WorldWideScience

Sample records for hall coefficient thermoelectric

  1. Nondestructive hall coefficient measurements using ACPD techniques

    Science.gov (United States)

    Velicheti, Dheeraj; Nagy, Peter B.; Hassan, Waled

    2018-04-01

    Hall coefficient measurements offer great opportunities as well as major challenges for nondestructive materials characterization. The Hall effect is produced by the magnetic Lorentz force acting on moving charge carriers in the presence of an applied magnetic field. The magnetic perturbation gives rise to a Hall current that is normal to the conduction current but does not directly perturb the electric potential distribution. Therefore, Hall coefficient measurements usually exploit the so-called transverse galvanomagnetic potential drop effect that arises when the Hall current is intercepted by the boundaries of the specimen and thereby produce a measurable potential drop. In contrast, no Hall potential is produced in a large plate in the presence of a uniform normal field at quasi-static low frequencies. In other words, conventional Hall coefficient measurements are inherently destructive since they require cutting the material under tests. This study investigated the feasibility of using alternating current potential drop (ACPD) techniques for nondestructive Hall coefficient measurements in plates. Specifically, the directional four-point square-electrode configuration is investigated with superimposed external magnetic field. Two methods are suggested to make Hall coefficient measurements in large plates without destructive machining. At low frequencies, constraining the bias magnetic field can replace constraining the dimensions of the specimen, which is inherently destructive. For example, when a cylindrical permanent magnet is used to provide the bias magnetic field, the peak Hall voltage is produced when the diameter of the magnet is equal to the diagonal of the square ACPD probe. Although this method is less effective than cutting the specimen to a finite size, the loss of sensitivity is less than one order of magnitude even at very low frequencies. In contrast, at sufficiently high inspection frequencies the magnetic field of the Hall current induces a

  2. Peltier coefficient measurement in a thermoelectric module

    International Nuclear Information System (INIS)

    Garrido, Javier; Casanovas, Alejandro; Chimeno, José María

    2013-01-01

    A new method for measuring the Peltier coefficient in a thermocouple X/Y based on the energy balance at the junction has been proposed recently. This technique needs only the hot and cold temperatures of a thermoelectric module when an electric current flows through it as the operational variables. The temperature evolutions of the two module sides provide an evident and accurate idea of the Peltier effect. From these temperatures, the heat transfer between the module and the ambient is also evaluated. The thermoelectric phenomena are described in the framework of an observable theory. Based on this procedure, an experiment is presented for a university teaching laboratory at the undergraduate level. (paper)

  3. Hall and thermoelectric evaluation of p-type InAs

    Energy Technology Data Exchange (ETDEWEB)

    Wagener, M.C., E-mail: magnus.wagener@nmmu.ac.z [Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Wagener, V.; Botha, J.R. [Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa)

    2009-12-15

    This paper compares the galvanometric and thermoelectric evaluation of the electrical characteristics of narrow gap semiconductors. In particular, the influence of a surface inversion layer is incorporated into the analysis of the temperature-dependent Hall and thermoelectric measurements of p-type InAs. The temperature at which the Seebeck coefficient of p-type material changes sign is shown to be unaffected by the presence of degenerate conduction paths. This finding consequently facilitated the direct determination of the acceptor density of lightly doped thin film InAs.

  4. Hall and thermoelectric evaluation of p-type InAs

    International Nuclear Information System (INIS)

    Wagener, M.C.; Wagener, V.; Botha, J.R.

    2009-01-01

    This paper compares the galvanometric and thermoelectric evaluation of the electrical characteristics of narrow gap semiconductors. In particular, the influence of a surface inversion layer is incorporated into the analysis of the temperature-dependent Hall and thermoelectric measurements of p-type InAs. The temperature at which the Seebeck coefficient of p-type material changes sign is shown to be unaffected by the presence of degenerate conduction paths. This finding consequently facilitated the direct determination of the acceptor density of lightly doped thin film InAs.

  5. System to Measure Thermal Conductivity and Seebeck Coefficient for Thermoelectrics

    Science.gov (United States)

    Kim, Hyun-Jung; Skuza, Jonathan R.; Park, Yeonjoon; King, Glen C.; Choi, Sang H.; Nagavalli, Anita

    2012-01-01

    The Seebeck coefficient, when combined with thermal and electrical conductivity, is an essential property measurement for evaluating the potential performance of novel thermoelectric materials. However, there is some question as to which measurement technique(s) provides the most accurate determination of the Seebeck coefficient at elevated temperatures. This has led to the implementation of nonstandardized practices that have further complicated the confirmation of reported high ZT materials. The major objective of the procedure described is for the simultaneous measurement of the Seebeck coefficient and thermal diffusivity within a given temperature range. These thermoelectric measurements must be precise, accurate, and reproducible to ensure meaningful interlaboratory comparison of data. The custom-built thermal characterization system described in this NASA-TM is specifically designed to measure the inplane thermal diffusivity, and the Seebeck coefficient for materials in the ranging from 73 K through 373 K.

  6. On the low-field Hall coefficient of graphite

    Directory of Open Access Journals (Sweden)

    P. Esquinazi

    2014-11-01

    Full Text Available We have measured the temperature and magnetic field dependence of the Hall coefficient (RH in three, several micrometer long multigraphene samples of thickness between ∼9 to ∼30 nm in the temperature range 0.1 to 200 K and up to 0.2 T field. The temperature dependence of the longitudinal resistance of two of the samples indicates the contribution from embedded interfaces running parallel to the graphene layers. At low enough temperatures and fields RH is positive in all samples, showing a crossover to negative values at high enough fields and/or temperatures in samples with interfaces contribution. The overall results are compatible with the reported superconducting behavior of embedded interfaces in the graphite structure and indicate that the negative low magnetic field Hall coefficient is not intrinsic of the ideal graphite structure.

  7. Thermoelectric and Hall-effect studies in hydrogenerated nickel foils

    International Nuclear Information System (INIS)

    Rani, R.; Nigam, A.N.

    1978-01-01

    Thermo e.m.f. and Hall constant of hydrogenerated nickel foils have been measured. Termo e.m.f. shows a sign reversal which is not due to the change in sign of the charge carriers, as indicated by the Hall-effect measurements. To account for the sign reversal of thermo e.m.f., it is found necessary to take into account the surface states of chemisorbed hydrogen on nickel

  8. Anomalous field dependence of the Hall coefficient in disordered metals

    International Nuclear Information System (INIS)

    Tousson, E.; Ovadyahu, Z.

    1988-01-01

    We report on a comprehensive study of the Hall coefficient, R/sub H/, in disordered three-dimensional In 2 O/sub 3-//sub x/ films as a function of the magnetic field strength, temperature, and degree of spatial disorder. Our main result is that, at sufficiently small fields, R/sub H/ is virtually temperature, field, and disorder independent, even at the metal-insulator transition itself. On the other hand, at the limit of strong magnetic fields, R/sub H/ has an explicit temperature dependence, in apparent agreement with the prediction of Al'tshuler, Aronov, and Lee. For intermediate values of fields, R/sub H/ is field and temperature dependent. It is also shown that the behavior of the conductivity as a function of temperature, σ(T), at small fields, is qualitatively different than that measured at the limit of strong magnetic fields. The low- and high-field regimes seem to correlate with the respective regimes in terms of the Hall-coefficient behavior. It is suggested that the magnetotransport in the high-field limit is considerably influenced by Coulomb-correlation effects. However, in the low-field regime, where both correlations and weak-localization effects are, presumably, equally important (and where both theories are the more likely to be valid), is problematic; neither R/sub H/ nor σ(T) gives any unambiguous evidence to the existence of interaction effects. This problem is discussed in light of the experimental results pertaining to the behavior of R/sub H/(T) in two-dimensional In 2 O/sub 3-//sub x/ films as well as in other disordered systems

  9. The effect of hydrostatic pressure on the anomalous sign reversal of the Hall coefficient in tellurium

    International Nuclear Information System (INIS)

    Balynas, V.; Dobrovolskis, Z.; Krotkus, A.; Hoerstel, W.

    1981-01-01

    In order to obtain information about the pressure behaviour of the higher lying second conduction band the dependences of the Hall coefficient of single crystalline tellurium on temperature (300 to 500 K) have been measured at atmospheric pressure and hydrostatic pressures of 500 and 800 MPa. The separation between the two conduction bands in Te decreases with increasing pressure. The anomalous sign reversal of the Hall coefficient can be well explained by a double-conduction band model

  10. Experimental Evaluation of MHD Generators Operating at High Hall Coefficients

    International Nuclear Information System (INIS)

    Barthelemy, R.R.; Stephan, B.G.; Cooper, R.F.

    1966-01-01

    The experimental evaluation of such open-cycle MHD generator operation, particularly at large values of the Hall parameter and Mach number, is scarce. A flexible combustion-driven MHD generator test facility is being constructed to investigate various generator-operating parameters, generator configurations and designs, and component materials. The plasma source is a combustion chamber in which toluene, or another suitable fuel, is burned with gaseous oxygen diluted with nitrogen. Potassium hydroxide seed is injected with the fuel to produce the necessary plasma conductivity. The gas stream is accelerated in a supersonic nozzle and then flows through the channel. The Hall channel is constructed of water-cooled Inconel rings suitably grooved for the zirconia electrode material. The rings are insulated from each other with Teflon spacers which are shielded from the high temperature gas by a layer of alumina refractory. The channel consists of 54 water-cooled rings assembled in three independent sections. Provisions for instrumentation consist of 15 points for static pressure measurement along the nozzle, channel and diffuser; 20 thermocouple measurements; 3 split rings for transverse current measurements; a voltmeter panel for all 54 electrodes; and all necessary fluid and electrical monitoring instruments. The channel is followed by a diffuser in which some of the dynamic pressure of the gas stream is recovered. The magnet is an iron core design with coils wound of hollow conductor to permit of water-cooling for high power operation. The magnet can operate at field strengths of up to 23 kG. Details of the test programme planned for the generator (commissioning at the end of 1966) are given. (author)

  11. The Hall coefficient: a tool for characterizing graphene field effect transistors

    International Nuclear Information System (INIS)

    Wehrfritz, Peter; Seyller, Thomas

    2014-01-01

    Graphene field effect transistors are considered as a candidate for future high-frequency applications. For their realization, the optimal combination of substrate, graphene preparation, and insulator deposition and composition is required. This optimization must be based on an in-depth characterization of the obtained graphene insulator metal (GIM) stack. Hall effect measurements are frequently employed to study such systems, thereby focussing primarily on the charge carrier mobility. In this work we show how an analysis of the sheet Hall coefficient can reveal further important properties of the GIM stack, like, e.g., the interface trap density and the spacial charge inhomogeneity. To that end, we provide an extensive description of the GIM diode, which leads to an accurate calculation of the sheet Hall coefficient dependent on temperature and gate voltage. The gate dependent inverse sheet Hall coefficient is discussed in detail before we introduce the concept of an equivalent temperature, which is a measure of the spacial charge inhomogeneity. In order to test the concept, we apply it to evaluate already measured Hall data taken from the literature. This evaluation allows us to determine the Drude mobility, even at the charge neutrality point, which is inaccessible with a simple one band Hall mobility analysis, and to shed light on the spacial charge inhomogeneity. The formalism is easily adaptable and provides experimentalists a powerful tool for the characterization of their graphene field effect devices. (paper)

  12. High – temperature thermoelectric properties of Hg – doped CuInTe2

    Czech Academy of Sciences Publication Activity Database

    Kucek, V.; Drašar, Č.; Kašparová, J.; Plecháček, T.; Navrátil, Jiří; Vlček, Milan; Beneš, L.

    2015-01-01

    Roč. 118, č. 12 (2015), 125105-1 - 125105-7 ISSN 0021-8979 Institutional support: RVO:61389013 Keywords : thermoelectric materials * Hall coefficient * Seebeck coefficient Subject RIV: CA - Inorganic Chemistry Impact factor: 2.101, year: 2015

  13. A setup for measuring the Seebeck coefficient and the electrical resistivity of bulk thermoelectric materials

    Science.gov (United States)

    Fu, Qiang; Xiong, Yucheng; Zhang, Wenhua; Xu, Dongyan

    2017-09-01

    This paper presents a setup for measuring the Seebeck coefficient and the electrical resistivity of bulk thermoelectric materials. The sample holder was designed to have a compact structure and can be directly mounted in a standard cryostat system for temperature-dependent measurements. For the Seebeck coefficient measurement, a thin bar-shaped sample is mounted bridging two copper bases; and two ceramic heaters are used to generate a temperature gradient along the sample. Two type T thermocouples are used to determine both temperature and voltage differences between two widely separated points on the sample. The thermocouple junction is flattened into a disk and pressed onto the sample surface by using a spring load. The flexible fixation method we adopted not only simplifies the sample mounting process but also prevents thermal contact deterioration due to the mismatch of thermal expansion coefficients between the sample and other parts. With certain modifications, the sample holder can also be used for four-probe electrical resistivity measurements. High temperature measurements are essential for thermoelectric power generation. The experimental system we developed is capable of measuring the Seebeck coefficient and the electrical resistivity of bulk thermoelectric materials in a wide temperature range from 80 to 500 K, which can be further extended to even higher temperatures. Measurements on two standard materials, constantan and nickel, confirmed the accuracy and the reliability of the system.

  14. Electrical resistivity, Hall coefficient and electronic mobility in indium antimonide at different magnetic fields and temperatures

    International Nuclear Information System (INIS)

    Jee, Madan; Prasad, Vijay; Singh, Amita

    1995-01-01

    The electrical resistivity, Hall coefficient and electronic mobility of n-type and p-type crystals of indium antimonide have been measured from 25 degC-100 degC temperature range. It has been found by this measurement that indium antimonide is a compound semiconductor with a high mobility 10 6 cm 2 /V.S. The Hall coefficient R H was measured as a function of magnetic field strength H for a number of samples of both p and n-type using fields up to 12 kilo gauss. The Hall coefficient R h decreases with increasing magnetic fields as well as with increase in temperature of the sample. The electric field is more effective on samples with high mobilities and consequently the deviations from linearity are manifested at comparatively low values of the electric field. The measurement of R H in weak and strong magnetic fields makes it possible to determine the separate concentration of heavy and light holes. Measured values of Hall coefficient and electrical resistivity show that there is a little variation of ρ and R h with temperatures as well as with magnetic fields. (author). 12 refs., 5 tabs

  15. Thermoelectric coefficient L(T) of polycrystalline silver doped BSCCO samples

    International Nuclear Information System (INIS)

    Rodriguez, J.E.; Marino, A.

    1998-01-01

    We present a study of the thermoelectric coefficient L(T) of polycrystalline silver doped BSCCO samples. The quantity L(T) relates the thermoelectric coefficient S(T) with the electrical conductivity σ (T) and gives an indication of the influence of the order parameter fluctuations (OPF) on S(T) in the mean field region (Mfr). The results of L(T) indicate that the critical behavior of S(T) above the superconducting transition is not only driven by σ (T). These results suggest that in the Mfr, L(T) is affected by thermodynamic fluctuations of the superconducting order parameter (OPF). The OPF effects show a two-dimensional (2D) character in the entire Mfr. (Author)

  16. Giant Pressure-Induced Enhancement of Seebeck Coefficient and Thermoelectric Efficiency in SnTe

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Jason; Kumar, Ravhi; Park, Changyong; Kenney-Benson, Curtis; Cornelius, Andrew; Velisavljevic, Nenad (CIW); (LANL); (UNLV)

    2017-10-30

    The thermoelectric properties of polycrystalline SnTe have been measured up to 4.5 GPa at 330 K. SnTe shows an enormous enhancement in Seebeck coefficient, greater than 200 % after 3 GPa, which correlates to a known pressure-induced structural phase transition that is observed through simultaneous in situ X-ray diffraction measurement. Electrical resistance and relative changes to the thermal conductivity were also measured, enabling the determination of relative changes in the dimensionless figure of merit (ZT), which increases dramatically after 3 GPa, reaching 350 % of the lowest pressure ZT value. The results demonstrate a fundamental relationship between structure and thermoelectric behaviours and suggest that pressure is an effective tool to control them.

  17. Scaling of Hall coefficient in Co-Bi granular thin films

    Directory of Open Access Journals (Sweden)

    Speliotis Th.

    2013-01-01

    Full Text Available A series of Co-Bi thin films with Co concentrations c=0, 0.05, 0.2, 0.26, 0.3, 0.333, 0.375, 0.545, were grown by magnetron sputtering on Si(100/SiNX substrates. Resistivity measurements at zero field (ρxx as a function of temperature-T exhibit an exponential variation with T in the region of 240KHall coefficient as a function of Co concentration diverges as log|c-0.3|0.3 for c<0.333, indicating a scaling of RH nearby a percolation threshold pc=0.3. Only after proper scaling of the anomalous Hall coefficient RS the conventional RS∝(ρxxn dependence can be satisfied.

  18. Temperature dependences of the electrical conductivity and Hall coefficient of indium telluride single crystals

    International Nuclear Information System (INIS)

    Hussein, S.A.

    1989-01-01

    Conductivity type, carrier concentration and carrier mobility of InTe samples grown by Bridgman technique were determined by the Hall effect and electrical conductivity measurements. The study was performed in the temperature range 150-480 K. Two samples with different growth rate were used in the investigation. The samples under test were P-type conducting, in accordance with previous measurements of undoped material. The Hall coefficient was found to be isotropic yielding room temperature hole concentration in the range 10 15 -10 16 cm -3 . The hole mobilities of InTe samples were in the range 1.17 x 10 3 -2.06 x 10 3 cm 2 /V · sec at room temperature. The band-gap of InTe determined from Hall coefficient studies has been obtained equal to 0.34 eV. The scattering mechanism was checked, and the electrical properties were found to be sensitive to the crystal growth rate. (author)

  19. Nanoscale Thermoelectrics: A Study of the Absolute Seebeck Coefficient of Thin Films

    Science.gov (United States)

    Mason, Sarah J.

    The worlds demand for energy is ever increasing. Likewise, the environmental impact of climate change due generating that energy through combustion of fossil fuels is increasingly alarming. Due to these factors new sources of renewable energies are constantly being sought out. Thermoelectric devices have the ability to generate clean, renewable, energy out of waste heat. However promising that is, their inefficiency severely inhibits applicability and practical use. The usefulness of a thermoelectric material increases with the dimensionless quantity, ZT, which depends on the Seebeck coefficient and electrical and thermal conductivity. These characteristic material parameters have interdependent energy transport contributions that classically prohibit the optimization of one with out the detriment of another. Encouraging advancements of ZT have occurred in the past ten years due to the decoupling of the thermal and electrical conductivity. Further advancements are necessary in order to produce applicable devices. One auspicious way of decoupling or tuning energy transport properties, is through size reduction to the nanoscale. However, with reduced dimensions come complications in measuring material properties. Measurements of properties such as the Seebeck coefficient, S, are primarily contingent upon the measurement apparatus. The Seebeck coefficient is defined as the amount of voltage generated by a thermal gradient. Measuring a thermally generated voltage by traditional methods gives, the voltage measured as a linear function of the Seebeck coefficient of the leads and of the material being tested divided by the applied thermal gradient. If accurate values of the Seebeck coefficients of the leads are available, simple subtraction provides the answer. This is rarely the case in nanoscale measurement devices with leads exclusively made from thin film materials that do not have well known bulk-like thermopower values. We have developed a technique to directly

  20. Annealing effects on resistivity and Hall coefficient of neutron irradiated silicon

    International Nuclear Information System (INIS)

    Biggeri, U.

    1995-01-01

    High Temperature Annealing (HTA) treatment has been carried out on fast-neutron irradiated silicon samples with temperatures up to 300 C. Fluences of irradiation up to 1x10 14 n/cm 2 were used. Before annealing, samples irradiated with fluences higher than 1x10 13 n/cm 2 suffered the type conductivity inversion from n-type to p-type. The changes in the resisitivity and Hall coefficient during each annealing step have been measured by Hall effect analysis. Results indicate the possible creation of acceptors for low temperature annealing up to 150 C and the phosphorous release by E centres at annealing temperatures among 150 C and 200 C. Heating samples up to 300 C allows the recovering of the sample resistivity to its value before irradiation, with the peculiarity that bulks inverted to p-type after irradiation does not come back to n-type after annealing. (orig.)

  1. Fundamental piezo-Hall coefficients of single crystal p-type 3C-SiC for arbitrary crystallographic orientation

    Science.gov (United States)

    Qamar, Afzaal; Dao, Dzung Viet; Phan, Hoang-Phuong; Dinh, Toan; Dimitrijev, Sima

    2016-08-01

    Piezo-Hall effect in a single crystal p-type 3C-SiC, grown by LPCVD process, has been characterized for various crystallographic orientations. The quantified values of the piezo-Hall effect in heavily doped p-type 3C-SiC(100) and 3C-SiC(111) for different crystallographic orientations were used to obtain the fundamental piezo-Hall coefficients, P 12 = ( 5.3 ± 0.4 ) × 10 - 11 Pa - 1 , P 11 = ( - 2.6 ± 0.6 ) × 10 - 11 Pa - 1 , and P 44 = ( 11.42 ± 0.6 ) × 10 - 11 Pa - 1 . Unlike the piezoresistive effect, the piezo-Hall effect for (100) and (111) planes is found to be independent of the angle of rotation of the device within the crystal plane. The values of fundamental piezo-Hall coefficients obtained in this study can be used to predict the piezo-Hall coefficients in any crystal orientation which is very important for designing of 3C-SiC Hall sensors to minimize the piezo-Hall effect for stable magnetic field sensitivity.

  2. The influence of precipitates on the low-field Hall coefficient of Cu-Be 2

    International Nuclear Information System (INIS)

    Sachslehner, F.

    1988-01-01

    The Hall coefficient R H , electrical resistivity, and transverse magnetoresistance of aged Cu-Be 2 samples (commercial alloy) are measured between 5 and 300 K. The temperature curves R H (T) show an interesting effect. There are monotonous curves being in qualitative accordance with the two group model but at certain ageing times or particle sizes a minimum appears in R H (T) in the region of 40 to 60 K. It is suggested that a minimum always appears if the mean free path of the conduction electrons becomes comparable to dimensions of the precipitates. A change to 'two phase boundary scattering' could cause the minima. (author)

  3. Peltier's and Thomson's coefficients of thermoelectric phenomena in the observable formulation

    Energy Technology Data Exchange (ETDEWEB)

    Garrido, Javier [Departamento de Fisica de la Tierra y Termodinamica, Universitat de Valencia, E-46100 Burjassot (Valencia) (Spain)

    2009-04-15

    Four transport coefficients characterize the thermoelectric properties of materials. Three of them are widely measured and studied. But the number of references on the Peltier coefficient are very limited. This unequal result is a consequence of the Onsager reciprocal relation (ORR). A review on the preciseness and accuracy of Peltier coefficient measurements has been developed in this paper. Thus we can appreciate a low level in the experimental confirmation for the ORR. In order to describe the thermoelectric processes in an advantageous way, the observable formulation has been used. This is characterized by the electric potential measured at the probe terminals and for the heat flux which the conductor laterally dissipates. The energy balance provides the basic relationships among the observables and the Peltier and Thomson coefficients. A new way for measuring the Peltier coefficient has been suggested.

  4. Estimating Seebeck Coefficient of a p-Type High Temperature Thermoelectric Material Using Bee Algorithm Multi-layer Perception

    Science.gov (United States)

    Uysal, Fatih; Kilinc, Enes; Kurt, Huseyin; Celik, Erdal; Dugenci, Muharrem; Sagiroglu, Selami

    2017-08-01

    Thermoelectric generators (TEGs) convert heat into electrical energy. These energy-conversion systems do not involve any moving parts and are made of thermoelectric (TE) elements connected electrically in a series and thermally in parallel; however, they are currently not suitable for use in regular operations due to their low efficiency levels. In order to produce high-efficiency TEGs, there is a need for highly heat-resistant thermoelectric materials (TEMs) with an improved figure of merit ( ZT). Production and test methods used for TEMs today are highly expensive. This study attempts to estimate the Seebeck coefficient of TEMs by using the values of existing materials in the literature. The estimation is made within an artificial neural network (ANN) based on the amount of doping and production methods. Results of the estimations show that the Seebeck coefficient can approximate the real values with an average accuracy of 94.4%. In addition, ANN has detected that any change in production methods is followed by a change in the Seebeck coefficient.

  5. Calculation of Nonlinear Thermoelectric Coefficients of InAs1-xSbx Using Monte Carlo Method

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghian, RB; Bahk, JH; Bian, ZX; Shakouri, A

    2011-12-28

    It was found that the nonlinear Peltier effect could take place and increase the cooling power density when a lightly doped thermoelectric material is under a large electrical field. This effect is due to the Seebeck coefficient enhancement from an electron distribution far from equilibrium. In the nonequilibrium transport regime, the solution of the Boltzmann transport equation in the relaxation-time approximation ceases to apply. The Monte Carlo method, on the other hand, proves to be a capable tool for simulation of semiconductor devices at small scales as well as thermoelectric effects with local nonequilibrium charge distribution. InAs1-xSb is a favorable thermoelectric material for nonlinear operation owing to its high mobility inherited from the binary compounds InSb and InAs. In this work we report simulation results on the nonlinear Peltier power of InAs1-xSb at low doping levels, at room temperature and at low temperatures. The thermoelectric power factor in nonlinear operation is compared with the maximum value that can be achieved with optimal doping in the linear transport regime.

  6. Dependence of Seebeck coefficient on a load resistance and energy conversion efficiency in a thermoelectric composite

    International Nuclear Information System (INIS)

    Yamashita, Osamu; Odahara, Hirotaka; Ochi, Takahiro; Satou, Kouji

    2007-01-01

    The thermo-emf ΔV and current ΔI generated by imposing the alternating temperature gradients (ATG) at a period of T and the steady temperature gradient (STG) on a thermoelectric (TE) composite were measured as a function of t, where t is the lapsed time and T was varied from 60 to or ∞ s. The STG and ATG were produced by imposing steadily and alternatively a source voltage V in the range from 1.0 to 4.0 V on two Peltier modules sandwiching a composite. ΔT, ΔV, ΔI and V P oscillate at a period T and their waveforms vary significantly with a change of T, where ΔV and V P are the voltage drops in a load resistance R L and in resistance R P of two modules. The resultant Seebeck coefficient |α| = |ΔV|/ΔT of a composite under the STG was found to be expressed as |α| = |α 0 |(1 - R comp /R T ), where R T is the total resistance of a circuit for measuring the output signals and R comp is the resistance of a composite. The effective generating power ΔW eff has a local maximum at T = 960 s for the p-type composite and at T = 480 s for the n-type one. The maximum energy conversion efficiency η of the p- and n-type composites under the ATG produced by imposing a voltage of 4.0 V at an optimum period were 0.22 and 0.23% at ΔT eff = 50 K, respectively, which are 42 and 43% higher than those at ΔT = 42 K under the STG. These maximum η for a TE composite sandwiched between two Peltier modules, were found to be expressed theoretically in terms of R P , R T , R L , α P and α, where α P and α are the resultant Seebeck coefficients of Peltier modules and a TE composite

  7. Anomalous thermoelectric phenomena in lattice models of multi-Weyl semimetals

    Science.gov (United States)

    Gorbar, E. V.; Miransky, V. A.; Shovkovy, I. A.; Sukhachov, P. O.

    2017-10-01

    The thermoelectric transport coefficients are calculated in a generic lattice model of multi-Weyl semimetals with a broken time-reversal symmetry by using the Kubo's linear response theory. The contributions connected with the Berry curvature-induced electromagnetic orbital and heat magnetizations are systematically taken into account. It is shown that the thermoelectric transport is profoundly affected by the nontrivial topology of multi-Weyl semimetals. In particular, the calculation reveals a number of thermal coefficients of the topological origin which describe the anomalous Nernst and thermal Hall effects in the absence of background magnetic fields. Similarly to the anomalous Hall effect, all anomalous thermoelectric coefficients are proportional to the integer topological charge of the Weyl nodes. The dependence of the thermoelectric coefficients on the chemical potential and temperature is also studied.

  8. Prediction of liquid metal alloy radiant properties from measurements of the Hall coefficient and the direct current resistivity

    International Nuclear Information System (INIS)

    Havstad, M.A.; Qiu, T.

    1995-04-01

    The thermal radiative properties of high temperature solid and liquid metal alloys are particularly useful to research and development efforts in laser cladding and machining, electron beam welding and laser isotope separation. However the cost, complexity, and difficulty of measuring these properties have forced the use of crude estimates from the Hagen-Rubens relation, the Drude relations, or extrapolation from low temperature or otherwise flawed data (e.g., oxidized). The authors have found in this work that published values for the Hall coefficient and the electrical resistivity of liquid metal alloys can provide useful estimates of the reflectance and emittance of some groups of binary liquid metal and high temperature solid alloys. The estimation method computes the Drude free electron parameters, and thence the optical constants and the radiant properties from the dependence of the Hall coefficient and direct current resistivity on alloy composition (the Hall coefficient gives the free electron density and the resistivity gives the average time between collisions). They find that predictions of the radiant properties of molten cerium-copper alloy, which use the measured variations in the Hall coefficient and resistivity (both highly nonlinear) as a function of alloy fraction (rather than linear combinations of the values of the pure elements) yield a good comparison to published measurements of the variation of the normal spectral emittance (a different but also nonlinear function) of cerium-copper alloy at the single wavelength available for comparison, 0.645 μm. The success of the approach in the visible range is particularly notable because one expects a Drude based approach to improve with increasing wavelength from the visible into the infrared. Details of the estimation method, the comparison between the calculation and the measured emittance, and a discussion of what groups of elements may also provide agreement is given

  9. Use of XPS to clarify the Hall coefficient sign variation in thin niobium layers buried in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Demchenko, Iraida N., E-mail: demch@ifpan.edu.pl [Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw (Poland); Lisowski, Wojciech [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland); Syryanyy, Yevgen [Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw (Poland); Melikhov, Yevgen [Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw (Poland); School of Engineering, Cardiff University, Newport Rd., Cardiff, CF24 3AA (United Kingdom); Zaytseva, Iryna; Konstantynov, Pavlo [Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw (Poland); Chernyshova, Maryna [Institute of Plasma Physics and Laser Microfusion, Hery Street 23, 01-497 Warsaw (Poland); Cieplak, Marta Z. [Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw (Poland)

    2017-03-31

    Highlights: • HR XPS spectra of Nb 3d, Si 2p, O 1s were probed for Si/Nb/Si trilayers prepared by magnetron sputtering to clarify the Hall coefficient variation as a function of Nb layer thickness. • Strong boundary scattering, enhanced by the presence of silicon ions in the layer close to the interface/s is a main factor leading to sign change of the Hall coefficient. • Theoretical concentration/depth profile as a function of sputtering determined by SESSA after optimization of the model system gives good agreement with experiment. - Abstract: Si/Nb/Si trilayers formed with 9.5 and 1.3 nm thick niobium layer buried in amorphous silicon were prepared by magnetron sputtering and studied using XPS depth-profile techniques in order to investigate the change of Hall coefficient sign with thickness. The analysis of high-resolution (HR) XPS spectra revealed that the thicker layer sample has sharp top interface and metallic phase of niobium, thus holes dominate the transport. In contrast, the analysis indicates that the thinner layer sample has a Nb-rich mixed alloy formation at the top interface. The authors suggest that the main effect leading to a change of sign of the Hall coefficient for the thinner layer sample (which is negative contrary to the positive sign for the thicker layer sample) may be related to strong boundary scattering enhanced by the presence of silicon ions in the layer close to the interface/s. The depth-profile reconstruction was performed by SESSA software tool confirming that it can be reliably used for quantitative analysis/interpretation of experimental XPS data.

  10. Home built equipment for measuring Hall coefficient and charge carrier concentration, mobility and resistivity

    DEFF Research Database (Denmark)

    Borup, Kasper Andersen; Christensen, Mogens; Blichfeld, Anders Bank

    2011-01-01

    der Pauw method. The commercial availability of these systems is limited and they are usually not optimized for measurements on samples which show properties characteristic of thermoelectric materials. We give an assessment of the reliability of the measurements and a comparison with a commercial...

  11. Two-dimensional thermoelectric Seebeck coefficient of SrTiO3-based superlattices

    International Nuclear Information System (INIS)

    Ohta, Hiromichi

    2008-01-01

    This review provides the origin of the unusually large thermoelectric Seebeck coefficient vertical stroke S vertical stroke of a two-dimensional electron gas confined within a unit cell layer thickness (∝0.4 nm) of a SrTi 0.8 Nb 0.2 O 3 layer of artificial superlattices of SrTiO 3 /SrTi 0.8 Nb 0.2 O 3 [H. Ohta et al., Nature Mater. 6, 129 (2007)]. The vertical stroke S vertical stroke 2D values of the[(SrTiO 3 ) 17 /(SrTi 0.8 Nb 0.2 O 3 ) y ] 20 superlattice increase proportional to y -0.5 , and reach 290 μV K -1 (y=1) at room temperature, which is ∝5 times larger than that of the SrTi 0.8 Nb 0.2 O 3 bulk (vertical stroke S vertical stroke 3D =61 μVK -1 ), proving that the density of states in the ground state for SrTiO 3 increases in inverse proportion to y. The critical barrier thickness for quantum electron confinement is also clarified to be 6.25 nm (16 unit cells of SrTiO 3 ). Significant structural changes are not observed in the superlattice after annealing at 900 K in a vacuum. The value of vertical stroke S vertical stroke 2D of the superlattice gradually increases with temperature and reaches 450 μVK -1 at 900 K, which is ∝3 times larger than that of bulk SrTi 0.8 Nb 0.2 O 3 . These observations provide clear evidence that the [(SrTiO 3 ) 17 /(SrTi 0.8 Nb 0.2 O 3 ) 1 ] 20 superlattice is stable and exhibits a giant vertical stroke S vertical stroke even at high temperature. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Transport coefficients of InSb in a strong magnetic field

    International Nuclear Information System (INIS)

    Nakamura, Hiroaki; Ikeda, Kazuaki; Yamaguchi, Satarou

    1998-02-01

    Improvement of a superconducting magnet system makes induction of a strong magnetic field easier. This fact gives us a possibility of energy conversion by the Nernst effect. As the first step to study the Nernst element, we measured the conductivity, the Hall coefficient, the thermoelectric power and the Nernst coefficient of the InSb, which is one of candidates of the Nernst elements. From this experiment, it is concluded that the Nernst coefficient is smaller than the theoretical values. On the other hand, the conductivity, the Hall coefficient and the thermoelectric power has the values expected by the theory. (author)

  13. Exploring the Effect of Media, Salinity and Clay on the Thermoelectric Coupling Coefficient in Self-Potential Data

    Science.gov (United States)

    Meyer, C. D.; Revil, A.

    2014-12-01

    Self-potential is a non-invasive, passive geophysical technique with applications ranging from imaging oil and gas reservoirs to identifying preferential flow paths in earthen embankments. Several cross-coupled flow phenomena contribute to self-potential data, and there is a need to further quantify these various sources to enable better resolution and quantification of self-potential models. Very little research has been done to constrain thermoelectric source mechanisms that contribute to self-potential signals. A laboratory experiment has been designed to investigate the thermoelectric coupling coefficient (CTE) that relates the voltage change per degree centigrade (V/°C) in porous media. This study focuses on a sand tank experiment using a saturated silica sand. To isolate the temperature gradient dependence of self-potential measurements, no hydraulic gradient is applied to the tank, eliminating the streaming potential component of source current. Self-potential and temperature data are recorded while reservoirs of hot and cold water are established on opposite ends of the tank in order to generate thermoelectric source currents. Various thermal gradients ranging from 0 °C to 80 °C over 20 cm are examined for various salinities (10-3M- 1M NaCl), sand grain sizes and clay content to investigate influences on CTE. A short-duration contact of non-polarizing (Pb/PbCl) electrodes is implemented to minimize temperature drift of electrodes during the experiment. Surface self-potential and temperature measurements are made in 30 minute intervals. Initial measurements have revealed non-linear effects, including a decreased CTE as temperature gradient bounds approach 0 °C.

  14. Introducing a novel method to estimate the total heat transfer coefficient inside irregular-shape cavities utilizing thermoelectric modules; Special application in solar engineering

    DEFF Research Database (Denmark)

    Asadi, Amin; Rahbar, Nader; Rezaniakolaei, Alireza

    The main objective of the present study is to introduce a novel method to measure the total heat transfer coefficient inside irregular-shape cavities, used in solar applications, utilizing thermoelectric modules. Applying mathematical and thermodynamics modeling, the governing equations related...... to the total heat transfer coefficient between thermoelectric and glass cover as a function of ambient temperature, glass temperature, and output voltage has been derived. Investigating the accuracy of the proposed equation, an experimental case study has been performed. The experimental setup consists...... of three parts; a heat sink, a thermoelectric module, and a glass cover. All the experiments have been performed on the typical winter day and under the real climatic conditions of Semnan (35° 33′ N, 53° 23′ E), Iran. The results showed that the proposed method has the ability to measure the total heat...

  15. Magnetic field and temperature dependent measurements of hall coefficient in thermal evaporated Tin-Doped Cadmium Oxide Thin films

    International Nuclear Information System (INIS)

    Hamadi, O.; Shakir, N.; Mohammed, F.

    2010-01-01

    CdO:Sn thin films are deposited onto glass substrates by thermal evaporation under vacuum. The studied films are polycrystalline and have an NaCl structure. The Hall effect is studied for films with different thickness as substrates are maintained at different temperatures. The temperature dependence of the Hall mobility is also investigated. (authors)

  16. The enhancement of thermoelectric power and scattering of carriers in Bi{sub 2{minus}x}Sn{sub x}Te{sub 3} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kulbachinskii, V A; Negishi, H; Sasaki, M; Giman, Y; Inoue, M

    1997-07-01

    Thermoelectric power, electrical resistivity, and Hall effect of p-type Bi{sub 2{minus}x}Sn{sub x}Te{sub 3} (0 < x < 0.03) singlecrystals have been measured in the temperature range 4.2--300K. By doping of Sn atoms into the host Bi{sub 2}Te{sub 3} lattice, the enhancement in the thermoelectric power is observed in the intermediate temperature range 30--150K for x {le} 0,0075. The activation type behavior of Hall coefficient and resistivity are found which corresponds to the Sn-induced impurity band located above the second lower valence band.

  17. Thermoelectricity in liquid crystals

    Science.gov (United States)

    Mohd Said, Suhana; Nordin, Abdul Rahman; Abdullah, Norbani; Balamurugan, S.

    2015-09-01

    The thermoelectric effect, also known as the Seebeck effect, describes the conversion of a temperature gradient into electricity. A Figure of Merit (ZT) is used to describe the thermoelectric ability of a material. It is directly dependent on its Seebeck coefficient and electrical conductivity, and inversely dependent on its thermal conductivity. There is usually a compromise between these parameters, which limit the performance of thermoelectric materials. The current achievement for ZT~2.2 falls short of the expected threshold of ZT=3 to allow its viability in commercial applications. In recent times, advances in organic thermoelectrics been significant, improving by over 3 orders of magnitude over a period of about 10 years. Liquid crystals are newly investigated as candidate thermoelectric materials, given their low thermal conductivity, inherent ordering, and in some cases, reasonable electrical conductivity. In this work the thermoelectric behaviour of a discotic liquid crystal, is discussed. The DLC was filled into cells coated with a charge injector, and an alignment of the columnar axis perpendicular to the substrate was allowed to form. This thermoelectric behavior can be correlated to the order-disorder transition. A reasonable thermoelectric power in the liquid crystal temperature regime was noted. In summary, thermoelectric liquid crystals may have the potential to be utilised in flexible devices, as a standalone power source.

  18. Hall effect in hopping regime

    International Nuclear Information System (INIS)

    Avdonin, A.; Skupiński, P.; Grasza, K.

    2016-01-01

    A simple description of the Hall effect in the hopping regime of conductivity in semiconductors is presented. Expressions for the Hall coefficient and Hall mobility are derived by considering averaged equilibrium electron transport in a single triangle of localization sites in a magnetic field. Dependence of the Hall coefficient is analyzed in a wide range of temperature and magnetic field values. Our theoretical result is applied to our experimental data on temperature dependence of Hall effect and Hall mobility in ZnO. - Highlights: • Expressions for Hall coefficient and mobility for hopping conductivity are derived. • Theoretical result is compared with experimental curves measured on ZnO. • Simultaneous action of free and hopping conduction channels is considered. • Non-linearity of hopping Hall coefficient is predicted.

  19. Hall effect in hopping regime

    Energy Technology Data Exchange (ETDEWEB)

    Avdonin, A., E-mail: avdonin@ifpan.edu.pl [Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warszawa (Poland); Skupiński, P. [Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warszawa (Poland); Grasza, K. [Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warszawa (Poland); Institute of Electronic Materials Technology, ul. Wólczyńska 133, 01-919 Warszawa (Poland)

    2016-02-15

    A simple description of the Hall effect in the hopping regime of conductivity in semiconductors is presented. Expressions for the Hall coefficient and Hall mobility are derived by considering averaged equilibrium electron transport in a single triangle of localization sites in a magnetic field. Dependence of the Hall coefficient is analyzed in a wide range of temperature and magnetic field values. Our theoretical result is applied to our experimental data on temperature dependence of Hall effect and Hall mobility in ZnO. - Highlights: • Expressions for Hall coefficient and mobility for hopping conductivity are derived. • Theoretical result is compared with experimental curves measured on ZnO. • Simultaneous action of free and hopping conduction channels is considered. • Non-linearity of hopping Hall coefficient is predicted.

  20. Simple experiments with a thermoelectric module

    International Nuclear Information System (INIS)

    Kraftmakher, Yaakov

    2005-01-01

    The Seebeck and Peltier effects are explored with a commercially available thermoelectric module and a data-acquisition system. Five topics are presented: (i) thermoelectric heating and cooling, (ii) the Seebeck coefficient, (iii) efficiency of a thermoelectric generator, (iv) the maximum temperature difference provided by a thermoelectric cooler and (v) the Peltier coefficient and the coefficient of performance. Using a data-acquisition system, the measurements are carried out in a reasonably short time. It is shown how to deduce quantities important for the theory and applications of thermoelectric devices

  1. Magnetic-field asymmetry of nonlinear thermoelectric and heat transport

    International Nuclear Information System (INIS)

    Hwang, Sun-Yong; Sánchez, David; López, Rosa; Lee, Minchul

    2013-01-01

    Nonlinear transport coefficients do not obey, in general, reciprocity relations. We here discuss the magnetic-field asymmetries that arise in thermoelectric and heat transport of mesoscopic systems. Based on a scattering theory of weakly nonlinear transport, we analyze the leading-order symmetry parameters in terms of the screening potential response to either voltage or temperature shifts. We apply our general results to a quantum Hall antidot system. Interestingly, we find that certain symmetry parameters show a dependence on the measurement configuration. (paper)

  2. Correlations between the Hall coefficient and the superconducting transport properties of oxygen-deficient YBa2Cu3O7-δ epitaxial thin films

    International Nuclear Information System (INIS)

    Jones, E.C.; Christen, D.K.; Thompson, J.R.; Feenstra, R.; Zhu, S.; Lowndes, D.H.; Phillips, J.M.; Siegal, M.P.; Budai, J.D.

    1993-01-01

    Strong correlations between the Hall coefficient R H , the transition temperature T c , and the critical current density J c were established in a series of epitaxial YBa 2 Cu 3 O 7-δ thin films as a function of oxygen deficiency δ. Steady increases in R H with δ suggest that deoxygenation reduces the density of states which, according to BCS theory, should lead to corresponding decreases in T c . In contrast, two well-known plateaus occurring at 90 K and 60 K were observed in T c vs δ. Others have ascribed these plateaus to either electronic phenomena or phase separations. We find that in the 90-K plateau, the critical current density J c (δ,H=0) decreases with δ and extrapolates toward zero at the edge of the plateau, while the relative-field dependence of J c (δ,H) and the flux-creep pinning energies are independent of δ. These observations suggest that the phase-separation scenario occurs on the 90-K plateau. However, electronic origins cannot be ruled out at present due to difficulties in determining the equilibrium superconducting properties of oxygen-deficient YBa 2 Cu 3 O 7-δ films

  3. Hall coefficients and optical properties of La/sub 2-//sub x/Sr/sub x/CuO4 single-crystal thin films

    International Nuclear Information System (INIS)

    Suzuki, M.

    1989-01-01

    The low-field Hall coefficient R/sub H/, optical reflectance and transmittance of the La/sub 2-//sub x/Sr/sub x/CuO 4 system with various Sr concentrations from x = 0 to 0.36 are systematically studied using single-crystal thin films epitaxially grown on (100) face SrTiO 3 substrates with the c axis normal to the film surface. For the x range measured, R/sub H/ is positive and decreases more rapidly than that expected from the Sr concentration but more slowly than reported earlier for polycrystalline specimens, indicating anisotropy of R/sub H/. Furthermore, the x dependence indicates deviation from that expected from a simple band model. Within the superconducting composition range, R/sub H/ exhibits characteristic temperature dependence. The optical reflectance spectrum changes from that of a semiconductor at x = 0 to a typical metallic one characterized by the Drude model for x>0.1, indicating the development of itinerant holes in the Cu-O planes. In the optical transmission spectra, an anomalous absorption band is seen in addition to the fundamental absorption corresponding to an energy gap of about 2 eV. This band, which develops with Sr doping, implies an enhancement of the density of states near the Fermi level. Taking these observations into account, the normal-state transport properties are explained with a qualitative consistence

  4. Thermoelectric transport in two-dimensional giant Rashba systems

    Science.gov (United States)

    Xiao, Cong; Li, Dingping; Ma, Zhongshui; Niu, Qian

    Thermoelectric transport in strongly spin-orbit coupled two-dimensional Rashba systems is studied using the analytical solution of the linearized Boltzmann equation. To highlight the effects of inter-band scattering, we assume point-like potential impurities, and obtain the band-and energy-dependent transport relaxation times. Unconventional transport behaviors arise when the Fermi level lies near or below the band crossing point (BCP), such as the non-Drude electrical conducivity below the BCP, the failure of the standard Mott relation linking the Peltier coefficient to the electrical conductivity near the BCP, the enhancement of diffusion thermopower and figure of merit below the BCP, the zero-field Hall coefficient which is not inversely proportional to and not a monotonic function of the carrier density, the enhanced Nernst coefficient below the BCP, and the enhanced current-induced spin-polarization efficiency.

  5. Computational studies of novel thermoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Singh, D J; Mazin, I I; Kim, S G; Nordstrom, L

    1997-07-01

    The thermoelectric properties of La-filled skutterdites and {beta}-Zn{sub 4}Sb{sub 3} are discussed from the point of view of their electronic structures. These are calculated from first principles within the local density approximation. The electronic structures are in turn used to determine transport related quantities, {beta}-Zn{sub 4}Sb{sub 3} is found to be metallic with a complex Fermi surface topology, which yields a non-trivial dependence of the Hall concentration on the band filling. Calculations of the variation with band filling are used to extract the carrier concentration from the experimental Hall number. At this band filling, which corresponds to 0.1 electrons per 22 atom unit cell, the authors calculate a Seebeck coefficient and temperature dependence in good agreement with the experimental value. The high Seebeck coefficients in a metallic material are remarkable, and arise because of the strong energy dependence of the Fermiology near the experimental band filling. Virtual crystal calculations for La(Fe,Co){sub 4}Sb{sub 12}. The valence band maximum occurs at the {Gamma} point and is due to a singly degenerate dispersive (Fe,Co)-Sb band, which by itself would not be favorable for TE. However, very flat transition metal derived bands occur in close proximity and become active as the doping level is increased, giving a non-trivial dependence of the properties on carrier concentration and explaining the favorable TE properties.

  6. Universal Majorana thermoelectric noise

    Science.gov (United States)

    Smirnov, Sergey

    2018-04-01

    Thermoelectric phenomena resulting from an interplay between particle flows induced by electric fields and temperature inhomogeneities are extremely insightful as a tool providing substantial knowledge about the microscopic structure of a given system. By tuning, e.g., parameters of a nanoscopic system coupled via tunneling mechanisms to two contacts, one may achieve various situations where the electric current induced by an external bias voltage competes with the electric current excited by the temperature difference of the two contacts. Even more exciting physics emerges when the system's electronic degrees freedom split to form Majorana fermions which make the thermoelectric dynamics universal. Here, we propose revealing these unique universal signatures of Majorana fermions in strongly nonequilibrium quantum dots via noise of the thermoelectric transport beyond linear response. It is demonstrated that whereas mean thermoelectric quantities are only universal at large-bias voltages, the noise of the electric current excited by an external bias voltage and the temperature difference of the contacts is universal at any bias voltage. We provide truly universal, i.e., independent of the system's parameters, thermoelectric ratios between nonlinear response coefficients of the noise and mean current at large-bias voltages where experiments may easily be performed to uniquely detect these truly universal Majorana thermoelectric signatures.

  7. Fine Art of Thermoelectricity.

    Science.gov (United States)

    Brus, Viktor V; Gluba, Marc; Rappich, Jörg; Lang, Felix; Maryanchuk, Pavlo D; Nickel, Norbert H

    2018-02-07

    A detailed study of hitherto unknown electrical and thermoelectric properties of graphite pencil traces on paper was carried out by measuring the Hall and Seebeck effects. We show that the combination of pencil-drawn graphite and brush-painted poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) films on regular office paper results in extremely simple, low-cost, and environmentally friendly thermoelectric power generators with promising output characteristics at low-temperature gradients. The working characteristics can be improved even further by incorporating n-type InSe flakes. The combination of pencil-drawn n-InSe:graphite nanocomposites and brush-painted PEDOT:PSS increases the power output by 1 order of magnitude.

  8. Thermoelectric properties control due to doping level and sintering conditions for FGM thermoelectric element

    CERN Document Server

    Kajikawa, T; Shiraishi, K; Ohmori, M; Hirai, T

    1999-01-01

    Thermoelectric performance is determined with three factors, namely, Seebeck coefficient, electrical resistivity and thermal conductivity. For metal and single crystalline semiconductor, those factors have close interrelation each $9 other. However, as the sintered thermoelectric element has various levels of superstructure from macro scale and micro scale in terms of the thermoelectric mechanism, the relationship among them is more complex than that for the $9 melt- grown element, so it is suggested that the control of the temperature dependence of thermoelectric properties is possible to enhance the thermoelectric performance for wide temperature range due to FGM approach. The research $9 objective is to investigate the characteristics of the thermoelectric properties for various doping levels and hot-pressed conditions to make the thermoelectric elements for which the temperature dependence of the performance is $9 controlled due to FGM approach varying the doping levels and sintering conditions. By usage ...

  9. Thermoelectric behavior of conducting polymers: On the possibility of off-diagonal thermoelectricity

    Energy Technology Data Exchange (ETDEWEB)

    Mateeva, N; Niculescu, H; Schlenoff, J; Testardi, L

    1997-07-01

    Non-cubic materials, when structurally aligned, possess sufficient anisotropy to exhibit thermoelectric effects where the electrical and thermal currents are orthogonal (off-diagonal thermoelectricity). The authors discuss the benefits of this form of thermoelectricity for devices and describe a search for suitable properties in the air-stable conducting polymers polyaniline and polypyrrole. They find the simple and general correlation that the logarithm of the electrical conductivity scales linearly with the Seebeck coefficient on doping but with proportionality in excess of the conventional prediction for thermoelectricity. The correlation is unexpected in its universality and unfavorable for thermoelectric applications. A simple model suggests that mobile charges of both signs exist in these polymers, and this leads to reduced thermoelectric efficiency. They also briefly discuss non air-stable polyacetylene, where ambipolar transport does not appear to occur, and where properties seem more favorable for thermoelectricity.

  10. Nanostructured silicon for thermoelectric

    Science.gov (United States)

    Stranz, A.; Kähler, J.; Waag, A.; Peiner, E.

    2011-06-01

    Thermoelectric modules convert thermal energy into electrical energy and vice versa. At present bismuth telluride is the most widely commercial used material for thermoelectric energy conversion. There are many applications where bismuth telluride modules are installed, mainly for refrigeration. However, bismuth telluride as material for energy generation in large scale has some disadvantages. Its availability is limited, it is hot stable at higher temperatures (>250°C) and manufacturing cost is relatively high. An alternative material for energy conversion in the future could be silicon. The technological processing of silicon is well advanced due to the rapid development of microelectronics in recent years. Silicon is largely available and environmentally friendly. The operating temperature of silicon thermoelectric generators can be much higher than of bismuth telluride. Today silicon is rarely used as a thermoelectric material because of its high thermal conductivity. In order to use silicon as an efficient thermoelectric material, it is necessary to reduce its thermal conductivity, while maintaining high electrical conductivity and high Seebeck coefficient. This can be done by nanostructuring into arrays of pillars. Fabrication of silicon pillars using ICP-cryogenic dry etching (Inductive Coupled Plasma) will be described. Their uniform height of the pillars allows simultaneous connecting of all pillars of an array. The pillars have diameters down to 180 nm and their height was selected between 1 micron and 10 microns. Measurement of electrical resistance of single silicon pillars will be presented which is done in a scanning electron microscope (SEM) equipped with nanomanipulators. Furthermore, measurement of thermal conductivity of single pillars with different diameters using the 3ω method will be shown.

  11. Hall A

    Data.gov (United States)

    Federal Laboratory Consortium — The instrumentation in Hall A at the Thomas Jefferson National Accelerator Facility was designed to study electroand photo-induced reactions at very high luminosity...

  12. Hall C

    Data.gov (United States)

    Federal Laboratory Consortium — Hall C's initial complement of equipment (shown in the figure), includes two general-purpose magnetic spectrometers. The High Momentum Spectrometer (HMS) has a large...

  13. Material parameters for thermoelectric performance

    Indian Academy of Sciences (India)

    The thermoelectric performance of a thermoelement is ideally defined in terms of the so-called figure-of-merit = 2 / , where , and refer respectively to the Seebeck coefficient, electrical conductivity and thermal conductivity of the thermoelement material. However, there are other parameters which are fairly good ...

  14. General Approach for Composite Thermoelectric Systems with Thermal Coupling: The Case of a Dual Thermoelectric Cooler

    Directory of Open Access Journals (Sweden)

    Cuautli Yanehowi Flores-Niño

    2015-06-01

    Full Text Available In this work, we show a general approach for inhomogeneous composite thermoelectric systems, and as an illustrative case, we consider a dual thermoelectric cooler. This composite cooler consists of two thermoelectric modules (TEMs connected thermally in parallel and electrically in series. Each TEM has different thermoelectric (TE properties, namely thermal conductance, electrical resistance and the Seebeck coefficient. The system is coupled by thermal conductances to heat reservoirs. The proposed approach consists of derivation of the dimensionless thermoelectric properties for the whole system. Thus, we obtain an equivalent figure of merit whose impact and meaning is discussed. We make use of dimensionless equations to study the impact of the thermal conductance matching on the cooling capacity and the coefficient of the performance of the system. The equivalent thermoelectric properties derived with our formalism include the external conductances and all intrinsic thermoelectric properties of each component of the system. Our proposed approach permits us changing the thermoelectric parameters of the TEMs and the working conditions of the composite system. Furthermore, our analysis shows the effect of the number of thermocouples on the system. These considerations are very useful for the design of thermoelectric composite systems. We reproduce the qualitative behavior of a commercial composite TEM connected electrically in series.

  15. semiconducting nanostructures: morphology and thermoelectric properties

    Science.gov (United States)

    Culebras, Mario; Torán, Raquel; Gómez, Clara M.; Cantarero, Andrés

    2014-08-01

    Semiconducting metallic oxides, especially perosvkite materials, are great candidates for thermoelectric applications due to several advantages over traditionally metallic alloys such as low production costs and high chemical stability at high temperatures. Nanostructuration can be the key to develop highly efficient thermoelectric materials. In this work, La 1- x Ca x MnO 3 perosvkite nanostructures with Ca as a dopant have been synthesized by the hydrothermal method to be used in thermoelectric applications at room temperature. Several heat treatments have been made in all samples, leading to a change in their morphology and thermoelectric properties. The best thermoelectric efficiency has been obtained for a Ca content of x=0.5. The electrical conductivity and Seebeck coefficient are strongly related to the calcium content.

  16. Effects of Mev Si Ions and Thermal Annealing on Thermoelectric and Optical Properties of SiO2/SiO2+Ge Multi-nanolayer thin Films

    Science.gov (United States)

    Budak, S.; Alim, M. A.; Bhattacharjee, S.; Muntele, C.

    Thermoelectric generator devices have been prepared from 200 alternating layers of SiO2/SiO2+Ge superlattice films using DC/RF magnetron sputtering. The 5 MeV Si ionsbombardmenthasbeen performed using the AAMU Pelletron ion beam accelerator to formquantum dots and / or quantum clusters in the multi-layer superlattice thin films to decrease the cross-plane thermal conductivity, increase the cross-plane Seebeck coefficient and increase the cross-plane electrical conductivity to increase the figure of merit, ZT. The fabricated devices have been annealed at the different temperatures to tailor the thermoelectric and optical properties of the superlattice thin film systems. While the temperature increased, the Seebeck coefficient continued to increase and reached the maximum value of -25 μV/K at the fluenceof 5x1013 ions/cm2. The decrease in resistivity has been seen between the fluence of 1x1013 ions/cm2 and 5x1013 ions/cm2. Transport properties like Hall coefficient, density and mobility did not change at all fluences. Impedance spectroscopy has been used to characterize the multi-junction thermoelectric devices. The loci obtained in the C*-plane for these data indicate non-Debye type relaxation displaying the presence of the depression parameter.

  17. Thermoelectric Materials

    Science.gov (United States)

    Gao, Peng; Berkun, Isil; Schmidt, Robert D.; Luzenski, Matthew F.; Lu, Xu; Bordon Sarac, Patricia; Case, Eldon D.; Hogan, Timothy P.

    2014-06-01

    Mg2(Si,Sn) compounds are promising candidate low-cost, lightweight, nontoxic thermoelectric materials made from abundant elements and are suited for power generation applications in the intermediate temperature range of 600 K to 800 K. Knowledge on the transport and mechanical properties of Mg2(Si,Sn) compounds is essential to the design of Mg2(Si,Sn)-based thermoelectric devices. In this work, such materials were synthesized using the molten-salt sealing method and were powder processed, followed by pulsed electric sintering densification. A set of Mg2.08Si0.4- x Sn0.6Sb x (0 ≤ x ≤ 0.072) compounds were investigated, and a peak ZT of 1.50 was obtained at 716 K in Mg2.08Si0.364Sn0.6Sb0.036. The high ZT is attributed to a high electrical conductivity in these samples, possibly caused by a magnesium deficiency in the final product. The mechanical response of the material to stresses is a function of the elastic moduli. The temperature-dependent Young's modulus, shear modulus, bulk modulus, Poisson's ratio, acoustic wave speeds, and acoustic Debye temperature of the undoped Mg2(Si,Sn) compounds were measured using resonant ultrasound spectroscopy from 295 K to 603 K. In addition, the hardness and fracture toughness were measured at room temperature.

  18. Thermoelectric Energy Conversion: Materials, Devices, and Systems

    International Nuclear Information System (INIS)

    Chen, Gang

    2015-01-01

    This paper will present a discussion of challenges, progresses, and opportunities in thermoelectric energy conversion technology. We will start with an introduction to thermoelectric technology, followed by discussing advances in thermoelectric materials, devices, and systems. Thermoelectric energy conversion exploits the Seebeck effect to convert thermal energy into electricity, or the Peltier effect for heat pumping applications. Thermoelectric devices are scalable, capable of generating power from nano Watts to mega Watts. One key issue is to improve materials thermoelectric figure- of-merit that is linearly proportional to the Seebeck coefficient, the square of the electrical conductivity, and inversely proportional to the thermal conductivity. Improving the figure-of-merit requires good understanding of electron and phonon transport as their properties are often contradictory in trends. Over the past decade, excellent progresses have been made in the understanding of electron and phonon transport in thermoelectric materials, and in improving existing and identify new materials, especially by exploring nanoscale size effects. Taking materials to real world applications, however, faces more challenges in terms of materials stability, device fabrication, thermal management and system design. Progresses and lessons learnt from our effort in fabricating thermoelectric devices will be discussed. We have demonstrated device thermal-to-electrical energy conversion efficiency ∼10% and solar-thermoelectric generator efficiency at 4.6% without optical concentration of sunlight (Figure 1) and ∼8-9% efficiency with optical concentration. Great opportunities exist in advancing materials as well as in using existing materials for energy efficiency improvements and renewable energy utilization, as well as mobile applications. (paper)

  19. Dynamic thermoelectricity in uniform bipolar semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Volovichev, I.N., E-mail: vin@ire.kharkov.ua

    2016-07-01

    The theory of the dynamic thermoelectric effect has been developed. The effect lies in an electric current flowing in a closed circuit that consists of a uniform bipolar semiconductor, in which a non-uniform temperature distribution in the form of the traveling wave is created. The calculations are performed for the one-dimensional model in the quasi-neutrality approximation. It was shown that the direct thermoelectric current prevails, despite the periodicity of the thermal excitation, the circuit homogeneity and the lack of rectifier properties of the semiconductor system. Several physical reasons underlining the dynamic thermoelectric effect are found. One of them is similar to the Dember photoelectric effect, its contribution to the current flowing is determined by the difference in the electron and hole mobilities, and is completely independent of the carrier Seebeck coefficients. The dependence of the thermoelectric short circuit current magnitude on the semiconductor parameters, as well as on the temperature wave amplitude, length and velocity is studied. It is shown that the magnitude of the thermoelectric current is proportional to the square of the temperature wave amplitude. The dependence of the thermoelectric short circuit current on the temperature wave length and velocity is the nonmonotonic function. The optimum values for the temperature wave length and velocity, at which the dynamic thermoelectric effect is the greatest, have been deduced. It is found that the thermoelectric short circuit current changes its direction with decreasing the temperature wave length under certain conditions. The prospects for the possible applications of the dynamic thermoelectric effect are also discussed.

  20. Thermoelectric generator

    International Nuclear Information System (INIS)

    Purdy, D.L.

    1978-01-01

    The main components of a thermoelectric generator are housed in an evacuated cylindrical vessel. In the middle of it there is the radioactive heat source, e.g. 90 Sr or 238 Pu, enclosed by a gamma radiation shield. This one is surrounded by a heat-insulating screen from getter material or indicidual sheets of titanium. In the bottom of the screen there are arranged several thermocouples on a circle. The thermocouples themselves are contained within casings sealed gas-tight and filled with an inert gas, e.g. argon. By separating the internal space of the generator vessel from the thermocouple casings, made of e.g. n- respectively p-doped lead telluride cylinders, for both the optimal gas state may be obtained. (DG) [de

  1. Effect of quantum confinement on thermoelectric properties of vanadium dioxide nanofilms

    Energy Technology Data Exchange (ETDEWEB)

    Khan, G.R.; Ahmad, Bilal [National Institute of Technology Srinagar, Nanotech Research Lab, Department of Physics, Kashmir (India)

    2017-12-15

    The quantum confinement effect on thermoelectric properties of pristine vanadium dioxide (VO{sub 2}) nanofilms across semiconductor to metal phase transition (SMT) has been demonstrated by studying VO{sub 2} nanofilms of 15 nm thickness in comparison to microfilms of 290 nm thickness synthesized via inorganic sol-gel method casted on glass substrates by spin coating technique. The ebbing of phase transition temperature in nanofilms across SMT was consistent with the results obtained from resistance-temperature hysteresis contour during SMT dynamics of the nanofilms. The temperature dependent Hall and Seebeck measurements revealed that electrons were the charge carriers in the nanofilms and that the value of charge carrier concentration increased as much as 4 orders of magnitude while going across SMT which stood responsible almost entirely for resistance variations. The decline in carrier mobility and escalation in Seebeck coefficient in the low temperature semiconducting region were splendidly witnessed across SMT. (orig.)

  2. Thermoelectric effects in a rectangular Aharonov-Bohm geometry

    Science.gov (United States)

    Pye, A. J.; Faux, D. A.; Kearney, M. J.

    2016-04-01

    The thermoelectric transport properties of a rectangular Aharonov-Bohm ring at low temperature are investigated using a theoretical approach based on Green's functions. The oscillations in the transmission coefficient as the field is varied can be used to tune the thermoelectric response of the ring. Large magnitude thermopowers are obtainable which, in conjunction with low conductance, can result in a high thermoelectric figure of merit. The effects of single site impurities and more general Anderson disorder are considered explicitly in the context of evaluating their effect on the Fano-type resonances in the transmission coefficient. Importantly, it is shown that even for moderate levels of disorder, the thermoelectric figure of merit can remain significant, increasing the appeal of such structures from the perspective of specialist thermoelectric applications.

  3. Intermolecular thermoelectric-like effects in molecular nano electronic systems

    International Nuclear Information System (INIS)

    Sabzyan, H.; Safari, R.

    2012-01-01

    Intramolecular thermoelectric-like coefficients are introduced and computed of a single molecule nano electronic system. Values of the electronic Intramolecular thermoelectric-like coefficients are calculated based on the density and energy transfers between different parts of the molecule using quantum theory of atoms in molecule. Since, Joule and Peltier heating are even (symmetrical) and odd (antisymmetric) functions of the external bias, it is possible to divide Intramolecular thermoelectric-like coefficients into two components, symmetrical and antisymmetrical Intramolecular thermoelectric-like coefficients, which describe the intramolecular Joule-like and Peltier-like effects, respectively. In addition, a semiclassical temperature model is presented to describe intramolecular temperature mapping (intramolecular energy distributions) in molecular nano electronic systems.

  4. Experimental halls workshop summary

    International Nuclear Information System (INIS)

    Thorndike, A.

    1976-01-01

    A brief discussion is given of: (1) pros and cons of open areas as compared with enclosed halls; (2) experimental hall needs of ep, anti p p, and other options; (3) hall for the lepton detector; and, (4) hall for the hadron spectrometer

  5. Experimental halls workshop summary

    International Nuclear Information System (INIS)

    Thorndike, A.

    1976-01-01

    On May 26 and 27, 1976, approximately 50 people met for an informal workshop on plans for experimental halls for ISABELLE. Plans as they exist in the May 1976 version of the ISABELLE proposal were presented. Discussions were held on the following four general topics by separate working groups: (1) pros and cons of open areas as compared with enclosed halls; (2) experimental hall needs of ep, anti pp, and other options; (3) hall for the lepton detector; and (4) hall for the hadron spectrometer. The planning for experimental halls at PEP, the hall for the lepton detector, the hadron spectrometer, and open areas are discussed

  6. Experimental halls workshop summary

    International Nuclear Information System (INIS)

    Thorndike, A.

    1976-01-01

    At the experimental halls workshop, discussions were held on: (1) open areas as compared with enclosed halls; (2) the needs of ep, anti pp, and other options; (3) the hall for the lepton detector; and (4) the hall for the hadron spectrometer. The value of different possibilities for the future experimental program was explored. A number of suggestions emerged which will be used as the design of the experimental halls progresses

  7. Contribution of the study of the Hall Effect. Hall Effect of powder products

    International Nuclear Information System (INIS)

    Cherville, Jean

    1961-01-01

    This research thesis reports the development of an apparatus aimed at measuring the Hall Effect and the magneto-resistance of powders at room temperature and at the liquid nitrogen temperature. The author also proposes a theoretical contribution to the Hall Effect and reports the calculation of conditions to be met to obtain a correct value for the Hall constant. Results are experimentally verified. The method is then applied to the study of a set of powdered pre-graphitic graphites. The author shows that their Hall coefficient confirms the model already proposed by Mrozowski. The study of the Hall Effect of any kind of powders can thus be performed, and the Hall Effect can therefore be a mean to study mineral and organic compounds, and notably powdered biological molecules [fr

  8. Nanoscale thermoelectric materials

    International Nuclear Information System (INIS)

    Failamani, F.

    2015-01-01

    Thermoelectric (TE) materials directly convert thermal energy to electrical energy when subjected to a temperature gradient, whereas if electricity is applied to thermoelectric materials, a temperature gradient is formed. The performance of thermoelectric materials is characterized by a dimensionless figure of merit (ZT = S2T/ρλ), which consists of three parameters, Seebeck coefficient (S), electrical resistivity (ρ) and thermal conductivity (λ). To achieve good performance of thermoelectric power generation and cooling, ZT's of thermoelectric materials must be as high as possible, preferably above unity. This thesis comprises three main parts, which are distributed into six chapters: (i) nanostructuring to improve TE performance of trivalent rare earth-filled skutterudites (chapter 1 and 2), (ii) interactions of skutterudite thermolectrics with group V metals as potential electrode or diffusion barrier for TE devices (chapter 3 and 4), and (iii) search for new materials for TE application (chapter 5 and 6). Addition of secondary phases, especially nano sized phases can cause additional reduction of the thermal conductivity of a filled skutterudite which improves the figure of merit (ZT) of thermoelectric materials. In chapter 1 we investigated the effect of various types of secondary phases (silicides, borides, etc.) on the TE properties of trivalent rare earth filled Sb-based skutterudites as commercially potential TE materials. In this context the possibilty to introduce borides as nano-particles (via ball-milling in terms of a skutterudite/boride composite) is also elucidated in chapter 2. As a preliminary study, crystal structure of novel high temperature FeB-type phases found in the ternary Ta-{Ti,Zr,Hf,}-B systems were investigated. In case of Ti and Hf this phase is the high temperature stabilization of binary group IV metal monoborides, whereas single crystal study of (Ta,Zr)B proves that it is a true ternary phase as no stable monoboride exist in the

  9. Thermoelectric materials having porosity

    Science.gov (United States)

    Heremans, Joseph P.; Jaworski, Christopher M.; Jovovic, Vladimir; Harris, Fred

    2014-08-05

    A thermoelectric material and a method of making a thermoelectric material are provided. In certain embodiments, the thermoelectric material comprises at least 10 volume percent porosity. In some embodiments, the thermoelectric material has a zT greater than about 1.2 at a temperature of about 375 K. In some embodiments, the thermoelectric material comprises a topological thermoelectric material. In some embodiments, the thermoelectric material comprises a general composition of (Bi.sub.1-xSb.sub.x).sub.u(Te.sub.1-ySe.sub.y).sub.w, wherein 0.ltoreq.x.ltoreq.1, 0.ltoreq.y.ltoreq.1, 1.8.ltoreq.u.ltoreq.2.2, 2.8.ltoreq.w.ltoreq.3.2. In further embodiments, the thermoelectric material includes a compound having at least one group IV element and at least one group VI element. In certain embodiments, the method includes providing a powder comprising a thermoelectric composition, pressing the powder, and sintering the powder to form the thermoelectric material.

  10. Thermoelectric performance of co-doped SnTe with resonant levels

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Min; Han, Yemao; Li, Laifeng, E-mail: laifengli@mail.ipc.ac.cn, E-mail: wangheng83@gmail.com [Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Gibbs, Zachary M. [Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd. Pasadena, California 91125 (United States); Wang, Heng, E-mail: laifengli@mail.ipc.ac.cn, E-mail: wangheng83@gmail.com [Materials Science, California Institute of Technology, 1200 California Blvd., Pasadena, California 91125 (United States); Snyder, G. Jeffrey [Materials Science, California Institute of Technology, 1200 California Blvd., Pasadena, California 91125 (United States); TMO University, Saint Petersburg 197101 (Russian Federation)

    2016-07-25

    Some group III elements such as Indium are known to produce the resonant impurity states in IV-VI compounds. The discovery of these impurity states has opened up new ways for engineering the thermoelectric properties of IV-VI compounds. In this work, resonant states in SnTe were studied by co-doping with both resonant (In) and extrinsic (Ag, I) dopants. A characteristic nonlinear relationship was observed between the Hall carrier concentration (n{sub H}) and extrinsic dopant concentration (N{sub I}, N{sub Ag}) in the stabilization region, where a linear increase of dopant concentration does not lead to linear response in the measured n{sub H}. Upon substituting extrinsic dopants beyond a certain amount, the n{sub H} changed proportionally with additional dopants (Ag, I) (the doping region). The Seebeck coefficients are enhanced as the resonant impurity is introduced, whereas the use of extrinsic doping only induces minor changes. Modest zT enhancements are observed at lower temperatures, which lead to an increase in the average zT values over a broad range of temperatures (300–773 K). The improved average zT obtained through co-doping indicates the promise of fine carrier density control in maximizing the favorable effect of resonant levels for thermoelectric materials.

  11. Mechanical Response of Thermoelectric Materials

    Energy Technology Data Exchange (ETDEWEB)

    Wereszczak, Andrew A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Case, Eldon D. [Michigan State Univ., East Lansing, MI (United States)

    2015-05-01

    A sufficient mechanical response of thermoelectric materials (TEMats) to structural loadings is a prerequisite to the exploitation of any candidate TEMat's thermoelectric efficiency. If a TEMat is mechanically damaged or cracks from service-induced stresses, then its thermal and electrical functions can be compromised or even cease. Semiconductor TEMats tend to be quite brittle and have a high coefficient of thermal expansion; therefore, they can be quite susceptible to mechanical failure when subjected to operational thermal gradients. Because of this, sufficient mechanical response (vis-a-vis, mechanical properties) of any candidate TEMat must be achieved and sustained in the context of the service-induced stress state to which it is subjected. This report provides an overview of the mechanical responses of state-of-the-art TEMats; discusses the relevant properties that are associated with those responses and their measurement; and describes important, nonequilibrium phenomena that further complicate their use in thermoelectric devices. For reference purposes, the report also includes several appendixes that list published data on elastic properties and strengths of a variety of TEMats.

  12. Thermoelectrics and its energy harvesting

    National Research Council Canada - National Science Library

    Rowe, David Michael

    2012-01-01

    .... It details the latest techniques for the preparation of thermoelectric materials employed in energy harvesting, together with advances in the thermoelectric characterisation of nanoscale material...

  13. Introduction to thermoelectricity

    CERN Document Server

    Goldsmid, H Julian

    2010-01-01

    Introduction to Thermoelectricity is the latest work by Professor Julian Goldsmid drawing on his 55 years experience in the field. The theory of the thermoelectric and related phenomena is presented in sufficient detail to enable researchers to understand their observations and develop improved thermoelectric materials. The methods for the selection of materials and their improvement are discussed. Thermoelectric materials for use in refrigeration and electrical generation are reviewed. Experimental techniques for the measurement of properties and for the production of thermoelements are described. Special emphasis is placed on nanotechnology which promises to yield great improvements in the efficiency of thermoelectric devices. Chapters are also devoted to transverse thermoelectric effects and thermionic energy conversion, both techniques offering the promise of important applications in the future.

  14. High Temperature Integrated Thermoelectric Ststem and Materials

    Energy Technology Data Exchange (ETDEWEB)

    Mike S. H. Chu

    2011-06-06

    The final goal of this project is to produce, by the end of Phase II, an all ceramic high temperature thermoelectric module. Such a module design integrates oxide ceramic n-type, oxide ceramic p-type materials as thermoelectric legs and oxide ceramic conductive material as metalizing connection between n-type and p-type legs. The benefits of this all ceramic module are that it can function at higher temperatures (> 700 C), it is mechanically and functionally more reliable and it can be scaled up to production at lower cost. With this all ceramic module, millions of dollars in savings or in new opportunities recovering waste heat from high temperature processes could be made available. A very attractive application will be to convert exhaust heat from a vehicle to reusable electric energy by a thermoelectric generator (TEG). Phase I activities were focused on evaluating potential n-type and p-type oxide compositions as the thermoelectric legs. More than 40 oxide ceramic powder compositions were made and studied in the laboratory. The compositions were divided into 6 groups representing different material systems. Basic ceramic properties and thermoelectric properties of discs sintered from these powders were measured. Powders with different particles sizes were made to evaluate the effects of particle size reduction on thermoelectric properties. Several powders were submitted to a leading thermoelectric company for complete thermoelectric evaluation. Initial evaluation showed that when samples were sintered by conventional method, they had reasonable values of Seebeck coefficient but very low values of electrical conductivity. Therefore, their power factors (PF) and figure of merits (ZT) were too low to be useful for high temperature thermoelectric applications. An unconventional sintering method, Spark Plasma Sintering (SPS) was determined to produce better thermoelectric properties. Particle size reduction of powders also was found to have some positive benefits

  15. Anomalous Pd substitution effects in the thermoelectric oxide NaCo sub 2 sub - sub x Pd sub x O sub 4

    CERN Document Server

    Kitawaki, R

    2002-01-01

    We prepared a set of polycrystalline samples of the thermoelectric oxide NaCo sub 2 sub - sub x Pd sub x O sub 4 (x = 0, 0.05, 0.1, and 0.2), and investigated the Pd substitution effects on transport phenomena. The effects are so drastic that just 5-10% Pd ions reduce the resistivity and the Seebeck coefficient to one third of the values for x = 0, and increase the magnitude of the Hall coefficient by three times. A semi-quantitative analysis has revealed that the x = 0.2 sample has much smaller effective mass and carrier concentration than the x = 0.05 sample. This is difficult to explain within a rigid-band picture, and is qualitatively consistent with a strong-correlation picture applied to the Ce-based heavy-fermion systems.

  16. Holistic quantum design of thermoelectric niobium oxynitride

    Science.gov (United States)

    Music, Denis; Bliem, Pascal; Hans, Marcus

    2015-06-01

    We have applied holistic quantum design to thermoelectric NbON (space group Pm-3m). Even though transport properties are central in designing efficient thermoelectrics, mechanical properties should also be considered to minimize their thermal fatigue during multiple heating/cooling cycles. Using density functional theory, elastic constants of NbON were predicted and validated by nanoindentation measurements on reactively sputtered thin films. Based on large bulk-to-shear modulus ratio and positive Cauchy pressure, ceramic NbON appears ductile. These unusual properties may be understood by analyzing the electronic structure. Nb-O bonding is of covalent-ionic nature with metallic contributions. Second neighbor O-N bonds exhibit covalent-ionic character. Upon shear loading, these O-N bonds break giving rise to easily shearable planes. Ductile NbON, together with large Seebeck coefficient and low thermal expansion, is promising for thermoelectric applications.

  17. Synthesis and evaluation of lead telluride/bismuth antimony telluride nanocomposites for thermoelectric applications

    International Nuclear Information System (INIS)

    Ganguly, Shreyashi; Zhou Chen; Morelli, Donald; Sakamoto, Jeffrey; Uher, Ctirad; Brock, Stephanie L.

    2011-01-01

    Heterogeneous nanocomposites of p-type bismuth antimony telluride (Bi 2−x Sb x Te 3 ) with lead telluride (PbTe) nanoinclusions have been prepared by an incipient wetness impregnation approach. The Seebeck coefficient, electrical resistivity, thermal conductivity and Hall coefficient were measured from 80 to 380 K in order to investigate the influence of PbTe nanoparticles on the thermoelectric performance of nanocomposites. The Seebeck coefficients and electrical resistivities of nanocomposites decrease with increasing PbTe nanoparticle concentration due to an increased hole concentration. The lattice thermal conductivity decreases with the addition of PbTe nanoparticles but the total thermal conductivity increases due to the increased electronic thermal conductivity. We conclude that the presence of nanosized PbTe in the bulk Bi 2−x Sb x Te 3 matrix results in a collateral doping effect, which dominates transport properties. This study underscores the need for immiscible systems to achieve the decreased thermal transport properties possible from nanostructuring without compromising the electronic properties. - Graphical abstract: PbTe nanoparticles introduced into p-type Bi 2 Te 3 by incipient wetness results in decreased lattice thermal conductivity, but also acts as an electronic dopant, resulting in an overall decrease in thermoelectric performance. Highlights: ► Composites of PbTe nanoparticles in Bi 2−x Sb x Te 3 were formed by incipient wetness. ► PbTe nanoparticles leads to decreased κ l , consistent with phonon scattering. ► PbTe nanoparticles lead to decreased S and ρ, due to increased carriers. ► Collateral doping from PbTe leads to decreased ZT with increasing concentration. ► Immiscible systems are preferred for improved ZT.

  18. The system of thermoelectric air conditioning based on permeable thermoelements

    Directory of Open Access Journals (Sweden)

    Cherkez R. G.

    2009-04-01

    Full Text Available There is thermoelectric air conditioner unit on the basis of permeable cooling thermoelements presented. In thermoelectric air conditioner unit the thermoelectric effects and the Joule–Thomson effect have been used for the air stream cooling. There have been described the method of temperature distribution analysis, the determinations of energy conversion power characteristics and design style of permeable thermoelement with maximum coefficient of performance described. The results of computer analysis concerning the application of the thermoelement legs material on the basis of Bi2Te3 have shown the possibility of coefficient of performance increase by a factor of 1,6—1,7 as compared with conventional thermoelectric systems.

  19. Augmentation of thermoelectric performance of VO2 thin films irradiated by 200 MeV Ag9+-ions

    International Nuclear Information System (INIS)

    Khan, G.R.; Kandasami, A.; Bhat, B.A.

    2016-01-01

    Swift Heavy Ion (SHI) irradiation with 200 MeV Ag 9+ -ion beam at ion fluences of 1E11, 5E11, 1E12, and 5E12 for tuning of electrical transport properties of VO 2 thin films fabricated by so–gel technique on alumina substrates has been demonstrated in the present paper. The point defects created by SHI irradiation modulate metal to insulator phase transition temperature, carrier concentration, carrier mobility, electrical conductivity, and Seebeck coefficient of VO 2 thin films. The structural properties of the films were characterized by XRD and Raman spectroscopy and crystallite size was found to decrease upon irradiation. The atomic force microscopy revealed that the surface roughness of specimens first decreased and then increased with increasing fluence. Both resistance as well as Seebeck coefficient measurements demonstrated that all the samples exhibit metal–insulator phase transition and the transition temperatures decreases with increasing fluence. Hall effect measurements exhibited that carrier concentration increased continuously with increasing fluence which resulted in an increase of electrical conductivity by several orders of magnitude in the insulating phase. Seebeck coefficient in insulating phase remained almost constant in spite of an increase in the electrical conductivity by several orders of magnitude making SHI irradiation an alternative stratagem for augmentation of thermoelectric performance of the materials. The carrier mobility at room temperature decreased up to the beam fluence of 5E11 and then started increasing whereas Seebeck coefficient in metallic state first increased with increasing ion beam fluence up to 5E11 and thereafter decreased. Variation of these electrical transport parameters has been explained in detail. - Highlights: • Thermoelectric properties of VO 2 thin films enhance upon SHI irradiation. • Structural properties show that crystallite size decrease upon SHI irradiation. • Metal–insulator phase

  20. Systems and methods for the synthesis of high thermoelectric performance doped-SnTe materials

    Science.gov (United States)

    Ren, Zhifeng; Zhang, Qian; Chen, Gang

    2018-02-27

    A thermoelectric composition comprising tin (Sn), tellurium (Te) and at least one dopant that comprises a peak dimensionless figure of merit (ZT) of 1.1 and a Seebeck coefficient of at least 50 .mu.V/K and a method of manufacturing the thermoelectric composition. A plurality of components are disposed in a ball-milling vessel, wherein the plurality of components comprise tin (Sn), tellurium (Te), and at least one dopant such as indium (In). The components are subsequently mechanically and thermally processed, for example, by hot-pressing. In response to the mechanical-thermally processing, a thermoelectric composition is formed, wherein the thermoelectric composition comprises a dimensionless figure of merit (ZT) of the thermoelectric composition is at least 0.8, and wherein a Seebeck coefficient of the thermoelectric composition is at least 50 .mu.V/K at any temperature.

  1. Thermoelectricity: materials and applications

    International Nuclear Information System (INIS)

    Elberg, S.; Mathonnet, P.

    1975-01-01

    After a brief recall of the basic principles of thermoelectricity, the essential characteristics intervening in the different thermoelectric devices operating modes are defined. Properties of the materials the most used nowadays and performances of the apparatus that they allow to realize are indicated. Advantages and drawbacks of the principal applications in the form of electrical generators, refrigerators and heat pumps are pointed out [fr

  2. Modelling of thermoelectric materials

    DEFF Research Database (Denmark)

    Bjerg, Lasse

    In order to discover new good thermoelectric materials, there are essentially two ways. One way is to go to the laboratory, synthesise a new material, and measure the thermoelectric properties. The amount of compounds, which can be investigated this way is limited because the process is time...... consuming. Another approach is to model the thermoelectric properties of a material on a computer. Several crystal structures can be investigated this way without use of much man power. I have chosen the latter approach. Using density functional theory I am able to calculate the band structure of a material....... This band structure I can then use to calculate the thermoelectric properties of the material. With these results I have investigated several materials and found the optimum theoretical doping concentration. If materials with these doping concentrations be synthesised, considerably better thermoelectric...

  3. Low cost thermoelectric module

    Energy Technology Data Exchange (ETDEWEB)

    Kumpeerapun, T.; Hirunlabh, J. [King Mongkut Univ. of Technology, Bangkok (Thailand); Zeghmati, B. [Perpignan Univ., Perpignan (France). Faculty of Sciences; Scherrer, H.; Dauscher, A.; Weber, S.; Jahed, H.M.; Lernoir, B.; Kosalathip, V. [Ecole des Mines, Nancy (France). Laboratoire de Physique des Materiaux; Khedari, J. [South-East Asia Univ., Bangkok (Thailand). Faculty of Engineering

    2006-07-01

    The properties of a bismuth-telluride-antimony (Bi{sub x}Sb{sub 2-8}Te{sub 3}) polycrystalline thermoelectric material prepared using a novel melting and hot pressing process were investigated. The aim of the study was to synthesize the materials without the need for doping. Materials were weighed and placed in a quartz tube, which was sealed under vacuum and heated in a rocking furnace from room temperature to 750 degrees C over a period of 1 hour. Temperatures were maintained at 750 degrees C for a further 2 hours. The sample was then removed from the furnace and suddenly quenched in water. The ingot was then crushed into a powder using an agate mortar and sieved. Samples exhibiting a cylindrical shape were reserved. Samples were then examined using scanning electron microscopy (SEM) to determine their morphology and homogeneity. A sample pellet was then prepared for thermal conductivity measurements at room temperature. the pellet was nickel-plated on both sides and stacked between circular copper disks with thermocouples. Data were collected when the system reached thermal equilibrium. The Seebeck coefficient was measured by applying a small temperature difference. Results showed that the process effectively transformed the base materials into an alloy. It was concluded that the hot pressing successfully synthesized the materials. 6 refs., 1 tab., 6 figs.

  4. Thermoelectric transport in rare-earth compounds

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, Ulrike

    2007-07-01

    This work focuses on the thermoelectric transport in rare-earth compounds. The measurements of the thermal conductivity, thermopower, and Nernst coefficient are supplemented by investigations of other quantities as magnetic susceptibility and specific heat. Chapter 2 provides an introduction to the relevant physical concepts. Section 1 of that chapter summarizes the characteristic properties of rare-earth systems; section 2 gives an overview on thermoelectric transport processes in magnetic fields. The applied experimental techniques as well as the new experimental setup are described in detail in Chapter 3. The experimental results are presented in Chapter 4-6, of which each concentrates on a different subject. In Chapter 4, various Eu clathrates and the skutterudite-like Ce{sub 3}Rh{sub 4}Sn{sub 13} are presented, which have been investigated as potential thermoelectric materials for applications. Chapter 5 focusses on the study of the energy scales in the heavy-fermion series Lu{sub 1-x}Yb{sub x}Rh{sub 2}Si{sub 2} and Ce{sub x}La{sub 1-x}Ni{sub 2}Ge{sub 2} by means of thermopower investigations. Chapter 6 is dedicated to the thermoelectric transport properties of the correlated semimetal CeNiSn with special emphasis on the Nernst coefficient of this compound. (orig.)

  5. Thermoelectric transport in rare-earth compounds

    International Nuclear Information System (INIS)

    Koehler, Ulrike

    2007-01-01

    This work focuses on the thermoelectric transport in rare-earth compounds. The measurements of the thermal conductivity, thermopower, and Nernst coefficient are supplemented by investigations of other quantities as magnetic susceptibility and specific heat. Chapter 2 provides an introduction to the relevant physical concepts. Section 1 of that chapter summarizes the characteristic properties of rare-earth systems; section 2 gives an overview on thermoelectric transport processes in magnetic fields. The applied experimental techniques as well as the new experimental setup are described in detail in Chapter 3. The experimental results are presented in Chapter 4-6, of which each concentrates on a different subject. In Chapter 4, various Eu clathrates and the skutterudite-like Ce 3 Rh 4 Sn 13 are presented, which have been investigated as potential thermoelectric materials for applications. Chapter 5 focusses on the study of the energy scales in the heavy-fermion series Lu 1-x Yb x Rh 2 Si 2 and Ce x La 1-x Ni 2 Ge 2 by means of thermopower investigations. Chapter 6 is dedicated to the thermoelectric transport properties of the correlated semimetal CeNiSn with special emphasis on the Nernst coefficient of this compound. (orig.)

  6. Synthesis and evaluation of lead telluride/bismuth antimony telluride nanocomposites for thermoelectric applications

    Science.gov (United States)

    Ganguly, Shreyashi; Zhou, Chen; Morelli, Donald; Sakamoto, Jeffrey; Uher, Ctirad; Brock, Stephanie L.

    2011-12-01

    Heterogeneous nanocomposites of p-type bismuth antimony telluride (Bi 2- xSb xTe 3) with lead telluride (PbTe) nanoinclusions have been prepared by an incipient wetness impregnation approach. The Seebeck coefficient, electrical resistivity, thermal conductivity and Hall coefficient were measured from 80 to 380 K in order to investigate the influence of PbTe nanoparticles on the thermoelectric performance of nanocomposites. The Seebeck coefficients and electrical resistivities of nanocomposites decrease with increasing PbTe nanoparticle concentration due to an increased hole concentration. The lattice thermal conductivity decreases with the addition of PbTe nanoparticles but the total thermal conductivity increases due to the increased electronic thermal conductivity. We conclude that the presence of nanosized PbTe in the bulk Bi 2- xSb xTe 3 matrix results in a collateral doping effect, which dominates transport properties. This study underscores the need for immiscible systems to achieve the decreased thermal transport properties possible from nanostructuring without compromising the electronic properties.

  7. Thermoelectric Properties in Fermi Level Tuned Topological Materials (Bi1-xSnx)2Te3

    Science.gov (United States)

    Lin, Chan-Chieh; Shon, Won Hyuk; Rathnam, Lydia; Rhyee, Jong-Soo

    2018-03-01

    We investigated the thermoelectric properties of Sn-doped (Bi1-xSnx)2Te3 (x = 0, 0.1, 0.3, 0.5, and 0.7%) compounds, which is known as topological insulators. Fermi level tuning by Sn-doping can be justified by the n- to p-type transition with increasing Sn-doping concentration, as confirmed by Seebeck coefficient and Hall coefficient. Near x = 0.3 and 0.5%, the Fermi level resides inside the bulk band gap, resulting in a low Seebeck coefficient and increase of electrical resistivity. The magnetoconductivity with applying magnetic field showed weak antilocalization (WAL) effect for pristine Bi2Te3 while Sn-doped compounds do not follow the WAL behavior of magneto-conductivity, implying that the topological surface Dirac band contribution in magneto-conductivity is suppressed with decreasing the Fermi level by Sn-doping. This research can be applied to the topological composite of p-type/n-type topological materials by Fermi level tuning via Sn-doping in Bi2Te3 compounds.

  8. The thermoelectric process

    Energy Technology Data Exchange (ETDEWEB)

    Vining, C B

    1997-07-01

    The efficiency of thermoelectric technology today is limited by the properties of available thermoelectric materials and a wide variety of new approaches to developing better materials have recently been suggested. The key goal is to find a material with a large ZT, the dimensionless thermoelectric figure of merit. However, if an analogy is drawn between thermoelectric technology and gas-cycle engines then selecting different materials for the thermoelements is analogous to selecting a different working gas for the mechanical engine. And an attempt to improve ZT is analogous to an attempt to improve certain thermodynamic properties of the working-gas. An alternative approach is to focus on the thermoelectric process itself (rather than on ZT), which is analogous to considering alternate cycles such as Stirling vs. Brayton vs. Rankine etc., rather than merely considering alternative gases. Focusing on the process is a radically different approach compared to previous studies focusing on ZT. Aspects of the thermoelectric process and alternative approaches to efficient thermoelectric conversion are discussed.

  9. Cryogenic microsize Hall sensors

    International Nuclear Information System (INIS)

    Kvitkovic, J.; Polak, M.

    1993-01-01

    Hall sensors have a variety of applications in magnetic field measurements. The active area of the Hall sensor does not play an important role in measuring of homogeneous magnetic field. Actually Hall sensors are widely used to measure profiles of magnetic fields produced by magnetization currents in samples of HTC superconductors, as well as of LTC ones. Similar techniques are used to measure magnetization of both HTC and LTC superconductors. In these cases Hall sensor operates in highly inhomogeneous magnetic fields. Because of that, Hall sensors with very small active area are required. We developed and tested Hall sensors with active area 100 μm x 100 μm - type M and 50 μm x 50 μm - type V. Here we report on the most imporant parameters of these units, as well as on their properties as differential magnetometer. (orig.)

  10. Skyrmions and Hall viscosity

    Science.gov (United States)

    Kim, Bom Soo

    2018-05-01

    We discuss the contribution of magnetic Skyrmions to the Hall viscosity and propose a simple way to identify it in experiments. The topological Skyrmion charge density has a distinct signature in the electric Hall conductivity that is identified in existing experimental data. In an electrically neutral system, the Skyrmion charge density is directly related to the thermal Hall conductivity. These results are direct consequences of the field theory Ward identities, which relate various physical quantities based on symmetries and have been previously applied to quantum Hall systems.

  11. Magneto-transport and thermoelectric properties of epitaxial FeSb{sub 2} thin film on MgO substrate

    Energy Technology Data Exchange (ETDEWEB)

    Duong, Anh Tuan; Rhim, S. H., E-mail: sonny@ulsan.ac.kr; Shin, Yooleemi; Nguyen, Van Quang; Cho, Sunglae, E-mail: slcho@ulsan.ac.kr [Department of Physics and Energy Harvest-Storage Research Center, University of Ulsan, Ulsan 680-749 (Korea, Republic of)

    2015-01-19

    We report magneto-transport and thermoelectric properties of FeSb{sub 2} thin film epitaxially grown on the MgO substrate using molecular beam epitaxy. The film exhibits compressive strain of 1.74% owing to large lattice mismatch, whose physical consequences are nontrivial. Magnetic phase has been changed from diamagnetic in bulk, as evidenced by anomalous Hall effect (AHE) and negative magneto-resistance (MR). The FeSb{sub 2} film is semiconducting without any metallic transition unlike the bulk counterpart. In particular, hysteresis in MR with distinct feature of AHE is evident with coercive field of 500 and 110 Oe for T = 20 and 50 K, respectively. Furthermore, from the Seebeck coefficients and temperature dependence of the resistivity, it is evident that the film is semiconducting with small band gap: 3.76 meV for T < 40 K and 13.48 meV for T > 40 K, respectively, where maximum thermoelectric power factor of 12 μV/cm·K at T = 50 K.

  12. Solar thermoelectric generator

    Science.gov (United States)

    Toberer, Eric S.; Baranowski, Lauryn L.; Warren, Emily L.

    2016-05-03

    Solar thermoelectric generators (STEGs) are solid state heat engines that generate electricity from concentrated sunlight. A novel detailed balance model for STEGs is provided and applied to both state-of-the-art and idealized materials. STEGs can produce electricity by using sunlight to heat one side of a thermoelectric generator. While concentrated sunlight can be used to achieve extremely high temperatures (and thus improved generator efficiency), the solar absorber also emits a significant amount of black body radiation. This emitted light is the dominant loss mechanism in these generators. In this invention, we propose a solution to this problem that eliminates virtually all of the emitted black body radiation. This enables solar thermoelectric generators to operate at higher efficiency and achieve said efficient with lower levels of optical concentration. The solution is suitable for both single and dual axis solar thermoelectric generators.

  13. Thermoelectric transport in superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Reinecke, T L; Broido, D A

    1997-07-01

    The thermoelectric transport properties of superlattices have been studied using an exact solution of the Boltzmann equation. The role of heat transport along the barrier layers, of carrier tunneling through the barriers, of valley degeneracy and of the well width and energy dependences of the carrier-phonon scattering rates on the thermoelectric figure of merit are given. Calculations are given for Bi{sub 2}Te{sub 3} and for PbTe, and the results of recent experiments are discussed.

  14. Electronic, phononic, and thermoelectric properties of graphyne sheets

    International Nuclear Information System (INIS)

    Sevinçli, Hâldun; Sevik, Cem

    2014-01-01

    Electron, phonon, and thermoelectric transport properties of α-, β-, γ-, and 6,6,12-graphyne sheets are compared and contrasted with those of graphene. α-, β-, and 6,6,12-graphynes, with direction dependent Dirac dispersions, have higher electronic transmittance than graphene. γ-graphyne also attains better electrical conduction than graphene except at its band gap. Vibrationally, graphene conducts heat much more efficiently than graphynes, a behavior beyond an atomic density differences explanation. Seebeck coefficients of the considered Dirac materials are similar but thermoelectric power factors decrease with increasing effective speeds of light. γ-graphyne yields the highest thermoelectric efficiency with a thermoelectric figure of merit as high as ZT = 0.45, almost an order of magnitude higher than that of graphene

  15. Interference enhanced thermoelectricity in quinoid type structures

    Energy Technology Data Exchange (ETDEWEB)

    Strange, M., E-mail: strange@chem.ku.dk; Solomon, G. C. [Nano-Science Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø (Denmark); Seldenthuis, J. S.; Verzijl, C. J. O.; Thijssen, J. M. [Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft (Netherlands)

    2015-02-28

    Quantum interference (QI) effects in molecular junctions may be used to obtain large thermoelectric responses. We study the electrical conductance G and the thermoelectric response of a series of molecules featuring a quinoid core using density functional theory, as well as a semi-empirical interacting model Hamiltonian describing the π-system of the molecule which we treat in the GW approximation. Molecules with a quinoid type structure are shown to have two distinct destructive QI features close to the frontier orbital energies. These manifest themselves as two dips in the transmission, that remain separated, even when either electron donating or withdrawing side groups are added. We find that the position of the dips in the transmission and the frontier molecular levels can be chemically controlled by varying the electron donating or withdrawing character of the side groups as well as the conjugation length inside the molecule. This feature results in a very high thermoelectric power factor S{sup 2}G and figure of merit ZT, where S is the Seebeck coefficient, making quinoid type molecules potential candidates for efficient thermoelectric devices.

  16. Thermoelectric Effects under Adiabatic Conditions

    Directory of Open Access Journals (Sweden)

    George Levy

    2013-10-01

    Full Text Available This paper investigates not fully explained voltage offsets observed by several researchers during the measurement of the Seebeck coefficient of high Z materials. These offsets, traditionally attributed to faulty laboratory procedures, have proven to have an irreducible component that cannot be fully eliminated in spite of careful laboratory procedures. In fact, these offsets are commonly observed and routinely subtracted out of commercially available Seebeck measurement systems. This paper offers a possible explanation based on the spontaneous formation of an adiabatic temperature gradient in the presence of a force field. The diffusion-diffusion heat transport mechanism is formulated and applied to predict two new thermoelectric effects. The first is the existence of a temperature gradient across a potential barrier in a semiconductor and the second is the Onsager reciprocal of the first, that is, the presence of a measureable voltage that arises across a junction when the temperature gradient is forced to zero by a thermal clamp. Suggested future research includes strategies for utilizing the new thermoelectric effects.

  17. Theory of fractional quantum Hall effect

    International Nuclear Information System (INIS)

    Kostadinov, I.Z.

    1984-09-01

    A theory of the fractional quantum Hall effect is constructed by introducing 3-particle interactions breaking the symmetry for ν=1/3 according to a degeneracy theorem proved here. An order parameter is introduced and a gap in the single particle spectrum is found. The critical temperature, critical filling number and critical behaviour are determined as well as the Ginzburg-Landau equation coefficients. A first principle calculation of the Hall current is given. 3, 5, 7 electron tunneling and Josephson interference effects are predicted. (author)

  18. Effect of preparation procedure and nanostructuring on the thermoelectric properties of the lead telluride-based material system AgPb{sub m}BiTe{sub 2+m} (BLST-m)

    Energy Technology Data Exchange (ETDEWEB)

    Falkenbach, Oliver; Koch, Guenter; Schlecht, Sabine [Institute for Inorganic and Analytical Chemistry, Justus-Liebig-University, Heinrich-Buff-Ring 17, D-35392 Giessen (Germany); Schmitz, Andreas [Institute of Materials Research, German Aerospace Center (DLR), D-51170 Cologne (Germany); Hartung, David; Klar, Peter J. [Institute of Experimental Physics I, Justus-Liebig-University, Heinrich-Buff-Ring 16, D-35392 Giessen (Germany); Dankwort, Torben; Kienle, Lorenz [Institute for Material Science, Christian-Albrechts-University, Kaiserstrasse 2, D-24143 Kiel (Germany); Mueller, Eckhard, E-mail: Eckhard.Mueller@dlr.de [Institute for Inorganic and Analytical Chemistry, Justus-Liebig-University, Heinrich-Buff-Ring 17, D-35392 Giessen (Germany); Institute of Materials Research, German Aerospace Center (DLR), D-51170 Cologne (Germany)

    2016-06-07

    We report on the preparation and thermoelectric properties of the quaternary system AgPb{sub m}BiTe{sub 2+m} (Bismuth-Lead-Silver-Tellurium, BLST-m) that were nanostructured by mechanical alloying. Nanopowders of various compositions were compacted by three different methods: cold pressing/annealing, hot pressing, and short term sintering. The products are compared with respect to microstructure and sample density. The thermoelectric properties were measured: thermal conductivity in the temperature range from 300 K to 800 K and electrical conductivity and Seebeck coefficient between 100 K and 800 K. The compacting method and the composition had a substantial impact on carrier concentration and mobility as well as on the thermoelectric parameters. Room temperature Hall measurements yielded carrier concentrations in the order of 10{sup 19 }cm{sup −3}, slightly increasing with increasing content of the additive silver bismuth telluride to the lead telluride base. ZT values close to the ones of bulk samples were achieved. X-ray diffraction and transmission electron microscopy (TEM) showed macroscopically homogeneous distributions of the constituting elements inside the nanopowders ensembles, indicating a solid solution. However, high resolution transmission electron microscopy (HRTEM) revealed disorder on the nanoscale inside individual nanopowders grains.

  19. A note on the electrochemical nature of the thermoelectric power

    Science.gov (United States)

    Apertet, Y.; Ouerdane, H.; Goupil, C.; Lecoeur, Ph.

    2016-04-01

    While thermoelectric transport theory is well established and widely applied, it is not always clear in the literature whether the Seebeck coefficient, which is a measure of the strength of the mutual interaction between electric charge transport and heat transport, is to be related to the gradient of the system's chemical potential or to the gradient of its electrochemical potential. The present article aims to clarify the thermodynamic definition of the thermoelectric coupling. First, we recall how the Seebeck coefficient is experimentally determined. We then turn to the analysis of the relationship between the thermoelectric power and the relevant potentials in the thermoelectric system: As the definitions of the chemical and electrochemical potentials are clarified, we show that, with a proper consideration of each potential, one may derive the Seebeck coefficient of a non-degenerate semiconductor without the need to introduce a contact potential as seen sometimes in the literature. Furthermore, we demonstrate that the phenomenological expression of the electrical current resulting from thermoelectric effects may be directly obtained from the drift-diffusion equation.

  20. Strain-induced bi-thermoelectricity in tapered carbon nanotubes

    Science.gov (United States)

    Algharagholy, L. A. A.; Pope, T.; Lambert, C. J.

    2018-03-01

    We show that carbon-based nanostructured materials are a novel testbed for controlling thermoelectricity and have the potential to underpin the development of new cost-effective environmentally-friendly thermoelectric materials. In single-molecule junctions, it is known that transport resonances associated with the discrete molecular levels play a key role in the thermoelectric performance, but such resonances have not been exploited in carbon nanotubes (CNTs). Here we study junctions formed from tapered CNTs and demonstrate that such structures possess transport resonances near the Fermi level, whose energetic location can be varied by applying strain, resulting in an ability to tune the sign of their Seebeck coefficient. These results reveal that tapered CNTs form a new class of bi-thermoelectric materials, exhibiting both positive and negative thermopower. This ability to change the sign of the Seebeck coefficient allows the thermovoltage in carbon-based thermoelectric devices to be boosted by placing CNTs with alternating-sign Seebeck coefficients in tandem.

  1. On the tin impurity in the thermoelectric compound ZnSb: Charge-carrier generation and compensation

    Energy Technology Data Exchange (ETDEWEB)

    Prokofieva, L. V., E-mail: lprokofieva496@gmail.com; Konstantinov, P. P.; Shabaldin, A. A. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation)

    2016-06-15

    The technique for measuring the Hall coefficient and electrical conductivity in the thermal cycling mode is used to study the effect of the Sn impurity on the microstructure and properties of pressed ZnSb samples. Tin was introduced as an excess component (0.1 and 0.2 at %) and as a substitutional impurity for Zn and Sb atoms in a concentration of (2–2.5) at % The temperature dependences of the parameters of lightly doped samples are fundamentally like similar curves for ZnSb with 0.1 at % of Cu. The highest Hall concentration, 1.4 × 10{sup 19} cm{sup –3} at 300 K, is obtained upon the introduction of 0.1 at % of Sn; the dimensionless thermoelectric figure of merit attains its maximum value of 0.85 at 660 K. The experimental data are discussed under the assumption of two doping mechanisms, which are effective in different temperature ranges, with zinc vacancies playing the decisive role of acceptor centers. In two ZnSb samples with SnSb and ZnSn additives, the charge-carrier compensation effect is observed; this effect depends on temperature and markedly changes with doping type. As in p-type A{sup IV}–B{sup VI} materials with a low Sn content, hole compensation can be attributed to atomic recharging Sn{sup 2+} → Sn{sup 4+}. Types of compensating complexes are considered.

  2. Quasi-two-dimensional thermoelectricity in SnSe

    Science.gov (United States)

    Tayari, V.; Senkovskiy, B. V.; Rybkovskiy, D.; Ehlen, N.; Fedorov, A.; Chen, C.-Y.; Avila, J.; Asensio, M.; Perucchi, A.; di Pietro, P.; Yashina, L.; Fakih, I.; Hemsworth, N.; Petrescu, M.; Gervais, G.; Grüneis, A.; Szkopek, T.

    2018-01-01

    Stannous selenide is a layered semiconductor that is a polar analog of black phosphorus and of great interest as a thermoelectric material. Unusually, hole doped SnSe supports a large Seebeck coefficient at high conductivity, which has not been explained to date. Angle-resolved photoemission spectroscopy, optical reflection spectroscopy, and magnetotransport measurements reveal a multiple-valley valence-band structure and a quasi-two-dimensional dispersion, realizing a Hicks-Dresselhaus thermoelectric contributing to the high Seebeck coefficient at high carrier density. We further demonstrate that the hole accumulation layer in exfoliated SnSe transistors exhibits a field effect mobility of up to 250 cm2/V s at T =1.3 K . SnSe is thus found to be a high-quality quasi-two-dimensional semiconductor ideal for thermoelectric applications.

  3. First-principles study of thermoelectric properties of CuI

    International Nuclear Information System (INIS)

    Yadav, Manoj K; Sanyal, Biplab

    2014-01-01

    Theoretical investigations of the thermoelectric properties of CuI have been carried out employing first-principles calculations followed by the calculations of transport coefficients based on Boltzmann transport theory. Among the three different phases of CuI, viz. zinc-blende, wurtzite and rock salt, the thermoelectric power factor is found to be the maximum for the rock salt phase. We have analysed the variations of Seebeck coefficients and thermoelectric power factors on the basis of calculated electronic structures near the valence band maxima of these phases. (papers)

  4. Thermoelectric power of PrMg3

    Science.gov (United States)

    Isikawa, Yosikazu; Somiya, Kazuya; Koyanagi, Huruto; Mizushima, Toshio; Kuwai, Tomohiko; Tayama, Takashi

    2010-01-01

    PrMg3 is supposed to be one of the strongly correlated electron systems originated from the hybridization between the Pr 4f and conduction electrons, because the gigantic electronic specific heat coefficient C/T was observed at low temperatures. However, a typical behaviour of - ln T dependence was not observed in the temperature dependence of the electrical resistivity. The thermoelectric power S is a powerful tool to investigate the density of states at the Fermi energy. We measured carefully the thermoelectric power of PrMg3 in the temperature range between 2 and 300 K. S is extremely small, ranged within ±1 μV/K over the whole temperature. The value of S/T at low temperature limit was also significantly smaller than expected from the specific heat results. We therefore conclude that the density of state at the Fermi level is not enhanced in PrMg3.

  5. Thermoelectric power of PrMg3

    International Nuclear Information System (INIS)

    Isikawa, Yosikazu; Somiya, Kazuya; Koyanagi, Huruto; Mizushima, Toshio; Kuwai, Tomohiko; Tayama, Takashi

    2010-01-01

    PrMg 3 is supposed to be one of the strongly correlated electron systems originated from the hybridization between the Pr 4f and conduction electrons, because the gigantic electronic specific heat coefficient C/T was observed at low temperatures. However, a typical behaviour of - ln T dependence was not observed in the temperature dependence of the electrical resistivity. The thermoelectric power S is a powerful tool to investigate the density of states at the Fermi energy. We measured carefully the thermoelectric power of PrMg 3 in the temperature range between 2 and 300 K. S is extremely small, ranged within ±1 μV/K over the whole temperature. The value of S/T at low temperature limit was also significantly smaller than expected from the specific heat results. We therefore conclude that the density of state at the Fermi level is not enhanced in PrMg 3 .

  6. Manipulation of charge transport in thermoelectrics

    Science.gov (United States)

    Zhang, Xinyue; Pei, Yanzhong

    2017-12-01

    While numerous improvements have been achieved in thermoelectric materials by reducing the lattice thermal conductivity (κL), electronic approaches for enhancement can be as effective, or even more. A key challenge is decoupling Seebeck coefficient (S) from electrical conductivity (σ). The first order approximation - a single parabolic band assumption with acoustic scattering - leads the thermoelectric power factor (S2σ) to be maximized at a constant reduced Fermi level (η 0.67) and therefore at a given S of 167 μV/K. This simplifies the challenge of maximization of σ at a constant η, leading to a large number of degenerate transport channels (band degeneracy, Nv) and a fast transportation of charges (carrier mobility, μ). In this paper, existing efforts on this issue are summarized and future prospectives are given.

  7. Halls Lake 1990

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Salt marsh habitats along the shoreline of Halls Lake are threatened by wave erosion, but the reconstruction of barrier islands to reduce this erosion will modify or...

  8. Introduction to thermoelectricity

    CERN Document Server

    Goldsmid, H Julian

    2016-01-01

    This book is a comprehensive introduction to all aspects of thermoelectric energy conversion. It covers both theory and practice. The book is timely as it refers to the many improvements that have come about in the last few years through the use of nanostructures. The concept of semiconductor thermoelements led to major advances during the second half of the twentieth century, making Peltier refrigeration a widely used technique. The latest materials herald thermoelectric generation as the preferred technique for exploiting low-grade heat. The book shows how progress has been made by increasing the thermal resistivity of the lattice until it is almost as large as it is for glass. It points the way towards the attainment of similar improvements in the electronic parameters. It does not neglect practical considerations, such as the desirability of making thermocouples from inexpensive and environmentally acceptable materials. The second edition was extended to also include recent advances in thermoelectric ener...

  9. Field theory approach to quantum hall effect

    International Nuclear Information System (INIS)

    Cabo, A.; Chaichian, M.

    1990-07-01

    The Fradkin's formulation of statistical field theory is applied to the Coulomb interacting electron gas in a magnetic field. The electrons are confined to a plane in normal 3D-space and also interact with the physical 3D-electromagnetic field. The magnetic translation group (MTG) Ward identities are derived. Using them it is shown that the exact electron propagator is diagonalized in the basis of the wave functions of the free electron in a magnetic field whenever the MTG is unbroken. The general tensor structure of the polarization operator is obtained and used to show that the Chern-Simons action always describes the Hall effect properties of the system. A general proof of the Streda formula for the Hall conductivity is presented. It follows that the coefficient of the Chern-Simons terms in the long-wavelength approximation is exactly given by this relation. Such a formula, expressing the Hall conductivity as a simple derivative, in combination with diagonal form of the full propagator allows to obtain a simple expressions for the filling factor and the Hall conductivity. Indeed, these results, after assuming that the chemical potential lies in a gap of the density of states, lead to the conclusion that the Hall conductivity is given without corrections by σ xy = νe 2 /h where ν is the filling factor. In addition it follows that the filling factor is independent of the magnetic field if the chemical potential remains in the gap. (author). 21 ref, 1 fig

  10. The quantum hall effect

    International Nuclear Information System (INIS)

    El-Arabi, N. M.

    1993-01-01

    Transport phenomena in two dimensional semiconductors have revealed unusual properties. In this thesis these systems are considered and discussed. The theories explain the Integral Quantum Hall Effect (IQHE) and the Fractional Quantum Hall Effect (FQHE). The thesis is composed of five chapters. The first and the second chapters lay down the theory of the IQHE, the third and fourth consider the theory of the FQHE. Chapter five deals with the statistics of particles in two dimension. (author). Refs

  11. Hall viscosity of hierarchical quantum Hall states

    Science.gov (United States)

    Fremling, M.; Hansson, T. H.; Suorsa, J.

    2014-03-01

    Using methods based on conformal field theory, we construct model wave functions on a torus with arbitrary flat metric for all chiral states in the abelian quantum Hall hierarchy. These functions have no variational parameters, and they transform under the modular group in the same way as the multicomponent generalizations of the Laughlin wave functions. Assuming the absence of Berry phases upon adiabatic variations of the modular parameter τ, we calculate the quantum Hall viscosity and find it to be in agreement with the formula, given by Read, which relates the viscosity to the average orbital spin of the electrons. For the filling factor ν =2/5 Jain state, which is at the second level in the hierarchy, we compare our model wave function with the numerically obtained ground state of the Coulomb interaction Hamiltonian in the lowest Landau level, and find very good agreement in a large region of the complex τ plane. For the same example, we also numerically compute the Hall viscosity and find good agreement with the analytical result for both the model wave function and the numerically obtained Coulomb wave function. We argue that this supports the notion of a generalized plasma analogy that would ensure that wave functions obtained using the conformal field theory methods do not acquire Berry phases upon adiabatic evolution.

  12. Heat shrink formation of a corrugated thin film thermoelectric generator

    International Nuclear Information System (INIS)

    Sun, Tianlei; Peavey, Jennifer L.; David Shelby, M.; Ferguson, Scott; O’Connor, Brendan T.

    2015-01-01

    Highlights: • Demonstrate and characterize a thermoelectric generator with a corrugated geometry. • Employ a novel heat shrink fabrication approach compatible with low-cost processing. • Use thermal impedance modeling to explore design potential. • Corrugated design shown to be advantageous for low heat-flux density applications. - Abstract: A thin film thermoelectric (TE) generator with a corrugated architecture is demonstrated formed using a heat-shrink fabrication approach. Fabrication of the corrugated TE structure consists of depositing thin film thermoelectric elements onto a planar non-shrink polyimide substrate that is then sandwiched between two uniaxial stretch-oriented co-polyester (PET) films. The heat shrink PET films are adhered to the polyimide in select locations, such that when the structure is placed in a high temperature environment, the outer films shrink resulting in a corrugated core film and thermoelectric elements spanning between the outer PET films. The module has a cross-plane heat transfer architecture similar to a conventional bulk TE module, but with heat transfer in the plane of the thin film thermoelectric elements, which assists in maintaining a significant temperature difference across the thermoelectric junctions. In this demonstration, Ag and Ni films are used as the thermoelectric elements and a Seebeck coefficient of 14 μV K −1 is measured with a maximum power output of 0.22 nW per couple at a temperature difference of 7.0 K. We then theoretically consider the performance of this device architecture with high performance thermoelectric materials in the heat sink limited regime. The results show that the heat-shrink approach is a simple fabrication method that may be advantageous in large-area, low power density applications. The fabrication method is also compatible with simple geometric modification to achieve various form factors and power densities to customize the TE generator for a range of applications

  13. Thermoelectrode for thermoelectric converter

    International Nuclear Information System (INIS)

    Bodiul, Pavel; Bondarciuc, Nicolae; Ghitu, Dumitru; Nikolaeva, Albina; Konopko, Leonid; Turcan, Ana

    2008-01-01

    The invention relates to the electronic engneering and can be used for manufacturing of thermoelectrodes for thermoelectric converters. The thermoelectrode is made of semiconductor anisotropic material in the form of thread in glass insulation. At the same timer, the thread is made of stannum-doped tellurium in the ratio of 0.1...3 at.%.

  14. Nanostructured Thermoelectric Oxides for Energy Harvesting Applications

    KAUST Repository

    Abutaha, Anas I.

    2015-01-01

    of thermoelectrics are still limited to one materials system, namely SiGe, since the traditional thermoelectric materials degrade and oxidize at high temperature. Therefore, oxide thermoelectrics emerge as a promising class of materials since they can operate

  15. Green thermoelectrics: Observation and analysis of plant thermoelectric response

    Directory of Open Access Journals (Sweden)

    Goupil Christophe

    2016-01-01

    Full Text Available Plants are sensitive to thermal and electrical effects; yet the coupling of both, known as thermoelectricity, and its quantitative measurement in vegetal systems never were reported. We recorded the thermoelectric response of bean sprouts under various thermal conditions and stress. The obtained experimental data unambiguously demonstrate that a temperature difference between the roots and the leaves of a bean sprout induces a thermoelectric voltage between these two points. Basing our analysis of the data on the force-flux formalism of linear response theory, we found that the strength of the vegetal equivalent to the thermoelectric coupling is one order of magnitude larger than that in the best thermoelectric materials. Experimental data also show the importance of the thermal stress variation rate in the plant’s electrophysiological response. therefore, thermoelectric effects are sufficiently important to partake in the complex and intertwined processes of energy and matter transport within plants.

  16. Relation of planar Hall and planar Nernst effects in thin film permalloy

    Science.gov (United States)

    Wesenberg, D.; Hojem, A.; Bennet, R. K.; Zink, B. L.

    2018-06-01

    We present measurements of the planar Nernst effect (PNE) and the planar Hall effect (PHE) of nickel-iron (Ni–Fe) alloy thin films. We suspend the thin-film samples, measurement leads, and lithographically-defined heaters and thermometers on silicon-nitride membranes to greatly simplify control and measurement of thermal gradients essential to quantitative determination of magnetothermoelectric effects. Since these thermal isolation structures allow measurements of longitudinal thermopower, or the Seebeck coefficient, and four-wire electrical resistivity of the same thin film, we can quantitatively demonstrate the link between the longitudinal and transverse effects as a function of applied in-plane field and angle. Finite element thermal analysis of this essentially 2D structure allows more confident determination of the thermal gradient, which is reduced from the simplest assumptions due to the particular geometry of the membranes, which are more than 350 μm wide in order to maximize sensitivity to transverse thermoelectric effects. The resulting maximum values of the PNE and PHE coefficients for the Ni–Fe film with 80% Ni we study here are and , respectively. All signals are exclusively symmetry with applied field, ruling out long-distance spin transport effects. We also consider a Mott-like relation between the PNE and PHE, and use both this and the standard Mott relation to determine the energy-derivative of the resistivity at the Fermi energy to be , which is very similar to values for films we previously measured using similar thermal platforms. Finally, using an estimated value for the lead contribution to the longitudinal thermopower, we show that the anisotropic magnetoresistance (AMR) ratio in this Ni–Fe film is two times larger than the magnetothermopower ratio, which is the first evidence of a deviation from strict adherence to the Mott relation between Seebeck coefficient and resistivity.

  17. Tegen - an onedimensional program to calculate a thermoelectric generator

    International Nuclear Information System (INIS)

    Rosa, M.A.P.; Ferreira, P.A.; Castro Lobo, P.D. de.

    1990-01-01

    A computer program for the solution of the one-dimensional, steady-state temperature equation in the arms of a thermoelectric generator. The discretized equations obtained through a finite difference scheme are solved by Gaussian Elimination. Due to nonlinearities caused by the temperature dependence of the coefficients of such equations, an iterative procedure is used to obtain the temperature distribution in the arms. Such distributions are used in the calculation of the efficiency, electric power, load voltage and other relevant parameters for the design of a thermoelectric generator. (author)

  18. Thermoelectric properties of SnSe compound

    Energy Technology Data Exchange (ETDEWEB)

    Guan, Xinhong [State Key Laboratory of Information Photonics and Optical Communications, Ministry of Education, Beijing University of Posts and Telecommunications, P.O. Box 72, Beijing 100876 (China); Lu, Pengfei, E-mail: photon@bupt.edu.cn [State Key Laboratory of Information Photonics and Optical Communications, Ministry of Education, Beijing University of Posts and Telecommunications, P.O. Box 72, Beijing 100876 (China); Wu, Liyuan; Han, Lihong [State Key Laboratory of Information Photonics and Optical Communications, Ministry of Education, Beijing University of Posts and Telecommunications, P.O. Box 72, Beijing 100876 (China); Liu, Gang [School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Song, Yuxin [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Wang, Shumin [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Photonics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, 41296 Gothenburg (Sweden)

    2015-09-15

    Highlights: • The electronic and thermoelectric properties of SnSe bulk material are studied. • The ZT can reach as high as 1.87 along yy and 1.6 along zz direction at 800k. • SnSe is an indirect-band material, and SOC has little effect on the band structure. • The high ZT can be attributed to the intrinsically ultralow thermal conductivity. - Abstract: A first-principles study and Boltzmann transport theory have been performed to evaluate the electronic structure and thermoelectric properties of SnSe compound. The energy band structure and density of states are studied in detail. The electronic transport coefficients are then calculated as a function of chemical potential or temperature within the assumption of the constant relaxation time. The figure of merit ZT is obtained with the use of calculated thermoelectric properties and can reach as high as 1.87 along yy and 1.6 along zz direction at 800 K. Our theoretical result agrees well with previous experimental data.

  19. Thermoelectric properties of SnSe compound

    International Nuclear Information System (INIS)

    Guan, Xinhong; Lu, Pengfei; Wu, Liyuan; Han, Lihong; Liu, Gang; Song, Yuxin; Wang, Shumin

    2015-01-01

    Highlights: • The electronic and thermoelectric properties of SnSe bulk material are studied. • The ZT can reach as high as 1.87 along yy and 1.6 along zz direction at 800k. • SnSe is an indirect-band material, and SOC has little effect on the band structure. • The high ZT can be attributed to the intrinsically ultralow thermal conductivity. - Abstract: A first-principles study and Boltzmann transport theory have been performed to evaluate the electronic structure and thermoelectric properties of SnSe compound. The energy band structure and density of states are studied in detail. The electronic transport coefficients are then calculated as a function of chemical potential or temperature within the assumption of the constant relaxation time. The figure of merit ZT is obtained with the use of calculated thermoelectric properties and can reach as high as 1.87 along yy and 1.6 along zz direction at 800 K. Our theoretical result agrees well with previous experimental data

  20. Thermoelectric flux effect in superconducting indium

    International Nuclear Information System (INIS)

    Van Harlingen, D.J.

    1977-01-01

    In this paper we discuss a thermoelectric effect in superconductors which provides a mechanism for studying quasiparticle relaxation and scattering processes in non-equilibrium superconductors by transport measurements. We report measurements of the thermoelecric flux effect in samples consisting of indium and lead near the In transition temperature; in this temperature range, the contribution to DELTA/sub TAU/ from the Pb is insignificant and so values of OMEGA(T) are obtained for indium. The results of our experiments may be summarized as follows: (1) we have a thermally-generated flux effect in 5 superconducting In-Pb toroidal samples, (2) experimental tests suggest that the observed effect does indeed arise from the proposed thermoelectric flux effect, (3) OMEGA(T) for indium is found to diverge as (T/sub c/ - T)/sup -3/2/ more rapidly than predicted by simple theory, (4) OMEGA(T) at T/T sub c/ = .999 is nearly 10/sup 5/ larger than initially expected, (5) OMEGA (T) roughly correlates with the magnitude of the normal state thermoelectric coefficient for our samples

  1. Reduction of the thermal conductivity of the thermoelectric material ScN by Nb alloying

    DEFF Research Database (Denmark)

    Tureson, Nina; Van Nong, Ngo; Fournier, Daniele

    2017-01-01

    ) orientation. The crystal structure, morphology, thermal conductivity, and thermoelectric and electrical properties were investigated. The ScN reference film exhibited a Seebeck coefficient of −45 μV/K and a power factor of 6 × 10−4 W/m K2 at 750 K. Estimated from room temperature Hall measurements, all...... samples exhibit a high carrier density of the order of 1021 cm−3. Inclusion of heavy transition metals into ScN enables the reduction in thermal conductivity by an increase in phonon scattering. The Nb inserted ScN thin films exhibited a thermal conductivity lower than the value of the ScN reference (10.......5 W m−1 K−1) down to a minimum value of 2.2 Wm−1 K−1. Insertion of Nb into ScN thus resulted in a reduction in thermal conductivity by a factor of ∼5 due to the mass contrast in ScN, which increases the phonon scattering in the material....

  2. Thermoelectric performance of spin Seebeck effect in Fe3O4/Pt-based thin film heterostructures

    Directory of Open Access Journals (Sweden)

    R. Ramos

    2016-10-01

    Full Text Available We report a systematic study on the thermoelectric performance of spin Seebeck devices based on Fe3O4/Pt junction systems. We explore two types of device geometries: a spin Hall thermopile and spin Seebeck multilayer structures. The spin Hall thermopile increases the sensitivity of the spin Seebeck effect, while the increase in the sample internal resistance has a detrimental effect on the output power. We found that the spin Seebeck multilayers can overcome this limitation since the multilayers exhibit the enhancement of the thermoelectric voltage and the reduction of the internal resistance simultaneously, therefore resulting in significant power enhancement. This result demonstrates that the multilayer structures are useful for improving the thermoelectric performance of the spin Seebeck effect.

  3. Thermoelectric and thermomagnetic effects in high-temperature superconductors

    International Nuclear Information System (INIS)

    Huebener, R.P.; Ri, H.C.; Gross, R.; Kober, F.

    1992-01-01

    In the mixed state of high-temperature superconductors the dominant part of the Seebeck and Nernst effect is due to the thermal diffusion of quasiparticles and vortices, respectively. The authors' understanding of the Seebeck effect is based on the two-fluid counterflow model of Ginzburg and its extension to the mixed state with the presence of vortices. From the Nernst effect the transport entropy of the vortices is obtained. In this paper summarize the recent thermoelectric and thermomagnetic experiments, paying also attention to the role of the Magnus force (Hall effect) and to the thermal fluctuation effects near T c

  4. Design Optimization of a Thermoelectric Cooling Module Using Finite Element Simulations

    Science.gov (United States)

    Abid, Muhammad; Somdalen, Ragnar; Rodrigo, Marina Sancho

    2018-05-01

    The thermoelectric industry is concerned about the size reduction, cooling performance and, ultimately, the production cost of thermoelectric modules. Optimization of the size and performance of a commercially available thermoelectric cooling module is considered using finite element simulations. Numerical simulations are performed on eight different three-dimensional geometries of a single thermocouple, and the results are further extended for a whole module as well. The maximum temperature rise at the hot and cold sides of a thermocouple is determined by altering its height and cross-sectional area. The influence of the soldering layer is analyzed numerically using temperature dependent and temperature independent thermoelectric properties of the solder material and the semiconductor pellets. Experiments are conducted to test the cooling performance of the thermoelectric module and the results are compared with the results obtained through simulations. Finally, cooling rate and maximum coefficient of performance (COPmax) are computed using convective and non-convective boundary conditions.

  5. La 1-x Ca x MnO 3 semiconducting nanostructures: morphology and thermoelectric properties.

    Science.gov (United States)

    Culebras, Mario; Torán, Raquel; Gómez, Clara M; Cantarero, Andrés

    2014-01-01

    Semiconducting metallic oxides, especially perosvkite materials, are great candidates for thermoelectric applications due to several advantages over traditionally metallic alloys such as low production costs and high chemical stability at high temperatures. Nanostructuration can be the key to develop highly efficient thermoelectric materials. In this work, La 1-x Ca x MnO 3 perosvkite nanostructures with Ca as a dopant have been synthesized by the hydrothermal method to be used in thermoelectric applications at room temperature. Several heat treatments have been made in all samples, leading to a change in their morphology and thermoelectric properties. The best thermoelectric efficiency has been obtained for a Ca content of x=0.5. The electrical conductivity and Seebeck coefficient are strongly related to the calcium content.

  6. The quantized Hall effect

    International Nuclear Information System (INIS)

    Klitzing von, K.

    1989-01-01

    The quantized Hall effect is theoretically explained in detail as are its basic properties. The explanation is completed with the pertinent mathematical relations and illustrative figures. Experimental data are critically assessed obtained by quantum transport measurement in a magnetic field on two-dimensional systems. The results are reported for a MOSFET silicon transistor and for GaAs-Al x Ga 1-x As heterostructures. The application is discussed of the quantized Hall effect in determining the fine structure constant or in implementing the resistance standard. (M.D.). 27 figs., 57 refs

  7. Intrinsic superspin Hall current

    Science.gov (United States)

    Linder, Jacob; Amundsen, Morten; Risinggârd, Vetle

    2017-09-01

    We discover an intrinsic superspin Hall current: an injected charge supercurrent in a Josephson junction containing heavy normal metals and a ferromagnet generates a transverse spin supercurrent. There is no accompanying dissipation of energy, in contrast to the conventional spin Hall effect. The physical origin of the effect is an antisymmetric spin density induced among transverse modes ky near the interface of the superconductor arising due to the coexistence of p -wave and conventional s -wave superconducting correlations with a belonging phase mismatch. Our predictions can be tested in hybrid structures including thin heavy metal layers combined with strong ferromagnets and ordinary s -wave superconductors.

  8. Thermoelectric transport through quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Merker, Lukas Heinrich

    2016-06-30

    In this thesis the thermoelectric properties (electrical conductance, Seebeck coefficient and thermal conductance)of quantum dots described by the Anderson impurity model have been investigated by using the numerical renormalization group (NRG) method. In order to make accurate calculations for thermoelectric properties of quantum impurity systems, a number of recent developments and refinements of the NRG have been implemented. These include the z-averaging and Campo discretization scheme, which enable the evaluation of physical quantities on an arbitrary temperature grid and at large discretization parameter Λ and the full density matrix (FDM) approach, which allows a more accurate calculation of spectral functions and transport coefficients. The implementation of the z-averaging and Campo discretization scheme has been tested within a new method for specific heats of quantum impurities. The accuracy of this new method was established by comparison with the numerical solution of the Bethe-ansatz equations for the Anderson model. The FDM approach was implemented and tested within a new approach to the calculation of impurity contributions to the uniform susceptibilities. Within this method a non-negligible contribution from the ''environmental'' degrees of freedom needs to be taken into account to recover the correct susceptibility, as shown by comparison with the Bethe-ansatz approach. An accurate method to calculate the conductance of a quantum dot is implemented, enabling the extraction of the Fermi liquid scaling coefficients c{sub T} and c{sub B} to high accuracy, being able to verify the results of the renormalized super perturbation theory approach (within its regime of validity). The method was generalized to higher order moments of the local level spectral function. This, as well as reduction of the SU(2) code to the U(1) symmetry, enabled the investigation of the effect of a magnetic field on the thermoelectric properties of quantum

  9. Energy harvesting using a thermoelectric material

    Science.gov (United States)

    Nersessian, Nersesse [Van Nuys, CA; Carman, Gregory P [Los Angeles, CA; Radousky, Harry B [San Leandro, CA

    2008-07-08

    A novel energy harvesting system and method utilizing a thermoelectric having a material exhibiting a large thermally induced strain (TIS) due to a phase transformation and a material exhibiting a stress induced electric field is introduced. A material that exhibits such a phase transformation exhibits a large increase in the coefficient of thermal expansion over an incremental temperature range (typically several degrees Kelvin). When such a material is arranged in a geometric configuration, such as, for a example, a laminate with a material that exhibits a stress induced electric field (e.g. a piezoelectric material) the thermally induced strain is converted to an electric field.

  10. Synthesis and Characterization of Thermoelectric Oxides at Macro- and Nano-scales

    Science.gov (United States)

    Ma, Feiyue

    Thermoelectric materials can directly convert a temperature difference into electrical voltage and vice versa. Due to this unique property, thermoelectric materials are widely used in industry and scientific laboratories for temperature sensing and thermal management applications. Waste heat harvesting, another potential application of thermoelectric materials, has long been limited by the low conversion efficiency of the materials. Potential high temperature applications, such as power plant waste heat harvesting and combustion engine exhaust heat recovery, make thermoelectric oxides a very promising class of thermoelectric materials. In this thesis, the synthesis and characterization of thermoelectric oxide materials are explored. In the first part of this thesis, the measurement methodologies and instrumentation processes employed to investigate different thermoelectric properties, such as the Seebeck coefficient and carrier concentration at the bulk scale and the thermal conductivity at the nanoscale, are detailed. Existing scientific and engineering challenges associated with these measurements are also reviewed. To overcome such problems, original parts and methodologies have been designed. Three fully functional systems were ultimately developed for the characterization of macroscale thermoelectric properties as well as localized thermal conductivity. In the second part of the thesis, the synthesis of NaxCo 2O4, a thermoelectric oxide material, is discussed. Modification of both composition and structure were carried out so as to optimize the thermoelectric performance of NaxCo2O4. Nanostructuring methods, such as ball milling, electrospinning, auto-combustion synthesis, and core-shell structure fabrication, have been developed to refine the grain size of NaxCo2O4 in order to reduce its thermal conductivity. However, the structure of the nanostructured materials is very unstable at high temperature and limited improvement on thermoelectric performance is

  11. Thermoelectric Properties of Cu-doped Bi2-xSbxTe3 Prepared by Encapsulated Melting and Hot Pressing

    Science.gov (United States)

    Jung, Woo-Jin; Kim, Il-Ho

    2018-03-01

    P-type Bi2-xSbxTe3:Cum (x = 1.5-1.7 and m = 0.002-0.003) solid solutions were synthesized using encapsulated melting and were consolidated using hot pressing. The effects of Sb substitution and Cu doping on the charge transport and thermoelectric properties were examined. The lattice constants decreased with increasing Sb and Cu contents. As the amount of Sb substitution and Cu doping was increased, the electrical conductivity increased, and the Seebeck coefficient decreased owing to the increase in the carrier concentration. All specimens exhibited degenerate semiconductor characteristics and positive Hall and Seebeck coefficients, indicating p-type conduction. The increased Sb substitution caused a shift in the onset temperature of the intrinsic transition and bipolar conduction to higher temperatures. The electronic thermal conductivity increased with increasing Sb and Cu contents owing to the increase in the carrier concentration, while the lattice thermal conductivity slightly decreased due to alloy scattering. A maximum figure of merit, ZTmax = 1.25, was achieved at 373 K for Bi0.4Sb1.6Te3:Cu0.003.

  12. Parametric optimization of thermoelectric elements footprint for maximum power generation

    DEFF Research Database (Denmark)

    Rezania, A.; Rosendahl, Lasse; Yin, Hao

    2014-01-01

    The development studies in thermoelectric generator (TEG) systems are mostly disconnected to parametric optimization of the module components. In this study, optimum footprint ratio of n- and p-type thermoelectric (TE) elements is explored to achieve maximum power generation, maximum cost......-performance, and variation of efficiency in the uni-couple over a wide range of the heat transfer coefficient on the cold junction. The three-dimensional (3D) governing equations of the thermoelectricity and the heat transfer are solved using the finite element method (FEM) for temperature dependent properties of TE...... materials. The results, which are in good agreement with the previous computational studies, show that the maximum power generation and the maximum cost-performance in the module occur at An/Ap

  13. Thermoelectric micro converters for cooling and energy-scavenging systems

    International Nuclear Information System (INIS)

    Goncalves, L M; Couto, C; Correia, J H; Alpuim, P

    2008-01-01

    This paper describes the fabrication process of thermoelectric microconverters, based on n-type bismuth telluride (Bi 2 Te 3 ) and p-type antimony telluride (Sb 2 Te 3 ) thin films. The films are fabricated by thermal co-evaporation with thermoelectric properties comparable to those reported for the same materials in bulk form (used in conventional macro-scale Peltier modules). The absolute value of the Seebeck coefficient in the range of 150–250 µV K −1 and an in-plane electrical resistivity of 7–15 µΩ m were obtained. The influence of fabrication parameters on thermoelectric properties is reported. The films were patterned by photolithography and wet-etching techniques, using HNO 3 /HCl-based etchants. The influence of composition and concentration of etchants in the lithographic process is reported. A microcooler was fabricated

  14. The Monty Hall Dilemma.

    Science.gov (United States)

    Granberg, Donald; Brown, Thad A.

    1995-01-01

    Examines people's behavior in the Monty Hall Dilemma (MHD), in which a person must make two decisions to win a prize. In a series of five studies, found that people misapprehend probabilities in the MHD. Discusses the MHD's relation to illusion of control, belief perseverance, and the status quo bias. (RJM)

  15. The Isolde experimental hall

    CERN Multimedia

    Laurent Guiraud

    2000-01-01

    General view of the Isotope-Separator On-Line (ISOLDE) hall. ISOLDE is dedicated to the production of a large variety of radioactive ion beams for many different experiments. Rare isotopes can be produced allowing the study of spectra for neutrino beam production.

  16. Hall Sweet Home

    Science.gov (United States)

    Oguntoyinbo, Lekan

    2011-01-01

    Many urban and commuter universities have their sights set on students who are unlikely to connect with the college and likely to fail unless the right strategies are put in place to help them graduate. In efforts to improve retention rates, commuter colleges are looking to an unusual suspect: residence halls. The author discusses how these…

  17. Anomalous Hall effect

    Czech Academy of Sciences Publication Activity Database

    Nagaosa, N.; Sinova, Jairo; Onoda, S.; MacDonald, A. H.; Ong, N. P.

    2010-01-01

    Roč. 82, č. 2 (2010), s. 1539-1592 ISSN 0034-6861 Institutional research plan: CEZ:AV0Z10100521 Keywords : anomalous Hall effect * spintronics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 51.695, year: 2010

  18. Laurance David Hall.

    Science.gov (United States)

    Coxon, Bruce

    2011-01-01

    An account is given of the life, scientific contributions, and passing of Laurance David Hall (1938-2009), including his early history and education at the University of Bristol, UK, and the synthesis and NMR spectroscopy of carbohydrates and other natural products during ∼20 years of research and teaching at the University of British Columbia in Vancouver, Canada. Lists of graduate students, post-doctoral fellows, and sabbatical visitors are provided for this period. Following a generous endowment by Dr. Herchel Smith, Professor Hall built a new Department of Medicinal Chemistry at Cambridge University, UK, and greatly expanded his researches into the technology and applications of magnetic resonance imaging (MRI) and zero quantum NMR. MRI technology was applied both to medical problems such as the characterization of cartilage degeneration in knee joints, the measurement of ventricular function, lipid localization in animal models of atherosclerosis, paramagnetic metal complexes of polysaccharides as contrast agents, and studies of many other anatomical features, but also to several aspects of materials analysis, including food analyses, process control, and the elucidation of such physical phenomena as the flow of liquids through porous media, defects in concrete, and the visualization of fungal damage to wood. Professor Hall's many publications, patents, lectures, and honors and awards are described, and also his successful effort to keep the Asilomar facility in Pacific Grove, California as the alternating venue for the annual Experimental NMR Conference. Two memorial services for Professor Hall are remembered. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Electronic structure and physical properties of Heusler compounds for thermoelectric and spintronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Ouardi, Siham

    2012-03-19

    This thesis focuses on synthesis as well as investigations of the electronic structure and properties of Heusler compounds for spintronic and thermoelectric applications. The first part reports on the electronic and crystal structure as well as the mechanical, magnetic, and transport properties of the polycrystalline Heusler compound Co{sub 2}MnGe. The crystalline structure was examined in detail by extended X-ray absorption fine structure spectroscopy and anomalous X-ray diffraction. The low-temperature magnetic moment agrees well with the Slater-Pauling rule and indicates a half-metallic ferromagnetic state of the compound, as is predicted by ab-initio calculations. Transport measurements and hard X-ray photoelectron spectroscopy (HAXPES) were performed to explain the electronic structure of the compound. A major part of the thesis deals with a systematical investigation of Heusler compounds for thermoelectric applications. This thesis focuses on the search for new p-type Heusler compounds with high thermoelectric efficiency. The substitutional series NiTi{sub 1-x}M{sub x}Sn (where M=Sc, V and 0thermoelectrics within one Heusler compound. The pure compounds showed n-type behavior, while under Sc substitution the system switched to p-type behavior. A maximum Seebeck coefficient of +230 {mu}V/K (350 K) was obtained for NiTi{sub 0.26}Sc{sub 0.04}Zr{sub 0.35}Hf{sub 0.35}Sn. HAXPES valence band measurement show massive in gap states for the parent compounds NiTiSn, CoTiSb and NiTi{sub 0.3}Zr{sub 0.35}Hf{sub 0.35}Sn. This proves that the electronic states close to the Fermi energy play a key role for the behavior of the transport properties. Furthermore, the electronic structure of the gapless Heusler compounds PtYSb, PtLaBi and PtLuSb were investigated by bulk

  20. Microwatt thermoelectric generator

    International Nuclear Information System (INIS)

    Goslee, D.E.; Bustard, T.S.

    1976-01-01

    A microwatt thermoelectric generator suitable for implanting in the body is described. The generator utilizes a nuclear energy source. Provision is made for temporary electrical connection to the generator for testing purposes, and for ensuring that the heat generated by the nuclear source does not bypass the pile. Also disclosed is a getter which is resistant to shrinkage during sintering, and a foil configuration for controlling the radiation of heat from the nuclear source to the hot plate of the pile

  1. Microwatt thermoelectric generator

    International Nuclear Information System (INIS)

    Goslee, D.E.

    1976-01-01

    A microwatt thermoelectric generator suitable for implanting in the body is described. The disclosed generator utilizes a nuclear energy source. Provision is made for temporary electrical connection to the generator for testing purposes, and for ensuring that the heat generated by the nuclear source does not bypass the pile. Also disclosed is a getter which is resistant to shrinkage during sintering, and a foil configuration for controlling the radiation of heat from the nuclear source to the hot plate of the pile

  2. Study of thermoelectric systems applied to electric power generation

    International Nuclear Information System (INIS)

    Rodriguez, A.; Vian, J.G.; Astrain, D.; Martinez, A.

    2009-01-01

    A computational model has been developed in order to simulate the thermal and electric behavior of thermoelectric generators. This model solves the nonlinear system of equations of the thermoelectric and heat transfer equations. The inputs of the program are the thermoelectric parameters as a function of temperature and the boundary conditions, (room temperature and residual heat flux). The outputs are the temperature values of all the elements forming the thermoelectric generator, (performance, electric power, voltage and electric current generated). The model solves the equation system using the finite difference method and semi-empirical expressions for the convection coefficients. A thermoelectric electric power generation test bench has been built in order to validate and determine the accuracy of the computational model, which maximum error is lower than 5%. The objective of this study is to create a design tool that allows us to solve the system of equations involved in the electric generation process without needing to impose boundary conditions that are not known in the design phase, such as the temperature of the Peltier modules. With the computational model, we study the influence of the heat flux supplied as well as the room temperature on the electric power generated.

  3. Express method for contactless measurement of parameters of thermoelectric materials

    Directory of Open Access Journals (Sweden)

    Ashcheulov A. A.

    2015-08-01

    Full Text Available The paper presents an original method for contactless express measurement of parameters of thermoelectric materials. The presence of a combination of AC and DC magnetic fields in the gap of the oscillating circuit, where the monitored sample of the thermoelectric material is located, leads — due to Ampere force — to delamination of geometric regions of the occurrence of half-cycles of Foucault current. This in turn causes the appearance of additional heat losses in the oscillating circuit caused by Peltier effect. Computer modeling of these processes with the use of the software package ComsolFenlab 3.3 allowed determining the nature and magnitude of the electric currents in oscillating circuit, the range of operating frequencies, and the ratio of amplitudes of the variable and fixed components of the magnetic field. These components eventually cause a certain temperature difference along the controlled sample, which difference is proportional to the thermoelectric figure of merit Z of the material. The basic expressions are obtained for determining the value of the Seebeck coefficient a, thermal conductivity ?, electrical conductivity ? and thermoelectric figure of merit Z. A description is given to the design of the device for contactless express measurement of parameters of thermoelectric materials based on Bi—Te—Se—Sb solid solutions. Its distinctive feature is the ability to determine the symmetric and asymmetric components of the electric conductivity of the material values. The actual error in parameter measurement in this case is 2%.

  4. Proposal for a phase-coherent thermoelectric transistor

    International Nuclear Information System (INIS)

    Giazotto, F.; Robinson, J. W. A.; Moodera, J. S.; Bergeret, F. S.

    2014-01-01

    Identifying materials and devices which offer efficient thermoelectric effects at low temperature is a major obstacle for the development of thermal management strategies for low-temperature electronic systems. Superconductors cannot offer a solution since their near perfect electron-hole symmetry leads to a negligible thermoelectric response; however, here we demonstrate theoretically a superconducting thermoelectric transistor which offers unparalleled figures of merit of up to ∼45 and Seebeck coefficients as large as a few mV/K at sub-Kelvin temperatures. The device is also phase-tunable meaning its thermoelectric response for power generation can be precisely controlled with a small magnetic field. Our concept is based on a superconductor-normal metal-superconductor interferometer in which the normal metal weak-link is tunnel coupled to a ferromagnetic insulator and a Zeeman split superconductor. Upon application of an external magnetic flux, the interferometer enables phase-coherent manipulation of thermoelectric properties whilst offering efficiencies which approach the Carnot limit

  5. Proposal for a phase-coherent thermoelectric transistor

    Energy Technology Data Exchange (ETDEWEB)

    Giazotto, F., E-mail: giazotto@sns.it [NEST, Instituto Nanoscienze-CNR and Scuola Normale Superiore, I-56127 Pisa (Italy); Robinson, J. W. A., E-mail: jjr33@cam.ac.uk [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Moodera, J. S. [Department of Physics and Francis Bitter Magnet Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Bergeret, F. S., E-mail: sebastian-bergeret@ehu.es [Centro de Física de Materiales (CFM-MPC), Centro Mixto CSIC-UPV/EHU, Manuel de Lardizabal 4, E-20018 San Sebastián (Spain); Donostia International Physics Center (DIPC), Manuel de Lardizabal 5, E-20018 San Sebastián (Spain)

    2014-08-11

    Identifying materials and devices which offer efficient thermoelectric effects at low temperature is a major obstacle for the development of thermal management strategies for low-temperature electronic systems. Superconductors cannot offer a solution since their near perfect electron-hole symmetry leads to a negligible thermoelectric response; however, here we demonstrate theoretically a superconducting thermoelectric transistor which offers unparalleled figures of merit of up to ∼45 and Seebeck coefficients as large as a few mV/K at sub-Kelvin temperatures. The device is also phase-tunable meaning its thermoelectric response for power generation can be precisely controlled with a small magnetic field. Our concept is based on a superconductor-normal metal-superconductor interferometer in which the normal metal weak-link is tunnel coupled to a ferromagnetic insulator and a Zeeman split superconductor. Upon application of an external magnetic flux, the interferometer enables phase-coherent manipulation of thermoelectric properties whilst offering efficiencies which approach the Carnot limit.

  6. Modeling a Thermoelectric Generator Applied to Diesel Automotive Heat Recovery

    Science.gov (United States)

    Espinosa, N.; Lazard, M.; Aixala, L.; Scherrer, H.

    2010-09-01

    Thermoelectric generators (TEGs) are outstanding devices for automotive waste heat recovery. Their packaging, lack of moving parts, and direct heat to electrical conversion are the main benefits. Usually, TEGs are modeled with a constant hot-source temperature. However, energy in exhaust gases is limited, thus leading to a temperature decrease as heat is recovered. Therefore thermoelectric properties change along the TEG, affecting performance. A thermoelectric generator composed of Mg2Si/Zn4Sb3 for high temperatures followed by Bi2Te3 for low temperatures has been modeled using engineering equation solver (EES) software. The model uses the finite-difference method with a strip-fins convective heat transfer coefficient. It has been validated on a commercial module with well-known properties. The thermoelectric connection and the number of thermoelements have been addressed as well as the optimum proportion of high-temperature material for a given thermoelectric heat exchanger. TEG output power has been estimated for a typical commercial vehicle at 90°C coolant temperature.

  7. Development of Perovskite-Type Materials for Thermoelectric Application

    Directory of Open Access Journals (Sweden)

    Tingjun Wu

    2018-06-01

    Full Text Available Oxide perovskite materials have a long history of being investigated for thermoelectric applications. Compared to the state-of-the-art tin and lead chalcogenides, these perovskite compounds have advantages of low toxicity, eco-friendliness, and high elemental abundance. However, because of low electrical conductivity and high thermal conductivity, the total thermoelectric performance of oxide perovskites is relatively poor. Variety of methods were used to enhance the TE properties of oxide perovskite materials, such as doping, inducing oxygen vacancy, embedding crystal imperfection, and so on. Recently, hybrid perovskite materials started to draw attention for thermoelectric application. Due to the low thermal conductivity and high Seebeck coefficient feature of hybrid perovskites materials, they can be promising thermoelectric materials and hold the potential for the application of wearable energy generators and cooling devices. This mini-review will build a bridge between oxide perovskites and burgeoning hybrid halide perovskites in the research of thermoelectric properties with an aim to further enhance the relevant performance of perovskite-type materials.

  8. Opto-thermoelectric nanotweezers

    Science.gov (United States)

    Lin, Linhan; Wang, Mingsong; Peng, Xiaolei; Lissek, Emanuel N.; Mao, Zhangming; Scarabelli, Leonardo; Adkins, Emily; Coskun, Sahin; Unalan, Husnu Emrah; Korgel, Brian A.; Liz-Marzán, Luis M.; Florin, Ernst-Ludwig; Zheng, Yuebing

    2018-04-01

    Optical manipulation of plasmonic nanoparticles provides opportunities for fundamental and technical innovation in nanophotonics. Optical heating arising from the photon-to-phonon conversion is considered as an intrinsic loss in metal nanoparticles, which limits their applications. We show here that this drawback can be turned into an advantage, by developing an extremely low-power optical tweezing technique, termed opto-thermoelectric nanotweezers. By optically heating a thermoplasmonic substrate, a light-directed thermoelectric field can be generated due to spatial separation of dissolved ions within the heating laser spot, which allows us to manipulate metal nanoparticles of a wide range of materials, sizes and shapes with single-particle resolution. In combination with dark-field optical imaging, nanoparticles can be selectively trapped and their spectroscopic response can be resolved in situ. With its simple optics, versatile low-power operation, applicability to diverse nanoparticles and tunable working wavelength, opto-thermoelectric nanotweezers will become a powerful tool in colloid science and nanotechnology.

  9. Ambient growth of highly oriented Cu{sub 2}S dendrites of superior thermoelectric behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Mulla, Rafiq; Rabinal, M.K., E-mail: mkrabinal@yahoo.com

    2017-03-01

    Highlights: • A simple and ambient route to synthesize highly oriented dendrites of copper sulfide is proposed. • Remarkable enhancement is observed in Seebeck coefficient by room temperature, solution phase doping. • High thermoelectric power factor is observed at room temperature, indicating promising behaviour. - Abstract: Low-cost, non-toxic and efficient material is an urgent need for the thermoelectric energy conversion. Here, a rapid and ambient chemical route has been developed to grow dense and highly oriented dendrites of copper sulfide (Cu{sub 2}S) on copper substrate in a very simple approach, these films are uniform and covered with dense nanosheets. Room temperature solution doping of copper ions is carried out to improve thermoelectric performance. The Seebeck coefficient increased from ∼100 to 415 μV K{sup −1} with a slight decrease in electrical conductivity, this gives a high power factor (S{sup 2}σ) of about ∼400 μW m{sup −1} K{sup −2}. The improved thermoelectric properties in these films are accounted for resonant energy level doping and high phonon scattering. Such films with improved thermoelectric behaviour can be promising materials for energy conversion. The earth abundant, low cost, non toxic with a good thermoelectric property makes copper sulfide as a promising thermoelectric material for future applications.

  10. The effect of Cr buffer layer thickness on voltage generation of thin-film thermoelectric modules

    International Nuclear Information System (INIS)

    Mizoshiri, Mizue; Mikami, Masashi; Ozaki, Kimihiro

    2013-01-01

    The effect of Cr buffer layer thickness on the open-circuit voltage generated by thin-film thermoelectric modules of Bi 0.5 Sb 1.5 Te 3 (p-type) and Bi 2 Te 2.7 Se 0.3 (n-type) materials was investigated. A Cr buffer layer, whose thickness generally needs to be optimized to improve adhesion depending on the substrate surface condition, such as roughness, was deposited between thermoelectric thin films and glass substrates. When the Cr buffer layer was 1 nm thick, the Seebeck coefficients and electrical conductivity of 1 µm thermoelectric thin films with the buffer layers were approximately equal to those of the thermoelectric films without the buffer layers. When the thickness of the Cr buffer layer was 1 µm, the same as the thermoelectric films, the Seebeck coefficients of the bilayer films were reduced by an electrical current flowing inside the Cr buffer layer and the generation of Cr 2 Te 3 . The open-circuit voltage of the thin-film thermoelectric modules decreased with an increase in the thickness of the Cr buffer layer, which was primarily induced by the electrical current flow. The reduction caused by the Cr 2 Te 3 generation was less than 10% of the total voltage generation of the modules without the Cr buffer layers. The voltage generation of thin-film thermoelectric modules could be controlled by the Cr buffer layer thickness. (paper)

  11. Compressive strain induced enhancement in thermoelectric-power-factor in monolayer MoS2 nanosheet

    International Nuclear Information System (INIS)

    Dimple; Jena, Nityasagar; De Sarkar, Abir

    2017-01-01

    Strain and temperature induced tunability in the thermoelectric properties in monolayer MoS 2 (ML-MoS 2 ) has been demonstrated using density functional theory coupled to semi-classical Boltzmann transport theory. Compressive strain, in general and uniaxial compressive strain (along the zig-zag direction), in particular, is found to be most effective in enhancing the thermoelectric power factor, owing to the higher electronic mobility and its sensitivity to lattice compression along this direction. Variation in the Seebeck coefficient and electronic band gap with strain is found to follow the Goldsmid–Sharp relation. n-type doping is found to raise the relaxation time-scaled thermoelectric power factor higher than p-type doping and this divide widens with increasing temperature. The relaxation time-scaled thermoelectric power factor in optimally n-doped ML-MoS 2 is found to undergo maximal enhancement under the application of 3% uniaxial compressive strain along the zig-zag direction, when both the ( direct ) electronic band gap and the Seebeck coefficient reach their maximum, while the electron mobility drops down drastically from 73.08 to 44.15 cm 2 V −1 s −1 . Such strain sensitive thermoelectric responses in ML-MoS 2 could open doorways for a variety of applications in emerging areas in 2D-thermoelectrics, such as on-chip thermoelectric power generation and waste thermal energy harvesting. (paper)

  12. Enhanced low-temperature thermoelectrical properties of BiTeCl grown by topotactic method

    International Nuclear Information System (INIS)

    Jacimovic, J.; Mettan, X.; Pisoni, A.; Gaal, R.; Katrych, S.; Demko, L.; Akrap, A.; Forro, L.; Berger, H.; Bugnon, P.; Magrez, A.

    2014-01-01

    We developed a topotactic strategy to grow BiTeCl single crystals. Structural characterization by means of X-ray diffraction was performed, and the high crystallinity of the material was proven. Measurements of the thermoelectrical coefficients electrical resistivity, thermoelectric power and thermal conductivity show an enhanced room temperature power factor of 20 μW cm −1 K −2 . The high value of the figure of merit (ZT = 0.17) confirms that BiTeCl is a promising material for engineering in thermoelectric applications at low temperature

  13. Methods for estimating water consumption for thermoelectric power plants in the United States

    Science.gov (United States)

    Diehl, Timothy H.; Harris, Melissa; Murphy, Jennifer C.; Hutson, Susan S.; Ladd, David E.

    2013-01-01

    Water consumption at thermoelectric power plants represents a small but substantial share of total water consumption in the U.S. However, currently available thermoelectric water consumption data are inconsistent and incomplete, and coefficients used to estimate consumption are contradictory. The U.S. Geological Survey (USGS) has resumed the estimation of thermoelectric water consumption, last done in 1995, based on the use of linked heat and water budgets to complement reported water consumption. This report presents the methods used to estimate freshwater consumption at a study set of 1,284 power plants based on 2010 plant characteristics and operations data.

  14. Rapid characterization of thermoelectric properties of composition spread (La1-xCax)VO3 films

    International Nuclear Information System (INIS)

    Itaka, K.; Wang, Q.J.; Minami, H.; Kawaji, H.; Koinuma, H.

    2004-01-01

    Vanadium oxides possess various interesting properties due to multivalence of a vanadium atom and attract our interest as a target material for the exploration of new applications. We investigated vanadates (La 1-x Ca x )VO 3 with a perovskite structure as thermoelectric (TE) materials because heavy electrons in vanadates are expected to generate large thermopower. To proceed the investigation of thermoelectric properties of the composition spread library more efficiently, we devised a new instrument of multi-channel measurement of their thermoelectric properties. The polarity of Seebeck coefficients changed from positive (0≤x≤0.2) to negative (0.2 3 (x∼0)

  15. Thermoelectric effect in nano-scaled lanthanides doped ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Otal, E H; Canepa, H R; Walsoee de Reca, N E [Centro de Investigacion en Solidos, CITEFA, San Juan Bautista de La Salle 4397 (B1603ALO) Villa Martelli, Buenos Aires (Argentina); Schaeuble, N; Aguirre, M H, E-mail: canepa@citefa.gov.a, E-mail: myriam.aguirre@empa.c [Solid State Chemistry and Catalysis, Empa, Swiss Federal Laboratories for Materials Testing and Research, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland)

    2009-05-01

    Start Nano-scaled ZnO with 1% Er doping was prepared by soft chemistry methods. The synthesis was carried out in anhydrous polar solvent to achieve a crystal size of a few nanometers. Resulting particles were processed as precipitates or multi layer films. Structural characterization was evaluated by X-Ray diffraction and transmission and scanning electron microscopy. In the case of films, UV-Vis characterization was made. The thermoelectrical properties of ZnO:Er were evaluated and compared with a typical good thermoelectric material ZnO:Al. Both materials have also shown high Seebeck coefficients and they can be considered as potential compounds for thermoelectric conversion.

  16. Methods of synthesizing thermoelectric materials

    Science.gov (United States)

    Ren, Zhifeng; Chen, Shuo; Liu, Wei-Shu; Wang, Hengzhi; Wang, Hui; Yu, Bo; Chen, Gang

    2016-04-05

    Methods for synthesis of thermoelectric materials are disclosed. In some embodiments, a method of fabricating a thermoelectric material includes generating a plurality of nanoparticles from a starting material comprising one or more chalcogens and one or more transition metals; and consolidating the nanoparticles under elevated pressure and temperature, wherein the nanoparticles are heated and cooled at a controlled rate.

  17. Thermoelectric properties of c-GeSb{sub 0.75}Te{sub 0.5} to h-GeSbTe{sub 0.5} thin films through annealing treatment effects

    Energy Technology Data Exchange (ETDEWEB)

    Vora-ud, Athorn, E-mail: athornvora-ud@snru.ac.th [Program of Physics, Faculty of Science and Technology, Sakon Nakhon Rajabhat University, Mueang District, Sakon Nakhon 47000 (Thailand); Thermoelectrics Research Center, Research and Development Institution, Sakon Nakhon Rajabhat University, Mueang District, Sakon Nakhon 47000 (Thailand); Horprathum, Mati, E-mail: mati.horprathum@nectec.or.th [National Electronics and Computer Technology Center, National Science and Technology Development Agency, Pathumthani 12120 (Thailand); Eiamchai, Pitak [National Electronics and Computer Technology Center, National Science and Technology Development Agency, Pathumthani 12120 (Thailand); Muthitamongkol, Pennapa; Chayasombat, Bralee; Thanachayanont, Chanchana [National Metal and Materials Technology Center, National Science and Technology Development Agency, Pathumthani 12120 (Thailand); Pankiew, Apirak [National Electronics and Computer Technology Center, National Science and Technology Development Agency, Pathumthani 12120 (Thailand); Klamchuen, Annop [National Nanotechnology Center, National Science and Technology Development Agency, Pathumthani 12120 (Thailand); Naenkieng, Daengdech; Plirdpring, Theerayuth; Harnwunggmoung, Adul [Thermoelectric and Nanotechnology Research Center, Faculty of Science and Technology, Rajamangala University of Technology Suvarnabhumi, Huntra Phranakhon, Si Ayutthaya 13000 (Thailand); Charoenphakdee, Anek [NANO-Thermoelectrics Research Center, Division of Applied Physics, Faculty of Sciences and Liberal Arts, Rajamangala University of Technology Isan, Mueng Nakorn Ratchasima 30000 Thailand (Thailand); Somkhunthot, Weerasak [Program of Physics, Faculty of Science and Technology, Loei Rajabhat University, Muang District, Loei 42000 (Thailand); and others

    2015-11-15

    Germanium–Antimony–Tellurium (Ge–Sb–Te) thin films were deposited on silicon wafers with 1-μm silicon dioxide (SiO{sub 2}/Si) by pulsed dc magnetron sputtering from a 99.99% GeSbTe target of 1:1:1 ratio at ambient temperature. The samples were annealed at 573, 623, 673, and 723 K for 3600 s in a vacuum state. The effects of the annealing treatment on phase identification, atomic composition, morphology and film thickness, carrier concentration, mobility, and Seebeck coefficient of the Ge–Sb–Te samples have been investigated by grazing-incidence X-ray diffraction, auger electron spectroscopy, field-emission scanning electron microscopy, Hall-effect measurements, and steady state method, respectively. The results demonstrated that the as-deposited Ge–Sb–Te sample was amorphous. Atomic composition of as-deposited and annealed films at 573 K and 623 K were GeSb{sub 0.75}Te{sub 0.5} while annealed films at 673 K and 723 K were GeSbTe{sub 0.5} due to Sb-rich GeSb{sub 0.75}Te{sub 0.5}. The samples annealed at 573 K and 623 K showed the crystal phases of cubic structure (c-GeSb{sub 0.75}Te{sub 0.5}) into hexagonal structure (h-GeSbTe{sub 0.5}) after annealing at 673 K and 723 K. The study demonstrated the insulating condition from the as-deposited GeSbTe film, and the changes towards the thermoelectric properties from the annealing treatments. The GeSbTe films annealed at 673 K yielded excellent thermoelectric properties with the electrical resistivity, Seebeck coefficient, and power factor at approximately 1.45 × 10{sup −5} Ωm, 71.07 μV K{sup −1}, and 3.48 × 10{sup −4} W m{sup −1} K{sup −2}, respectively. - Highlights: • GeSbTe thin films were successfully sputtered for thermoelectric properties. • GeSbTe films were examined among physical, electrical and thermoelectric properties. • Thermoelectric properties were discussed based on composition of the films.

  18. Spin Hall effects

    Science.gov (United States)

    Sinova, Jairo; Valenzuela, Sergio O.; Wunderlich, J.; Back, C. H.; Jungwirth, T.

    2015-10-01

    Spin Hall effects are a collection of relativistic spin-orbit coupling phenomena in which electrical currents can generate transverse spin currents and vice versa. Despite being observed only a decade ago, these effects are already ubiquitous within spintronics, as standard spin-current generators and detectors. Here the theoretical and experimental results that have established this subfield of spintronics are reviewed. The focus is on the results that have converged to give us the current understanding of the phenomena, which has evolved from a qualitative to a more quantitative measurement of spin currents and their associated spin accumulation. Within the experimental framework, optical-, transport-, and magnetization-dynamics-based measurements are reviewed and linked to both phenomenological and microscopic theories of the effect. Within the theoretical framework, the basic mechanisms in both the extrinsic and intrinsic regimes are reviewed, which are linked to the mechanisms present in their closely related phenomenon in ferromagnets, the anomalous Hall effect. Also reviewed is the connection to the phenomenological treatment based on spin-diffusion equations applicable to certain regimes, as well as the spin-pumping theory of spin generation used in many measurements of the spin Hall angle. A further connection to the spin-current-generating spin Hall effect to the inverse spin galvanic effect is given, in which an electrical current induces a nonequilibrium spin polarization. This effect often accompanies the spin Hall effect since they share common microscopic origins. Both can exhibit the same symmetries when present in structures comprising ferromagnetic and nonmagnetic layers through their induced current-driven spin torques or induced voltages. Although a short chronological overview of the evolution of the spin Hall effect field and the resolution of some early controversies is given, the main body of this review is structured from a pedagogical

  19. Study of the thermoelectric properties of Pb{sub (1-x)} Sn{sub x} Te; Contribution a l'etude des proprietes thermoelectriques de solutions Pb{sub (1-x)}Sn{sub x} Te

    Energy Technology Data Exchange (ETDEWEB)

    Borde, D [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-04-15

    The present work concerns the study of the electrical properties (thermoelectric power, electrical resistivity and Hall coefficient) of PbTe and SnTe crystals and of solid polycrystalline solutions of Pb{sub 1-x} Sn{sub x} Te (0.1 < x < 0.6) between 80 and 800 deg. K. From the temperature dependence of these properties and the effect of the addition, it has been possible to characterize the semiconductor nature of these solutions, and to approach their band structure; in particular the forbidden gap behaviour in these solutions has been analyzed and evidence for the existence of a double valence band has been obtained. (author) [French] Le present travail est relatif a l'etude des proprietes electriques, en particulier du pouvoir thermoelectrique de la resistivite electrique et du coefficient de Hall, de cristaux PbTe et SnTe, et de solutions solides polycristallines Pb{sub 1-x} Sn{sub x} Te (0,1 {<=} x {<=} 0,6) entre 80 et 800 deg. K. La variation de ces proprietes avec la temperature, ainsi que l'effet de l'addition de Sn sur celles-ci, ont permis de preciser le caractere semiconducteur de ces solutions, et contribue a la determination de leur structure de bandes, en particulier le comportement de la bande interdite dans ces solutions a ete analyse et l'existence d'une double bande de valence mise en evidence. (auteur)

  20. Electronic cooling using thermoelectric devices

    Energy Technology Data Exchange (ETDEWEB)

    Zebarjadi, M., E-mail: m.zebarjadi@rutgers.edu [Department of Mechanical and Aerospace Engineering, Rutgers University, Piscataway, New Jersey 08854 (United States); Institute of Advanced Materials, Devices, and Nanotechnology, Rutgers University, Piscataway, New Jersey 08854 (United States)

    2015-05-18

    Thermoelectric coolers or Peltier coolers are used to pump heat in the opposite direction of the natural heat flux. These coolers have also been proposed for electronic cooling, wherein the aim is to pump heat in the natural heat flux direction and from hot spots to the colder ambient temperature. In this manuscript, we show that for such applications, one needs to use thermoelectric materials with large thermal conductivity and large power factor, instead of the traditionally used high ZT thermoelectric materials. We further show that with the known thermoelectric materials, the active cooling cannot compete with passive cooling, and one needs to explore a new set of materials to provide a cooling solution better than a regular copper heat sink. We propose a set of materials and directions for exploring possible materials candidates suitable for electronic cooling. Finally, to achieve maximum cooling, we propose to use thermoelectric elements as fins attached to copper blocks.

  1. Thermoelectric Properties of Two-Dimensional Molybdenum-based MXenes

    KAUST Repository

    Kim, Hyunho

    2017-07-05

    MXenes are an interesting class of 2D materials consisting of transition metal carbides and nitrides, which are currently a subject of extensive studies. Although there have been theoretical calculations estimating the thermoelectric properties of MXenes, no experimental measurements have been reported so far. In this report, three compositions of Mo-based MXenes (Mo2CTx, Mo2TiC2Tx, and Mo2Ti2C3Tx) have been synthesized and processed into free-standing binder-free papers by vacuum-assisted filtration, and their electrical and thermoelectric properties are measured. Upon heating to 800 K, these MXene papers exhibit high conductivity and n-type Seebeck coefficient. The thermoelectric power reaches 3.09×10-4 W m-1 K-2 at 803 K for the Mo2TiC2Tx MXene. While the thermoelectric properties of MXenes do not reach that of the best materials, they exceed their parent ternary and quaternary layered carbides. Mo2TiC2Tx shows the highest electrical conductivity in combination with the largest Seebeck coefficient of the three 2D materials studied.

  2. Theory of fractional quantum hall effect

    International Nuclear Information System (INIS)

    Kostadinov, I.Z.

    1985-08-01

    A theory of the Fractional Quantum Hall Effect is constructed based on magnetic flux fractionization, which lead to instability of the system against selfcompression. A theorem is proved stating that arbitrary potentials fail to lift a specific degeneracy of the Landau level. For the case of 1/3 fractional filling a model 3-particles interaction is constructed breaking the symmetry. The rigid 3-particles wave function plays the role of order parameter. In a BCS type of theory the gap in the single particles spectrum is produced by the 3-particles interaction. The mean field critical behaviour and critical parameters are determined as well as the Ginsburg-Landau equation coefficients. The Hall conductivity is calculated from the first principles and its temperature dependence is found. The simultaneous tunnelling of 3,5,7 etc. electrons and quantum interference effects are predicted. (author)

  3. Suitable reverberation time for halls for rock and pop music

    DEFF Research Database (Denmark)

    Adelman-Larsen, Niels Werner; Thompson, Eric Robert; Gade, Anders Christian

    2010-01-01

    The existing body of literature regarding the acoustic design of concert halls has focused almost exclusively on classical music, although there are many more performances of popular music, including rock and pop. Objective measurements were made of the acoustics of 20 rock music venues in Denmark....... The best-rated halls in the study have reverberation times that are approximately frequency independent from 0.6 to 1.2 s for hall volumes from 1000 to 6000 m3. The worst rated halls in the study had significantly higher reverberation times in the 63 and 125 Hz bands. Since most audiences at rock concerts...... are standing, absorption coefficients were measured with a standing audience from 63 Hz to 4 kHz. These measurements showed that a standing audience absorbs about five times as much energy in mid-/high-frequency bands as in low-frequency bands....

  4. Thermoelectric generation coupling methanol steam reforming characteristic in microreactor

    International Nuclear Information System (INIS)

    Wang, Feng; Cao, Yiding; Wang, Guoqiang

    2015-01-01

    Thermoelectric (TE) generator converts heat to electric energy by thermoelectric material. However, heat removal on the cold side of the generator represents a serious challenge. To address this problem and for improved energy conversion, a thermoelectric generation process coupled with methanol steam reforming (SR) for hydrogen production is designed and analyzed in this paper. Experimental study on the cold spot character in a micro-reactor with monolayer catalyst bed is first carried out to understand the endothermic nature of the reforming as the thermoelectric cold side. A novel methanol steam reforming micro-reactor heated by waste heat or methanol catalytic combustion for hydrogen production coupled with a thermoelectric generation module is then simulated. Results show that the cold spot effect exists in the catalyst bed under all conditions, and the associated temperature difference first increases and then decreases with the inlet temperature. In the micro-reactor, the temperature difference between the reforming and heating channel outlets decreases rapidly with an increase in thermoelectric material's conductivity coefficient. However, methanol conversion at the reforming outlet is mainly affected by the reactor inlet temperature; while at the combustion outlet, it is mainly affected by the reactor inlet velocity. Due to the strong endothermic effect of the methanol steam reforming, heat supply of both kinds cannot balance the heat needed at reactor local areas, resulting in the cold spot at the reactor inlet. When the temperature difference between the thermoelectric module's hot and cold sides is 22 K, the generator can achieve an output voltage of 55 mV. The corresponding molar fraction of hydrogen can reach about 62.6%, which corresponds to methanol conversion rate of 72.6%. - Highlights: • Cold spot character of methanol steam reforming was studied through experiment. • Thermoelectric generation Coupling MSR process has been

  5. Paired Hall states

    International Nuclear Information System (INIS)

    Greiter, M.

    1992-01-01

    This dissertation contains a collection of individual articles on various topics. Their significance in the corresponding field as well as connections between them are emphasized in a general and comprehensive introduction. In the first article, the author explores the consequences for macroscopic effective Lagrangians of assuming that the momentum density is proportional to the flow of conserved current. The universal corrections obtained for the macroscopic Lagrangian of a superconductor describe the London Hall effect, and provide a fully consistent derivation of it. In the second article, a heuristic principle is proposed for quantized Hall states: the existence and incompressibility of fractionally quantized Hall states is explained by an argument based on an adiabatic localization of magnetic flux, the process of trading uniform flux for an equal amount of fictitious flux attached to the particles. This principle is exactly implemented in the third article. For a certain class of model Hamiltonians, the author obtains Laughlin's Jastrow type wave functions explicitly from a filled Landau level, by smooth extrapolation in quantum statistics. The generalization of this analysis to the torus geometry shows that theorems restricting the possibilities of quantum statistics on closed surfaces are circumvented in the presence of a magnetic field. In the last article, the existence is proposed of a novel incompressible quantum liquid, a paired Hall state, at a half filled Landau level. This state arises adiabatically from free fermions in zero magnetic field, and reduces to a state previously proposed by Halperin in the limit of tightly bound pairs. It supports unusual excitations, including neutral fermions and charge e/4 anyons with statistical parameter θ = π/8

  6. Guild Hall retrofit

    Energy Technology Data Exchange (ETDEWEB)

    1984-08-01

    This report demonstrates the economic viability of an exterior rewrap retrofit performed on a public community facility for the performing arts. This facility originally consisted of two mess halls built by the American army. The exterior retrofit consisted of constructing a super-insulated passageway to link the two halls as well as completely wrapping the facility with six millimetre polyethylene to provide an airtight barrier. The roofs and walls were reinsulated and insulation levels were increased to RSI 10.5 in the ceilings and RSI 7.7 in the walls. The installation of a propane fuelled furnace was also included in the retrofit package. Prior to the renovations and retrofitting, the Guild Hall facility was almost unusable. The demonstration project transformed the cold, drafty buildings into an attractive, comfortable and functional centre for the performing arts. Heating requirements have been reduced to 500 MJ/m {sup 2} of floor space annually compared to a predicted 1,760 MJ/m{sup 2} of floor space based on HOTCAN analysis of the heating requirements without the energy conservation measures. 9 figs., 10 tabs.

  7. Quantum critical Hall exponents

    CERN Document Server

    Lütken, C A

    2014-01-01

    We investigate a finite size "double scaling" hypothesis using data from an experiment on a quantum Hall system with short range disorder [1-3]. For Hall bars of width w at temperature T the scaling form is w(-mu)T(-kappa), where the critical exponent mu approximate to 0.23 we extract from the data is comparable to the multi-fractal exponent alpha(0) - 2 obtained from the Chalker-Coddington (CC) model [4]. We also use the data to find the approximate location (in the resistivity plane) of seven quantum critical points, all of which closely agree with the predictions derived long ago from the modular symmetry of a toroidal sigma-model with m matter fields [5]. The value nu(8) = 2.60513 ... of the localisation exponent obtained from the m = 8 model is in excellent agreement with the best available numerical value nu(num) = 2.607 +/- 0.004 derived from the CC-model [6]. Existing experimental data appear to favour the m = 9 model, suggesting that the quantum Hall system is not in the same universality class as th...

  8. Ballistic thermoelectric transport in a Luttinger liquid

    International Nuclear Information System (INIS)

    Ivanov, Y V

    2010-01-01

    The Seebeck and Peltier coefficients of a homogeneous Luttinger liquid are calculated in the ballistic regime. Nonlinearity of the electron spectrum is taken into account. It is shown that, in the framework of the defined approximations, the thermoelectric power of a Luttinger liquid is equal to zero, in agreement with the exponentially small thermopower of a one-dimensional degenerate Fermi gas. The Peltier coefficient is controlled by a nonequilibrium state of the system. It is finite and renormalized by the interaction in the case of a convective flow of a Luttinger liquid. The zero modes of bosonic excitations and the dispersion-induced contribution to the electric current operator are taken into account in calculations.

  9. High temperature hall effect measurement system design, measurement and analysis

    Science.gov (United States)

    Berkun, Isil

    A reliable knowledge of the transport properties of semiconductor materials is essential for the development and understanding of a number of electronic devices. In this thesis, the work on developing a Hall Effect measurement system with software based data acqui- sition and control for a temperature range of 300K-700K will be described. A system was developed for high temperature measurements of materials including single crystal diamond, poly-crystalline diamond, and thermoelectric compounds. An added capability for monitor- ing the current versus voltage behavior of the contacts was used for studying the influence of ohmic and non-ohmic contacts on Hall Effect measurements. The system has been primar- ily used for testing the transport properties of boron-doped single crystal diamond (SCD) deposited in a microwave plasma-assisted chemical vapor deposition (MPCVD) reactor [1]. Diamond has several outstanding properties that are of high interest for its development as an electronic material. These include a relatively wide band gap of 5.5 (eV), high thermal conductivity, high mobility, high saturation velocity, and a high breakdown voltage. For a temperature range of 300K-700K, IV curves, Hall mobilities and carrier concentrations are shown. Temperature dependent Hall effect measurements have shown carrier concentrations from below 1017cm --3 to approximately 1021 cm--3 with mobilities ranging from 763( cm2/V s) to 0.15(cm 2/V s) respectively. Simulation results have shown the effects of single and mixed carrier models, activation energies, effective mass and doping concentrations. These studies have been helpful in the development of single crystal diamond for diode applications. Reference materials of Ge and GaAs were used to test the Hall Effect system. The system was also used to characterize polycrystalline diamond deposited on glass for electrochemical applications, and Mg2(Si,Sn) compounds which are promising candidates of low-cost, light weight and non

  10. Silicon Germanium Quantum Well Thermoelectrics

    Science.gov (United States)

    Davidson, Anthony Lee, III

    Today's growing energy demands require new technologies to provide high efficiency clean energy. Thermoelectrics that convert heat to electrical energy directly can provide a method for the automobile industry to recover waste heat to power vehicle electronics, hence improving fuel economy. If large enough efficiencies can be obtained then the internal combustion engine could even be replaced. Exhaust temperature for automotive application range from 400 to 800 K. In this temperature range the current state of the art materials are bulk Si1-xGex alloys. By alternating layers of Si and Si1-xGex alloy device performance may be enhanced through quantum well effects and variations in material thermal properties. In this study, superlattices designed for in-plane operation with varying period and crystallinity are examined to determine the effect on electrical and thermal properties. In-plane electrical resistivity of these materials was found to be below the bulk material at a similar doping at room temperature, confirming the role of quantum wells in electron transport. As period is reduced in the structures boundary scattering limits electron propagation leading to increased resistivity. The Seebeck coefficient measured at room temperature is higher than the bulk material, additionally lending proof to the effects of quantum wells. When examining cross-plane operation the low doping in the Si layers of the device produce high resistivity resulting from boundary scattering. Thermal conductivity was measured from 77 K up to 674 K and shows little variation due to periodicity and temperature, however an order of magnitude reduction over bulk Si1-xGex is shown in all samples. A model is developed that suggests a combination of phonon dispersion effects and strong boundary scattering. Further study of the phonon dispersion effects was achieved through the examination of the heat capacity by combining thermal diffusivity with thermal conductivity. All superlattices show a

  11. Yb14MnSb11 as a High-Efficiency Thermoelectric Material

    Science.gov (United States)

    Snyder, G. Jeffrey; Gascoin, Franck; Brown, Shawna; Kauzlarich, Susan

    2009-01-01

    Yb14MnSb11 has been found to be wellsuited for use as a p-type thermoelectric material in applications that involve hotside temperatures in the approximate range of 1,200 to 1,300 K. The figure of merit that characterizes the thermal-to-electric power-conversion efficiency is greater for this material than for SiGe, which, until now, has been regarded as the state-of-the art high-temperature ptype thermoelectric material. Moreover, relative to SiGe, Yb14MnSb11 is better suited to incorporation into a segmented thermoelectric leg that includes the moderate-temperature p-type thermoelectric material CeFe4Sb12 and possibly other, lower-temperature p-type thermoelectric materials. Interest in Yb14MnSb11 as a candidate high-temperature thermoelectric material was prompted in part by its unique electronic properties and complex crystalline structure, which place it in a class somewhere between (1) a class of semiconducting valence compounds known in the art as Zintl compounds and (2) the class of intermetallic compounds. From the perspective of chemistry, this classification of Yb14MnSb11 provides a first indication of a potentially rich library of compounds, the thermoelectric properties of which can be easily optimized. The concepts of the thermoelectric figure of merit and the thermoelectric compatibility factor are discussed in Compatibility of Segments of Thermo - electric Generators (NPO-30798), which appears on page 55. The traditional thermoelectric figure of merit, Z, is defined by the equation Z = alpha sup 2/rho K, where alpha is the Seebeck coefficient, rho is the electrical resistivity, and k is the thermal conductivity.

  12. Thermoelectric transport properties of high mobility organic semiconductors

    Science.gov (United States)

    Venkateshvaran, Deepak; Broch, Katharina; Warwick, Chris N.; Sirringhaus, Henning

    2016-09-01

    Transport in organic semiconductors has traditionally been investigated using measurements of the temperature and gate voltage dependent mobility of charge carriers within the channel of organic field-effect transistors (OFETs). In such measurements, the behavior of charge carrier mobility with temperature and gate voltage, studied together with carrier activation energies, provide a metric to quantify the extent of disorder within these van der Waals bonded materials. In addition to the mobility and activation energy, another potent but often-overlooked transport coefficient useful in understanding disorder is the Seebeck coefficient (also known as thermoelectric power). Fundamentally, the Seebeck coefficient represents the entropy per charge carrier in the solid state, and thus proves powerful in distinguishing materials in which charge carriers move freely from those where a high degree of disorder causes the induced carriers to remain trapped. This paper briefly covers the recent highlights in the field of organic thermoelectrics, showing how significant strides have been made both from an applied standpoint as well as from a viewpoint of fundamental thermoelectric transport physics. It shall be illustrated how thermoelectric transport parameters in organic semiconductors can be tuned over a significant range, and how this tunability facilitates an enhanced performance for heat-to-electricity conversion as well as quantifies energetic disorder and the nature of the density of states (DOS). The work of the authors shall be spotlighted in this context, illustrating how Seebeck coefficient measurements in the polymer indacenodithiophene-co-benzothiadiazole (IDTBT) known for its ultra-low degree of torsion within the polymer backbone, has a trend consistent with low disorder. 1 Finally, using examples of the small molecules C8-BTBT and C10-DNTT, it shall be discussed how the Seebeck coefficient can aid the estimation of the density and distribution of trap states

  13. Thermoelectric Properties of Silicon Germanium: An Investigation of the Reduction of Lattice Thermal Conductivity and Enhancement of Power Factor

    Science.gov (United States)

    Lahwal, Ali Sadek

    theoretical density. At room temperature, we observed approximately a 50% reduction in the lattice thermal conductivity as result of adding 10 volume % YSZ to the Si80Ge 20P2 host matrix. A phenomenological Callaway model was used to corroborate both the temperature dependence and the reduction of kappaL over the measured temperature range (30--800K) of both Si80Ge 20P2 and Si80 Ge20P2 + YSZ samples. The observed kappaL is discussed and interpreted in terms of various phonon scattering mechanisms including alloy disorder, the Umklapp process, and boundary scattering. Specifically, a contribution from the phonon scattering by YSZ nanoparticles was further included to account for the kappaL of Si80Ge20P 2 +YSZ samples. In addition, a core shell treatment was applied onto p-type SiGe. Ball milled Si80Ge 20B1.7 alloys were coated with YSZ with different thicknesses and characterized upon their thermoelectric properties. The results show that YSZ coatings are capable of greatly reducing the thermal conductivity especially the lattice thermal conductivity. These coatings are applied directly onto mechanical alloyed (MA), p-type SiGe. The only concern about the YSZ core shelling is that these coatings turned out to be too thick degrading the electrical conductivity of the material. Our second approach, in a parallel work, is to enhance the thermoelectric power factor as well as the dimensionless figure of merit ZT of: (i) single element spark plasma sintered (SE SPS) SiGe alloys. (ii) ball milled (BM) SiGe , via sodium boron hydrate (NaBH4) alkali-metal-salt treatment. Sodium boron hydrate alkali-metal-salt thermally decomposes (decompose temperature 600 ˜ 700 K) to elemental solid sodium, solid boron, and hydrogen gas, as binary phases, e.g., Na-B or Na-H, or as a ternary phase, Na- B-H. Upon SPS at 1020 K, it is inferred that Na dopes SiGe while forming Na 2B29 phase, leading to a reduction in the electrical resistivity without much degrading the Seebeck coefficient, consequently

  14. Extraordinary Hall effect in Co implanted GaAs hybrid magnetic semiconductors

    International Nuclear Information System (INIS)

    Honda, S.; Tateishi, K.; Nawate, M.; Sakamoto, I.

    2004-01-01

    Hybrid Co/GaAs ferromagnetic semiconductors have been prepared by implantation method. In these samples, sheet resistance shows weak temperature dependence, and the extraordinary Hall effect with positive coefficient is observed. In small Co content samples, Hall resistance increases with decreasing temperature and maximum value of 3.6x10 -2 Ω is obtained at 150 K

  15. Hall effect in the normal phase of the organic superconductor (TMTSF)2PF6

    DEFF Research Database (Denmark)

    Moser, J.; Cooper, J.R.; Jerome, D.

    2000-01-01

    We report accurate Hall effect measurements performed in the normal phase of the quasi-one-dimensional organic conductor (TMTSF)(2)PF(6) at ambient pressure. The Hall coefficient is found to be strongly temperature dependent all the way from 300 K down to the spin density wave onset arising aroun...

  16. Microwatt thermoelectric generator

    International Nuclear Information System (INIS)

    Hittman, F.; Bustard, T.S.

    1976-01-01

    A microwatt thermoelectric generator suitable for implanting in the body is described. The generator utilizes a nuclear energy source. Provision is made for temporary electrical connection to the generator for testing purposes, and for ensuring that the heat generated by the nuclear source does not bypass the pile. Also disclosed is a getter which is resistant to shrinkage during sintering, and a foil configuration for controlling the radiation of heat from the nuclear source to the hot plate of the pile. 2 claims, 4 drawing figures

  17. Microwatt thermoelectric generator

    International Nuclear Information System (INIS)

    Barr, H.N.

    1978-01-01

    A microwatt thermoelectric generator suitable for implanting in the body is described. The disclosed generator utilizes a nuclear energy source. Provision is made for temporary electrical connection to the generator for testing purposes, and for ensuring that the heat generated by the nuclear source does not bypass the pile. Also disclosed is a getter which is resistant to shrinkage during sintering, and a foil configuration for controlling the radiation of heat from the nuclear source to the hot plate of the pile. 4 claims, 4 figures

  18. Superlattices in thermoelectric applications

    International Nuclear Information System (INIS)

    Sofo, J.O.; Mahan, G.D.; Tennessee Univ., Knoxville, TN

    1994-08-01

    The electrical conductivity, thermopower and the electronic contribution to the thermal conductivity of a superlattice, are calculated with the electric field and the thermal gradient applied parallel to the interfaces. Tunneling between quantum wells is included. The broadening of the lowest subband when the period of the superlattice is decreased produces a reduction of the thermoelectric figure of merit. However, we found that a moderate increase of the figure of merit may be expected for intermediate values of the period, due to the enhancement of the density of states produced by the superlattice structure

  19. Semiconductor thermoelectric generators

    CERN Document Server

    Fahrner, Wolfgang R

    2009-01-01

    It is well-known that fossil fuels are being rapidly depleted, and that atomic power is rejected by many people. As a consequence, there is a strong trend towards alternative sources such as wind, photovoltaics, solar heat and biomass. Strangely enough, quite another power source is generally neglected: namely, the thermoelectric generator (a device which converts heat, i.e. thermal energy, directly into electrical energy). The reason for this neglect is probably the low conversion efficiency, which is of the order of a few percent at most. However, there are two arguments in favor of the ther

  20. Topological Hall and Spin Hall Effects in Disordered Skyrmionic Textures

    OpenAIRE

    N'diaye, P. B.; Akosa, C. A.; Manchon, A.

    2016-01-01

    We carry out a throughout study of the topological Hall and topological spin Hall effects in disordered skyrmionic systems: the dimensionless (spin) Hall angles are evaluated across the energy band structure in the multiprobe Landauer-B\\"uttiker formalism and their link to the effective magnetic field emerging from the real space topology of the spin texture is highlighted. We discuss these results for an optimal skyrmion size and for various sizes of the sample and found that the adiabatic a...

  1. Thermoelectric properties of doped BaHfO_3

    International Nuclear Information System (INIS)

    Dixit, Chandra Kr.; Bhamu, K. C.; Sharma, Ramesh

    2016-01-01

    We have studied the structural stability, electronic structure, optical properties and thermoelectric properties of doped BaHfO_3 by full potential linearized augmented plane wave (FP-LAPW) method. The electronic structure of BaHfO_3 doped with Sr shows enhances the indirect band gaps of 3.53 eV, 3.58 eV. The charge density plots show strong ionic bonding in Ba-Hf, and ionic and covalent bonding between Hf and O. Calculations of the optical spectra, viz., the dielectric function, refractive index and extinction coefficient are performed for the energy range are calculated and analyzed. Thermoelectric properties of semi conducting are also reported first time. The doped BaHfO_3 is approximately wide band gap semiconductor with the large p-type Seebeck coefficient. The power factor of BaHfO_3 is increased with Sr doping, decreases because of low electrical resistivity and thermal conductivity.

  2. Quantum hall effect. A perspective

    International Nuclear Information System (INIS)

    Aoki, Hideo

    2006-01-01

    Novel concepts and phenomena are emerging recently in the physics of quantum Hall effect. This article gives an overview, which starts from the fractional quantum Hall system viewed as an extremely strongly correlated system, and move on to present various phenomena involving internal degrees of freedom (spin and layer), non-equilibrium and optical properties, and finally the spinoff to anomalous Hall effect and the rotating Bose-Einstein condensate. (author)

  3. Thermal characteristics of combined thermoelectric generator and refrigeration cycle

    International Nuclear Information System (INIS)

    Yilbas, Bekir S.; Sahin, Ahmet Z.

    2014-01-01

    Highlights: • TEM location in between the evaporator and condenser results in low coefficient of performance. • TEM location in between condenser and its ambient improves coefficient of performance of the combined system. • High temperature ratio enhances coefficient of performance of combined system. • Certain values of parameters enhance combined system performance. - Abstract: A combined thermal system consisting of a thermoelectric generator and a refrigerator is considered and the effect of location of the thermoelectric generator, in the refrigeration cycle, on the performance characteristics of the combined system is investigated. The operating conditions and their influence on coefficient of performance of the combined system are examined through introducing the dimensionless parameters, such as λ(λ = Q HTE /Q H , where Q HTE is heat transfer to the thermoelectric generator from the condenser, Q H is the total heat transfer from the condenser to its ambient), temperature ratio (θ L = T L /T H , where T L is the evaporator temperature and T H is the condenser temperature), r C (r C = C L /C H , where C L is the thermal capacitance due to heat transfer to evaporator and C H , is the thermal capacitance due to heat rejected from the condenser), θ W (θ W = T W /T H , where T W is the ambient temperature), θ C (θ C = T C /T H , where T C is the cold space temperature). It is found that the location of the thermoelectric generator in between the condenser and the evaporator decreases coefficient of performance of the combined system. Alternatively, the location of thermoelectric device in between the condenser and its ambient enhances coefficient of performance of the combined system. The operating parameters has significant effect on the performance characteristics of the combined system; in which case temperature ratio (θ L ) within the range of 0.68–0.70, r C = 2.5, θ W = 0.85, and θ C = 0.8 improve coefficient of performance of the

  4. Magnesium Hall Thruster

    Science.gov (United States)

    Szabo, James J.

    2015-01-01

    This Phase II project is developing a magnesium (Mg) Hall effect thruster system that would open the door for in situ resource utilization (ISRU)-based solar system exploration. Magnesium is light and easy to ionize. For a Mars- Earth transfer, the propellant mass savings with respect to a xenon Hall effect thruster (HET) system are enormous. Magnesium also can be combusted in a rocket with carbon dioxide (CO2) or water (H2O), enabling a multimode propulsion system with propellant sharing and ISRU. In the near term, CO2 and H2O would be collected in situ on Mars or the moon. In the far term, Mg itself would be collected from Martian and lunar regolith. In Phase I, an integrated, medium-power (1- to 3-kW) Mg HET system was developed and tested. Controlled, steady operation at constant voltage and power was demonstrated. Preliminary measurements indicate a specific impulse (Isp) greater than 4,000 s was achieved at a discharge potential of 400 V. The feasibility of delivering fluidized Mg powder to a medium- or high-power thruster also was demonstrated. Phase II of the project evaluated the performance of an integrated, highpower Mg Hall thruster system in a relevant space environment. Researchers improved the medium power thruster system and characterized it in detail. Researchers also designed and built a high-power (8- to 20-kW) Mg HET. A fluidized powder feed system supporting the high-power thruster was built and delivered to Busek Company, Inc.

  5. Spin Hall effect transistor

    Czech Academy of Sciences Publication Activity Database

    Wunderlich, Joerg; Park, B.G.; Irvine, A.C.; Zarbo, Liviu; Rozkotová, E.; Němec, P.; Novák, Vít; Sinova, Jairo; Jungwirth, Tomáš

    2010-01-01

    Roč. 330, č. 6012 (2010), s. 1801-1804 ISSN 0036-8075 R&D Projects: GA AV ČR KAN400100652; GA MŠk LC510 EU Projects: European Commission(XE) 215368 - SemiSpinNet Grant - others:AV ČR(CZ) AP0801 Program:Akademická prémie - Praemium Academiae Institutional research plan: CEZ:AV0Z10100521 Keywords : spin Hall effect * spintronics * spin transistor Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 31.364, year: 2010

  6. Convergence of valence bands for high thermoelectric performance for p-type InN

    International Nuclear Information System (INIS)

    Li, Hai-Zhu; Li, Ruo-Ping; Liu, Jun-Hui; Huang, Ming-Ju

    2015-01-01

    Band engineering to converge the bands to achieve high valley degeneracy is one of effective approaches for designing ideal thermoelectric materials. Convergence of many valleys in the valence band may lead to a high Seebeck coefficient, and induce promising thermoelectric performance of p-type InN. In the current work, we have systematically investigated the electronic structure and thermoelectric performance of wurtzite InN by using the density functional theory combined with semiclassical Boltzmann transport theory. Form the results, it can be found that intrinsic InN has a large Seebeck coefficient (254 μV/K) and the largest value of Z e T is 0.77. The transport properties of p-type InN are better than that of n-type one at the optimum carrier concentration, which mainly due to the large Seebeck coefficient for p-type InN, although the electrical conductivity of n-type InN is larger than that of p-type one. We found that the larger Seebeck coefficient for p-type InN may originate from the large valley degeneracy in the valence band. Moreover, the low minimum lattice thermal conductivity for InN is one key factor to become a good thermoelectric material. Therefore, p-type InN could be a potential material for further applications in the thermoelectric area.

  7. Compliant Interfacial Layers in Thermoelectric Devices

    Science.gov (United States)

    Firdosy, Samad A. (Inventor); Li, Billy Chun-Yip (Inventor); Ravi, Vilupanur A. (Inventor); Fleurial, Jean-Pierre (Inventor); Caillat, Thierry (Inventor); Anjunyan, Harut (Inventor)

    2017-01-01

    A thermoelectric power generation device is disclosed using one or more mechanically compliant and thermally and electrically conductive layers at the thermoelectric material interfaces to accommodate high temperature differentials and stresses induced thereby. The compliant material may be metal foam or metal graphite composite (e.g. using nickel) and is particularly beneficial in high temperature thermoelectric generators employing Zintl thermoelectric materials. The compliant material may be disposed between the thermoelectric segments of the device or between a thermoelectric segment and the hot or cold side interconnect of the device.

  8. Interfacial reactions in thermoelectric modules

    KAUST Repository

    Wu, Hsin-jay; Wu, Albert T.; Wei, Pei-chun; Chen, Sinn-wen

    2018-01-01

    Engineering transport properties of thermoelectric (TE) materials leads to incessantly breakthroughs in the zT values. Nevertheless, modular design holds a key factor to advance the TE technology. Herein, we discuss the structures of TE module

  9. Material parameters for thermoelectric performance

    Indian Academy of Sciences (India)

    The thermoelectric performance of a thermoelement is ideally defined in terms of the so-called ... However, there are other parameters which are fairly good indicators ... Whereas a final deciding factor reflecting on .... matter of a future work.

  10. High-performance thermoelectric materials based on ternary TiO2/CNT/PANI composites.

    Science.gov (United States)

    Erden, Fuat; Li, Hui; Wang, Xizu; Wang, FuKe; He, Chaobin

    2018-04-04

    In the present work, we report the fabrication of high-performance thermoelectric materials using TiO2/CNT/PANI ternary composites. We showed that a conductivity of ∼2730 S cm-1 can be achieved for the binary CNT (70%)/PANI (30%) composite, which is the highest recorded value for the reported CNT/PANI composites. We further demonstrated that the Seebeck coefficient of CNT/PANI composites could be enhanced by incorporating TiO2 nanoparticles into the binary CNT/PANI composites, which could be attributed to lower carrier density and the energy scattering of low-energy carriers at the interfaces of TiO2/a-CNT and TiO2/PANI. The resulting TiO2/a-CNT/PANI ternary system exhibits a higher Seebeck coefficient and enhanced thermoelectric power. Further optimization of the thermoelectric power was achieved by water treatment and by tuning the processing temperature. A high thermoelectric power factor of 114.5 μW mK-2 was obtained for the ternary composite of 30% TiO2/70% (a-CNT (70%)/PANI (30%)), which is the highest reported value among the reported PANI based ternary composites. The improvement of thermoelectric performance by incorporation of TiO2 suggests a promising approach to enhance power factor of organic thermoelectric materials by judicial tuning of the carrier concentration and electrical conductivity.

  11. Preparation and thermoelectric properties of p-Type PrzFe4-xCoxSb12 skutterudites

    International Nuclear Information System (INIS)

    Shin, Dong-Kil; Kim, Il-Ho

    2014-01-01

    p-Type Pr z Fe 4-x Co x Sb 12 (z = 0.8, 1.0 and x = 0, 0.5, 1.0) skutterudites were synthesized by encapsulated melting and annealing and were consolidated with hot pressing. The effects of Pr filling and Co substitution for Fe (charge compensation) on the transport and the thermoelectric properties were examined. A few secondary phases, such as Sb and FeSb 2 , were formed together with the skutterudite phase, but the formation was suppressed with increasing Pr and Co contents. We confirmed that Pr filled in the voids and that Co was substituted for Fe in all specimens because the lattice constant increased with increasing Pr content and decreased with increasing Co content. The electrical conductivity decreased slightly with increasing temperature, showing degenerate semiconductor characteristics. The Hall and the Seebeck coefficients showed positive signs, indicating that the major carriers were holes (p-type conduction). The electrical conductivity and the thermal conductivity were decreased due to a decrease in the carrier concentration with increasing Pr and Co contents. As a result, the dimensionless figure of merit, ZT, was improved by Pr filling and Co substitution, and a maximum ZT = 0.89 was obtained at 723 K for Pr 0.8 Fe 3 CoSb 12 .

  12. Enhancement of thermoelectric properties by energy filtering: Theoretical potential and experimental reality in nanostructured ZnSb

    Energy Technology Data Exchange (ETDEWEB)

    Berland, Kristian [Centre for Materials Science and Nanotechnology (SMN), University of Oslo, P.O.B. 1126 Blindern, NO-0318 Oslo (Norway); Song, Xin [Department of Physics, University of Oslo, P.O.B. 1048 Blindern, NO-0316 Oslo (Norway); Carvalho, Patricia A. [SINTEF Materials and Chemistry, Forskningsveien 1, NO-0314 Oslo (Norway); Persson, Clas; Finstad, Terje G. [Centre for Materials Science and Nanotechnology (SMN), University of Oslo, P.O.B. 1126 Blindern, NO-0318 Oslo (Norway); Department of Physics, University of Oslo, P.O.B. 1048 Blindern, NO-0316 Oslo (Norway); Løvvik, Ole Martin [Department of Physics, University of Oslo, P.O.B. 1048 Blindern, NO-0316 Oslo (Norway); SINTEF Materials and Chemistry, Forskningsveien 1, NO-0314 Oslo (Norway)

    2016-03-28

    Energy filtering has been suggested by many authors as a means to improve thermoelectric properties. The idea is to filter away low-energy charge carriers in order to increase Seebeck coefficient without compromising electronic conductivity. This concept was investigated in the present paper for a specific material (ZnSb) by a combination of first-principles atomic-scale calculations, Boltzmann transport theory, and experimental studies of the same system. The potential of filtering in this material was first quantified, and it was as an example found that the power factor could be enhanced by an order of magnitude when the filter barrier height was 0.5 eV. Measured values of the Hall carrier concentration in bulk ZnSb were then used to calibrate the transport calculations, and nanostructured ZnSb with average grain size around 70 nm was processed to achieve filtering as suggested previously in the literature. Various scattering mechanisms were employed in the transport calculations and compared with the measured transport properties in nanostructured ZnSb as a function of temperature. Reasonable correspondence between theory and experiment could be achieved when a combination of constant lifetime scattering and energy filtering with a 0.25 eV barrier was employed. However, the difference between bulk and nanostructured samples was not sufficient to justify the introduction of an energy filtering mechanism. The reasons for this and possibilities to achieve filtering were discussed in the paper.

  13. Thermoelectric materials -- New directions and approaches. Materials Research Society symposium proceedings, Volume 478

    Energy Technology Data Exchange (ETDEWEB)

    Tritt, T M; Kanatzidis, M G; Lyon, Jr, H B; Mahan, G D [eds.

    1997-07-01

    Thermoelectric materials are utilized in a wide variety of applications related to solid-state refrigeration or small-scale power generation. Thermoelectric cooling is an environmentally friendly method of small-scale cooling in specific applications such as cooling computer chips and laser diodes. Thermoelectric materials are used in a wide range of applications from beverage coolers to power generation for deep-space probes such as the Voyager missions. Over the past thirty years, alloys based on the Bi-Te systems {l{underscore}brace}(Bi{sub 1{minus}x}Sb{sub x}){sub 2} (Te{sub 1{minus}x}Se{sub x}){sub 3}{r{underscore}brace} and Si{sub 1{minus}x}Ge{sub x} systems have been extensively studied and optimized for their use as thermoelectric materials to perform a variety of solid-state thermoelectric refrigeration and power generation tasks. Despite this extensive investigation of the traditional thermoelectric materials, there is still a substantial need and room for improvement, and thus, entirely new classes of compounds will have to be investigated. Over the past two-to-three years, research in the field of thermoelectric materials has been undergoing a rapid rebirth. The enhanced interest in better thermoelectric materials has been driven by the need for much higher performance and new temperature regimes for thermoelectric devices in many applications. The essence of a good thermoelectric is given by the determination of the material's dimensionless figure of merit, ZT = ({alpha}{sup 2}{sigma}/{lambda})T, where {alpha} is the Seebeck coefficient, {sigma} the electrical conductivity and {lambda} the total thermal conductivity. The best thermoelectric materials have a value of ZT = 1. This ZT = 1 has been an upper limit for more than 30 years, yet no theoretical or thermodynamic reason exits for why it can not be larger. The focus of the symposium is embodied in the title, Thermoelectric Materials: New Directions and Approaches. Many of the researchers in the

  14. Quantum Hall Electron Nematics

    Science.gov (United States)

    MacDonald, Allan

    In 2D electron systems hosted by crystals with hexagonal symmetry, electron nematic phases with spontaneously broken C3 symmetry are expected to occur in the quantum Hall regime when triplets of Landau levels associated with three different Fermi surface pockets are partially filled. The broken symmetry state is driven by intravalley Coulombic exchange interactions that favor spontaneously polarized valley occupations. I will discuss three different examples of 2D electron systems in which this type of broken symmetry state is expected to occur: i) the SnTe (111) surface, ii) the Bi (111) surface. and iii) unbalanced bilayer graphene. This type of quantum Hall electron nematic state has so far been confirmed only in the Bi (111) case, in which the anisotropic quasiparticle wavefunctions of the broken symmetry state were directly imaged. In the SnTe case the nematic state phase boundary is controlled by a competition between intravalley Coulomb interactions and intervalley scattering processes that increase in relative strength with magnetic field. An in-plane Zeeman field alters the phase diagram by lifting the three-fold Landau level degeneracy, yielding a ground state energy with 2 π/3 periodicity as a function of Zeeman-field orientation angle. I will comment on the possibility of observing similar states in the absence of a magnetic field. Supported by DOE Division of Materials Sciences and Engineering Grant DE-FG03-02ER45958.

  15. The ISOLDE hall

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    Since 1992, after its move from the 600 MeV SC, ISOLDE is a customer of the Booster (then 1 GeV, now 1.4 GeV). The intense Booster beam (some 3E13 protons per pulse) is directed onto a target, from which a mixture of isotopes emanates. After ionization and electrostatic acceleration to 60 keV, they enter one of the 2 spectrometers (General Purpose Separator: GPS, and High Resolution Separator: HRS) from which the selected ions are directed to the experiments. The photos show: the REX-ISOLDE post accelerator; the mini-ball experiment; an overview of the ISOLDE hall. In the picture (_12) of the hall, the separators are behind the wall. From either of them, beams can be directed into any of the many beamlines towards the experiments, some of which are visible in the foreground. The elevated cubicle at the left is EBIS (Electron Beam Ion Source), which acts as a charge-state multiplier for the REX facility. The ions are further mass analzyzed and passed on to the linac which accelerates them to higher energies. T...

  16. DISK FORMATION IN MAGNETIZED CLOUDS ENABLED BY THE HALL EFFECT

    International Nuclear Information System (INIS)

    Krasnopolsky, Ruben; Shang, Hsien; Li Zhiyun

    2011-01-01

    Stars form in dense cores of molecular clouds that are observed to be significantly magnetized. A dynamically important magnetic field presents a significant obstacle to the formation of protostellar disks. Recent studies have shown that magnetic braking is strong enough to suppress the formation of rotationally supported disks in the ideal MHD limit. Whether non-ideal MHD effects can enable disk formation remains unsettled. We carry out a first study on how disk formation in magnetic clouds is modified by the Hall effect, the least explored of the three non-ideal MHD effects in star formation (the other two being ambipolar diffusion and Ohmic dissipation). For illustrative purposes, we consider a simplified problem of a non-self-gravitating, magnetized envelope collapsing onto a central protostar of fixed mass. We find that the Hall effect can spin up the inner part of the collapsing flow to Keplerian speed, producing a rotationally supported disk. The disk is generated through a Hall-induced magnetic torque. Disk formation occurs even when the envelope is initially non-rotating, provided that the Hall coefficient is large enough. When the magnetic field orientation is flipped, the direction of disk rotation is reversed as well. The implication is that the Hall effect can in principle produce both regularly rotating and counter-rotating disks around protostars. The Hall coefficient expected in dense cores is about one order of magnitude smaller than that needed for efficient spin-up in these models. We conclude that the Hall effect is an important factor to consider in studying the angular momentum evolution of magnetized star formation in general and disk formation in particular.

  17. Thermoelectric mini cooler coupled with micro thermosiphon for CPU cooling system

    International Nuclear Information System (INIS)

    Liu, Di; Zhao, Fu-Yun; Yang, Hong-Xing; Tang, Guang-Fa

    2015-01-01

    In the present study, a thermoelectric mini cooler coupling with a micro thermosiphon cooling system has been proposed for the purpose of CPU cooling. A mathematical model of heat transfer, depending on one-dimensional treatment of thermal and electric power, is firstly established for the thermoelectric module. Analytical results demonstrate the relationship between the maximal COP (Coefficient of Performance) and Q c with the figure of merit. Full-scale experiments have been conducted to investigate the effect of thermoelectric operating voltage, power input of heat source, and thermoelectric module number on the performance of the cooling system. Experimental results indicated that the cooling production increases with promotion of thermoelectric operating voltage. Surface temperature of CPU heat source linearly increases with increasing of power input, and its maximum value reached 70 °C as the prototype CPU power input was equivalent to 84 W. Insulation between air and heat source surface can prevent the condensate water due to low surface temperature. In addition, thermal performance of this cooling system could be enhanced when the total dimension of thermoelectric module matched well with the dimension of CPU. This research could benefit the design of thermal dissipation of electronic chips and CPU units. - Highlights: • A cooling system coupled with thermoelectric module and loop thermosiphon is developed. • Thermoelectric module coupled with loop thermosiphon can achieve high heat-transfer efficiency. • A mathematical model of thermoelectric cooling is built. • An analysis of modeling results for design and experimental data are presented. • Influence of power input and operating voltage on the cooling system are researched

  18. Two dimensional Hall MHD modeling of a plasma opening switch with density inhomogeneities

    Energy Technology Data Exchange (ETDEWEB)

    Zabaidullin, O [Kurchatov Institute, Moscow (Russian Federation); Chuvatin, A; Etlicher, B [Ecole Polytechnique, Palaiseau (France). Laboratoire de Physique des Milieux Ionises

    1997-12-31

    The results of two-dimensional numerical modeling of the Plasma Opening Switch in the MHD framework with Hall effect are presented. An enhanced Hall diffusion coefficient was used in the simulations. Recent experiments justify the application of this approach. The result of the modeling also correlates better with the experiment than in the case of the classical diffusion coefficient. Numerically generated pictures propose a switching scenario in which the translation between the conduction and opening phases can be explained by an abrupt `switching on` and further domination of the Hall effect at the end of the conduction phase. (author). 3 figs., 6 refs.

  19. Apparatus, System, and Method for On-Chip Thermoelectricity Generation

    KAUST Repository

    Hussain, Muhammad Mustafa

    2012-01-26

    An apparatus, system, and method for a thermoelectric generator. In some embodiments, the thermoelectric generator comprises a first thermoelectric region and a second thermoelectric region, where the second thermoelectric region may be coupled to the first thermoelectric region by a first conductor. In some embodiments, a second conductor may be coupled to the first thermoelectric region and a third conductor may be coupled to the second thermoelectric region. In some embodiments, the first conductor may be in a first plane, the first thermoelectric region and the second thermoelectric region may be in a second plane, and the second conductor and the third conductor may be in a third plane.

  20. Apparatus, System, and Method for On-Chip Thermoelectricity Generation

    KAUST Repository

    Hussain, Muhammad Mustafa; Fahad, Hossain M.; Rojas, Jhonathan Prieto

    2012-01-01

    An apparatus, system, and method for a thermoelectric generator. In some embodiments, the thermoelectric generator comprises a first thermoelectric region and a second thermoelectric region, where the second thermoelectric region may be coupled to the first thermoelectric region by a first conductor. In some embodiments, a second conductor may be coupled to the first thermoelectric region and a third conductor may be coupled to the second thermoelectric region. In some embodiments, the first conductor may be in a first plane, the first thermoelectric region and the second thermoelectric region may be in a second plane, and the second conductor and the third conductor may be in a third plane.

  1. Thermoelectric Properties of High-Doped Silicon from Room Temperature to 900 K

    Science.gov (United States)

    Stranz, A.; Kähler, J.; Waag, A.; Peiner, E.

    2013-07-01

    Silicon is investigated as a low-cost, Earth-abundant thermoelectric material for high-temperature applications up to 900 K. For the calculation of module design the Seebeck coefficient and the electrical as well as thermal properties of silicon in the high-temperature range are of great importance. In this study, we evaluate the thermoelectric properties of low-, medium-, and high-doped silicon from room temperature to 900 K. In so doing, the Seebeck coefficient, the electrical and thermal conductivities, as well as the resulting figure of merit ZT of silicon are determined.

  2. Energy consumption of sport halls

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    The energy consumption of Finland's sports halls (ball games halls, ice hockey halls and swimming halls) represent approximately 1% of that of the country's whole building stock. In the light of the facts revealed by the energy study the potential energy saving rate in sports halls is 15-25%. The total savings would be something like FIM 30-40 million per annum, of which about a half would be achieved without energy-economic investments only by changing utilization habits and by automatic control measures. The energy-economic investments are for the most part connected with ventilation and their repayment period is from one to five years. On the basis of the energy study the following specific consumption are presented as target values: swimming halls: heat (kWh/m*H3/a)100, electricity (kWh/m*H3/a)35, water (l/m*H3/a)1000 icehockey halls (warm): heat (kWh/m*H3/a)25, electricity (kWh/m*H3/a)15, water (l/m*H3/a)200, ball games halls (multi-purpose halls): heat (kWh/m*H3/a)30, electricity (kWh/m*H3/a)25, water (l/m*H3/a)130. In the study the following points proved to be the central areas of energy saving in sports halls: 1. Flexible regulation of the temperature in sports spaces on the basis of the sport in question. 2. The ventilation of swimming halls should be adjusted in such a way that the humidity of the hall air would comply with the limit humidity curve determined by the quality of structures and the temperature of the outdoor air. 3. An ice skating hall is an establishment producing condensing energy from 8 to 9 months a year worth of approx. 100.000-150.000 Finnmarks. The development of the recovery of condensing energy has become more important. 4. The ventilation of ball games halls may account for over 50% of the energy consumption of the whole building. Therefore special attention should be paid to the optimatization of ventilation as a whole.

  3. Scanning vector Hall probe microscopy

    International Nuclear Information System (INIS)

    Cambel, V.; Gregusova, D.; Fedor, J.; Kudela, R.; Bending, S.J.

    2004-01-01

    We have developed a scanning vector Hall probe microscope for mapping magnetic field vector over magnetic samples. The microscope is based on a micromachined Hall sensor and the cryostat with scanning system. The vector Hall sensor active area is ∼5x5 μm 2 . It is realized by patterning three Hall probes on the tilted faces of GaAs pyramids. Data from these 'tilted' Hall probes are used to reconstruct the full magnetic field vector. The scanning area of the microscope is 5x5 mm 2 , space resolution 2.5 μm, field resolution ∼1 μT Hz -1/2 at temperatures 10-300 K

  4. Temperature dependence of the thermoelectric coeffiicients of lithium niobate and lithium tantalate

    International Nuclear Information System (INIS)

    Khachaturyan, O.A.; Gabrielyan, A.I.; Kolesnik, S.P.

    1988-01-01

    Thermoelectric Zeebeck,Thomson, Peltier coefficients for LiNbO 3 and LiTaO 3 monocrystals and their dependence on temperature in 300-1400 K range were investigated. It is shown that Zeebeck (α) coefficient changes its sign, depending on temperature change - the higher is α, the higher is material conductivity in the corresponding temperature region. Thomson and Peltier coefficients were calculated analytically for lithium niobate and tantalate

  5. Encapsulation of high temperature thermoelectric modules

    Energy Technology Data Exchange (ETDEWEB)

    Salvador, James R.; Sakamoto, Jeffrey; Park, Youngsam

    2017-07-11

    A method of encapsulating a thermoelectric device and its associated thermoelectric elements in an inert atmosphere and a thermoelectric device fabricated by such method are described. These thermoelectric devices may be intended for use under conditions which would otherwise promote oxidation of the thermoelectric elements. The capsule is formed by securing a suitably-sized thin-walled strip of oxidation-resistant metal to the ceramic substrates which support the thermoelectric elements. The thin-walled metal strip is positioned to enclose the edges of the thermoelectric device and is secured to the substrates using gap-filling materials. The strip, substrates and gap-filling materials cooperatively encapsulate the thermoelectric elements and exclude oxygen and water vapor from atmospheric air so that the elements may be maintained in an inert, non-oxidizing environment.

  6. Deployable Thermoelectric Metamaterial Energy Harvesting Monitoring System

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will combine a novel asynchronous monitoring system with the first-of-its-kind thermoelectric metamaterial.  The thermoelectric prototype is constructed...

  7. On Hall current fluid

    International Nuclear Information System (INIS)

    Shen, M.C.; Ebel, D.

    1987-01-01

    In this paper some new results concerning magnetohydrodynamic (MHD) equations with the Hall current (HC) term in the Ohm's law are presented. For the cylindrical pinch of a compressible HC fluid, it is found that for large time and long wave length the solution to the governing equations exhibits the behavior of solitons as in the case of an ideal MHD model. In some special cases, the HC model appears to be better posed. An open question is whether a simple toroidal equilibrium of an HC fluid with resistivity and viscosity exists. The answer to this question is affirmative if the prescribed velocity on the boundary has a small norm. Furthermore, the equilibrium is also linearly and nonlinearly stable

  8. Farm Hall: The Play

    Science.gov (United States)

    Cassidy, David C.

    2013-03-01

    It's July 1945. Germany is in defeat and the atomic bombs are on their way to Japan. Under the direction of Samuel Goudsmit, the Allies are holding some of the top German nuclear scientists-among them Heisenberg, Hahn, and Gerlach-captive in Farm Hall, an English country manor near Cambridge, England. As secret microphones record their conversations, the scientists are unaware of why they are being held or for how long. Thinking themselves far ahead of the Allies, how will they react to the news of the atomic bombs? How will these famous scientists explain to themselves and to the world their failure to achieve even a chain reaction? How will they come to terms with the horror of the Third Reich, their work for such a regime, and their behavior during that period? This one-act play is based upon the transcripts of their conversations as well as the author's historical work on the subject.

  9. Quantum Hall effect

    International Nuclear Information System (INIS)

    Joynt, R.J.

    1982-01-01

    A general investigation of the electronic structure of two dimensional systems is undertaken with a view towards understanding the quantum Hall effect. The work is limited to the case of a strong perpendicular magnetic field, with a disordered potential and an externally applied electric field. The electrons are treated as noninteracting. First, the scattering theory of the system is worked out. The surprising result is found that a wavepacket will reform after scattering from an isolated potential. Also it will tend to be accelerated in the neighborhood of the scatterer if the potential has bound states. Fredholm theory can then be used to show that the extended states carry an additional current which compensates for the zero current of the bound states. Together, these give the quantized conductance. The complementary case of a smooth random potential is treated by a path-integral approach which exploits the analogies to the classical equations of motion. The Green's function can be calculated approximately, which gives the general character of both the bound and extended states. Also the ratio of these two types of states can be computed for a given potential. The charge density is uniform in first approximation, and the Hall conductance is quantized. Higher-order corrections for more rapidly fluctuating potential are calculated. The most general conditions under which the conductance is quantized are discussed. Because of the peculiar scattering properties of the system, numerical solution of the Schroedinger equation is of interest, both to confirm the analytical results, and for pedagogical reasons. The stability and convergence problems inherent in the computer solution of the problem are analyzed. Results for some model scattering potentials are presented

  10. Conditions for enhanced performance of segmented thermoelectrics under load

    Science.gov (United States)

    Angst, Sebastian; Wolf, Dietrich E.

    2017-08-01

    The Onsager-de Groot-Callen transport theory is used to investigate the performance of double segmented thermoelectrics as generators. We show that such an inhomogeneous device usually performs worse than predicted by the effective transport coefficients. This is caused by the difference of the open circuit Seebeck voltage and the Seebeck voltage under operating conditions. The electrical current and the related interface Peltier effect cause a self-organization of the temperature profile such that the temperature drop across the material with the higher absolute Seebeck coefficient is reduced. However, including Joule heating we derive conditions for the opposite effect resulting in an enhanced power.

  11. Hall Effect Gyrators and Circulators

    Science.gov (United States)

    Viola, Giovanni; DiVincenzo, David P.

    2014-04-01

    The electronic circulator and its close relative the gyrator are invaluable tools for noise management and signal routing in the current generation of low-temperature microwave systems for the implementation of new quantum technologies. The current implementation of these devices using the Faraday effect is satisfactory but requires a bulky structure whose physical dimension is close to the microwave wavelength employed. The Hall effect is an alternative nonreciprocal effect that can also be used to produce desired device functionality. We review earlier efforts to use an Ohmically contacted four-terminal Hall bar, explaining why this approach leads to unacceptably high device loss. We find that capacitive coupling to such a Hall conductor has much greater promise for achieving good circulator and gyrator functionality. We formulate a classical Ohm-Hall analysis for calculating the properties of such a device, and show how this classical theory simplifies remarkably in the limiting case of the Hall angle approaching 90°. In this limit, we find that either a four-terminal or a three-terminal capacitive device can give excellent circulator behavior, with device dimensions far smaller than the ac wavelength. An experiment is proposed to achieve GHz-band gyration in millimeter (and smaller) scale structures employing either semiconductor heterostructure or graphene Hall conductors. An inductively coupled scheme for realizing a Hall gyrator is also analyzed.

  12. Thermoelectric properties of Co4Sb12 with Bi2Te3 nanoinclusions.

    Science.gov (United States)

    Ghosh, Sanyukta; Bisht, Anuj; Karati, Anirudha; Rogl, Gerda; Rogl, Peter; Murty, B S; Suwas, Satyam; Mallik, Ramesh Chandra

    2018-02-12

    The figure of merit (zT) of a thermoelectric material can be enhanced by incorporation of nanoinclusions into bulk material. The presence of bismuth telluride (Bi 2 Te 3 ) nanoinclusions in Co 4 Sb 12 leads to lower phonon thermal conductivity by introducing interfaces and defects; it enhances the average zT between 300-700 K. In the current study, Bi 2 Te 3 nanoparticles were dispersed into bulk Co 4 Sb 12 by ball-milling. The bulk was fabricated by spark plasma sintering. The presence of Bi 2 Te 3 dispersion in Co 4 Sb 12 was confirmed by x-ray diffraction, scanning electron microscopy, transmission electron microscopy and electron back scattered diffraction technique. Energy dispersive spectroscopy showed antimony (Sb) as an impurity phase for higher contents of Bi 2 Te 3 in the sample. The Seebeck coefficient (S) and electrical conductivity (σ) were measured in the temperature range of 350-673 K. The negative value of S indicates that most of the charge carriers were electrons. A decrease in S and increase in σ with Bi 2 Te 3 content are due to the increased carrier concentration, as confirmed by Hall measurement. The thermal conductivity, measured between 423-673 K, decreased due to the increased phonon scattering at interfaces. A maximum zT of 0.17 was achieved at 523 K and it did not vary much throughout the temperature range. The experimental results of composites were compared by using effective medium theories.

  13. Thermoelectric properties of Co4Sb12 with Bi2Te3 nanoinclusions.

    Science.gov (United States)

    Ghosh, Sanyukta; Bisht, Anuj; Karati, Anirudha; Rogl, Gerda; Rogl, Peter F; Murty, B S; Suwas, Satyam; Mallik, Ramesh Chandra

    2018-01-08

    The figure of merit (zT) of a thermoelectric material can be enhanced by incorporation of nanoinclusions into bulk material. The presence of bismuth telluride (Bi2Te3) nanoinclusions in Co4Sb12 leads to lower phonon thermal conductivity by introducing interfaces and defects; it enhances the average zT between 300-700 K. In the current study, Bi2Te3 nanoparticles were dispersed into bulk Co4Sb12 by ball-milling. The bulk was fabricated by spark plasma sintering (SPS). The presence of Bi2Te3 dispersion in Co4Sb12 was confirmed by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electron back scattered diffraction (EBSD) technique. Energy dispersive spectroscopy (EDS) showed antimony (Sb) as an impurity phase for higher contents of Bi2Te3 in the sample. The Seebeck coefficient (S) and electrical conductivity () were measured in the temperature range of 350 - 673 K. The negative value of S indicates that most of the charge carriers were electrons. A decrease in S and increase in with Bi2Te3 content are due to the increased carrier concentration, as confirmed by Hall measurement. The thermal conductivity, measured between 423 - 673 K, decreased due to the increased phonon scattering at interfaces. A maximum zT of 0.17 was achieved at 523 K and it did not vary much throughout the temperature range. The experimental results of composites were compared by using effective medium theories. © 2018 IOP Publishing Ltd.

  14. Thermoelectric power in ionic and electronic mixed conductors

    Energy Technology Data Exchange (ETDEWEB)

    Kamata, Masahiro; Jin-nouchi, Kenji; Esaka, Takao [Tottori Univ. (Japan). Faculty of Engineering

    1996-08-01

    In order to study the thermoelectric property of the oxide ionic and electronic mixed conductor of 10 mol% CaO-doped CeO{sub 2} (CDC), a new type of thermocell was prepared, in which platinum electrodes were embedded in the tube-type sample to diminish the large temperature gradient over the electrodes due to the local heat radiation from heating furnace. Using this thermocell, reproducible data were obtained. The thermoelectric power measured in CDC under various oxygen atmospheres (Po{sub 2}) from 1.0 to about 10{sup -15} atm showed that the sign of Seebeck coefficients changed from minus to plus. This variation of Seebeck coefficients vs. Po{sub 2} was well interpreted by considering that (1) the thermoelectric power could be a driving force to make actual and electrochemical oxygen transfer in the mixed conductor and (2) the electrode processes had limiting rates due to slow oxygen diffusion (or oxygen gas exhaustion at the cathode and evolution at the anode). (author)

  15. Topological Hall and spin Hall effects in disordered skyrmionic textures

    KAUST Repository

    Ndiaye, Papa Birame; Akosa, Collins Ashu; Manchon, Aurelien

    2017-01-01

    We carry out a thorough study of the topological Hall and topological spin Hall effects in disordered skyrmionic systems: the dimensionless (spin) Hall angles are evaluated across the energy-band structure in the multiprobe Landauer-Büttiker formalism and their link to the effective magnetic field emerging from the real-space topology of the spin texture is highlighted. We discuss these results for an optimal skyrmion size and for various sizes of the sample and find that the adiabatic approximation still holds for large skyrmions as well as for nanoskyrmions. Finally, we test the robustness of the topological signals against disorder strength and show that the topological Hall effect is highly sensitive to momentum scattering.

  16. Topological Hall and spin Hall effects in disordered skyrmionic textures

    KAUST Repository

    Ndiaye, Papa Birame

    2017-02-24

    We carry out a thorough study of the topological Hall and topological spin Hall effects in disordered skyrmionic systems: the dimensionless (spin) Hall angles are evaluated across the energy-band structure in the multiprobe Landauer-Büttiker formalism and their link to the effective magnetic field emerging from the real-space topology of the spin texture is highlighted. We discuss these results for an optimal skyrmion size and for various sizes of the sample and find that the adiabatic approximation still holds for large skyrmions as well as for nanoskyrmions. Finally, we test the robustness of the topological signals against disorder strength and show that the topological Hall effect is highly sensitive to momentum scattering.

  17. Tuning giant anomalous Hall resistance ratio in perpendicular Hall balance

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J. Y.; Yang, G. [Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083 (China); State Key Laboratory of Magnetism, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Wang, S. G., E-mail: sgwang@iphy.ac.cn, E-mail: ghyu@mater.ustb.edu.cn [State Key Laboratory of Magnetism, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Liu, J. L. [State Key Laboratory of Magnetism, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Department of Physics, Beijing University of Aeronautics and Astronautics, Beijing 100191 (China); Wang, R. M. [Department of Physics, Beijing University of Aeronautics and Astronautics, Beijing 100191 (China); Amsellem, E.; Kohn, A. [Department of Materials Engineering, Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel); Yu, G. H., E-mail: sgwang@iphy.ac.cn, E-mail: ghyu@mater.ustb.edu.cn [Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083 (China)

    2015-04-13

    Anomalous Hall effect at room temperature in perpendicular Hall balance with a core structure of [Pt/Co]{sub 4}/NiO/[Co/Pt]{sub 4} has been tuned by functional CoO layers, where [Pt/Co]{sub 4} multilayers exhibit perpendicular magnetic anisotropy. A giant Hall resistance ratio up to 69 900% and saturation Hall resistance (R{sub S}{sup P}) up to 2590 mΩ were obtained in CoO/[Pt/Co]{sub 4}/NiO/[Co/Pt]{sub 4}/CoO system, which is 302% and 146% larger than that in the structure without CoO layers, respectively. Transmission electron microscopy shows highly textured [Co/Pt]{sub 4} multilayers and oxide layers with local epitaxial relations, indicating that the crystallographic structure has significant influence on spin dependent transport properties.

  18. Anomalous Hall effect

    Science.gov (United States)

    Nagaosa, Naoto; Sinova, Jairo; Onoda, Shigeki; MacDonald, A. H.; Ong, N. P.

    2010-04-01

    The anomalous Hall effect (AHE) occurs in solids with broken time-reversal symmetry, typically in a ferromagnetic phase, as a consequence of spin-orbit coupling. Experimental and theoretical studies of the AHE are reviewed, focusing on recent developments that have provided a more complete framework for understanding this subtle phenomenon and have, in many instances, replaced controversy by clarity. Synergy between experimental and theoretical works, both playing a crucial role, has been at the heart of these advances. On the theoretical front, the adoption of the Berry-phase concepts has established a link between the AHE and the topological nature of the Hall currents. On the experimental front, new experimental studies of the AHE in transition metals, transition-metal oxides, spinels, pyrochlores, and metallic dilute magnetic semiconductors have established systematic trends. These two developments, in concert with first-principles electronic structure calculations, strongly favor the dominance of an intrinsic Berry-phase-related AHE mechanism in metallic ferromagnets with moderate conductivity. The intrinsic AHE can be expressed in terms of the Berry-phase curvatures and it is therefore an intrinsic quantum-mechanical property of a perfect crystal. An extrinsic mechanism, skew scattering from disorder, tends to dominate the AHE in highly conductive ferromagnets. The full modern semiclassical treatment of the AHE is reviewed which incorporates an anomalous contribution to wave-packet group velocity due to momentum-space Berry curvatures and correctly combines the roles of intrinsic and extrinsic (skew-scattering and side-jump) scattering-related mechanisms. In addition, more rigorous quantum-mechanical treatments based on the Kubo and Keldysh formalisms are reviewed, taking into account multiband effects, and demonstrate the equivalence of all three linear response theories in the metallic regime. Building on results from recent experiment and theory, a

  19. Very High Output Thermoelectric Devices Based on ITO Nanocomposites

    Science.gov (United States)

    Fralick, Gustave; Gregory, Otto J.

    2009-01-01

    A material having useful thermoelectric properties was synthesized by combining indium-tin-oxide (ITO) with a NiCoCrAlY alloy/alumina cermet. This material had a very large Seebeck coefficient with electromotive-force-versustemperature behavior that is considered to be excellent with respect to utility in thermocouples and other thermoelectric devices. When deposited in thin-film form, ceramic thermocouples offer advantages over precious-metal (based, variously, on platinum or rhodium) thermocouples that are typically used in gas turbines. Ceramic thermocouples exhibit high melting temperatures, chemical stability at high temperatures, and little or no electromigration. Oxide ceramics also resist oxidation better than metal thermocouples, cost substantially less than precious-metal thermocouples, and, unlike precious-metal thermocouples, do not exert catalytic effects.

  20. Fabrication of a Micro Cooler using Thermoelectric Thin Film

    International Nuclear Information System (INIS)

    Han, S. W.; Choi, H. J.; Kim, D. H.; Kim, W. J.; Kim, B. I.; Kim, K. M.

    2007-01-01

    In general a ThermoElectric Cooler (TEC) consists of a series of P type and N type thermoelectric materials sandwiched between two wafers. When a DC current passes through these materials, three different effects take place; Peltier effect, Joule heating effect and heat transfer by conduction due to temperature difference between hot and cold plates. In this study we have developed a micro TEC using Bi2Te3 (N type) and Bi0.5Sb1.5Te3 (P type) thin films. In order to improve that performance of a micro TEC, we made 10 um height TE legs using special PR only for lift-off. We measured COP (coefficient of performance) and temperature difference between hot and cold connectors with current

  1. Two-Dimensional Tellurene as Excellent Thermoelectric Material

    KAUST Repository

    Sharma, Sitansh

    2018-04-20

    We study the thermoelectric properties of two-dimensional tellurene by first-principles calculations and semiclassical Boltzmann transport theory. The HSE06 hybrid functional results in a moderate direct band gap of 1.48 eV at the Γ point. A high room temperature Seebeck coefficient (Sxx = 0.38 mV/K, Syy = 0.36 mV/K) is combined with anisotropic lattice thermal conductivity (κxxl = 0.43 W/m K, κyyl = 1.29 W/m K). Phonon band structures demonstrate a key role of optical phonons in the record low thermal conductivity that leads to excellent thermoelectric performance of tellurene. At room temperature and moderate hole doping of 1.2 × 10–11 cm–2, for example, a figure of merit of ZTxx = 0.8 is achieved.

  2. Thermoelectric converter for SP-100 space reactor power system

    Science.gov (United States)

    Terrill, W. R.; Haley, V. F.

    1986-01-01

    Conductively coupling the thermoelectric converter to the heat source and the radiator maximizes the utilization of the reactor and radiator temperatures and thereby minimizes the power system weight. This paper presents the design for the converter and the individual thermoelectric cells that are the building block modules for the converter. It also summarizes progress on the fabrication of initial cells and the results obtained from the preparation of a manufacturing plan. The design developed for the SP-100 system utilizes thermally conductive compliant pads that can absorb the displacement and distortion caused by the combinations of temperatures and thermal expansion coefficients. The converter and cell designs provided a 100 kWe system which met the system requirements. Initial cells were fabricated and tested.

  3. Thermoelectric converter for SP-100 space reactor power system

    International Nuclear Information System (INIS)

    Terrill, W.R.; Haley, V.F.

    1986-01-01

    Conductively coupling the thermoelectric converter to the heat source and the radiator maximizes the utilization of the reactor and radiator temperatures and thereby minimizes the power system weight. This paper presents the design for the converter and the individual thermoelectric cells that are the building block modules for the converter. It also summarizes progress on the fabrication of initial cells and the results obtained from the preparation of a manufacturing plan. The design developed for the SP-100 system utilizes thermally conductive compliant pads that can absorb the displacement and distortion caused by the combinations of temperatures and thermal expansion coefficients. The converter and cell designs provided a 100 kWe system which met the system requirements. Initial cells were fabricated and tested. The manufacturing plan showed that the chosen materials and processes are compatible with today's production techniques, that the production volume can readily be achieved and that the costs are reasonable

  4. High efficiency semimetal/semiconductor nanocomposite thermoelectric materials

    International Nuclear Information System (INIS)

    Zide, J. M. O.; Bahk, J.-H.; Zeng, G.; Bowers, J. E.; Singh, R.; Zebarjadi, M.; Bian, Z. X.; Shakouri, A.; Lu, H.; Gossard, A. C.; Feser, J. P.; Xu, D.; Singer, S. L.; Majumdar, A.

    2010-01-01

    Rare-earth impurities in III-V semiconductors are known to self-assemble into semimetallic nanoparticles which have been shown to reduce lattice thermal conductivity without harming electronic properties. Here, we show that adjusting the band alignment between ErAs and In 0.53 Ga 0.47-X Al X As allows energy-dependent scattering of carriers that can be used to increase thermoelectric power factor. Films of various Al concentrations were grown by molecular beam epitaxy, and thermoelectric properties were characterized. We observe concurrent increases in electrical conductivity and Seebeck coefficient with increasing temperatures, demonstrating energy-dependent scattering. We report the first simultaneous power factor enhancement and thermal conductivity reduction in a nanoparticle-based system, resulting in a high figure of merit, ZT=1.33 at 800 K.

  5. Chemical Potential Tuning and Enhancement of Thermoelectric Properties in Indium Selenides.

    Science.gov (United States)

    Rhyee, Jong-Soo; Kim, Jin Hee

    2015-03-20

    Researchers have long been searching for the materials to enhance thermoelectric performance in terms of nano scale approach in order to realize phonon-glass-electron-crystal and quantum confinement effects. Peierls distortion can be a pathway to enhance thermoelectric figure-of-merit ZT by employing natural nano-wire-like electronic and thermal transport. The phonon-softening known as Kohn anomaly, and Peierls lattice distortion decrease phonon energy and increase phonon scattering, respectively, and, as a result, they lower thermal conductivity. The quasi-one-dimensional electrical transport from anisotropic band structure ensures high Seebeck coefficient in Indium Selenide. The routes for high ZT materials development of In₄Se₃ - δ are discussed from quasi-one-dimensional property and electronic band structure calculation to materials synthesis, crystal growth, and their thermoelectric properties investigations. The thermoelectric properties of In₄Se₃ - δ can be enhanced by electron doping, as suggested from the Boltzmann transport calculation. Regarding the enhancement of chemical potential, the chlorine doped In₄Se₃ - δ Cl 0.03 compound exhibits high ZT over a wide temperature range and shows state-of-the-art thermoelectric performance of ZT = 1.53 at 450 °C as an n -type material. It was proven that multiple elements doping can enhance chemical potential further. Here, we discuss the recent progress on the enhancement of thermoelectric properties in Indium Selenides by increasing chemical potential.

  6. Research Progress on AgSbTe2-based Thermoelectric Materials

    Institute of Scientific and Technical Information of China (English)

    CAO Qigao; MA Guang; JIA Zhihua; ZHENG Jing; LI Jin

    2012-01-01

    Thermoelectric power generation represents a class of energy conversion technology,which has been used in power supply of aeronautic and astronautic exploring missions,now showing notable advantages to harvest the widely distributed waste heat and convert the abundant solar energy into electricity at lower cost than Si-based photovoltaic technology.Thermoelectric dimensionless figure of merit ZT plays a key role in the conversion efficiency from thermal to electrical energy.Low thermal conductivity and large Seebeck coefficient make the AgSbTe2 compound a very promising candidate for high efficiency p-type thermoelectric applications.The AgSbTe2-based thermoelectric system has been repeatedly studied as prospective thermoelectric materials.In this review,we firstly clarify some fundamental tradeoffs dictating the ZT value through the relationship ZT =S2σT/κ.We also pay special attentions to the recent advances in AgSbTe2-based thermoelectric materials.Finally,we provide an outlook of new directions in this filed.

  7. Chemical Potential Tuning and Enhancement of Thermoelectric Properties in Indium Selenides

    Directory of Open Access Journals (Sweden)

    Jong-Soo Rhyee

    2015-03-01

    Full Text Available Researchers have long been searching for the materials to enhance thermoelectric performance in terms of nano scale approach in order to realize phonon-glass-electron-crystal and quantum confinement effects. Peierls distortion can be a pathway to enhance thermoelectric figure-of-merit ZT by employing natural nano-wire-like electronic and thermal transport. The phonon-softening known as Kohn anomaly, and Peierls lattice distortion decrease phonon energy and increase phonon scattering, respectively, and, as a result, they lower thermal conductivity. The quasi-one-dimensional electrical transport from anisotropic band structure ensures high Seebeck coefficient in Indium Selenide. The routes for high ZT materials development of In4Se3−δ are discussed from quasi-one-dimensional property and electronic band structure calculation to materials synthesis, crystal growth, and their thermoelectric properties investigations. The thermoelectric properties of In4Se3−δ can be enhanced by electron doping, as suggested from the Boltzmann transport calculation. Regarding the enhancement of chemical potential, the chlorine doped In4Se3−δCl0.03 compound exhibits high ZT over a wide temperature range and shows state-of-the-art thermoelectric performance of ZT = 1.53 at 450 °C as an n-type material. It was proven that multiple elements doping can enhance chemical potential further. Here, we discuss the recent progress on the enhancement of thermoelectric properties in Indium Selenides by increasing chemical potential.

  8. High thermoelectric power factor in two-dimensional crystals of Mo S2

    Science.gov (United States)

    Hippalgaonkar, Kedar; Wang, Ying; Ye, Yu; Qiu, Diana Y.; Zhu, Hanyu; Wang, Yuan; Moore, Joel; Louie, Steven G.; Zhang, Xiang

    2017-03-01

    The quest for high-efficiency heat-to-electricity conversion has been one of the major driving forces toward renewable energy production for the future. Efficient thermoelectric devices require high voltage generation from a temperature gradient and a large electrical conductivity while maintaining a low thermal conductivity. For a given thermal conductivity and temperature, the thermoelectric power factor is determined by the electronic structure of the material. Low dimensionality (1D and 2D) opens new routes to a high power factor due to the unique density of states (DOS) of confined electrons and holes. The 2D transition metal dichalcogenide (TMDC) semiconductors represent a new class of thermoelectric materials not only due to such confinement effects but especially due to their large effective masses and valley degeneracies. Here, we report a power factor of Mo S2 as large as 8.5 mW m-1K-2 at room temperature, which is among the highest measured in traditional, gapped thermoelectric materials. To obtain these high power factors, we perform thermoelectric measurements on few-layer Mo S2 in the metallic regime, which allows us to access the 2D DOS near the conduction band edge and exploit the effect of 2D confinement on electron scattering rates, resulting in a large Seebeck coefficient. The demonstrated high, electronically modulated power factor in 2D TMDCs holds promise for efficient thermoelectric energy conversion.

  9. Planar Hall effect bridge magnetic field sensors

    DEFF Research Database (Denmark)

    Henriksen, A.D.; Dalslet, Bjarke Thomas; Skieller, D.H.

    2010-01-01

    Until now, the planar Hall effect has been studied in samples with cross-shaped Hall geometry. We demonstrate theoretically and experimentally that the planar Hall effect can be observed for an exchange-biased ferromagnetic material in a Wheatstone bridge topology and that the sensor signal can...... Hall effect bridge sensors....

  10. Gauge invariance and fractional quantized Hall effect

    International Nuclear Information System (INIS)

    Tao, R.; Wu, Y.S.

    1984-01-01

    It is shown that gauge invariance arguments imply the possibility of fractional quantized Hall effect; the Hall conductance is accurately quantized to a rational value. The ground state of a system showing the fractional quantized Hall effect must be degenerate; the non-degenerate ground state can only produce the integral quantized Hall effect. 12 references

  11. "Hall mees" Linnateatris / Triin Sinissaar

    Index Scriptorium Estoniae

    Sinissaar, Triin

    1999-01-01

    Tallinn Linnateatri ja Raadioteatri ühislavastus "Hall mees" Gill Adamsi näidendi järgi, lavastaja Eero Spriit, osades Helene Vannari ja Väino Laes, kunstnik Kustav - Agu Püüman. Esietendus 22. okt

  12. Thermoelectricity for future sustainable energy technologies

    Directory of Open Access Journals (Sweden)

    Weidenkaff Anke

    2017-01-01

    Full Text Available Thermoelectricity is a general term for a number of effects describing the direct interconversion of heat and electricity. Thermoelectric devices are therefore promising, environmental-friendly alternatives to conventional power generators or cooling units. Since the mid-90s, research on thermoelectric properties and their applications has steadily increased. In the course of years, the development of high-temperature resistant TE materials and devices has emerged as one of the main areas of interest focusing both on basic research and practical applications. A wide range of innovative and cost-efficient material classes has been studied and their properties improved. This has also led to advances in synthesis and metrology. The paper starts out with thermoelectric history, basic effects underlying thermoelectric conversion and selected examples of application. The main part focuses on thermoelectric materials including an outline of the design rules, a review on the most common materials and the feasibility of improved future high-temperature thermoelectric converters.

  13. Apparatuses And Systems For Embedded Thermoelectric Generators

    KAUST Repository

    Hussain, Muhammad M.

    2013-08-08

    An apparatus and a system for embedded thermoelectric generators are disclosed. In one embodiment, the apparatus is embedded in an interface where the ambient temperatures on two sides of the interface are different. In one embodiment, the apparatus is fabricated with the interface in integrity as a unitary piece. In one embodiment, the apparatus includes a first thermoelectric material embedded through the interface. The apparatus further includes a second thermoelectric material embedded through the interface. The first thermoelectric material is electrically coupled to the second thermoelectric material. In one embodiment, the apparatus further includes an output structure coupled to the first thermoelectric material and the second thermoelectric material and configured to output a voltage.

  14. Apparatuses And Systems For Embedded Thermoelectric Generators

    KAUST Repository

    Hussain, Muhammad M.; Inayat, Salman Bin; Smith, Casey Eben

    2013-01-01

    An apparatus and a system for embedded thermoelectric generators are disclosed. In one embodiment, the apparatus is embedded in an interface where the ambient temperatures on two sides of the interface are different. In one embodiment, the apparatus is fabricated with the interface in integrity as a unitary piece. In one embodiment, the apparatus includes a first thermoelectric material embedded through the interface. The apparatus further includes a second thermoelectric material embedded through the interface. The first thermoelectric material is electrically coupled to the second thermoelectric material. In one embodiment, the apparatus further includes an output structure coupled to the first thermoelectric material and the second thermoelectric material and configured to output a voltage.

  15. Thermoelectric refrigerator having improved temperature stabilization means

    International Nuclear Information System (INIS)

    Falco, C.M.

    1982-01-01

    A control system for thermoelectric refrigerators is disclosed. The thermoelectric refrigerator includes at least one thermoelectric element that undergoes a first order change at a predetermined critical temperature. The element functions as a thermoelectric refrigerator element above the critical temperature, but discontinuously ceases to function as a thermoelectric refrigerator element below the critical temperature. One example of such an arrangement includes thermoelectric refrigerator elements which are superconductors. The transition temperature of one of the superconductor elements is selected as the temperature control point of the refrigerator. When the refrigerator attempts to cool below the point, the metals become superconductors losing their ability to perform as a thermoelectric refrigerator. An extremely accurate, first-order control is realized

  16. Sheldon-Hall syndrome

    Directory of Open Access Journals (Sweden)

    Bamshad Michael J

    2009-03-01

    Full Text Available Abstract Sheldon-Hall syndrome (SHS is a rare multiple congenital contracture syndrome characterized by contractures of the distal joints of the limbs, triangular face, downslanting palpebral fissures, small mouth, and high arched palate. Epidemiological data for the prevalence of SHS are not available, but less than 100 cases have been reported in the literature. Other common clinical features of SHS include prominent nasolabial folds, high arched palate, attached earlobes, mild cervical webbing, short stature, severe camptodactyly, ulnar deviation, and vertical talus and/or talipes equinovarus. Typically, the contractures are most severe at birth and non-progressive. SHS is inherited in an autosomal dominant pattern but about half the cases are sporadic. Mutations in either MYH3, TNNI2, or TNNT3 have been found in about 50% of cases. These genes encode proteins of the contractile apparatus of fast twitch skeletal muscle fibers. The diagnosis of SHS is based on clinical criteria. Mutation analysis is useful to distinguish SHS from arthrogryposis syndromes with similar features (e.g. distal arthrogryposis 1 and Freeman-Sheldon syndrome. Prenatal diagnosis by ultrasonography is feasible at 18–24 weeks of gestation. If the family history is positive and the mutation is known in the family, prenatal molecular genetic diagnosis is possible. There is no specific therapy for SHS. However, patients benefit from early intervention with occupational and physical therapy, serial casting, and/or surgery. Life expectancy and cognitive abilities are normal.

  17. Anode sheath in Hall thrusters

    International Nuclear Information System (INIS)

    Dorf, L.; Semenov, V.; Raitses, Y.

    2003-01-01

    A set of hydrodynamic equations is used to describe quasineutral plasma in ionization and acceleration regions of a Hall thruster. The electron distribution function and Poisson equation are invoked for description of a near-anode region. Numerical solutions suggest that steady-state operation of a Hall thruster can be achieved at different anode sheath regimes. It is shown that the anode sheath depends on the thruster operating conditions, namely the discharge voltage and the mass flow rate

  18. Theory of spin Hall effect

    OpenAIRE

    Chudnovsky, Eugene M.

    2007-01-01

    An extension of Drude model is proposed that accounts for spin and spin-orbit interaction of charge carriers. Spin currents appear due to combined action of the external electric field, crystal field and scattering of charge carriers. The expression for spin Hall conductivity is derived for metals and semiconductors that is independent of the scattering mechanism. In cubic metals, spin Hall conductivity $\\sigma_s$ and charge conductivity $\\sigma_c$ are related through $\\sigma_s = [2 \\pi \\hbar...

  19. Optimization of Cylindrical Hall Thrusters

    International Nuclear Information System (INIS)

    Raitses, Yevgeny; Smirnov, Artem; Granstedt, Erik; Fisch, Nathaniel J.

    2007-01-01

    The cylindrical Hall thruster features high ionization efficiency, quiet operation, and ion acceleration in a large volume-to-surface ratio channel with performance comparable with the state-of-the-art annular Hall thrusters. These characteristics were demonstrated in low and medium power ranges. Optimization of miniaturized cylindrical thrusters led to performance improvements in the 50-200W input power range, including plume narrowing, increased thruster efficiency, reliable discharge initiation, and stable operation.

  20. Optimization of Cylindrical Hall Thrusters

    International Nuclear Information System (INIS)

    Raitses, Yevgeny; Smirnov, Artem; Granstedt, Erik; Fi, Nathaniel J.

    2007-01-01

    The cylindrical Hall thruster features high ionization efficiency, quiet operation, and ion acceleration in a large volume-to-surface ratio channel with performance comparable with the state-of-the-art annular Hall thrusters. These characteristics were demonstrated in low and medium power ranges. Optimization of miniaturized cylindrical thrusters led to performance improvements in the 50-200W input power range, including plume narrowing, increased thruster efficiency, reliable discharge initiation, and stable operation

  1. Nanostructured layers of thermoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Urban, Jeffrey J.; Lynch, Jared; Coates, Nelson; Forster, Jason; Sahu, Ayaskanta; Chabinyc, Michael; Russ, Boris

    2018-01-30

    This disclosure provides systems, methods, and apparatus related to thermoelectric materials. In one aspect, a method includes providing a plurality of nanostructures. The plurality of nanostructures comprise a thermoelectric material, with each nanostructure of the plurality of nanostructures having first ligands disposed on a surface of the nanostructure. The plurality of nanostructures is mixed with a solution containing second ligands and a ligand exchange process occurs in which the first ligands disposed on the plurality of nanostructures are replaced with the second ligands. The plurality of nanostructures is deposited on a substrate to form a layer. The layer is thermally annealed.

  2. Not your grandfather's concert hall

    Science.gov (United States)

    Cooper, Russell; Malenka, Richard; Griffith, Charles; Friedlander, Steven

    2004-05-01

    The opening of Judy and Arthur Zankel Hall on 12 September 2003, restores Andrew Carnegie's original 1891 concept of having three outstanding auditoriums of different sizes under one roof, and creates a 21st-century venue for music performance and education. With concerts ranging from early music to avant-garde multimedia productions, from jazz to world music, and from solo recitals to chamber music, Zankel Hall expands the breadth and depth of Carnegie Hall's offerings. It allows for the integration of programming across three halls with minifestivals tailored both to the size and strengths of each hall and to the artists and music to be performed. The new flexible space also provides Carnegie Hall with an education center equipped with advanced communications technology. This paper discusses the unique program planned for this facility and how the architects, theatre consultants, and acousticians developed a design that fulfilled the client's expectations and coordinated the construction of the facility under the floor of the main Isaac Stern Auditorium without having to cancel a single performance.

  3. Frequency-domain Harman technique for rapid characterization of bulk and thin film thermoelectric materials

    Science.gov (United States)

    Moran, Samuel

    Nanostructured thermoelectrics, often in the form of thin films, may potentially improve the generally poor efficiency of bulk thermoelectric power generators and coolers. In order to characterize the efficiency of these new materials it is necessary to measure their thermoelectric figure of merit, ZT. The only direct measurement of ZT is based on the Harman technique and relies on measuring the voltage drop across a sample subjected to a passing continuous current. Application of this technique to thin films is currently carried out as a time-domain measurement of the voltage as the thermal component decays after switching off an applied voltage. This work develops a technique for direct simultaneous measurement of figure of merit and Seebeck coefficient from the harmonic response of a thermoelectric material under alternating current excitation. A thermocouple mounted on the top surface measures voltage across the device as the frequency of the applied voltage is varied. A thermal model allows the sample thermal conductivity to also be determined and shows good agreement with measurements. This technique provides improved signal-to-noise ratio and accuracy compared to time-domain ZT measurements for comparable conditions while simultaneously measuring Seebeck coefficient. The technique is applied to both bulk and thin film thermoelectric samples.

  4. A holistic 3D finite element simulation model for thermoelectric power generator element

    International Nuclear Information System (INIS)

    Wu, Guangxi; Yu, Xiong

    2014-01-01

    Highlights: • Development of a holistic simulation model for the thermoelectric energy harvester. • Account for delta Seebeck coefficient and carrier charge densities variations. • Solution of thermo-electric coupling problem with finite element method. • Model capable of predicting phenomena not captured by traditional models. • A simulation tool for design of innovative TEM materials and structures. - Abstract: Harvesting the thermal energy stored in the ambient environment provides a potential sustainable energy source. Thermoelectric power generators have advantages of having no moving parts, being durable, and light-weighted. These unique features are advantageous for many applications (i.e., carry-on medical devices, embedded infrastructure sensors, aerospace, transportation, etc.). To ensure the efficient applications of thermoelectric energy harvesting system, the behaviors of such systems need to be fully understood. Finite element simulations provide important tools for such purpose. Although modeling the performance of thermoelectric modules has been conducted by many researchers, due to the complexity in solving the coupled problem, the influences of the effective Seebeck coefficient and carrier density variations on the performance of thermoelectric system are generally neglected. This results in an overestimation of the power generator performance under strong-ionization temperature region. This paper presents an advanced simulation model for thermoelectric elements that considers the effects of both factors. The mathematical basis of this model is firstly presented. Finite element simulations are then implemented on a thermoelectric power generator unit. The characteristics of the thermoelectric power generator and their relationship to its performance are discussed under different working temperature regions. The internal physics processes of the TEM harvester are analyzed from the results of computational simulations. The new model

  5. Concentrated Solar Thermoelectric Power

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Gang [MIT; Ren, Zhifeng [University of Houston

    2015-07-09

    The goal of this project is to demonstrate in the lab that solar thermoelectric generators (STEGs) can exceed 10% solar-to-electricity efficiency, and STEGs can be integrated with phase-change materials (PCM) for thermal storage, providing operation beyond daylight hours. This project achieved significant progress in many tasks necessary to achieving the overall project goals. An accurate Themoelectric Generator (TEG) model was developed, which included realistic treatment of contact materials, contact resistances and radiative losses. In terms of fabricating physical TEGs, high performance contact materials for skutterudite TE segments were developed, along with brazing and soldering methods to assemble segmented TEGs. Accurate measurement systems for determining device performance (in addition to just TE material performance) were built for this project and used to characterize our TEGs. From the optical components’ side, a spectrally selective cermet surface was developed with high solar absorptance and low thermal emittance, with thermal stability at high temperature. A measurement technique was also developed to determine absorptance and total hemispherical emittance at high temperature, and was used to characterize the fabricated spectrally selective surfaces. In addition, a novel reflective cavity was designed to reduce radiative absorber losses and achieve high receiver efficiency at low concentration ratios. A prototype cavity demonstrated that large reductions in radiative losses were possible through this technique. For the overall concentrating STEG system, a number of devices were fabricated and tested in a custom built test platform to characterize their efficiency performance. Additionally, testing was performed with integration of PCM thermal storage, and the storage time of the lab scale system was evaluated. Our latest testing results showed a STEG efficiency of 9.6%, indicating promising potential for high performance concentrated STEGs.

  6. Iodine Hall Thruster

    Science.gov (United States)

    Szabo, James

    2015-01-01

    Iodine enables dramatic mass and cost savings for lunar and Mars cargo missions, including Earth escape and near-Earth space maneuvers. The demonstrated throttling ability of iodine is important for a singular thruster that might be called upon to propel a spacecraft from Earth to Mars or Venus. The ability to throttle efficiently is even more important for missions beyond Mars. In the Phase I project, Busek Company, Inc., tested an existing Hall thruster, the BHT-8000, on iodine propellant. The thruster was fed by a high-flow iodine feed system and supported by an existing Busek hollow cathode flowing xenon gas. The Phase I propellant feed system was evolved from a previously demonstrated laboratory feed system. Throttling of the thruster between 2 and 11 kW at 200 to 600 V was demonstrated. Testing showed that the efficiency of iodine fueled BHT-8000 is the same as with xenon, with iodine delivering a slightly higher thrust-to-power (T/P) ratio. In Phase II, a complete iodine-fueled system was developed, including the thruster, hollow cathode, and iodine propellant feed system. The nominal power of the Phase II system is 8 kW; however, it can be deeply throttled as well as clustered to much higher power levels. The technology also can be scaled to greater than 100 kW per thruster to support megawatt-class missions. The target thruster efficiency for the full-scale system is 65 percent at high specific impulse (Isp) (approximately 3,000 s) and 60 percent at high thrust (Isp approximately 2,000 s).

  7. Bimetric Theory of Fractional Quantum Hall States

    Directory of Open Access Journals (Sweden)

    Andrey Gromov

    2017-11-01

    Full Text Available We present a bimetric low-energy effective theory of fractional quantum Hall (FQH states that describes the topological properties and a gapped collective excitation, known as the Girvin-Macdonald-Platzman (GMP mode. The theory consists of a topological Chern-Simons action, coupled to a symmetric rank-2 tensor, and an action à la bimetric gravity, describing the gapped dynamics of a spin-2 mode. The theory is formulated in curved ambient space and is spatially covariant, which allows us to restrict the form of the effective action and the values of phenomenological coefficients. Using bimetric theory, we calculate the projected static structure factor up to the k^{6} order in the momentum expansion. To provide further support for the theory, we derive the long-wave limit of the GMP algebra, the dispersion relation of the GMP mode, and the Hall viscosity of FQH states. The particle-hole (PH transformation of the theory takes a very simple form, making the duality between FQH states and their PH conjugates manifest. We also comment on the possible applications to fractional Chern insulators, where closely related structures arise. It is shown that the familiar FQH observables acquire a curious geometric interpretation within the bimetric formalism.

  8. Bimetric Theory of Fractional Quantum Hall States

    Science.gov (United States)

    Gromov, Andrey; Son, Dam Thanh

    2017-10-01

    We present a bimetric low-energy effective theory of fractional quantum Hall (FQH) states that describes the topological properties and a gapped collective excitation, known as the Girvin-Macdonald-Platzman (GMP) mode. The theory consists of a topological Chern-Simons action, coupled to a symmetric rank-2 tensor, and an action à la bimetric gravity, describing the gapped dynamics of a spin-2 mode. The theory is formulated in curved ambient space and is spatially covariant, which allows us to restrict the form of the effective action and the values of phenomenological coefficients. Using bimetric theory, we calculate the projected static structure factor up to the k6 order in the momentum expansion. To provide further support for the theory, we derive the long-wave limit of the GMP algebra, the dispersion relation of the GMP mode, and the Hall viscosity of FQH states. The particle-hole (PH) transformation of the theory takes a very simple form, making the duality between FQH states and their PH conjugates manifest. We also comment on the possible applications to fractional Chern insulators, where closely related structures arise. It is shown that the familiar FQH observables acquire a curious geometric interpretation within the bimetric formalism.

  9. High Performance Bulk Thermoelectric Materials

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Zhifeng [Boston College, Chestnut Hill, MA (United States)

    2013-03-31

    Over 13 plus years, we have carried out research on electron pairing symmetry of superconductors, growth and their field emission property studies on carbon nanotubes and semiconducting nanowires, high performance thermoelectric materials and other interesting materials. As a result of the research, we have published 104 papers, have educated six undergraduate students, twenty graduate students, nine postdocs, nine visitors, and one technician.

  10. Thermoelectric effects in magnetic nanostructures

    NARCIS (Netherlands)

    Hatami, Moosa; Bauer, Gerrit E.W.; Zhang, Q.F.; Kelly, Paul J.

    2009-01-01

    We model and evaluate the Peltier and Seebeck effects in magnetic multilayer nanostructures by a finite-element theory of thermoelectric properties. We present analytical expressions for the thermopower and the current-induced temperature changes due to Peltier cooling/heating. The thermopower of a

  11. Enhancement of Thermoelectric Properties of PEDOT:PSS and Tellurium-PEDOT:PSS Hybrid Composites by Simple Chemical Treatment

    Science.gov (United States)

    Jin Bae, Eun; Hun Kang, Young; Jang, Kwang-Suk; Yun Cho, Song

    2016-01-01

    The thermoelectric properties of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and tellurium-PEDOT:PSS (Te-PEDOT:PSS) hybrid composites were enhanced via simple chemical treatment. The performance of thermoelectric materials is determined by their electrical conductivity, thermal conductivity, and Seebeck coefficient. Significant enhancement of the electrical conductivity of PEDOT:PSS and Te-PEDOT:PSS hybrid composites from 787.99 and 11.01 to 4839.92 and 334.68 S cm-1, respectively was achieved by simple chemical treatment with H2SO4. The power factor of the developed materials could be effectively tuned over a very wide range depending on the concentration of the H2SO4 solution used in the chemical treatment. The power factors of the developed thermoelectric materials were optimized to 51.85 and 284 μW m-1 K-2, respectively, which represent an increase of four orders of magnitude relative to the corresponding parameters of the untreated thermoelectric materials. Using the Te-PEDOT:PSS hybrid composites, a flexible thermoelectric generator that could be embedded in textiles was fabricated by a printing process. This thermoelectric array generates a thermoelectric voltage of 2 mV using human body heat.

  12. Interplay between snake and quantum edge states in a graphene Hall bar with a pn-junction

    Energy Technology Data Exchange (ETDEWEB)

    Milovanović, S. P., E-mail: slavisa.milovanovic@uantwerpen.be; Peeters, F. M., E-mail: francois.peeters@uantwerpen.be [Departement Fysica, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium); Ramezani Masir, M., E-mail: mrmphys@gmail.com [Departement Fysica, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium); Department of Physics, University of Texas at Austin, 2515 Speedway, C1600 Austin, Texas 78712-1192 (United States)

    2014-09-22

    The magneto- and Hall resistance of a locally gated cross shaped graphene Hall bar is calculated. The edge of the top gate is placed diagonally across the center of the Hall cross. Four-probe resistance is calculated using the Landauer-Büttiker formalism, while the transmission coefficients are obtained using the non-equilibrium Green's function approach. The interplay between transport due to edge channels and snake states is investigated. When two edge channels are occupied, we predict oscillations in the Hall and the bend resistance as function of the magnetic field, which are a consequence of quantum interference between the occupied snake states.

  13. Hall Conductivity in a Quasi-Two-Dimensional Disordered Electron System

    Institute of Scientific and Technical Information of China (English)

    YANG Yong-Hong; WANG Yong-Gang; LIU Mei

    2002-01-01

    By making use of the diagrammatic techniques in perturbation theory,we have investigated the Hall effect in a quasi-two-dimensional disordered electron system.In the weakly localized regime,the analytical expression for quantum correction to Hall conductivity has been obtained using the Kubo formalism and quasiclassical approximation.The relevant dimensional crossover behavior from three dimensions to two dimensions with decreasing the interlayer hopping energy is discussed.The quantum interference effect is shown to have a vanishing correction t,o the Hall coefficient.

  14. Modeling of interface roughness in thermoelectric composite materials

    International Nuclear Information System (INIS)

    Gather, F; Heiliger, C; Klar, P J

    2011-01-01

    We use a network model to calculate the influence of the mesoscopic interface structure on the thermoelectric properties of superlattice structures consisting of alternating layers of materials A and B. The thermoelectric figure of merit of such a composite material depends on the layer thickness, if interface resistances are accounted for, and can be increased by proper interface design. In general, interface roughness reduces the figure of merit, again compared to the case of ideal interfaces. However, the strength of this reduction depends strongly on the type of interface roughness. Smooth atomic surface diffusion leading to alloying of materials A and B causes the largest reduction of the figure of merit. Consequently, in real structures, it is important not only to minimize interface roughness, but also to control the type of roughness. Although the microscopic effects of interfaces are only empirically accounted for, using a network model can yield useful information about the dependence of the macroscopic transport coefficients on the mesoscopic disorder in structured thermoelectric materials.

  15. Improvement of a thermoelectric and vapour compression hybrid refrigerator

    International Nuclear Information System (INIS)

    Astrain, D.; Martínez, A.; Rodríguez, A.

    2012-01-01

    This paper presents the improvement in the performance of a domestic hybrid refrigerator that combines vapour compression technology for the cooler and freezer compartments, and thermoelectric technology for a new compartment. The heat emitted by the Peltier modules is discharged into the freezer compartment, forming a cascade refrigeration system. This configuration leads to a significant improvement in the coefficient of operation. Thus, the electric power consumption of the modules and the refrigerator decreases by 95% and 20% respectively, with respect to those attained with a cascade refrigeration system connected with the cooler compartment. The optimization process is based on a computational model that simulates the behaviour of the whole refrigerator. Two prototypes have been built and tested. Experimental results indicate that the temperature of the new compartment is easily set up at any value between 0 and −4 °C, the oscillation of this temperature is always lower than 0.4 °C, and the electric power consumption is low enough to include this hybrid refrigerator into energy efficiency class A, according European rules and regulations. - Highlights: ► Optimization of a vapour compression and thermoelectric hybrid refrigerator. ► Two prototypes built and tested. Computational model for the whole refrigerator. ► Electric power consumption of the modules and the refrigerator 95% and 20% lower. ► New compartment refrigerated with thermoelectric technology. ► Inner temperature adjustable from 0 to −4 °C. Oscillations lower than ±0.2 °C.

  16. A 3D TCAD simulation of a thermoelectric module configured for thermoelectric power generation, cooling and heating

    Science.gov (United States)

    Gould, C. A.; Shammas, N. Y. A.; Grainger, S.; Taylor, I.; Simpson, K.

    2012-06-01

    This paper documents the 3D modeling and simulation of a three couple thermoelectric module using the Synopsys Technology Computer Aided Design (TCAD) semiconductor simulation software. Simulation results are presented for thermoelectric power generation, cooling and heating, and successfully demonstrate the basic thermoelectric principles. The 3D TCAD simulation model of a three couple thermoelectric module can be used in the future to evaluate different thermoelectric materials, device structures, and improve the efficiency and performance of thermoelectric modules.

  17. ac spin-Hall effect

    International Nuclear Information System (INIS)

    Entin-Wohlman, O.

    2005-01-01

    Full Text:The spin-Hall effect is described. The Rashba and Dresselhaus spin-orbit interactions are both shown to yield the low temperature spin-Hall effect for strongly localized electrons coupled to phonons. A frequency-dependent electric field E(ω) generates a spin-polarization current, normal to E, due to interference of hopping paths. At zero temperature the corresponding spin-Hall conductivity is real and is proportional to ω 2 . At non-zero temperatures the coupling to the phonons yields an imaginary term proportional to ω. The interference also yields persistent spin currents at thermal equilibrium, at E = 0. The contributions from the Dresselhaus and Rashba interactions to the interference oppose each other

  18. Amorphous-crystalline transition in thermoelectric NbO2

    International Nuclear Information System (INIS)

    Music, Denis; Chen, Yen-Ting; Bliem, Pascal; Geyer, Richard W

    2015-01-01

    Density functional theory was employed to design enhanced amorphous NbO 2 thermoelectrics. The covalent-ionic nature of Nb–O bonding is identical in amorphous NbO 2 and its crystalline counterpart. However, the Anderson localisation occurs in amorphous NbO 2 , which may affect the transport properties. We calculate a multifold increase in the absolute Seebeck coefficient for the amorphous state. These predictions were critically appraised by measuring the Seebeck coefficient of sputtered amorphous and crystalline NbO 2 thin films with the identical short-range order. The first-order phase transition occurs at approximately 550 °C, but amorphous NbO 2 possesses enhanced transport properties at all temperatures. Amorphous NbO 2 , reaching  −173 μV K −1 , exhibits up to a 29% larger absolute Seebeck coefficient value, thereby validating the predictions. (paper)

  19. Thermoelectric properties of ZnSb films grown by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Venkatasubramanian, R; Watko, E; Colpitts, T

    1997-07-01

    The thermoelectric properties of ZnSb films grown by metallorganic chemical vapor deposition (MOCVD) are reported. The growth conditions necessary to obtain stoichiometric ZnSb films and the effects of various growth parameters on the electrical conductivity and Seebeck coefficients of the films are described. The as-grown ZnSb films are p-type. It was observed that the thicker ZnSb films offer improved carrier mobilities and lower free-carrier concentration levels. The Seebeck coefficient of ZnSb films was found to rise rapidly at approximately 160 C. The thicker films, due to the lower doping levels, indicate higher Seebeck coefficients between 25 to 200 C. A short annealing of the ZnSb film at temperatures of {approximately}200 C results in reduced free-carrier level. Thermal conductivity measurements of ZnSb films using the 3-{omega} method are also presented.

  20. Investigation of mesoporous structures for thermoelectric applications

    International Nuclear Information System (INIS)

    Cojocaru, A.; Carstensen, J.; Foell, H.; Boor, J.; Schmidt, V.

    2011-01-01

    Mesoporous silicon is an attractive material for thermoelectric application. For pore wall thicknesses around <100 nm, phonons can not penetrate the porous layer while electrons still can, due to there smaller mean free path length. The resulting good electrical and bad thermal conductivity is a premise for efficient thermoelectric devices. This paper presents results regarding homogeneity, high porosity, and optimal pore wall thicknesses for porous silicon based thermoelectric devices.

  1. Scattering theory of nonlinear thermoelectricity in quantum coherent conductors.

    Science.gov (United States)

    Meair, Jonathan; Jacquod, Philippe

    2013-02-27

    We construct a scattering theory of weakly nonlinear thermoelectric transport through sub-micron scale conductors. The theory incorporates the leading nonlinear contributions in temperature and voltage biases to the charge and heat currents. Because of the finite capacitances of sub-micron scale conducting circuits, fundamental conservation laws such as gauge invariance and current conservation require special care to be preserved. We do this by extending the approach of Christen and Büttiker (1996 Europhys. Lett. 35 523) to coupled charge and heat transport. In this way we write relations connecting nonlinear transport coefficients in a manner similar to Mott's relation between the linear thermopower and the linear conductance. We derive sum rules that nonlinear transport coefficients must satisfy to preserve gauge invariance and current conservation. We illustrate our theory by calculating the efficiency of heat engines and the coefficient of performance of thermoelectric refrigerators based on quantum point contacts and resonant tunneling barriers. We identify, in particular, rectification effects that increase device performance.

  2. Thermoelectric properties of an interacting quantum dot based heat engine

    Science.gov (United States)

    Erdman, Paolo Andrea; Mazza, Francesco; Bosisio, Riccardo; Benenti, Giuliano; Fazio, Rosario; Taddei, Fabio

    2017-06-01

    We study the thermoelectric properties and heat-to-work conversion performance of an interacting, multilevel quantum dot (QD) weakly coupled to electronic reservoirs. We focus on the sequential tunneling regime. The dynamics of the charge in the QD is studied by means of master equations for the probabilities of occupation. From here we compute the charge and heat currents in the linear response regime. Assuming a generic multiterminal setup, and for low temperatures (quantum limit), we obtain analytical expressions for the transport coefficients which account for the interplay between interactions (charging energy) and level quantization. In the case of systems with two and three terminals we derive formulas for the power factor Q and the figure of merit Z T for a QD-based heat engine, identifying optimal working conditions which maximize output power and efficiency of heat-to-work conversion. Beyond the linear response we concentrate on the two-terminal setup. We first study the thermoelectric nonlinear coefficients assessing the consequences of large temperature and voltage biases, focusing on the breakdown of the Onsager reciprocal relation between thermopower and Peltier coefficient. We then investigate the conditions which optimize the performance of a heat engine, finding that in the quantum limit output power and efficiency at maximum power can almost be simultaneously maximized by choosing appropriate values of electrochemical potential and bias voltage. At last we study how energy level degeneracy can increase the output power.

  3. A lightweight scalable agarose-gel-synthesized thermoelectric composite

    Science.gov (United States)

    Kim, Jin Ho; Fernandes, Gustavo E.; Lee, Do-Joong; Hirst, Elizabeth S.; Osgood, Richard M., III; Xu, Jimmy

    2018-03-01

    Electronic devices are now advancing beyond classical, rigid systems and moving into lighweight flexible regimes, enabling new applications such as body-wearables and ‘e-textiles’. To support this new electronic platform, composite materials that are highly conductive yet scalable, flexible, and wearable are needed. Materials with high electrical conductivity often have poor thermoelectric properties because their thermal transport is made greater by the same factors as their electronic conductivity. We demonstrate, in proof-of-principle experiments, that a novel binary composite can disrupt thermal (phononic) transport, while maintaining high electrical conductivity, thus yielding promising thermoelectric properties. Highly conductive Multi-Wall Carbon Nanotube (MWCNT) composites are combined with a low-band gap semiconductor, PbS. The work functions of the two materials are closely matched, minimizing the electrical contact resistance within the composite. Disparities in the speed of sound in MWCNTs and PbS help to inhibit phonon propagation, and boundary layer scattering at interfaces between these two materials lead to large Seebeck coefficient (> 150 μV/K) (Mott N F and Davis E A 1971 Electronic Processes in Non-crystalline Materials (Oxford: Clarendon), p 47) and a power factor as high as 10 μW/(K2 m). The overall fabrication process is not only scalable but also conformal and compatible with large-area flexible hosts including metal sheets, films, coatings, possibly arrays of fibers, textiles and fabrics. We explain the behavior of this novel thermoelectric material platform in terms of differing length scales for electrical conductivity and phononic heat transfer, and explore new material configurations for potentially lightweight and flexible thermoelectric devices that could be networked in a textile.

  4. Misfit Layer Compounds and Ferecrystals: Model Systems for Thermoelectric Nanocomposites

    Directory of Open Access Journals (Sweden)

    Devin R. Merrill

    2015-04-01

    Full Text Available A basic summary of thermoelectric principles is presented in a historical context, following the evolution of the field from initial discovery to modern day high-zT materials. A specific focus is placed on nanocomposite materials as a means to solve the challenges presented by the contradictory material requirements necessary for efficient thermal energy harvest. Misfit layer compounds are highlighted as an example of a highly ordered anisotropic nanocomposite system. Their layered structure provides the opportunity to use multiple constituents for improved thermoelectric performance, through both enhanced phonon scattering at interfaces and through electronic interactions between the constituents. Recently, a class of metastable, turbostratically-disordered misfit layer compounds has been synthesized using a kinetically controlled approach with low reaction temperatures. The kinetically stabilized structures can be prepared with a variety of constituent ratios and layering schemes, providing an avenue to systematically understand structure-function relationships not possible in the thermodynamic compounds. We summarize the work that has been done to date on these materials. The observed turbostratic disorder has been shown to result in extremely low cross plane thermal conductivity and in plane thermal conductivities that are also very small, suggesting the structural motif could be attractive as thermoelectric materials if the power factor could be improved. The first 10 compounds in the [(PbSe1+δ]m(TiSe2n family (m, n ≤ 3 are reported as a case study. As n increases, the magnitude of the Seebeck coefficient is significantly increased without a simultaneous decrease in the in-plane electrical conductivity, resulting in an improved thermoelectric power factor.

  5. Thermoelectric performance of functionalized Sc2C MXenes

    KAUST Repository

    Kumar, S.

    2016-07-05

    Functionalization of the MXene Sc2C, which has the rare property to realize semiconducting states for various functionalizations including O, F, and OH, is studied with respect to the electronic and thermal behavior. The lowest lattice thermal conductivity is obtained for OH functionalization and an additional 30% decrease can be achieved by confining the phonon mean free path to 100 nm. Despite a relatively low Seebeck coefficient, Sc2C(OH)2 is a candidate for intermediate-temperature thermoelectric applications due to compensation by a high electrical conductivity and very low lattice thermal conductivity.

  6. Thermoelectric properties of non-stoichiometric lanthanum sulfides

    International Nuclear Information System (INIS)

    Shapiro, E.; Danielson, L.R.

    1983-01-01

    The lanthanum sulfides are promising candidate materials for high-efficiency thermoelectric applications at temperatures up to 1300 0 C. The nonstoichiometric lanthanum sulfides (LaS /SUB x/ , where 1.33 2 //rho/ can be chosen. The thermal conductivity remains approximately constant with stoichiometry, so a material with an optimum value of α 2 //rho/ should possess the optimum figure-of-merit. Data for the Seebeck coefficient and electrical resistivity of non-stoichiometric lanthanum sulfides is presented, together with structural properties of these materials

  7. Thermoelectric performance of functionalized Sc2C MXenes

    KAUST Repository

    Kumar, S.; Schwingenschlö gl, Udo

    2016-01-01

    Functionalization of the MXene Sc2C, which has the rare property to realize semiconducting states for various functionalizations including O, F, and OH, is studied with respect to the electronic and thermal behavior. The lowest lattice thermal conductivity is obtained for OH functionalization and an additional 30% decrease can be achieved by confining the phonon mean free path to 100 nm. Despite a relatively low Seebeck coefficient, Sc2C(OH)2 is a candidate for intermediate-temperature thermoelectric applications due to compensation by a high electrical conductivity and very low lattice thermal conductivity.

  8. Nonlocal thermoelectric symmetry relations in ferromagnet-superconductor proximity structures

    Energy Technology Data Exchange (ETDEWEB)

    Machon, Peter; Belzig, Wolfgang [Department of Physics, University of Konstanz, D-78457 Konstanz (Germany); Eschrig, Matthias [Department of Physics, University of Konstanz, D-78457 Konstanz (Germany); Department of Physics, Royal Holloway, University of London, Egham Hill, EGHAM, TW20 0EX (United Kingdom)

    2012-07-01

    The symmetries of thermal and electric transport coefficients in quantum coherent structures are related to fundamental thermodynamic principles by the Onsager reciprocity. We generalize Onsager's symmetry relation to nonlocal thermoelectric currents in a three terminal ferromagnet-superconductor heterostructure including spin-dependent crossed Andreev reflection and direct electron transfer processes. We proof this general symmetry by applying spin-dependent boundary conditions for quasi-classical Green's functions in both the clean and the dirty limit. We predict an anomalously large local thermopower and a nonlocal Seebeck effect, which can be explained by the spin-dependent spectral properties.

  9. Investigation of Nanophase Materials for Thermoelectric Applications

    National Research Council Canada - National Science Library

    Stokes, Kevin

    2004-01-01

    .... We have also made contributions to new, pressure-dependent thermoelectric transport measurement techniques and chemical techniques for creating ordered nanoparticle assemblies consisting of two different nanoparticle materials.

  10. Optimal operation of thermoelectric cooler driven by solar thermoelectric generator

    International Nuclear Information System (INIS)

    Khattab, N.M.; El Shenawy, E.T.

    2006-01-01

    The possibility of using a solar thermoelectric generator (TEG) to drive a small thermoelectric cooler (TEC) is studied in the present work. The study includes the theory of both the TEG and the TEC, giving special consideration to determination of the number of TEG modules required to power the TEC to achieve the best performance of the TEG-TEC system all year round. Commercially available thermoelectric modules (TE) are used in the system. The TEG contains 49 thermocouples and the TEC contains 127 thermocouples. A simple arrangement of plane reflectors that are designed to receive maximum solar energy during noon time is used to heat the TEG. Performance tests are conducted to determine both the physical properties and the performance curves of the available TE modules. Also, empirical relations describing the performance of the TEG and TEC modules have been established. These relations are used to develop a mathematical model simulating the TEG-TEC system to predict its performance all year round under the actual climatic conditions of Cairo, Egypt (30 deg. N latitude). The model results are used to determine the number of TEG modules required to drive a single TEC module at maximum cooling capacity. The results show that five thermocouples of the TEG can drive one thermocouple of the TEC, which coincides with the previous theory of the TEG-TEC. This means that 10 of the used TEG modules are required to power the used TEC at optimum performance most times of the year

  11. Perspective: Web-based machine learning models for real-time screening of thermoelectric materials properties

    Science.gov (United States)

    Gaultois, Michael W.; Oliynyk, Anton O.; Mar, Arthur; Sparks, Taylor D.; Mulholland, Gregory J.; Meredig, Bryce

    2016-05-01

    The experimental search for new thermoelectric materials remains largely confined to a limited set of successful chemical and structural families, such as chalcogenides, skutterudites, and Zintl phases. In principle, computational tools such as density functional theory (DFT) offer the possibility of rationally guiding experimental synthesis efforts toward very different chemistries. However, in practice, predicting thermoelectric properties from first principles remains a challenging endeavor [J. Carrete et al., Phys. Rev. X 4, 011019 (2014)], and experimental researchers generally do not directly use computation to drive their own synthesis efforts. To bridge this practical gap between experimental needs and computational tools, we report an open machine learning-based recommendation engine (http://thermoelectrics.citrination.com) for materials researchers that suggests promising new thermoelectric compositions based on pre-screening about 25 000 known materials and also evaluates the feasibility of user-designed compounds. We show this engine can identify interesting chemistries very different from known thermoelectrics. Specifically, we describe the experimental characterization of one example set of compounds derived from our engine, RE12Co5Bi (RE = Gd, Er), which exhibits surprising thermoelectric performance given its unprecedentedly high loading with metallic d and f block elements and warrants further investigation as a new thermoelectric material platform. We show that our engine predicts this family of materials to have low thermal and high electrical conductivities, but modest Seebeck coefficient, all of which are confirmed experimentally. We note that the engine also predicts materials that may simultaneously optimize all three properties entering into zT; we selected RE12Co5Bi for this study due to its interesting chemical composition and known facile synthesis.

  12. Effect of ball milling time on thermoelectric properties of bismuth telluride nanomaterials

    Science.gov (United States)

    Khade, Poonam; Bagwaiya, Toshi; Bhattacharaya, Shovit; Singh, Ajay; Jha, Purushottam; Shelke, Vilas

    2018-04-01

    The effect of different milling time on thermoelectric properties of bismuth telluride (Bi2Te3) was investigated. The nanomaterial was prepared by varying the ball milling time and followed by hot press sintering. The crystal structure and phase formation were verified by X-ray diffraction and Raman Spectroscopy. The experimental results show that electrical conductivity increases whereas thermal conductivity decreases with increasing milling time. The negative sign of seebeck coefficient indicate the n-type nature with majority charge carriers of electrons. A maximum figure of merit about 0.55 is achieved for l5hr ball milled Bi2Te3 sample. The present study demonstrates the simple and cost-effective method for synthesis of Bi2Te3 thermoelectric material at large scale thermoelectric applications.

  13. Low-Temperature Thermoelectric Properties of Fe2VAl with Partial Cobalt Doping

    Science.gov (United States)

    Liu, Chang; Morelli, Donald T.

    2012-06-01

    Ternary metallic alloy Fe2VAl with a pseudogap in its energy band structure has received intensive scrutiny for potential thermoelectric applications. Due to the sharp change in the density of states profile near the Fermi level, interesting transport properties can be triggered to render possible enhancement in the overall thermoelectric performance. Previously, this full-Heusler-type alloy was partially doped with cobalt at the iron sites to produce a series of compounds with n-type conductivity. Their thermoelectric properties in the temperature range of 300 K to 850 K were reported. In this research, efforts were made to extend the investigation on (Fe1- x Co x )2VAl to the low-temperature range. Alloy samples were prepared by arc-melting and annealing. Seebeck coefficient, electrical resistivity, and thermal conductivity measurements were performed from 80 K to room temperature. The effects of cobalt doping on the material's electronic and thermal properties are discussed.

  14. Thermal Stress Analysis and Structure Parameter Selection for a Bi2Te3-Based Thermoelectric Module

    Science.gov (United States)

    Gao, Jun-Ling; Du, Qun-Gui; Zhang, Xiao-Dan; Jiang, Xin-Qiang

    2011-05-01

    The output power and conversion efficiency of thermoelectric modules (TEMs) are mainly determined by their material properties, i.e., Seebeck coefficient, electrical resistivity, and thermal conductivity. In practical applications, due to the influence of the harsh environment, the mechanical properties of TEMs should also be considered. Using the finite-element analysis (FEA) model in ANSYS software, we present the thermal stress distribution of a TEM based on the anisotropic mechanical properties and thermoelectric properties of hot-pressed materials. By analyzing the possibilities of damage along the cleavage plane of Bi2Te3-based thermoelectric materials and by optimizing the structure parameters, a TEM with better mechanical performance is obtained. Thus, a direction for improving the thermal stress resistance of TEMs is presented.

  15. Kinetic coefficients in isotopically disordered crystals

    International Nuclear Information System (INIS)

    Zhernov, Arkadii P; Inyushkin, Alexander V

    2002-01-01

    Peculiarities of the behavior of kinetic coefficients, like thermal conductivity, electric conductivity, and thermoelectric power, in isotopically disordered materials are reviewed in detail. New experimental and theoretical results on the isotope effects in the thermal conductivity of diamond, Ge, and Si semiconductors are presented. The suppression effect of phonon-drag thermopower in the isotopically disordered Ge crystals is discussed. The influence of dynamic and static crystal lattice deformations on the electric conductivity of metals as well as on the ordinary phonon spectrum deformations is considered. (reviews of topical problems)

  16. Simultaneous Enhancement of Electrical Conductivity and Seebeck Coefficient of [6,6]-Phenyl-C71 Butyric Acid Methyl Ester (PC70BM by Adding Co-Solvents

    Directory of Open Access Journals (Sweden)

    Mina Rastegaralam

    2018-05-01

    Full Text Available Chemical modification by co-solvents added to [6,6]-Phenyl-C71 butyric acid methyl ester, commonly known as an n-type semiconducting fullerene derivative PC70BM, is reported to change the electrical and thermoelectric properties of this system. Power factor of the casted PC70BM samples achieves values higher than that determined for a variety of organic compounds, including conducting polymers, such as PEDOT:PSS in the pristine form. After chemical functionalization by different solvents, namely N,N-Dimethylformamide (DMF, dimethyl sulfoxide (DMSO, N-Methyl-2-pyrrolidone (NMP, acetonitrile (AC, and 1,2-Dichloroethane (DCE, the four-probe in-plane electrical conductivity and Seebeck coefficient measurements indicate a simultaneous increase of the electrical conductivity and the Seebeck coefficient. The observed effect is more pronounced for solvents with a high boiling point, such as N,N-Dimethylformamide (DMF, dimethyl sulfoxide (DMSO, and N-Methyl-2-pyrrolidone (NMP, than in acetonitrile (AC and 1,2-Dichloroethane (DCE. We identified the origin of these changes using Hall mobility measurements, which demonstrate enhancement of the PC70BM charge carrier mobility upon addition of the corresponding solvents due to the improved packaging of the fullerene compound and chemical interaction with entrapped solvent molecules within the layers.

  17. Thermoelectric single-photon detector

    International Nuclear Information System (INIS)

    Kuzanyan, A A; Petrosyan, V A; Kuzanyan, A S

    2012-01-01

    The ability to detect a single photon is the ultimate level of sensitivity in the measurement of optical radiation. Sensors capable of detecting single photons and determining their energy have many scientific and technological applications. Kondo-enhanced Seebeck effect cryogenic detectors are based on thermoelectric heat-to-voltage conversion and voltage readout. We evaluate the prospects of CeB 6 and (La,Ce)B 6 hexaboride crystals for their application as a sensitive element in this type of detectors. We conclude that such detectors can register a single UV photon, have a fast count rate (up to 45 MHz) and a high spectral resolution of 0.1 eV. We calculate the electric potential generated along the thermoelectric sensor upon registering a UV single photon.

  18. Single particle detection: Phase control in submicron Hall sensors

    International Nuclear Information System (INIS)

    Di Michele, Lorenzo; Shelly, Connor; Gallop, John; Kazakova, Olga

    2010-01-01

    We present a phase-sensitive ac-dc Hall magnetometry method which allows a clear and reliable separation of real and parasitic magnetic signals of a very small magnitude. High-sensitivity semiconductor-based Hall crosses are generally accepted as a preferential solution for non-invasive detection of superparamagnetic nanobeads used in molecular biology, nanomedicine, and nanochemistry. However, detection of such small beads is often hindered by inductive pick-up and other spurious signals. The present work demonstrates an unambiguous experimental route for detection of small magnetic moments and provides a simple theoretical background for it. The reliability of the method has been tested for a variety of InSb Hall sensors in the range 600 nm-5 μm. Complete characterization of empty devices, involving Hall coefficients and noise measurements, has been performed and detection of a single FePt bead with diameter of 140 nm and magnetic moment of μ≅10 8 μ B has been achieved with a 600 nm-wide sensor.

  19. Thermoelectric coolers as power generators

    International Nuclear Information System (INIS)

    Burke, E.J.; Buist, R.J.

    1984-01-01

    There are many applications where thermoelectric (TE) coolers can be used effectively as power generators. The literature available on this subject is scarce and very limited in scope. This paper describes the configuration, capability, limitations and performance of TE coolers to be used as power generators. Also presented are performance curves enabling the user to design the optimum TE module for any given power generation application

  20. ATLAS Assembly Hall Open Day

    CERN Multimedia

    Patrice Loiez

    2004-01-01

    To mark the 50th Anniversary of the founding of CERN, a day of tours, displays and presentations was held in October 2004. The assembly halls for the experiments that were waiting to be installed on the LHC, such as ATLAS shown here, were transformed into display areas and cafés.

  1. Universal intrinsic spin Hall effect

    Czech Academy of Sciences Publication Activity Database

    Sinova, J.; Culcer, D.; Sinitsyn, N. A.; Niu, Q.; Jungwirth, Tomáš; MacDonald, A. H.

    2004-01-01

    Roč. 92, č. 12 (2004), 126603/1-126603/4 ISSN 0031-9007 R&D Projects: GA ČR GA202/02/0912 Institutional research plan: CEZ:AV0Z1010914 Keywords : semiconductor quantum wells * spin-orbit interaction * spin Hall effect Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 7.218, year: 2004

  2. Spin Hall effect for anyons

    International Nuclear Information System (INIS)

    Dhar, S.; Basu, B.; Ghosh, Subir

    2007-01-01

    We explain the intrinsic spin Hall effect from generic anyon dynamics in the presence of external electromagnetic field. The free anyon is represented as a spinning particle with an underlying non-commutative configuration space. The Berry curvature plays a major role in the analysis

  3. Thermoelectric characterization of Sb{sub 2}Te{sub 3} thin films deposited by ALD

    Energy Technology Data Exchange (ETDEWEB)

    Zastrow, Sebastian; Schumacher, Christian; Nielsch, Kornelius [University of Hamburg (Germany); Regus, Matthias [University of Kiel (Germany); Schulz, Stephan [University of Duisburg-Essen (Germany)

    2012-07-01

    Thermoelectric materials can be used as temperature sensors or peltier cooling devices as well as to recover a part of the massive losses of energy due to the waste heat generated in fossil-fuel driven power plants and vehicles. Antimony Telluride (Sb{sub 2}Te{sub 3}) is a p-doped semiconductor and in the focus of interest for room temperature applications because of its thermoelectric peak performance at around 350 K. However, thermoelectric properties of Sb{sub 2}Te{sub 3} ALD thin films have not been reported yet. Based on the work of Pore et al., Sb{sub 2}Te{sub 3} is deposited with a home-made reactor on SiO{sub 2} by using (Et{sub 3}Si){sub 2}Te and SbCl{sub 3}. The surface roughness as well as the growth rate depend strongly on the deposition temperature as reported by Cu et al. To check the preferential growth directions and the composition, XRD and EDX measurements are carried out. The thermoelectric properties are influenced by the deposition parameters. Therefore, spatial scans of the Seebeck coefficient are performed and the electrical resistivity is measured. In order to enhance the thermoelectric performance, a first optimization by short annealing processes is done under helium atmosphere up to 570 K. The authors would like to thank the ''Karl-Vossloh-Stiftung''.

  4. Phase transition enhanced thermoelectric figure-of-merit in copper chalcogenides

    Directory of Open Access Journals (Sweden)

    David R. Brown

    2013-11-01

    Full Text Available While thermoelectric materials can be used for solid state cooling, waste heat recovery, and solar electricity generation, low values of the thermoelectric figure of merit, zT, have led to an efficiency too low for widespread use. Thermoelectric effects are characterized by the Seebeck coefficient or thermopower, which is related to the entropy associated with charge transport. For example, coupling spin entropy with the presence of charge carriers has enabled the enhancement of zT in cobalt oxides. We demonstrate that the coupling of a continuous phase transition to carrier transport in Cu2Se over a broad (360–410 K temperature range results in a dramatic peak in thermopower, an increase in phonon and electron scattering, and a corresponding doubling of zT (to 0.7 at 406 K, and a similar but larger increase over a wider temperature range in the zT of Cu1.97Ag.03Se (almost 1.0 at 400 K. The use of structural entropy for enhanced thermopower could lead to new engineering approaches for thermoelectric materials with high zT and new green applications for thermoelectrics.

  5. An experimental approach of decoupling Seebeck coefficient and electrical resistivity

    Science.gov (United States)

    Muhammed Sabeer N., A.; Paulson, Anju; Pradyumnan, P. P.

    2018-04-01

    The Thermoelectrics (TE) has drawn increased attention among renewable energy technologies. The performance of a thermoelectric material is quantified by a dimensionless thermoelectric figure of merit, ZT=S2σT/κ, where S and σ vary inversely each other. Thus, improvement in ZT is not an easy task. So, researchers have been trying different parameter variations during thin film processing to improve TE properties. In this work, tin nitride (Sn3N4) thin films were deposited on glass substrates by reactive RF magnetron sputtering and investigated its thermoelectric response. To decouple the covariance nature of Seebeck coefficient and electrical resistivity for the enhancement of power factor (S2σ), the nitrogen gas pressure during sputtering was reduced. Reduction in nitrogen gas pressure reduced both sputtering pressure and amount of nitrogen available for reaction during sputtering. This experimental approach of combined effect introduced preferred orientation and stoichiometric variations simultaneously in the sputtered Sn3N4 thin films. The scattering mechanism associated with these variations enhanced TE properties by independently drive the Seebeck coefficient and electrical resistivity parameters.

  6. Investigation of electronic, magnetic and thermoelectric properties of Zr{sub 2}NiZ (Z = Al,Ga) ferromagnets

    Energy Technology Data Exchange (ETDEWEB)

    Yousuf, Saleem, E-mail: nengroosaleem17@gmail.com; Gupta, Dinesh C., E-mail: sosfizix@gmail.com

    2017-05-01

    Systematic investigation of impact of electronic structure and magnetism, on the thermoelectric properties of new Zr{sub 2}NiZ (Z = Al, Ga) Heusler alloys are determined using density functional theory calculations. Half-metallicity with ferromagnetic character is supported by their 100% spin polarizations at the Fermi level. Magnetic moment of ∼3 μ{sub B} is according to the Slater-Puling rule, enables their practical applications. Electron density plots are used to analyse the nature of bonding and chemical composition. Boltzmann's theory is conveniently employed to investigate the thermoelectric properties of these compounds. The analysis of the thermal transport properties specifies the Seebeck coefficient as 25.6 μV/K and 18.6 μV/K at room temperature for Zr{sub 2}NiAl and Zr{sub 2}NiGa, respectively. The half-metallic nature with efficient thermoelectric coefficients suggests the likelihood of these materials to have application in designing spintronic devices and imminent thermoelectric materials. - Highlights: • The compounds are half-metallic ferromagnets. • 100% spin-polarized compounds for spintronics. • Increasing Seebeck coefficient over a wide temperature range. • Zr{sub 2}NiAl is efficient thermoelectric material than Zr{sub 2}NiGa.

  7. The Other Hall Effect: College Board Physics

    Science.gov (United States)

    Sheppard, Keith; Gunning, Amanda M.

    2013-01-01

    Edwin Herbert Hall (1855-1938), discoverer of the Hall effect, was one of the first winners of the AAPT Oersted Medal for his contributions to the teaching of physics. While Hall's role in establishing laboratory work in high schools is widely acknowledged, his position as chair of the physics section of the Committee on College Entrance…

  8. Thermoelectric properties of layered antiferromagnetic CuCrSe2

    International Nuclear Information System (INIS)

    Tewari, Girish C.; Tripathi, T.S.; Yamauchi, Hisao; Karppinen, Maarit

    2014-01-01

    Here we study thermoelectric and magnetic properties of CuCrSe 2 samples sintered at various temperatures. Structural analysis with XRD shows an order-disorder transition for Cr atoms when the sintering temperature is increased above 1273 K. Metal-like electrical resistivity and anomalously large Seebeck coefficient are found about room temperature. Analysis of electrical conductivity and Seebeck coefficient of the partially-disordered phase suggests hopping conduction of charge carriers. For both the ordered and disordered phases magnetic susceptibility follows Curie–Weiss temperature dependence at high temperatures above 150 K and shows an antiferromagnetic transition around 55 K. For the disordered phase, the effective magnetic moment is determined at 3.62 μ B ; this low value in comparison to the spin only value for Cr 3+ of 3.89 μ B indicates spin fluctuations in the paramagnetic state. The thermal conductivity in these phases is low and dominated by the lattice contribution. Values for the thermoelectric figure of merit (ZT) at room temperature are estimated to be 0.17 and 0.05 for the ordered and disordered phases, respectively. - Highlights: • Thermoelectric and magnetic properties of CuCrSe 2 samples are investigated. • The properties strongly depend on the degree of order of chromium atoms. • The degree of order is controlled by the sintering temperature. • Room-temperature figure of merit is estimated at 0.17 for the ordered phase. • For the disordered phase the figure of merit is lower

  9. A Flue Gas Tube for Thermoelectric Generator

    DEFF Research Database (Denmark)

    2013-01-01

    The invention relates to a flue gas tube (FGT) (1) for generation of thermoelectric power having thermoelectric elements (8) that are integrated in the tube. The FTG may be used in combined heat and power (CHP) system (13) to produce directly electricity from waste heat from, e.g. a biomass boiler...

  10. Test system for thermoelectric modules and materials

    Czech Academy of Sciences Publication Activity Database

    Hejtmánek, Jiří; Knížek, Karel; Švejda, V.; Horna, P.; Sikora, M.

    2014-01-01

    Roč. 43, č. 10 (2014), s. 3726-3732 ISSN 0361-5235 R&D Projects: GA ČR GA13-17538S Institutional support: RVO:68378271 Keywords : thermoelectric power module * automatic thermoelectric testing setup * heat flow measurement * power generation * heat recovery Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.798, year: 2014

  11. Magnetization and Hall effect under high pressure in NaV 6O 11

    Science.gov (United States)

    Naka, T.; Matsumoto, T.; Kanke, Y.; Murata, K.

    1995-02-01

    We have investigated the pressure dependences of magnetization and the Hall coefficient in the ferromagnetic vanadium oxide NaV 6O 11 up to 1.2 GPa. Structural transitions (hexagonal-hexagonal-orthorhombic) occur at TH = 245 K and TL = 35 K at ambient pressure. Meanwhile, the susceptibility obeys the Curie-Weiss law X = C/( T - θ) with antiferromagnetic correlation of θ TH, with ferromagnetic correlation of θ TH. The spontaneous magnetization appears below Tc = 64.2 K. With increasing pressure, Tc and magnetization M( T TH increases. The sign of the Hall coefficient changes continuously (negative-positive-negative) at around T ≈ 170 K and 75 K.

  12. Thermoelectric cooler application in electronic cooling

    International Nuclear Information System (INIS)

    Chein Reiyu; Huang Guanming

    2004-01-01

    This study addresses thermoelectric cooler (TEC) applications in the electronic cooling. The cold side temperature (T c ) and temperature difference between TEC cold and hot sides (ΔT=T h -T c , T h =temperature of hot side of TEC) were used as the parameters. The cooling capacity, junction temperature, coefficient of performance (COP) of TEC and the required heat sink thermal resistance at the TEC hot side were computed. The results indicated that the cooling capacity could be increased as T c increased and ΔT was reduced. The maximum cooling capacity and chip junction temperature obtained were 207 W and 88 deg. C, respectively. The required heat sink thermal resistance on TEC hot side was 0.054 deg. C/W. Larger cooling capacity and higher COP could be obtained when the TEC was operated in the enforced regimes (ΔT c values and heat sink thermal resistance at the TEC hot side. A microchannel heat sink using water or air as the coolant was demonstrated to meet the low thermal heat sink resistance requirement for TEC operated at maximum cooling capacity conditions

  13. Influence of germanium nano-inclusions on the thermoelectric power factor of bulk bismuth telluride alloy

    International Nuclear Information System (INIS)

    Satyala, Nikhil; Zamanipour, Zahra; Norouzzadeh, Payam; Krasinski, Jerzy S.; Vashaee, Daryoosh; Tahmasbi Rad, Armin; Tayebi, Lobat

    2014-01-01

    Nanocomposite thermoelectric compound of bismuth telluride (Bi 2 Te 3 ) with 5 at. % germanium nano-inclusions was prepared via mechanically alloying and sintering techniques. The influence of Ge nano-inclusions and long duration annealing on the thermoelectric properties of nanostructured Bi 2 Te 3 were investigated. It was found that annealing has significant effect on the carrier concentration, Seebeck coefficient, and the power factor of the thermoelectric compound. The systematic heat treatment also reduced the density of donor type defects thereby decreasing the electron concentration. While the as-pressed nanocomposite materials showed n-type properties, it was observed that with the increase of annealing time, the nanocomposite gradually transformed to an abundantly hole-dominated (p-type) sample. The long duration annealing (∼500 h) resulted in a significantly enhanced electrical conductivity pertaining to the augmentation in the density and the structural properties of the sample. Therefore, a simultaneous enhancement in both electrical and Seebeck coefficient characteristics resulted in a remarkable increase in the thermoelectric power factor.

  14. Electrical and thermoelectric properties of different compositions of Ge–Se–In thin films

    Energy Technology Data Exchange (ETDEWEB)

    Aly, K.A., E-mail: kamalaly2001@gmail.com [Physics Department, Faculty of Science and Arts Khulais, University of Jeddah (Saudi Arabia); Physics Department, Faculty of Science, Al-Azhar University, Assiut Branch, Assiut (Egypt); Dahshan, A., E-mail: adahshan73@gmail.com [Department of Physics, Faculty of Science, Port Said University, Port Said (Egypt); Department of Physics, Faculty of Science for Girls, King Khalid University, Abha (Saudi Arabia); Abbady, Gh. [Department of Physics, Faculty of Science, Assuit University, Assuit (Egypt); Saddeek, Y. [Physics Department, Faculty of Science, Al-Azhar University, Assiut Branch, Assiut (Egypt)

    2016-09-15

    The effect of temperature in the range of 300–450 K and the indium content on the electrical and thermoelectric properties of Ge{sub 20}Se{sub 80−x}In{sub x} (0.0≤x≤24 at%) chalcogenide glassy thin films have been studied. From dc electrical and thermoelectric measurements, it was observed that the activation energies for electrical conductivity (ΔE) and for thermoelectric (ΔE{sub s}) decrease while the conductivity (σ) and Seebeck coefficient (S) increase upon introducing In into the Ge–Se glasses. In contrast to the behavior obtained with Bi or Pb doping, In incorporated in Ge–Se does not lead to a p-to n-type conduction inversion. The power factor (P) which is strongly depends on both of the Seebeck coefficient and the electrical conductivity. According to the obtained results, the Ge{sub 20}Se{sub 80−x}In{sub x} films can be considered potential candidates for incurring high action thermoelectric materials.

  15. Effect of high fluence neutron irradiation on transport properties of thermoelectrics

    Science.gov (United States)

    Wang, H.; Leonard, K. J.

    2017-07-01

    Thermoelectric materials were subjected to high fluence neutron irradiation in order to understand the effect of radiation damage on transport properties. This study is relevant to the NASA Radioisotope Thermoelectric Generator (RTG) program in which thermoelectric elements are exposed to radiation over a long period of time in space missions. Selected n-type and p-type bismuth telluride materials were irradiated at the High Flux Isotope Reactor with a neutron fluence of 1.3 × 1018 n/cm2 (E > 0.1 MeV). The increase in the Seebeck coefficient in the n-type material was partially off-set by an increase in electrical resistivity, making the power factor higher at lower temperatures. For the p-type materials, although the Seebeck coefficient was not affected by irradiation, electrical resistivity decreased slightly. The figure of merit, zT, showed a clear drop in the 300-400 K range for the p-type material and an increase for the n-type material. Considering that the p-type and n-type materials are connected in series in a module, the overall irradiation damages at the device level were limited. These results, at neutron fluences exceeding a typical space mission, are significant to ensure that the radiation damage to thermoelectrics does not affect the performance of RTGs.

  16. Study for material analogs of FeSb2: Material design for thermoelectric materials

    Science.gov (United States)

    Kang, Chang-Jong; Kotliar, Gabriel

    2018-03-01

    Using the ab initio evolutionary algorithm (implemented in uspex) and electronic structure calculations we investigate the properties of a new thermoelectric material FeSbAs, which is a material analog of the enigmatic thermoelectric FeSb2. We utilize the density functional theory and the Gutzwiller method to check the energetics. We find that FeSbAs can be made thermodynamically stable above ˜30 GPa. We investigate the electronic structure and thermoelectric properties of FeSbAs based on the density functional theory and compare with those of FeSb2. Above 50 K, FeSbAs has higher Seebeck coefficients than FeSb2. Upon doping, the figure of merit becomes larger for FeSbAs than for FeSb2. Another material analog FeSbP, was also investigated, and found thermodynamically unstable even at very high pressure. Regarding FeSb2 as a member of a family of compounds (FeSb2, FeSbAs, and FeSbP) we elucidate what are the chemical handles that control the gaps in this series. We also investigate solubility (As or P for Sb in FeSb2) we found As to be more soluble. Finally, we study a two-band model for thermoelectric properties and find that the temperature dependent chemical potential and the presence of the ionized impurities are important to explain the extremum in the Seebeck coefficient exhibited in experiments for FeSb2.

  17. Thermoelectric properties of doped BaHfO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Dixit, Chandra Kr., E-mail: ckparadise@gmail.com, E-mail: sharmarameshfgiet@gmail.com [Dept. of Physics, Dr. Shakuntala Misra National Rehabilitation University, Lucknow-229001, U.P India (India); Bhamu, K. C. [Department of Physics, Goa University, Goa-403 206 (India); Sharma, Ramesh, E-mail: ckparadise@gmail.com, E-mail: sharmarameshfgiet@gmail.com [Dept. of Physics, Feroze Gandhi Institute of Engineering & Technology, Raebareli-229001, U.P India (India)

    2016-05-06

    We have studied the structural stability, electronic structure, optical properties and thermoelectric properties of doped BaHfO{sub 3} by full potential linearized augmented plane wave (FP-LAPW) method. The electronic structure of BaHfO{sub 3} doped with Sr shows enhances the indirect band gaps of 3.53 eV, 3.58 eV. The charge density plots show strong ionic bonding in Ba-Hf, and ionic and covalent bonding between Hf and O. Calculations of the optical spectra, viz., the dielectric function, refractive index and extinction coefficient are performed for the energy range are calculated and analyzed. Thermoelectric properties of semi conducting are also reported first time. The doped BaHfO{sub 3} is approximately wide band gap semiconductor with the large p-type Seebeck coefficient. The power factor of BaHfO{sub 3} is increased with Sr doping, decreases because of low electrical resistivity and thermal conductivity.

  18. Phosphorene nanoribbon as a promising candidate for thermoelectric applications

    Science.gov (United States)

    Zhang, J.; Liu, H. J.; Cheng, L.; Wei, J.; Liang, J. H.; Fan, D. D.; Shi, J.; Tang, X. F.; Zhang, Q. J.

    2014-01-01

    In this work, the electronic properties of phosphorene nanoribbons with different width and edge configurations are studied by using density functional theory. It is found that the armchair phosphorene nanoribbons are semiconducting while the zigzag nanoribbons are metallic. The band gaps of armchair nanoribbons decrease monotonically with increasing ribbon width. By passivating the edge phosphorus atoms with hydrogen, the zigzag series also become semiconducting, while the armchair series exhibit a larger band gap than their pristine counterpart. The electronic transport properties of these phosphorene nanoribbons are then investigated using Boltzmann theory and relaxation time approximation. We find that all the semiconducting nanoribbons exhibit very large values of Seebeck coefficient and can be further enhanced by hydrogen passivation at the edge. Taking pristine armchair nanoribbons and hydrogen-passivated zigzag naoribbons with width N = 7, 8, 9 as examples, we calculate the lattice thermal conductivity with the help of phonon Boltzmann transport equation and evaluate the width-dependent thermoelectric performance. Due to significantly enhanced Seebeck coefficient and decreased thermal conductivity, we find that at least one type of phosphorene nanoribbons can be optimized to exhibit very high figure of merit (ZT values) at room temperature, which suggests their appealing thermoelectric applications. PMID:25245326

  19. Resistivity and Hall voltage in gold thin films deposited on mica at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Bahamondes, Sebastián; Donoso, Sebastián; Ibañez-Landeta, Antonio; Flores, Marcos [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Av. Blanco Encalada 2008, Santiago (Chile); Henriquez, Ricardo, E-mail: ricardo.henriquez@usm.cl [Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Valparaiso 2390123 (Chile)

    2015-03-30

    Highlights: • We determined the 4 K thickness dependence of resistivity for a family of gold thin films. • We determined the thickness dependence of resistivity during the growth process. • Both behaviors are well represented by the Mayadas–Shatzkes theory. • We determined Hall tangent and Hall resistance at 4 K and up to 4.5 T. • Hall mobility is always higher than the drift mobility. - Abstract: We report the thickness dependence of the resistivity measured at 4 K of gold films grown onto mica at room temperature (RT), for thickness ranging from 8 to 100 nm. This dependence was compared to the one obtained for a sample during its growth process at RT. Both behaviors are well represented by the Mayadas–Shatzkes theory. Using this model, we found comparable contributions of electron surface and electron grain boundary scattering to the resistivity at 4 K. Hall effect measurements were performed using a variable transverse magnetic field up to 4.5 T. Hall tangent and Hall resistance exhibit a linear dependence on the magnetic field. For this magnetic field range, the Hall mobility is always larger than the drift mobility. This result is explained through the presence of the above-mentioned scattering mechanisms acting on the galvanomagnetic coefficients. In addition, we report the temperature dependence of the resistivity between 4 and 70 K.

  20. Thermoelectric generators: A review of applications

    International Nuclear Information System (INIS)

    Champier, Daniel

    2017-01-01

    Highlights: • This paper reviews the state of the art of thermoelectric generators. • The latest thermoelectric modules are introduced. • Waste heat recovery in transport and industry with thermoelectric generators. • Domestic and industrial applications of thermoelectric generators. • Thermoelectric generators in space, micro-generation and solar conversion. - Abstract: In past centuries, men have mainly looked to increase their production of energy in order to develop their industry, means of transport and quality of life. Since the recent energy crisis, researchers and industrials have looked mainly to manage energy in a better way, especially by increasing energy system efficiency. This context explains the growing interest for thermoelectric generators. Today, thermoelectric generators allow lost thermal energy to be recovered, energy to be produced in extreme environments, electric power to be generated in remote areas and microsensors to be powered. Direct solar thermal energy can also be used to produce electricity. This review begins with the basic principles of thermoelectricity and a presentation of existing and future materials. Design and optimization of generators are addressed. Finally in this paper, we developed an exhaustive presentation of thermoelectric generation applications covering electricity generation in extreme environments, waste heat recovery in transport and industry, domestic production in developing and developed countries, micro-generation for sensors and microelectronics and solar thermoelectric generators. Many recent applications are presented, as well as the future applications which are currently being studied in research laboratories or in industry. The main purpose of this paper is to clearly demonstrate that, almost anywhere in industry or in domestic uses, it is worth checking whether a TEG can be added whenever heat is moving from a hot source to a cold source.

  1. Experimental study of a thermoelectrically-driven liquid chiller in terms of COP and cooling down period

    International Nuclear Information System (INIS)

    Faraji, Amir Yadollah; Goldsmid, H.J.; Akbarzadeh, Aliakbar

    2014-01-01

    Highlights: • A COP of 0.8 is achievable for a thermoelectrically-driven water chiller. • With two market available TEC modules with ZT around 0.7 sub-zero temperatures became applicable. • Forced air convection heat exchangers have better COP and CDP compared with natural convection. • A PID controller has several advantages against on–off controller for controlling TEC module. - Abstract: To study COP and other cooling parameters of a thermoelectically-driven liquid chiller, a 430 ml capacity liquid chiller incorporating two commercially available thermoelectric modules as its active components, has been designed, built and assessed. The system can use natural or forced air convection in heat exchangers attached to the thermoelectric module surfaces. The coefficient of performance (COP) and cooling down period (CDP) of the system for different thermoelectric input voltages have been measured. The COP of the thermoelectric chiller was found to be in the range 0.2–1.4 for forced convection and 0.2–1 for natural convection at a cooled liquid temperature of 10 °C and an ambient temperature of 18 °C. For the chiller, heat pumping capacity, minimum achievable water temperature, and temperature difference across the thermoelectric surfaces were investigated for input voltages of 3 V, 5 V, 7 V, 10 V and 12 V. Furthermore, as a basis for reliable and convenient control of the chiller, a proportional integral derivative (PID) controller has been proposed

  2. Thermoelectric properties of WSi{sub 2}–Si{sub x}Ge{sub 1−x} composites

    Energy Technology Data Exchange (ETDEWEB)

    Dynys, F.W.; Sayir, A. [NASA Glenn Research Center, Cleveland, OH 44135 (United States); Mackey, J., E-mail: jam151@zips.uakron.edu [Department of Mechanical Engineering, University of Akron, Akron, OH 44325 (United States); Sehirlioglu, A. [Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH 44106 (United States)

    2014-08-01

    Highlights: • We explore a novel W/Si/Ge composite system for thermoelectric applications. • The influence of crucible selection on electrical properties is investigated. • Introduction of W can reduce the expensive Ge component of the alloy. - Abstract: Thermoelectric properties of the W/Si/Ge alloy system have been investigated with varying concentration levels of germanium and tungsten. The alloys were fabricated by directional solidification with the Bridgman method using boron nitride and fused silica crucibles. The effect of crucible contamination was investigated and found to result in doping the system to suitable levels for thermoelectric applications. The system has been demonstrated as a suitable high temperature p-type thermoelectric material exhibiting high power factors, >3000 μW/m K{sup 2}. Seebeck coefficients of the system are on the order of +300 μV/K and electrical conductivities of 2.8 × 10{sup 4} S/m at the optimum operating temperature. The best composition, 0.9 at% W/9.3 at% Ge, achieved a figure of merit comparable to RTG values over the temperature range of interest. The results suggest that W addition can reduce the use of expensive Ge component of the alloy. Reported are the details of processing conditions, microstructure development, and temperature dependent thermoelectric properties. The material system was stable at the temperatures required for NASA’s radioisotope thermoelectric generators.

  3. Anomalous Hall effect and Nernst effect in itinerant ferromagnets

    International Nuclear Information System (INIS)

    Asamitsu, A.; Miyasato, T.; Abe, N.; Fujii, T.; Onose, Y.; Onoda, S.; Nagaosa, N.; Tokura, Y.

    2007-01-01

    Anomalous Hall effect (AHE) and anomalous Nernst effect (ANE) in many ferromagnetic metals including pure metals, oxides, and calcogenides, are studied to obtain unified understandings of their origins. We show the universal behavior of anomalous Hall conductivity σ xy as a function of longitudinal conductivity σ xx over six orders of magnitude, which is well reproduced by rigorous unified theory assuming both intrinsic and extrinsic contributions to the AHE. ANE is closely related with AHE and gives us further information about the electronic state in the ground state of ferromagnets. The temperature dependence of transverse Peltier coefficient α xy shows almost similar behavior among various ferromagnets and this behavior is expected from a conventional Boltzmann transport theory

  4. Anomalous Hall effect scaling in ferromagnetic thin films

    KAUST Repository

    Grigoryan, Vahram L.

    2017-10-23

    We propose a scaling law for anomalous Hall effect in ferromagnetic thin films. Our approach distinguishes multiple scattering sources, namely, bulk impurity, phonon for Hall resistivity, and most importantly the rough surface contribution to longitudinal resistivity. In stark contrast to earlier laws that rely on temperature- and thickness-dependent fitting coefficients, this scaling law fits the recent experimental data excellently with constant parameters that are independent of temperature and film thickness, strongly indicating that this law captures the underlying physical processes. Based on a few data points, this scaling law can even fit all experimental data in full temperature and thickness range. We apply this law to interpret the experimental data for Fe, Co, and Ni and conclude that (i) the phonon-induced skew scattering is unimportant as expected; (ii) contribution from the impurity-induced skew scattering is negative; (iii) the intrinsic (extrinsic) mechanism dominates in Fe (Co), and both the extrinsic and intrinsic contributions are important in Ni.

  5. Anomalous Hall effect and Nernst effect in itinerant ferromagnets

    International Nuclear Information System (INIS)

    Miyasato, T.; Abe, N.; Fujii, T.; Asamitsu, A.; Onose, Y.; Onoda, S.; Nagaosa, N.; Tokura, Y.

    2007-01-01

    Anomalous Hall effect (AHE) and anomalous Nernst effect (ANE) in many ferromagnetic metals including pure metals, oxides, and chalcogenides, are studied to obtain unified understandings of their origins. We show the universal behavior of anomalous Hall conductivity σ xy as a function of longitudinal conductivity σ xx over six orders of magnitude, which is well reproduced by a recent theory assuming both the intrinsic and extrinsic contributions to the AHE. ANE is closely related with AHE and gives us further information about the electronic state in the ground state of ferromagnets. The temperature dependence of transverse Peltier coefficient α xy shows almost similar behavior among various ferromagnets, and this behavior is expected from a conventional Boltzmann transport theory

  6. Anomalous Hall effect scaling in ferromagnetic thin films

    KAUST Repository

    Grigoryan, Vahram L.; Xiao, Jiang; Wang, Xuhui; Xia, Ke

    2017-01-01

    We propose a scaling law for anomalous Hall effect in ferromagnetic thin films. Our approach distinguishes multiple scattering sources, namely, bulk impurity, phonon for Hall resistivity, and most importantly the rough surface contribution to longitudinal resistivity. In stark contrast to earlier laws that rely on temperature- and thickness-dependent fitting coefficients, this scaling law fits the recent experimental data excellently with constant parameters that are independent of temperature and film thickness, strongly indicating that this law captures the underlying physical processes. Based on a few data points, this scaling law can even fit all experimental data in full temperature and thickness range. We apply this law to interpret the experimental data for Fe, Co, and Ni and conclude that (i) the phonon-induced skew scattering is unimportant as expected; (ii) contribution from the impurity-induced skew scattering is negative; (iii) the intrinsic (extrinsic) mechanism dominates in Fe (Co), and both the extrinsic and intrinsic contributions are important in Ni.

  7. Effect of anisotropy on anomalous Hall effect in Tb-Fe thin films

    International Nuclear Information System (INIS)

    Babu, V. Hari; Markandeyulu, G.; Subrahmanyam, A.

    2009-01-01

    The electrical and Hall resistivities of Tb x Fe 100-x thin films in the temperature range 13-300 K were investigated. The sign of Hall resistivity at 300 K is found to change from positive for x=28 film to negative for x=30 film, in accordance with the compensation of Tb and Fe moments. All the films are seen to have planar magnetic anisotropy at 13 K. The temperature coefficients of electrical resistivities of the amorphous films with 19≤x≤51 are seen to be negative. The temperature dependence of Hall resistivity of these films is explained on the basis of random magnetic anisotropy model. The temperature dependences of Hall resistivities of the x=22 and 41 films are seen to exhibit a nonmonotonous behavior due to change in anisotropy from perpendicular to planar. The same behavior is considered for the explanation regarding the probable formation of Berry phase curvature in these films.

  8. Influence of energy bands on the Hall effect in degenerate semiconductors

    International Nuclear Information System (INIS)

    Wu, Chhi-Chong; Tsai, Jensan

    1989-01-01

    The influence of energy bands on the Hall effect and transverse magnetoresistance has been investigated according to the scattering processes of carriers in degenerate semiconductors such as InSb. Results show that the Hall angle, Hall coefficient, and transverse magnetoresistance depend on the dc magnetic field for both parabolic and nonparabolic band structures of semiconductors and also depend on the scattering processes of carriers in semiconductors due to the energy-dependent relaxation time. From their numerical analysis for the Hall effect, it is shown that the conduction electrons in degenerate semiconductors play a major role for the carrier transport phenomenon. By comparing with experimental data of the transverse magnetoresistance, it shows that the nonparabolic band model is better in agreement with the experimental work than the parabolic band model of semiconductors

  9. Hall effect in noncommutative coordinates

    International Nuclear Information System (INIS)

    Dayi, Oemer F.; Jellal, Ahmed

    2002-01-01

    We consider electrons in uniform external magnetic and electric fields which move on a plane whose coordinates are noncommuting. Spectrum and eigenfunctions of the related Hamiltonian are obtained. We derive the electric current whose expectation value gives the Hall effect in terms of an effective magnetic field. We present a receipt to find the action which can be utilized in path integrals for noncommuting coordinates. In terms of this action we calculate the related Aharonov-Bohm phase and show that it also yields the same effective magnetic field. When magnetic field is strong enough this phase becomes independent of magnetic field. Measurement of it may give some hints on spatial noncommutativity. The noncommutativity parameter θ can be tuned such that electrons moving in noncommutative coordinates are interpreted as either leading to the fractional quantum Hall effect or composite fermions in the usual coordinates

  10. General vibration monitoring: Experimental hall

    International Nuclear Information System (INIS)

    Jendrzejczyk, J.A.; Wambsganss, M.W.; Smith, R.K.

    1993-01-01

    The reported vibration data were generated from measurements made on the experimental hall floor on December 2, 1992. At the time of the measurements, the ESRF hydrolevel was set-up in the Early Assembly Area (EAA) of the experimental hall and was being used to measure static displacement (settlement) of the floor. The vibration measurement area was on and adjacent to the EAA, in the vicinity of the ESRF hydrolevel test which was in progress. This report summarizes the objectives, instrumentation, measurement locations, observations, and conclusions, and provides selected results in the form of RMS vs. time plots, and power spectral densities from which frequency information can be derived. Measured response amplitudes were within the vibration criteria established for the APS

  11. Significant enhancement of thermoelectric properties and metallization of Al-doped Mg2Si under pressure

    International Nuclear Information System (INIS)

    Morozova, Natalia V.; Korobeinikov, Igor V.; Karkin, Alexander E.; Shchennikov, Vladimir V.; Ovsyannikov, Sergey V.; Takarabe, Ken-ichi; Mori, Yoshihisa; Nakamura, Shigeyuki

    2014-01-01

    We report results of investigations of electronic transport properties and lattice dynamics of Al-doped magnesium silicide (Mg 2 Si) thermoelectrics at ambient and high pressures to and beyond 15 GPa. High-quality samples of Mg 2 Si doped with 1 at. % of Al were prepared by spark plasma sintering technique. The samples were extensively examined at ambient pressure conditions by X-ray diffraction studies, Raman spectroscopy, electrical resistivity, magnetoresistance, Hall effect, thermoelectric power (Seebeck effect), and thermal conductivity. A Kondo-like feature in the electrical resistivity curves at low temperatures indicates a possible magnetism in the samples. The absolute values of the thermopower and electrical resistivity, and Raman spectra intensity of Mg 2 Si:Al dramatically diminished upon room-temperature compression. The calculated thermoelectric power factor of Mg 2 Si:Al raised with pressure to 2–3 GPa peaking in the maximum the values as high as about 8 × 10 −3 W/(K 2 m) and then gradually decreased with further compression. Raman spectroscopy studies indicated the crossovers near ∼5–7 and ∼11–12 GPa that are likely related to phase transitions. The data gathered suggest that Mg 2 Si:Al is metallized under moderate pressures between ∼5 and 12 GPa.

  12. Assessment on thermoelectric power factor in silicon nanowire networks

    Energy Technology Data Exchange (ETDEWEB)

    Lohn, Andrew J.; Kobayashi, Nobuhiko P. [Baskin School of Engineering, University of California Santa Cruz, CA (United States); Nanostructured Energy Conversion Technology and Research (NECTAR), Advanced Studies Laboratories, University of California Santa Cruz, NASA Ames Research Center, Moffett Field, CA (United States); Coleman, Elane; Tompa, Gary S. [Structured Materials Industries, Inc., Piscataway, NJ (United States)

    2012-01-15

    Thermoelectric devices based on three-dimensional networks of highly interconnected silicon nanowires were fabricated and the parameters that contribute to the power factor, namely the Seebeck coefficient and electrical conductivity were assessed. The large area (2 cm x 2 cm) devices were fabricated at low cost utilizing a highly scalable process involving silicon nanowires grown on steel substrates. Temperature dependence of the Seebeck coefficient was found to be weak over the range of 20-80 C at approximately -400 {mu}V/K for unintentionally doped devices and {+-}50 {mu}V/K for p-type and n-type devices, respectively. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Scanning vector Hall probe microscope

    Czech Academy of Sciences Publication Activity Database

    Fedor, J.; Cambel, V.; Gregušová, D.; Hanzelka, Pavel; Dérer, J.; Volko, J.

    2003-01-01

    Roč. 74, č. 12 (2003), s. 5105 - 5110 ISSN 0034-6748 Institutional research plan: CEZ:AV0Z2065902 Keywords : VHPM * Hall sensor * Helium cryostat Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 1.343, year: 2003 http://web. ebscohost .com/ehost/pdf?vid=8&hid=115&sid=a7c0555a-21f4-4932-b1c6-a308ac4dd50b%40sessionmgr2

  14. Influence of the effectiveness of raw materials on the reliability of thermoelectric cooling devices. Part I: single-stage TEDs

    Directory of Open Access Journals (Sweden)

    Zaikov V. P.

    2015-02-01

    Full Text Available Increase of the reliability of information systems depends on the reliability improvement of their component elements, including cooling devices, providing efficiency of thermally loaded components. Thermoelectric devices based on the Peltier effect have significant advantages compared with air and liquid systems for thermal modes of the radio-electronic equipment. This happens due to the absence of moving parts, which account for the failure rate. The article presents research results on how thermoelectric efficiency modules affect the failure rate and the probability of non-failure operation in the range of working temperature of thermoelectric coolers. The authors investigate a model of relative failure rate and the probability of failure-free operation single-stage thermoelectric devices depending on the main relevant parameters: the operating current flowing through the thermocouple and resistance, temperature changes, the magnitude of the heat load and the number of elements in the module. It is shown that the increase in the thermoelectric efficiency of the primary material for a variety of thermocouple temperature changes causes the following: maximum temperature difference increases by 18%; the number of elements in the module decreases; cooling coefficient increases; failure rate reduces and the probability of non-failure operation of thermoelectric cooling device increases. Material efficiency increase by 1% allows reducing failure rate by 2,6—4,3% in maximum refrigeration capacity mode and by 4,2—5,0% in minimal failure rate mode when temperature difference changes in the range of 40—60 K. Thus, the increase in the thermoelectric efficiency of initial materials of thermocouples can significantly reduce the failure rate and increase the probability of failure of thermoelectric coolers depending on the temperature difference and the current operating mode.

  15. Nanostructured Thermoelectric Oxides for Energy Harvesting Applications

    KAUST Repository

    Abutaha, Anas I.

    2015-11-24

    As the world strives to adapt to the increasing demand for electrical power, sustainable energy sources are attracting significant interest. Around 60% of energy utilized in the world is wasted as heat. Different industrial processes, home heating, and exhausts in cars, all generate a huge amount of unused waste heat. With such a huge potential, there is also significant interest in discovering inexpensive technologies for power generation from waste heat. As a result, thermoelectric materials have become important for many renewable energy research programs. While significant advancements have been done in improving the thermoelectric properties of the conventional heavy-element based materials (such as Bi2Te3 and PbTe), high-temperature applications of thermoelectrics are still limited to one materials system, namely SiGe, since the traditional thermoelectric materials degrade and oxidize at high temperature. Therefore, oxide thermoelectrics emerge as a promising class of materials since they can operate athigher temperatures and in harsher environments compared to non-oxide thermoelectrics. Furthermore, oxides are abundant and friendly to the environment. Among oxides, crystalline SrTiO3 and ZnO are promising thermoelectric materials. The main objective of this work is therefore to pursue focused investigations of SrTiO3 and ZnO thin films and superlattices grown by pulsed laser deposition (PLD), with the goal of optimizing their thermoelectric properties by following different strategies. First, the effect of laser fluence on the thermoelectric properties of La doped epitaxial SrTiO3 films is discussed. Films grown at higher laser fluences exhibit better thermoelectric performance. Second, the role of crystal orientation in determining the thermoelectric properties of epitaxial Al doped ZnO (AZO) films is explained. Vertically aligned (c-axis) AZO films have superior thermoelectric properties compared to other films with different crystal orientations. Third

  16. The electrical, optical, structural and thermoelectrical characterization of n- and p-type cobalt-doped SnO 2 transparent semiconducting films prepared by spray pyrolysis technique

    Science.gov (United States)

    Bagheri-Mohagheghi, Mohammad-Mehdi; Shokooh-Saremi, Mehrdad

    2010-10-01

    The electrical, optical and structural properties of Cobalt (Co) doped SnO 2 transparent semiconducting thin films, deposited by the spray pyrolysis technique, have been studied. The SnO 2:Co films, with different Co-content, were deposited on glass substrates using an aqueous-ethanol solution consisting of tin and cobalt chlorides. X-ray diffraction studies showed that the SnO 2:Co films were polycrystalline only with tin oxide phases and preferential orientations along (1 1 0) and (2 1 1) planes and grain sizes in the range 19-82 nm. Optical transmittance spectra of the films showed high transparency ∼75-90% in the visible region, decreasing with increase in Co-doping. The optical absorption edge for undoped SnO 2 films was found to be 3.76 eV, while for higher Co-doped films shifted toward higher energies (shorter wavelengths) in the range 3.76-4.04 eV and then slowly decreased again to 4.03 eV. A change in sign of the Hall voltage and Seebeck coefficient was observed for a specific acceptor dopant level ∼11.4 at% in film and interpreted as a conversion from n-type to p-type conductivity. The thermoelectric electro-motive force (e.m.f.) of the films was measured in the temperature range 300-500 K and Seebeck coefficients were found in the range from -62 to +499 μVK -1 for various Co-doped SnO 2 films.

  17. The electrical, optical, structural and thermoelectrical characterization of n- and p-type cobalt-doped SnO2 transparent semiconducting films prepared by spray pyrolysis technique

    International Nuclear Information System (INIS)

    Bagheri-Mohagheghi, Mohammad-Mehdi; Shokooh-Saremi, Mehrdad

    2010-01-01

    The electrical, optical and structural properties of Cobalt (Co) doped SnO 2 transparent semiconducting thin films, deposited by the spray pyrolysis technique, have been studied. The SnO 2 :Co films, with different Co-content, were deposited on glass substrates using an aqueous-ethanol solution consisting of tin and cobalt chlorides. X-ray diffraction studies showed that the SnO 2 :Co films were polycrystalline only with tin oxide phases and preferential orientations along (1 1 0) and (2 1 1) planes and grain sizes in the range 19-82 nm. Optical transmittance spectra of the films showed high transparency ∼75-90% in the visible region, decreasing with increase in Co-doping. The optical absorption edge for undoped SnO 2 films was found to be 3.76 eV, while for higher Co-doped films shifted toward higher energies (shorter wavelengths) in the range 3.76-4.04 eV and then slowly decreased again to 4.03 eV. A change in sign of the Hall voltage and Seebeck coefficient was observed for a specific acceptor dopant level ∼11.4 at% in film and interpreted as a conversion from n-type to p-type conductivity. The thermoelectric electro-motive force (e.m.f.) of the films was measured in the temperature range 300-500 K and Seebeck coefficients were found in the range from -62 to +499 μVK -1 for various Co-doped SnO 2 films.

  18. High temperature thermoelectric energy conversion

    International Nuclear Information System (INIS)

    Wood, C.

    1986-01-01

    Considerable advances were made in the late '50's and early early '60's in the theory and development of materials for high-temperature thermoelectric energy conversion. This early work culminated in a variety of materials, spanning a range of temperatures, with the product of the figure of merit, Z, and temperature, T, i.e., the dimensionless figure of merit, ZT, of the order of one. This experimental limitation appeared to be universal and led a number of investigators to explore the possibility that a ZT - also represents a theoretical limitation. It was found not to be so

  19. Major enhancement of the thermoelectric performance in Pr/Nb-doped SrTiO3 under strain

    KAUST Repository

    Amin, B.; Alshareef, Husam N.; Schwingenschlö gl, Udo; Singh, Nirpendra; Tritt, T. M.

    2013-01-01

    site generate n-type doping and thus improve the thermoelectric performance as compared to pristine SrTiO3. Further enhancement is achieved by the application of strain, for example, of the Seebeck coefficient by 21% for Sr0.95Pr0.05TiO3 and 10% for Sr

  20. L'effet Hall Quantique

    Science.gov (United States)

    Samson, Thomas

    Nous proposons une methode permettant d'obtenir une expression pour la conductivite de Hall de structures electroniques bidimensionnelles et nous examinons celle -ci a la limite d'une temperature nulle dans le but de verifier l'effet Hall quantique. Nous allons nous interesser essentiellement a l'effet Hall quantique entier et aux effets fractionnaires inferieurs a un. Le systeme considere est forme d'un gaz d'electrons en interaction faible avec les impuretes de l'echantillon. Le modele du gaz d'electrons consiste en un gaz bidimensionnel d'electrons sans spin expose perpendiculairement a un champ magnetique uniforme. Ce dernier est decrit par le potentiel vecteur vec{rm A} defini dans la jauge de Dingle ou jauge symetrique. Conformement au formalisme de la seconde quantification, l'hamiltonien de ce gaz est represente dans la base des etats a un-corps de Dingle |n,m> et exprime ainsi en terme des operateurs de creation et d'annihilation correspondants a_sp{ rm n m}{dag} et a _{rm n m}. Nous supposons de plus que les electrons du niveau fondamental de Dingle interagissent entre eux via le potentiel coulombien. La methode utilisee fait appel a une equation mai tresse a N-corps, de nature quantique et statistique, et verifiant le second principe de la thermodynamique. A partir de celle-ci, nous obtenons un systeme d'equations differentielles appele hierarchie d'equations quantique dont la resolution nous permet de determiner une equation a un-corps, dite de Boltzmann quantique, et dictant l'evolution de la moyenne statistique de l'operateur non-diagonal a _sp{rm n m}{dag } a_{rm n}, _{rm m}, sous l'action du champ electrique applique vec{rm E}(t). C'est sa solution Tr(p(t) a _sp{rm n m}{dag} a_{rm n},_ {rm m}), qui definit la relation de convolution entre la densite courant de Hall vec{rm J}_{rm H }(t) et le champ electrique vec {rm E}(t) dont la transformee de Laplace-Fourier du noyau nous fournit l'expression de la conductivite de Hall desiree. Pour une valeur de

  1. Ab initio study of thermoelectric properties of doped SnO{sub 2} superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Borges, P.D., E-mail: pdborges@gmail.com [Instituto de Ciências Exatas e Tecnológicas, Universidade Federal de Viçosa, 38810-000 Rio Paranaíba, MG (Brazil); Silva, D.E.S.; Castro, N.S.; Ferreira, C.R.; Pinto, F.G.; Tronto, J. [Instituto de Ciências Exatas e Tecnológicas, Universidade Federal de Viçosa, 38810-000 Rio Paranaíba, MG (Brazil); Scolfaro, L. [Department of Physics, Texas State University, 78666 San Marcos, TX (United States)

    2015-11-15

    Transparent conductive oxides, such as tin dioxide (SnO{sub 2}), have recently shown to be promising materials for thermoelectric applications. In this work we studied the thermoelectric properties of Fe-, Sb- and Zn-uniformly doping and co-doping SnO{sub 2}, as well as of Sb and Zn planar (or delta)-doped layers in SnO{sub 2} forming oxide superlattices (SLs). Based on the semiclassical Boltzmann transport equations (BTE) in conjunction with ab initio electronic structure calculations, the Seebeck coefficient (S) and figure of merit (ZT) are obtained for these systems, and are compared with available experimental data. The delta doping approach introduces a remarkable modification in the electronic structure of tin dioxide, when compared with the uniform doping, and colossal values for ZT are predicted for the delta-doped oxide SLs. This result is a consequence of the two-dimensional electronic confinement and the strong anisotropy introduced by the doped planes. In comparison with the uniformly doped systems, our predictions reveal a promising use of delta-doped SnO{sub 2} SLs for enhanced S and ZT, which emerge as potential candidates for thermoelectric applications. - Graphical abstract: Band structure and Figure of merit for SnO2:Sb superlattice along Z direction, P. D. Borges, D. E. S. Silva, N. S. Castro, C. R. Ferreira, F. G. Pinto, J. Tronto and L. Scolfaro, Ab initio study of thermoelectric properties of doped SnO2 superlattices. - Highlights: • Thermoelectric properties of SnO{sub 2}-based alloys and superlattices. • High figure of merit is predicted for planar-doped SnO{sub 2} superlattices. • Nanotechnology has an important role for the development of thermoelectric devices.

  2. Maximum Efficiency of Thermoelectric Heat Conversion in High-Temperature Power Devices

    Directory of Open Access Journals (Sweden)

    V. I. Khvesyuk

    2016-01-01

    Full Text Available Modern trends in development of aircraft engineering go with development of vehicles of the fifth generation. The features of aircrafts of the fifth generation are motivation to use new high-performance systems of onboard power supply. The operating temperature of the outer walls of engines is of 800–1000 K. This corresponds to radiation heat flux of 10 kW/m2 . The thermal energy including radiation of the engine wall may potentially be converted into electricity. The main objective of this paper is to analyze if it is possible to use a high efficiency thermoelectric conversion of heat into electricity. The paper considers issues such as working processes, choice of materials, and optimization of thermoelectric conversion. It presents the analysis results of operating conditions of thermoelectric generator (TEG used in advanced hightemperature power devices. A high-temperature heat source is a favorable factor for the thermoelectric conversion of heat. It is shown that for existing thermoelectric materials a theoretical conversion efficiency can reach the level of 15–20% at temperatures up to 1500 K and available values of Ioffe parameter being ZT = 2–3 (Z is figure of merit, T is temperature. To ensure temperature regime and high efficiency thermoelectric conversion simultaneously it is necessary to have a certain match between TEG power, temperature of hot and cold surfaces, and heat transfer coefficient of the cooling system. The paper discusses a concept of radiation absorber on the TEG hot surface. The analysis has demonstrated a number of potentialities for highly efficient conversion through using the TEG in high-temperature power devices. This work has been implemented under support of the Ministry of Education and Science of the Russian Federation; project No. 1145 (the programme “Organization of Research Engineering Activities”.

  3. Ab initio study of thermoelectric properties of doped SnO_2 superlattices

    International Nuclear Information System (INIS)

    Borges, P.D.; Silva, D.E.S.; Castro, N.S.; Ferreira, C.R.; Pinto, F.G.; Tronto, J.; Scolfaro, L.

    2015-01-01

    Transparent conductive oxides, such as tin dioxide (SnO_2), have recently shown to be promising materials for thermoelectric applications. In this work we studied the thermoelectric properties of Fe-, Sb- and Zn-uniformly doping and co-doping SnO_2, as well as of Sb and Zn planar (or delta)-doped layers in SnO_2 forming oxide superlattices (SLs). Based on the semiclassical Boltzmann transport equations (BTE) in conjunction with ab initio electronic structure calculations, the Seebeck coefficient (S) and figure of merit (ZT) are obtained for these systems, and are compared with available experimental data. The delta doping approach introduces a remarkable modification in the electronic structure of tin dioxide, when compared with the uniform doping, and colossal values for ZT are predicted for the delta-doped oxide SLs. This result is a consequence of the two-dimensional electronic confinement and the strong anisotropy introduced by the doped planes. In comparison with the uniformly doped systems, our predictions reveal a promising use of delta-doped SnO_2 SLs for enhanced S and ZT, which emerge as potential candidates for thermoelectric applications. - Graphical abstract: Band structure and Figure of merit for SnO2:Sb superlattice along Z direction, P. D. Borges, D. E. S. Silva, N. S. Castro, C. R. Ferreira, F. G. Pinto, J. Tronto and L. Scolfaro, Ab initio study of thermoelectric properties of doped SnO2 superlattices. - Highlights: • Thermoelectric properties of SnO_2-based alloys and superlattices. • High figure of merit is predicted for planar-doped SnO_2 superlattices. • Nanotechnology has an important role for the development of thermoelectric devices.

  4. Mg2BIV: Narrow Bandgap Thermoelectric Semiconductors

    Science.gov (United States)

    Kim, Il-Ho

    2018-05-01

    Thermoelectric materials can convert thermal energy directly into electric energy and vice versa. The electricity generation from waste heat via thermoelectric devices can be considered as a new energy source. For instance, automotive exhaust gas and all industrial processes generate an enormous amount of waste heat that can be converted to electricity by using thermoelectric devices. Magnesium compound Mg2BIV (BIV = Si, Ge or Sn) has a favorable combination of physical and chemical properties and can be a good base for the development of new efficient thermoelectrics. Because they possess similar properties to those of group BIV elemental semiconductors, they have been recognized as good candidates for thermoelectric applications. Mg2Si, Mg2Ge and Mg2Sn with an antifluorite structure are narrow bandgap semiconductors with indirect band gaps of 0.77 eV, 0.74 eV, and 0.35 eV, respectively. Mg2BIV has been recognized as a promising material for thermoelectric energy conversion at temperatures ranging from 500 K to 800 K. Compared to other thermoelectric materials operating in the similar temperature range, such as PbTe and filled skutterudites, the important aspects of Mg2BIV are non-toxic and earth-abundant elements. Based on classical thermoelectric theory, the material factor β ( m* / m e)3/2μκ L -1 can be utilized as the criterion for thermoelectric material selection, where m* is the density-of-states effective mass, me is the mass of an electron, μ is the carrier mobility, and κL is the lattice thermal conductivity. The β for magnesium silicides is 14, which is very high compared to 0.8 for iron silicides, 1.4 for manganese silicides, and 2.6 for silicon-germanium alloys. In this paper, basic phenomena of thermoelectricity and transport parameters for thermoelectric materials were briefly introduced, and thermoelectric properties of Mg2BIV synthesized by using a solid-state reaction were reviewed. In addition, various Mg2BIV compounds were discussed

  5. Thermoelectricity an introduction to the principles

    CERN Document Server

    MacDonald, D K C

    2006-01-01

    This introductory treatment provides an understanding of the fundamental concepts and principles involved in the study of thermoelectricity in solids and of conduction in general. Aimed at graduate-level students and those interested in basic theory, it will be especially valuable to experimental physicists working in fields connected with electron transport and to theoreticians seeking a survey of thermoelectricity and related questions.Chronicling the early history of thermoelectricity from its discovery to modern times, this text features a considerable amount of experimental data and discu

  6. Thermoelectric properties of ZnSb films grown by MOCVD

    International Nuclear Information System (INIS)

    Venkatasubramanian, R.; Watko, E.; Colpitts, T.

    1997-04-01

    The thermoelectric properties of metallorganic chemical vapor deposited (MOCVD) ZnSb films are reported. The growth conditions necessary to obtain stoichiometric ZnSb films and the effects of various growth parameters on the electrical conductivity and Seebeck coefficients of the films are described. The as-grown ZnSb films are p-type. It was observed that the growth of thicker ZnSb films lead to improved carrier mobilities and lower free-carrier concentrations. The Seebeck coefficient of ZnSb films was found to rise rapidly at approximately 160 to 170 C, with peak Seebeck coefficients as high as 470 microV/K at 220 C. The various growth conditions, including the use of intentional dopants, to improve the Seebeck coefficients at room temperature and above, are discussed. A short annealing of the ZnSb films at temperatures of ∼ 200 C resulted in reduced free-carrier levels and higher Seebeck coefficients at 300 K. Finally, ZT values based on preliminary thermal conductivity measurements using the 3-ω method are reported

  7. Enhanced high temperature thermoelectric response of sulphuric acid treated conducting polymer thin films

    KAUST Repository

    Sarath Kumar, S. R.; Kurra, Narendra; Alshareef, Husam N.

    2015-01-01

    We report the high temperature thermoelectric properties of solution processed pristine and sulphuric acid treated poly(3, 4-ethylenedioxythiophene):poly(4-styrenesulfonate) (or PEDOT:PSS) films. The acid treatment is shown to simultaneously enhance the electrical conductivity and Seebeck coefficient of the metal-like films, resulting in a five-fold increase in thermoelectric power factor (0.052 W/m. K ) at 460 K, compared to the pristine film. By using atomic force micrographs, Raman and impedance spectra and using a series heterogeneous model for electrical conductivity, we demonstrate that acid treatment results in the removal of PSS from the films, leading to the quenching of accumulated charge-induced energy barriers that prevent hopping conduction. The continuous removal of PSS with duration of acid treatment also alters the local band structure of PEDOT:PSS, resulting in simultaneous enhancement in Seebeck coefficient.

  8. Polymer-Derived Silicon Oxycarbide Ceramics as Promising Next-Generation Sustainable Thermoelectrics.

    Science.gov (United States)

    Kousaalya, Adhimoolam Bakthavachalam; Zeng, Xiaoyu; Karakaya, Mehmet; Tritt, Terry; Pilla, Srikanth; Rao, Apparao M

    2018-01-24

    We demonstrate the potential of polymer-derived ceramics (PDC) as next-generation sustainable thermoelectrics. Thermoelectric behavior of polymer-derived silicon oxycarbide (SiOC) ceramics (containing hexagonal boron nitride (h-BN) as filler) was studied as a function of measurement temperature. SiOC, sintered at 1300 °C exhibited invariant low thermal conductivity (∼1.5 W/(m·K)) over 30-600 °C, coupled with a small increase in both Seebeck coefficient and electrical conductivity, with increase in measurement temperature (30-150 °C). SiOC ceramics containing 1 wt % h-BN showed the highest Seebeck coefficient (-33 μV/K) for any PDC thus far.

  9. Magnetism, optical, and thermoelectric response of CdFe2O4 by using DFT scheme

    Science.gov (United States)

    Mahmood, Q.; Yaseen, M.; Bhamu, K. C.; Mahmood, Asif; Javed, Y.; Ramay, Shahid M.

    2018-03-01

    Comparative analysis of electronic, magnetic, optical, and thermoelectric properties of CdFe2O4, calculated by employing PBEsol + mBJ has been done. The PBEsol reveals metallic nature, while TB-mBJ illustrates ferromagnetic semiconducting behavior. The reasons behind the origin of ferromagnetism are explored by observing the exchange, crystal field, and John–Teller energies. The optical nature is investigated by analyzing dielectric constants, refraction, absorption coefficient, reflectivity, and optical conductivity. Finally, thermoelectric properties are elaborated by describing the electrical and thermal conductivities, Seebeck coefficient, and power factor. The strong absorption for the visible energy and high power factor suggest CdFe2O4 as the potential candidate for renewable energy applications.

  10. Enhanced high temperature thermoelectric response of sulphuric acid treated conducting polymer thin films

    KAUST Repository

    Sarath Kumar, S. R.

    2015-11-24

    We report the high temperature thermoelectric properties of solution processed pristine and sulphuric acid treated poly(3, 4-ethylenedioxythiophene):poly(4-styrenesulfonate) (or PEDOT:PSS) films. The acid treatment is shown to simultaneously enhance the electrical conductivity and Seebeck coefficient of the metal-like films, resulting in a five-fold increase in thermoelectric power factor (0.052 W/m. K ) at 460 K, compared to the pristine film. By using atomic force micrographs, Raman and impedance spectra and using a series heterogeneous model for electrical conductivity, we demonstrate that acid treatment results in the removal of PSS from the films, leading to the quenching of accumulated charge-induced energy barriers that prevent hopping conduction. The continuous removal of PSS with duration of acid treatment also alters the local band structure of PEDOT:PSS, resulting in simultaneous enhancement in Seebeck coefficient.

  11. Thermoelectric generator cooling system and method of control

    Science.gov (United States)

    Prior, Gregory P; Meisner, Gregory P; Glassford, Daniel B

    2012-10-16

    An apparatus is provided that includes a thermoelectric generator and an exhaust gas system operatively connected to the thermoelectric generator to heat a portion of the thermoelectric generator with exhaust gas flow through the thermoelectric generator. A coolant system is operatively connected to the thermoelectric generator to cool another portion of the thermoelectric generator with coolant flow through the thermoelectric generator. At least one valve is controllable to cause the coolant flow through the thermoelectric generator in a direction that opposes a direction of the exhaust gas flow under a first set of operating conditions and to cause the coolant flow through the thermoelectric generator in the direction of exhaust gas flow under a second set of operating conditions.

  12. Spin Hall effect by surface roughness

    KAUST Repository

    Zhou, Lingjun

    2015-01-08

    The spin Hall and its inverse effects, driven by the spin orbit interaction, provide an interconversion mechanism between spin and charge currents. Since the spin Hall effect generates and manipulates spin current electrically, to achieve a large effect is becoming an important topic in both academia and industries. So far, materials with heavy elements carrying a strong spin orbit interaction, provide the only option. We propose here a new mechanism, using the surface roughness in ultrathin films, to enhance the spin Hall effect without heavy elements. Our analysis based on Cu and Al thin films suggests that surface roughness is capable of driving a spin Hall angle that is comparable to that in bulk Au. We also demonstrate that the spin Hall effect induced by surface roughness subscribes only to the side-jump contribution but not the skew scattering. The paradigm proposed in this paper provides the second, not if only, alternative to generate a sizable spin Hall effect.

  13. Tunneling Anomalous and Spin Hall Effects.

    Science.gov (United States)

    Matos-Abiague, A; Fabian, J

    2015-07-31

    We predict, theoretically, the existence of the anomalous Hall effect when a tunneling current flows through a tunnel junction in which only one of the electrodes is magnetic. The interfacial spin-orbit coupling present in the barrier region induces a spin-dependent momentum filtering in the directions perpendicular to the tunneling current, resulting in a skew tunneling even in the absence of impurities. This produces an anomalous Hall conductance and spin Hall currents in the nonmagnetic electrode when a bias voltage is applied across the tunneling heterojunction. If the barrier is composed of a noncentrosymmetric material, the anomalous Hall conductance and spin Hall currents become anisotropic with respect to both the magnetization and crystallographic directions, allowing us to separate this interfacial phenomenon from the bulk anomalous and spin Hall contributions. The proposed effect should be useful for proving and quantifying the interfacial spin-orbit fields in metallic and metal-semiconductor systems.

  14. Observation of the Zero Hall Plateau in a Quantum Anomalous Hall Insulator

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Yang; Feng, Xiao; Ou, Yunbo; Wang, Jing; Liu, Chang; Zhang, Liguo; Zhao, Dongyang; Jiang, Gaoyuan; Zhang, Shou-Cheng; He, Ke; Ma, Xucun; Xue, Qi-Kun; Wang, Yayu

    2015-09-16

    We report experimental investigations on the quantum phase transition between the two opposite Hall plateaus of a quantum anomalous Hall insulator. We observe a well-defined plateau with zero Hall conductivity over a range of magnetic field around coercivity when the magnetization reverses. The features of the zero Hall plateau are shown to be closely related to that of the quantum anomalous Hall effect, but its temperature evolution exhibits a significant difference from the network model for a conventional quantum Hall plateau transition. We propose that the chiral edge states residing at the magnetic domain boundaries, which are unique to a quantum anomalous Hall insulator, are responsible for the novel features of the zero Hall plateau.

  15. Anomalous Hall effect in polycrystalline Ni films

    KAUST Repository

    Guo, Zaibing

    2012-02-01

    We systematically studied the anomalous Hall effect in a series of polycrystalline Ni films with thickness ranging from 4 to 200 nm. It is found that both the longitudinal and anomalous Hall resistivity increased greatly as film thickness decreased. This enhancement should be related to the surface scattering. In the ultrathin films (46 nm thick), weak localization corrections to anomalous Hall conductivity were studied. The granular model, taking into account the dominated intergranular tunneling, has been employed to explain this phenomenon, which can explain the weak dependence of anomalous Hall resistivity on longitudinal resistivity as well. © 2011 Elsevier Ltd. All rights reserved.

  16. Temperature Dependence of the Seebeck Coefficient in Zinc Oxide Thin Films

    Science.gov (United States)

    Noori, Amirreza; Masoumi, Saeed; Hashemi, Najmeh

    2017-12-01

    Thermoelectric devices are reliable tools for converting waste heat into electricity as they last long, produce no noise or vibration, have no moving elements, and their light weight makes them suitable for the outer space usage. Materials with high thermoelectric figure of merit (zT) have the most important role in the fabrication of efficient thermoelectric devices. Metal oxide semiconductors, specially zinc oxide has recently received attention as a material suitable for sensor, optoelectronic and thermoelectric device applications because of their wide direct bandgap, chemical stability, high-energy radiation endurance, transparency and acceptable zT. Understanding the thermoelectric properties of the undoped ZnO thin films can help design better ZnO-based devices. Here, we report the results of our experimental work on the thermoelectric properties of the undoped polycrystalline ZnO thin films. These films are deposited on alumina substrates by thermal evaporation of zinc in vacuum followed by a controlled oxidation process in air carried out at the 350-500 °C temperature range. The experimental setup including gradient heaters, thermometry system and Seebeck voltage measurement equipment for high resistance samples is described. Seebeck voltage and electrical resistivity of the samples are measured at different conditions. The observed temperature dependence of the Seebeck coefficient is discussed.

  17. Temperature effects in exchange-biased planar Hall sensors for bioapplications

    DEFF Research Database (Denmark)

    Damsgaard, Christian Danvad; Dalslet, Bjarke Thomas; Freitas, S.C.

    2009-01-01

    The temperature dependence of exchange biased planar Hall effect sensors is investigated between T = −10 and 70 °C. It is shown that a single domain model describes the system well and that the temperature coefficient of the low-field sensitivity at T = 25 °C is 0.32%/°C. A procedure for temperat...

  18. Temperature Gradient in Hall Thrusters

    International Nuclear Information System (INIS)

    Staack, D.; Raitses, Y.; Fisch, N.J.

    2003-01-01

    Plasma potentials and electron temperatures were deduced from emissive and cold floating probe measurements in a 2 kW Hall thruster, operated in the discharge voltage range of 200-400 V. An almost linear dependence of the electron temperature on the plasma potential was observed in the acceleration region of the thruster both inside and outside the thruster. This result calls into question whether secondary electron emission from the ceramic channel walls plays a significant role in electron energy balance. The proportionality factor between the axial electron temperature gradient and the electric field is significantly smaller than might be expected by models employing Ohmic heating of electrons

  19. Recent Progress on PEDOT-Based Thermoelectric Materials.

    Science.gov (United States)

    Wei, Qingshuo; Mukaida, Masakazu; Kirihara, Kazuhiro; Naitoh, Yasuhisa; Ishida, Takao

    2015-02-16

    The thermoelectric properties of poly(3,4-ethylenedioxythiophene) (PEDOT)-based materials have attracted attention recently because of their remarkable electrical conductivity, power factor, and figure of merit. In this review, we summarize recent efforts toward improving the thermoelectric properties of PEDOT-based materials. We also discuss thermoelectric measurement techniques and several unsolved problems with the PEDOT system such as the effect of water absorption from the air and the anisotropic thermoelectric properties. In the last part, we describe our work on improving the power output of thermoelectric modules by using PEDOT, and we outline the potential applications of polymer thermoelectric generators.

  20. Review on Polymers for Thermoelectric Applications

    Directory of Open Access Journals (Sweden)

    Mario Culebras

    2014-09-01

    Full Text Available In this review, we report the state-of-the-art of polymers in thermoelectricity. Classically, a number of inorganic compounds have been considered as the best thermoelectric materials. Since the prediction of the improvement of the figure of merit by means of electronic confinement in 1993, it has been improved by a factor of 3–4. In the mean time, organic materials, in particular intrinsically conducting polymers, had been considered as competitors of classical thermoelectrics, since their figure of merit has been improved several orders of magnitude in the last few years. We review here the evolution of the figure of merit or the power factor during the last years, and the best candidates to compete with inorganic materials. We also outline the best polymers to substitute classical thermoelectric materials and the advantages they present in comparison with inorganic systems.

  1. Flexible Thermoelectric Generators on Silicon Fabric

    KAUST Repository

    Sevilla, Galo T.

    2012-01-01

    In this work, the development of a Thermoelectric Generator on Flexible Silicon Fabric is explored to extend silicon electronics for flexible platforms. Low cost, easily deployable plastic based flexible electronics are of great interest for smart

  2. Review on Polymers for Thermoelectric Applications.

    Science.gov (United States)

    Culebras, Mario; Gómez, Clara M; Cantarero, Andrés

    2014-09-18

    In this review, we report the state-of-the-art of polymers in thermoelectricity. Classically, a number of inorganic compounds have been considered as the best thermoelectric materials. Since the prediction of the improvement of the figure of merit by means of electronic confinement in 1993, it has been improved by a factor of 3-4. In the mean time, organic materials, in particular intrinsically conducting polymers, had been considered as competitors of classical thermoelectrics, since their figure of merit has been improved several orders of magnitude in the last few years. We review here the evolution of the figure of merit or the power factor during the last years, and the best candidates to compete with inorganic materials. We also outline the best polymers to substitute classical thermoelectric materials and the advantages they present in comparison with inorganic systems.

  3. Effective thermal conductivity in thermoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Baranowski, LL; Snyder, GJ; Toberer, ES

    2013-05-28

    Thermoelectric generators (TEGs) are solid state heat engines that generate electricity from a temperature gradient. Optimizing these devices for maximum power production can be difficult due to the many heat transport mechanisms occurring simultaneously within the TEG. In this paper, we develop a model for heat transport in thermoelectric materials in which an "effective thermal conductivity" (kappa(eff)) encompasses both the one dimensional steady-state Fourier conduction and the heat generation/consumption due to secondary thermoelectric effects. This model is especially powerful in that the value of kappa(eff) does not depend upon the operating conditions of the TEG but rather on the transport properties of the TE materials themselves. We analyze a variety of thermoelectric materials and generator designs using this concept and demonstrate that kappa(eff) predicts the heat fluxes within these devices to 5% of the exact value. (C) 2013 AIP Publishing LLC.

  4. PV-hybrid and thermoelectric collectors

    Energy Technology Data Exchange (ETDEWEB)

    Rockendorf, G.; Sillmann, R. [Institut fuer Solarenergieforschung GmbH, Emmerthal (Germany); Podlowski, L.; Litzenburger, B. [SolarWerk GmbH, Teltow (Germany)

    1999-07-01

    Two different principles of thermoelectric cogeneration solar collectors have been realized and investigated. Concerning the first principle, the thermoelectric collector (TEC) delivers electricity indirectly by first producing heat and subsequently generating electricity by means of a thermoelectric generator. Concerning the second principle, the photovoltaic-hybrid collector (PVHC) uses photovoltaic cells, which are cooled by a liquid heat-transfer medium. The characteristics of both collector types are described. Simulation modules have been developed and implemented in TRNSYS 14.1 (1994), in order to simulate their behaviour in typical domestic hot-water systems. The discussion of the results shows that the electric output of the PV-hybrid collector is significantly higher than that of the thermoelectric collector. (author)

  5. Enhanced thermoelectric properties of bismuth telluride-organic hybrid films via graphene doping

    International Nuclear Information System (INIS)

    Rahman, Airul Azha Abd; Umar, Akrajas Ali; Salleh, Muhamad Mat; Chen, Xiaomei; Oyama, Munetaka

    2016-01-01

    The thermoelectric properties of graphene-doped bismuth telluride-PEDOT:PSS-glycerol (hybrid) films were investigated. Prior to the study, p-type and n-type hybrid films were prepared by doping the PEDOT:PSS-glycerol with the p- and n-type bismuth telluride. Graphene-doped hybrid films were prepared by adding graphene particles of concentration ranging from 0.02 to 0.1 wt% into the hybrid films. Films of graphene-doped hybrid system were then prepared on a glass substrate using a spin-coating technique. It was found that the electrical conductivity of the hybrid films increases with the increasing of the graphene-dopant concentration and optimum at 0.08 wt% for both p- and n-type films, namely 400 and 195 S/cm, respectively. Further increasing in the concentration caused a decreasing in the electrical conductivity. Analysis of the thermoelectric properties of the films obtained that the p-type film exhibited significant improvement in its thermoelectric properties, where the thermoelectric properties increased with the increasing of the doping concentration. Meanwhile, for the case of n-type film, graphene doping showed a negative effect to the thermoelectrical properties, where the thermoelectric properties decreased with the increasing of doping concentration. Seebeck coefficient (and power factor) for optimum p-type and n-type hybrid thin films, i.e., doped with 0.08 wt% of graphene, is 20 μV/K (and 160 μW m -1 K -2 ) and 10 μV/K (and 19.5 μW m -1 K -2 ), respectively. The obtained electrical conductivity and thermoelectric properties of graphene-doped hybrid film are interestingly several orders higher than the pristine hybrid films. A thermocouple device fabricated utilizing the p- and n-type graphene-doped hybrid films can generate an electric voltage as high as 2.2 mV under a temperature difference between the hot-side and the cold-side terminal as only low as 55 K. This is equivalent to the output power as high as 24.2 nW (for output load as high as 50

  6. Development of a prototype thermoelectric space cooling system using phase change material to improve the performance

    Science.gov (United States)

    Zhao, Dongliang

    The thermoelectric cooling system has advantages over conventional vapor compression cooling devices, including compact in size, light in weight, high reliability, no mechanical moving parts, no refrigerant, being powered by direct current, and easily switching between cooling and heating modes. However, it has been long suffering from its relatively high cost and low energy efficiency, which has restricted its usage to niche applications, such as space missions, portable cooling devices, scientific and medical equipment, where coefficient of performance (COP) is not as important as reliability, energy availability, and quiet operation environment. Enhancement of thermoelectric cooling system performance generally relies on two methods: improving thermoelectric material efficiency and through thermoelectric cooling system thermal design. This research has been focused on the latter one. A prototype thermoelectric cooling system integrated with phase change material (PCM) thermal energy storage unit for space cooling has been developed. The PCM thermal storage unit used for cold storage at night, functions as the thermoelectric cooling system's heat sink during daytime's cooling period and provides relatively lower hot side temperature for the thermoelectric cooling system. The experimental test of the prototype system in a reduced-scale chamber has realized an average cooling COP of 0.87, with the maximum value of 1.22. Another comparison test for efficacy of PCM thermal storage unit shows that 35.3% electrical energy has been saved from using PCM for the thermoelectric cooling system. In general, PCM faces difficulty of poor thermal conductivity at both solid and liquid phases. This system implemented a finned inner tube to increase heat transfer during PCM charging (melting) process that directly impacts thermoelectric system's performance. A simulation tool for the entire system has been developed including mathematical models for a single thermoelectric module

  7. A thermoelectric cap for seafloor hydrothermal vents

    International Nuclear Information System (INIS)

    Xie, Yu; Wu, Shi-jun; Yang, Can-jun

    2016-01-01

    Highlights: • We developed a thermoelectric cap (TC) to harvest hydrothermal energy. • The TC was deployed at a hydrothermal vent site near Kueishantao islet, Taiwan. • The TC monitored the temperature of the hydrothermal fluids during the field test. • The TC could make the thermal energy of hydrothermal fluids a viable power source. - Abstract: Long-term in situ monitoring is crucial to seafloor scientific investigations. One of the challenges of operating sensors in seabed is the lifespan of the sensors. Such sensors are commonly powered by batteries when other alternatives, such as tidal or solar energy, are unavailable. However, the batteries have a limited lifespan and must be recharged or replaced periodically, which is costly and impractical. A thermoelectric cap, which harvests the thermal energy of hydrothermal fluids through a conduction pipe and converts the heat to electrical energy by using thermoelectric generators, was developed to avoid these inconveniences. The thermoelectric cap was combined with a power and temperature measurement system that enables the thermoelectric cap to power a light-emitting diode lamp, an electronic load (60 Ω), and 16 thermocouples continuously. The thermoelectric cap was field tested at a shallow hydrothermal vent site near Kueishantao islet, which is located offshore of northeastern Taiwan. By using the thermal gradient between hydrothermal fluids and seawater, the thermoelectric cap obtained a sustained power of 0.2–0.5 W during the field test. The thermoelectric cap successfully powered the 16 thermocouples and recorded the temperature of the hydrothermal fluids during the entire field test. Our results show that the thermal energy of hydrothermal fluids can be an alternative renewable power source for oceanographic research.

  8. Thermoelectric nanomaterials materials design and applications

    CERN Document Server

    Koumoto, Kunihito

    2014-01-01

    Presently, there is an intense race throughout the world to develop good enough thermoelectric materials which can be used in wide scale applications. This book focuses comprehensively on very recent up-to-date breakthroughs in thermoelectrics utilizing nanomaterials and methods based in nanoscience. Importantly, it provides the readers with methodology and concepts utilizing atomic scale and nanoscale materials design (such as superlattice structuring, atomic network structuring and properties control, electron correlation design, low dimensionality, nanostructuring, etc.). Furthermore, also

  9. Magnetic domain size effect on resistivity and Hall effect of amorphous Fe83-xZr7B10Mx (M=Ni, Nb) alloys

    International Nuclear Information System (INIS)

    Rhie, K.; Lim, W.Y.; Lee, S.H.; Yu, S.C.

    1997-01-01

    Studies of effective permeability, core loss and saturation magnetostriction of Fe 83-x Zr 7 B 10 M x (M=Ni, Nb) alloys revealed that the domain width is smallest around x=0.10. We measured the resistivity and low field Hall coefficients of these alloys and found that the maxima of resistivity and Hall coefficients occurred roughly at the same concentrations. Larger surface area of smaller domains is considered the reason. copyright 1997 American Institute of Physics

  10. 75 FR 7467 - Gary E. Hall and Rita C. Hall; Notice of Application Accepted for Filing With the Commision...

    Science.gov (United States)

    2010-02-19

    ... Rita C. Hall; Notice of Application Accepted for Filing With the Commision, Soliciting Motions To.... Project No.: 13652-000. c. Date filed: January 11, 2010. d. Applicant: Gary E. Hall and Rita C. Hall. e... Policies Act of 1978, 16 U.S.C. 2705, 2708. h. Applicant Contact: Mr. Gary E. Hall and Ms. Rita C. Hall, P...

  11. Hall magnetohydrodynamics of neutral layers

    International Nuclear Information System (INIS)

    Huba, J.D.; Rudakov, L.I.

    2003-01-01

    New analytical and numerical results of the dynamics of inhomogeneous, reversed field current layers in the Hall limit (i.e., characteristic length scales < or approx. the ion inertial length) are presented. Specifically, the two- and three-dimensional evolution of a current layer that supports a reversed field plasma configuration and has a density gradient along the current direction is studied. The two-dimensional study demonstrates that a density inhomogeneity along the current direction can dramatically redistribute the magnetic field and plasma via magnetic shock-like or rarefaction waves. The relative direction between the density gradient and current flow plays a critical role in the evolution of the current sheet. One important result is that the current sheet can become very thin rapidly when the density gradient is directed opposite to the current. The three-dimensional study uses the same plasma and field configuration as the two-dimensional study but is also initialized with a magnetic field perturbation localized along the current channel upstream of the plasma inhomogeneity. The perturbation induces a magnetic wave structure that propagates in the direction of the electron drift (i.e., opposite to the current). The propagating wave structure is a Hall phenomenon associated with magnetic field curvature. The interaction between the propagating wave structure and the evolving current layer can lead to rapid magnetic field line reconnection. The results are applied to laboratory and space plasma processes

  12. Potential thermoelectric material open framework Si24 from a first-principles study

    International Nuclear Information System (INIS)

    Ouyang, Tao; Zhang, Pei; Xiao, Huaping; Tang, Chao; Li, Jin; He, Chaoyu; Zhong, Jianxin

    2017-01-01

    Open framework Si 24 is a new synthesis cage-like silicon allotrope with a quasi-direct bandgap and predicted to exhibit outstanding adsorption efficiency, foreshowing the potential applications in the photovoltaic community. In this paper, the thermoelectric property of such new Si structures is investigated by combining first-principles calculation and semiclassical Boltzmann transport theory. The calculations show that the Si 24 possesses a superb Seebeck coefficient, and obviously anisotropic electronic conductivity. Owing to more energy extremums existing in the conduction band region, the power factor of Si 24 in the n-type doping is always better than that in p-type samples. Anisotropic phonon transport property is observed as well in Si 24 with average lattice thermal conductivity of 45.35 W m −1 K −1 at room temperature. Based on the electron relaxation time estimated from the experiment, the thermoelectric figure of merit of Si 24 is found to be as high as 0.69 (n-type doping at 700 K) and 0.51 (p-type doping at 700 K) along the xx crystal direction, which is about two orders of magnitude larger than that of diamond Si ( d -Si). The findings presented in this work shed light on the thermoelectric performance of Si 24 and qualify that such new Si allotrope is a promising platform for achieving the recombination of photovoltaic and thermoelectric technologies together. (paper)

  13. Impact of thermoelectric phenomena on phase-change memory performance metrics and scaling

    International Nuclear Information System (INIS)

    Lee, Jaeho; Asheghi, Mehdi; Goodson, Kenneth E

    2012-01-01

    The coupled transport of heat and electrical current, or thermoelectric phenomena, can strongly influence the temperature distribution and figures of merit for phase-change memory (PCM). This paper simulates PCM devices with careful attention to thermoelectric transport and the resulting impact on programming current during the reset operation. The electrothermal simulations consider Thomson heating within the phase-change material and Peltier heating at the electrode interface. Using representative values for the Thomson and Seebeck coefficients extracted from our past measurements of these properties, we predict a cell temperature increase of 44% and a decrease in the programming current of 16%. Scaling arguments indicate that the impact of thermoelectric phenomena becomes greater with smaller dimensions due to enhanced thermal confinement. This work estimates the scaling of this reduction in programming current as electrode contact areas are reduced down to 10 nm × 10 nm. Precise understanding of thermoelectric phenomena and their impact on device performance is a critical part of PCM design strategies. (paper)

  14. Effect of local atomic and electronic structures on thermoelectric properties of chemically substituted CoSi

    Science.gov (United States)

    Hsu, C. C.; Pao, C. W.; Chen, J. L.; Chen, C. L.; Dong, C. L.; Liu, Y. S.; Lee, J. F.; Chan, T. S.; Chang, C. L.; Kuo, Y. K.; Lue, C. S.

    2014-05-01

    We report the effects of Ge partial substitution for Si on local atomic and electronic structures of thermoelectric materials in binary compound cobalt monosilicides (\\text{CoSi}_{1-x}\\text{Ge}_{x}\\text{:}\\ 0 \\le x \\le 0.15 ). Correlations between local atomic/electronic structure and thermoelectric properties are investigated by means of X-ray absorption spectroscopy. The spectroscopic results indicate that as Ge is partially substituted onto Si sites at x \\le 0.05 , Co in CoSi1-xGex gains a certain amount of charge in its 3d orbitals. Contrarily, upon further replacing Si with Ge at x \\ge 0.05 , the Co 3d orbitals start to lose some of their charge. Notably, thermopower is strongly correlated with charge redistribution in the Co 3d orbital, and the observed charge transfer between Ge and Co is responsible for the variation of Co 3d occupancy number. In addition to Seebeck coefficient, which can be modified by tailoring the Co 3d states, local lattice disorder may also be beneficial in enhancing the thermoelectric properties. Extended X-ray absorption fine structure spectrum results further demonstrate that the lattice phonons can be enhanced by Ge doping, which results in the formation of the disordered Co-Co pair. Improvements in the thermoelectric properties are interpreted based on the variation of local atomic and electronic structure induced by lattice distortion through chemical substitution.

  15. Microstructures and thermoelectric properties of GeSbTe based layered compounds

    Energy Technology Data Exchange (ETDEWEB)

    Yan, F.; Zhu, T.J.; Zhao, X.B. [Zhejiang University, State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Hangzhou (China); Dong, S.R. [Zhejiang University, Department of Information and Electronics Engineering, Hangzhou (China)

    2007-08-15

    Microstructures and thermoelectric properties of Ge{sub 1}Sb{sub 2}Te{sub 4} and Ge{sub 2}Sb{sub 2}Te{sub 5} chalcogenide semiconductors have been investigated to explore the possibility of their thermoelectric applications. The phase transformation from the face-centered cubic to hexagonal structure was observed in Ge{sub 2}Sb{sub 2}Te{sub 5} compounds prepared by the melt spinning technique. The Seebeck coefficient and electrical resistivity of the alloys were increased due to the enhanced scattering of charge carriers at grain boundaries. The maximum power factors of the rapidly solidified Ge{sub 1}Sb{sub 2}Te{sub 4} and Ge{sub 2}Sb{sub 2}Te{sub 5} attained 0.975 x 10{sup -3} Wm{sup -1}K{sup -2} at 750 K and 0.767 x 10{sup -3} Wm{sup -1}K{sup -2} at 643 K respectively, higher than those of water quenched counterparts, implying that thermoelectric properties of GeSbTe based layered compounds can be improved by grain refinement. The present results show this class of chalcogenide semiconductors is promising for thermoelectric applications. (orig.)

  16. Impact of energy filtering and carrier localization on the thermoelectric properties of granular semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Narducci, Dario, E-mail: dario.narducci@unimib.it [Department of Materials Science, University of Milano Bicocca, via Cozzi 53, 20125 Milano (Italy); Consorzio DeltaTi Research (Italy); Selezneva, Ekaterina [Department of Materials Science, University of Milano Bicocca, via Cozzi 53, 20125 Milano (Italy); Cerofolini, Gianfranco [Department of Materials Science, University of Milano Bicocca, via Cozzi 53, 20125 Milano (Italy); Consorzio DeltaTi Research (Italy); Frabboni, Stefano; Ottaviani, Giampiero [Department of Physics, University of Modena and Reggio Emilia, via Campi 213, 41100 Modena (Italy)

    2012-09-15

    Energy filtering has been widely considered as a suitable tool to increase the thermoelectric performances of several classes of materials. In its essence, energy filtering provides a way to increase the Seebeck coefficient by introducing a strongly energy-dependent scattering mechanism. Under certain conditions, however, potential barriers may lead to carrier localization, that may also affect the thermoelectric properties of a material. A model is proposed, actually showing that randomly distributed potential barriers (as those found, e.g., in polycrystalline films) may lead to the simultaneous occurrence of energy filtering and carrier localization. Localization is shown to cause a decrease of the actual carrier density that, along with the quantum tunneling of carriers, may result in an unexpected increase of the power factor with the doping level. The model is corroborated toward experimental data gathered by several authors on degenerate polycrystalline silicon and lead telluride. - Graphical abstract: In heavily doped semiconductors potential barriers may lead to both carrier energy filtering and localization. This may lead to an enhancement of the thermoelectric properties of the material, resulting in an unexpected increase of the power factor with the doping level. Highlights: Black-Right-Pointing-Pointer Potential barriers are shown to lead to carrier localization in thermoelectric materials. Black-Right-Pointing-Pointer Evidence is put forward of the formation of a mobility edge. Black-Right-Pointing-Pointer Energy filtering and localization may explain the enhancement of power factor in degenerate semiconductors.

  17. Discussion on the electrical and thermoelectrical properties of amorphous In-Sb-Te Films

    Energy Technology Data Exchange (ETDEWEB)

    Aly, K.A. [University of Jeddah, Physics Department, Faculty of Science and Arts, Khulais, Jeddah (Saudi Arabia); Al-Azhar University, Assiut Branch, Physics Department, Faculty of Science, Asyut (Egypt); Saddeek, Y. [Al-Azhar University, Assiut Branch, Physics Department, Faculty of Science, Asyut (Egypt); Dahshan, A. [Port Said University, Department of Physics, Faculty of Science, Port Said (Egypt); King Khalid University, Department of Physics, Faculty of Science for Girls, Abha (Saudi Arabia)

    2016-03-15

    Different compositions of (In{sub 0.5}Sb{sub 0.5}){sub 1-x}Te{sub x} (0.50 ≤ x ≤ 0.65) thin films were prepared by thermal evaporated technique, onto pre-cleaned glass substrates at ∝298 K. Both dark electrical resistivity (ρ) and thermoelectric power (S) were measured in the temperature range 300-420 K. The concentration of the free carriers is obtained from DC conductivity and thermoelectric power measurements. Seebeck coefficient was found to be positive over entire temperature range, indicating that (In{sub 0.5}Sb{sub 0.5}){sub 1-x}Te{sub x} films are p-type semiconducting materials. Also, the variation of the mobility with temperature has been estimated. Increasing tellurium concentration is found to affect the DC conductivity and thermoelectric power of the studied films. The activation energies obtained from the DC conductivity and thermoelectric power increase with increasing tellurium content. The obtained results were interpreted according to the chemical bond approach. (orig.)

  18. On one possibility for application of new thermoelectric materials based on Ag2Te

    International Nuclear Information System (INIS)

    Vassilev, Venceslav; Parvanov, Svetlin; Vachkov, Valeri

    2011-01-01

    The thermoelectric characteristics of Ag 2 Te and Ag 1,84 Cd 0,08 Te (solid solution based on Ag 2 Te) are investigated and analyzed. The main thermoelectric characteristics of the solid solution: α=118 μV/K; σ = 2230 S/cm and = 2,45.10 -2 W/(cm.K) ensure coefficient of thermoelectric efficiency z = 1,27. 10-3 K -1 (at 300 ), which increases this of the Ag 2 Te. A composition for commutation material is developed, which connects the N- and the P-branches of a single thermo element (52 wt. % In + 48 wt. % Sn) with melting temperature of 390 K. The possibility for application of the Ag 1,84 Cd 0,08 Te solid solution as N-branch of a thermo element in combination with the solid solution Bi 0,5 Sb 1,5 Te 3 (P-branch) is investigated. The thermo element guarantees values of z from 0,71.10 -3 to 1,27.10 -3 K -1 in the temperature interval 250 - 350 . The maximum z value is registered at 300 K (z = 1,27.10 -3 K -1 ). Keywords: Silver telluride, Solid solutions, Thermoelectric properties, Thermo element

  19. Edge magnetism impact on electrical conductance and thermoelectric properties of graphenelike nanoribbons

    Science.gov (United States)

    Krompiewski, Stefan; Cuniberti, Gianaurelio

    2017-10-01

    Edge states in narrow quasi-two-dimensional nanostructures determine, to a large extent, their electric, thermoelectric, and magnetic properties. Nonmagnetic edge states may quite often lead to topological-insulator-type behavior. However, another scenario develops when the zigzag edges are magnetic and the time reversal symmetry is broken. In this work we report on the electronic band structure modifications, electrical conductance, and thermoelectric properties of narrow zigzag nanoribbons with spontaneously magnetized edges. Theoretical studies based on the Kane-Mele-Hubbard tight-binding model show that for silicene, germanene, and stanene both the Seebeck coefficient and the thermoelectric power factor are strongly enhanced for energies close to the charge neutrality point. A perpendicular gate voltage lifts the spin degeneracy of energy bands in the ground state with antiparallel magnetized zigzag edges and makes the electrical conductance significantly spin polarized. Simultaneously the gate voltage worsens the thermoelectric performance. Estimated room-temperature figures of merit for the aforementioned nanoribbons can exceed a value of 3 if phonon thermal conductances are adequately reduced.

  20. Significant enhancement of the thermoelectric figure of merit of polycrystalline Si films by reducing grain size

    International Nuclear Information System (INIS)

    Valalaki, K; Nassiopoulou, A G; Vouroutzis, N

    2016-01-01

    The thermoelectric properties of p-type polycrystalline silicon thin films deposited by low pressure chemical vapour deposition (LPCVD) were accurately determined at room temperature and the thermoelectric figure of merit was deduced as a function of film thickness, ranging from 100 to 500 nm. The effect of film thickness on their thermoelectric performance is discussed. More than threefold increase in the thermoelectric figure of merit of the 100 nm thick polysilicon film was observed compared to the 500 nm thick film, reaching a value as high as 0.033. This enhancement is mainly the result of the smaller grain size in the thinner films. With the decrease in grain size the resistivity of the films is increased twofold and electrical conductivity decreased, however the Seebeck coefficient is increased by 30% and the thermal conductivity is decreased eightfold, being mainly at the origin of the increased figure of merit of the 100 nm film. Our experimental results were compared to known theoretical models and the possible mechanisms involved are presented and discussed. (paper)

  1. Enhanced thermoelectric performance with participation of F-electrons in β-Zn4Sb3

    International Nuclear Information System (INIS)

    Liu, Mian; Qin, Xiaoying; Liu, Changsong; Li, Xiyu; Yang, Xiuhui

    2014-01-01

    Highlights: • Find an effective route to enhance the thermoelectric figure of merit of β-Zn 4 Sb 3 . • Provide the corresponding theoretical predictions. • Investigated the effects of doping Ce and Pr in β-Zn 4 Sb 3 . -- Abstract: The effects of rare-earth element impurities Ce and Pr on the electronic structure and thermoelectric properties of β-Zn 4 Sb 3 were investigated by performing self-consistent ab initio electronic structure calculations within density functional theory and solving the Boltzmann transport equations within the relaxation time approximation. The results demonstrated that these rare-earth element impurities with f orbitals could introduce giant sharp resonant peaks in the density of states (DOS) near the host valence band maximum in energy. And these deliberately engineered DOS peaks result in a sharp increase of the room-temperature Seebeck coefficient and power factor from those of impurity-free system by a factor of 100 and 22, respectively. Additionally, with the simultaneous declining of carrier thermal conductivity, a potential 5-fold increase at least with Ce doping and more than 3 times increase with Pr doping in the thermoelectric figure of merit of β-Zn 4 Sb 3 at room temperature are achieved. The effective DOS restructuring strategy opens up new opportunities for thermoelectric power generation and waste heat recovery at large scale

  2. Bulk Thermoelectric Materials Reinforced with SiC Whiskers

    Science.gov (United States)

    Akao, Takahiro; Fujiwara, Yuya; Tarui, Yuki; Onda, Tetsuhiko; Chen, Zhong-Chun

    2014-06-01

    SiC whiskers have been incorporated into Zn4Sb3 compound as reinforcements to overcome its extremely brittle nature. The bulk samples were prepared by either hot-extrusion or hot-pressing techniques. The obtained products containing 1 vol.% to 5 vol.% SiC whiskers were confirmed to exhibit sound appearance, high density, and fine-grained microstructure. Mechanical properties such as the hardness and fracture resistance were improved by the addition of SiC whiskers, as a result of dispersion strengthening and microstructural refinement induced by a pinning effect. Furthermore, crack deflection and/or bridging/pullout mechanisms are invoked by the whiskers. Regarding the thermoelectric properties, the Seebeck coefficient and electrical resistivity values comparable to those of the pure compound are retained over the entire range of added whisker amount. However, the thermal conductivity becomes large with increasing amount of SiC whiskers because of the much higher conductivity of SiC relative to the Zn4Sb3 matrix. This results in a remarkable degradation of the dimensionless figure of merit in the samples with addition of SiC whiskers. Therefore, the optimum amount of SiC whiskers in the Zn4Sb3 matrix should be determined by balancing the mechanical properties and thermoelectric performance.

  3. Manufacturing Te/PEDOT Films for Thermoelectric Applications.

    Science.gov (United States)

    Culebras, Mario; Igual-Muñoz, Ana María; Rodríguez-Fernández, Carlos; Gómez-Gómez, María Isabel; Gómez, Clara; Cantarero, Andrés

    2017-06-21

    In this work, flexible Te films have been synthesized by electrochemical deposition using PEDOT [poly(3,4-ethylenedioxythiophene)] nanofilms as working electrodes. The Te electrodeposition time was varied to find the best thermoelectric properties of the Te/PEDOT double layers. To show the high quality of the Te films grown on PEDOT, the samples were analyzed by Raman spectroscopy, showing the three Raman active modes of Te: E 1 , A 1 , and E 2 . The X-ray diffraction spectra also confirmed the presence of crystalline Te on top of the PEDOT films. The morphology of the Te/PEDOT films was studied using scanning electron microscopy, showing a homogeneous distribution of Te along the film. Also an atomic force microscope was used to analyze the quality of the Te surface. Finally, the electrical conductivity and the Seebeck coefficient of the Te/PEDOT films were measured as a function of the Te deposition time. The films showed an excellent thermoelectric behavior, giving a maximum power factor of about 320 ± 16 μW m -1 K -2 after 2.5 h of Te electrochemical deposition, a value larger than that reported for thin films of Te. Qualitative arguments to explain this behavior are given in the discussion.

  4. Thermoelectric effects of amorphous Ga-Sn-O thin film

    Science.gov (United States)

    Matsuda, Tokiyoshi; Uenuma, Mutsunori; Kimura, Mutsumi

    2017-07-01

    The thermoelectric effects of an amorphous Ga-Sn-O (a-GTO) thin film have been evaluated as a physical parameter of a novel oxide semiconductor. Currently, a-GTO thin films are greatly desired not only because they do not contain rare metals and are therefore free from problems on the exhaustion of resources and the increase in cost but also because their initial characteristics and performance stabilities are excellent when they are used in thin-film transistors. In this study, an a-GTO thin film was deposited on a quartz substrate by RF magnetron sputtering and postannealing was performed in air at 350 °C for 1 h using an annealing furnace. The Seebeck coefficient and electrical conductivity of the a-GTO thin film were -137 µV/K and 31.8 S/cm at room temperature, and -183 µV/K and 43.8 S/cm at 397 K, respectively, and as a result, the power factor was 1.47 µW/(cm·K2) at 397 K; these values were roughly as high as those of amorphous In-Ga-Zn-O (a-IGZO) thin films. Therefore, a-GTO thin films will be a candidate material for thermoelectric devices fabricated in a large area at a low cost by controlling the carrier mobility, carrier density, device structures, and so forth.

  5. Performance estimation of photovoltaic–thermoelectric hybrid systems

    International Nuclear Information System (INIS)

    Zhang, Jin; Xuan, Yimin; Yang, Lili

    2014-01-01

    A theoretical model for evaluating the efficiency of concentrating PV–TE (photovoltaic–thermoelectric) hybrid system is developed in this paper. Hybrid systems with different photovoltaic cells are studied, including crystalline silicon photovoltaic cell, silicon thin-film photovoltaic cell, polymer photovoltaic cell and copper indium gallium selenide photovoltaic cell. The influence of temperature on the efficiency of photovoltaic cell has been taken into account based on the semiconductor equations, which reveals different efficiency temperature characteristic of polymer photovoltaic cells. It is demonstrated that the polycrystalline silicon thin-film photovoltaic cell is suitable for concentrating PV–TE hybrid system through optimization of the convection heat transfer coefficient and concentrating ratio. The polymer photovoltaic cell is proved to be suitable for non-concentrating PV–TE hybrid system. - Highlights: • Performances of four types of photovoltaic–thermoelectric hybrid systems are studied. • Temperature is one of dominant factors of affecting the conversion efficiency of PV–TE systems. • One can select a proper PV–TE assembly system according to given operating conditions

  6. Thermoelectric Generators Based on Ionic Liquids

    Science.gov (United States)

    Laux, Edith; Uhl, Stefanie; Jeandupeux, Laure; López, Pilar Pérez; Sanglard, Pauline; Vanoli, Ennio; Marti, Roger; Keppner, Herbert

    2018-06-01

    Looking at energy harvesting using body or waste heat for portable electronic or on-board devices, Ionic liquids are interesting candidates as thermoactive materials in thermoelectric generators (TEGs) because of their outstanding properties. Two different kinds of ionic liquid, with alkylammonium and choline as cations, were studied, whereby different anions and redox couples were combined. This study focussed on the intention to find non-hazardous and environmentally friendly ionic liquids for TEGs to be selected among the thousands that can potentially be used. Seebeck coefficients (SEs) as high as - 15 mV/K were measured, in a particular case for an electrode temperature difference of 20 K. The bottleneck of our TEG device is still the abundance of negative SE liquids matching the internal resistance with the existing positive SE-liquids at series connections. In this paper, we show further progress in finding increased negative SE liquids. For current extraction from the TEG, the ionic liquid must be blended with a redox couple, allowing carrier exchange in a cyclic process under a voltage which is incuced by the asymmetry of the generator in terms of hot and cold electrodes. In our study, two types of redox pairs were tested. It was observed that a high SE of an ionic liquid/redox blend is not a sufficient condition for high power output. It appears that more complex effects between the ionic liquid and the electrode determine the magnitude of the final current/power output. The physico-chemical understanding of such a TEG cell is not yet available.

  7. A review of thermoelectric cooling: Materials, modeling and applications

    International Nuclear Information System (INIS)

    Zhao, Dongliang; Tan, Gang

    2014-01-01

    This study reviews the recent advances of thermoelectric materials, modeling approaches, and applications. Thermoelectric cooling systems have advantages over conventional cooling devices, including compact in size, light in weight, high reliability, no mechanical moving parts, no working fluid, being powered by direct current, and easily switching between cooling and heating modes. In this study, historical development of thermoelectric cooling has been briefly introduced first. Next, the development of thermoelectric materials has been given and the achievements in past decade have been summarized. To improve thermoelectric cooling system's performance, the modeling techniques have been described for both the thermoelement modeling and thermoelectric cooler (TEC) modeling including standard simplified energy equilibrium model, one-dimensional and three-dimensional models, and numerical compact model. Finally, the thermoelectric cooling applications have been reviewed in aspects of domestic refrigeration, electronic cooling, scientific application, and automobile air conditioning and seat temperature control, with summaries for the commercially available thermoelectric modules and thermoelectric refrigerators. It is expected that this study will be beneficial to thermoelectric cooling system design, simulation, and analysis. - Highlights: •Thermoelectric cooling has great prospects with thermoelectric material's advances. •Modeling techniques for both thermoelement and TEC have been reviewed. •Principle thermoelectric cooling applications have been reviewed and summarized

  8. Transport Properties of Bulk Thermoelectrics—An International Round-Robin Study, Part I: Seebeck Coefficient and Electrical Resistivity

    Science.gov (United States)

    Wang, Hsin; Porter, Wallace D.; Böttner, Harald; König, Jan; Chen, Lidong; Bai, Shengqiang; Tritt, Terry M.; Mayolet, Alex; Senawiratne, Jayantha; Smith, Charlene; Harris, Fred; Gilbert, Patricia; Sharp, Jeff W.; Lo, Jason; Kleinke, Holger; Kiss, Laszlo

    2013-04-01

    Recent research and development of high-temperature thermoelectric materials has demonstrated great potential for converting automobile exhaust heat directly into electricity. Thermoelectrics based on classic bismuth telluride have also started to impact the automotive industry by enhancing air-conditioning efficiency and integrated cabin climate control. In addition to engineering challenges of making reliable and efficient devices to withstand thermal and mechanical cycling, the remaining issues in thermoelectric power generation and refrigeration are mostly materials related. The dimensionless figure of merit, ZT, still needs to be improved from the current value of 1.0 to 1.5 to above 2.0 to be competitive with other alternative technologies. In the meantime, the thermoelectric community could greatly benefit from the development of international test standards, improved test methods, and better characterization tools. Internationally, thermoelectrics have been recognized by many countries as a key component for improving energy efficiency. The International Energy Agency (IEA) group under the Implementing Agreement for Advanced Materials for Transportation (AMT) identified thermoelectric materials as an important area in 2009. This paper is part I of the international round-robin testing of transport properties of bulk thermoelectrics. The main foci in part I are the measurement of two electronic transport properties: Seebeck coefficient and electrical resistivity.

  9. Strain effect on electronic structure and thermoelectric properties of orthorhombic SnSe: A first principles study

    Directory of Open Access Journals (Sweden)

    Do Duc Cuong

    2015-11-01

    Full Text Available Strain effect on thermoelectricity of orthorhombic SnSe is studied using density function theory. The Seebeck coefficients are obtained by solving Boltzmann Transport equation (BTE with interpolated band energies. As expected from the crystal structure, calculated Seebeck coefficients are highly anisotropic, and agree well with experiment. Changes in the Seebeck coefficients are presented, when strain is applied along b and c direction with strength from -3% to +3%, where influence by band gaps and band dispersions are significant. Moreover, for compressive strains, the sign change of Seebeck coefficients at particular direction suggests that the bipolar transport is possible for SnSe.

  10. Interfacial reactions in thermoelectric modules

    KAUST Repository

    Wu, Hsin-jay

    2018-02-21

    Engineering transport properties of thermoelectric (TE) materials leads to incessantly breakthroughs in the zT values. Nevertheless, modular design holds a key factor to advance the TE technology. Herein, we discuss the structures of TE module and illustrate the inter-diffusions across the interface of constituent layers. For Bi2Te3-based module, soldering is the primary bonding method, giving rise to the investigations on the selections of solder, diffusion barrier layer and electrode. For mid-temperature PbTe-based TE module, hot-pressing or spark plasma sintering are alternative bonding approaches; the inter-diffusions between the diffusion barrier layer, electrode and TE substrate are addressed as well.

  11. Thermoelectric properties of IV–VI-based heterostructures and superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Borges, P.D., E-mail: pabloborges@ufv.br [Instituto de Ciências Exatas e Tec., Universidade Federal de Viçosa, Rio Paranaíba, MG (Brazil); Department of Physics, Texas State University, San Marcos, TX 78666 (United States); Petersen, J.E.; Scolfaro, L. [Department of Physics, Texas State University, San Marcos, TX 78666 (United States); Leite Alves, H.W. [Departamento de Ciências Naturais, Universidade Federal de São João Del Rei, Caixa Postal 110, São João Del Rei 36300-000, MG (Brazil); Myers, T.H. [Department of Physics, Texas State University, San Marcos, TX 78666 (United States)

    2015-07-15

    Doping in a manner that introduces anisotropy in order to reduce thermal conductivity is a significant focus in thermoelectric research today. By solving the semiclassical Boltzmann transport equations in the constant scattering time (τ) approximation, in conjunction with ab initio electronic structure calculations, within Density Functional Theory, we compare the Seebeck coefficient (S) and figure of merit (ZT) of bulk PbTe to PbTe/SnTe/PbTe heterostructures and PbTe doping superlattices (SLs) with periodically doped planes. Bismuth and Thallium were used as the n- and p-type impurities, respectively. The effects of carrier concentration are considered via chemical potential variation in a rigid band approximation. The impurity bands near the Fermi level in the electronic structure of PbTe SLs are of Tl s- and Bi p-character, and this feature is independent of the doping concentration or the distance between impurity planes. We observe the impurity bands to have a metallic nature in the directions perpendicular to the doping planes, yet no improvement on the values of ZT is found when compared to bulk PbTe. For the PbTe/SnTe/PbTe heterostructures, the calculated S presents good agreement with recent experimental data, and an anisotropic behavior is observed for low carrier concentrations (n<10{sup 18} cm{sup −3}). A large value of ZT{sub ||} (parallel to the growth direction) of 3.0 is predicted for n=4.7×10{sup 18} cm{sup −3} and T=700 K, whereas ZT{sub p} (perpendicular to the growth direction) is found to peak at 1.5 for n=1.7×10{sup 17} cm{sup −3}. Both electrical conductivity enhancement and thermal conductivity reduction are analyzed. - Graphical abstract: Figure of merit for PbTe/SnTe/PbTe heterostructure along the [0 0 1] direction, P.D. Borges, J.E. Petersen, L. Scolfaro, H.W. Leite Alves, T.H. Myers, Improved thermoelectric properties of IV–VI-based heterostructures and superlattices. - Highlights: • Thermoelectric properties of IV

  12. Performance of a Composite Thermoelectric Generator with Different Arrangements of SiGe, BiTe and PbTe under Different Configurations

    Directory of Open Access Journals (Sweden)

    Alexander Vargas-Almeida

    2015-10-01

    Full Text Available In this study, we analyze the role of the thermoelectric (TE properties, namely Seebeck coefficient α, thermal conductivity κ and electrical resistivity ρ, of three different materials in a composite thermoelectric generator (CTEG under different configurations. The CTEG is composed of three thermoelectric modules (TEMs: (1 two TEMs thermally and electrically connected in series (SC; (2 two branches of TEMs thermally and electrically connected in parallel (PSC; and (3 three TEMs thermally and electrically connected in parallel (TEP. In general, each of the TEMs have different thermoelectric parameters, namely a Seebeck coefficient α, a thermal conductance K and an electrical resistance R. Following the framework proposed recently, we show the effect of: (1 the configuration; and (2 the arrangements of TE materials on the corresponding equivalent figure of merit Zeq and consequently on the maximum power Pmax and efficiency η of the CTEG. Firstly, we consider that the whole system is formed of the same thermoelectric material (α1,K1,R1 = α2,K2,R2 = α3,K3,R3 and, secondly, that the whole system is constituted by only two different thermoelectric materials Entropy 2015, 17 7388 (αi,Ki,Ri ≠ αj ,Kj ,Rj 6= αl,Kl,Rl, where i, j, l can be 1, 2 or 3. In this work, we propose arrangements of TEMs, which clearly have the advantage of a higher thermoelectric figure of merit value compared to a conventional thermoelectric module. A corollary about the Zeq-max for CTEG is obtained as a result of these considerations. We suggest an optimum configuration.

  13. Quantum Hall effect in quantum electrodynamics

    International Nuclear Information System (INIS)

    Penin, Alexander A.

    2009-01-01

    We consider the quantum Hall effect in quantum electrodynamics and find a deviation from the quantum-mechanical prediction for the Hall conductivity due to radiative antiscreening of electric charge in an external magnetic field. A weak dependence of the universal von Klitzing constant on the magnetic field strength, which can possibly be observed in a dedicated experiment, is predicted

  14. Hall devices improve electric motor efficiency

    Science.gov (United States)

    Haeussermann, W.

    1979-01-01

    Efficiency of electric motors and generators is reduced by radial magnetic forces created by symmetric fields within device. Forces are sensed and counteracted by Hall devices on excitation or control windings. Hall generators directly measure and provide compensating control of anu asymmetry, eliminating additional measurements needed for calibration feedback control loop.

  15. Higher fractions theory of fractional hall effect

    International Nuclear Information System (INIS)

    Kostadinov, I.Z.; Popov, V.N.

    1985-07-01

    A theory of fractional quantum Hall effect is generalized to higher fractions. N-particle model interaction is used and the gap is expressed through n-particles wave function. The excitation spectrum in general and the mean field critical behaviour are determined. The Hall conductivity is calculated from first principles. (author)

  16. Impact of the Topological Surface State on the Thermoelectric Transport in Sb2Te3 Thin Films.

    Science.gov (United States)

    Hinsche, Nicki F; Zastrow, Sebastian; Gooth, Johannes; Pudewill, Laurens; Zierold, Robert; Rittweger, Florian; Rauch, Tomáš; Henk, Jürgen; Nielsch, Kornelius; Mertig, Ingrid

    2015-04-28

    Ab initio electronic structure calculations based on density functional theory and tight-binding methods for the thermoelectric properties of p-type Sb2Te3 films are presented. The thickness-dependent electrical conductivity and the thermopower are computed in the diffusive limit of transport based on the Boltzmann equation. Contributions of the bulk and the surface to the transport coefficients are separated, which enables to identify a clear impact of the topological surface state on the thermoelectric properties. When the charge carrier concentration is tuned, a crossover between a surface-state-dominant and a Fuchs-Sondheimer transport regime is achieved. The calculations are corroborated by thermoelectric transport measurements on Sb2Te3 films grown by atomic layer deposition.

  17. Hierarchical thermoelectrics : Crystal grain boundaries as scalable phonon scatterers

    NARCIS (Netherlands)

    Selli, Daniele; Boulfelfel, Salah Eddine; Schapotschnikow, PZ; Donadio, Davide; Leoni, Stefano

    2016-01-01

    Thermoelectric materials are strategically valuable for sustainable development, as they allow for the generation of electrical energy from wasted heat. In recent years several strategies have demonstrated some efficiency in improving thermoelectric properties. Dopants affect carrier

  18. Nano-Micro Materials Enabled Thermoelectricity From Window Glasses

    KAUST Repository

    Inayat, Salman Bin

    2012-01-01

    of individual glass strips to form the thickness depth of the glass on subsequent curing of the strips, and c) embedding nano-manufactured thermoelectric pillars, have been implemented for innovative integration of thermoelectric materials into window glasses

  19. Report of experimental hall subworking group

    International Nuclear Information System (INIS)

    Miyake, K.; Ohama, T.; Takahashi, K.

    1982-01-01

    The general plan of constructing the TRISTAN e + e - colliding beam experimental halls may be divided into two parts. The first step is to construct two test-experimental halls associated with the 6.5 GeV x 6.5 GeV e + e - accumulator ring, and the second step is to build four experimental halls at the 30 GeV x 30 GeV e + e - TRISTAN main ring. At this workshop, extensive discussions on the detailed design of the four main ring experimental halls have been made. Four experimental areas will be built at the main ring, and two test-experimental halls at the accumulating ring. Among the four areas at the main ring, two will be used for electron-proton possible as well as electron-positron colliding beam experiment. The other two will be used exclusively for e + e - colliding experiments. Only a preliminary design has been made for these four experimental areas. A tentative plan of a larger experimental hall includes a counting and data processing room, a utility room, and a radiation safety control room. Two smaller halls have simpler structure. The figures of the experimental halls are presented. The two test-experimental halls at the accumulator ring will be used to test the detectors for e + e - colliding experiments before the final installation. The utility rooms designed for the halls are used to supply coolant and electric power of superconducting magnets. At the workshop, various ideas concerning the preliminary plan are presented. (Kato, T.)

  20. Thermoelectric properties of bismuth antimony tellurium thin films through bilayer annealing prepared by ion beam sputtering deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Zhuang-hao [College of Physics Science and Technology, Shenzhen University, 518060 (China); Shenzhen Key Laboratory of Sensor Technology, Shenzhen 518060 (China); Fan, Ping, E-mail: fanping308@126.com [College of Physics Science and Technology, Shenzhen University, 518060 (China); Shenzhen Key Laboratory of Sensor Technology, Shenzhen 518060 (China); Luo, Jing-ting [College of Physics Science and Technology, Shenzhen University, 518060 (China); Shenzhen Key Laboratory of Sensor Technology, Shenzhen 518060 (China); Cai, Xing-min; Liang, Guang-xing; Zhang, Dong-ping [College of Physics Science and Technology, Shenzhen University, 518060 (China); Ye, Fan [Shenzhen Key Laboratory of Sensor Technology, Shenzhen 518060 (China)

    2014-07-01

    Bismuth antimony tellurium is one of the most important tellurium-based materials for high-efficient thermoelectric application. In this paper, ion beam sputtering was used to deposit Bi{sub 2}Te{sub 3} and Sb{sub 2}Te{sub 3} bilayer thin films on borosilicate substrates at room-temperature. Then the bismuth antimony tellurium thin films were synthesized via post thermal treatment of the Bi{sub 2}Te{sub 3} and Sb{sub 2}Te{sub 3} bilayer thin films. The effect of annealing temperature and compositions on the thermoelectric properties of the thin films was investigated. After the thin films were annealed from 150 °C to 350 °C for 1 h in the high vacuum condition, the Seebeck coefficient changed from a negative sign to a positive sign. The X-ray diffraction results showed that the synthesized tellurium-based thermoelectric thin film exhibited various alloys phases, which contributed different thermoelectricity conductivity to the synthesized thin film. The overall Seebeck coefficient of the synthesized thin film changed from negative sign to positive sign, which was due to the change of the primary phase of the tellurium-based materials at different annealing conditions. Similarly, the thermoelectric properties of the films were also associated with the grown phase. High-quality thin film with the Seebeck coefficient of 240 μV K{sup −1} and the power factor of 2.67 × 10{sup −3} Wm{sup −1} K{sup −2} showed a single Bi{sub 0.5}Sb{sub 1.5}Te{sub 3} phase when the Sb/Te thin film sputtering time was 40 min. - Highlights: • Bi{sub 0.5}Sb{sub 1.5}Te{sub 3} thermoelectric thin films synthesized via bilayer annealing • The film has single Bi{sub 0.5}Sb{sub 1.5}Te{sub 3} phase with best thermoelectric performance. • The film has high thermoelectric properties comparable with other best results.

  1. A MODIFIED VAN DER PAUW SETUP FOR MEASURING THE RESISTIVITY AND THERMOPOWER OF THERMOELECTRIC MATERIALS OF VARYING THICKNESSES

    KAUST Repository

    HITCHCOCK, DALE

    2013-10-01

    In the investigation of thermoelectric (TE) materials as a practical, and efficient, means of power generation/ refrigeration nearly ninety percent of the possible high-efficient binary compounds have been evaluated. But only a few proved to be useful such as Bi2Te3 alloys, PbTe and SiGe to name the most important materials. Therefore, in order to expand the research of high-efficiency TE materials new compounds and methods of efficiency optimization must be explored. There currently exist a vast number of uninvestigated ternary and quaternary materials that could be potential high-efficiency thermoelectric materials. The device and methodology discussed herein deal with rapidly measuring both the electrical resistivity and the Seebeck coefficient of thermoelectric materials, at a set temperature of T ≈ 300 K. Using nontraditional resistivity measurements and rapid, room-temperature thermopower measurements, a reliable and time-efficient means of gauging the power factor (defined below) values of newly synthesized thermoelectric materials is achievable. Furthermore, the efficacy of the van der Pauw technique for measuring the resistivity of thermoelectric materials has been verified. © World Scientific Publishing Company.

  2. A MODIFIED VAN DER PAUW SETUP FOR MEASURING THE RESISTIVITY AND THERMOPOWER OF THERMOELECTRIC MATERIALS OF VARYING THICKNESSES

    KAUST Repository

    HITCHCOCK, DALE; WALDROP, SPENCER; WILLIAMS, JARED; TRITT, TERRY M.

    2013-01-01

    In the investigation of thermoelectric (TE) materials as a practical, and efficient, means of power generation/ refrigeration nearly ninety percent of the possible high-efficient binary compounds have been evaluated. But only a few proved to be useful such as Bi2Te3 alloys, PbTe and SiGe to name the most important materials. Therefore, in order to expand the research of high-efficiency TE materials new compounds and methods of efficiency optimization must be explored. There currently exist a vast number of uninvestigated ternary and quaternary materials that could be potential high-efficiency thermoelectric materials. The device and methodology discussed herein deal with rapidly measuring both the electrical resistivity and the Seebeck coefficient of thermoelectric materials, at a set temperature of T ≈ 300 K. Using nontraditional resistivity measurements and rapid, room-temperature thermopower measurements, a reliable and time-efficient means of gauging the power factor (defined below) values of newly synthesized thermoelectric materials is achievable. Furthermore, the efficacy of the van der Pauw technique for measuring the resistivity of thermoelectric materials has been verified. © World Scientific Publishing Company.

  3. Revealing the optoelectronic and thermoelectric properties of the Zintl quaternary arsenides ACdGeAs{sub 2} (A = K, Rb)

    Energy Technology Data Exchange (ETDEWEB)

    Azam, Sikander; Khan, Saleem Ayaz [New Technologies—Research Center, University of West Bohemia, Univerzitni 8, 306 14 Pilsen (Czech Republic); Goumri-Said, Souraya, E-mail: Souraya.Goumri-Said@chemistry.gatech.edu [School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics, Georgia Institute of Technology, Atlanta, GA 30332-0400 (United States)

    2015-10-15

    Highlights: • Zintl tetragonal phase ACdGeAs{sub 2} (A = K, Rb) are chalcopyrite and semiconductors. • Their direct band gap is suitable for PV, optolectronic and thermoelectric applications. • Combination of DFT and Boltzmann transport theory is employed. • The present arsenides are found to be covalent materials. - Abstract: Chalcopyrite semiconductors have attracted much attention due to their potential implications in photovoltaic and thermoelectric applications. First principle calculations were performed to investigate the electronic, optical and thermoelectric properties of the Zintl tetragonal phase ACdGeAs{sub 2} (A = K, Rb) using the full potential linear augmented plane wave method and the Engle–Vosko GGA (EV–GGA) approximation. The present compounds are found semiconductors with direct band gap and covalent bonding character. The optical transitions are investigated via the dielectric function (real and imaginary parts) along with other related optical constants including refractive index, reflectivity and energy-loss spectrum. Combining results from DFT and Boltzmann transport theory, we reported the thermoelectric properties such as the Seebeck’s coefficient, electrical and thermal conductivity, figure of merit and power factor as function of temperatures. The present chalcopyrite Zintl quaternary arsenides deserve to be explored for their potential applications as thermoelectric materials and for photovoltaic devices.

  4. High Performance High Temperature Thermoelectric Composites with Metallic Inclusions

    Science.gov (United States)

    Ma, James M. (Inventor); Bux, Sabah K. (Inventor); Fleurial, Jean-Pierre (Inventor); Ravi, Vilupanur A. (Inventor); Firdosy, Samad A. (Inventor); Star, Kurt (Inventor); Kaner, Richard B. (Inventor)

    2017-01-01

    The present invention provides a composite thermoelectric material. The composite thermoelectric material can include a semiconductor material comprising a rare earth metal. The atomic percent of the rare earth metal in the semiconductor material can be at least about 20%. The composite thermoelectric material can further include a metal forming metallic inclusions distributed throughout the semiconductor material. The present invention also provides a method of forming this composite thermoelectric material.

  5. Investigation of thermoelectricity in KScSn half-Heusler compound

    Science.gov (United States)

    Shrivastava, Deepika; Acharya, Nikita; Sanyal, Sankar P.

    2018-05-01

    The electronic and transport properties of KScSn half-Heusler (HH) compound have been investigated using first-principles density functional theory and semi classical Boltzmann transport theory. The electronic band structure and density of states (total and partial) show semiconducting nature of KScSn with band gap 0.48 eV which agree well with previously reported results. The transport coefficient such as electrical conductivity, Seebeck coefficient, electronic thermal conductivity and power factor as a function of chemical potential are evaluated. KScSn has high power factor for p-type doping and is a potential candidate for thermoelectric applications.

  6. Thermoelectric potential in UO2 and (U,Pu)O2 and its influence on oxygen migration in presence of a temperature gradient

    International Nuclear Information System (INIS)

    D'Annucci, F.

    1979-09-01

    Measurement of the thermoelectric power have been carried out in sintered pellets of uranium-oxide and uranium-plutonium mixed oxides up to 1800 K. For the thermal treatment an inducting furnace is used. The temperatures and the thermoelectric potential are measured with two thermocouples wich are contained in two holes in the lower end of the pellet. During the experiments a temperature difference of 80 K is maintained between the two measuring points. The Seebeck coefficients are calculated from the EMF measurements as a function of temperature and of the O/M ratio. The results show that these oxides have the typical electric properties of a classic semiconductor. The conductivity is of p-type up to a defined temperature wich is a function of the stoichiometry. The Seebeck coefficients are characterized by a defined energy of activation wich is independent from the stochiometry in the regions of hypo- and hyperstochiometric oxides. The thermoelectric forces and the lattice forces drive ions along the temperature gradients. Both forces can be described by the heat of transport of oxygen ions wich contains a thermoelectric and a thermal part. The thermoelectric part of the heat of transport is calculated with the values of the Seebeck coefficients and the contribution to the total heat of transport is discussed. (orig.) [de

  7. Local orbitals approach to the anomalous Hall and Nernst effects in itinerant ferromagnets

    Directory of Open Access Journals (Sweden)

    Středa Pavel

    2014-07-01

    Full Text Available Linear response of the orbital momentum to the gradient of the chemical potential is used to obtain anomalous Hall conductivity. Transition from the ideal Bloch system for which the conductivity is determined by the Berry phase curvatures to the case of strong disorder for which the conductivity becomes dependent on the relaxation time is analysed. Presented tight-binding model reproduces experimentally observed qualitative features of the anomalous Hall conductivity and the transverse Peltier coefficient in the so called bad-metal and scattering-independent regimes.

  8. Anomalous Hall effect in a diluted p-InAs〈Mn〉 magnetic semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Arslanov, R. K., E-mail: arslanovr@gmail.com; Arslanov, T. R.; Daunov, M. I. [Russian Academy of Sciences, Institute of Physics, Dagestan Scientific Center (Russian Federation)

    2017-03-15

    The dependences of the electrical resistivity and the Hall coefficient of single-crystal p-InAs〈Mn〉 bulk samples with an acceptor concentration of about 10{sup 18} cm{sup –3} on uniform pressure P = 4–6 GPa at T = 300 K in the region of impurity conduction are quantitatively analyzed. The anomalous Hall effect is shown to occur in p-InAs〈Mn〉. Its contribution is negative and correlates with the deionization of acceptors and an increase in the magnetic susceptibility.

  9. The quantum Hall effect helicity

    Energy Technology Data Exchange (ETDEWEB)

    Shrivastava, Keshav N., E-mail: keshav1001@yahoo.com [Department of Physics, University of Malaya, Kuala Lumpur 50603 (Malaysia); School of Physics, University of Hyderabad, Hyderabad 500046 (India)

    2015-04-16

    The quantum Hall effect in semiconductor heterostructures is explained by two signs in the angular momentum j=l±s and g=(2j+1)/(2l+1) along with the Landau factor (n+1/2). These modifications in the existing theories explain all of the fractional charges. The helicity which is the sign of the product of the linear momentum with the spin p.s plays an important role for the understanding of the data at high magnetic fields. In particular it is found that particles with positive sign in the spin move in one direction and those with negative sign move in another direction which explains the up and down stream motion of the particles.

  10. Stuart Hall: An Organic Intellectual

    Directory of Open Access Journals (Sweden)

    Johanna Fernández Castro

    2017-01-01

    Full Text Available Stuart Hall (3 February 1932 – 10 February 2014 is acknowledged as one of the founding figures of British Cultural Studies. His extensive academic work on topics such as race, ethnicity and identity reflects his own position as a diasporic intellectual. His contribution to the study of popular culture is determined by the importance of his political character in every social act, his non-deterministic view of Marxism, and is especially determined by his insistence on playing an active role beyond academia in order to contribute to the transformation of hegemonic structures. The following biography aims to give a focused view of his personal history and its direct influence on his key theoretical reflections.

  11. Atomistic mechanisms governing structural stability change of zinc antimony thermoelectrics

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaolong [Frontier Institute of Science and Technology, Xi' an Jiaotong University, Xi' an 710054 (China); Lin, Jianping, E-mail: jaredlin@163.com [School of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024 (China); Qiao, Guanjun [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Wang, Zhao, E-mail: zwangzhao@gmail.com [Frontier Institute of Science and Technology, Xi' an Jiaotong University, Xi' an 710054 (China); State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China)

    2015-01-05

    The structural stability of thermoelectric materials is a subject of growing importance for their energy harvesting applications. Here, we study the microscopic mechanisms governing the structural stability change of zinc antimony at its working temperature, using molecular dynamics combined with experimental measurements of the electrical and thermal conductivity. Our results show that the temperature-dependence of the thermal and electrical transport coefficients is strongly correlated with a structural transition. This is found to be associated with a relaxation process, in which a group of Zn atoms migrates between interstitial sites. This atom migration gradually leads to a stabilizing structural transition of the entire crystal framework, and then results in a more stable crystal structure of β–Zn{sub 4}Sb{sub 3} at high temperature.

  12. Hall effect measurements on proton-irradiated ROSE samples

    International Nuclear Information System (INIS)

    Biggeri, U.; Bruzzi, M.; Borchi, E.

    1997-01-01

    Bulk samples obtained from two wafers of a silicon monocrystal material produced by Float-Zone refinement have been analyzed using the four-point probe method. One of the wafers comes from an oxygenated ingot; two sets of pure and oxygenated samples have been irradiated with 24 GeV/c protons in the fluence range from 10 13 p/cm 2 to 2x10 14 p/cm 2 . Van der Pauw resistivity and Hall coefficient have been measured before and after irradiation as a function of the temperature. A thermal treatment (30 minutes at 100C) has been performed to accelerate the reverse annealing effect in the irradiated silicon. The irradiated samples show the same exponential dependence of the resistivity and of the Hall coefficient on the temperature from 370K to 100K, corresponding to the presence of radiation-induced deep energy levels around 0.6-0.7eV in the silicon gap. The free carrier concentrations (n, p) have been evaluated in the investigated fluence range. The inversion of the conductivity type from n to p occurred respectively at 7x10 13 p/cm 2 and at 4x10 13 p/cm 2 before and after the annealing treatment, for both the two sets. Only slight differences have been detected between the pure and oxygenated samples

  13. The fractional quantum Hall effect

    International Nuclear Information System (INIS)

    Stormer, H.L.

    1988-01-01

    The fractional quantum Hall effect (FQHE), is the manifestation of a new, highly correlated, many-particle ground state that forms in a two-dimensional electron system at low temperatures and in high magnetic fields. It is an example of the new physics that has grown out of the tremendous recent advances in semiconductor material science, which has provided us with high-quality, lower-dimensional carrier systems. The novel electronic state exposes itself in transport experiments through quantization of the Hall resistance to an exact rational fraction of h/e, and concomitantly vanishing longitudinal resistivity. Its relevant energy scale is only a few degrees kelvin. The quantization is a consequence of the spontaneous formation of an energy gap separating the condensed ground state from its rather elusive quasiparticle excitations. The theoretical understanding of the novel quantum liquids which underlie the FQHE has predominantly emerged from an ingenious many-particle wave function strongly supported by numerous few-particle simulations. Theory has now constructed a complex model for ideal two-dimensional electron systems in the presence of high magnetic fields and makes definitive, often fascinating predictions. Experiments have successively uncovered odd-denominator fractional states reaching presently to 7/13. The application of new experimental tools to the FQHE, such as optics, microwaves, and phonon techniques promises the direct observation of such parameters as the gap energy and possibly even some of the more elusive quantities in the future. While theory and experiment in the FQHE appear to be converging, there remains considerable room for challenging surprises. This paper provides a concise overview of the FQHE. It focuses on the experimental aspects and states, but does not expand on the theoretical advances. 70 refs., 11 figs

  14. Transport and first-principles study of novel thermoelectric materials

    Science.gov (United States)

    Chi, Hang

    Thermoelectric materials can recover waste industrial heat and convert it to electricity as well as provide efficient local cooling of electronic devices. The efficiency of such environmentally responsible and exceptionally reliable solid state energy conversion is determined by the dimensionless figure-of-merit ZT = alpha2 sigmaT/kappa, where alpha is the Seebeck coefficient, sigma is the electrical conductivity, kappa is the thermal conductivity, and T is the absolute temperature. The goal of the thesis is to (i) illustrate the physics to achieve high ZT of advanced thermoelectric materials and (ii) explore fundamental structure and transport properties in novel condensed matter systems, via an approach combining comprehensive experimental techniques and state-of-the-art first-principles simulation methods. Thermo-galvanomagnetic transport coefficients are derived from Onsager's reciprocal relations and evaluated via solving Boltzmann transport equation using Fermi-Dirac statistics, under the relaxation time approximation. Such understanding provides insights on enhancing ZT through two physically intuitive and very effective routes: (i) improving power factor PF = alpha2sigma; and (ii) reducing thermal conductivity kappa, as demonstrated in the cases of Mg2Si1-xSnx solid solution and Ge/Te double substituted skutterudites CoSb3(1-x)Ge1.5x Te1.5x, respectively. Motivated by recent theoretical predictions of enhanced thermoelectric performance in highly mismatched alloys, ZnTe:N molecular beam epitaxy (MBE) films deposited on GaAs (100) substrates are carefully examined, which leads to a surprising discovery of significant phonon-drag thermopower (reaching 1-2 mV/K-1) at ~13 K. Further systematic study in Bi2Te3 MBE thin films grown on sapphire (0001) and/or BaF2 (111) substrates, reveal that the peak of phonon drag can be tuned by the choice of substrates with different Debye temperatures. Moreover, the detailed transport and structure studies of Bi2-xTl xTe3

  15. Coupled Thermoelectric Devices: Theory and Experiment

    Directory of Open Access Journals (Sweden)

    Jaziel A. Rojas

    2016-07-01

    Full Text Available In this paper, we address theoretically and experimentally the optimization problem of the heat transfer occurring in two coupled thermoelectric devices. A simple experimental set up is used. The optimization parameters are the applied electric currents. When one thermoelectric is analysed, the temperature difference Δ T between the thermoelectric boundaries shows a parabolic profile with respect to the applied electric current. This behaviour agrees qualitatively with the corresponding experimental measurement. The global entropy generation shows a monotonous increase with the electric current. In the case of two coupled thermoelectric devices, elliptic isocontours for Δ T are obtained in applying an electric current through each of the thermoelectrics. The isocontours also fit well with measurements. Optimal figure of merit is found for a specific set of values of the applied electric currents. The entropy generation-thermal figure of merit relationship is studied. It is shown that, given a value of the thermal figure of merit, the device can be operated in a state of minimum entropy production.

  16. Improvement In The COP Of Thermoelectric Cooler

    Directory of Open Access Journals (Sweden)

    Jatin Patel

    2015-08-01

    Full Text Available This paper described the study for heat transfer through thermoelectric cooler TEC by use of multistage thermoelectric module. To satisfy the heat dissipation of modern electronic element thermal designers have to increase fin area and fan speed to improve its cooling capacity. However the increase of fin area is restricted by the space. Besides the increase of fan speed would induce noise which damages human health. So air cooling by fan is hardly to meet the requirement of modern electronic component. Recently thermoelectric cooler TEC is applied to electronic cooling with the advantages of small size quietness and reliability. A typical thermoelectric cooler consists of p-type and n-type semiconductor pellets connected electrically in series and sandwiched between two ceramic substrates. Whenever direct current passes through the circuit it causes temperature differential between TEC sides. As a result one face of TEC which is called cold side will be cooled while its opposite face which is called hot side is simultaneously heated. The main problem over the use of TEC is the limited COP and its thermal performance. But these can be eliminated by use of multistage thermoelectric cooler.

  17. Hall effect measurements of high-quality M n3CuN thin films and the electronic structure

    Science.gov (United States)

    Matsumoto, Toshiki; Hatano, Takafumi; Urata, Takahiro; Iida, Kazumasa; Takenaka, Koshi; Ikuta, Hiroshi

    2017-11-01

    The physical properties of M n3CuN were studied using thin films. We found that an annealing process was very effective to improve the film quality, the key of which was the use of Ti that prevented the formation of oxide impurities. Using these high-quality thin films, we found strong strain dependence for the ferromagnetic transition temperature (TC) and a sign change of the Hall coefficient at TC. The analysis of Hall coefficient data revealed a sizable decrease of hole concentration and a large increase of electron mobility below TC, which is discussed in relation to the electronic structure of this material.

  18. Solar-TEP - Development of materials for thermo-electric power generators; SOLAR-TEP - Materialentwicklung fuer solarthermoelektrische Stromerzeuger - Schlussbericht 2008

    Energy Technology Data Exchange (ETDEWEB)

    Robert, R.; Weidenkaff, A.

    2008-06-15

    This final report for the Swiss Federal Office of Energy (SFOE) reports on the development of materials for thermo-electric power generators. Cobaltate phases are discussed as being suitable materials for thermoelectric applications at high temperatures. These potential thermoelectric materials are characterised with respect to their crystal structure, microstructure, composition, and thermal stability. The Seebeck coefficient, thermal conductivity and electrical resistivity of polycrystalline cobaltates with perovskite-type and layered-cobaltite structure are evaluated for a wide temperature range. The large Seebeck coefficient exhibited by both perovskite-type and layered cobaltite phases is analysed using the Heikes formula. The work is illustrated with results obtained for various materials in graphical form.

  19. The quantum Hall effects: Philosophical approach

    Science.gov (United States)

    Lederer, P.

    2015-05-01

    The Quantum Hall Effects offer a rich variety of theoretical and experimental advances. They provide interesting insights on such topics as gauge invariance, strong interactions in Condensed Matter physics, emergence of new paradigms. This paper focuses on some related philosophical questions. Various brands of positivism or agnosticism are confronted with the physics of the Quantum Hall Effects. Hacking's views on Scientific Realism, Chalmers' on Non-Figurative Realism are discussed. It is argued that the difficulties with those versions of realism may be resolved within a dialectical materialist approach. The latter is argued to provide a rational approach to the phenomena, theory and ontology of the Quantum Hall Effects.

  20. Quantized Hall conductance as a topological invariant

    International Nuclear Information System (INIS)

    Niu, Q.; Thouless, Ds.J.; Wu, Y.S.

    1984-10-01

    Whenever the Fermi level lies in a gap (or mobility gap) the bulk Hall conductance can be expressed in a topologically invariant form showing the quantization explicitly. The new formulation generalizes the earlier result by TKNN to the situation where many body interaction and substrate disorder are also present. When applying to the fractional quantized Hall effect we draw the conclusion that there must be a symmetry breaking in the many body ground state. The possibility of writing the fractionally quantized Hall conductance as a topological invariant is also carefully discussed. 19 references

  1. Piezo Voltage Controlled Planar Hall Effect Devices.

    Science.gov (United States)

    Zhang, Bao; Meng, Kang-Kang; Yang, Mei-Yin; Edmonds, K W; Zhang, Hao; Cai, Kai-Ming; Sheng, Yu; Zhang, Nan; Ji, Yang; Zhao, Jian-Hua; Zheng, Hou-Zhi; Wang, Kai-You

    2016-06-22

    The electrical control of the magnetization switching in ferromagnets is highly desired for future spintronic applications. Here we report on hybrid piezoelectric (PZT)/ferromagnetic (Co2FeAl) devices in which the planar Hall voltage in the ferromagnetic layer is tuned solely by piezo voltages. The change of planar Hall voltage is associated with magnetization switching through 90° in the plane under piezo voltages. Room temperature magnetic NOT and NOR gates are demonstrated based on the piezo voltage controlled Co2FeAl planar Hall effect devices without the external magnetic field. Our demonstration may lead to the realization of both information storage and processing using ferromagnetic materials.

  2. Influence of Oxygen Partial Pressure during Processing on the Thermoelectric Properties of Aerosol-Deposited CuFeO₂.

    Science.gov (United States)

    Stöcker, Thomas; Exner, Jörg; Schubert, Michael; Streibl, Maximilian; Moos, Ralf

    2016-03-24

    In the field of thermoelectric energy conversion, oxide materials show promising potential due to their good stability in oxidizing environments. Hence, the influence of oxygen partial pressure during synthesis on the thermoelectric properties of Cu-Delafossites at high temperatures was investigated in this study. For these purposes, CuFeO₂ powders were synthetized using a conventional mixed-oxide technique. X-ray diffraction (XRD) studies were conducted to determine the crystal structures of the delafossites associated with the oxygen content during the synthesis. Out of these powders, films with a thickness of about 25 µm were prepared by the relatively new aerosol-deposition (AD) coating technique. It is based on a room temperature impact consolidation process (RTIC) to deposit dense solid films of ceramic materials on various substrates without using a high-temperature step during the coating process. On these dense CuFeO₂ films deposited on alumina substrates with electrode structures, the Seebeck coefficient and the electrical conductivity were measured as a function of temperature and oxygen partial pressure. We compared the thermoelectric properties of both standard processed and aerosol deposited CuFeO₂ up to 900 °C and investigated the influence of oxygen partial pressure on the electrical conductivity, on the Seebeck coefficient and on the high temperature stability of CuFeO₂. These studies may not only help to improve the thermoelectric material in the high-temperature case, but may also serve as an initial basis to establish a defect chemical model.

  3. High temperature thermoelectric properties of strontium titanate thin films with oxygen vacancy and niobium doping

    KAUST Repository

    Sarath Kumar, S. R.

    2013-08-14

    We report the evolution of high temperature thermoelectric properties of SrTiO3 thin films doped with Nb and oxygen vacancies. Structure-property relations in this important thermoelectric oxide are elucidated and the variation of transport properties with dopant concentrations is discussed. Oxygen vacancies are incorporated during growth or annealing in Ar/H2 above 800 K. An increase in lattice constant due to the inclusion of Nb and oxygen vacancies is found to result in an increase in carrier density and electrical conductivity with simultaneous decrease in carrier effective mass and Seebeck coefficient. The lattice thermal conductivity at 300 K is found to be 2.22 W m-1 K-1, and the estimated figure of merit is 0.29 at 1000 K. © 2013 American Chemical Society.

  4. Thermoelectric Properties in the TiO2/SnO2 System

    Science.gov (United States)

    Dynys, F.; Sayir, A.; Sehirlioglu, A.; Berger, M.

    2009-01-01

    Nanotechnology has provided a new interest in thermoelectric technology. A thermodynamically driven process is one approach in achieving nanostructures in bulk materials. TiO2/SnO2 system exhibits a large spinodal region with exceptional stable phase separated microstructures up to 1400 C. Fabricated TiO2/SnO2 nanocomposites exhibit n-type behavior with Seebeck coefficients greater than -300 .V/K. Composites exhibit good thermal conductance in the range of 7 to 1 W/mK. Dopant additions have not achieved high electrical conductivity (<1000 S/m). Formation of oxygen deficient composites, TixSn1-xO2-y, can change the electrical conductivity by four orders of magnitude. Achieving higher thermoelectric ZT by oxygen deficiency is being explored. Seebeck coeffcient, thermal conductivity, electrical conductance and microstructure will be discussed in relation to composition and doping.

  5. P-type Al-doped Cr-deficient CrN thin films for thermoelectrics

    Science.gov (United States)

    le Febvrier, Arnaud; Van Nong, Ngo; Abadias, Gregory; Eklund, Per

    2018-05-01

    Thermoelectric properties of chromium nitride (CrN)-based films grown on c-plane sapphire by dc reactive magnetron sputtering were investigated. In this work, aluminum doping was introduced in CrN (degenerate n-type semiconductor) by co-deposition. Under the present deposition conditions, over-stoichiometry in nitrogen (CrN1+δ) rock-salt structure is obtained. A p-type conduction is observed with nitrogen-rich CrN combined with aluminum doping. The Cr0.96Al0.04N1.17 film exhibited a high Seebeck coefficient and a sufficient power factor at 300 °C. These results are a starting point for designing p-type/n-type thermoelectric materials based on chromium nitride films, which are cheap and routinely grown on the industrial scale.

  6. Thermoelectric Properties of the Chemically Doped Ca3Co4O9 System: A Structural Perspective

    Science.gov (United States)

    Wu, Tao; Tyson, Trevor; Wang, Hsin; Li, Qiang

    2010-03-01

    Cu doped and Y doped [Ca2CoO3][CoO2]1.61 (referred to as Ca3Co4O9) were prepared by solid state reaction. Temperature dependent thermoelectric properties, resistivity (ρ), Seeback coefficient (S) and thermal conductivity (κ), were measured. As seen before, it is found that doping by Cu and Y significantly enhances the thermoelectric properties. In order to understand the origin of these changes in properties in terms of the atomic structure, synchrotron x-ray diffraction and x-ray absorption spectroscopy were applied to probe the change in the average structure and the location of the dopants. The details of the location and coordination of Co and Y in the host lattice and the effect on the figure of merit are discussed. This work is supported by DOE Grant DE-FG02-07ER46402.

  7. High temperature thermoelectric properties of strontium titanate thin films with oxygen vacancy and niobium doping

    KAUST Repository

    Sarath Kumar, S. R.; Barasheed, Abeer Z.; Alshareef, Husam N.

    2013-01-01

    We report the evolution of high temperature thermoelectric properties of SrTiO3 thin films doped with Nb and oxygen vacancies. Structure-property relations in this important thermoelectric oxide are elucidated and the variation of transport properties with dopant concentrations is discussed. Oxygen vacancies are incorporated during growth or annealing in Ar/H2 above 800 K. An increase in lattice constant due to the inclusion of Nb and oxygen vacancies is found to result in an increase in carrier density and electrical conductivity with simultaneous decrease in carrier effective mass and Seebeck coefficient. The lattice thermal conductivity at 300 K is found to be 2.22 W m-1 K-1, and the estimated figure of merit is 0.29 at 1000 K. © 2013 American Chemical Society.

  8. Feasibility and parametric evaluation of hybrid concentrated photovoltaic-thermoelectric system

    DEFF Research Database (Denmark)

    Rezaniakolaei, Alireza; Rosendahl, Lasse Aistrup

    2017-01-01

    Concentrated photovoltaic (CPV) system integrated with thermoelectric generators (TEGs) is a novel technology that has potential to offer high efficient system. In this study, a thermally coupled model of concentrated photovoltaic-thermoelctric (CPV/TEG) system is established to investigate...... than CPV-only system. The results indicate that contribution of the TEG in power generation enhances at high sun concentrations. Depending to critical design parameters of the CPV and the TEG, there are optimal values for heat transfer coefficient in the heat sink that offer minimum energy cost....... feasibility of the hybrid system over wide range of solar concentrations and different types of heat sinks. The model takes into account critical design parameters in the CPV and the TEG module. The results of this study show that for thermoelectric materials with ZT ≈ 1, the CPV/TEG system is more efficient...

  9. Thermoelectric properties of the misfit cobaltate Ca3Co4O9

    KAUST Repository

    Amin, Bin

    2017-06-09

    The layered misfit cobaltate CaCoO, also known as CaCoO[CoO], is a promising p-type thermoelectric oxide. Employing density functional theory, we study its electronic structure and determine, on the basis of Boltzmann theory within the constant-relaxation-time approximation, the thermoelectric transport coefficients. The dependence on strain and temperature is determined. In particular, we find that the XX-component of the thermopower is strongly enhanced, while the yy-component is strongly reduced, when applying 2% tensile strain. A similar anisotropy is also found in the power factor. The temperature dependence of the conductivity in the a-b plane is found to be rather weak above 200 K, which clearly indicates that the experimentally observed transport properties are dominated by inhomogeneities arising during sample growth, i.e., they are not intrinsic.

  10. Low-temperature thermoelectric power factor enhancement by controlling nanoparticle size distribution.

    Science.gov (United States)

    Zebarjadi, Mona; Esfarjani, Keivan; Bian, Zhixi; Shakouri, Ali

    2011-01-12

    Coherent potential approximation is used to study the effect of adding doped spherical nanoparticles inside a host matrix on the thermoelectric properties. This takes into account electron multiple scatterings that are important in samples with relatively high volume fraction of nanoparticles (>1%). We show that with large fraction of uniform small size nanoparticles (∼1 nm), the power factor can be enhanced significantly. The improvement could be large (up to 450% for GaAs) especially at low temperatures when the mobility is limited by impurity or nanoparticle scattering. The advantage of doping via embedded nanoparticles compared to the conventional shallow impurities is quantified. At the optimum thermoelectric power factor, the electrical conductivity of the nanoparticle-doped material is larger than that of impurity-doped one at the studied temperature range (50-500 K) whereas the Seebeck coefficient of the nanoparticle doped material is enhanced only at low temperatures (∼50 K).

  11. Flexible screen printed thick film thermoelectric generator with reduced material resistivity

    International Nuclear Information System (INIS)

    Cao, Z; Koukharenko, E; Torah, R N; Tudor, J; Beeby, S P

    2014-01-01

    This work presents a flexible thick-film Bismuth Tellurium/Antimony Tellurium (BiTe/SbTe) thermoelectric generator (TEG) with reduced material resistivity fabricated by screen printing technology. Cold isostatic pressing (CIP) was introduced to lower the resistivity of the printed thermoelectric materials. The Seebeck coefficient (α) and the resistivity (ρ) of printed materials were measured as a function of applied pressure. A prototype TEG with 8 thermocouples was fabricated on flexible polyimide substrate. The dimension of a single printed element was 20 mm × 2 mm × 78.4 pm. The coiled-up prototype produced a voltage of 36.4 mV and a maximum power of 40.3 nW from a temperature gradient of 20 °C

  12. Thermoelectric properties of the misfit cobaltate Ca3Co4O9

    KAUST Repository

    Amin, Bin; Eckern, Ulrich; Schwingenschlö gl, Udo

    2017-01-01

    The layered misfit cobaltate CaCoO, also known as CaCoO[CoO], is a promising p-type thermoelectric oxide. Employing density functional theory, we study its electronic structure and determine, on the basis of Boltzmann theory within the constant-relaxation-time approximation, the thermoelectric transport coefficients. The dependence on strain and temperature is determined. In particular, we find that the XX-component of the thermopower is strongly enhanced, while the yy-component is strongly reduced, when applying 2% tensile strain. A similar anisotropy is also found in the power factor. The temperature dependence of the conductivity in the a-b plane is found to be rather weak above 200 K, which clearly indicates that the experimentally observed transport properties are dominated by inhomogeneities arising during sample growth, i.e., they are not intrinsic.

  13. Thermoelectric System in Different Thermal and Electrical Configurations: Its Impact in the Figure of Merit

    Directory of Open Access Journals (Sweden)

    Alexander Vargas-Almeida

    2013-05-01

    Full Text Available In this work, we analyze different configurations of a thermoelectric system (TES composed of three thermoelectric generators (TEGs. We present the following considerations: (a TES thermally and electrically connected in series (SC; (b TES thermally and electrically connected in parallel (PSC; and (c parallel thermally and series electrical connection (SSC. We assume that the parameters of the TEGs are temperature-independent. The systems are characterized by three parameters, as it has been showed in recent investigations, namely, its internal electrical resistance, R, thermal conductance under open electrical circuit condition, K, and Seebeck coefficient α. We derive the equivalent parameters for each of the configurations considered here and calculate the Figure of Merit Z for the equivalent system. We show the impact of the configuration of the system on Z, and we suggest optimum configuration. In order to justify the effectiveness of the equivalent Figure of Merit, the corresponding efficiency has been calculated for each configuration.

  14. Modeling the transport properties of epitaxially grown thermoelectric oxide thin films using spectroscopic ellipsometry

    KAUST Repository

    Sarath Kumar, S. R.

    2012-02-01

    The influence of oxygen vacancies on the transport properties of epitaxial thermoelectric (Sr,La)TiO3 thin films is determined using electrical and spectroscopic ellipsometry (SE) measurements. Oxygen vacancy concentration was varied by ex-situ annealing in Ar and Ar/H2. All films exhibited degenerate semiconducting behavior, and electrical conductivity decreased (258–133 S cm−1) with increasing oxygen content. Similar decrease in the Seebeck coefficient is observed and attributed to a decrease in effective mass (7.8–3.2 me ), as determined by SE. Excellent agreement between transport properties deduced from SE and direct electrical measurements suggests that SE is an effective tool for studying oxide thin film thermoelectrics.

  15. Modeling and Simulations on the Intramural Thermoelectric Generator of Lower-Re-fluid

    Science.gov (United States)

    Zhang, Zheng; Zheng, Ding; Chen, Yushan

    The thermoelectric conversion with lower Renault number (Re) fluid, such as waste heat from industry boiler, and engine's circled cooling water, which can be designed as intramural generator structure. In this research, a thermoelectric project analysis model and the description of an intensified system are presented, its generator with the aligned or staggered platoon structure has strengthened heat-transfer property, and the heat convection coefficient ratio has increased times than plain tube; For the fluid kinetic energy's loss is influenced by the whirlpool, the pressure difference is several hundred Pa level which changes along with geometric parameters of transform components; what's more, heat transfer area increase distinctly under the same generator volume, which has built the foundation for the enhancement output electric power.

  16. Doping site dependent thermoelectric properties of epitaxial strontium titanate thin films

    KAUST Repository

    Abutaha, Anas I.; Sarath Kumar, S. R.; Mehdizadeh Dehkordi, Arash; Tritt, Terry M.; Alshareef, Husam N.

    2014-01-01

    We demonstrate that the thermoelectric properties of epitaxial strontium titanate (STO) thin films can be improved by additional B-site doping of A-site doped ABO3 type perovskite STO. The additional B-site doping of A-site doped STO results in increased electrical conductivity, but at the expense of Seebeck coefficient. However, doping on both sites of the STO lattice significantly reduces the lattice thermal conductivity of STO by adding more densely and strategically distributed phononic scattering centers that attack wider phonon spectra. The additional B-site doping limits the trade-off relationship between the electrical conductivity and total thermal conductivity of A-site doped STO, leading to an improvement in the room-temperature thermoelectric figure of merit, ZT. The 5% Pr3+ and 20% Nb5+ double-doped STO film exhibits the best ZT of 0.016 at room temperature. This journal is

  17. Crystal orientation dependent thermoelectric properties of highly oriented aluminum-doped zinc oxide thin films

    KAUST Repository

    Abutaha, Anas I.

    2013-02-06

    We demonstrate that the thermoelectric properties of highly oriented Al-doped zinc oxide (AZO) thin films can be improved by controlling their crystal orientation. The crystal orientation of the AZO films was changed by changing the temperature of the laser deposition process on LaAlO3 (100) substrates. The change in surface termination of the LaAlO3 substrate with temperature induces a change in AZO film orientation. The anisotropic nature of electrical conductivity and Seebeck coefficient of the AZO films showed a favored thermoelectric performance in c-axis oriented films. These films gave the highest power factor of 0.26 W m−1 K−1 at 740 K.

  18. Modeling the transport properties of epitaxially grown thermoelectric oxide thin films using spectroscopic ellipsometry

    KAUST Repository

    Sarath Kumar, S. R.; Abutaha, Anas I.; Hedhili, Mohamed N.; Alshareef, Husam N.

    2012-01-01

    The influence of oxygen vacancies on the transport properties of epitaxial thermoelectric (Sr,La)TiO3 thin films is determined using electrical and spectroscopic ellipsometry (SE) measurements. Oxygen vacancy concentration was varied by ex-situ annealing in Ar and Ar/H2. All films exhibited degenerate semiconducting behavior, and electrical conductivity decreased (258–133 S cm−1) with increasing oxygen content. Similar decrease in the Seebeck coefficient is observed and attributed to a decrease in effective mass (7.8–3.2 me ), as determined by SE. Excellent agreement between transport properties deduced from SE and direct electrical measurements suggests that SE is an effective tool for studying oxide thin film thermoelectrics.

  19. Electronic structure and high thermoelectric properties of a new material Ba{sub 3}Cu{sub 20}Te{sub 13}

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Gui, E-mail: kuiziyang@126.com [College of Physics and Electrical Engineering, Anyang Normal University, Anyang, Henan, 455000 (China); Wu, Jinghe [Department of Physics and Electronic Engineering, Henan Institute of Education, Zhengzhou, 450046 (China); Zhang, Jing; Ma, Dongwei [College of Physics and Electrical Engineering, Anyang Normal University, Anyang, Henan, 455000 (China)

    2016-09-05

    The electronic structure and high thermoelectric properties of Ba{sub 3}Cu{sub 20}Te{sub 13} are studied using first principles calculations and the semiclassical Boltzmann theory. The coexistence of ionic and covalent bonding in Ba{sub 3}Cu{sub 20}Te{sub 13} indicates that it is a Zintl phase compound. The calculated band structure shows that the compound is a semiconductor with an indirect band gap ∼0.45 eV, which is an appropriate band for the high thermoelectric performance. The transport calculations based on the electronic structure indicate that it exhibits relatively large Seebeck coefficients, high electrical conductivities, and high power factor. For Ba{sub 3}Cu{sub 20}Te{sub 13}, the n-type doping may achieve a higher thermoelectric performance than that of p-type doping. It is worth noting that the thermoelectric parameters of Ba{sub 3}Cu{sub 20}Te{sub 13} are comparable or larger than that of Ca{sub 5}Al{sub 2}Sb{sub 6}, a typical Zintl compound representative with high thermoelectric performance. - Highlights: • The electronic structure and thermoelectric(TE) properties are firstly studied. • The heavy and light bands near the Fermi level benefit TE properties. • The comparison indicates Ba{sub 3}Cu{sub 20}Te{sub 13} is a potential high TE material.

  20. The infrared Hall effect in YBCO: Temperature and frequency dependence of Hall scattering

    International Nuclear Information System (INIS)

    Grayson, M.; Cerne, J.; Drew, H.D.; Schmadel, D.C.; Hughes, R.; Preston, J.S.; Kung, P.J.; Vale, L.

    1999-01-01

    The authors measure the Hall angle, θ H , in YBCO films in the far- and mid-infrared to determine the temperature and frequency dependence of the Hall scattering. Using novel modulation techniques they measure both the Faraday rotation and ellipticity induced by these films in high magnetic fields to deduce the complex conductivity tensor. They observe a strong temperature dependence of the mid-infrared Hall conductivity in sharp contrast to the weak dependence of the longitudinal conductivity. By fitting the frequency dependent normal state Hall angle to a Lorentzian θ H (ω) = ω H /(γ H minus iω) they find the Hall frequency, ω H , is nearly independent of temperature. The Hall scattering rate, γ H , is consistent with γ H ∼ T 2 up to 200 K and is remarkably independent of IR frequency suggesting non-Fermi liquid behavior

  1. Enhanced thermoelectric properties of metal film on bismuth telluride-based materials

    International Nuclear Information System (INIS)

    Chao, Wen Hsuan; Chen, Yi Ray; Tseng, Shih Chun; Yang, Ping Hsing; Wu, Ren Jye; Hwang, Jenn Yeu

    2014-01-01

    Diffusion barriers have a significant influence on the reliability and life time of thermoelectric modules. Although nickel is commonly used as a diffusion barrier in commercial thermoelectric modules, several studies have verified that Ni migrates to bismuth telluride-based material during high temperature cycles and causes a loss in efficacy. In this paper, the influence of metal layers coated to p-type and n-type Bi 2 Te 3 on the interface characterization and thermoelectric property is studied using a RF magnetron sputtering. The findings from this study demonstrate the structural and thermoelectric properties of p-type and n-type Bi 2 Te 3 coated with different metal layers. The crystalline phase and compositional change of the interface between the Bi 2 Te 3 materials and the metal layers were determined using an X-ray diffractometer and scanning electron microscopy with energy dispersive spectroscopy. Formation of NiTe was observed in the sample of Ni/p-type Bi 2 Te 3 based films post-annealed in an N 2 atmosphere at 200 °C. In contrast, no Co x Te y was formed in the sample of Co/p-type Bi 2 Te 3 based films post-annealed at 200 °C. For as-deposited Ni/p-type and n-type Bi 2 Te 3 based legs, the Ni slightly diffused into the Bi 2 Te 3 based legs. A similar phenomenon also occurred in the as-deposited Co/p-type and n-type Bi 2 Te 3 based legs. The Seebeck coefficients of the Co contacts on the Bi 2 Te 3 based material displayed better behavior than those of the Ni contacts on the Bi 2 Te 3 based legs. Thus Co could be a suitable diffusion barrier for bulk Bi 2 Te 3 based material. The observed effects on the thermoelectric and structural properties of metal/Bi 2 Te 3 based material are crucial for understanding the interface between the diffusion barrier and thermoelectric materials. - Highlights: • Interface characterization of metal coated to p-type and n-type Bi 2 Te 3 is studied. • We examined the phase transformation of metal/Bi 2 Te 3 based films

  2. Tuning the Transport Properties of Layered Materials for Thermoelectric Applications using First-Principles Calculations

    KAUST Repository

    Saeed, Yasir

    2014-05-11

    Thermoelectric materials can convert waste heat into electric power and thus provide a way to reduce the dependence on fossil fuels. Our aim is to model the underlying materials properties and, in particular, the transport as controlled by electrons and lattice vibrations. The goal is to develop an understanding of the thermoelectric properties of selected materials at a fundamental level. The structural, electronic, optical, and phononic properties are studied in order to tune the transport, focusing on KxRhO2, NaxRhO2, PtSb2 and Bi2Se3. The investigations are based on density functional theory as implemented in the all electron linearized augmented plane wave plus local orbitals WIEN2k and pseudo potential Quantum-ESPRESSO codes. The thermoelectric properties are derived from Boltzmann transport theory under the constant relaxation time approximation, using the BoltzTraP code. We will discuss first the changes in the electronic band structure under variation of the cation concentration in layered KxRhO2 in the 2H phase and NaxRhO2 in the 3R phase. We will also study the hydrated phase. The deformations of the RhO6 octahedra turn out to govern the thermoelectric properties, where the high Seebeck coefficient results from ”pudding mold" bands. We investigate the thermoelectric properties of electron and hole doped PtSb2, which is not a layered material but shares “pudding mold" bands. PtSb2 has a high Seebeck coefficient at room temperature, which increases significantly under As alloying by bandgap opening and reduction of the lattice thermal conductivity. Bi2Se3 (bulk and thin film) has a larger bandgap then the well-known thermoelectric material Bi2Te3, which is important at high temperature. The structural stability, electronic structure, and transport properties of one to six quintuple layers of Bi2Se3 will be discussed. We also address the effect of strain on a single quintuple layer by phonon band structures. We will analyze the electronic and transport

  3. A thermoelectric voltage effect in polyethylene oxide

    CERN Document Server

    Martin, B; Kliem, H

    2003-01-01

    The conductivity of polyethylene oxide (PEO) is described with a three-dimensional hopping model considering electrostatic interactions between the ions. Ions fluctuate over energy-barriers in a multi-well potential. To decide whether positive or negative charges are responsible for this conductivity, the thermoelectric voltage is measured. The samples are embedded between two aluminium-electrodes. The oxide on the interface between the electrodes and the PEO serves as a blocking layer. The temperature of each electrode is controlled by a Peltier element. A temperature step is applied to one electrode by changing the temperature of one of the Peltier elements. Due to this temperature gradient, the mobile charges fluctuate thermally activated from the warmer side to the colder side of the sample. The direction of the measured thermoelectric voltage indicates the type of mobile charges. It is found that positive charges are mobile. Further, it is shown that the absolute value of the thermoelectric voltage depen...

  4. Peridynamic Formulation for Coupled Thermoelectric Phenomena

    Directory of Open Access Journals (Sweden)

    Migbar Assefa

    2017-01-01

    Full Text Available Modeling of heat and electrical current flow simultaneously in thermoelectric convertor using classical theories do not consider the influence of defects in the material. This is because traditional methods are developed based on partial differential equations (PDEs and lead to infinite fluxes at the discontinuities. The usual way of solving such PDEs is by using numerical technique, like Finite Element Method (FEM. Although FEM is robust and versatile, it is not suitable to model evolving discontinuities. To avoid such shortcomings, we propose the concept of peridynamic theory to derive the balance of energy and charge equations in the coupled thermoelectric phenomena. Therefore, this paper presents the transport of heat and charge in thermoelectric material in the framework of peridynamic (PD theory. To illustrate the reliability of the PD formulation, numerical examples are presented and results are compared with those from literature, analytical solutions, or finite element solutions.

  5. Measurement and characterization techniques for thermoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Tritt, T M

    1997-07-01

    Characterization of thermoelectric materials can pose many problems. A temperature difference can be established across these materials as an electrical current is passed due to the Peltier effect. The thermopower of these materials is quite large and thus large thermal voltages can contribute to many of the measurements necessary to investigate these materials. This paper will discuss the chracterization techniques necessary to investigate these materials and provide an overview of some of the potential systematic errors which can arise. It will also discuss some of the corrections one needs to consider. This should provide an introduction to the characterization and measurement of thermoelectric materials and provide references for a more in depth discussion of the concepts. It should also serve as an indication of the care that must be taken while working with thermoelectric materials.

  6. Method of operating a thermoelectric generator

    Science.gov (United States)

    Reynolds, Michael G; Cowgill, Joshua D

    2013-11-05

    A method for operating a thermoelectric generator supplying a variable-load component includes commanding the variable-load component to operate at a first output and determining a first load current and a first load voltage to the variable-load component while operating at the commanded first output. The method also includes commanding the variable-load component to operate at a second output and determining a second load current and a second load voltage to the variable-load component while operating at the commanded second output. The method includes calculating a maximum power output of the thermoelectric generator from the determined first load current and voltage and the determined second load current and voltage, and commanding the variable-load component to operate at a third output. The commanded third output is configured to draw the calculated maximum power output from the thermoelectric generator.

  7. Graphite moderated reactor for thermoelectric generation

    International Nuclear Information System (INIS)

    Akazawa, Issei; Yamada, Akira; Mizogami, Yorikata

    1998-01-01

    Fuel rods filled with cladded fuel particles distributed and filled are buried each at a predetermined distance in graphite blocks situated in a reactor core. Perforation channels for helium gas as coolants are formed to the periphery thereof passing through vertically. An alkali metal thermoelectric power generation module is disposed to the upper lid of a reactor container while being supported by a securing receptacle. Helium gas in the coolant channels in the graphite blocks in the reactor core absorbs nuclear reaction heat, to be heated to a high temperature, rises upwardly by the reduction of the specific gravity, and then flows into an upper space above the laminated graphite block layer. Then the gas collides against a ceiling and turns, and flows down in a circular gap around the circumference of the alkali metal thermoelectric generation module. In this case, it transfers heat to the alkali metal thermoelectric generation module. (I.N.)

  8. Knudsen pump driven by a thermoelectric material

    International Nuclear Information System (INIS)

    Pharas, Kunal; McNamara, Shamus

    2010-01-01

    The first use of a thermoelectric material in the bidirectional operation of a gas pump using thermal transpiration has been demonstrated. The thermoelectric material maintains a higher temperature difference which favors thermal transpiration and thus increases the efficiency of gas pumping. Since the hot and cold sides of the thermoelectric material are reversible, the direction of the pump may be changed by reversing the electrical current direction. Two different pump designs are presented that illustrate some of the design tradeoffs. The pumps are characterized by measuring the pressure difference that may be generated and by measuring the flow rate in the forward and reverse directions. For a pump composed of a porous material with a pore size of 100 nm, a maximum flow rate of 0.74 cm 3 min −1 and a maximum pressure of 1.69 kPa are achieved

  9. NANOSTRUCTURING AS A WAY FOR THERMOELECTRIC EFFICIENCY IMPROVEMENT

    Directory of Open Access Journals (Sweden)

    L. V. Bochkov

    2014-07-01

    Full Text Available The urgency of thermoelectric energy conversion is proved. Perspectives of nanostructures usage as thermoelectric materials are shown. The authors have systematized and generalized the methods and investigation results of bulk nanostructure thermoelectrics based on Bi-Sb-Te solid solutions. Ways of nanoparticles fabrication and their subsequent sintering into a bulk sample, results of structure study of the received materials are shown by methods of electronic microscopy and X-ray spectroscopy, results of mechanical properties investigation. Methods of manufacturing suggested with the authors’ participation and properties of thermoelectric nanocomposites, fabricated with addition of fullerene, thermally split graphite, graphene and molybdenum disulphide are discussed. Methods for prevention of recrystallization, measurement methods of thermoelectric properties of studied nanothermoelectrics are considered, including electric and thermal conductivities, thermoemf and the figure of merit. Factors that influence on thermoelectric figure of merit, including the tunneling of carriers through interfaces between nanograins, the additional phonon scattering on nanograin borders and the energy filtration of carriers through barriers have been theoretically investigated. Mechanisms and ways for improvement of the figure of merit are determined. Experimental confirmation for thermoelectric figure of merit increase is received. Physical mechanisms of thermoelectric figure of merit increase are shown by perceptivity of nanostructures utilization. The growth of thermoelectric figure of merit means an expansion of areas for rational application of thermoelectric energy generation and thermoelectric cooling.

  10. Topologically induced fractional Hall steps in the integer quantum Hall regime of MoS 2

    Science.gov (United States)

    Firoz Islam, SK; Benjamin, Colin

    2016-09-01

    The quantum magnetotransport properties of a monolayer of molybdenum disulfide are derived using linear response theory. In particular, the effect of topological terms on longitudinal and Hall conductivity is analyzed. The Hall conductivity exhibits fractional steps in the integer quantum Hall regime. Further complete spin and valley polarization of the longitudinal conductivitity is seen in presence of these topological terms. Finally, the Shubnikov-de Hass oscillations are suppressed or enhanced contingent on the sign of these topological terms.

  11. Can Hall effect trigger Kelvin-Helmholtz instability in sub-Alfvénic flows?

    Science.gov (United States)

    Pandey, B. P.

    2018-05-01

    In the Hall magnetohydrodynamics, the onset condition of the Kelvin-Helmholtz instability is solely determined by the Hall effect and is independent of the nature of shear flows. In addition, the physical mechanism behind the super- and sub-Alfvénic flows becoming unstable is quite different: the high-frequency right circularly polarized whistler becomes unstable in the super-Alfvénic flows whereas low-frequency, left circularly polarized ion-cyclotron wave becomes unstable in the presence of sub-Alfvénic shear flows. The growth rate of the Kelvin-Helmholtz instability in the super-Alfvénic case is higher than the corresponding ideal magnetohydrodynamic rate. In the sub-Alfvénic case, the Hall effect opens up a new, hitherto inaccessible (to the magnetohydrodynamics) channel through which the partially or fully ionized fluid can become Kelvin-Helmholtz unstable. The instability growth rate in this case is smaller than the super-Alfvénic case owing to the smaller free shear energy content of the flow. When the Hall term is somewhat smaller than the advection term in the induction equation, the Hall effect is also responsible for the appearance of a new overstable mode whose growth rate is smaller than the purely growing Kelvin-Helmholtz mode. On the other hand, when the Hall diffusion dominates the advection term, the growth rate of the instability depends only on the Alfvén -Mach number and is independent of the Hall diffusion coefficient. Further, the growth rate in this case linearly increases with the Alfvén frequency with smaller slope for sub-Alfvénic flows.

  12. Spin thermoelectric effects in organic single-molecule devices

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H.L.; Wang, M.X.; Qian, C.; Hong, X.K.; Zhang, D.B.; Liu, Y.S.; Yang, X.F., E-mail: xfyang@cslg.edu.cn

    2017-05-25

    Highlights: • A stronger spin thermoelectric performance in a polyacetylene device is observed. • For the antiferromagnetic (AFM) ordering, a transport gap is opened. Thus the thermoelectric effects are largely enhanced. - Abstract: The spin thermoelectric performance of a polyacetylene chain bridging two zigzag graphene nanoribbons (ZGNRs) is investigated based on first principles method. Two different edge spin arrangements in ZGNRs are considered. For ferromagnetic (FM) ordering, transmission eigenstates with different spin indices distributed below and above Fermi level are observed, leading directly to a strong spin thermoelectric effect in a wide temperature range. With the edge spins arranged in the antiferromagnetic (AFM) ordering, an obvious transport gap appears in the system, which greatly enhances the thermoelectric effects. The presence of a small spin splitting also induces a spin thermoelectric effect greater than the charge thermoelectric effect in certain temperature range. In general, the single-molecule junction exhibits the potential to be used for the design of perfect thermospin devices.

  13. Spin Hall effect by surface roughness

    KAUST Repository

    Zhou, Lingjun; Grigoryan, Vahram L.; Maekawa, Sadamichi; Wang, Xuhui; Xiao, Jiang

    2015-01-01

    induced by surface roughness subscribes only to the side-jump contribution but not the skew scattering. The paradigm proposed in this paper provides the second, not if only, alternative to generate a sizable spin Hall effect.

  14. Mesoscopic effects in the quantum Hall regime

    Indian Academy of Sciences (India)

    . When band mixing between multiple Landau levels is present, mesoscopic effects cause a crossover from a sequence of quantum Hall transitions for weak disorder to classical behavior for strong disorder. This behavior may be of relevance ...

  15. Plasmon Geometric Phase and Plasmon Hall Shift

    Science.gov (United States)

    Shi, Li-kun; Song, Justin C. W.

    2018-04-01

    The collective plasmonic modes of a metal comprise a simple pattern of oscillating charge density that yields enhanced light-matter interaction. Here we unveil that beneath this familiar facade plasmons possess a hidden internal structure that fundamentally alters its dynamics. In particular, we find that metals with nonzero Hall conductivity host plasmons with an intricate current density configuration that sharply departs from that of ordinary zero Hall conductivity metals. This nontrivial internal structure dramatically enriches the dynamics of plasmon propagation, enabling plasmon wave packets to acquire geometric phases as they scatter. At boundaries, these phases accumulate allowing plasmon waves that reflect off to experience a nonreciprocal parallel shift. This plasmon Hall shift, tunable by Hall conductivity as well as plasmon wavelength, displaces the incident and reflected plasmon trajectories and can be readily probed by near-field photonics techniques. Anomalous plasmon geometric phases dramatically enrich the nanophotonics toolbox, and yield radical new means for directing plasmonic beams.

  16. A system for pulse Hall effect measurements

    International Nuclear Information System (INIS)

    Orzechowski, T.; Kupczak, R.

    1975-01-01

    Measuring system for fast Hall-voltage changes in an n-type germanium sample irradiated at liquid nitrogen temperature with a high-energy electron-beam from the Van de Graaff accelerator is described. (author)

  17. Novel optical probe for quantum Hall system

    Indian Academy of Sciences (India)

    to explore Landau levels of a two-dimensional electron gas (2DEG) in modulation doped ... Keywords. Surface photovoltage spectroscopy; quantum Hall effect; Landau levels; edge states. ... An optical fibre carries light from tunable diode laser.

  18. AA under construction in its hall

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    The Antiproton Accumulator was installed in a specially built hall. Here we see it at an "early" stage of installation, just a few magnets on the floor, no vacuum chamber at all, but: 3 months later there was circulating beam !

  19. Elementary theory of quantum Hall effect

    Directory of Open Access Journals (Sweden)

    Keshav N. Shrivastava

    2008-04-01

    Full Text Available The Hall effect is the generation of a current perpendicular to both the direction of the applied electric as well as magnetic field in a metal or in a semiconductor. It is used to determine the concentration of electrons. The quantum Hall effect with integer quantization was discovered by von Klitzing and fractionally charged states were found by Tsui, Stormer and Gossard. Robert Laughlin explained the quantization of Hall current by using “flux quantization” and introduced incompressibility to obtain the fractional charge. We have developed the theory of the quantum Hall effect by using the theory of angular momentum. Our predicted fractions are in accord with those measured. We emphasize our explanation of the observed phenomena. We use spin to explain the fractional charge and hence we discover spin-charge locking.

  20. Thermoelectric Control Of Temperatures Of Pressure Sensors

    Science.gov (United States)

    Burkett, Cecil G., Jr.; West, James W.; Hutchinson, Mark A.; Lawrence, Robert M.; Crum, James R.

    1995-01-01

    Prototype controlled-temperature enclosure containing thermoelectric devices developed to house electronically scanned array of pressure sensors. Enclosure needed because (1) temperatures of transducers in sensors must be maintained at specified set point to ensure proper operation and calibration and (2) sensors sometimes used to measure pressure in hostile environments (wind tunnels in original application) that are hotter or colder than set point. Thus, depending on temperature of pressure-measurement environment, thermoelectric devices in enclosure used to heat or cool transducers to keep them at set point.

  1. Compatibility of Segments of Thermoelectric Generators

    Science.gov (United States)

    Snyder, G. Jeffrey; Ursell, Tristan

    2009-01-01

    A method of calculating (usually for the purpose of maximizing) the power-conversion efficiency of a segmented thermoelectric generator is based on equations derived from the fundamental equations of thermoelectricity. Because it is directly traceable to first principles, the method provides physical explanations in addition to predictions of phenomena involved in segmentation. In comparison with the finite-element method used heretofore to predict (without being able to explain) the behavior of a segmented thermoelectric generator, this method is much simpler to implement in practice: in particular, the efficiency of a segmented thermoelectric generator can be estimated by evaluating equations using only hand-held calculator with this method. In addition, the method provides for determination of cascading ratios. The concept of cascading is illustrated in the figure and the definition of the cascading ratio is defined in the figure caption. An important aspect of the method is its approach to the issue of compatibility among segments, in combination with introduction of the concept of compatibility within a segment. Prior approaches involved the use of only averaged material properties. Two materials in direct contact could be examined for compatibility with each other, but there was no general framework for analysis of compatibility. The present method establishes such a framework. The mathematical derivation of the method begins with the definition of reduced efficiency of a thermoelectric generator as the ratio between (1) its thermal-to-electric power-conversion efficiency and (2) its Carnot efficiency (the maximum efficiency theoretically attainable, given its hot- and cold-side temperatures). The derivation involves calculation of the reduced efficiency of a model thermoelectric generator for which the hot-side temperature is only infinitesimally greater than the cold-side temperature. The derivation includes consideration of the ratio (u) between the

  2. Thermoelectric power generator with intermediate loop

    Science.gov (United States)

    Bell, Lon E; Crane, Douglas Todd

    2013-05-21

    A thermoelectric power generator is disclosed for use to generate electrical power from heat, typically waste heat. An intermediate heat transfer loop forms a part of the system to permit added control and adjustability in the system. This allows the thermoelectric power generator to more effectively and efficiently generate power in the face of dynamically varying temperatures and heat flux conditions, such as where the heat source is the exhaust of an automobile, or any other heat source with dynamic temperature and heat flux conditions.

  3. Thermoelectric materials and devices made therewith

    International Nuclear Information System (INIS)

    Moore, D.E.

    1985-01-01

    The disclosed invention includes improved devices and materials for thermoelectric conversion, particularly for operation at temperatures of 300 0 C. and below. Disordered p-type semiconductor elements incorporate compound adjuvants of silver and lead to achieve enhanced ''figure of merit'' values and corresponding increased efficiencies of thermoelectric conversion. Similar results are obtained with disordered n-type elements by employing lowered selenium contents, preferably in combination with cuprous bromide. Improved conversion devices include powder pressed elements from one or both of these materials

  4. Alkaline earth filled nickel skutterudite antimonide thermoelectrics

    Science.gov (United States)

    Singh, David Joseph

    2013-07-16

    A thermoelectric material including a body centered cubic filled skutterudite having the formula A.sub.xFe.sub.yNi.sub.zSb.sub.12, where A is an alkaline earth element, x is no more than approximately 1.0, and the sum of y and z is approximately equal to 4.0. The alkaline earth element includes guest atoms selected from the group consisting of Be, Mb, Ca, Sr, Ba, Ra and combinations thereof. The filled skutterudite is shown to have properties suitable for a wide variety of thermoelectric applications.

  5. The fluctuation Hall conductivity and the Hall angle in type-II superconductor under magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Tinh, Bui Duc, E-mail: tinhbd@hnue.edu.vn [Institute of Research and Development, Duy Tan University, K7/25 Quang Trung, Danang (Viet Nam); Department of Physics, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi (Viet Nam); Hoc, Nguyen Quang; Thu, Le Minh [Department of Physics, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi (Viet Nam)

    2016-02-15

    Highlights: • The time-dependent Ginzburg–Landau was used to calculate fluctuation Hall conductivity and Hall angle in type-II superconductor in 2D and 3D. • We obtain analytical expressions for the fluctuation Hall conductivity and the Hall angle summing all Landau levels without need to cutoff higher Landau levels to treat arbitrary magnetic field. • The results were compared to the experimental data on YBCO. - Abstract: The fluctuation Hall conductivity and the Hall angle, describing the Hall effect, are calculated for arbitrary value of the imaginary part of the relaxation time in the frame of the time-dependent Ginzburg–Landau theory in type II-superconductor with thermal noise describing strong thermal fluctuations. The self-consistent Gaussian approximation is used to treat the nonlinear interaction term in dynamics. We obtain analytical expressions for the fluctuation Hall conductivity and the Hall angle summing all Landau levels without need to cutoff higher Landau levels to treat arbitrary magnetic field. The results are compared with experimental data on high-T{sub c} superconductor.

  6. Thermoelectric power of small polarons in magnetic semiconductors

    International Nuclear Information System (INIS)

    Liu, N.H.; Emin, D.

    1984-01-01

    The thermoelectric power (Seebeck coefficient) α of a small polaron in both ferromagnetic and antiferromagnetic semiconductors and insulators is calculated for the first time. In particular, we obtain the contribution to the Seebeck coefficient arising from exchange interactions between the severely localized carrier (i.e., small polaron) of charge q and the spins of the host lattice. In essence, we study the heat transported along with a carrier. This heat, the Peltier heat, Pi, is related to the Seebeck coefficient by the Kelvin relation: Pi = qTα, where T is the temperature. The heat per carrier is simply the product of the temperature and the change of the entropy of the system when a small polaron is added to it. The magnetic contribution to the Seebeck coefficient is therefore directly related to the change of the magnetic entropy of the system upon introduction of a charge carrier. We explicitly treat the intrasite and intersite exchange interactions between a small polaron and the spins of a spin-1/2 system. These magnetic interactions produce two competing contributions to the Seebeck coefficient. First, adding the carrier tends to provide extra spin freedom (e.g., spin up or spin down of the carrier). This effect augments the entropy of the system, thereby producing a positive contribution to the Peltier heat. Second, however, the additional exchange between the carrier and the sites about it enhances the exchange binding among these sites. This generally reduces the energetically allowable spin configurations. The concomitant reduction of the system's entropy provides a negative contribution to the Peltier heat. At the highest of temperatures, when kT exceeds the intrasite exchange energy, the first effect dominates. Then, the Peltier heat is simply augmented by kT ln2

  7. NAS Decadal Review Town Hall

    Science.gov (United States)

    The National Academies of Sciences, Engineering and Medicine is seeking community input for a study on the future of materials research (MR). Frontiers of Materials Research: A Decadal Survey will look at defining the frontiers of materials research ranging from traditional materials science and engineering to condensed matter physics. Please join members of the study committee for a town hall to discuss future directions for materials research in the United States in the context of worldwide efforts. In particular, input on the following topics will be of great value: progress, achievements, and principal changes in the R&D landscape over the past decade; identification of key MR areas that have major scientific gaps or offer promising investment opportunities from 2020-2030; and the challenges that MR may face over the next decade and how those challenges might be addressed. This study was requested by the Department of Energy and the National Science Foundation. The National Academies will issue a report in 2018 that will offer guidance to federal agencies that support materials research, science policymakers, and researchers in materials research and other adjoining fields. Learn more about the study at http://nas.edu/materials.

  8. Resistive Instabilities in Hall Current Plasma Discharge

    International Nuclear Information System (INIS)

    Litvak, Andrei A.; Fisch, Nathaniel J.

    2000-01-01

    Plasma perturbations in the acceleration channel of a Hall thruster are found to be unstable in the presence of collisions. Both electrostatic lower-hybrid waves and electromagnetic Alfven waves transverse to the applied electric and magnetic field are found to be unstable due to collisions in the E X B electron flow. These results are obtained assuming a two-fluid hydrodynamic model in slab geometry. The characteristic frequencies of these modes are consistent with experimental observations in Hall current plasma thrusters

  9. Are tent halls subject to property tax?

    Directory of Open Access Journals (Sweden)

    Mariusz Macudziński

    2016-12-01

    Full Text Available The presented publication is a response to currently asked questions and interpretative doubts of taxpayers and tax authorities, namely whether tent halls are subject to property tax. General issues connected with an entity and a subject of taxation of this tax are presented herein. The answer to the question asked is then provided through the qualification of constructions works and the allocation of tent halls in the proper category of the works, with the use of the current law.

  10. Fractional statistics and fractional quantized Hall effect

    International Nuclear Information System (INIS)

    Tao, R.; Wu, Y.S.

    1985-01-01

    The authors suggest that the origin of the odd-denominator rule observed in the fractional quantized Hall effect (FQHE) may lie in fractional statistics which govern quasiparticles in FQHE. A theorem concerning statistics of clusters of quasiparticles implies that fractional statistics do not allow coexistence of a large number of quasiparticles at fillings with an even denominator. Thus, no Hall plateau can be formed at these fillings, regardless of the presence of an energy gap. 15 references

  11. Hall effect in organic layered conductors

    Directory of Open Access Journals (Sweden)

    R.A.Hasan

    2006-01-01

    Full Text Available The Hall effect in organic layered conductors with a multisheeted Fermi surfaces was considered. It is shown that the experimental study of Hall effect and magnetoresistance anisotropy at different orientations of current and a quantizing magnetic field relative to the layers makes it possible to determine the contribution of various charge carriers groups to the conductivity, and to find out the character of Fermi surface anisotropy in the plane of layers.

  12. An oxide-based thermoelectric generator: Transversal thermoelectric strip-device

    Science.gov (United States)

    Teichert, S.; Bochmann, A.; Reimann, T.; Schulz, T.; Dreßler, C.; Töpfer, J.

    2015-07-01

    A special design of an oxide-based transversal thermoelectric device utilizing thermoelectric oxides in combination with a ceramic multilayer technology is proposed. Metal strips within the ceramic matrix replace the tilted stack of alternating layers used in artificial anisotropic transversal thermoelectric devices. Numerical three-dimensional simulations of both device types reveal better thermoelectric performance data for the device with metal stripes. A monolithic transversal strip-device based on the material combination La1.97Sr0.03CuO4/Ag6Pd1 was prepared and electrically characterized. A maximum power output of 4.0 mW was determined at ΔT = 225 K for the monolithic device. The observed results are in remarkable agreement with three-dimensional numerical simulations utilizing the transport parameters of the two materials and the geometry data of the device.

  13. Study on anisotropy of n-type Mg3Sb2-based thermoelectric materials

    Science.gov (United States)

    Song, Shaowei; Mao, Jun; Shuai, Jing; Zhu, Hangtian; Ren, Zhensong; Saparamadu, Udara; Tang, Zhongjia; Wang, Bo; Ren, Zhifeng

    2018-02-01

    The recent discovery of a high thermoelectric figure of merit (ZT) in an n-type Mg3Sb2-based Zintl phase triggered an intense research effort to pursue even higher ZT. Based on our previous report on Mg3.1Nb0.1Sb1.5Bi0.49Te0.01, we report here that partial texturing in the (001) plane is achieved by double hot pressing, which is further confirmed by the rocking curves of the (002) plane. The textured samples of Mg3.1Nb0.1Sb1.5Bi0.49Te0.01 show a much better average performance in the (00l) plane. Hall mobility is significantly improved to ˜105 cm2 V-1 s-1 at room temperature in the (00l) plane due to texturing, resulting in higher electrical conductivity, a higher power factor of ˜18 μW cm-1 K-2 at room temperature, and also higher average ZT. This work shows that texturing is good for higher thermoelectric performance, suggesting that single crystals of n-type Mg3Sb2-based Zintl compounds are worth pursuing.

  14. Thermoelectric characteristics of Pt-silicide/silicon multi-layer structured p-type silicon

    International Nuclear Information System (INIS)

    Choi, Wonchul; Jun, Dongseok; Kim, Soojung; Shin, Mincheol; Jang, Moongyu

    2015-01-01

    Electric and thermoelectric properties of silicide/silicon multi-layer structured devices were investigated with the variation of silicide/silicon heterojunction numbers from 3 to 12 layers. For the fabrication of silicide/silicon multi-layered structure, platinum and silicon layers are repeatedly sputtered on the (100) silicon bulk substrate and rapid thermal annealing is carried out for the silicidation. The manufactured devices show ohmic current–voltage (I–V) characteristics. The Seebeck coefficient of bulk Si is evaluated as 195.8 ± 15.3 μV/K at 300 K, whereas the 12 layered silicide/silicon multi-layer structured device is evaluated as 201.8 ± 9.1 μV/K. As the temperature increases to 400 K, the Seebeck coefficient increases to 237.2 ± 4.7 μV/K and 277.0 ± 1.1 μV/K for bulk and 12 layered devices, respectively. The increase of Seebeck coefficient in multi-layered structure is mainly attributed to the electron filtering effect due to the Schottky barrier at Pt-silicide/silicon interface. At 400 K, the thermal conductivity is reduced by about half of magnitude compared to bulk in multi-layered device which shows the efficient suppression of phonon propagation by using Pt-silicide/silicon hetero-junctions. - Highlights: • Silicide/silicon multi-layer structured is proposed for thermoelectric devices. • Electric and thermoelectric properties with the number of layer are investigated. • An increase of Seebeck coefficient is mainly attributed the Schottky barrier. • Phonon propagation is suppressed with the existence of Schottky barrier. • Thermal conductivity is reduced due to the suppression of phonon propagation

  15. Magneto-electronic, thermal, and thermoelectric properties of some Co-based quaternary alloys

    Science.gov (United States)

    Bhat, Tahir Mohiuddin; Gupta, Dinesh C.

    2018-01-01

    In this study, quaternary Heusler alloys CoFeCrZ (Z = Si, As, Sb) were investigated based on the modified Becke-Johnson exchange potential. The electronic structures demonstrated that CoFeCrZ (Z = Si, As, Sb) alloys are completely spin polarized with indirect bandgap and has an integer magnetic moment according to the Slater-Pauling rule. Pugh's and Poisson's ratios showed that these materials are highly ductile with high melting temperatures. The thermal properties comprising the thermal expansion coefficient, heat capacity, and Grüneisen parameter were evaluated at various pressures from 0 to 20 GPa. The Grüneisen parameter values indicated the strong anharmonicity of the lattice vibrations that predominated in these compounds. We also studied the dependency of the thermoelectric transport properties on the temperature, i.e., the thermal conductivity and Seebeck coefficient. These alloys exhibited low lattice thermal conductivity and good Seebeck coefficients at room temperature. The half-metallic structures of these compounds with large band gaps and adequate Seebeck coefficients mean that they are suitable for use in spintronic and thermoelectric device applications.

  16. UNIDAD PARA SUPERVISIÓN Y CONTROL DE MEDICIÓN DE EFECTO HALL CON LABVIEW®

    Directory of Open Access Journals (Sweden)

    Hernán Rodríguez

    2008-09-01

    Full Text Available We assembled a Hall effect and electric conductivity measuring unit that allows the determination of transportproperties in semiconductor and metal films, including the type and concentration of majority carriers and theirmobility, from measurements of Hall voltage and current. It is clear that electrons are the charge carrier in metals,however some metals such as aluminum, zinc and cadmium among others exhibit a behavior that, according to theclassical view, should be positive charge carriers (holes. In this paper we discuss Hall effect measurements in twotypes of materials: copper (Cu and zinc (Zn. Results from measurements show that copper has a negative Hallcoefficient RH = - (0.28 ± 0.01×10-10 m3/C and zinc has a positive coefficient RH = + (4.2 ± 0.2×10-11 m3/C. Ourresults agree with those reported in the scientific literature. Most of the textbooks on solid state physics do notmention explicitly the reason why some metals show a positive Hall coefficient. We discuss this fact based on theirband structures.

  17. Thermoelectric Generator Emulator for MPPT Testing

    DEFF Research Database (Denmark)

    Man, Elena Anamaria; Sera, Dezso; Máthé, Lászlo

    2015-01-01

    This paper presents a novel approach to use a DC power supply as a thermoelectric generator (TEG) emulator to perform static and dynamic maximum power point tracking (MPPT). First, the electrical characterization of a calcium-manganese-oxide module is performed on a TEG test rig. Afterwards...

  18. Experimental Study of a Thermoelectric Generation System

    DEFF Research Database (Denmark)

    Zhu, Junpeng; Gao, Junling; Chen, Min

    2011-01-01

    . System-level simulation is carried out using a quasi-one-dimensional numerical model that enables direct comparison with experimental results. The results of both experiment and simulation will provide a foundation to improve and optimize complex thermoelectric generation systems....

  19. Potency of Thermoelectric Generator for Hybrid Vehicle

    Directory of Open Access Journals (Sweden)

    Nandy Putra

    2010-10-01

    Full Text Available Thermoelectric Generator (TEG has been known as electricity generation for many years. If the temperature difference occurred between two difference semi conductor materials, the current will flow in the material and produced difference voltage. This principle is known as Seebeck effect that is the opposite of Peltier effect Thermoelectric Cooling (TEC. This research was conducted to test the potential of electric source from twelve peltier modules. Then, these thermoelectric generators were applied in hybrid car by using waste heat from the combustion engine. The experiment has been conducted with variations of peltier module arrangements (series and parallels and heater as heat source for the thermoelectric generator, with variations of heater voltage input (110V and 220V applied. The experimental result showed that twelve of peltier modules arranged in series and heater voltage of 220V generated power output of 8.11 Watts with average temperature difference of 42.82°C. This result shows that TEG has a bright prospect as alternative electric source.

  20. Thermoelectric devices and applications for the same

    Science.gov (United States)

    Olsen, Larry C.; DeSteese, John G.; Martin, Peter M.; Johnston, John W.; Peters, Timothy J.

    2016-03-08

    High performance thin film thermoelectric couples and methods of making the same are disclosed. Such couples allow fabrication of at least microwatt to watt-level power supply devices operating at voltages greater than one volt even when activated by only small temperature differences.

  1. Thermoelectric neutron dosimetry: a short introduction

    International Nuclear Information System (INIS)

    Mathieu, F.; Meier, R.; Debrue, J.; Leonard, F.; Schubert, W.

    1977-01-01

    The paper gives a short introduction and state-of-the-art account of an unconventional, non destructive neutron dosimetry method based on monitoring the neutron fluence dependent changes of the thermoelectric properties of base metals and alloys. The basic principles are exposed and illustrated with experimental data obtained during an exploratory irradiation in the BR2 reactor

  2. High thermoelectric performance of graphite nanofibers.

    Science.gov (United States)

    Tran, Van-Truong; Saint-Martin, Jérôme; Dollfus, Philippe; Volz, Sebastian

    2018-02-22

    Graphite nanofibers (GNFs) have been demonstrated to be a promising material for hydrogen storage and heat management in electronic devices. Here, by means of first-principles and transport simulations, we show that GNFs can also be an excellent material for thermoelectric applications thanks to the interlayer weak van der Waals interaction that induces low thermal conductance and a step-like shape in the electronic transmission with mini-gaps, which are necessary ingredients to achieve high thermoelectric performance. This study unveils that the platelet form of GNFs in which graphite layers are perpendicular to the fiber axis can exhibit outstanding thermoelectric properties with a figure of merit ZT reaching 3.55 in a 0.5 nm diameter fiber and 1.1 in a 1.1 nm diameter one. Interestingly, by introducing 14 C isotope doping, ZT can even be enhanced up to more than 5, and more than 8 if we include the effect of finite phonon mean free path, which demonstrates the amazing thermoelectric potential of GNFs.

  3. Thermoelectric cooling container for medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Aivazov, A A; Shtern, Y I; Budaguan, B G; Makhrachev, K B; Pastor, M

    1997-07-01

    In this work the thermoelectric cooling container for storing and transportation of the medicine, particularly for insulin, is discussed. In the working volume the temperature is supported on the level of +4 C. The container can work in two operating conditions: with the power supply and without the power supply. Two removable blocks are used for this purpose. One block (thermoelectric) is used for the work with the power supply and another (passive)-for the work without power supply. The thermoelectric block has a 12V power supply, which is used in the automobiles, yachts and other kinds of transport. The temperature in the working volume is supported by the use of the Peltier effect. An electronic device is used in this block and stabilizes temperature on the level of +4 C and indicates information about working conditions. The thermoelectric container has a power supply block for work at 220(110)V. The working temperature in the container can be maintained in the absence of the power supply. In this case the necessary temperature conditions are supported by melting of the crystallized salt. For this purpose the container has a hermetic volume containing this salt and contacting with the working volume.

  4. Design concepts for improved thermoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Slack, G A

    1997-07-01

    Some new guidelines are given that should be useful in the search for thermoelectric materials that are better than those currently available. In particular, clathrate and cryptoclathrate compounds with filler atoms in their cages offer the ability to substantially lower the lattice thermal conductivity.

  5. Test System for Thermoelectric Modules and Materials

    Science.gov (United States)

    Hejtmánek, J.; Knížek, K.; Švejda, V.; Horna, P.; Sikora, M.

    2014-10-01

    We present a design for a complex measuring device that enables its user to assess the parameters of power-generating thermoelectric modules (TEMs) (or bulk thermoelectric materials) under a wide range of temperatures ( T cold = 25°C to 90°C, T hot TEM, the actual heat flow through the module, and its mechanical load, which can be varied during the measurement. Key components of our testing setup are (i) a measuring chamber where the TEM/material is compressed between thermally shielded heating blocks equipped with a mechanical loading system and water-cooled copper-based cooler, (ii) an electrical load system, (iii) a type K thermocouple array connected to a data acquisition computer, and (iv) a thermostatic water-based cooling system with electronically controlled flow rate and temperature of cooling water. Our testing setup represents a useful tool able to assess, e.g., the thermoelectric parameters of newly developed TEMs and materials or to evaluate the thermoelectric parameters of commercially available modules and materials for comparison with values declared by the manufacturer.

  6. Electronic structure and thermoelectric transport properties of the golden Th2S3-type Ti2O3 under pressure

    Directory of Open Access Journals (Sweden)

    Bin Xu

    2016-05-01

    Full Text Available A lot of physical properties of Th2S3-type Ti2O3 have investigated experimentally, hence, we calculated electronic structure and thermoelectric transport properties by the first-principles calculation under pressure. The increase of the band gaps is very fast from 30GP to 35GP, which is mainly because of the rapid change of the lattice constants. The total density of states becomes smaller with increasing pressure, which shows that Seebeck coefficient gradually decreases. Two main peaks of Seebeck coefficients always decrease and shift to the high doping area with increasing temperature under pressure. The electrical conductivities always decrease with increasing temperature under pressure. The electrical conductivity can be improved by increasing pressure. Electronic thermal conductivity increases with increasing pressure. It is noted that the thermoelectric properties is reduced with increasing temperature.

  7. Colossal enhancement in thermoelectric effect in a laterally coupled double-quantum-dot chain by the Coulomb interactions

    International Nuclear Information System (INIS)

    Xiong, Lun; Yi, Lin

    2014-01-01

    Thermoelectric effects, including Seebeck coefficient (S), thermal conductance (κ), and figure of merit (ZT), in a laterally coupled double-quantum-dot (DQD) chain with two external nonmagnetic contacts are investigated theoretically by the nonequilibrium Green's function formalism. In this system, the DQD chain between two contacts forms a main channel for thermal electrons transporting, and each QD in the main chain couples laterally to a dangling one. The numerical calculations show that the Coulomb interactions not only lead to the splitting of the asymmetrical double-peak structure of the Seebeck coefficient, but also make the thermal spectrum show a strong violation of the Wiedemann–Franz law, leading to a colossal enhancement in ZT. These results indicate that the coupled DQD chain has potential applications in the thermoelectric devices with high thermal efficiency.

  8. Resistivity and Hall effect in Y9Co7

    International Nuclear Information System (INIS)

    Ali, N.; Datars, W.R.; Kozlowski, G.; Woods, S.B.

    1987-01-01

    The temperature dependence of the resistivity and Hall effect of Y 9 Co 7 has been measured from room temperature to 1.6 K. The saturation of the resistivity at high temperature is similar to that of A15 compounds and can be interpreted in terms of a localised phonon mode formation as shown by Yu and Anderson for A15 compounds. A T 2 -dependence of the resistivity is observed for temperatures below approx.= 25 K. A similar T 2 -dependence at low temperatures is always observed in A15 compounds as well and is not fully understood. However, a T 2 -dependence below 10 K does not seem to be due to itinerant ferromagnetism in Y 9 Co 7 as concluded recently by Kolodziejczyk and Spalek. The observation of a peak at approx.= 25 K in the Hall coefficient suggests a spin glass type of freezing at low temperatures which possibly can account for the T 2 -dependence of the resistivity below approx.= 10 K. (author)

  9. 75 FR 22770 - Gary E. Hall and Rita Hall; Notice of Availability of Environmental Assessment

    Science.gov (United States)

    2010-04-30

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13652-000-Montana] Gary E. Hall and Rita Hall; Notice of Availability of Environmental Assessment April 22, 2010. In accordance with the National Environmental Policy Act of 1969, as amended, and the Federal Energy Regulatory...

  10. Scalable Nernst thermoelectric power using a coiled galfenol wire

    Science.gov (United States)

    Yang, Zihao; Codecido, Emilio A.; Marquez, Jason; Zheng, Yuanhua; Heremans, Joseph P.; Myers, Roberto C.

    2017-09-01

    The Nernst thermopower usually is considered far too weak in most metals for waste heat recovery. However, its transverse orientation gives it an advantage over the Seebeck effect on non-flat surfaces. Here, we experimentally demonstrate the scalable generation of a Nernst voltage in an air-cooled metal wire coiled around a hot cylinder. In this geometry, a radial temperature gradient generates an azimuthal electric field in the coil. A Galfenol (Fe0.85Ga0.15) wire is wrapped around a cartridge heater, and the voltage drop across the wire is measured as a function of axial magnetic field. As expected, the Nernst voltage scales linearly with the length of the wire. Based on heat conduction and fluid dynamic equations, finite-element method is used to calculate the temperature gradient across the Galfenol wire and determine the Nernst coefficient. A giant Nernst coefficient of -2.6 μV/KT at room temperature is estimated, in agreement with measurements on bulk Galfenol. We expect that the giant Nernst effect in Galfenol arises from its magnetostriction, presumably through enhanced magnon-phonon coupling. Our results demonstrate the feasibility of a transverse thermoelectric generator capable of scalable output power from non-flat heat sources.

  11. Scalable Nernst thermoelectric power using a coiled galfenol wire

    Directory of Open Access Journals (Sweden)

    Zihao Yang

    2017-09-01

    Full Text Available The Nernst thermopower usually is considered far too weak in most metals for waste heat recovery. However, its transverse orientation gives it an advantage over the Seebeck effect on non-flat surfaces. Here, we experimentally demonstrate the scalable generation of a Nernst voltage in an air-cooled metal wire coiled around a hot cylinder. In this geometry, a radial temperature gradient generates an azimuthal electric field in the coil. A Galfenol (Fe0.85Ga0.15 wire is wrapped around a cartridge heater, and the voltage drop across the wire is measured as a function of axial magnetic field. As expected, the Nernst voltage scales linearly with the length of the wire. Based on heat conduction and fluid dynamic equations, finite-element method is used to calculate the temperature gradient across the Galfenol wire and determine the Nernst coefficient. A giant Nernst coefficient of -2.6 μV/KT at room temperature is estimated, in agreement with measurements on bulk Galfenol. We expect that the giant Nernst effect in Galfenol arises from its magnetostriction, presumably through enhanced magnon-phonon coupling. Our results demonstrate the feasibility of a transverse thermoelectric generator capable of scalable output power from non-flat heat sources.

  12. Charge carrier coherence and Hall effect in organic semiconductors

    Science.gov (United States)

    Yi, H. T.; Gartstein, Y. N.; Podzorov, V.

    2016-01-01

    Hall effect measurements are important for elucidating the fundamental charge transport mechanisms and intrinsic mobility in organic semiconductors. However, Hall effect studies frequently reveal an unconventional behavior that cannot be readily explained with the simple band-semiconductor Hall effect model. Here, we develop an analytical model of Hall effect in organic field-effect transistors in a regime of coexisting band and hopping carriers. The model, which is supported by the experiments, is based on a partial Hall voltage compensation effect, occurring because hopping carriers respond to the transverse Hall electric field and drift in the direction opposite to the Lorentz force acting on band carriers. We show that this can lead in particular to an underdeveloped Hall effect observed in organic semiconductors with substantial off-diagonal thermal disorder. Our model captures the main features of Hall effect in a variety of organic semiconductors and provides an analytical description of Hall mobility, carrier density and carrier coherence factor. PMID:27025354

  13. Charge carrier coherence and Hall effect in organic semiconductors.

    Science.gov (United States)

    Yi, H T; Gartstein, Y N; Podzorov, V

    2016-03-30

    Hall effect measurements are important for elucidating the fundamental charge transport mechanisms and intrinsic mobility in organic semiconductors. However, Hall effect studies frequently reveal an unconventional behavior that cannot be readily explained with the simple band-semiconductor Hall effect model. Here, we develop an analytical model of Hall effect in organic field-effect transistors in a regime of coexisting band and hopping carriers. The model, which is supported by the experiments, is based on a partial Hall voltage compensation effect, occurring because hopping carriers respond to the transverse Hall electric field and drift in the direction opposite to the Lorentz force acting on band carriers. We show that this can lead in particular to an underdeveloped Hall effect observed in organic semiconductors with substantial off-diagonal thermal disorder. Our model captures the main features of Hall effect in a variety of organic semiconductors and provides an analytical description of Hall mobility, carrier density and carrier coherence factor.

  14. Testing dependence of anomalous Hall effect on resistivity in SrRuO3 by its increase with electron irradiation

    NARCIS (Netherlands)

    Haham, N.; Konczykowski, M.; Kuiper, Bouwe; Koster, Gertjan; Klein, L.

    2013-01-01

    We measure the anomalous Hall effect (AHE) in several patterns of the itinerant ferromagnet SrRuO 3 before and after the patterns are irradiated with electrons. The irradiation increases the resistivity of the patterns due to the introduction of point defects and we find that the AHE coefficient R s

  15. Influence of grain size on the extraordinary Hall effect in magnetic granular alloys

    International Nuclear Information System (INIS)

    Granovsky, Alexander B.; Kalitsov, Alan V.; Khanikaev, Alexander B.; Kioussis, Nicholas

    2003-01-01

    A quantum statistical theory of the influence of grain size on the residual extraordinary Hall effect (EHE) in magnetic metal-insulator granular alloys is presented. It is shown that under certain conditions the quasi-classical size-effect (QSE) can lead to similar behaviors of EHE in metal-metal and metal-insulator alloys. The possible dependences of EHE coefficient on the grain size and the role of the QSE in the giant EHE in nanocomposites are discussed

  16. Influence of grain size on the extraordinary Hall effect in magnetic granular alloys

    Energy Technology Data Exchange (ETDEWEB)

    Granovsky, Alexander B. E-mail: granov@magn.ru; Kalitsov, Alan V.; Khanikaev, Alexander B.; Kioussis, Nicholas

    2003-03-01

    A quantum statistical theory of the influence of grain size on the residual extraordinary Hall effect (EHE) in magnetic metal-insulator granular alloys is presented. It is shown that under certain conditions the quasi-classical size-effect (QSE) can lead to similar behaviors of EHE in metal-metal and metal-insulator alloys. The possible dependences of EHE coefficient on the grain size and the role of the QSE in the giant EHE in nanocomposites are discussed.

  17. Automotive Thermoelectric Waste Heat Recovery

    Science.gov (United States)

    Meisner, Gregory P.

    2015-03-01

    Considerable fuel energy, as much as 70%, is not converted to useful work by internal combustion engines but is instead rejected as waste heat, and more than half of the waste heat, nearly 40% of fuel energy, is contained in vehicle exhaust gas. This provides an opportunity to recover some of the wasted fuel energy and convert it from heat into useful work, subject to the laws of thermodynamics, and thereby improve vehicle energy efficiency. Thermoelectric (TE) materials have been extensively researched and TE devices are now being developed for operation at high temperatures corresponding to automotive exhaust gases for direct solid-state conversion of heat into electricity. This has stimulated substantial progress in the development of practical TE generator (TEG) systems for large-scale commercialization. A significant enabler of this progress has been the US Department of Energy's Vehicle Technologies Program through funding for low cost solutions for automotive TE waste heat recovery to improve fuel economy. Our current project at General Motors has culminated in the identification of the potential supply chain for all components and assembly of an automotive TEG. A significant focus has been to develop integrated and iterative modeling tools for a fully optimized TEG design that includes all components and subsystems (TE modules, heat exchangers, thermal interfaces, electrical interconnects, power conditioning, and vehicle integration for maximal use of TEG power). We have built and tested a new, low-cost Initial TEG prototype based on state-of-the-art production-scale skutterudite TE modules, novel heat exchanger designs, and practical solutions to the many technical challenges for optimum TEG performance. We will use the results for our Initial TEG prototype to refine our modeling and design tools for a Final automotive TEG system prototype. Our recent results will be presented. Thanks to: J.R. Salvador, E.R. Gundlach, D. Thompson, N.K. Bucknor, M

  18. Dr. Hall and the work cure.

    Science.gov (United States)

    Reed, Kathlyn L

    2005-01-01

    Herbert James Hall, MD (1870-1923), was a pioneer in the systematic and organized study of occupation as therapy for persons with nervous and mental disorders that he called the "work cure." He began his work in 1904 during the early years of the Arts and Crafts Movement in the United States. His primary interest was the disorder neurasthenia, a condition with many symptoms including chronic fatigue, stress, and inability to work or perform everyday tasks. The prevailing treatment of the day was absolute bed rest known as the "rest cure." Hall believed that neurasthenia was not caused by overwork but by faulty living habits that could be corrected through an ordered life schedule and selected occupations. He identified several principles of therapy that are still used today including graded activity and energy conservation. Dr. Adolph Meyer credits Hall for organizing the ideas on the therapeutic use of occupation (Meyer, 1922). Hall also provided the name American Occupational Therapy Association for the professional organization and served as the fourth president. For his many contributions to the profession Hall deserves to be recognized as a major contributor to the development and organization of occupational therapy.

  19. A new CMOS Hall angular position sensor

    Energy Technology Data Exchange (ETDEWEB)

    Popovic, R.S.; Drljaca, P. [Swiss Federal Inst. of Tech., Lausanne (Switzerland); Schott, C.; Racz, R. [SENTRON AG, Zug (Switzerland)

    2001-06-01

    The new angular position sensor consists of a combination of a permanent magnet attached to a shaft and of a two-axis magnetic sensor. The permanent magnet produces a magnetic field parallel with the magnetic sensor plane. As the shaft rotates, the magnetic field also rotates. The magnetic sensor is an integrated combination of a CMOS Hall integrated circuit and a thin ferromagnetic disk. The CMOS part of the system contains two or more conventional Hall devices positioned under the periphery of the disk. The ferromagnetic disk converts locally a magnetic field parallel with the chip surface into a field perpendicular to the chip surface. Therefore, a conventional Hall element can detect an external magnetic field parallel with the chip surface. As the direction of the external magnetic field rotates in the chip plane, the output voltage of the Hall element varies as the cosine of the rotation angle. By placing the Hall elements at the appropriate places under the disk periphery, we may obtain the cosine signals shifted by 90 , 120 , or by any other angle. (orig.)

  20. Composite fermions in the quantum Hall effect

    International Nuclear Information System (INIS)

    Johnson, B.L.; Kirczenow, G.

    1997-01-01

    The quantum Hall effect and associated quantum transport phenomena in low-dimensional systems have been the focus of much attention for more than a decade. Recent theoretical development of interesting quasiparticles - 'composite fermions' - has led to significant advances in understanding and predicting the behaviour of two-dimensional electron systems under high transverse magnetic fields. Composite fermions may be viewed as fermions carrying attached (fictitious) magnetic flux. Here we review models of the integer and fractional quantum Hall effects, including the development of a unified picture of the integer and fractional effects based upon composite fermions. The composite fermion picture predicts remarkable new physics: the formation of a Fermi surface at high magnetic fields, and anomalous ballistic transport, thermopower, and surface acoustic wave behaviour. The specific theoretical predictions of the model, as well as the body of experimental evidence for these phenomena are reviewed. We also review recent edge-state models for magnetotransport in low-dimensional devices based on the composite fermion picture. These models explain the fractional quantum Hall effect and transport phenomena in nanoscale devices in a unified framework that also includes edge state models of the integer quantum Hall effect. The features of the composite fermion edge-state model are compared and contrasted with those of other recent edge-state models of the fractional quantum Hall effect. (author)

  1. Air temperature gradient in large industrial hall

    Science.gov (United States)

    Karpuk, Michał; Pełech, Aleksander; Przydróżny, Edward; Walaszczyk, Juliusz; Szczęśniak, Sylwia

    2017-11-01

    In the rooms with dominant sensible heat load, volume airflow depends on many factors incl. pre-established temperature difference between exhaust and supply airflow. As the temperature difference is getting higher, airflow volume drops down, consequently, the cost of AHU is reduced. In high industrial halls with air exhaust grids located under the ceiling additional temperature gradient above working zone should be taken into consideration. In this regard, experimental research of the vertical air temperature gradient in high industrial halls were carried out for the case of mixing ventilation system The paper presents the results of air temperature distribution measurements in high technological hall (mechanically ventilated) under significant sensible heat load conditions. The supply airflow was delivered to the hall with the help of the swirl diffusers while exhaust grids were located under the hall ceiling. Basing on the air temperature distribution measurements performed on the seven pre-established levels, air temperature gradient in the area between 2.0 and 7.0 m above the floor was calculated and analysed.

  2. Extrinsic spin Hall effect in graphene

    Science.gov (United States)

    Rappoport, Tatiana

    The intrinsic spin-orbit coupling in graphene is extremely weak, making it a promising spin conductor for spintronic devices. In addition, many applications also require the generation of spin currents in graphene. Theoretical predictions and recent experimental results suggest one can engineer the spin Hall effect in graphene by greatly enhancing the spin-orbit coupling in the vicinity of an impurity. The extrinsic spin Hall effect then results from the spin-dependent skew scattering of electrons by impurities in the presence of spin-orbit interaction. This effect can be used to efficiently convert charge currents into spin-polarized currents. I will discuss recent experimental results on spin Hall effect in graphene decorated with adatoms and metallic cluster and show that a large spin Hall effect can appear due to skew scattering. While this spin-orbit coupling is small if compared with what it is found in metals, the effect is strongly enhanced in the presence of resonant scattering, giving rise to robust spin Hall angles. I will present our single impurity scattering calculations done with exact partial-wave expansions and complement the analysis with numerical results from a novel real-space implementation of the Kubo formalism for tight-binding Hamiltonians. The author acknowledges the Brazilian agencies CNPq, CAPES, FAPERJ and INCT de Nanoestruturas de Carbono for financial support.

  3. Structural and thermoelectric properties of the type-I Sn clathrates Cs8Sn46−n(n=0,2) from Density Functional Theory (DFT)

    KAUST Repository

    Egbele, Peter O.

    2018-02-08

    Sn clathrates are promising phonon glass, electron crystal materials (PGEC), in which the phonon free paths are short and the electron free paths are long. We analysed the relaxed structure of Sn clathrates using four different Density Funtional Exchange-Correlation functionals. The phonon structures were investigated as a first step in order to determine the phonon contribution to the thermal conductivity. We determined the Seebeck coefficient and electrical conductivity of the clathrate compound and the thermoelectric figure of merit. A glimpse into the dynamics of the system for the evaluation of the thermoelectric and electronic properties is presented.

  4. Thermoelectric voltage at a nanometer-scale heated tip point contact

    Science.gov (United States)

    Fletcher, Patrick C.; Lee, Byeonghee; King, William P.

    2012-01-01

    We report thermoelectric voltage measurements between the platinum-coated tip of a heated atomic force microscope (AFM) cantilever and a gold-coated substrate. The cantilevers have an integrated heater-thermometer element made from doped single crystal silicon, and a platinum tip. The voltage can be measured at the tip, independent from the cantilever heating. We used the thermocouple junction between the platinum tip and the gold substrate to measure thermoelectric voltage during heating. Experiments used either sample-side or tip-side heating, over the temperature range 25-275 °C. The tip-substrate contact is ˜4 nm in diameter and its average measured Seebeck coefficient is 3.4 μV K-1. The thermoelectric voltage is used to determine tip-substrate interface temperature when the substrate is either glass or quartz. When the non-dimensional cantilever heater temperature is 1, the tip-substrate interface temperature is 0.593 on glass and 0.125 on quartz. Thermal contact resistance between the tip and the substrate heavily influences the tip-substrate interface temperature. Measurements agree well with modeling when the tip-substrate interface contact resistance is 108 K W-1.

  5. Magnetic-breakdown oscillations of the thermoelectric field in layered conductors

    Energy Technology Data Exchange (ETDEWEB)

    Peschanskii, V. G., E-mail: vpeschansky@ilt.kharkov.ua [Karazin Kharkov National University (Ukraine); Galbova, O. [St. Cyril and Methodium University (Macedonia, The Former Yugoslav Republic of); Hasan, R. [Karazin Kharkov National University (Ukraine)

    2016-12-15

    The response of an electron system to nonuniform heating of layered conductors with an arbitrary quasi-two-dimensional electron energy spectrum in a strong magnetic field B is investigated theoretically in the case when cyclotron frequency ω{sub c} is much higher than the frequency 1/τ of collisions between charge carriers. In the case of a multisheet Fermi surface (FS), we calculate the dependence of the thermoelectric coefficients on the magnitude and orientation of the magnetic field in the vicinity of the Lifshitz topological transition when the FS connectivity changes under the action of an external force (e.g., pressure) on the conductor. Upon a decrease in the spacing between individual pockets (sheets) of the FS, conduction electrons can tunnel as a result of the magnetic breakdown from one FS sheet to another; their motion over magneticbreakdown trajectories becomes complicated and entangled. The thermoelectric field exhibits a peculiar dependence on the magnetic field: for a noticeable deviation of vector B from the normal through angle ϑ to the layers, the thermoelectric field oscillates as a function of tanϑ. The period of these oscillations contains important information on the distance between individual FS sheets and their corrugation.

  6. Thermal and thermoelectric transport measurements of an individual boron arsenide microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jaehyun; Sellan, Daniel P.; Ou, Eric; Shi, Li, E-mail: lishi@mail.utexas.edu [Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States); Evans, Daniel A.; Williams, Owen M.; Cowley, Alan H. [Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712 (United States)

    2016-05-16

    Recent first principles calculations have predicted that boron arsenide (BAs) can possess an unexpectedly high thermal conductivity that depends sensitively on the crystal size and defect concentration. However, few experimental results have been obtained to verify these predictions. In the present work, we report four-probe thermal and thermoelectric transport measurements of an individual BAs microstructure that was synthesized via a vapor transport method. The measured thermal conductivity was found to decrease slightly with temperature in the range between 250 K and 350 K. The temperature dependence suggests that the extrinsic phonon scattering processes play an important role in addition to intrinsic phonon-phonon scattering. The room temperature value of (186 ± 46) W m{sup −1 }K{sup −1} is higher than that of bulk silicon but still a factor of four lower than the calculated result for a defect-free, non-degenerate BAs rod with a similar diameter of 1.15 μm. The measured p-type Seebeck coefficient and thermoelectric power factor are comparable to those of bismuth telluride, which is a commonly used thermoelectric material. The foregoing results also suggest that it is necessary to not only reduce defect and boundary scatterings but also to better understand and control the electron scattering of phonons in order to achieve the predicted ultrahigh intrinsic lattice thermal conductivity of BAs.

  7. Hydrogenated Nano-/Micro-Crystalline Silicon Thin-Films for Thermoelectrics

    Science.gov (United States)

    Acosta, E.; Wight, N. M.; Smirnov, V.; Buckman, J.; Bennett, N. S.

    2018-06-01

    Thermoelectric technology has not yet been able to reach full-scale market penetration partly because most commercial materials employed are scarce/costly, environmentally unfriendly and in addition provide low conversion efficiency. The necessity to tackle some of these hurdles leads us to investigate the suitability of n-type hydrogenated microcrystalline silicon (μc-Si: H) in the fabrication of thermoelectric devices, produced by plasma enhanced chemical vapour deposition (PECVD), which is a mature process of proven scalability. This study reports an approach to optimise the thermoelectric power factor (PF) by varying the dopant concentration by means of post-annealing without impacting film morphology, at least for temperatures below 550°C. Results show an improvement in PF of more than 80%, which is driven by a noticeable increase of carrier mobility and Seebeck coefficient in spite of a reduction in carrier concentration. A PF of 2.08 × 10-4 W/mK2 at room temperature is reported for n-type films of 1 μm thickness, which is in line with the best values reported in recent literature for similar structures.

  8. Performance Analysis of Thermoelectric Based Automotive Waste Heat Recovery System with Nanofluid Coolant

    Directory of Open Access Journals (Sweden)

    Zhi Li

    2017-09-01

    Full Text Available Output performance of a thermoelectric-based automotive waste heat recovery system with a nanofluid coolant is analyzed in this study. Comparison between Cu-Ethylene glycol (Cu-EG nanofluid coolant and ethylene glycol with water (EG-W coolant under equal mass flow rate indicates that Cu-EG nanofluid as a coolant can effectively improve power output and thermoelectric conversion efficiency for the system. Power output enhancement for a 3% concentration of nanofluid is 2.5–8 W (12.65–13.95% compared to EG-Water when inlet temperature of exhaust varies within 500–710 K. The increase of nanofluid concentration within a realizable range (6% has positive effect on output performance of the system. Study on the relationship between total area of thermoelectric modules (TEMs and output performance of the system indicates that optimal total area of TEMs exists for maximizing output performance of the system. Cu-EG nanofluid as coolant can decrease optimal total area of TEMs compared with EG-W, which will bring significant advantages for the optimization and arrangement of TEMs whether the system space is sufficient or not. Moreover, power output enhancement under Cu-EG nanofluid coolant is larger than that of EG-W coolant due to the increase of hot side heat transfer coefficient of TEMs.

  9. Thermoelectric properties and nanostructures of materials prepared from rice husk ash

    Energy Technology Data Exchange (ETDEWEB)

    Pukird, S.; Tipparach, U.; Kasian, P. [Ubon Ratchathani Univ., Ubon Ratchathani (Thailand). Dept. of Physics; Limsuwan, P. [King Mongkut' s Univ. of Technology Thonburi, Bangkok (Thailand). Dept. of Physics

    2009-07-01

    Thailand produces large amounts of agricultural residues such as rice husk and coconut shells. Rice husk is considered to be a potential source for solar grade silicon. Studies have shown that reasonably pure polycrystalline silicon can be prepared from rice husk white ash by a metallothermic reduction process. This paper reported on a study that investigated the thermoelectric properties of ceramic material prepared by mixing silica from rice husk ash and carbon obtained from coconut shell charcoal. The thermoelectric properties of the materials were examined along with their microstructures. The materials were made from burning rice husk ash and coconut shell at different temperatures and then doped with metal oxides. Pellets were heated at temperature of 700 degrees C for 1-3 hours. The voltage on both sides of the pellets was observed. The electromotive force was found when different temperatures were applied on both sides of the pellet specimens. The Seebeck coefficient was then calculated. The results showed that these materials can be used as thermoelectric devices. Scanning electron microscope (SEM) and energy dispersive X-rays (EDX) were used to investigate the source of materials and the products on the substrates. The images of SEM and EDX showed nanostructures of materials such as nanowires, nanorods and nanoparticles of the products and sources. 22 refs., 2 tabs., 9 figs.

  10. Electron mean-free-path filtering in Dirac material for improved thermoelectric performance.

    Science.gov (United States)

    Liu, Te-Huan; Zhou, Jiawei; Li, Mingda; Ding, Zhiwei; Song, Qichen; Liao, Bolin; Fu, Liang; Chen, Gang

    2018-01-30

    Recent advancements in thermoelectric materials have largely benefited from various approaches, including band engineering and defect optimization, among which the nanostructuring technique presents a promising way to improve the thermoelectric figure of merit ( zT ) by means of reducing the characteristic length of the nanostructure, which relies on the belief that phonons' mean free paths (MFPs) are typically much longer than electrons'. Pushing the nanostructure sizes down to the length scale dictated by electron MFPs, however, has hitherto been overlooked as it inevitably sacrifices electrical conduction. Here we report through ab initio simulations that Dirac material can overcome this limitation. The monotonically decreasing trend of the electron MFP allows filtering of long-MFP electrons that are detrimental to the Seebeck coefficient, leading to a dramatically enhanced power factor. Using SnTe as a material platform, we uncover this MFP filtering effect as arising from its unique nonparabolic Dirac band dispersion. Room-temperature zT can be enhanced by nearly a factor of 3 if one designs nanostructures with grain sizes of ∼10 nm. Our work broadens the scope of the nanostructuring approach for improving the thermoelectric performance, especially for materials with topologically nontrivial electronic dynamics.

  11. Performance Analysis of a Thermoelectric Solar Collector Integrated with a Heat Pump

    Science.gov (United States)

    Lertsatitthanakorn, C.; Jamradloedluk, J.; Rungsiyopas, M.; Therdyothin, A.; Soponronnarit, S.

    2013-07-01

    A novel heat pump system is proposed. A thermoelectric solar collector was coupled to a solar-assisted heat pump (TESC-HP) to work as an evaporator. The cooling effect of the system's refrigerant allowed the cold side of the system's thermoelectric modules to work at lower temperature, improving the conversion efficiency. The TESC-HP system mainly consisted of transparent glass, an air gap, an absorber plate that acted as a direct expansion-type collector/evaporator, an R-134a piston-type hermetic compressor, a water-cooled plate-type condenser, thermoelectric modules, and a water storage tank. Test results indicated that the TESC-HP has better coefficient of performance (COP) and conversion efficiency than the separate units. For the meteorological conditions in Mahasarakham, the COP of the TESC-HP system can reach 5.48 when the average temperature of 100 L of water is increased from 28°C to 40°C in 60 min with average ambient temperature of 32.5°C and average solar intensity of 815 W/m2, whereas the conversion efficiency of the TE power generator was around 2.03%.

  12. Enhanced thermoelectric properties of polycrystalline Bi2Te3 core fibers with preferentially oriented nanosheets

    Directory of Open Access Journals (Sweden)

    Min Sun

    2018-03-01

    Full Text Available Bi2Te3-based materials have been reported to be one of the best room-temperature thermoelectric materials, and it is a challenge to substantially improve their thermoelectric properties. Here novel Bi2Te3 core fibers with borosilicate glass cladding were fabricated utilizing a modified molten core drawing method. The Bi2Te3 core of the fiber was found to consist of hexagonal polycrystalline nanosheets, and polycrystalline nanosheets had a preferential orientation; in other words, the hexagonal Bi2Te3 lamellar cleavage more tended to be parallel to the symmetry axis of the fibers. Compared with a homemade 3-mm-diameter Bi2Te3 rod, the polycrystalline nanosheets’ preferential orientation in the 89-μm-diameter Bi2Te3 core increased its electrical conductivity, but deduced its Seebeck coefficient. The Bi2Te3 core exhibits an ultrahigh ZT of 0.73 at 300 K, which is 232% higher than that of the Bi2Te3 rod. The demonstration of fibers with oriented nano-polycrystalline core and the integration with an efficient fabrication technique will pave the way for the fabrication of high-performance thermoelectric fibers.

  13. Hydrogenated Nano-/Micro-Crystalline Silicon Thin-Films for Thermoelectrics

    Science.gov (United States)

    Acosta, E.; Wight, N. M.; Smirnov, V.; Buckman, J.; Bennett, N. S.

    2017-11-01

    Thermoelectric technology has not yet been able to reach full-scale market penetration partly because most commercial materials employed are scarce/costly, environmentally unfriendly and in addition provide low conversion efficiency. The necessity to tackle some of these hurdles leads us to investigate the suitability of n-type hydrogenated microcrystalline silicon (μc-Si: H) in the fabrication of thermoelectric devices, produced by plasma enhanced chemical vapour deposition (PECVD), which is a mature process of proven scalability. This study reports an approach to optimise the thermoelectric power factor (PF) by varying the dopant concentration by means of post-annealing without impacting film morphology, at least for temperatures below 550°C. Results show an improvement in PF of more than 80%, which is driven by a noticeable increase of carrier mobility and Seebeck coefficient in spite of a reduction in carrier concentration. A PF of 2.08 × 10-4 W/mK2 at room temperature is reported for n-type films of 1 μm thickness, which is in line with the best values reported in recent literature for similar structures.

  14. Thermoelectric voltage at a nanometer-scale heated tip point contact

    International Nuclear Information System (INIS)

    Fletcher, Patrick C; Lee, Byeonghee; King, William P

    2012-01-01

    We report thermoelectric voltage measurements between the platinum-coated tip of a heated atomic force microscope (AFM) cantilever and a gold-coated substrate. The cantilevers have an integrated heater–thermometer element made from doped single crystal silicon, and a platinum tip. The voltage can be measured at the tip, independent from the cantilever heating. We used the thermocouple junction between the platinum tip and the gold substrate to measure thermoelectric voltage during heating. Experiments used either sample-side or tip-side heating, over the temperature range 25–275 °C. The tip–substrate contact is ∼4 nm in diameter and its average measured Seebeck coefficient is 3.4 μV K −1 . The thermoelectric voltage is used to determine tip–substrate interface temperature when the substrate is either glass or quartz. When the non-dimensional cantilever heater temperature is 1, the tip–substrate interface temperature is 0.593 on glass and 0.125 on quartz. Thermal contact resistance between the tip and the substrate heavily influences the tip–substrate interface temperature. Measurements agree well with modeling when the tip–substrate interface contact resistance is 10 8 K W −1 . (paper)

  15. Thermoelectric generator based on composites obtained by sintering of detonation nanodiamonds

    Science.gov (United States)

    Eidelman, E. D.; Meilakhs, A. P.; Semak, B. V.; Shakhov, F. M.

    2017-11-01

    A model of a thermoelectric generator is proposed, in which composite materials obtained by sintering diamond nanoparticles are used as the main component. To increase the useful conversion of heat into electric current, it is proposed to use the effect of electron drag by ballistic phonons. To reduce the ineffective heat spread, it is proposed to use the effect of thermal resistance of the boundaries between the graphite-like and diamond-like phases of the composite. An experimental confirmation of the existence of an optimal volume ratio between graphite-like and diamond-like phases of the composite is predicted and obtained. The highest achieved value of thermoelectric coefficient in the actual structure is 80 µV K-1 (which means 20 times increase compared to that of composites not of the optimal structure), with a thermal conductivity of 50 W m-1 K-1. These results were obtained with constant electrical conductivity. The combined influence of these two effects in case of the ideal composite structure should result in an increase of the thermoelectric efficiency parameter by three orders of magnitude.

  16. Preparation of InSe Thin Films by Thermal Evaporation Method and Their Characterization: Structural, Optical, and Thermoelectrical Properties

    Directory of Open Access Journals (Sweden)

    Sarita Boolchandani

    2018-01-01

    Full Text Available The indium selenium (InSe bilayer thin films of various thickness ratios, InxSe(1-x (x = 0.25, 0.50, 0.75, were deposited on a glass substrate keeping overall the same thickness of 2500 Ǻ using thermal evaporation method under high vacuum atmosphere. Electrical, optical, and structural properties of these bilayer thin films have been compared before and after thermal annealing at different temperatures. The structural and morphological characterization was done using XRD and SEM, respectively. The optical bandgap of these thin films has been calculated by Tauc’s relation that varies within the range of 1.99 to 2.05 eV. A simple low-cost thermoelectrical power measurement setup is designed which can measure the Seebeck coefficient “S” in the vacuum with temperature variation. The setup temperature variation is up to 70°C. This setup contains a Peltier device TEC1-12715 which is kept between two copper plates that act as a reference metal. Also, in the present work, the thermoelectric power of indium selenide (InSe and aluminum selenide (AlSe bilayer thin films prepared and annealed in the same way is calculated. The thermoelectric power has been measured by estimating the Seebeck coefficient for InSe and AlSe bilayer thin films. It was observed that the Seebeck coefficient is negative for InSe and AlSe thin films.

  17. Critical review of thermoelectrics in modern power generation applications

    Directory of Open Access Journals (Sweden)

    Saqr Khalid M.

    2009-01-01

    Full Text Available The thermoelectric complementary effects have been discovered in the nineteenth century. However, their role in engineering applications has been very limited until the first half of the twentieth century, the beginning of space exploration era. Radioisotope thermoelectric generators have been the actual motive for the research community to develop efficient, reliable and advanced thermoelectrics. The efficiency of thermoelectric materials has been doubled several times during the past three decades. Nevertheless, there are numerous challenges to be resolved in order to develop thermoelectric systems for our modern applications. This paper discusses the recent advances in thermoelectric power systems and sheds the light on the main problematic concerns which confront contemporary research efforts in that field.

  18. The thermoelectric performance of bulk three-dimensional graphene

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhi, E-mail: yangzhi@tyut.edu.cn [Key Lab of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024 (China); College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024 (China); Lan, Guoqiang; Ouyang, Bin [Department of Mining and Materials Engineering, McGill University, Montreal H3A 0C5 (Canada); Xu, Li-Chun; Liu, Ruiping [College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024 (China); Liu, Xuguang, E-mail: liuxuguang@tyut.edu.cn [Key Lab of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China); College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Song, Jun [Department of Mining and Materials Engineering, McGill University, Montreal H3A 0C5 (Canada)

    2016-11-01

    The electronic and thermoelectric properties of a new carbon bulk material, three-dimensional (3D) graphene, are investigated in this study. Our results show that 3D graphene has unique electronic structure, i.e., near the Fermi level there exist Dirac cones. More importantly, the thermoelectric performance of 3D graphene is excellent, at room temperature the thermoelectric figure of merit (ZT) is 0.21, an order of magnitude higher than that of graphene. By introducing line defects, the ZT of 3D graphene could be enhanced to 1.52, indicating 3D graphene is a powerful candidate for constructing novel thermoelectric materials. - Highlights: • There exist Dirac cones in three-dimensional (3D) graphene. • The thermoelectric performance of 3D graphene is excellent. • The defective 3D graphene has better thermoelectric performance.

  19. Applications of thermoelectric modules on heat flow detection.

    Science.gov (United States)

    Leephakpreeda, Thananchai

    2012-03-01

    This paper presents quantitative analysis and practical scenarios of implementation of the thermoelectric module for heat flow detection. Mathematical models of the thermoelectric effects are derived to describe the heat flow from/to the detected media. It is observed that the amount of the heat flow through the thermoelectric module proportionally induces the conduction heat owing to the temperature difference between the hot side and the cold side of the thermoelectric module. In turn, the Seebeck effect takes place in the thermoelectric module where the temperature difference is converted to the electric voltage. Hence, the heat flow from/to the detected media can be observed from both the amount and the polarity of the voltage across the thermoelectric module. Two experiments are demonstrated for viability of the proposed technique by the measurements of the heat flux through the building wall and thermal radiation from the outdoor environment during daytime. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Transport coefficients in Lorentz plasmas with the power-law kappa-distribution

    International Nuclear Information System (INIS)

    Jiulin, Du

    2013-01-01

    Transport coefficients in Lorentz plasma with the power-law κ-distribution are studied by means of using the transport equation and macroscopic laws of Lorentz plasma without magnetic field. Expressions of electric conductivity, thermoelectric coefficient, and thermal conductivity for the power-law κ-distribution are accurately derived. It is shown that these transport coefficients are significantly modified by the κ-parameter, and in the limit of the parameter κ→∞ they are reduced to the standard forms for a Maxwellian distribution