-separatrix layer. We find a good correspondence between the locus of changes in magnetic connectivity or the quasi-separatrix layer and the map of large gradients in the integrated parallel electric field (or quasi-potential). Furthermore, we investigate the distribution of the parallel electric field along the reconnecting field lines. We find the reconnection rate is controlled by only the low-amplitude, zeroth and first–order trends in the parallel electric field while the contribution from fluctuations of the parallel electric field, such as electron holes, is negligible. The results impact the determination of reconnection sites and reconnection rates in models and in situ spacecraft observations of 3D turbulent reconnection. It is difficult through direct observation to isolate the loci of the reconnection parallel electric field amidst the large amplitude fluctuations. However, we demonstrate that a positive slope of the running sum of the parallel electric field along the field line as a function of field line length indicates where reconnection is occurring along the field line.
Ventilation systems for high halls
Energy Technology Data Exchange (ETDEWEB)
Sodec, F.; Veldboer, W.
1982-02-01
A ventilation system for high halls is described which meets the demands of steady air flow in spite of inverse thermal currents, intensive ventilation of working areas during heating and cooling and ventilation free of draught. The main element of the ventilation system is the air outlet in the ceiling, with variable beam direction. The horizontal, rotated beams are superimposed by a vertical beam whose strength may be varied. This way, the beam direction can be adapted to the thermal load of the hall and the height of blowout. The blowout angle is large for heating and small for cooling. Studies have shown that halls are ventilated thoroughly and free of draught by this system. The variable, rotary outlet presented in the article is best suited for heights of 4.00 to 12.00 m. The outlet, with a rated diameter of 400 mm, has been in use for two years now in fields as varied as diecasting works, halls at fairs, sports halls, etc. The air volume flow rate is 1000 to 3000 m/sup 3//h per outlet. A bigger version is now being developed; it will have a rated diameter of 710 mm and an air volume flow rate of 3000 to 9000 m/sup 3//h.
Numerical study of MHD supersonic flow control
Ryakhovskiy, A. I.; Schmidt, A. A.
2017-11-01
Supersonic MHD flow around a blunted body with a constant external magnetic field has been simulated for a number of geometries as well as a range of the flow parameters. Solvers based on Balbas-Tadmor MHD schemes and HLLC-Roe Godunov-type method have been developed within the OpenFOAM framework. The stability of the solution varies depending on the intensity of magnetic interaction The obtained solutions show the potential of MHD flow control and provide insights into for the development of the flow control system. The analysis of the results proves the applicability of numerical schemes, that are being used in the solvers. A number of ways to improve both the mathematical model of the process and the developed solvers are proposed.
Euler potentials for the MHD Kamchatnov-Hopf soliton solution
Semenov, VS; Korovinski, DB; Biernat, HK
2002-01-01
In the MHD description of plasma phenomena the concept of magnetic helicity turns out to be very useful. We present here an example of introducing Euler potentials into a topological MHD soliton which has non-trivial helicity. The MHD soliton solution (Kamchatnov, 1982) is based on the Hopf
Reconnection and merging of positive streamers in air
S. Nijdam (Sander); C.G.C. Geurts; E.M. van Veldhuizen; U. Ebert (Ute)
2009-01-01
htmlabstractPictures show that streamer or sprite discharge channels emerging from the same electrode sometimes seem to reconnect or merge though their heads carry electric charge of the same polarity; one might therefore suspect that reconnections are an artefact of the
Novel concepts in Hall sensors
Mani, R. G.
1996-03-01
Hall effect devices are widely used as position sensors and contactless switches in applications ranging from electric motors to soft drink machines and automobiles. Such devices typically operate in an adverse environment where offset voltages originating from various physical effects limit the effective sensitivity of the sensor to the weak magnetic field (B device that automatically reduces such spurious offsets is desirable because improved 'signal to offset' would relax manufacturing tolerances and other constraints within the sensor system. Here, we examine some techniques and sensor configurations (R. G. Mani, K. von Klitzing, F. Jost, K. Marx, S. Lindenkreuz, and H. P. Trah, Appl. Phys. Lett. 67, 2223, 1995.) based on the so called 'anti Hall bar' geometry that promise the possibility of a Silicon based Hall sensor with a field equivalent offset well below 1 mT.
Magnetopause reconnection across wide local time
Directory of Open Access Journals (Sweden)
M. W. Dunlop
2011-09-01
Full Text Available During April to July 2007 a combination of 10 spacecraft provided simultaneous monitoring of the dayside magnetopause across a wide range of local times. The array of four Cluster spacecraft, separated at large distances (10 000 km, were traversing the dawn-side magnetopause at high and low latitudes; the five THEMIS spacecraft were often in a 4 + 1 grouped configuration, traversing the low latitude, dusk-side magnetosphere, and the Double star, TC-1 spacecraft was in an equatorial orbit between the local times of the THEMIS and Cluster orbits. We show here a number of near simultaneous conjunctions of all 10 spacecraft at the magnetopause. One conjunction identifies an extended magnetic reconnection X-line, tilted in the low latitude, sub-solar region, which exists together with active anti-parallel reconnection sites extending to locations on the dawn-side flank. Oppositely moving FTE's are observed on all spacecraft, consistent with the initially strong IMF By conditions and the comparative locations of the spacecraft both dusk-ward and dawn-ward of noon. Comparison with other conjunctions of magnetopause crossings, which are also distributed over wide local times, supports the result that reconnection activity may occur at many sites simultaneously across the sub-solar and flank magnetopause, but linked to the large scale (extended configuration of the merging line; broadly depending on IMF orientation. The occurrence of MR therefore inherently follows a "component" driven scenario irrespective of the guide field conditions. Some conjunctions allow the global magnetopause response to IMF changes to be observed and the distribution of spacecraft can directly confirm its shape, motion and deformation at local noon, dawn and dusk-side, simultaneously.
Magnetopause reconnection across wide local time
Directory of Open Access Journals (Sweden)
M. W. Dunlop
2011-09-01
Full Text Available During April to July 2007 a combination of 10 spacecraft provided simultaneous monitoring of the dayside magnetopause across a wide range of local times. The array of four Cluster spacecraft, separated at large distances (10 000 km, were traversing the dawn-side magnetopause at high and low latitudes; the five THEMIS spacecraft were often in a 4 + 1 grouped configuration, traversing the low latitude, dusk-side magnetosphere, and the Double star, TC-1 spacecraft was in an equatorial orbit between the local times of the THEMIS and Cluster orbits. We show here a number of near simultaneous conjunctions of all 10 spacecraft at the magnetopause. One conjunction identifies an extended magnetic reconnection X-line, tilted in the low latitude, sub-solar region, which exists together with active anti-parallel reconnection sites extending to locations on the dawn-side flank. Oppositely moving FTE's are observed on all spacecraft, consistent with the initially strong IMF B_{y} conditions and the comparative locations of the spacecraft both dusk-ward and dawn-ward of noon. Comparison with other conjunctions of magnetopause crossings, which are also distributed over wide local times, supports the result that reconnection activity may occur at many sites simultaneously across the sub-solar and flank magnetopause, but linked to the large scale (extended configuration of the merging line; broadly depending on IMF orientation. The occurrence of MR therefore inherently follows a "component" driven scenario irrespective of the guide field conditions. Some conjunctions allow the global magnetopause response to IMF changes to be observed and the distribution of spacecraft can directly confirm its shape, motion and deformation at local noon, dawn and dusk-side, simultaneously.
Energy Technology Data Exchange (ETDEWEB)
Witalis, E.A.
1965-12-15
Rigorous derivations are given of the basic equations and methods available for the analysis of transverse MHD flow when Hall currents are not suppressed. The gas flow is taken to be incompressible and viscous with uniform tensor conductivity and arbitrary magnetic Reynold's number. The magnetic field is perpendicular to the flow and has variable strength. Analytical solutions can be obtained either in terms of the induced magnetic field or from two types of electric potential. The relevant set of suitable simplifications, restrictive conditions and boundary value considerations for each method is given.
Hall effect on MHD flow of visco-elastic micro-polar fluid layer ...
African Journals Online (AJOL)
0. (0,0, ). H. = H о is applied along z-axis. Fig. 1: Geometry of the problem. Here, we have taken Rivlin-Ericksen visco-elastic fluid in which when the fluid permeates a porous medium, the gross effect is represented by Darcy's law and the usual viscous term in the momentum equation is replaced by the resistance term. 1.
Evolution of symmetric reconnection layer in the presence of parallel shear flow
Energy Technology Data Exchange (ETDEWEB)
Lu Haoyu [Space Science Institute, School of Astronautics, Beihang University, Beijing 100191 (China); Sate Key Laboratory of Space Weather, Chinese Academy of Sciences, Beijing 100190 (China); Cao Jinbin [Space Science Institute, School of Astronautics, Beihang University, Beijing 100191 (China)
2011-07-15
The development of the structure of symmetric reconnection layer in the presence of a shear flow parallel to the antiparallel magnetic field component is studied by using a set of one-dimensional (1D) magnetohydrodynamic (MHD) equations. The Riemann problem is simulated through a second-order conservative TVD (total variation diminishing) scheme, in conjunction with Roe's averages for the Riemann problem. The simulation results indicate that besides the MHD shocks and expansion waves, there exist some new small-scale structures in the reconnection layer. For the case of zero initial guide magnetic field (i.e., B{sub y0} = 0), a pair of intermediate shock and slow shock (SS) is formed in the presence of the parallel shear flow. The critical velocity of initial shear flow V{sub zc} is just the Alfven velocity in the inflow region. As V{sub z{infinity}} increases to the value larger than V{sub zc}, a new slow expansion wave appears in the position of SS in the case V{sub z{infinity}} < V{sub zc}, and one of the current densities drops to zero. As plasma {beta} increases, the out-flow region is widened. For B{sub y0} {ne} 0, a pair of SSs and an additional pair of time-dependent intermediate shocks (TDISs) are found to be present. Similar to the case of B{sub y0} = 0, there exists a critical velocity of initial shear flow V{sub zc}. The value of V{sub zc} is, however, smaller than the Alfven velocity of the inflow region. As plasma {beta} increases, the velocities of SS and TDIS increase, and the out-flow region is widened. However, the velocity of downstream SS increases even faster, making the distance between SS and TDIS smaller. Consequently, the interaction between SS and TDIS in the case of high plasma {beta} influences the property of direction rotation of magnetic field across TDIS. Thereby, a wedge in the hodogram of tangential magnetic field comes into being. When {beta}{yields}{infinity}, TDISs disappear and the guide magnetic field becomes constant.
Suprathermal electron acceleration during reconnection onset in the magnetotail
Directory of Open Access Journals (Sweden)
A. Vaivads
2011-10-01
Full Text Available We study one event of reconnection onset associated to a small substorm on 27 September 2006 by using Cluster observations at inter-spacecraft separation of about 10 000 km. We focus on the acceleration of suprathermal electrons during different stages of reconnection. We show that several distinct stages of acceleration occur: (1 moderate acceleration during reconnection of pre-existing plasma sheet flux tubes, (2 stronger acceleration during reconnection of lobe flux tubes, (3 production of the most energetic electrons within dipolarization fronts (magnetic pile-up regions. The strongest acceleration is reached at the location of Bz maxima inside the magnetic pile-up region where the reconnection jet stops. Very strong localized dawn-dusk electric field are observed within the magnetic pile-up regions and are associated to most of the magnetic flux transport.
MHD equilibrium and stability in heliotron plasmas
Energy Technology Data Exchange (ETDEWEB)
Ichiguchi, Katsuji [National Inst. for Fusion Science, Toki, Gifu (Japan)
1999-09-01
Recent topics in the theoretical magnetohydrodynamic (MHD) analysis in the heliotron configuration are overviewed. Particularly, properties of three-dimensional equilibria, stability boundary of the interchange mode, effects of the net toroidal current including the bootstrap current and the ballooning mode stability are focused. (author)
Hodograph method in MHD orthogonal fluid flows
Directory of Open Access Journals (Sweden)
P. V. Nguyen
1992-01-01
Full Text Available Equations for steady plane MHD orthogonal flows of a viscous incompressible fluid of finite electrical conductivity are recast in the hodograph plane by using the Legendre transform function of the streamfunction. Three examples are studied to illustrate the developed theory. Solutions and geometries for these examples are determined.
MHD Ballooning Instability in the Plasma Sheet
Energy Technology Data Exchange (ETDEWEB)
C.Z. Cheng; S. Zaharia
2003-10-20
Based on the ideal-MHD model the stability of ballooning modes is investigated by employing realistic 3D magnetospheric equilibria, in particular for the substorm growth phase. Previous MHD ballooning stability calculations making use of approximations on the plasma compressibility can give rise to erroneous conclusions. Our results show that without making approximations on the plasma compressibility the MHD ballooning modes are unstable for the entire plasma sheet where beta (sub)eq is greater than or equal to 1, and the most unstable modes are located in the strong cross-tail current sheet region in the near-Earth plasma sheet, which maps to the initial brightening location of the breakup arc in the ionosphere. However, the MHD beq threshold is too low in comparison with observations by AMPTE/CCE at X = -(8 - 9)R(sub)E, which show that a low-frequency instability is excited only when beq increases over 50. The difficulty is mitigated by considering the kinetic effects of ion gyrorad ii and trapped electron dynamics, which can greatly increase the stabilizing effects of field line tension and thus enhance the beta(sub)eq threshold [Cheng and Lui, 1998]. The consequence is to reduce the equatorial region of the unstable ballooning modes to the strong cross-tail current sheet region where the free energy associated with the plasma pressure gradient and magnetic field curvature is maximum.
Patrice Loiez
2004-01-01
To mark the 50th Anniversary of the founding of CERN, a day of tours, displays and presentations was held in October 2004. The assembly halls for the experiments that were waiting to be installed on the LHC, such as ATLAS shown here, were transformed into display areas and cafés.
The Substorm Current Wedge: Further Insights from MHD Simulations
Birn, J.; Hesse, M.
2015-01-01
Using a recent magnetohydrodynamic simulation of magnetotail dynamics, we further investigate the buildup and evolution of the substorm current wedge (SCW), resulting from flow bursts generated by near-tail reconnection. Each flow burst generates an individual current wedge, which includes the reduction of cross-tail current and the diversion to region 1 (R1)-type field-aligned currents (earthward on the dawn and tailward on the duskside), connecting the tail with the ionosphere. Multiple flow bursts generate initially multiple SCW patterns, which at later times combine to a wider single SCW pattern. The standard SCWmodel is modified by the addition of several current loops, related to particular magnetic field changes: the increase of Bz in a local equatorial region (dipolarization), the decrease of |Bx| away from the equator (current disruption), and increases in |By| resulting from azimuthally deflected flows. The associated loop currents are found to be of similar magnitude, 0.1-0.3 MA. The combined effect requires the addition of region 2 (R2)-type currents closing in the near tail through dawnward currents but also connecting radially with the R1 currents. The current closure at the inner boundary, taken as a crude proxy of an idealized ionosphere, demonstrates westward currents as postulated in the original SCW picture as well as North-South currents connecting R1- and R2-type currents, which were larger than the westward currents by a factor of almost 2. However, this result should be applied with caution to the ionosphere because of our neglect of finite resistance and Hall effects.
Conceptual Design of the Harbin Reconnection eXperiment (HRX)
Mao, Aohua; E, Peng; Wang, Xiaogang; Ji, Hantao; Ren, Yang
2015-11-01
A new terrella device, called the Space Environment Simulation and Research Infrastructure or SESRI, is under construction at Harbin Institute of Technology, in which the Harbin Reconnection eXperiment (HRX) system is one of the most important components. The goal of HRX reconnection experiment design is to provide a unique platform for studying reconnections relevant to those in magnetopause and magnetotail. Most of the currently existing terrella experiments have been focusing on global phenomena, e.g. bow shock, in either linear or toroidal geometry, which are typically very different in magnetosphere plasmas. The new HRX regimes explores both local and global reconnection dynamics by driving reconnection with a unique set of coils in a dipole magnetic field configuration which will be able to investigate a range of important reconnection issues in magnetosphere geometry. The design of the HRX device approximately follows the Vlasov similarity laws between the laboratory plasma of the device and the magnetosphere plasma to match local reconnection dynamics. Motivation, design criteria for the HRX experiments, and the preliminary experiment proposal will be discussed.
Magnetic reconnection in turbulence: from Cluster to MMS and beyond
Retino, Alessandro; Sundkvist, David; Matthaeus, William; Vaivads, Andris; Califano, Francesco; Khotyaintsev, Yuri; Le Contel, Olivier; Sorriso-valvo, Luca; Chasapis, Alexandros; Lavraud, Benoit; Valentini, Francesco; Servidio, Sergio; Rossi, Claudia; Camporeale, Enrico
2016-07-01
Magnetic reconnection is a universal energy dissipation mechanism occurring in space and astrophysical magnetized plasmas. Such plasmas are frequently in a turbulent state, raising the fundamental question of the role reconnection for energy dissipation in turbulence. Understanding reconnection in turbulence is of pivotal importance to explain phenomena such as particle acceleration in stellar atmospheres, the heating of interplanetary and interstellar media as well as particle energization in accretion disks and cosmic rays acceleration. Many numerical simulations support the role of reconnection for efficiently dissipate turbulent energy and heat and accelerated particles. Such simulations indicate that reconnection occurs in small-scale current sheets spontaneously forming within the turbulence. Yet experimental evidence of reconnection in turbulence has been provided only recently thanks to high resolution in situ measurements by modern spacecraft. Here we present ESA/Cluster and more recent NASA/MMS observations in near-Earth space showing evidence of reconnection in turbulence and its importance for energy dissipation and particle energization. We also discuss implications for upcoming spacecraft missions such as Solar Orbiter and Solar Probe Plus, as well as for missions currently under study pahse such as ESA/THOR.
A new magnetic reconnection paradigm: Stochastic plasmoid chains
Loureiro, Nuno
2015-11-01
Recent analytical and numerical research in magnetic reconnection has converged on the notion that reconnection sites (current sheets) are unstable to the formation of multiple magnetic islands (plasmoids), provided that the system is sufficiently large (or, in other words, that the Lundquist number of the plasma is high). Nonlinearly, plasmoids come to define the reconnection geometry. Their nonlinear dynamics is rather complex and best thought of as new form of turbulence whose properties are determined by continuous plasmoid formation and their subsequent ejection from the sheet, as well as the interaction (coalescence) between plasmoids of different sizes. The existence of these stochastic plasmoid chains has powerful implications for several aspects of the reconnection process, from determining the reconnection rate to the details and efficiency of the energy conversion and dissipation. In addition, the plasmoid instability may also directly bear on the little understood problem of the reconnection trigger, or onset, i.e., the abrupt transition from a slow stage of energy accumulation to a fast (explosive) stage of energy release. This talk will first provide a brief overview of these recent developments in the reconnection field. I will then discuss recent work addressing the onset problem in the context of a forming current sheet which becomes progressively more unstable to the plasmoid instability. Work partially supported by Fundação para a Ciência e Tecnologia via Grants UID/FIS/50010/2013 and IF/00530/2013.
Reconnection and the ideal evolution of magnetic fields.
Boozer, Allen H
2002-05-27
A magnetic evolution is ideal if it is consistent with the field being embedded in a perfectly conducting fluid. Faraday's law implies the evolution is ideal when the parallel component of the electric field is the derivative of a scalar potential, a condition that generically holds in any local region of space. Reconnection requires the non-existence of such a potential. In systems with two periodic directions, non-existence focuses reconnection onto the surfaces in which the magnetic field lines close on themselves, the rational surfaces. This rational surface effect does not arise in astrophysics but does appear in periodic simulation codes. Effects that could give astrophysical reconnection are discussed.
Energy Technology Data Exchange (ETDEWEB)
Deng, Wei; Zhang, Bing [Department of Physics and Astronomy, University of Nevada Las Vegas, Las Vegas, NV 89154 (United States); Zhang, Haocheng; Li, Hui, E-mail: deng@physics.unlv.edu, E-mail: zhang@physics.unlv.edu, E-mail: hli@lanl.gov, E-mail: hz193909@ohio.edu [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)
2016-04-10
The jet composition and energy dissipation mechanism of gamma-ray bursts (GRBs) and blazars are fundamental questions that remain not fully understood. One plausible model is to interpret the γ-ray emission of GRBs and optical emission of blazars as synchrotron radiation of electrons accelerated from the collision-induced magnetic dissipation regions in Poynting-flux-dominated jets. The polarization observation is an important and independent information to test this model. Based on our recent 3D relativistic MHD simulations of collision-induced magnetic dissipation of magnetically dominated blobs, here we perform calculations of the polarization properties of the emission in the dissipation region and apply the results to model the polarization observational data of GRB prompt emission and blazar optical emission. We show that the same numerical model with different input parameters can reproduce well the observational data of both GRBs and blazars, especially the 90° polarization angle (PA) change in GRB 100826A and the 180° PA swing in blazar 3C279. This supports a unified model for GRB and blazar jets, suggesting that collision-induced magnetic reconnection is a common physical mechanism to power the relativistic jet emission from events with very different black hole masses.
Plasma Astrophysics, Part II Reconnection and Flares
Somov, Boris V
2013-01-01
This two-part book is devoted to classic fundamentals and current practices and perspectives of modern plasma astrophysics. This second part discusses the physics of magnetic reconnection and flares of electromagnetic origin in space plasmas in the solar system, single and double stars, relativistic objects, accretion disks and their coronae. More than 25% of the text is updated from the first edition, including the additions of new figures, equations and entire sections on topics such as topological triggers for solar flares and the magnetospheric physics problem. This book is aimed at professional researchers in astrophysics, but it will also be useful to graduate students in space sciences, geophysics, applied physics and mathematics, especially those seeking a unified view of plasma physics and fluid mechanics.
Plasma Astrophysics, part II Reconnection and Flares
Somov, Boris V
2007-01-01
This well-illustrated monograph is devoted to classic fundamentals, current practice, and perspectives of modern plasma astrophysics. The first part is unique in covering all the basic principles and practical tools required for understanding and working in plasma astrophysics. The second part presents the physics of magnetic reconnection and flares of electromagnetic origin in space plasmas within the solar system; single and double stars, relativistic objects, accretion disks, and their coronae are also covered. This book is designed mainly for professional researchers in astrophysics. However, it will also be interesting and useful to graduate students in space sciences, geophysics, as well as advanced students in applied physics and mathematics seeking a unified view of plasma physics and fluid mechanics.
Turbulence scaling study in an MHD wind tunnel on the Swarthmore Spheromak Experiment
Schaffner, D. A.; Brown, M. R.; Wan, A.
2013-12-01
The turbulence of colliding plasmas is explored in an MHD wind tunnel on the SSX in an effort to understand solar wind physics in a laboratory setting. Fully ionized hydrogen plasma is produced by two plasma guns on opposite sides of a 1m by 15cm copper cylinder creating plasma with L/ρi ~ 75-150, β ~ 0.1-0.2 and Lundquist number ~ 1000. Modification of B-field, Ti and β are made through stuffing flux variation of the plasma guns. Presented here are turbulent f-/k-spectra and correlation times and lengths of B-field fluctuations as measured by a 16 channel B-dot radial probe array at the chamber midplane using both FFT and wavelet analysis techniques. Power-law behavior is observed spanning about two decades of frequencies [100kHz-10MHz] and about one decade of wavelength [10cm-1cm]. Power-law fits to spectra show scaling in these regions to be robust to changes in stuffing flux; fits are on the order of f-4 and k-2 for all flux variations. Low frequency fluctuations [law behavior is seen in f-spectra for frequencies around f=fci while changes in k-spectra slopes appear around 1/k ~ 5ρi. Dissipation range fits are made with an exponentially modified power-law model [Terry et al, PoP 2012]. Fluctuation measurements in axial velocity are made using a Mach probe with edge flows reaching M ~ 0.4. Both B-field and velocity fluctuations persist on the same timescale in these experiments, though Mach velocity f-spectra show power-laws slightly shallower than those for B-field. Comparison of spectra from MHD and Hall MHD simulations of SSX performed within the HiFi modeling framework are made to the experimental results.
City Hall and Territorial Development
Directory of Open Access Journals (Sweden)
Carlos Borrás Querol
1999-10-01
Full Text Available The current economic conditions impose a new role upon the local administration, a new one added to its traditional role as administrators of public services and managers of the local territory. City Halls are increasingly widening their action area to include spheres of interest that were previously not dealt with: fundamentally – jobs promotion and encouraging economic development. With respect to this, the article describes the important experience of the City Hall of Alcalá la Real (Jaén, whose trajectory of enacting strategies for local development are alternatives to the model of speculative development, strategies whose objective is to direct the potential for local community development by matching the interests of the citizens and the system of productivity in a balanced and sustainable manner, thereby contributing not only to the creation of new businesses and favoring the creation of jobs, but the advancement of territorial balance and social cohesion.
Hall Sensors for Extreme Temperatures
Directory of Open Access Journals (Sweden)
Maciej Oszwaldowski
2011-01-01
Full Text Available We report on the preparation of the first complete extreme temperature Hall sensor. This means that the extreme-temperature magnetic sensitive semiconductor structure is built-in an extreme-temperature package especially designed for that purpose. The working temperature range of the sensor extends from −270 °C to +300 °C. The extreme-temperature Hall-sensor active element is a heavily n-doped InSb layer epitaxially grown on GaAs. The magnetic sensitivity of the sensor is ca. 100 mV/T and its temperature coefficient is less than 0.04 %/K. This sensor may find applications in the car, aircraft, spacecraft, military and oil and gas industries.
Symmetric functions and Hall polynomials
MacDonald, Ian Grant
1998-01-01
This reissued classic text is the acclaimed second edition of Professor Ian Macdonald's groundbreaking monograph on symmetric functions and Hall polynomials. The first edition was published in 1979, before being significantly expanded into the present edition in 1995. This text is widely regarded as the best source of information on Hall polynomials and what have come to be known as Macdonald polynomials, central to a number of key developments in mathematics and mathematical physics in the 21st century Macdonald polynomials gave rise to the subject of double affine Hecke algebras (or Cherednik algebras) important in representation theory. String theorists use Macdonald polynomials to attack the so-called AGT conjectures. Macdonald polynomials have been recently used to construct knot invariants. They are also a central tool for a theory of integrable stochastic models that have found a number of applications in probability, such as random matrices, directed polymers in random media, driven lattice gases, and...
Extended MHD modeling of nonlinear instabilities in fusion and space plasmas
Energy Technology Data Exchange (ETDEWEB)
Germaschewski, Kai [Univ. of New Hampshire, Durham, NH (United States)
2017-11-15
A number of different sub-projects where pursued within this DOE early career project. The primary focus was on using fully nonlinear, curvilinear, extended MHD simulations of instabilities with applications to fusion and space plasmas. In particular, we performed comprehensive studies of the dynamics of the double tearing mode in different regimes and confi gurations, using Cartesian and cyclindrical geometry and investigating both linear and non-linear dynamics. In addition to traditional extended MHD involving Hall term and electron pressure gradient, we also employed a new multi-fluid moment model, which shows great promise to incorporate kinetic effects, in particular off-diagonal elements of the pressure tensor, in a fluid model, which is naturally computationally much cheaper than fully kinetic particle or Vlasov simulations. We used our Vlasov code for detailed studies of how weak collisions effect plasma echos. In addition, we have played an important supporting role working with the PPPL theory group around Will Fox and Amitava Bhattacharjee on providing simulation support for HED plasma experiments performed at high-powered laser facilities like OMEGA-EP in Rochester, NY. This project has support a great number of computational advances in our fluid and kinetic plasma models, and has been crucial to winning multiple INCITE computer time awards that supported our computational modeling.
Photovoltaic Hall effect in graphene
Oka, Takashi; Aoki, Hideo
2009-02-01
Response of electronic systems in intense lights (ac electric fields) to dc source-drain fields is formulated with the Floquet method. We have then applied the formalism to graphene, for which we show that a nonlinear effect of a circularly polarized light can open a gap in the Dirac cone, which is predicted to lead to a photoinduced dc Hall current. This is numerically confirmed for a graphene ribbon attached to electrodes with the Keldysh Green’s function.
Library rooms or Library halls
Alfredo Serrai
2013-01-01
Library Halls, understood as Renaissance and Baroque architectural creations, along with the furnishings and decorations, accomplish a cognitive task and serve to transmit knowledge. The design of these spaces based on the idea that they should reflect the merits and content of the collections housed within them, in order to prepare the mind of the reader to respect and admire the volumes. In accordance with this principle, in the fifteenth century library rooms had a basilican shape, with tw...
Coherent Eigenmodes in Homogeneous MHD Turbulence
Shebalin, John V.
2010-01-01
The statistical mechanics of Fourier models of ideal, homogeneous, incompressible magnetohydrodynamic (MHD) turbulence is discussed, along with their relevance for dissipative magnetofluids. Although statistical theory predicts that Fourier coefficients of fluid velocity and magnetic field are zero-mean random variables, numerical simulations clearly show that certain coefficients have a non-zero mean value that can be very large compared to the associated standard deviation, i.e., we have coherent structure. We use eigenanalysis of the modal covariance matrices in the probability density function to explain this phenomena in terms of `broken ergodicity', which is defined to occur when dynamical behavior does not match ensemble predictions on very long time-scales. We provide examples from 2-D and 3-D magnetohydrodynamic simulations of homogeneous turbulence, and show new results from long-time simulations of MHD turbulence with and without a mean magnetic field
(Non)-universality of vortex reconnections in superfluids
Villois, Alberto; Proment, Davide
2016-01-01
An insight into vortex reconnections in superfluids is presented making use of analytical results and numerical simulations of the Gross--Pitaevskii model. Universal aspects of the reconnection process are investigated by considering different initial vortex configurations and making use of a recently developed tracking algorithm to reconstruct the vortex filaments. We show that about the reconnection event the vortex lines approach and separate always accordingly to the time scaling $ \\delta \\sim t^{-1/2} $ with pre-factors that depend on the vortex configuration. We also investigate the behavior of curvature and torsion close to the reconnection point, demonstrating analytically that the curvature can exhibit a self-similar behavior that might be broken by the development of shock-like structures in the torsion.
Universal and nonuniversal aspects of vortex reconnections in superfluids
Villois, Alberto; Proment, Davide; Krstulovic, Giorgio
2017-04-01
Insight into vortex reconnections in superfluids is presented, making use of analytical results and numerical simulations of the Gross-Pitaevskii model. Universal aspects of the reconnection process are investigated by considering different initial vortex configurations and making use of a recently developed tracking algorithm to reconstruct the vortex filaments. We show that during a reconnection event the vortex lines approach and separate always according to the time scaling δ ˜t1 /2 with prefactors that depend on the vortex configuration. We also investigate the behavior of curvature and torsion close to the reconnection point, demonstrating analytically that the curvature can exhibit a self-similar behavior that might be broken by the development of shocklike structures in the torsion.
Fast Magnetic Reconnection: Bridging Laboratory and Space Plasma Physics
Energy Technology Data Exchange (ETDEWEB)
Bhattacharjee, Amitava [University New Hampshire- Durham
2012-02-16
Recent developments in experimental and theoretical studies of magnetic reconnection hold promise for providing solutions to outstanding problems in laboratory and space plasma physics. Examples include sawtooth crashes in tokamaks, substorms in the Earth’s Magnetosphere, eruptive solar flares, and more recently, fast reconnection in laser-produced high energy density plasmas. In each of these examples, a common and long-standing challenge has been to explain why fast reconnection proceeds rapidly from a relatively quiescent state. In this talk, we demonstrate the advantages of viewing these problems and their solutions from a common perspective. We focus on some recent, surprising discoveries regarding the role of secondary plasmoid instabilities of thin current sheets. Nonlinearly, these instabilities lead to fast reconnection rates that are very weakly dependent on the Lundquist number of the plasma.
Electron-Scale Measurements of Magnetic Reconnection in Space
Burch, J. L.; Torbert, R. B.; Phan, T. D.; Chen, L.-J.; Moore, T. E.; Ergun, R. E.; Eastwood, J. P.; Gershman, D. J.; Cassak, P. A.; Argall, M. R.;
2016-01-01
Magnetic reconnection is a fundamental physical process in plasmas whereby stored magnetic energy is converted into heat and kinetic energy of charged particles. Reconnection occurs in many astrophysical plasma environments and in laboratory plasmas. Using measurements with very high time resolution, NASA's Magnetospheric Multiscale (MMS) mission has found direct evidence for electron demagnetization and acceleration at sites along the sunward boundary of Earth's magnetosphere where the interplanetary magnetic field reconnects with the terrestrial magnetic field. We have (i) observed the conversion of magnetic energy to particle energy; (ii) measured the electric field and current, which together cause the dissipation of magnetic energy; and (iii) identified the electron population that carries the current as a result of demagnetization and acceleration within the reconnection diffusion/dissipation region.
Nondestructive method for reconnecting aluminum metallization on integrated circuits.
Zubatkin, A D
1979-07-01
A failure analysis technique for reconnecting aluminum metallization on planar IC devices is described. The technique, utilizing a conductive paint deposited on the device surface, is nondestructive and easily removable.
Magnetic Reconnection and Intermittent Turbulence in the Solar Wind
Osman, K T; Gosling, J T; Greco, A; Servidio, S; Hnat, B; Chapman, S C; Phan, T D
2014-01-01
A statistical relationship between magnetic reconnection, current sheets and intermittent turbulence in the solar wind is reported for the first time using in-situ measurements from the Wind spacecraft at 1 AU. We identify intermittency as non-Gaussian fluctuations in increments of the magnetic field vector, $\\mathbf{B}$, that are spatially and temporally non-uniform. The reconnection events and current sheets are found to be concentrated in intervals of intermittent turbulence, identified using the partial variance of increments method: within the most non-Gaussian 1% of fluctuations in $\\mathbf{B}$, we find 87%-92% of reconnection exhausts and $\\sim$9% of current sheets. Also, the likelihood that an identified current sheet will also correspond to a reconnection exhaust increases dramatically as the least intermittent fluctuations are removed from the dataset. Hence, the turbulent solar wind contains a hierarchy of intermittent magnetic field structures that are increasingly linked to current sheets, which ...
Experimental Study of Current-Driven Turbulence During Magnetic Reconnection
Energy Technology Data Exchange (ETDEWEB)
Porkolab, Miklos; Egedal-Pedersen, Jan; Fox, William
2010-08-31
CMPD Final Report Experimental Study of Current-Driven Turbulence During Magnetic Reconnection Miklos Porkolab, PI, Jan Egedal, co-PI, William Fox, graduate student. This is the final report for Grant DE-FC02-04ER54786, MIT Participation in the Center for Multiscale Plasma Dynamics, which was active from 8/1/2004 to 7/31/2010. This Grant supported the thesis work of one MIT graduate student, William Fox, The thesis research consisted of an experimental study of the fluctuations arising during magnetic reconnection in plasmas on the Versatile Toroidal Facility (VTF) at MIT Plasma Science and Fusion Center (PSFC). The thesis was submitted and accepted by the MIT physics Department,. Fox, Experimental Study of Current-Driven Turbulence During Magnetic Reconnection, Ph.D. Thesis, MIT (2009). In the VTF experiment reconnection and current-sheet formation is driven by quickly changing currents in a specially arranged set of internal conductors. Previous work on this device [Egedal, et al, PRL 98, 015003, (2007)] identified a spontaneous reconnection regime. In this work fluctuations were studied using impedance-matched, high-bandwidth Langmuir probes. Strong, broadband fluctuations, with frequencies extending from near the lower-hybrid frequency [fLH = (fcefci)1/2] to the electron cyclotron frequency fce were found to arise during the reconnection events. Based on frequency and wavelength measurements, lower-hybrid waves and Trivelpiece-Gould waves were identified. The lower-hybrid waves are easiest to drive with strong perpendicular drifts or gradients which arise due to the reconnection events; an appealing possibility is strong temperature gradients. The Trivelpiece-Gould modes can result from kinetic, bump-on-tail instability of a runaway electron population energized by the reconnection events. We also observed that the turbulence is often spiky, consisting of discrete positive-potential spikes, which were identified as electron phase-space holes, a class of
Statistical Theory of the Ideal MHD Geodynamo
Shebalin, J. V.
2012-01-01
A statistical theory of geodynamo action is developed, using a mathematical model of the geodynamo as a rotating outer core containing an ideal (i.e., no dissipation), incompressible, turbulent, convecting magnetofluid. On the concentric inner and outer spherical bounding surfaces the normal components of the velocity, magnetic field, vorticity and electric current are zero, as is the temperature fluctuation. This allows the use of a set of Galerkin expansion functions that are common to both velocity and magnetic field, as well as vorticity, current and the temperature fluctuation. The resulting dynamical system, based on the Boussinesq form of the magnetohydrodynamic (MHD) equations, represents MHD turbulence in a spherical domain. These basic equations (minus the temperature equation) and boundary conditions have been used previously in numerical simulations of forced, decaying MHD turbulence inside a sphere [1,2]. Here, the ideal case is studied through statistical analysis and leads to a prediction that an ideal coherent structure will be found in the form of a large-scale quasistationary magnetic field that results from broken ergodicity, an effect that has been previously studied both analytically and numerically for homogeneous MHD turbulence [3,4]. The axial dipole component becomes prominent when there is a relatively large magnetic helicity (proportional to the global correlation of magnetic vector potential and magnetic field) and a stationary, nonzero cross helicity (proportional to the global correlation of velocity and magnetic field). The expected angle of the dipole moment vector with respect to the rotation axis is found to decrease to a minimum as the average cross helicity increases for a fixed value of magnetic helicity and then to increase again when average cross helicity approaches its maximum possible value. Only a relatively small value of cross helicity is needed to produce a dipole moment vector that is aligned at approx.10deg with the
MHD simulations on an unstructured mesh
Energy Technology Data Exchange (ETDEWEB)
Strauss, H.R. [New York Univ., NY (United States); Park, W.; Belova, E.; Fu, G.Y. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Longcope, D.W. [Univ. of Montana, Missoula, MT (United States); Sugiyama, L.E. [Massachusetts Inst. of Tech., Cambridge, MA (United States)
1998-12-31
Two reasons for using an unstructured computational mesh are adaptivity, and alignment with arbitrarily shaped boundaries. Two codes which use finite element discretization on an unstructured mesh are described. FEM3D solves 2D and 3D RMHD using an adaptive grid. MH3D++, which incorporates methods of FEM3D into the MH3D generalized MHD code, can be used with shaped boundaries, which might be 3D.
Magnetic Reconnection at a Three-dimensional Solar Null Point
DEFF Research Database (Denmark)
Frederiksen, Jacob Trier; Baumann, Gisela; Galsgaard, Klaus
2012-01-01
Using a specific solar null point reconnection case studied by Masson et al (2009; ApJ 700, 559) we investigate the dependence of the reconnection rate on boundary driving speed, numerical resolution, type of resistivity (constant or numerical), and assumed stratification (constant density or solar...... during the period preceding the flare. The general behavior is nearly independent of driving speed and numerical resolution, and is also very similar in stratified and unstratified models, provided only that the boundary motions are slow enough....
Lesur, Geoffroy; Kunz, Matthew W.; Fromang, Sébastien
2014-06-01
Protoplanetary discs are poorly ionised due to their low temperatures and high column densities and are therefore subject to three "non-ideal" magnetohydrodynamic (MHD) effects: Ohmic dissipation, ambipolar diffusion, and the Hall effect. The existence of magnetically driven turbulence in these discs has been a central question since the discovery of the magnetorotational instability (MRI). Early models considered Ohmic diffusion only and led to a scenario of layered accretion, in which a magnetically "dead" zone in the disc midplane is embedded within magnetically "active" surface layers at distances of about 1-10 au from the central protostellar object. Recent work has suggested that a combination of Ohmic dissipation and ambipolar diffusion can render both the midplane and surface layers of the disc inactive and that torques due to magnetically driven outflows are required to explain the observed accretion rates. We reassess this picture by performing three-dimensional numerical simulations that include all three non-ideal MHD effects for the first time. We find that the Hall effect can generically "revive" dead zones by producing a dominant azimuthal magnetic field and a large-scale Maxwell stress throughout the midplane, provided that the angular velocity and magnetic field satisfy Ω·B > 0. The attendant large magnetic pressure modifies the vertical density profile and substantially increases the disc scale height beyond its hydrostatic value. Outflows are produced but are not necessary to explain accretion rates ≲ 10-7 M⊙ yr-1. The flow in the disc midplane is essentially laminar, suggesting that dust sedimentation may be efficient. These results demonstrate that if the MRI is relevant for driving mass accretion in protoplanetary discs, one must include the Hall effect to obtain even qualitatively correct results. Appendices are available in electronic form at http://www.aanda.org
Inductive ionospheric solver for magnetospheric MHD simulations
Directory of Open Access Journals (Sweden)
H. Vanhamäki
2011-01-01
Full Text Available We present a new scheme for solving the ionospheric boundary conditions required in magnetospheric MHD simulations. In contrast to the electrostatic ionospheric solvers currently in use, the new solver takes ionospheric induction into account by solving Faraday's law simultaneously with Ohm's law and current continuity. From the viewpoint of an MHD simulation, the new inductive solver is similar to the electrostatic solvers, as the same input data is used (field-aligned current [FAC] and ionospheric conductances and similar output is produced (ionospheric electric field. The inductive solver is tested using realistic, databased models of an omega-band and westward traveling surge. Although the tests were performed with local models and MHD simulations require a global ionospheric solution, we may nevertheless conclude that the new solution scheme is feasible also in practice. In the test cases the difference between static and electrodynamic solutions is up to ~10 V km−1 in certain locations, or up to 20-40% of the total electric field. This is in agreement with previous estimates. It should also be noted that if FAC is replaced by the ground magnetic field (or ionospheric equivalent current in the input data set, exactly the same formalism can be used to construct an inductive version of the KRM method originally developed by Kamide et al. (1981.
MHD thrust vectoring of a rocket engine
Labaune, Julien; Packan, Denis; Tholin, Fabien; Chemartin, Laurent; Stillace, Thierry; Masson, Frederic
2016-09-01
In this work, the possibility to use MagnetoHydroDynamics (MHD) to vectorize the thrust of a solid propellant rocket engine exhaust is investigated. Using a magnetic field for vectoring offers a mass gain and a reusability advantage compared to standard gimbaled, elastomer-joint systems. Analytical and numerical models were used to evaluate the flow deviation with a 1 Tesla magnetic field inside the nozzle. The fluid flow in the resistive MHD approximation is calculated using the KRONOS code from ONERA, coupling the hypersonic CFD platform CEDRE and the electrical code SATURNE from EDF. A critical parameter of these simulations is the electrical conductivity, which was evaluated using a set of equilibrium calculations with 25 species. Two models were used: local thermodynamic equilibrium and frozen flow. In both cases, chlorine captures a large fraction of free electrons, limiting the electrical conductivity to a value inadequate for thrust vectoring applications. However, when using chlorine-free propergols with 1% in mass of alkali, an MHD thrust vectoring of several degrees was obtained.
Particle Acceleration Due to Coronal Non-null Magnetic Reconnection
Threlfall, James; Neukirch, Thomas; Parnell, Clare Elizabeth
2017-03-01
Various topological features, for example magnetic null points and separators, have been inferred as likely sites of magnetic reconnection and particle acceleration in the solar atmosphere. In fact, magnetic reconnection is not constrained to solely take place at or near such topological features and may also take place in the absence of such features. Studies of particle acceleration using non-topological reconnection experiments embedded in the solar atmosphere are uncommon. We aim to investigate and characterise particle behaviour in a model of magnetic reconnection which causes an arcade of solar coronal magnetic field to twist and form an erupting flux rope, crucially in the absence of any common topological features where reconnection is often thought to occur. We use a numerical scheme that evolves the gyro-averaged orbit equations of single electrons and protons in time and space, and simulate the gyromotion of particles in a fully analytical global field model. We observe and discuss how the magnetic and electric fields of the model and the initial conditions of each orbit may lead to acceleration of protons and electrons up to 2 MeV in energy (depending on model parameters). We describe the morphology of time-dependent acceleration and impact sites for each particle species and compare our findings to those recovered by topologically based studies of three-dimensional (3D) reconnection and particle acceleration. We also broadly compare aspects of our findings to general observational features typically seen during two-ribbon flare events.
Spiky Structures around Reconnection Exhausts in the Solar Wind
Enžl, Jakub; Šafránková, Jana; Němeček, Zdeněk; Přech, Lubomír
2017-12-01
The paper presents for the first time observations of unusual reconnection events in the solar wind. In all solar wind types, we identify magnetic reconnection exhausts accompanied by one or two side jets. This complex structure is created around a single current sheet and the jet(s) oriented in the same direction as the main exhaust is (are) spatially separated from it. A statistical analysis of reconnection exhausts in Wind observations (422 events) revealed that about 12% of exhausts is accompanied with one side jet and 3% of exhausts is bounded by two side jets, one on each side. Multispacecraft observations of events allow us to conclude that these structures are not consistent with a folding of the reconnection exhaust boundary. A source of these side jets is probably multiple or patchy reconnection at or close to the heliospheric current sheet. We suggest a scenario based on multiple reconnection that would lead to the presence of two side jets. A single jet is caused by a broken X-line consisting of two or more spatially separated parts.
The Role of Compressibility in Energy Release by Magnetic Reconnection
Birn, J.; Borovosky, J. E.; Hesse, M.
2012-01-01
Using resistive compressible magnetohydrodynamics, we investigate the energy release and transfer by magnetic reconnection in finite (closed or periodic) systems. The emphasis is on the magnitude of energy released and transferred to plasma heating in configurations that range from highly compressible to incompressible, based on the magnitude of the background beta (ratio of plasma pressure over magnetic pressure) and of a guide field in two-dimensional reconnection. As expected, the system becomes more incompressible, and the role of compressional heating diminishes, with increasing beta or increasing guide field. Nevertheless, compressional heating may dominate over Joule heating for values of the guide field of 2 or 3 (in relation to the reconnecting magnetic field component) and beta of 5-10. This result stems from the strong localization of the dissipation near the reconnection site, which is modeled based on particle simulation results. Imposing uniform resistivity, corresponding to a Lundquist number of 10(exp 3) to 10(exp 4), leads to significantly larger Ohmic heating. Increasing incompressibility greatly reduces the magnetic flux transfer and the amount of energy released, from approx. 10% of the energy associated with the reconnecting field component, for zero guide field and low beta, to approx. 0.2%-0.4% for large values of the guide field B(sub y0) > 5 or large beta. The results demonstrate the importance of taking into account plasma compressibility and localization of dissipation in investigations of heating by turbulent reconnection, possibly relevant for solar wind or coronal heating.
Magnetic Reconnection and Intermittent Turbulence in the Solar Wind
Osman, K. T.; Matthaeus, W. H.; Gosling, J. T.; Greco, A.; Servidio, S.; Hnat, B.; Chapman, S. C.; Phan, T. D.
2014-05-01
A statistical relationship between magnetic reconnection, current sheets, and intermittent turbulence in the solar wind is reported for the first time using in situ measurements from the Wind spacecraft at 1 AU. We identify intermittency as non-Gaussian fluctuations in increments of the magnetic field vector B that are spatially and temporally nonuniform. The reconnection events and current sheets are found to be concentrated in intervals of intermittent turbulence, identified using the partial variance of increments method: within the most non-Gaussian 1% of fluctuations in B, we find 87%-92% of reconnection exhausts and ˜9% of current sheets. Also, the likelihood that an identified current sheet will also correspond to a reconnection exhaust increases dramatically as the least intermittent fluctuations are removed from the data set. Hence, the turbulent solar wind contains a hierarchy of intermittent magnetic field structures that are increasingly linked to current sheets, which in turn are progressively more likely to correspond to sites of magnetic reconnection. These results could have far reaching implications for laboratory and astrophysical plasmas where turbulence and magnetic reconnection are ubiquitous.
Lapenta, G.; Sanna, L.; Goldman, M. V.; Newman, D. L.; Markidis, S.
2014-12-01
A perduring challenge in the study of reconnection it has long been the failing attempts to reconcile the large scale MHD view based on the Petschek model with the small scale view based on kinetic theory. The first is based on the existence of standing switch off slow shocks (SSS) that eliminate the horizontal (the x component in the usual GSM coordinates) reconnecting magnetic field component forming vertical magnetic field lines. The second is based on nested diffusion regions where the magnetic field lines become decoupled first from ions and then from electrons. The kinetic picture when observed superficially does seem to have seem resemblance to the Petschek topology, despite the nested boxes being more of a Sweet-Parker concept. Nevertheless, the question has always been: if expanded to sufficiently large scales, does the kinetic description eventually lead tot the formation os SSS? The question remains answered. Recently a first negative answer has been proposed in Ref. [1]. The proposed answer is in essence that SSS are made impossible by the presence of a firehose instability in the reconnection exhaust and by the formation of a plateau in the firehose parameter at a value of 0.25 corresponding to the condition where nonlinear slow and intermediate wave become degenerate. We report a new series of simulations where we demonstrate that this is not the case in general. While for the specific case used in Ref [1], we indeed re-obtain the same conclusions reached by the authors. But our study demonstrates that case to be very peculiar and not representative of the more general kinetic answer. We will report direct evidence of the presence of extended SSS (over regions of hundreds of ion inertial lengths) in fully kinetic simulations for parameters typical of the magntotail and of the solar wind. Our results indicate that SSS are the natural extension of kinetic reconnection to large scales. The simulations required for the study are heroic and were conducted
Smith, M.; Nichols, L. D.; Seikel, G. R.
1974-01-01
Performance and power costs of H2-O2 combustion powered steam-MHD central power systems are estimated. Hydrogen gas is assumed to be transmitted by pipe from a remote coal gasifier into the city and converted to electricity in a steam MHD plant having an integral gaseous oxygen plant. These steam MHD systems appear to offer an attractive alternative to both in-city clean fueled conventional steam power plants and to remote coal fired power plants with underground electric transmission into the city. Status and plans are outlined for an experimental evaluation of H2-O2 combustion-driven MHD power generators at NASA Lewis Research Center.
ASDEX upgrade MHD equilibria reconstruction on distributed workstations
Energy Technology Data Exchange (ETDEWEB)
Schneider, W. E-mail: wolfgang.schneider@ipp.mpg.de; McCarthy, P.J.; Lackner, K.; Gruber, O.; Behler, K.; Martin, P.; Merkel, R
2000-08-01
The identification of MHD equilibrium states on the ASDEX Upgrade tokamak is a prerequisite for interpreting measurements from a wide range of diagnostics which are correlated with the shape of the plasma. The availability in realtime of plasma parameters related to the MHD state is crucial for controlling the experiment. Function Parameterization is used as a standard tool to determine the position, shape, and other global parameters of the plasma as well as the MHD equilibrium flux surfaces. The recently developed interpretive equilibrium code CLISTE now enables the calculation of MHD equilibria on an intershot timescale. These calculations are parallelized by the use of a Message Passing Interface (MPI)
Directory of Open Access Journals (Sweden)
D. H. Nickeler
2012-06-01
Full Text Available The appearance of eruptive space plasma processes, e.g. in eruptive flares as observed in the solar atmosphere, is usually assumed to be caused by magnetic reconnection, often connected with singular points of the magnetic field. We are interested in the general relation between the eigenvalues of the Jacobians of the plasma velocity and the magnetic field and their relation to the shape of a spatially varying, localized non-idealness or resistivity, i.e. we are searching for the general solution. We perform a local analysis of almost all regular, generic, structurally stable non-ideal or resistive MHD solutions. Therefore we use Taylor expansions of the magnetic field, the velocity field and all other physical quantities, including the non-idealness, and with the method of comparison of coefficients, the non-linear resistive MHD system is solved analytically, locally in a close vicinity of the null point. We get a parameterised general solution that provides us with the topological and geometrical skeleton of the resistive MHD fields. These local solutions provide us with the "roots" of field and streamlines around the null points of basically all possible 2-D reconnection solutions. We prove mathematically that necessarily, the flow close to the magnetic X-point must also be of X-point type to guarantee positive dissipation of energy and annihilation of magnetic flux. We also prove that, if the non-idealness has only a one-dimensional, sheet-like structure, only one separatrix line can be crossed by the plasma flow, similar to known reconnective annihilation solutions.
Spin Hall effect by surface roughness
Zhou, Lingjun
2015-01-08
The spin Hall and its inverse effects, driven by the spin orbit interaction, provide an interconversion mechanism between spin and charge currents. Since the spin Hall effect generates and manipulates spin current electrically, to achieve a large effect is becoming an important topic in both academia and industries. So far, materials with heavy elements carrying a strong spin orbit interaction, provide the only option. We propose here a new mechanism, using the surface roughness in ultrathin films, to enhance the spin Hall effect without heavy elements. Our analysis based on Cu and Al thin films suggests that surface roughness is capable of driving a spin Hall angle that is comparable to that in bulk Au. We also demonstrate that the spin Hall effect induced by surface roughness subscribes only to the side-jump contribution but not the skew scattering. The paradigm proposed in this paper provides the second, not if only, alternative to generate a sizable spin Hall effect.
Yang, Shu-Di
2017-01-01
Energy balance equation for steady state Sweet-Parker reconnection in a relativistic regime is reanalyzed, employing a complete electromagnetic energy equation. A correction related to Vin is added with electric energy taken into account. The validity and meaning of the correction are demonstrated with the energy-momentum tensor. Predictions of the new scaling are compared with the previous ones. Energy calculation is also used in the cases with guide field, with a view to the role of the guide field for energy balance. And the relativistic tearing mode growth rate with guide field is discussed using the fluid model.
Observation of the Zero Hall Plateau in a Quantum Anomalous Hall Insulator
Energy Technology Data Exchange (ETDEWEB)
Feng, Yang; Feng, Xiao; Ou, Yunbo; Wang, Jing; Liu, Chang; Zhang, Liguo; Zhao, Dongyang; Jiang, Gaoyuan; Zhang, Shou-Cheng; He, Ke; Ma, Xucun; Xue, Qi-Kun; Wang, Yayu
2015-09-16
We report experimental investigations on the quantum phase transition between the two opposite Hall plateaus of a quantum anomalous Hall insulator. We observe a well-defined plateau with zero Hall conductivity over a range of magnetic field around coercivity when the magnetization reverses. The features of the zero Hall plateau are shown to be closely related to that of the quantum anomalous Hall effect, but its temperature evolution exhibits a significant difference from the network model for a conventional quantum Hall plateau transition. We propose that the chiral edge states residing at the magnetic domain boundaries, which are unique to a quantum anomalous Hall insulator, are responsible for the novel features of the zero Hall plateau.
Spherical 3-Axis Hall Probe Array Calibration and Implementation for The Big Red Ball
Lynn, Jacob; E. Peterson Collaboration; D. Endrizzi Collaboration; M. Clark Collaboration; C. B. Forest Collaboration
2017-10-01
A 3-axis Helmholtz coil capable of producing 100 G magnetic fields at frequencies ranging from DC to 1 kHz has been built to calibrate an array of 3-axis hall probes. Accurate magnetic field measurements are necessary for diagnosing plasma equilibria and the presence of any MHD instabilities. The array will consist of three single-axis Hall sensors mounted orthogonally, each of which has a frequency response of 100 kHz and a sensitivity of 28mV/G. These probes will be placed on the inner surface of the machine to create a spherical array of sensors. Such an array will provide the necessary data to constrain plasma equilibrium parameters, such as current density and plasma pressure from ∇P = J × B . Understanding the plasma equilibrium, and large-scale magnetic fields is critical to understanding the dynamics involved in many phenomena, like the dynamo. Details on the design, calibration, and implementation of the three-axis Helmholtz coil and Hall sensors will be presented. DoE and NSF.
Anomalous Hall effect in polycrystalline Ni films
Guo, Zaibing
2012-02-01
We systematically studied the anomalous Hall effect in a series of polycrystalline Ni films with thickness ranging from 4 to 200 nm. It is found that both the longitudinal and anomalous Hall resistivity increased greatly as film thickness decreased. This enhancement should be related to the surface scattering. In the ultrathin films (46 nm thick), weak localization corrections to anomalous Hall conductivity were studied. The granular model, taking into account the dominated intergranular tunneling, has been employed to explain this phenomenon, which can explain the weak dependence of anomalous Hall resistivity on longitudinal resistivity as well. © 2011 Elsevier Ltd. All rights reserved.
Interchange Slip-Running Reconnection and Sweeping SEP-Beams
Masson, S.; Aulanier, G.; Pariat, E.; Klein, K.-L.
2011-01-01
We present a new model to explain how particles, accelerated at a reconnection site that is not magnetically connected to the Earth, could eventually propagate along the well-connected open flux tube. Our model is based on the results of a low-beta resistive magnetohydrodynamics simulation of a three-dimensional line-tied and initially current-free bipole, that is embedded in a non-uniform open potential field. The topology of this configuration is that of an asymmetric coronal null-point, with a closed fan surface and an open outer spine. When driven by slow photospheric shearing motions, field lines, initially fully anchored below the fan dome, reconnect at the null point, and jump to the open magnetic domain. This is the standard interchange mode as sketched and calculated in 2D. The key result in 3D is that, reconnected open field lines located in the vicinity of the outer spine, keep reconnecting continuously, across an open quasi-separatrix layer, as previously identified for non-open-null-point reconnection. The apparent slipping motion of these field lines leads to form an extended narrow magnetic flux tube at high altitude. Because of the slip-running reconnection, we conjecture that if energetic particles would be travelling through, or be accelerated inside, the diffusion region, they would be successively injected along continuously reconnecting field lines that are connected farther and farther from the spine. At the scale of the full Sun, owing to the super-radial expansion of field lines below 3 solar radius, such energetic particles could easily be injected in field lines slipping over significant distances, and could eventually reach the distant flux tube that is well-connected to the Earth.
Page 1 Materials for MHD channels 75 Figure 4. First Indian MHD ...
Indian Academy of Sciences (India)
under the influence of the electrical field also causes oxidation of the anodes. To minimise the possible deleterious reactions and degradation of the electrode system,. Mason et al (1975) have identified FeAl2O4—Fe3O4 spinel (figure 7) as a potential electrode for open cycle coal fired MHD cycles. This spinel-alumina ...
The role of current sheet formation in driven plasmoid reconnection in laser-produced plasma bubbles
Lezhnin, Kirill; Fox, William; Bhattacharjee, Amitava
2017-10-01
We conduct a multiparametric study of driven magnetic reconnection relevant to recent experiments on colliding magnetized laser produced plasmas using the PIC code PSC. Varying the background plasma density, plasma resistivity, and plasma bubble geometry, the results demonstrate a variety of reconnection behavior and show the coupling between magnetic reconnection and global fluid evolution of the system. We consider both collision of two radially expanding bubbles where reconnection is driven through an X-point, and collision of two parallel fields where reconnection must be initiated by the tearing instability. Under various conditions, we observe transitions between fast, collisionless reconnection to a Sweet-Parker-like slow reconnection to complete stalling of the reconnection. By varying plasma resistivity, we observe the transition between fast and slow reconnection at Lundquist number S 103 . The transition from plasmoid reconnection to a single X-point reconnection also happens around S 103 . We find that the criterion δ /di < 1 is necessary for fast reconnection onset. Finally, at sufficiently high background density, magnetic reconnection can be suppressed, leading to bouncing motion of the magnetized plasma bubbles.
Superconducting magnet system for an experimental disk MHD facility
Knoopers, H.G.; ten Kate, Herman H.J.; van de Klundert, L.J.M.; van de Klundert, L.J.M.
1991-01-01
A predesign of a split-pair magnet for a magnetohydrodynamic (MHD) facility for testing a 10-MW open-cycle disk or a 5-MW closed-cycle disk generator is presented. The magnet system consists of a NbTi and a Nb 3Sn section, which provide a magnetic field of 9 T in the active area of the MHD channel.
Parameter regimes for slow, intermediate and fast MHD shocks
Delmont, P.; Keppens, R.
2011-01-01
We investigate under which parameter regimes the magnetohydrodynamic (MHD) Rankine-Hugoniot conditions, which describe discontinuous solutions to the MHD equations, allow for slow, intermediate and fast shocks. We derive limiting values for the upstream and downstream shock parameters for which
Wang, Chih-Ping; Merkin, V. G.; Angelopoulos, Vassilis
2017-06-01
In this study we investigate an event of sharp and transient (≤10 min) plasma and magnetic field perturbations observed by Acceleration Reconnection Turbulence and Electrodynamics of Moon's Interaction with the Sun (ARTEMIS) probes in the midtail lobe at X -60 RE. This event occurred under northward interplanetary magnetic field (IMF), and these mesoscale perturbations continued for many hours even as all solar wind and IMF parameters remained steady. The main characteristics of these transient perturbations are as follows: (1) an increase in density and plasma pressure, (2) a drop in Bx, (3) an enhancement in the tailward (-Vx) speed, and (4) tailward propagation. We conduct a global magnetohydrodynamic (MHD) simulation for this event using the observed solar wind/IMF conditions. In the simulation, Kelvin-Helmholtz (K-H) vortices are formed at the near-Earth flank and are convected tailward. The K-H vortices have a two-mode structure with the inner mode extending several RE inside the magnetosphere from the magnetopause. The inner mode vortical flows transport denser mantle plasma from near the magnetopause deeper into the lobe, resulting in localized density and pressure enhancements, while magnetic field changes accordingly with the enhanced flow shear and pressure gradients. As these localized changes pass a fixed location, they create transient perturbations characteristically similar to those observed by ARTEMIS.
Krebs, Isabel; Jardin, Stephen C.; Guenter, Sibylle; Lackner, Karl; Hoelzl, Matthias; Strumberger, Erika; Ferraro, Nate
2017-10-01
3D nonlinear MHD simulations of tokamak plasmas have been performed in toroidal geometry by means of the high-order finite element code M3D-C1. The simulations are set up such that the safety factor on axis (q0) is driven towards values below unity. As reported in and the resulting asymptotic states either exhibit sawtooth-like reconnection cycling or they are sawtooth-free. In the latter cases, a self-regulating magnetic flux pumping mechanism, mainly provided by a saturated quasi-interchange instability via a dynamo effect, redistributes the central current density so that the central safety factor profile is flat and q0 1 . Sawtoothing is prevented if β is sufficiently high to allow for the necessary amount of flux pumping to counterbalance the tendency of the current density profile to centrally peak. We present the results of 3D nonlinear simulations based on specific types of experimental discharges and analyze their asymptotic behavior. A set of cases is presented where aspects of the current ramp-up phase of Hybrid ASDEX Upgrade discharges are mimicked. Another set of simulations is based on low-qedge discharges in DIII-D.
Experiments and models of MHD jets and their relevance to astrophysics and solar physics
Bellan, Paul
2017-10-01
simulations. Upon attaining a critical length, laboratory jets develop a complex but resolvable sequence of instabilities which is effectively a cascade from the large-scale MHD regime to the small-scale two-fluid and kinetic regimes. This cascade involves kinking, Rayleigh-Taylor instabilities, magnetic reconnection, whistler waves, ion and electron heating, and generation of hard X-rays. An extended model shows how clumps of particles in a weakly ionized accretion disk move like a metaparticle having its charge to mass ratio reduced from that of an ion by the fractional ionization. These weakly charged metaparticles follow an inward spiral trajectory that is neither a cyclotron nor a Kepler orbit and accumulate at small radius where they produce a disk-plane radial EMF that drives astrophysical jets. Supported by DOE, NSF, and AFOSR.
Library rooms or Library halls
Directory of Open Access Journals (Sweden)
Alfredo Serrai
2013-12-01
Full Text Available Library Halls, understood as Renaissance and Baroque architectural creations, along with the furnishings and decorations, accomplish a cognitive task and serve to transmit knowledge. The design of these spaces based on the idea that they should reflect the merits and content of the collections housed within them, in order to prepare the mind of the reader to respect and admire the volumes. In accordance with this principle, in the fifteenth century library rooms had a basilican shape, with two or three naves, like churches, reflecting thus the spiritual value of the books contained there. Next to that inspiring function, library rooms had also the task of representing the entire logical and conceptual universe of human knowledge in a figurative way, including for this purpose also the and Kunst- und Wunderkammern, namely the collections of natural, artficial objects, and works of art. The importance of library rooms and their function was understood already in the early decades of the seventeenth century, as underlined in the treatise, Musei sive Bibliothecae tam privatae quam publicae Extructio, Instructio, Cura, Usus, written by the Jesuit Claude Clément and published in 1635. Almost the entire volume is dedicated to the decoration and ornamentation of the Saloni, and the function of the library is identified exclusively with the preservation and decoration of the collection, neglecting more specifically bibliographic aspects or those connected to library science. The architectural structure of the Saloni was destined to change in relation to two factors, namely the form of books, and the sources of light. As a consequence, from the end of the sixteenth century – or perhaps even before if one considers the fragments of the Library of Urbino belonging to Federico da Montefeltro – shelves and cabinets have been placed no longer in the center of the room, but were set against the walls. This new disposition of the furniture, surmounted by
MHD Equations with Regularity in One Direction
Directory of Open Access Journals (Sweden)
Zujin Zhang
2014-01-01
Full Text Available We consider the 3D MHD equations and prove that if one directional derivative of the fluid velocity, say, ∂3u∈Lp0, T;LqR3, with 2/p + 3/q = γ ∈ [1,3/2, 3/γ ≤ q ≤ 1/(γ - 1, then the solution is in fact smooth. This improves previous results greatly.
Magnetic stresses in ideal MHD plasmas
DEFF Research Database (Denmark)
Jensen, V.O.
1995-01-01
The concept of magnetic stresses in ideal MHD plasma theory is reviewed and revisited with the aim of demonstrating its advantages as a basis for calculating and understanding plasma equilibria. Expressions are derived for the various stresses that transmit forces in a magnetized plasma...... and it is shown that the resulting magnetic forces on a finite volume element can be obtained by integrating the magnetic stresses over the surface of the element. The concept is used to rederive and discuss the equilibrium conditions for axisymmetric toroidal plasmas, including the virial theorem...
Test-electron analysis of the magnetic reconnection topology
Borgogno, D.; Perona, A.; Grasso, D.
2017-12-01
Three-dimensional (3D) investigations of the magnetic reconnection field topology in space and laboratory plasmas have identified the abidance of magnetic coherent structures in the stochastic region, which develop during the nonlinear stage of the reconnection process. Further analytical and numerical analyses highlighted the efficacy of some of these structures in limiting the magnetic transport. The question then arises as to what is the possible role played by these patterns in the dynamics of the plasma particles populating the chaotic region. In order to explore this aspect, we provide a detailed description of the nonlinear 3D magnetic field topology in a collisionless magnetic reconnection event with a strong guide field. In parallel, we study the evolution of a population of test electrons in the guiding-center approximation all along the reconnection process. In particular, we focus on the nonlinear spatial redistribution of the initially thermal electrons and show how the electron dynamics in the stochastic region depends on the sign and on the value of their velocities. While the particles with the highest positive speed populate the coherent current structures that survive in the chaotic sea, the presence of the manifolds calculated in the stochastic region defines the confinement area for the electrons with the largest negative velocity. These results stress the link between the magnetic topology and the electron motion and contribute to the overall picture of a non-stationary fluid magnetic reconnection description in a geometry proper to physical systems where the effects of the curvature can be neglected.
Observational Signatures of Magnetic Reconnection in the Extended Corona
Savage, Sabrina; West, Matthew J.; Seaton, Daniel B.; Kobelski, Adam
2017-01-01
Observational signatures of reconnection have been studied extensively in the lower corona for decades, successfully providing insight into energy release mechanisms in the region above post-flare arcade loops and below 1.5 solar radii. During large eruptive events, however, energy release continues to occur well beyond the presence of reconnection signatures at these low heights. Supra-Arcade Downflows (SADs) and Supra-Arcade Downflowing Loops (SADLs) are particularly useful measures of continual reconnection in the corona as they may indicate the presence and path of retracting post-reconnection loops. SADs and SADLs have been faintly observed up to 18 hours beyond the passage of corona mass ejections through the SOHO/LASCO field of view, but a recent event from 2014 October 14 associated with giant arches provides very clear observations of these downflows for days after the initial eruption. We report on this unique event and compare these findings with observational signatures of magnetic reconnection in the extended corona for more typical eruptions.
On the longitudinal extent of magnetopause reconnection pulses
Directory of Open Access Journals (Sweden)
M. Lockwood
Full Text Available The open magnetosphere model of cusp ion injection, acceleration and precipitation is used to predict the dispersion characteristics for fully pulsed magnetic reconnection at a low-latitude magnetopause X-line. The resulting steps, as would be seen by a satellite moving meridionally and normal to the ionospheric projection of the X-line, are compared with those seen by satellites moving longitudinally, along the open/closed boundary. It is shown that two observed cases can be explained by similar magnetosheath and reconnection characteristics, and that the major differences between them are well explained by the different satellite paths through the events. Both cases were observed in association with poleward-moving transient events seen by ground-based radar, as also predicted by the theory. The results show that the reconnection is pulsed but strongly imply it cannot also be spatially patchy, in the sense of isolated X-lines which independently are intermittently active. Furthermore they show that the reconnection pulses responsible for the poleward-moving events and the cusp ion steps, must cover at least 3 h of magnetic local time, although propagation of the active reconnection region may mean that it does not extend this far at any one instant of time.
The auroral and ionospheric flow signatures of dual lobe reconnection
Directory of Open Access Journals (Sweden)
S. M. Imber
2006-11-01
Full Text Available We present the first substantial evidence for the occurrence of dual lobe reconnection from ionospheric flows and auroral signatures. The process of dual lobe reconnection refers to an interplanetary magnetic field line reconnecting with lobe field lines in both the northern and southern hemispheres. Two bursts of sunward plasma flow across the noon portion of the open/closed field line boundary (OCB, indicating magnetic flux closure at the dayside, were observed in SuperDARN radar data during a period of strongly northward IMF. The OCB is identified from spacecraft, radar backscatter, and auroral observations. In order for dual lobe reconnection to take place, we estimate that the interplanetary magnetic field clock angle must be within ±10° of zero (North. The total flux crossing the OCB during each burst is small (1.8% and 0.6% of the flux contained within the polar cap for the two flows. A brightening of the noon portion of the northern auroral oval was observed as the clock angle passed through zero, and is thought to be due to enhanced precipitating particle fluxes due to the occurrence of reconnection at two locations along the field line. The number of solar wind protons captured by the flux closure process was estimated to be ~2.5×1030 (4 tonnes by mass, sufficient to populate the cold, dense plasma sheet observed following this interval.
The auroral and ionospheric flow signatures of dual lobe reconnection
Directory of Open Access Journals (Sweden)
S. M. Imber
2006-11-01
Full Text Available We present the first substantial evidence for the occurrence of dual lobe reconnection from ionospheric flows and auroral signatures. The process of dual lobe reconnection refers to an interplanetary magnetic field line reconnecting with lobe field lines in both the northern and southern hemispheres. Two bursts of sunward plasma flow across the noon portion of the open/closed field line boundary (OCB, indicating magnetic flux closure at the dayside, were observed in SuperDARN radar data during a period of strongly northward IMF. The OCB is identified from spacecraft, radar backscatter, and auroral observations. In order for dual lobe reconnection to take place, we estimate that the interplanetary magnetic field clock angle must be within ±10° of zero (North. The total flux crossing the OCB during each burst is small (1.8% and 0.6% of the flux contained within the polar cap for the two flows. A brightening of the noon portion of the northern auroral oval was observed as the clock angle passed through zero, and is thought to be due to enhanced precipitating particle fluxes due to the occurrence of reconnection at two locations along the field line. The number of solar wind protons captured by the flux closure process was estimated to be ~2.5×10^{30} (4 tonnes by mass, sufficient to populate the cold, dense plasma sheet observed following this interval.
The Duesseldorf fairground. New building of hall 6; Messe Duesseldorf. Neubau der Halle 6
Energy Technology Data Exchange (ETDEWEB)
Gampfer, W.; Wendt, W.; Paar, A.; Schwarz, A.; Klemp, P.; Ambaum, P.; Joppen, H.; Hesse, D.; Hauser, K. [Messe Duesseldorf GmbH (Germany)
2001-07-01
The Duesseldorf fairground is highly successful and is constantly growing. With the inauguration of the new Hall 6 in May 2000, the former twelve halls have now become 17. The new Hall 6 will also be used for sports events, concerts, meetings etc. [German] Der Erfolg der Messe Duesseldorf laesst sich am stetigen Wachstum der Ausstellungsbereiche ablesen. So wurden aus den ehemals zwoelf Hallen bis heute mit der Einweihung der Neuen Halle 6 im Mai 2000 17 Hallen. Die zuletzt hinzugekommene Halle 6 wird neben der ueberwiegenden Nutzung als Messehalle auch als tagesbelichtete Mehrzweckhalle fuer Veranstaltungen, wie z.B. Sportveranstaltungen, Grosskonzerte, Versammlungen etc., genutzt. (orig.)
Mesoscopic effects in the quantum Hall regime
Indian Academy of Sciences (India)
Home; Journals; Pramana – Journal of Physics; Volume 58; Issue 2 ... Mesoscopic effects; quantum Hall transitions; ﬁnite-size scaling. ... When band mixing between multiple Landau levels is present, mesoscopic effects cause a crossover from a sequence of quantum Hall transitions for weak disorder to classical behavior ...
Mesoscopic effects in the quantum Hall regime
Indian Academy of Sciences (India)
may be of relevance to experimentally observed transitions between quantum Hall states and the insulating phase ... In this paper, we discuss the mesoscopic effects in the quantum Hall regime, in particu- lar the effects of ...... finite sizes, due to the presence of long length scales, quantum interference effects can be cut-off at ...
Novel optical probe for quantum Hall system
Indian Academy of Sciences (India)
Surface photovoltage spectroscopy; quantum Hall effect; Landau levels; edge states. Abstract. Surface photovoltage (SPV) spectroscopy has been used for the first time to explore Landau levels of a two-dimensional electron gas (2DEG) in modulation doped InP/InGaAs/InP QW in the quantum Hall regime. The technique ...
Hall devices improve electric motor efficiency
Haeussermann, W.
1979-01-01
Efficiency of electric motors and generators is reduced by radial magnetic forces created by symmetric fields within device. Forces are sensed and counteracted by Hall devices on excitation or control windings. Hall generators directly measure and provide compensating control of anu asymmetry, eliminating additional measurements needed for calibration feedback control loop.
Nongyrotropic Electrons in Guide Field Reconnection
Wendel, D. E.; Hesse, M.; Bessho, N.; Adrian, M. L.; Kuznetsova, M.
2016-01-01
We apply a scalar measure of nongyrotropy to the electron pressure tensor in a 2D particle-in-cell simulation of guide field reconnection and assess the corresponding electron distributions and the forces that account for the nongyrotropy. The scalar measure reveals that the nongyrotropy lies in bands that straddle the electron diffusion region and the separatrices, in the same regions where there are parallel electric fields. Analysis of electron distributions and fields shows that the nongyrotropy along the inflow and outflow separatrices emerges as a result of multiple populations of electrons influenced differently by large and small-scale parallel electric fields and by gradients in the electric field. The relevant parallel electric fields include large-scale potential ramps emanating from the x-line and sub-ion inertial scale bipolar electron holes. Gradients in the perpendicular electric field modify electrons differently depending on their phase, thus producing nongyrotropy. Magnetic flux violation occurs along portions of the separatrices that coincide with the parallel electric fields. An inductive electric field in the electron EB drift frame thus develops, which has the effect of enhancing nongyrotropies already produced by other mechanisms and under certain conditions producing their own nongyrotropy. Particle tracing of electrons from nongyrotropic populations along the inflows and outflows shows that the striated structure of nongyrotropy corresponds to electrons arriving from different source regions. We also show that the relevant parallel electric fields receive important contributions not only from the nongyrotropic portion of the electron pressure tensor but from electron spatial and temporal inertial terms as well.
Wind observations of low energy particles within a solar wind reconnection region
Directory of Open Access Journals (Sweden)
K. E. J. Huttunen
2008-09-01
Full Text Available We report characteristics of thermal particle observations during the encounter of the Wind satellite with the separatrix and the outflow domains of a reconnection event on 22 July 1999 in the solar wind. During the studied event the electrostatic analyzers on Wind were transmitting three-dimensional electron and proton distributions in a burst mode every 3 s, the spin period of the spacecraft. The event was associated with a magnetic shear angle of 114° and a large guide magnetic field. The observations suggest that Wind crossed the separatrix and outflow regions about a thousand of ion skin depths from the X-line. At the leading separator boundary, a strong proton beam was identified that originated from the direction of the X-line. In the separatrix and the outflow regions, the phase space distributions of thermal electrons displayed field aligned bidirectional anisotropy. During the crossings of the current sheets bounding the outflow region, we identified two adjacent layers in which the dominant thermal electron flows were towards the X-line at the inner edges of the current sheets and away from the X-line at the outer edges. Interestingly, simulation studies and observations in the Earth's magnetosphere have revealed that the electron flows are reversed, consistent with the Hall current system.
Wind observations of low energy particles within a solar wind reconnection region
Directory of Open Access Journals (Sweden)
K. E. J. Huttunen
2008-09-01
Full Text Available We report characteristics of thermal particle observations during the encounter of the Wind satellite with the separatrix and the outflow domains of a reconnection event on 22 July 1999 in the solar wind. During the studied event the electrostatic analyzers on Wind were transmitting three-dimensional electron and proton distributions in a burst mode every 3 s, the spin period of the spacecraft. The event was associated with a magnetic shear angle of 114° and a large guide magnetic field. The observations suggest that Wind crossed the separatrix and outflow regions about a thousand of ion skin depths from the X-line. At the leading separator boundary, a strong proton beam was identified that originated from the direction of the X-line. In the separatrix and the outflow regions, the phase space distributions of thermal electrons displayed field aligned bidirectional anisotropy. During the crossings of the current sheets bounding the outflow region, we identified two adjacent layers in which the dominant thermal electron flows were towards the X-line at the inner edges of the current sheets and away from the X-line at the outer edges. Interestingly, simulation studies and observations in the Earth's magnetosphere have revealed that the electron flows are reversed, consistent with the Hall current system.
Eriksson, S.; Lavraud, B.; Wilder, F. D.; Stawarz, J. E.; Giles, B. L.; Burch, J. L.; Baumjohann, W.; Ergun, R. E.; Lindqvist, P.-A.; Magnes, W.;
2016-01-01
The four Magnetospheric Multiscale (MMS) spacecraft recorded the first direct evidence of reconnection exhausts associated with Kelvln-Helmholtz (KH) waves at the duskside magnetopause on 8 September 2015 which allows for local mass and energy transport across the flank magnetopause. Pressure anisotropy-weighted Walen analyses confirmed in-plane exhausts across 22 of 42 KH-related trailing magnetopause current sheets (CSs). Twenty-one jets were observed by all spacecraft, with small variations in ion velocity, along the same sunward or antisunward direction with nearly equal probability. One exhaust was only observed by the MMS-1,2 pair, while MMS-3,4 traversed a narrow CS (1.5 ion inertial length) in the vicinity of an electron diffusion region. The exhausts were locally 2-D planar in nature as MMS-1, 2 observed almost identical signatures separated along the guide-field. Asymmetric magnetic and electric Hall fields are reported in agreement with a strong guide-field and a weak plasma density asymmetry across the magnetopause CS.
Nonlinear MHD dynamo operating at equipartition
DEFF Research Database (Denmark)
Archontis, V.; Dorch, Bertil; Nordlund, Åke
2007-01-01
Context.We present results from non linear MHD dynamo experiments with a three-dimensional steady and smooth flow that drives fast dynamo action in the kinematic regime. In the saturation regime, the system yields strong magnetic fields, which undergo transitions between an energy-equipartition a......Context.We present results from non linear MHD dynamo experiments with a three-dimensional steady and smooth flow that drives fast dynamo action in the kinematic regime. In the saturation regime, the system yields strong magnetic fields, which undergo transitions between an energy......-equipartition and a turbulent state. The generation and evolution of such strong magnetic fields is relevant for the understanding of dynamo action that occurs in stars and other astrophysical objects. Aims.We study the mode of operation of this dynamo, in the linear and non-linear saturation regimes. We also consider......, and that it can saturate at a level significantly higher than intermittent turbulent dynamos, namely at energy equipartition, for high values of the magnetic and fluid Reynolds numbers. The equipartition solution however does not remain time-independent during the simulation but exhibits a much more intricate...
MHD wave transmission in the Sun's atmosphere
Stangalini, M.; Del Moro, D.; Berrilli, F.; Jefferies, S. M.
2011-10-01
Magnetohydrodynamics (MHD) wave propagation inside the Sun's atmosphere is closely related to the magnetic field topology. For example, magnetic fields are able to lower the cutoff frequency for acoustic waves, thus allowing the propagation of waves that would otherwise be trapped below the photosphere into the upper atmosphere. In addition, MHD waves can be either transmitted or converted into other forms of waves at altitudes where the sound speed equals the Alfvén speed. We take advantage of the large field-of-view provided by the IBIS experiment to study the wave propagation at two heights in the solar atmosphere, which is probed using the photospheric Fe 617.3 nm spectral line and the chromospheric Ca 854.2 nm spectral line, and its relationship to the local magnetic field. Among other things, we find substantial leakage of waves with five-minute periods in the chromosphere at the edges of a pore and in the diffuse magnetic field surrounding it. By using spectropolarimetric inversions of Hinode SOT/SP data, we also find a relationship between the photospheric power spectrum and the magnetic field inclination angle. In particular, we identify well-defined transmission peaks around 25° for five-minute waves and around 15° for three-minute waves. We propose a very simple model based on wave transmission theory to explain this behavior. Finally, our analysis of both the power spectra and chromospheric amplification spectra suggests the presence of longitudinal acoustic waves along the magnetic field lines.
MHD simulation of plasma compression experiments
Reynolds, Meritt; Barsky, Sandra; de Vietien, Peter
2017-10-01
General Fusion (GF) is working to build a magnetized target fusion (MTF) power plant based on compression of magnetically-confined plasma by liquid metal. GF is testing this compression concept by collapsing solid aluminum liners onto plasmas formed by coaxial helicity injection in a series of experiments called PCS (Plasma Compression, Small). We simulate the PCS experiments using the finite-volume MHD code VAC. The single-fluid plasma model includes temperature-dependent resistivity and anisotropic heat transport. The time-dependent curvilinear mesh for MHD simulation is derived from LS-DYNA simulations of actual field tests of liner implosion. We will discuss how 3D simulations reproduced instability observed in the PCS13 experiment and correctly predicted stabilization of PCS14 by ramping the shaft current during compression. We will also present a comparison of simulated Mirnov and x-ray diagnostics with experimental measurements indicating that PCS14 compressed well to a linear compression ratio of 2.5:1.
Observation of reconnection pulses by Cluster and Double Star
Directory of Open Access Journals (Sweden)
X. H. Deng
2005-11-01
Full Text Available During a reconnection event on 7 August 2004, Cluster and Double Star (TC-1 were near the neutral sheet and simultaneously detected the signatures of the reconnection pulses. AT 22:59 UT tailward flow followed by earthward flow was detected by Cluster at about 15 RE, while earthward plasma flow followed by tailward flow was observed by TC-1 at about 10 RE. During the flow reversal from tailward to earthward, the magnetic field Bz changed sign from mainly negative values to positive, and the X component of the magnetic curvature vector switched sign from the tailward direction to the earthward direction, which indicates that the reconnection site (X-line moved tailward past the Cluster constellation. By using multi-point analysis and observation of energetic electron and ion flux, we study the movement and structure of the current sheet and discuss the braking effect of the earthward flow bursts in the inner magnetosphere.
DEFF Research Database (Denmark)
Lorenz, Stefan; Leszinski, Marc; Graeber, Daniel
2016-01-01
Re-meandering of degraded rivers is a frequently implemented measure in river restoration. A simple solution is reconnection of old meanders; however, its success likely depends on the reconnection method. We conducted a field study to analyze the benefits of a fully reconnected (fully opened...
The quantum Hall impedance standard
Schurr, J.; Kučera, J.; Pierz, K.; Kibble, B. P.
2011-02-01
Alternating current measurements of double-shielded quantum Hall devices have revealed a fascinating property of which only a quantum effect is capable: it can detect its own frequency dependence and convert it to a current dependence which can be used to eliminate both of them. According to an experimentally verified model, the residual frequency dependence is smaller than the measuring uncertainty of 1.3 × 10-9 kHz-1. In this way, a highly precise quantum standard of impedance can be established, without having to correct for any calculated frequency dependence and without the need for any artefact with a calculated frequency dependence. Nothing else like that is known to us and we hope that our results encourage other national metrology institutes to also apply it to impedance metrology and further explore its beautiful properties.
TURBULENT MAGNETOHYDRODYNAMIC RECONNECTION MEDIATED BY THE PLASMOID INSTABILITY
Energy Technology Data Exchange (ETDEWEB)
Huang, Yi-Min; Bhattacharjee, A., E-mail: yiminh@princeton.edu [Department of Astrophysical Sciences and Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States)
2016-02-10
It has been established that the Sweet–Parker current layer in high Lundquist number reconnection is unstable to the super-Alfvénic plasmoid instability. Past two-dimensional magnetohydrodynamic simulations have demonstrated that the plasmoid instability leads to a new regime where the Sweet–Parker current layer changes into a chain of plasmoids connected by secondary current sheets, and the averaged reconnection rate becomes nearly independent of the Lundquist number. In this work, a three-dimensional simulation with a guide field shows that the additional degree of freedom allows plasmoid instabilities to grow at oblique angles, which interact and lead to self-generated turbulent reconnection. The averaged reconnection rate in the self-generated turbulent state is of the order of a hundredth of the characteristic Alfvén speed, which is similar to the two-dimensional result but is an order of magnitude lower than the fastest reconnection rate reported in recent studies of externally driven three-dimensional turbulent reconnection. Kinematic and magnetic energy fluctuations both form elongated eddies along the direction of the local magnetic field, which is a signature of anisotropic magnetohydrodynamic turbulence. Both energy fluctuations satisfy power-law spectra in the inertial range, where the magnetic energy spectral index is in the range from −2.3 to −2.1, while the kinetic energy spectral index is slightly steeper, in the range from −2.5 to −2.3. The anisotropy of turbulence eddies is found to be nearly scale-independent, in contrast with the prediction of the Goldreich–Sridhar theory for anisotropic turbulence in a homogeneous plasma permeated by a uniform magnetic field.
The Three Dimensional Structure and Dynamics of Magnetotail Reconnection
Walker, Raymond; Lapenta, Giovanni; Liang, Haoming; El Alaoui, Mostafa; Berchem, Jean; Goldstein, Melvyn
2017-04-01
Magnetic reconnection is a fundamental process by which magnetic energy is dissipated and converted into particle energy. In the next few months the Magnetosphere Multi-Scale Mission (MMS) will provide high resolution observations of reconnection and its consequences in the magnetotail. Of high priority will be observations of the electron diffusion region (EDR) where the actual process of reconnection is thought to occur. In preparation for the MMS observations we have investigated tail reconnection in a realistic magnetospheric configuration by using a new approach that combines a global magnetohydrodynamic simulation of the solar wind, magnetosphere and ionosphere system with a large scale (30X12X12RE) implicit particle-in-cell (iPic3D) simulation (see Lapenta et al., 2016 Geophys. Res. Lett. 43, 515-524, doi:10.1002/2015GL066689 for a discussion of the technique). In particular we have investigated the three dimensional structure and dynamics of tail reconnection during a substorm on February 15, 2008. We found that just earthward of the reconnection site the tail becomes highly structured in the Y direction in the GSM coordinate system. The structures result from an instability associated with strong shear flows in the Y direction within the current sheet. In particular we found that the work done by the magnetic field J•E in the electron frame alternated between positive and negative although the net J•E was positive. We used several methods for identifying the EDR (non-gyrotropy, slippage, the non-ideal terms in OHM's law as well as J•E) and found that all gave false positive results in some regions of the tail. However all of the approaches gave positive results in some of the small structures with J•E positive. These putative EDRs extended ( 2di, >1di, 1di) in the X, Y and Z directions.
Multi-scale structures of turbulent magnetic reconnection
Energy Technology Data Exchange (ETDEWEB)
Nakamura, T. K. M., E-mail: takuma.nakamura@oeaw.ac.at; Nakamura, R.; Narita, Y.; Baumjohann, W. [Space Research Institute, Austrian Academy of Sciences, Graz 8042 (Austria); Daughton, W. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)
2016-05-15
We have analyzed data from a series of 3D fully kinetic simulations of turbulent magnetic reconnection with a guide field. A new concept of the guide filed reconnection process has recently been proposed, in which the secondary tearing instability and the resulting formation of oblique, small scale flux ropes largely disturb the structure of the primary reconnection layer and lead to 3D turbulent features [W. Daughton et al., Nat. Phys. 7, 539 (2011)]. In this paper, we further investigate the multi-scale physics in this turbulent, guide field reconnection process by introducing a wave number band-pass filter (k-BPF) technique in which modes for the small scale (less than ion scale) fluctuations and the background large scale (more than ion scale) variations are separately reconstructed from the wave number domain to the spatial domain in the inverse Fourier transform process. Combining with the Fourier based analyses in the wave number domain, we successfully identify spatial and temporal development of the multi-scale structures in the turbulent reconnection process. When considering a strong guide field, the small scale tearing mode and the resulting flux ropes develop over a specific range of oblique angles mainly along the edge of the primary ion scale flux ropes and reconnection separatrix. The rapid merging of these small scale modes leads to a smooth energy spectrum connecting ion and electron scales. When the guide field is sufficiently weak, the background current sheet is strongly kinked and oblique angles for the small scale modes are widely scattered at the kinked regions. Similar approaches handling both the wave number and spatial domains will be applicable to the data from multipoint, high-resolution spacecraft observations such as the NASA magnetospheric multiscale (MMS) mission.
The impact of Hall physics on magnetized high energy density plasma jets
Gourdain, Pierre-Alexandre
2013-10-01
Magnetized high energy density (HED) plasma jets produced by radial foil explosions on pulsed power machines have improved our understanding of the fundamental mechanisms driving flowing matter under extreme conditions. Experiments and simulations indicate that magnetic fields are crucial in the formation and stability of strongly collimated plasma jets, a property also shared by astrophysical jets originating from black holes and protostars. It is understood that these magnetic fields also generate electric fields, often associated with the dynamo effect. In fact, when the Lundquist number is large enough, the dynamo effect is frequently seen as the dominant electric field driver of flowing plasmas. This is true inside the collimated jet where the density (> 1019 cm-3) , velocity ( 50 eV) are high enough to preclude the dominance of any other type of electric fields. However, the ion flow speed is much lower than the speed of light. As a result, dynamo electric fields do not impact noticeably fluid motion since electric stresses are negligible compared to magnetic stresses. On the other hand, Hall physics dominates the low density plasma surrounding the jet (< 1018 cm-3) . In this region, electron speeds can be orders of magnitude higher than the bulk flow velocity as ion and electron fluids are decoupled. As a result, electric stresses can rival with magnetic stresses and Hall physics does impact the overall plasma dynamics. This talk will discuss how HED plasmas are subjected to Hall physics and how it impacts the particle confinement as well as the MHD stability of plasma jets. After focusing on experimental results and numerical simulations from the PERSEUS code, the talk will extend its conclusions to inertial fusion regimes where Hall physics could also alter plasma confinement and stability. Research supported by NNSA/DOE Grant Cooperative Agreements DE-FC52-06NA 00057, DE-NA 0001836 and NSF Grant PHY-1102471.
Ion and electron heating during magnetic reconnection in simulations
Haggerty, Colby C.
Magnetic reconnection is a fundamental plasma process that converts energy stored in magnetic fields into kinetic energy. Reconnection is believed to occur in astrophysical, heliospheric and laboratory plasma. In this thesis we examine how magnetic energy is converted into electron and ion thermal energy during collisionless magnetic reconnection using fully kinetic 2.5D particle-in-cell (PIC) simulations. We find that both ion and electron heating are reasonably well correlated with the inflowing available magnetic energy per ion electron pair, or more succinctly, to an energy associated with the upstream Alfven speed (micAup 2). We also show that while the upstream Alfven speed is the primary factor controlling the heating, other factors, including the strength of a guide field and the electron to ion temperature ratio, affect the heating as well. Ion heating is found to be inversely proportional to the strength of the guide field relative to the reconnecting field. In anti-parallel reconnection, ion heating is suppressed by an upstream electron to ion temperature ratio greater than unity; conversely, electron heating is found to be enhanced by these upstream parameters. It is also shown that increasing the upstream ion temperature normalized to the Alfven speed squared (beta i) reduces the reconnection outflow velocity in the exhaust for anti-parallel reconnection. The firehose instability in the exhaust limits the field line (and thus the outflow) velocity and it is shown that v0 = ⅓cAr2/√ Ti||/mi, where v 0 is the outflow velocity and Ti|| is the ion parallel temperature in the exhaust. While the upstream temperatures appear to cause the heating to deviate from scaling with mic Aup2, the total heating (ion + electron) is significantly better correlated with micAup 2, giving DeltaTi + Delta Te = 0.14, micAup 2. This implies that the total fraction of magnetic energy released into thermal energy is a constant, and this constant fraction of magnetic energy is
What does Astrophysics want to know about (Astrophysical) Reconnection?
Rosner, R.
2005-12-01
Magnetic reconnection is commonly invoked as a plasma energization and particle acceleration process in astrophysics, but the levels of detail regarding the underlying physics that are required are generally far demanding than what is typically encountered in laboratory or space plasma physics. Naively, one would therefore expect it to be far easier to answer questions regarding reconnection in the astrophysical context as opposed to the laboratory or space plasma physics contexts. My talk will focus on why this naive expectation is not correct, and will discuss the specifics of such astrophysics-motivated questions, as well as some possible answers.
Dissipation in relativistic pair-plasma reconnection: revisited
Zenitani, Seiji
2018-01-01
Basic properties of relativistic magnetic reconnection in electron–positron pair plasmas are investigated by using a particle-in-cell (PIC) simulation. We first revisit a problem by Hesse and Zenitani (2007 Phys. Plasmas 14 112102), who examined the kinetic Ohm’s law across the X line. We formulate a relativistic Ohm’s law by decomposing the stress–energy tensor. Then, the role of the new term, called the heat-flow inertial term, is examined in the PIC simulation data. We further evaluate the energy balance in the reconnection system. These analyses demonstrate physically transparent ways to diagnose relativistic kinetic data.
Endogenous magnetic reconnection and associated high energy plasma processes
Coppi, B.; Basu, B.
2018-02-01
An endogenous reconnection process involves a driving factor that lays inside the layer where a drastic change of magnetic field topology occurs. A process of this kind is shown to take place when an electron temperature gradient is present in a magnetically confined plasma and the evolving electron temperature fluctuations are anisotropic. The width of the reconnecting layer remains significant even when large macroscopic distances are considered. In view of the fact that there are plasmas in the Universe with considerable electron thermal energy contents this feature can be relied upon in order to produce generation or conversion of magnetic energy, high energy particle populations and momentum and angular momentum transport.
Simulated In Situ Measurements and Structural Analysis of Reconnection-Driven Solar Polar Jets
Roberts, Merrill A.; Uritsky, Vadim M.; Karpen, Judith T.; DeVore, C. R.
2015-04-01
Solar polar jets are observed to originate in regions within the open field of solar coronal holes. These so called “anemone” regions are associated with an embedded dipole topology, consisting of a fan-separatrix and a spine line emanating from a null point occurring at the top of the dome shaped fan surface (Antiochos 1998). In this study, we analyze simulations using the Adaptively Refined MHD Solver (ARMS) that take into account gravity, solar wind, and spherical geometry to generate polar jets by reconnection between a twisted embedded bipole and the surrounding open field (Karpen et al. 2015). These new simulations confirm and extend previous Cartesian studies of polar jets based on this mechanism (Pariat et al. 2009, 2010, 2015). Focusing on the plasma density, velocity, and magnetic field, we interpolate the adaptively gridded simulation data onto a regular grid, and analyze the signatures that the jet produces as it propagates outward from the solar surface. The trans-Alfvénic nature of the jet front is confirmed by temporally differencing the plasma mass density and comparing the result with the local Alfvén speed. We perform a preliminary analysis of the magnetized plasma turbulence, and examine how the turbulence affects the overall structure of the jet. We also conduct simulated spacecraft fly-throughs of the jet, illustrating the signatures that spacecraft such as Solar Probe Plus may encounter in situ as the jet propagates into the heliosphere. These fly-throughs are performed in several different velocity regimes to better model the changing velocity of Solar Probe Plus relative to the Sun and its jets over the course of the mission.This research was supported by NASA grant NNG11PL10A 670.036 to CUA/IACS (M.A.R. and V.M.U.) and the Living With a Star Targeted Research and Technology (J.T.K. and C.R.D.) program.
Analogue Kerr-like geometries in a MHD inflow
Noda, Sousuke; Takahashi, Masaaki
2016-01-01
We present a model of the analogue black hole in magnetohydrodynamic (MHD) flow. For a two dimensional axisymmetric stationary trans-magnetosonic inflow with a sink, using the dispersion relation of the MHD waves, we introduce the effective geometries for magnetoacoustic waves propagating in the MHD flow. Investigating the properties of the effective potentials for magnetoacoustic rays, we find that the effective geometries can be classified into five types which include analogue spacetimes of the Kerr black hole, ultra spinning stars with ergoregions and spinning stars without ergoregions. We address the effects of the magnetic pressure and the magnetic tension on each magnetoacoustic geometries.
The quantum Hall effects: Philosophical approach
Lederer, P.
2015-05-01
The Quantum Hall Effects offer a rich variety of theoretical and experimental advances. They provide interesting insights on such topics as gauge invariance, strong interactions in Condensed Matter physics, emergence of new paradigms. This paper focuses on some related philosophical questions. Various brands of positivism or agnosticism are confronted with the physics of the Quantum Hall Effects. Hacking's views on Scientific Realism, Chalmers' on Non-Figurative Realism are discussed. It is argued that the difficulties with those versions of realism may be resolved within a dialectical materialist approach. The latter is argued to provide a rational approach to the phenomena, theory and ontology of the Quantum Hall Effects.
Application of electron closures in extended MHD
Held, Eric; Adair, Brett; Taylor, Trevor
2017-10-01
Rigorous closure of the extended MHD equations in plasma fluid codes includes the effects of electron heat conduction along perturbed magnetic fields and contributions of the electron collisional friction and stress to the extended Ohms law. In this work we discuss application of a continuum numerical solution to the Chapman-Enskog-like electron drift kinetic equation using the NIMROD code. The implementation is a tightly-coupled fluid/kinetic system that carefully addresses time-centering in the advance of the fluid variables with their kinetically-computed closures. Comparisons of spatial accuracy, computational efficiency and required velocity space resolution are presented for applications involving growing magnetic islands in cylindrical and toroidal geometry. The reduction in parallel heat conduction due to particle trapping in toroidal geometry is emphasized. Work supported by DOE under Grant Nos. DE-FC02-08ER54973 and DE-FG02-04ER54746.
MHD stable regime of the tokamak
Energy Technology Data Exchange (ETDEWEB)
Cheng, C.Z.; Furth, H.P.; Boozer, A.H.
1986-10-01
A broad family of tokamak current profiles is found to be stable against ideal and resistive MHD kink modes for 1 less than or equal to q(0), with q(a) as low 2. For 0.5 less than or equal to q(0) < and q(a) > 1, current profiles can be found that are unstable only to the m = 1, n = 1 mode. A specific ''optimal'' tokamak profile can be selected from the range of stable solutions, by imposing a common upper limit on dj/dr - corresponding in ohmic equilibrium to a limitation of dT/sub e//dr by anomalous transport.
MHD simulation of the Bastille day event
Energy Technology Data Exchange (ETDEWEB)
Linker, Jon, E-mail: linkerj@predsci.com; Torok, Tibor; Downs, Cooper; Lionello, Roberto; Titov, Viacheslav; Caplan, Ronald M.; Mikić, Zoran; Riley, Pete [Predictive Science Inc., 9990 Mesa Rim Road, Suite 170, San Diego CA, USA 92121 (United States)
2016-03-25
We describe a time-dependent, thermodynamic, three-dimensional MHD simulation of the July 14, 2000 coronal mass ejection (CME) and flare. The simulation starts with a background corona developed using an MDI-derived magnetic map for the boundary condition. Flux ropes using the modified Titov-Demoulin (TDm) model are used to energize the pre-event active region, which is then destabilized by photospheric flows that cancel flux near the polarity inversion line. More than 10{sup 33} ergs are impulsively released in the simulated eruption, driving a CME at 1500 km/s, close to the observed speed of 1700km/s. The post-flare emission in the simulation is morphologically similar to the observed post-flare loops. The resulting flux rope that propagates to 1 AU is similar in character to the flux rope observed at 1 AU, but the simulated ICME center passes 15° north of Earth.
MHD Instabilities in Simple Plasma Configuration
1984-01-01
without subscripts. As already men- tioned there is no equilibrium flow of the plasma. We now scalar mul- tiply Eq. (III-1) by V to obtain av poV’ V...tearing modes. VIILA - MHD Modes With Two Dimensional Structure Recall from the last three chapters, that in slab geometry, the appropriate modes always had...P>V) =- (V• V- V<V>) (X-5a) <P>A-V+ a< +ji<V>-V<V>+pV-V<V> +<p><V> .VV+Vt 1 (Vxil) x <B> +(V x <B>) x > 41r = -v + <A- > Ot - Av .V<V> + <AsV> .V<V
A multigrid AMR algorithm for the study of magnetic reconnection
Del Sarto, D.; Deriaz, E.
2017-12-01
We address the study of reconnecting instabilities in magnetized plasmas, a highly multiscale process, using an innovative adaptive scheme based on Adaptive Mesh Refinement (AMR) and Multigrid Algorithms. The reduced model we exploit is very sensitive to numerical errors and demands high order solvers which we develop for this purpose. We validate our approach with two numerical experiments of physical interest.
Statistics of Magnetic Reconnection X-Lines in Kinetic Turbulence
Haggerty, C. C.; Parashar, T.; Matthaeus, W. H.; Shay, M. A.; Wan, M.; Servidio, S.; Wu, P.
2016-12-01
In this work we examine the statistics of magnetic reconnection (x-lines) and their associated reconnection rates in intermittent current sheets generated in turbulent plasmas. Although such statistics have been studied previously for fluid simulations (e.g. [1]), they have not yet been generalized to fully kinetic particle-in-cell (PIC) simulations. A significant problem with PIC simulations, however, is electrostatic fluctuations generated due to numerical particle counting statistics. We find that analyzing gradients of the magnetic vector potential from the raw PIC field data identifies numerous artificial (or non-physical) x-points. Using small Orszag-Tang vortex PIC simulations, we analyze x-line identification and show that these artificial x-lines can be removed using sub-Debye length filtering of the data. We examine how turbulent properties such as the magnetic spectrum and scale dependent kurtosis are affected by particle noise and sub-Debye length filtering. We subsequently apply these analysis methods to a large scale kinetic PIC turbulent simulation. Consistent with previous fluid models, we find a range of normalized reconnection rates as large as ½ but with the bulk of the rates being approximately less than to 0.1. [1] Servidio, S., W. H. Matthaeus, M. A. Shay, P. A. Cassak, and P. Dmitruk (2009), Magnetic reconnection and two-dimensional magnetohydrodynamic turbulence, Phys. Rev. Lett., 102, 115003.
Project ReConnect: Fostering Resilience within Disconnected Youths
Bethea, James; Robsinson, Unseld
2007-01-01
This qualitative research study identifies protective factors that foster resilience in disconnected youths (ages 16-18) who are participants in Project ReConnect, an alternative education program in New York City. Observations, participant observations, interviews, and focus groups were utilized to collect data from ten participants. Findings…
Magnetotail Reconnection and Flux Circulation: Jupiter and Saturn Compared
Jackman, C. M.; Vogt, M. F.; Slavin, J. A.; Cowley, S. W. H.; Boardsen, S. A.
2011-01-01
The Jovian magnetosphere has been visited by eight spacecraft, and the magnetometer data have been used to identify dozens of plasmoids and 250 field dipolarizations associated with magnetic reconnection in the tail [e.g. Vogt et al., 2010]. Since the arrival of the Cassini spacecraft at Saturn in 2004, the magnetometer instrument has also been used to identify reconnection signatures. The deepest magnetotail orbits were in 2006, and during this time 34 signatures of plasmoids were identified. In this study we compare the statistical properties of plasmoids at Jupiter and Saturn such as duration, size, location, and recurrence period. Such parameters can be influenced by many factors, including the different Dungey cycle timescales and cross-magnetospheric potential drops at the two planets. We present superposed epoch analyses of plasmoids at the two planets to determine their average properties and to infer their role in the reconfiguration of the nightside of the magnetosphere. We examine the contributions of plasmoids to the magnetic flux transfer cycle at both planets. At Jupiter, there is evidence of an extended interval after reconnection where the field remains northward (analogous to the terrestrial post-plasmoid plasma sheet). At Saturn we see a similar feature, and calculate the amount of flux closed on average in reconnection events, leading us to an estimation of the recurrence rate of plasmoid release.
Gangadhara, S.; Craig, D.; Ennis, D. A.; Hartog, D. J. Den; Fiksel, G.; Prager, S. C.
2007-02-01
The impurity ion temperature evolution has been measured during three types of impulsive reconnection events in the Madison Symmetric Torus reversed field pinch. During an edge reconnection event, the drop in stored magnetic energy is small and ion heating is observed to be limited to the outer half of the plasma. Conversely, during a global reconnection event the drop in stored magnetic energy is large, and significant heating is observed at all radii. For both kinds of events, the drop in magnetic energy is sufficient to explain the increase in ion thermal energy. However, not all types of reconnection lead to ion heating. During a core reconnection event, both the stored magnetic energy and impurity ion temperature remain constant. The results suggest that a drop in magnetic energy is required for ions to be heated during reconnection, and that when this occurs heating is localized near the reconnection layer.
MHD stability limits in the TCV Tokamak
Energy Technology Data Exchange (ETDEWEB)
Reimerdes, H. [Ecole Polytechnique Federale de Lausanne, Centre de Recherches en Physique des Plasmas (CRPP), CH-1015 Lausanne (Switzerland)
2001-07-01
Magnetohydrodynamic (MHD) instabilities can limit the performance and degrade the confinement of tokamak plasmas. The Tokamak a Configuration Variable (TCV), unique for its capability to produce a variety of poloidal plasma shapes, has been used to analyse various instabilities and compare their behaviour with theoretical predictions. These instabilities are perturbations of the magnetic field, which usually extend to the plasma edge where they can be detected with magnetic pick-up coils as magnetic fluctuations. A spatially dense set of magnetic probes, installed inside the TCV vacuum vessel, allows for a fast observation of these fluctuations. The structure and temporal evolution of coherent modes is extracted using several numerical methods. In addition to the setup of the magnetic diagnostic and the implementation of analysis methods, the subject matter of this thesis focuses on four instabilities, which impose local and global stability limits. All of these instabilities are relevant for the operation of a fusion reactor and a profound understanding of their behaviour is required in order to optimise the performance of such a reactor. Sawteeth, which are central relaxation oscillations common to most standard tokamak scenarios, have a significant effect on central plasma parameters. In TCV, systematic scans of the plasma shape have revealed a strong dependence of their behaviour on elongation {kappa} and triangularity {delta}, with high {kappa}, and low {delta} leading to shorter sawteeth with smaller crashes. This shape dependence is increased by applying central electron cyclotron heating. The response to additional heating power is determined by the role of ideal or resistive MHD in triggering the sawtooth crash. For plasma shapes where additional heating and consequently, a faster increase of the central pressure shortens the sawteeth, the low experimental limit of the pressure gradient within the q = 1 surface is consistent with ideal MHD predictions. The
Bound values for Hall conductivity of heterogeneous medium under ...
Indian Academy of Sciences (India)
Bound values for Hall conductivity under quantum Hall effect (QHE) conditions in inhomogeneous medium has been studied. It is shown that bound values for Hall conductivity differ from bound values for metallic conductivity. This is due to the unusual character of current percolation under quantum Hall effect conditions.
Wang, S. Y.; Smith, J. M.
1981-01-01
The effects of MHD channel end regions on the overall power generation were considered. The peak plant thermodynamic efficiency was found to be slightly lower than for the active region (41%). The channel operating point for the peak efficiency was shifted to the supersonic mode (Mach No., M sub c approx. 1.1) rather than the previous subsonic operation (M sub c approx. 0.9). The sensitivity of the channel performance to the B-field, diffuser recovery coefficient, channel load parameter, Mach number, and combustor pressure is also discussed. In addition, methods for operating the channel in a constant-current mode are investigated. This mode is highly desirable from the standpoint of simplifying the current and voltage consolidation for the inverter system. This simplification could result in significant savings in the cost of the equipment. The initial results indicate that this simplification is possible, even under a strict Hall field constraint, with resonable plant thermodynamic efficiency (40.5%).
Iodine Hall Thruster for Space Exploration Project
National Aeronautics and Space Administration — Busek Co. Inc. proposes to develop a high power (high thrust) electric propulsion system featuring an iodine fueled Hall Effect Thruster (HET). The system to be...
Iodine Hall Thruster for Space Exploration Project
National Aeronautics and Space Administration — In the Phase I program, Busek Co. Inc. tested an existing Hall thruster, the BHT-8000, on iodine propellant. The thruster was fed by a high flow iodine feed system,...
AA under construction in its hall
CERN PhotoLab
1980-01-01
The Antiproton Accumulator was installed in a specially built hall. Here we see it at an "early" stage of installation, just a few magnets on the floor, no vacuum chamber at all, but: 3 months later there was circulating beam !
Success of Hall technique crowns questioned.
Nainar, S M Hashim
2012-01-01
Hall technique is a method of providing stainless steel crowns for primary molars without tooth preparation and requires no local anesthesia. Literature review showed inconclusive evidence and therefore this technique should not be used in clinical practice.
Dual Mode Low Power Hall Thruster Project
National Aeronautics and Space Administration — Sample and return missions desire and missions like Saturn Observer require a low power Hall thruster that can operate at high thrust to power as well as high...
Light Metal Propellant Hall Thruster Project
National Aeronautics and Space Administration — Busek proposes to develop light metal Hall Effect thrusters that will help reduce the travel time, mass, and cost of SMD spacecraft. Busek has identified three...
Two LHC dipole magnets in assembly hall
Maximilien Brice
2003-01-01
The final LHC components are completed in the assembly hall, prior to installation in the tunnel. These pictures show two 15-m long LHC cryogenic magnets, both before and after insertion into their blue vacuum vessel.
Giant thermal Hall effect in multiferroics
Ideue, T.; Kurumaji, T.; Ishiwata, S.; Tokura, Y.
2017-08-01
Multiferroics, in which dielectric and magnetic orders coexist and couple with each other, attract renewed interest for their cross-correlated phenomena, offering a fundamental platform for novel functionalities. Elementary excitations in such systems are strongly affected by the lattice-spin interaction, as exemplified by the electromagnons and the magneto-thermal transport. Here we report an unprecedented coupling between magnetism and phonons in multiferroics, namely, the giant thermal Hall effect. The thermal transport of insulating polar magnets (ZnxFe1-x)2Mo3O8 is dominated by phonons, yet extremely sensitive to the magnetic structure. In particular, large thermal Hall conductivities are observed in the ferrimagnetic phase, indicating unconventional lattice-spin interactions and a new mechanism for the Hall effect in insulators. Our results show that the thermal Hall effect in multiferroic materials can be an effective probe for strong lattice-spin interactions and provide a new tool for magnetic control of thermal currents.
Local conservative regularizations of compressible MHD and neutral flows
Krishnaswami, Govind S; Thyagaraja, Anantanarayanan
2016-01-01
Ideal systems like MHD and Euler flow may develop singularities in vorticity (w = curl v). Viscosity and resistivity provide dissipative regularizations of the singularities. In this paper we propose a minimal, local, conservative, nonlinear, dispersive regularization of compressible flow and ideal MHD, in analogy with the KdV regularization of the 1D kinematic wave equation. This work extends and significantly generalizes earlier work on incompressible Euler and ideal MHD. It involves a micro-scale cutoff length lambda which is a function of density, unlike in the incompressible case. In MHD, it can be taken to be of order the electron collisionless skin depth c/omega_pe. Our regularization preserves the symmetries of the original systems, and with appropriate boundary conditions, leads to associated conservation laws. Energy and enstrophy are subject to a priori bounds determined by initial data in contrast to the unregularized systems. A Hamiltonian and Poisson bracket formulation is developed and applied ...
An Implicit, Conservative Multi-Temperature MHD Algorithm
National Research Council Canada - National Science Library
Shumlak, Uri
2001-01-01
.... The algorithm was based on a Roe-type approximate Riemann solver. The algorithm was implemented in a code to model the time-dependent, three-dimensional, arbitrary-geometry MHD model which includes viscous and resistive effects...
The National Academies of Sciences, Engineering and Medicine is seeking community input for a study on the future of materials research (MR). Frontiers of Materials Research: A Decadal Survey will look at defining the frontiers of materials research ranging from traditional materials science and engineering to condensed matter physics. Please join members of the study committee for a town hall to discuss future directions for materials research in the United States in the context of worldwide efforts. In particular, input on the following topics will be of great value: progress, achievements, and principal changes in the R&D landscape over the past decade; identification of key MR areas that have major scientific gaps or offer promising investment opportunities from 2020-2030; and the challenges that MR may face over the next decade and how those challenges might be addressed. This study was requested by the Department of Energy and the National Science Foundation. The National Academies will issue a report in 2018 that will offer guidance to federal agencies that support materials research, science policymakers, and researchers in materials research and other adjoining fields. Learn more about the study at http://nas.edu/materials.
The fluctuation Hall conductivity and the Hall angle in type-II superconductor under magnetic field
Energy Technology Data Exchange (ETDEWEB)
Tinh, Bui Duc, E-mail: tinhbd@hnue.edu.vn [Institute of Research and Development, Duy Tan University, K7/25 Quang Trung, Danang (Viet Nam); Department of Physics, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi (Viet Nam); Hoc, Nguyen Quang; Thu, Le Minh [Department of Physics, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi (Viet Nam)
2016-02-15
Highlights: • The time-dependent Ginzburg–Landau was used to calculate fluctuation Hall conductivity and Hall angle in type-II superconductor in 2D and 3D. • We obtain analytical expressions for the fluctuation Hall conductivity and the Hall angle summing all Landau levels without need to cutoff higher Landau levels to treat arbitrary magnetic field. • The results were compared to the experimental data on YBCO. - Abstract: The fluctuation Hall conductivity and the Hall angle, describing the Hall effect, are calculated for arbitrary value of the imaginary part of the relaxation time in the frame of the time-dependent Ginzburg–Landau theory in type II-superconductor with thermal noise describing strong thermal fluctuations. The self-consistent Gaussian approximation is used to treat the nonlinear interaction term in dynamics. We obtain analytical expressions for the fluctuation Hall conductivity and the Hall angle summing all Landau levels without need to cutoff higher Landau levels to treat arbitrary magnetic field. The results are compared with experimental data on high-T{sub c} superconductor.
Scaling Study of Reconnection Heating in Torus Plasma Merging Experiments
Ono, Yasushi; Akimitsu, Moe; Sawada, Asuka; Cao, Qinghong; Koike, Hideya; Hatano, Hironori; Kaneda, Taishi; Tanabe, Hiroshi
2017-10-01
We have been investigating toroidal plasma merging and reconnection for high-power heating of spherical tokamak (ST) and field-reversed configuration (FRC), using TS-3 (ST, FRC: R =0.2m, 1985-), TS-4 (ST, FRC: R =0.5m, 2000-), UTST (ST: R =0.45m, 2008-) and MAST (ST: R =0.9m, 2000-) devices. The series of merging experiments made clear the promising scaling and characteristics of reconnection heating: (i) its ion heating energy that scales with square of the reconnecting magnetic field Brec, (ii) its energy loss lower than 10%, (iii) its ion heating energy (in the downstream) 10 time larger than its electron heating energy (at around X-point) and (iv) low dependence of ion heating on the guide (toroidal) field Bg. The Brec2-scalingwas obtained when the current sheet was compressed to the order of ion gyrodadius. When the sheet was insufficiently compressed, the measured ion temperature was lower than the scaling prediction. Based on this scaling, we realized significant ion heating up to 1.2keV in MAST after 2D elucidation of ion heating up to 250eV in TS-3 [3,4]. This promising scaling leads us to new high Brec reconnection heating experiments for future direct access to burning plasma: TS-U (2017-) in Univ. Tokyo and ST-40 in Tokamak Energy Inc. (2017-). This presentation reviews major progresses in those toroidal plasma merging experiments for physics and fusion applications of magnetic reconnection.
Generic Superweak Chaos Induced by Hall Effect
Ben-Harush, Moti; Dana, Itzhack
2016-01-01
We introduce and study the "kicked Hall system" (KHS), i.e., charged particles periodically kicked in the presence of uniform magnetic ($\\mathbf{B}$) and electric ($\\mathbf{E}$) fields that are perpendicular to each other and to the kicking direction. We show that for resonant values of $B$ and $E$ and in the weak-chaos regime of sufficiently small nonintegrability parameter $\\kappa$ (the kicking strength), there exists a \\emph{generic} family of periodic kicking potentials for which the Hall...
A Conserved Cross Helicity for Non-Barotropic MHD
Yahalom, A
2016-01-01
Cross helicity is not conserved in non-barotropic magnetohydrodynamics (MHD) (as opposed to barotropic or incompressible MHD). Here we show that variational analysis suggests a new kind of cross helicity which is conserved in the non barotropic case. The non barotropic cross helicity reduces to the standard cross helicity under barotropic assumptions. The new cross helicity is conserved even for topologies for which the variational principle does not apply.
Evaluation of the ECAS open cycle MHD power plant design
Seikel, G. R.; Staiger, P. J.; Pian, C. C. P.
1978-01-01
The Energy Conversion Alternatives Study (ECAS) MHD/steam power plant is described. The NASA critical evaluation of the design is summarized. Performance of the MHD plant is compared to that of the other type ECAS plant designs on the basis of efficiency and the 30-year levelized cost of electricity. Techniques to improve the plant design and the potential performance of lower technology plants requiring shorter development time and lower development cost are then discussed.
Directory of Open Access Journals (Sweden)
Uday Singh Rajput
2017-11-01
Full Text Available Effects of rotation and radiation on unsteady MHD flow past a vertical plate with variable wall temperature and mass diffusion in the presence of Hall current is studied here. Earlier we studied chemical reaction effect on unsteady MHD flow past an exponentially accelerated inclined plate with variable temperature and mass diffusion in the presence of Hall current. We had obtained the results which were in agreement with the desired flow phenomenon. To study further, we are changing the model by considering radiation effect on fluid, and changing the geometry of the model. Here in this paper we are taking the plate positioned vertically upward and rotating with velocity Ω . Further, medium of the flow is taken as porous. The plate temperature and the concentration level near the plate increase linearly with time. The governing system of partial differential equations is transformed to dimensionless equations using dimensionless variables. The dimensionless equations under consideration have been solved by Laplace transform technique. The model contains equations of motion, diffusion equation and equation of energy. To analyze the solution of the model, desirable sets of the values of the parameters have been considered. The governing equations involved in the flow model are solved by the Laplace-transform technique. The results obtained have been analyzed with the help of graphs drawn for different parameters. The numerical values obtained for the drag at boundary and Nusselt number have been tabulated. We found that the values obtained for velocity, concentration and temperature are in concurrence with the actual flow of the fluid
Turbulence Measurements in a Tropical Zoo Hall
Eugster, Werner; Denzler, Basil; Bogdal, Christian
2017-04-01
The Masoala rainforest hall of the Zurich Zoo, Switzerland, covers a ground surface area of 10,856 m2 and reaches 30 m in height. With its transparent ETFE foiled roof it provides a tropical climate for a large diversity of plants and animals. In combination with an effort to estimate dry deposition of elemental mercury, we made an attempt to measure turbulent transfer velocity with an ultrasonic anemometer inside the hall. Not surprising, the largest turbulence elements were on the order of the hall dimension. Although the dimensions of the hall seem to be small (200,000 m3) for eddy covariance flux measurements and the air circulation inside the hall was extremely weak, the spectra of wind velocity components and virtual (sonic) temperature obeyed the general statistical description expected under unconstrained outdoor measurement conditions. We will present results from a two-week measurement campaign in the Masoala rainforest hall and make a suggestion for the deposition velocity to be used to estimate dry deposition of atmospheric components to the tropical vegetation surface.
Broken Ergodicity in MHD Turbulence in a Spherical Domain
Shebalin, John V.; wang, Yifan
2011-01-01
Broken ergodicity (BE) occurs in Fourier method numerical simulations of ideal, homogeneous, incompressible magnetohydrodynamic (MHD) turbulence. Although naive statistical theory predicts that Fourier coefficients of fluid velocity and magnetic field are zero-mean random variables, numerical simulations clearly show that low-wave-number coefficients have non-zero mean values that can be very large compared to the associated standard deviation. In other words, large-scale coherent structure (i.e., broken ergodicity) in homogeneous MHD turbulence can spontaneously grow out of random initial conditions. Eigenanalysis of the modal covariance matrices in the probability density functions of ideal statistical theory leads to a theoretical explanation of observed BE in homogeneous MHD turbulence. Since dissipation is minimal at the largest scales, BE is also relevant for resistive magnetofluids, as evidenced in numerical simulations. Here, we move beyond model magnetofluids confined by periodic boxes to examine BE in rotating magnetofluids in spherical domains using spherical harmonic expansions along with suitable boundary conditions. We present theoretical results for 3-D and 2-D spherical models and also present computational results from dynamical simulations of 2-D MHD turbulence on a rotating spherical surface. MHD turbulence on a 2-D sphere is affected by Coriolus forces, while MHD turbulence on a 2-D plane is not, so that 2-D spherical models are a useful (and simpler) intermediate stage on the path to understanding the much more complex 3-D spherical case.
Two-way coupling of magnetohydrodynamic simulations with embedded particle-in-cell simulations
Makwana, K. D.; Keppens, R.; Lapenta, G.
2017-12-01
We describe a method for coupling an embedded domain in a magnetohydrodynamic (MHD) simulation with a particle-in-cell (PIC) method. In this two-way coupling we follow the work of Daldorff et al. (2014) [19] in which the PIC domain receives its initial and boundary conditions from MHD variables (MHD to PIC coupling) while the MHD simulation is updated based on the PIC variables (PIC to MHD coupling). This method can be useful for simulating large plasma systems, where kinetic effects captured by particle-in-cell simulations are localized but affect global dynamics. We describe the numerical implementation of this coupling, its time-stepping algorithm, and its parallelization strategy, emphasizing the novel aspects of it. We test the stability and energy/momentum conservation of this method by simulating a steady-state plasma. We test the dynamics of this coupling by propagating plasma waves through the embedded PIC domain. Coupling with MHD shows satisfactory results for the fast magnetosonic wave, but significant distortion for the circularly polarized Alfvén wave. Coupling with Hall-MHD shows excellent coupling for the whistler wave. We also apply this methodology to simulate a Geospace Environmental Modeling (GEM) challenge type of reconnection with the diffusion region simulated by PIC coupled to larger scales with MHD and Hall-MHD. In both these cases we see the expected signatures of kinetic reconnection in the PIC domain, implying that this method can be used for reconnection studies.
Pulse Detonation Rocket MHD Power Experiment
Litchford, Ron J.; Cook, Stephen (Technical Monitor)
2002-01-01
A pulse detonation research engine (MSFC (Marshall Space Flight Center) Model PDRE (Pulse Detonation Rocket Engine) G-2) has been developed for the purpose of examining integrated propulsion and magnetohydrodynamic power generation applications. The engine is based on a rectangular cross-section tube coupled to a converging-diverging nozzle, which is in turn attached to a segmented Faraday channel. As part of the shakedown testing activity, the pressure wave was interrogated along the length of the engine while running on hydrogen/oxygen propellants. Rapid transition to detonation wave propagation was insured through the use of a short Schelkin spiral near the head of the engine. The measured detonation wave velocities were in excess of 2500 m/s in agreement with the theoretical C-J velocity. The engine was first tested in a straight tube configuration without a nozzle, and the time resolved thrust was measured simultaneously with the head-end pressure. Similar measurements were made with the converging-diverging nozzle attached. The time correlation of the thrust and head-end pressure data was found to be excellent. The major purpose of the converging-diverging nozzle was to configure the engine for driving an MHD generator for the direct production of electrical power. Additional tests were therefore necessary in which seed (cesium-hydroxide dissolved in methanol) was directly injected into the engine as a spray. The exhaust plume was then interrogated with a microwave interferometer in an attempt to characterize the plasma conditions, and emission spectroscopy measurements were also acquired. Data reduction efforts indicate that the plasma exhaust is very highly ionized, although there is some uncertainty at this time as to the relative abundance of negative OH ions. The emission spectroscopy data provided some indication of the species in the exhaust as well as a measurement of temperature. A 24-electrode-pair segmented Faraday channel and 0.6 Tesla permanent
Observations of Reconnection Flows in a Flare on the Solar Disk
Energy Technology Data Exchange (ETDEWEB)
Wang, Juntao; Simões, P. J. A.; Jeffrey, N. L. S.; Fletcher, L.; Wright, P. J.; Hannah, I. G., E-mail: j.wang.4@research.gla.ac.uk [SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom)
2017-09-20
Magnetic reconnection is a well-accepted part of the theory of solar eruptive events, though the evidence is still circumstantial. Intrinsic to the reconnection picture of a solar eruptive event, particularly in the standard model for two-ribbon flares (CSHKP model), are an advective flow of magnetized plasma into the reconnection region, expansion of field above the reconnection region as a flux rope erupts, retraction of heated post-reconnection loops, and downflows of cooling plasma along those loops. We report on a unique set of Solar Dynamics Observatory /Atmospheric Imaging Assembly imaging and Hinode /EUV Imaging Spectrometer spectroscopic observations of the disk flare SOL2016-03-23T03:54 in which all four flows are present simultaneously. This includes spectroscopic evidence for a plasma upflow in association with large-scale expanding closed inflow field. The reconnection inflows are symmetric, and consistent with fast reconnection, and the post-reconnection loops show a clear cooling and deceleration as they retract. Observations of coronal reconnection flows are still rare, and most events are observed at the solar limb, obscured by complex foregrounds, making their relationship to the flare ribbons, cusp field, and arcades formed in the lower atmosphere difficult to interpret. The disk location and favorable perspective of this event have removed these ambiguities giving a clear picture of the reconnection dynamics.
Observations of Reconnection Flows in a Flare on the Solar Disk
Wang, Juntao; Simões, P. J. A.; Jeffrey, N. L. S.; Fletcher, L.; Wright, P. J.; Hannah, I. G.
2017-09-01
Magnetic reconnection is a well-accepted part of the theory of solar eruptive events, though the evidence is still circumstantial. Intrinsic to the reconnection picture of a solar eruptive event, particularly in the standard model for two-ribbon flares (CSHKP model), are an advective flow of magnetized plasma into the reconnection region, expansion of field above the reconnection region as a flux rope erupts, retraction of heated post-reconnection loops, and downflows of cooling plasma along those loops. We report on a unique set of Solar Dynamics Observatory/Atmospheric Imaging Assembly imaging and Hinode/EUV Imaging Spectrometer spectroscopic observations of the disk flare SOL2016-03-23T03:54 in which all four flows are present simultaneously. This includes spectroscopic evidence for a plasma upflow in association with large-scale expanding closed inflow field. The reconnection inflows are symmetric, and consistent with fast reconnection, and the post-reconnection loops show a clear cooling and deceleration as they retract. Observations of coronal reconnection flows are still rare, and most events are observed at the solar limb, obscured by complex foregrounds, making their relationship to the flare ribbons, cusp field, and arcades formed in the lower atmosphere difficult to interpret. The disk location and favorable perspective of this event have removed these ambiguities giving a clear picture of the reconnection dynamics.
EVIDENCE OF ACTIVE MHD INSTABILITY IN EULAG-MHD SIMULATIONS OF SOLAR CONVECTION
Energy Technology Data Exchange (ETDEWEB)
Lawson, Nicolas; Strugarek, Antoine; Charbonneau, Paul, E-mail: nicolas.laws@gmail.ca, E-mail: strugarek@astro.umontreal.ca, E-mail: paulchar@astro.umontreal.ca [Département de Physique, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Qc H3C 3J7 (Canada)
2015-11-10
We investigate the possible development of magnetohydrodynamical instabilities in the EULAG-MHD “millennium simulation” of Passos and Charbonneau. This simulation sustains a large-scale magnetic cycle characterized by solar-like polarity reversals taking place on a regular multidecadal cadence, and in which zonally oriented bands of strong magnetic fields accumulate below the convective layers, in response to turbulent pumping from above in successive magnetic half-cycles. Key aspects of this simulation include low numerical dissipation and a strongly sub-adiabatic fluid layer underlying the convectively unstable layers corresponding to the modeled solar convection zone. These properties are conducive to the growth and development of two-dimensional instabilities that are otherwise suppressed by stronger dissipation. We find evidence for the action of a non-axisymmetric magnetoshear instability operating in the upper portions of the stably stratified fluid layers. We also investigate the possibility that the Tayler instability may be contributing to the destabilization of the large-scale axisymmetric magnetic component at high latitudes. On the basis of our analyses, we propose a global dynamo scenario whereby the magnetic cycle is driven primarily by turbulent dynamo action in the convecting layers, but MHD instabilities accelerate the dissipation of the magnetic field pumped down into the overshoot and stable layers, thus perhaps significantly influencing the magnetic cycle period. Support for this scenario is found in the distinct global dynamo behaviors observed in an otherwise identical EULAG-MHD simulations, using a different degree of sub-adiabaticity in the stable fluid layers underlying the convection zone.
Miles, Michael V; Tang, Peter H; Ryan, Melody A; Grim, Shellee A; Fakhoury, Toufic A; Strawsburg, Richard H; DeGrauw, Ton J; Baumann, Robert J
2004-06-01
The purpose of this study is to determine the feasibility of using 10-hydroxy-10,11-dihydrocarbazepine (MHD) concentration in saliva as an alternative to serum for the therapeutic monitoring of oxcarbazepine (OXC) treatment. Investigators identified subjects seen in neurology clinics at the University of Kentucky Chandler Medical Center. Patients were eligible if they agreed to participate in this study, were taking oxcarbazepine, and if a serum MHD concentration had been ordered by their physician. Unstimulated saliva specimens (0.25 mL minimum) were collected in the clinic and frozen until analysis. Blood samples were obtained by phlebotomy. Serum specimens were analyzed by a reference laboratory. Saliva MHD concentrations were determined by high-performance liquid chromatography in the Clinical Laboratory at the Cincinnati Children's Hospital Medical Center. Linear regression analysis was used to evaluate correlations. Saliva and blood specimens were collected from 28 epilepsy patients, but usable samples were obtained from only 23. The mean serum MHD concentration was 23.9 +/- 10.0 microg/mL, and the mean saliva concentration was 23.1 +/- 10.1 microg/mL. There was a significant positive correlation between the serum and saliva concentrations: saliva (y) = 0.95 serum (x) + 0.39; r = 0.941; n = 23; P MHD concentration ratio was 0.96 +/- 0.15. The results of the current study indicate that the relationship between freely flowing (unstimulated) saliva and serum concentrations of MHD is sufficient for therapeutic drug monitoring. A limitation of saliva MHD monitoring is that individuals who have difficulty producing small quantities of saliva or who have viscous saliva should generally be avoided for this type of monitoring. It is also recommended to avoid saliva collection within 8 hours after OXC dosing to allow complete absorption and transformation of the parent drug.
MHD Gauge Fields: Helicities and Casimirs
Hu, Q.; Webb, G. M.; Zank, G. P.; Anco, S.
2016-12-01
Clebsch potential gauge field theory for magnetohydrodynamics is developed based in part on the theory of Calkin (1963). It is shown how the polarization vector P in Calkin's approach, naturally arises from the Lagrange multiplier constraint equation for Faraday's equation for the magnetic induction B, or alternatively from the magnetic vector potential form of Faraday's equation. Gauss's equation, (divergence of Bis zero), is incorporated in the variational principle by means of a Lagrange multiplier constraint. Noether's theorem, and gauge symmetries are used to derive the conservation laws for (a) magnetic helicity (b) cross helicity, (c) fluid helicity for non-magnetized fluids, and (d) a class of conservation laws associated with curl and divergence equations, which applies to Faraday's equation and Gauss's equation. The magnetic helicity conservation law is due to a gauge symmetry in MHD and not due to a fluid relabelling symmetry. The analysis is carried out for a non-barotropic gas. The cross helicity and fluid helicity conservation are nonlocal conservation laws, that reduce to local conservation laws for the case of a barotropic gas. The connections between gauge symmetries, Clebsch potentials and Casimirs are developed. It is shown that the gauge symmetry functionals in the work of Henyey (1982) satisfy the Casimir equations.
Jia, Xianzhe; Slavin, James; Poh, Gangkai; Toth, Gabor; Gombosi, Tamas
2016-04-01
As the innermost planet, Mercury arguably undergoes the most direct space weathering interactions due to its weak intrinsic magnetic field and its close proximity to the Sun. It has long been suggested that two processes, i.e., erosion of the dayside magnetosphere due to intense magnetopause reconnection and the shielding effect of the induction currents generated at the conducting core, compete against each other in governing the large-scale structure of Mercury's magnetosphere. An outstanding question concerning Mercury's space weather is which of the two processes is more important. To address this question, we have developed a global MHD model in which Mercury's interior is electromagnetically coupled to the surrounding space environment. As demonstrated in Jia et al. (2015), the new modeling capability allows for self-consistently characterizing the dynamical response of the Mercury system to time-varying external conditions. To assess the relative importance of induction and magnetopause reconnection in controlling the magnetospheric configuration, especially under strong solar driving conditions, we have carried out multiple global simulations that adopt a wide range of solar wind dynamic pressure and IMF conditions. We find that, while the magnetopause standoff distance decreases with increasing solar wind pressure, just as expected, its dependence on the solar wind pressure follows closely a power-law relationship with an index of ~ -1/6, rather than a steeper power-law falling-off expected for the case with only induction present. This result suggests that for the range of solar wind conditions examined, the two competing processes, namely induction and reconnection, appear to play equally important roles in determining the global configuration of Mercury's magnetosphere, consistent with the finding obtained by Slavin et al. (2014) based on MESSENGER observations. We also find that the magnetic perturbations produced by the magnetospheric current systems
Tutorial: Physics and modeling of Hall thrusters
Boeuf, Jean-Pierre
2017-01-01
Hall thrusters are very efficient and competitive electric propulsion devices for satellites and are currently in use in a number of telecommunications and government spacecraft. Their power spans from 100 W to 20 kW, with thrust between a few mN and 1 N and specific impulse values between 1000 and 3000 s. The basic idea of Hall thrusters consists in generating a large local electric field in a plasma by using a transverse magnetic field to reduce the electron conductivity. This electric field can extract positive ions from the plasma and accelerate them to high velocity without extracting grids, providing the thrust. These principles are simple in appearance but the physics of Hall thrusters is very intricate and non-linear because of the complex electron transport across the magnetic field and its coupling with the electric field and the neutral atom density. This paper describes the basic physics of Hall thrusters and gives a (non-exhaustive) summary of the research efforts that have been devoted to the modelling and understanding of these devices in the last 20 years. Although the predictive capabilities of the models are still not sufficient for a full computer aided design of Hall thrusters, significant progress has been made in the qualitative and quantitative understanding of these devices.
Air temperature gradient in large industrial hall
Karpuk, Michał; Pełech, Aleksander; Przydróżny, Edward; Walaszczyk, Juliusz; Szczęśniak, Sylwia
2017-11-01
In the rooms with dominant sensible heat load, volume airflow depends on many factors incl. pre-established temperature difference between exhaust and supply airflow. As the temperature difference is getting higher, airflow volume drops down, consequently, the cost of AHU is reduced. In high industrial halls with air exhaust grids located under the ceiling additional temperature gradient above working zone should be taken into consideration. In this regard, experimental research of the vertical air temperature gradient in high industrial halls were carried out for the case of mixing ventilation system The paper presents the results of air temperature distribution measurements in high technological hall (mechanically ventilated) under significant sensible heat load conditions. The supply airflow was delivered to the hall with the help of the swirl diffusers while exhaust grids were located under the hall ceiling. Basing on the air temperature distribution measurements performed on the seven pre-established levels, air temperature gradient in the area between 2.0 and 7.0 m above the floor was calculated and analysed.
The plasmoid instability during asymmetric inflow magnetic reconnection
Murphy, Nicholas A; Shen, Chengcai; Lin, Jun; Ni, Lei
2013-01-01
Theoretical studies of the plasmoid instability generally assume that the reconnecting magnetic fields are symmetric. We relax this assumption by performing two-dimensional resistive magnetohydrodynamic simulations of the plasmoid instability during asymmetric inflow magnetic reconnection. Magnetic asymmetry modifies the onset, scaling, and dynamics of this instability. Magnetic islands develop preferentially into the weak magnetic field upstream region. Outflow jets from individual X-points impact plasmoids obliquely rather than directly as in the symmetric case. Consequently, deposition of momentum by the outflow jets into the plasmoids is less efficient, the plasmoids develop net vorticity, and shear flow slows down secondary merging between islands. Secondary merging events have asymmetry along both the inflow and outflow directions. Downstream plasma is more turbulent in cases with magnetic asymmetry because islands are able to roll around each other after exiting the current sheet. As in the symmetric c...
Benyo, Theresa Louise
exhaust flow from the engine by converting electrical current back into flow enthalpy to increase thrust. Though there has been considerable research into the use of MHD generators to produce electricity for industrial power plants, interest in the technology for flight-weight aerospace applications has developed only recently. In this research, electromagnetic fields coupled with weakly ionzed gases to slow hypersonic airflow were investigated within the confines of an MHD energy-bypass system with the goal of showing that it is possible for an air-breathing engine to transition from takeoff to Mach 7 without carrying a rocket propulsion system along with it. The MHD energy-bypass system was modeled for use on a supersonic turbojet engine. The model included all components envisioned for an MHD energy-bypass system; two preionizers, an MHD generator, and an MHD accelerator. A thermodynamic cycle analysis of the hypothesized MHD energy-bypass system on an existing supersonic turbojet engine was completed. In addition, a detailed thermodynamic, plasmadynamic, and electromagnetic analysis was combined to offer a single, comprehensive model to describe more fully the proper plasma flows and magnetic fields required for successful operation of the MHD energy bypass system. The unique contribution of this research involved modeling the current density, temperature, velocity, pressure, electric field, Hall parameter, and electrical power throughout an annular MHD generator and an annular MHD accelerator taking into account an external magnetic field within a moving flow field, collisions of electrons with neutral particles in an ionized flow field, and collisions of ions with neutral particles in an ionized flow field (ion slip). In previous research, the ion slip term has not been considered. The MHD energy-bypass system model showed that it is possible to expand the operating range of a supersonic jet engine from a maximum of Mach 3.5 to a maximum of Mach 7. The inclusion of
Magnetic Reconnection and the Kelvin-Helmholtz Instability
Knoll, D. A.; Chacon, L.; Brackbill, J. U.; Lapenta, G.
2002-11-01
Results are presented from a continuing study of magnetic reconnection caused by the evolution of a Kelvin-Helmholtz instability. To date we have studied 3-D compressible, subsonic and and sub-Alfvenic flow, with differential rotation (a gradient in vorticity parallel to the initial magnetic field) [1,2], as well as 2-D incompressible super-Alfvenic flow [3]. In both cases localized transient reconnection is observed on the Kelvin-Helmholtz time scale, and results indicate that the observed reconnection rate is insensitive to resistivity. In the present study we extend both the 2-D and the 3-D results found in [1,2,3]. In the extension of the 2-D work we focus on the fundamental differences in the nonlinear evolution of a low S simulation (S = 200) and a higher S simulation (S = 10,000). In the 3-D work we study the effects of a density discontinuity (present in [1] and not in [2]), along with study the effects of initial curved field lines in the absence of differential rotation. This basic plasma physics problem has possible application to dayside magnetosphere reconnection as a theoretical model for flux transfer events [1]. The general problem also has possible application to solar physics as it could provide a trigger mechanism for some class of coronal mass ejections. Both applications will be briefly discussed. [1] J.U. Brackbill and D.A. Knoll, Phys. Rev. Lett., vol. 86 (2001). [2] D.A. Knoll and J.U. Brackbill, Physics of Plasmas, to appear (2002) [3] D.A. Knoll and L. Chacon, Phys. Rev. Lett., vol. 88 (2002).
Fully kinetic simulations of magnetic reconnection in partially ionised gases
Innocenti, M. E.; Jiang, W.; Lapenta, G.; Markidis, S.
2016-12-01
Magnetic reconnection has been explored for decades as a way to convert magnetic energy into kinetic energy and heat and to accelerate particles in environments as different as the solar surface, planetary magnetospheres, the solar wind, accretion disks, laboratory plasmas. When studying reconnection via simulations, it is usually assumed that the plasma is fully ionised, as it is indeed the case in many of the above-mentioned cases. There are, however, exceptions, the most notable being the lower solar atmosphere. Small ionisation fractions are registered also in the warm neutral interstellar medium, in dense interstellar clouds, in protostellar and protoplanetary accreditation disks, in tokamak edge plasmas and in ad-hoc laboratory experiments [1]. We study here how magnetic reconnection is modified by the presence of a neutral background, i.e. when the majority of the gas is not ionised. The ionised plasma is simulated with the fully kinetic Particle-In-Cell (PIC) code iPic3D [2]. Collisions with the neutral background are introduced via a Monte Carlo plug-in. The standard Monte Carlo procedure [3] is employed to account for elastic, excitation and ionization electron-neutral collisions, as well as for elastic scattering and charge exchange ion-neutral collisions. Collisions with the background introduce resistivity in an otherwise collisionless plasma and modifications of the particle distribution functions: particles (and ions at a faster rate) tend to thermalise to the background. To pinpoint the consequences of this, we compare reconnection simulations with and without background. References [1] E E Lawrence et al. Physical review letters, 110(1):015001, 2013. [2] S Markidis et al. Mathematics and Computers in Simulation, 80(7):1509-1519, 2010. [3] K Nanbu. IEEE Transactions on plasma science, 28(3):971-990, 2000.
Reconnection studies under different types of turbulence driving
Directory of Open Access Journals (Sweden)
G. Kowal
2012-04-01
Full Text Available We study a model of fast magnetic reconnection in the presence of weak turbulence proposed by Lazarian and Vishniac (1999 using three-dimensional direct numerical simulations. The model has been already successfully tested in Kowal et al. (2009 confirming the dependencies of the reconnection speed V_{rec} on the turbulence injection power P_{inj} and the injection scale l_{inj} expressed by a constraint V_{rec} ~ P_{inj}^{1/2}l_{inj}^{3/4}and no observed dependency on Ohmic resistivity. In Kowal et al. (2009, in order to drive turbulence, we injected velocity fluctuations in Fourier space with frequencies concentrated around k_{inj} = 1/l_{inj}, as described in Alvelius (1999. In this paper, we extend our previous studies by comparing fast magnetic reconnection under different mechanisms of turbulence injection by introducing a new way of turbulence driving. The new method injects velocity or magnetic eddies with a specified amplitude and scale in random locations directly in real space. We provide exact relations between the eddy parameters and turbulent power and injection scale. We performed simulations with new forcing in order to study turbulent power and injection scale dependencies. The results show no discrepancy between models with two different methods of turbulence driving exposing the same scalings in both cases. This is in agreement with the Lazarian and Vishniac (1999 predictions. In addition, we performed a series of models with varying viscosity ν. Although Lazarian and Vishniac (1999 do not provide any prediction for this dependence, we report a weak relation between the reconnection speed with viscosity, V_{rec} ~ ν^{−1/4}.
The firehose instability during multiple reconnection in the Earth's magnetotail
Alexandrova, Alexandra; Divin, Andrey; Retino, Alessandro; Deca, Jan; Catapano, Filomena; Cozzani, Giulia
2017-04-01
We found unique events in the Cluster spacecraft observations of the Earth's magnetotail which correspond to the case of multiple reconnection sites. The ion temperature anisotropy of more energized ions in the direction parallel to the magnetic field, rather than in the perpendicular direction, is observed in the region of dynamical interaction between two active X-lines. The magnetic field and plasma parameters associated with the anisotropy correspond to the firehose instability conditions. We discuss possible scenarios of development of the firehose instability in multiple reconnection by comparing the observations with numerical simulations. Conventional Particle-in-Cell simulations of 2D magnetic reconnection starting from Harris equilibria are performed using implicit PIC code iPIC3D [Markidis, 2010]. At earlier stages the evolution creates fronts which push the weakly magnetized current sheet plasma away from the X-line. Fronts accelerate and reflect particles, producing parallel ion beams and increasing parallel ion temperature ahead of the front. If multiple X-lines are present, then the counterstreaming ion beams appear inside the original current sheet between colliding reconnection jet fronts. For large enough parallel ion pressure anisotropy, the firehose-like mode is excited inside the original current sheet with a flapping-like appearance along the X GSM direction but not Y GSM (current) direction. One should note that our simulations do not include the Bz magnetic field component (normal to the current sheet), hence ion beams cannot escape into the lobes and the whole region between two colliding fronts is unstable to firehose-like instability. In the Earth's magnetotail such configuration likely occurs when two active X-lines are close enough to each other, similar to a few cases we found in the Cluster observations.
Application of PDSLin to the magnetic reconnection problem
Yuan, Xuefei
2013-01-01
Magnetic reconnection is a fundamental process in a magnetized plasma at both low and high magnetic Lundquist numbers (the ratio of the resistive diffusion time to the Alfvén wave transit time), which occurs in a wide variety of laboratory and space plasmas, e.g. magnetic fusion experiments, the solar corona and the Earth\\'s magnetotail. An implicit time advance for the two-fluid magnetic reconnection problem is known to be difficult because of the large condition number of the associated matrix. This is especially troublesome when the collisionless ion skin depth is large so that the Whistler waves, which cause the fast reconnection, dominate the physics (Yuan et al 2012 J. Comput. Phys. 231 5822-53). For small system sizes, a direct solver such as SuperLU can be employed to obtain an accurate solution as long as the condition number is bounded by the reciprocal of the floating-point machine precision. However, SuperLU scales effectively only to hundreds of processors or less. For larger system sizes, it has been shown that physics-based (Chacón and Knoll 2003 J. Comput. Phys. 188 573-92) or other preconditioners can be applied to provide adequate solver performance. In recent years, we have been developing a new algebraic hybrid linear solver, PDSLin (Parallel Domain decomposition Schur complement-based Linear solver) (Yamazaki and Li 2010 Proc. VECPAR pp 421-34 and Yamazaki et al 2011 Technical Report). In this work, we compare numerical results from a direct solver and the proposed hybrid solver for the magnetic reconnection problem and demonstrate that the new hybrid solver is scalable to thousands of processors while maintaining the same robustness as a direct solver. © 2013 IOP Publishing Ltd.
High-order conservative finite difference GLM-MHD schemes for cell-centered MHD
Mignone, Andrea; Tzeferacos, Petros; Bodo, Gianluigi
2010-08-01
We present and compare third- as well as fifth-order accurate finite difference schemes for the numerical solution of the compressible ideal MHD equations in multiple spatial dimensions. The selected methods lean on four different reconstruction techniques based on recently improved versions of the weighted essentially non-oscillatory (WENO) schemes, monotonicity preserving (MP) schemes as well as slope-limited polynomial reconstruction. The proposed numerical methods are highly accurate in smooth regions of the flow, avoid loss of accuracy in proximity of smooth extrema and provide sharp non-oscillatory transitions at discontinuities. We suggest a numerical formulation based on a cell-centered approach where all of the primary flow variables are discretized at the zone center. The divergence-free condition is enforced by augmenting the MHD equations with a generalized Lagrange multiplier yielding a mixed hyperbolic/parabolic correction, as in Dedner et al. [J. Comput. Phys. 175 (2002) 645-673]. The resulting family of schemes is robust, cost-effective and straightforward to implement. Compared to previous existing approaches, it completely avoids the CPU intensive workload associated with an elliptic divergence cleaning step and the additional complexities required by staggered mesh algorithms. Extensive numerical testing demonstrate the robustness and reliability of the proposed framework for computations involving both smooth and discontinuous features.
Energy Technology Data Exchange (ETDEWEB)
Doss, E.D. [ed.] [Argonne National Lab., IL (United States); Sikes, W.C. [ed.] [Newport News Shipbuilding and Dry Dock Co., VA (United States)
1992-09-01
This report describes the work performed during Phase 1 and Phase 2 of the collaborative research program established between Argonne National Laboratory (ANL) and Newport News Shipbuilding and Dry Dock Company (NNS). Phase I of the program focused on the development of computer models for Magnetohydrodynamic (MHD) propulsion. Phase 2 focused on the experimental validation of the thruster performance models and the identification, through testing, of any phenomena which may impact the attractiveness of this propulsion system for shipboard applications. The report discusses in detail the work performed in Phase 2 of the program. In Phase 2, a two Tesla test facility was designed, built, and operated. The facility test loop, its components, and their design are presented. The test matrix and its rationale are discussed. Representative experimental results of the test program are presented, and are compared to computer model predictions. In general, the results of the tests and their comparison with the predictions indicate that thephenomena affecting the performance of MHD seawater thrusters are well understood and can be accurately predicted with the developed thruster computer models.
Sovie, R. J.
1976-01-01
The MHD channel in the NASA Lewis Research Center was redesigned and used in closed cycle power generation experiments with a helium-cesium working fluid. The cross sectional dimensions of the channel were reduced to 5 by 16.5 cm to allow operation over a variety of conditions. Experiments have been run at temperatures of 1900-2100 K and Mach numbers from 0.3 to 0.55 in argon and 0.2 in helium. Improvements in Hall voltage isolation and seed vaporization techniques have resulted in significant improvements in performance. Typical values obtained with helium are Faraday open circuit voltage 141 V (92% of uBh) at a magnetic field strength of 1.7 T, power outputs of 2.2 kw for tests with 28 electrodes and 2.1 kw for tests with 17 electrodes. Power densities of 0.6 MW/cu m and Hall fields of about 1100 V/m were obtained in the tests with 17 electrodes, representing a factor of 18 improvement over previously reported results. The V-I curves and current distribution data indicate that while near ideal equilibrium performance is obtained under some conditions, no nonequilibrium power has been generated to date.
Schaffner, David
2015-11-01
A typical signature of dissipation in conventional fluid turbulence is the steepening power spectrum of velocity fluctuations, signaling the transition from the inertial range to the dissipation range where scales become small enough for fluid viscosity effects to be dominant and convert flow energy into thermal energy. In MHD fluids, resistivity can play an analogous role to viscosity for magnetic field fluctuations, where collisional scales determine the onset of dissipation. However, turbulent plasmas can exhibit other mechanisms for converting magnetic energy into thermal energy such as through the generation of current sheets and magnetic reconnection or through coupling to kinetic scale fluctuations such as Kinetic Alfven waves or Whistler waves. In collisionless plasmas such as the solar wind, only these alternative dissipation mechanisms are likely active. Recent experiments with MHD turbulence generated in the wind-tunnel configuration of the Swarthmore Spheromak Experiment (SSX) provide an environment in which various potential non-resistive signatures of magnetic turbulent energy dissipation can be studied. SSX plasma is magnetically dynamic with no background field. Previous work has demonstrated that a steepening in the magnetic fluctuation spectrum is observed which can be roughly interpreted as a transition from inertial range to a dissipation range magnetic turbulence. The frequency range at which this steepening occurs can be correlated to the ion inertial scale of the plasma, a length which is characteristic of the size of current sheets in MHD plasmas. Detailed intermittency and structure function analysis presented here coupled with appeals to fractal scaling models support the hypothesis that the observed turbulence is being affected by a global dissipation mechanism such as the generation of current sheets. Information theory based analysis techniques using permutation entropy and statistical complexity are also applied to seek dissipation
Results of closed cycle MHD power generation tests with a helium-cesium working fluid
Sovie, R. J.
1977-01-01
The cross-sectional dimensions of the MHD channel in the NASA Lewis closed loop facility have been reduced to 3.8 x 11.4 cm. Tests were run in this channel using a helium-cesium working fluid at stagnation pressures of 1.6 x 10 to the 5th N/sq m, stagnation temperatures of 2000-2060 K and an entrance Mach number of 0.36. In these tests Faraday open circuit voltages of 200 V were measured which correspond to a Faraday field of 1750 V/m. Power generation tests were run for different groups of electrode configurations and channel lengths. Hall fields up to 1450 V/m were generated. Power extraction per electrode of 183 W and power densities of 1.7 MW/cu m have been obtained. A total power output of 2 kW was generated for tests with 14 electrodes. The power densities obtained in this channel represent a factor of 3 improvement over those reported for the m = 0.2 channel at the last EAM Symposium.
Results of closed cycle MHD power generation test with a helium-cesium working fluid
Sovie, R. J.
1977-01-01
The cross sectional dimensions of the MHD channel in the NASA Lewis closed loop facility were reduced to 3.8 x 11.4 cm. Tests were run in this channel using a helium-cesium working fluid at stagnation pressures of 160,000 n/M2, stagnation temperatures of 2000-2060 K and an entrance Mach number of 0.36. In these tests Faraday open circuit voltages of 200 V were measured which correspond to a Faraday field of 1750 V/M. Power generation tests were run for different groups of electrode configurations and channel lengths. Hall fields up to 1450 V/M were generated. Power extraction per electrode of 183 W and power densities of 1.7 MW/M3 were obtained. A total power output of 2 kW was generated for tests with 14 electrodes. The power densities obtained in this channel represent a factor of 3 improvement over those previously reported for the M = 0.2 channel.
Zhou, M.; Ashour-Abdalla, M.; Berchem, J.; Walker, R. J.; Liang, H.; El-Alaoui, M.; Goldstein, M. L.; Lindqvist, P.-A.; Marklund, G.; Khotyaintsev, Y. V.;
2016-01-01
We report Magnetospheric Multiscale observations of high-frequency electrostatic waves in the vicinity of the reconnection ion diffusion region on the dayside magnetopause. The ion diffusion region is identified during two magnetopause crossings by the Hall electromagnetic fields, the slippage of ions with respect to the magnetic field, and magnetic energy dissipation. In addition to electron beam modes that have been previously detected at the separatrix on the magnetospheric side of the magnetopause, we report, for the first time, the existence of electron cyclotron harmonic waves at the magnetosheath separatrix. Broadband waves between the electron cyclotron and electron plasma frequencies, which were probably generated by electron beams, were found within the magnetopause current sheet. Contributions by these high-frequency waves to the magnetic energy dissipation were negligible in the diffusion regions as compared to those of lower-frequency waves.
Magnetic reconnection processes induced by a CME expansion
Directory of Open Access Journals (Sweden)
A. Bemporad
2008-10-01
Full Text Available On 10–11 December 2005 a slow CME occurred in the Western Hemisphere in between two coronal streamers. SOHO/MDI magnetograms show a multipolar magnetic configuration at the photosphere: a complex of active regions located at the CME source and two bipoles at the base of the lateral coronal streamers. White light observations reveal that the CME expansion affects both of them and induces the release of plasma within or close to the nearby streamers. These transient phenomena are possibly due to magnetic reconnections induced by the CME expansion and occurring inside the streamer current sheet or between the CME flanks and the streamer.
These events have been observed by the SOHO/UVCS with the spectrometer slit centered at 1.8 R_{⊙} over about a full day. In this work we focus on the interaction between the CME and the streamer: the UVCS spectral interval included UV lines from ions at different temperatures of maximum formation such as O VI, Si XIII and Al Xi. These data gave us the opportunity to infer the evolution of plasma temperature and density at the reconnection site and adjacent regions. These are relevant to characterize secondary reconnection processes occurring during a CME development.
Observation of reconnection pulses by Cluster and Double Star
Directory of Open Access Journals (Sweden)
X. H. Deng
2005-11-01
Full Text Available During a reconnection event on 7 August 2004, Cluster and Double Star (TC-1 were near the neutral sheet and simultaneously detected the signatures of the reconnection pulses. AT 22:59 UT tailward flow followed by earthward flow was detected by Cluster at about 15 R_{E}, while earthward plasma flow followed by tailward flow was observed by TC-1 at about 10 R_{E}. During the flow reversal from tailward to earthward, the magnetic field B_{z} changed sign from mainly negative values to positive, and the X component of the magnetic curvature vector switched sign from the tailward direction to the earthward direction, which indicates that the reconnection site (X-line moved tailward past the Cluster constellation. By using multi-point analysis and observation of energetic electron and ion flux, we study the movement and structure of the current sheet and discuss the braking effect of the earthward flow bursts in the inner magnetosphere.
Coordinated Cluster/Double Star observations of dayside reconnection signatures
Directory of Open Access Journals (Sweden)
M. W. Dunlop
2005-11-01
Full Text Available The recent launch of the equatorial spacecraft of the Double Star mission, TC-1, has provided an unprecedented opportunity to monitor the southern hemisphere dayside magnetopause boundary layer in conjunction with northern hemisphere observations by the quartet of Cluster spacecraft. We present first results of one such situation where, on 6 April 2004, both Cluster and the Double Star TC-1 spacecraft were on outbound transits through the dawnside magnetosphere. The observations are consistent with ongoing reconnection on the dayside magnetopause, resulting in a series of flux transfer events (FTEs seen both at Cluster and TC-1, which appear to lie north and south of the reconnection line, respectively. In fact, the observed polarity and motion of each FTE signature advocates the existence of an active reconnection region consistently located between the positions of Cluster and TC-1, with Cluster observing northward moving FTEs with +/- polarity, whereas TC-1 sees -/+ polarity FTEs. This assertion is further supported by the application of a model designed to track flux tube motion for the prevailing interplanetary conditions. The results from this model show, in addition, that the low-latitude FTE dynamics are sensitive to changes in convected upstream conditions. In particular, changing the interplanetary magnetic field (IMF clock angle in the model suggests that TC-1 should miss the resulting FTEs more often than Cluster and this is borne out by the observations.
Unsteady magnetic reconnection in laboratory experiments with current sheets
Frank, Anna
2009-11-01
According to present notion, unsteady magnetic reconnection in current sheets (CS) is basic to dramatic natural phenomena: solar and stellar flares, substorms in the Earth and other planetary magnetospheres, as well as to disruptive instabilities in tokamak plasmas. We present a review of laboratory experiments studying evolution of CS formed in 3D and 2D magnetic configurations with an X line, in the CS-3D device. Usually CS exists during an extended period in a metastable stage, without essential changes of its structure and parameters. Under certain conditions this stage may be suddenly interrupted by unsteady phase of magnetic reconnection, which manifests itself in a rapid change of the magnetic field topology, current redistribution, excitation of pulsed electric fields, and other dynamic effects. The unsteady phase results in effective conversion of magnetic energy into the energy of plasma and accelerated particles, and may finally bring about the CS disruption. In the context of the solar flares, a metastable CS is associated with a pre-flare situation, while CS disruption -- with the flare itself. The physical mechanisms triggering the unsteady magnetic reconnection in the laboratory produced current sheets are discussed. Supported by the Russian Foundation for Basic Research (project # 09-02-00971).
Magnetic reconnection processes induced by a CME expansion
Directory of Open Access Journals (Sweden)
A. Bemporad
2008-10-01
Full Text Available On 10–11 December 2005 a slow CME occurred in the Western Hemisphere in between two coronal streamers. SOHO/MDI magnetograms show a multipolar magnetic configuration at the photosphere: a complex of active regions located at the CME source and two bipoles at the base of the lateral coronal streamers. White light observations reveal that the CME expansion affects both of them and induces the release of plasma within or close to the nearby streamers. These transient phenomena are possibly due to magnetic reconnections induced by the CME expansion and occurring inside the streamer current sheet or between the CME flanks and the streamer. These events have been observed by the SOHO/UVCS with the spectrometer slit centered at 1.8 R⊙ over about a full day. In this work we focus on the interaction between the CME and the streamer: the UVCS spectral interval included UV lines from ions at different temperatures of maximum formation such as O VI, Si XIII and Al Xi. These data gave us the opportunity to infer the evolution of plasma temperature and density at the reconnection site and adjacent regions. These are relevant to characterize secondary reconnection processes occurring during a CME development.
Asymmetric distribution of reconnection jet fronts in the Jovian nightside magnetosphere
Kasahara, S.; E. A. Kronberg; Kimura, T; Tao, C.; Badman, S. V.; Masters, A.; Retinò, A.; Krupp, N.; M. Fujimoto
2013-01-01
Magnetic reconnection plays important roles in mass transport and energy conversion in planetary magnetospheres. It is considered that transient reconnection causes localized auroral arcs or spots in the Jovian magnetosphere, by analogy to the case in the Earth's magnetosphere. However, the local structures of transient reconnection events (i.e., magnetospheric plasma parameters) and their spatial distribution have not been extensively investigated for the Jovian magnetosphere. Here we examin...
Dynamo action in dissipative, forced, rotating MHD turbulence
Energy Technology Data Exchange (ETDEWEB)
Shebalin, John V. [Astromaterials Research Office, NASA Johnson Space Center, Houston, Texas 77058-3696 (United States)
2016-06-15
Magnetohydrodynamic (MHD) turbulence is an inherent feature of large-scale, energetic astrophysical and geophysical magnetofluids. In general, these are rotating and are energized through buoyancy and shear, while viscosity and resistivity provide a means of dissipation of kinetic and magnetic energy. Studies of unforced, rotating, ideal (i.e., non-dissipative) MHD turbulence have produced interesting results, but it is important to determine how these results are affected by dissipation and forcing. Here, we extend our previous work and examine dissipative, forced, and rotating MHD turbulence. Incompressibility is assumed, and finite Fourier series represent turbulent velocity and magnetic field on a 64{sup 3} grid. Forcing occurs at an intermediate wave number by a method that keeps total energy relatively constant and allows for injection of kinetic and magnetic helicity. We find that 3-D energy spectra are asymmetric when forcing is present. We also find that dynamo action occurs when forcing has either kinetic or magnetic helicity, with magnetic helicity injection being more important. In forced, dissipative MHD turbulence, the dynamo manifests itself as a large-scale coherent structure that is similar to that seen in the ideal case. These results imply that MHD turbulence, per se, may play a fundamental role in the creation and maintenance of large-scale (i.e., dipolar) stellar and planetary magnetic fields.
A MHD channel study for the ETF conceptual design
Wang, S. Y.; Staiger, P. J.; Smith, J. M.
1981-01-01
The procedures and computations used to identify an MHD channel for a 540 mW(I) EFT-scale plant are presented. Under the assumed constraints of maximum E(x), E(y), J(y) and Beta; results show the best plant performance is obtained for active length, L is approximately 12 M, whereas in the initial ETF studies, L is approximately 16 M. As MHD channel length is reduced from 16 M, the channel enthalpy extraction falls off, slowly. This tends to reduce the MHD power output; however, the shorter channels result in lower heat losses to the MHD channel cooling water which allows for the incorporation of more low pressure boiler feedwater heaters into the system and an increase in steam plant efficiency. The net result of these changes is a net increase in the over all MHD/steam plant efficiency. In addition to the sensitivity of various channel parameters, the trade-offs between the level of oxygen enrichment and the electrical stress on the channel are also discussed.
MHD Flow Control and Power Generation in Low-Temperature Supersonic Flows
National Research Council Canada - National Science Library
Gogineni, Sivaram P; Adamovich, Igor V
2006-01-01
.... MHD effect on the flow is detected from flow static-pressure measurements. The observed static-pressure change is due to the MHD interaction and not Joule heating of the flow in the crossed discharge...
Directory of Open Access Journals (Sweden)
G. Chisham
2004-12-01
Full Text Available This study presents, for the first time, detailed spatiotemporal measurements of the reconnection electric field in the Northern Hemisphere ionosphere during an extended interval of northward interplanetary magnetic field. Global convection mapping using the SuperDARN HF radar network provides global estimates of the convection electric field in the northern polar ionosphere. These are combined with measurements of the ionospheric footprint of the reconnection X-line to determine the spatiotemporal variation of the reconnection electric field along the whole X-line. The shape of the spatial variation is stable throughout the interval, although its magnitude does change with time. Consequently, the total reconnection potential along the X-line is temporally variable but its typical magnitude is consistent with the cross-polar cap potential measured by low-altitude satellite overpasses. The reconnection measurements are mapped out from the ionosphere along Tsyganenko model magnetic field lines to determine the most likely reconnection location on the lobe magnetopause. The X-line length on the lobe magnetopause is estimated to be ~6–11 RE in extent, depending on the assumptions made when determining the length of the ionospheric X-line. The reconnection electric field on the lobe magnetopause is estimated to be ~0.2mV/m in the peak reconnection region. Key words. Space plasma physics (Magnetic reconnection – Magnetospheric physics (Magnetopause, cusp and boundary layers – Ionosphere (Plasma convection
Electron energization and structure of the diffusion region during asymmetric reconnection
National Research Council Canada - National Science Library
Chen, Li‐Jen; Hesse, Michael; Wang, Shan; Bessho, Naoki; Daughton, William
2016-01-01
Results from particle‐in‐cell simulations of reconnection with asymmetric upstream conditions are reported to elucidate electron energization and structure of the electron diffusion region (EDR...
Acoustics in rock and pop music halls
DEFF Research Database (Denmark)
Adelman-Larsen, Niels Werner; Thompson, Eric Robert; Gade, Anders Christian
2007-01-01
The existing body of literature regarding the acoustic design of concert halls has focused almost exclusively on classical music, although there are many more performances of rhythmic music, including rock and pop. Objective measurements were made of the acoustics of twenty rock music venues...... in Denmark and a questionnaire was used in a subjective assessment of those venues with professional rock musicians and sound engineers. Correlations between the objective and subjective results lead, among others, to a recommendation for reverberation time as a function of hall volume. Since the bass...
Prototype dining hall energy efficiency study
Energy Technology Data Exchange (ETDEWEB)
Mazzucchi, R.P.; Bailey, S.A.; Zimmerman, P.W.
1988-06-01
The energy consumption of food service facilities is among the highest of any commercial building type, owing to the special requirements for food preparation, sanitation, and ventilation. Consequently, the US Air Force Engineering and Services Center (AFESC) contracted with Pacific Northwest Laboratory (PNL) to collect and analyze end-use energy consumption data for a prototypical dining hall and make specific recommendations on cost-effective energy conservation options. This information will be used to establish or update criteria for dining hall designs and retrofits as appropriate. 6 refs., 21 figs., 23 tabs.
EL CROWN HALL. CONTEXTO Y PROYECTO
Directory of Open Access Journals (Sweden)
Laura Lizondo Sevilla
2010-05-01
Full Text Available RESUMEN El artículo enmarca el edificio del Crown Hall en el contexto docente y arquitectónico de Mies van der Rohe. Revisa sus inicios en la Bauhaus con su primera intervención en un espacio docente para la Bauhaus de Berlín en 1932, así como su marcha a Estados Unidos, los planteamientos arquitectónicos del campus del IIT y el proyecto del Crown Hall. El texto incide en el estudio del proceso proyectual del Crown Hall analizando la evolución de su concepción arquitectónica a través de las diferentes versiones del proyecto. Se constata la transición desde los primeros planteamientos arquitectónicos de los edificios del campus del IIT proyectados por Mies hacia el planteamiento del gran espacio unitario del Crown Hall. Este proyecto se puede entender desde la creciente importancia de la estructura, la claridad constructiva y el manejo del acero y vidrio como únicos materiales de la imagen del edificio y el carácter flexible y unitario del espacio. Finalmente se hace referencia al concepto del "espacio universal" en la arquitectura de Mies, como un concepto abstracto que supera los de flexibilidad de uso o unidad espacial, insinuando, a modo de reflexión, las principales variables que definirían el espacio universal miesiano.SUMMARY The article showcases the Crown Hall building in the educational and architectural context of Mies van der Rohe. It reviews his beginnings in the Bauhaus with his first intervention in an educational space for the Bauhaus of Berlin in 1932, as well as his sojourn to the United States, and the architectural approaches to the IIT campus and the Crown Hall project. The text touches on the study of the planning process for the Crown Hall, analysing the evolution of its architectural conception, through the different versions of the project. The article covers the transition from the first architectural approaches for the IIT campus buildings, planned by Mies, to the approach of the large unitary space of
Interstellar MHD Turbulence and Star Formation
Vázquez-Semadeni, Enrique
This chapter reviews the nature of turbulence in the Galactic interstellar medium (ISM) and its connections to the star formation (SF) process. The ISM is turbulent, magnetized, self-gravitating, and is subject to heating and cooling processes that control its thermodynamic behavior, causing it to behave approximately isobarically, in spite of spanning several orders of magnitude in density and temperature. The turbulence in the warm and hot ionized components of the ISM appears to be trans- or subsonic, and thus to behave nearly incompressibly. However, the neutral warm and cold components are highly compressible, as a consequence of both thermal instability (TI) in the atomic gas and of moderately-to-strongly supersonic motions in the roughly isothermal cold atomic and molecular components. Within this context, we discuss: (1) the production and statistical distribution of turbulent density fluctuations in both isothermal and polytropic media; (2) the nature of the clumps produced by TI, noting that, contrary to classical ideas, they in general accrete mass from their environment in spite of exhibiting sharp discontinuities at their boundaries; (3) the density-magnetic field correlation (and, at low densities, lack thereof) in turbulent density fluctuations, as a consequence of the superposition of the different wave modes in the turbulent flow; (4) the evolution of the mass-to-magnetic flux ratio (MFR) in density fluctuations as they are built up by dynamic compressions; (5) the formation of cold, dense clouds aided by TI, in both the hydrodynamic (HD) and the magnetohydrodynamic (MHD) cases; (6) the expectation that star-forming molecular clouds are likely to be undergoing global gravitational contraction, rather than being near equilibrium, as generally believed, and (7) the regulation of the star formation rate (SFR) in such gravitationally contracting clouds by stellar feedback which, rather than keeping the clouds from collapsing, evaporates and disperses
Lattice Boltzmann Large Eddy Simulation Model of MHD
Flint, Christopher
2016-01-01
The work of Ansumali \\textit{et al.}\\cite{Ansumali} is extended to Two Dimensional Magnetohydrodynamic (MHD) turbulence in which energy is cascaded to small spatial scales and thus requires subgrid modeling. Applying large eddy simulation (LES) modeling of the macroscopic fluid equations results in the need to apply ad-hoc closure schemes. LES is applied to a suitable mesoscopic lattice Boltzmann representation from which one can recover the MHD equations in the long wavelength, long time scale Chapman-Enskog limit (i.e., the Knudsen limit). Thus on first performing filter width expansions on the lattice Boltzmann equations followed by the standard small Knudsen expansion on the filtered lattice Boltzmann system results in a closed set of MHD turbulence equations provided we enforce the physical constraint that the subgrid effects first enter the dynamics at the transport time scales. In particular, a multi-time relaxation collision operator is considered for the density distribution function and a single rel...
MHD Flows in Compact Astrophysical Objects Accretion, Winds and Jets
Beskin, Vasily S
2010-01-01
Accretion flows, winds and jets of compact astrophysical objects and stars are generally described within the framework of hydrodynamical and magnetohydrodynamical (MHD) flows. Analytical analysis of the problem provides profound physical insights, which are essential for interpreting and understanding the results of numerical simulations. Providing such a physical understanding of MHD Flows in Compact Astrophysical Objects is the main goal of this book, which is an updated translation of a successful Russian graduate textbook. The book provides the first detailed introduction into the method of the Grad-Shafranov equation, describing analytically the very broad class of hydrodynamical and MHD flows. It starts with the classical examples of hydrodynamical accretion onto relativistic and nonrelativistic objects. The force-free limit of the Grad-Shafranov equation allows us to analyze in detail the physics of the magnetospheres of radio pulsars and black holes, including the Blandford-Znajek process of energy e...
MHD conversion of solar energy. [space electric power system
Lau, C. V.; Decher, R.
1978-01-01
Low temperature plasmas wherein an alkali metal vapor is a component are uniquely suited to simultaneously absorb solar radiation by coupling to the resonance lines and produce electrical power by the MHD interaction. This work is an examination of the possibility of developing space power systems which take advantage of concentrated solar power to produce electricity. It is shown that efficient cycles in which expansion work takes place at nearly constant top cycle temperature can be devised. The power density of the solar MHD generator is lower than that of conventional MHD generators because of the relatively high seed concentration required for radiation absorption and the lower flow velocity permitted to avoid total pressure losses due to heating.
Oxygen-enriched air for MHD power plants
Ebeling, R. W., Jr.; Cutting, J. C.; Burkhart, J. A.
1979-01-01
Cryogenic air-separation process cycle variations and compression schemes are examined. They are designed to minimize net system power required to supply pressurized, oxygen-enriched air to the combustor of an MHD power plant with a coal input of 2000 MWt. Power requirements and capital costs for oxygen production and enriched air compression for enrichment levels from 13 to 50% are determined. The results are presented as curves from which total compression power requirements can be estimated for any desired enrichment level at any delivery pressure. It is found that oxygen enrichment and recuperative heating of MHD combustor air to 1400 F yields near-term power plant efficiencies in excess of 45%. A minimum power compression system requires 167 MW to supply 330 lb of oxygen per second and costs roughly 100 million dollars. Preliminary studies show MHD/steam power plants to be competitive with plants using high-temperature air preheaters burning gas.
Energy Technology Data Exchange (ETDEWEB)
Deng, Wei [Los Alamos National Laboratory
2015-07-21
The question of the energy composition of the jets/outflows in high-energy astrophysical systems, e.g. GRBs, AGNs, is taken up first: Matter-flux-dominated (MFD), σ < 1, and/or Poynting-flux-dominated (PFD), σ >1? The standard fireball IS model and dissipative photosphere model are MFD, while the ICMART (Internal-Collision-induced MAgnetic Reconnection and Turbulence) model is PFD. Motivated by ICMART model and other relevant problems, such as “jets in a jet” model of AGNs, the author investigates the models from the EMF energy dissipation efficiency, relativistic outflow generation, and σ evolution points of view, and simulates collisions between high-σ blobs to mimic the situation of the interactions inside the PFD jets/outflows by using a 3D SRMHD code which solves the conservative form of the ideal MHD equations. σ_{b,f} is calculated from the simulation results (threshold = 1). The efficiency obtained from this hybrid method is similar to the efficiency got from the energy evolution of the simulations (35.2%). Efficiency is nearly σ independent, which is also confirmed by the hybrid method. σ_{b,i} - σ_{b,f} provides an interesting linear relationship. Results of several parameter studies of EMF energy dissipation efficiency are shown.
Ambipolar diffusion in low-mass star formation. I. General comparison with the ideal MHD case
DEFF Research Database (Denmark)
Masson, Jacques; Chabrier, Gilles; Hennebelle, Patrick
2015-01-01
braking processes, allowing the formation of disk structures. Magnetically supported outflows launched in ideal MHD models are weakened when using non-ideal MHD. Contrary to ideal MHD misalignment between the initial rotation axis and the magnetic field direction does not significantly affect the results...
Quantized Anomalous Hall Effect in Magnetic Topological Insulators
National Research Council Canada - National Science Library
Rui Yu; Wei Zhang; Hai-Jun Zhang; Shou-Cheng Zhang; Xi Dai; Zhong Fang
2010-01-01
.... In a quantum anomalous Hall insulator, spontaneous magnetic moments and spin-orbit coupling combine to give rise to a topologically nontrivial electronic structure, leading to the quantized Hall...
Bound values for Hall conductivity of heterogeneous medium under ...
Indian Academy of Sciences (India)
- ditions in inhomogeneous medium has been studied. It is shown that bound values for. Hall conductivity differ from bound values for metallic conductivity. This is due to the unusual character of current percolation under quantum Hall effect ...
A kinetic-MHD model for low frequency phenomena
Energy Technology Data Exchange (ETDEWEB)
Cheng, C.Z.
1991-07-01
A hybrid kinetic-MHD model for describing low-frequency phenomena in high beta anisotropic plasmas that consist of two components: a low energy core component and an energetic component with low density. The kinetic-MHD model treats the low energy core component by magnetohydrodynamic (MHD) description, the energetic component by kinetic approach such as the gyrokinetic equation, and the coupling between the dynamics of these two components through plasma pressure in the momentum equation. The kinetic-MHD model optimizes both the physics contents and the theoretical efforts in studying low frequency MHD waves and transport phenomena in general magnetic field geometries, and can be easily modified to include the core plasma kinetic effects if necessary. It is applicable to any magnetized collisionless plasma system where the parallel electric field effects are negligibly small. In the linearized limit two coupled eigenmode equations for describing the coupling between the transverse Alfven type and the compressional Alfven type waves are derived. The eigenmode equations are identical to those derived from the full gyrokinetic equation in the low frequency limit and were previously analyzed both analytically nd numerically to obtain the eigenmode structure of the drift mirror instability which explains successfully the multi-satellite observation of antisymmetric field-aligned structure of the compressional magnetic field of Pc 5 waves in the magnetospheric ring current plasma. Finally, a quadratic form is derived to demonstrate the stability of the low-frequency transverse and compressional Alfven type instabilities in terms of the pressure anisotropy parameter {tau} and the magnetic field curvature-pressure gradient parameter. A procedure for determining the stability of a marginally stable MHD wave due to wave-particle resonances is also presented.
Nonlinear Terms of MHD Equations for Homogeneous Magnetized Shear Flow
Dimitrov, Z D; Hristov, T S; Mishonov, T M
2011-01-01
We have derived the full set of MHD equations for incompressible shear flow of a magnetized fluid and considered their solution in the wave-vector space. The linearized equations give the famous amplification of slow magnetosonic waves and describe the magnetorotational instability. The nonlinear terms in our analysis are responsible for the creation of turbulence and self-sustained spectral density of the MHD (Alfven and pseudo-Alfven) waves. Perspectives for numerical simulations of weak turbulence and calculation of the effective viscosity of accretion disks are shortly discussed in k-space.
Topological spin Hall effect resulting from magnetic skyrmions
Energy Technology Data Exchange (ETDEWEB)
Yin, Gen; Liu, Yizhou; Barlas, Yafis; Zang, Jiadong; Lake, Roger K.
2015-07-01
The intrinsic spin Hall effect originates from the topology of the Bloch bands in momentum space. The duality between real space and momentum space calls for a spin Hall effect induced from a real space topology in analogy to the topological Hall effect of skyrmions. We theoretically demonstrate the topological spin Hall effect in which a pure transverse spin current is generated from a skyrmion spin texture.
Nonexponential sound decay in concert halls
Kanev, N. G.
2016-01-01
The paper presents acoustic measurement results for two concert halls in which nonexponential sound decay is observed. Quantitative estimates are given for how the obtained decay laws differ from exponential. Problems are discussed that arise when using reverberation time to assess the quality of room acoustics with nonexponential sound decay.
Concept of Operating Indoor Skiing Halls with
DEFF Research Database (Denmark)
Paul, Joachim
2003-01-01
Indoor skiing halls are conventionally operated at low temperatures and with either crushed ice as snow substitute or snow made from freezing water in cold air. Both systems have a high energy demand for air cooling, floor freezing and consequently snow harvest. At the same time the snow at the top...
View of CMS in the assembly hall
Maximilien Brice
2006-01-01
The CMS detector is stored in the assembly hall at Cessy, France. Once the detector has been fully assembled on the surface, it will be lowered into its cathedral-like cavern. A large range of physics will be studied in this experiment, including the possibility of extra dimensions and the search for the Higgs Boson.
Room acoustic properties of concert halls
DEFF Research Database (Denmark)
Gade, Anders Christian
1996-01-01
A large database of values of various room acoustic parameters has provided the basis for statistical analyses of how and how much the acoustic properties of concert halls are influenced by their size, shape, and absorption area (as deduced from measured reverberation time). The data have been...
Supersymmetry in the Fractional Quantum Hall Regime
Sagi, Eran
2016-01-01
Supersymmetry (SUSY) is a symmetry transforming bosons to fermions and vice versa. Indications of its existence have been extensively sought after in high-energy experiments. However, signatures of SUSY have yet to be detected. In this manuscript we propose a condensed matter realization of SUSY on the edge of a Read-Rezayi quantum Hall state, given by filling factors of the form $\
Massive Skyrmions in quantum Hall ferromagnets
Abolfath, M.; Mullen, K.; Stoof, H.T.C.
2001-01-01
We apply the theory of elasticity to study the effects of Skyrmion mass on lattice dynamics in quantum Hall systems. We find that massive Skyrme lattices behave like a Wigner crystal in the presence of a uniform perpendicular magnetic field. We make a comparison with the microscopic Hartree-Fock
Hall Thruster With an External Acceleration Zone
National Research Council Canada - National Science Library
Gascon, Nicolas; Corey, Ronald L; Cappelli, Mark A; Hargus, William
2005-01-01
... of wall material, or magnetic field intensity. When operated with a low background pressure, the particular Hall discharge studied here creates an ion accelerating electrostatic field mainly outside of the channel, in a narrow zone located 5-20 mm away from the exit plane.
Large Spin Hall Angle in Vanadium Film
Wang, Tao; Fan, Xin; Wang, Wenrui; Xie, Yunsong; Warsi, Muhammad A.; Wu, Jun; Chen, Yunpeng; Lorenz, Virginia O.; Xiao, John Q.
We report the large spin Hall angle observed in Vanadium film with small grain size and distorted lattice parameter. The spin Hall angle is quantified by measuring current-induced spin-orbit torque in V/CoFeB bilayer using optical spin torque magnetometer based on polar magneto-optical Kerr effect (MOKE). The spin Hall angle as large as θSH = -0.071 has been observed in V/CoFeB bilayer Structural analysis, using X-ray diffraction (XRD), transmission electron microscopy (TEM) and selected area electron diffraction (SAED), confirms films grown at room temperature have very small grain size and enlarged lattice parameter. The Vanadium films with distorted crystal structure also have high resistivity (>200 μΩ cm) and long spin diffusion length (~16.3 nm) measured via spin pumping experiment. This finding of spin Hall effect enhancement in more disordered structure will provide insights for understanding and exploiting materials with strong spin orbit interaction, especially in light 3d transition metals which promise long spin diffusion length.
Development and applications of mesoscopic hall microprobes
Novoselov, Konstantin S.
2004-01-01
This thesis is devoted to the further development of the local Hall magnetometery technique, and its application for studying ferromagnetic domain wall propagation on the sub-atomic scale. First the ballistic electron transport in a strong, non-uniform magnetic field is discussed. Than a possible
Individualization in a Lecture Hall Setting.
Halyard, Rebecca A.
A two-quarter Human Anatomy and Physiology course for health-science students has been developed which incorporates the principles of individualization while maintaining the lecture hall setting. The lecture method contributes the following components to the course: (1) no special equipment or supplies; (2) personal interaction between instructor…
Final Report: Laboratory Studies of Spontaneous Reconnection and Intermittent Plasma Objects
Energy Technology Data Exchange (ETDEWEB)
Egedal-Pedersen, Jan [Massachusetts Institute of Technology; Porkolab, Miklos [Massachusetts Institute of Technology
2011-05-31
The study of the collisionless magnetic reconnection constituted the primary work carried out under this grant. The investigations utilized two magnetic configurations with distinct boundary conditions. Both configurations were based upon the Versatile Toroidal Facility (VTF) at the MIT Plasma Science and Fusion Center and the MIT Physics Department. The NSF/DOE award No. 0613734, supported two graduate students (now Drs. W. Fox and N. Katz) and material expenses. The grant enabled these students to operate the VTF basic plasma physics experiment on magnetic reconnection. The first configuration was characterized by open boundary conditions where the magnetic field lines interface directly with the vacuum vessel walls. The reconnection dynamics for this configuration has been methodically characterized and it has been shown that kinetic effects related to trapped electron trajectories are responsible for the high rates of reconnection observed. This type of reconnection has not been investigated before. Nevertheless, the results are directly relevant to observations by the Wind spacecraft of fast reconnection deep in the Earth magnetotail. The second configuration was developed to be relevant to specifically to numerical simulations of magnetic reconnection, allowing the magnetic field-lines to be contained inside the device. The configuration is compatible with the presence of large current sheets in the reconnection region and reconnection is observed in fast powerful bursts. These reconnection events facilitate the first experimental investigations of the physics governing the spontaneous onset of fast reconnection. In the Report we review the general motivation of this work and provide an overview of our experimental and theoretical results enabled by the support through the awards.
Energy Technology Data Exchange (ETDEWEB)
Galkowski, A. [Institute of Atomic Energy, Otwock-Swierk (Poland)
1994-12-31
Non-linear ideal MHD equilibria in axisymmetric system with flows are examined, both in 1st and 2nd ellipticity regions. Evidence of the bifurcation of solutions is provided and numerical solutions of several problems in a tokamak geometry are given, exhibiting bifurcation phenomena. Relaxation of plasma in the presence of zero-order flows is studied in a realistic toroidal geometry. The field aligned flow allows equilibria with finite pressure gradient but with homogeneous temperature distribution. Numerical calculations have been performed for the 1st and 2nd ellipticity regimes of the extended Grad-Shafranov-Schlueter equation. Numerical technique, alternative to the well-known Grad`s ADM methods has been proposed to deal with slow adiabatic evolution of toroidal plasma with flows. The equilibrium problem with prescribed adiabatic constraints may be solved by simultaneous calculations of flux surface geometry and original profile functions. (author). 178 refs, 37 figs, 5 tabs.
Guterding, Daniel; Jeschke, Harald O; Valentí, Roser
2016-05-17
Electronic states with non-trivial topology host a number of novel phenomena with potential for revolutionizing information technology. The quantum anomalous Hall effect provides spin-polarized dissipation-free transport of electrons, while the quantum spin Hall effect in combination with superconductivity has been proposed as the basis for realizing decoherence-free quantum computing. We introduce a new strategy for realizing these effects, namely by hole and electron doping kagome lattice Mott insulators through, for instance, chemical substitution. As an example, we apply this new approach to the natural mineral herbertsmithite. We prove the feasibility of the proposed modifications by performing ab-initio density functional theory calculations and demonstrate the occurrence of the predicted effects using realistic models. Our results herald a new family of quantum anomalous Hall and quantum spin Hall insulators at affordable energy/temperature scales based on kagome lattices of transition metal ions.
Inertial-Hall effect: the influence of rotation on the Hall conductivity
Directory of Open Access Journals (Sweden)
Julio E. Brandão
2015-01-01
Full Text Available Inertial effects play an important role in classical mechanics but have been largely overlooked in quantum mechanics. Nevertheless, the analogy between inertial forces on mass particles and electromagnetic forces on charged particles is not new. In this paper, we consider a rotating non-interacting planar two-dimensional electron gas with a perpendicular uniform magnetic field and investigate the effects of the rotation in the Hall conductivity. The rotation introduces a shift and a split in the Landau levels. As a consequence of the break of the degeneracy, the counting of the states fully occupied below the Fermi energy increases, tuning the Hall quantization steps. The rotation also changes the quantum Hall plateau widths. Additionally, we find the Hall quantization steps as a function of rotation at a fixed value of the magnetic field.
Dust exposure in indoor climbing halls.
Weinbruch, Stephan; Dirsch, Thomas; Ebert, Martin; Hofmann, Heiko; Kandler, Konrad
2008-05-01
The use of hydrated magnesium carbonate hydroxide (magnesia alba) for drying the hands is a strong source for particulate matter in indoor climbing halls. Particle mass concentrations (PM10, PM2.5 and PM1) were measured with an optical particle counter in 9 indoor climbing halls and in 5 sports halls. Mean values for PM10 in indoor climbing halls are generally on the order of 200-500 microg m(-3). For periods of high activity, which last for several hours, PM10 values between 1000 and 4000 microg m(-3) were observed. PM(2.5) is on the order of 30-100 microg m(-3) and reaches values up to 500 microg m(-3), if many users are present. In sports halls, the mass concentrations are usually much lower (PM10 indoor climbing were observed. The size distribution and the total particle number concentration (3.7 nm-10 microm electrical mobility diameter) were determined in one climbing hall by an electrical aerosol spectrometer. The highest number concentrations were between 8000 and 12 000 cm(-3), indicating that the use of magnesia alba is no strong source for ultrafine particles. Scanning electron microscopy and energy-dispersive X-ray microanalysis revealed that virtually all particles are hydrated magnesium carbonate hydroxide. In-situ experiments in an environmental scanning electron microscope showed that the particles do not dissolve at relative humidities up to 100%. Thus, it is concluded that solid particles of magnesia alba are airborne and have the potential to deposit in the human respiratory tract. The particle mass concentrations in indoor climbing halls are much higher than those reported for schools and reach, in many cases, levels which are observed for industrial occupations. The observed dust concentrations are below the current occupational exposure limits in Germany of 3 and 10 mg m(-3) for respirable and inhalable dust. However, the dust concentrations exceed the German guide lines for work places without use of hazardous substances. In addition
MHD instabilities in astrophysical plasmas: very different from MHD instabilities in tokamaks!
Goedbloed, J. P.
2018-01-01
The extensive studies of MHD instabilities in thermonuclear magnetic confinement experiments, in particular of the tokamak as the most promising candidate for a future energy producing machine, have led to an ‘intuitive’ description based on the energy principle that is very misleading for most astrophysical plasmas. The ‘intuitive’ picture almost directly singles out the dominant stabilizing field line bending energy of the Alfvén waves and, consequently, concentrates on expansion schemes that minimize that contribution. This happens when the wave vector {{k}}0 of the perturbations, on average, is perpendicular to the magnetic field {B}. Hence, all macroscopic instabilities of tokamaks (kinks, interchanges, ballooning modes, ELMs, neoclassical tearing modes, etc) are characterized by satisfying the condition {{k}}0 \\perp {B}, or nearly so. In contrast, some of the major macroscopic instabilities of astrophysical plasmas (the Parker instability and the magneto-rotational instability) occur when precisely the opposite condition is satisfied: {{k}}0 \\parallel {B}. How do those instabilities escape from the dominance of the stabilizing Alfvén wave? The answer to that question involves, foremost, the recognition that MHD spectral theory of waves and instabilities of laboratory plasmas could be developed to such great depth since those plasmas are assumed to be in static equilibrium. This assumption is invalid for astrophysical plasmas where rotational and gravitational accelerations produce equilibria that are at best stationary, and the associated spectral theory is widely, and incorrectly, believed to be non-self adjoint. These complications are addressed, and cured, in the theory of the Spectral Web, recently developed by the author. Using this method, an extensive survey of instabilities of astrophysical plasmas demonstrates how the Alfvén wave is pushed into insignificance under these conditions to give rise to a host of instabilities that do not
Digital technology impacts on the Arnhem transfer hall structural design
Van de Straat, R.; Hofman, S.; Coenders, J.L.; Paul, J.C.
2015-01-01
The new Transfer Hall in Arnhem is one of the key projects to prepare the Dutch railways for the increased future demands for capacity. UNStudio developed a master plan in 1996 for the station area of which the completion of the Transfer Hall in 2015 will be a final milestone. The Transfer Hall is a
Energy Technology Data Exchange (ETDEWEB)
Owerre, S. A., E-mail: solomon@aims.ac.za [African Institute for Mathematical Sciences, 6 Melrose Road, Muizenberg, Cape Town 7945, South Africa and Perimeter Institute for Theoretical Physics, 31 Caroline St. N., Waterloo, Ontario N2L 2Y5 (Canada)
2016-07-28
Quite recently, the magnon Hall effect of spin excitations has been observed experimentally on the kagome and pyrochlore lattices. The thermal Hall conductivity κ{sup xy} changes sign as a function of magnetic field or temperature on the kagome lattice, and κ{sup xy} changes sign upon reversing the sign of the magnetic field on the pyrochlore lattice. Motivated by these recent exciting experimental observations, we theoretically propose a simple realization of the magnon Hall effect in a two-band model on the honeycomb lattice. The magnon Hall effect of spin excitations arises in the usual way via the breaking of inversion symmetry of the lattice, however, by a next-nearest-neighbour Dzyaloshinsky-Moriya interaction. We find that κ{sup xy} has a fixed sign for all parameter regimes considered. These results are in contrast to the Lieb, kagome, and pyrochlore lattices. We further show that the low-temperature dependence on the magnon Hall conductivity follows a T{sup 2} law, as opposed to the kagome and pyrochlore lattices. These results suggest an experimental procedure to measure thermal Hall conductivity within a class of 2D honeycomb quantum magnets and ultracold atoms trapped in a honeycomb optical lattice.
Hall Effect on Falkner—Skan Boundary Layer Flow of FENE-P Fluid over a Stretching Sheet
Maqbool, Khadija; Sohail, Ayesha; Manzoor, Naeema; Ellahi, Rahmat
2016-11-01
The Falkner—Skan boundary layer steady flow over a flat stretching sheet is investigated in this paper. The mathematical model consists of continuity and the momentum equations, while a new model is proposed for MHD Finitely Extensible Nonlinear Elastic Peterlin (FENE-P) fluid. The effects of Hall current with the variation of intensity of non-zero pressure gradient are taken into account. The governing partial differential equations are first transformed to ordinary differential equations using appropriate similarity transformation and then solved by Adomian decomposition method (ADM). The obtained results are validated by generalized collocation method (GCM) and found to be in good agreement. Effects of pertinent parameters are discussed through graphs and tables. Comparison with the existing studies is made as a limiting case of the considered problem at the end.
Search for Colour Singlet and Colour Reconnection Effects in Hadronic Z Decays at LEP
Achard, P; Aguilar-Benítez, M; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Anderhub, H; Andreev, V P; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Bajo, A; Baksay, G; Baksay, L; Baldew, S V; Banerjee, S; Banerjee, Sw; Barczyk, A; Barillère, R; Bartalini, P; Basile, M; Batalova, N; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Bellucci, L; Berbeco, R; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Biasini, M; Biglietti, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böhm, A; Boldizsar, L; Borgia, B; Bottai, S; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brochu, F; Burger, J D; Burger, W J; Cai, X D; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada, M; Chamizo-Llatas, M; Chang, Y H; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chiefari, G; Cifarelli, Luisa; Cindolo, F; Clare, I; Clare, R; Coignet, G; Colino, N; Costantini, S; de la Cruz, B; Cucciarelli, S; van Dalen, J A; De Asmundis, R; Déglon, P L; Debreczeni, J; Degré, A; Dehmelt, K; Deiters, K; Della Volpe, D; Delmeire, E; Denes, P; De Notaristefani, F; De Salvo, A; Diemoz, M; Dierckxsens, M; Dionisi, C; Dittmar, M; Doria, A; Dova, M T; Duchesneau, D; Duda, M; Echenard, B; Eline, A; El-Hage, A; El-Mamouni, H; Engler, A; Eppling, F J; Extermann, P; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, M; Ferguson, T; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, F; Fisher, P H; Fisher, W; Fisk, I; Forconi, G; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gentile, S; Giagu, S; Gong, Z F; Grenier, G; Grimm, O; Grünewald, M W; Guida, M; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hirschfelder, J; Hofer, H; Hohlmann, M; Holzner, G; Hou, S R; Hu, Y; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Käfer, D; Kaur, M; Kienzle-Focacci, M N; Kim, J K; Kirkby, Jasper; Kittel, E W; Klimentov, A; König, A C; Kopal, M; Koutsenko, V F; Kräber, M H; Krämer, R W; Krüger, A; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Le Goff, J M; Leiste, R; Levtchenko, M; Levchenko, P M; Li, C; Likhoded, S; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lü, Y S; Luci, C; Luminari, L; Lustermann, W; Ma Wen Gan; Malgeri, L; Malinin, A; Maña, C; Mans, J; Martin, J P; Marzano, F; Mazumdar, K; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Mihul, A; Milcent, H; Mirabelli, G; Mnich, J; Mohanty, G B; Muanza, G S; Muijs, A J M; Musicar, B; Musy, M; Nagy, S; Natale, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Nisati, A; Novák, T; Nowak, H; Ofierzynski, R A; Organtini, G; Pal, I; Palomares, C; Paolucci, P; Paramatti, R; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Pedace, M; Pensotti, S; Perret-Gallix, D; Petersen, B; Piccolo, D; Pierella, F; Pioppi, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Pothier, J; Prokofev, D; Prokofiev, D O; Quartieri, J; Rahal-Callot, G; Rahaman, M A; Raics, P; Raja, N; Ramelli, R; Rancoita, P G; Ranieri, R; Raspereza, A V; Razis, P A; Ren, D; Rescigno, M; Reucroft, S; Riemann, S; Riles, K; Roe, B P; Romero, L; Rosca, A; Rosier-Lees, S; Roth, S; Rosenbleck, C; Rubio, J A; Ruggiero, G; Rykaczewski, H; Sakharov, A; Saremi, S; Sarkar, S; Salicio, J; Sánchez, E; Schäfer, C; Shchegelskii, V; Schopper, Herwig Franz; Schotanus, D J; Sciacca, C; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shumilov, E; Shvorob, A V; Son, D; Souga, C; Spillantini, P; Steuer, M; Stickland, D P; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Sushkov, S; Suter, H; Swain, J D; Szillási, Z; Tang, X W; Tarjan, P; Tauscher, Ludwig; Taylor, L; Tellili, B; Teyssier, D; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Ulbricht, J; Valente, E; Van de Walle, R T; Vásquez, R; Veszpremi, V; Vesztergombi, G; Vetlitskii, I; Vicinanza, D; Viertel, Gert M; Villa, S; Vivargent, M; Vlachos, S; Vodopyanov, I; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Wadhwa, M; Wang, Q; Wang, X L; Wang, Z M; Weber, M; Wienemann, P; Wilkens, H; Wynhoff, S; Xia, L; Xu, Z Z; Yamamoto, J; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Yeh, S C; Zalite, A; Zalite, Yu; Zhang, Z P; Zhao, J; Zhu, G Y; Zhu, R Y; Zhuang, H L; Zichichi, A; Zimmermann, B; Zöller, M
2004-01-01
A search is performed in symmetric 3-jet hadronic Z decay events for evidence of colour singlet production or colour reconnection effects. Asymmetries in the angular separation of particles are found to be sensitive indicators of such effects. Upper limits on the level of colour singlet production and colour reconnection effects are established for a variety of models.
Fox, W.
2017-10-01
Magnetic reconnection enables explosive conversion of magnetic field energy to plasma kinetic energy in space and laboratory plasmas. In many reconnecting plasmas in space, solar, and laboratory plasmas, reconnection proceeds in the presence of a finite guide field (GF) such that the magnetic field lines meet at an angle less than 180°, and in magnetic fusion devices the guide field can be the largest component of the field. We report detailed laboratory observations of the structure of reconnection current sheets in a two-fluid plasma regime with a guide magnetic field. We observe and quantitatively analyze the quadrupolar electron pressure variation in the ion-diffusion region, as originally predicted by extended magnetohydrodynamics simulations. The projection of the electron pressure gradient parallel to the magnetic field contributes significantly to balancing the parallel electric field, and the results demonstrate how parallel and perpendicular force balance are coupled in guide field reconnection and confirm basic theoretical models of the importance of electron pressure gradients for obtaining fast magnetic reconnection. I discuss connections to observations of reconnection with finite guide field by spacecraft missions, and implications for two-fluid reconnection in magnetic fusion devices.
Magnetic reconnection during steady magnetospheric convection and other magnetospheric modes
Hubert, Benoit; Gérard, Jean-Claude; Milan, Steve E.; Cowley, Stanley W. H.
2017-03-01
We use remote sensing of the proton aurora with the IMAGE-FUV SI12 (Imager for Magnetopause to Aurora Global Exploration-Far Ultraviolet-Spectrographic Imaging at 121.8 nm) instrument and radar measurements of the ionospheric convection from the SuperDARN (Super Dual Aurora Radar Network) facility to estimate the open magnetic flux in the Earth's magnetosphere and the reconnection rates at the dayside magnetopause and in the magnetotail during intervals of steady magnetospheric convection (SMC). We find that SMC intervals occur with relatively high open magnetic flux (average ˜ 0.745 GWb, standard deviation ˜ 0.16 GWb), which is often found to be nearly steady, when the magnetic flux opening and closure rates approximately balance around 55 kV on average, with a standard deviation of 21 kV. We find that the residence timescale of open magnetic flux, defined as the ratio between the open magnetospheric flux and the flux closure rate, is roughly 4 h during SMCs. Interestingly, this number is approximately what can be deduced from the discussion of the length of the tail published by Dungey (1965), assuming a solar wind speed of ˜ 450 km s-1. We also infer an enhanced convection velocity in the tail, driving open magnetic flux to the nightside reconnection site. We compare our results with previously published studies in order to identify different magnetospheric modes. These are ordered by increasing open magnetic flux and reconnection rate as quiet conditions, SMCs, substorms (with an important overlap between these last two) and sawtooth intervals.
Diagnostics Systems for Permanent Hall Thrusters Development
Ferreira, Jose Leonardo; Soares Ferreira, Ivan; Santos, Jean; Miranda, Rodrigo; Possa, M. Gabriela
This work describes the development of Permanent Magnet Hall Effect Plasma Thruster (PHALL) and its diagnostic systems at The Plasma Physics Laboratory of University of Brasilia. The project consists on the construction and characterization of plasma propulsion engines based on the Hall Effect. Electric thrusters have been employed in over 220 successful space missions. Two types stand out: the Hall-Effect Thruster (HET) and the Gridded Ion Engine (GIE). The first, which we deal with in this project, has the advantage of greater simplicity of operation, a smaller weight for the propulsion subsystem and a longer shelf life. It can operate in two configurations: magnetic layer and anode layer, the difference between the two lying in the positioning of the anode inside the plasma channel. A Hall-Effect Thruster-HET is a type of plasma thruster in which the propellant gas is ionized and accelerated by a magneto hydrodynamic effect combined with electrostatic ion acceleration. So the essential operating principle of the HET is that it uses a J x B force and an electrostatic potential to accelerate ions up to high speeds. In a HET, the attractive negative charge is provided by electrons at the open end of the Thruster instead of a grid, as in the case of the electrostatic ion thrusters. A strong radial magnetic field is used to hold the electrons in place, with the combination of the magnetic field and the electrostatic potential force generating a fast circulating electron current, the Hall current, around the axis of the Thruster, mainly composed by drifting electrons in an ion plasma background. Only a slow axial drift towards the anode occurs. The main attractive features of the Hall-Effect Thruster are its simple design and operating principles. Most of the Hall-Effect Thrusters use electromagnet coils to produce the main magnetic field responsible for plasma generation and acceleration. In this paper we present a different new concept, a Permanent Magnet Hall
Energy Technology Data Exchange (ETDEWEB)
J.A. Breslau; S.C. Jardin; W. Park
2003-01-21
Injection of lower-hybrid current drive into the current ramp-up phase of the Joint European Torus (JET) plasma discharges has been observed to produce an annular current distribution with a core region of essentially zero current density [Hawkes, et al., Phys. Rev. Lett. 87 (2001) 115001]. Similar ''current holes'' have been observed in the Japan Atomic Energy Research Institute (JAERI) Tokamak 60 Upgrade (JT-60U) plasma discharges with off-axis current drive supplied by the bootstrap current [T. Fujita, et al., Phys. Rev. Lett. 87 (2001) 245001]. In both cases, the central current does not go negative although current diffusion calculations indicate that there is sufficient noninductive current drive for this to occur. This is explained by the Multi-level 3-D code (M3D) nonlinear 2-D and 3-D resistive magnetohydrodynamic (MHD) simulations in toroidal geometry, which predict that these plasma discharges undergo n = 0 reconnection events--''axisymmetric sawteeth''--that redistribute th e current to hold its core density near zero. Unlike conventional sawteeth, these events retain the symmetry of the equilibrium, and thus are best viewed as a transient loss of equilibrium caused when an iota = 0 rational surface enters the plasma. If the current-density profile has a central minimum, this surface will enter on axis; otherwise it will enter off-axis. In the first case, the reconnection is limited to a small region around the axis and clamps the core current at zero. In the second case, more typical of the JET experiments, the core current takes on a finite negative value before the iota = 0 surface appears, resulting in discrete periodic axisymmetric sawtooth events with a finite minor radius. Interpretation of the simulation results is given in terms of analytic equilibrium theory, and the relation to conventional sawteeth and to a recent reduced-MHD analysis of this phenomenon in cylindrical geometry [Huysmans, et al., Phys
Massee, P.; Degraaf, H. A. L.; Balemans, W. J. M.; Knoopers, H. G.; Tenkate, H. H. J.
1990-10-01
An experimental disk MHD (Magneto Hydro Dynamic) facility was designed. After designing the superconducting magnet for the open cycle disk MHD generator, the warm bore of the magnet was used as a constraint in designing the closed cycle disk MHD generator. In the experimental MHD facility an enthalpy extraction of 8.7 could be obtained with a 10 MWt open cycle MHD generator and 37.0 by means of a 5 MWt closed cycle MHD generator. System studies of four commercial scale MHD/steam systems were performed. The 1000 MWt open cycle disk generator leads to the smallest coal to busbar efficiency of 42.8. The highest coal to busbar efficiency of 50.0 is obtained in a commercial system with a closed cycle disk generator. The open cycle linear MHD/steam system leads to a coal to busbar efficiency of 49.4. When the details of the heat source and the required heat exchangers are considered, it can be anticipated that the system with an open cycle linear MHD generator will have the lowest cost of electricity (fl/kWh) of the four systems. The design of the superconducting magnet system for the experimental disk facility used principles that are valid also for large commercial systems. However, verification of these principles in an actual 1000 MWt superconducting magnet design needs further investigation.
Accurate micro Hall effect measurements on scribe line pads
DEFF Research Database (Denmark)
Østerberg, Frederik Westergaard; Petersen, Dirch Hjorth; Wang, Fei
2009-01-01
Hall mobility and sheet carrier density are important parameters to monitor in advanced semiconductor production. If micro Hall effect measurements are done on small pads in scribe lines, these parameters may be measured without using valuable test wafers. We report how Hall mobility can...... be extracted from micro four-point measurements performed on a rectangular pad. The dimension of the investigated pad is 400 Ã— 430 Â¿m2, and the probe pitches range from 20 Â¿m to 50 Â¿m. The Monte Carlo method is used to find the optimal way to perform the Hall measurement and extract Hall mobility most...
Identifying concert halls from source presence vs room presence.
Haapaniemi, Aki; Lokki, Tapio
2014-06-01
Identification of concert halls was studied to uncover whether the early or late part of the acoustic response is more salient in a hall's fingerprint. A listening test was conducted with auralizations of measured halls using full, hybrid, and truncated impulse responses convolved with anechoic symphonic music. Subjects identified halls more reliably based on differences in early responses rather than late responses, although varying the late response had more effect on acoustic parameters. The results suggest that in a typical situation with running symphonic music, the early response determines the perceptual fingerprint of a hall more than the late response.
Self-organized criticality in MHD driven plasma edge turbulence
Energy Technology Data Exchange (ETDEWEB)
Santos Lima, G.Z. dos, E-mail: gzampier@ect.ufrn.br [Escola de Ciências e Tecnologia, Universidade Federal do Rio Grande do Norte, 59014-615, Natal, RN (Brazil); Iarosz, K.C.; Batista, A.M. [Programa de Pós-Graduação em Física, Universidade Estadual de Ponta Grossa, 84030-900, Ponta Grossa, PR (Brazil); Caldas, I.L. [Instituto de Física, Universidade de São Paulo, 05508-090, SP (Brazil); Guimarães-Filho, Z.O. [IIFS/PIIM, Université de Provence (France); Viana, R.L.; Lopes, S.R. [Departamento de Física, Universidade Federal do Paraná, 81531-990, Curitiba, PR (Brazil); Nascimento, I.C.; Kuznetsov, Yu.K. [Instituto de Física, Universidade de São Paulo, 05508-090, SP (Brazil)
2012-01-16
We analyze long-range time correlations and self-similar characteristics of the electrostatic turbulence at the plasma edge and scrape-off layer in the Tokamak Chauffage Alfvén Brésillien (TCABR), with low and high Magnetohydrodynamics (MHD) activity. We find evidence of self-organized criticality (SOC), mainly in the region near the tokamak limiter. Comparative analyses of data before and during the MHD activity reveals that during the high MHD activity the Hurst parameter decreases. Finally, we present a cellular automaton whose parameters are adjusted to simulate the analyzed turbulence SOC change with the MHD activity variation. -- Highlights: ► We analyze time correlations of the electrostatic turbulence in plasma. ► We study self-similar characteristics with low and high magnetohydrodynamics activity. ► We find evidence of self-organized criticality (SOC) behavior. ► SOC behavior is pronounced close to radial positions just after the limiter. ► We present a cellular automata that simulate the analyzed turbulence.
3D MHD Models of Active Region Loops
Ofman, Leon
2004-01-01
Present imaging and spectroscopic observations of active region loops allow to determine many physical parameters of the coronal loops, such as the density, temperature, velocity of flows in loops, and the magnetic field. However, due to projection effects many of these parameters remain ambiguous. Three dimensional imaging in EUV by the STEREO spacecraft will help to resolve the projection ambiguities, and the observations could be used to setup 3D MHD models of active region loops to study the dynamics and stability of active regions. Here the results of 3D MHD models of active region loops are presented, and the progress towards more realistic 3D MHD models of active regions. In particular the effects of impulsive events on the excitation of active region loop oscillations, and the generation, propagations and reflection of EIT waves are shown. It is shown how 3D MHD models together with 3D EUV observations can be used as a diagnostic tool for active region loop physical parameters, and to advance the science of the sources of solar coronal activity.
ALEGRA-MHD Simulations for Magnetization of an Ellipsoidal Inclusion
2017-08-01
electromagnetic phenomena including magnetohydrodynamics (MHD). This multiphysics capability is a key feature of ALEGRA and the result of many years of...and are the electric and magnetic field and magnetic induction, respectively; is the electric current density of...free charges, is the speed of light in vacuum, and is electrical conductivity. In the boundary conditions, and are
MHD--Developing New Technology to Meet the Energy Crisis
Fitch, Sandra S.
1978-01-01
Magnetohydrodynamics is a technology that could utilize the nation's most abundant fossil fuel and produce electrical energy more efficiently and cleanly than present-day turbines. A national research and development program is ongoing in Butte, Montana at the Montana Energy and MHD Research and Development Institute (MERDI). (Author/RK)
Generalized similarity method in unsteady two-dimensional MHD ...
African Journals Online (AJOL)
Introduced assumptions simplify considered problem in sake of mathematical solving, but adopted physical model is interesting from practical point of view, because its relation with large number of technically significant MHD flows. Obtained partial differential equations can be solved with modern numerical methods for ...
Heat transfer with thermal radiation on MHD particle–fluid ...
Indian Academy of Sciences (India)
2017-09-12
Sep 12, 2017 ... In this article, effects of heat transfer on particle–fluid suspension induced by metachronal wave have been examined. The influence of magnetohydrodynamics (MHD) and thermal radiation are also taken into account with the help of Ohm's law and Roseland's approximation. The governing flow problem for ...
Numerical analysis of MHD flow structure behind a square rod
Energy Technology Data Exchange (ETDEWEB)
Satake, M. [Advanced Fusion Reactor Engineering Laboratory, Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University (Japan)]. E-mail: msata@karma.qse.tohoku.ac.jp; Yuki, K. [Advanced Fusion Reactor Engineering Laboratory, Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University (Japan); Chiba, S. [Advanced Fusion Reactor Engineering Laboratory, Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University (Japan); Hashizume, H. [Advanced Fusion Reactor Engineering Laboratory, Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University (Japan)
2006-02-15
In a liquid blanket system, the large MHD pressure drop for liquid lithium and/or LiPb makes it difficult to remove high heat load. Since the MHD pressure drop is proportional to the flow velocity, it is necessary to remove the high heat load under low velocity conditions. Meanwhile, in case of molten salt Flibe, which is a high Prandtl number fluid, it is also important to enhance the heat transfer performance. In this study, MHD flow structure behind a square rod inserted in a parallel channel to enhance the heat transfer is simulated numerically to clarify the interaction between the flow structure and the magnetic field by using a low-Reynolds number k-{epsilon} turbulent model and including MHD effects. The laminar flow analysis indicates that the disappearance of twin vortices and the change of the Karman's vortex street to the twin vortices occur around a Ha/Re {sub h} ratio of 0.7 and 0.07-0.09, respectively. The turbulent flow analysis confirms that installing the rod near the heating wall contributes to enhancing the heat transfer even in the presence of a magnetic field, although the turbulent kinetic energy decreases with increasing Hartmann number.
Study of MHD Effects on Surface Waves in Liquid Gallium
Fox, W.; Ji, H.; Pace, D.; Rappaport, H.
2001-10-01
The liquid metal experiment (LMX) at the Princeton Plasma Physics Laboratory has been constructed to study magnetohydrodynamic (MHD) effects on the propagation of surface waves in liquid metals in an imposed horizontal magnetic field. The physics of liquid metal is of interest generally as a regime of small magnetic Reynolds number MHD and more specifically contributes basic knowledge to the applications of liquid lithium walls in a fusion reactor. Surface waves are driven by a wave driver controlled by a PC-based Labview system. A non-invasive diagnostic measures surface fluctuations at multiple locations accurately by reflecting an array of lasers off the surface and onto a screen recorded by an ICCD camera. The real part of the dispersion relation has been measured precisely and agrees well with a linear theory, revealing the role of surface oxidation. Experiments have also confirmed that a transverse magnetic field does not affect wave propagation, and have qualitatively observed MHD damping (a non-zero imaginary component of the dispersion relation) of waves propagating in a parallel magnetic field. Planned upgrades to LMX will enable quantitative measurement of this MHD damping rate as well as experiments on two-dimensional waves and nonlinear waves. Implications to the liquid metal wall concept in fusion reactors will be discussed.
Standing Slow MHD Waves in Radiatively Cooling Coronal Loops
Indian Academy of Sciences (India)
In particular, the background plasma is assumed to be radiatively cooling. The effects of cooling on longitudinal slow MHD modes is analytically evaluated by choosing a simple form of radiative function, that ensures the temperature evolution of the background plasma due to radiation, coincides with the observed cooling ...
Nonadiabatic interaction between a charged particle and an MHD pulse
Directory of Open Access Journals (Sweden)
Y. Kuramitsu
2008-03-01
Full Text Available Interaction between a magnetohydrodynamic~(MHD pulse and a charged particle is discussed both numerically and theoretically. Charged particles can be accelerated efficiently in the presence of spatially correlated MHD waves, such as short large amplitude magnetic structures, by successive mirror reflection (Fermi process. In order to understand this process, we study the reflection probability of particles by the MHD pulses, focusing on the adiabaticity on the particle motion. When the particle velocity is small (adiabatic regime, the probability that the particle is reflected by the MHD pulse is essentially determined only by the pitch angle, independent from the velocity. On the other hand, in the non-adiabatic regime, the reflection probability is inversely proportional to the square root of the normalized velocity. We discuss our numerical as well as analytical results of the interaction process with various pulse amplitude, pulse shape, and the pulse winding number. The reflection probability is universally represented as a power law function independent from above pulse properties.
Thermosolutal MHD flow and radiative heat transfer with viscous ...
African Journals Online (AJOL)
This paper investigates double diffusive convection MHD flow past a vertical porous plate in a chemically active fluid with radiative heat transfer in the presence of viscous work and heat source. The resulting nonlinear dimensionless equations are solved by asymptotic analysis technique giving approximate analytic ...